1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 /* SPDX-License-Identifier: GPL-2.0 */ /* * workqueue.h --- work queue handling for Linux. */ #ifndef _LINUX_WORKQUEUE_H #define _LINUX_WORKQUEUE_H #include <linux/timer.h> #include <linux/linkage.h> #include <linux/bitops.h> #include <linux/lockdep.h> #include <linux/threads.h> #include <linux/atomic.h> #include <linux/cpumask.h> #include <linux/rcupdate.h> struct workqueue_struct; struct work_struct; typedef void (*work_func_t)(struct work_struct *work); void delayed_work_timer_fn(struct timer_list *t); /* * The first word is the work queue pointer and the flags rolled into * one */ #define work_data_bits(work) ((unsigned long *)(&(work)->data)) enum { WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */ WORK_STRUCT_DELAYED_BIT = 1, /* work item is delayed */ WORK_STRUCT_PWQ_BIT = 2, /* data points to pwq */ WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */ #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC_BIT = 4, /* static initializer (debugobjects) */ WORK_STRUCT_COLOR_SHIFT = 5, /* color for workqueue flushing */ #else WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */ #endif WORK_STRUCT_COLOR_BITS = 4, WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT, WORK_STRUCT_DELAYED = 1 << WORK_STRUCT_DELAYED_BIT, WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT, WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT, #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT, #else WORK_STRUCT_STATIC = 0, #endif /* * The last color is no color used for works which don't * participate in workqueue flushing. */ WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS) - 1, WORK_NO_COLOR = WORK_NR_COLORS, /* not bound to any CPU, prefer the local CPU */ WORK_CPU_UNBOUND = NR_CPUS, /* * Reserve 8 bits off of pwq pointer w/ debugobjects turned off. * This makes pwqs aligned to 256 bytes and allows 15 workqueue * flush colors. */ WORK_STRUCT_FLAG_BITS = WORK_STRUCT_COLOR_SHIFT + WORK_STRUCT_COLOR_BITS, /* data contains off-queue information when !WORK_STRUCT_PWQ */ WORK_OFFQ_FLAG_BASE = WORK_STRUCT_COLOR_SHIFT, __WORK_OFFQ_CANCELING = WORK_OFFQ_FLAG_BASE, WORK_OFFQ_CANCELING = (1 << __WORK_OFFQ_CANCELING), /* * When a work item is off queue, its high bits point to the last * pool it was on. Cap at 31 bits and use the highest number to * indicate that no pool is associated. */ WORK_OFFQ_FLAG_BITS = 1, WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS, WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT, WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31, WORK_OFFQ_POOL_NONE = (1LU << WORK_OFFQ_POOL_BITS) - 1, /* convenience constants */ WORK_STRUCT_FLAG_MASK = (1UL << WORK_STRUCT_FLAG_BITS) - 1, WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK, WORK_STRUCT_NO_POOL = (unsigned long)WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT, /* bit mask for work_busy() return values */ WORK_BUSY_PENDING = 1 << 0, WORK_BUSY_RUNNING = 1 << 1, /* maximum string length for set_worker_desc() */ WORKER_DESC_LEN = 24, }; struct work_struct { atomic_long_t data; struct list_head entry; work_func_t func; #ifdef CONFIG_LOCKDEP struct lockdep_map lockdep_map; #endif }; #define WORK_DATA_INIT() ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL) #define WORK_DATA_STATIC_INIT() \ ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)) struct delayed_work { struct work_struct work; struct timer_list timer; /* target workqueue and CPU ->timer uses to queue ->work */ struct workqueue_struct *wq; int cpu; }; struct rcu_work { struct work_struct work; struct rcu_head rcu; /* target workqueue ->rcu uses to queue ->work */ struct workqueue_struct *wq; }; /** * struct workqueue_attrs - A struct for workqueue attributes. * * This can be used to change attributes of an unbound workqueue. */ struct workqueue_attrs { /** * @nice: nice level */ int nice; /** * @cpumask: allowed CPUs */ cpumask_var_t cpumask; /** * @no_numa: disable NUMA affinity * * Unlike other fields, ``no_numa`` isn't a property of a worker_pool. It * only modifies how :c:func:`apply_workqueue_attrs` select pools and thus * doesn't participate in pool hash calculations or equality comparisons. */ bool no_numa; }; static inline struct delayed_work *to_delayed_work(struct work_struct *work) { return container_of(work, struct delayed_work, work); } static inline struct rcu_work *to_rcu_work(struct work_struct *work) { return container_of(work, struct rcu_work, work); } struct execute_work { struct work_struct work; }; #ifdef CONFIG_LOCKDEP /* * NB: because we have to copy the lockdep_map, setting _key * here is required, otherwise it could get initialised to the * copy of the lockdep_map! */ #define __WORK_INIT_LOCKDEP_MAP(n, k) \ .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k), #else #define __WORK_INIT_LOCKDEP_MAP(n, k) #endif #define __WORK_INITIALIZER(n, f) { \ .data = WORK_DATA_STATIC_INIT(), \ .entry = { &(n).entry, &(n).entry }, \ .func = (f), \ __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ } #define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \ .work = __WORK_INITIALIZER((n).work, (f)), \ .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\ (tflags) | TIMER_IRQSAFE), \ } #define DECLARE_WORK(n, f) \ struct work_struct n = __WORK_INITIALIZER(n, f) #define DECLARE_DELAYED_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0) #define DECLARE_DEFERRABLE_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE) #ifdef CONFIG_DEBUG_OBJECTS_WORK extern void __init_work(struct work_struct *work, int onstack); extern void destroy_work_on_stack(struct work_struct *work); extern void destroy_delayed_work_on_stack(struct delayed_work *work); static inline unsigned int work_static(struct work_struct *work) { return *work_data_bits(work) & WORK_STRUCT_STATIC; } #else static inline void __init_work(struct work_struct *work, int onstack) { } static inline void destroy_work_on_stack(struct work_struct *work) { } static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { } static inline unsigned int work_static(struct work_struct *work) { return 0; } #endif /* * initialize all of a work item in one go * * NOTE! No point in using "atomic_long_set()": using a direct * assignment of the work data initializer allows the compiler * to generate better code. */ #ifdef CONFIG_LOCKDEP #define __INIT_WORK(_work, _func, _onstack) \ do { \ static struct lock_class_key __key; \ \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #else #define __INIT_WORK(_work, _func, _onstack) \ do { \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #endif #define INIT_WORK(_work, _func) \ __INIT_WORK((_work), (_func), 0) #define INIT_WORK_ONSTACK(_work, _func) \ __INIT_WORK((_work), (_func), 1) #define __INIT_DELAYED_WORK(_work, _func, _tflags) \ do { \ INIT_WORK(&(_work)->work, (_func)); \ __init_timer(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \ do { \ INIT_WORK_ONSTACK(&(_work)->work, (_func)); \ __init_timer_on_stack(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define INIT_DELAYED_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, 0) #define INIT_DELAYED_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0) #define INIT_DEFERRABLE_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE) #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE) #define INIT_RCU_WORK(_work, _func) \ INIT_WORK(&(_work)->work, (_func)) #define INIT_RCU_WORK_ONSTACK(_work, _func) \ INIT_WORK_ONSTACK(&(_work)->work, (_func)) /** * work_pending - Find out whether a work item is currently pending * @work: The work item in question */ #define work_pending(work) \ test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) /** * delayed_work_pending - Find out whether a delayable work item is currently * pending * @w: The work item in question */ #define delayed_work_pending(w) \ work_pending(&(w)->work) /* * Workqueue flags and constants. For details, please refer to * Documentation/core-api/workqueue.rst. */ enum { WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ WQ_FREEZABLE = 1 << 2, /* freeze during suspend */ WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */ WQ_HIGHPRI = 1 << 4, /* high priority */ WQ_CPU_INTENSIVE = 1 << 5, /* cpu intensive workqueue */ WQ_SYSFS = 1 << 6, /* visible in sysfs, see wq_sysfs_register() */ /* * Per-cpu workqueues are generally preferred because they tend to * show better performance thanks to cache locality. Per-cpu * workqueues exclude the scheduler from choosing the CPU to * execute the worker threads, which has an unfortunate side effect * of increasing power consumption. * * The scheduler considers a CPU idle if it doesn't have any task * to execute and tries to keep idle cores idle to conserve power; * however, for example, a per-cpu work item scheduled from an * interrupt handler on an idle CPU will force the scheduler to * excute the work item on that CPU breaking the idleness, which in * turn may lead to more scheduling choices which are sub-optimal * in terms of power consumption. * * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default * but become unbound if workqueue.power_efficient kernel param is * specified. Per-cpu workqueues which are identified to * contribute significantly to power-consumption are identified and * marked with this flag and enabling the power_efficient mode * leads to noticeable power saving at the cost of small * performance disadvantage. * * http://thread.gmane.org/gmane.linux.kernel/1480396 */ WQ_POWER_EFFICIENT = 1 << 7, __WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */ __WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */ __WQ_LEGACY = 1 << 18, /* internal: create*_workqueue() */ __WQ_ORDERED_EXPLICIT = 1 << 19, /* internal: alloc_ordered_workqueue() */ WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */ WQ_MAX_UNBOUND_PER_CPU = 4, /* 4 * #cpus for unbound wq */ WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2, }; /* unbound wq's aren't per-cpu, scale max_active according to #cpus */ #define WQ_UNBOUND_MAX_ACTIVE \ max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU) /* * System-wide workqueues which are always present. * * system_wq is the one used by schedule[_delayed]_work[_on](). * Multi-CPU multi-threaded. There are users which expect relatively * short queue flush time. Don't queue works which can run for too * long. * * system_highpri_wq is similar to system_wq but for work items which * require WQ_HIGHPRI. * * system_long_wq is similar to system_wq but may host long running * works. Queue flushing might take relatively long. * * system_unbound_wq is unbound workqueue. Workers are not bound to * any specific CPU, not concurrency managed, and all queued works are * executed immediately as long as max_active limit is not reached and * resources are available. * * system_freezable_wq is equivalent to system_wq except that it's * freezable. * * *_power_efficient_wq are inclined towards saving power and converted * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise, * they are same as their non-power-efficient counterparts - e.g. * system_power_efficient_wq is identical to system_wq if * 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info. */ extern struct workqueue_struct *system_wq; extern struct workqueue_struct *system_highpri_wq; extern struct workqueue_struct *system_long_wq; extern struct workqueue_struct *system_unbound_wq; extern struct workqueue_struct *system_freezable_wq; extern struct workqueue_struct *system_power_efficient_wq; extern struct workqueue_struct *system_freezable_power_efficient_wq; /** * alloc_workqueue - allocate a workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags * @max_active: max in-flight work items, 0 for default * remaining args: args for @fmt * * Allocate a workqueue with the specified parameters. For detailed * information on WQ_* flags, please refer to * Documentation/core-api/workqueue.rst. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ struct workqueue_struct *alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...); /** * alloc_ordered_workqueue - allocate an ordered workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful) * @args...: args for @fmt * * Allocate an ordered workqueue. An ordered workqueue executes at * most one work item at any given time in the queued order. They are * implemented as unbound workqueues with @max_active of one. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ #define alloc_ordered_workqueue(fmt, flags, args...) \ alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | \ __WQ_ORDERED_EXPLICIT | (flags), 1, ##args) #define create_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name)) #define create_freezable_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \ WQ_MEM_RECLAIM, 1, (name)) #define create_singlethread_workqueue(name) \ alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name) extern void destroy_workqueue(struct workqueue_struct *wq); struct workqueue_attrs *alloc_workqueue_attrs(void); void free_workqueue_attrs(struct workqueue_attrs *attrs); int apply_workqueue_attrs(struct workqueue_struct *wq, const struct workqueue_attrs *attrs); int workqueue_set_unbound_cpumask(cpumask_var_t cpumask); extern bool queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_work_node(int node, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *work, unsigned long delay); extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay); extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork); extern void flush_workqueue(struct workqueue_struct *wq); extern void drain_workqueue(struct workqueue_struct *wq); extern int schedule_on_each_cpu(work_func_t func); int execute_in_process_context(work_func_t fn, struct execute_work *); extern bool flush_work(struct work_struct *work); extern bool cancel_work_sync(struct work_struct *work); extern bool flush_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work_sync(struct delayed_work *dwork); extern bool flush_rcu_work(struct rcu_work *rwork); extern void workqueue_set_max_active(struct workqueue_struct *wq, int max_active); extern struct work_struct *current_work(void); extern bool current_is_workqueue_rescuer(void); extern bool workqueue_congested(int cpu, struct workqueue_struct *wq); extern unsigned int work_busy(struct work_struct *work); extern __printf(1, 2) void set_worker_desc(const char *fmt, ...); extern void print_worker_info(const char *log_lvl, struct task_struct *task); extern void show_workqueue_state(void); extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task); /** * queue_work - queue work on a workqueue * @wq: workqueue to use * @work: work to queue * * Returns %false if @work was already on a queue, %true otherwise. * * We queue the work to the CPU on which it was submitted, but if the CPU dies * it can be processed by another CPU. * * Memory-ordering properties: If it returns %true, guarantees that all stores * preceding the call to queue_work() in the program order will be visible from * the CPU which will execute @work by the time such work executes, e.g., * * { x is initially 0 } * * CPU0 CPU1 * * WRITE_ONCE(x, 1); [ @work is being executed ] * r0 = queue_work(wq, work); r1 = READ_ONCE(x); * * Forbids: r0 == true && r1 == 0 */ static inline bool queue_work(struct workqueue_struct *wq, struct work_struct *work) { return queue_work_on(WORK_CPU_UNBOUND, wq, work); } /** * queue_delayed_work - queue work on a workqueue after delay * @wq: workqueue to use * @dwork: delayable work to queue * @delay: number of jiffies to wait before queueing * * Equivalent to queue_delayed_work_on() but tries to use the local CPU. */ static inline bool queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * mod_delayed_work - modify delay of or queue a delayed work * @wq: workqueue to use * @dwork: work to queue * @delay: number of jiffies to wait before queueing * * mod_delayed_work_on() on local CPU. */ static inline bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * schedule_work_on - put work task on a specific cpu * @cpu: cpu to put the work task on * @work: job to be done * * This puts a job on a specific cpu */ static inline bool schedule_work_on(int cpu, struct work_struct *work) { return queue_work_on(cpu, system_wq, work); } /** * schedule_work - put work task in global workqueue * @work: job to be done * * Returns %false if @work was already on the kernel-global workqueue and * %true otherwise. * * This puts a job in the kernel-global workqueue if it was not already * queued and leaves it in the same position on the kernel-global * workqueue otherwise. * * Shares the same memory-ordering properties of queue_work(), cf. the * DocBook header of queue_work(). */ static inline bool schedule_work(struct work_struct *work) { return queue_work(system_wq, work); } /** * flush_scheduled_work - ensure that any scheduled work has run to completion. * * Forces execution of the kernel-global workqueue and blocks until its * completion. * * Think twice before calling this function! It's very easy to get into * trouble if you don't take great care. Either of the following situations * will lead to deadlock: * * One of the work items currently on the workqueue needs to acquire * a lock held by your code or its caller. * * Your code is running in the context of a work routine. * * They will be detected by lockdep when they occur, but the first might not * occur very often. It depends on what work items are on the workqueue and * what locks they need, which you have no control over. * * In most situations flushing the entire workqueue is overkill; you merely * need to know that a particular work item isn't queued and isn't running. * In such cases you should use cancel_delayed_work_sync() or * cancel_work_sync() instead. */ static inline void flush_scheduled_work(void) { flush_workqueue(system_wq); } /** * schedule_delayed_work_on - queue work in global workqueue on CPU after delay * @cpu: cpu to use * @dwork: job to be done * @delay: number of jiffies to wait * * After waiting for a given time this puts a job in the kernel-global * workqueue on the specified CPU. */ static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(cpu, system_wq, dwork, delay); } /** * schedule_delayed_work - put work task in global workqueue after delay * @dwork: job to be done * @delay: number of jiffies to wait or 0 for immediate execution * * After waiting for a given time this puts a job in the kernel-global * workqueue. */ static inline bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work(system_wq, dwork, delay); } #ifndef CONFIG_SMP static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } #else long work_on_cpu(int cpu, long (*fn)(void *), void *arg); long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg); #endif /* CONFIG_SMP */ #ifdef CONFIG_FREEZER extern void freeze_workqueues_begin(void); extern bool freeze_workqueues_busy(void); extern void thaw_workqueues(void); #endif /* CONFIG_FREEZER */ #ifdef CONFIG_SYSFS int workqueue_sysfs_register(struct workqueue_struct *wq); #else /* CONFIG_SYSFS */ static inline int workqueue_sysfs_register(struct workqueue_struct *wq) { return 0; } #endif /* CONFIG_SYSFS */ #ifdef CONFIG_WQ_WATCHDOG void wq_watchdog_touch(int cpu); #else /* CONFIG_WQ_WATCHDOG */ static inline void wq_watchdog_touch(int cpu) { } #endif /* CONFIG_WQ_WATCHDOG */ #ifdef CONFIG_SMP int workqueue_prepare_cpu(unsigned int cpu); int workqueue_online_cpu(unsigned int cpu); int workqueue_offline_cpu(unsigned int cpu); #endif void __init workqueue_init_early(void); void __init workqueue_init(void); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_CTYPE_H #define _LINUX_CTYPE_H /* * NOTE! This ctype does not handle EOF like the standard C * library is required to. */ #define _U 0x01 /* upper */ #define _L 0x02 /* lower */ #define _D 0x04 /* digit */ #define _C 0x08 /* cntrl */ #define _P 0x10 /* punct */ #define _S 0x20 /* white space (space/lf/tab) */ #define _X 0x40 /* hex digit */ #define _SP 0x80 /* hard space (0x20) */ extern const unsigned char _ctype[]; #define __ismask(x) (_ctype[(int)(unsigned char)(x)]) #define isalnum(c) ((__ismask(c)&(_U|_L|_D)) != 0) #define isalpha(c) ((__ismask(c)&(_U|_L)) != 0) #define iscntrl(c) ((__ismask(c)&(_C)) != 0) static inline int isdigit(int c) { return '0' <= c && c <= '9'; } #define isgraph(c) ((__ismask(c)&(_P|_U|_L|_D)) != 0) #define islower(c) ((__ismask(c)&(_L)) != 0) #define isprint(c) ((__ismask(c)&(_P|_U|_L|_D|_SP)) != 0) #define ispunct(c) ((__ismask(c)&(_P)) != 0) /* Note: isspace() must return false for %NUL-terminator */ #define isspace(c) ((__ismask(c)&(_S)) != 0) #define isupper(c) ((__ismask(c)&(_U)) != 0) #define isxdigit(c) ((__ismask(c)&(_D|_X)) != 0) #define isascii(c) (((unsigned char)(c))<=0x7f) #define toascii(c) (((unsigned char)(c))&0x7f) static inline unsigned char __tolower(unsigned char c) { if (isupper(c)) c -= 'A'-'a'; return c; } static inline unsigned char __toupper(unsigned char c) { if (islower(c)) c -= 'a'-'A'; return c; } #define tolower(c) __tolower(c) #define toupper(c) __toupper(c) /* * Fast implementation of tolower() for internal usage. Do not use in your * code. */ static inline char _tolower(const char c) { return c | 0x20; } /* Fast check for octal digit */ static inline int isodigit(const char c) { return c >= '0' && c <= '7'; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 /* SPDX-License-Identifier: GPL-2.0 */ /* * memory buffer pool support */ #ifndef _LINUX_MEMPOOL_H #define _LINUX_MEMPOOL_H #include <linux/wait.h> #include <linux/compiler.h> struct kmem_cache; typedef void * (mempool_alloc_t)(gfp_t gfp_mask, void *pool_data); typedef void (mempool_free_t)(void *element, void *pool_data); typedef struct mempool_s { spinlock_t lock; int min_nr; /* nr of elements at *elements */ int curr_nr; /* Current nr of elements at *elements */ void **elements; void *pool_data; mempool_alloc_t *alloc; mempool_free_t *free; wait_queue_head_t wait; } mempool_t; static inline bool mempool_initialized(mempool_t *pool) { return pool->elements != NULL; } void mempool_exit(mempool_t *pool); int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data, gfp_t gfp_mask, int node_id); int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data); extern mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data); extern mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data, gfp_t gfp_mask, int nid); extern int mempool_resize(mempool_t *pool, int new_min_nr); extern void mempool_destroy(mempool_t *pool); extern void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask) __malloc; extern void mempool_free(void *element, mempool_t *pool); /* * A mempool_alloc_t and mempool_free_t that get the memory from * a slab cache that is passed in through pool_data. * Note: the slab cache may not have a ctor function. */ void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data); void mempool_free_slab(void *element, void *pool_data); static inline int mempool_init_slab_pool(mempool_t *pool, int min_nr, struct kmem_cache *kc) { return mempool_init(pool, min_nr, mempool_alloc_slab, mempool_free_slab, (void *) kc); } static inline mempool_t * mempool_create_slab_pool(int min_nr, struct kmem_cache *kc) { return mempool_create(min_nr, mempool_alloc_slab, mempool_free_slab, (void *) kc); } /* * a mempool_alloc_t and a mempool_free_t to kmalloc and kfree the * amount of memory specified by pool_data */ void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data); void mempool_kfree(void *element, void *pool_data); static inline int mempool_init_kmalloc_pool(mempool_t *pool, int min_nr, size_t size) { return mempool_init(pool, min_nr, mempool_kmalloc, mempool_kfree, (void *) size); } static inline mempool_t *mempool_create_kmalloc_pool(int min_nr, size_t size) { return mempool_create(min_nr, mempool_kmalloc, mempool_kfree, (void *) size); } /* * A mempool_alloc_t and mempool_free_t for a simple page allocator that * allocates pages of the order specified by pool_data */ void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data); void mempool_free_pages(void *element, void *pool_data); static inline int mempool_init_page_pool(mempool_t *pool, int min_nr, int order) { return mempool_init(pool, min_nr, mempool_alloc_pages, mempool_free_pages, (void *)(long)order); } static inline mempool_t *mempool_create_page_pool(int min_nr, int order) { return mempool_create(min_nr, mempool_alloc_pages, mempool_free_pages, (void *)(long)order); } #endif /* _LINUX_MEMPOOL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 1999-2002 Vojtech Pavlik */ #ifndef _INPUT_H #define _INPUT_H #include <linux/time.h> #include <linux/list.h> #include <uapi/linux/input.h> /* Implementation details, userspace should not care about these */ #define ABS_MT_FIRST ABS_MT_TOUCH_MAJOR #define ABS_MT_LAST ABS_MT_TOOL_Y /* * In-kernel definitions. */ #include <linux/device.h> #include <linux/fs.h> #include <linux/timer.h> #include <linux/mod_devicetable.h> struct input_dev_poller; /** * struct input_value - input value representation * @type: type of value (EV_KEY, EV_ABS, etc) * @code: the value code * @value: the value */ struct input_value { __u16 type; __u16 code; __s32 value; }; enum input_clock_type { INPUT_CLK_REAL = 0, INPUT_CLK_MONO, INPUT_CLK_BOOT, INPUT_CLK_MAX }; /** * struct input_dev - represents an input device * @name: name of the device * @phys: physical path to the device in the system hierarchy * @uniq: unique identification code for the device (if device has it) * @id: id of the device (struct input_id) * @propbit: bitmap of device properties and quirks * @evbit: bitmap of types of events supported by the device (EV_KEY, * EV_REL, etc.) * @keybit: bitmap of keys/buttons this device has * @relbit: bitmap of relative axes for the device * @absbit: bitmap of absolute axes for the device * @mscbit: bitmap of miscellaneous events supported by the device * @ledbit: bitmap of leds present on the device * @sndbit: bitmap of sound effects supported by the device * @ffbit: bitmap of force feedback effects supported by the device * @swbit: bitmap of switches present on the device * @hint_events_per_packet: average number of events generated by the * device in a packet (between EV_SYN/SYN_REPORT events). Used by * event handlers to estimate size of the buffer needed to hold * events. * @keycodemax: size of keycode table * @keycodesize: size of elements in keycode table * @keycode: map of scancodes to keycodes for this device * @getkeycode: optional legacy method to retrieve current keymap. * @setkeycode: optional method to alter current keymap, used to implement * sparse keymaps. If not supplied default mechanism will be used. * The method is being called while holding event_lock and thus must * not sleep * @ff: force feedback structure associated with the device if device * supports force feedback effects * @poller: poller structure associated with the device if device is * set up to use polling mode * @repeat_key: stores key code of the last key pressed; used to implement * software autorepeat * @timer: timer for software autorepeat * @rep: current values for autorepeat parameters (delay, rate) * @mt: pointer to multitouch state * @absinfo: array of &struct input_absinfo elements holding information * about absolute axes (current value, min, max, flat, fuzz, * resolution) * @key: reflects current state of device's keys/buttons * @led: reflects current state of device's LEDs * @snd: reflects current state of sound effects * @sw: reflects current state of device's switches * @open: this method is called when the very first user calls * input_open_device(). The driver must prepare the device * to start generating events (start polling thread, * request an IRQ, submit URB, etc.) * @close: this method is called when the very last user calls * input_close_device(). * @flush: purges the device. Most commonly used to get rid of force * feedback effects loaded into the device when disconnecting * from it * @event: event handler for events sent _to_ the device, like EV_LED * or EV_SND. The device is expected to carry out the requested * action (turn on a LED, play sound, etc.) The call is protected * by @event_lock and must not sleep * @grab: input handle that currently has the device grabbed (via * EVIOCGRAB ioctl). When a handle grabs a device it becomes sole * recipient for all input events coming from the device * @event_lock: this spinlock is taken when input core receives * and processes a new event for the device (in input_event()). * Code that accesses and/or modifies parameters of a device * (such as keymap or absmin, absmax, absfuzz, etc.) after device * has been registered with input core must take this lock. * @mutex: serializes calls to open(), close() and flush() methods * @users: stores number of users (input handlers) that opened this * device. It is used by input_open_device() and input_close_device() * to make sure that dev->open() is only called when the first * user opens device and dev->close() is called when the very * last user closes the device * @going_away: marks devices that are in a middle of unregistering and * causes input_open_device*() fail with -ENODEV. * @dev: driver model's view of this device * @h_list: list of input handles associated with the device. When * accessing the list dev->mutex must be held * @node: used to place the device onto input_dev_list * @num_vals: number of values queued in the current frame * @max_vals: maximum number of values queued in a frame * @vals: array of values queued in the current frame * @devres_managed: indicates that devices is managed with devres framework * and needs not be explicitly unregistered or freed. * @timestamp: storage for a timestamp set by input_set_timestamp called * by a driver */ struct input_dev { const char *name; const char *phys; const char *uniq; struct input_id id; unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)]; unsigned long evbit[BITS_TO_LONGS(EV_CNT)]; unsigned long keybit[BITS_TO_LONGS(KEY_CNT)]; unsigned long relbit[BITS_TO_LONGS(REL_CNT)]; unsigned long absbit[BITS_TO_LONGS(ABS_CNT)]; unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)]; unsigned long ledbit[BITS_TO_LONGS(LED_CNT)]; unsigned long sndbit[BITS_TO_LONGS(SND_CNT)]; unsigned long ffbit[BITS_TO_LONGS(FF_CNT)]; unsigned long swbit[BITS_TO_LONGS(SW_CNT)]; unsigned int hint_events_per_packet; unsigned int keycodemax; unsigned int keycodesize; void *keycode; int (*setkeycode)(struct input_dev *dev, const struct input_keymap_entry *ke, unsigned int *old_keycode); int (*getkeycode)(struct input_dev *dev, struct input_keymap_entry *ke); struct ff_device *ff; struct input_dev_poller *poller; unsigned int repeat_key; struct timer_list timer; int rep[REP_CNT]; struct input_mt *mt; struct input_absinfo *absinfo; unsigned long key[BITS_TO_LONGS(KEY_CNT)]; unsigned long led[BITS_TO_LONGS(LED_CNT)]; unsigned long snd[BITS_TO_LONGS(SND_CNT)]; unsigned long sw[BITS_TO_LONGS(SW_CNT)]; int (*open)(struct input_dev *dev); void (*close)(struct input_dev *dev); int (*flush)(struct input_dev *dev, struct file *file); int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value); struct input_handle __rcu *grab; spinlock_t event_lock; struct mutex mutex; unsigned int users; bool going_away; struct device dev; struct list_head h_list; struct list_head node; unsigned int num_vals; unsigned int max_vals; struct input_value *vals; bool devres_managed; ktime_t timestamp[INPUT_CLK_MAX]; }; #define to_input_dev(d) container_of(d, struct input_dev, dev) /* * Verify that we are in sync with input_device_id mod_devicetable.h #defines */ #if EV_MAX != INPUT_DEVICE_ID_EV_MAX #error "EV_MAX and INPUT_DEVICE_ID_EV_MAX do not match" #endif #if KEY_MIN_INTERESTING != INPUT_DEVICE_ID_KEY_MIN_INTERESTING #error "KEY_MIN_INTERESTING and INPUT_DEVICE_ID_KEY_MIN_INTERESTING do not match" #endif #if KEY_MAX != INPUT_DEVICE_ID_KEY_MAX #error "KEY_MAX and INPUT_DEVICE_ID_KEY_MAX do not match" #endif #if REL_MAX != INPUT_DEVICE_ID_REL_MAX #error "REL_MAX and INPUT_DEVICE_ID_REL_MAX do not match" #endif #if ABS_MAX != INPUT_DEVICE_ID_ABS_MAX #error "ABS_MAX and INPUT_DEVICE_ID_ABS_MAX do not match" #endif #if MSC_MAX != INPUT_DEVICE_ID_MSC_MAX #error "MSC_MAX and INPUT_DEVICE_ID_MSC_MAX do not match" #endif #if LED_MAX != INPUT_DEVICE_ID_LED_MAX #error "LED_MAX and INPUT_DEVICE_ID_LED_MAX do not match" #endif #if SND_MAX != INPUT_DEVICE_ID_SND_MAX #error "SND_MAX and INPUT_DEVICE_ID_SND_MAX do not match" #endif #if FF_MAX != INPUT_DEVICE_ID_FF_MAX #error "FF_MAX and INPUT_DEVICE_ID_FF_MAX do not