1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 /* SPDX-License-Identifier: GPL-2.0 */ /* * memory buffer pool support */ #ifndef _LINUX_MEMPOOL_H #define _LINUX_MEMPOOL_H #include <linux/wait.h> #include <linux/compiler.h> struct kmem_cache; typedef void * (mempool_alloc_t)(gfp_t gfp_mask, void *pool_data); typedef void (mempool_free_t)(void *element, void *pool_data); typedef struct mempool_s { spinlock_t lock; int min_nr; /* nr of elements at *elements */ int curr_nr; /* Current nr of elements at *elements */ void **elements; void *pool_data; mempool_alloc_t *alloc; mempool_free_t *free; wait_queue_head_t wait; } mempool_t; static inline bool mempool_initialized(mempool_t *pool) { return pool->elements != NULL; } void mempool_exit(mempool_t *pool); int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data, gfp_t gfp_mask, int node_id); int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data); extern mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data); extern mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data, gfp_t gfp_mask, int nid); extern int mempool_resize(mempool_t *pool, int new_min_nr); extern void mempool_destroy(mempool_t *pool); extern void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask) __malloc; extern void mempool_free(void *element, mempool_t *pool); /* * A mempool_alloc_t and mempool_free_t that get the memory from * a slab cache that is passed in through pool_data. * Note: the slab cache may not have a ctor function. */ void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data); void mempool_free_slab(void *element, void *pool_data); static inline int mempool_init_slab_pool(mempool_t *pool, int min_nr, struct kmem_cache *kc) { return mempool_init(pool, min_nr, mempool_alloc_slab, mempool_free_slab, (void *) kc); } static inline mempool_t * mempool_create_slab_pool(int min_nr, struct kmem_cache *kc) { return mempool_create(min_nr, mempool_alloc_slab, mempool_free_slab, (void *) kc); } /* * a mempool_alloc_t and a mempool_free_t to kmalloc and kfree the * amount of memory specified by pool_data */ void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data); void mempool_kfree(void *element, void *pool_data); static inline int mempool_init_kmalloc_pool(mempool_t *pool, int min_nr, size_t size) { return mempool_init(pool, min_nr, mempool_kmalloc, mempool_kfree, (void *) size); } static inline mempool_t *mempool_create_kmalloc_pool(int min_nr, size_t size) { return mempool_create(min_nr, mempool_kmalloc, mempool_kfree, (void *) size); } /* * A mempool_alloc_t and mempool_free_t for a simple page allocator that * allocates pages of the order specified by pool_data */ void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data); void mempool_free_pages(void *element, void *pool_data); static inline int mempool_init_page_pool(mempool_t *pool, int min_nr, int order) { return mempool_init(pool, min_nr, mempool_alloc_pages, mempool_free_pages, (void *)(long)order); } static inline mempool_t *mempool_create_page_pool(int min_nr, int order) { return mempool_create(min_nr, mempool_alloc_pages, mempool_free_pages, (void *)(long)order); } #endif /* _LINUX_MEMPOOL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 /* SPDX-License-Identifier: GPL-2.0 */ /* * NFS internal definitions */ #include "nfs4_fs.h" #include <linux/fs_context.h> #include <linux/security.h> #include <linux/crc32.h> #include <linux/sunrpc/addr.h> #include <linux/nfs_page.h> #include <linux/wait_bit.h> #define NFS_SB_MASK (SB_RDONLY|SB_NOSUID|SB_NODEV|SB_NOEXEC|SB_SYNCHRONOUS) extern const struct export_operations nfs_export_ops; struct nfs_string; struct nfs_pageio_descriptor; static inline void nfs_attr_check_mountpoint(struct super_block *parent, struct nfs_fattr *fattr) { if (!nfs_fsid_equal(&NFS_SB(parent)->fsid, &fattr->fsid)) fattr->valid |= NFS_ATTR_FATTR_MOUNTPOINT; } static inline int nfs_attr_use_mounted_on_fileid(struct nfs_fattr *fattr) { if (((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) == 0) || (((fattr->valid & NFS_ATTR_FATTR_MOUNTPOINT) == 0) && ((fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) == 0))) return 0; return 1; } static inline bool nfs_lookup_is_soft_revalidate(const struct dentry *dentry) { if (!(NFS_SB(dentry->d_sb)->flags & NFS_MOUNT_SOFTREVAL)) return false; if (!d_is_positive(dentry) || !NFS_FH(d_inode(dentry))->size) return false; return true; } /* * Note: RFC 1813 doesn't limit the number of auth flavors that * a server can return, so make something up. */ #define NFS_MAX_SECFLAVORS (12) /* * Value used if the user did not specify a port value. */ #define NFS_UNSPEC_PORT (-1) #define NFS_UNSPEC_RETRANS (UINT_MAX) #define NFS_UNSPEC_TIMEO (UINT_MAX) /* * Maximum number of pages that readdir can use for creating * a vmapped array of pages. */ #define NFS_MAX_READDIR_PAGES 8 struct nfs_client_initdata { unsigned long init_flags; const char *hostname; /* Hostname of the server */ const struct sockaddr *addr; /* Address of the server */ const char *nodename; /* Hostname of the client */ const char *ip_addr; /* IP address of the client */ size_t addrlen; struct nfs_subversion *nfs_mod; int proto; u32 minorversion; unsigned int nconnect; struct net *net; const struct rpc_timeout *timeparms; const struct cred *cred; }; /* * In-kernel mount arguments */ struct nfs_fs_context { bool internal; bool skip_reconfig_option_check; bool need_mount; bool sloppy; unsigned int flags; /* NFS{,4}_MOUNT_* flags */ unsigned int rsize, wsize; unsigned int timeo, retrans; unsigned int acregmin, acregmax; unsigned int acdirmin, acdirmax; unsigned int namlen; unsigned int options; unsigned int bsize; struct nfs_auth_info auth_info; rpc_authflavor_t selected_flavor; char *client_address; unsigned int version; unsigned int minorversion; char *fscache_uniq; unsigned short protofamily; unsigned short mountfamily; struct { union { struct sockaddr address; struct sockaddr_storage _address; }; size_t addrlen; char *hostname; u32 version; int port; unsigned short protocol; } mount_server; struct { union { struct sockaddr address; struct sockaddr_storage _address; }; size_t addrlen; char *hostname; char *export_path; int port; unsigned short protocol; unsigned short nconnect; unsigned short export_path_len; } nfs_server; struct nfs_fh *mntfh; struct nfs_server *server; struct nfs_subversion *nfs_mod; /* Information for a cloned mount. */ struct nfs_clone_mount { struct super_block *sb; struct dentry *dentry; struct nfs_fattr *fattr; unsigned int inherited_bsize; } clone_data; }; #define nfs_errorf(fc, fmt, ...) ((fc)->log.log ? \ errorf(fc, fmt, ## __VA_ARGS__) : \ ({ dprintk(fmt "\n", ## __VA_ARGS__); })) #define nfs_ferrorf(fc, fac, fmt, ...) ((fc)->log.log ? \ errorf(fc, fmt, ## __VA_ARGS__) : \ ({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); })) #define nfs_invalf(fc, fmt, ...) ((fc)->log.log ? \ invalf(fc, fmt, ## __VA_ARGS__) : \ ({ dprintk(fmt "\n", ## __VA_ARGS__); -EINVAL; })) #define nfs_finvalf(fc, fac, fmt, ...) ((fc)->log.log ? \ invalf(fc, fmt, ## __VA_ARGS__) : \ ({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); -EINVAL; })) #define nfs_warnf(fc, fmt, ...) ((fc)->log.log ? \ warnf(fc, fmt, ## __VA_ARGS__) : \ ({ dprintk(fmt "\n", ## __VA_ARGS__); })) #define nfs_fwarnf(fc, fac, fmt, ...) ((fc)->log.log ? \ warnf(fc, fmt, ## __VA_ARGS__) : \ ({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); })) static inline struct nfs_fs_context *nfs_fc2context(const struct fs_context *fc) { return fc->fs_private; } /* mount_clnt.c */ struct nfs_mount_request { struct sockaddr *sap; size_t salen; char *hostname; char *dirpath; u32 version; unsigned short protocol; struct nfs_fh *fh; int noresvport; unsigned int *auth_flav_len; rpc_authflavor_t *auth_flavs; struct net *net; }; extern int nfs_mount(struct nfs_mount_request *info); extern void nfs_umount(const struct nfs_mount_request *info); /* client.c */ extern const struct rpc_program nfs_program; extern void nfs_clients_init(struct net *net); extern void nfs_clients_exit(struct net *net); extern struct nfs_client *nfs_alloc_client(const struct nfs_client_initdata *); int nfs_create_rpc_client(struct nfs_client *, const struct nfs_client_initdata *, rpc_authflavor_t); struct nfs_client *nfs_get_client(const struct nfs_client_initdata *); int nfs_probe_fsinfo(struct nfs_server *server, struct nfs_fh *, struct nfs_fattr *); void nfs_server_insert_lists(struct nfs_server *); void nfs_server_remove_lists(struct nfs_server *); void nfs_init_timeout_values(struct rpc_timeout *to, int proto, int timeo, int retrans); int nfs_init_server_rpcclient(struct nfs_server *, const struct rpc_timeout *t, rpc_authflavor_t); struct nfs_server *nfs_alloc_server(void); void nfs_server_copy_userdata(struct nfs_server *, struct nfs_server *); extern void nfs_put_client(struct nfs_client *); extern void nfs_free_client(struct nfs_client *); extern struct nfs_client *nfs4_find_client_ident(struct net *, int); extern struct nfs_client * nfs4_find_client_sessionid(struct net *, const struct sockaddr *, struct nfs4_sessionid *, u32); extern struct nfs_server *nfs_create_server(struct fs_context *); extern struct nfs_server *nfs4_create_server(struct fs_context *); extern struct nfs_server *nfs4_create_referral_server(struct fs_context *); extern int nfs4_update_server(struct nfs_server *server, const char *hostname, struct sockaddr *sap, size_t salen, struct net *net); extern void nfs_free_server(struct nfs_server *server); extern struct nfs_server *nfs_clone_server(struct nfs_server *, struct nfs_fh *, struct nfs_fattr *, rpc_authflavor_t); extern bool nfs_client_init_is_complete(const struct nfs_client *clp); extern int nfs_client_init_status(const struct nfs_client *clp); extern int nfs_wait_client_init_complete(const struct nfs_client *clp); extern void nfs_mark_client_ready(struct nfs_client *clp, int state); extern struct nfs_client *nfs4_set_ds_client(struct nfs_server *mds_srv, const struct sockaddr *ds_addr, int ds_addrlen, int ds_proto, unsigned int ds_timeo, unsigned int ds_retrans, u32 minor_version); extern struct rpc_clnt *nfs4_find_or_create_ds_client(struct nfs_client *, struct inode *); extern struct nfs_client *nfs3_set_ds_client(struct nfs_server *mds_srv, const struct sockaddr *ds_addr, int ds_addrlen, int ds_proto, unsigned int ds_timeo, unsigned int ds_retrans); #ifdef CONFIG_PROC_FS extern int __init nfs_fs_proc_init(void); extern void nfs_fs_proc_exit(void); extern int nfs_fs_proc_net_init(struct net *net); extern void nfs_fs_proc_net_exit(struct net *net); #else static inline int nfs_fs_proc_net_init(struct net *net) { return 0; } static inline void nfs_fs_proc_net_exit(struct net *net) { } static inline int nfs_fs_proc_init(void) { return 0; } static inline void nfs_fs_proc_exit(void) { } #endif /* callback_xdr.c */ extern const struct svc_version nfs4_callback_version1; extern const struct svc_version nfs4_callback_version4; /* fs_context.c */ extern struct file_system_type nfs_fs_type; /* pagelist.c */ extern int __init nfs_init_nfspagecache(void); extern void nfs_destroy_nfspagecache(void); extern int __init nfs_init_readpagecache(void); extern void nfs_destroy_readpagecache(void); extern int __init nfs_init_writepagecache(void); extern void nfs_destroy_writepagecache(void); extern int __init nfs_init_directcache(void); extern void nfs_destroy_directcache(void); extern void nfs_pgheader_init(struct nfs_pageio_descriptor *desc, struct nfs_pgio_header *hdr, void (*release)(struct nfs_pgio_header *hdr)); void nfs_set_pgio_error(struct nfs_pgio_header *hdr, int error, loff_t pos); int nfs_iocounter_wait(struct nfs_lock_context *l_ctx); extern const struct nfs_pageio_ops nfs_pgio_rw_ops; struct nfs_pgio_header *nfs_pgio_header_alloc(const struct nfs_rw_ops *); void nfs_pgio_header_free(struct nfs_pgio_header *); int nfs_generic_pgio(struct nfs_pageio_descriptor *, struct nfs_pgio_header *); int nfs_initiate_pgio(struct rpc_clnt *clnt, struct nfs_pgio_header *hdr, const struct cred *cred, const struct nfs_rpc_ops *rpc_ops, const struct rpc_call_ops *call_ops, int how, int flags); void nfs_free_request(struct nfs_page *req); struct nfs_pgio_mirror * nfs_pgio_current_mirror(struct nfs_pageio_descriptor *desc); static inline bool nfs_match_open_context(const struct nfs_open_context *ctx1, const struct nfs_open_context *ctx2) { return cred_fscmp(ctx1->cred, ctx2->cred) == 0 && ctx1->state == ctx2->state; } /* nfs2xdr.c */ extern const struct rpc_procinfo nfs_procedures[]; extern int nfs2_decode_dirent(struct xdr_stream *, struct nfs_entry *, bool); /* nfs3xdr.c */ extern const struct rpc_procinfo nfs3_procedures[]; extern int nfs3_decode_dirent(struct xdr_stream *, struct nfs_entry *, bool); /* nfs4xdr.c */ #if IS_ENABLED(CONFIG_NFS_V4) extern int nfs4_decode_dirent(struct xdr_stream *, struct nfs_entry *, bool); #endif #ifdef CONFIG_NFS_V4_1 extern const u32 nfs41_maxread_overhead; extern const u32 nfs41_maxwrite_overhead; extern const u32 nfs41_maxgetdevinfo_overhead; #endif /* nfs4proc.c */ #if IS_ENABLED(CONFIG_NFS_V4) extern const struct rpc_procinfo nfs4_procedures[]; #endif #ifdef CONFIG_NFS_V4_SECURITY_LABEL extern struct nfs4_label *nfs4_label_alloc(struct nfs_server *server, gfp_t flags); static inline struct nfs4_label * nfs4_label_copy(struct nfs4_label *dst, struct nfs4_label *src) { if (!dst || !src) return NULL; if (src->len > NFS4_MAXLABELLEN) return NULL; dst->lfs = src->lfs; dst->pi = src->pi; dst->len = src->len; memcpy(dst->label, src->label, src->len); return dst; } static inline void nfs4_label_free(struct nfs4_label *label) { if (label) { kfree(label->label); kfree(label); } return; } static inline void nfs_zap_label_cache_locked(struct nfs_inode *nfsi) { if (nfs_server_capable(&nfsi->vfs_inode, NFS_CAP_SECURITY_LABEL)) nfsi->cache_validity |= NFS_INO_INVALID_LABEL; } #else static inline struct nfs4_label *nfs4_label_alloc(struct nfs_server *server, gfp_t flags) { return NULL; } static inline void nfs4_label_free(void *label) {} static inline void nfs_zap_label_cache_locked(struct nfs_inode *nfsi) { } static inline struct nfs4_label * nfs4_label_copy(struct nfs4_label *dst, struct nfs4_label *src) { return NULL; } #endif /* CONFIG_NFS_V4_SECURITY_LABEL */ /* proc.c */ void nfs_close_context(struct nfs_open_context *ctx, int is_sync); extern struct nfs_client *nfs_init_client(struct nfs_client *clp, const struct nfs_client_initdata *); /* dir.c */ extern void nfs_advise_use_readdirplus(struct inode *dir); extern void nfs_force_use_readdirplus(struct inode *dir); extern unsigned long nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc); extern unsigned long nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc); struct dentry *nfs_lookup(struct inode *, struct dentry *, unsigned int); int nfs_create(struct inode *, struct dentry *, umode_t, bool); int nfs_mkdir(struct inode *, struct dentry *, umode_t); int nfs_rmdir(struct inode *, struct dentry *); int nfs_unlink(struct inode *, struct dentry *); int nfs_symlink(struct inode *, struct dentry *, const char *); int nfs_link(struct dentry *, struct inode *, struct dentry *); int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t); int nfs_rename(struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); /* file.c */ int nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync); loff_t nfs_file_llseek(struct file *, loff_t, int); ssize_t nfs_file_read(struct kiocb *, struct iov_iter *); int nfs_file_mmap(struct file *, struct vm_area_struct *); ssize_t nfs_file_write(struct kiocb *, struct iov_iter *); int nfs_file_release(struct inode *, struct file *); int nfs_lock(struct file *, int, struct file_lock *); int nfs_flock(struct file *, int, struct file_lock *); int nfs_check_flags(int); /* inode.c */ extern struct workqueue_struct *nfsiod_workqueue; extern struct inode *nfs_alloc_inode(struct super_block *sb); extern void nfs_free_inode(struct inode *); extern int nfs_write_inode(struct inode *, struct writeback_control *); extern int nfs_drop_inode(struct inode *); extern void nfs_clear_inode(struct inode *); extern void nfs_evict_inode(struct inode *); void nfs_zap_acl_cache(struct inode *inode); extern bool nfs_check_cache_invalid(struct inode *, unsigned long); extern int nfs_wait_bit_killable(struct wait_bit_key *key, int mode); extern int nfs_wait_atomic_killable(atomic_t *p, unsigned int mode); /* super.c */ extern const struct super_operations nfs_sops; bool nfs_auth_info_match(const struct nfs_auth_info *, rpc_authflavor_t); int nfs_try_get_tree(struct fs_context *); int nfs_get_tree_common(struct fs_context *); void nfs_kill_super(struct super_block *); extern struct rpc_stat nfs_rpcstat; extern int __init register_nfs_fs(void); extern void __exit unregister_nfs_fs(void); extern bool nfs_sb_active(struct super_block *sb); extern void nfs_sb_deactive(struct super_block *sb); extern int nfs_client_for_each_server(struct nfs_client *clp, int (*fn)(struct nfs_server *, void *), void *data); /* io.c */ extern void nfs_start_io_read(struct inode *inode); extern void nfs_end_io_read(struct inode *inode); extern void nfs_start_io_write(struct inode *inode); extern void nfs_end_io_write(struct inode *inode); extern void nfs_start_io_direct(struct inode *inode); extern void nfs_end_io_direct(struct inode *inode); static inline bool nfs_file_io_is_buffered(struct nfs_inode *nfsi) { return test_bit(NFS_INO_ODIRECT, &nfsi->flags) == 0; } /* namespace.c */ #define NFS_PATH_CANONICAL 1 extern char *nfs_path(char **p, struct dentry *dentry, char *buffer, ssize_t buflen, unsigned flags); extern struct vfsmount *nfs_d_automount(struct path *path); int nfs_submount(struct fs_context *, struct nfs_server *); int nfs_do_submount(struct fs_context *); /* getroot.c */ extern int nfs_get_root(struct super_block *s, struct fs_context *fc); #if IS_ENABLED(CONFIG_NFS_V4) extern int nfs4_get_rootfh(struct nfs_server *server, struct nfs_fh *mntfh, bool); #endif struct nfs_pgio_completion_ops; /* read.c */ extern void nfs_pageio_init_read(struct nfs_pageio_descriptor *pgio, struct inode *inode, bool force_mds, const struct nfs_pgio_completion_ops *compl_ops); extern void nfs_read_prepare(struct rpc_task *task, void *calldata); extern void nfs_pageio_reset_read_mds(struct nfs_pageio_descriptor *pgio); /* super.c */ void nfs_umount_begin(struct super_block *); int nfs_statfs(struct dentry *, struct kstatfs *); int nfs_show_options(struct seq_file *, struct dentry *); int nfs_show_devname(struct seq_file *, struct dentry *); int nfs_show_path(struct seq_file *, struct dentry *); int nfs_show_stats(struct seq_file *, struct dentry *); int nfs_reconfigure(struct fs_context *); /* write.c */ extern void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, struct inode *inode, int ioflags, bool force_mds, const struct nfs_pgio_completion_ops *compl_ops); extern void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio); extern void nfs_commit_free(struct nfs_commit_data *p); extern void nfs_write_prepare(struct rpc_task *task, void *calldata); extern void nfs_commit_prepare(struct rpc_task *task, void *calldata); extern int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data, const struct nfs_rpc_ops *nfs_ops, const struct rpc_call_ops *call_ops, int how, int flags); extern void nfs_init_commit(struct nfs_commit_data *data, struct list_head *head, struct pnfs_layout_segment *lseg, struct nfs_commit_info *cinfo); int nfs_scan_commit_list(struct list_head *src, struct list_head *dst, struct nfs_commit_info *cinfo, int max); unsigned long nfs_reqs_to_commit(struct nfs_commit_info *); int nfs_scan_commit(struct inode *inode, struct list_head *dst, struct nfs_commit_info *cinfo); void nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, struct nfs_commit_info *cinfo, u32 ds_commit_idx); int nfs_write_need_commit(struct nfs_pgio_header *); void nfs_writeback_update_inode(struct nfs_pgio_header *hdr); int nfs_generic_commit_list(struct inode *inode, struct list_head *head, int how, struct nfs_commit_info *cinfo); void nfs_retry_commit(struct list_head *page_list, struct pnfs_layout_segment *lseg, struct nfs_commit_info *cinfo, u32 ds_commit_idx); void nfs_commitdata_release(struct nfs_commit_data *data); void nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo); void nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst, struct nfs_commit_info *cinfo); void nfs_request_remove_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo); void nfs_init_cinfo(struct nfs_commit_info *cinfo, struct inode *inode, struct nfs_direct_req *dreq); int nfs_key_timeout_notify(struct file *filp, struct inode *inode); bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode); void nfs_pageio_stop_mirroring(struct nfs_pageio_descriptor *pgio); int nfs_filemap_write_and_wait_range(struct address_space *mapping, loff_t lstart, loff_t lend); #ifdef CONFIG_NFS_V4_1 static inline void pnfs_bucket_clear_pnfs_ds_commit_verifiers(struct pnfs_commit_bucket *buckets, unsigned int nbuckets) { unsigned int i; for (i = 0; i < nbuckets; i++) buckets[i].direct_verf.committed = NFS_INVALID_STABLE_HOW; } static inline void nfs_clear_pnfs_ds_commit_verifiers(struct pnfs_ds_commit_info *cinfo) { struct pnfs_commit_array *array; rcu_read_lock(); list_for_each_entry_rcu(array, &cinfo->commits, cinfo_list) pnfs_bucket_clear_pnfs_ds_commit_verifiers(array->buckets, array->nbuckets); rcu_read_unlock(); } #else static inline void nfs_clear_pnfs_ds_commit_verifiers(struct pnfs_ds_commit_info *cinfo) { } #endif #ifdef CONFIG_MIGRATION extern int nfs_migrate_page(struct address_space *, struct page *, struct page *, enum migrate_mode); #endif static inline int nfs_write_verifier_cmp(const struct nfs_write_verifier *v1, const struct nfs_write_verifier *v2) { return memcmp(v1->data, v2->data, sizeof(v1->data)); } static inline bool nfs_write_match_verf(const struct nfs_writeverf *verf, struct nfs_page *req) { return verf->committed > NFS_UNSTABLE && !nfs_write_verifier_cmp(&req->wb_verf, &verf->verifier); } /* unlink.c */ extern struct rpc_task * nfs_async_rename(struct inode *old_dir, struct inode *new_dir, struct dentry *old_dentry, struct dentry *new_dentry, void (*complete)(struct rpc_task *, struct nfs_renamedata *)); extern int nfs_sillyrename(struct inode *dir, struct dentry *dentry); /* direct.c */ void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, struct nfs_direct_req *dreq); extern ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq); /* nfs4proc.c */ extern struct nfs_client *nfs4_init_client(struct nfs_client *clp, const struct nfs_client_initdata *); extern int nfs40_walk_client_list(struct nfs_client *clp, struct nfs_client **result, const struct cred *cred); extern int nfs41_walk_client_list(struct nfs_client *clp, struct nfs_client **result, const struct cred *cred); extern void nfs4_test_session_trunk(struct rpc_clnt *clnt, struct rpc_xprt *xprt, void *data); static inline struct inode *nfs_igrab_and_active(struct inode *inode) { struct super_block *sb = inode->i_sb; if (sb && nfs_sb_active(sb)) { if (igrab(inode)) return inode; nfs_sb_deactive(sb); } return NULL; } static inline void nfs_iput_and_deactive(struct inode *inode) { if (inode != NULL) { struct super_block *sb = inode->i_sb; iput(inode); nfs_sb_deactive(sb); } } /* * Determine the device name as a string */ static inline char *nfs_devname(struct dentry *dentry, char *buffer, ssize_t buflen) { char *dummy; return nfs_path(&dummy, dentry, buffer, buflen, NFS_PATH_CANONICAL); } /* * Determine the actual block size (and log2 thereof) */ static inline unsigned long nfs_block_bits(unsigned long bsize, unsigned char *nrbitsp) { /* make sure blocksize is a power of two */ if ((bsize & (bsize - 1)) || nrbitsp) { unsigned char nrbits; for (nrbits = 31; nrbits && !(bsize & (1 << nrbits)); nrbits--) ; bsize = 1 << nrbits; if (nrbitsp) *nrbitsp = nrbits; } return bsize; } /* * Calculate the number of 512byte blocks used. */ static inline blkcnt_t nfs_calc_block_size(u64 tsize) { blkcnt_t used = (tsize + 511) >> 9; return (used > ULONG_MAX) ? ULONG_MAX : used; } /* * Compute and set NFS server blocksize */ static inline unsigned long nfs_block_size(unsigned long bsize, unsigned char *nrbitsp) { if (bsize < NFS_MIN_FILE_IO_SIZE) bsize = NFS_DEF_FILE_IO_SIZE; else if (bsize >= NFS_MAX_FILE_IO_SIZE) bsize = NFS_MAX_FILE_IO_SIZE; return nfs_block_bits(bsize, nrbitsp); } /* * Determine the maximum file size for a superblock */ static inline void nfs_super_set_maxbytes(struct super_block *sb, __u64 maxfilesize) { sb->s_maxbytes = (loff_t)maxfilesize; if (sb->s_maxbytes > MAX_LFS_FILESIZE || sb->s_maxbytes <= 0) sb->s_maxbytes = MAX_LFS_FILESIZE; } /* * Record the page as unstable (an extra writeback period) and mark its * inode as dirty. */ static inline void nfs_mark_page_unstable(struct page *page, struct nfs_commit_info *cinfo) { if (!cinfo->dreq) { struct inode *inode = page_file_mapping(page)->host; /* This page is really still in write-back - just that the * writeback is happening on the server now. */ inc_node_page_state(page, NR_WRITEBACK); inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); __mark_inode_dirty(inode, I_DIRTY_DATASYNC); } } /* * Determine the number of bytes of data the page contains */ static inline unsigned int nfs_page_length(struct page *page) { loff_t i_size = i_size_read(page_file_mapping(page)->host); if (i_size > 0) { pgoff_t index = page_index(page); pgoff_t end_index = (i_size - 1) >> PAGE_SHIFT; if (index < end_index) return PAGE_SIZE; if (index == end_index) return ((i_size - 1) & ~PAGE_MASK) + 1; } return 0; } /* * Convert a umode to a dirent->d_type */ static inline unsigned char nfs_umode_to_dtype(umode_t mode) { return (mode >> 12) & 15; } /* * Determine the number of pages in an array of length 'len' and * with a base offset of 'base' */ static inline unsigned int nfs_page_array_len(unsigned int base, size_t len) { return ((unsigned long)len + (unsigned long)base + PAGE_SIZE - 1) >> PAGE_SHIFT; } /* * Convert a struct timespec64 into a 64-bit change attribute * * This does approximately the same thing as timespec64_to_ns(), * but for calculation efficiency, we multiply the seconds by * 1024*1024*1024. */ static inline u64 nfs_timespec_to_change_attr(const struct timespec64 *ts) { return ((u64)ts->tv_sec << 30) + ts->tv_nsec; } #ifdef CONFIG_CRC32 /** * nfs_fhandle_hash - calculate the crc32 hash for the filehandle * @fh - pointer to filehandle * * returns a crc32 hash for the filehandle that is compatible with * the one displayed by "wireshark". */ static inline u32 nfs_fhandle_hash(const struct nfs_fh *fh) { return ~crc32_le(0xFFFFFFFF, &fh->data[0], fh->size); } static inline u32 nfs_stateid_hash(const nfs4_stateid *stateid) { return ~crc32_le(0xFFFFFFFF, &stateid->other[0], NFS4_STATEID_OTHER_SIZE); } #else static inline u32 nfs_fhandle_hash(const struct nfs_fh *fh) { return 0; } static inline u32 nfs_stateid_hash(nfs4_stateid *stateid) { return 0; } #endif static inline bool nfs_error_is_fatal(int err) { switch (err) { case -ERESTARTSYS: case -EINTR: case -EACCES: case -EDQUOT: case -EFBIG: case -EIO: case -ENOSPC: case -EROFS: case -ESTALE: case -E2BIG: case -ENOMEM: case -ETIMEDOUT: return true; default: return false; } } static inline bool nfs_error_is_fatal_on_server(int err) { switch (err) { case 0: case -ERESTARTSYS: case -EINTR: return false; } return nfs_error_is_fatal(err); } /* * Select between a default port value and a user-specified port value. * If a zero value is set, then autobind will be used. */ static inline void nfs_set_port(struct sockaddr *sap, int *port, const unsigned short default_port) { if (*port == NFS_UNSPEC_PORT) *port = default_port; rpc_set_port(sap, *port); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NF_CONNTRACK_EXTEND_H #define _NF_CONNTRACK_EXTEND_H #include <linux/slab.h> #include <net/netfilter/nf_conntrack.h> enum nf_ct_ext_id { NF_CT_EXT_HELPER, #if IS_ENABLED(CONFIG_NF_NAT) NF_CT_EXT_NAT, #endif NF_CT_EXT_SEQADJ, NF_CT_EXT_ACCT, #ifdef CONFIG_NF_CONNTRACK_EVENTS NF_CT_EXT_ECACHE, #endif #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP NF_CT_EXT_TSTAMP, #endif #ifdef CONFIG_NF_CONNTRACK_TIMEOUT NF_CT_EXT_TIMEOUT, #endif #ifdef CONFIG_NF_CONNTRACK_LABELS NF_CT_EXT_LABELS, #endif #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY) NF_CT_EXT_SYNPROXY, #endif NF_CT_EXT_NUM, }; #define NF_CT_EXT_HELPER_TYPE struct nf_conn_help #define NF_CT_EXT_NAT_TYPE struct nf_conn_nat #define NF_CT_EXT_SEQADJ_TYPE struct nf_conn_seqadj #define NF_CT_EXT_ACCT_TYPE struct nf_conn_acct #define NF_CT_EXT_ECACHE_TYPE struct nf_conntrack_ecache #define NF_CT_EXT_TSTAMP_TYPE struct nf_conn_tstamp #define NF_CT_EXT_TIMEOUT_TYPE struct nf_conn_timeout #define NF_CT_EXT_LABELS_TYPE struct nf_conn_labels #define NF_CT_EXT_SYNPROXY_TYPE struct nf_conn_synproxy /* Extensions: optional stuff which isn't permanently in struct. */ struct nf_ct_ext { u8 offset[NF_CT_EXT_NUM]; u8 len; char data[]; }; static inline bool __nf_ct_ext_exist(const struct nf_ct_ext *ext, u8 id) { return !!ext->offset[id]; } static inline bool nf_ct_ext_exist(const struct nf_conn *ct, u8 id) { return (ct->ext && __nf_ct_ext_exist(ct->ext, id)); } static inline void *__nf_ct_ext_find(const struct nf_conn *ct, u8 id) { if (!nf_ct_ext_exist(ct, id)) return NULL; return (void *)ct->ext + ct->ext->offset[id]; } #define nf_ct_ext_find(ext, id) \ ((id##_TYPE *)__nf_ct_ext_find((ext), (id))) /* Destroy all relationships */ void nf_ct_ext_destroy(struct nf_conn *ct); /* Add this type, returns pointer to data or NULL. */ void *nf_ct_ext_add(struct nf_conn *ct, enum nf_ct_ext_id id, gfp_t gfp); struct nf_ct_ext_type { /* Destroys relationships (can be NULL). */ void (*destroy)(struct nf_conn *ct); enum nf_ct_ext_id id; /* Length and min alignment. */ u8 len; u8 align; }; int nf_ct_extend_register(const struct nf_ct_ext_type *type); void nf_ct_extend_unregister(const struct nf_ct_ext_type *type); #endif /* _NF_CONNTRACK_EXTEND_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MM_H #define _LINUX_MM_H #include <linux/errno.h> #ifdef __KERNEL__ #include <linux/mmdebug.h> #include <linux/gfp.h> #include <linux/bug.h> #include <linux/list.h> #include <linux/mmzone.h> #include <linux/rbtree.h> #include <linux/atomic.h> #include <linux/debug_locks.h> #include <linux/mm_types.h> #include <linux/mmap_lock.h> #include <linux/range.h> #include <linux/pfn.h> #include <linux/percpu-refcount.h> #include <linux/bit_spinlock.h> #include <linux/shrinker.h> #include <linux/resource.h> #include <linux/page_ext.h> #include <linux/err.h> #include <linux/page-flags.h> #include <linux/page_ref.h> #include <linux/memremap.h> #include <linux/overflow.h> #include <linux/sizes.h> #include <linux/sched.h> #include <linux/pgtable.h> struct mempolicy; struct anon_vma; struct anon_vma_chain; struct file_ra_state; struct user_struct; struct writeback_control; struct bdi_writeback; struct pt_regs; extern int sysctl_page_lock_unfairness; void init_mm_internals(void); #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ extern unsigned long max_mapnr; static inline void set_max_mapnr(unsigned long limit) { max_mapnr = limit; } #else static inline void set_max_mapnr(unsigned long limit) { } #endif extern atomic_long_t _totalram_pages; static inline unsigned long totalram_pages(void) { return (unsigned long)atomic_long_read(&_totalram_pages); } static inline void totalram_pages_inc(void) { atomic_long_inc(&_totalram_pages); } static inline void totalram_pages_dec(void) { atomic_long_dec(&_totalram_pages); } static inline void totalram_pages_add(long count) { atomic_long_add(count, &_totalram_pages); } extern void * high_memory; extern int page_cluster; #ifdef CONFIG_SYSCTL extern int sysctl_legacy_va_layout; #else #define sysctl_legacy_va_layout 0 #endif #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS extern const int mmap_rnd_bits_min; extern const int mmap_rnd_bits_max; extern int mmap_rnd_bits __read_mostly; #endif #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS extern const int mmap_rnd_compat_bits_min; extern const int mmap_rnd_compat_bits_max; extern int mmap_rnd_compat_bits __read_mostly; #endif #include <asm/page.h> #include <asm/processor.h> /* * Architectures that support memory tagging (assigning tags to memory regions, * embedding these tags into addresses that point to these memory regions, and * checking that the memory and the pointer tags match on memory accesses) * redefine this macro to strip tags from pointers. * It's defined as noop for arcitectures that don't support memory tagging. */ #ifndef untagged_addr #define untagged_addr(addr) (addr) #endif #ifndef __pa_symbol #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) #endif #ifndef page_to_virt #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) #endif #ifndef lm_alias #define lm_alias(x) __va(__pa_symbol(x)) #endif /* * To prevent common memory management code establishing * a zero page mapping on a read fault. * This macro should be defined within <asm/pgtable.h>. * s390 does this to prevent multiplexing of hardware bits * related to the physical page in case of virtualization. */ #ifndef mm_forbids_zeropage #define mm_forbids_zeropage(X) (0) #endif /* * On some architectures it is expensive to call memset() for small sizes. * If an architecture decides to implement their own version of * mm_zero_struct_page they should wrap the defines below in a #ifndef and * define their own version of this macro in <asm/pgtable.h> */ #if BITS_PER_LONG == 64 /* This function must be updated when the size of struct page grows above 80 * or reduces below 56. The idea that compiler optimizes out switch() * statement, and only leaves move/store instructions. Also the compiler can * combine write statments if they are both assignments and can be reordered, * this can result in several of the writes here being dropped. */ #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) static inline void __mm_zero_struct_page(struct page *page) { unsigned long *_pp = (void *)page; /* Check that struct page is either 56, 64, 72, or 80 bytes */ BUILD_BUG_ON(sizeof(struct page) & 7); BUILD_BUG_ON(sizeof(struct page) < 56); BUILD_BUG_ON(sizeof(struct page) > 80); switch (sizeof(struct page)) { case 80: _pp[9] = 0; fallthrough; case 72: _pp[8] = 0; fallthrough; case 64: _pp[7] = 0; fallthrough; case 56: _pp[6] = 0; _pp[5] = 0; _pp[4] = 0; _pp[3] = 0; _pp[2] = 0; _pp[1] = 0; _pp[0] = 0; } } #else #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) #endif /* * Default maximum number of active map areas, this limits the number of vmas * per mm struct. Users can overwrite this number by sysctl but there is a * problem. * * When a program's coredump is generated as ELF format, a section is created * per a vma. In ELF, the number of sections is represented in unsigned short. * This means the number of sections should be smaller than 65535 at coredump. * Because the kernel adds some informative sections to a image of program at * generating coredump, we need some margin. The number of extra sections is * 1-3 now and depends on arch. We use "5" as safe margin, here. * * ELF extended numbering allows more than 65535 sections, so 16-bit bound is * not a hard limit any more. Although some userspace tools can be surprised by * that. */ #define MAPCOUNT_ELF_CORE_MARGIN (5) #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) extern int sysctl_max_map_count; extern unsigned long sysctl_user_reserve_kbytes; extern unsigned long sysctl_admin_reserve_kbytes; extern int sysctl_overcommit_memory; extern int sysctl_overcommit_ratio; extern unsigned long sysctl_overcommit_kbytes; int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, loff_t *); #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) /* to align the pointer to the (next) page boundary */ #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) /* * Linux kernel virtual memory manager primitives. * The idea being to have a "virtual" mm in the same way * we have a virtual fs - giving a cleaner interface to the * mm details, and allowing different kinds of memory mappings * (from shared memory to executable loading to arbitrary * mmap() functions). */ struct vm_area_struct *vm_area_alloc(struct mm_struct *); struct vm_area_struct *vm_area_dup(struct vm_area_struct *); void vm_area_free(struct vm_area_struct *); #ifndef CONFIG_MMU extern struct rb_root nommu_region_tree; extern struct rw_semaphore nommu_region_sem; extern unsigned int kobjsize(const void *objp); #endif /* * vm_flags in vm_area_struct, see mm_types.h. * When changing, update also include/trace/events/mmflags.h */ #define VM_NONE 0x00000000 #define VM_READ 0x00000001 /* currently active flags */ #define VM_WRITE 0x00000002 #define VM_EXEC 0x00000004 #define VM_SHARED 0x00000008 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ #define VM_MAYWRITE 0x00000020 #define VM_MAYEXEC 0x00000040 #define VM_MAYSHARE 0x00000080 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ #define VM_LOCKED 0x00002000 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ /* Used by sys_madvise() */ #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ #define VM_SYNC 0x00800000 /* Synchronous page faults */ #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ #ifdef CONFIG_MEM_SOFT_DIRTY # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ #else # define VM_SOFTDIRTY 0 #endif #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ #ifdef CONFIG_ARCH_HAS_PKEYS # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 #ifdef CONFIG_PPC # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 #else # define VM_PKEY_BIT4 0 #endif #endif /* CONFIG_ARCH_HAS_PKEYS */ #if defined(CONFIG_X86) # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ #elif defined(CONFIG_PPC) # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ #elif defined(CONFIG_PARISC) # define VM_GROWSUP VM_ARCH_1 #elif defined(CONFIG_IA64) # define VM_GROWSUP VM_ARCH_1 #elif defined(CONFIG_SPARC64) # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ # define VM_ARCH_CLEAR VM_SPARC_ADI #elif defined(CONFIG_ARM64) # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ # define VM_ARCH_CLEAR VM_ARM64_BTI #elif !defined(CONFIG_MMU) # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ #endif #if defined(CONFIG_ARM64_MTE) # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ #else # define VM_MTE VM_NONE # define VM_MTE_ALLOWED VM_NONE #endif #ifndef VM_GROWSUP # define VM_GROWSUP VM_NONE #endif /* Bits set in the VMA until the stack is in its final location */ #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) /* Common data flag combinations */ #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ VM_MAYWRITE | VM_MAYEXEC) #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC #endif #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS #endif #ifdef CONFIG_STACK_GROWSUP #define VM_STACK VM_GROWSUP #else #define VM_STACK VM_GROWSDOWN #endif #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) /* VMA basic access permission flags */ #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) /* * Special vmas that are non-mergable, non-mlock()able. */ #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) /* This mask prevents VMA from being scanned with khugepaged */ #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) /* This mask defines which mm->def_flags a process can inherit its parent */ #define VM_INIT_DEF_MASK VM_NOHUGEPAGE /* This mask is used to clear all the VMA flags used by mlock */ #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) /* Arch-specific flags to clear when updating VM flags on protection change */ #ifndef VM_ARCH_CLEAR # define VM_ARCH_CLEAR VM_NONE #endif #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) /* * mapping from the currently active vm_flags protection bits (the * low four bits) to a page protection mask.. */ extern pgprot_t protection_map[16]; /** * Fault flag definitions. * * @FAULT_FLAG_WRITE: Fault was a write fault. * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. * @FAULT_FLAG_TRIED: The fault has been tried once. * @FAULT_FLAG_USER: The fault originated in userspace. * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. * * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify * whether we would allow page faults to retry by specifying these two * fault flags correctly. Currently there can be three legal combinations: * * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and * this is the first try * * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and * we've already tried at least once * * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry * * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never * be used. Note that page faults can be allowed to retry for multiple times, * in which case we'll have an initial fault with flags (a) then later on * continuous faults with flags (b). We should always try to detect pending * signals before a retry to make sure the continuous page faults can still be * interrupted if necessary. */ #define FAULT_FLAG_WRITE 0x01 #define FAULT_FLAG_MKWRITE 0x02 #define FAULT_FLAG_ALLOW_RETRY 0x04 #define FAULT_FLAG_RETRY_NOWAIT 0x08 #define FAULT_FLAG_KILLABLE 0x10 #define FAULT_FLAG_TRIED 0x20 #define FAULT_FLAG_USER 0x40 #define FAULT_FLAG_REMOTE 0x80 #define FAULT_FLAG_INSTRUCTION 0x100 #define FAULT_FLAG_INTERRUPTIBLE 0x200 /* * The default fault flags that should be used by most of the * arch-specific page fault handlers. */ #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ FAULT_FLAG_KILLABLE | \ FAULT_FLAG_INTERRUPTIBLE) /** * fault_flag_allow_retry_first - check ALLOW_RETRY the first time * * This is mostly used for places where we want to try to avoid taking * the mmap_lock for too long a time when waiting for another condition * to change, in which case we can try to be polite to release the * mmap_lock in the first round to avoid potential starvation of other * processes that would also want the mmap_lock. * * Return: true if the page fault allows retry and this is the first * attempt of the fault handling; false otherwise. */ static inline bool fault_flag_allow_retry_first(unsigned int flags) { return (flags & FAULT_FLAG_ALLOW_RETRY) && (!