match" #endif #if SW_MAX != INPUT_DEVICE_ID_SW_MAX #error "SW_MAX and INPUT_DEVICE_ID_SW_MAX do not match" #endif #if INPUT_PROP_MAX != INPUT_DEVICE_ID_PROP_MAX #error "INPUT_PROP_MAX and INPUT_DEVICE_ID_PROP_MAX do not match" #endif #define INPUT_DEVICE_ID_MATCH_DEVICE \ (INPUT_DEVICE_ID_MATCH_BUS | INPUT_DEVICE_ID_MATCH_VENDOR | INPUT_DEVICE_ID_MATCH_PRODUCT) #define INPUT_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ (INPUT_DEVICE_ID_MATCH_DEVICE | INPUT_DEVICE_ID_MATCH_VERSION) struct input_handle; /** * struct input_handler - implements one of interfaces for input devices * @private: driver-specific data * @event: event handler. This method is being called by input core with * interrupts disabled and dev->event_lock spinlock held and so * it may not sleep * @events: event sequence handler. This method is being called by * input core with interrupts disabled and dev->event_lock * spinlock held and so it may not sleep * @filter: similar to @event; separates normal event handlers from * "filters". * @match: called after comparing device's id with handler's id_table * to perform fine-grained matching between device and handler * @connect: called when attaching a handler to an input device * @disconnect: disconnects a handler from input device * @start: starts handler for given handle. This function is called by * input core right after connect() method and also when a process * that "grabbed" a device releases it * @legacy_minors: set to %true by drivers using legacy minor ranges * @minor: beginning of range of 32 legacy minors for devices this driver * can provide * @name: name of the handler, to be shown in /proc/bus/input/handlers * @id_table: pointer to a table of input_device_ids this driver can * handle * @h_list: list of input handles associated with the handler * @node: for placing the driver onto input_handler_list * * Input handlers attach to input devices and create input handles. There * are likely several handlers attached to any given input device at the * same time. All of them will get their copy of input event generated by * the device. * * The very same structure is used to implement input filters. Input core * allows filters to run first and will not pass event to regular handlers * if any of the filters indicate that the event should be filtered (by * returning %true from their filter() method). * * Note that input core serializes calls to connect() and disconnect() * methods. */ struct input_handler { void *private; void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value); void (*events)(struct input_handle *handle, const struct input_value *vals, unsigned int count); bool (*filter)(struct input_handle *handle, unsigned int type, unsigned int code, int value); bool (*match)(struct input_handler *handler, struct input_dev *dev); int (*connect)(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id); void (*disconnect)(struct input_handle *handle); void (*start)(struct input_handle *handle); bool legacy_minors; int minor; const char *name; const struct input_device_id *id_table; struct list_head h_list; struct list_head node; }; /** * struct input_handle - links input device with an input handler * @private: handler-specific data * @open: counter showing whether the handle is 'open', i.e. should deliver * events from its device * @name: name given to the handle by handler that created it * @dev: input device the handle is attached to * @handler: handler that works with the device through this handle * @d_node: used to put the handle on device's list of attached handles * @h_node: used to put the handle on handler's list of handles from which * it gets events */ struct input_handle { void *private; int open; const char *name; struct input_dev *dev; struct input_handler *handler; struct list_head d_node; struct list_head h_node; }; struct input_dev __must_check *input_allocate_device(void); struct input_dev __must_check *devm_input_allocate_device(struct device *); void input_free_device(struct input_dev *dev); static inline struct input_dev *input_get_device(struct input_dev *dev) { return dev ? to_input_dev(get_device(&dev->dev)) : NULL; } static inline void input_put_device(struct input_dev *dev) { if (dev) put_device(&dev->dev); } static inline void *input_get_drvdata(struct input_dev *dev) { return dev_get_drvdata(&dev->dev); } static inline void input_set_drvdata(struct input_dev *dev, void *data) { dev_set_drvdata(&dev->dev, data); } int __must_check input_register_device(struct input_dev *); void input_unregister_device(struct input_dev *); void input_reset_device(struct input_dev *); int input_setup_polling(struct input_dev *dev, void (*poll_fn)(struct input_dev *dev)); void input_set_poll_interval(struct input_dev *dev, unsigned int interval); void input_set_min_poll_interval(struct input_dev *dev, unsigned int interval); void input_set_max_poll_interval(struct input_dev *dev, unsigned int interval); int input_get_poll_interval(struct input_dev *dev); int __must_check input_register_handler(struct input_handler *); void input_unregister_handler(struct input_handler *); int __must_check input_get_new_minor(int legacy_base, unsigned int legacy_num, bool allow_dynamic); void input_free_minor(unsigned int minor); int input_handler_for_each_handle(struct input_handler *, void *data, int (*fn)(struct input_handle *, void *)); int input_register_handle(struct input_handle *); void input_unregister_handle(struct input_handle *); int input_grab_device(struct input_handle *); void input_release_device(struct input_handle *); int input_open_device(struct input_handle *); void input_close_device(struct input_handle *); int input_flush_device(struct input_handle *handle, struct file *file); void input_set_timestamp(struct input_dev *dev, ktime_t timestamp); ktime_t *input_get_timestamp(struct input_dev *dev); void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value); void input_inject_event(struct input_handle *handle, unsigned int type, unsigned int code, int value); static inline void input_report_key(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_KEY, code, !!value); } static inline void input_report_rel(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_REL, code, value); } static inline void input_report_abs(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_ABS, code, value); } static inline void input_report_ff_status(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_FF_STATUS, code, value); } static inline void input_report_switch(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_SW, code, !!value); } static inline void input_sync(struct input_dev *dev) { input_event(dev, EV_SYN, SYN_REPORT, 0); } static inline void input_mt_sync(struct input_dev *dev) { input_event(dev, EV_SYN, SYN_MT_REPORT, 0); } void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code); /** * input_set_events_per_packet - tell handlers about the driver event rate * @dev: the input device used by the driver * @n_events: the average number of events between calls to input_sync() * * If the event rate sent from a device is unusually large, use this * function to set the expected event rate. This will allow handlers * to set up an appropriate buffer size for the event stream, in order * to minimize information loss. */ static inline void input_set_events_per_packet(struct input_dev *dev, int n_events) { dev->hint_events_per_packet = n_events; } void input_alloc_absinfo(struct input_dev *dev); void input_set_abs_params(struct input_dev *dev, unsigned int axis, int min, int max, int fuzz, int flat); #define INPUT_GENERATE_ABS_ACCESSORS(_suffix, _item) \ static inline int input_abs_get_##_suffix(struct input_dev *dev, \ unsigned int axis) \ { \ return dev->absinfo ? dev->absinfo[axis]._item : 0; \ } \ \ static inline void input_abs_set_##_suffix(struct input_dev *dev, \ unsigned int axis, int val) \ { \ input_alloc_absinfo(dev); \ if (dev->absinfo) \ dev->absinfo[axis]._item = val; \ } INPUT_GENERATE_ABS_ACCESSORS(val, value) INPUT_GENERATE_ABS_ACCESSORS(min, minimum) INPUT_GENERATE_ABS_ACCESSORS(max, maximum) INPUT_GENERATE_ABS_ACCESSORS(fuzz, fuzz) INPUT_GENERATE_ABS_ACCESSORS(flat, flat) INPUT_GENERATE_ABS_ACCESSORS(res, resolution) int input_scancode_to_scalar(const struct input_keymap_entry *ke, unsigned int *scancode); int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke); int input_set_keycode(struct input_dev *dev, const struct input_keymap_entry *ke); bool input_match_device_id(const struct input_dev *dev, const struct input_device_id *id); void input_enable_softrepeat(struct input_dev *dev, int delay, int period); extern struct class input_class; /** * struct ff_device - force-feedback part of an input device * @upload: Called to upload an new effect into device * @erase: Called to erase an effect from device * @playback: Called to request device to start playing specified effect * @set_gain: Called to set specified gain * @set_autocenter: Called to auto-center device * @destroy: called by input core when parent input device is being * destroyed * @private: driver-specific data, will be freed automatically * @ffbit: bitmap of force feedback capabilities truly supported by * device (not emulated like ones in input_dev->ffbit) * @mutex: mutex for serializing access to the device * @max_effects: maximum number of effects supported by device * @effects: pointer to an array of effects currently loaded into device * @effect_owners: array of effect owners; when file handle owning * an effect gets closed the effect is automatically erased * * Every force-feedback device must implement upload() and playback() * methods; erase() is optional. set_gain() and set_autocenter() need * only be implemented if driver sets up FF_GAIN and FF_AUTOCENTER * bits. * * Note that playback(), set_gain() and set_autocenter() are called with * dev->event_lock spinlock held and interrupts off and thus may not * sleep. */ struct ff_device { int (*upload)(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old); int (*erase)(struct input_dev *dev, int effect_id); int (*playback)(struct input_dev *dev, int effect_id, int value); void (*set_gain)(struct input_dev *dev, u16 gain); void (*set_autocenter)(struct input_dev *dev, u16 magnitude); void (*destroy)(struct ff_device *); void *private; unsigned long ffbit[BITS_TO_LONGS(FF_CNT)]; struct mutex mutex; int max_effects; struct ff_effect *effects; struct file *effect_owners[]; }; int input_ff_create(struct input_dev *dev, unsigned int max_effects); void input_ff_destroy(struct input_dev *dev); int input_ff_event(struct input_dev *dev, unsigned int type, unsigned int code, int value); int input_ff_upload(struct input_dev *dev, struct ff_effect *effect, struct file *file); int input_ff_erase(struct input_dev *dev, int effect_id, struct file *file); int input_ff_flush(struct input_dev *dev, struct file *file); int input_ff_create_memless(struct input_dev *dev, void *data, int (*play_effect)(struct input_dev *, void *, struct ff_effect *)); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs */ #ifndef _ASM_X86_STACKTRACE_H #define _ASM_X86_STACKTRACE_H #include <linux/uaccess.h> #include <linux/ptrace.h> #include <asm/cpu_entry_area.h> #include <asm/switch_to.h> enum stack_type { STACK_TYPE_UNKNOWN, STACK_TYPE_TASK, STACK_TYPE_IRQ, STACK_TYPE_SOFTIRQ, STACK_TYPE_ENTRY, STACK_TYPE_EXCEPTION, STACK_TYPE_EXCEPTION_LAST = STACK_TYPE_EXCEPTION + N_EXCEPTION_STACKS-1, }; struct stack_info { enum stack_type type; unsigned long *begin, *end, *next_sp; }; bool in_task_stack(unsigned long *stack, struct task_struct *task, struct stack_info *info); bool in_entry_stack(unsigned long *stack, struct stack_info *info); int get_stack_info(unsigned long *stack, struct task_struct *task, struct stack_info *info, unsigned long *visit_mask); bool get_stack_info_noinstr(unsigned long *stack, struct task_struct *task, struct stack_info *info); const char *stack_type_name(enum stack_type type); static inline bool on_stack(struct stack_info *info, void *addr, size_t len) { void *begin = info->begin; void *end = info->end; return (info->type != STACK_TYPE_UNKNOWN && addr >= begin && addr < end && addr + len > begin && addr + len <= end); } #ifdef CONFIG_X86_32 #define STACKSLOTS_PER_LINE 8 #else #define STACKSLOTS_PER_LINE 4 #endif #ifdef CONFIG_FRAME_POINTER static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->bp; if (task == current) return __builtin_frame_address(0); return &((struct inactive_task_frame *)task->thread.sp)->bp; } #else static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { return NULL; } #endif /* CONFIG_FRAME_POINTER */ static inline unsigned long * get_stack_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->sp; if (task == current) return __builtin_frame_address(0); return (unsigned long *)task->thread.sp; } void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, unsigned long *stack, const char *log_lvl); /* The form of the top of the frame on the stack */ struct stack_frame { struct stack_frame *next_frame; unsigned long return_address; }; struct stack_frame_ia32 { u32 next_frame; u32 return_address; }; void show_opcodes(struct pt_regs *regs, const char *loglvl); void show_ip(struct pt_regs *regs, const char *loglvl); #endif /* _ASM_X86_STACKTRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 // SPDX-License-Identifier: GPL-2.0 /* File: fs/ext4/xattr.h On-disk format of extended attributes for the ext4 filesystem. (C) 2001 Andreas Gruenbacher, <a.gruenbacher@computer.org> */ #include <linux/xattr.h> /* Magic value in attribute blocks */ #define EXT4_XATTR_MAGIC 0xEA020000 /* Maximum number of references to one attribute block */ #define EXT4_XATTR_REFCOUNT_MAX 1024 /* Name indexes */ #define EXT4_XATTR_INDEX_USER 1 #define EXT4_XATTR_INDEX_POSIX_ACL_ACCESS 2 #define EXT4_XATTR_INDEX_POSIX_ACL_DEFAULT 3 #define EXT4_XATTR_INDEX_TRUSTED 4 #define EXT4_XATTR_INDEX_LUSTRE 5 #define EXT4_XATTR_INDEX_SECURITY 6 #define EXT4_XATTR_INDEX_SYSTEM 7 #define EXT4_XATTR_INDEX_RICHACL 8 #define EXT4_XATTR_INDEX_ENCRYPTION 9 #define EXT4_XATTR_INDEX_HURD 10 /* Reserved for Hurd */ struct ext4_xattr_header { __le32 h_magic; /* magic number for identification */ __le32 h_refcount; /* reference count */ __le32 h_blocks; /* number of disk blocks used */ __le32 h_hash; /* hash value of all attributes */ __le32 h_checksum; /* crc32c(uuid+id+xattrblock) */ /* id = inum if refcount=1, blknum otherwise */ __u32 h_reserved[3]; /* zero right now */ }; struct ext4_xattr_ibody_header { __le32 h_magic; /* magic number for identification */ }; struct ext4_xattr_entry { __u8 e_name_len; /* length of name */ __u8 e_name_index; /* attribute name index */ __le16 e_value_offs; /* offset in disk block of value */ __le32 e_value_inum; /* inode in which the value is stored */ __le32 e_value_size; /* size of attribute value */ __le32 e_hash; /* hash value of name and value */ char e_name[]; /* attribute name */ }; #define EXT4_XATTR_PAD_BITS 2 #define EXT4_XATTR_PAD (1<<EXT4_XATTR_PAD_BITS) #define EXT4_XATTR_ROUND (EXT4_XATTR_PAD-1) #define EXT4_XATTR_LEN(name_len) \ (((name_len) + EXT4_XATTR_ROUND + \ sizeof(struct ext4_xattr_entry)) & ~EXT4_XATTR_ROUND) #define EXT4_XATTR_NEXT(entry) \ ((struct ext4_xattr_entry *)( \ (char *)(entry) + EXT4_XATTR_LEN((entry)->e_name_len))) #define EXT4_XATTR_SIZE(size) \ (((size) + EXT4_XATTR_ROUND) & ~EXT4_XATTR_ROUND) #define IHDR(inode, raw_inode) \ ((struct ext4_xattr_ibody_header *) \ ((void *)raw_inode + \ EXT4_GOOD_OLD_INODE_SIZE + \ EXT4_I(inode)->i_extra_isize)) #define IFIRST(hdr) ((struct ext4_xattr_entry *)((hdr)+1)) /* * XATTR_SIZE_MAX is currently 64k, but for the purposes of checking * for file system consistency errors, we use a somewhat bigger value. * This allows XATTR_SIZE_MAX to grow in the future, but by using this * instead of INT_MAX for certain consistency checks, we don't need to * worry about arithmetic overflows. (Actually XATTR_SIZE_MAX is * defined in include/uapi/linux/limits.h, so changing it is going * not going to be trivial....) */ #define EXT4_XATTR_SIZE_MAX (1 << 24) /* * The minimum size of EA value when you start storing it in an external inode * size of block - size of header - size of 1 entry - 4 null bytes */ #define EXT4_XATTR_MIN_LARGE_EA_SIZE(b) \ ((b) - EXT4_XATTR_LEN(3) - sizeof(struct ext4_xattr_header) - 4) #define BHDR(bh) ((struct ext4_xattr_header *)((bh)->b_data)) #define ENTRY(ptr) ((struct ext4_xattr_entry *)(ptr)) #define BFIRST(bh) ENTRY(BHDR(bh)+1) #define IS_LAST_ENTRY(entry) (*(__u32 *)(entry) == 0) #define EXT4_ZERO_XATTR_VALUE ((void *)-1) struct ext4_xattr_info { const char *name; const void *value; size_t value_len; int name_index; int in_inode; }; struct ext4_xattr_search { struct ext4_xattr_entry *first; void *base; void *end; struct ext4_xattr_entry *here; int not_found; }; struct ext4_xattr_ibody_find { struct ext4_xattr_search s; struct ext4_iloc iloc; }; struct ext4_xattr_inode_array { unsigned int count; /* # of used items in the array */ struct inode *inodes[]; }; extern const struct xattr_handler ext4_xattr_user_handler; extern const struct xattr_handler ext4_xattr_trusted_handler; extern const struct xattr_handler ext4_xattr_security_handler; extern const struct xattr_handler ext4_xattr_hurd_handler; #define EXT4_XATTR_NAME_ENCRYPTION_CONTEXT "c" /* * The EXT4_STATE_NO_EXPAND is overloaded and used for two purposes. * The first is to signal that there the inline xattrs and data are * taking up so much space that we might as well not keep trying to * expand it. The second is that xattr_sem is taken for writing, so * we shouldn't try to recurse into the inode expansion. For this * second case, we need to make sure that we take save and restore the * NO_EXPAND state flag appropriately. */ static inline void ext4_write_lock_xattr(struct inode *inode, int *save) { down_write(&EXT4_I(inode)->xattr_sem); *save = ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND); ext4_set_inode_state(inode, EXT4_STATE_NO_EXPAND); } static inline int ext4_write_trylock_xattr(struct inode *inode, int *save) { if (down_write_trylock(&EXT4_I(inode)->xattr_sem) == 0) return 0; *save = ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND); ext4_set_inode_state(inode, EXT4_STATE_NO_EXPAND); return 1; } static inline void ext4_write_unlock_xattr(struct inode *inode, int *save) { if (*save == 0) ext4_clear_inode_state(inode, EXT4_STATE_NO_EXPAND); up_write(&EXT4_I(inode)->xattr_sem); } extern ssize_t ext4_listxattr(struct dentry *, char *, size_t); extern int ext4_xattr_get(struct inode *, int, const char *, void *, size_t); extern int ext4_xattr_set(struct inode *, int, const char *, const void *, size_t, int); extern int ext4_xattr_set_handle(handle_t *, struct inode *, int, const char *, const void *, size_t, int); extern int ext4_xattr_set_credits(struct inode *inode, size_t value_len, bool is_create, int *credits); extern int __ext4_xattr_set_credits(struct super_block *sb, struct inode *inode, struct buffer_head *block_bh, size_t value_len, bool is_create); extern int ext4_xattr_delete_inode(handle_t *handle, struct inode *inode, struct ext4_xattr_inode_array **array, int extra_credits); extern void ext4_xattr_inode_array_free(struct ext4_xattr_inode_array *array); extern int ext4_expand_extra_isize_ea(struct inode *inode, int new_extra_isize, struct ext4_inode *raw_inode, handle_t *handle); extern const struct xattr_handler *ext4_xattr_handlers[]; extern int ext4_xattr_ibody_find(struct inode *inode, struct ext4_xattr_info *i, struct ext4_xattr_ibody_find *is); extern int ext4_xattr_ibody_get(struct inode *inode, int name_index, const char *name, void *buffer, size_t buffer_size); extern int ext4_xattr_ibody_inline_set(handle_t *handle, struct inode *inode, struct ext4_xattr_info *i, struct ext4_xattr_ibody_find *is); extern struct mb_cache *ext4_xattr_create_cache(void); extern void ext4_xattr_destroy_cache(struct mb_cache *); #ifdef CONFIG_EXT4_FS_SECURITY extern int ext4_init_security(handle_t *handle, struct inode *inode, struct inode *dir, const struct qstr *qstr); #else static inline int ext4_init_security(handle_t *handle, struct inode *inode, struct inode *dir, const struct qstr *qstr) { return 0; } #endif #ifdef CONFIG_LOCKDEP extern void ext4_xattr_inode_set_class(struct inode *ea_inode); #else static inline void ext4_xattr_inode_set_class(struct inode *ea_inode) { } #endif extern int ext4_get_inode_usage(struct inode *inode, qsize_t *usage);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SMP_H #define _ASM_X86_SMP_H #ifndef __ASSEMBLY__ #include <linux/cpumask.h> #include <asm/percpu.h> #include <asm/thread_info.h> #include <asm/cpumask.h> extern int smp_num_siblings; extern unsigned int num_processors; DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); /* cpus sharing the last level cache: */ DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); DECLARE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id); DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number); static inline struct cpumask *cpu_llc_shared_mask(int cpu) { return per_cpu(cpu_llc_shared_map, cpu); } DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid); #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_X86_32) DECLARE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid); #endif struct task_struct; struct smp_ops { void (*smp_prepare_boot_cpu)(void); void (*smp_prepare_cpus)(unsigned max_cpus); void (*smp_cpus_done)(unsigned max_cpus); void (*stop_other_cpus)(int wait); void (*crash_stop_other_cpus)(void); void (*smp_send_reschedule)(int cpu); int (*cpu_up)(unsigned cpu, struct task_struct *tidle); int (*cpu_disable)(void); void (*cpu_die)(unsigned int cpu); void (*play_dead)(void); void (*send_call_func_ipi)(const struct cpumask *mask); void (*send_call_func_single_ipi)(int cpu); }; /* Globals due to paravirt */ extern void set_cpu_sibling_map(int cpu); #ifdef CONFIG_SMP extern struct smp_ops smp_ops; static inline void smp_send_stop(void) { smp_ops.stop_other_cpus(0); } static inline void stop_other_cpus(void) { smp_ops.stop_other_cpus(1); } static inline void smp_prepare_boot_cpu(void) { smp_ops.smp_prepare_boot_cpu(); } static inline void smp_prepare_cpus(unsigned int max_cpus) { smp_ops.smp_prepare_cpus(max_cpus); } static inline void smp_cpus_done(unsigned int max_cpus) { smp_ops.smp_cpus_done(max_cpus); } static inline int __cpu_up(unsigned int cpu, struct task_struct *tidle) { return smp_ops.cpu_up(cpu, tidle); } static inline int __cpu_disable(void) { return smp_ops.cpu_disable(); } static inline void __cpu_die(unsigned int cpu) { smp_ops.cpu_die(cpu); } static inline void play_dead(void) { smp_ops.play_dead(); } static inline void smp_send_reschedule(int cpu) { smp_ops.smp_send_reschedule(cpu); } static inline void arch_send_call_function_single_ipi(int cpu) { smp_ops.send_call_func_single_ipi(cpu); } static inline void arch_send_call_function_ipi_mask(const struct cpumask *mask) { smp_ops.send_call_func_ipi(mask); } void cpu_disable_common(void); void native_smp_prepare_boot_cpu(void); void native_smp_prepare_cpus(unsigned int max_cpus); void calculate_max_logical_packages(void); void native_smp_cpus_done(unsigned int max_cpus); int common_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_disable(void); int common_cpu_die(unsigned int cpu); void native_cpu_die(unsigned int cpu); void hlt_play_dead(void); void native_play_dead(void); void play_dead_common(void); void wbinvd_on_cpu(int cpu); int wbinvd_on_all_cpus(void); void cond_wakeup_cpu0(void); void native_smp_send_reschedule(int cpu); void native_send_call_func_ipi(const struct cpumask *mask); void native_send_call_func_single_ipi(int cpu); void x86_idle_thread_init(unsigned int cpu, struct task_struct *idle); void smp_store_boot_cpu_info(void); void smp_store_cpu_info(int id); asmlinkage __visible void smp_reboot_interrupt(void); __visible void smp_reschedule_interrupt(struct pt_regs *regs); __visible void smp_call_function_interrupt(struct pt_regs *regs); __visible void smp_call_function_single_interrupt(struct pt_regs *r); #define cpu_physical_id(cpu) per_cpu(x86_cpu_to_apicid, cpu) #define cpu_acpi_id(cpu) per_cpu(x86_cpu_to_acpiid, cpu) /* * This function is needed by all SMP systems. It must _always_ be valid * from the initial startup. We map APIC_BASE very early in page_setup(), * so this is correct in the x86 case. */ #define raw_smp_processor_id() this_cpu_read(cpu_number) #define __smp_processor_id() __this_cpu_read(cpu_number) #ifdef CONFIG_X86_32 extern int safe_smp_processor_id(void); #else # define safe_smp_processor_id() smp_processor_id() #endif #else /* !CONFIG_SMP */ #define wbinvd_on_cpu(cpu) wbinvd() static inline int wbinvd_on_all_cpus(void) { wbinvd(); return 0; } #endif /* CONFIG_SMP */ extern unsigned disabled_cpus; #ifdef CONFIG_X86_LOCAL_APIC extern int hard_smp_processor_id(void); #else /* CONFIG_X86_LOCAL_APIC */ #define hard_smp_processor_id() 0 #endif /* CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_DEBUG_NMI_SELFTEST extern void nmi_selftest(void); #else #define nmi_selftest() do { } while (0) #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_SMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_CPUSET_H #define _LINUX_CPUSET_H /* * cpuset interface * * Copyright (C) 2003 BULL SA * Copyright (C) 2004-2006 Silicon Graphics, Inc. * */ #include <linux/sched.h> #include <linux/sched/topology.h> #include <linux/sched/task.h> #include <linux/cpumask.h> #include <linux/nodemask.h> #include <linux/mm.h> #include <linux/jump_label.h> #ifdef CONFIG_CPUSETS /* * Static branch rewrites can happen in an arbitrary order for a given * key. In code paths where we need to loop with read_mems_allowed_begin() and * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need * to ensure that begin() always gets rewritten before retry() in the * disabled -> enabled transition. If not, then if local irqs are disabled * around the loop, we can deadlock since retry() would always be * comparing the latest value of the mems_allowed seqcount against 0 as * begin() still would see cpusets_enabled() as false. The enabled -> disabled * transition should happen in reverse order for the same reasons (want to stop * looking at real value of mems_allowed.sequence in retry() first). */ extern struct static_key_false cpusets_pre_enable_key; extern struct static_key_false cpusets_enabled_key; static inline bool cpusets_enabled(void) { return static_branch_unlikely(&cpusets_enabled_key); } static inline void cpuset_inc(void) { static_branch_inc_cpuslocked(&cpusets_pre_enable_key); static_branch_inc_cpuslocked(&cpusets_enabled_key); } static inline void cpuset_dec(void) { static_branch_dec_cpuslocked(&cpusets_enabled_key); static_branch_dec_cpuslocked(&cpusets_pre_enable_key); } extern int cpuset_init(void); extern void cpuset_init_smp(void); extern void cpuset_force_rebuild(void); extern void cpuset_update_active_cpus(void); extern void cpuset_wait_for_hotplug(void); extern void cpuset_read_lock(void); extern void cpuset_read_unlock(void); extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask); extern void cpuset_cpus_allowed_fallback(struct task_struct *p); extern nodemask_t cpuset_mems_allowed(struct task_struct *p); #define cpuset_current_mems_allowed (current->mems_allowed) void cpuset_init_current_mems_allowed(void); int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask); extern bool __cpuset_node_allowed(int node, gfp_t gfp_mask); static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask) { if (cpusets_enabled()) return __cpuset_node_allowed(node, gfp_mask); return true; } static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) { return __cpuset_node_allowed(zone_to_nid(z), gfp_mask); } static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) { if (cpusets_enabled()) return __cpuset_zone_allowed(z, gfp_mask); return true; } extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, const struct task_struct *tsk2); #define cpuset_memory_pressure_bump() \ do { \ if (cpuset_memory_pressure_enabled) \ __cpuset_memory_pressure_bump(); \ } while (0) extern int cpuset_memory_pressure_enabled; extern void __cpuset_memory_pressure_bump(void); extern void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task); extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *tsk); extern int cpuset_mem_spread_node(void); extern int cpuset_slab_spread_node(void); static inline int cpuset_do_page_mem_spread(void) { return task_spread_page(current); } static inline int cpuset_do_slab_mem_spread(void) { return task_spread_slab(current); } extern bool current_cpuset_is_being_rebound(void); extern void rebuild_sched_domains(void); extern void cpuset_print_current_mems_allowed(void); /* * read_mems_allowed_begin is required when making decisions involving * mems_allowed such as during page allocation. mems_allowed can be updated in * parallel and depending on the new value an operation can fail potentially * causing process failure. A retry loop with read_mems_allowed_begin and * read_mems_allowed_retry prevents these artificial failures. */ static inline unsigned int read_mems_allowed_begin(void) { if (!static_branch_unlikely(&cpusets_pre_enable_key)) return 0; return read_seqcount_begin(&current->mems_allowed_seq); } /* * If this returns true, the operation that took place after * read_mems_allowed_begin may have failed artificially due to a concurrent * update of mems_allowed. It is up to the caller to retry the operation if * appropriate. */ static inline bool read_mems_allowed_retry(unsigned int seq) { if (!static_branch_unlikely(&cpusets_enabled_key)) return false; return read_seqcount_retry(&current->mems_allowed_seq, seq); } static inline void set_mems_allowed(nodemask_t nodemask) { unsigned long flags; task_lock(current); local_irq_save(flags); write_seqcount_begin(&current->mems_allowed_seq); current->mems_allowed = nodemask; write_seqcount_end(&current->mems_allowed_seq); local_irq_restore(flags); task_unlock(current); } #else /* !CONFIG_CPUSETS */ static inline bool cpusets_enabled(void) { return false; } static inline int cpuset_init(void) { return 0; } static inline void cpuset_init_smp(void) {} static inline void cpuset_force_rebuild(void) { } static inline void cpuset_update_active_cpus(void) { partition_sched_domains(1, NULL, NULL); } static inline void cpuset_wait_for_hotplug(void) { } static inline void cpuset_read_lock(void) { } static inline void cpuset_read_unlock(void) { } static inline void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask) { cpumask_copy(mask, cpu_possible_mask); } static inline void cpuset_cpus_allowed_fallback(struct task_struct *p) { } static inline nodemask_t cpuset_mems_allowed(struct task_struct *p) { return node_possible_map; } #define cpuset_current_mems_allowed (node_states[N_MEMORY]) static inline void cpuset_init_current_mems_allowed(void) {} static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) { return 1; } static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask) { return true; } static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) { return true; } static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) { return true; } static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, const struct task_struct *tsk2) { return 1; } static inline void cpuset_memory_pressure_bump(void) {} static inline void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) { } static inline int cpuset_mem_spread_node(void) { return 0; } static inline int cpuset_slab_spread_node(void) { return 0; } static inline int cpuset_do_page_mem_spread(void) { return 0; } static inline int cpuset_do_slab_mem_spread(void) { return 0; } static inline bool current_cpuset_is_being_rebound(void) { return false; } static inline void rebuild_sched_domains(void) { partition_sched_domains(1, NULL, NULL); } static inline void cpuset_print_current_mems_allowed(void) { } static inline void set_mems_allowed(nodemask_t nodemask) { } static inline unsigned int read_mems_allowed_begin(void) { return 0; } static inline bool read_mems_allowed_retry(unsigned int seq) { return false; } #endif /* !CONFIG_CPUSETS */ #endif /* _LINUX_CPUSET_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PIPE_FS_I_H #define _LINUX_PIPE_FS_I_H #define PIPE_DEF_BUFFERS 16 #define PIPE_BUF_FLAG_LRU 0x01 /* page is on the LRU */ #define PIPE_BUF_FLAG_ATOMIC 0x02 /* was atomically mapped */ #define PIPE_BUF_FLAG_GIFT 0x04 /* page is a gift */ #define PIPE_BUF_FLAG_PACKET 0x08 /* read() as a packet */ #define PIPE_BUF_FLAG_CAN_MERGE 0x10 /* can merge buffers */ #define PIPE_BUF_FLAG_WHOLE 0x20 /* read() must return entire buffer or error */ #ifdef CONFIG_WATCH_QUEUE #define PIPE_BUF_FLAG_LOSS 0x40 /* Message loss happened after this buffer */ #endif /** * struct pipe_buffer - a linux kernel pipe buffer * @page: the page containing the data for the pipe buffer * @offset: offset of data inside the @page * @len: length of data inside the @page * @ops: operations associated with this buffer. See @pipe_buf_operations. * @flags: pipe buffer flags. See above. * @private: private data owned by the ops. **/ struct pipe_buffer { struct page *page; unsigned int offset, len; const struct pipe_buf_operations *ops; unsigned int flags; unsigned long private; }; /** * struct pipe_inode_info - a linux kernel pipe * @mutex: mutex protecting the whole thing * @rd_wait: reader wait point in case of empty pipe * @wr_wait: writer wait point in case of full pipe * @head: The point of buffer production * @tail: The point of buffer consumption * @note_loss: The next read() should insert a data-lost message * @max_usage: The maximum number of slots that may be used in the ring * @ring_size: total number of buffers (should be a power of 2) * @nr_accounted: The amount this pipe accounts for in user->pipe_bufs * @tmp_page: cached released page * @readers: number of current readers of this pipe * @writers: number of current writers of this pipe * @files: number of struct file referring this pipe (protected by ->i_lock) * @r_counter: reader counter * @w_counter: writer counter * @poll_usage: is this pipe used for epoll, which has crazy wakeups? * @fasync_readers: reader side fasync * @fasync_writers: writer side fasync * @bufs: the circular array of pipe buffers * @user: the user who created this pipe * @watch_queue: If this pipe is a watch_queue, this is the stuff for that **/ struct pipe_inode_info { struct mutex mutex; wait_queue_head_t rd_wait, wr_wait; unsigned int head; unsigned int tail; unsigned int max_usage; unsigned int ring_size; #ifdef CONFIG_WATCH_QUEUE bool note_loss; #endif unsigned int nr_accounted; unsigned int readers; unsigned int writers; unsigned int files; unsigned int r_counter; unsigned int w_counter; unsigned int poll_usage; struct page *tmp_page; struct fasync_struct *fasync_readers; struct fasync_struct *fasync_writers; struct pipe_buffer *bufs; struct user_struct *user; #ifdef CONFIG_WATCH_QUEUE struct watch_queue *watch_queue; #endif }; /* * Note on the nesting of these functions: * * ->confirm() * ->try_steal() * * That is, ->try_steal() must be called on a confirmed buffer. See below for * the meaning of each operation. Also see the kerneldoc in fs/pipe.c for the * pipe and generic variants of these hooks. */ struct pipe_buf_operations { /* * ->confirm() verifies that the data in the pipe buffer is there * and that the contents are good. If the pages in the pipe belong * to a file system, we may need to wait for IO completion in this * hook. Returns 0 for good, or a negative error value in case of * error. If not present all pages are considered good. */ int (*confirm)(struct pipe_inode_info *, struct pipe_buffer *); /* * When the contents of this pipe buffer has been completely * consumed by a reader, ->release() is called. */ void (*release)(struct pipe_inode_info *, struct pipe_buffer *); /* * Attempt to take ownership of the pipe buffer and its contents. * ->try_steal() returns %true for success, in which case the contents * of the pipe (the buf->page) is locked and now completely owned by the * caller. The page may then be transferred to a different mapping, the * most often used case is insertion into different file address space * cache. */ bool (*try_steal)(struct pipe_inode_info *, struct pipe_buffer *); /* * Get a reference to the pipe buffer. */ bool (*get)(struct pipe_inode_info *, struct pipe_buffer *); }; /** * pipe_empty - Return true if the pipe is empty * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer */ static inline bool pipe_empty(unsigned int head, unsigned int tail) { return head == tail; } /** * pipe_occupancy - Return number of slots used in the pipe * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer */ static inline unsigned int pipe_occupancy(unsigned int head, unsigned int tail) { return head - tail; } /** * pipe_full - Return true if the pipe is full * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer * @limit: The maximum amount of slots available. */ static inline bool pipe_full(unsigned int head, unsigned int tail, unsigned int limit) { return pipe_occupancy(head, tail) >= limit; } /** * pipe_space_for_user - Return number of slots available to userspace * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer * @pipe: The pipe info structure */ static inline unsigned int pipe_space_for_user(unsigned int head, unsigned int tail, struct pipe_inode_info *pipe) { unsigned int p_occupancy, p_space; p_occupancy = pipe_occupancy(head, tail); if (p_occupancy >= pipe->max_usage) return 0; p_space = pipe->ring_size - p_occupancy; if (p_space > pipe->max_usage) p_space = pipe->max_usage; return p_space; } /** * pipe_buf_get - get a reference to a pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to get a reference to * * Return: %true if the reference was successfully obtained. */ static inline __must_check bool pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { return buf->ops->get(pipe, buf); } /** * pipe_buf_release - put a reference to a pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to put a reference to */ static inline void pipe_buf_release(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { const struct pipe_buf_operations *ops = buf->ops; buf->ops = NULL; ops->release(pipe, buf); } /** * pipe_buf_confirm - verify contents of the pipe buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to confirm */ static inline int pipe_buf_confirm(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { if (!buf->ops->confirm) return 0; return buf->ops->confirm(pipe, buf); } /** * pipe_buf_try_steal - attempt to take ownership of a pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to attempt to steal */ static inline bool pipe_buf_try_steal(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { if (!buf->ops->try_steal) return false; return buf->ops->try_steal(pipe, buf); } /* Differs from PIPE_BUF in that PIPE_SIZE is the length of the actual memory allocation, whereas PIPE_BUF makes atomicity guarantees. */ #define PIPE_SIZE PAGE_SIZE /* Pipe lock and unlock operations */ void pipe_lock(struct pipe_inode_info *); void pipe_unlock(struct pipe_inode_info *); void pipe_double_lock(struct pipe_inode_info *, struct pipe_inode_info *); extern unsigned int pipe_max_size; extern unsigned long pipe_user_pages_hard; extern unsigned long pipe_user_pages_soft; /* Wait for a pipe to be readable/writable while dropping the pipe lock */ void pipe_wait_readable(struct pipe_inode_info *); void pipe_wait_writable(struct pipe_inode_info *); struct pipe_inode_info *alloc_pipe_info(void); void free_pipe_info(struct pipe_inode_info *); /* Generic pipe buffer ops functions */ bool generic_pipe_buf_get(struct pipe_inode_info *, struct pipe_buffer *); bool generic_pipe_buf_try_steal(struct pipe_inode_info *, struct pipe_buffer *); void generic_pipe_buf_release(struct pipe_inode_info *, struct pipe_buffer *); extern const struct pipe_buf_operations nosteal_pipe_buf_ops; #ifdef CONFIG_WATCH_QUEUE unsigned long account_pipe_buffers(struct user_struct *user, unsigned long old, unsigned long new); bool too_many_pipe_buffers_soft(unsigned long user_bufs); bool too_many_pipe_buffers_hard(unsigned long user_bufs); bool pipe_is_unprivileged_user(void); #endif /* for F_SETPIPE_SZ and F_GETPIPE_SZ */ #ifdef CONFIG_WATCH_QUEUE int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots); #endif long pipe_fcntl(struct file *, unsigned int, unsigned long arg); struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice); int create_pipe_files(struct file **, int); unsigned int round_pipe_size(unsigned long size); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0-only */ /* * NSA Security-Enhanced Linux (SELinux) security module * * This file contains the SELinux security data structures for kernel objects. * * Author(s): Stephen Smalley, <sds@tycho.nsa.gov> * Chris Vance, <cvance@nai.com> * Wayne Salamon, <wsalamon@nai.com> * James Morris <jmorris@redhat.com> * * Copyright (C) 2001,2002 Networks Associates Technology, Inc. * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> * Copyright (C) 2016 Mellanox Technologies */ #ifndef _SELINUX_OBJSEC_H_ #define _SELINUX_OBJSEC_H_ #include <linux/list.h> #include <linux/sched.h> #include <linux/fs.h> #include <linux/binfmts.h> #include <linux/in.h> #include <linux/spinlock.h> #include <linux/lsm_hooks.h> #include <linux/msg.h> #include <net/net_namespace.h> #include "flask.h" #include "avc.h" struct task_security_struct { u32 osid; /* SID prior to last execve */ u32 sid; /* current SID */ u32 exec_sid; /* exec SID */ u32 create_sid; /* fscreate SID */ u32 keycreate_sid; /* keycreate SID */ u32 sockcreate_sid; /* fscreate SID */ } __randomize_layout; enum label_initialized { LABEL_INVALID, /* invalid or not initialized */ LABEL_INITIALIZED, /* initialized */ LABEL_PENDING }; struct inode_security_struct { struct inode *inode; /* back pointer to inode object */ struct list_head list; /* list of inode_security_struct */ u32 task_sid; /* SID of creating task */ u32 sid; /* SID of this object */ u16 sclass; /* security class of this object */ unsigned char initialized; /* initialization flag */ spinlock_t lock; }; struct file_security_struct { u32 sid; /* SID of open file description */ u32 fown_sid; /* SID of file owner (for SIGIO) */ u32 isid; /* SID of inode at the time of file open */ u32 pseqno; /* Policy seqno at the time of file open */ }; struct superblock_security_struct { struct super_block *sb; /* back pointer to sb object */ u32 sid; /* SID of file system superblock */ u32 def_sid; /* default SID for labeling */ u32 mntpoint_sid; /* SECURITY_FS_USE_MNTPOINT context for files */ unsigned short behavior; /* labeling behavior */ unsigned short flags; /* which mount options were specified */ struct mutex lock; struct list_head isec_head; spinlock_t isec_lock; }; struct msg_security_struct { u32 sid; /* SID of message */ }; struct ipc_security_struct { u16 sclass; /* security class of this object */ u32 sid; /* SID of IPC resource */ }; struct netif_security_struct { struct net *ns; /* network namespace */ int ifindex; /* device index */ u32 sid; /* SID for this interface */ }; struct netnode_security_struct { union { __be32 ipv4; /* IPv4 node address */ struct in6_addr ipv6; /* IPv6 node address */ } addr; u32 sid; /* SID for this node */ u16 family; /* address family */ }; struct netport_security_struct { u32 sid; /* SID for this node */ u16 port; /* port number */ u8 protocol; /* transport protocol */ }; struct sk_security_struct { #ifdef CONFIG_NETLABEL enum { /* NetLabel state */ NLBL_UNSET = 0, NLBL_REQUIRE, NLBL_LABELED, NLBL_REQSKB, NLBL_CONNLABELED, } nlbl_state; struct netlbl_lsm_secattr *nlbl_secattr; /* NetLabel sec attributes */ #endif u32 sid; /* SID of this object */ u32 peer_sid; /* SID of peer */ u16 sclass; /* sock security class */ enum { /* SCTP association state */ SCTP_ASSOC_UNSET = 0, SCTP_ASSOC_SET, } sctp_assoc_state; }; struct tun_security_struct { u32 sid; /* SID for the tun device sockets */ }; struct key_security_struct { u32 sid; /* SID of key */ }; struct ib_security_struct { u32 sid; /* SID of the queue pair or MAD agent */ }; struct pkey_security_struct { u64 subnet_prefix; /* Port subnet prefix */ u16 pkey; /* PKey number */ u32 sid; /* SID of pkey */ }; struct bpf_security_struct { u32 sid; /* SID of bpf obj creator */ }; struct perf_event_security_struct { u32 sid; /* SID of perf_event obj creator */ }; extern struct lsm_blob_sizes selinux_blob_sizes; static inline struct task_security_struct *selinux_cred(const struct cred *cred) { return cred->security + selinux_blob_sizes.lbs_cred; } static inline struct file_security_struct *selinux_file(const struct file *file) { return file->f_security + selinux_blob_sizes.lbs_file; } static inline struct inode_security_struct *selinux_inode( const struct inode *inode) { if (unlikely(!inode->i_security)) return NULL; return inode->i_security + selinux_blob_sizes.lbs_inode; } static inline struct msg_security_struct *selinux_msg_msg( const struct msg_msg *msg_msg) { return msg_msg->security + selinux_blob_sizes.lbs_msg_msg; } static inline struct ipc_security_struct *selinux_ipc( const struct kern_ipc_perm *ipc) { return ipc->security + selinux_blob_sizes.lbs_ipc; } /* * get the subjective security ID of the current task */ static inline u32 current_sid(void) { const struct task_security_struct *tsec = selinux_cred(current_cred()); return tsec->sid; } #endif /* _SELINUX_OBJSEC_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_INETDEVICE_H #define _LINUX_INETDEVICE_H #ifdef __KERNEL__ #include <linux/bitmap.h> #include <linux/if.h> #include <linux/ip.h> #include <linux/netdevice.h> #include <linux/rcupdate.h> #include <linux/timer.h> #include <linux/sysctl.h> #include <linux/rtnetlink.h> #include <linux/refcount.h> struct ipv4_devconf { void *sysctl; int data[IPV4_DEVCONF_MAX]; DECLARE_BITMAP(state, IPV4_DEVCONF_MAX); }; #define MC_HASH_SZ_LOG 9 struct in_device { struct net_device *dev; refcount_t refcnt; int dead; struct in_ifaddr __rcu *ifa_list;/* IP ifaddr chain */ struct ip_mc_list __rcu *mc_list; /* IP multicast filter chain */ struct ip_mc_list __rcu * __rcu *mc_hash; int mc_count; /* Number of installed mcasts */ spinlock_t mc_tomb_lock; struct ip_mc_list *mc_tomb; unsigned long mr_v1_seen; unsigned long mr_v2_seen; unsigned long mr_maxdelay; unsigned long mr_qi; /* Query Interval */ unsigned long mr_qri; /* Query Response Interval */ unsigned char mr_qrv; /* Query Robustness Variable */ unsigned char mr_gq_running; u32 mr_ifc_count; struct timer_list mr_gq_timer; /* general query timer */ struct timer_list mr_ifc_timer; /* interface change timer */ struct neigh_parms *arp_parms; struct ipv4_devconf cnf; struct rcu_head rcu_head; }; #define IPV4_DEVCONF(cnf, attr) ((cnf).data[IPV4_DEVCONF_ ## attr - 1]) #define IPV4_DEVCONF_ALL(net, attr) \ IPV4_DEVCONF((*(net)->ipv4.devconf_all), attr) static inline int ipv4_devconf_get(struct in_device *in_dev, int index) { index--; return in_dev->cnf.data[index]; } static inline void ipv4_devconf_set(struct in_device *in_dev, int index, int val) { index--; set_bit(index, in_dev->cnf.state); in_dev->cnf.data[index] = val; } static inline void ipv4_devconf_setall(struct in_device *in_dev) { bitmap_fill(in_dev->cnf.state, IPV4_DEVCONF_MAX); } #define IN_DEV_CONF_GET(in_dev, attr) \ ipv4_devconf_get((in_dev), IPV4_DEVCONF_ ## attr) #define IN_DEV_CONF_SET(in_dev, attr, val) \ ipv4_devconf_set((in_dev), IPV4_DEVCONF_ ## attr, (val)) #define IN_DEV_ANDCONF(in_dev, attr) \ (IPV4_DEVCONF_ALL(dev_net(in_dev->dev), attr) && \ IN_DEV_CONF_GET((in_dev), attr)) #define IN_DEV_NET_ORCONF(in_dev, net, attr) \ (IPV4_DEVCONF_ALL(net, attr) || \ IN_DEV_CONF_GET((in_dev), attr)) #define IN_DEV_ORCONF(in_dev, attr) \ IN_DEV_NET_ORCONF(in_dev, dev_net(in_dev->dev), attr) #define IN_DEV_MAXCONF(in_dev, attr) \ (max(IPV4_DEVCONF_ALL(dev_net(in_dev->dev), attr), \ IN_DEV_CONF_GET((in_dev), attr))) #define IN_DEV_FORWARD(in_dev) IN_DEV_CONF_GET((in_dev), FORWARDING) #define IN_DEV_MFORWARD(in_dev) IN_DEV_ANDCONF((in_dev), MC_FORWARDING) #define IN_DEV_BFORWARD(in_dev) IN_DEV_ANDCONF((in_dev), BC_FORWARDING) #define IN_DEV_RPFILTER(in_dev) IN_DEV_MAXCONF((in_dev), RP_FILTER) #define IN_DEV_SRC_VMARK(in_dev) IN_DEV_ORCONF((in_dev), SRC_VMARK) #define IN_DEV_SOURCE_ROUTE(in_dev) IN_DEV_ANDCONF((in_dev), \ ACCEPT_SOURCE_ROUTE) #define IN_DEV_ACCEPT_LOCAL(in_dev) IN_DEV_ORCONF((in_dev), ACCEPT_LOCAL) #define IN_DEV_BOOTP_RELAY(in_dev) IN_DEV_ANDCONF((in_dev), BOOTP_RELAY) #define IN_DEV_LOG_MARTIANS(in_dev) IN_DEV_ORCONF((in_dev), LOG_MARTIANS) #define IN_DEV_PROXY_ARP(in_dev) IN_DEV_ORCONF((in_dev), PROXY_ARP) #define IN_DEV_PROXY_ARP_PVLAN(in_dev) IN_DEV_CONF_GET(in_dev, PROXY_ARP_PVLAN) #define IN_DEV_SHARED_MEDIA(in_dev) IN_DEV_ORCONF((in_dev), SHARED_MEDIA) #define IN_DEV_TX_REDIRECTS(in_dev) IN_DEV_ORCONF((in_dev), SEND_REDIRECTS) #define IN_DEV_SEC_REDIRECTS(in_dev) IN_DEV_ORCONF((in_dev), \ SECURE_REDIRECTS) #define IN_DEV_IDTAG(in_dev) IN_DEV_CONF_GET(in_dev, TAG) #define IN_DEV_MEDIUM_ID(in_dev) IN_DEV_CONF_GET(in_dev, MEDIUM_ID) #define IN_DEV_PROMOTE_SECONDARIES(in_dev) \ IN_DEV_ORCONF((in_dev), \ PROMOTE_SECONDARIES) #define IN_DEV_ROUTE_LOCALNET(in_dev) IN_DEV_ORCONF(in_dev, ROUTE_LOCALNET) #define IN_DEV_NET_ROUTE_LOCALNET(in_dev, net) \ IN_DEV_NET_ORCONF(in_dev, net, ROUTE_LOCALNET) #define IN_DEV_RX_REDIRECTS(in_dev) \ ((IN_DEV_FORWARD(in_dev) && \ IN_DEV_ANDCONF((in_dev), ACCEPT_REDIRECTS)) \ || (!IN_DEV_FORWARD(in_dev) && \ IN_DEV_ORCONF((in_dev), ACCEPT_REDIRECTS))) #define IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) \ IN_DEV_CONF_GET((in_dev), IGNORE_ROUTES_WITH_LINKDOWN) #define IN_DEV_ARPFILTER(in_dev) IN_DEV_ORCONF((in_dev), ARPFILTER) #define IN_DEV_ARP_ACCEPT(in_dev) IN_DEV_ORCONF((in_dev), ARP_ACCEPT) #define IN_DEV_ARP_ANNOUNCE(in_dev) IN_DEV_MAXCONF((in_dev), ARP_ANNOUNCE) #define IN_DEV_ARP_IGNORE(in_dev) IN_DEV_MAXCONF((in_dev), ARP_IGNORE) #define IN_DEV_ARP_NOTIFY(in_dev) IN_DEV_MAXCONF((in_dev), ARP_NOTIFY) struct in_ifaddr { struct hlist_node hash; struct in_ifaddr __rcu *ifa_next; struct in_device *ifa_dev; struct rcu_head rcu_head; __be32 ifa_local; __be32 ifa_address; __be32 ifa_mask; __u32 ifa_rt_priority; __be32 ifa_broadcast; unsigned char ifa_scope; unsigned char ifa_prefixlen; __u32 ifa_flags; char ifa_label[IFNAMSIZ]; /* In seconds, relative to tstamp. Expiry is at tstamp + HZ * lft. */ __u32 ifa_valid_lft; __u32 ifa_preferred_lft; unsigned long ifa_cstamp; /* created timestamp */ unsigned long ifa_tstamp; /* updated timestamp */ }; struct in_validator_info { __be32 ivi_addr; struct in_device *ivi_dev; struct netlink_ext_ack *extack; }; int register_inetaddr_notifier(struct notifier_block *nb); int unregister_inetaddr_notifier(struct notifier_block *nb); int register_inetaddr_validator_notifier(struct notifier_block *nb); int unregister_inetaddr_validator_notifier(struct notifier_block *nb); void inet_netconf_notify_devconf(struct net *net, int event, int type, int ifindex, struct ipv4_devconf *devconf); struct net_device *__ip_dev_find(struct net *net, __be32 addr, bool devref); static inline struct net_device *ip_dev_find(struct net *net, __be32 addr) { return __ip_dev_find(net, addr, true); } int inet_addr_onlink(struct in_device *in_dev, __be32 a, __be32 b); int devinet_ioctl(struct net *net, unsigned int cmd, struct ifreq *); void devinet_init(void); struct in_device *inetdev_by_index(struct net *, int); __be32 inet_select_addr(const struct net_device *dev, __be32 dst, int scope); __be32 inet_confirm_addr(struct net *net, struct in_device *in_dev, __be32 dst, __be32 local, int scope); struct in_ifaddr *inet_ifa_byprefix(struct in_device *in_dev, __be32 prefix, __be32 mask); struct in_ifaddr *inet_lookup_ifaddr_rcu(struct net *net, __be32 addr); static inline bool inet_ifa_match(__be32 addr, const struct in_ifaddr *ifa) { return !((addr^ifa->ifa_address)&ifa->ifa_mask); } /* * Check if a mask is acceptable. */ static __inline__ bool bad_mask(__be32 mask, __be32 addr) { __u32 hmask; if (addr & (mask = ~mask)) return true; hmask = ntohl(mask); if (hmask & (hmask+1)) return true; return false; } #define in_dev_for_each_ifa_rtnl(ifa, in_dev) \ for (ifa = rtnl_dereference((in_dev)->ifa_list); ifa; \ ifa = rtnl_dereference(ifa->ifa_next)) #define in_dev_for_each_ifa_rcu(ifa, in_dev) \ for (ifa = rcu_dereference((in_dev)->ifa_list); ifa; \ ifa = rcu_dereference(ifa->ifa_next)) static inline struct in_device *__in_dev_get_rcu(const struct net_device *dev) { return rcu_dereference(dev->ip_ptr); } static inline struct in_device *in_dev_get(const struct net_device *dev) { struct in_device *in_dev; rcu_read_lock(); in_dev = __in_dev_get_rcu(dev); if (in_dev) refcount_inc(&in_dev->refcnt); rcu_read_unlock(); return in_dev; } static inline struct in_device *__in_dev_get_rtnl(const struct net_device *dev) { return rtnl_dereference(dev->ip_ptr); } /* called with rcu_read_lock or rtnl held */ static inline bool ip_ignore_linkdown(const struct net_device *dev) { struct in_device *in_dev; bool rc = false; in_dev = rcu_dereference_rtnl(dev->ip_ptr); if (in_dev && IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev)) rc = true; return rc; } static inline struct neigh_parms *__in_dev_arp_parms_get_rcu(const struct net_device *dev) { struct in_device *in_dev = __in_dev_get_rcu(dev); return in_dev ? in_dev->arp_parms : NULL; } void in_dev_finish_destroy(struct in_device *idev); static inline void in_dev_put(struct in_device *idev) { if (refcount_dec_and_test(&idev->refcnt)) in_dev_finish_destroy(idev); } #define __in_dev_put(idev) refcount_dec(&(idev)->refcnt) #define in_dev_hold(idev) refcount_inc(&(idev)->refcnt) #endif /* __KERNEL__ */ static __inline__ __be32 inet_make_mask(int logmask) { if (logmask) return htonl(~((1U<<(32-logmask))-1)); return 0; } static __inline__ int inet_mask_len(__be32 mask) { __u32 hmask = ntohl(mask); if (!hmask) return 0; return 32 - ffz(~hmask); } #endif /* _LINUX_INETDEVICE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/mount.h> #include <linux/seq_file.h> #include <linux/poll.h> #include <linux/ns_common.h> #include <linux/fs_pin.h> struct mnt_namespace { atomic_t count; struct ns_common ns; struct mount * root; /* * Traversal and modification of .list is protected by either * - taking namespace_sem for write, OR * - taking namespace_sem for read AND taking .ns_lock. */ struct list_head list; spinlock_t ns_lock; struct user_namespace *user_ns; struct ucounts *ucounts; u64 seq; /* Sequence number to prevent loops */ wait_queue_head_t poll; u64 event; unsigned int mounts; /* # of mounts in the namespace */ unsigned int pending_mounts; } __randomize_layout; struct mnt_pcp { int mnt_count; int mnt_writers; }; struct mountpoint { struct hlist_node m_hash; struct dentry *m_dentry; struct hlist_head m_list; int m_count; }; struct mount { struct hlist_node mnt_hash; struct mount *mnt_parent; struct dentry *mnt_mountpoint; struct vfsmount mnt; union { struct rcu_head mnt_rcu; struct llist_node mnt_llist; }; #ifdef CONFIG_SMP struct mnt_pcp __percpu *mnt_pcp; #else int mnt_count; int mnt_writers; #endif struct list_head mnt_mounts; /* list of children, anchored here */ struct list_head mnt_child; /* and going through their mnt_child */ struct list_head mnt_instance; /* mount instance on sb->s_mounts */ const char *mnt_devname; /* Name of device e.g. /dev/dsk/hda1 */ struct list_head mnt_list; struct list_head mnt_expire; /* link in fs-specific expiry list */ struct list_head mnt_share; /* circular list of shared mounts */ struct list_head mnt_slave_list;/* list of slave mounts */ struct list_head mnt_slave; /* slave list entry */ struct mount *mnt_master; /* slave is on master->mnt_slave_list */ struct mnt_namespace *mnt_ns; /* containing namespace */ struct mountpoint *mnt_mp; /* where is it mounted */ union { struct hlist_node mnt_mp_list; /* list mounts with the same mountpoint */ struct hlist_node mnt_umount; }; struct list_head mnt_umounting; /* list entry for umount propagation */ #ifdef CONFIG_FSNOTIFY struct fsnotify_mark_connector __rcu *mnt_fsnotify_marks; __u32 mnt_fsnotify_mask; #endif int mnt_id; /* mount identifier */ int mnt_group_id; /* peer group identifier */ int mnt_expiry_mark; /* true if marked for expiry */ struct hlist_head mnt_pins; struct hlist_head mnt_stuck_children; } __randomize_layout; #define MNT_NS_INTERNAL ERR_PTR(-EINVAL) /* distinct from any mnt_namespace */ static inline struct mount *real_mount(struct vfsmount *mnt) { return container_of(mnt, struct mount, mnt); } static inline int mnt_has_parent(struct mount *mnt) { return mnt != mnt->mnt_parent; } static inline int is_mounted(struct vfsmount *mnt) { /* neither detached nor internal? */ return !IS_ERR_OR_NULL(real_mount(mnt)->mnt_ns); } extern struct mount *__lookup_mnt(struct vfsmount *, struct dentry *); extern int __legitimize_mnt(struct vfsmount *, unsigned); extern bool legitimize_mnt(struct vfsmount *, unsigned); static inline bool __path_is_mountpoint(const struct path *path) { struct mount *m = __lookup_mnt(path->mnt, path->dentry); return m && likely(!(m->mnt.mnt_flags & MNT_SYNC_UMOUNT)); } extern void __detach_mounts(struct dentry *dentry); static inline void detach_mounts(struct dentry *dentry) { if (!d_mountpoint(dentry)) return; __detach_mounts(dentry); } static inline void get_mnt_ns(struct mnt_namespace *ns) { atomic_inc(&ns->count); } extern seqlock_t mount_lock; static inline void lock_mount_hash(void) { write_seqlock(&mount_lock); } static inline void unlock_mount_hash(void) { write_sequnlock(&mount_lock); } struct proc_mounts { struct mnt_namespace *ns; struct path root; int (*show)(struct seq_file *, struct vfsmount *); struct mount cursor; }; extern const struct seq_operations mounts_op; extern bool __is_local_mountpoint(struct dentry *dentry); static inline bool is_local_mountpoint(struct dentry *dentry) { if (!d_mountpoint(dentry)) return false; return __is_local_mountpoint(dentry); } static inline bool is_anon_ns(struct mnt_namespace *ns) { return ns->seq == 0; } extern void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor);
2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 #ifdef CONFIG_PREEMPTIRQ_TRACEPOINTS #undef TRACE_SYSTEM #define TRACE_SYSTEM preemptirq #if !defined(_TRACE_PREEMPTIRQ_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PREEMPTIRQ_H #include <linux/ktime.h> #include <linux/tracepoint.h> #include <linux/string.h> #include <asm/sections.h> DECLARE_EVENT_CLASS(preemptirq_template, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip), TP_STRUCT__entry( __field(s32, caller_offs) __field(s32, parent_offs) ), TP_fast_assign( __entry->caller_offs = (s32)(ip - (unsigned long)_stext); __entry->parent_offs = (s32)(parent_ip - (unsigned long)_stext); ), TP_printk("caller=%pS parent=%pS", (void *)((unsigned long)(_stext) + __entry->caller_offs), (void *)((unsigned long)(_stext) + __entry->parent_offs)) ); #ifdef CONFIG_TRACE_IRQFLAGS DEFINE_EVENT(preemptirq_template, irq_disable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); DEFINE_EVENT(preemptirq_template, irq_enable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); #else #define trace_irq_enable(...) #define trace_irq_disable(...) #define trace_irq_enable_rcuidle(...) #define trace_irq_disable_rcuidle(...) #endif #ifdef CONFIG_TRACE_PREEMPT_TOGGLE DEFINE_EVENT(preemptirq_template, preempt_disable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); DEFINE_EVENT(preemptirq_template, preempt_enable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); #else #define trace_preempt_enable(...) #define trace_preempt_disable(...) #define trace_preempt_enable_rcuidle(...) #define trace_preempt_disable_rcuidle(...) #endif #endif /* _TRACE_PREEMPTIRQ_H */ #include <trace/define_trace.h> #else /* !CONFIG_PREEMPTIRQ_TRACEPOINTS */ #define trace_irq_enable(...) #define trace_irq_disable(...) #define trace_irq_enable_rcuidle(...) #define trace_irq_disable_rcuidle(...) #define trace_preempt_enable(...) #define trace_preempt_disable(...) #define trace_preempt_enable_rcuidle(...) #define trace_preempt_disable_rcuidle(...) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright 1997-1998 Transmeta Corporation - All Rights Reserved * Copyright 2005-2006 Ian Kent <raven@themaw.net> */ /* Internal header file for autofs */ #include <linux/auto_fs.h> #include <linux/auto_dev-ioctl.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/string.h> #include <linux/wait.h> #include <linux/sched.h> #include <linux/sched/signal.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/uaccess.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/list.h> #include <linux/completion.h> #include <linux/file.h> #include <linux/magic.h> /* This is the range of ioctl() numbers we claim as ours */ #define AUTOFS_IOC_FIRST AUTOFS_IOC_READY #define AUTOFS_IOC_COUNT 32 #define AUTOFS_DEV_IOCTL_IOC_FIRST (AUTOFS_DEV_IOCTL_VERSION) #define AUTOFS_DEV_IOCTL_IOC_COUNT \ (AUTOFS_DEV_IOCTL_ISMOUNTPOINT_CMD - AUTOFS_DEV_IOCTL_VERSION_CMD) #ifdef pr_fmt #undef pr_fmt #endif #define pr_fmt(fmt) KBUILD_MODNAME ":pid:%d:%s: " fmt, current->pid, __func__ extern struct file_system_type autofs_fs_type; /* * Unified info structure. This is pointed to by both the dentry and * inode structures. Each file in the filesystem has an instance of this * structure. It holds a reference to the dentry, so dentries are never * flushed while the file exists. All name lookups are dealt with at the * dentry level, although the filesystem can interfere in the validation * process. Readdir is implemented by traversing the dentry lists. */ struct autofs_info { struct dentry *dentry; struct inode *inode; int flags; struct completion expire_complete; struct list_head active; struct list_head expiring; struct autofs_sb_info *sbi; unsigned long last_used; int count; kuid_t uid; kgid_t gid; struct rcu_head rcu; }; #define AUTOFS_INF_EXPIRING (1<<0) /* dentry in the process of expiring */ #define AUTOFS_INF_WANT_EXPIRE (1<<1) /* the dentry is being considered * for expiry, so RCU_walk is * not permitted. If it progresses to * actual expiry attempt, the flag is * not cleared when EXPIRING is set - * in that case it gets cleared only * when it comes to clearing EXPIRING. */ #define AUTOFS_INF_PENDING (1<<2) /* dentry pending mount */ struct autofs_wait_queue { wait_queue_head_t queue; struct autofs_wait_queue *next; autofs_wqt_t wait_queue_token; /* We use the following to see what we are waiting for */ struct qstr name; u32 dev; u64 ino; kuid_t uid; kgid_t gid; pid_t pid; pid_t tgid; /* This is for status reporting upon return */ int status; unsigned int wait_ctr; }; #define AUTOFS_SBI_MAGIC 0x6d4a556d #define AUTOFS_SBI_CATATONIC 0x0001 #define AUTOFS_SBI_STRICTEXPIRE 0x0002 #define AUTOFS_SBI_IGNORE 0x0004 struct autofs_sb_info { u32 magic; int pipefd; struct file *pipe; struct pid *oz_pgrp; int version; int sub_version; int min_proto; int max_proto; unsigned int flags; unsigned long exp_timeout; unsigned int type; struct super_block *sb; struct mutex wq_mutex; struct mutex pipe_mutex; spinlock_t fs_lock; struct autofs_wait_queue *queues; /* Wait queue pointer */ spinlock_t lookup_lock; struct list_head active_list; struct list_head expiring_list; struct rcu_head rcu; }; static inline struct autofs_sb_info *autofs_sbi(struct super_block *sb) { return (struct autofs_sb_info *)(sb->s_fs_info); } static inline struct autofs_info *autofs_dentry_ino(struct dentry *dentry) { return (struct autofs_info *)(dentry->d_fsdata); } /* autofs_oz_mode(): do we see the man behind the curtain? (The * processes which do manipulations for us in user space sees the raw * filesystem without "magic".) */ static inline int autofs_oz_mode(struct autofs_sb_info *sbi) { return ((sbi->flags & AUTOFS_SBI_CATATONIC) || task_pgrp(current) == sbi->oz_pgrp); } struct inode *autofs_get_inode(struct super_block *, umode_t); void autofs_free_ino(struct autofs_info *); /* Expiration */ int is_autofs_dentry(struct dentry *); int autofs_expire_wait(const struct path *path, int rcu_walk); int autofs_expire_run(struct super_block *, struct vfsmount *, struct autofs_sb_info *, struct autofs_packet_expire __user *); int autofs_do_expire_multi(struct super_block *sb, struct vfsmount *mnt, struct autofs_sb_info *sbi, unsigned int how); int autofs_expire_multi(struct super_block *, struct vfsmount *, struct autofs_sb_info *, int __user *); /* Device node initialization */ int autofs_dev_ioctl_init(void); void autofs_dev_ioctl_exit(void); /* Operations structures */ extern const struct inode_operations autofs_symlink_inode_operations; extern const struct inode_operations autofs_dir_inode_operations; extern const struct file_operations autofs_dir_operations; extern const struct file_operations autofs_root_operations; extern const struct dentry_operations autofs_dentry_operations; /* VFS automount flags management functions */ static inline void __managed_dentry_set_managed(struct dentry *dentry) { dentry->d_flags |= (DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT); } static inline void managed_dentry_set_managed(struct dentry *dentry) { spin_lock(&dentry->d_lock); __managed_dentry_set_managed(dentry); spin_unlock(&dentry->d_lock); } static inline void __managed_dentry_clear_managed(struct dentry *dentry) { dentry->d_flags &= ~(DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT); } static inline void managed_dentry_clear_managed(struct dentry *dentry) { spin_lock(&dentry->d_lock); __managed_dentry_clear_managed(dentry); spin_unlock(&dentry->d_lock); } /* Initializing function */ int autofs_fill_super(struct super_block *, void *, int); struct autofs_info *autofs_new_ino(struct autofs_sb_info *); void autofs_clean_ino(struct autofs_info *); static inline int autofs_prepare_pipe(struct file *pipe) { if (!(pipe->f_mode & FMODE_CAN_WRITE)) return -EINVAL; if (!S_ISFIFO(file_inode(pipe)->i_mode)) return -EINVAL; /* We want a packet pipe */ pipe->f_flags |= O_DIRECT; /* We don't expect -EAGAIN */ pipe->f_flags &= ~O_NONBLOCK; return 0; } /* Queue management functions */ int autofs_wait(struct autofs_sb_info *, const struct path *, enum autofs_notify); int autofs_wait_release(struct autofs_sb_info *, autofs_wqt_t, int); void autofs_catatonic_mode(struct autofs_sb_info *); static inline u32 autofs_get_dev(struct autofs_sb_info *sbi) { return new_encode_dev(sbi->sb->s_dev); } static inline u64 autofs_get_ino(struct autofs_sb_info *sbi) { return d_inode(sbi->sb->s_root)->i_ino; } static inline void __autofs_add_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { if (list_empty(&ino->expiring)) list_add(&ino->expiring, &sbi->expiring_list); } } static inline void autofs_add_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { spin_lock(&sbi->lookup_lock); if (list_empty(&ino->expiring)) list_add(&ino->expiring, &sbi->expiring_list); spin_unlock(&sbi->lookup_lock); } } static inline void autofs_del_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { spin_lock(&sbi->lookup_lock); if (!list_empty(&ino->expiring)) list_del_init(&ino->expiring); spin_unlock(&sbi->lookup_lock); } } void autofs_kill_sb(struct super_block *);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 2008 Intel Corporation * Author: Matthew Wilcox <willy@linux.intel.com> * * Please see kernel/locking/semaphore.c for documentation of these functions */ #ifndef __LINUX_SEMAPHORE_H #define __LINUX_SEMAPHORE_H #include <linux/list.h> #include <linux/spinlock.h> /* Please don't access any members of this structure directly */ struct semaphore { raw_spinlock_t lock; unsigned int count; struct list_head wait_list; }; #define __SEMAPHORE_INITIALIZER(name, n) \ { \ .lock = __RAW_SPIN_LOCK_UNLOCKED((name).lock), \ .count = n, \ .wait_list = LIST_HEAD_INIT((name).wait_list), \ } #define DEFINE_SEMAPHORE(name) \ struct semaphore name = __SEMAPHORE_INITIALIZER(name, 1) static inline void sema_init(struct semaphore *sem, int val) { static struct lock_class_key __key; *sem = (struct semaphore) __SEMAPHORE_INITIALIZER(*sem, val); lockdep_init_map(&sem->lock.dep_map, "semaphore->lock", &__key, 0); } extern void down(struct semaphore *sem); extern int __must_check down_interruptible(struct semaphore *sem); extern int __must_check down_killable(struct semaphore *sem); extern int __must_check down_trylock(struct semaphore *sem); extern int __must_check down_timeout(struct semaphore *sem, long jiffies); extern void up(struct semaphore *sem); #endif /* __LINUX_SEMAPHORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 // SPDX-License-Identifier: GPL-2.0 /* * fs/ext4/mballoc.h * * Written by: Alex Tomas <alex@clusterfs.com> * */ #ifndef _EXT4_MBALLOC_H #define _EXT4_MBALLOC_H #include <linux/time.h> #include <linux/fs.h> #include <linux/namei.h> #include <linux/quotaops.h> #include <linux/buffer_head.h> #include <linux/module.h> #include <linux/swap.h> #include <linux/proc_fs.h> #include <linux/pagemap.h> #include <linux/seq_file.h> #include <linux/blkdev.h> #include <linux/mutex.h> #include "ext4_jbd2.h" #include "ext4.h" /* * mb_debug() dynamic printk msgs could be used to debug mballoc code. */ #ifdef CONFIG_EXT4_DEBUG #define mb_debug(sb, fmt, ...) \ pr_debug("[%s/%d] EXT4-fs (%s): (%s, %d): %s: " fmt, \ current->comm, task_pid_nr(current), sb->s_id, \ __FILE__, __LINE__, __func__, ##__VA_ARGS__) #else #define mb_debug(sb, fmt, ...) no_printk(fmt, ##__VA_ARGS__) #endif #define EXT4_MB_HISTORY_ALLOC 1 /* allocation */ #define EXT4_MB_HISTORY_PREALLOC 2 /* preallocated blocks used */ /* * How long mballoc can look for a best extent (in found extents) */ #define MB_DEFAULT_MAX_TO_SCAN 200 /* * How long mballoc must look for a best extent */ #define MB_DEFAULT_MIN_TO_SCAN 10 /* * with 'ext4_mb_stats' allocator will collect stats that will be * shown at umount. The collecting costs though! */ #define MB_DEFAULT_STATS 0 /* * files smaller than MB_DEFAULT_STREAM_THRESHOLD are served * by the stream allocator, which purpose is to pack requests * as close each to other as possible to produce smooth I/O traffic * We use locality group prealloc space for stream request. * We can tune the same via /proc/fs/ext4/<parition>/stream_req */ #define MB_DEFAULT_STREAM_THRESHOLD 16 /* 64K */ /* * for which requests use 2^N search using buddies */ #define MB_DEFAULT_ORDER2_REQS 2 /* * default group prealloc size 512 blocks */ #define MB_DEFAULT_GROUP_PREALLOC 512 /* * maximum length of inode prealloc list */ #define MB_DEFAULT_MAX_INODE_PREALLOC 512 struct ext4_free_data { /* this links the free block information from sb_info */ struct list_head efd_list; /* this links the free block information from group_info */ struct rb_node efd_node; /* group which free block extent belongs */ ext4_group_t efd_group; /* free block extent */ ext4_grpblk_t efd_start_cluster; ext4_grpblk_t efd_count; /* transaction which freed this extent */ tid_t efd_tid; }; struct ext4_prealloc_space { struct list_head pa_inode_list; struct list_head pa_group_list; union { struct list_head pa_tmp_list; struct rcu_head pa_rcu; } u; spinlock_t pa_lock; atomic_t pa_count; unsigned pa_deleted; ext4_fsblk_t pa_pstart; /* phys. block */ ext4_lblk_t pa_lstart; /* log. block */ ext4_grpblk_t pa_len; /* len of preallocated chunk */ ext4_grpblk_t pa_free; /* how many blocks are free */ unsigned short pa_type; /* pa type. inode or group */ spinlock_t *pa_obj_lock; struct inode *pa_inode; /* hack, for history only */ }; enum { MB_INODE_PA = 0, MB_GROUP_PA = 1 }; struct ext4_free_extent { ext4_lblk_t fe_logical; ext4_grpblk_t fe_start; /* In cluster units */ ext4_group_t fe_group; ext4_grpblk_t fe_len; /* In cluster units */ }; /* * Locality group: * we try to group all related changes together * so that writeback can flush/allocate them together as well * Size of lg_prealloc_list hash is determined by MB_DEFAULT_GROUP_PREALLOC * (512). We store prealloc space into the hash based on the pa_free blocks * order value.ie, fls(pa_free)-1; */ #define PREALLOC_TB_SIZE 10 struct ext4_locality_group { /* for allocator */ /* to serialize allocates */ struct mutex lg_mutex; /* list of preallocations */ struct list_head lg_prealloc_list[PREALLOC_TB_SIZE]; spinlock_t lg_prealloc_lock; }; struct ext4_allocation_context { struct inode *ac_inode; struct super_block *ac_sb; /* original request */ struct ext4_free_extent ac_o_ex; /* goal request (normalized ac_o_ex) */ struct ext4_free_extent ac_g_ex; /* the best found extent */ struct ext4_free_extent ac_b_ex; /* copy of the best found extent taken before preallocation efforts */ struct ext4_free_extent ac_f_ex; __u16 ac_groups_scanned; __u16 ac_found; __u16 ac_tail; __u16 ac_buddy; __u16 ac_flags; /* allocation hints */ __u8 ac_status; __u8 ac_criteria; __u8 ac_2order; /* if request is to allocate 2^N blocks and * N > 0, the field stores N, otherwise 0 */ __u8 ac_op; /* operation, for history only */ struct page *ac_bitmap_page; struct page *ac_buddy_page; struct ext4_prealloc_space *ac_pa; struct ext4_locality_group *ac_lg; }; #define AC_STATUS_CONTINUE 1 #define AC_STATUS_FOUND 2 #define AC_STATUS_BREAK 3 struct ext4_buddy { struct page *bd_buddy_page; void *bd_buddy; struct page *bd_bitmap_page; void *bd_bitmap; struct ext4_group_info *bd_info; struct super_block *bd_sb; __u16 bd_blkbits; ext4_group_t bd_group; }; static inline ext4_fsblk_t ext4_grp_offs_to_block(struct super_block *sb, struct ext4_free_extent *fex) { return ext4_group_first_block_no(sb, fex->fe_group) + (fex->fe_start << EXT4_SB(sb)->s_cluster_bits); } typedef int (*ext4_mballoc_query_range_fn)( struct super_block *sb, ext4_group_t agno, ext4_grpblk_t start, ext4_grpblk_t len, void *priv); int ext4_mballoc_query_range( struct super_block *sb, ext4_group_t agno, ext4_grpblk_t start, ext4_grpblk_t end, ext4_mballoc_query_range_fn formatter, void *priv); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 /* SPDX-License-Identifier: GPL-2.0 */ /* * Functions used by both the SCSI initiator code and the SCSI target code. */ #ifndef _SCSI_COMMON_H_ #define _SCSI_COMMON_H_ #include <linux/types.h> #include <scsi/scsi_proto.h> static inline unsigned scsi_varlen_cdb_length(const void *hdr) { return ((struct scsi_varlen_cdb_hdr *)hdr)->additional_cdb_length + 8; } extern const unsigned char scsi_command_size_tbl[8]; #define COMMAND_SIZE(opcode) scsi_command_size_tbl[((opcode) >> 5) & 7] static inline unsigned scsi_command_size(const unsigned char *cmnd) { return (cmnd[0] == VARIABLE_LENGTH_CMD) ? scsi_varlen_cdb_length(cmnd) : COMMAND_SIZE(cmnd[0]); } static inline unsigned char scsi_command_control(const unsigned char *cmnd) { return (cmnd[0] == VARIABLE_LENGTH_CMD) ? cmnd[1] : cmnd[COMMAND_SIZE(cmnd[0]) - 1]; } /* Returns a human-readable name for the device */ extern const char *scsi_device_type(unsigned type); extern void int_to_scsilun(u64, struct scsi_lun *); extern u64 scsilun_to_int(struct scsi_lun *); /* * This is a slightly modified SCSI sense "descriptor" format header. * The addition is to allow the 0x70 and 0x71 response codes. The idea * is to place the salient data from either "fixed" or "descriptor" sense * format into one structure to ease application processing. * * The original sense buffer should be kept around for those cases * in which more information is required (e.g. the LBA of a MEDIUM ERROR). */ struct scsi_sense_hdr { /* See SPC-3 section 4.5 */ u8 response_code; /* permit: 0x0, 0x70, 0x71, 0x72, 0x73 */ u8 sense_key; u8 asc; u8 ascq; u8 byte4; u8 byte5; u8 byte6; u8 additional_length; /* always 0 for fixed sense format */ }; static inline bool scsi_sense_valid(const struct scsi_sense_hdr *sshdr) { if (!sshdr) return false; return (sshdr->response_code & 0x70) == 0x70; } extern bool scsi_normalize_sense(const u8 *sense_buffer, int sb_len, struct scsi_sense_hdr *sshdr); extern void scsi_build_sense_buffer(int desc, u8 *buf, u8 key, u8 asc, u8 ascq); int scsi_set_sense_information(u8 *buf, int buf_len, u64 info); int scsi_set_sense_field_pointer(u8 *buf, int buf_len, u16 fp, u8 bp, bool cd); extern const u8 * scsi_sense_desc_find(const u8 * sense_buffer, int sb_len, int desc_type); #endif /* _SCSI_COMMON_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM msr #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE msr-trace #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH asm/ #if !defined(_TRACE_MSR_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MSR_H #include <linux/tracepoint.h> /* * Tracing for x86 model specific registers. Directly maps to the * RDMSR/WRMSR instructions. */ DECLARE_EVENT_CLASS(msr_trace_class, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed), TP_STRUCT__entry( __field( unsigned, msr ) __field( u64, val ) __field( int, failed ) ), TP_fast_assign( __entry->msr = msr; __entry->val = val; __entry->failed = failed; ), TP_printk("%x, value %llx%s", __entry->msr, __entry->val, __entry->failed ? " #GP" : "") ); DEFINE_EVENT(msr_trace_class, read_msr, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed) ); DEFINE_EVENT(msr_trace_class, write_msr, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed) ); DEFINE_EVENT(msr_trace_class, rdpmc, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed) ); #endif /* _TRACE_MSR_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RMAP_H #define _LINUX_RMAP_H /* * Declarations for Reverse Mapping functions in mm/rmap.c */ #include <linux/list.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/rwsem.h> #include <linux/memcontrol.h> #include <linux/highmem.h> /* * The anon_vma heads a list of private "related" vmas, to scan if * an anonymous page pointing to this anon_vma needs to be unmapped: * the vmas on the list will be related by forking, or by splitting. * * Since vmas come and go as they are split and merged (particularly * in mprotect), the mapping field of an anonymous page cannot point * directly to a vma: instead it points to an anon_vma, on whose list * the related vmas can be easily linked or unlinked. * * After unlinking the last vma on the list, we must garbage collect * the anon_vma object itself: we're guaranteed no page can be * pointing to this anon_vma once its vma list is empty. */ struct anon_vma { struct anon_vma *root; /* Root of this anon_vma tree */ struct rw_semaphore rwsem; /* W: modification, R: walking the list */ /* * The refcount is taken on an anon_vma when there is no * guarantee that the vma of page tables will exist for * the duration of the operation. A caller that takes * the reference is responsible for clearing up the * anon_vma if they are the last user on release */ atomic_t refcount; /* * Count of child anon_vmas and VMAs which points to this anon_vma. * * This counter is used for making decision about reusing anon_vma * instead of forking new one. See comments in function anon_vma_clone. */ unsigned degree; struct anon_vma *parent; /* Parent of this anon_vma */ /* * NOTE: the LSB of the rb_root.rb_node is set by * mm_take_all_locks() _after_ taking the above lock. So the * rb_root must only be read/written after taking the above lock * to be sure to see a valid next pointer. The LSB bit itself * is serialized by a system wide lock only visible to * mm_take_all_locks() (mm_all_locks_mutex). */ /* Interval tree of private "related" vmas */ struct rb_root_cached rb_root; }; /* * The copy-on-write semantics of fork mean that an anon_vma * can become associated with multiple processes. Furthermore, * each child process will have its own anon_vma, where new * pages for that process are instantiated. * * This structure allows us to find the anon_vmas associated * with a VMA, or the VMAs associated with an anon_vma. * The "same_vma" list contains the anon_vma_chains linking * all the anon_vmas associated with this VMA. * The "rb" field indexes on an interval tree the anon_vma_chains * which link all the VMAs associated with this anon_vma. */ struct anon_vma_chain { struct vm_area_struct *vma; struct anon_vma *anon_vma; struct list_head same_vma; /* locked by mmap_lock & page_table_lock */ struct rb_node rb; /* locked by anon_vma->rwsem */ unsigned long rb_subtree_last; #ifdef CONFIG_DEBUG_VM_RB unsigned long cached_vma_start, cached_vma_last; #endif }; enum ttu_flags { TTU_MIGRATION = 0x1, /* migration mode */ TTU_MUNLOCK = 0x2, /* munlock mode */ TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */ TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */ TTU_SYNC = 0x10, /* avoid racy checks with PVMW_SYNC */ TTU_IGNORE_HWPOISON = 0x20, /* corrupted page is recoverable */ TTU_BATCH_FLUSH = 0x40, /* Batch TLB flushes where possible * and caller guarantees they will * do a final flush if necessary */ TTU_RMAP_LOCKED = 0x80, /* do not grab rmap lock: * caller holds it */ TTU_SPLIT_FREEZE = 0x100, /* freeze pte under splitting thp */ }; #ifdef CONFIG_MMU static inline void get_anon_vma(struct anon_vma *anon_vma) { atomic_inc(&anon_vma->refcount); } void __put_anon_vma(struct anon_vma *anon_vma); static inline void put_anon_vma(struct anon_vma *anon_vma) { if (atomic_dec_and_test(&anon_vma->refcount)) __put_anon_vma(anon_vma); } static inline void anon_vma_lock_write(struct anon_vma *anon_vma) { down_write(&anon_vma->root->rwsem); } static inline void anon_vma_unlock_write(struct anon_vma *anon_vma) { up_write(&anon_vma->root->rwsem); } static inline void anon_vma_lock_read(struct anon_vma *anon_vma) { down_read(&anon_vma->root->rwsem); } static inline void anon_vma_unlock_read(struct anon_vma *anon_vma) { up_read(&anon_vma->root->rwsem); } /* * anon_vma helper functions. */ void anon_vma_init(void); /* create anon_vma_cachep */ int __anon_vma_prepare(struct vm_area_struct *); void unlink_anon_vmas(struct vm_area_struct *); int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *); int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *); static inline int anon_vma_prepare(struct vm_area_struct *vma) { if (likely(vma->anon_vma)) return 0; return __anon_vma_prepare(vma); } static inline void anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) { VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma); unlink_anon_vmas(next); } struct anon_vma *page_get_anon_vma(struct page *page); /* bitflags for do_page_add_anon_rmap() */ #define RMAP_EXCLUSIVE 0x01 #define RMAP_COMPOUND 0x02 /* * rmap interfaces called when adding or removing pte of page */ void page_move_anon_rmap(struct page *, struct vm_area_struct *); void page_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long, bool); void do_page_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long, int); void page_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long, bool); void page_add_file_rmap(struct page *, bool); void page_remove_rmap(struct page *, bool); void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long); void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long); static inline void page_dup_rmap(struct page *page, bool compound) { atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount); } /* * Called from mm/vmscan.c to handle paging out */ int page_referenced(struct page *, int is_locked, struct mem_cgroup *memcg, unsigned long *vm_flags); bool try_to_unmap(struct page *, enum ttu_flags flags); /* Avoid racy checks */ #define PVMW_SYNC (1 << 0) /* Look for migarion entries rather than present PTEs */ #define PVMW_MIGRATION (1 << 1) struct page_vma_mapped_walk { struct page *page; struct vm_area_struct *vma; unsigned long address; pmd_t *pmd; pte_t *pte; spinlock_t *ptl; unsigned int flags; }; static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw) { /* HugeTLB pte is set to the relevant page table entry without pte_mapped. */ if (pvmw->pte && !PageHuge(pvmw->page)) pte_unmap(pvmw->pte); if (pvmw->ptl) spin_unlock(pvmw->ptl); } bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw); /* * Used by swapoff to help locate where page is expected in vma. */ unsigned long page_address_in_vma(struct page *, struct vm_area_struct *); /* * Cleans the PTEs of shared mappings. * (and since clean PTEs should also be readonly, write protects them too) * * returns the number of cleaned PTEs. */ int page_mkclean(struct page *); /* * called in munlock()/munmap() path to check for other vmas holding * the page mlocked. */ void try_to_munlock(struct page *); void remove_migration_ptes(struct page *old, struct page *new, bool locked); /* * Called by memory-failure.c to kill processes. */ struct anon_vma *page_lock_anon_vma_read(struct page *page); void page_unlock_anon_vma_read(struct anon_vma *anon_vma); int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma); /* * rmap_walk_control: To control rmap traversing for specific needs * * arg: passed to rmap_one() and invalid_vma() * rmap_one: executed on each vma where page is mapped * done: for checking traversing termination condition * anon_lock: for getting anon_lock by optimized way rather than default * invalid_vma: for skipping uninterested vma */ struct rmap_walk_control { void *arg; /* * Return false if page table scanning in rmap_walk should be stopped. * Otherwise, return true. */ bool (*rmap_one)(struct page *page, struct vm_area_struct *vma, unsigned long addr, void *arg); int (*done)(struct page *page); struct anon_vma *(*anon_lock)(struct page *page); bool (*invalid_vma)(struct vm_area_struct *vma, void *arg); }; void rmap_walk(struct page *page, struct rmap_walk_control *rwc); void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc); #else /* !CONFIG_MMU */ #define anon_vma_init() do {} while (0) #define anon_vma_prepare(vma) (0) #define anon_vma_link(vma) do {} while (0) static inline int page_referenced(struct page *page, int is_locked, struct mem_cgroup *memcg, unsigned long *vm_flags) { *vm_flags = 0; return 0; } #define try_to_unmap(page, refs) false static inline int page_mkclean(struct page *page) { return 0; } #endif /* CONFIG_MMU */ #endif /* _LINUX_RMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM net #if !defined(_TRACE_NET_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_NET_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/if_vlan.h> #include <linux/ip.h> #include <linux/tracepoint.h> TRACE_EVENT(net_dev_start_xmit, TP_PROTO(const struct sk_buff *skb, const struct net_device *dev), TP_ARGS(skb, dev), TP_STRUCT__entry( __string( name, dev->name ) __field( u16, queue_mapping ) __field( const void *, skbaddr ) __field( bool, vlan_tagged ) __field( u16, vlan_proto ) __field( u16, vlan_tci ) __field( u16, protocol ) __field( u8, ip_summed ) __field( unsigned int, len ) __field( unsigned int, data_len ) __field( int, network_offset ) __field( bool, transport_offset_valid) __field( int, transport_offset) __field( u8, tx_flags ) __field( u16, gso_size ) __field( u16, gso_segs ) __field( u16, gso_type ) ), TP_fast_assign( __assign_str(name, dev->name); __entry->queue_mapping = skb->queue_mapping; __entry->skbaddr = skb; __entry->vlan_tagged = skb_vlan_tag_present(skb); __entry->vlan_proto = ntohs(skb->vlan_proto); __entry->vlan_tci = skb_vlan_tag_get(skb); __entry->protocol = ntohs(skb->protocol); __entry->ip_summed = skb->ip_summed; __entry->len = skb->len; __entry->data_len = skb->data_len; __entry->network_offset = skb_network_offset(skb); __entry->transport_offset_valid = skb_transport_header_was_set(skb); __entry->transport_offset = skb_transport_offset(skb); __entry->tx_flags = skb_shinfo(skb)->tx_flags; __entry->gso_size = skb_shinfo(skb)->gso_size; __entry->gso_segs = skb_shinfo(skb)->gso_segs; __entry->gso_type = skb_shinfo(skb)->gso_type; ), TP_printk("dev=%s queue_mapping=%u skbaddr=%p vlan_tagged=%d vlan_proto=0x%04x vlan_tci=0x%04x protocol=0x%04x ip_summed=%d len=%u data_len=%u network_offset=%d transport_offset_valid=%d transport_offset=%d tx_flags=%d gso_size=%d gso_segs=%d gso_type=%#x", __get_str(name), __entry->queue_mapping, __entry->skbaddr, __entry->vlan_tagged, __entry->vlan_proto, __entry->vlan_tci, __entry->protocol, __entry->ip_summed, __entry->len, __entry->data_len, __entry->network_offset, __entry->transport_offset_valid, __entry->transport_offset, __entry->tx_flags, __entry->gso_size, __entry->gso_segs, __entry->gso_type) ); TRACE_EVENT(net_dev_xmit, TP_PROTO(struct sk_buff *skb, int rc, struct net_device *dev, unsigned int skb_len), TP_ARGS(skb, rc, dev, skb_len), TP_STRUCT__entry( __field( void *, skbaddr ) __field( unsigned int, len ) __field( int, rc ) __string( name, dev->name ) ), TP_fast_assign( __entry->skbaddr = skb; __entry->len = skb_len; __entry->rc = rc; __assign_str(name, dev->name); ), TP_printk("dev=%s skbaddr=%p len=%u rc=%d", __get_str(name), __entry->skbaddr, __entry->len, __entry->rc) ); TRACE_EVENT(net_dev_xmit_timeout, TP_PROTO(struct net_device *dev, int queue_index), TP_ARGS(dev, queue_index), TP_STRUCT__entry( __string( name, dev->name ) __string( driver, netdev_drivername(dev)) __field( int, queue_index ) ), TP_fast_assign( __assign_str(name, dev->name); __assign_str(driver, netdev_drivername(dev)); __entry->queue_index = queue_index; ), TP_printk("dev=%s driver=%s queue=%d", __get_str(name), __get_str(driver), __entry->queue_index) ); DECLARE_EVENT_CLASS(net_dev_template, TP_PROTO(struct sk_buff *skb), TP_ARGS(skb), TP_STRUCT__entry( __field( void *, skbaddr ) __field( unsigned int, len ) __string( name, skb->dev->name ) ), TP_fast_assign( __entry->skbaddr = skb; __entry->len = skb->len; __assign_str(name, skb->dev->name); ), TP_printk("dev=%s skbaddr=%p len=%u", __get_str(name), __entry->skbaddr, __entry->len) ) DEFINE_EVENT(net_dev_template, net_dev_queue, TP_PROTO(struct sk_buff *skb), TP_ARGS(skb) ); DEFINE_EVENT(net_dev_template, netif_receive_skb, TP_PROTO(struct sk_buff *skb), TP_ARGS(skb) ); DEFINE_EVENT(net_dev_template, netif_rx, TP_PROTO(struct sk_buff *skb), TP_ARGS(skb) ); DECLARE_EVENT_CLASS(net_dev_rx_verbose_template, TP_PROTO(const struct sk_buff *skb), TP_ARGS(skb), TP_STRUCT__entry( __string( name, skb->dev->name ) __field( unsigned int, napi_id ) __field( u16, queue_mapping ) __field( const void *, skbaddr ) __field( bool, vlan_tagged ) __field( u16, vlan_proto ) __field( u16, vlan_tci ) __field( u16, protocol ) __field( u8, ip_summed ) __field( u32, hash ) __field( bool, l4_hash ) __field( unsigned int, len ) __field( unsigned int, data_len ) __field( unsigned int, truesize ) __field( bool, mac_header_valid) __field( int, mac_header ) __field( unsigned char, nr_frags ) __field( u16, gso_size ) __field( u16, gso_type ) ), TP_fast_assign( __assign_str(name, skb->dev->name); #ifdef CONFIG_NET_RX_BUSY_POLL __entry->napi_id = skb->napi_id; #else __entry->napi_id = 0; #endif __entry->queue_mapping = skb->queue_mapping; __entry->skbaddr = skb; __entry->vlan_tagged = skb_vlan_tag_present(skb); __entry->vlan_proto = ntohs(skb->vlan_proto); __entry->vlan_tci = skb_vlan_tag_get(skb); __entry->protocol = ntohs(skb->protocol); __entry->ip_summed = skb->ip_summed; __entry->hash = skb->hash; __entry->l4_hash = skb->l4_hash; __entry->len = skb->len; __entry->data_len = skb->data_len; __entry->truesize = skb->truesize; __entry->mac_header_valid = skb_mac_header_was_set(skb); __entry->mac_header = skb_mac_header(skb) - skb->data; __entry->nr_frags = skb_shinfo(skb)->nr_frags; __entry->gso_size = skb_shinfo(skb)->gso_size; __entry->gso_type = skb_shinfo(skb)->gso_type; ), TP_printk("dev=%s napi_id=%#x queue_mapping=%u skbaddr=%p vlan_tagged=%d vlan_proto=0x%04x vlan_tci=0x%04x protocol=0x%04x ip_summed=%d hash=0x%08x l4_hash=%d len=%u data_len=%u truesize=%u mac_header_valid=%d mac_header=%d nr_frags=%d gso_size=%d gso_type=%#x", __get_str(name), __entry->napi_id, __entry->queue_mapping, __entry->skbaddr, __entry->vlan_tagged, __entry->vlan_proto, __entry->vlan_tci, __entry->protocol, __entry->ip_summed, __entry->hash, __entry->l4_hash, __entry->len, __entry->data_len, __entry->truesize, __entry->mac_header_valid, __entry->mac_header, __entry->nr_frags, __entry->gso_size, __entry->gso_type) ); DEFINE_EVENT(net_dev_rx_verbose_template, napi_gro_frags_entry, TP_PROTO(const struct sk_buff *skb), TP_ARGS(skb) ); DEFINE_EVENT(net_dev_rx_verbose_template, napi_gro_receive_entry, TP_PROTO(const struct sk_buff *skb), TP_ARGS(skb) ); DEFINE_EVENT(net_dev_rx_verbose_template, netif_receive_skb_entry, TP_PROTO(const struct sk_buff *skb), TP_ARGS(skb) ); DEFINE_EVENT(net_dev_rx_verbose_template, netif_receive_skb_list_entry, TP_PROTO(const struct sk_buff *skb), TP_ARGS(skb) ); DEFINE_EVENT(net_dev_rx_verbose_template, netif_rx_entry, TP_PROTO(const struct sk_buff *skb), TP_ARGS(skb) ); DEFINE_EVENT(net_dev_rx_verbose_template, netif_rx_ni_entry, TP_PROTO(const struct sk_buff *skb), TP_ARGS(skb) ); DECLARE_EVENT_CLASS(net_dev_rx_exit_template, TP_PROTO(int ret), TP_ARGS(ret), TP_STRUCT__entry( __field(int, ret) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret=%d", __entry->ret) ); DEFINE_EVENT(net_dev_rx_exit_template, napi_gro_frags_exit, TP_PROTO(int ret), TP_ARGS(ret) ); DEFINE_EVENT(net_dev_rx_exit_template, napi_gro_receive_exit, TP_PROTO(int ret), TP_ARGS(ret) ); DEFINE_EVENT(net_dev_rx_exit_template, netif_receive_skb_exit, TP_PROTO(int ret), TP_ARGS(ret) ); DEFINE_EVENT(net_dev_rx_exit_template, netif_rx_exit, TP_PROTO(int ret), TP_ARGS(ret) ); DEFINE_EVENT(net_dev_rx_exit_template, netif_rx_ni_exit, TP_PROTO(int ret), TP_ARGS(ret) ); DEFINE_EVENT(net_dev_rx_exit_template, netif_receive_skb_list_exit, TP_PROTO(int ret), TP_ARGS(ret) ); #endif /* _TRACE_NET_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __SOCK_DIAG_H__ #define __SOCK_DIAG_H__ #include <linux/netlink.h> #include <linux/user_namespace.h> #include <net/net_namespace.h> #include <net/sock.h> #include <uapi/linux/sock_diag.h> struct sk_buff; struct nlmsghdr; struct sock; struct sock_diag_handler { __u8 family; int (*dump)(struct sk_buff *skb, struct nlmsghdr *nlh); int (*get_info)(struct sk_buff *skb, struct sock *sk); int (*destroy)(struct sk_buff *skb, struct nlmsghdr *nlh); }; int sock_diag_register(const struct sock_diag_handler *h); void sock_diag_unregister(const struct sock_diag_handler *h); void sock_diag_register_inet_compat(int (*fn)(struct sk_buff *skb, struct nlmsghdr *nlh)); void sock_diag_unregister_inet_compat(int (*fn)(struct sk_buff *skb, struct nlmsghdr *nlh)); u64 __sock_gen_cookie(struct sock *sk); static inline u64 sock_gen_cookie(struct sock *sk) { u64 cookie; preempt_disable(); cookie = __sock_gen_cookie(sk); preempt_enable(); return cookie; } int sock_diag_check_cookie(struct sock *sk, const __u32 *cookie); void sock_diag_save_cookie(struct sock *sk, __u32 *cookie); int sock_diag_put_meminfo(struct sock *sk, struct sk_buff *skb, int attr); int sock_diag_put_filterinfo(bool may_report_filterinfo, struct sock *sk, struct sk_buff *skb, int attrtype); static inline enum sknetlink_groups sock_diag_destroy_group(const struct sock *sk) { switch (sk->sk_family) { case AF_INET: if (sk->sk_type == SOCK_RAW) return SKNLGRP_NONE; switch (sk->sk_protocol) { case IPPROTO_TCP: return SKNLGRP_INET_TCP_DESTROY; case IPPROTO_UDP: return SKNLGRP_INET_UDP_DESTROY; default: return SKNLGRP_NONE; } case AF_INET6: if (sk->sk_type == SOCK_RAW) return SKNLGRP_NONE; switch (sk->sk_protocol) { case IPPROTO_TCP: return SKNLGRP_INET6_TCP_DESTROY; case IPPROTO_UDP: return SKNLGRP_INET6_UDP_DESTROY; default: return SKNLGRP_NONE; } default: return SKNLGRP_NONE; } } static inline bool sock_diag_has_destroy_listeners(const struct sock *sk) { const struct net *n = sock_net(sk); const enum sknetlink_groups group = sock_diag_destroy_group(sk); return group != SKNLGRP_NONE && n->diag_nlsk && netlink_has_listeners(n->diag_nlsk, group); } void sock_diag_broadcast_destroy(struct sock *sk); int sock_diag_destroy(struct sock *sk, int err); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_UIDGID_H #define _LINUX_UIDGID_H /* * A set of types for the internal kernel types representing uids and gids. * * The types defined in this header allow distinguishing which uids and gids in * the kernel are values used by userspace and which uid and gid values are * the internal kernel values. With the addition of user namespaces the values * can be different. Using the type system makes it possible for the compiler * to detect when we overlook these differences. * */ #include <linux/types.h> #include <linux/highuid.h> struct user_namespace; extern struct user_namespace init_user_ns; typedef struct { uid_t val; } kuid_t; typedef struct { gid_t val; } kgid_t; #define KUIDT_INIT(value) (kuid_t){ value } #define KGIDT_INIT(value) (kgid_t){ value } #ifdef CONFIG_MULTIUSER static inline uid_t __kuid_val(kuid_t uid) { return uid.val; } static inline gid_t __kgid_val(kgid_t gid) { return gid.val; } #else static inline uid_t __kuid_val(kuid_t uid) { return 0; } static inline gid_t __kgid_val(kgid_t gid) { return 0; } #endif #define GLOBAL_ROOT_UID KUIDT_INIT(0) #define GLOBAL_ROOT_GID KGIDT_INIT(0) #define INVALID_UID KUIDT_INIT(-1) #define INVALID_GID KGIDT_INIT(-1) static inline bool uid_eq(kuid_t left, kuid_t right) { return __kuid_val(left) == __kuid_val(right); } static inline bool gid_eq(kgid_t left, kgid_t right) { return __kgid_val(left) == __kgid_val(right); } static inline bool uid_gt(kuid_t left, kuid_t right) { return __kuid_val(left) > __kuid_val(right); } static inline bool gid_gt(kgid_t left, kgid_t right) { return __kgid_val(left) > __kgid_val(right); } static inline bool uid_gte(kuid_t left, kuid_t right) { return __kuid_val(left) >= __kuid_val(right); } static inline bool gid_gte(kgid_t left, kgid_t right) { return __kgid_val(left) >= __kgid_val(right); } static inline bool uid_lt(kuid_t left, kuid_t right) { return __kuid_val(left) < __kuid_val(right); } static inline bool gid_lt(kgid_t left, kgid_t right) { return __kgid_val(left) < __kgid_val(right); } static inline bool uid_lte(kuid_t left, kuid_t right) { return __kuid_val(left) <= __kuid_val(right); } static inline bool gid_lte(kgid_t left, kgid_t right) { return __kgid_val(left) <= __kgid_val(right); } static inline bool uid_valid(kuid_t uid) { return __kuid_val(uid) != (uid_t) -1; } static inline bool gid_valid(kgid_t gid) { return __kgid_val(gid) != (gid_t) -1; } #ifdef CONFIG_USER_NS extern kuid_t make_kuid(struct user_namespace *from, uid_t uid); extern kgid_t make_kgid(struct user_namespace *from, gid_t gid); extern uid_t from_kuid(struct user_namespace *to, kuid_t uid); extern gid_t from_kgid(struct user_namespace *to, kgid_t gid); extern uid_t from_kuid_munged(struct user_namespace *to, kuid_t uid); extern gid_t from_kgid_munged(struct user_namespace *to, kgid_t gid); static inline bool kuid_has_mapping(struct user_namespace *ns, kuid_t uid) { return from_kuid(ns, uid) != (uid_t) -1; } static inline bool kgid_has_mapping(struct user_namespace *ns, kgid_t gid) { return from_kgid(ns, gid) != (gid_t) -1; } #else static inline kuid_t make_kuid(struct user_namespace *from, uid_t uid) { return KUIDT_INIT(uid); } static inline kgid_t make_kgid(struct user_namespace *from, gid_t gid) { return KGIDT_INIT(gid); } static inline uid_t from_kuid(struct user_namespace *to, kuid_t kuid) { return __kuid_val(kuid); } static inline gid_t from_kgid(struct user_namespace *to, kgid_t kgid) { return __kgid_val(kgid); } static inline uid_t from_kuid_munged(struct user_namespace *to, kuid_t kuid) { uid_t uid = from_kuid(to, kuid); if (uid == (uid_t)-1) uid = overflowuid; return uid; } static inline gid_t from_kgid_munged(struct user_namespace *to, kgid_t kgid) { gid_t gid = from_kgid(to, kgid); if (gid == (gid_t)-1) gid = overflowgid; return gid; } static inline bool kuid_has_mapping(struct user_namespace *ns, kuid_t uid) { return uid_valid(uid); } static inline bool kgid_has_mapping(struct user_namespace *ns, kgid_t gid) { return gid_valid(gid); } #endif /* CONFIG_USER_NS */ #endif /* _LINUX_UIDGID_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_FLOW_DISSECTOR_H #define _NET_FLOW_DISSECTOR_H #include <linux/types.h> #include <linux/in6.h> #include <linux/siphash.h> #include <linux/string.h> #include <uapi/linux/if_ether.h> struct bpf_prog; struct net; struct sk_buff; /** * struct flow_dissector_key_control: * @thoff: Transport header offset */ struct flow_dissector_key_control { u16 thoff; u16 addr_type; u32 flags; }; #define FLOW_DIS_IS_FRAGMENT BIT(0) #define FLOW_DIS_FIRST_FRAG BIT(1) #define FLOW_DIS_ENCAPSULATION BIT(2) enum flow_dissect_ret { FLOW_DISSECT_RET_OUT_GOOD, FLOW_DISSECT_RET_OUT_BAD, FLOW_DISSECT_RET_PROTO_AGAIN, FLOW_DISSECT_RET_IPPROTO_AGAIN, FLOW_DISSECT_RET_CONTINUE, }; /** * struct flow_dissector_key_basic: * @n_proto: Network header protocol (eg. IPv4/IPv6) * @ip_proto: Transport header protocol (eg. TCP/UDP) */ struct flow_dissector_key_basic { __be16 n_proto; u8 ip_proto; u8 padding; }; struct flow_dissector_key_tags { u32 flow_label; }; struct flow_dissector_key_vlan { union { struct { u16 vlan_id:12, vlan_dei:1, vlan_priority:3; }; __be16 vlan_tci; }; __be16 vlan_tpid; }; struct flow_dissector_mpls_lse { u32 mpls_ttl:8, mpls_bos:1, mpls_tc:3, mpls_label:20; }; #define FLOW_DIS_MPLS_MAX 7 struct flow_dissector_key_mpls { struct flow_dissector_mpls_lse ls[FLOW_DIS_MPLS_MAX]; /* Label Stack */ u8 used_lses; /* One bit set for each Label Stack Entry in use */ }; static inline void dissector_set_mpls_lse(struct flow_dissector_key_mpls *mpls, int lse_index) { mpls->used_lses |= 1 << lse_index; } #define FLOW_DIS_TUN_OPTS_MAX 255 /** * struct flow_dissector_key_enc_opts: * @data: tunnel option data * @len: length of tunnel option data * @dst_opt_type: tunnel option type */ struct flow_dissector_key_enc_opts { u8 data[FLOW_DIS_TUN_OPTS_MAX]; /* Using IP_TUNNEL_OPTS_MAX is desired * here but seems difficult to #include */ u8 len; __be16 dst_opt_type; }; struct flow_dissector_key_keyid { __be32 keyid; }; /** * struct flow_dissector_key_ipv4_addrs: * @src: source ip address * @dst: destination ip address */ struct flow_dissector_key_ipv4_addrs { /* (src,dst) must be grouped, in the same way than in IP header */ __be32 src; __be32 dst; }; /** * struct flow_dissector_key_ipv6_addrs: * @src: source ip address * @dst: destination ip address */ struct flow_dissector_key_ipv6_addrs { /* (src,dst) must be grouped, in the same way than in IP header */ struct in6_addr src; struct in6_addr dst; }; /** * struct flow_dissector_key_tipc: * @key: source node address combined with selector */ struct flow_dissector_key_tipc { __be32 key; }; /** * struct flow_dissector_key_addrs: * @v4addrs: IPv4 addresses * @v6addrs: IPv6 addresses */ struct flow_dissector_key_addrs { union { struct flow_dissector_key_ipv4_addrs v4addrs; struct flow_dissector_key_ipv6_addrs v6addrs; struct flow_dissector_key_tipc tipckey; }; }; /** * flow_dissector_key_arp: * @ports: Operation, source and target addresses for an ARP header * for Ethernet hardware addresses and IPv4 protocol addresses * sip: Sender IP address * tip: Target IP address * op: Operation * sha: Sender hardware address * tpa: Target hardware address */ struct flow_dissector_key_arp { __u32 sip; __u32 tip; __u8 op; unsigned char sha[ETH_ALEN]; unsigned char tha[ETH_ALEN]; }; /** * flow_dissector_key_tp_ports: * @ports: port numbers of Transport header * src: source port number * dst: destination port number */ struct flow_dissector_key_ports { union { __be32 ports; struct { __be16 src; __be16 dst; }; }; }; /** * flow_dissector_key_icmp: * type: ICMP type * code: ICMP code * id: session identifier */ struct flow_dissector_key_icmp { struct { u8 type; u8 code; }; u16 id; }; /** * struct flow_dissector_key_eth_addrs: * @src: source Ethernet address * @dst: destination Ethernet address */ struct flow_dissector_key_eth_addrs { /* (dst,src) must be grouped, in the same way than in ETH header */ unsigned char dst[ETH_ALEN]; unsigned char src[ETH_ALEN]; }; /** * struct flow_dissector_key_tcp: * @flags: flags */ struct flow_dissector_key_tcp { __be16 flags; }; /** * struct flow_dissector_key_ip: * @tos: tos * @ttl: ttl */ struct flow_dissector_key_ip { __u8 tos; __u8 ttl; }; /** * struct flow_dissector_key_meta: * @ingress_ifindex: ingress ifindex * @ingress_iftype: ingress interface type */ struct flow_dissector_key_meta { int ingress_ifindex; u16 ingress_iftype; }; /** * struct flow_dissector_key_ct: * @ct_state: conntrack state after converting with map * @ct_mark: conttrack mark * @ct_zone: conntrack zone * @ct_labels: conntrack labels */ struct flow_dissector_key_ct { u16 ct_state; u16 ct_zone; u32 ct_mark; u32 ct_labels[4]; }; /** * struct flow_dissector_key_hash: * @hash: hash value */ struct flow_dissector_key_hash { u32 hash; }; enum flow_dissector_key_id { FLOW_DISSECTOR_KEY_CONTROL, /* struct flow_dissector_key_control */ FLOW_DISSECTOR_KEY_BASIC, /* struct flow_dissector_key_basic */ FLOW_DISSECTOR_KEY_IPV4_ADDRS, /* struct flow_dissector_key_ipv4_addrs */ FLOW_DISSECTOR_KEY_IPV6_ADDRS, /* struct flow_dissector_key_ipv6_addrs */ FLOW_DISSECTOR_KEY_PORTS, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_PORTS_RANGE, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_ICMP, /* struct flow_dissector_key_icmp */ FLOW_DISSECTOR_KEY_ETH_ADDRS, /* struct flow_dissector_key_eth_addrs */ FLOW_DISSECTOR_KEY_TIPC, /* struct flow_dissector_key_tipc */ FLOW_DISSECTOR_KEY_ARP, /* struct flow_dissector_key_arp */ FLOW_DISSECTOR_KEY_VLAN, /* struct flow_dissector_key_vlan */ FLOW_DISSECTOR_KEY_FLOW_LABEL, /* struct flow_dissector_key_tags */ FLOW_DISSECTOR_KEY_GRE_KEYID, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_MPLS_ENTROPY, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_ENC_KEYID, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, /* struct flow_dissector_key_ipv4_addrs */ FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, /* struct flow_dissector_key_ipv6_addrs */ FLOW_DISSECTOR_KEY_ENC_CONTROL, /* struct flow_dissector_key_control */ FLOW_DISSECTOR_KEY_ENC_PORTS, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_MPLS, /* struct flow_dissector_key_mpls */ FLOW_DISSECTOR_KEY_TCP, /* struct flow_dissector_key_tcp */ FLOW_DISSECTOR_KEY_IP, /* struct flow_dissector_key_ip */ FLOW_DISSECTOR_KEY_CVLAN, /* struct flow_dissector_key_vlan */ FLOW_DISSECTOR_KEY_ENC_IP, /* struct flow_dissector_key_ip */ FLOW_DISSECTOR_KEY_ENC_OPTS, /* struct flow_dissector_key_enc_opts */ FLOW_DISSECTOR_KEY_META, /* struct flow_dissector_key_meta */ FLOW_DISSECTOR_KEY_CT, /* struct flow_dissector_key_ct */ FLOW_DISSECTOR_KEY_HASH, /* struct flow_dissector_key_hash */ FLOW_DISSECTOR_KEY_MAX, }; #define FLOW_DISSECTOR_F_PARSE_1ST_FRAG BIT(0) #define FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL BIT(1) #define FLOW_DISSECTOR_F_STOP_AT_ENCAP BIT(2) struct flow_dissector_key { enum flow_dissector_key_id key_id; size_t offset; /* offset of struct flow_dissector_key_* in target the struct */ }; struct flow_dissector { unsigned int used_keys; /* each bit repesents presence of one key id */ unsigned short int offset[FLOW_DISSECTOR_KEY_MAX]; }; struct flow_keys_basic { struct flow_dissector_key_control control; struct flow_dissector_key_basic basic; }; struct flow_keys { struct flow_dissector_key_control control; #define FLOW_KEYS_HASH_START_FIELD basic struct flow_dissector_key_basic basic __aligned(SIPHASH_ALIGNMENT); struct flow_dissector_key_tags tags; struct flow_dissector_key_vlan vlan; struct flow_dissector_key_vlan cvlan; struct flow_dissector_key_keyid keyid; struct flow_dissector_key_ports ports; struct flow_dissector_key_icmp icmp; /* 'addrs' must be the last member */ struct flow_dissector_key_addrs addrs; }; #define FLOW_KEYS_HASH_OFFSET \ offsetof(struct flow_keys, FLOW_KEYS_HASH_START_FIELD) __be32 flow_get_u32_src(const struct flow_keys *flow); __be32 flow_get_u32_dst(const struct flow_keys *flow); extern struct flow_dissector flow_keys_dissector; extern struct flow_dissector flow_keys_basic_dissector; /* struct flow_keys_digest: * * This structure is used to hold a digest of the full flow keys. This is a * larger "hash" of a flow to allow definitively matching specific flows where * the 32 bit skb->hash is not large enough. The size is limited to 16 bytes so * that it can be used in CB of skb (see sch_choke for an example). */ #define FLOW_KEYS_DIGEST_LEN 16 struct flow_keys_digest { u8 data[FLOW_KEYS_DIGEST_LEN]; }; void make_flow_keys_digest(struct flow_keys_digest *digest, const struct flow_keys *flow); static inline bool flow_keys_have_l4(const struct flow_keys *keys) { return (keys->ports.ports || keys->tags.flow_label); } u32 flow_hash_from_keys(struct flow_keys *keys); void skb_flow_get_icmp_tci(const struct sk_buff *skb, struct flow_dissector_key_icmp *key_icmp, void *data, int thoff, int hlen); static inline bool dissector_uses_key(const struct flow_dissector *flow_dissector, enum flow_dissector_key_id key_id) { return flow_dissector->used_keys & (1 << key_id); } static inline void *skb_flow_dissector_target(struct flow_dissector *flow_dissector, enum flow_dissector_key_id key_id, void *target_container) { return ((char *)target_container) + flow_dissector->offset[key_id]; } struct bpf_flow_dissector { struct bpf_flow_keys *flow_keys; const struct sk_buff *skb; void *data; void *data_end; }; static inline void flow_dissector_init_keys(struct flow_dissector_key_control *key_control, struct flow_dissector_key_basic *key_basic) { memset(key_control, 0, sizeof(*key_control)); memset(key_basic, 0, sizeof(*key_basic)); } #ifdef CONFIG_BPF_SYSCALL int flow_dissector_bpf_prog_attach_check(struct net *net, struct bpf_prog *prog); #endif /* CONFIG_BPF_SYSCALL */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 #ifndef INTERNAL_IO_WQ_H #define INTERNAL_IO_WQ_H #include <linux/io_uring.h> struct io_wq; enum { IO_WQ_WORK_CANCEL = 1, IO_WQ_WORK_HASHED = 2, IO_WQ_WORK_UNBOUND = 4, IO_WQ_WORK_NO_CANCEL = 8, IO_WQ_WORK_CONCURRENT = 16, IO_WQ_WORK_FILES = 32, IO_WQ_WORK_FS = 64, IO_WQ_WORK_MM = 128, IO_WQ_WORK_CREDS = 256, IO_WQ_WORK_BLKCG = 512, IO_WQ_WORK_FSIZE = 1024, IO_WQ_HASH_SHIFT = 24, /* upper 8 bits are used for hash key */ }; enum io_wq_cancel { IO_WQ_CANCEL_OK, /* cancelled before started */ IO_WQ_CANCEL_RUNNING, /* found, running, and attempted cancelled */ IO_WQ_CANCEL_NOTFOUND, /* work not found */ }; struct io_wq_work_node { struct io_wq_work_node *next; }; struct io_wq_work_list { struct io_wq_work_node *first; struct io_wq_work_node *last; }; static inline void wq_list_add_after(struct io_wq_work_node *node, struct io_wq_work_node *pos, struct io_wq_work_list *list) { struct io_wq_work_node *next = pos->next; pos->next = node; node->next = next; if (!next) list->last = node; } static inline void wq_list_add_tail(struct io_wq_work_node *node, struct io_wq_work_list *list) { if (!list->first) { list->last = node; WRITE_ONCE(list->first, node); } else { list->last->next = node; list->last = node; } node->next = NULL; } static inline void wq_list_cut(struct io_wq_work_list *list, struct io_wq_work_node *last, struct io_wq_work_node *prev) { /* first in the list, if prev==NULL */ if (!prev) WRITE_ONCE(list->first, last->next); else prev->next = last->next; if (last == list->last) list->last = prev; last->next = NULL; } static inline void wq_list_del(struct io_wq_work_list *list, struct io_wq_work_node *node, struct io_wq_work_node *prev) { wq_list_cut(list, node, prev); } #define wq_list_for_each(pos, prv, head) \ for (pos = (head)->first, prv = NULL; pos; prv = pos, pos = (pos)->next) #define wq_list_empty(list) (READ_ONCE((list)->first) == NULL) #define INIT_WQ_LIST(list) do { \ (list)->first = NULL; \ (list)->last = NULL; \ } while (0) struct io_wq_work { struct io_wq_work_node list; struct io_identity *identity; unsigned flags; }; static inline struct io_wq_work *wq_next_work(struct io_wq_work *work) { if (!work->list.next) return NULL; return container_of(work->list.next, struct io_wq_work, list); } typedef void (free_work_fn)(struct io_wq_work *); typedef struct io_wq_work *(io_wq_work_fn)(struct io_wq_work *); struct io_wq_data { struct user_struct *user; io_wq_work_fn *do_work; free_work_fn *free_work; }; struct io_wq *io_wq_create(unsigned bounded, struct io_wq_data *data); bool io_wq_get(struct io_wq *wq, struct io_wq_data *data); void io_wq_destroy(struct io_wq *wq); void io_wq_enqueue(struct io_wq *wq, struct io_wq_work *work); void io_wq_hash_work(struct io_wq_work *work, void *val); static inline bool io_wq_is_hashed(struct io_wq_work *work) { return work->flags & IO_WQ_WORK_HASHED; } void io_wq_cancel_all(struct io_wq *wq); typedef bool (work_cancel_fn)(struct io_wq_work *, void *); enum io_wq_cancel io_wq_cancel_cb(struct io_wq *wq, work_cancel_fn *cancel, void *data, bool cancel_all); struct task_struct *io_wq_get_task(struct io_wq *wq); #if defined(CONFIG_IO_WQ) extern void io_wq_worker_sleeping(struct task_struct *); extern void io_wq_worker_running(struct task_struct *); #else static inline void io_wq_worker_sleeping(struct task_struct *tsk) { } static inline void io_wq_worker_running(struct task_struct *tsk) { } #endif static inline bool io_wq_current_is_worker(void) { return in_task() && (current->flags & PF_IO_WORKER); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_PKT_CLS_H #define __NET_PKT_CLS_H #include <linux/pkt_cls.h> #include <linux/workqueue.h> #include <net/sch_generic.h> #include <net/act_api.h> #include <net/net_namespace.h> /* TC action not accessible from user space */ #define TC_ACT_CONSUMED (TC_ACT_VALUE_MAX + 1) /* Basic packet classifier frontend definitions. */ struct tcf_walker { int stop; int skip; int count; bool nonempty; unsigned long cookie; int (*fn)(struct tcf_proto *, void *node, struct tcf_walker *); }; int register_tcf_proto_ops(struct tcf_proto_ops *ops); int unregister_tcf_proto_ops(struct tcf_proto_ops *ops); struct tcf_block_ext_info { enum flow_block_binder_type binder_type; tcf_chain_head_change_t *chain_head_change; void *chain_head_change_priv; u32 block_index; }; struct tcf_qevent { struct tcf_block *block; struct tcf_block_ext_info info; struct tcf_proto __rcu *filter_chain; }; struct tcf_block_cb; bool tcf_queue_work(struct rcu_work *rwork, work_func_t func); #ifdef CONFIG_NET_CLS struct tcf_chain *tcf_chain_get_by_act(struct tcf_block *block, u32 chain_index); void tcf_chain_put_by_act(struct tcf_chain *chain); struct tcf_chain *tcf_get_next_chain(struct tcf_block *block, struct tcf_chain *chain); struct tcf_proto *tcf_get_next_proto(struct tcf_chain *chain, struct tcf_proto *tp, bool rtnl_held); void tcf_block_netif_keep_dst(struct tcf_block *block); int tcf_block_get(struct tcf_block **p_block, struct tcf_proto __rcu **p_filter_chain, struct Qdisc *q, struct netlink_ext_ack *extack); int tcf_block_get_ext(struct tcf_block **p_block, struct Qdisc *q, struct tcf_block_ext_info *ei, struct netlink_ext_ack *extack); void tcf_block_put(struct tcf_block *block); void tcf_block_put_ext(struct tcf_block *block, struct Qdisc *q, struct tcf_block_ext_info *ei); static inline bool tcf_block_shared(struct tcf_block *block) { return block->index; } static inline bool tcf_block_non_null_shared(struct tcf_block *block) { return block && block->index; } static inline struct Qdisc *tcf_block_q(struct tcf_block *block) { WARN_ON(tcf_block_shared(block)); return block->q; } int tcf_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode); int tcf_classify_ingress(struct sk_buff *skb, const struct tcf_block *ingress_block, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode); #else static inline bool tcf_block_shared(struct tcf_block *block) { return false; } static inline bool tcf_block_non_null_shared(struct tcf_block *block) { return false; } static inline int tcf_block_get(struct tcf_block **p_block, struct tcf_proto __rcu **p_filter_chain, struct Qdisc *q, struct netlink_ext_ack *extack) { return 0; } static inline int tcf_block_get_ext(struct tcf_block **p_block, struct Qdisc *q, struct tcf_block_ext_info *ei, struct netlink_ext_ack *extack) { return 0; } static inline void tcf_block_put(struct tcf_block *block) { } static inline void tcf_block_put_ext(struct tcf_block *block, struct Qdisc *q, struct tcf_block_ext_info *ei) { } static inline struct Qdisc *tcf_block_q(struct tcf_block *block) { return NULL; } static inline int tc_setup_cb_block_register(struct tcf_block *block, flow_setup_cb_t *cb, void *cb_priv) { return 0; } static inline void tc_setup_cb_block_unregister(struct tcf_block *block, flow_setup_cb_t *cb, void *cb_priv) { } static inline int tcf_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode) { return TC_ACT_UNSPEC; } static inline int tcf_classify_ingress(struct sk_buff *skb, const struct tcf_block *ingress_block, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode) { return TC_ACT_UNSPEC; } #endif static inline unsigned long __cls_set_class(unsigned long *clp, unsigned long cl) { return xchg(clp, cl); } static inline void __tcf_bind_filter(struct Qdisc *q, struct tcf_result *r, unsigned long base) { unsigned long cl; cl = q->ops->cl_ops->bind_tcf(q, base, r->classid); cl = __cls_set_class(&r->class, cl); if (cl) q->ops->cl_ops->unbind_tcf(q, cl); } static inline void tcf_bind_filter(struct tcf_proto *tp, struct tcf_result *r, unsigned long base) { struct Qdisc *q = tp->chain->block->q; /* Check q as it is not set for shared blocks. In that case, * setting class is not supported. */ if (!q) return; sch_tree_lock(q); __tcf_bind_filter(q, r, base); sch_tree_unlock(q); } static inline void __tcf_unbind_filter(struct Qdisc *q, struct tcf_result *r) { unsigned long cl; if ((cl = __cls_set_class(&r->class, 0)) != 0) q->ops->cl_ops->unbind_tcf(q, cl); } static inline void tcf_unbind_filter(struct tcf_proto *tp, struct tcf_result *r) { struct Qdisc *q = tp->chain->block->q; if (!q) return; __tcf_unbind_filter(q, r); } struct tcf_exts { #ifdef CONFIG_NET_CLS_ACT __u32 type; /* for backward compat(TCA_OLD_COMPAT) */ int nr_actions; struct tc_action **actions; struct net *net; #endif /* Map to export classifier specific extension TLV types to the * generic extensions API. Unsupported extensions must be set to 0. */ int action; int police; }; static inline int tcf_exts_init(struct tcf_exts *exts, struct net *net, int action, int police) { #ifdef CONFIG_NET_CLS_ACT exts->type = 0; exts->nr_actions = 0; exts->net = net; exts->actions = kcalloc(TCA_ACT_MAX_PRIO, sizeof(struct tc_action *), GFP_KERNEL); if (!exts->actions) return -ENOMEM; #endif exts->action = action; exts->police = police; return 0; } /* Return false if the netns is being destroyed in cleanup_net(). Callers * need to do cleanup synchronously in this case, otherwise may race with * tc_action_net_exit(). Return true for other cases. */ static inline bool tcf_exts_get_net(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT exts->net = maybe_get_net(exts->net); return exts->net != NULL; #else return true; #endif } static inline void tcf_exts_put_net(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT if (exts->net) put_net(exts->net); #endif } #ifdef CONFIG_NET_CLS_ACT #define tcf_exts_for_each_action(i, a, exts) \ for (i = 0; i < TCA_ACT_MAX_PRIO && ((a) = (exts)->actions[i]); i++) #else #define tcf_exts_for_each_action(i, a, exts) \ for (; 0; (void)(i), (void)(a), (void)(exts)) #endif static inline void tcf_exts_stats_update(const struct tcf_exts *exts, u64 bytes, u64 packets, u64 drops, u64 lastuse, u8 used_hw_stats, bool used_hw_stats_valid) { #ifdef CONFIG_NET_CLS_ACT int i; preempt_disable(); for (i = 0; i < exts->nr_actions; i++) { struct tc_action *a = exts->actions[i]; tcf_action_stats_update(a, bytes, packets, drops, lastuse, true); a->used_hw_stats = used_hw_stats; a->used_hw_stats_valid = used_hw_stats_valid; } preempt_enable(); #endif } /** * tcf_exts_has_actions - check if at least one action is present * @exts: tc filter extensions handle * * Returns true if at least one action is present. */ static inline bool tcf_exts_has_actions(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT return exts->nr_actions; #else return false; #endif } /** * tcf_exts_exec - execute tc filter extensions * @skb: socket buffer * @exts: tc filter extensions handle * @res: desired result * * Executes all configured extensions. Returns TC_ACT_OK on a normal execution, * a negative number if the filter must be considered unmatched or * a positive action code (TC_ACT_*) which must be returned to the * underlying layer. */ static inline int tcf_exts_exec(struct sk_buff *skb, struct tcf_exts *exts, struct tcf_result *res) { #ifdef CONFIG_NET_CLS_ACT return tcf_action_exec(skb, exts->actions, exts->nr_actions, res); #endif return TC_ACT_OK; } int tcf_exts_validate(struct net *net, struct tcf_proto *tp, struct nlattr **tb, struct nlattr *rate_tlv, struct tcf_exts *exts, bool ovr, bool rtnl_held, struct netlink_ext_ack *extack); void tcf_exts_destroy(struct tcf_exts *exts); void tcf_exts_change(struct tcf_exts *dst, struct tcf_exts *src); int tcf_exts_dump(struct sk_buff *skb, struct tcf_exts *exts); int tcf_exts_terse_dump(struct sk_buff *skb, struct tcf_exts *exts); int tcf_exts_dump_stats(struct sk_buff *skb, struct tcf_exts *exts); /** * struct tcf_pkt_info - packet information */ struct tcf_pkt_info { unsigned char * ptr; int nexthdr; }; #ifdef CONFIG_NET_EMATCH struct tcf_ematch_ops; /** * struct tcf_ematch - extended match (ematch) * * @matchid: identifier to allow userspace to reidentify a match * @flags: flags specifying attributes and the relation to other matches * @ops: the operations lookup table of the corresponding ematch module * @datalen: length of the ematch specific configuration data * @data: ematch specific data */ struct tcf_ematch { struct tcf_ematch_ops * ops; unsigned long data; unsigned int datalen; u16 matchid; u16 flags; struct net *net; }; static inline int tcf_em_is_container(struct tcf_ematch *em) { return !em->ops; } static inline int tcf_em_is_simple(struct tcf_ematch *em) { return em->flags & TCF_EM_SIMPLE; } static inline int tcf_em_is_inverted(struct tcf_ematch *em) { return em->flags & TCF_EM_INVERT; } static inline int tcf_em_last_match(struct tcf_ematch *em) { return (em->flags & TCF_EM_REL_MASK) == TCF_EM_REL_END; } static inline int tcf_em_early_end(struct tcf_ematch *em, int result) { if (tcf_em_last_match(em)) return 1; if (result == 0 && em->flags & TCF_EM_REL_AND) return 1; if (result != 0 && em->flags & TCF_EM_REL_OR) return 1; return 0; } /** * struct tcf_ematch_tree - ematch tree handle * * @hdr: ematch tree header supplied by userspace * @matches: array of ematches */ struct tcf_ematch_tree { struct tcf_ematch_tree_hdr hdr; struct tcf_ematch * matches; }; /** * struct tcf_ematch_ops - ematch module operations * * @kind: identifier (kind) of this ematch module * @datalen: length of expected configuration data (optional) * @change: called during validation (optional) * @match: called during ematch tree evaluation, must return 1/0 * @destroy: called during destroyage (optional) * @dump: called during dumping process (optional) * @owner: owner, must be set to THIS_MODULE * @link: link to previous/next ematch module (internal use) */ struct tcf_ematch_ops { int kind; int datalen; int (*change)(struct net *net, void *, int, struct tcf_ematch *); int (*match)(struct sk_buff *, struct tcf_ematch *, struct tcf_pkt_info *); void (*destroy)(struct tcf_ematch *); int (*dump)(struct sk_buff *, struct tcf_ematch *); struct module *owner; struct list_head link; }; int tcf_em_register(struct tcf_ematch_ops *); void tcf_em_unregister(struct tcf_ematch_ops *); int tcf_em_tree_validate(struct tcf_proto *, struct nlattr *, struct tcf_ematch_tree *); void tcf_em_tree_destroy(struct tcf_ematch_tree *); int tcf_em_tree_dump(struct sk_buff *, struct tcf_ematch_tree *, int); int __tcf_em_tree_match(struct sk_buff *, struct tcf_ematch_tree *, struct tcf_pkt_info *); /** * tcf_em_tree_match - evaulate an ematch tree * * @skb: socket buffer of the packet in question * @tree: ematch tree to be used for evaluation * @info: packet information examined by classifier * * This function matches @skb against the ematch tree in @tree by going * through all ematches respecting their logic relations returning * as soon as the result is obvious. * * Returns 1 if the ematch tree as-one matches, no ematches are configured * or ematch is not enabled in the kernel, otherwise 0 is returned. */ static inline int tcf_em_tree_match(struct sk_buff *skb, struct tcf_ematch_tree *tree, struct tcf_pkt_info *info) { if (tree->hdr.nmatches) return __tcf_em_tree_match(skb, tree, info); else return 1; } #define MODULE_ALIAS_TCF_EMATCH(kind) MODULE_ALIAS("ematch-kind-" __stringify(kind)) #else /* CONFIG_NET_EMATCH */ struct tcf_ematch_tree { }; #define tcf_em_tree_validate(tp, tb, t) ((void)(t), 0) #define tcf_em_tree_destroy(t) do { (void)(t); } while(0) #define tcf_em_tree_dump(skb, t, tlv) (0) #define tcf_em_tree_match(skb, t, info) ((void)(info), 1) #endif /* CONFIG_NET_EMATCH */ static inline unsigned char * tcf_get_base_ptr(struct sk_buff *skb, int layer) { switch (layer) { case TCF_LAYER_LINK: return skb_mac_header(skb); case TCF_LAYER_NETWORK: return skb_network_header(skb); case TCF_LAYER_TRANSPORT: return skb_transport_header(skb); } return NULL; } static inline int tcf_valid_offset(const struct sk_buff *skb, const unsigned char *ptr, const int len) { return likely((ptr + len) <= skb_tail_pointer(skb) && ptr >= skb->head && (ptr <= (ptr + len))); } static inline int tcf_change_indev(struct net *net, struct nlattr *indev_tlv, struct netlink_ext_ack *extack) { char indev[IFNAMSIZ]; struct net_device *dev; if (nla_strlcpy(indev, indev_tlv, IFNAMSIZ) >= IFNAMSIZ) { NL_SET_ERR_MSG_ATTR(extack, indev_tlv, "Interface name too long"); return -EINVAL; } dev = __dev_get_by_name(net, indev); if (!dev) { NL_SET_ERR_MSG_ATTR(extack, indev_tlv, "Network device not found"); return -ENODEV; } return dev->ifindex; } static inline bool tcf_match_indev(struct sk_buff *skb, int ifindex) { if (!ifindex) return true; if (!skb->skb_iif) return false; return ifindex == skb->skb_iif; } int tc_setup_flow_action(struct flow_action *flow_action, const struct tcf_exts *exts); void tc_cleanup_flow_action(struct flow_action *flow_action); int tc_setup_cb_call(struct tcf_block *block, enum tc_setup_type type, void *type_data, bool err_stop, bool rtnl_held); int tc_setup_cb_add(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *flags, unsigned int *in_hw_count, bool rtnl_held); int tc_setup_cb_replace(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *old_flags, unsigned int *old_in_hw_count, u32 *new_flags, unsigned int *new_in_hw_count, bool rtnl_held); int tc_setup_cb_destroy(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *flags, unsigned int *in_hw_count, bool rtnl_held); int tc_setup_cb_reoffload(struct tcf_block *block, struct tcf_proto *tp, bool add, flow_setup_cb_t *cb, enum tc_setup_type type, void *type_data, void *cb_priv, u32 *flags, unsigned int *in_hw_count); unsigned int tcf_exts_num_actions(struct tcf_exts *exts); #ifdef CONFIG_NET_CLS_ACT int tcf_qevent_init(struct tcf_qevent *qe, struct Qdisc *sch, enum flow_block_binder_type binder_type, struct nlattr *block_index_attr, struct netlink_ext_ack *extack); void tcf_qevent_destroy(struct tcf_qevent *qe, struct Qdisc *sch); int tcf_qevent_validate_change(struct tcf_qevent *qe, struct nlattr *block_index_attr, struct netlink_ext_ack *extack); struct sk_buff *tcf_qevent_handle(struct tcf_qevent *qe, struct Qdisc *sch, struct sk_buff *skb, struct sk_buff **to_free, int *ret); int tcf_qevent_dump(struct sk_buff *skb, int attr_name, struct tcf_qevent *qe); #else static inline int tcf_qevent_init(struct tcf_qevent *qe, struct Qdisc *sch, enum flow_block_binder_type binder_type, struct nlattr *block_index_attr, struct netlink_ext_ack *extack) { return 0; } static inline void tcf_qevent_destroy(struct tcf_qevent *qe, struct Qdisc *sch) { } static inline int tcf_qevent_validate_change(struct tcf_qevent *qe, struct nlattr *block_index_attr, struct netlink_ext_ack *extack) { return 0; } static inline struct sk_buff * tcf_qevent_handle(struct tcf_qevent *qe, struct Qdisc *sch, struct sk_buff *skb, struct sk_buff **to_free, int *ret) { return skb; } static inline int tcf_qevent_dump(struct sk_buff *skb, int attr_name, struct tcf_qevent *qe) { return 0; } #endif struct tc_cls_u32_knode { struct tcf_exts *exts; struct tcf_result *res; struct tc_u32_sel *sel; u32 handle; u32 val; u32 mask; u32 link_handle; u8 fshift; }; struct tc_cls_u32_hnode { u32 handle; u32 prio; unsigned int divisor; }; enum tc_clsu32_command { TC_CLSU32_NEW_KNODE, TC_CLSU32_REPLACE_KNODE, TC_CLSU32_DELETE_KNODE, TC_CLSU32_NEW_HNODE, TC_CLSU32_REPLACE_HNODE, TC_CLSU32_DELETE_HNODE, }; struct tc_cls_u32_offload { struct flow_cls_common_offload common; /* knode values */ enum tc_clsu32_command command; union { struct tc_cls_u32_knode knode; struct tc_cls_u32_hnode hnode; }; }; static inline bool tc_can_offload(const struct net_device *dev) { return dev->features & NETIF_F_HW_TC; } static inline bool tc_can_offload_extack(const struct net_device *dev, struct netlink_ext_ack *extack) { bool can = tc_can_offload(dev); if (!can) NL_SET_ERR_MSG(extack, "TC offload is disabled on net device"); return can; } static inline bool tc_cls_can_offload_and_chain0(const struct net_device *dev, struct flow_cls_common_offload *common) { if (!tc_can_offload_extack(dev, common->extack)) return false; if (common->chain_index) { NL_SET_ERR_MSG(common->extack, "Driver supports only offload of chain 0"); return false; } return true; } static inline bool tc_skip_hw(u32 flags) { return (flags & TCA_CLS_FLAGS_SKIP_HW) ? true : false; } static inline bool tc_skip_sw(u32 flags) { return (flags & TCA_CLS_FLAGS_SKIP_SW) ? true : false; } /* SKIP_HW and SKIP_SW are mutually exclusive flags. */ static inline bool tc_flags_valid(u32 flags) { if (flags & ~(TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW | TCA_CLS_FLAGS_VERBOSE)) return false; flags &= TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW; if (!