(flags & FAULT_FLAG_TRIED)); } #define FAULT_FLAG_TRACE \ { FAULT_FLAG_WRITE, "WRITE" }, \ { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ { FAULT_FLAG_TRIED, "TRIED" }, \ { FAULT_FLAG_USER, "USER" }, \ { FAULT_FLAG_REMOTE, "REMOTE" }, \ { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } /* * vm_fault is filled by the pagefault handler and passed to the vma's * ->fault function. The vma's ->fault is responsible for returning a bitmask * of VM_FAULT_xxx flags that give details about how the fault was handled. * * MM layer fills up gfp_mask for page allocations but fault handler might * alter it if its implementation requires a different allocation context. * * pgoff should be used in favour of virtual_address, if possible. */ struct vm_fault { struct vm_area_struct *vma; /* Target VMA */ unsigned int flags; /* FAULT_FLAG_xxx flags */ gfp_t gfp_mask; /* gfp mask to be used for allocations */ pgoff_t pgoff; /* Logical page offset based on vma */ unsigned long address; /* Faulting virtual address */ pmd_t *pmd; /* Pointer to pmd entry matching * the 'address' */ pud_t *pud; /* Pointer to pud entry matching * the 'address' */ pte_t orig_pte; /* Value of PTE at the time of fault */ struct page *cow_page; /* Page handler may use for COW fault */ struct page *page; /* ->fault handlers should return a * page here, unless VM_FAULT_NOPAGE * is set (which is also implied by * VM_FAULT_ERROR). */ /* These three entries are valid only while holding ptl lock */ pte_t *pte; /* Pointer to pte entry matching * the 'address'. NULL if the page * table hasn't been allocated. */ spinlock_t *ptl; /* Page table lock. * Protects pte page table if 'pte' * is not NULL, otherwise pmd. */ pgtable_t prealloc_pte; /* Pre-allocated pte page table. * vm_ops->map_pages() calls * alloc_set_pte() from atomic context. * do_fault_around() pre-allocates * page table to avoid allocation from * atomic context. */ }; /* page entry size for vm->huge_fault() */ enum page_entry_size { PE_SIZE_PTE = 0, PE_SIZE_PMD, PE_SIZE_PUD, }; /* * These are the virtual MM functions - opening of an area, closing and * unmapping it (needed to keep files on disk up-to-date etc), pointer * to the functions called when a no-page or a wp-page exception occurs. */ struct vm_operations_struct { void (*open)(struct vm_area_struct * area); void (*close)(struct vm_area_struct * area); int (*split)(struct vm_area_struct * area, unsigned long addr); int (*mremap)(struct vm_area_struct * area); vm_fault_t (*fault)(struct vm_fault *vmf); vm_fault_t (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); void (*map_pages)(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff); unsigned long (*pagesize)(struct vm_area_struct * area); /* notification that a previously read-only page is about to become * writable, if an error is returned it will cause a SIGBUS */ vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); /* called by access_process_vm when get_user_pages() fails, typically * for use by special VMAs that can switch between memory and hardware */ int (*access)(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write); /* Called by the /proc/PID/maps code to ask the vma whether it * has a special name. Returning non-NULL will also cause this * vma to be dumped unconditionally. */ const char *(*name)(struct vm_area_struct *vma); #ifdef CONFIG_NUMA /* * set_policy() op must add a reference to any non-NULL @new mempolicy * to hold the policy upon return. Caller should pass NULL @new to * remove a policy and fall back to surrounding context--i.e. do not * install a MPOL_DEFAULT policy, nor the task or system default * mempolicy. */ int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); /* * get_policy() op must add reference [mpol_get()] to any policy at * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure * in mm/mempolicy.c will do this automatically. * get_policy() must NOT add a ref if the policy at (vma,addr) is not * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. * If no [shared/vma] mempolicy exists at the addr, get_policy() op * must return NULL--i.e., do not "fallback" to task or system default * policy. */ struct mempolicy *(*get_policy)(struct vm_area_struct *vma, unsigned long addr); #endif /* * Called by vm_normal_page() for special PTEs to find the * page for @addr. This is useful if the default behavior * (using pte_page()) would not find the correct page. */ struct page *(*find_special_page)(struct vm_area_struct *vma, unsigned long addr); }; static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) { static const struct vm_operations_struct dummy_vm_ops = {}; memset(vma, 0, sizeof(*vma)); vma->vm_mm = mm; vma->vm_ops = &dummy_vm_ops; INIT_LIST_HEAD(&vma->anon_vma_chain); } static inline void vma_set_anonymous(struct vm_area_struct *vma) { vma->vm_ops = NULL; } static inline bool vma_is_anonymous(struct vm_area_struct *vma) { return !vma->vm_ops; } static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) { int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); if (!maybe_stack) return false; if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == VM_STACK_INCOMPLETE_SETUP) return true; return false; } static inline bool vma_is_foreign(struct vm_area_struct *vma) { if (!current->mm) return true; if (current->mm != vma->vm_mm) return true; return false; } static inline bool vma_is_accessible(struct vm_area_struct *vma) { return vma->vm_flags & VM_ACCESS_FLAGS; } #ifdef CONFIG_SHMEM /* * The vma_is_shmem is not inline because it is used only by slow * paths in userfault. */ bool vma_is_shmem(struct vm_area_struct *vma); #else static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } #endif int vma_is_stack_for_current(struct vm_area_struct *vma); /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } struct mmu_gather; struct inode; #include <linux/huge_mm.h> /* * Methods to modify the page usage count. * * What counts for a page usage: * - cache mapping (page->mapping) * - private data (page->private) * - page mapped in a task's page tables, each mapping * is counted separately * * Also, many kernel routines increase the page count before a critical * routine so they can be sure the page doesn't go away from under them. */ /* * Drop a ref, return true if the refcount fell to zero (the page has no users) */ static inline int put_page_testzero(struct page *page) { VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); return page_ref_dec_and_test(page); } /* * Try to grab a ref unless the page has a refcount of zero, return false if * that is the case. * This can be called when MMU is off so it must not access * any of the virtual mappings. */ static inline int get_page_unless_zero(struct page *page) { return page_ref_add_unless(page, 1, 0); } extern int page_is_ram(unsigned long pfn); enum { REGION_INTERSECTS, REGION_DISJOINT, REGION_MIXED, }; int region_intersects(resource_size_t offset, size_t size, unsigned long flags, unsigned long desc); /* Support for virtually mapped pages */ struct page *vmalloc_to_page(const void *addr); unsigned long vmalloc_to_pfn(const void *addr); /* * Determine if an address is within the vmalloc range * * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there * is no special casing required. */ #ifndef is_ioremap_addr #define is_ioremap_addr(x) is_vmalloc_addr(x) #endif #ifdef CONFIG_MMU extern bool is_vmalloc_addr(const void *x); extern int is_vmalloc_or_module_addr(const void *x); #else static inline bool is_vmalloc_addr(const void *x) { return false; } static inline int is_vmalloc_or_module_addr(const void *x) { return 0; } #endif extern void *kvmalloc_node(size_t size, gfp_t flags, int node); static inline void *kvmalloc(size_t size, gfp_t flags) { return kvmalloc_node(size, flags, NUMA_NO_NODE); } static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) { return kvmalloc_node(size, flags | __GFP_ZERO, node); } static inline void *kvzalloc(size_t size, gfp_t flags) { return kvmalloc(size, flags | __GFP_ZERO); } static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; return kvmalloc(bytes, flags); } static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) { return kvmalloc_array(n, size, flags | __GFP_ZERO); } extern void kvfree(const void *addr); extern void kvfree_sensitive(const void *addr, size_t len); static inline int head_compound_mapcount(struct page *head) { return atomic_read(compound_mapcount_ptr(head)) + 1; } /* * Mapcount of compound page as a whole, does not include mapped sub-pages. * * Must be called only for compound pages or any their tail sub-pages. */ static inline int compound_mapcount(struct page *page) { VM_BUG_ON_PAGE(!PageCompound(page), page); page = compound_head(page); return head_compound_mapcount(page); } /* * The atomic page->_mapcount, starts from -1: so that transitions * both from it and to it can be tracked, using atomic_inc_and_test * and atomic_add_negative(-1). */ static inline void page_mapcount_reset(struct page *page) { atomic_set(&(page)->_mapcount, -1); } int __page_mapcount(struct page *page); /* * Mapcount of 0-order page; when compound sub-page, includes * compound_mapcount(). * * Result is undefined for pages which cannot be mapped into userspace. * For example SLAB or special types of pages. See function page_has_type(). * They use this place in struct page differently. */ static inline int page_mapcount(struct page *page) { if (unlikely(PageCompound(page))) return __page_mapcount(page); return atomic_read(&page->_mapcount) + 1; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE int total_mapcount(struct page *page); int page_trans_huge_mapcount(struct page *page, int *total_mapcount); #else static inline int total_mapcount(struct page *page) { return page_mapcount(page); } static inline int page_trans_huge_mapcount(struct page *page, int *total_mapcount) { int mapcount = page_mapcount(page); if (total_mapcount) *total_mapcount = mapcount; return mapcount; } #endif static inline struct page *virt_to_head_page(const void *x) { struct page *page = virt_to_page(x); return compound_head(page); } void __put_page(struct page *page); void put_pages_list(struct list_head *pages); void split_page(struct page *page, unsigned int order); /* * Compound pages have a destructor function. Provide a * prototype for that function and accessor functions. * These are _only_ valid on the head of a compound page. */ typedef void compound_page_dtor(struct page *); /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ enum compound_dtor_id { NULL_COMPOUND_DTOR, COMPOUND_PAGE_DTOR, #ifdef CONFIG_HUGETLB_PAGE HUGETLB_PAGE_DTOR, #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE TRANSHUGE_PAGE_DTOR, #endif NR_COMPOUND_DTORS, }; extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; static inline void set_compound_page_dtor(struct page *page, enum compound_dtor_id compound_dtor) { VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); page[1].compound_dtor = compound_dtor; } static inline void destroy_compound_page(struct page *page) { VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); compound_page_dtors[page[1].compound_dtor](page); } static inline unsigned int compound_order(struct page *page) { if (!PageHead(page)) return 0; return page[1].compound_order; } static inline bool hpage_pincount_available(struct page *page) { /* * Can the page->hpage_pinned_refcount field be used? That field is in * the 3rd page of the compound page, so the smallest (2-page) compound * pages cannot support it. */ page = compound_head(page); return PageCompound(page) && compound_order(page) > 1; } static inline int head_compound_pincount(struct page *head) { return atomic_read(compound_pincount_ptr(head)); } static inline int compound_pincount(struct page *page) { VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); page = compound_head(page); return head_compound_pincount(page); } static inline void set_compound_order(struct page *page, unsigned int order) { page[1].compound_order = order; page[1].compound_nr = 1U << order; } /* Returns the number of pages in this potentially compound page. */ static inline unsigned long compound_nr(struct page *page) { if (!PageHead(page)) return 1; return page[1].compound_nr; } /* Returns the number of bytes in this potentially compound page. */ static inline unsigned long page_size(struct page *page) { return PAGE_SIZE << compound_order(page); } /* Returns the number of bits needed for the number of bytes in a page */ static inline unsigned int page_shift(struct page *page) { return PAGE_SHIFT + compound_order(page); } void free_compound_page(struct page *page); #ifdef CONFIG_MMU /* * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when * servicing faults for write access. In the normal case, do always want * pte_mkwrite. But get_user_pages can cause write faults for mappings * that do not have writing enabled, when used by access_process_vm. */ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) { if (likely(vma->vm_flags & VM_WRITE)) pte = pte_mkwrite(pte); return pte; } vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); vm_fault_t finish_fault(struct vm_fault *vmf); vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); #endif /* * Multiple processes may "see" the same page. E.g. for untouched * mappings of /dev/null, all processes see the same page full of * zeroes, and text pages of executables and shared libraries have * only one copy in memory, at most, normally. * * For the non-reserved pages, page_count(page) denotes a reference count. * page_count() == 0 means the page is free. page->lru is then used for * freelist management in the buddy allocator. * page_count() > 0 means the page has been allocated. * * Pages are allocated by the slab allocator in order to provide memory * to kmalloc and kmem_cache_alloc. In this case, the management of the * page, and the fields in 'struct page' are the responsibility of mm/slab.c * unless a particular usage is carefully commented. (the responsibility of * freeing the kmalloc memory is the caller's, of course). * * A page may be used by anyone else who does a __get_free_page(). * In this case, page_count still tracks the references, and should only * be used through the normal accessor functions. The top bits of page->flags * and page->virtual store page management information, but all other fields * are unused and could be used privately, carefully. The management of this * page is the responsibility of the one who allocated it, and those who have * subsequently been given references to it. * * The other pages (we may call them "pagecache pages") are completely * managed by the Linux memory manager: I/O, buffers, swapping etc. * The following discussion applies only to them. * * A pagecache page contains an opaque `private' member, which belongs to the * page's address_space. Usually, this is the address of a circular list of * the page's disk buffers. PG_private must be set to tell the VM to call * into the filesystem to release these pages. * * A page may belong to an inode's memory mapping. In this case, page->mapping * is the pointer to the inode, and page->index is the file offset of the page, * in units of PAGE_SIZE. * * If pagecache pages are not associated with an inode, they are said to be * anonymous pages. These may become associated with the swapcache, and in that * case PG_swapcache is set, and page->private is an offset into the swapcache. * * In either case (swapcache or inode backed), the pagecache itself holds one * reference to the page. Setting PG_private should also increment the * refcount. The each user mapping also has a reference to the page. * * The pagecache pages are stored in a per-mapping radix tree, which is * rooted at mapping->i_pages, and indexed by offset. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space * lists, we instead now tag pages as dirty/writeback in the radix tree. * * All pagecache pages may be subject to I/O: * - inode pages may need to be read from disk, * - inode pages which have been modified and are MAP_SHARED may need * to be written back to the inode on disk, * - anonymous pages (including MAP_PRIVATE file mappings) which have been * modified may need to be swapped out to swap space and (later) to be read * back into memory. */ /* * The zone field is never updated after free_area_init_core() * sets it, so none of the operations on it need to be atomic. */ /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) /* * Define the bit shifts to access each section. For non-existent * sections we define the shift as 0; that plus a 0 mask ensures * the compiler will optimise away reference to them. */ #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ #ifdef NODE_NOT_IN_PAGE_FLAGS #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ SECTIONS_PGOFF : ZONES_PGOFF) #else #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ NODES_PGOFF : ZONES_PGOFF) #endif #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) #define NODES_MASK ((1UL << NODES_WIDTH) - 1) #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) static inline enum zone_type page_zonenum(const struct page *page) { ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; } #ifdef CONFIG_ZONE_DEVICE static inline bool is_zone_device_page(const struct page *page) { return page_zonenum(page) == ZONE_DEVICE; } extern void memmap_init_zone_device(struct zone *, unsigned long, unsigned long, struct dev_pagemap *); #else static inline bool is_zone_device_page(const struct page *page) { return false; } #endif #ifdef CONFIG_DEV_PAGEMAP_OPS void free_devmap_managed_page(struct page *page); DECLARE_STATIC_KEY_FALSE(devmap_managed_key); static inline bool page_is_devmap_managed(struct page *page) { if (!static_branch_unlikely(&devmap_managed_key)) return false; if (!is_zone_device_page(page)) return false; switch (page->pgmap->type) { case MEMORY_DEVICE_PRIVATE: case MEMORY_DEVICE_FS_DAX: return true; default: break; } return false; } void put_devmap_managed_page(struct page *page); #else /* CONFIG_DEV_PAGEMAP_OPS */ static inline bool page_is_devmap_managed(struct page *page) { return false; } static inline void put_devmap_managed_page(struct page *page) { } #endif /* CONFIG_DEV_PAGEMAP_OPS */ static inline bool is_device_private_page(const struct page *page) { return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && IS_ENABLED(CONFIG_DEVICE_PRIVATE) && is_zone_device_page(page) && page->pgmap->type == MEMORY_DEVICE_PRIVATE; } static inline bool is_pci_p2pdma_page(const struct page *page) { return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && IS_ENABLED(CONFIG_PCI_P2PDMA) && is_zone_device_page(page) && page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; } /* 127: arbitrary random number, small enough to assemble well */ #define page_ref_zero_or_close_to_overflow(page) \ ((unsigned int) page_ref_count(page) + 127u <= 127u) static inline void get_page(struct page *page) { page = compound_head(page); /* * Getting a normal page or the head of a compound page * requires to already have an elevated page->_refcount. */ VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); page_ref_inc(page); } bool __must_check try_grab_page(struct page *page, unsigned int flags); static inline __must_check bool try_get_page(struct page *page) { page = compound_head(page); if (WARN_ON_ONCE(page_ref_count(page) <= 0)) return false; page_ref_inc(page); return true; } static inline void put_page(struct page *page) { page = compound_head(page); /* * For devmap managed pages we need to catch refcount transition from * 2 to 1, when refcount reach one it means the page is free and we * need to inform the device driver through callback. See * include/linux/memremap.h and HMM for details. */ if (page_is_devmap_managed(page)) { put_devmap_managed_page(page); return; } if (put_page_testzero(page)) __put_page(page); } /* * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload * the page's refcount so that two separate items are tracked: the original page * reference count, and also a new count of how many pin_user_pages() calls were * made against the page. ("gup-pinned" is another term for the latter). * * With this scheme, pin_user_pages() becomes special: such pages are marked as * distinct from normal pages. As such, the unpin_user_page() call (and its * variants) must be used in order to release gup-pinned pages. * * Choice of value: * * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference * counts with respect to pin_user_pages() and unpin_user_page() becomes * simpler, due to the fact that adding an even power of two to the page * refcount has the effect of using only the upper N bits, for the code that * counts up using the bias value. This means that the lower bits are left for * the exclusive use of the original code that increments and decrements by one * (or at least, by much smaller values than the bias value). * * Of course, once the lower bits overflow into the upper bits (and this is * OK, because subtraction recovers the original values), then visual inspection * no longer suffices to directly view the separate counts. However, for normal * applications that don't have huge page reference counts, this won't be an * issue. * * Locking: the lockless algorithm described in page_cache_get_speculative() * and page_cache_gup_pin_speculative() provides safe operation for * get_user_pages and page_mkclean and other calls that race to set up page * table entries. */ #define GUP_PIN_COUNTING_BIAS (1U << 10) void unpin_user_page(struct page *page); void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, bool make_dirty); void unpin_user_pages(struct page **pages, unsigned long npages); /** * page_maybe_dma_pinned() - report if a page is pinned for DMA. * * This function checks if a page has been pinned via a call to * pin_user_pages*(). * * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, * because it means "definitely not pinned for DMA", but true means "probably * pinned for DMA, but possibly a false positive due to having at least * GUP_PIN_COUNTING_BIAS worth of normal page references". * * False positives are OK, because: a) it's unlikely for a page to get that many * refcounts, and b) all the callers of this routine are expected to be able to * deal gracefully with a false positive. * * For huge pages, the result will be exactly correct. That's because we have * more tracking data available: the 3rd struct page in the compound page is * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS * scheme). * * For more information, please see Documentation/core-api/pin_user_pages.rst. * * @page: pointer to page to be queried. * @Return: True, if it is likely that the page has been "dma-pinned". * False, if the page is definitely not dma-pinned. */ static inline bool page_maybe_dma_pinned(struct page *page) { if (hpage_pincount_available(page)) return compound_pincount(page) > 0; /* * page_ref_count() is signed. If that refcount overflows, then * page_ref_count() returns a negative value, and callers will avoid * further incrementing the refcount. * * Here, for that overflow case, use the signed bit to count a little * bit higher via unsigned math, and thus still get an accurate result. */ return ((unsigned int)page_ref_count(compound_head(page))) >= GUP_PIN_COUNTING_BIAS; } #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) #define SECTION_IN_PAGE_FLAGS #endif /* * The identification function is mainly used by the buddy allocator for * determining if two pages could be buddies. We are not really identifying * the zone since we could be using the section number id if we do not have * node id available in page flags. * We only guarantee that it will return the same value for two combinable * pages in a zone. */ static inline int page_zone_id(struct page *page) { return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; } #ifdef NODE_NOT_IN_PAGE_FLAGS extern int page_to_nid(const struct page *page); #else static inline int page_to_nid(const struct page *page) { struct page *p = (struct page *)page; return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; } #endif #ifdef CONFIG_NUMA_BALANCING static inline int cpu_pid_to_cpupid(int cpu, int pid) { return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); } static inline int cpupid_to_pid(int cpupid) { return cpupid & LAST__PID_MASK; } static inline int cpupid_to_cpu(int cpupid) { return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; } static inline int cpupid_to_nid(int cpupid) { return cpu_to_node(cpupid_to_cpu(cpupid)); } static inline bool cpupid_pid_unset(int cpupid) { return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); } static inline bool cpupid_cpu_unset(int cpupid) { return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); } static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) { return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); } #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS static inline int page_cpupid_xchg_last(struct page *page, int cpupid) { return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); } static inline int page_cpupid_last(struct page *page) { return page->_last_cpupid; } static inline void page_cpupid_reset_last(struct page *page) { page->_last_cpupid = -1 & LAST_CPUPID_MASK; } #else static inline int page_cpupid_last(struct page *page) { return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; } extern int page_cpupid_xchg_last(struct page *page, int cpupid); static inline void page_cpupid_reset_last(struct page *page) { page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; } #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ #else /* !CONFIG_NUMA_BALANCING */ static inline int page_cpupid_xchg_last(struct page *page, int cpupid) { return page_to_nid(page); /* XXX */ } static inline int page_cpupid_last(struct page *page) { return page_to_nid(page); /* XXX */ } static inline int cpupid_to_nid(int cpupid) { return -1; } static inline int cpupid_to_pid(int cpupid) { return -1; } static inline int cpupid_to_cpu(int cpupid) { return -1; } static inline int cpu_pid_to_cpupid(int nid, int pid) { return -1; } static inline bool cpupid_pid_unset(int cpupid) { return true; } static inline void page_cpupid_reset_last(struct page *page) { } static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) { return false; } #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_KASAN_SW_TAGS /* * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid * setting tags for all pages to native kernel tag value 0xff, as the default * value 0x00 maps to 0xff. */ static inline u8 page_kasan_tag(const struct page *page) { u8 tag; tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; tag ^= 0xff; return tag; } static inline void page_kasan_tag_set(struct page *page, u8 tag) { tag ^= 0xff; page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; } static inline void page_kasan_tag_reset(struct page *page) { page_kasan_tag_set(page, 0xff); } #else static inline u8 page_kasan_tag(const struct page *page) { return 0xff; } static inline void page_kasan_tag_set(struct page *page, u8 tag) { } static inline void page_kasan_tag_reset(struct page *page) { } #endif static inline struct zone *page_zone(const struct page *page) { return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; } static inline pg_data_t *page_pgdat(const struct page *page) { return NODE_DATA(page_to_nid(page)); } #ifdef SECTION_IN_PAGE_FLAGS static inline void set_page_section(struct page *page, unsigned long section) { page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; } static inline unsigned long page_to_section(const struct page *page) { return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; } #endif static inline void set_page_zone(struct page *page, enum zone_type zone) { page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; } static inline void set_page_node(struct page *page, unsigned long node) { page->flags &= ~(NODES_MASK << NODES_PGSHIFT); page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; } static inline void set_page_links(struct page *page, enum zone_type zone, unsigned long node, unsigned long pfn) { set_page_zone(page, zone); set_page_node(page, node); #ifdef SECTION_IN_PAGE_FLAGS set_page_section(page, pfn_to_section_nr(pfn)); #endif } #ifdef CONFIG_MEMCG static inline struct mem_cgroup *page_memcg(struct page *page) { return page->mem_cgroup; } static inline struct mem_cgroup *page_memcg_rcu(struct page *page) { WARN_ON_ONCE(!rcu_read_lock_held()); return READ_ONCE(page->mem_cgroup); } #else static inline struct mem_cgroup *page_memcg(struct page *page) { return NULL; } static inline struct mem_cgroup *page_memcg_rcu(struct page *page) { WARN_ON_ONCE(!rcu_read_lock_held()); return NULL; } #endif /* * Some inline functions in vmstat.h depend on page_zone() */ #include <linux/vmstat.h> static __always_inline void *lowmem_page_address(const struct page *page) { return page_to_virt(page); } #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) #define HASHED_PAGE_VIRTUAL #endif #if defined(WANT_PAGE_VIRTUAL) static inline void *page_address(const struct page *page) { return page->virtual; } static inline void set_page_address(struct page *page, void *address) { page->virtual = address; } #define page_address_init() do { } while(0) #endif #if defined(HASHED_PAGE_VIRTUAL) void *page_address(const struct page *page); void set_page_address(struct page *page, void *virtual); void page_address_init(void); #endif #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) #define page_address(page) lowmem_page_address(page) #define set_page_address(page, address) do { } while(0) #define page_address_init() do { } while(0) #endif extern void *page_rmapping(struct page *page); extern struct anon_vma *page_anon_vma(struct page *page); extern struct address_space *page_mapping(struct page *page); extern struct address_space *__page_file_mapping(struct page *); static inline struct address_space *page_file_mapping(struct page *page) { if (unlikely(PageSwapCache(page))) return __page_file_mapping(page); return page->mapping; } extern pgoff_t __page_file_index(struct page *page); /* * Return the pagecache index of the passed page. Regular pagecache pages * use ->index whereas swapcache pages use swp_offset(->private) */ static inline pgoff_t page_index(struct page *page) { if (unlikely(PageSwapCache(page))) return __page_file_index(page); return page->index; } bool page_mapped(struct page *page); struct address_space *page_mapping(struct page *page); struct address_space *page_mapping_file(struct page *page); /* * Return true only if the page has been allocated with * ALLOC_NO_WATERMARKS and the low watermark was not * met implying that the system is under some pressure. */ static inline bool page_is_pfmemalloc(struct page *page) { /* * Page index cannot be this large so this must be * a pfmemalloc page. */ return page->index == -1UL; } /* * Only to be called by the page allocator on a freshly allocated * page. */ static inline void set_page_pfmemalloc(struct page *page) { page->index = -1UL; } static inline void clear_page_pfmemalloc(struct page *page) { page->index = 0; } /* * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. */ extern void pagefault_out_of_memory(void); #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) /* * Flags passed to show_mem() and show_free_areas() to suppress output in * various contexts. */ #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); #ifdef CONFIG_MMU extern bool can_do_mlock(void); #else static inline bool can_do_mlock(void) { return false; } #endif extern int user_shm_lock(size_t, struct user_struct *); extern void user_shm_unlock(size_t, struct user_struct *); /* * Parameter block passed down to zap_pte_range in exceptional cases. */ struct zap_details { struct address_space *check_mapping; /* Check page->mapping if set */ pgoff_t first_index; /* Lowest page->index to unmap */ pgoff_t last_index; /* Highest page->index to unmap */ struct page *single_page; /* Locked page to be unmapped */ }; struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte); struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd); void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size); void zap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size); void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, unsigned long start, unsigned long end); struct mmu_notifier_range; void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling); int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp); int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn); int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys); int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write); extern void truncate_pagecache(struct inode *inode, loff_t new); extern void truncate_setsize(struct inode *inode, loff_t newsize); void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); int truncate_inode_page(struct address_space *mapping, struct page *page); int generic_error_remove_page(struct address_space *mapping, struct page *page); int invalidate_inode_page(struct page *page); #ifdef CONFIG_MMU extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs); extern int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags, bool *unlocked); void unmap_mapping_page(struct page *page); void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows); void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows); #else static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs) { /* should never happen if there's no MMU */ BUG(); return VM_FAULT_SIGBUS; } static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags, bool *unlocked) { /* should never happen if there's no MMU */ BUG(); return -EFAULT; } static inline void unmap_mapping_page(struct page *page) { } static inline void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows) { } static inline void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) { } #endif static inline void unmap_shared_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen) { unmap_mapping_range(mapping, holebegin, holelen, 0); } extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags); extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags); extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags); long get_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas, int *locked); long pin_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas, int *locked); long get_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas); long pin_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas); long get_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, int *locked); long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, int *locked); long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags); long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags); int get_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int pin_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, struct task_struct *task, bool bypass_rlim); /* Container for pinned pfns / pages */ struct frame_vector { unsigned int nr_allocated; /* Number of frames we have space for */ unsigned int nr_frames; /* Number of frames stored in ptrs array */ bool got_ref; /* Did we pin pages by getting page ref? */ bool is_pfns; /* Does array contain pages or pfns? */ void *ptrs[]; /* Array of pinned pfns / pages. Use * pfns_vector_pages() or pfns_vector_pfns() * for access */ }; struct frame_vector *frame_vector_create(unsigned int nr_frames); void frame_vector_destroy(struct frame_vector *vec); int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, unsigned int gup_flags, struct frame_vector *vec); void put_vaddr_frames(struct frame_vector *vec); int frame_vector_to_pages(struct frame_vector *vec); void frame_vector_to_pfns(struct frame_vector *vec); static inline unsigned int frame_vector_count(struct frame_vector *vec) { return vec->nr_frames; } static inline struct page **frame_vector_pages(struct frame_vector *vec) { if (vec->is_pfns) { int err = frame_vector_to_pages(vec); if (err) return ERR_PTR(err); } return (struct page **)(vec->ptrs); } static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) { if (!vec->is_pfns) frame_vector_to_pfns(vec); return (unsigned long *)(vec->ptrs); } struct kvec; int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, struct page **pages); int get_kernel_page(unsigned long start, int write, struct page **pages); struct page *get_dump_page(unsigned long addr); extern int try_to_release_page(struct page * page, gfp_t gfp_mask); extern void do_invalidatepage(struct page *page, unsigned int offset, unsigned int length); void __set_page_dirty(struct page *, struct address_space *, int warn); int __set_page_dirty_nobuffers(struct page *page); int __set_page_dirty_no_writeback(struct page *page); int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page); void account_page_dirtied(struct page *page, struct address_space *mapping); void account_page_cleaned(struct page *page, struct address_space *mapping, struct bdi_writeback *wb); int set_page_dirty(struct page *page); int set_page_dirty_lock(struct page *page); void __cancel_dirty_page(struct page *page); static inline void cancel_dirty_page(struct page *page) { /* Avoid atomic ops, locking, etc. when not actually needed. */ if (PageDirty(page)) __cancel_dirty_page(page); } int clear_page_dirty_for_io(struct page *page); int get_cmdline(struct task_struct *task, char *buffer, int buflen); extern unsigned long move_page_tables(struct vm_area_struct *vma, unsigned long old_addr, struct vm_area_struct *new_vma, unsigned long new_addr, unsigned long len, bool need_rmap_locks); /* * Flags used by change_protection(). For now we make it a bitmap so * that we can pass in multiple flags just like parameters. However * for now all the callers are only use one of the flags at the same * time. */ /* Whether we should allow dirty bit accounting */ #define MM_CP_DIRTY_ACCT (1UL << 0) /* Whether this protection change is for NUMA hints */ #define MM_CP_PROT_NUMA (1UL << 1) /* Whether this change is for write protecting */ #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ MM_CP_UFFD_WP_RESOLVE) extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgprot_t newprot, unsigned long cp_flags); extern int mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, unsigned long start, unsigned long end, unsigned long newflags); /* * doesn't attempt to fault and will return short. */ int get_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int pin_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); static inline bool get_user_page_fast_only(unsigned long addr, unsigned int gup_flags, struct page **pagep) { return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; } /* * per-process(per-mm_struct) statistics. */ static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) { long val = atomic_long_read(&mm->rss_stat.count[member]); #ifdef SPLIT_RSS_COUNTING /* * counter is updated in asynchronous manner and may go to minus. * But it's never be expected number for users. */ if (val < 0) val = 0; #endif return (unsigned long)val; } void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); static inline void add_mm_counter(struct mm_struct *mm, int member, long value) { long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } static inline void inc_mm_counter(struct mm_struct *mm, int member) { long count = atomic_long_inc_return(&mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } static inline void dec_mm_counter(struct mm_struct *mm, int member) { long count = atomic_long_dec_return(&mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } /* Optimized variant when page is already known not to be PageAnon */ static inline int mm_counter_file(struct page *page) { if (PageSwapBacked(page)) return MM_SHMEMPAGES; return MM_FILEPAGES; } static inline int mm_counter(struct page *page) { if (PageAnon(page)) return MM_ANONPAGES; return mm_counter_file(page); } static inline unsigned long get_mm_rss(struct mm_struct *mm) { return get_mm_counter(mm, MM_FILEPAGES) + get_mm_counter(mm, MM_ANONPAGES) + get_mm_counter(mm, MM_SHMEMPAGES); } static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) { return max(mm->hiwater_rss, get_mm_rss(mm)); } static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) { return max(mm->hiwater_vm, mm->total_vm); } static inline void update_hiwater_rss(struct mm_struct *mm) { unsigned long _rss = get_mm_rss(mm); if ((mm)->hiwater_rss < _rss) (mm)->hiwater_rss = _rss; } static inline void update_hiwater_vm(struct mm_struct *mm) { if (mm->hiwater_vm < mm->total_vm) mm->hiwater_vm = mm->total_vm; } static inline void reset_mm_hiwater_rss(struct mm_struct *mm) { mm->hiwater_rss = get_mm_rss(mm); } static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, struct mm_struct *mm) { unsigned long hiwater_rss = get_mm_hiwater_rss(mm); if (*maxrss < hiwater_rss) *maxrss = hiwater_rss; } #if defined(SPLIT_RSS_COUNTING) void sync_mm_rss(struct mm_struct *mm); #else static inline void sync_mm_rss(struct mm_struct *mm) { } #endif #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL static inline int pte_special(pte_t pte) { return 0; } static inline pte_t pte_mkspecial(pte_t pte) { return pte; } #endif #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pte_devmap(pte_t pte) { return 0; } #endif int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pte_t *ptep; __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); return ptep; } #ifdef __PAGETABLE_P4D_FOLDED static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { return 0; } #else int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); #endif #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { return 0; } static inline void mm_inc_nr_puds(struct mm_struct *mm) {} static inline void mm_dec_nr_puds(struct mm_struct *mm) {} #else int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); static inline void mm_inc_nr_puds(struct mm_struct *mm) { if (mm_pud_folded(mm)) return; atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); } static inline void mm_dec_nr_puds(struct mm_struct *mm) { if (mm_pud_folded(mm)) return; atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); } #endif #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { return 0; } static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} #else int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); static inline void mm_inc_nr_pmds(struct mm_struct *mm) { if (mm_pmd_folded(mm)) return; atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); } static inline void mm_dec_nr_pmds(struct mm_struct *mm) { if (mm_pmd_folded(mm)) return; atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); } #endif #ifdef CONFIG_MMU static inline void mm_pgtables_bytes_init(struct mm_struct *mm) { atomic_long_set(&mm->pgtables_bytes, 0); } static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) { return atomic_long_read(&mm->pgtables_bytes); } static inline void mm_inc_nr_ptes(struct mm_struct *mm) { atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); } static inline void mm_dec_nr_ptes(struct mm_struct *mm) { atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); } #else static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) { return 0; } static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} #endif int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); int __pte_alloc_kernel(pmd_t *pmd); #if defined(CONFIG_MMU) static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? NULL : p4d_offset(pgd, address); } static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? NULL : pud_offset(p4d, address); } static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? NULL: pmd_offset(pud, address); } #endif /* CONFIG_MMU */ #if USE_SPLIT_PTE_PTLOCKS #if ALLOC_SPLIT_PTLOCKS void __init ptlock_cache_init(void); extern bool ptlock_alloc(struct page *page); extern void ptlock_free(struct page *page); static inline spinlock_t *ptlock_ptr(struct page *page) { return page->ptl; } #else /* ALLOC_SPLIT_PTLOCKS */ static inline void ptlock_cache_init(void) { } static inline bool ptlock_alloc(struct page *page) { return true; } static inline void ptlock_free(struct page *page) { } static inline spinlock_t *ptlock_ptr(struct page *page) { return &page->ptl; } #endif /* ALLOC_SPLIT_PTLOCKS */ static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) { return ptlock_ptr(pmd_page(*pmd)); } static inline bool ptlock_init(struct page *page) { /* * prep_new_page() initialize page->private (and therefore page->ptl) * with 0. Make sure nobody took it in use in between. * * It can happen if arch try to use slab for page table allocation: * slab code uses page->slab_cache, which share storage with page->ptl. */ VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); if (!ptlock_alloc(page)) return false; spin_lock_init(ptlock_ptr(page)); return true; } #else /* !USE_SPLIT_PTE_PTLOCKS */ /* * We use mm->page_table_lock to guard all pagetable pages of the mm. */ static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) { return &mm->page_table_lock; } static inline void ptlock_cache_init(void) {} static inline bool ptlock_init(struct page *page) { return true; } static inline void ptlock_free(struct page *page) {} #endif /* USE_SPLIT_PTE_PTLOCKS */ static inline void pgtable_init(void) { ptlock_cache_init(); pgtable_cache_init(); } static inline bool pgtable_pte_page_ctor(struct page *page) { if (!ptlock_init(page)) return false; __SetPageTable(page); inc_zone_page_state(page, NR_PAGETABLE); return true; } static inline void pgtable_pte_page_dtor(struct page *page) { ptlock_free(page); __ClearPageTable(page); dec_zone_page_state(page, NR_PAGETABLE); } #define pte_offset_map_lock(mm, pmd, address, ptlp) \ ({ \ spinlock_t *__ptl = pte_lockptr(mm, pmd); \ pte_t *__pte = pte_offset_map(pmd, address); \ *(ptlp) = __ptl; \ spin_lock(__ptl); \ __pte; \ }) #define pte_unmap_unlock(pte, ptl) do { \ spin_unlock(ptl); \ pte_unmap(pte); \ } while (0) #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) #define pte_alloc_map(mm, pmd, address) \ (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ (pte_alloc(mm, pmd) ? \ NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) #define pte_alloc_kernel(pmd, address) \ ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ NULL: pte_offset_kernel(pmd, address)) #if USE_SPLIT_PMD_PTLOCKS static struct page *pmd_to_page(pmd_t *pmd) { unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); return virt_to_page((void *)((unsigned long) pmd & mask)); } static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) { return ptlock_ptr(pmd_to_page(pmd)); } static inline bool pmd_ptlock_init(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE page->pmd_huge_pte = NULL; #endif return ptlock_init(page); } static inline void pmd_ptlock_free(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE VM_BUG_ON_PAGE(page->pmd_huge_pte, page); #endif ptlock_free(page); } #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) #else static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) { return &mm->page_table_lock; } static inline bool pmd_ptlock_init(struct page *page) { return true; } static inline void pmd_ptlock_free(struct page *page) {} #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) #endif static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) { spinlock_t *ptl = pmd_lockptr(mm, pmd); spin_lock(ptl); return ptl; } static inline bool pgtable_pmd_page_ctor(struct page *page) { if (!pmd_ptlock_init(page)) return false; __SetPageTable(page); inc_zone_page_state(page, NR_PAGETABLE); return true; } static inline void pgtable_pmd_page_dtor(struct page *page) { pmd_ptlock_free(page); __ClearPageTable(page); dec_zone_page_state(page, NR_PAGETABLE); } /* * No scalability reason to split PUD locks yet, but follow the same pattern * as the PMD locks to make it easier if we decide to. The VM should not be * considered ready to switch to split PUD locks yet; there may be places * which need to be converted from page_table_lock. */ static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) { return &mm->page_table_lock; } static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) { spinlock_t *ptl = pud_lockptr(mm, pud); spin_lock(ptl); return ptl; } extern void __init pagecache_init(void); extern void __init free_area_init_memoryless_node(int nid); extern void free_initmem(void); /* * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) * into the buddy system. The freed pages will be poisoned with pattern * "poison" if it's within range [0, UCHAR_MAX]. * Return pages freed into the buddy system. */ extern unsigned long free_reserved_area(void *start, void *end, int poison, const char *s); #ifdef CONFIG_HIGHMEM /* * Free a highmem page into the buddy system, adjusting totalhigh_pages * and totalram_pages. */ extern void free_highmem_page(struct page *page); #endif extern void adjust_managed_page_count(struct page *page, long count); extern void mem_init_print_info(const char *str); extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); /* Free the reserved page into the buddy system, so it gets managed. */ static inline void __free_reserved_page(struct page *page) { ClearPageReserved(page); init_page_count(page); __free_page(page); } static inline void free_reserved_page(struct page *page) { __free_reserved_page(page); adjust_managed_page_count(page, 1); } static inline void mark_page_reserved(struct page *page) { SetPageReserved(page); adjust_managed_page_count(page, -1); } /* * Default method to free all the __init memory into the buddy system. * The freed pages will be poisoned with pattern "poison" if it's within * range [0, UCHAR_MAX]. * Return pages freed into the buddy system. */ static inline unsigned long free_initmem_default(int poison) { extern char __init_begin[], __init_end[]; return free_reserved_area(&__init_begin, &__init_end, poison, "unused kernel"); } static inline unsigned long get_num_physpages(void) { int nid; unsigned long phys_pages = 0; for_each_online_node(nid) phys_pages += node_present_pages(nid); return phys_pages; } /* * Using memblock node mappings, an architecture may initialise its * zones, allocate the backing mem_map and account for memory holes in an * architecture independent manner. * * An architecture is expected to register range of page frames backed by * physical memory with memblock_add[_node]() before calling * free_area_init() passing in the PFN each zone ends at. At a basic * usage, an architecture is expected to do something like * * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, * max_highmem_pfn}; * for_each_valid_physical_page_range() * memblock_add_node(base, size, nid) * free_area_init(max_zone_pfns); */ void free_area_init(unsigned long *max_zone_pfn); unsigned long node_map_pfn_alignment(void); unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, unsigned long end_pfn); extern unsigned long absent_pages_in_range(unsigned long start_pfn, unsigned long end_pfn); extern void get_pfn_range_for_nid(unsigned int nid, unsigned long *start_pfn, unsigned long *end_pfn); extern unsigned long find_min_pfn_with_active_regions(void); #ifndef CONFIG_NEED_MULTIPLE_NODES static inline int early_pfn_to_nid(unsigned long pfn) { return 0; } #else /* please see mm/page_alloc.c */ extern int __meminit early_pfn_to_nid(unsigned long pfn); /* there is a per-arch backend function. */ extern int __meminit __early_pfn_to_nid(unsigned long pfn, struct mminit_pfnnid_cache *state); #endif extern void set_dma_reserve(unsigned long new_dma_reserve); extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, unsigned long, enum meminit_context, struct vmem_altmap *, int migratetype); extern void setup_per_zone_wmarks(void); extern int __meminit init_per_zone_wmark_min(void); extern void mem_init(void); extern void __init mmap_init(void); extern void show_mem(unsigned int flags, nodemask_t *nodemask); extern long si_mem_available(void); extern void si_meminfo(struct sysinfo * val); extern void si_meminfo_node(struct sysinfo *val, int nid); #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES extern unsigned long arch_reserved_kernel_pages(void); #endif extern __printf(3, 4) void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); extern void setup_per_cpu_pageset(void); /* page_alloc.c */ extern int min_free_kbytes; extern int watermark_boost_factor; extern int watermark_scale_factor; extern bool arch_has_descending_max_zone_pfns(void); /* nommu.c */ extern atomic_long_t mmap_pages_allocated; extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); /* interval_tree.c */ void vma_interval_tree_insert(struct vm_area_struct *node, struct rb_root_cached *root); void vma_interval_tree_insert_after(struct vm_area_struct *node, struct vm_area_struct *prev, struct rb_root_cached *root); void vma_interval_tree_remove(struct vm_area_struct *node, struct rb_root_cached *root); struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long start, unsigned long last); struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, unsigned long start, unsigned long last); #define vma_interval_tree_foreach(vma, root, start, last) \ for (vma = vma_interval_tree_iter_first(root, start, last); \ vma; vma = vma_interval_tree_iter_next(vma, start, last)) void anon_vma_interval_tree_insert(struct anon_vma_chain *node, struct rb_root_cached *root); void anon_vma_interval_tree_remove(struct anon_vma_chain *node, struct rb_root_cached *root); struct anon_vma_chain * anon_vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long start, unsigned long last); struct anon_vma_chain *anon_vma_interval_tree_iter_next( struct anon_vma_chain *node, unsigned long start, unsigned long last); #ifdef CONFIG_DEBUG_VM_RB void anon_vma_interval_tree_verify(struct anon_vma_chain *node); #endif #define anon_vma_interval_tree_foreach(avc, root, start, last) \ for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) /* mmap.c */ extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, struct vm_area_struct *expand); static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) { return __vma_adjust(vma, start, end, pgoff, insert, NULL); } extern struct vm_area_struct *vma_merge(struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, unsigned long end, unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx); extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); extern int __split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below); extern int split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below); extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, struct rb_node **, struct rb_node *); extern void unlink_file_vma(struct vm_area_struct *); extern struct vm_area_struct *copy_vma(struct vm_area_struct **, unsigned long addr, unsigned long len, pgoff_t pgoff, bool *need_rmap_locks); extern void exit_mmap(struct mm_struct *); static inline int check_data_rlimit(unsigned long rlim, unsigned long new, unsigned long start, unsigned long end_data, unsigned long start_data) { if (rlim < RLIM_INFINITY) { if (((new - start) + (end_data - start_data)) > rlim) return -ENOSPC; } return 0; } extern int mm_take_all_locks(struct mm_struct *mm); extern void mm_drop_all_locks(struct mm_struct *mm); extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); extern struct file *get_mm_exe_file(struct mm_struct *mm); extern struct file *get_task_exe_file(struct task_struct *task); extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); extern bool vma_is_special_mapping(const struct vm_area_struct *vma, const struct vm_special_mapping *sm); extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long flags, const struct vm_special_mapping *spec); /* This is an obsolete alternative to _install_special_mapping. */ extern int install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long flags, struct page **pages); unsigned long randomize_stack_top(unsigned long stack_top); extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long mmap_region(struct file *file, unsigned long addr, unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, struct list_head *uf); extern unsigned long do_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, unsigned long pgoff, unsigned long *populate, struct list_head *uf); extern int __do_munmap(struct mm_struct *, unsigned long, size_t, struct list_head *uf, bool downgrade); extern int do_munmap(struct mm_struct *, unsigned long, size_t, struct list_head *uf); extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); #ifdef CONFIG_MMU extern int __mm_populate(unsigned long addr, unsigned long len, int ignore_errors); static inline void mm_populate(unsigned long addr, unsigned long len) { /* Ignore errors */ (void) __mm_populate(addr, len, 1); } #else static inline void mm_populate(unsigned long addr, unsigned long len) {} #endif /* These take the mm semaphore themselves */ extern int __must_check vm_brk(unsigned long, unsigned long); extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); extern int vm_munmap(unsigned long, size_t); extern unsigned long __must_check vm_mmap(struct file *, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long); struct vm_unmapped_area_info { #define VM_UNMAPPED_AREA_TOPDOWN 1 unsigned long flags; unsigned long length; unsigned long low_limit; unsigned long high_limit; unsigned long align_mask; unsigned long align_offset; }; extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); /* truncate.c */ extern void truncate_inode_pages(struct address_space *, loff_t); extern void truncate_inode_pages_range(struct address_space *, loff_t lstart, loff_t lend); extern void truncate_inode_pages_final(struct address_space *); /* generic vm_area_ops exported for stackable file systems */ extern vm_fault_t filemap_fault(struct vm_fault *vmf); extern void filemap_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff); extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); /* mm/page-writeback.c */ int __must_check write_one_page(struct page *page); void task_dirty_inc(struct task_struct *tsk); extern unsigned long stack_guard_gap; /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ extern int expand_stack(struct vm_area_struct *vma, unsigned long address); /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ extern int expand_downwards(struct vm_area_struct *vma, unsigned long address); #if VM_GROWSUP extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); #else #define expand_upwards(vma, address) (0) #endif /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, struct vm_area_struct **pprev); /* Look up the first VMA which intersects the interval start_addr..end_addr-1, NULL if none. Assume start_addr < end_addr. */ static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) { struct vm_area_struct * vma = find_vma(mm,start_addr); if (vma && end_addr <= vma->vm_start) vma = NULL; return vma; } static inline unsigned long vm_start_gap(struct vm_area_struct *vma) { unsigned long vm_start = vma->vm_start; if (vma->vm_flags & VM_GROWSDOWN) { vm_start -= stack_guard_gap; if (vm_start > vma->vm_start) vm_start = 0; } return vm_start; } static inline unsigned long vm_end_gap(struct vm_area_struct *vma) { unsigned long vm_end = vma->vm_end; if (vma->vm_flags & VM_GROWSUP) { vm_end += stack_guard_gap; if (vm_end < vma->vm_end) vm_end = -PAGE_SIZE; } return vm_end; } static inline unsigned long vma_pages(struct vm_area_struct *vma) { return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; } /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, unsigned long vm_start, unsigned long vm_end) { struct vm_area_struct *vma = find_vma(mm, vm_start); if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) vma = NULL; return vma; } static inline bool range_in_vma(struct vm_area_struct *vma, unsigned long start, unsigned long end) { return (vma && vma->vm_start <= start && end <= vma->vm_end); } #ifdef CONFIG_MMU pgprot_t vm_get_page_prot(unsigned long vm_flags); void vma_set_page_prot(struct vm_area_struct *vma); #else static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) { return __pgprot(0); } static inline void vma_set_page_prot(struct vm_area_struct *vma) { vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); } #endif #ifdef CONFIG_NUMA_BALANCING unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long start, unsigned long end); #endif struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); int remap_pfn_range(struct vm_area_struct *, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t); int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num); int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num); int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num); vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn); vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot); vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn); vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot); vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn); int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) { int err = vm_insert_page(vma, addr, page); if (err == -ENOMEM) return VM_FAULT_OOM; if (err < 0 && err != -EBUSY) return VM_FAULT_SIGBUS; return VM_FAULT_NOPAGE; } #ifndef io_remap_pfn_range static inline int io_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); } #endif static inline vm_fault_t vmf_error(int err) { if (err == -ENOMEM) return VM_FAULT_OOM; return VM_FAULT_SIGBUS; } struct page *follow_page(struct vm_area_struct *vma, unsigned long address, unsigned int foll_flags); #define FOLL_WRITE 0x01 /* check pte is writable */ #define FOLL_TOUCH 0x02 /* mark page accessed */ #define FOLL_GET 0x04 /* do get_page on page */ #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO * and return without waiting upon it */ #define FOLL_POPULATE 0x40 /* fault in page */ #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ #define FOLL_MLOCK 0x1000 /* lock present pages */ #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ #define FOLL_COW 0x4000 /* internal GUP flag */ #define FOLL_ANON 0x8000 /* don't do file mappings */ #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ /* * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each * other. Here is what they mean, and how to use them: * * FOLL_LONGTERM indicates that the page will be held for an indefinite time * period _often_ under userspace control. This is in contrast to * iov_iter_get_pages(), whose usages are transient. * * FIXME: For pages which are part of a filesystem, mappings are subject to the * lifetime enforced by the filesystem and we need guarantees that longterm * users like RDMA and V4L2 only establish mappings which coordinate usage with * the filesystem. Ideas for this coordination include revoking the longterm * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was * added after the problem with filesystems was found FS DAX VMAs are * specifically failed. Filesystem pages are still subject to bugs and use of * FOLL_LONGTERM should be avoided on those pages. * * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. * Currently only get_user_pages() and get_user_pages_fast() support this flag * and calls to get_user_pages_[un]locked are specifically not allowed. This * is due to an incompatibility with the FS DAX check and * FAULT_FLAG_ALLOW_RETRY. * * In the CMA case: long term pins in a CMA region would unnecessarily fragment * that region. And so, CMA attempts to migrate the page before pinning, when * FOLL_LONGTERM is specified. * * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, * but an additional pin counting system) will be invoked. This is intended for * anything that gets a page reference and then touches page data (for example, * Direct IO). This lets the filesystem know that some non-file-system entity is * potentially changing the pages' data. In contrast to FOLL_GET (whose pages * are released via put_page()), FOLL_PIN pages must be released, ultimately, by * a call to unpin_user_page(). * * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different * and separate refcounting mechanisms, however, and that means that each has * its own acquire and release mechanisms: * * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. * * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. * * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based * calls applied to them, and that's perfectly OK. This is a constraint on the * callers, not on the pages.) * * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never * directly by the caller. That's in order to help avoid mismatches when * releasing pages: get_user_pages*() pages must be released via put_page(), * while pin_user_pages*() pages must be released via unpin_user_page(). * * Please see Documentation/core-api/pin_user_pages.rst for more information. */ static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) { if (vm_fault & VM_FAULT_OOM) return -ENOMEM; if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) return -EFAULT; return 0; } typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn, void *data); extern int apply_to_existing_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn, void *data); #ifdef CONFIG_PAGE_POISONING extern bool page_poisoning_enabled(void); extern void kernel_poison_pages(struct page *page, int numpages, int enable); #else static inline bool page_poisoning_enabled(void) { return false; } static inline void kernel_poison_pages(struct page *page, int numpages, int enable) { } #endif #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON DECLARE_STATIC_KEY_TRUE(init_on_alloc); #else DECLARE_STATIC_KEY_FALSE(init_on_alloc); #endif static inline bool want_init_on_alloc(gfp_t flags) { if (static_branch_unlikely(&init_on_alloc) && !page_poisoning_enabled()) return true; return flags & __GFP_ZERO; } #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON DECLARE_STATIC_KEY_TRUE(init_on_free); #else DECLARE_STATIC_KEY_FALSE(init_on_free); #endif static inline bool want_init_on_free(void) { return static_branch_unlikely(&init_on_free) && !page_poisoning_enabled(); } #ifdef CONFIG_DEBUG_PAGEALLOC extern void init_debug_pagealloc(void); #else static inline void init_debug_pagealloc(void) {} #endif extern bool _debug_pagealloc_enabled_early; DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); static inline bool debug_pagealloc_enabled(void) { return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled_early; } /* * For use in fast paths after init_debug_pagealloc() has run, or when a * false negative result is not harmful when called too early. */ static inline bool debug_pagealloc_enabled_static(void) { if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) return false; return static_branch_unlikely(&_debug_pagealloc_enabled); } #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) extern void __kernel_map_pages(struct page *page, int numpages, int enable); /* * When called in DEBUG_PAGEALLOC context, the call should most likely be * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() */ static inline void kernel_map_pages(struct page *page, int numpages, int enable) { __kernel_map_pages(page, numpages, enable); } #ifdef CONFIG_HIBERNATION extern bool kernel_page_present(struct page *page); #endif /* CONFIG_HIBERNATION */ #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ static inline void kernel_map_pages(struct page *page, int numpages, int enable) {} #ifdef CONFIG_HIBERNATION static inline bool kernel_page_present(struct page *page) { return true; } #endif /* CONFIG_HIBERNATION */ #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ #ifdef __HAVE_ARCH_GATE_AREA extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); extern int in_gate_area_no_mm(unsigned long addr); extern int in_gate_area(struct mm_struct *mm, unsigned long addr); #else static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) { return NULL; } static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) { return 0; } #endif /* __HAVE_ARCH_GATE_AREA */ extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); #ifdef CONFIG_SYSCTL extern int sysctl_drop_caches; int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *); #endif void drop_slab(void); void drop_slab_node(int nid); #ifndef CONFIG_MMU #define randomize_va_space 0 #else extern int randomize_va_space; #endif const char * arch_vma_name(struct vm_area_struct *vma); #ifdef CONFIG_MMU void print_vma_addr(char *prefix, unsigned long rip); #else static inline void print_vma_addr(char *prefix, unsigned long rip) { } #endif void *sparse_buffer_alloc(unsigned long size); struct page * __populate_section_memmap(unsigned long pfn, unsigned long nr_pages, int nid, struct vmem_altmap *altmap); pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, struct vmem_altmap *altmap); void *vmemmap_alloc_block(unsigned long size, int node); struct vmem_altmap; void *vmemmap_alloc_block_buf(unsigned long size, int node, struct vmem_altmap *altmap); void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); int vmemmap_populate_basepages(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap); int vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap); void vmemmap_populate_print_last(void); #ifdef CONFIG_MEMORY_HOTPLUG void vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap); #endif void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, unsigned long nr_pages); enum mf_flags { MF_COUNT_INCREASED = 1 << 0, MF_ACTION_REQUIRED = 1 << 1, MF_MUST_KILL = 1 << 2, MF_SOFT_OFFLINE = 1 << 3, }; extern int memory_failure(unsigned long pfn, int flags); extern void memory_failure_queue(unsigned long pfn, int flags); extern void memory_failure_queue_kick(int cpu); extern int unpoison_memory(unsigned long pfn); extern int sysctl_memory_failure_early_kill; extern int sysctl_memory_failure_recovery; extern void shake_page(struct page *p, int access); extern atomic_long_t num_poisoned_pages __read_mostly; extern int soft_offline_page(unsigned long pfn, int flags); /* * Error handlers for various types of pages. */ enum mf_result { MF_IGNORED, /* Error: cannot be handled */ MF_FAILED, /* Error: handling failed */ MF_DELAYED, /* Will be handled later */ MF_RECOVERED, /* Successfully recovered */ }; enum mf_action_page_type { MF_MSG_KERNEL, MF_MSG_KERNEL_HIGH_ORDER, MF_MSG_SLAB, MF_MSG_DIFFERENT_COMPOUND, MF_MSG_POISONED_HUGE, MF_MSG_HUGE, MF_MSG_FREE_HUGE, MF_MSG_NON_PMD_HUGE, MF_MSG_UNMAP_FAILED, MF_MSG_DIRTY_SWAPCACHE, MF_MSG_CLEAN_SWAPCACHE, MF_MSG_DIRTY_MLOCKED_LRU, MF_MSG_CLEAN_MLOCKED_LRU, MF_MSG_DIRTY_UNEVICTABLE_LRU, MF_MSG_CLEAN_UNEVICTABLE_LRU, MF_MSG_DIRTY_LRU, MF_MSG_CLEAN_LRU, MF_MSG_TRUNCATED_LRU, MF_MSG_BUDDY, MF_MSG_BUDDY_2ND, MF_MSG_DAX, MF_MSG_UNSPLIT_THP, MF_MSG_UNKNOWN, }; #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) extern void clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page); extern void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr_hint, struct vm_area_struct *vma, unsigned int pages_per_huge_page); extern long copy_huge_page_from_user(struct page *dst_page, const void __user *usr_src, unsigned int pages_per_huge_page, bool allow_pagefault); /** * vma_is_special_huge - Are transhuge page-table entries considered special? * @vma: Pointer to the struct vm_area_struct to consider * * Whether transhuge page-table entries are considered "special" following * the definition in vm_normal_page(). * * Return: true if transhuge page-table entries should be considered special, * false otherwise. */ static inline bool vma_is_special_huge(const struct vm_area_struct *vma) { return vma_is_dax(vma) || (vma->vm_file && (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ #ifdef CONFIG_DEBUG_PAGEALLOC extern unsigned int _debug_guardpage_minorder; DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); static inline unsigned int debug_guardpage_minorder(void) { return _debug_guardpage_minorder; } static inline bool debug_guardpage_enabled(void) { return static_branch_unlikely(&_debug_guardpage_enabled); } static inline bool page_is_guard(struct page *page) { if (!debug_guardpage_enabled()) return false; return PageGuard(page); } #else static inline unsigned int debug_guardpage_minorder(void) { return 0; } static inline bool debug_guardpage_enabled(void) { return false; } static inline bool page_is_guard(struct page *page) { return false; } #endif /* CONFIG_DEBUG_PAGEALLOC */ #if MAX_NUMNODES > 1 void __init setup_nr_node_ids(void); #else static inline void setup_nr_node_ids(void) {} #endif extern int memcmp_pages(struct page *page1, struct page *page2); static inline int pages_identical(struct page *page1, struct page *page2) { return !memcmp_pages(page1, page2); } #ifdef CONFIG_MAPPING_DIRTY_HELPERS unsigned long clean_record_shared_mapping_range(struct address_space *mapping, pgoff_t first_index, pgoff_t nr, pgoff_t bitmap_pgoff, unsigned long *bitmap, pgoff_t *start, pgoff_t *end); unsigned long wp_shared_mapping_range(struct address_space *mapping, pgoff_t first_index, pgoff_t nr); #endif extern int sysctl_nr_trim_pages; /** * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it * @seals: the seals to check * @vma: the vma to operate on * * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on * the vma flags. Return 0 if check pass, or <0 for errors. */ static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) { if (seals & F_SEAL_FUTURE_WRITE) { /* * New PROT_WRITE and MAP_SHARED mmaps are not allowed when * "future write" seal active. */ if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) return -EPERM; /* * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as * MAP_SHARED and read-only, take care to not allow mprotect to * revert protections on such mappings. Do this only for shared * mappings. For private mappings, don't need to mask * VM_MAYWRITE as we still want them to be COW-writable. */ if (vma->vm_flags & VM_SHARED) vma->vm_flags &= ~(VM_MAYWRITE); } return 0; } #endif /* __KERNEL__ */ #endif /* _LINUX_MM_H */
6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 // SPDX-License-Identifier: GPL-2.0-only #include "cgroup-internal.h" #include <linux/sched/cputime.h> static DEFINE_SPINLOCK(cgroup_rstat_lock); static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock); static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu) { return per_cpu_ptr(cgrp->rstat_cpu, cpu); } /** * cgroup_rstat_updated - keep track of updated rstat_cpu * @cgrp: target cgroup * @cpu: cpu on which rstat_cpu was updated * * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching * rstat_cpu->updated_children list. See the comment on top of * cgroup_rstat_cpu definition for details. */ void cgroup_rstat_updated(struct cgroup *cgrp, int cpu) { raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); struct cgroup *parent; unsigned long flags; /* nothing to do for root */ if (!cgroup_parent(cgrp)) return; /* * Speculative already-on-list test. This may race leading to * temporary inaccuracies, which is fine. * * Because @parent's updated_children is terminated with @parent * instead of NULL, we can tell whether @cgrp is on the list by * testing the next pointer for NULL. */ if (cgroup_rstat_cpu(cgrp, cpu)->updated_next) return; raw_spin_lock_irqsave(cpu_lock, flags); /* put @cgrp and all ancestors on the corresponding updated lists */ for (parent = cgroup_parent(cgrp); parent; cgrp = parent, parent = cgroup_parent(cgrp)) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); struct cgroup_rstat_cpu *prstatc = cgroup_rstat_cpu(parent, cpu); /* * Both additions and removals are bottom-up. If a cgroup * is already in the tree, all ancestors are. */ if (rstatc->updated_next) break; rstatc->updated_next = prstatc->updated_children; prstatc->updated_children = cgrp; } raw_spin_unlock_irqrestore(cpu_lock, flags); } /** * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree * @pos: current position * @root: root of the tree to traversal * @cpu: target cpu * * Walks the udpated rstat_cpu tree on @cpu from @root. %NULL @pos starts * the traversal and %NULL return indicates the end. During traversal, * each returned cgroup is unlinked from the tree. Must be called with the * matching cgroup_rstat_cpu_lock held. * * The only ordering guarantee is that, for a parent and a child pair * covered by a given traversal, if a child is visited, its parent is * guaranteed to be visited afterwards. */ static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos, struct cgroup *root, int cpu) { struct cgroup_rstat_cpu *rstatc; if (pos == root) return NULL; /* * We're gonna walk down to the first leaf and visit/remove it. We * can pick whatever unvisited node as the starting point. */ if (!pos) pos = root; else pos = cgroup_parent(pos); /* walk down to the first leaf */ while (true) { rstatc = cgroup_rstat_cpu(pos, cpu); if (rstatc->updated_children == pos) break; pos = rstatc->updated_children; } /* * Unlink @pos from the tree. As the updated_children list is * singly linked, we have to walk it to find the removal point. * However, due to the way we traverse, @pos will be the first * child in most cases. The only exception is @root. */ if (rstatc->updated_next) { struct cgroup *parent = cgroup_parent(pos); struct cgroup_rstat_cpu *prstatc = cgroup_rstat_cpu(parent, cpu); struct cgroup_rstat_cpu *nrstatc; struct cgroup **nextp; nextp = &prstatc->updated_children; while (true) { nrstatc = cgroup_rstat_cpu(*nextp, cpu); if (*nextp == pos) break; WARN_ON_ONCE(*nextp == parent); nextp = &nrstatc->updated_next; } *nextp = rstatc->updated_next; rstatc->updated_next = NULL; return pos; } /* only happens for @root */ return NULL; } /* see cgroup_rstat_flush() */ static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep) __releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock) { int cpu; lockdep_assert_held(&cgroup_rstat_lock); for_each_possible_cpu(cpu) { raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); struct cgroup *pos = NULL; raw_spin_lock(cpu_lock); while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) { struct cgroup_subsys_state *css; cgroup_base_stat_flush(pos, cpu); rcu_read_lock(); list_for_each_entry_rcu(css, &pos->rstat_css_list, rstat_css_node) css->ss->css_rstat_flush(css, cpu); rcu_read_unlock(); } raw_spin_unlock(cpu_lock); /* if @may_sleep, play nice and yield if necessary */ if (may_sleep && (need_resched() || spin_needbreak(&cgroup_rstat_lock))) { spin_unlock_irq(&cgroup_rstat_lock); if (!cond_resched()) cpu_relax(); spin_lock_irq(&cgroup_rstat_lock); } } } /** * cgroup_rstat_flush - flush stats in @cgrp's subtree * @cgrp: target cgroup * * Collect all per-cpu stats in @cgrp's subtree into the global counters * and propagate them upwards. After this function returns, all cgroups in * the subtree have up-to-date ->stat. * * This also gets all cgroups in the subtree including @cgrp off the * ->updated_children lists. * * This function may block. */ void cgroup_rstat_flush(struct cgroup *cgrp) { might_sleep(); spin_lock_irq(&cgroup_rstat_lock); cgroup_rstat_flush_locked(cgrp, true); spin_unlock_irq(&cgroup_rstat_lock); } /** * cgroup_rstat_flush_irqsafe - irqsafe version of cgroup_rstat_flush() * @cgrp: target cgroup * * This function can be called from any context. */ void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp) { unsigned long flags; spin_lock_irqsave(&cgroup_rstat_lock, flags); cgroup_rstat_flush_locked(cgrp, false); spin_unlock_irqrestore(&cgroup_rstat_lock, flags); } /** * cgroup_rstat_flush_begin - flush stats in @cgrp's subtree and hold * @cgrp: target cgroup * * Flush stats in @cgrp's subtree and prevent further flushes. Must be * paired with cgroup_rstat_flush_release(). * * This function may block. */ void cgroup_rstat_flush_hold(struct cgroup *cgrp) __acquires(&cgroup_rstat_lock) { might_sleep(); spin_lock_irq(&cgroup_rstat_lock); cgroup_rstat_flush_locked(cgrp, true); } /** * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold() */ void cgroup_rstat_flush_release(void) __releases(&cgroup_rstat_lock) { spin_unlock_irq(&cgroup_rstat_lock); } int cgroup_rstat_init(struct cgroup *cgrp) { int cpu; /* the root cgrp has rstat_cpu preallocated */ if (!cgrp->rstat_cpu) { cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu); if (!cgrp->rstat_cpu) return -ENOMEM; } /* ->updated_children list is self terminated */ for_each_possible_cpu(cpu) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); rstatc->updated_children = cgrp; u64_stats_init(&rstatc->bsync); } return 0; } void cgroup_rstat_exit(struct cgroup *cgrp) { int cpu; cgroup_rstat_flush(cgrp); /* sanity check */ for_each_possible_cpu(cpu) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); if (WARN_ON_ONCE(rstatc->updated_children != cgrp) || WARN_ON_ONCE(rstatc->updated_next)) return; } free_percpu(cgrp->rstat_cpu); cgrp->rstat_cpu = NULL; } void __init cgroup_rstat_boot(void) { int cpu; for_each_possible_cpu(cpu) raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu)); BUG_ON(cgroup_rstat_init(&cgrp_dfl_root.cgrp)); } /* * Functions for cgroup basic resource statistics implemented on top of * rstat. */ static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, struct cgroup_base_stat *src_bstat) { dst_bstat->cputime.utime += src_bstat->cputime.utime; dst_bstat->cputime.stime += src_bstat->cputime.stime; dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; } static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, struct cgroup_base_stat *src_bstat) { dst_bstat->cputime.utime -= src_bstat->cputime.utime; dst_bstat->cputime.stime -= src_bstat->cputime.stime; dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; } static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) { struct cgroup *parent = cgroup_parent(cgrp); struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); struct cgroup_base_stat cur, delta; unsigned seq; /* fetch the current per-cpu values */ do { seq = __u64_stats_fetch_begin(&rstatc->bsync); cur.cputime = rstatc->bstat.cputime; } while (__u64_stats_fetch_retry(&rstatc->bsync, seq)); /* propagate percpu delta to global */ delta = cur; cgroup_base_stat_sub(&delta, &rstatc->last_bstat); cgroup_base_stat_add(&cgrp->bstat, &delta); cgroup_base_stat_add(&rstatc->last_bstat, &delta); /* propagate global delta to parent */ if (parent) { delta = cgrp->bstat; cgroup_base_stat_sub(&delta, &cgrp->last_bstat); cgroup_base_stat_add(&parent->bstat, &delta); cgroup_base_stat_add(&cgrp->last_bstat, &delta); } } static struct cgroup_rstat_cpu * cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp) { struct cgroup_rstat_cpu *rstatc; rstatc = get_cpu_ptr(cgrp->rstat_cpu); u64_stats_update_begin(&rstatc->bsync); return rstatc; } static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, struct cgroup_rstat_cpu *rstatc) { u64_stats_update_end(&rstatc->bsync); cgroup_rstat_updated(cgrp, smp_processor_id()); put_cpu_ptr(rstatc); } void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) { struct cgroup_rstat_cpu *rstatc; rstatc = cgroup_base_stat_cputime_account_begin(cgrp); rstatc->bstat.cputime.sum_exec_runtime += delta_exec; cgroup_base_stat_cputime_account_end(cgrp, rstatc); } void __cgroup_account_cputime_field(struct cgroup *cgrp, enum cpu_usage_stat index, u64 delta_exec) { struct cgroup_rstat_cpu *rstatc; rstatc = cgroup_base_stat_cputime_account_begin(cgrp); switch (index) { case CPUTIME_USER: case CPUTIME_NICE: rstatc->bstat.cputime.utime += delta_exec; break; case CPUTIME_SYSTEM: case CPUTIME_IRQ: case CPUTIME_SOFTIRQ: rstatc->bstat.cputime.stime += delta_exec; break; default: break; } cgroup_base_stat_cputime_account_end(cgrp, rstatc); } /* * compute the cputime for the root cgroup by getting the per cpu data * at a global level, then categorizing the fields in a manner consistent * with how it is done by __cgroup_account_cputime_field for each bit of * cpu time attributed to a cgroup. */ static void root_cgroup_cputime(struct task_cputime *cputime) { int i; cputime->stime = 0; cputime->utime = 0; cputime->sum_exec_runtime = 0; for_each_possible_cpu(i) { struct kernel_cpustat kcpustat; u64 *cpustat = kcpustat.cpustat; u64 user = 0; u64 sys = 0; kcpustat_cpu_fetch(&kcpustat, i); user += cpustat[CPUTIME_USER]; user += cpustat[CPUTIME_NICE]; cputime->utime += user; sys += cpustat[CPUTIME_SYSTEM]; sys += cpustat[CPUTIME_IRQ]; sys += cpustat[CPUTIME_SOFTIRQ]; cputime->stime += sys; cputime->sum_exec_runtime += user; cputime->sum_exec_runtime += sys; cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL]; cputime->sum_exec_runtime += cpustat[CPUTIME_GUEST]; cputime->sum_exec_runtime += cpustat[CPUTIME_GUEST_NICE]; } } void cgroup_base_stat_cputime_show(struct seq_file *seq) { struct cgroup *cgrp = seq_css(seq)->cgroup; u64 usage, utime, stime; struct task_cputime cputime; if (cgroup_parent(cgrp)) { cgroup_rstat_flush_hold(cgrp); usage = cgrp->bstat.cputime.sum_exec_runtime; cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, &utime, &stime); cgroup_rstat_flush_release(); } else { root_cgroup_cputime(&cputime); usage = cputime.sum_exec_runtime; utime = cputime.utime; stime = cputime.stime; } do_div(usage, NSEC_PER_USEC); do_div(utime, NSEC_PER_USEC); do_div(stime, NSEC_PER_USEC); seq_printf(seq, "usage_usec %llu\n" "user_usec %llu\n" "system_usec %llu\n", usage, utime, stime); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PAGE_REF_H #define _LINUX_PAGE_REF_H #include <linux/atomic.h> #include <linux/mm_types.h> #include <linux/page-flags.h> #include <linux/tracepoint-defs.h> DECLARE_TRACEPOINT(page_ref_set); DECLARE_TRACEPOINT(page_ref_mod); DECLARE_TRACEPOINT(page_ref_mod_and_test); DECLARE_TRACEPOINT(page_ref_mod_and_return); DECLARE_TRACEPOINT(page_ref_mod_unless); DECLARE_TRACEPOINT(page_ref_freeze); DECLARE_TRACEPOINT(page_ref_unfreeze); #ifdef CONFIG_DEBUG_PAGE_REF /* * Ideally we would want to use the trace_<tracepoint>_enabled() helper * functions. But due to include header file issues, that is not * feasible. Instead we have to open code