(flags ^ (TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW))) return false; return true; } static inline bool tc_in_hw(u32 flags) { return (flags & TCA_CLS_FLAGS_IN_HW) ? true : false; } static inline void tc_cls_common_offload_init(struct flow_cls_common_offload *cls_common, const struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { cls_common->chain_index = tp->chain->index; cls_common->protocol = tp->protocol; cls_common->prio = tp->prio >> 16; if (tc_skip_sw(flags) || flags & TCA_CLS_FLAGS_VERBOSE) cls_common->extack = extack; } #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) static inline struct tc_skb_ext *tc_skb_ext_alloc(struct sk_buff *skb) { struct tc_skb_ext *tc_skb_ext = skb_ext_add(skb, TC_SKB_EXT); if (tc_skb_ext) memset(tc_skb_ext, 0, sizeof(*tc_skb_ext)); return tc_skb_ext; } #endif enum tc_matchall_command { TC_CLSMATCHALL_REPLACE, TC_CLSMATCHALL_DESTROY, TC_CLSMATCHALL_STATS, }; struct tc_cls_matchall_offload { struct flow_cls_common_offload common; enum tc_matchall_command command; struct flow_rule *rule; struct flow_stats stats; unsigned long cookie; }; enum tc_clsbpf_command { TC_CLSBPF_OFFLOAD, TC_CLSBPF_STATS, }; struct tc_cls_bpf_offload { struct flow_cls_common_offload common; enum tc_clsbpf_command command; struct tcf_exts *exts; struct bpf_prog *prog; struct bpf_prog *oldprog; const char *name; bool exts_integrated; }; struct tc_mqprio_qopt_offload { /* struct tc_mqprio_qopt must always be the first element */ struct tc_mqprio_qopt qopt; u16 mode; u16 shaper; u32 flags; u64 min_rate[TC_QOPT_MAX_QUEUE]; u64 max_rate[TC_QOPT_MAX_QUEUE]; }; /* This structure holds cookie structure that is passed from user * to the kernel for actions and classifiers */ struct tc_cookie { u8 *data; u32 len; struct rcu_head rcu; }; struct tc_qopt_offload_stats { struct gnet_stats_basic_packed *bstats; struct gnet_stats_queue *qstats; }; enum tc_mq_command { TC_MQ_CREATE, TC_MQ_DESTROY, TC_MQ_STATS, TC_MQ_GRAFT, }; struct tc_mq_opt_offload_graft_params { unsigned long queue; u32 child_handle; }; struct tc_mq_qopt_offload { enum tc_mq_command command; u32 handle; union { struct tc_qopt_offload_stats stats; struct tc_mq_opt_offload_graft_params graft_params; }; }; enum tc_red_command { TC_RED_REPLACE, TC_RED_DESTROY, TC_RED_STATS, TC_RED_XSTATS, TC_RED_GRAFT, }; struct tc_red_qopt_offload_params { u32 min; u32 max; u32 probability; u32 limit; bool is_ecn; bool is_harddrop; bool is_nodrop; struct gnet_stats_queue *qstats; }; struct tc_red_qopt_offload { enum tc_red_command command; u32 handle; u32 parent; union { struct tc_red_qopt_offload_params set; struct tc_qopt_offload_stats stats; struct red_stats *xstats; u32 child_handle; }; }; enum tc_gred_command { TC_GRED_REPLACE, TC_GRED_DESTROY, TC_GRED_STATS, }; struct tc_gred_vq_qopt_offload_params { bool present; u32 limit; u32 prio; u32 min; u32 max; bool is_ecn; bool is_harddrop; u32 probability; /* Only need backlog, see struct tc_prio_qopt_offload_params */ u32 *backlog; }; struct tc_gred_qopt_offload_params { bool grio_on; bool wred_on; unsigned int dp_cnt; unsigned int dp_def; struct gnet_stats_queue *qstats; struct tc_gred_vq_qopt_offload_params tab[MAX_DPs]; }; struct tc_gred_qopt_offload_stats { struct gnet_stats_basic_packed bstats[MAX_DPs]; struct gnet_stats_queue qstats[MAX_DPs]; struct red_stats *xstats[MAX_DPs]; }; struct tc_gred_qopt_offload { enum tc_gred_command command; u32 handle; u32 parent; union { struct tc_gred_qopt_offload_params set; struct tc_gred_qopt_offload_stats stats; }; }; enum tc_prio_command { TC_PRIO_REPLACE, TC_PRIO_DESTROY, TC_PRIO_STATS, TC_PRIO_GRAFT, }; struct tc_prio_qopt_offload_params { int bands; u8 priomap[TC_PRIO_MAX + 1]; /* At the point of un-offloading the Qdisc, the reported backlog and * qlen need to be reduced by the portion that is in HW. */ struct gnet_stats_queue *qstats; }; struct tc_prio_qopt_offload_graft_params { u8 band; u32 child_handle; }; struct tc_prio_qopt_offload { enum tc_prio_command command; u32 handle; u32 parent; union { struct tc_prio_qopt_offload_params replace_params; struct tc_qopt_offload_stats stats; struct tc_prio_qopt_offload_graft_params graft_params; }; }; enum tc_root_command { TC_ROOT_GRAFT, }; struct tc_root_qopt_offload { enum tc_root_command command; u32 handle; bool ingress; }; enum tc_ets_command { TC_ETS_REPLACE, TC_ETS_DESTROY, TC_ETS_STATS, TC_ETS_GRAFT, }; struct tc_ets_qopt_offload_replace_params { unsigned int bands; u8 priomap[TC_PRIO_MAX + 1]; unsigned int quanta[TCQ_ETS_MAX_BANDS]; /* 0 for strict bands. */ unsigned int weights[TCQ_ETS_MAX_BANDS]; struct gnet_stats_queue *qstats; }; struct tc_ets_qopt_offload_graft_params { u8 band; u32 child_handle; }; struct tc_ets_qopt_offload { enum tc_ets_command command; u32 handle; u32 parent; union { struct tc_ets_qopt_offload_replace_params replace_params; struct tc_qopt_offload_stats stats; struct tc_ets_qopt_offload_graft_params graft_params; }; }; enum tc_tbf_command { TC_TBF_REPLACE, TC_TBF_DESTROY, TC_TBF_STATS, }; struct tc_tbf_qopt_offload_replace_params { struct psched_ratecfg rate; u32 max_size; struct gnet_stats_queue *qstats; }; struct tc_tbf_qopt_offload { enum tc_tbf_command command; u32 handle; u32 parent; union { struct tc_tbf_qopt_offload_replace_params replace_params; struct tc_qopt_offload_stats stats; }; }; enum tc_fifo_command { TC_FIFO_REPLACE, TC_FIFO_DESTROY, TC_FIFO_STATS, }; struct tc_fifo_qopt_offload { enum tc_fifo_command command; u32 handle; u32 parent; union { struct tc_qopt_offload_stats stats; }; }; #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Red Black Trees (C) 1999 Andrea Arcangeli <andrea@suse.de> (C) 2002 David Woodhouse <dwmw2@infradead.org> (C) 2012 Michel Lespinasse <walken@google.com> linux/include/linux/rbtree_augmented.h */ #ifndef _LINUX_RBTREE_AUGMENTED_H #define _LINUX_RBTREE_AUGMENTED_H #include <linux/compiler.h> #include <linux/rbtree.h> #include <linux/rcupdate.h> /* * Please note - only struct rb_augment_callbacks and the prototypes for * rb_insert_augmented() and rb_erase_augmented() are intended to be public. * The rest are implementation details you are not expected to depend on. * * See Documentation/core-api/rbtree.rst for documentation and samples. */ struct rb_augment_callbacks { void (*propagate)(struct rb_node *node, struct rb_node *stop); void (*copy)(struct rb_node *old, struct rb_node *new); void (*rotate)(struct rb_node *old, struct rb_node *new); }; extern void __rb_insert_augmented(struct rb_node *node, struct rb_root *root, void (*augment_rotate)(struct rb_node *old, struct rb_node *new)); /* * Fixup the rbtree and update the augmented information when rebalancing. * * On insertion, the user must update the augmented information on the path * leading to the inserted node, then call rb_link_node() as usual and * rb_insert_augmented() instead of the usual rb_insert_color() call. * If rb_insert_augmented() rebalances the rbtree, it will callback into * a user provided function to update the augmented information on the * affected subtrees. */ static inline void rb_insert_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { __rb_insert_augmented(node, root, augment->rotate); } static inline void rb_insert_augmented_cached(struct rb_node *node, struct rb_root_cached *root, bool newleft, const struct rb_augment_callbacks *augment) { if (newleft) root->rb_leftmost = node; rb_insert_augmented(node, &root->rb_root, augment); } /* * Template for declaring augmented rbtree callbacks (generic case) * * RBSTATIC: 'static' or empty * RBNAME: name of the rb_augment_callbacks structure * RBSTRUCT: struct type of the tree nodes * RBFIELD: name of struct rb_node field within RBSTRUCT * RBAUGMENTED: name of field within RBSTRUCT holding data for subtree * RBCOMPUTE: name of function that recomputes the RBAUGMENTED data */ #define RB_DECLARE_CALLBACKS(RBSTATIC, RBNAME, \ RBSTRUCT, RBFIELD, RBAUGMENTED, RBCOMPUTE) \ static inline void \ RBNAME ## _propagate(struct rb_node *rb, struct rb_node *stop) \ { \ while (rb != stop) { \ RBSTRUCT *node = rb_entry(rb, RBSTRUCT, RBFIELD); \ if (RBCOMPUTE(node, true)) \ break; \ rb = rb_parent(&node->RBFIELD); \ } \ } \ static inline void \ RBNAME ## _copy(struct rb_node *rb_old, struct rb_node *rb_new) \ { \ RBSTRUCT *old = rb_entry(rb_old, RBSTRUCT, RBFIELD); \ RBSTRUCT *new = rb_entry(rb_new, RBSTRUCT, RBFIELD); \ new->RBAUGMENTED = old->RBAUGMENTED; \ } \ static void \ RBNAME ## _rotate(struct rb_node *rb_old, struct rb_node *rb_new) \ { \ RBSTRUCT *old = rb_entry(rb_old, RBSTRUCT, RBFIELD); \ RBSTRUCT *new = rb_entry(rb_new, RBSTRUCT, RBFIELD); \ new->RBAUGMENTED = old->RBAUGMENTED; \ RBCOMPUTE(old, false); \ } \ RBSTATIC const struct rb_augment_callbacks RBNAME = { \ .propagate = RBNAME ## _propagate, \ .copy = RBNAME ## _copy, \ .rotate = RBNAME ## _rotate \ }; /* * Template for declaring augmented rbtree callbacks, * computing RBAUGMENTED scalar as max(RBCOMPUTE(node)) for all subtree nodes. * * RBSTATIC: 'static' or empty * RBNAME: name of the rb_augment_callbacks structure * RBSTRUCT: struct type of the tree nodes * RBFIELD: name of struct rb_node field within RBSTRUCT * RBTYPE: type of the RBAUGMENTED field * RBAUGMENTED: name of RBTYPE field within RBSTRUCT holding data for subtree * RBCOMPUTE: name of function that returns the per-node RBTYPE scalar */ #define RB_DECLARE_CALLBACKS_MAX(RBSTATIC, RBNAME, RBSTRUCT, RBFIELD, \ RBTYPE, RBAUGMENTED, RBCOMPUTE) \ static inline bool RBNAME ## _compute_max(RBSTRUCT *node, bool exit) \ { \ RBSTRUCT *child; \ RBTYPE max = RBCOMPUTE(node); \ if (node->RBFIELD.rb_left) { \ child = rb_entry(node->RBFIELD.rb_left, RBSTRUCT, RBFIELD); \ if (child->RBAUGMENTED > max) \ max = child->RBAUGMENTED; \ } \ if (node->RBFIELD.rb_right) { \ child = rb_entry(node->RBFIELD.rb_right, RBSTRUCT, RBFIELD); \ if (child->RBAUGMENTED > max) \ max = child->RBAUGMENTED; \ } \ if (exit && node->RBAUGMENTED == max) \ return true; \ node->RBAUGMENTED = max; \ return false; \ } \ RB_DECLARE_CALLBACKS(RBSTATIC, RBNAME, \ RBSTRUCT, RBFIELD, RBAUGMENTED, RBNAME ## _compute_max) #define RB_RED 0 #define RB_BLACK 1 #define __rb_parent(pc) ((struct rb_node *)(pc & ~3)) #define __rb_color(pc) ((pc) & 1) #define __rb_is_black(pc) __rb_color(pc) #define __rb_is_red(pc) (!__rb_color(pc)) #define rb_color(rb) __rb_color((rb)->__rb_parent_color) #define rb_is_red(rb) __rb_is_red((rb)->__rb_parent_color) #define rb_is_black(rb) __rb_is_black((rb)->__rb_parent_color) static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p) { rb->__rb_parent_color = rb_color(rb) | (unsigned long)p; } static inline void rb_set_parent_color(struct rb_node *rb, struct rb_node *p, int color) { rb->__rb_parent_color = (unsigned long)p | color; } static inline void __rb_change_child(struct rb_node *old, struct rb_node *new, struct rb_node *parent, struct rb_root *root) { if (parent) { if (parent->rb_left == old) WRITE_ONCE(parent->rb_left, new); else WRITE_ONCE(parent->rb_right, new); } else WRITE_ONCE(root->rb_node, new); } static inline void __rb_change_child_rcu(struct rb_node *old, struct rb_node *new, struct rb_node *parent, struct rb_root *root) { if (parent) { if (parent->rb_left == old) rcu_assign_pointer(parent->rb_left, new); else rcu_assign_pointer(parent->rb_right, new); } else rcu_assign_pointer(root->rb_node, new); } extern void __rb_erase_color(struct rb_node *parent, struct rb_root *root, void (*augment_rotate)(struct rb_node *old, struct rb_node *new)); static __always_inline struct rb_node * __rb_erase_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { struct rb_node *child = node->rb_right; struct rb_node *tmp = node->rb_left; struct rb_node *parent, *rebalance; unsigned long pc; if (!tmp) { /* * Case 1: node to erase has no more than 1 child (easy!) * * Note that if there is one child it must be red due to 5) * and node must be black due to 4). We adjust colors locally * so as to bypass __rb_erase_color() later on. */ pc = node->__rb_parent_color; parent = __rb_parent(pc); __rb_change_child(node, child, parent, root); if (child) { child->__rb_parent_color = pc; rebalance = NULL; } else rebalance = __rb_is_black(pc) ? parent : NULL; tmp = parent; } else if (!child) { /* Still case 1, but this time the child is node->rb_left */ tmp->__rb_parent_color = pc = node->__rb_parent_color; parent = __rb_parent(pc); __rb_change_child(node, tmp, parent, root); rebalance = NULL; tmp = parent; } else { struct rb_node *successor = child, *child2; tmp = child->rb_left; if (!tmp) { /* * Case 2: node's successor is its right child * * (n) (s) * / \ / \ * (x) (s) -> (x) (c) * \ * (c) */ parent = successor; child2 = successor->rb_right; augment->copy(node, successor); } else { /* * Case 3: node's successor is leftmost under * node's right child subtree * * (n) (s) * / \ / \ * (x) (y) -> (x) (y) * / / * (p) (p) * / / * (s) (c) * \ * (c) */ do { parent = successor; successor = tmp; tmp = tmp->rb_left; } while (tmp); child2 = successor->rb_right; WRITE_ONCE(parent->rb_left, child2); WRITE_ONCE(successor->rb_right, child); rb_set_parent(child, successor); augment->copy(node, successor); augment->propagate(parent, successor); } tmp = node->rb_left; WRITE_ONCE(successor->rb_left, tmp); rb_set_parent(tmp, successor); pc = node->__rb_parent_color; tmp = __rb_parent(pc); __rb_change_child(node, successor, tmp, root); if (child2) { rb_set_parent_color(child2, parent, RB_BLACK); rebalance = NULL; } else { rebalance = rb_is_black(successor) ? parent : NULL; } successor->__rb_parent_color = pc; tmp = successor; } augment->propagate(tmp, NULL); return rebalance; } static __always_inline void rb_erase_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { struct rb_node *rebalance = __rb_erase_augmented(node, root, augment); if (rebalance) __rb_erase_color(rebalance, root, augment->rotate); } static __always_inline void rb_erase_augmented_cached(struct rb_node *node, struct rb_root_cached *root, const struct rb_augment_callbacks *augment) { if (root->rb_leftmost == node) root->rb_leftmost = rb_next(node); rb_erase_augmented(node, &root->rb_root, augment); } #endif /* _LINUX_RBTREE_AUGMENTED_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PKEYS_H #define _ASM_X86_PKEYS_H #define ARCH_DEFAULT_PKEY 0 /* * If more than 16 keys are ever supported, a thorough audit * will be necessary to ensure that the types that store key * numbers and masks have sufficient capacity. */ #define arch_max_pkey() (boot_cpu_has(X86_FEATURE_OSPKE) ? 16 : 1) extern int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val); static inline bool arch_pkeys_enabled(void) { return boot_cpu_has(X86_FEATURE_OSPKE); } /* * Try to dedicate one of the protection keys to be used as an * execute-only protection key. */ extern int __execute_only_pkey(struct mm_struct *mm); static inline int execute_only_pkey(struct mm_struct *mm) { if (!boot_cpu_has(X86_FEATURE_OSPKE)) return ARCH_DEFAULT_PKEY; return __execute_only_pkey(mm); } extern int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot, int pkey); static inline int arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot, int pkey) { if (!boot_cpu_has(X86_FEATURE_OSPKE)) return 0; return __arch_override_mprotect_pkey(vma, prot, pkey); } extern int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val); #define ARCH_VM_PKEY_FLAGS (VM_PKEY_BIT0 | VM_PKEY_BIT1 | VM_PKEY_BIT2 | VM_PKEY_BIT3) #define mm_pkey_allocation_map(mm) (mm->context.pkey_allocation_map) #define mm_set_pkey_allocated(mm, pkey) do { \ mm_pkey_allocation_map(mm) |= (1U << pkey); \ } while (0) #define mm_set_pkey_free(mm, pkey) do { \ mm_pkey_allocation_map(mm) &= ~(1U << pkey); \ } while (0) static inline bool mm_pkey_is_allocated(struct mm_struct *mm, int pkey) { /* * "Allocated" pkeys are those that have been returned * from pkey_alloc() or pkey 0 which is allocated * implicitly when the mm is created. */ if (pkey < 0) return false; if (pkey >= arch_max_pkey()) return false; /* * The exec-only pkey is set in the allocation map, but * is not available to any of the user interfaces like * mprotect_pkey(). */ if (pkey == mm->context.execute_only_pkey) return false; return mm_pkey_allocation_map(mm) & (1U << pkey); } /* * Returns a positive, 4-bit key on success, or -1 on failure. */ static inline int mm_pkey_alloc(struct mm_struct *mm) { /* * Note: this is the one and only place we make sure * that the pkey is valid as far as the hardware is * concerned. The rest of the kernel trusts that * only good, valid pkeys come out of here. */ u16 all_pkeys_mask = ((1U << arch_max_pkey()) - 1); int ret; /* * Are we out of pkeys? We must handle this specially * because ffz() behavior is undefined if there are no * zeros. */ if (mm_pkey_allocation_map(mm) == all_pkeys_mask) return -1; ret = ffz(mm_pkey_allocation_map(mm)); mm_set_pkey_allocated(mm, ret); return ret; } static inline int mm_pkey_free(struct mm_struct *mm, int pkey) { if (!mm_pkey_is_allocated(mm, pkey)) return -EINVAL; mm_set_pkey_free(mm, pkey); return 0; } extern int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val); extern int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val); extern void copy_init_pkru_to_fpregs(void); static inline int vma_pkey(struct vm_area_struct *vma) { unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 | VM_PKEY_BIT2 | VM_PKEY_BIT3; return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT; } #endif /*_ASM_X86_PKEYS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_DST_CACHE_H #define _NET_DST_CACHE_H #include <linux/jiffies.h> #include <net/dst.h> #if IS_ENABLED(CONFIG_IPV6) #include <net/ip6_fib.h> #endif struct dst_cache { struct dst_cache_pcpu __percpu *cache; unsigned long reset_ts; }; /** * dst_cache_get - perform cache lookup * @dst_cache: the cache * * The caller should use dst_cache_get_ip4() if it need to retrieve the * source address to be used when xmitting to the cached dst. * local BH must be disabled. */ struct dst_entry *dst_cache_get(struct dst_cache *dst_cache); /** * dst_cache_get_ip4 - perform cache lookup and fetch ipv4 source address * @dst_cache: the cache * @saddr: return value for the retrieved source address * * local BH must be disabled. */ struct rtable *dst_cache_get_ip4(struct dst_cache *dst_cache, __be32 *saddr); /** * dst_cache_set_ip4 - store the ipv4 dst into the cache * @dst_cache: the cache * @dst: the entry to be cached * @saddr: the source address to be stored inside the cache * * local BH must be disabled. */ void dst_cache_set_ip4(struct dst_cache *dst_cache, struct dst_entry *dst, __be32 saddr); #if IS_ENABLED(CONFIG_IPV6) /** * dst_cache_set_ip6 - store the ipv6 dst into the cache * @dst_cache: the cache * @dst: the entry to be cached * @saddr: the source address to be stored inside the cache * * local BH must be disabled. */ void dst_cache_set_ip6(struct dst_cache *dst_cache, struct dst_entry *dst, const struct in6_addr *saddr); /** * dst_cache_get_ip6 - perform cache lookup and fetch ipv6 source address * @dst_cache: the cache * @saddr: return value for the retrieved source address * * local BH must be disabled. */ struct dst_entry *dst_cache_get_ip6(struct dst_cache *dst_cache, struct in6_addr *saddr); #endif /** * dst_cache_reset - invalidate the cache contents * @dst_cache: the cache * * This does not free the cached dst to avoid races and contentions. * the dst will be freed on later cache lookup. */ static inline void dst_cache_reset(struct dst_cache *dst_cache) { dst_cache->reset_ts = jiffies; } /** * dst_cache_init - initialize the cache, allocating the required storage * @dst_cache: the cache * @gfp: allocation flags */ int dst_cache_init(struct dst_cache *dst_cache, gfp_t gfp); /** * dst_cache_destroy - empty the cache and free the allocated storage * @dst_cache: the cache * * No synchronization is enforced: it must be called only when the cache * is unsed. */ void dst_cache_destroy(struct dst_cache *dst_cache); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NAMEI_H #define _LINUX_NAMEI_H #include <linux/fs.h> #include <linux/kernel.h> #include <linux/path.h> #include <linux/fcntl.h> #include <linux/errno.h> enum { MAX_NESTED_LINKS = 8 }; #define MAXSYMLINKS 40 /* * Type of the last component on LOOKUP_PARENT */ enum {LAST_NORM, LAST_ROOT, LAST_DOT, LAST_DOTDOT}; /* pathwalk mode */ #define LOOKUP_FOLLOW 0x0001 /* follow links at the end */ #define LOOKUP_DIRECTORY 0x0002 /* require a directory */ #define LOOKUP_AUTOMOUNT 0x0004 /* force terminal automount */ #define LOOKUP_EMPTY 0x4000 /* accept empty path [user_... only] */ #define LOOKUP_DOWN 0x8000 /* follow mounts in the starting point */ #define LOOKUP_MOUNTPOINT 0x0080 /* follow mounts in the end */ #define LOOKUP_REVAL 0x0020 /* tell ->d_revalidate() to trust no cache */ #define LOOKUP_RCU 0x0040 /* RCU pathwalk mode; semi-internal */ /* These tell filesystem methods that we are dealing with the final component... */ #define LOOKUP_OPEN 0x0100 /* ... in open */ #define LOOKUP_CREATE 0x0200 /* ... in object creation */ #define LOOKUP_EXCL 0x0400 /* ... in exclusive creation */ #define LOOKUP_RENAME_TARGET 0x0800 /* ... in destination of rename() */ /* internal use only */ #define LOOKUP_PARENT 0x0010 #define LOOKUP_JUMPED 0x1000 #define LOOKUP_ROOT 0x2000 #define LOOKUP_ROOT_GRABBED 0x0008 /* Scoping flags for lookup. */ #define LOOKUP_NO_SYMLINKS 0x010000 /* No symlink crossing. */ #define LOOKUP_NO_MAGICLINKS 0x020000 /* No nd_jump_link() crossing. */ #define LOOKUP_NO_XDEV 0x040000 /* No mountpoint crossing. */ #define LOOKUP_BENEATH 0x080000 /* No escaping from starting point. */ #define LOOKUP_IN_ROOT 0x100000 /* Treat dirfd as fs root. */ /* LOOKUP_* flags which do scope-related checks based on the dirfd. */ #define LOOKUP_IS_SCOPED (LOOKUP_BENEATH | LOOKUP_IN_ROOT) extern int path_pts(struct path *path); extern int user_path_at_empty(int, const char __user *, unsigned, struct path *, int *empty); static inline int user_path_at(int dfd, const char __user *name, unsigned flags, struct path *path) { return user_path_at_empty(dfd, name, flags, path, NULL); } extern int kern_path(const char *, unsigned, struct path *); extern struct dentry *kern_path_create(int, const char *, struct path *, unsigned int); extern struct dentry *user_path_create(int, const char __user *, struct path *, unsigned int); extern void done_path_create(struct path *, struct dentry *); extern struct dentry *kern_path_locked(const char *, struct path *); extern struct dentry *try_lookup_one_len(const char *, struct dentry *, int); extern struct dentry *lookup_one_len(const char *, struct dentry *, int); extern struct dentry *lookup_one_len_unlocked(const char *, struct dentry *, int); extern struct dentry *lookup_positive_unlocked(const char *, struct dentry *, int); extern int follow_down_one(struct path *); extern int follow_down(struct path *); extern int follow_up(struct path *); extern struct dentry *lock_rename(struct dentry *, struct dentry *); extern void unlock_rename(struct dentry *, struct dentry *); extern int __must_check nd_jump_link(struct path *path); static inline void nd_terminate_link(void *name, size_t len, size_t maxlen) { ((char *) name)[min(len, maxlen)] = '\0'; } /** * retry_estale - determine whether the caller should retry an operation * @error: the error that would currently be returned * @flags: flags being used for next lookup attempt * * Check to see if the error code was -ESTALE, and then determine whether * to retry the call based on whether "flags" already has LOOKUP_REVAL set. * * Returns true if the caller should try the operation again. */ static inline bool retry_estale(const long error, const unsigned int flags) { return error == -ESTALE && !(flags & LOOKUP_REVAL); } #endif /* _LINUX_NAMEI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 /* SPDX-License-Identifier: GPL-2.0-only */ /* * User-mode machine state access * * Copyright (C) 2007 Red Hat, Inc. All rights reserved. * * Red Hat Author: Roland McGrath. */ #ifndef _LINUX_REGSET_H #define _LINUX_REGSET_H 1 #include <linux/compiler.h> #include <linux/types.h> #include <linux/bug.h> #include <linux/uaccess.h> struct task_struct; struct user_regset; struct membuf { void *p; size_t left; }; static inline int membuf_zero(struct membuf *s, size_t size) { if (s->left) { if (size > s->left) size = s->left; memset(s->p, 0, size); s->p += size; s->left -= size; } return s->left; } static inline int membuf_write(struct membuf *s, const void *v, size_t size) { if (s->left) { if (size > s->left) size = s->left; memcpy(s->p, v, size); s->p += size; s->left -= size; } return s->left; } /* current s->p must be aligned for v; v must be a scalar */ #define membuf_store(s, v) \ ({ \ struct membuf *__s = (s); \ if (__s->left) { \ typeof(v) __v = (v); \ size_t __size = sizeof(__v); \ if (unlikely(__size > __s->left)) { \ __size = __s->left; \ memcpy(__s->p, &__v, __size); \ } else { \ *(typeof(__v + 0) *)__s->p = __v; \ } \ __s->p += __size; \ __s->left -= __size; \ } \ __s->left;}) /** * user_regset_active_fn - type of @active function in &struct user_regset * @target: thread being examined * @regset: regset being examined * * Return -%ENODEV if not available on the hardware found. * Return %0 if no interesting state in this thread. * Return >%0 number of @size units of interesting state. * Any get call fetching state beyond that number will * see the default initialization state for this data, * so a caller that knows what the default state is need * not copy it all out. * This call is optional; the pointer is %NULL if there * is no inexpensive check to yield a value < @n. */ typedef int user_regset_active_fn(struct task_struct *target, const struct user_regset *regset); typedef int user_regset_get2_fn(struct task_struct *target, const struct user_regset *regset, struct membuf to); /** * user_regset_set_fn - type of @set function in &struct user_regset * @target: thread being examined * @regset: regset being examined * @pos: offset into the regset data to access, in bytes * @count: amount of data to copy, in bytes * @kbuf: if not %NULL, a kernel-space pointer to copy from * @ubuf: if @kbuf is %NULL, a user-space pointer to copy from * * Store register values. Return %0 on success; -%EIO or -%ENODEV * are usual failure returns. The @pos and @count values are in * bytes, but must be properly aligned. If @kbuf is non-null, that * buffer is used and @ubuf is ignored. If @kbuf is %NULL, then * ubuf gives a userland pointer to access directly, and an -%EFAULT * return value is possible. */ typedef int user_regset_set_fn(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf); /** * user_regset_writeback_fn - type of @writeback function in &struct user_regset * @target: thread being examined * @regset: regset being examined * @immediate: zero if writeback at completion of next context switch is OK * * This call is optional; usually the pointer is %NULL. When * provided, there is some user memory associated with this regset's * hardware, such as memory backing cached register data on register * window machines; the regset's data controls what user memory is * used (e.g. via the stack pointer value). * * Write register data back to user memory. If the @immediate flag * is nonzero, it must be written to the user memory so uaccess or * access_process_vm() can see it when this call returns; if zero, * then it must be written back by the time the task completes a * context switch (as synchronized with wait_task_inactive()). * Return %0 on success or if there was nothing to do, -%EFAULT for * a memory problem (bad stack pointer or whatever), or -%EIO for a * hardware problem. */ typedef int user_regset_writeback_fn(struct task_struct *target, const struct user_regset *regset, int immediate); /** * struct user_regset - accessible thread CPU state * @n: Number of slots (registers). * @size: Size in bytes of a slot (register). * @align: Required alignment, in bytes. * @bias: Bias from natural indexing. * @core_note_type: ELF note @n_type value used in core dumps. * @get: Function to fetch values. * @set: Function to store values. * @active: Function to report if regset is active, or %NULL. * @writeback: Function to write data back to user memory, or %NULL. * * This data structure describes a machine resource we call a register set. * This is part of the state of an individual thread, not necessarily * actual CPU registers per se. A register set consists of a number of * similar slots, given by @n. Each slot is @size bytes, and aligned to * @align bytes (which is at least @size). For dynamically-sized * regsets, @n must contain the maximum possible number of slots for the * regset. * * For backward compatibility, the @get and @set methods must pad to, or * accept, @n * @size bytes, even if the current regset size is smaller. * The precise semantics of these operations depend on the regset being * accessed. * * The functions to which &struct user_regset members point must be * called only on the current thread or on a thread that is in * %TASK_STOPPED or %TASK_TRACED state, that we are guaranteed will not * be woken up and return to user mode, and that we have called * wait_task_inactive() on. (The target thread always might wake up for * SIGKILL while these functions are working, in which case that * thread's user_regset state might be scrambled.) * * The @pos argument must be aligned according to @align; the @count * argument must be a multiple of @size. These functions are not * responsible for checking for invalid arguments. * * When there is a natural value to use as an index, @bias gives the * difference between the natural index and the slot index for the * register set. For example, x86 GDT segment descriptors form a regset; * the segment selector produces a natural index, but only a subset of * that index space is available as a regset (the TLS slots); subtracting * @bias from a segment selector index value computes the regset slot. * * If nonzero, @core_note_type gives the n_type field (NT_* value) * of the core file note in which this regset's data appears. * NT_PRSTATUS is a special case in that the regset data starts at * offsetof(struct elf_prstatus, pr_reg) into the note data; that is * part of the per-machine ELF formats userland knows about. In * other cases, the core file note contains exactly the whole regset * (@n * @size) and nothing else. The core file note is normally * omitted when there is an @active function and it returns zero. */ struct user_regset { user_regset_get2_fn *regset_get; user_regset_set_fn *set; user_regset_active_fn *active; user_regset_writeback_fn *writeback; unsigned int n; unsigned int size; unsigned int align; unsigned int bias; unsigned int core_note_type; }; /** * struct user_regset_view - available regsets * @name: Identifier, e.g. UTS_MACHINE string. * @regsets: Array of @n regsets available in this view. * @n: Number of elements in @regsets. * @e_machine: ELF header @e_machine %EM_* value written in core dumps. * @e_flags: ELF header @e_flags value written in core dumps. * @ei_osabi: ELF header @e_ident[%EI_OSABI] value written in core dumps. * * A regset view is a collection of regsets (&struct user_regset, * above). This describes all the state of a thread that can be seen * from a given architecture/ABI environment. More than one view might * refer to the same &struct user_regset, or more than one regset * might refer to the same machine-specific state in the thread. For * example, a 32-bit thread's state could be examined from the 32-bit * view or from the 64-bit view. Either method reaches the same thread * register state, doing appropriate widening or truncation. */ struct user_regset_view { const char *name; const struct user_regset *regsets; unsigned int n; u32 e_flags; u16 e_machine; u8 ei_osabi; }; /* * This is documented here rather than at the definition sites because its * implementation is machine-dependent but its interface is universal. */ /** * task_user_regset_view - Return the process's native regset view. * @tsk: a thread of the process in question * * Return the &struct user_regset_view that is native for the given process. * For example, what it would access when it called ptrace(). * Throughout the life of the process, this only changes at exec. */ const struct user_regset_view *task_user_regset_view(struct task_struct *tsk); static inline int user_regset_copyin(unsigned int *pos, unsigned int *count, const void **kbuf, const void __user **ubuf, void *data, const int start_pos, const int end_pos) { if (*count == 0) return 0; BUG_ON(*pos < start_pos); if (end_pos < 0 || *pos < end_pos) { unsigned int copy = (end_pos < 0 ? *count : min(*count, end_pos - *pos)); data += *pos - start_pos; if (*kbuf) { memcpy(data, *kbuf, copy); *kbuf += copy; } else if (__copy_from_user(data, *ubuf, copy)) return -EFAULT; else *ubuf += copy; *pos += copy; *count -= copy; } return 0; } static inline int user_regset_copyin_ignore(unsigned int *pos, unsigned int *count, const void **kbuf, const void __user **ubuf, const int start_pos, const int end_pos) { if (*count == 0) return 0; BUG_ON(*pos < start_pos); if (end_pos < 0 || *pos < end_pos) { unsigned int copy = (end_pos < 0 ? *count : min(*count, end_pos - *pos)); if (*kbuf) *kbuf += copy; else *ubuf += copy; *pos += copy; *count -= copy; } return 0; } extern int regset_get(struct task_struct *target, const struct user_regset *regset, unsigned int size, void *data); extern int regset_get_alloc(struct task_struct *target, const struct user_regset *regset, unsigned int size, void **data); extern int copy_regset_to_user(struct task_struct *target, const struct user_regset_view *view, unsigned int setno, unsigned int offset, unsigned int size, void __user *data); /** * copy_regset_from_user - store into thread's user_regset data from user memory * @target: thread to be examined * @view: &struct user_regset_view describing user thread machine state * @setno: index in @view->regsets * @offset: offset into the regset data, in bytes * @size: amount of data to copy, in bytes * @data: user-mode pointer to copy from */ static inline int copy_regset_from_user(struct task_struct *target, const struct user_regset_view *view, unsigned int setno, unsigned int offset, unsigned int size, const void __user *data) { const struct user_regset *regset = &view->regsets[setno]; if (!regset->set) return -EOPNOTSUPP; if (!access_ok(data, size)) return -EFAULT; return regset->set(target, regset, offset, size, NULL, data); } #endif /* <linux/regset.h> */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the RAW-IP module. * * Version: @(#)raw.h 1.0.2 05/07/93 * * Author: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _RAW_H #define _RAW_H #include <net/inet_sock.h> #include <net/protocol.h> #include <linux/icmp.h> extern struct proto raw_prot; extern struct raw_hashinfo raw_v4_hashinfo; struct sock *__raw_v4_lookup(struct net *net, struct sock *sk, unsigned short num, __be32 raddr, __be32 laddr, int dif, int sdif); int raw_abort(struct sock *sk, int err); void raw_icmp_error(struct sk_buff *, int, u32); int raw_local_deliver(struct sk_buff *, int); int raw_rcv(struct sock *, struct sk_buff *); #define RAW_HTABLE_SIZE MAX_INET_PROTOS struct raw_hashinfo { rwlock_t lock; struct hlist_head ht[RAW_HTABLE_SIZE]; }; #ifdef CONFIG_PROC_FS int raw_proc_init(void); void raw_proc_exit(void); struct raw_iter_state { struct seq_net_private p; int bucket; }; static inline struct raw_iter_state *raw_seq_private(struct seq_file *seq) { return seq->private; } void *raw_seq_start(struct seq_file *seq, loff_t *pos); void *raw_seq_next(struct seq_file *seq, void *v, loff_t *pos); void raw_seq_stop(struct seq_file *seq, void *v); #endif int raw_hash_sk(struct sock *sk); void raw_unhash_sk(struct sock *sk); void raw_init(void); struct raw_sock { /* inet_sock has to be the first member */ struct inet_sock inet; struct icmp_filter filter; u32 ipmr_table; }; static inline struct raw_sock *raw_sk(const struct sock *sk) { return (struct raw_sock *)sk; } static inline bool raw_sk_bound_dev_eq(struct net *net, int bound_dev_if, int dif, int sdif) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) return inet_bound_dev_eq(!!net->ipv4.sysctl_raw_l3mdev_accept, bound_dev_if, dif, sdif); #else return inet_bound_dev_eq(true, bound_dev_if, dif, sdif); #endif } #endif /* _RAW_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the UDP protocol. * * Version: @(#)udp.h 1.0.2 04/28/93 * * Author: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _LINUX_UDP_H #define _LINUX_UDP_H #include <net/inet_sock.h> #include <linux/skbuff.h> #include <net/netns/hash.h> #include <uapi/linux/udp.h> static inline struct udphdr *udp_hdr(const struct sk_buff *skb) { return (struct udphdr *)skb_transport_header(skb); } static inline struct udphdr *inner_udp_hdr(const struct sk_buff *skb) { return (struct udphdr *)skb_inner_transport_header(skb); } #define UDP_HTABLE_SIZE_MIN (CONFIG_BASE_SMALL ? 