the static key functions. * * See trace_##name##_enabled(void) in include/linux/tracepoint.h */ #define page_ref_tracepoint_active(t) tracepoint_enabled(t) extern void __page_ref_set(struct page *page, int v); extern void __page_ref_mod(struct page *page, int v); extern void __page_ref_mod_and_test(struct page *page, int v, int ret); extern void __page_ref_mod_and_return(struct page *page, int v, int ret); extern void __page_ref_mod_unless(struct page *page, int v, int u); extern void __page_ref_freeze(struct page *page, int v, int ret); extern void __page_ref_unfreeze(struct page *page, int v); #else #define page_ref_tracepoint_active(t) false static inline void __page_ref_set(struct page *page, int v) { } static inline void __page_ref_mod(struct page *page, int v) { } static inline void __page_ref_mod_and_test(struct page *page, int v, int ret) { } static inline void __page_ref_mod_and_return(struct page *page, int v, int ret) { } static inline void __page_ref_mod_unless(struct page *page, int v, int u) { } static inline void __page_ref_freeze(struct page *page, int v, int ret) { } static inline void __page_ref_unfreeze(struct page *page, int v) { } #endif static inline int page_ref_count(struct page *page) { return atomic_read(&page->_refcount); } static inline int page_count(struct page *page) { return atomic_read(&compound_head(page)->_refcount); } static inline void set_page_count(struct page *page, int v) { atomic_set(&page->_refcount, v); if (page_ref_tracepoint_active(page_ref_set)) __page_ref_set(page, v); } /* * Setup the page count before being freed into the page allocator for * the first time (boot or memory hotplug) */ static inline void init_page_count(struct page *page) { set_page_count(page, 1); } static inline void page_ref_add(struct page *page, int nr) { atomic_add(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, nr); } static inline void page_ref_sub(struct page *page, int nr) { atomic_sub(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, -nr); } static inline int page_ref_sub_return(struct page *page, int nr) { int ret = atomic_sub_return(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_return)) __page_ref_mod_and_return(page, -nr, ret); return ret; } static inline void page_ref_inc(struct page *page) { atomic_inc(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, 1); } static inline void page_ref_dec(struct page *page) { atomic_dec(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, -1); } static inline int page_ref_sub_and_test(struct page *page, int nr) { int ret = atomic_sub_and_test(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_test)) __page_ref_mod_and_test(page, -nr, ret); return ret; } static inline int page_ref_inc_return(struct page *page) { int ret = atomic_inc_return(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_return)) __page_ref_mod_and_return(page, 1, ret); return ret; } static inline int page_ref_dec_and_test(struct page *page) { int ret = atomic_dec_and_test(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_test)) __page_ref_mod_and_test(page, -1, ret); return ret; } static inline int page_ref_dec_return(struct page *page) { int ret = atomic_dec_return(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_return)) __page_ref_mod_and_return(page, -1, ret); return ret; } static inline int page_ref_add_unless(struct page *page, int nr, int u) { int ret = atomic_add_unless(&page->_refcount, nr, u); if (page_ref_tracepoint_active(page_ref_mod_unless)) __page_ref_mod_unless(page, nr, ret); return ret; } static inline int page_ref_freeze(struct page *page, int count) { int ret = likely(atomic_cmpxchg(&page->_refcount, count, 0) == count); if (page_ref_tracepoint_active(page_ref_freeze)) __page_ref_freeze(page, count, ret); return ret; } static inline void page_ref_unfreeze(struct page *page, int count) { VM_BUG_ON_PAGE(page_count(page) != 0, page); VM_BUG_ON(count == 0); atomic_set_release(&page->_refcount, count); if (page_ref_tracepoint_active(page_ref_unfreeze)) __page_ref_unfreeze(page, count); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SPECIAL_INSNS_H #define _ASM_X86_SPECIAL_INSNS_H #ifdef __KERNEL__ #include <asm/nops.h> #include <asm/processor-flags.h> #include <linux/irqflags.h> #include <linux/jump_label.h> /* * The compiler should not reorder volatile asm statements with respect to each * other: they should execute in program order. However GCC 4.9.x and 5.x have * a bug (which was fixed in 8.1, 7.3 and 6.5) where they might reorder * volatile asm. The write functions are not affected since they have memory * clobbers preventing reordering. To prevent reads from being reordered with * respect to writes, use a dummy memory operand. */ #define __FORCE_ORDER "m"(*(unsigned int *)0x1000UL) void native_write_cr0(unsigned long val); static inline unsigned long native_read_cr0(void) { unsigned long val; asm volatile("mov %%cr0,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static __always_inline unsigned long native_read_cr2(void) { unsigned long val; asm volatile("mov %%cr2,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static __always_inline void native_write_cr2(unsigned long val) { asm volatile("mov %0,%%cr2": : "r" (val) : "memory"); } static inline unsigned long __native_read_cr3(void) { unsigned long val; asm volatile("mov %%cr3,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static inline void native_write_cr3(unsigned long val) { asm volatile("mov %0,%%cr3": : "r" (val) : "memory"); } static inline unsigned long native_read_cr4(void) { unsigned long val; #ifdef CONFIG_X86_32 /* * This could fault if CR4 does not exist. Non-existent CR4 * is functionally equivalent to CR4 == 0. Keep it simple and pretend * that CR4 == 0 on CPUs that don't have CR4. */ asm volatile("1: mov %%cr4, %0\n" "2:\n" _ASM_EXTABLE(1b, 2b) : "=r" (val) : "0" (0), __FORCE_ORDER); #else /* CR4 always exists on x86_64. */ asm volatile("mov %%cr4,%0\n\t" : "=r" (val) : __FORCE_ORDER); #endif return val; } void native_write_cr4(unsigned long val); #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS static inline u32 rdpkru(void) { u32 ecx = 0; u32 edx, pkru; /* * "rdpkru" instruction. Places PKRU contents in to EAX, * clears EDX and requires that ecx=0. */ asm volatile(".byte 0x0f,0x01,0xee\n\t" : "=a" (pkru), "=d" (edx) : "c" (ecx)); return pkru; } static inline void wrpkru(u32 pkru) { u32 ecx = 0, edx = 0; /* * "wrpkru" instruction. Loads contents in EAX to PKRU, * requires that ecx = edx = 0. */ asm volatile(".byte 0x0f,0x01,0xef\n\t" : : "a" (pkru), "c"(ecx), "d"(edx)); } static inline void __write_pkru(u32 pkru) { /* * WRPKRU is relatively expensive compared to RDPKRU. * Avoid WRPKRU when it would not change the value. */ if (pkru == rdpkru()) return; wrpkru(pkru); } #else static inline u32 rdpkru(void) { return 0; } static inline void __write_pkru(u32 pkru) { } #endif static inline void native_wbinvd(void) { asm volatile("wbinvd": : :"memory"); } extern asmlinkage void asm_load_gs_index(unsigned int selector); static inline void native_load_gs_index(unsigned int selector) { unsigned long flags; local_irq_save(flags); asm_load_gs_index(selector); local_irq_restore(flags); } static inline unsigned long __read_cr4(void) { return native_read_cr4(); } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else static inline unsigned long read_cr0(void) { return native_read_cr0(); } static inline void write_cr0(unsigned long x) { native_write_cr0(x); } static __always_inline unsigned long read_cr2(void) { return native_read_cr2(); } static __always_inline void write_cr2(unsigned long x) { native_write_cr2(x); } /* * Careful! CR3 contains more than just an address. You probably want * read_cr3_pa() instead. */ static inline unsigned long __read_cr3(void) { return __native_read_cr3(); } static inline void write_cr3(unsigned long x) { native_write_cr3(x); } static inline void __write_cr4(unsigned long x) { native_write_cr4(x); } static inline void wbinvd(void) { native_wbinvd(); } #ifdef CONFIG_X86_64 static inline void load_gs_index(unsigned int selector) { native_load_gs_index(selector); } #endif #endif /* CONFIG_PARAVIRT_XXL */ static inline void clflush(volatile void *__p) { asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p)); } static inline void clflushopt(volatile void *__p) { alternative_io(".byte " __stringify(NOP_DS_PREFIX) "; clflush %P0", ".byte 0x66; clflush %P0", X86_FEATURE_CLFLUSHOPT, "+m" (*(volatile char __force *)__p)); } static inline void clwb(volatile void *__p) { volatile struct { char x[64]; } *p = __p; asm volatile(ALTERNATIVE_2( ".byte " __stringify(NOP_DS_PREFIX) "; clflush (%[pax])", ".byte 0x66; clflush (%[pax])", /* clflushopt (%%rax) */ X86_FEATURE_CLFLUSHOPT, ".byte 0x66, 0x0f, 0xae, 0x30", /* clwb (%%rax) */ X86_FEATURE_CLWB) : [p] "+m" (*p) : [pax] "a" (p)); } #define nop() asm volatile ("nop") static inline void serialize(void) { /* Instruction opcode for SERIALIZE; supported in binutils >= 2.35. */ asm volatile(".byte 0xf, 0x1, 0xe8" ::: "memory"); } /* The dst parameter must be 64-bytes aligned */ static inline void movdir64b(void *dst, const void *src) { const struct { char _[64]; } *__src = src; struct { char _[64]; } *__dst = dst; /* * MOVDIR64B %(rdx), rax. * * Both __src and __dst must be memory constraints in order to tell the * compiler that no other memory accesses should be reordered around * this one. * * Also, both must be supplied as lvalues because this tells * the compiler what the object is (its size) the instruction accesses. * I.e., not the pointers but what they point to, thus the deref'ing '*'. */ asm volatile(".byte 0x66, 0x0f, 0x38, 0xf8, 0x02" : "+m" (*__dst) : "m" (*__src), "a" (__dst), "d" (__src)); } /** * enqcmds - Enqueue a command in supervisor (CPL0) mode * @dst: destination, in MMIO space (must be 512-bit aligned) * @src: 512 bits memory operand * * The ENQCMDS instruction allows software to write a 512-bit command to * a 512-bit-aligned special MMIO region that supports the instruction. * A return status is loaded into the ZF flag in the RFLAGS register. * ZF = 0 equates to success, and ZF = 1 indicates retry or error. * * This function issues the ENQCMDS instruction to submit data from * kernel space to MMIO space, in a unit of 512 bits. Order of data access * is not guaranteed, nor is a memory barrier performed afterwards. It * returns 0 on success and -EAGAIN on failure. * * Warning: Do not use this helper unless your driver has checked that the * ENQCMDS instruction is supported on the platform and the device accepts * ENQCMDS. */ static inline int enqcmds(void __iomem *dst, const void *src) { const struct { char _[64]; } *__src = src; struct { char _[64]; } __iomem *__dst = dst; bool zf; /* * ENQCMDS %(rdx), rax * * See movdir64b()'s comment on operand specification. */ asm volatile(".byte 0xf3, 0x0f, 0x38, 0xf8, 0x02, 0x66, 0x90" CC_SET(z) : CC_OUT(z) (zf), "+m" (*__dst) : "m" (*__src), "a" (__dst), "d" (__src)); /* Submission failure is indicated via EFLAGS.ZF=1 */ if (zf) return -EAGAIN; return 0; } #endif /* __KERNEL__ */ #endif /* _ASM_X86_SPECIAL_INSNS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 /* BlueZ - Bluetooth protocol stack for Linux Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __HCI_CORE_H #define __HCI_CORE_H #include <linux/idr.h> #include <linux/leds.h> #include <linux/rculist.h> #include <net/bluetooth/hci.h> #include <net/bluetooth/hci_sock.h> /* HCI priority */ #define HCI_PRIO_MAX 7 /* HCI Core structures */ struct inquiry_data { bdaddr_t bdaddr; __u8 pscan_rep_mode; __u8 pscan_period_mode; __u8 pscan_mode; __u8 dev_class[3]; __le16 clock_offset; __s8 rssi; __u8 ssp_mode; }; struct inquiry_entry { struct list_head all; /* inq_cache.all */ struct list_head list; /* unknown or resolve */ enum { NAME_NOT_KNOWN, NAME_NEEDED, NAME_PENDING, NAME_KNOWN, } name_state; __u32 timestamp; struct inquiry_data data; }; struct discovery_state { int type; enum { DISCOVERY_STOPPED, DISCOVERY_STARTING, DISCOVERY_FINDING, DISCOVERY_RESOLVING, DISCOVERY_STOPPING, } state; struct list_head all; /* All devices found during inquiry */ struct list_head unknown; /* Name state not known */ struct list_head resolve; /* Name needs to be resolved */ __u32 timestamp; bdaddr_t last_adv_addr; u8 last_adv_addr_type; s8 last_adv_rssi; u32 last_adv_flags; u8 last_adv_data[HCI_MAX_AD_LENGTH]; u8 last_adv_data_len; bool report_invalid_rssi; bool result_filtering; bool limited; s8 rssi; u16 uuid_count; u8 (*uuids)[16]; unsigned long scan_start; unsigned long scan_duration; }; #define SUSPEND_NOTIFIER_TIMEOUT msecs_to_jiffies(2000) /* 2 seconds */ enum suspend_tasks { SUSPEND_PAUSE_DISCOVERY, SUSPEND_UNPAUSE_DISCOVERY, SUSPEND_PAUSE_ADVERTISING, SUSPEND_UNPAUSE_ADVERTISING, SUSPEND_SCAN_DISABLE, SUSPEND_SCAN_ENABLE, SUSPEND_DISCONNECTING, SUSPEND_POWERING_DOWN, SUSPEND_PREPARE_NOTIFIER, __SUSPEND_NUM_TASKS }; enum suspended_state { BT_RUNNING = 0, BT_SUSPEND_DISCONNECT, BT_SUSPEND_CONFIGURE_WAKE, }; struct hci_conn_hash { struct list_head list; unsigned int acl_num; unsigned int amp_num; unsigned int sco_num; unsigned int le_num; unsigned int le_num_slave; }; struct bdaddr_list { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; }; struct bdaddr_list_with_irk { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; u8 peer_irk[16]; u8 local_irk[16]; }; struct bdaddr_list_with_flags { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; u32 current_flags; }; enum hci_conn_flags { HCI_CONN_FLAG_REMOTE_WAKEUP, HCI_CONN_FLAG_MAX }; #define hci_conn_test_flag(nr, flags) ((flags) & (1U << nr)) /* Make sure number of flags doesn't exceed sizeof(current_flags) */ static_assert(HCI_CONN_FLAG_MAX < 32); struct bt_uuid { struct list_head list; u8 uuid[16]; u8 size; u8 svc_hint; }; struct blocked_key { struct list_head list; struct rcu_head rcu; u8 type; u8 val[16]; }; struct smp_csrk { bdaddr_t bdaddr; u8 bdaddr_type; u8 type; u8 val[16]; }; struct smp_ltk { struct list_head list; struct rcu_head rcu; bdaddr_t bdaddr; u8 bdaddr_type; u8 authenticated; u8 type; u8 enc_size; __le16 ediv; __le64 rand; u8 val[16]; }; struct smp_irk { struct list_head list; struct rcu_head rcu; bdaddr_t rpa; bdaddr_t bdaddr; u8 addr_type; u8 val[16]; }; struct link_key { struct list_head list; struct rcu_head rcu; bdaddr_t bdaddr; u8 type; u8 val[HCI_LINK_KEY_SIZE]; u8 pin_len; }; struct oob_data { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; u8 present; u8 hash192[16]; u8 rand192[16]; u8 hash256[16]; u8 rand256[16]; }; struct adv_info { struct list_head list; bool pending; __u8 instance; __u32 flags; __u16 timeout; __u16 remaining_time; __u16 duration; __u16 adv_data_len; __u8 adv_data[HCI_MAX_EXT_AD_LENGTH]; __u16 scan_rsp_len; __u8 scan_rsp_data[HCI_MAX_EXT_AD_LENGTH]; __s8 tx_power; bdaddr_t random_addr; bool rpa_expired; struct delayed_work rpa_expired_cb; }; #define HCI_MAX_ADV_INSTANCES 5 #define HCI_DEFAULT_ADV_DURATION 2 struct adv_pattern { struct list_head list; __u8 ad_type; __u8 offset; __u8 length; __u8 value[HCI_MAX_AD_LENGTH]; }; struct adv_monitor { struct list_head patterns; bool active; __u16 handle; }; #define HCI_MIN_ADV_MONITOR_HANDLE 1 #define HCI_MAX_ADV_MONITOR_NUM_HANDLES 32 #define HCI_MAX_ADV_MONITOR_NUM_PATTERNS 16 #define HCI_MAX_SHORT_NAME_LENGTH 10 /* Min encryption key size to match with SMP */ #define HCI_MIN_ENC_KEY_SIZE 7 /* Default LE RPA expiry time, 15 minutes */ #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60) /* Default min/max age of connection information (1s/3s) */ #define DEFAULT_CONN_INFO_MIN_AGE 1000 #define DEFAULT_CONN_INFO_MAX_AGE 3000 /* Default authenticated payload timeout 30s */ #define DEFAULT_AUTH_PAYLOAD_TIMEOUT 0x0bb8 struct amp_assoc { __u16 len; __u16 offset; __u16 rem_len; __u16 len_so_far; __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; }; #define HCI_MAX_PAGES 3 struct hci_dev { struct list_head list; struct mutex lock; char name[8]; unsigned long flags; __u16 id; __u8 bus; __u8 dev_type; bdaddr_t bdaddr; bdaddr_t setup_addr; bdaddr_t public_addr; bdaddr_t random_addr; bdaddr_t static_addr; __u8 adv_addr_type; __u8 dev_name[HCI_MAX_NAME_LENGTH]; __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; __u8 eir[HCI_MAX_EIR_LENGTH]; __u16 appearance; __u8 dev_class[3]; __u8 major_class; __u8 minor_class; __u8 max_page; __u8 features[HCI_MAX_PAGES][8]; __u8 le_features[8]; __u8 le_white_list_size; __u8 le_resolv_list_size; __u8 le_num_of_adv_sets; __u8 le_states[8]; __u8 commands[64]; __u8 hci_ver; __u16 hci_rev; __u8 lmp_ver; __u16 manufacturer; __u16 lmp_subver; __u16 voice_setting; __u8 num_iac; __u8 stored_max_keys; __u8 stored_num_keys; __u8 io_capability; __s8 inq_tx_power; __u8 err_data_reporting; __u16 page_scan_interval; __u16 page_scan_window; __u8 page_scan_type; __u8 le_adv_channel_map; __u16 le_adv_min_interval; __u16 le_adv_max_interval; __u8 le_scan_type; __u16 le_scan_interval; __u16 le_scan_window; __u16 le_scan_int_suspend; __u16 le_scan_window_suspend; __u16 le_scan_int_discovery; __u16 le_scan_window_discovery; __u16 le_scan_int_adv_monitor; __u16 le_scan_window_adv_monitor; __u16 le_scan_int_connect; __u16 le_scan_window_connect; __u16 le_conn_min_interval; __u16 le_conn_max_interval; __u16 le_conn_latency; __u16 le_supv_timeout; __u16 le_def_tx_len; __u16 le_def_tx_time; __u16 le_max_tx_len; __u16 le_max_tx_time; __u16 le_max_rx_len; __u16 le_max_rx_time; __u8 le_max_key_size; __u8 le_min_key_size; __u16 discov_interleaved_timeout; __u16 conn_info_min_age; __u16 conn_info_max_age; __u16 auth_payload_timeout; __u8 min_enc_key_size; __u8 max_enc_key_size; __u8 pairing_opts; __u8 ssp_debug_mode; __u8 hw_error_code; __u32 clock; __u16 devid_source; __u16 devid_vendor; __u16 devid_product; __u16 devid_version; __u8 def_page_scan_type; __u16 def_page_scan_int; __u16 def_page_scan_window; __u8 def_inq_scan_type; __u16 def_inq_scan_int; __u16 def_inq_scan_window; __u16 def_br_lsto; __u16 def_page_timeout; __u16 def_multi_adv_rotation_duration; __u16 def_le_autoconnect_timeout; __u16 pkt_type; __u16 esco_type; __u16 link_policy; __u16 link_mode; __u32 idle_timeout; __u16 sniff_min_interval; __u16 sniff_max_interval; __u8 amp_status; __u32 amp_total_bw; __u32 amp_max_bw; __u32 amp_min_latency; __u32 amp_max_pdu; __u8 amp_type; __u16 amp_pal_cap; __u16 amp_assoc_size; __u32 amp_max_flush_to; __u32 amp_be_flush_to; struct amp_assoc loc_assoc; __u8 flow_ctl_mode; unsigned int auto_accept_delay; unsigned long quirks; atomic_t cmd_cnt; unsigned int acl_cnt; unsigned int sco_cnt; unsigned int le_cnt; unsigned int acl_mtu; unsigned int sco_mtu; unsigned int le_mtu; unsigned int acl_pkts; unsigned int sco_pkts; unsigned int le_pkts; __u16 block_len; __u16 block_mtu; __u16 num_blocks; __u16 block_cnt; unsigned long acl_last_tx; unsigned long sco_last_tx; unsigned long le_last_tx; __u8 le_tx_def_phys; __u8 le_rx_def_phys; struct workqueue_struct *workqueue; struct workqueue_struct *req_workqueue; struct work_struct power_on; struct delayed_work power_off; struct work_struct error_reset; __u16 discov_timeout; struct delayed_work discov_off; struct delayed_work service_cache; struct delayed_work cmd_timer; struct work_struct rx_work; struct work_struct cmd_work; struct work_struct tx_work; struct work_struct discov_update; struct work_struct bg_scan_update; struct work_struct scan_update; struct work_struct connectable_update; struct work_struct discoverable_update; struct delayed_work le_scan_disable; struct delayed_work le_scan_restart; struct sk_buff_head rx_q; struct sk_buff_head raw_q; struct sk_buff_head cmd_q; struct sk_buff *sent_cmd; struct mutex req_lock; wait_queue_head_t req_wait_q; __u32 req_status; __u32 req_result; struct sk_buff *req_skb; void *smp_data; void *smp_bredr_data; struct discovery_state discovery; int discovery_old_state; bool discovery_paused; int advertising_old_state; bool advertising_paused; struct notifier_block suspend_notifier; struct work_struct suspend_prepare; enum suspended_state suspend_state_next; enum suspended_state suspend_state; bool scanning_paused; bool suspended; u8 wake_reason; bdaddr_t wake_addr; u8 wake_addr_type; wait_queue_head_t suspend_wait_q; DECLARE_BITMAP(suspend_tasks, __SUSPEND_NUM_TASKS); struct hci_conn_hash conn_hash; struct list_head mgmt_pending; struct list_head blacklist; struct list_head whitelist; struct list_head uuids; struct list_head link_keys; struct list_head long_term_keys; struct list_head identity_resolving_keys; struct list_head remote_oob_data; struct list_head le_white_list; struct list_head le_resolv_list; struct list_head le_conn_params; struct list_head pend_le_conns; struct list_head pend_le_reports; struct list_head blocked_keys; struct hci_dev_stats stat; atomic_t promisc; const char *hw_info; const char *fw_info; struct dentry *debugfs; struct device dev; struct rfkill *rfkill; DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS); __s8 adv_tx_power; __u8 adv_data[HCI_MAX_EXT_AD_LENGTH]; __u8 adv_data_len; __u8 scan_rsp_data[HCI_MAX_EXT_AD_LENGTH]; __u8 scan_rsp_data_len; struct list_head adv_instances; unsigned int adv_instance_cnt; __u8 cur_adv_instance; __u16 adv_instance_timeout; struct delayed_work adv_instance_expire; struct idr adv_monitors_idr; unsigned int adv_monitors_cnt; __u8 irk[16]; __u32 rpa_timeout; struct delayed_work rpa_expired; bdaddr_t rpa; #if IS_ENABLED(CONFIG_BT_LEDS) struct led_trigger *power_led; #endif #if IS_ENABLED(CONFIG_BT_MSFTEXT) __u16 msft_opcode; void *msft_data; #endif int (*open)(struct hci_dev *hdev); int (*close)(struct hci_dev *hdev); int (*flush)(struct hci_dev *hdev); int (*setup)(struct hci_dev *hdev); int (*shutdown)(struct hci_dev *hdev); int (*send)(struct hci_dev *hdev, struct sk_buff *skb); void (*notify)(struct hci_dev *hdev, unsigned int evt); void (*hw_error)(struct hci_dev *hdev, u8 code); int (*post_init)(struct hci_dev *hdev); int (*set_diag)(struct hci_dev *hdev, bool enable); int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr); void (*cmd_timeout)(struct hci_dev *hdev); bool (*prevent_wake)(struct hci_dev *hdev); }; #define HCI_PHY_HANDLE(handle) (handle & 0xff) enum conn_reasons { CONN_REASON_PAIR_DEVICE, CONN_REASON_L2CAP_CHAN, CONN_REASON_SCO_CONNECT, }; struct hci_conn { struct list_head list; atomic_t refcnt; bdaddr_t dst; __u8 dst_type; bdaddr_t src; __u8 src_type; bdaddr_t init_addr; __u8 init_addr_type; bdaddr_t resp_addr; __u8 resp_addr_type; __u16 handle; __u16 state; __u8 mode; __u8 type; __u8 role; bool out; __u8 attempt; __u8 dev_class[3]; __u8 features[HCI_MAX_PAGES][8]; __u16 pkt_type; __u16 link_policy; __u8 key_type; __u8 auth_type; __u8 sec_level; __u8 pending_sec_level; __u8 pin_length; __u8 enc_key_size; __u8 io_capability; __u32 passkey_notify; __u8 passkey_entered; __u16 disc_timeout; __u16 conn_timeout; __u16 setting; __u16 auth_payload_timeout; __u16 le_conn_min_interval; __u16 le_conn_max_interval; __u16 le_conn_interval; __u16 le_conn_latency; __u16 le_supv_timeout; __u8 le_adv_data[HCI_MAX_AD_LENGTH]; __u8 le_adv_data_len; __u8 le_tx_phy; __u8 le_rx_phy; __s8 rssi; __s8 tx_power; __s8 max_tx_power; unsigned long flags; enum conn_reasons conn_reason; __u32 clock; __u16 clock_accuracy; unsigned long conn_info_timestamp; __u8 remote_cap; __u8 remote_auth; __u8 remote_id; unsigned int sent; struct sk_buff_head data_q; struct list_head chan_list; struct delayed_work disc_work; struct delayed_work auto_accept_work; struct delayed_work idle_work; struct delayed_work le_conn_timeout; struct work_struct le_scan_cleanup; struct device dev; struct dentry *debugfs; struct hci_dev *hdev; void *l2cap_data; void *sco_data; struct amp_mgr *amp_mgr; struct hci_conn *link; void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); void (*security_cfm_cb) (struct hci_conn *conn, u8 status); void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); }; struct hci_chan { struct list_head list; __u16 handle; struct hci_conn *conn; struct sk_buff_head data_q; unsigned int sent; __u8 state; bool amp; }; struct hci_conn_params { struct list_head list; struct list_head action; bdaddr_t addr; u8 addr_type; u16 conn_min_interval; u16 conn_max_interval; u16 conn_latency; u16 supervision_timeout; enum { HCI_AUTO_CONN_DISABLED, HCI_AUTO_CONN_REPORT, HCI_AUTO_CONN_DIRECT, HCI_AUTO_CONN_ALWAYS, HCI_AUTO_CONN_LINK_LOSS, HCI_AUTO_CONN_EXPLICIT, } auto_connect; struct hci_conn *conn; bool explicit_connect; u32 current_flags; }; extern struct list_head hci_dev_list; extern struct list_head hci_cb_list; extern rwlock_t hci_dev_list_lock; extern struct mutex hci_cb_list_lock; #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags) #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags) #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags) #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags) #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags) #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags) #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags) #define hci_dev_clear_volatile_flags(hdev) \ do { \ hci_dev_clear_flag(hdev, HCI_LE_SCAN); \ hci_dev_clear_flag(hdev, HCI_LE_ADV); \ hci_dev_clear_flag(hdev, HCI_LL_RPA_RESOLUTION);\ hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \ } while (0) /* ----- HCI interface to upper protocols ----- */ int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); int l2cap_disconn_ind(struct hci_conn *hcon); void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); #if IS_ENABLED(CONFIG_BT_BREDR) int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); #else static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags) { return 0; } static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb) { } #endif /* ----- Inquiry cache ----- */ #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ static inline void discovery_init(struct hci_dev *hdev) { hdev->discovery.state = DISCOVERY_STOPPED; INIT_LIST_HEAD(&hdev->discovery.all); INIT_LIST_HEAD(&hdev->discovery.unknown); INIT_LIST_HEAD(&hdev->discovery.resolve); hdev->discovery.report_invalid_rssi = true; hdev->discovery.rssi = HCI_RSSI_INVALID; } static inline void hci_discovery_filter_clear(struct hci_dev *hdev) { hdev->discovery.result_filtering = false; hdev->discovery.report_invalid_rssi = true; hdev->discovery.rssi = HCI_RSSI_INVALID; hdev->discovery.uuid_count = 0; kfree(hdev->discovery.uuids); hdev->discovery.uuids = NULL; hdev->discovery.scan_start = 0; hdev->discovery.scan_duration = 0; } bool hci_discovery_active(struct hci_dev *hdev); void hci_discovery_set_state(struct hci_dev *hdev, int state); static inline int inquiry_cache_empty(struct hci_dev *hdev) { return list_empty(&hdev->discovery.all); } static inline long inquiry_cache_age(struct hci_dev *hdev) { struct discovery_state *c = &hdev->discovery; return jiffies - c->timestamp; } static inline long inquiry_entry_age(struct inquiry_entry *e) { return jiffies - e->timestamp; } struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr); struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, bdaddr_t *bdaddr); struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, bdaddr_t *bdaddr, int state); void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, struct inquiry_entry *ie); u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, bool name_known); void hci_inquiry_cache_flush(struct hci_dev *hdev); /* ----- HCI Connections ----- */ enum { HCI_CONN_AUTH_PEND, HCI_CONN_REAUTH_PEND, HCI_CONN_ENCRYPT_PEND, HCI_CONN_RSWITCH_PEND, HCI_CONN_MODE_CHANGE_PEND, HCI_CONN_SCO_SETUP_PEND, HCI_CONN_MGMT_CONNECTED, HCI_CONN_SSP_ENABLED, HCI_CONN_SC_ENABLED, HCI_CONN_AES_CCM, HCI_CONN_POWER_SAVE, HCI_CONN_FLUSH_KEY, HCI_CONN_ENCRYPT, HCI_CONN_AUTH, HCI_CONN_SECURE, HCI_CONN_FIPS, HCI_CONN_STK_ENCRYPT, HCI_CONN_AUTH_INITIATOR, HCI_CONN_DROP, HCI_CONN_PARAM_REMOVAL_PEND, HCI_CONN_NEW_LINK_KEY, HCI_CONN_SCANNING, HCI_CONN_AUTH_FAILURE, }; static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) { struct hci_dev *hdev = conn->hdev; return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); } static inline bool hci_conn_sc_enabled(struct hci_conn *conn) { struct hci_dev *hdev = conn->hdev; return hci_dev_test_flag(hdev, HCI_SC_ENABLED) && test_bit(HCI_CONN_SC_ENABLED, &conn->flags); } static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) { struct hci_conn_hash *h = &hdev->conn_hash; list_add_rcu(&c->list, &h->list); switch (c->type) { case ACL_LINK: h->acl_num++; break; case AMP_LINK: h->amp_num++; break; case LE_LINK: h->le_num++; if (c->role == HCI_ROLE_SLAVE) h->le_num_slave++; break; case SCO_LINK: case ESCO_LINK: h->sco_num++; break; } } static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) { struct hci_conn_hash *h = &hdev->conn_hash; list_del_rcu(&c->list); synchronize_rcu(); switch (c->type) { case ACL_LINK: h->acl_num--; break; case AMP_LINK: h->amp_num--; break; case LE_LINK: h->le_num--; if (c->role == HCI_ROLE_SLAVE) h->le_num_slave--; break; case SCO_LINK: case ESCO_LINK: h->sco_num--; break; } } static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) { struct hci_conn_hash *h = &hdev->conn_hash; switch (type) { case ACL_LINK: return h->acl_num; case AMP_LINK: return h->amp_num; case LE_LINK: return h->le_num; case SCO_LINK: case ESCO_LINK: return h->sco_num; default: return 0; } } static inline unsigned int hci_conn_count(struct hci_dev *hdev) { struct hci_conn_hash *c = &hdev->conn_hash; return c->acl_num + c->amp_num + c->sco_num + c->le_num; } static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; __u8 type = INVALID_LINK; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->handle == handle) { type = c->type; break; } } rcu_read_unlock(); return type; } static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, __u16 handle) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->handle == handle) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, __u8 type, bdaddr_t *ba) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type == type && !bacmp(&c->dst, ba)) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev, bdaddr_t *ba, __u8 ba_type) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type != LE_LINK) continue; if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, __u8 type, __u16 state) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type == type && c->state == state) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type == LE_LINK && c->state == BT_CONNECT && !test_bit(HCI_CONN_SCANNING, &c->flags)) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } int hci_disconnect(struct hci_conn *conn, __u8 reason); bool hci_setup_sync(struct hci_conn *conn, __u16 handle); void hci_sco_setup(struct hci_conn *conn, __u8 status); struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, u8 role); int hci_conn_del(struct hci_conn *conn); void hci_conn_hash_flush(struct hci_dev *hdev); void hci_conn_check_pending(struct hci_dev *hdev); struct hci_chan *hci_chan_create(struct hci_conn *conn); void hci_chan_del(struct hci_chan *chan); void hci_chan_list_flush(struct hci_conn *conn); struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, u8 dst_type, u8 sec_level, u16 conn_timeout, enum conn_reasons conn_reason); struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, u8 dst_type, u8 sec_level, u16 conn_timeout, u8 role, bdaddr_t *direct_rpa); struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, u8 sec_level, u8 auth_type, enum conn_reasons conn_reason); struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, __u16 setting); int hci_conn_check_link_mode(struct hci_conn *conn); int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, bool initiator); int hci_conn_switch_role(struct hci_conn *conn, __u8 role); void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); void hci_le_conn_failed(struct hci_conn *conn, u8 status); /* * hci_conn_get() and hci_conn_put() are used to control the life-time of an * "hci_conn" object. They do not guarantee that the hci_conn object is running, * working or anything else. They just guarantee that the object is available * and can be dereferenced. So you can use its locks, local variables and any * other constant data. * Before accessing runtime data, you _must_ lock the object and then check that * it is still running. As soon as you release the locks, the connection might * get dropped, though. * * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control * how long the underlying connection is held. So every channel that runs on the * hci_conn object calls this to prevent the connection from disappearing. As * long as you hold a device, you must also guarantee that you have a valid * reference to the device via hci_conn_get() (or the initial reference from * hci_conn_add()). * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't * break because nobody cares for that. But this means, we cannot use * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). */ static inline struct hci_conn *hci_conn_get(struct hci_conn *conn) { get_device(&conn->dev); return conn; } static inline void hci_conn_put(struct hci_conn *conn) { put_device(&conn->dev); } static inline void hci_conn_hold(struct hci_conn *conn) { BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); atomic_inc(&conn->refcnt); cancel_delayed_work(&conn->disc_work); } static inline void hci_conn_drop(struct hci_conn *conn) { BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); if (atomic_dec_and_test(&conn->refcnt)) { unsigned long timeo; switch (conn->type) { case ACL_LINK: case LE_LINK: cancel_delayed_work(&conn->idle_work); if (conn->state == BT_CONNECTED) { timeo = conn->disc_timeout; if (!conn->out) timeo *= 2; } else { timeo = 0; } break; case AMP_LINK: timeo = conn->disc_timeout; break; default: timeo = 0; break; } cancel_delayed_work(&conn->disc_work); queue_delayed_work(conn->hdev->workqueue, &conn->disc_work, timeo); } } /* ----- HCI Devices ----- */ static inline void hci_dev_put(struct hci_dev *d) { BT_DBG("%s orig refcnt %d", d->name, kref_read(&d->dev.kobj.kref)); put_device(&d->dev); } static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) { BT_DBG("%s orig refcnt %d", d->name, kref_read(&d->dev.kobj.kref)); get_device(&d->dev); return d; } #define hci_dev_lock(d) mutex_lock(&d->lock) #define hci_dev_unlock(d) mutex_unlock(&d->lock) #define to_hci_dev(d) container_of(d, struct hci_dev, dev) #define to_hci_conn(c) container_of(c, struct hci_conn, dev) static inline void *hci_get_drvdata(struct hci_dev *hdev) { return dev_get_drvdata(&hdev->dev); } static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) { dev_set_drvdata(&hdev->dev, data); } struct hci_dev *hci_dev_get(int index); struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type); struct hci_dev *hci_alloc_dev(void); void hci_free_dev(struct hci_dev *hdev); int hci_register_dev(struct hci_dev *hdev); void hci_unregister_dev(struct hci_dev *hdev); void hci_cleanup_dev(struct hci_dev *hdev); int hci_suspend_dev(struct hci_dev *hdev); int hci_resume_dev(struct hci_dev *hdev); int hci_reset_dev(struct hci_dev *hdev); int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb); int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb); __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...); __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...); static inline void hci_set_msft_opcode(struct hci_dev *hdev, __u16 opcode) { #if IS_ENABLED(CONFIG_BT_MSFTEXT) hdev->msft_opcode = opcode; #endif } int hci_dev_open(__u16 dev); int hci_dev_close(__u16 dev); int hci_dev_do_close(struct hci_dev *hdev); int hci_dev_reset(__u16 dev); int hci_dev_reset_stat(__u16 dev); int hci_dev_cmd(unsigned int cmd, void __user *arg); int hci_get_dev_list(void __user *arg); int hci_get_dev_info(void __user *arg); int hci_get_conn_list(void __user *arg); int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); int hci_inquiry(void __user *arg); struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list, bdaddr_t *bdaddr, u8 type); struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( struct list_head *list, bdaddr_t *bdaddr, u8 type); struct bdaddr_list_with_flags * hci_bdaddr_list_lookup_with_flags(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, u8 type, u8 *peer_irk, u8 *local_irk); int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, u8 type, u32 flags); int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, u8 type); void hci_bdaddr_list_clear(struct list_head *list); struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); void hci_conn_params_clear_disabled(struct hci_dev *hdev); struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, bdaddr_t *addr, u8 addr_type); void hci_uuids_clear(struct hci_dev *hdev); void hci_link_keys_clear(struct hci_dev *hdev); struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len, bool *persistent); struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type, u8 authenticated, u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand); struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 role); int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); void hci_smp_ltks_clear(struct hci_dev *hdev); int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa); struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 val[16], bdaddr_t *rpa); void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]); void hci_blocked_keys_clear(struct hci_dev *hdev); void hci_smp_irks_clear(struct hci_dev *hdev); bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); void hci_remote_oob_data_clear(struct hci_dev *hdev); struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type, u8 *hash192, u8 *rand192, u8 *hash256, u8 *rand256); int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); void hci_adv_instances_clear(struct hci_dev *hdev); struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance); struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance); int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, u16 adv_data_len, u8 *adv_data, u16 scan_rsp_len, u8 *scan_rsp_data, u16 timeout, u16 duration); int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance); void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired); void hci_adv_monitors_clear(struct hci_dev *hdev); void hci_free_adv_monitor(struct adv_monitor *monitor); int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor); int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle); bool hci_is_adv_monitoring(struct hci_dev *hdev); void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); void hci_init_sysfs(struct hci_dev *hdev); void hci_conn_init_sysfs(struct hci_conn *conn); void hci_conn_add_sysfs(struct hci_conn *conn); void hci_conn_del_sysfs(struct hci_conn *conn); #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) /* ----- LMP capabilities ----- */ #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) #define lmp_edr_2m_capable(dev) ((dev)->features[0][3] & LMP_EDR_2M) #define lmp_edr_3m_capable(dev) ((dev)->features[0][3] & LMP_EDR_3M) #define lmp_edr_3slot_capable(dev) ((dev)->features[0][4] & LMP_EDR_3SLOT) #define lmp_edr_5slot_capable(dev) ((dev)->features[0][5] & LMP_EDR_5SLOT) /* ----- Extended LMP capabilities ----- */ #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER) #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE) #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN) #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN) #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC) #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING) /* ----- Host capabilities ----- */ #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC) #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \ !hci_dev_test_flag(dev, HCI_AUTO_OFF)) #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \ hci_dev_test_flag(dev, HCI_SC_ENABLED)) #define scan_1m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_1M) || \ ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_1M)) #define scan_2m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_2M) || \ ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_2M)) #define scan_coded(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_CODED) || \ ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_CODED)) /* Use LL Privacy based address resolution if supported */ #define use_ll_privacy(dev) ((dev)->le_features[0] & HCI_LE_LL_PRIVACY) /* Use ext scanning if set ext scan param and ext scan enable is supported */ #define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \ ((dev)->commands[37] & 0x40)) /* Use ext create connection if command is supported */ #define use_ext_conn(dev) ((dev)->commands[37] & 0x80) /* Extended advertising support */ #define ext_adv_capable(dev) (((dev)->le_features[1] & HCI_LE_EXT_ADV)) /* ----- HCI protocols ----- */ #define HCI_PROTO_DEFER 0x01 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 type, __u8 *flags) { switch (type) { case ACL_LINK: return l2cap_connect_ind(hdev, bdaddr); case SCO_LINK: case ESCO_LINK: return sco_connect_ind(hdev, bdaddr, flags); default: BT_ERR("unknown link type %d", type); return -EINVAL; } } static inline int hci_proto_disconn_ind(struct hci_conn *conn) { if (conn->type != ACL_LINK && conn->type != LE_LINK) return HCI_ERROR_REMOTE_USER_TERM; return l2cap_disconn_ind(conn); } /* ----- HCI callbacks ----- */ struct hci_cb { struct list_head list; char *name; void (*connect_cfm) (struct hci_conn *conn, __u8 status); void (*disconn_cfm) (struct hci_conn *conn, __u8 status); void (*security_cfm) (struct hci_conn *conn, __u8 status, __u8 encrypt); void (*key_change_cfm) (struct hci_conn *conn, __u8 status); void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); }; static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->connect_cfm) cb->connect_cfm(conn, status); } mutex_unlock(&hci_cb_list_lock); if (conn->connect_cfm_cb) conn->connect_cfm_cb(conn, status); } static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->disconn_cfm) cb->disconn_cfm(conn, reason); } mutex_unlock(&hci_cb_list_lock); if (conn->disconn_cfm_cb) conn->disconn_cfm_cb(conn, reason); } static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; __u8 encrypt; if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) return; encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->security_cfm) cb->security_cfm(conn, status, encrypt); } mutex_unlock(&hci_cb_list_lock); if (conn->security_cfm_cb) conn->security_cfm_cb(conn, status); } static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; __u8 encrypt; if (conn->state == BT_CONFIG) { if (!status) conn->state = BT_CONNECTED; hci_connect_cfm(conn, status); hci_conn_drop(conn); return; } if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags)) encrypt = 0x00; else if (test_bit(HCI_CONN_AES_CCM, &conn->flags)) encrypt = 0x02; else encrypt = 0x01; if (!status) { if (conn->sec_level == BT_SECURITY_SDP) conn->sec_level = BT_SECURITY_LOW; if (conn->pending_sec_level > conn->sec_level) conn->sec_level = conn->pending_sec_level; } mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->security_cfm) cb->security_cfm(conn, status, encrypt); } mutex_unlock(&hci_cb_list_lock); if (conn->security_cfm_cb) conn->security_cfm_cb(conn, status); } static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->key_change_cfm) cb->key_change_cfm(conn, status); } mutex_unlock(&hci_cb_list_lock); } static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, __u8 role) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->role_switch_cfm) cb->role_switch_cfm(conn, status, role); } mutex_unlock(&hci_cb_list_lock); } static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type, size_t *data_len) { size_t parsed = 0; if (eir_len < 2) return NULL; while (parsed < eir_len - 1) { u8 field_len = eir[0]; if (field_len == 0) break; parsed += field_len + 1; if (parsed > eir_len) break; if (eir[1] != type) { eir += field_len + 1; continue; } /* Zero length data */ if (field_len == 1) return NULL; if (data_len) *data_len = field_len - 1; return &eir[2]; } return NULL; } static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type) { if (addr_type != ADDR_LE_DEV_RANDOM) return false; if ((bdaddr->b[5] & 0xc0) == 0x40) return true; return false; } static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type) { if (addr_type == ADDR_LE_DEV_PUBLIC) return true; /* Check for Random Static address type */ if ((addr->b[5] & 0xc0) == 0xc0) return true; return false; } static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) { if (!hci_bdaddr_is_rpa(bdaddr, addr_type)) return NULL; return hci_find_irk_by_rpa(hdev, bdaddr); } static inline int hci_check_conn_params(u16 min, u16 max, u16 latency, u16 to_multiplier) { u16 max_latency; if (min > max || min < 6 || max > 3200) return -EINVAL; if (to_multiplier < 10 || to_multiplier > 3200) return -EINVAL; if (max >= to_multiplier * 8) return -EINVAL; max_latency = (to_multiplier * 4 / max) - 1; if (latency > 499 || latency > max_latency) return -EINVAL; return 0; } int hci_register_cb(struct hci_cb *hcb); int hci_unregister_cb(struct hci_cb *hcb); struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param, u32 timeout); struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param, u8 event, u32 timeout); int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param); int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, const void *param); void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param, u32 timeout); u32 hci_conn_get_phy(struct hci_conn *conn); /* ----- HCI Sockets ----- */ void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, int flag, struct sock *skip_sk); void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, void *data, u16 data_len, ktime_t tstamp, int flag, struct sock *skip_sk); void hci_sock_dev_event(struct hci_dev *hdev, int event); #define HCI_MGMT_VAR_LEN BIT(0) #define HCI_MGMT_NO_HDEV BIT(1) #define HCI_MGMT_UNTRUSTED BIT(2) #define HCI_MGMT_UNCONFIGURED BIT(3) #define HCI_MGMT_HDEV_OPTIONAL BIT(4) struct hci_mgmt_handler { int (*func) (struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len); size_t data_len; unsigned long flags; }; struct hci_mgmt_chan { struct list_head list; unsigned short channel; size_t handler_count; const struct hci_mgmt_handler *handlers; void (*hdev_init) (struct sock *sk, struct hci_dev *hdev); }; int hci_mgmt_chan_register(struct hci_mgmt_chan *c); void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c); /* Management interface */ #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ BIT(BDADDR_LE_RANDOM)) #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ BIT(BDADDR_LE_PUBLIC) | \ BIT(BDADDR_LE_RANDOM)) /* These LE scan and inquiry parameters were chosen according to LE General * Discovery Procedure specification. */ #define DISCOV_LE_SCAN_WIN 0x12 #define DISCOV_LE_SCAN_INT 0x12 #define DISCOV_LE_TIMEOUT 10240 /* msec */ #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */ #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 #define DISCOV_BREDR_INQUIRY_LEN 0x08 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */ #define DISCOV_LE_FAST_ADV_INT_MIN 100 /* msec */ #define DISCOV_LE_FAST_ADV_INT_MAX 150 /* msec */ void mgmt_fill_version_info(void *ver); int mgmt_new_settings(struct hci_dev *hdev); void mgmt_index_added(struct hci_dev *hdev); void mgmt_index_removed(struct hci_dev *hdev); void mgmt_set_powered_failed(struct hci_dev *hdev, int err); void mgmt_power_on(struct hci_dev *hdev, int err); void __mgmt_power_off(struct hci_dev *hdev); void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, bool persistent); void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, u32 flags, u8 *name, u8 name_len); void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 reason, bool mgmt_connected); void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 status); void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 status); int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u32 value, u8 confirm_hint); int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type); int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u32 passkey, u8 entered); void mgmt_auth_failed(struct hci_conn *conn, u8 status); void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, u8 status); void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status); void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status); void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len); void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, s8 rssi, u8 *name, u8 name_len); void mgmt_discovering(struct hci_dev *hdev, u8 discovering); void mgmt_suspending(struct hci_dev *hdev, u8 state); void mgmt_resuming(struct hci_dev *hdev, u8 reason, bdaddr_t *bdaddr, u8 addr_type); bool mgmt_powering_down(struct hci_dev *hdev); void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent); void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent); void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, bool persistent); void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type, u8 store_hint, u16 min_interval, u16 max_interval, u16 latency, u16 timeout); void mgmt_smp_complete(struct hci_conn *conn, bool complete); bool mgmt_get_connectable(struct hci_dev *hdev); void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status); void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status); u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev); void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, u8 instance); void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, u8 instance); int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip); u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, u16 to_multiplier); void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, __u8 ltk[16], __u8 key_size); void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *bdaddr_type); #define SCO_AIRMODE_MASK 0x0003 #define SCO_AIRMODE_CVSD 0x0000 #define SCO_AIRMODE_TRANSP 0x0003 #endif /* __HCI_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM fib6 #if !defined(_TRACE_FIB6_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FIB6_H #include <linux/in6.h> #include <net/flow.h> #include <net/ip6_fib.h> #include <linux/tracepoint.h> TRACE_EVENT(fib6_table_lookup, TP_PROTO(const struct net *net, const struct fib6_result *res, struct fib6_table *table, const struct flowi6 *flp), TP_ARGS(net, res, table, flp), TP_STRUCT__entry( __field( u32, tb_id ) __field( int, err ) __field( int, oif ) __field( int, iif ) __field( __u8, tos ) __field( __u8, scope ) __field( __u8, flags ) __array( __u8, src, 16 ) __array( __u8, dst, 16 ) __field( u16, sport ) __field( u16, dport ) __field( u8, proto ) __field( u8, rt_type ) __dynamic_array( char, name, IFNAMSIZ ) __array( __u8, gw, 16 ) ), TP_fast_assign( struct in6_addr *in6; __entry->tb_id = table->tb6_id; __entry->err = ip6_rt_type_to_error(res->fib6_type); __entry->oif = flp->flowi6_oif; __entry->iif = flp->flowi6_iif; __entry->tos = ip6_tclass(flp->flowlabel); __entry->scope = flp->flowi6_scope; __entry->flags = flp->flowi6_flags; in6 = (struct in6_addr *)__entry->src; *in6 = flp->saddr; in6 = (struct in6_addr *)__entry->dst; *in6 = flp->daddr; __entry->proto = flp->flowi6_proto; if (__entry->proto == IPPROTO_TCP || __entry->proto == IPPROTO_UDP) { __entry->sport = ntohs(flp->fl6_sport); __entry->dport = ntohs(flp->fl6_dport); } else { __entry->sport = 0; __entry->dport = 0; } if (res->nh && res->nh->fib_nh_dev) { __assign_str(name, res->nh->fib_nh_dev); } else { __assign_str(name, "-"); } if (res->f6i == net->ipv6.fib6_null_entry) { struct in6_addr in6_zero = {}; in6 = (struct in6_addr *)__entry->gw; *in6 = in6_zero; } else if (res->nh) { in6 = (struct in6_addr *)__entry->gw; *in6 = res->nh->fib_nh_gw6; } ), TP_printk("table %3u oif %d iif %d proto %u %pI6c/%u -> %pI6c/%u tos %d scope %d flags %x ==> dev %s gw %pI6c err %d", __entry->tb_id, __entry->oif, __entry->iif, __entry->proto, __entry->src, __entry->sport, __entry->dst, __entry->dport, __entry->tos, __entry->scope, __entry->flags, __get_str(name), __entry->gw, __entry->err) ); #endif /* _TRACE_FIB6_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef DRIVERS_PCI_H #define DRIVERS_PCI_H #include <linux/pci.h> /* Number of possible devfns: 0.0 to 1f.7 inclusive */ #define MAX_NR_DEVFNS 256 #define PCI_FIND_CAP_TTL 48 #define PCI_VSEC_ID_INTEL_TBT 0x1234 /* Thunderbolt */ extern const unsigned char pcie_link_speed[]; extern bool pci_early_dump; bool pcie_cap_has_lnkctl(const struct pci_dev *dev); bool pcie_cap_has_rtctl(const struct pci_dev *dev); /* Functions internal to the PCI core code */ int pci_create_sysfs_dev_files(struct pci_dev *pdev); void pci_remove_sysfs_dev_files(struct pci_dev *pdev); #if !defined(CONFIG_DMI) && !defined(CONFIG_ACPI) static inline void pci_create_firmware_label_files(struct pci_dev *pdev) { return; } static inline void pci_remove_firmware_label_files(struct pci_dev *pdev) { return; } #else void pci_create_firmware_label_files(struct pci_dev *pdev); void pci_remove_firmware_label_files(struct pci_dev *pdev); #endif void pci_cleanup_rom(struct pci_dev *dev); enum pci_mmap_api { PCI_MMAP_SYSFS, /* mmap on /sys/bus/pci/devices/<BDF>/resource<N> */ PCI_MMAP_PROCFS /* mmap on /proc/bus/pci/<BDF> */ }; int pci_mmap_fits(struct pci_dev *pdev, int resno, struct vm_area_struct *vmai, enum pci_mmap_api mmap_api); int pci_probe_reset_function(struct pci_dev *dev); int pci_bridge_secondary_bus_reset(struct pci_dev *dev); int pci_bus_error_reset(struct pci_dev *dev); #define PCI_PM_D2_DELAY 200 /* usec; see PCIe r4.0, sec 5.9.1 */ #define PCI_PM_D3HOT_WAIT 10 /* msec */ #define PCI_PM_D3COLD_WAIT 100 /* msec */ /** * struct pci_platform_pm_ops - Firmware PM callbacks * * @bridge_d3: Does the bridge allow entering into D3 * * @is_manageable: returns 'true' if given device is power manageable by the * platform firmware * * @set_state: invokes the platform firmware to set the device's power state * * @get_state: queries the platform firmware for a device's current power state * * @refresh_state: asks the platform to refresh the device's power state data * * @choose_state: returns PCI power state of given device preferred by the * platform; to be used during system-wide transitions from a * sleeping state to the working state and vice versa * * @set_wakeup: enables/disables wakeup capability for the device * * @need_resume: returns 'true' if the given device (which is currently * suspended) needs to be resumed to be configured for system * wakeup. * * If given platform is generally capable of power managing PCI devices, all of * these callbacks are mandatory. */ struct pci_platform_pm_ops { bool (*bridge_d3)(struct pci_dev *dev); bool (*is_manageable)(struct pci_dev *dev); int (*set_state)(struct pci_dev *dev, pci_power_t state); pci_power_t (*get_state)(struct pci_dev *dev); void (*refresh_state)(struct pci_dev *dev); pci_power_t (*choose_state)(struct pci_dev *dev); int (*set_wakeup)(struct pci_dev *dev, bool enable); bool (*need_resume)(struct pci_dev *dev); }; int pci_set_platform_pm(const struct pci_platform_pm_ops *ops); void pci_update_current_state(struct pci_dev *dev, pci_power_t state); void pci_refresh_power_state(struct pci_dev *dev); int pci_power_up(struct pci_dev *dev); void pci_disable_enabled_device(struct pci_dev *dev); int pci_finish_runtime_suspend(struct pci_dev *dev); void pcie_clear_device_status(struct pci_dev *dev); void pcie_clear_root_pme_status(struct pci_dev *dev); bool pci_check_pme_status(struct pci_dev *dev); void pci_pme_wakeup_bus(struct pci_bus *bus); int __pci_pme_wakeup(struct pci_dev *dev, void *ign); void pci_pme_restore(struct pci_dev *dev); bool pci_dev_need_resume(struct pci_dev *dev); void pci_dev_adjust_pme(struct pci_dev *dev); void pci_dev_complete_resume(struct pci_dev *pci_dev); void pci_config_pm_runtime_get(struct pci_dev *dev); void pci_config_pm_runtime_put(struct pci_dev *dev); void pci_pm_init(struct pci_dev *dev); void pci_ea_init(struct pci_dev *dev); void pci_allocate_cap_save_buffers(struct pci_dev *dev); void pci_free_cap_save_buffers(struct pci_dev *dev); bool pci_bridge_d3_possible(struct pci_dev *dev); void pci_bridge_d3_update(struct pci_dev *dev); void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev); static inline void pci_wakeup_event(struct pci_dev *dev) { /* Wait 100 ms before the system can be put into a sleep state. */ pm_wakeup_event(&dev->dev, 100); } static inline bool pci_has_subordinate(struct pci_dev *pci_dev) { return !!(pci_dev->subordinate); } static inline bool pci_power_manageable(struct pci_dev *pci_dev) { /* * Currently we allow normal PCI devices and PCI bridges transition * into D3 if their bridge_d3 is set. */ return !pci_has_subordinate(pci_dev) || pci_dev->bridge_d3; } static inline bool pcie_downstream_port(const struct pci_dev *dev) { int type = pci_pcie_type(dev); return type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_DOWNSTREAM || type == PCI_EXP_TYPE_PCIE_BRIDGE; } int pci_vpd_init(struct pci_dev *dev); void pci_vpd_release(struct pci_dev *dev); void pcie_vpd_create_sysfs_dev_files(struct pci_dev *dev); void pcie_vpd_remove_sysfs_dev_files(struct pci_dev *dev); /* PCI Virtual Channel */ int pci_save_vc_state(struct pci_dev *dev); void pci_restore_vc_state(struct pci_dev *dev); void pci_allocate_vc_save_buffers(struct pci_dev *dev); /* PCI /proc functions */ #ifdef CONFIG_PROC_FS int pci_proc_attach_device(struct pci_dev *dev); int pci_proc_detach_device(struct pci_dev *dev); int pci_proc_detach_bus(struct pci_bus *bus); #else static inline int pci_proc_attach_device(struct pci_dev *dev) { return 0; } static inline int pci_proc_detach_device(struct pci_dev *dev) { return 0; } static inline int pci_proc_detach_bus(struct pci_bus *bus) { return 0; } #endif /* Functions for PCI Hotplug drivers to use */ int pci_hp_add_bridge(struct pci_dev *dev); #ifdef HAVE_PCI_LEGACY void pci_create_legacy_files(struct pci_bus *bus); void pci_remove_legacy_files(struct pci_bus *bus); #else static inline void pci_create_legacy_files(struct pci_bus *bus) { return; } static inline void pci_remove_legacy_files(struct pci_bus *bus) { return; } #endif /* Lock for read/write access to pci device and bus lists */ extern struct rw_semaphore pci_bus_sem; extern struct mutex pci_slot_mutex; extern raw_spinlock_t pci_lock; extern unsigned int pci_pm_d3hot_delay; #ifdef CONFIG_PCI_MSI void pci_no_msi(void); #else static inline void pci_no_msi(void) { } #endif static inline void pci_msi_set_enable(struct pci_dev *dev, int enable) { u16 control; pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); control &= ~PCI_MSI_FLAGS_ENABLE; if (enable) control |= PCI_MSI_FLAGS_ENABLE; pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control); } static inline void pci_msix_clear_and_set_ctrl(struct pci_dev *dev, u16 clear, u16 set) { u16 ctrl; pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &ctrl); ctrl &= ~clear; ctrl |= set; pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, ctrl); } void pci_realloc_get_opt(char *); static inline int pci_no_d1d2(struct pci_dev *dev) { unsigned int parent_dstates = 0; if (dev->bus->self) parent_dstates = dev->bus->self->no_d1d2; return (dev->no_d1d2 || parent_dstates); } extern const struct attribute_group *pci_dev_groups[]; extern const struct attribute_group *pcibus_groups[]; extern const struct device_type pci_dev_type; extern const struct attribute_group *pci_bus_groups[]; extern unsigned long pci_hotplug_io_size; extern unsigned long pci_hotplug_mmio_size; extern unsigned long pci_hotplug_mmio_pref_size; extern unsigned long pci_hotplug_bus_size; /** * pci_match_one_device - Tell if a PCI device structure has a matching * PCI device id structure * @id: single PCI device id structure to match * @dev: the PCI device structure to match against * * Returns the matching pci_device_id structure or %NULL if there is no match. */ static inline const struct pci_device_id * pci_match_one_device(const struct pci_device_id *id, const struct pci_dev *dev) { if ((id->vendor == PCI_ANY_ID || id->vendor == dev->vendor) && (id->device == PCI_ANY_ID || id->device == dev->device) && (id->subvendor == PCI_ANY_ID || id->subvendor == dev->subsystem_vendor) && (id->subdevice == PCI_ANY_ID || id->subdevice == dev->subsystem_device) && !((id->class ^ dev->class) & id->class_mask)) return id; return NULL; } /* PCI slot sysfs helper code */ #define to_pci_slot(s) container_of(s, struct pci_slot, kobj) extern struct kset *pci_slots_kset; struct pci_slot_attribute { struct attribute attr; ssize_t (*show)(struct pci_slot *, char *); ssize_t (*store)(struct pci_slot *, const char *, size_t); }; #define to_pci_slot_attr(s) container_of(s, struct pci_slot_attribute, attr) enum pci_bar_type { pci_bar_unknown, /* Standard PCI BAR probe */ pci_bar_io, /* An I/O port BAR */ pci_bar_mem32, /* A 32-bit memory BAR */ pci_bar_mem64, /* A 64-bit memory BAR */ }; struct device *pci_get_host_bridge_device(struct pci_dev *dev); void pci_put_host_bridge_device(struct device *dev); int pci_configure_extended_tags(struct pci_dev *dev, void *ign); bool pci_bus_read_dev_vendor_id(struct pci_bus *bus, int devfn, u32 *pl, int crs_timeout); bool pci_bus_generic_read_dev_vendor_id(struct pci_bus *bus, int devfn, u32 *pl, int crs_timeout); int pci_idt_bus_quirk(struct pci_bus *bus, int devfn, u32 *pl, int crs_timeout); int pci_setup_device(struct pci_dev *dev); int __pci_read_base(struct pci_dev *dev, enum pci_bar_type type, struct resource *res, unsigned int reg); void pci_configure_ari(struct pci_dev *dev); void __pci_bus_size_bridges(struct pci_bus *bus, struct list_head *realloc_head); void __pci_bus_assign_resources(const struct pci_bus *bus, struct list_head *realloc_head, struct list_head *fail_head); bool pci_bus_clip_resource(struct pci_dev *dev, int idx); void pci_reassigndev_resource_alignment(struct pci_dev *dev); void pci_disable_bridge_window(struct pci_dev *dev); struct pci_bus *pci_bus_get(struct pci_bus *bus); void pci_bus_put(struct pci_bus *bus); /* PCIe link information from Link Capabilities 2 */ #define PCIE_LNKCAP2_SLS2SPEED(lnkcap2) \ ((lnkcap2) & PCI_EXP_LNKCAP2_SLS_32_0GB ? PCIE_SPEED_32_0GT : \ (lnkcap2) & PCI_EXP_LNKCAP2_SLS_16_0GB ? PCIE_SPEED_16_0GT : \ (lnkcap2) & PCI_EXP_LNKCAP2_SLS_8_0GB ? PCIE_SPEED_8_0GT : \ (lnkcap2) & PCI_EXP_LNKCAP2_SLS_5_0GB ? PCIE_SPEED_5_0GT : \ (lnkcap2) & PCI_EXP_LNKCAP2_SLS_2_5GB ? PCIE_SPEED_2_5GT : \ PCI_SPEED_UNKNOWN) /* PCIe speed to Mb/s reduced by encoding overhead */ #define PCIE_SPEED2MBS_ENC(speed) \ ((speed) == PCIE_SPEED_32_0GT ? 32000*128/130 : \ (speed) == PCIE_SPEED_16_0GT ? 16000*128/130 : \ (speed) == PCIE_SPEED_8_0GT ? 8000*128/130 : \ (speed) == PCIE_SPEED_5_0GT ? 5000*8/10 : \ (speed) == PCIE_SPEED_2_5GT ? 2500*8/10 : \ 0) const char *pci_speed_string(enum pci_bus_speed speed); enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev); enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev); u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, enum pcie_link_width *width); void __pcie_print_link_status(struct pci_dev *dev, bool verbose); void pcie_report_downtraining(struct pci_dev *dev); void pcie_update_link_speed(struct pci_bus *bus, u16 link_status); /* Single Root I/O Virtualization */ struct pci_sriov { int pos; /* Capability position */ int nres; /* Number of resources */ u32 cap; /* SR-IOV Capabilities */ u16 ctrl; /* SR-IOV Control */ u16 total_VFs; /* Total VFs associated with the PF */ u16 initial_VFs; /* Initial VFs associated with the PF */ u16 num_VFs; /* Number of VFs available */ u16 offset; /* First VF Routing ID offset */ u16 stride; /* Following VF stride */ u16 vf_device; /* VF device ID */ u32 pgsz; /* Page size for BAR alignment */ u8 link; /* Function Dependency Link */ u8 max_VF_buses; /* Max buses consumed by VFs */ u16 driver_max_VFs; /* Max num VFs driver supports */ struct pci_dev *dev; /* Lowest numbered PF */ struct pci_dev *self; /* This PF */ u32 class; /* VF device */ u8 hdr_type; /* VF header type */ u16 subsystem_vendor; /* VF subsystem vendor */ u16 subsystem_device; /* VF subsystem device */ resource_size_t barsz[PCI_SRIOV_NUM_BARS]; /* VF BAR size */ bool drivers_autoprobe; /* Auto probing of VFs by driver */ }; /** * pci_dev_set_io_state - Set the new error state if possible. * * @dev - pci device to set new error_state * @new - the state we want dev to be in * * Must be called with device_lock held. * * Returns true if state has been changed to the requested state. */ static inline bool pci_dev_set_io_state(struct pci_dev *dev, pci_channel_state_t new) { bool changed = false; device_lock_assert(&dev->dev); switch (new) { case pci_channel_io_perm_failure: switch (dev->error_state) { case pci_channel_io_frozen: case pci_channel_io_normal: case pci_channel_io_perm_failure: changed = true; break; } break; case pci_channel_io_frozen: switch (dev->error_state) { case pci_channel_io_frozen: case pci_channel_io_normal: changed = true; break; } break; case pci_channel_io_normal: switch (dev->error_state) { case pci_channel_io_frozen: case pci_channel_io_normal: changed = true; break; } break; } if (changed) dev->error_state = new; return changed; } static inline int pci_dev_set_disconnected(struct pci_dev *dev, void *unused) { device_lock(&dev->dev); pci_dev_set_io_state(dev, pci_channel_io_perm_failure); device_unlock(&dev->dev); return 0; } static inline bool pci_dev_is_disconnected(const struct pci_dev *dev) { return dev->error_state == pci_channel_io_perm_failure; } /* pci_dev priv_flags */ #define PCI_DEV_ADDED 0 #define PCI_DPC_RECOVERED 1 #define PCI_DPC_RECOVERING 2 static inline void pci_dev_assign_added(struct pci_dev *dev, bool added) { assign_bit(PCI_DEV_ADDED, &dev->priv_flags, added); } static inline bool pci_dev_is_added(const struct pci_dev *dev) { return test_bit(PCI_DEV_ADDED, &dev->priv_flags); } #ifdef CONFIG_PCIEAER #include <linux/aer.h> #define AER_MAX_MULTI_ERR_DEVICES 5 /* Not likely to have more */ struct aer_err_info { struct pci_dev *dev[AER_MAX_MULTI_ERR_DEVICES]; int error_dev_num; unsigned int id:16; unsigned int severity:2; /* 0:NONFATAL | 1:FATAL | 2:COR */ unsigned int __pad1:5; unsigned int multi_error_valid:1; unsigned int first_error:5; unsigned int __pad2:2; unsigned int tlp_header_valid:1; unsigned int status; /* COR/UNCOR Error Status */ unsigned int mask; /* COR/UNCOR Error Mask */ struct aer_header_log_regs tlp; /* TLP Header */ }; int aer_get_device_error_info(struct pci_dev *dev, struct aer_err_info *info); void aer_print_error(struct pci_dev *dev, struct aer_err_info *info); #endif /* CONFIG_PCIEAER */ #ifdef CONFIG_PCIE_DPC void pci_save_dpc_state(struct pci_dev *dev); void pci_restore_dpc_state(struct pci_dev *dev); void pci_dpc_init(struct pci_dev *pdev); void dpc_process_error(struct pci_dev *pdev); pci_ers_result_t dpc_reset_link(struct pci_dev *pdev); bool pci_dpc_recovered(struct pci_dev *pdev); #else static inline void pci_save_dpc_state(struct pci_dev *dev) {} static inline void pci_restore_dpc_state(struct pci_dev *dev) {} static inline void pci_dpc_init(struct pci_dev *pdev) {} static inline bool pci_dpc_recovered(struct pci_dev *pdev) { return false; } #endif #ifdef CONFIG_PCI_ATS /* Address Translation Service */ void pci_ats_init(struct pci_dev *dev); void pci_restore_ats_state(struct pci_dev *dev); #else static inline void pci_ats_init(struct pci_dev *d) { } static inline void pci_restore_ats_state(struct pci_dev *dev) { } #endif /* CONFIG_PCI_ATS */ #ifdef CONFIG_PCI_PRI void pci_pri_init(struct pci_dev *dev); void pci_restore_pri_state(struct pci_dev *pdev); #else static inline void pci_pri_init(struct pci_dev *dev) { } static inline void pci_restore_pri_state(struct pci_dev *pdev) { } #endif #ifdef CONFIG_PCI_PASID void pci_pasid_init(struct pci_dev *dev); void pci_restore_pasid_state(struct pci_dev *pdev); #else static inline void pci_pasid_init(struct pci_dev *dev) { } static inline void pci_restore_pasid_state(struct pci_dev *pdev) { } #endif #ifdef CONFIG_PCI_IOV int pci_iov_init(struct pci_dev *dev); void pci_iov_release(struct pci_dev *dev); void pci_iov_remove(struct pci_dev *dev); void pci_iov_update_resource(struct pci_dev *dev, int resno); resource_size_t pci_sriov_resource_alignment(struct pci_dev *dev, int resno); void pci_restore_iov_state(struct pci_dev *dev); int pci_iov_bus_range(struct pci_bus *bus); extern const struct attribute_group sriov_dev_attr_group; #else static inline int pci_iov_init(struct pci_dev *dev) { return -ENODEV; } static inline void pci_iov_release(struct pci_dev *dev) { } static inline void pci_iov_remove(struct pci_dev *dev) { } static inline void pci_restore_iov_state(struct pci_dev *dev) { } static inline int pci_iov_bus_range(struct pci_bus *bus) { return 0; } #endif /* CONFIG_PCI_IOV */ unsigned long pci_cardbus_resource_alignment(struct resource *); static inline resource_size_t pci_resource_alignment(struct pci_dev *dev, struct resource *res) { #ifdef CONFIG_PCI_IOV int resno = res - dev->resource; if (resno >= PCI_IOV_RESOURCES && resno <= PCI_IOV_RESOURCE_END) return pci_sriov_resource_alignment(dev, resno); #endif if (dev->class >> 8 == PCI_CLASS_BRIDGE_CARDBUS) return pci_cardbus_resource_alignment(res); return resource_alignment(res); } void pci_acs_init(struct pci_dev *dev); #ifdef CONFIG_PCI_QUIRKS int pci_dev_specific_acs_enabled(struct pci_dev *dev, u16 acs_flags); int pci_dev_specific_enable_acs(struct pci_dev *dev); int pci_dev_specific_disable_acs_redir(struct pci_dev *dev); #else static inline int pci_dev_specific_acs_enabled(struct pci_dev *dev, u16 acs_flags) { return -ENOTTY; } static inline int pci_dev_specific_enable_acs(struct pci_dev *dev) { return -ENOTTY; } static inline int pci_dev_specific_disable_acs_redir(struct pci_dev *dev) { return -ENOTTY; } #endif /* PCI error reporting and recovery */ pci_ers_result_t pcie_do_recovery(struct pci_dev *dev, pci_channel_state_t state, pci_ers_result_t (*reset_link)(struct pci_dev *pdev)); bool pcie_wait_for_link(struct pci_dev *pdev, bool active); #ifdef CONFIG_PCIEASPM void pcie_aspm_init_link_state(struct pci_dev *pdev); void pcie_aspm_exit_link_state(struct pci_dev *pdev); void pcie_aspm_pm_state_change(struct pci_dev *pdev); void pcie_aspm_powersave_config_link(struct pci_dev *pdev); #else static inline void pcie_aspm_init_link_state(struct pci_dev *pdev) { } static inline void pcie_aspm_exit_link_state(struct pci_dev *pdev) { } static inline void pcie_aspm_pm_state_change(struct pci_dev *pdev) { } static inline void pcie_aspm_powersave_config_link(struct pci_dev *pdev) { } #endif #ifdef CONFIG_PCIE_ECRC void pcie_set_ecrc_checking(struct pci_dev *dev); void pcie_ecrc_get_policy(char *str); #else static inline void pcie_set_ecrc_checking(struct pci_dev *dev) { } static inline void pcie_ecrc_get_policy(char *str) { } #endif #ifdef CONFIG_PCIE_PTM void pci_ptm_init(struct pci_dev *dev); int pci_enable_ptm(struct pci_dev *dev, u8 *granularity); #else static inline void pci_ptm_init(struct pci_dev *dev) { } static inline int pci_enable_ptm(struct pci_dev *dev, u8 *granularity) { return -EINVAL; } #endif struct pci_dev_reset_methods { u16 vendor; u16 device; int (*reset)(struct pci_dev *dev, int probe); }; #ifdef CONFIG_PCI_QUIRKS int pci_dev_specific_reset(struct pci_dev *dev, int probe); #else static inline int pci_dev_specific_reset(struct pci_dev *dev, int probe) { return -ENOTTY; } #endif #if defined(CONFIG_PCI_QUIRKS) && defined(CONFIG_ARM64) int acpi_get_rc_resources(struct device *dev, const char *hid, u16 segment, struct resource *res); #else static inline int acpi_get_rc_resources(struct device *dev, const char *hid, u16 segment, struct resource *res) { return -ENODEV; } #endif u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar); int pci_rebar_get_current_size(struct pci_dev *pdev, int bar); int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size); static inline u64 pci_rebar_size_to_bytes(int size) { return 1ULL << (size + 20); } struct device_node; #ifdef CONFIG_OF int of_pci_parse_bus_range(struct device_node *node, struct resource *res); int of_get_pci_domain_nr(struct device_node *node); int of_pci_get_max_link_speed(struct device_node *node); void pci_set_of_node(struct pci_dev *dev); void pci_release_of_node(struct pci_dev *dev); void pci_set_bus_of_node(struct pci_bus *bus); void pci_release_bus_of_node(struct pci_bus *bus); int devm_of_pci_bridge_init(struct device *dev, struct pci_host_bridge *bridge); #else static inline int of_pci_parse_bus_range(struct device_node *node, struct resource *res) { return -EINVAL; } static inline int of_get_pci_domain_nr(struct device_node *node) { return -1; } static inline int of_pci_get_max_link_speed(struct device_node *node) { return -EINVAL; } static inline void pci_set_of_node(struct pci_dev *dev) { } static inline void pci_release_of_node(struct pci_dev *dev) { } static inline void pci_set_bus_of_node(struct pci_bus *bus) { } static inline void pci_release_bus_of_node(struct pci_bus *bus) { } static inline int devm_of_pci_bridge_init(struct device *dev, struct pci_host_bridge *bridge) { return 0; } #endif /* CONFIG_OF */ #ifdef CONFIG_PCIEAER void pci_no_aer(void); void pci_aer_init(struct pci_dev *dev); void pci_aer_exit(struct pci_dev *dev); extern const struct attribute_group aer_stats_attr_group; void pci_aer_clear_fatal_status(struct pci_dev *dev); int pci_aer_clear_status(struct pci_dev *dev); int pci_aer_raw_clear_status(struct pci_dev *dev); #else static inline void pci_no_aer(void) { } static inline void pci_aer_init(struct pci_dev *d) { } static inline void pci_aer_exit(struct pci_dev *d) { } static inline void pci_aer_clear_fatal_status(struct pci_dev *dev) { } static inline int pci_aer_clear_status(struct pci_dev *dev) { return -EINVAL; } static inline int pci_aer_raw_clear_status(struct pci_dev *dev) { return -EINVAL; } #endif #ifdef CONFIG_ACPI int pci_acpi_program_hp_params(struct pci_dev *dev); #else static inline int pci_acpi_program_hp_params(struct pci_dev *dev) { return -ENODEV; } #endif #ifdef CONFIG_PCIEASPM extern const struct attribute_group aspm_ctrl_attr_group; #endif #endif /* DRIVERS_PCI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_SCHED_GENERIC_H #define __NET_SCHED_GENERIC_H #include <linux/netdevice.h> #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/pkt_sched.h> #include <linux/pkt_cls.h> #include <linux/percpu.h> #include <linux/dynamic_queue_limits.h> #include <linux/list.h> #include <linux/refcount.h> #include <linux/workqueue.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/atomic.h> #include <linux/hashtable.h> #include <net/gen_stats.h> #include <net/rtnetlink.h> #include <net/flow_offload.h> struct Qdisc_ops; struct qdisc_walker; struct tcf_walker; struct module; struct bpf_flow_keys; struct qdisc_rate_table { struct tc_ratespec rate; u32 data[256]; struct qdisc_rate_table *next; int refcnt; }; enum qdisc_state_t { __QDISC_STATE_SCHED, __QDISC_STATE_DEACTIVATED, __QDISC_STATE_MISSED, }; struct qdisc_size_table { struct rcu_head rcu; struct list_head list; struct tc_sizespec szopts; int refcnt; u16 data[]; }; /* similar to sk_buff_head, but skb->prev pointer is undefined. */ struct qdisc_skb_head { struct sk_buff *head; struct sk_buff *tail; __u32 qlen; spinlock_t lock; }; struct Qdisc { int (*enqueue)(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free); struct sk_buff * (*dequeue)(struct Qdisc *sch); unsigned int flags; #define TCQ_F_BUILTIN 1 #define TCQ_F_INGRESS 2 #define TCQ_F_CAN_BYPASS 4 #define TCQ_F_MQROOT 8 #define TCQ_F_ONETXQUEUE 0x10 /* dequeue_skb() can assume all skbs are for * q->dev_queue : It can test * netif_xmit_frozen_or_stopped() before * dequeueing next packet. * Its true for MQ/MQPRIO slaves, or non * multiqueue device. */ #define TCQ_F_WARN_NONWC (1 << 16) #define TCQ_F_CPUSTATS 0x20 /* run using percpu statistics */ #define TCQ_F_NOPARENT 0x40 /* root of its hierarchy : * qdisc_tree_decrease_qlen() should stop. */ #define TCQ_F_INVISIBLE 0x80 /* invisible by default in dump */ #define TCQ_F_NOLOCK 0x100 /* qdisc does not require locking */ #define TCQ_F_OFFLOADED 0x200 /* qdisc is offloaded to HW */ u32 limit; const struct Qdisc_ops *ops; struct qdisc_size_table __rcu *stab; struct hlist_node hash; u32 handle; u32 parent; struct netdev_queue *dev_queue; struct net_rate_estimator __rcu *rate_est; struct gnet_stats_basic_cpu __percpu *cpu_bstats; struct gnet_stats_queue __percpu *cpu_qstats; int pad; refcount_t refcnt; /* * For performance sake on SMP, we put highly modified fields at the end */ struct sk_buff_head gso_skb ____cacheline_aligned_in_smp; struct qdisc_skb_head q; struct gnet_stats_basic_packed bstats; seqcount_t running; struct gnet_stats_queue qstats; unsigned long state; struct Qdisc *next_sched; struct sk_buff_head skb_bad_txq; spinlock_t busylock ____cacheline_aligned_in_smp; spinlock_t seqlock; /* for NOLOCK qdisc, true if there are no enqueued skbs */ bool empty; struct rcu_head rcu; /* private data */ long privdata[] ____cacheline_aligned; }; static inline void qdisc_refcount_inc(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_BUILTIN) return; refcount_inc(&qdisc->refcnt); } /* Intended to be used by unlocked users, when concurrent qdisc release is * possible. */ static inline struct Qdisc *qdisc_refcount_inc_nz(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_BUILTIN) return qdisc; if (refcount_inc_not_zero(&qdisc->refcnt)) return qdisc; return NULL; } static inline bool qdisc_is_running(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_NOLOCK) return spin_is_locked(&qdisc->seqlock); return (raw_read_seqcount(&qdisc->running) & 1) ? true : false; } static inline bool qdisc_is_percpu_stats(const struct Qdisc *q) { return q->flags & TCQ_F_CPUSTATS; } static inline bool qdisc_is_empty(const struct Qdisc *qdisc) { if (qdisc_is_percpu_stats(qdisc)) return READ_ONCE(qdisc->empty); return !READ_ONCE(qdisc->q.qlen); } static inline bool qdisc_run_begin(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_NOLOCK) { if (spin_trylock(&qdisc->seqlock)) goto nolock_empty; /* Paired with smp_mb__after_atomic() to make sure * STATE_MISSED checking is synchronized with clearing * in pfifo_fast_dequeue(). */ smp_mb__before_atomic(); /* If the MISSED flag is set, it means other thread has * set the MISSED flag before second spin_trylock(), so * we can return false here to avoid multi cpus doing * the set_bit() and second spin_trylock() concurrently. */ if (test_bit(__QDISC_STATE_MISSED, &qdisc->state)) return false; /* Set the MISSED flag before the second spin_trylock(), * if the second spin_trylock() return false, it means * other cpu holding the lock will do dequeuing for us * or it will see the MISSED flag set after releasing * lock and reschedule the net_tx_action() to do the * dequeuing. */ set_bit(__QDISC_STATE_MISSED, &qdisc->state); /* spin_trylock() only has load-acquire semantic, so use * smp_mb__after_atomic() to ensure STATE_MISSED is set * before doing the second spin_trylock(). */ smp_mb__after_atomic(); /* Retry again in case other CPU may not see the new flag * after it releases the lock at the end of qdisc_run_end(). */ if (!spin_trylock(&qdisc->seqlock)) return false; nolock_empty: WRITE_ONCE(qdisc->empty, false); } else if (qdisc_is_running(qdisc)) { return false; } /* Variant of write_seqcount_begin() telling lockdep a trylock * was attempted. */ raw_write_seqcount_begin(&qdisc->running); seqcount_acquire(&qdisc->running.dep_map, 0, 1, _RET_IP_); return true; } static inline void qdisc_run_end(struct Qdisc *qdisc) { write_seqcount_end(&qdisc->running); if (qdisc->flags & TCQ_F_NOLOCK) { spin_unlock(&qdisc->seqlock); if (unlikely(test_bit(__QDISC_STATE_MISSED, &qdisc->state))) { clear_bit(__QDISC_STATE_MISSED, &qdisc->state); __netif_schedule(qdisc); } } } static inline bool qdisc_may_bulk(const struct Qdisc *qdisc) { return qdisc->flags & TCQ_F_ONETXQUEUE; } static inline int qdisc_avail_bulklimit(const struct netdev_queue *txq) { #ifdef CONFIG_BQL /* Non-BQL migrated drivers will return 0, too. */ return dql_avail(&txq->dql); #else return 0; #endif } struct Qdisc_class_ops { unsigned int flags; /* Child qdisc manipulation */ struct netdev_queue * (*select_queue)(struct Qdisc *, struct tcmsg *); int (*graft)(struct Qdisc *, unsigned long cl, struct Qdisc *, struct Qdisc **, struct netlink_ext_ack *extack); struct Qdisc * (*leaf)(struct Qdisc *, unsigned long cl); void (*qlen_notify)(struct Qdisc *, unsigned long); /* Class manipulation routines */ unsigned long (*find)(struct Qdisc *, u32 classid); int (*change)(struct Qdisc *, u32, u32, struct nlattr **, unsigned long *, struct netlink_ext_ack *); int (*delete)(struct Qdisc *, unsigned long); void (*walk)(struct Qdisc *, struct qdisc_walker * arg); /* Filter manipulation */ struct tcf_block * (*tcf_block)(struct Qdisc *sch, unsigned long arg, struct netlink_ext_ack *extack); unsigned long (*bind_tcf)(struct Qdisc *, unsigned long, u32 classid); void (*unbind_tcf)(struct Qdisc *, unsigned long); /* rtnetlink specific */ int (*dump)(struct Qdisc *, unsigned long, struct sk_buff *skb, struct tcmsg*); int (*dump_stats)(struct Qdisc *, unsigned long, struct gnet_dump *); }; /* Qdisc_class_ops flag values */ /* Implements API that doesn't require rtnl lock */ enum qdisc_class_ops_flags { QDISC_CLASS_OPS_DOIT_UNLOCKED = 1, }; struct Qdisc_ops { struct Qdisc_ops *next; const struct Qdisc_class_ops *cl_ops; char id[IFNAMSIZ]; int priv_size; unsigned int static_flags; int (*enqueue)(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free); struct sk_buff * (*dequeue)(struct Qdisc *); struct sk_buff * (*peek)(struct Qdisc *); int (*init)(struct Qdisc *sch, struct nlattr *arg, struct netlink_ext_ack *extack); void (*reset)(struct Qdisc *); void (*destroy)(struct Qdisc *); int (*change)(struct Qdisc *sch, struct nlattr *arg, struct netlink_ext_ack *extack); void (*attach)(struct Qdisc *sch); int (*change_tx_queue_len)(struct Qdisc *, unsigned int); int (*dump)(struct Qdisc *, struct sk_buff *); int (*dump_stats)(struct Qdisc *, struct gnet_dump *); void (*ingress_block_set)(struct Qdisc *sch, u32 block_index); void (*egress_block_set)(struct Qdisc *sch, u32 block_index); u32 (*ingress_block_get)(struct Qdisc *sch); u32 (*egress_block_get)(struct Qdisc *sch); struct module *owner; }; struct tcf_result { union { struct { unsigned long class; u32 classid; }; const struct tcf_proto *goto_tp; /* used in the skb_tc_reinsert function */ struct { bool ingress; struct gnet_stats_queue *qstats; }; }; }; struct tcf_chain; struct tcf_proto_ops { struct list_head head; char kind[IFNAMSIZ]; int (*classify)(struct sk_buff *, const struct tcf_proto *, struct tcf_result *); int (*init)(struct tcf_proto*); void (*destroy)(struct tcf_proto *tp, bool rtnl_held, struct netlink_ext_ack *extack); void* (*get)(struct tcf_proto*, u32 handle); void (*put)(struct tcf_proto *tp, void *f); int (*change)(struct net *net, struct sk_buff *, struct tcf_proto*, unsigned long, u32 handle, struct nlattr **, void **, bool, bool, struct netlink_ext_ack *); int (*delete)(struct tcf_proto *tp, void *arg, bool *last, bool rtnl_held, struct netlink_ext_ack *); bool (*delete_empty)(struct tcf_proto *tp); void (*walk)(struct tcf_proto *tp, struct tcf_walker *arg, bool rtnl_held); int (*reoffload)(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb, void *cb_priv, struct netlink_ext_ack *extack); void (*hw_add)(struct tcf_proto *tp, void *type_data); void (*hw_del)(struct tcf_proto *tp, void *type_data); void (*bind_class)(void *, u32, unsigned long, void *, unsigned long); void * (*tmplt_create)(struct net *net, struct tcf_chain *chain, struct nlattr **tca, struct netlink_ext_ack *extack); void (*tmplt_destroy)(void *tmplt_priv); /* rtnetlink specific */ int (*dump)(struct net*, struct tcf_proto*, void *, struct sk_buff *skb, struct tcmsg*, bool); int (*terse_dump)(struct net *net, struct tcf_proto *tp, void *fh, struct sk_buff *skb, struct tcmsg *t, bool rtnl_held); int (*tmplt_dump)(struct sk_buff *skb, struct net *net, void *tmplt_priv); struct module *owner; int flags; }; /* Classifiers setting TCF_PROTO_OPS_DOIT_UNLOCKED in tcf_proto_ops->flags * are expected to implement tcf_proto_ops->delete_empty(), otherwise race * conditions can occur when filters are inserted/deleted simultaneously. */ enum tcf_proto_ops_flags { TCF_PROTO_OPS_DOIT_UNLOCKED = 1, }; struct tcf_proto { /* Fast access part */ struct tcf_proto __rcu *next; void __rcu *root; /* called under RCU BH lock*/ int (*classify)(struct sk_buff *, const struct tcf_proto *, struct tcf_result *); __be16 protocol; /* All the rest */ u32 prio; void *data; const struct tcf_proto_ops *ops; struct tcf_chain *chain; /* Lock protects tcf_proto shared state and can be used by unlocked * classifiers to protect their private data. */ spinlock_t lock; bool deleting; refcount_t refcnt; struct rcu_head rcu; struct hlist_node destroy_ht_node; }; struct qdisc_skb_cb { struct { unsigned int pkt_len; u16 slave_dev_queue_mapping; u16 tc_classid; }; #define QDISC_CB_PRIV_LEN 20 unsigned char data[QDISC_CB_PRIV_LEN]; u16 mru; }; typedef void tcf_chain_head_change_t(struct tcf_proto *tp_head, void *priv); struct tcf_chain { /* Protects filter_chain. */ struct mutex filter_chain_lock; struct tcf_proto __rcu *filter_chain; struct list_head list; struct tcf_block *block; u32 index; /* chain index */ unsigned int refcnt; unsigned int action_refcnt; bool explicitly_created; bool flushing; const struct tcf_proto_ops *tmplt_ops; void *tmplt_priv; struct rcu_head rcu; }; struct tcf_block { /* Lock protects tcf_block and lifetime-management data of chains * attached to the block (refcnt, action_refcnt, explicitly_created). */ struct mutex lock; struct list_head chain_list; u32 index; /* block index for shared blocks */ u32 classid; /* which class this block belongs to */ refcount_t refcnt; struct net *net; struct Qdisc *q; struct rw_semaphore cb_lock; /* protects cb_list and offload counters */ struct flow_block flow_block; struct list_head owner_list; bool keep_dst; atomic_t offloadcnt; /* Number of oddloaded filters */ unsigned int nooffloaddevcnt; /* Number of devs unable to do offload */ unsigned int lockeddevcnt; /* Number of devs that require rtnl lock. */ struct { struct tcf_chain *chain; struct list_head filter_chain_list; } chain0; struct rcu_head rcu; DECLARE_HASHTABLE(proto_destroy_ht, 7); struct mutex proto_destroy_lock; /* Lock for proto_destroy hashtable. */ }; #ifdef CONFIG_PROVE_LOCKING static inline bool lockdep_tcf_chain_is_locked(struct tcf_chain *chain) { return lockdep_is_held(&chain->filter_chain_lock); } static inline bool lockdep_tcf_proto_is_locked(struct tcf_proto *tp) { return lockdep_is_held(&tp->lock); } #else static inline bool lockdep_tcf_chain_is_locked(struct tcf_block *chain) { return true; } static inline bool lockdep_tcf_proto_is_locked(struct tcf_proto *tp) { return true; } #endif /* #ifdef CONFIG_PROVE_LOCKING */ #define tcf_chain_dereference(p, chain) \ rcu_dereference_protected(p, lockdep_tcf_chain_is_locked(chain)) #define tcf_proto_dereference(p, tp) \ rcu_dereference_protected(p, lockdep_tcf_proto_is_locked(tp)) static inline void qdisc_cb_private_validate(const struct sk_buff *skb, int sz) { struct qdisc_skb_cb *qcb; BUILD_BUG_ON(sizeof(skb->cb) < sizeof(*qcb)); BUILD_BUG_ON(sizeof(qcb->data) < sz); } static inline int qdisc_qlen_cpu(const struct Qdisc *q) { return this_cpu_ptr(q->cpu_qstats)->qlen; } static inline int qdisc_qlen(const struct Qdisc *q) { return q->q.qlen; } static inline int qdisc_qlen_sum(const struct Qdisc *q) { __u32 qlen = q->qstats.qlen; int i; if (qdisc_is_percpu_stats(q)) { for_each_possible_cpu(i) qlen += per_cpu_ptr(q->cpu_qstats, i)->qlen; } else { qlen += q->q.qlen; } return qlen; } static inline struct qdisc_skb_cb *qdisc_skb_cb(const struct sk_buff *skb) { return (struct qdisc_skb_cb *)skb->cb; } static inline spinlock_t *qdisc_lock(struct Qdisc *qdisc) { return &qdisc->q.lock; } static inline struct Qdisc *qdisc_root(const struct Qdisc *qdisc) { struct Qdisc *q = rcu_dereference_rtnl(qdisc->dev_queue->qdisc); return q; } static inline struct Qdisc *qdisc_root_bh(const struct Qdisc *qdisc) { return rcu_dereference_bh(qdisc->dev_queue->qdisc); } static inline struct Qdisc *qdisc_root_sleeping(const struct Qdisc *qdisc) { return qdisc->dev_queue->qdisc_sleeping; } /* The qdisc root lock is a mechanism by which to top level * of a qdisc tree can be locked from any qdisc node in the * forest. This allows changing the configuration of some * aspect of the qdisc tree while blocking out asynchronous * qdisc access in the packet processing paths. * * It is only legal to do this when the root will not change * on us. Otherwise we'll potentially lock the wrong qdisc * root. This is enforced by holding the RTNL semaphore, which * all users of this lock accessor must do. */ static inline spinlock_t *qdisc_root_lock(const struct Qdisc *qdisc) { struct Qdisc *root = qdisc_root(qdisc); ASSERT_RTNL(); return qdisc_lock(root); } static inline spinlock_t *qdisc_root_sleeping_lock(const struct Qdisc *qdisc) { struct Qdisc *root = qdisc_root_sleeping(qdisc); ASSERT_RTNL(); return qdisc_lock(root); } static inline seqcount_t *qdisc_root_sleeping_running(const struct Qdisc *qdisc) { struct Qdisc *root = qdisc_root_sleeping(qdisc); ASSERT_RTNL(); return &root->running; } static inline struct net_device *qdisc_dev(const struct Qdisc *qdisc) { return qdisc->dev_queue->dev; } static inline void sch_tree_lock(const struct Qdisc *q) { spin_lock_bh(qdisc_root_sleeping_lock(q)); } static inline void sch_tree_unlock(const struct Qdisc *q) { spin_unlock_bh(qdisc_root_sleeping_lock(q)); } extern struct Qdisc noop_qdisc; extern struct Qdisc_ops noop_qdisc_ops; extern struct Qdisc_ops pfifo_fast_ops; extern struct Qdisc_ops mq_qdisc_ops; extern struct Qdisc_ops noqueue_qdisc_ops; extern const struct Qdisc_ops *default_qdisc_ops; static inline const struct Qdisc_ops * get_default_qdisc_ops(const struct net_device *dev, int ntx) { return ntx < dev->real_num_tx_queues ? default_qdisc_ops : &pfifo_fast_ops; } struct Qdisc_class_common { u32 classid; struct hlist_node hnode; }; struct Qdisc_class_hash { struct hlist_head *hash; unsigned int hashsize; unsigned int hashmask; unsigned int hashelems; }; static inline unsigned int qdisc_class_hash(u32 id, u32 mask) { id ^= id >> 8; id ^= id >> 4; return id & mask; } static inline struct Qdisc_class_common * qdisc_class_find(const struct Qdisc_class_hash *hash, u32 id) { struct Qdisc_class_common *cl; unsigned int h; if (!id) return NULL; h = qdisc_class_hash(id, hash->hashmask); hlist_for_each_entry(cl, &hash->hash[h], hnode) { if (cl->classid == id) return cl; } return NULL; } static inline int tc_classid_to_hwtc(struct net_device *dev, u32 classid) { u32 hwtc = TC_H_MIN(classid) - TC_H_MIN_PRIORITY; return (hwtc < netdev_get_num_tc(dev)) ? hwtc : -EINVAL; } int qdisc_class_hash_init(struct Qdisc_class_hash *); void qdisc_class_hash_insert(struct Qdisc_class_hash *, struct Qdisc_class_common *); void qdisc_class_hash_remove(struct Qdisc_class_hash *, struct Qdisc_class_common *); void qdisc_class_hash_grow(struct Qdisc *, struct Qdisc_class_hash *); void qdisc_class_hash_destroy(struct Qdisc_class_hash *); int dev_qdisc_change_tx_queue_len(struct net_device *dev); void dev_init_scheduler(struct net_device *dev); void dev_shutdown(struct net_device *dev); void dev_activate(struct net_device *dev); void dev_deactivate(struct net_device *dev); void dev_deactivate_many(struct list_head *head); struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, struct Qdisc *qdisc); void qdisc_reset(struct Qdisc *qdisc); void qdisc_put(struct Qdisc *qdisc); void qdisc_put_unlocked(struct Qdisc *qdisc); void qdisc_tree_reduce_backlog(struct Qdisc *qdisc, int n, int len); #ifdef CONFIG_NET_SCHED int qdisc_offload_dump_helper(struct Qdisc *q, enum tc_setup_type type, void *type_data); void qdisc_offload_graft_helper(struct net_device *dev, struct Qdisc *sch, struct Qdisc *new, struct Qdisc *old, enum tc_setup_type type, void *type_data, struct netlink_ext_ack *extack); #else static inline int qdisc_offload_dump_helper(struct Qdisc *q, enum tc_setup_type type, void *type_data) { q->flags &= ~TCQ_F_OFFLOADED; return 0; } static inline void qdisc_offload_graft_helper(struct net_device *dev, struct Qdisc *sch, struct Qdisc *new, struct Qdisc *old, enum tc_setup_type type, void *type_data, struct netlink_ext_ack *extack) { } #endif struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, const struct Qdisc_ops *ops, struct netlink_ext_ack *extack); void qdisc_free(struct Qdisc *qdisc); struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, const struct Qdisc_ops *ops, u32 parentid, struct netlink_ext_ack *extack); void __qdisc_calculate_pkt_len(struct sk_buff *skb, const struct qdisc_size_table *stab); int skb_do_redirect(struct sk_buff *); static inline bool skb_at_tc_ingress(const struct sk_buff *skb) { #ifdef CONFIG_NET_CLS_ACT return skb->tc_at_ingress; #else return false; #endif } static inline bool skb_skip_tc_classify(struct sk_buff *skb) { #ifdef CONFIG_NET_CLS_ACT if (skb->tc_skip_classify) { skb->tc_skip_classify = 0; return true; } #endif return false; } /* Reset all TX qdiscs greater than index of a device. */ static inline void qdisc_reset_all_tx_gt(struct net_device *dev, unsigned int i) { struct Qdisc *qdisc; for (; i < dev->num_tx_queues; i++) { qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc); if (qdisc) { spin_lock_bh(qdisc_lock(qdisc)); qdisc_reset(qdisc); spin_unlock_bh(qdisc_lock(qdisc)); } } } /* Are all TX queues of the device empty? */ static inline bool qdisc_all_tx_empty(const struct net_device *dev) { unsigned int i; rcu_read_lock(); for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); const struct Qdisc *q = rcu_dereference(txq->qdisc); if (!qdisc_is_empty(q)) { rcu_read_unlock(); return false; } } rcu_read_unlock(); return true; } /* Are any of the TX qdiscs changing? */ static inline bool qdisc_tx_changing(const struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); if (rcu_access_pointer(txq->qdisc) != txq->qdisc_sleeping) return true; } return false; } /* Is the device using the noop qdisc on all queues? */ static inline bool qdisc_tx_is_noop(const struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); if (rcu_access_pointer(txq->qdisc) != &noop_qdisc) return false; } return true; } static inline unsigned int qdisc_pkt_len(const struct sk_buff *skb) { return qdisc_skb_cb(skb)->pkt_len; } /* additional qdisc xmit flags (NET_XMIT_MASK in linux/netdevice.h) */ enum net_xmit_qdisc_t { __NET_XMIT_STOLEN = 0x00010000, __NET_XMIT_BYPASS = 0x00020000, }; #ifdef CONFIG_NET_CLS_ACT #define net_xmit_drop_count(e) ((e) & __NET_XMIT_STOLEN ? 0 : 1) #else #define net_xmit_drop_count(e) (1) #endif static inline void qdisc_calculate_pkt_len(struct sk_buff *skb, const struct Qdisc *sch) { #ifdef CONFIG_NET_SCHED struct qdisc_size_table *stab = rcu_dereference_bh(sch->stab); if (stab) __qdisc_calculate_pkt_len(skb, stab); #endif } static inline int qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { qdisc_calculate_pkt_len(skb, sch); return sch->enqueue(skb, sch, to_free); } static inline void _bstats_update(struct gnet_stats_basic_packed *bstats, __u64 bytes, __u32 packets) { bstats->bytes += bytes; bstats->packets += packets; } static inline void bstats_update(struct gnet_stats_basic_packed *bstats, const struct sk_buff *skb) { _bstats_update(bstats, qdisc_pkt_len(skb), skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1); } static inline void _bstats_cpu_update(struct gnet_stats_basic_cpu *bstats, __u64 bytes, __u32 packets) { u64_stats_update_begin(&bstats->syncp); _bstats_update(&bstats->bstats, bytes, packets); u64_stats_update_end(&bstats->syncp); } static inline void bstats_cpu_update(struct gnet_stats_basic_cpu *bstats, const struct sk_buff *skb) { u64_stats_update_begin(&bstats->syncp); bstats_update(&bstats->bstats, skb); u64_stats_update_end(&bstats->syncp); } static inline void qdisc_bstats_cpu_update(struct Qdisc *sch, const struct sk_buff *skb) { bstats_cpu_update(this_cpu_ptr(sch->cpu_bstats), skb); } static inline void qdisc_bstats_update(struct Qdisc *sch, const struct sk_buff *skb) { bstats_update(&sch->bstats, skb); } static inline void qdisc_qstats_backlog_dec(struct Qdisc *sch, const struct sk_buff *skb) { sch->qstats.backlog -= qdisc_pkt_len(skb); } static inline void qdisc_qstats_cpu_backlog_dec(struct Qdisc *sch, const struct sk_buff *skb) { this_cpu_sub(sch->cpu_qstats->backlog, qdisc_pkt_len(skb)); } static inline void qdisc_qstats_backlog_inc(struct Qdisc *sch, const struct sk_buff *skb) { sch->qstats.backlog += qdisc_pkt_len(skb); } static inline void qdisc_qstats_cpu_backlog_inc(struct Qdisc *sch, const struct sk_buff *skb) { this_cpu_add(sch->cpu_qstats->backlog, qdisc_pkt_len(skb)); } static inline void qdisc_qstats_cpu_qlen_inc(struct Qdisc *sch) { this_cpu_inc(sch->cpu_qstats->qlen); } static inline void qdisc_qstats_cpu_qlen_dec(struct Qdisc *sch) { this_cpu_dec(sch->cpu_qstats->qlen); } static inline void qdisc_qstats_cpu_requeues_inc(struct Qdisc *sch) { this_cpu_inc(sch->cpu_qstats->requeues); } static inline void __qdisc_qstats_drop(struct Qdisc *sch, int count) { sch->qstats.drops += count; } static inline void qstats_drop_inc(struct gnet_stats_queue *qstats) { qstats->drops++; } static inline void qstats_overlimit_inc(struct gnet_stats_queue *qstats) { qstats->overlimits++; } static inline void qdisc_qstats_drop(struct Qdisc *sch) { qstats_drop_inc(&sch->qstats); } static inline void qdisc_qstats_cpu_drop(struct Qdisc *sch) { this_cpu_inc(sch->cpu_qstats->drops); } static inline void qdisc_qstats_overlimit(struct Qdisc *sch) { sch->qstats.overlimits++; } static inline int qdisc_qstats_copy(struct gnet_dump *d, struct Qdisc *sch) { __u32 qlen = qdisc_qlen_sum(sch); return gnet_stats_copy_queue(d, sch->cpu_qstats, &sch->qstats, qlen); } static inline void qdisc_qstats_qlen_backlog(struct Qdisc *sch, __u32 *qlen, __u32 *backlog) { struct gnet_stats_queue qstats = { 0 }; __u32 len = qdisc_qlen_sum(sch); __gnet_stats_copy_queue(&qstats, sch->cpu_qstats, &sch->qstats, len); *qlen = qstats.qlen; *backlog = qstats.backlog; } static inline void qdisc_tree_flush_backlog(struct Qdisc *sch) { __u32 qlen, backlog; qdisc_qstats_qlen_backlog(sch, &qlen, &backlog); qdisc_tree_reduce_backlog(sch, qlen, backlog); } static inline void qdisc_purge_queue(struct Qdisc *sch) { __u32 qlen, backlog; qdisc_qstats_qlen_backlog(sch, &qlen, &backlog); qdisc_reset(sch); qdisc_tree_reduce_backlog(sch, qlen, backlog); } static inline void qdisc_skb_head_init(struct qdisc_skb_head *qh) { qh->head = NULL; qh->tail = NULL; qh->qlen = 0; } static inline void __qdisc_enqueue_tail(struct sk_buff *skb, struct qdisc_skb_head *qh) { struct sk_buff *last = qh->tail; if (last) { skb->next = NULL; last->next = skb; qh->tail = skb; } else { qh->tail = skb; qh->head = skb; } qh->qlen++; } static inline int qdisc_enqueue_tail(struct sk_buff *skb, struct Qdisc *sch) { __qdisc_enqueue_tail(skb, &sch->q); qdisc_qstats_backlog_inc(sch, skb); return NET_XMIT_SUCCESS; } static inline void __qdisc_enqueue_head(struct sk_buff *skb, struct qdisc_skb_head *qh) { skb->next = qh->head; if (!qh->head) qh->tail = skb; qh->head = skb; qh->qlen++; } static inline struct sk_buff *__qdisc_dequeue_head(struct qdisc_skb_head *qh) { struct sk_buff *skb = qh->head; if (likely(skb != NULL)) { qh->head = skb->next; qh->qlen--; if (qh->head == NULL) qh->tail = NULL; skb->next = NULL; } return skb; } static inline struct sk_buff *qdisc_dequeue_head(struct Qdisc *sch) { struct sk_buff *skb = __qdisc_dequeue_head(&sch->q); if (likely(skb != NULL)) { qdisc_qstats_backlog_dec(sch, skb); qdisc_bstats_update(sch, skb); } return skb; } /* Instead of calling kfree_skb() while root qdisc lock is held, * queue the skb for future freeing at end of __dev_xmit_skb() */ static inline void __qdisc_drop(struct sk_buff *skb, struct sk_buff **to_free) { skb->next = *to_free; *to_free = skb; } static inline void __qdisc_drop_all(struct sk_buff *skb, struct sk_buff **to_free) { if (skb->prev) skb->prev->next = *to_free; else skb->next = *to_free; *to_free = skb; } static inline unsigned int __qdisc_queue_drop_head(struct Qdisc *sch, struct qdisc_skb_head *qh, struct sk_buff **to_free) { struct sk_buff *skb = __qdisc_dequeue_head(qh); if (likely(skb != NULL)) { unsigned int len = qdisc_pkt_len(skb); qdisc_qstats_backlog_dec(sch, skb); __qdisc_drop(skb, to_free); return len; } return 0; } static inline struct sk_buff *qdisc_peek_head(struct Qdisc *sch) { const struct qdisc_skb_head *qh = &sch->q; return qh->head; } /* generic pseudo peek method for non-work-conserving qdisc */ static inline struct sk_buff *qdisc_peek_dequeued(struct Qdisc *sch) { struct sk_buff *skb = skb_peek(&sch->gso_skb); /* we can reuse ->gso_skb because peek isn't called for root qdiscs */ if (!skb) { skb = sch->dequeue(sch); if (skb) { __skb_queue_head(&sch->gso_skb, skb); /* it's still part of the queue */ qdisc_qstats_backlog_inc(sch, skb); sch->q.qlen++; } } return skb; } static inline void qdisc_update_stats_at_dequeue(struct Qdisc *sch, struct sk_buff *skb) { if (qdisc_is_percpu_stats(sch)) { qdisc_qstats_cpu_backlog_dec(sch, skb); qdisc_bstats_cpu_update(sch, skb); qdisc_qstats_cpu_qlen_dec(sch); } else { qdisc_qstats_backlog_dec(sch, skb); qdisc_bstats_update(sch, skb); sch->q.qlen--; } } static inline void qdisc_update_stats_at_enqueue(struct Qdisc *sch, unsigned int pkt_len) { if (qdisc_is_percpu_stats(sch)) { qdisc_qstats_cpu_qlen_inc(sch); this_cpu_add(sch->cpu_qstats->backlog, pkt_len); } else { sch->qstats.backlog += pkt_len; sch->q.qlen++; } } /* use instead of qdisc->dequeue() for all qdiscs queried with ->peek() */ static inline struct sk_buff *qdisc_dequeue_peeked(struct Qdisc *sch) { struct sk_buff *skb = skb_peek(&sch->gso_skb); if (skb) { skb = __skb_dequeue(&sch->gso_skb); if (qdisc_is_percpu_stats(sch)) { qdisc_qstats_cpu_backlog_dec(sch, skb); qdisc_qstats_cpu_qlen_dec(sch); } else { qdisc_qstats_backlog_dec(sch, skb); sch->q.qlen--; } } else { skb = sch->dequeue(sch); } return skb; } static inline void __qdisc_reset_queue(struct qdisc_skb_head *qh) { /* * We do not know the backlog in bytes of this list, it * is up to the caller to correct it */ ASSERT_RTNL(); if (qh->qlen) { rtnl_kfree_skbs(qh->head, qh->tail); qh->head = NULL; qh->tail = NULL; qh->qlen = 0; } } static inline void qdisc_reset_queue(struct Qdisc *sch) { __qdisc_reset_queue(&sch->q); sch->qstats.backlog = 0; } static inline struct Qdisc *qdisc_replace(struct Qdisc *sch, struct Qdisc *new, struct Qdisc **pold) { struct Qdisc *old; sch_tree_lock(sch); old = *pold; *pold = new; if (old != NULL) qdisc_purge_queue(old); sch_tree_unlock(sch); return old; } static inline void rtnl_qdisc_drop(struct sk_buff *skb, struct Qdisc *sch) { rtnl_kfree_skbs(skb, skb); qdisc_qstats_drop(sch); } static inline int qdisc_drop_cpu(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { __qdisc_drop(skb, to_free); qdisc_qstats_cpu_drop(sch); return NET_XMIT_DROP; } static inline int qdisc_drop(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { __qdisc_drop(skb, to_free); qdisc_qstats_drop(sch); return NET_XMIT_DROP; } static inline int qdisc_drop_all(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { __qdisc_drop_all(skb, to_free); qdisc_qstats_drop(sch); return NET_XMIT_DROP; } /* Length to Time (L2T) lookup in a qdisc_rate_table, to determine how long it will take to send a packet given its size. */ static inline u32 qdisc_l2t(struct qdisc_rate_table* rtab, unsigned int pktlen) { int slot = pktlen + rtab->rate.cell_align + rtab->rate.overhead; if (slot < 0) slot = 0; slot >>= rtab->rate.cell_log; if (slot > 255) return rtab->data[255]*(slot >> 8) + rtab->data[slot & 0xFF]; return rtab->data[slot]; } struct psched_ratecfg { u64 rate_bytes_ps; /* bytes per second */ u32 mult; u16 overhead; u8 linklayer; u8 shift; }; static inline u64 psched_l2t_ns(const struct psched_ratecfg *r, unsigned int len) { len += r->overhead; if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) return ((u64)(DIV_ROUND_UP(len,48)*53) * r->mult) >> r->shift; return ((u64)len * r->mult) >> r->shift; } void psched_ratecfg_precompute(struct psched_ratecfg *r, const struct tc_ratespec *conf, u64 rate64); static inline void psched_ratecfg_getrate(struct tc_ratespec *res, const struct psched_ratecfg *r) { memset(res, 0, sizeof(*res)); /* legacy struct tc_ratespec has a 32bit @rate field * Qdisc using 64bit rate should add new attributes * in order to maintain compatibility. */ res->rate = min_t(u64, r->rate_bytes_ps, ~0U); res->overhead = r->overhead; res->linklayer = (r->linklayer & TC_LINKLAYER_MASK); } /* Mini Qdisc serves for specific needs of ingress/clsact Qdisc. * The fast path only needs to access filter list and to update stats */ struct mini_Qdisc { struct tcf_proto *filter_list; struct tcf_block *block; struct gnet_stats_basic_cpu __percpu *cpu_bstats; struct gnet_stats_queue __percpu *cpu_qstats; struct rcu_head rcu; }; static inline void mini_qdisc_bstats_cpu_update(struct mini_Qdisc *miniq, const struct sk_buff *skb) { bstats_cpu_update(this_cpu_ptr(miniq->cpu_bstats), skb); } static inline void mini_qdisc_qstats_cpu_drop(struct mini_Qdisc *miniq) { this_cpu_inc(miniq->cpu_qstats->drops); } struct mini_Qdisc_pair { struct mini_Qdisc miniq1; struct mini_Qdisc miniq2; struct mini_Qdisc __rcu **p_miniq; }; void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, struct tcf_proto *tp_head); void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, struct mini_Qdisc __rcu **p_miniq); void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, struct tcf_block *block); static inline int skb_tc_reinsert(struct sk_buff *skb, struct tcf_result *res) { return res->ingress ? netif_receive_skb(skb) : dev_queue_xmit(skb); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM msr #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE msr-trace #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH asm/ #if !defined(_TRACE_MSR_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MSR_H #include <linux/tracepoint.h> /* * Tracing for x86 model specific registers. Directly maps to the * RDMSR/WRMSR instructions. */ DECLARE_EVENT_CLASS(msr_trace_class, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed), TP_STRUCT__entry( __field( unsigned, msr ) __field( u64, val ) __field( int, failed ) ), TP_fast_assign( __entry->msr = msr; __entry->val = val; __entry->failed = failed; ), TP_printk("%x, value %llx%s", __entry->msr, __entry->val, __entry->failed ? " #GP" : "") ); DEFINE_EVENT(msr_trace_class, read_msr, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed) ); DEFINE_EVENT(msr_trace_class, write_msr, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed) ); DEFINE_EVENT(msr_trace_class, rdpmc, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed) ); #endif /* _TRACE_MSR_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_GENERIC_GETORDER_H #define __ASM_GENERIC_GETORDER_H #ifndef __ASSEMBLY__ #include <linux/compiler.h> #include <linux/log2.h> /** * get_order - Determine the allocation order of a memory size * @size: The size for which to get the order * * Determine the allocation order of a particular sized block of memory. This * is on a logarithmic scale, where: * * 0 -> 2^0 * PAGE_SIZE and below * 1 -> 2^1 * PAGE_SIZE to 2^0 * PAGE_SIZE + 1 * 2 -> 2^2 * PAGE_SIZE to 2^1 * PAGE_SIZE + 1 * 3 -> 2^3 * PAGE_SIZE to 2^2 * PAGE_SIZE + 1 * 4 -> 2^4 * PAGE_SIZE to 2^3 * PAGE_SIZE + 1 * ... * * The order returned is used to find the smallest allocation granule required * to hold an object of the specified size. * * The result is undefined if the size is 0. */ static inline __attribute_const__ int get_order(unsigned long size) { if (__builtin_constant_p(size)) { if (!size) return BITS_PER_LONG - PAGE_SHIFT; if (size < (1UL << PAGE_SHIFT)) return 0; return ilog2((size) - 1) - PAGE_SHIFT + 1; } size--; size >>= PAGE_SHIFT; #if BITS_PER_LONG == 32 return fls(size); #else return fls64(size); #endif } #endif /* __ASSEMBLY__ */ #endif /* __ASM_GENERIC_GETORDER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 /* SPDX-License-Identifier: GPL-2.0 */ /* * fs-verity: read-only file-based authenticity protection * * This header declares the interface between the fs/verity/ support layer and * filesystems that support fs-verity. * * Copyright 2019 Google LLC */ #ifndef _LINUX_FSVERITY_H #define _LINUX_FSVERITY_H #include <linux/fs.h> #include <uapi/linux/fsverity.h> /* Verity operations for filesystems */ struct fsverity_operations { /** * Begin enabling verity on the given file. * * @filp: a readonly file descriptor for the file * * The filesystem must do any needed filesystem-specific preparations * for enabling verity, e.g. evicting inline data. It also must return * -EBUSY if verity is already being enabled on the given file. * * i_rwsem is held for write. * * Return: 0 on success, -errno on failure */ int (*begin_enable_verity)(struct file *filp); /** * End enabling verity on the given file. * * @filp: a readonly file descriptor for the file * @desc: the verity descriptor to write, or NULL on failure * @desc_size: size of verity descriptor, or 0 on failure * @merkle_tree_size: total bytes the Merkle tree took up * * If desc == NULL, then enabling verity failed and the filesystem only * must do any necessary cleanups. Else, it must also store the given * verity descriptor to a fs-specific location associated with the inode * and do any fs-specific actions needed to mark the inode as a verity * inode, e.g. setting a bit in the on-disk inode. The filesystem is * also responsible for setting the S_VERITY flag in the VFS inode. * * i_rwsem is held for write, but it may have been dropped between * ->begin_enable_verity() and ->end_enable_verity(). * * Return: 0 on success, -errno on failure */ int (*end_enable_verity)(struct file *filp, const void *desc, size_t desc_size, u64 merkle_tree_size); /** * Get the verity descriptor of the given inode. * * @inode: an inode with the S_VERITY flag set * @buf: buffer in which to place the verity descriptor * @bufsize: size of @buf, or 0 to retrieve the size only * * If bufsize == 0, then the size of the verity descriptor is returned. * Otherwise the verity descriptor is written to 'buf' and its actual * size is returned; -ERANGE is returned if it's too large. This may be * called by multiple processes concurrently on the same inode. * * Return: the size on success, -errno on failure */ int (*get_verity_descriptor)(struct inode *inode, void *buf, size_t bufsize); /** * Read a Merkle tree page of the given inode. * * @inode: the inode * @index: 0-based index of the page within the Merkle tree * @num_ra_pages: The number of Merkle tree pages that should be * prefetched starting at @index if the page at @index * isn't already cached. Implementations may ignore this * argument; it's only a performance optimization. * * This can be called at any time on an open verity file, as well as * between ->begin_enable_verity() and ->end_enable_verity(). It may be * called by multiple processes concurrently, even with the same page. * * Note that this must retrieve a *page*, not necessarily a *block*. * * Return: the page on success, ERR_PTR() on failure */ struct page *(*read_merkle_tree_page)(struct inode *inode, pgoff_t index, unsigned long num_ra_pages); /** * Write a Merkle tree block to the given inode. * * @inode: the inode for which the Merkle tree is being built * @buf: block to write * @index: 0-based index of the block within the Merkle tree * @log_blocksize: log base 2 of the Merkle tree block size * * This is only called between ->begin_enable_verity() and * ->end_enable_verity(). * * Return: 0 on success, -errno on failure */ int (*write_merkle_tree_block)(struct inode *inode, const void *buf, u64 index, int log_blocksize); }; #ifdef CONFIG_FS_VERITY static inline struct fsverity_info *fsverity_get_info(const struct inode *inode) { /* * Pairs with the cmpxchg_release() in fsverity_set_info(). * I.e., another task may publish ->i_verity_info concurrently, * executing a RELEASE barrier. We need to use smp_load_acquire() here * to safely ACQUIRE the memory the other task published. */ return smp_load_acquire(&inode->i_verity_info); } /* enable.c */ int fsverity_ioctl_enable(struct file *filp, const void __user *arg); /* measure.c */ int fsverity_ioctl_measure(struct file *filp, void __user *arg); /* open.c */ int fsverity_file_open(struct inode *inode, struct file *filp); int fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr); void fsverity_cleanup_inode(struct inode *inode); /* verify.c */ bool fsverity_verify_page(struct page *page); void fsverity_verify_bio(struct bio *bio); void fsverity_enqueue_verify_work(struct work_struct *work); #else /* !CONFIG_FS_VERITY */ static inline struct fsverity_info *fsverity_get_info(const struct inode *inode) { return NULL; } /* enable.c */ static inline int fsverity_ioctl_enable(struct file *filp, const void __user *arg) { return -EOPNOTSUPP; } /* measure.c */ static inline int fsverity_ioctl_measure(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } /* open.c */ static inline int fsverity_file_open(struct inode *inode, struct file *filp) { return IS_VERITY(inode) ? -EOPNOTSUPP : 0; } static inline int fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr) { return IS_VERITY(d_inode(dentry)) ? -EOPNOTSUPP : 0; } static inline void fsverity_cleanup_inode(struct inode *inode) { } /* verify.c */ static inline bool fsverity_verify_page(struct page *page) { WARN_ON(1); return false; } static inline void fsverity_verify_bio(struct bio *bio) { WARN_ON(1); } static inline void fsverity_enqueue_verify_work(struct work_struct *work) { WARN_ON(1); } #endif /* !CONFIG_FS_VERITY */ /** * fsverity_active() - do reads from the inode need to go through fs-verity? * @inode: inode to check * * This checks whether ->i_verity_info has been set. * * Filesystems call this from ->readpages() to check whether the pages need to * be verified or not. Don't use IS_VERITY() for this purpose; it's subject to * a race condition where the file is being read concurrently with * FS_IOC_ENABLE_VERITY completing. (S_VERITY is set before ->i_verity_info.) * * Return: true if reads need to go through fs-verity, otherwise false */ static inline bool fsverity_active(const struct inode *inode) { return fsverity_get_info(inode) != NULL; } #endif /* _LINUX_FSVERITY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs */ #ifndef _ASM_X86_STACKTRACE_H #define _ASM_X86_STACKTRACE_H #include <linux/uaccess.h> #include <linux/ptrace.h> #include <asm/cpu_entry_area.h> #include <asm/switch_to.h> enum stack_type { STACK_TYPE_UNKNOWN, STACK_TYPE_TASK, STACK_TYPE_IRQ, STACK_TYPE_SOFTIRQ, STACK_TYPE_ENTRY, STACK_TYPE_EXCEPTION, STACK_TYPE_EXCEPTION_LAST = STACK_TYPE_EXCEPTION + N_EXCEPTION_STACKS-1, }; struct stack_info { enum stack_type type; unsigned long *begin, *end, *next_sp; }; bool in_task_stack(unsigned long *stack, struct task_struct *task, struct stack_info *info); bool in_entry_stack(unsigned long *stack, struct stack_info *info); int get_stack_info(unsigned long *stack, struct task_struct *task, struct stack_info *info, unsigned long *visit_mask); bool get_stack_info_noinstr(unsigned long *stack, struct task_struct *task, struct stack_info *info); const char *stack_type_name(enum stack_type type); static inline bool on_stack(struct stack_info *info, void *addr, size_t len) { void *begin = info->begin; void *end = info->end; return (info->type != STACK_TYPE_UNKNOWN && addr >= begin && addr < end && addr + len > begin && addr + len <= end); } #ifdef CONFIG_X86_32 #define STACKSLOTS_PER_LINE 8 #else #define STACKSLOTS_PER_LINE 4 #endif #ifdef CONFIG_FRAME_POINTER static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->bp; if (task == current) return __builtin_frame_address(0); return &((struct inactive_task_frame *)task->thread.sp)->bp; } #else static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { return NULL; } #endif /* CONFIG_FRAME_POINTER */ static inline unsigned long * get_stack_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->sp; if (task == current) return __builtin_frame_address(0); return (unsigned long *)task->thread.sp; } void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, unsigned long *stack, const char *log_lvl); /* The form of the top of the frame on the stack */ struct stack_frame { struct stack_frame *next_frame; unsigned long return_address; }; struct stack_frame_ia32 { u32 next_frame; u32 return_address; }; void show_opcodes(struct pt_regs *regs, const char *loglvl); void show_ip(struct pt_regs *regs, const char *loglvl); #endif /* _ASM_X86_STACKTRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_DMA_MAPPING_H #define _ASM_X86_DMA_MAPPING_H /* * IOMMU interface. See Documentation/core-api/dma-api-howto.rst and * Documentation/core-api/dma-api.rst for documentation. */ #include <linux/scatterlist.h> #include <asm/io.h> #include <asm/swiotlb.h> extern int iommu_merge; extern int panic_on_overflow; extern const struct dma_map_ops *dma_ops; static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus) { return dma_ops; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_GENHD_H #define _LINUX_GENHD_H /* * genhd.h Copyright (C) 1992 Drew Eckhardt * Generic hard disk header file by * Drew Eckhardt * * <drew@colorado.edu> */ #include <linux/types.h> #include <linux/kdev_t.h> #include <linux/rcupdate.h> #include <linux/slab.h> #include <linux/percpu-refcount.h> #include <linux/uuid.h> #include <linux/blk_types.h> #include <asm/local.h> #define dev_to_disk(device) container_of((device), struct gendisk, part0.__dev) #define dev_to_part(device) container_of((device), struct hd_struct, __dev) #define disk_to_dev(disk) (&(disk)->part0.__dev) #define part_to_dev(part) (&((part)->__dev)) extern const struct device_type disk_type; extern struct device_type part_type; extern struct class block_class; #define DISK_MAX_PARTS 256 #define DISK_NAME_LEN 32 #include <linux/major.h> #include <linux/device.h> #include <linux/smp.h> #include <linux/string.h> #include <linux/fs.h> #include <linux/workqueue.h> #define PARTITION_META_INFO_VOLNAMELTH 64 /* * Enough for the string representation of any kind of UUID plus NULL. * EFI UUID is 36 characters. MSDOS UUID is 11 characters. */ #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) struct partition_meta_info { char uuid[PARTITION_META_INFO_UUIDLTH]; u8 volname[PARTITION_META_INFO_VOLNAMELTH]; }; struct hd_struct { sector_t start_sect; /* * nr_sects is protected by sequence counter. One might extend a * partition while IO is happening to it and update of nr_sects * can be non-atomic on 32bit machines with 64bit sector_t. */ sector_t nr_sects; #if BITS_PER_LONG==32 && defined(CONFIG_SMP) seqcount_t nr_sects_seq; #endif unsigned long stamp; struct disk_stats __percpu *dkstats; struct percpu_ref ref; struct device __dev; struct kobject *holder_dir; int policy, partno; struct partition_meta_info *info; #ifdef CONFIG_FAIL_MAKE_REQUEST int make_it_fail; #endif struct rcu_work rcu_work; }; /** * DOC: genhd capability flags * * ``GENHD_FL_REMOVABLE`` (0x0001): indicates that the block device * gives access to removable media. * When set, the device remains present even when media is not * inserted. * Must not be set for devices which are removed entirely when the * media is removed. * * ``GENHD_FL_CD`` (0x0008): the block device is a CD-ROM-style * device. * Affects responses to the ``CDROM_GET_CAPABILITY`` ioctl. * * ``GENHD_FL_UP`` (0x0010): indicates that the block device is "up", * with a similar meaning to network interfaces. * * ``GENHD_FL_SUPPRESS_PARTITION_INFO`` (0x0020): don't include * partition information in ``/proc/partitions`` or in the output of * printk_all_partitions(). * Used for the null block device and some MMC devices. * * ``GENHD_FL_EXT_DEVT`` (0x0040): the driver supports extended * dynamic ``dev_t``, i.e. it wants extended device numbers * (``BLOCK_EXT_MAJOR``). * This affects the maximum number of partitions. * * ``GENHD_FL_NATIVE_CAPACITY`` (0x0080): based on information in the * partition table, the device's capacity has been extended to its * native capacity; i.e. the device has hidden capacity used by one * of the partitions (this is a flag used so that native capacity is * only ever unlocked once). * * ``GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE`` (0x0100): event polling is * blocked whenever a writer holds an exclusive lock. * * ``GENHD_FL_NO_PART_SCAN`` (0x0200): partition scanning is disabled. * Used for loop devices in their default settings and some MMC * devices. * * ``GENHD_FL_HIDDEN`` (0x0400): the block device is hidden; it * doesn't produce events, doesn't appear in sysfs, and doesn't have * an associated ``bdev``. * Implies ``GENHD_FL_SUPPRESS_PARTITION_INFO`` and * ``GENHD_FL_NO_PART_SCAN``. * Used for multipath devices. */ #define GENHD_FL_REMOVABLE 0x0001 /* 2 is unused (used to be GENHD_FL_DRIVERFS) */ /* 4 is unused (used to be GENHD_FL_MEDIA_CHANGE_NOTIFY) */ #define GENHD_FL_CD 0x0008 #define GENHD_FL_UP 0x0010 #define GENHD_FL_SUPPRESS_PARTITION_INFO 0x0020 #define GENHD_FL_EXT_DEVT 0x0040 #define GENHD_FL_NATIVE_CAPACITY 0x0080 #define GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE 0x0100 #define GENHD_FL_NO_PART_SCAN 0x0200 #define GENHD_FL_HIDDEN 0x0400 enum { DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ }; enum { /* Poll even if events_poll_msecs is unset */ DISK_EVENT_FLAG_POLL = 1 << 0, /* Forward events to udev */ DISK_EVENT_FLAG_UEVENT = 1 << 1, }; struct disk_part_tbl { struct rcu_head rcu_head; int len; struct hd_struct __rcu *last_lookup; struct hd_struct __rcu *part[]; }; struct disk_events; struct badblocks; struct blk_integrity { const struct blk_integrity_profile *profile; unsigned char flags; unsigned char tuple_size; unsigned char interval_exp; unsigned char tag_size; }; struct gendisk { /* major, first_minor and minors are input parameters only, * don't use directly. Use disk_devt() and disk_max_parts(). */ int major; /* major number of driver */ int first_minor; int minors; /* maximum number of minors, =1 for * disks that can't be partitioned. */ char disk_name[DISK_NAME_LEN]; /* name of major driver */ unsigned short events; /* supported events */ unsigned short event_flags; /* flags related to event processing */ /* Array of pointers to partitions indexed by partno. * Protected with matching bdev lock but stat and other * non-critical accesses use RCU. Always access through * helpers. */ struct disk_part_tbl __rcu *part_tbl; struct hd_struct part0; const struct block_device_operations *fops; struct request_queue *queue; void *private_data; int flags; unsigned long state; #define GD_NEED_PART_SCAN 0 struct rw_semaphore lookup_sem; struct kobject *slave_dir; struct timer_rand_state *random; atomic_t sync_io; /* RAID */ struct disk_events *ev; #ifdef CONFIG_BLK_DEV_INTEGRITY struct kobject integrity_kobj; #endif /* CONFIG_BLK_DEV_INTEGRITY */ #if IS_ENABLED(CONFIG_CDROM) struct cdrom_device_info *cdi; #endif int node_id; struct badblocks *bb; struct lockdep_map lockdep_map; }; #if IS_REACHABLE(CONFIG_CDROM) #define disk_to_cdi(disk) ((disk)->cdi) #else #define disk_to_cdi(disk) NULL #endif static inline struct gendisk *part_to_disk(struct hd_struct *part) { if (likely(part)) { if (part->partno) return dev_to_disk(part_to_dev(part)->parent); else return dev_to_disk(part_to_dev(part)); } return NULL; } static inline int disk_max_parts(struct gendisk *disk) { if (disk->flags & GENHD_FL_EXT_DEVT) return DISK_MAX_PARTS; return disk->minors; } static inline bool disk_part_scan_enabled(struct gendisk *disk) { return disk_max_parts(disk) > 1 && !