128 : 256) static inline u32 udp_hashfn(const struct net *net, u32 num, u32 mask) { return (num + net_hash_mix(net)) & mask; } struct udp_sock { /* inet_sock has to be the first member */ struct inet_sock inet; #define udp_port_hash inet.sk.__sk_common.skc_u16hashes[0] #define udp_portaddr_hash inet.sk.__sk_common.skc_u16hashes[1] #define udp_portaddr_node inet.sk.__sk_common.skc_portaddr_node int pending; /* Any pending frames ? */ unsigned int corkflag; /* Cork is required */ __u8 encap_type; /* Is this an Encapsulation socket? */ unsigned char no_check6_tx:1,/* Send zero UDP6 checksums on TX? */ no_check6_rx:1,/* Allow zero UDP6 checksums on RX? */ encap_enabled:1, /* This socket enabled encap * processing; UDP tunnels and * different encapsulation layer set * this */ gro_enabled:1, /* Request GRO aggregation */ accept_udp_l4:1, accept_udp_fraglist:1; /* * Following member retains the information to create a UDP header * when the socket is uncorked. */ __u16 len; /* total length of pending frames */ __u16 gso_size; /* * Fields specific to UDP-Lite. */ __u16 pcslen; __u16 pcrlen; /* indicator bits used by pcflag: */ #define UDPLITE_BIT 0x1 /* set by udplite proto init function */ #define UDPLITE_SEND_CC 0x2 /* set via udplite setsockopt */ #define UDPLITE_RECV_CC 0x4 /* set via udplite setsocktopt */ __u8 pcflag; /* marks socket as UDP-Lite if > 0 */ __u8 unused[3]; /* * For encapsulation sockets. */ int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); int (*encap_err_lookup)(struct sock *sk, struct sk_buff *skb); void (*encap_destroy)(struct sock *sk); /* GRO functions for UDP socket */ struct sk_buff * (*gro_receive)(struct sock *sk, struct list_head *head, struct sk_buff *skb); int (*gro_complete)(struct sock *sk, struct sk_buff *skb, int nhoff); /* udp_recvmsg try to use this before splicing sk_receive_queue */ struct sk_buff_head reader_queue ____cacheline_aligned_in_smp; /* This field is dirtied by udp_recvmsg() */ int forward_deficit; }; #define UDP_MAX_SEGMENTS (1 << 6UL) static inline struct udp_sock *udp_sk(const struct sock *sk) { return (struct udp_sock *)sk; } static inline void udp_set_no_check6_tx(struct sock *sk, bool val) { udp_sk(sk)->no_check6_tx = val; } static inline void udp_set_no_check6_rx(struct sock *sk, bool val) { udp_sk(sk)->no_check6_rx = val; } static inline bool udp_get_no_check6_tx(struct sock *sk) { return udp_sk(sk)->no_check6_tx; } static inline bool udp_get_no_check6_rx(struct sock *sk) { return udp_sk(sk)->no_check6_rx; } static inline void udp_cmsg_recv(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { int gso_size; if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { gso_size = skb_shinfo(skb)->gso_size; put_cmsg(msg, SOL_UDP, UDP_GRO, sizeof(gso_size), &gso_size); } } static inline bool udp_unexpected_gso(struct sock *sk, struct sk_buff *skb) { if (!skb_is_gso(skb)) return false; if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 && !udp_sk(sk)->accept_udp_l4) return true; if (skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST && !udp_sk(sk)->accept_udp_fraglist) return true; return false; } #define udp_portaddr_for_each_entry(__sk, list) \ hlist_for_each_entry(__sk, list, __sk_common.skc_portaddr_node) #define udp_portaddr_for_each_entry_rcu(__sk, list) \ hlist_for_each_entry_rcu(__sk, list, __sk_common.skc_portaddr_node) #define IS_UDPLITE(__sk) (__sk->sk_protocol == IPPROTO_UDPLITE) #endif /* _LINUX_UDP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Descending-priority-sorted double-linked list * * (C) 2002-2003 Intel Corp * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>. * * 2001-2005 (c) MontaVista Software, Inc. * Daniel Walker <dwalker@mvista.com> * * (C) 2005 Thomas Gleixner <tglx@linutronix.de> * * Simplifications of the original code by * Oleg Nesterov <oleg@tv-sign.ru> * * Based on simple lists (include/linux/list.h). * * This is a priority-sorted list of nodes; each node has a * priority from INT_MIN (highest) to INT_MAX (lowest). * * Addition is O(K), removal is O(1), change of priority of a node is * O(K) and K is the number of RT priority levels used in the system. * (1 <= K <= 99) * * This list is really a list of lists: * * - The tier 1 list is the prio_list, different priority nodes. * * - The tier 2 list is the node_list, serialized nodes. * * Simple ASCII art explanation: * * pl:prio_list (only for plist_node) * nl:node_list * HEAD| NODE(S) * | * ||------------------------------------| * ||->|pl|<->|pl|<--------------->|pl|<-| * | |10| |21| |21| |21| |40| (prio) * | | | | | | | | | | | * | | | | | | | | | | | * |->|nl|<->|nl|<->|nl|<->|nl|<->|nl|<->|nl|<-| * |-------------------------------------------| * * The nodes on the prio_list list are sorted by priority to simplify * the insertion of new nodes. There are no nodes with duplicate * priorites on the list. * * The nodes on the node_list are ordered by priority and can contain * entries which have the same priority. Those entries are ordered * FIFO * * Addition means: look for the prio_list node in the prio_list * for the priority of the node and insert it before the node_list * entry of the next prio_list node. If it is the first node of * that priority, add it to the prio_list in the right position and * insert it into the serialized node_list list * * Removal means remove it from the node_list and remove it from * the prio_list if the node_list list_head is non empty. In case * of removal from the prio_list it must be checked whether other * entries of the same priority are on the list or not. If there * is another entry of the same priority then this entry has to * replace the removed entry on the prio_list. If the entry which * is removed is the only entry of this priority then a simple * remove from both list is sufficient. * * INT_MIN is the highest priority, 0 is the medium highest, INT_MAX * is lowest priority. * * No locking is done, up to the caller. */ #ifndef _LINUX_PLIST_H_ #define _LINUX_PLIST_H_ #include <linux/kernel.h> #include <linux/list.h> struct plist_head { struct list_head node_list; }; struct plist_node { int prio; struct list_head prio_list; struct list_head node_list; }; /** * PLIST_HEAD_INIT - static struct plist_head initializer * @head: struct plist_head variable name */ #define PLIST_HEAD_INIT(head) \ { \ .node_list = LIST_HEAD_INIT((head).node_list) \ } /** * PLIST_HEAD - declare and init plist_head * @head: name for struct plist_head variable */ #define PLIST_HEAD(head) \ struct plist_head head = PLIST_HEAD_INIT(head) /** * PLIST_NODE_INIT - static struct plist_node initializer * @node: struct plist_node variable name * @__prio: initial node priority */ #define PLIST_NODE_INIT(node, __prio) \ { \ .prio = (__prio), \ .prio_list = LIST_HEAD_INIT((node).prio_list), \ .node_list = LIST_HEAD_INIT((node).node_list), \ } /** * plist_head_init - dynamic struct plist_head initializer * @head: &struct plist_head pointer */ static inline void plist_head_init(struct plist_head *head) { INIT_LIST_HEAD(&head->node_list); } /** * plist_node_init - Dynamic struct plist_node initializer * @node: &struct plist_node pointer * @prio: initial node priority */ static inline void plist_node_init(struct plist_node *node, int prio) { node->prio = prio; INIT_LIST_HEAD(&node->prio_list); INIT_LIST_HEAD(&node->node_list); } extern void plist_add(struct plist_node *node, struct plist_head *head); extern void plist_del(struct plist_node *node, struct plist_head *head); extern void plist_requeue(struct plist_node *node, struct plist_head *head); /** * plist_for_each - iterate over the plist * @pos: the type * to use as a loop counter * @head: the head for your list */ #define plist_for_each(pos, head) \ list_for_each_entry(pos, &(head)->node_list, node_list) /** * plist_for_each_continue - continue iteration over the plist * @pos: the type * to use as a loop cursor * @head: the head for your list * * Continue to iterate over plist, continuing after the current position. */ #define plist_for_each_continue(pos, head) \ list_for_each_entry_continue(pos, &(head)->node_list, node_list) /** * plist_for_each_safe - iterate safely over a plist of given type * @pos: the type * to use as a loop counter * @n: another type * to use as temporary storage * @head: the head for your list * * Iterate over a plist of given type, safe against removal of list entry. */ #define plist_for_each_safe(pos, n, head) \ list_for_each_entry_safe(pos, n, &(head)->node_list, node_list) /** * plist_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop counter * @head: the head for your list * @mem: the name of the list_head within the struct */ #define plist_for_each_entry(pos, head, mem) \ list_for_each_entry(pos, &(head)->node_list, mem.node_list) /** * plist_for_each_entry_continue - continue iteration over list of given type * @pos: the type * to use as a loop cursor * @head: the head for your list * @m: the name of the list_head within the struct * * Continue to iterate over list of given type, continuing after * the current position. */ #define plist_for_each_entry_continue(pos, head, m) \ list_for_each_entry_continue(pos, &(head)->node_list, m.node_list) /** * plist_for_each_entry_safe - iterate safely over list of given type * @pos: the type * to use as a loop counter * @n: another type * to use as temporary storage * @head: the head for your list * @m: the name of the list_head within the struct * * Iterate over list of given type, safe against removal of list entry. */ #define plist_for_each_entry_safe(pos, n, head, m) \ list_for_each_entry_safe(pos, n, &(head)->node_list, m.node_list) /** * plist_head_empty - return !0 if a plist_head is empty * @head: &struct plist_head pointer */ static inline int plist_head_empty(const struct plist_head *head) { return list_empty(&head->node_list); } /** * plist_node_empty - return !0 if plist_node is not on a list * @node: &struct plist_node pointer */ static inline int plist_node_empty(const struct plist_node *node) { return list_empty(&node->node_list); } /* All functions below assume the plist_head is not empty. */ /** * plist_first_entry - get the struct for the first entry * @head: the &struct plist_head pointer * @type: the type of the struct this is embedded in * @member: the name of the list_head within the struct */ #ifdef CONFIG_DEBUG_PLIST # define plist_first_entry(head, type, member) \ ({ \ WARN_ON(plist_head_empty(head)); \ container_of(plist_first(head), type, member); \ }) #else # define plist_first_entry(head, type, member) \ container_of(plist_first(head), type, member) #endif /** * plist_last_entry - get the struct for the last entry * @head: the &struct plist_head pointer * @type: the type of the struct this is embedded in * @member: the name of the list_head within the struct */ #ifdef CONFIG_DEBUG_PLIST # define plist_last_entry(head, type, member) \ ({ \ WARN_ON(plist_head_empty(head)); \ container_of(plist_last(head), type, member); \ }) #else # define plist_last_entry(head, type, member) \ container_of(plist_last(head), type, member) #endif /** * plist_next - get the next entry in list * @pos: the type * to cursor */ #define plist_next(pos) \ list_next_entry(pos, node_list) /** * plist_prev - get the prev entry in list * @pos: the type * to cursor */ #define plist_prev(pos) \ list_prev_entry(pos, node_list) /** * plist_first - return the first node (and thus, highest priority) * @head: the &struct plist_head pointer * * Assumes the plist is _not_ empty. */ static inline struct plist_node *plist_first(const struct plist_head *head) { return list_entry(head->node_list.next, struct plist_node, node_list); } /** * plist_last - return the last node (and thus, lowest priority) * @head: the &struct plist_head pointer * * Assumes the plist is _not_ empty. */ static inline struct plist_node *plist_last(const struct plist_head *head) { return list_entry(head->node_list.prev, struct plist_node, node_list); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_JUMP_LABEL_H #define _LINUX_JUMP_LABEL_H /* * Jump label support * * Copyright (C) 2009-2012 Jason Baron <jbaron@redhat.com> * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra * * DEPRECATED API: * * The use of 'struct static_key' directly, is now DEPRECATED. In addition * static_key_{true,false}() is also DEPRECATED. IE DO NOT use the following: * * struct static_key false = STATIC_KEY_INIT_FALSE; * struct static_key true = STATIC_KEY_INIT_TRUE; * static_key_true() * static_key_false() * * The updated API replacements are: * * DEFINE_STATIC_KEY_TRUE(key); * DEFINE_STATIC_KEY_FALSE(key); * DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count); * DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count); * static_branch_likely() * static_branch_unlikely() * * Jump labels provide an interface to generate dynamic branches using * self-modifying code. Assuming toolchain and architecture support, if we * define a "key" that is initially false via "DEFINE_STATIC_KEY_FALSE(key)", * an "if (static_branch_unlikely(&key))" statement is an unconditional branch * (which defaults to false - and the true block is placed out of line). * Similarly, we can define an initially true key via * "DEFINE_STATIC_KEY_TRUE(key)", and use it in the same * "if (static_branch_unlikely(&key))", in which case we will generate an * unconditional branch to the out-of-line true branch. Keys that are * initially true or false can be using in both static_branch_unlikely() * and static_branch_likely() statements. * * At runtime we can change the branch target by setting the key * to true via a call to static_branch_enable(), or false using * static_branch_disable(). If the direction of the branch is switched by * these calls then we run-time modify the branch target via a * no-op -> jump or jump -> no-op conversion. For example, for an * initially false key that is used in an "if (static_branch_unlikely(&key))" * statement, setting the key to true requires us to patch in a jump * to the out-of-line of true branch. * * In addition to static_branch_{enable,disable}, we can also reference count * the key or branch direction via static_branch_{inc,dec}. Thus, * static_branch_inc() can be thought of as a 'make more true' and * static_branch_dec() as a 'make more false'. * * Since this relies on modifying code, the branch modifying functions * must be considered absolute slow paths (machine wide synchronization etc.). * OTOH, since the affected branches are unconditional, their runtime overhead * will be absolutely minimal, esp. in the default (off) case where the total * effect is a single NOP of appropriate size. The on case will patch in a jump * to the out-of-line block. * * When the control is directly exposed to userspace, it is prudent to delay the * decrement to avoid high frequency code modifications which can (and do) * cause significant performance degradation. Struct static_key_deferred and * static_key_slow_dec_deferred() provide for this. * * Lacking toolchain and or architecture support, static keys fall back to a * simple conditional branch. * * Additional babbling in: Documentation/staging/static-keys.rst */ #ifndef __ASSEMBLY__ #include <linux/types.h> #include <linux/compiler.h> extern bool static_key_initialized; #define STATIC_KEY_CHECK_USE(key) WARN(!static_key_initialized, \ "%s(): static key '%pS' used before call to jump_label_init()", \ __func__, (key)) #ifdef CONFIG_JUMP_LABEL struct static_key { atomic_t enabled; /* * Note: * To make anonymous unions work with old compilers, the static * initialization of them requires brackets. This creates a dependency * on the order of the struct with the initializers. If any fields * are added, STATIC_KEY_INIT_TRUE and STATIC_KEY_INIT_FALSE may need * to be modified. * * bit 0 => 1 if key is initially true * 0 if initially false * bit 1 => 1 if points to struct static_key_mod * 0 if points to struct jump_entry */ union { unsigned long type; struct jump_entry *entries; struct static_key_mod *next; }; }; #else struct static_key { atomic_t enabled; }; #endif /* CONFIG_JUMP_LABEL */ #endif /* __ASSEMBLY__ */ #ifdef CONFIG_JUMP_LABEL #include <asm/jump_label.h> #ifndef __ASSEMBLY__ #ifdef CONFIG_HAVE_ARCH_JUMP_LABEL_RELATIVE struct jump_entry { s32 code; s32 target; long key; // key may be far away from the core kernel under KASLR }; static inline unsigned long jump_entry_code(const struct jump_entry *entry) { return (unsigned long)&entry->code + entry->code; } static inline unsigned long jump_entry_target(const struct jump_entry *entry) { return (unsigned long)&entry->target + entry->target; } static inline struct static_key *jump_entry_key(const struct jump_entry *entry) { long offset = entry->key & ~3L; return (struct static_key *)((unsigned long)&entry->key + offset); } #else static inline unsigned long jump_entry_code(const struct jump_entry *entry) { return entry->code; } static inline unsigned long jump_entry_target(const struct jump_entry *entry) { return entry->target; } static inline struct static_key *jump_entry_key(const struct jump_entry *entry) { return (struct static_key *)((unsigned long)entry->key & ~3UL); } #endif static inline bool jump_entry_is_branch(const struct jump_entry *entry) { return (unsigned long)entry->key & 1UL; } static inline bool jump_entry_is_init(const struct jump_entry *entry) { return (unsigned long)entry->key & 2UL; } static inline void jump_entry_set_init(struct jump_entry *entry) { entry->key |= 2; } #endif #endif #ifndef __ASSEMBLY__ enum jump_label_type { JUMP_LABEL_NOP = 0, JUMP_LABEL_JMP, }; struct module; #ifdef CONFIG_JUMP_LABEL #define JUMP_TYPE_FALSE 0UL #define JUMP_TYPE_TRUE 1UL #define JUMP_TYPE_LINKED 2UL #define JUMP_TYPE_MASK 3UL static __always_inline bool static_key_false(struct static_key *key) { return arch_static_branch(key, false); } static __always_inline bool static_key_true(struct static_key *key) { return !arch_static_branch(key, true); } extern struct jump_entry __start___jump_table[]; extern struct jump_entry __stop___jump_table[]; extern void jump_label_init(void); extern void jump_label_lock(void); extern void jump_label_unlock(void); extern void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type); extern void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type); extern bool arch_jump_label_transform_queue(struct jump_entry *entry, enum jump_label_type type); extern void arch_jump_label_transform_apply(void); extern int jump_label_text_reserved(void *start, void *end); extern void static_key_slow_inc(struct static_key *key); extern void static_key_slow_dec(struct static_key *key); extern void static_key_slow_inc_cpuslocked(struct static_key *key); extern void static_key_slow_dec_cpuslocked(struct static_key *key); extern void jump_label_apply_nops(struct module *mod); extern int static_key_count(struct static_key *key); extern void static_key_enable(struct static_key *key); extern void static_key_disable(struct static_key *key); extern void static_key_enable_cpuslocked(struct static_key *key); extern void static_key_disable_cpuslocked(struct static_key *key); /* * We should be using ATOMIC_INIT() for initializing .enabled, but * the inclusion of atomic.h is problematic for inclusion of jump_label.h * in 'low-level' headers. Thus, we are initializing .enabled with a * raw value, but have added a BUILD_BUG_ON() to catch any issues in * jump_label_init() see: kernel/jump_label.c. */ #define STATIC_KEY_INIT_TRUE \ { .enabled = { 1 }, \ { .entries = (void *)JUMP_TYPE_TRUE } } #define STATIC_KEY_INIT_FALSE \ { .enabled = { 0 }, \ { .entries = (void *)JUMP_TYPE_FALSE } } #else /* !CONFIG_JUMP_LABEL */ #include <linux/atomic.h> #include <linux/bug.h> static inline int static_key_count(struct static_key *key) { return atomic_read(&key->enabled); } static __always_inline void jump_label_init(void) { static_key_initialized = true; } static __always_inline bool static_key_false(struct static_key *key) { if (unlikely(static_key_count(key) > 0)) return true; return false; } static __always_inline bool static_key_true(struct static_key *key) { if (likely(static_key_count(key) > 0)) return true; return false; } static inline void static_key_slow_inc(struct static_key *key) { STATIC_KEY_CHECK_USE(key); atomic_inc(&key->enabled); } static inline void static_key_slow_dec(struct static_key *key) { STATIC_KEY_CHECK_USE(key); atomic_dec(&key->enabled); } #define static_key_slow_inc_cpuslocked(key) static_key_slow_inc(key) #define static_key_slow_dec_cpuslocked(key) static_key_slow_dec(key) static inline int jump_label_text_reserved(void *start, void *end) { return 0; } static inline void jump_label_lock(void) {} static inline void jump_label_unlock(void) {} static inline int jump_label_apply_nops(struct module *mod) { return 0; } static inline void static_key_enable(struct static_key *key) { STATIC_KEY_CHECK_USE(key); if (atomic_read(&key->enabled) != 0) { WARN_ON_ONCE(atomic_read(&key->enabled) != 1); return; } atomic_set(&key->enabled, 1); } static inline void static_key_disable(struct static_key *key) { STATIC_KEY_CHECK_USE(key); if (atomic_read(&key->enabled) != 1) { WARN_ON_ONCE(atomic_read(&key->enabled) != 0); return; } atomic_set(&key->enabled, 0); } #define static_key_enable_cpuslocked(k) static_key_enable((k)) #define static_key_disable_cpuslocked(k) static_key_disable((k)) #define STATIC_KEY_INIT_TRUE { .enabled = ATOMIC_INIT(1) } #define STATIC_KEY_INIT_FALSE { .enabled = ATOMIC_INIT(0) } #endif /* CONFIG_JUMP_LABEL */ #define STATIC_KEY_INIT STATIC_KEY_INIT_FALSE #define jump_label_enabled static_key_enabled /* -------------------------------------------------------------------------- */ /* * Two type wrappers around static_key, such that we can use compile time * type differentiation to emit the right code. * * All the below code is macros in order to play type games. */ struct static_key_true { struct static_key key; }; struct static_key_false { struct static_key key; }; #define STATIC_KEY_TRUE_INIT (struct static_key_true) { .key = STATIC_KEY_INIT_TRUE, } #define STATIC_KEY_FALSE_INIT (struct static_key_false){ .key = STATIC_KEY_INIT_FALSE, } #define DEFINE_STATIC_KEY_TRUE(name) \ struct static_key_true name = STATIC_KEY_TRUE_INIT #define DEFINE_STATIC_KEY_TRUE_RO(name) \ struct static_key_true name __ro_after_init = STATIC_KEY_TRUE_INIT #define DECLARE_STATIC_KEY_TRUE(name) \ extern struct static_key_true name #define DEFINE_STATIC_KEY_FALSE(name) \ struct static_key_false name = STATIC_KEY_FALSE_INIT #define DEFINE_STATIC_KEY_FALSE_RO(name) \ struct static_key_false name __ro_after_init = STATIC_KEY_FALSE_INIT #define DECLARE_STATIC_KEY_FALSE(name) \ extern struct static_key_false name #define DEFINE_STATIC_KEY_ARRAY_TRUE(name, count) \ struct static_key_true name[count] = { \ [0 ... (count) - 1] = STATIC_KEY_TRUE_INIT, \ } #define DEFINE_STATIC_KEY_ARRAY_FALSE(name, count) \ struct static_key_false name[count] = { \ [0 ... (count) - 1] = STATIC_KEY_FALSE_INIT, \ } extern bool ____wrong_branch_error(void); #define static_key_enabled(x) \ ({ \ if (!__builtin_types_compatible_p(typeof(*x), struct static_key) && \ !__builtin_types_compatible_p(typeof(*x), struct static_key_true) &&\ !__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \ ____wrong_branch_error(); \ static_key_count((struct static_key *)x) > 0; \ }) #ifdef CONFIG_JUMP_LABEL /* * Combine the right initial value (type) with the right branch order * to generate the desired result. * * * type\branch| likely (1) | unlikely (0) * -----------+-----------------------+------------------ * | | * true (1) | ... | ... * | NOP | JMP L * | <br-stmts> | 1: ... * | L: ... | * | | * | | L: <br-stmts> * | | jmp 1b * | | * -----------+-----------------------+------------------ * | | * false (0) | ... | ... * | JMP L | NOP * | <br-stmts> | 1: ... * | L: ... | * | | * | | L: <br-stmts> * | | jmp 1b * | | * -----------+-----------------------+------------------ * * The initial value is encoded in the LSB of static_key::entries, * type: 0 = false, 1 = true. * * The branch type is encoded in the LSB of jump_entry::key, * branch: 0 = unlikely, 1 = likely. * * This gives the following logic table: * * enabled type branch instuction * -----------------------------+----------- * 0 0 0 | NOP * 0 0 1 | JMP * 0 1 0 | NOP * 0 1 1 | JMP * * 1 0 0 | JMP * 1 0 1 | NOP * 1 1 0 | JMP * 1 1 1 | NOP * * Which gives the following functions: * * dynamic: instruction = enabled ^ branch * static: instruction = type ^ branch * * See jump_label_type() / jump_label_init_type(). */ #define static_branch_likely(x) \ ({ \ bool branch; \ if (__builtin_types_compatible_p(typeof(*x), struct static_key_true)) \ branch = !arch_static_branch(&(x)->key, true); \ else if (__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \ branch = !arch_static_branch_jump(&(x)->key, true); \ else \ branch = ____wrong_branch_error(); \ likely(branch); \ }) #define static_branch_unlikely(x) \ ({ \ bool branch; \ if (__builtin_types_compatible_p(typeof(*x), struct static_key_true)) \ branch = arch_static_branch_jump(&(x)->key, false); \ else if (__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \ branch = arch_static_branch(&(x)->key, false); \ else \ branch = ____wrong_branch_error(); \ unlikely(branch); \ }) #else /* !CONFIG_JUMP_LABEL */ #define static_branch_likely(x) likely(static_key_enabled(&(x)->key)) #define static_branch_unlikely(x) unlikely(static_key_enabled(&(x)->key)) #endif /* CONFIG_JUMP_LABEL */ /* * Advanced usage; refcount, branch is enabled when: count != 0 */ #define static_branch_inc(x) static_key_slow_inc(&(x)->key) #define static_branch_dec(x) static_key_slow_dec(&(x)->key) #define static_branch_inc_cpuslocked(x) static_key_slow_inc_cpuslocked(&(x)->key) #define static_branch_dec_cpuslocked(x) static_key_slow_dec_cpuslocked(&(x)->key) /* * Normal usage; boolean enable/disable. */ #define static_branch_enable(x) static_key_enable(&(x)->key) #define static_branch_disable(x) static_key_disable(&(x)->key) #define static_branch_enable_cpuslocked(x) static_key_enable_cpuslocked(&(x)->key) #define static_branch_disable_cpuslocked(x) static_key_disable_cpuslocked(&(x)->key) #endif /* __ASSEMBLY__ */ #endif /* _LINUX_JUMP_LABEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PROCESSOR_H #define _ASM_X86_PROCESSOR_H #include <asm/processor-flags.h> /* Forward declaration, a strange C thing */ struct task_struct; struct mm_struct; struct io_bitmap; struct vm86; #include <asm/math_emu.h> #include <asm/segment.h> #include <asm/types.h> #include <uapi/asm/sigcontext.h> #include <asm/current.h> #include <asm/cpufeatures.h> #include <asm/page.h> #include <asm/pgtable_types.h> #include <asm/percpu.h> #include <asm/msr.h> #include <asm/desc_defs.h> #include <asm/nops.h> #include <asm/special_insns.h> #include <asm/fpu/types.h> #include <asm/unwind_hints.h> #include <asm/vmxfeatures.h> #include <asm/vdso/processor.h> #include <linux/personality.h> #include <linux/cache.h> #include <linux/threads.h> #include <linux/math64.h> #include <linux/err.h> #include <linux/irqflags.h> #include <linux/mem_encrypt.h> /* * We handle most unaligned accesses in hardware. On the other hand * unaligned DMA can be quite expensive on some Nehalem processors. * * Based on this we disable the IP header alignment in network drivers. */ #define NET_IP_ALIGN 0 #define HBP_NUM 4 /* * These alignment constraints are for performance in the vSMP case, * but in the task_struct case we must also meet hardware imposed * alignment requirements of the FPU state: */ #ifdef CONFIG_X86_VSMP # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) #else # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) # define ARCH_MIN_MMSTRUCT_ALIGN 0 #endif enum tlb_infos { ENTRIES, NR_INFO }; extern u16 __read_mostly tlb_lli_4k[NR_INFO]; extern u16 __read_mostly tlb_lli_2m[NR_INFO]; extern u16 __read_mostly tlb_lli_4m[NR_INFO]; extern u16 __read_mostly tlb_lld_4k[NR_INFO]; extern u16 __read_mostly tlb_lld_2m[NR_INFO]; extern u16 __read_mostly tlb_lld_4m[NR_INFO]; extern u16 __read_mostly tlb_lld_1g[NR_INFO]; /* * CPU type and hardware bug flags. Kept separately for each CPU. * Members of this structure are referenced in head_32.S, so think twice * before touching them. [mj] */ struct cpuinfo_x86 { __u8 x86; /* CPU family */ __u8 x86_vendor; /* CPU vendor */ __u8 x86_model; __u8 x86_stepping; #ifdef CONFIG_X86_64 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ int x86_tlbsize; #endif #ifdef CONFIG_X86_VMX_FEATURE_NAMES __u32 vmx_capability[NVMXINTS]; #endif __u8 x86_virt_bits; __u8 x86_phys_bits; /* CPUID returned core id bits: */ __u8 x86_coreid_bits; __u8 cu_id; /* Max extended CPUID function supported: */ __u32 extended_cpuid_level; /* Maximum supported CPUID level, -1=no CPUID: */ int cpuid_level; /* * Align to size of unsigned long because the x86_capability