(disk->flags & GENHD_FL_NO_PART_SCAN); } static inline dev_t disk_devt(struct gendisk *disk) { return MKDEV(disk->major, disk->first_minor); } static inline dev_t part_devt(struct hd_struct *part) { return part_to_dev(part)->devt; } extern struct hd_struct *__disk_get_part(struct gendisk *disk, int partno); extern struct hd_struct *disk_get_part(struct gendisk *disk, int partno); static inline void disk_put_part(struct hd_struct *part) { if (likely(part)) put_device(part_to_dev(part)); } static inline void hd_sects_seq_init(struct hd_struct *p) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) seqcount_init(&p->nr_sects_seq); #endif } /* * Smarter partition iterator without context limits. */ #define DISK_PITER_REVERSE (1 << 0) /* iterate in the reverse direction */ #define DISK_PITER_INCL_EMPTY (1 << 1) /* include 0-sized parts */ #define DISK_PITER_INCL_PART0 (1 << 2) /* include partition 0 */ #define DISK_PITER_INCL_EMPTY_PART0 (1 << 3) /* include empty partition 0 */ struct disk_part_iter { struct gendisk *disk; struct hd_struct *part; int idx; unsigned int flags; }; extern void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, unsigned int flags); extern struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter); extern void disk_part_iter_exit(struct disk_part_iter *piter); extern bool disk_has_partitions(struct gendisk *disk); /* block/genhd.c */ extern void device_add_disk(struct device *parent, struct gendisk *disk, const struct attribute_group **groups); static inline void add_disk(struct gendisk *disk) { device_add_disk(NULL, disk, NULL); } extern void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk); static inline void add_disk_no_queue_reg(struct gendisk *disk) { device_add_disk_no_queue_reg(NULL, disk); } extern void del_gendisk(struct gendisk *gp); extern struct gendisk *get_gendisk(dev_t dev, int *partno); extern struct block_device *bdget_disk(struct gendisk *disk, int partno); extern void set_device_ro(struct block_device *bdev, int flag); extern void set_disk_ro(struct gendisk *disk, int flag); static inline int get_disk_ro(struct gendisk *disk) { return disk->part0.policy; } extern void disk_block_events(struct gendisk *disk); extern void disk_unblock_events(struct gendisk *disk); extern void disk_flush_events(struct gendisk *disk, unsigned int mask); bool set_capacity_revalidate_and_notify(struct gendisk *disk, sector_t size, bool update_bdev); /* drivers/char/random.c */ extern void add_disk_randomness(struct gendisk *disk) __latent_entropy; extern void rand_initialize_disk(struct gendisk *disk); static inline sector_t get_start_sect(struct block_device *bdev) { return bdev->bd_part->start_sect; } static inline sector_t get_capacity(struct gendisk *disk) { return disk->part0.nr_sects; } static inline void set_capacity(struct gendisk *disk, sector_t size) { disk->part0.nr_sects = size; } int bdev_disk_changed(struct block_device *bdev, bool invalidate); int blk_add_partitions(struct gendisk *disk, struct block_device *bdev); int blk_drop_partitions(struct block_device *bdev); extern struct gendisk *__alloc_disk_node(int minors, int node_id); extern struct kobject *get_disk_and_module(struct gendisk *disk); extern void put_disk(struct gendisk *disk); extern void put_disk_and_module(struct gendisk *disk); extern void blk_register_region(dev_t devt, unsigned long range, struct module *module, struct kobject *(*probe)(dev_t, int *, void *), int (*lock)(dev_t, void *), void *data); extern void blk_unregister_region(dev_t devt, unsigned long range); #define alloc_disk_node(minors, node_id) \ ({ \ static struct lock_class_key __key; \ const char *__name; \ struct gendisk *__disk; \ \ __name = "(gendisk_completion)"#minors"("#node_id")"; \ \ __disk = __alloc_disk_node(minors, node_id); \ \ if (__disk) \ lockdep_init_map(&__disk->lockdep_map, __name, &__key, 0); \ \ __disk; \ }) #define alloc_disk(minors) alloc_disk_node(minors, NUMA_NO_NODE) int register_blkdev(unsigned int major, const char *name); void unregister_blkdev(unsigned int major, const char *name); void revalidate_disk_size(struct gendisk *disk, bool verbose); bool bdev_check_media_change(struct block_device *bdev); int __invalidate_device(struct block_device *bdev, bool kill_dirty); void bd_set_nr_sectors(struct block_device *bdev, sector_t sectors); /* for drivers/char/raw.c: */ int blkdev_ioctl(struct block_device *, fmode_t, unsigned, unsigned long); long compat_blkdev_ioctl(struct file *, unsigned, unsigned long); #ifdef CONFIG_SYSFS int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); #else static inline int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) { return 0; } static inline void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) { } #endif /* CONFIG_SYSFS */ #ifdef CONFIG_BLOCK void printk_all_partitions(void); dev_t blk_lookup_devt(const char *name, int partno); #else /* CONFIG_BLOCK */ static inline void printk_all_partitions(void) { } static inline dev_t blk_lookup_devt(const char *name, int partno) { dev_t devt = MKDEV(0, 0); return devt; } #endif /* CONFIG_BLOCK */ #endif /* _LINUX_GENHD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 // SPDX-License-Identifier: GPL-2.0 /* * fs/ext4/mballoc.h * * Written by: Alex Tomas <alex@clusterfs.com> * */ #ifndef _EXT4_MBALLOC_H #define _EXT4_MBALLOC_H #include <linux/time.h> #include <linux/fs.h> #include <linux/namei.h> #include <linux/quotaops.h> #include <linux/buffer_head.h> #include <linux/module.h> #include <linux/swap.h> #include <linux/proc_fs.h> #include <linux/pagemap.h> #include <linux/seq_file.h> #include <linux/blkdev.h> #include <linux/mutex.h> #include "ext4_jbd2.h" #include "ext4.h" /* * mb_debug() dynamic printk msgs could be used to debug mballoc code. */ #ifdef CONFIG_EXT4_DEBUG #define mb_debug(sb, fmt, ...) \ pr_debug("[%s/%d] EXT4-fs (%s): (%s, %d): %s: " fmt, \ current->comm, task_pid_nr(current), sb->s_id, \ __FILE__, __LINE__, __func__, ##__VA_ARGS__) #else #define mb_debug(sb, fmt, ...) no_printk(fmt, ##__VA_ARGS__) #endif #define EXT4_MB_HISTORY_ALLOC 1 /* allocation */ #define EXT4_MB_HISTORY_PREALLOC 2 /* preallocated blocks used */ /* * How long mballoc can look for a best extent (in found extents) */ #define MB_DEFAULT_MAX_TO_SCAN 200 /* * How long mballoc must look for a best extent */ #define MB_DEFAULT_MIN_TO_SCAN 10 /* * with 'ext4_mb_stats' allocator will collect stats that will be * shown at umount. The collecting costs though! */ #define MB_DEFAULT_STATS 0 /* * files smaller than MB_DEFAULT_STREAM_THRESHOLD are served * by the stream allocator, which purpose is to pack requests * as close each to other as possible to produce smooth I/O traffic * We use locality group prealloc space for stream request. * We can tune the same via /proc/fs/ext4/<parition>/stream_req */ #define MB_DEFAULT_STREAM_THRESHOLD 16 /* 64K */ /* * for which requests use 2^N search using buddies */ #define MB_DEFAULT_ORDER2_REQS 2 /* * default group prealloc size 512 blocks */ #define MB_DEFAULT_GROUP_PREALLOC 512 /* * maximum length of inode prealloc list */ #define MB_DEFAULT_MAX_INODE_PREALLOC 512 struct ext4_free_data { /* this links the free block information from sb_info */ struct list_head efd_list; /* this links the free block information from group_info */ struct rb_node efd_node; /* group which free block extent belongs */ ext4_group_t efd_group; /* free block extent */ ext4_grpblk_t efd_start_cluster; ext4_grpblk_t efd_count; /* transaction which freed this extent */ tid_t efd_tid; }; struct ext4_prealloc_space { struct list_head pa_inode_list; struct list_head pa_group_list; union { struct list_head pa_tmp_list; struct rcu_head pa_rcu; } u; spinlock_t pa_lock; atomic_t pa_count; unsigned pa_deleted; ext4_fsblk_t pa_pstart; /* phys. block */ ext4_lblk_t pa_lstart; /* log. block */ ext4_grpblk_t pa_len; /* len of preallocated chunk */ ext4_grpblk_t pa_free; /* how many blocks are free */ unsigned short pa_type; /* pa type. inode or group */ spinlock_t *pa_obj_lock; struct inode *pa_inode; /* hack, for history only */ }; enum { MB_INODE_PA = 0, MB_GROUP_PA = 1 }; struct ext4_free_extent { ext4_lblk_t fe_logical; ext4_grpblk_t fe_start; /* In cluster units */ ext4_group_t fe_group; ext4_grpblk_t fe_len; /* In cluster units */ }; /* * Locality group: * we try to group all related changes together * so that writeback can flush/allocate them together as well * Size of lg_prealloc_list hash is determined by MB_DEFAULT_GROUP_PREALLOC * (512). We store prealloc space into the hash based on the pa_free blocks * order value.ie, fls(pa_free)-1; */ #define PREALLOC_TB_SIZE 10 struct ext4_locality_group { /* for allocator */ /* to serialize allocates */ struct mutex lg_mutex; /* list of preallocations */ struct list_head lg_prealloc_list[PREALLOC_TB_SIZE]; spinlock_t lg_prealloc_lock; }; struct ext4_allocation_context { struct inode *ac_inode; struct super_block *ac_sb; /* original request */ struct ext4_free_extent ac_o_ex; /* goal request (normalized ac_o_ex) */ struct ext4_free_extent ac_g_ex; /* the best found extent */ struct ext4_free_extent ac_b_ex; /* copy of the best found extent taken before preallocation efforts */ struct ext4_free_extent ac_f_ex; __u16 ac_groups_scanned; __u16 ac_found; __u16 ac_tail; __u16 ac_buddy; __u16 ac_flags; /* allocation hints */ __u8 ac_status; __u8 ac_criteria; __u8 ac_2order; /* if request is to allocate 2^N blocks and * N > 0, the field stores N, otherwise 0 */ __u8 ac_op; /* operation, for history only */ struct page *ac_bitmap_page; struct page *ac_buddy_page; struct ext4_prealloc_space *ac_pa; struct ext4_locality_group *ac_lg; }; #define AC_STATUS_CONTINUE 1 #define AC_STATUS_FOUND 2 #define AC_STATUS_BREAK 3 struct ext4_buddy { struct page *bd_buddy_page; void *bd_buddy; struct page *bd_bitmap_page; void *bd_bitmap; struct ext4_group_info *bd_info; struct super_block *bd_sb; __u16 bd_blkbits; ext4_group_t bd_group; }; static inline ext4_fsblk_t ext4_grp_offs_to_block(struct super_block *sb, struct ext4_free_extent *fex) { return ext4_group_first_block_no(sb, fex->fe_group) + (fex->fe_start << EXT4_SB(sb)->s_cluster_bits); } typedef int (*ext4_mballoc_query_range_fn)( struct super_block *sb, ext4_group_t agno, ext4_grpblk_t start, ext4_grpblk_t len, void *priv); int ext4_mballoc_query_range( struct super_block *sb, ext4_group_t agno, ext4_grpblk_t start, ext4_grpblk_t end, ext4_mballoc_query_range_fn formatter, void *priv); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions for the UDP-Lite (RFC 3828) code. */ #ifndef _UDPLITE_H #define _UDPLITE_H #include <net/ip6_checksum.h> /* UDP-Lite socket options */ #define UDPLITE_SEND_CSCOV 10 /* sender partial coverage (as sent) */ #define UDPLITE_RECV_CSCOV 11 /* receiver partial coverage (threshold ) */ extern struct proto udplite_prot; extern struct udp_table udplite_table; /* * Checksum computation is all in software, hence simpler getfrag. */ static __inline__ int udplite_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) { struct msghdr *msg = from; return copy_from_iter_full(to, len, &msg->msg_iter) ? 0 : -EFAULT; } /* Designate sk as UDP-Lite socket */ static inline int udplite_sk_init(struct sock *sk) { udp_init_sock(sk); udp_sk(sk)->pcflag = UDPLITE_BIT; return 0; } /* * Checksumming routines */ static inline int udplite_checksum_init(struct sk_buff *skb, struct udphdr *uh) { u16 cscov; /* In UDPv4 a zero checksum means that the transmitter generated no * checksum. UDP-Lite (like IPv6) mandates checksums, hence packets * with a zero checksum field are illegal. */ if (uh->check == 0) { net_dbg_ratelimited("UDPLite: zeroed checksum field\n"); return 1; } cscov = ntohs(uh->len); if (cscov == 0) /* Indicates that full coverage is required. */ ; else if (cscov < 8 || cscov > skb->len) { /* * Coverage length violates RFC 3828: log and discard silently. */ net_dbg_ratelimited("UDPLite: bad csum coverage %d/%d\n", cscov, skb->len); return 1; } else if (cscov < skb->len) { UDP_SKB_CB(skb)->partial_cov = 1; UDP_SKB_CB(skb)->cscov = cscov; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; skb->csum_valid = 0; } return 0; } /* Slow-path computation of checksum. Socket is locked. */ static inline __wsum udplite_csum_outgoing(struct sock *sk, struct sk_buff *skb) { const struct udp_sock *up = udp_sk(skb->sk); int cscov = up->len; __wsum csum = 0; if (up->pcflag & UDPLITE_SEND_CC) { /* * Sender has set `partial coverage' option on UDP-Lite socket. * The special case "up->pcslen == 0" signifies full coverage. */ if (up->pcslen < up->len) { if (0 < up->pcslen) cscov = up->pcslen; udp_hdr(skb)->len = htons(up->pcslen); } /* * NOTE: Causes for the error case `up->pcslen > up->len': * (i) Application error (will not be penalized). * (ii) Payload too big for send buffer: data is split * into several packets, each with its own header. * In this case (e.g. last segment), coverage may * exceed packet length. * Since packets with coverage length > packet length are * illegal, we fall back to the defaults here. */ } skb->ip_summed = CHECKSUM_NONE; /* no HW support for checksumming */ skb_queue_walk(&sk->sk_write_queue, skb) { const int off = skb_transport_offset(skb); const int len = skb->len - off; csum = skb_checksum(skb, off, (cscov > len)? len : cscov, csum); if ((cscov -= len) <= 0) break; } return csum; } /* Fast-path computation of checksum. Socket may not be locked. */ static inline __wsum udplite_csum(struct sk_buff *skb) { const struct udp_sock *up = udp_sk(skb->sk); const int off = skb_transport_offset(skb); int len = skb->len - off; if ((up->pcflag & UDPLITE_SEND_CC) && up->pcslen < len) { if (0 < up->pcslen) len = up->pcslen; udp_hdr(skb)->len = htons(up->pcslen); } skb->ip_summed = CHECKSUM_NONE; /* no HW support for checksumming */ return skb_checksum(skb, off, len, 0); } void udplite4_register(void); int udplite_get_port(struct sock *sk, unsigned short snum, int (*scmp)(const struct sock *, const struct sock *)); #endif /* _UDPLITE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* * 25-Jul-1998 Major changes to allow for ip chain table * * 3-Jan-2000 Named tables to allow packet selection for different uses. */ /* * Format of an IP6 firewall descriptor * * src, dst, src_mask, dst_mask are always stored in network byte order. * flags are stored in host byte order (of course). * Port numbers are stored in HOST byte order. */ #ifndef _UAPI_IP6_TABLES_H #define _UAPI_IP6_TABLES_H #include <linux/types.h> #include <linux/compiler.h> #include <linux/if.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter/x_tables.h> #ifndef __KERNEL__ #define IP6T_FUNCTION_MAXNAMELEN XT_FUNCTION_MAXNAMELEN #define IP6T_TABLE_MAXNAMELEN XT_TABLE_MAXNAMELEN #define ip6t_match xt_match #define ip6t_target xt_target #define ip6t_table xt_table #define ip6t_get_revision xt_get_revision #define ip6t_entry_match xt_entry_match #define ip6t_entry_target xt_entry_target #define ip6t_standard_target xt_standard_target #define ip6t_error_target xt_error_target #define ip6t_counters xt_counters #define IP6T_CONTINUE XT_CONTINUE #define IP6T_RETURN XT_RETURN /* Pre-iptables-1.4.0 */ #include <linux/netfilter/xt_tcpudp.h> #define ip6t_tcp xt_tcp #define ip6t_udp xt_udp #define IP6T_TCP_INV_SRCPT XT_TCP_INV_SRCPT #define IP6T_TCP_INV_DSTPT XT_TCP_INV_DSTPT #define IP6T_TCP_INV_FLAGS XT_TCP_INV_FLAGS #define IP6T_TCP_INV_OPTION XT_TCP_INV_OPTION #define IP6T_TCP_INV_MASK XT_TCP_INV_MASK #define IP6T_UDP_INV_SRCPT XT_UDP_INV_SRCPT #define IP6T_UDP_INV_DSTPT XT_UDP_INV_DSTPT #define IP6T_UDP_INV_MASK XT_UDP_INV_MASK #define ip6t_counters_info xt_counters_info #define IP6T_STANDARD_TARGET XT_STANDARD_TARGET #define IP6T_ERROR_TARGET XT_ERROR_TARGET #define IP6T_MATCH_ITERATE(e, fn, args...) \ XT_MATCH_ITERATE(struct ip6t_entry, e, fn, ## args) #define IP6T_ENTRY_ITERATE(entries, size, fn, args...) \ XT_ENTRY_ITERATE(struct ip6t_entry, entries, size, fn, ## args) #endif /* Yes, Virginia, you have to zero the padding. */ struct ip6t_ip6 { /* Source and destination IP6 addr */ struct in6_addr src, dst; /* Mask for src and dest IP6 addr */ struct in6_addr smsk, dmsk; char iniface[IFNAMSIZ], outiface[IFNAMSIZ]; unsigned char iniface_mask[IFNAMSIZ], outiface_mask[IFNAMSIZ]; /* Upper protocol number * - The allowed value is 0 (any) or protocol number of last parsable * header, which is 50 (ESP), 59 (No Next Header), 135 (MH), or * the non IPv6 extension headers. * - The protocol numbers of IPv6 extension headers except of ESP and * MH do not match any packets. * - You also need to set IP6T_FLAGS_PROTO to "flags" to check protocol. */ __u16 proto; /* TOS to match iff flags & IP6T_F_TOS */ __u8 tos; /* Flags word */ __u8 flags; /* Inverse flags */ __u8 invflags; }; /* Values for "flag" field in struct ip6t_ip6 (general ip6 structure). */ #define IP6T_F_PROTO 0x01 /* Set if rule cares about upper protocols */ #define IP6T_F_TOS 0x02 /* Match the TOS. */ #define IP6T_F_GOTO 0x04 /* Set if jump is a goto */ #define IP6T_F_MASK 0x07 /* All possible flag bits mask. */ /* Values for "inv" field in struct ip6t_ip6. */ #define IP6T_INV_VIA_IN 0x01 /* Invert the sense of IN IFACE. */ #define IP6T_INV_VIA_OUT 0x02 /* Invert the sense of OUT IFACE */ #define IP6T_INV_TOS 0x04 /* Invert the sense of TOS. */ #define IP6T_INV_SRCIP 0x08 /* Invert the sense of SRC IP. */ #define IP6T_INV_DSTIP 0x10 /* Invert the sense of DST OP. */ #define IP6T_INV_FRAG 0x20 /* Invert the sense of FRAG. */ #define IP6T_INV_PROTO XT_INV_PROTO #define IP6T_INV_MASK 0x7F /* All possible flag bits mask. */ /* This structure defines each of the firewall rules. Consists of 3 parts which are 1) general IP header stuff 2) match specific stuff 3) the target to perform if the rule matches */ struct ip6t_entry { struct ip6t_ip6 ipv6; /* Mark with fields that we care about. */ unsigned int nfcache; /* Size of ipt_entry + matches */ __u16 target_offset; /* Size of ipt_entry + matches + target */ __u16 next_offset; /* Back pointer */ unsigned int comefrom; /* Packet and byte counters. */ struct xt_counters counters; /* The matches (if any), then the target. */ unsigned char elems[0]; }; /* Standard entry */ struct ip6t_standard { struct ip6t_entry entry; struct xt_standard_target target; }; struct ip6t_error { struct ip6t_entry entry; struct xt_error_target target; }; #define IP6T_ENTRY_INIT(__size) \ { \ .target_offset = sizeof(struct ip6t_entry), \ .next_offset = (__size), \ } #define IP6T_STANDARD_INIT(__verdict) \ { \ .entry = IP6T_ENTRY_INIT(sizeof(struct ip6t_standard)), \ .target = XT_TARGET_INIT(XT_STANDARD_TARGET, \ sizeof(struct xt_standard_target)), \ .target.verdict = -(__verdict) - 1, \ } #define IP6T_ERROR_INIT \ { \ .entry = IP6T_ENTRY_INIT(sizeof(struct ip6t_error)), \ .target = XT_TARGET_INIT(XT_ERROR_TARGET, \ sizeof(struct xt_error_target)), \ .target.errorname = "ERROR", \ } /* * New IP firewall options for [gs]etsockopt at the RAW IP level. * Unlike BSD Linux inherits IP options so you don't have to use * a raw socket for this. Instead we check rights in the calls. * * ATTENTION: check linux/in6.h before adding new number here. */ #define IP6T_BASE_CTL 64 #define IP6T_SO_SET_REPLACE (IP6T_BASE_CTL) #define IP6T_SO_SET_ADD_COUNTERS (IP6T_BASE_CTL + 1) #define IP6T_SO_SET_MAX IP6T_SO_SET_ADD_COUNTERS #define IP6T_SO_GET_INFO (IP6T_BASE_CTL) #define IP6T_SO_GET_ENTRIES (IP6T_BASE_CTL + 1) #define IP6T_SO_GET_REVISION_MATCH (IP6T_BASE_CTL + 4) #define IP6T_SO_GET_REVISION_TARGET (IP6T_BASE_CTL + 5) #define IP6T_SO_GET_MAX IP6T_SO_GET_REVISION_TARGET /* obtain original address if REDIRECT'd connection */ #define IP6T_SO_ORIGINAL_DST 80 /* ICMP matching stuff */ struct ip6t_icmp { __u8 type; /* type to match */ __u8 code[2]; /* range of code */ __u8 invflags; /* Inverse flags */ }; /* Values for "inv" field for struct ipt_icmp. */ #define IP6T_ICMP_INV 0x01 /* Invert the sense of type/code test */ /* The argument to IP6T_SO_GET_INFO */ struct ip6t_getinfo { /* Which table: caller fills this in. */ char name[XT_TABLE_MAXNAMELEN]; /* Kernel fills these in. */ /* Which hook entry points are valid: bitmask */ unsigned int valid_hooks; /* Hook entry points: one per netfilter hook. */ unsigned int hook_entry[NF_INET_NUMHOOKS]; /* Underflow points. */ unsigned int underflow[NF_INET_NUMHOOKS]; /* Number of entries */ unsigned int num_entries; /* Size of entries. */ unsigned int size; }; /* The argument to IP6T_SO_SET_REPLACE. */ struct ip6t_replace { /* Which table. */ char name[XT_TABLE_MAXNAMELEN]; /* Which hook entry points are valid: bitmask. You can't change this. */ unsigned int valid_hooks; /* Number of entries */ unsigned int num_entries; /* Total size of new entries */ unsigned int size; /* Hook entry points. */ unsigned int hook_entry[NF_INET_NUMHOOKS]; /* Underflow points. */ unsigned int underflow[NF_INET_NUMHOOKS]; /* Information about old entries: */ /* Number of counters (must be equal to current number of entries). */ unsigned int num_counters; /* The old entries' counters. */ struct xt_counters __user *counters; /* The entries (hang off end: not really an array). */ struct ip6t_entry entries[0]; }; /* The argument to IP6T_SO_GET_ENTRIES. */ struct ip6t_get_entries { /* Which table: user fills this in. */ char name[XT_TABLE_MAXNAMELEN]; /* User fills this in: total entry size. */ unsigned int size; /* The entries. */ struct ip6t_entry entrytable[0]; }; /* Helper functions */ static __inline__ struct xt_entry_target * ip6t_get_target(struct ip6t_entry *e) { return (struct xt_entry_target *)((char *)e + e->target_offset); } /* * Main firewall chains definitions and global var's definitions. */ #endif /* _UAPI_IP6_TABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM oom #if !defined(_TRACE_OOM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_OOM_H #include <linux/tracepoint.h> #include <trace/events/mmflags.h> TRACE_EVENT(oom_score_adj_update, TP_PROTO(struct task_struct *task), TP_ARGS(task), TP_STRUCT__entry( __field( pid_t, pid) __array( char, comm, TASK_COMM_LEN ) __field( short, oom_score_adj) ), TP_fast_assign( __entry->pid = task->pid; memcpy(__entry->comm, task->comm, TASK_COMM_LEN); __entry->oom_score_adj = task->signal->oom_score_adj; ), TP_printk("pid=%d comm=%s oom_score_adj=%hd", __entry->pid, __entry->comm, __entry->oom_score_adj) ); TRACE_EVENT(reclaim_retry_zone, TP_PROTO(struct zoneref *zoneref, int order, unsigned long reclaimable, unsigned long available, unsigned long min_wmark, int no_progress_loops, bool wmark_check), TP_ARGS(zoneref, order, reclaimable, available, min_wmark, no_progress_loops, wmark_check), TP_STRUCT__entry( __field( int, node) __field( int, zone_idx) __field( int, order) __field( unsigned long, reclaimable) __field( unsigned long, available) __field( unsigned long, min_wmark) __field( int, no_progress_loops) __field( bool, wmark_check) ), TP_fast_assign( __entry->node = zone_to_nid(zoneref->zone); __entry->zone_idx = zoneref->zone_idx; __entry->order = order; __entry->reclaimable = reclaimable; __entry->available = available; __entry->min_wmark = min_wmark; __entry->no_progress_loops = no_progress_loops; __entry->wmark_check = wmark_check; ), TP_printk("node=%d zone=%-8s order=%d reclaimable=%lu available=%lu min_wmark=%lu no_progress_loops=%d wmark_check=%d", __entry->node, __print_symbolic(__entry->zone_idx, ZONE_TYPE), __entry->order, __entry->reclaimable, __entry->available, __entry->min_wmark, __entry->no_progress_loops, __entry->wmark_check) ); TRACE_EVENT(mark_victim, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(wake_reaper, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(start_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(finish_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(skip_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); #ifdef CONFIG_COMPACTION TRACE_EVENT(compact_retry, TP_PROTO(int order, enum compact_priority priority, enum compact_result result, int retries, int max_retries, bool ret), TP_ARGS(order, priority, result, retries, max_retries, ret), TP_STRUCT__entry( __field( int, order) __field( int, priority) __field( int, result) __field( int, retries) __field( int, max_retries) __field( bool, ret) ), TP_fast_assign( __entry->order = order; __entry->priority = priority; __entry->result = compact_result_to_feedback(result); __entry->retries = retries; __entry->max_retries = max_retries; __entry->ret = ret; ), TP_printk("order=%d priority=%s compaction_result=%s retries=%d max_retries=%d should_retry=%d", __entry->order, __print_symbolic(__entry->priority, COMPACTION_PRIORITY), __print_symbolic(__entry->result, COMPACTION_FEEDBACK), __entry->retries, __entry->max_retries, __entry->ret) ); #endif /* CONFIG_COMPACTION */ #endif /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* Copyright (C) 2016 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. * * This file is provided under a dual BSD/GPLv2 license. * * SipHash: a fast short-input PRF * https://131002.net/siphash/ * * This implementation is specifically for SipHash2-4 for a secure PRF * and HalfSipHash1-3/SipHash1-3 for an insecure PRF only suitable for * hashtables. */ #ifndef _LINUX_SIPHASH_H #define _LINUX_SIPHASH_H #include <linux/types.h> #include <linux/kernel.h> #define SIPHASH_ALIGNMENT __alignof__(u64) typedef struct { u64 key[2]; } siphash_key_t; static inline bool siphash_key_is_zero(const siphash_key_t *key) { return !(key->key[0] | key->key[1]); } u64 __siphash_aligned(const void *data, size_t len, const siphash_key_t *key); #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS u64 __siphash_unaligned(const void *data, size_t len, const siphash_key_t *key); #endif u64 siphash_1u64(const u64 a, const siphash_key_t *key); u64 siphash_2u64(const u64 a, const u64 b, const siphash_key_t *key); u64 siphash_3u64(const u64 a, const u64 b, const u64 c, const siphash_key_t *key); u64 siphash_4u64(const u64 a, const u64 b, const u64 c, const u64 d, const siphash_key_t *key); u64 siphash_1u32(const u32 a, const siphash_key_t *key); u64 siphash_3u32(const u32 a, const u32 b, const u32 c, const siphash_key_t *key); static inline u64 siphash_2u32(const u32 a, const u32 b, const siphash_key_t *key) { return siphash_1u64((u64)b << 32 | a, key); } static inline u64 siphash_4u32(const u32 a, const u32 b, const u32 c, const u32 d, const siphash_key_t *key) { return siphash_2u64((u64)b << 32 | a, (u64)d << 32 | c, key); } static inline u64 ___siphash_aligned(const __le64 *data, size_t len, const siphash_key_t *key) { if (__builtin_constant_p(len) && len == 4) return siphash_1u32(le32_to_cpup((const __le32 *)data), key); if (__builtin_constant_p(len) && len == 8) return siphash_1u64(le64_to_cpu(data[0]), key); if (__builtin_constant_p(len) && len == 16) return siphash_2u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), key); if (__builtin_constant_p(len) && len == 24) return siphash_3u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), le64_to_cpu(data[2]), key); if (__builtin_constant_p(len) && len == 32) return siphash_4u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), le64_to_cpu(data[2]), le64_to_cpu(data[3]), key); return __siphash_aligned(data, len, key); } /** * siphash - compute 64-bit siphash PRF value * @data: buffer to hash * @size: size of @data * @key: the siphash key */ static inline u64 siphash(const void *data, size_t len, const siphash_key_t *key) { #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS if (!IS_ALIGNED((unsigned long)data, SIPHASH_ALIGNMENT)) return __siphash_unaligned(data, len, key); #endif return ___siphash_aligned(data, len, key); } #define HSIPHASH_ALIGNMENT __alignof__(unsigned long) typedef struct { unsigned long key[2]; } hsiphash_key_t; u32 __hsiphash_aligned(const void *data, size_t len, const hsiphash_key_t *key); #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS u32 __hsiphash_unaligned(const void *data, size_t len, const hsiphash_key_t *key); #endif u32 hsiphash_1u32(const u32 a, const hsiphash_key_t *key); u32 hsiphash_2u32(const u32 a, const u32 b, const hsiphash_key_t *key); u32 hsiphash_3u32(const u32 a, const u32 b, const u32 c, const hsiphash_key_t *key); u32 hsiphash_4u32(const u32 a, const u32 b, const u32 c, const u32 d, const hsiphash_key_t *key); static inline u32 ___hsiphash_aligned(const __le32 *data, size_t len, const hsiphash_key_t *key) { if (__builtin_constant_p(len) && len == 4) return hsiphash_1u32(le32_to_cpu(data[0]), key); if (__builtin_constant_p(len) && len == 8) return hsiphash_2u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), key); if (__builtin_constant_p(len) && len == 12) return hsiphash_3u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), le32_to_cpu(data[2]), key); if (__builtin_constant_p(len) && len == 16) return hsiphash_4u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), le32_to_cpu(data[2]), le32_to_cpu(data[3]), key); return __hsiphash_aligned(data, len, key); } /** * hsiphash - compute 32-bit hsiphash PRF value * @data: buffer to hash * @size: size of @data * @key: the hsiphash key */ static inline u32 hsiphash(const void *data, size_t len, const hsiphash_key_t *key) { #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS if (!IS_ALIGNED((unsigned long)data, HSIPHASH_ALIGNMENT)) return __hsiphash_unaligned(data, len, key); #endif return ___hsiphash_aligned(data, len, key); } #endif /* _LINUX_SIPHASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_LOCAL_H #define _ASM_X86_LOCAL_H #include <linux/percpu.h> #include <linux/atomic.h> #include <asm/asm.h> typedef struct { atomic_long_t a; } local_t; #define LOCAL_INIT(i) { ATOMIC_LONG_INIT(i) } #define local_read(l) atomic_long_read(&(l)->a) #define local_set(l, i) atomic_long_set(&(l)->a, (i)) static inline void local_inc(local_t *l) { asm volatile(_ASM_INC "%0" : "+m" (l->a.counter)); } static inline void local_dec(local_t *l) { asm volatile(_ASM_DEC "%0" : "+m" (l->a.counter)); } static inline void local_add(long i, local_t *l) { asm volatile(_ASM_ADD "%1,%0" : "+m" (l->a.counter) : "ir" (i)); } static inline void local_sub(long i, local_t *l) { asm volatile(_ASM_SUB "%1,%0" : "+m" (l->a.counter) : "ir" (i)); } /** * local_sub_and_test - subtract value from variable and test result * @i: integer value to subtract * @l: pointer to type local_t * * Atomically subtracts @i from @l and returns * true if the result is zero, or false for all * other cases. */ static inline bool local_sub_and_test(long i, local_t *l) { return GEN_BINARY_RMWcc(_ASM_SUB, l->a.counter, e, "er", i); } /** * local_dec_and_test - decrement and test * @l: pointer to type local_t * * Atomically decrements @l by 1 and * returns true if the result is 0, or false for all other * cases. */ static inline bool local_dec_and_test(local_t *l) { return GEN_UNARY_RMWcc(_ASM_DEC, l->a.counter, e); } /** * local_inc_and_test - increment and test * @l: pointer to type local_t * * Atomically increments @l by 1 * and returns true if the result is zero, or false for all * other cases. */ static inline bool local_inc_and_test(local_t *l) { return GEN_UNARY_RMWcc(_ASM_INC, l->a.counter, e); } /** * local_add_negative - add and test if negative * @i: integer value to add * @l: pointer to type local_t * * Atomically adds @i to @l and returns true * if the result is negative, or false when * result is greater than or equal to zero. */ static inline bool local_add_negative(long i, local_t *l) { return GEN_BINARY_RMWcc(_ASM_ADD, l->a.counter, s, "er", i); } /** * local_add_return - add and return * @i: integer value to add * @l: pointer to type local_t * * Atomically adds @i to @l and returns @i + @l */ static inline long local_add_return(long i, local_t *l) { long __i = i; asm volatile(_ASM_XADD "%0, %1;" : "+r" (i), "+m" (l->a.counter) : : "memory"); return i + __i; } static inline long local_sub_return(long i, local_t *l) { return local_add_return(-i, l); } #define local_inc_return(l) (local_add_return(1, l)) #define local_dec_return(l) (local_sub_return(1, l)) #define local_cmpxchg(l, o, n) \ (cmpxchg_local(&((l)->a.counter), (o), (n))) /* Always has a lock prefix */ #define local_xchg(l, n) (xchg(&((l)->a.counter), (n))) /** * local_add_unless - add unless the number is a given value * @l: pointer of type local_t * @a: the amount to add to l... * @u: ...unless l is equal to u. * * Atomically adds @a to @l, so long as it was not @u. * Returns non-zero if @l was not @u, and zero otherwise. */ #define local_add_unless(l, a, u) \ ({ \ long c, old; \ c = local_read((l)); \ for (;;) { \ if (unlikely(c == (u))) \ break; \ old = local_cmpxchg((l), c, c + (a)); \ if (likely(old == c)) \ break; \ c = old; \ } \ c != (u); \ }) #define local_inc_not_zero(l) local_add_unless((l), 1, 0) /* On x86_32, these are no better than the atomic variants. * On x86-64 these are better than the atomic variants on SMP kernels * because they dont use a lock prefix. */ #define __local_inc(l) local_inc(l) #define __local_dec(l) local_dec(l) #define __local_add(i, l) local_add((i), (l)) #define __local_sub(i, l) local_sub((i), (l)) #endif /* _ASM_X86_LOCAL_H */
8 8 8 8 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 // SPDX-License-Identifier: GPL-2.0-only /* * Resizable, Scalable, Concurrent Hash Table * * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> * * Code partially derived from nft_hash * Rewritten with rehash code from br_multicast plus single list * pointer as suggested by Josh Triplett */ #include <linux/atomic.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/log2.h> #include <linux/sched.h> #include <linux/rculist.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/mm.h> #include <linux/jhash.h> #include <linux/random.h> #include <linux/rhashtable.h> #include <linux/err.h> #include <linux/export.h> #define HASH_DEFAULT_SIZE 64UL #define HASH_MIN_SIZE 4U union nested_table { union nested_table __rcu *table; struct rhash_lock_head __rcu *bucket; }; static u32 head_hashfn(struct rhashtable *ht, const struct bucket_table *tbl, const struct rhash_head *he) { return rht_head_hashfn(ht, tbl, he, ht->p); } #ifdef CONFIG_PROVE_LOCKING #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) int lockdep_rht_mutex_is_held(struct rhashtable *ht) { return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; } EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) { if (!debug_locks) return 1; if (unlikely(tbl->nest)) return 1; return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]); } EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); #else #define ASSERT_RHT_MUTEX(HT) #endif static inline union nested_table *nested_table_top( const struct bucket_table *tbl) { /* The top-level bucket entry does not need RCU protection * because it's set at the same time as tbl->nest. */ return (void *)rcu_dereference_protected(tbl->buckets[0], 1); } static void nested_table_free(union nested_table *ntbl, unsigned int size) { const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); const unsigned int len = 1 << shift; unsigned int i; ntbl = rcu_dereference_protected(ntbl->table, 1); if (!ntbl) return; if (size > len) { size >>= shift; for (i = 0; i < len; i++) nested_table_free(ntbl + i, size); } kfree(ntbl); } static void nested_bucket_table_free(const struct bucket_table *tbl) { unsigned int size = tbl->size >> tbl->nest; unsigned int len = 1 << tbl->nest; union nested_table *ntbl; unsigned int i; ntbl = nested_table_top(tbl); for (i = 0; i < len; i++) nested_table_free(ntbl + i, size); kfree(ntbl); } static void bucket_table_free(const struct bucket_table *tbl) { if (tbl->nest) nested_bucket_table_free(tbl); kvfree(tbl); } static void bucket_table_free_rcu(struct rcu_head *head) { bucket_table_free(container_of(head, struct bucket_table, rcu)); } static union nested_table *nested_table_alloc(struct rhashtable *ht, union nested_table __rcu **prev, bool leaf) { union nested_table *ntbl; int i; ntbl = rcu_dereference(*prev); if (ntbl) return ntbl; ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC); if (ntbl && leaf) { for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++) INIT_RHT_NULLS_HEAD(ntbl[i].bucket); } if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL) return ntbl; /* Raced with another thread. */ kfree(ntbl); return rcu_dereference(*prev); } static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht, size_t nbuckets, gfp_t gfp) { const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); struct bucket_table *tbl; size_t size; if (nbuckets < (1 << (shift + 1))) return NULL; size = sizeof(*tbl) + sizeof(tbl->buckets[0]); tbl = kzalloc(size, gfp); if (!tbl) return NULL; if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets, false)) { kfree(tbl); return NULL; } tbl->nest = (ilog2(nbuckets) - 1) % shift + 1; return tbl; } static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, size_t nbuckets, gfp_t gfp) { struct bucket_table *tbl = NULL; size_t size; int i; static struct lock_class_key __key; tbl = kvzalloc(struct_size(tbl, buckets, nbuckets), gfp); size = nbuckets; if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) { tbl = nested_bucket_table_alloc(ht, nbuckets, gfp); nbuckets = 0; } if (tbl == NULL) return NULL; lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0); tbl->size = size; rcu_head_init(&tbl->rcu); INIT_LIST_HEAD(&tbl->walkers); tbl->hash_rnd = get_random_u32(); for (i = 0; i < nbuckets; i++) INIT_RHT_NULLS_HEAD(tbl->buckets[i]); return tbl; } static struct bucket_table *rhashtable_last_table(struct rhashtable *ht, struct bucket_table *tbl) { struct bucket_table *new_tbl; do { new_tbl = tbl; tbl = rht_dereference_rcu(tbl->future_tbl, ht); } while (tbl); return new_tbl; } static int rhashtable_rehash_one(struct rhashtable *ht, struct rhash_lock_head __rcu **bkt, unsigned int old_hash) { struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl); int err = -EAGAIN; struct rhash_head *head, *next, *entry; struct rhash_head __rcu **pprev = NULL; unsigned int new_hash; if (new_tbl->nest) goto out; err = -ENOENT; rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash), old_tbl, old_hash) { err = 0; next = rht_dereference_bucket(entry->next, old_tbl, old_hash); if (rht_is_a_nulls(next)) break; pprev = &entry->next; } if (err) goto out; new_hash = head_hashfn(ht, new_tbl, entry); rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash], SINGLE_DEPTH_NESTING); head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash); RCU_INIT_POINTER(entry->next, head); rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry); if (pprev) rcu_assign_pointer(*pprev, next); else /* Need to preserved the bit lock. */ rht_assign_locked(bkt, next); out: return err; } static int rhashtable_rehash_chain(struct rhashtable *ht, unsigned int old_hash) { struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); struct rhash_lock_head __rcu **bkt = rht_bucket_var(old_tbl, old_hash); int err; if (!bkt) return 0; rht_lock(old_tbl, bkt); while (!(err = rhashtable_rehash_one(ht, bkt, old_hash))) ; if (err == -ENOENT) err = 0; rht_unlock(old_tbl, bkt); return err; } static int rhashtable_rehash_attach(struct rhashtable *ht, struct bucket_table *old_tbl, struct bucket_table *new_tbl) { /* Make insertions go into the new, empty table right away. Deletions * and lookups will be attempted in both tables until we synchronize. * As cmpxchg() provides strong barriers, we do not need * rcu_assign_pointer(). */ if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL, new_tbl) != NULL) return -EEXIST; return 0; } static int rhashtable_rehash_table(struct rhashtable *ht) { struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); struct bucket_table *new_tbl; struct rhashtable_walker *walker; unsigned int old_hash; int err; new_tbl = rht_dereference(old_tbl->future_tbl, ht); if (!new_tbl) return 0; for (old_hash = 0; old_hash < old_tbl->size; old_hash++) { err = rhashtable_rehash_chain(ht, old_hash); if (err) return err; cond_resched(); } /* Publish the new table pointer. */ rcu_assign_pointer(ht->tbl, new_tbl); spin_lock(&ht->lock); list_for_each_entry(walker, &old_tbl->walkers, list) walker->tbl = NULL; /* Wait for readers. All new readers will see the new * table, and thus no references to the old table will * remain. * We do this inside the locked region so that * rhashtable_walk_stop() can use rcu_head_after_call_rcu() * to check if it should not re-link the table. */ call_rcu(&old_tbl->rcu, bucket_table_free_rcu); spin_unlock(&ht->lock); return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0; } static int rhashtable_rehash_alloc(struct rhashtable *ht, struct bucket_table *old_tbl, unsigned int size) { struct bucket_table *new_tbl; int err; ASSERT_RHT_MUTEX(ht); new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL); if (new_tbl == NULL) return -ENOMEM; err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); if (err) bucket_table_free(new_tbl); return err; } /** * rhashtable_shrink - Shrink hash table while allowing concurrent lookups * @ht: the hash table to shrink * * This function shrinks the hash table to fit, i.e., the smallest * size would not cause it to expand right away automatically. * * The caller must ensure that no concurrent resizing occurs by holding * ht->mutex. * * The caller must ensure that no concurrent table mutations take place. * It is however valid to have concurrent lookups if they are RCU protected. * * It is valid to have concurrent insertions and deletions protected by per * bucket locks or concurrent RCU protected lookups and traversals. */ static int rhashtable_shrink(struct rhashtable *ht) { struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); unsigned int nelems = atomic_read(&ht->nelems); unsigned int size = 0; if (nelems) size = roundup_pow_of_two(nelems * 3 / 2); if (size < ht->p.min_size) size = ht->p.min_size; if (old_tbl->size <= size) return 0; if (rht_dereference(old_tbl->future_tbl, ht)) return -EEXIST; return rhashtable_rehash_alloc(ht, old_tbl, size); } static void rht_deferred_worker(struct work_struct *work) { struct rhashtable *ht; struct bucket_table *tbl; int err = 0; ht = container_of(work, struct rhashtable, run_work); mutex_lock(&ht->mutex); tbl = rht_dereference(ht->tbl, ht); tbl = rhashtable_last_table(ht, tbl); if (rht_grow_above_75(ht, tbl)) err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2); else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl)) err = rhashtable_shrink(ht); else if (tbl->nest) err = rhashtable_rehash_alloc(ht, tbl, tbl->size); if (!err || err == -EEXIST) { int nerr; nerr = rhashtable_rehash_table(ht); err = err ?: nerr; } mutex_unlock(&ht->mutex); if (err) schedule_work(&ht->run_work); } static int rhashtable_insert_rehash(struct rhashtable *ht, struct bucket_table *tbl) { struct bucket_table *old_tbl; struct bucket_table *new_tbl; unsigned int size; int err; old_tbl = rht_dereference_rcu(ht->tbl, ht); size = tbl->size; err = -EBUSY; if (rht_grow_above_75(ht, tbl)) size *= 2; /* Do not schedule more than one rehash */ else if (old_tbl != tbl) goto fail; err = -ENOMEM; new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN); if (new_tbl == NULL) goto fail; err = rhashtable_rehash_attach(ht, tbl, new_tbl); if (err) { bucket_table_free(new_tbl); if (err == -EEXIST) err = 0; } else schedule_work(&ht->run_work); return err; fail: /* Do not fail the insert if someone else did a rehash. */ if (likely(rcu_access_pointer(tbl->future_tbl))) return 0; /* Schedule async rehash to retry allocation in process context. */ if (err == -ENOMEM) schedule_work(&ht->run_work); return err; } static void *rhashtable_lookup_one(struct rhashtable *ht, struct rhash_lock_head __rcu **bkt, struct bucket_table *tbl, unsigned int hash, const void *key, struct rhash_head *obj) { struct rhashtable_compare_arg arg = { .ht = ht, .key = key, }; struct rhash_head __rcu **pprev = NULL; struct rhash_head *head; int elasticity; elasticity = RHT_ELASTICITY; rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) { struct rhlist_head *list; struct rhlist_head *plist; elasticity--; if (!key || (ht->p.obj_cmpfn ? ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) : rhashtable_compare(&arg, rht_obj(ht, head)))) { pprev = &head->next; continue; } if (!ht->rhlist) return rht_obj(ht, head); list = container_of(obj, struct rhlist_head, rhead); plist = container_of(head, struct rhlist_head, rhead); RCU_INIT_POINTER(list->next, plist); head = rht_dereference_bucket(head->next, tbl, hash); RCU_INIT_POINTER(list->rhead.next, head); if (pprev) rcu_assign_pointer(*pprev, obj); else /* Need to preserve the bit lock */ rht_assign_locked(bkt, obj); return NULL; } if (elasticity <= 0) return ERR_PTR(-EAGAIN); return ERR_PTR(-ENOENT); } static struct bucket_table *rhashtable_insert_one( struct rhashtable *ht, struct rhash_lock_head __rcu **bkt, struct bucket_table *tbl, unsigned int hash, struct rhash_head *obj, void *data) { struct bucket_table *new_tbl; struct rhash_head *head; if (!IS_ERR_OR_NULL(data)) return ERR_PTR(-EEXIST); if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT) return ERR_CAST(data); new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); if (new_tbl) return new_tbl; if (PTR_ERR(data) != -ENOENT) return ERR_CAST(data); if (unlikely(rht_grow_above_max(ht, tbl))) return ERR_PTR(-E2BIG); if (unlikely(rht_grow_above_100(ht, tbl))) return ERR_PTR(-EAGAIN); head = rht_ptr(bkt, tbl, hash); RCU_INIT_POINTER(obj->next, head); if (ht->rhlist) { struct rhlist_head *list; list = container_of(obj, struct rhlist_head, rhead); RCU_INIT_POINTER(list->next, NULL); } /* bkt is always the head of the list, so it holds * the lock, which we need to preserve */ rht_assign_locked(bkt, obj); atomic_inc(&ht->nelems); if (rht_grow_above_75(ht, tbl)) schedule_work(&ht->run_work); return NULL; } static void *rhashtable_try_insert(struct rhashtable *ht, const void *key, struct rhash_head *obj) { struct bucket_table *new_tbl; struct bucket_table *tbl; struct rhash_lock_head __rcu **bkt; unsigned int hash; void *data; new_tbl = rcu_dereference(ht->tbl); do { tbl = new_tbl; hash = rht_head_hashfn(ht, tbl, obj, ht->p); if (rcu_access_pointer(tbl->future_tbl)) /* Failure is OK */ bkt = rht_bucket_var(tbl, hash); else bkt = rht_bucket_insert(ht, tbl, hash); if (bkt == NULL) { new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); data = ERR_PTR(-EAGAIN); } else { rht_lock(tbl, bkt); data = rhashtable_lookup_one(ht, bkt, tbl, hash, key, obj); new_tbl = rhashtable_insert_one(ht, bkt, tbl, hash, obj, data); if (PTR_ERR(new_tbl) != -EEXIST) data = ERR_CAST(new_tbl); rht_unlock(tbl, bkt); } } while (!IS_ERR_OR_NULL(new_tbl)); if (PTR_ERR(data) == -EAGAIN) data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?: -EAGAIN); return data; } void *rhashtable_insert_slow(struct rhashtable *ht, const void *key, struct rhash_head *obj) { void *data; do { rcu_read_lock(); data = rhashtable_try_insert(ht, key, obj); rcu_read_unlock(); } while (PTR_ERR(data) == -EAGAIN); return data; } EXPORT_SYMBOL_GPL(rhashtable_insert_slow); /** * rhashtable_walk_enter - Initialise an iterator * @ht: Table to walk over * @iter: Hash table Iterator * * This function prepares a hash table walk. * * Note that if you restart a walk after rhashtable_walk_stop you * may see the same object twice. Also, you may miss objects if * there are removals in between rhashtable_walk_stop and the next * call to rhashtable_walk_start. * * For a completely stable walk you should construct your own data * structure outside the hash table. * * This function may be called from any process context, including * non-preemptable context, but cannot be called from softirq or * hardirq context. * * You must call rhashtable_walk_exit after this function returns. */ void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter) { iter->ht = ht; iter->p = NULL; iter->slot = 0; iter->skip = 0; iter->end_of_table = 0; spin_lock(&ht->lock); iter->walker.tbl = rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock)); list_add(&iter->walker.list, &iter->walker.tbl->walkers); spin_unlock(&ht->lock); } EXPORT_SYMBOL_GPL(rhashtable_walk_enter); /** * rhashtable_walk_exit - Free an iterator * @iter: Hash table Iterator * * This function frees resources allocated by rhashtable_walk_enter. */ void rhashtable_walk_exit(struct rhashtable_iter *iter) { spin_lock(&iter->ht->lock); if (iter->walker.tbl) list_del(&iter->walker.list); spin_unlock(&iter->ht->lock); } EXPORT_SYMBOL_GPL(rhashtable_walk_exit); /** * rhashtable_walk_start_check - Start a hash table walk * @iter: Hash table iterator * * Start a hash table walk at the current iterator position. Note that we take * the RCU lock in all cases including when we return an error. So you must * always call rhashtable_walk_stop to clean up. * * Returns zero if successful. * * Returns -EAGAIN if resize event occured. Note that the iterator * will rewind back to the beginning and you may use it immediately * by calling rhashtable_walk_next. * * rhashtable_walk_start is defined as an inline variant that returns * void. This is preferred in cases where the caller would ignore * resize events and always continue. */ int rhashtable_walk_start_check(struct rhashtable_iter *iter) __acquires(RCU) { struct rhashtable *ht = iter->ht; bool rhlist = ht->rhlist; rcu_read_lock(); spin_lock(&ht->lock); if (iter->walker.tbl) list_del(&iter->walker.list); spin_unlock(&ht->lock); if (iter->end_of_table) return 0; if (!iter->walker.tbl) { iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht); iter->slot = 0; iter->skip = 0; return -EAGAIN; } if (iter->p && !rhlist) { /* * We need to validate that 'p' is still in the table, and * if so, update 'skip' */ struct rhash_head *p; int skip = 0; rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { skip++; if (p == iter->p) { iter->skip = skip; goto found; } } iter->p = NULL; } else if (iter->p && rhlist) { /* Need to validate that 'list' is still in the table, and * if so, update 'skip' and 'p'. */ struct rhash_head *p; struct rhlist_head *list; int skip = 0; rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { for (list = container_of(p, struct rhlist_head, rhead); list; list = rcu_dereference(list->next)) { skip++; if (list == iter->list) { iter->p = p; iter->skip = skip; goto found; } } } iter->p = NULL; } found: return 0; } EXPORT_SYMBOL_GPL(rhashtable_walk_start_check); /** * __rhashtable_walk_find_next - Find the next element in a table (or the first * one in case of a new walk). * * @iter: Hash table iterator * * Returns the found object or NULL when the end of the table is reached. * * Returns -EAGAIN if resize event occurred. */ static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter) { struct bucket_table *tbl = iter->walker.tbl; struct rhlist_head *list = iter->list; struct rhashtable *ht = iter->ht; struct rhash_head *p = iter->p; bool rhlist = ht->rhlist; if (!tbl) return NULL; for (; iter->slot < tbl->size; iter->slot++) { int skip = iter->skip; rht_for_each_rcu(p, tbl, iter->slot) { if (rhlist) { list = container_of(p, struct rhlist_head, rhead); do { if (!skip) goto next; skip--; list = rcu_dereference(list->next); } while (list); continue; } if (!skip) break; skip--; } next: if (!rht_is_a_nulls(p)) { iter->skip++; iter->p = p; iter->list = list; return rht_obj(ht, rhlist ? &list->rhead : p); } iter->skip = 0; } iter->p = NULL; /* Ensure we see any new tables. */ smp_rmb(); iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht); if (iter->walker.tbl) { iter->slot = 0; iter->skip = 0; return ERR_PTR(-EAGAIN); } else { iter->end_of_table = true; } return NULL; } /** * rhashtable_walk_next - Return the next object and advance the iterator * @iter: Hash table iterator * * Note that you must call rhashtable_walk_stop when you are finished * with the walk. * * Returns the next object or NULL when the end of the table is reached. * * Returns -EAGAIN if resize event occurred. Note that the iterator * will rewind back to the beginning and you may continue to use it. */ void *rhashtable_walk_next(struct rhashtable_iter *iter) { struct rhlist_head *list = iter->list; struct rhashtable *ht = iter->ht; struct rhash_head *p = iter->p; bool rhlist = ht->rhlist; if (p) { if (!rhlist || !(list = rcu_dereference(list->next))) { p = rcu_dereference(p->next); list = container_of(p, struct rhlist_head, rhead); } if (!rht_is_a_nulls(p)) { iter->skip++; iter->p = p; iter->list = list; return rht_obj(ht, rhlist ? &list->rhead : p); } /* At the end of this slot, switch to next one and then find * next entry from that point. */ iter->skip = 0; iter->slot++; } return __rhashtable_walk_find_next(iter); } EXPORT_SYMBOL_GPL(rhashtable_walk_next); /** * rhashtable_walk_peek - Return the next object but don't advance the iterator * @iter: Hash table iterator * * Returns the next object or NULL when the end of the table is reached. * * Returns -EAGAIN if resize event occurred. Note that the iterator * will rewind back to the beginning and you may continue to use it. */ void *rhashtable_walk_peek(struct rhashtable_iter *iter) { struct rhlist_head *list = iter->list; struct rhashtable *ht = iter->ht; struct rhash_head *p = iter->p; if (p) return rht_obj(ht, ht->rhlist ? &list->rhead : p); /* No object found in current iter, find next one in the table. */ if (iter->skip) { /* A nonzero skip value points to the next entry in the table * beyond that last one that was found. Decrement skip so * we find the current value. __rhashtable_walk_find_next * will restore the original value of skip assuming that * the table hasn't changed. */ iter->skip--; } return __rhashtable_walk_find_next(iter); } EXPORT_SYMBOL_GPL(rhashtable_walk_peek); /** * rhashtable_walk_stop - Finish a hash table walk * @iter: Hash table iterator * * Finish a hash table walk. Does not reset the iterator to the start of the * hash table. */ void rhashtable_walk_stop(struct rhashtable_iter *iter) __releases(RCU) { struct rhashtable *ht; struct bucket_table *tbl = iter->walker.tbl; if (!tbl) goto out; ht = iter->ht; spin_lock(&ht->lock); if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu)) /* This bucket table is being freed, don't re-link it. */ iter->walker.tbl = NULL; else list_add(&iter->walker.list, &tbl->walkers); spin_unlock(&ht->lock); out: rcu_read_unlock(); } EXPORT_SYMBOL_GPL(rhashtable_walk_stop); static size_t rounded_hashtable_size(const struct rhashtable_params *params) { size_t retsize; if (params->nelem_hint) retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3), (unsigned long)params->min_size); else retsize = max(HASH_DEFAULT_SIZE, (unsigned long)params->min_size); return retsize; } static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed) { return jhash2(key, length, seed); } /** * rhashtable_init - initialize a new hash table * @ht: hash table to be initialized * @params: configuration parameters * * Initializes a new hash table based on the provided configuration * parameters. A table can be configured either with a variable or * fixed length key: * * Configuration Example 1: Fixed length keys * struct test_obj { * int key; * void * my_member; * struct rhash_head node; * }; * * struct rhashtable_params params = { * .head_offset = offsetof(struct test_obj, node), * .key_offset = offsetof(struct test_obj, key), * .key_len = sizeof(int), * .hashfn = jhash, * }; * * Configuration Example 2: Variable length keys * struct test_obj { * [...] * struct rhash_head node; * }; * * u32 my_hash_fn(const void *data, u32 len, u32 seed) * { * struct test_obj *obj = data; * * return [... hash ...]; * } * * struct rhashtable_params params = { * .head_offset = offsetof(struct test_obj, node), * .hashfn = jhash, * .obj_hashfn = my_hash_fn, * }; */ int rhashtable_init(struct rhashtable *ht, const struct rhashtable_params *params) { struct bucket_table *tbl; size_t size; if ((!params->key_len && !params->obj_hashfn) || (params->obj_hashfn && !params->obj_cmpfn)) return -EINVAL; memset(ht, 0, sizeof(*ht)); mutex_init(&ht->mutex); spin_lock_init(&ht->lock); memcpy(&ht->p, params, sizeof(*params)); if (params->min_size) ht->p.min_size = roundup_pow_of_two(params->min_size); /* Cap total entries at 2^31 to avoid nelems overflow. */ ht->max_elems = 1u << 31; if (params->max_size) { ht->p.max_size = rounddown_pow_of_two(params->max_size); if (ht->p.max_size < ht->max_elems / 2) ht->max_elems = ht->p.max_size * 2; } ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); size = rounded_hashtable_size(&ht->p); ht->key_len = ht->p.key_len; if (!params->hashfn) { ht->p.hashfn = jhash; if (!(ht->key_len & (sizeof(u32) - 1))) { ht->key_len /= sizeof(u32); ht->p.hashfn = rhashtable_jhash2; } } /* * This is api initialization and thus we need to guarantee the * initial rhashtable allocation. Upon failure, retry with the * smallest possible size with __GFP_NOFAIL semantics. */ tbl = bucket_table_alloc(ht, size, GFP_KERNEL); if (unlikely(tbl == NULL)) { size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL); } atomic_set(&ht->nelems, 0); RCU_INIT_POINTER(ht->tbl, tbl); INIT_WORK(&ht->run_work, rht_deferred_worker); return 0; } EXPORT_SYMBOL_GPL(rhashtable_init); /** * rhltable_init - initialize a new hash list table * @hlt: hash list table to be initialized * @params: configuration parameters * * Initializes a new hash list table. * * See documentation for rhashtable_init. */ int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params) { int err; err = rhashtable_init(&hlt->ht, params); hlt->ht.rhlist = true; return err; } EXPORT_SYMBOL_GPL(rhltable_init); static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj, void (*free_fn)(void *ptr, void *arg), void *arg) { struct rhlist_head *list; if (!ht->rhlist) { free_fn(rht_obj(ht, obj), arg); return; } list = container_of(obj, struct rhlist_head, rhead); do { obj = &list->rhead; list = rht_dereference(list->next, ht); free_fn(rht_obj(ht, obj), arg); } while (list); } /** * rhashtable_free_and_destroy - free elements and destroy hash table * @ht: the hash table to destroy * @free_fn: callback to release resources of element * @arg: pointer passed to free_fn * * Stops an eventual async resize. If defined, invokes free_fn for each * element to releasal resources. Please note that RCU protected * readers may still be accessing the elements. Releasing of resources * must occur in a compatible manner. Then frees the bucket array. * * This function will eventually sleep to wait for an async resize * to complete. The caller is responsible that no further write operations * occurs in parallel. */ void rhashtable_free_and_destroy(struct rhashtable *ht, void (*free_fn)(void *ptr, void *arg), void *arg) { struct bucket_table *tbl, *next_tbl; unsigned int i; cancel_work_sync(&ht->run_work); mutex_lock(&ht->mutex); tbl = rht_dereference(ht->tbl, ht); restart: if (free_fn) { for (i = 0; i < tbl->size; i++) { struct rhash_head *pos, *next; cond_resched(); for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)), next = !rht_is_a_nulls(pos) ? rht_dereference(pos->next, ht) : NULL; !rht_is_a_nulls(pos); pos = next, next = !rht_is_a_nulls(pos) ? rht_dereference(pos->next, ht) : NULL) rhashtable_free_one(ht, pos, free_fn, arg); } } next_tbl = rht_dereference(tbl->future_tbl, ht); bucket_table_free(tbl); if (next_tbl) { tbl = next_tbl; goto restart; } mutex_unlock(&ht->mutex); } EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy); void rhashtable_destroy(struct rhashtable *ht) { return rhashtable_free_and_destroy(ht, NULL, NULL); } EXPORT_SYMBOL_GPL(rhashtable_destroy); struct rhash_lock_head __rcu **__rht_bucket_nested( const struct bucket_table *tbl, unsigned int hash) { const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); unsigned int index = hash & ((1 << tbl->nest) - 1); unsigned int size = tbl->size >> tbl->nest; unsigned int subhash = hash; union nested_table *ntbl; ntbl = nested_table_top(tbl); ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash); subhash >>= tbl->nest; while (ntbl && size > (1 << shift)) { index = subhash & ((1 << shift) - 1); ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash); size >>= shift; subhash >>= shift; } if (!ntbl) return NULL; return &ntbl[subhash].bucket; } EXPORT_SYMBOL_GPL(__rht_bucket_nested); struct rhash_lock_head __rcu **rht_bucket_nested( const struct bucket_table *tbl, unsigned int hash) { static struct rhash_lock_head __rcu *rhnull; if (!rhnull) INIT_RHT_NULLS_HEAD(rhnull); return __rht_bucket_nested(tbl, hash) ?: &rhnull; } EXPORT_SYMBOL_GPL(rht_bucket_nested); struct rhash_lock_head __rcu **rht_bucket_nested_insert( struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash) { const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); unsigned int index = hash & ((1 << tbl->nest) - 1); unsigned int size = tbl->size >> tbl->nest; union nested_table *ntbl; ntbl = nested_table_top(tbl); hash >>= tbl->nest; ntbl = nested_table_alloc(ht, &ntbl[index].table, size <= (1 << shift)); while (ntbl && size > (1 << shift)) { index = hash & ((1 << shift) - 1); size >>= shift; hash >>= shift; ntbl = nested_table_alloc(ht, &ntbl[index].table, size <= (1 << shift)); } if (!ntbl) return NULL; return &ntbl[hash].bucket; } EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * PTP 1588 clock support - private declarations for the core module. * * Copyright (C) 2010 OMICRON electronics GmbH */ #ifndef _PTP_PRIVATE_H_ #define _PTP_PRIVATE_H_ #include <linux/cdev.h> #include <linux/device.h> #include <linux/kthread.h> #include <linux/mutex.h> #include <linux/posix-clock.h> #include <linux/ptp_clock.h> #include <linux/ptp_clock_kernel.h> #include <linux/time.h> #define PTP_MAX_TIMESTAMPS 128 #define PTP_BUF_TIMESTAMPS 30 struct timestamp_event_queue { struct ptp_extts_event buf[PTP_MAX_TIMESTAMPS]; int head; int tail; spinlock_t lock; }; struct ptp_clock { struct posix_clock clock; struct device dev; struct ptp_clock_info *info; dev_t devid; int index; /* index into clocks.map */ struct pps_device *pps_source; long dialed_frequency; /* remembers the frequency adjustment */ struct timestamp_event_queue tsevq; /* simple fifo for time stamps */ struct mutex tsevq_mux; /* one process at a time reading the fifo */ struct mutex pincfg_mux; /* protect concurrent info->pin_config access */ wait_queue_head_t tsev_wq; int defunct; /* tells readers to go away when clock is being removed */ struct device_attribute *pin_dev_attr; struct attribute **pin_attr; struct attribute_group pin_attr_group; /* 1st entry is a pointer to the real group, 2nd is NULL terminator */ const struct attribute_group *pin_attr_groups[2]; struct kthread_worker *kworker; struct kthread_delayed_work aux_work; }; /* * The function queue_cnt() is safe for readers to call without * holding q->lock. Readers use this function to verify that the queue * is nonempty before proceeding with a dequeue operation. The fact * that a writer might concurrently increment the tail does not * matter, since the queue remains nonempty nonetheless. */ static inline int queue_cnt(struct timestamp_event_queue *q) { int cnt = q->tail - q->head; return cnt < 0 ? PTP_MAX_TIMESTAMPS + cnt : cnt; } /* * see ptp_chardev.c */ /* caller must hold pincfg_mux */ int ptp_set_pinfunc(struct ptp_clock *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan); long ptp_ioctl(struct posix_clock *pc, unsigned int cmd, unsigned long arg); int ptp_open(struct posix_clock *pc, fmode_t fmode); ssize_t ptp_read(struct posix_clock *pc, uint flags, char __user *buf, size_t cnt); __poll_t ptp_poll(struct posix_clock *pc, struct file *fp, poll_table *wait); /* * see ptp_sysfs.c */ extern const struct attribute_group *ptp_groups[]; int ptp_populate_pin_groups(struct ptp_clock *ptp); void ptp_cleanup_pin_groups(struct ptp_clock *ptp); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_ICMPV6_H #define _LINUX_ICMPV6_H #include <linux/skbuff.h> #include <linux/ipv6.h> #include <uapi/linux/icmpv6.h> static inline struct icmp6hdr *icmp6_hdr(const struct sk_buff *skb) { return (struct icmp6hdr *)skb_transport_header(skb); } #include <linux/netdevice.h> #if IS_ENABLED(CONFIG_IPV6) typedef void ip6_icmp_send_t(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct in6_addr *force_saddr, const struct inet6_skb_parm *parm); void icmp6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct in6_addr *force_saddr, const struct inet6_skb_parm *parm); #if IS_BUILTIN(CONFIG_IPV6) static inline void __icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct inet6_skb_parm *parm) { icmp6_send(skb, type, code, info, NULL, parm); } static inline int inet6_register_icmp_sender(ip6_icmp_send_t *fn) { BUILD_BUG_ON(fn != icmp6_send); return 0; } static inline int inet6_unregister_icmp_sender(ip6_icmp_send_t *fn) { BUILD_BUG_ON(fn != icmp6_send); return 0; } #else extern void __icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct inet6_skb_parm *parm); extern int inet6_register_icmp_sender(ip6_icmp_send_t *fn); extern int inet6_unregister_icmp_sender(ip6_icmp_send_t *fn); #endif static inline void icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info) { __icmpv6_send(skb, type, code, info, IP6CB(skb)); } int ip6_err_gen_icmpv6_unreach(struct sk_buff *skb, int nhs, int type, unsigned int data_len); #if IS_ENABLED(CONFIG_NF_NAT) void icmpv6_ndo_send(struct sk_buff *skb_in, u8 type, u8 code, __u32 info); #else static inline void icmpv6_ndo_send(struct sk_buff *skb_in, u8 type, u8 code, __u32 info) { struct inet6_skb_parm parm = { 0 }; __icmpv6_send(skb_in, type, code, info, &parm); } #endif #else static inline void icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info) { } static inline void icmpv6_ndo_send(struct sk_buff *skb, u8 type, u8 code, __u32 info) { } #endif extern int icmpv6_init(void); extern int icmpv6_err_convert(u8 type, u8 code, int *err); extern void icmpv6_cleanup(void); extern void icmpv6_param_prob(struct sk_buff *skb, u8 code, int pos); struct flowi6; struct in6_addr; extern void icmpv6_flow_init(struct sock *sk, struct flowi6 *fl6, u8 type, const struct in6_addr *saddr, const struct in6_addr *daddr, int oif); static inline bool icmpv6_is_err(int type) { switch (type) { case ICMPV6_DEST_UNREACH: case ICMPV6_PKT_TOOBIG: case ICMPV6_TIME_EXCEED: case ICMPV6_PARAMPROB: return true; } return false; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* memcontrol.h - Memory Controller * * Copyright IBM Corporation, 2007 * Author Balbir Singh <balbir@linux.vnet.ibm.com> * * Copyright 2007 OpenVZ SWsoft Inc * Author: Pavel Emelianov <xemul@openvz.org> */ #ifndef _LINUX_MEMCONTROL_H #define _LINUX_MEMCONTROL_H #include <linux/cgroup.h> #include <linux/vm_event_item.h> #include <linux/hardirq.h> #include <linux/jump_label.h> #include <linux/page_counter.h> #include <linux/vmpressure.h> #include <linux/eventfd.h> #include <linux/mm.h> #include <linux/vmstat.h> #include <linux/writeback.h> #include <linux/page-flags.h> struct mem_cgroup; struct obj_cgroup; struct page; struct mm_struct; struct kmem_cache; /* Cgroup-specific page state, on top of universal node page state */ enum memcg_stat_item { MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, MEMCG_SOCK, MEMCG_PERCPU_B, MEMCG_NR_STAT, }; enum memcg_memory_event { MEMCG_LOW, MEMCG_HIGH, MEMCG_MAX, MEMCG_OOM, MEMCG_OOM_KILL, MEMCG_SWAP_HIGH, MEMCG_SWAP_MAX, MEMCG_SWAP_FAIL, MEMCG_NR_MEMORY_EVENTS, }; struct mem_cgroup_reclaim_cookie { pg_data_t *pgdat; unsigned int generation; }; #ifdef CONFIG_MEMCG #define MEM_CGROUP_ID_SHIFT 16 #define MEM_CGROUP_ID_MAX USHRT_MAX struct mem_cgroup_id { int id; refcount_t ref; }; /* * Per memcg event counter is incremented at every pagein/pageout. With THP, * it will be incremented by the number of pages. This counter is used * to trigger some periodic events. This is straightforward and better * than using jiffies etc. to handle periodic memcg event. */ enum mem_cgroup_events_target { MEM_CGROUP_TARGET_THRESH, MEM_CGROUP_TARGET_SOFTLIMIT, MEM_CGROUP_NTARGETS, }; struct memcg_vmstats_percpu { long stat[MEMCG_NR_STAT]; unsigned long events[NR_VM_EVENT_ITEMS]; unsigned long nr_page_events; unsigned long targets[MEM_CGROUP_NTARGETS]; }; struct mem_cgroup_reclaim_iter { struct mem_cgroup *position; /* scan generation, increased every round-trip */ unsigned int generation; }; struct lruvec_stat { long count[NR_VM_NODE_STAT_ITEMS]; }; /* * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, * which have elements charged to this memcg. */ struct memcg_shrinker_map { struct rcu_head rcu; unsigned long map[]; }; /* * per-node information in memory controller. */ struct mem_cgroup_per_node { struct lruvec lruvec; /* Legacy local VM stats */ struct lruvec_stat __percpu *lruvec_stat_local; /* Subtree VM stats (batched updates) */ struct lruvec_stat __percpu *lruvec_stat_cpu; atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; struct mem_cgroup_reclaim_iter iter; struct memcg_shrinker_map __rcu *shrinker_map; struct rb_node tree_node; /* RB tree node */ unsigned long usage_in_excess;/* Set to the value by which */ /* the soft limit is exceeded*/ bool on_tree; struct mem_cgroup *memcg; /* Back pointer, we cannot */ /* use container_of */ }; struct mem_cgroup_threshold { struct eventfd_ctx *eventfd; unsigned long threshold; }; /* For threshold */ struct mem_cgroup_threshold_ary { /* An array index points to threshold just below or equal to usage. */ int current_threshold; /* Size of entries[] */ unsigned int size; /* Array of thresholds */ struct mem_cgroup_threshold entries[]; }; struct mem_cgroup_thresholds { /* Primary thresholds array */ struct mem_cgroup_threshold_ary *primary; /* * Spare threshold array. * This is needed to make mem_cgroup_unregister_event() "never fail". * It must be able to store at least primary->size - 1 entries. */ struct mem_cgroup_threshold_ary *spare; }; enum memcg_kmem_state { KMEM_NONE, KMEM_ALLOCATED, KMEM_ONLINE, }; #if defined(CONFIG_SMP) struct memcg_padding { char x[0]; } ____cacheline_internodealigned_in_smp; #define MEMCG_PADDING(name) struct memcg_padding name; #else #define MEMCG_PADDING(name) #endif /* * Remember four most recent foreign writebacks with dirty pages in this * cgroup. Inode sharing is expected to be uncommon and, even if we miss * one in a given round, we're likely to catch it later if it keeps * foreign-dirtying, so a fairly low count should be enough. * * See mem_cgroup_track_foreign_dirty_slowpath() for details. */ #define MEMCG_CGWB_FRN_CNT 4 struct memcg_cgwb_frn { u64 bdi_id; /* bdi->id of the foreign inode */ int memcg_id; /* memcg->css.id of foreign inode */ u64 at; /* jiffies_64 at the time of dirtying */ struct wb_completion done; /* tracks in-flight foreign writebacks */ }; /* * Bucket for arbitrarily byte-sized objects charged to a memory * cgroup. The bucket can be reparented in one piece when the cgroup * is destroyed, without having to round up the individual references * of all live memory objects in the wild. */ struct obj_cgroup { struct percpu_ref refcnt; struct mem_cgroup *memcg; atomic_t nr_charged_bytes; union { struct list_head list; struct rcu_head rcu; }; }; /* * The memory controller data structure. The memory controller controls both * page cache and RSS per cgroup. We would eventually like to provide * statistics based on the statistics developed by Rik Van Riel for clock-pro, * to help the administrator determine what knobs to tune. */ struct mem_cgroup { struct cgroup_subsys_state css; /* Private memcg ID. Used to ID objects that outlive the cgroup */ struct mem_cgroup_id id; /* Accounted resources */ struct page_counter memory; /* Both v1 & v2 */ union { struct page_counter swap; /* v2 only */ struct page_counter memsw; /* v1 only */ }; /* Legacy consumer-oriented counters */ struct page_counter kmem; /* v1 only */ struct page_counter tcpmem; /* v1 only */ /* Range enforcement for interrupt charges */ struct work_struct high_work; unsigned long soft_limit; /* vmpressure notifications */ struct vmpressure vmpressure; /* * Should the accounting and control be hierarchical, per subtree? */ bool use_hierarchy; /* * Should the OOM killer kill all belonging tasks, had it kill one? */ bool oom_group; /* protected by memcg_oom_lock */ bool oom_lock; int under_oom; int swappiness; /* OOM-Killer disable */ int oom_kill_disable; /* memory.events and memory.events.local */ struct cgroup_file events_file; struct cgroup_file events_local_file; /* handle for "memory.swap.events" */ struct cgroup_file swap_events_file; /* protect arrays of thresholds */ struct mutex thresholds_lock; /* thresholds for memory usage. RCU-protected */ struct mem_cgroup_thresholds thresholds; /* thresholds for mem+swap usage. RCU-protected */ struct mem_cgroup_thresholds memsw_thresholds; /* For oom notifier event fd */ struct list_head oom_notify; /* * Should we move charges of a task when a task is moved into this * mem_cgroup ? And what type of charges should we move ? */ unsigned long move_charge_at_immigrate; /* taken only while moving_account > 0 */ spinlock_t move_lock; unsigned long move_lock_flags; MEMCG_PADDING(_pad1_); atomic_long_t vmstats[MEMCG_NR_STAT]; atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; /* memory.events */ atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; unsigned long socket_pressure; /* Legacy tcp memory accounting */ bool tcpmem_active; int tcpmem_pressure; #ifdef CONFIG_MEMCG_KMEM /* Index in the kmem_cache->memcg_params.memcg_caches array */ int kmemcg_id; enum memcg_kmem_state kmem_state; struct obj_cgroup __rcu *objcg; struct list_head objcg_list; /* list of inherited objcgs */ #endif MEMCG_PADDING(_pad2_); /* * set > 0 if pages under this cgroup are moving to other cgroup. */ atomic_t moving_account; struct task_struct *move_lock_task; /* Legacy local VM stats and events */ struct memcg_vmstats_percpu __percpu *vmstats_local; /* Subtree VM stats and events (batched updates) */ struct memcg_vmstats_percpu __percpu *vmstats_percpu; #ifdef CONFIG_CGROUP_WRITEBACK struct list_head cgwb_list; struct wb_domain cgwb_domain; struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; #endif /* List of events which userspace want to receive */ struct list_head event_list; spinlock_t event_list_lock; #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct deferred_split deferred_split_queue; #endif struct mem_cgroup_per_node *nodeinfo[0]; /* WARNING: nodeinfo must be the last member here */ }; /* * size of first charge trial. "32" comes from vmscan.c's magic value. * TODO: maybe necessary to use big numbers in big irons. */ #define MEMCG_CHARGE_BATCH 32U extern struct mem_cgroup *root_mem_cgroup; static __always_inline bool memcg_stat_item_in_bytes(int idx) { if (idx == MEMCG_PERCPU_B) return true; return vmstat_item_in_bytes(idx); } static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return (memcg == root_mem_cgroup); } static inline bool mem_cgroup_disabled(void) { return !cgroup_subsys_enabled(memory_cgrp_subsys); } static inline void mem_cgroup_protection(struct mem_cgroup *root, struct mem_cgroup *memcg, unsigned long *min, unsigned long *low) { *min = *low = 0; if (mem_cgroup_disabled()) return; /* * There is no reclaim protection applied to a targeted reclaim. * We are special casing this specific case here because * mem_cgroup_protected calculation is not robust enough to keep * the protection invariant for calculated effective values for * parallel reclaimers with different reclaim target. This is * especially a problem for tail memcgs (as they have pages on LRU) * which would want to have effective values 0 for targeted reclaim * but a different value for external reclaim. * * Example * Let's have global and A's reclaim in parallel: * | * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) * |\ * | C (low = 1G, usage = 2.5G) * B (low = 1G, usage = 0.5G) * * For the global reclaim * A.elow = A.low * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow * C.elow = min(C.usage, C.low) * * With the effective values resetting we have A reclaim * A.elow = 0 * B.elow = B.low * C.elow = C.low * * If the global reclaim races with A's reclaim then * B.elow = C.elow = 0 because children_low_usage > A.elow) * is possible and reclaiming B would be violating the protection. * */ if (root == memcg) return; *min = READ_ONCE(memcg->memory.emin); *low = READ_ONCE(memcg->memory.elow); } void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg); static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) { /* * The root memcg doesn't account charges, and doesn't support * protection. */ return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); } static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) { if (!mem_cgroup_supports_protection(memcg)) return false; return READ_ONCE(memcg->memory.elow) >= page_counter_read(&memcg->memory); } static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) { if (!mem_cgroup_supports_protection(memcg)) return false; return READ_ONCE(memcg->memory.emin) >= page_counter_read(&memcg->memory); } int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); void mem_cgroup_uncharge(struct page *page); void mem_cgroup_uncharge_list(struct list_head *page_list); void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); static struct mem_cgroup_per_node * mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) { return memcg->nodeinfo[nid]; } /** * mem_cgroup_lruvec - get the lru list vector for a memcg & node * @memcg: memcg of the wanted lruvec * * Returns the lru list vector holding pages for a given @memcg & * @node combination. This can be the node lruvec, if the memory * controller is disabled. */ static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, struct pglist_data *pgdat) { struct mem_cgroup_per_node *mz; struct lruvec *lruvec; if (mem_cgroup_disabled()) { lruvec = &pgdat->__lruvec; goto out; } if (!memcg) memcg = root_mem_cgroup; mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); lruvec = &mz->lruvec; out: /* * Since a node can be onlined after the mem_cgroup was created, * we have to be prepared to initialize lruvec->pgdat here; * and if offlined then reonlined, we need to reinitialize it. */ if (unlikely(lruvec->pgdat != pgdat)) lruvec->pgdat = pgdat; return lruvec; } struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); static inline struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ return css ? container_of(css, struct mem_cgroup, css) : NULL; } static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) { return percpu_ref_tryget(&objcg->refcnt); } static inline void obj_cgroup_get(struct obj_cgroup *objcg) { percpu_ref_get(&objcg->refcnt); } static inline void obj_cgroup_put(struct obj_cgroup *objcg) { percpu_ref_put(&objcg->refcnt); } /* * After the initialization objcg->memcg is always pointing at * a valid memcg, but can be atomically swapped to the parent memcg. * * The caller must ensure that the returned memcg won't be released: * e.g. acquire the rcu_read_lock or css_set_lock. */ static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) { return READ_ONCE(objcg->memcg); } static inline void mem_cgroup_put(struct mem_cgroup *memcg) { if (memcg) css_put(&memcg->css); } #define mem_cgroup_from_counter(counter, member) \ container_of(counter, struct mem_cgroup, member) struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, struct mem_cgroup *, struct mem_cgroup_reclaim_cookie *); void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); int mem_cgroup_scan_tasks(struct mem_cgroup *, int (*)(struct task_struct *, void *), void *); static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return 0; return memcg->id.id; } struct mem_cgroup *mem_cgroup_from_id(unsigned short id); static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) { return mem_cgroup_from_css(seq_css(m)); } static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) { struct mem_cgroup_per_node *mz; if (mem_cgroup_disabled()) return NULL; mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return mz->memcg; } /** * parent_mem_cgroup - find the accounting parent of a memcg * @memcg: memcg whose parent to find * * Returns the parent memcg, or NULL if this is the root or the memory * controller is in legacy no-hierarchy mode. */ static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { if (!memcg->memory.parent) return NULL; return mem_cgroup_from_counter(memcg->memory.parent, memory); } static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root) { if (root == memcg) return true; if (!root->use_hierarchy) return false; return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { struct mem_cgroup *task_memcg; bool match = false; rcu_read_lock(); task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (task_memcg) match = mem_cgroup_is_descendant(task_memcg, memcg); rcu_read_unlock(); return match; } struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); ino_t page_cgroup_ino(struct page *page); static inline bool mem_cgroup_online(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return true; return !!(memcg->css.flags & CSS_ONLINE); } /* * For memory reclaim. */ int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, int zid, int nr_pages); static inline unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { struct mem_cgroup_per_node *mz; mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); } void mem_cgroup_handle_over_high(void); unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); unsigned long mem_cgroup_size(struct mem_cgroup *memcg); void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p); void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); static inline void mem_cgroup_enter_user_fault(void) { WARN_ON(current->in_user_fault); current->in_user_fault = 1; } static inline void mem_cgroup_exit_user_fault(void) { WARN_ON(!current->in_user_fault); current->in_user_fault = 0; } static inline bool task_in_memcg_oom(struct task_struct *p) { return p->memcg_in_oom; } bool mem_cgroup_oom_synchronize(bool wait); struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, struct mem_cgroup *oom_domain); void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); #ifdef CONFIG_MEMCG_SWAP extern bool cgroup_memory_noswap; #endif struct mem_cgroup *lock_page_memcg(struct page *page); void __unlock_page_memcg(struct mem_cgroup *memcg); void unlock_page_memcg(struct page *page); /* * idx can be of type enum memcg_stat_item or node_stat_item. * Keep in sync with memcg_exact_page_state(). */ static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) { long x = atomic_long_read(&memcg->vmstats[idx]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } /* * idx can be of type enum memcg_stat_item or node_stat_item. * Keep in sync with memcg_exact_page_state(). */ static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) { long x = 0; int cpu; for_each_possible_cpu(cpu) x += per_cpu(memcg->vmstats_local->stat[idx], cpu); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) { unsigned long flags; local_irq_save(flags); __mod_memcg_state(memcg, idx, val); local_irq_restore(flags); } /** * mod_memcg_page_state - update page state statistics * @page: the page * @idx: page state item to account * @val: number of pages (positive or negative) * * The @page must be locked or the caller must use lock_page_memcg() * to prevent double accounting when the page is concurrently being * moved to another memcg: * * lock_page(page) or lock_page_memcg(page) * if (TestClearPageState(page)) * mod_memcg_page_state(page, state, -1); * unlock_page(page) or unlock_page_memcg(page) * * Kernel pages are an exception to this, since they'll never move. */ static inline void __mod_memcg_page_state(struct page *page, int idx, int val) { if (page->mem_cgroup) __mod_memcg_state(page->mem_cgroup, idx, val); } static inline void mod_memcg_page_state(struct page *page, int idx, int val) { if (page->mem_cgroup) mod_memcg_state(page->mem_cgroup, idx, val); } static inline unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) { struct mem_cgroup_per_node *pn; long x; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); x = atomic_long_read(&pn->lruvec_stat[idx]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, enum node_stat_item idx) { struct mem_cgroup_per_node *pn; long x = 0; int cpu; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); for_each_possible_cpu(cpu) x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val); void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val); void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); void mod_memcg_obj_state(void *p, int idx, int val); static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_slab_state(p, idx, val); local_irq_restore(flags); } static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_memcg_lruvec_state(lruvec, idx, val); local_irq_restore(flags); } static inline void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_state(lruvec, idx, val); local_irq_restore(flags); } static inline void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { struct page *head = compound_head(page); /* rmap on tail pages */ pg_data_t *pgdat = page_pgdat(page); struct lruvec *lruvec; /* Untracked pages have no memcg, no lruvec. Update only the node */ if (!head->mem_cgroup) { __mod_node_page_state(pgdat, idx, val); return; } lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat); __mod_lruvec_state(lruvec, idx, val); } static inline void mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_page_state(page, idx, val); local_irq_restore(flags); } unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned); void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count); static inline void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { unsigned long flags; local_irq_save(flags); __count_memcg_events(memcg, idx, count); local_irq_restore(flags); } static inline void count_memcg_page_event(struct page *page, enum vm_event_item idx) { if (page->mem_cgroup) count_memcg_events(page->mem_cgroup, idx, 1); } static inline void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) { struct mem_cgroup *memcg; if (mem_cgroup_disabled()) return; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (likely(memcg)) count_memcg_events(memcg, idx, 1); rcu_read_unlock(); } static inline void memcg_memory_event(struct mem_cgroup *memcg, enum memcg_memory_event event) { bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || event == MEMCG_SWAP_FAIL; atomic_long_inc(&memcg->memory_events_local[event]); if (!swap_event) cgroup_file_notify(&memcg->events_local_file); do { atomic_long_inc(&memcg->memory_events[event]); if (swap_event) cgroup_file_notify(&memcg->swap_events_file); else cgroup_file_notify(&memcg->events_file); if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) break; if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) break; } while ((memcg = parent_mem_cgroup(memcg)) && !mem_cgroup_is_root(memcg)); } static inline void memcg_memory_event_mm(struct mm_struct *mm, enum memcg_memory_event event) { struct mem_cgroup *memcg; if (mem_cgroup_disabled()) return; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (likely(memcg)) memcg_memory_event(memcg, event); rcu_read_unlock(); } void split_page_memcg(struct page *head, unsigned int nr); #else /* CONFIG_MEMCG */ #define MEM_CGROUP_ID_SHIFT 0 #define MEM_CGROUP_ID_MAX 0 struct mem_cgroup; static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return true; } static inline bool mem_cgroup_disabled(void) { return true; } static inline void memcg_memory_event(struct mem_cgroup *memcg, enum memcg_memory_event event) { } static inline void memcg_memory_event_mm(struct mm_struct *mm, enum memcg_memory_event event) { } static inline void mem_cgroup_protection(struct mem_cgroup *root, struct mem_cgroup *memcg, unsigned long *min, unsigned long *low) { *min = *low = 0; } static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg) { } static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) { return false; } static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) { return false; } static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { return 0; } static inline void mem_cgroup_uncharge(struct page *page) { } static inline void mem_cgroup_uncharge_list(struct list_head *page_list) { } static inline void mem_cgroup_migrate(struct page *old, struct page *new) { } static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, struct pglist_data *pgdat) { return &pgdat->__lruvec; } static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) { return &pgdat->__lruvec; } static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { return NULL; } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { return true; } static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) { return NULL; } static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) { return NULL; } static inline void mem_cgroup_put(struct mem_cgroup *memcg) { } static inline struct mem_cgroup * mem_cgroup_iter(struct mem_cgroup *root, struct mem_cgroup *prev, struct mem_cgroup_reclaim_cookie *reclaim) { return NULL; } static inline void mem_cgroup_iter_break(struct mem_cgroup *root, struct mem_cgroup *prev) { } static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, int (*fn)(struct task_struct *, void *), void *arg) { return 0; } static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) { return 0; } static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) { WARN_ON_ONCE(id); /* XXX: This should always return root_mem_cgroup */ return NULL; } static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) { return NULL; } static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) { return NULL; } static inline bool mem_cgroup_online(struct mem_cgroup *memcg) { return true; } static inline unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { return 0; } static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) { return 0; } static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) { return 0; } static inline void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) { } static inline voi