array * is passed to bitops which require the alignment. Use unnamed * union to enforce the array is aligned to size of unsigned long. */ union { __u32 x86_capability[NCAPINTS + NBUGINTS]; unsigned long x86_capability_alignment; }; char x86_vendor_id[16]; char x86_model_id[64]; /* in KB - valid for CPUS which support this call: */ unsigned int x86_cache_size; int x86_cache_alignment; /* In bytes */ /* Cache QoS architectural values, valid only on the BSP: */ int x86_cache_max_rmid; /* max index */ int x86_cache_occ_scale; /* scale to bytes */ int x86_cache_mbm_width_offset; int x86_power; unsigned long loops_per_jiffy; /* cpuid returned max cores value: */ u16 x86_max_cores; u16 apicid; u16 initial_apicid; u16 x86_clflush_size; /* number of cores as seen by the OS: */ u16 booted_cores; /* Physical processor id: */ u16 phys_proc_id; /* Logical processor id: */ u16 logical_proc_id; /* Core id: */ u16 cpu_core_id; u16 cpu_die_id; u16 logical_die_id; /* Index into per_cpu list: */ u16 cpu_index; u32 microcode; /* Address space bits used by the cache internally */ u8 x86_cache_bits; unsigned initialized : 1; } __randomize_layout; struct cpuid_regs { u32 eax, ebx, ecx, edx; }; enum cpuid_regs_idx { CPUID_EAX = 0, CPUID_EBX, CPUID_ECX, CPUID_EDX, }; #define X86_VENDOR_INTEL 0 #define X86_VENDOR_CYRIX 1 #define X86_VENDOR_AMD 2 #define X86_VENDOR_UMC 3 #define X86_VENDOR_CENTAUR 5 #define X86_VENDOR_TRANSMETA 7 #define X86_VENDOR_NSC 8 #define X86_VENDOR_HYGON 9 #define X86_VENDOR_ZHAOXIN 10 #define X86_VENDOR_NUM 11 #define X86_VENDOR_UNKNOWN 0xff /* * capabilities of CPUs */ extern struct cpuinfo_x86 boot_cpu_data; extern struct cpuinfo_x86 new_cpu_data; extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; #ifdef CONFIG_SMP DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); #define cpu_data(cpu) per_cpu(cpu_info, cpu) #else #define cpu_info boot_cpu_data #define cpu_data(cpu) boot_cpu_data #endif extern const struct seq_operations cpuinfo_op; #define cache_line_size() (boot_cpu_data.x86_cache_alignment) extern void cpu_detect(struct cpuinfo_x86 *c); static inline unsigned long long l1tf_pfn_limit(void) { return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); } extern void early_cpu_init(void); extern void identify_boot_cpu(void); extern void identify_secondary_cpu(struct cpuinfo_x86 *); extern void print_cpu_info(struct cpuinfo_x86 *); void print_cpu_msr(struct cpuinfo_x86 *); #ifdef CONFIG_X86_32 extern int have_cpuid_p(void); #else static inline int have_cpuid_p(void) { return 1; } #endif static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { /* ecx is often an input as well as an output. */ asm volatile("cpuid" : "=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx) : "0" (*eax), "2" (*ecx) : "memory"); } #define native_cpuid_reg(reg) \ static inline unsigned int native_cpuid_##reg(unsigned int op) \ { \ unsigned int eax = op, ebx, ecx = 0, edx; \ \ native_cpuid(&eax, &ebx, &ecx, &edx); \ \ return reg; \ } /* * Native CPUID functions returning a single datum. */ native_cpuid_reg(eax) native_cpuid_reg(ebx) native_cpuid_reg(ecx) native_cpuid_reg(edx) /* * Friendlier CR3 helpers. */ static inline unsigned long read_cr3_pa(void) { return __read_cr3() & CR3_ADDR_MASK; } static inline unsigned long native_read_cr3_pa(void) { return __native_read_cr3() & CR3_ADDR_MASK; } static inline void load_cr3(pgd_t *pgdir) { write_cr3(__sme_pa(pgdir)); } /* * Note that while the legacy 'TSS' name comes from 'Task State Segment', * on modern x86 CPUs the TSS also holds information important to 64-bit mode, * unrelated to the task-switch mechanism: */ #ifdef CONFIG_X86_32 /* This is the TSS defined by the hardware. */ struct x86_hw_tss { unsigned short back_link, __blh; unsigned long sp0; unsigned short ss0, __ss0h; unsigned long sp1; /* * We don't use ring 1, so ss1 is a convenient scratch space in * the same cacheline as sp0. We use ss1 to cache the value in * MSR_IA32_SYSENTER_CS. When we context switch * MSR_IA32_SYSENTER_CS, we first check if the new value being * written matches ss1, and, if it's not, then we wrmsr the new * value and update ss1. * * The only reason we context switch MSR_IA32_SYSENTER_CS is * that we set it to zero in vm86 tasks to avoid corrupting the * stack if we were to go through the sysenter path from vm86 * mode. */ unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ unsigned short __ss1h; unsigned long sp2; unsigned short ss2, __ss2h; unsigned long __cr3; unsigned long ip; unsigned long flags; unsigned long ax; unsigned long cx; unsigned long dx; unsigned long bx; unsigned long sp; unsigned long bp; unsigned long si; unsigned long di; unsigned short es, __esh; unsigned short cs, __csh; unsigned short ss, __ssh; unsigned short ds, __dsh; unsigned short fs, __fsh; unsigned short gs, __gsh; unsigned short ldt, __ldth; unsigned short trace; unsigned short io_bitmap_base; } __attribute__((packed)); #else struct x86_hw_tss { u32 reserved1; u64 sp0; /* * We store cpu_current_top_of_stack in sp1 so it's always accessible. * Linux does not use ring 1, so sp1 is not otherwise needed. */ u64 sp1; /* * Since Linux does not use ring 2, the 'sp2' slot is unused by * hardware. entry_SYSCALL_64 uses it as scratch space to stash * the user RSP value. */ u64 sp2; u64 reserved2; u64 ist[7]; u32 reserved3; u32 reserved4; u16 reserved5; u16 io_bitmap_base; } __attribute__((packed)); #endif /* * IO-bitmap sizes: */ #define IO_BITMAP_BITS 65536 #define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE) #define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long)) #define IO_BITMAP_OFFSET_VALID_MAP \ (offsetof(struct tss_struct, io_bitmap.bitmap) - \ offsetof(struct tss_struct, x86_tss)) #define IO_BITMAP_OFFSET_VALID_ALL \ (offsetof(struct tss_struct, io_bitmap.mapall) - \ offsetof(struct tss_struct, x86_tss)) #ifdef CONFIG_X86_IOPL_IOPERM /* * sizeof(unsigned long) coming from an extra "long" at the end of the * iobitmap. The limit is inclusive, i.e. the last valid byte. */ # define __KERNEL_TSS_LIMIT \ (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \ sizeof(unsigned long) - 1) #else # define __KERNEL_TSS_LIMIT \ (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1) #endif /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */ #define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1) struct entry_stack { char stack[PAGE_SIZE]; }; struct entry_stack_page { struct entry_stack stack; } __aligned(PAGE_SIZE); /* * All IO bitmap related data stored in the TSS: */ struct x86_io_bitmap { /* The sequence number of the last active bitmap. */ u64 prev_sequence; /* * Store the dirty size of the last io bitmap offender. The next * one will have to do the cleanup as the switch out to a non io * bitmap user will just set x86_tss.io_bitmap_base to a value * outside of the TSS limit. So for sane tasks there is no need to * actually touch the io_bitmap at all. */ unsigned int prev_max; /* * The extra 1 is there because the CPU will access an * additional byte beyond the end of the IO permission * bitmap. The extra byte must be all 1 bits, and must * be within the limit. */ unsigned long bitmap[IO_BITMAP_LONGS + 1]; /* * Special I/O bitmap to emulate IOPL(3). All bytes zero, * except the additional byte at the end. */ unsigned long mapall[IO_BITMAP_LONGS + 1]; }; struct tss_struct { /* * The fixed hardware portion. This must not cross a page boundary * at risk of violating the SDM's advice and potentially triggering * errata. */ struct x86_hw_tss x86_tss; struct x86_io_bitmap io_bitmap; } __aligned(PAGE_SIZE); DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); /* Per CPU interrupt stacks */ struct irq_stack { char stack[IRQ_STACK_SIZE]; } __aligned(IRQ_STACK_SIZE); DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); #ifdef CONFIG_X86_32 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); #else /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 #endif #ifdef CONFIG_X86_64 struct fixed_percpu_data { /* * GCC hardcodes the stack canary as %gs:40. Since the * irq_stack is the object at %gs:0, we reserve the bottom * 48 bytes of the irq stack for the canary. */ char gs_base[40]; unsigned long stack_canary; }; DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible; DECLARE_INIT_PER_CPU(fixed_percpu_data); static inline unsigned long cpu_kernelmode_gs_base(int cpu) { return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu); } DECLARE_PER_CPU(unsigned int, irq_count); extern asmlinkage void ignore_sysret(void); /* Save actual FS/GS selectors and bases to current->thread */ void current_save_fsgs(void); #else /* X86_64 */ #ifdef CONFIG_STACKPROTECTOR /* * Make sure stack canary segment base is cached-aligned: * "For Intel Atom processors, avoid non zero segment base address * that is not aligned to cache line boundary at all cost." * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) */ struct stack_canary { char __pad[20]; /* canary at %gs:20 */ unsigned long canary; }; DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); #endif /* Per CPU softirq stack pointer */ DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr); #endif /* X86_64 */ extern unsigned int fpu_kernel_xstate_size; extern unsigned int fpu_user_xstate_size; struct perf_event; struct thread_struct { /* Cached TLS descriptors: */ struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; #ifdef CONFIG_X86_32 unsigned long sp0; #endif unsigned long sp; #ifdef CONFIG_X86_32 unsigned long sysenter_cs; #else unsigned short es; unsigned short ds; unsigned short fsindex; unsigned short gsindex; #endif #ifdef CONFIG_X86_64 unsigned long fsbase; unsigned long gsbase; #else /* * XXX: this could presumably be unsigned short. Alternatively, * 32-bit kernels could be taught to use fsindex instead. */ unsigned long fs; unsigned long gs; #endif /* Save middle states of ptrace breakpoints */ struct perf_event *ptrace_bps[HBP_NUM]; /* Debug status used for traps, single steps, etc... */ unsigned long virtual_dr6; /* Keep track of the exact dr7 value set by the user */ unsigned long ptrace_dr7; /* Fault info: */ unsigned long cr2; unsigned long trap_nr; unsigned long error_code; #ifdef CONFIG_VM86 /* Virtual 86 mode info */ struct vm86 *vm86; #endif /* IO permissions: */ struct io_bitmap *io_bitmap; /* * IOPL. Priviledge level dependent I/O permission which is * emulated via the I/O bitmap to prevent user space from disabling * interrupts. */ unsigned long iopl_emul; unsigned int sig_on_uaccess_err:1; /* Floating point and extended processor state */ struct fpu fpu; /* * WARNING: 'fpu' is dynamically-sized. It *MUST* be at * the end. */ }; /* Whitelist the FPU state from the task_struct for hardened usercopy. */ static inline void arch_thread_struct_whitelist(unsigned long *offset, unsigned long *size) { *offset = offsetof(struct thread_struct, fpu.state); *size = fpu_kernel_xstate_size; } static inline void native_load_sp0(unsigned long sp0) { this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); } static __always_inline void native_swapgs(void) { #ifdef CONFIG_X86_64 asm volatile("swapgs" ::: "memory"); #endif } static inline unsigned long current_top_of_stack(void) { /* * We can't read directly from tss.sp0: sp0 on x86_32 is special in * and around vm86 mode and sp0 on x86_64 is special because of the * entry trampoline. */ return this_cpu_read_stable(cpu_current_top_of_stack); } static inline bool on_thread_stack(void) { return (unsigned long)(current_top_of_stack() - current_stack_pointer) < THREAD_SIZE; } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #define __cpuid native_cpuid static inline void load_sp0(unsigned long sp0) { native_load_sp0(sp0); } #endif /* CONFIG_PARAVIRT_XXL */ /* Free all resources held by a thread. */ extern void release_thread(struct task_struct *); unsigned long get_wchan(struct task_struct *p); /* * Generic CPUID function * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx * resulting in stale register contents being returned. */ static inline void cpuid(unsigned int op, unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { *eax = op; *ecx = 0; __cpuid(eax, ebx, ecx, edx); } /* Some CPUID calls want 'count' to be placed in ecx */ static inline void cpuid_count(unsigned int op, int count, unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { *eax = op; *ecx = count; __cpuid(eax, ebx, ecx, edx); } /* * CPUID functions returning a single datum */ static inline unsigned int cpuid_eax(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return eax; } static inline unsigned int cpuid_ebx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return ebx; } static inline unsigned int cpuid_ecx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return ecx; } static inline unsigned int cpuid_edx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return edx; } extern void select_idle_routine(const struct cpuinfo_x86 *c); extern void amd_e400_c1e_apic_setup(void); extern unsigned long boot_option_idle_override; enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, IDLE_POLL}; extern void enable_sep_cpu(void); extern int sysenter_setup(void); /* Defined in head.S */ extern struct desc_ptr early_gdt_descr; extern void switch_to_new_gdt(int); extern void load_direct_gdt(int); extern void load_fixmap_gdt(int); extern void load_percpu_segment(int); extern void cpu_init(void); extern void cpu_init_exception_handling(void); extern void cr4_init(void); static inline unsigned long get_debugctlmsr(void) { unsigned long debugctlmsr = 0; #ifndef CONFIG_X86_DEBUGCTLMSR if (boot_cpu_data.x86 < 6) return 0; #endif rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); return debugctlmsr; } static inline void update_debugctlmsr(unsigned long debugctlmsr) { #ifndef CONFIG_X86_DEBUGCTLMSR if (boot_cpu_data.x86 < 6) return; #endif wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); } extern void set_task_blockstep(struct task_struct *task, bool on); /* Boot loader type from the setup header: */ extern int bootloader_type; extern int bootloader_version; extern char ignore_fpu_irq; #define HAVE_ARCH_PICK_MMAP_LAYOUT 1 #define ARCH_HAS_PREFETCHW #define ARCH_HAS_SPINLOCK_PREFETCH #ifdef CONFIG_X86_32 # define BASE_PREFETCH "" # define ARCH_HAS_PREFETCH #else # define BASE_PREFETCH "prefetcht0 %P1" #endif /* * Prefetch instructions for Pentium III (+) and AMD Athlon (+) * * It's not worth to care about 3dnow prefetches for the K6 * because they are microcoded there and very slow. */ static inline void prefetch(const void *x) { alternative_input(BASE_PREFETCH, "prefetchnta %P1", X86_FEATURE_XMM, "m" (*(const char *)x)); } /* * 3dnow prefetch to get an exclusive cache line. * Useful for spinlocks to avoid one state transition in the * cache coherency protocol: */ static __always_inline void prefetchw(const void *x) { alternative_input(BASE_PREFETCH, "prefetchw %P1", X86_FEATURE_3DNOWPREFETCH, "m" (*(const char *)x)); } static inline void spin_lock_prefetch(const void *x) { prefetchw(x); } #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ TOP_OF_KERNEL_STACK_PADDING) #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) #define task_pt_regs(task) \ ({ \ unsigned long __ptr = (unsigned long)task_stack_page(task); \ __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ ((struct pt_regs *)__ptr) - 1; \ }) #ifdef CONFIG_X86_32 #define INIT_THREAD { \ .sp0 = TOP_OF_INIT_STACK, \ .sysenter_cs = __KERNEL_CS, \ } #define KSTK_ESP(task) (task_pt_regs(task)->sp) #else #define INIT_THREAD { } extern unsigned long KSTK_ESP(struct task_struct *task); #endif /* CONFIG_X86_64 */ extern void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp); /* * This decides where the kernel will search for a free chunk of vm * space during mmap's. */ #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) #define KSTK_EIP(task) (task_pt_regs(task)->ip) /* Get/set a process' ability to use the timestamp counter instruction */ #define GET_TSC_CTL(adr) get_tsc_mode((adr)) #define SET_TSC_CTL(val) set_tsc_mode((val)) extern int get_tsc_mode(unsigned long adr); extern int set_tsc_mode(unsigned int val); DECLARE_PER_CPU(u64, msr_misc_features_shadow); #ifdef CONFIG_CPU_SUP_AMD extern u16 amd_get_nb_id(int cpu); extern u32 amd_get_nodes_per_socket(void); #else static inline u16 amd_get_nb_id(int cpu) { return 0; } static inline u32 amd_get_nodes_per_socket(void) { return 0; } #endif static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) { uint32_t base, eax, signature[3]; for (base = 0x40000000; base < 0x40010000; base += 0x100) { cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); if (!memcmp(sig, signature, 12) && (leaves == 0 || ((eax - base) >= leaves))) return base; } return 0; } extern unsigned long arch_align_stack(unsigned long sp); void free_init_pages(const char *what, unsigned long begin, unsigned long end); extern void free_kernel_image_pages(const char *what, void *begin, void *end); void default_idle(void); #ifdef CONFIG_XEN bool xen_set_default_idle(void); #else #define xen_set_default_idle 0 #endif void stop_this_cpu(void *dummy); void microcode_check(void); enum l1tf_mitigations { L1TF_MITIGATION_OFF, L1TF_MITIGATION_FLUSH_NOWARN, L1TF_MITIGATION_FLUSH, L1TF_MITIGATION_FLUSH_NOSMT, L1TF_MITIGATION_FULL, L1TF_MITIGATION_FULL_FORCE }; extern enum l1tf_mitigations l1tf_mitigation; enum mds_mitigations { MDS_MITIGATION_OFF, MDS_MITIGATION_FULL, MDS_MITIGATION_VMWERV, }; #endif /* _ASM_X86_PROCESSOR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Framework and drivers for configuring and reading different PHYs * Based on code in sungem_phy.c and (long-removed) gianfar_phy.c * * Author: Andy Fleming * * Copyright (c) 2004 Freescale Semiconductor, Inc. */ #ifndef __PHY_H #define __PHY_H #include <linux/compiler.h> #include <linux/spinlock.h> #include <linux/ethtool.h> #include <linux/linkmode.h> #include <linux/netlink.h> #include <linux/mdio.h> #include <linux/mii.h> #include <linux/mii_timestamper.h> #include <linux/module.h> #include <linux/timer.h> #include <linux/workqueue.h> #include <linux/mod_devicetable.h> #include <linux/u64_stats_sync.h> #include <linux/irqreturn.h> #include <linux/iopoll.h> #include <linux/refcount.h> #include <linux/atomic.h> #define PHY_DEFAULT_FEATURES (SUPPORTED_Autoneg | \ SUPPORTED_TP | \ SUPPORTED_MII) #define PHY_10BT_FEATURES (SUPPORTED_10baseT_Half | \ SUPPORTED_10baseT_Full) #define PHY_100BT_FEATURES (SUPPORTED_100baseT_Half | \ SUPPORTED_100baseT_Full) #define PHY_1000BT_FEATURES (SUPPORTED_1000baseT_Half | \ SUPPORTED_1000baseT_Full) extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; extern __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; #define PHY_BASIC_FEATURES ((unsigned long *)&phy_basic_features) #define PHY_BASIC_T1_FEATURES ((unsigned long *)&phy_basic_t1_features) #define PHY_GBIT_FEATURES ((unsigned long *)&phy_gbit_features) #define PHY_GBIT_FIBRE_FEATURES ((unsigned long *)&phy_gbit_fibre_features) #define PHY_GBIT_ALL_PORTS_FEATURES ((unsigned long *)&phy_gbit_all_ports_features) #define PHY_10GBIT_FEATURES ((unsigned long *)&phy_10gbit_features) #define PHY_10GBIT_FEC_FEATURES ((unsigned long *)&phy_10gbit_fec_features) #define PHY_10GBIT_FULL_FEATURES ((unsigned long *)&phy_10gbit_full_features) extern const int phy_basic_ports_array[3]; extern const int phy_fibre_port_array[1]; extern const int phy_all_ports_features_array[7]; extern const int phy_10_100_features_array[4]; extern const int phy_basic_t1_features_array[2]; extern const int phy_gbit_features_array[2]; extern const int phy_10gbit_features_array[1]; /* * Set phydev->irq to PHY_POLL if interrupts are not supported, * or not desired for this PHY. Set to PHY_IGNORE_INTERRUPT if * the attached driver handles the interrupt */ #define PHY_POLL -1 #define PHY_IGNORE_INTERRUPT -2 #define PHY_IS_INTERNAL 0x00000001 #define PHY_RST_AFTER_CLK_EN 0x00000002 #define PHY_POLL_CABLE_TEST 0x00000004 #define MDIO_DEVICE_IS_PHY 0x80000000 /** * enum phy_interface_t - Interface Mode definitions * * @PHY_INTERFACE_MODE_NA: Not Applicable - don't touch * @PHY_INTERFACE_MODE_INTERNAL: No interface, MAC and PHY combined * @PHY_INTERFACE_MODE_MII: Median-independent interface * @PHY_INTERFACE_MODE_GMII: Gigabit median-independent interface * @PHY_INTERFACE_MODE_SGMII: Serial gigabit media-independent interface * @PHY_INTERFACE_MODE_TBI: Ten Bit Interface * @PHY_INTERFACE_MODE_REVMII: Reverse Media Independent Interface * @PHY_INTERFACE_MODE_RMII: Reduced Media Independent Interface * @PHY_INTERFACE_MODE_RGMII: Reduced gigabit media-independent interface * @PHY_INTERFACE_MODE_RGMII_ID: RGMII with Internal RX+TX delay * @PHY_INTERFACE_MODE_RGMII_RXID: RGMII with Internal RX delay * @PHY_INTERFACE_MODE_RGMII_TXID: RGMII with Internal RX delay * @PHY_INTERFACE_MODE_RTBI: Reduced TBI * @PHY_INTERFACE_MODE_SMII: ??? MII * @PHY_INTERFACE_MODE_XGMII: 10 gigabit media-independent interface * @PHY_INTERFACE_MODE_XLGMII:40 gigabit media-independent interface * @PHY_INTERFACE_MODE_MOCA: Multimedia over Coax * @PHY_INTERFACE_MODE_QSGMII: Quad SGMII * @PHY_INTERFACE_MODE_TRGMII: Turbo RGMII * @PHY_INTERFACE_MODE_1000BASEX: 1000 BaseX * @PHY_INTERFACE_MODE_2500BASEX: 2500 BaseX * @PHY_INTERFACE_MODE_RXAUI: Reduced XAUI * @PHY_INTERFACE_MODE_XAUI: 10 Gigabit Attachment Unit Interface * @PHY_INTERFACE_MODE_10GBASER: 10G BaseR * @PHY_INTERFACE_MODE_USXGMII: Universal Serial 10GE MII * @PHY_INTERFACE_MODE_10GKR: 10GBASE-KR - with Clause 73 AN * @PHY_INTERFACE_MODE_MAX: Book keeping * * Describes the interface between the MAC and PHY. */ typedef enum { PHY_INTERFACE_MODE_NA, PHY_INTERFACE_MODE_INTERNAL, PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_SGMII, PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_REVMII, PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_RGMII_ID, PHY_INTERFACE_MODE_RGMII_RXID, PHY_INTERFACE_MODE_RGMII_TXID, PHY_INTERFACE_MODE_RTBI, PHY_INTERFACE_MODE_SMII, PHY_INTERFACE_MODE_XGMII, PHY_INTERFACE_MODE_XLGMII, PHY_INTERFACE_MODE_MOCA, PHY_INTERFACE_MODE_QSGMII, PHY_INTERFACE_MODE_TRGMII, PHY_INTERFACE_MODE_1000BASEX, PHY_INTERFACE_MODE_2500BASEX, PHY_INTERFACE_MODE_RXAUI, PHY_INTERFACE_MODE_XAUI, /* 10GBASE-R, XFI, SFI - single lane 10G Serdes */ PHY_INTERFACE_MODE_10GBASER, PHY_INTERFACE_MODE_USXGMII, /* 10GBASE-KR - with Clause 73 AN */ PHY_INTERFACE_MODE_10GKR, PHY_INTERFACE_MODE_MAX, } phy_interface_t; /* * phy_supported_speeds - return all speeds currently supported by a PHY device */ unsigned int phy_supported_speeds(struct phy_device *phy, unsigned int *speeds, unsigned int size); /** * phy_modes - map phy_interface_t enum to device tree binding of phy-mode * @interface: enum phy_interface_t value * * Description: maps enum &phy_interface_t defined in this file * into the device tree binding of 'phy-mode', so that Ethernet * device driver can get PHY interface from device tree. */ static inline const char *phy_modes(phy_interface_t interface) { switch (interface) { case PHY_INTERFACE_MODE_NA: return ""; case PHY_INTERFACE_MODE_INTERNAL: return "internal"; case PHY_INTERFACE_MODE_MII: return "mii"; case PHY_INTERFACE_MODE_GMII: return "gmii"; case PHY_INTERFACE_MODE_SGMII: return "sgmii"; case PHY_INTERFACE_MODE_TBI: return "tbi"; case PHY_INTERFACE_MODE_REVMII: return "rev-mii"; case PHY_INTERFACE_MODE_RMII: return "rmii"; case PHY_INTERFACE_MODE_RGMII: return "rgmii"; case PHY_INTERFACE_MODE_RGMII_ID: return "rgmii-id"; case PHY_INTERFACE_MODE_RGMII_RXID: return "rgmii-rxid"; case PHY_INTERFACE_MODE_RGMII_TXID: return "rgmii-txid"; case PHY_INTERFACE_MODE_RTBI: return "rtbi"; case PHY_INTERFACE_MODE_SMII: return "smii"; case PHY_INTERFACE_MODE_XGMII: return "xgmii"; case PHY_INTERFACE_MODE_XLGMII: return "xlgmii"; case PHY_INTERFACE_MODE_MOCA: return "moca"; case PHY_INTERFACE_MODE_QSGMII: return "qsgmii"; case PHY_INTERFACE_MODE_TRGMII: return "trgmii"; case PHY_INTERFACE_MODE_1000BASEX: return "1000base-x"; case PHY_INTERFACE_MODE_2500BASEX: return "2500base-x"; case PHY_INTERFACE_MODE_RXAUI: return "rxaui"; case PHY_INTERFACE_MODE_XAUI: return "xaui"; case PHY_INTERFACE_MODE_10GBASER: return "10gbase-r"; case PHY_INTERFACE_MODE_USXGMII: return "usxgmii"; case PHY_INTERFACE_MODE_10GKR: return "10gbase-kr"; default: return "unknown"; } } #define PHY_INIT_TIMEOUT 100000 #define PHY_FORCE_TIMEOUT 10 #define PHY_MAX_ADDR 32 /* Used when trying to connect to a specific phy (mii bus id:phy device id) */ #define PHY_ID_FMT "%s:%02x" #define MII_BUS_ID_SIZE 61 struct device; struct phylink; struct sfp_bus; struct sfp_upstream_ops; struct sk_buff; /** * struct mdio_bus_stats - Statistics counters for MDIO busses * @transfers: Total number of transfers, i.e. @writes + @reads * @errors: Number of MDIO transfers that returned an error * @writes: Number of write transfers * @reads: Number of read transfers * @syncp: Synchronisation for incrementing statistics */ struct mdio_bus_stats { u64_stats_t transfers; u64_stats_t errors; u64_stats_t writes; u64_stats_t reads; /* Must be last, add new statistics above */ struct u64_stats_sync syncp; }; /** * struct phy_package_shared - Shared information in PHY packages * @addr: Common PHY address used to combine PHYs in one package * @refcnt: Number of PHYs connected to this shared data * @flags: Initialization of PHY package * @priv_size: Size of the shared private data @priv * @priv: Driver private data shared across a PHY package * * Represents a shared structure between different phydev's in the same * package, for example a quad PHY. See phy_package_join() and * phy_package_leave(). */ struct phy_package_shared { int addr; refcount_t refcnt; unsigned long flags; size_t priv_size; /* private data pointer */ /* note that this pointer is shared between different phydevs and * the user has to take care of appropriate locking. It is allocated * and freed automatically by phy_package_join() and * phy_package_leave(). */ void *priv; }; /* used as bit number in atomic bitops */ #define PHY_SHARED_F_INIT_DONE 0 #define PHY_SHARED_F_PROBE_DONE 1 /** * struct mii_bus - Represents an MDIO bus * * @owner: Who owns this device * @name: User friendly name for this MDIO device, or driver name * @id: Unique identifier for this bus, typical from bus hierarchy * @priv: Driver private data * * The Bus class for PHYs. Devices which provide access to * PHYs should register using this structure */ struct mii_bus { struct module *owner; const char *name; char id[MII_BUS_ID_SIZE]; void *priv; /** @read: Perform a read transfer on the bus */ int (*read)(struct mii_bus *bus, int addr, int regnum); /** @write: Perform a write transfer on the bus */ int (*write)(struct mii_bus *bus, int addr, int regnum, u16 val); /** @reset: Perform a reset of the bus */ int (*reset)(struct mii_bus *bus); /** @stats: Statistic counters per device on the bus */ struct mdio_bus_stats stats[PHY_MAX_ADDR]; /** * @mdio_lock: A lock to ensure that only one thing can read/write * the MDIO bus at a time */ struct mutex mdio_lock; /** @parent: Parent device of this bus */ struct device *parent; /** @state: State of bus structure */ enum { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED, MDIOBUS_UNREGISTERED, MDIOBUS_RELEASED, } state; /** @dev: Kernel device representation */ struct device dev; /** @mdio_map: list of all MDIO devices on bus */ struct mdio_device *mdio_map[PHY_MAX_ADDR]; /** @phy_mask: PHY addresses to be ignored when probing */ u32 phy_mask; /** @phy_ignore_ta_mask: PHY addresses to ignore the TA/read failure */ u32 phy_ignore_ta_mask; /** * @irq: An array of interrupts, each PHY's interrupt at the index * matching its address */ int irq[PHY_MAX_ADDR]; /** @reset_delay_us: GPIO reset pulse width in microseconds */ int reset_delay_us; /** @reset_post_delay_us: GPIO reset deassert delay in microseconds */ int reset_post_delay_us; /** @reset_gpiod: Reset GPIO descriptor pointer */ struct gpio_desc *reset_gpiod; /** @probe_capabilities: bus capabilities, used for probing */ enum { MDIOBUS_NO_CAP = 0, MDIOBUS_C22, MDIOBUS_C45, MDIOBUS_C22_C45, } probe_capabilities; /** @shared_lock: protect access to the shared element */ struct mutex shared_lock; /** @shared: shared state across different PHYs */ struct phy_package_shared *shared[PHY_MAX_ADDR]; }; #define to_mii_bus(d) container_of(d, struct mii_bus, dev) struct mii_bus *mdiobus_alloc_size(size_t size); /** * mdiobus_alloc - Allocate an MDIO bus structure * * The internal state of the MDIO bus will be set of MDIOBUS_ALLOCATED ready * for the driver to register the bus. */ static inline struct mii_bus *mdiobus_alloc(void) { return mdiobus_alloc_size(0); } int __mdiobus_register(struct mii_bus *bus, struct module *owner); int __devm_mdiobus_register(struct device *dev, struct mii_bus *bus, struct module *owner); #define mdiobus_register(bus) __mdiobus_register(bus, THIS_MODULE) #define devm_mdiobus_register(dev, bus) \ __devm_mdiobus_register(dev, bus, THIS_MODULE) void mdiobus_unregister(struct mii_bus *bus); void mdiobus_free(struct mii_bus *bus); struct mii_bus *devm_mdiobus_alloc_size(struct device *dev, int sizeof_priv); static inline struct mii_bus *devm_mdiobus_alloc(struct device *dev) { return devm_mdiobus_alloc_size(dev, 0); } struct mii_bus *mdio_find_bus(const char *mdio_name); struct phy_device *mdiobus_scan(struct mii_bus *bus, int addr); #define PHY_INTERRUPT_DISABLED false #define PHY_INTERRUPT_ENABLED true /** * enum phy_state - PHY state machine states: * * @PHY_DOWN: PHY device and driver are not ready for anything. probe * should be called if and only if the PHY is in this state, * given that the PHY device exists. * - PHY driver probe function will set the state to @PHY_READY * * @PHY_READY: PHY is ready to send and receive packets, but the * controller is not. By default, PHYs which do not implement * probe will be set to this state by phy_probe(). * - start will set the state to UP * * @PHY_UP: The PHY and attached device are ready to do work. * Interrupts should be started here. * - timer moves to @PHY_NOLINK or @PHY_RUNNING * * @PHY_NOLINK: PHY is up, but not currently plugged in. * - irq or timer will set @PHY_RUNNING if link comes back * - phy_stop moves to @PHY_HALTED * * @PHY_RUNNING: PHY is currently up, running, and possibly sending * and/or receiving packets * - irq or timer will set @PHY_NOLINK if link goes down * - phy_stop moves to @PHY_HALTED * * @PHY_CABLETEST: PHY is performing a cable test. Packet reception/sending * is not expected to work, carrier will be indicated as down. PHY will be * poll once per second, or on interrupt for it current state. * Once complete, move to UP to restart the PHY. * - phy_stop aborts the running test and moves to @PHY_HALTED * * @PHY_HALTED: PHY is up, but no polling or interrupts are done. Or * PHY is in an error state. * - phy_start moves to @PHY_UP */ enum phy_state { PHY_DOWN = 0, PHY_READY, PHY_HALTED, PHY_UP, PHY_RUNNING, PHY_NOLINK, PHY_CABLETEST, }; #define MDIO_MMD_NUM 32 /** * struct phy_c45_device_ids - 802.3-c45 Device Identifiers * @devices_in_package: IEEE 802.3 devices in package register value. * @mmds_present: bit vector of MMDs present. * @device_ids: The device identifer for each present device. */ struct phy_c45_device_ids { u32 devices_in_package; u32 mmds_present; u32 device_ids[MDIO_MMD_NUM]; }; struct macsec_context; struct macsec_ops; /** * struct phy_device - An instance of a PHY * * @mdio: MDIO bus this PHY is on * @drv: Pointer to the driver for this PHY instance * @phy_id: UID for this device found during discovery * @c45_ids: 802.3-c45 Device Identifiers if is_c45. * @is_c45: Set to true if this PHY uses clause 45 addressing. * @is_internal: Set to true if this PHY is internal to a MAC. * @is_pseudo_fixed_link: Set to true if this PHY is an Ethernet switch, etc. * @is_gigabit_capable: Set to true if PHY supports 1000Mbps * @has_fixups: Set to true if this PHY has fixups/quirks. * @suspended: Set to true if this PHY has been suspended successfully. * @suspended_by_mdio_bus: Set to true if this PHY was suspended by MDIO bus. * @sysfs_links: Internal boolean tracking sysfs symbolic links setup/removal. * @loopback_enabled: Set true if this PHY has been loopbacked successfully. * @downshifted_rate: Set true if link speed has been downshifted. * @state: State of the PHY for management purposes * @dev_flags: Device-specific flags used by the PHY driver. * @irq: IRQ number of the PHY's interrupt (-1 if none) * @phy_timer: The timer for handling the state machine * @phylink: Pointer to phylink instance for this PHY * @sfp_bus_attached: Flag indicating whether the SFP bus has been attached * @sfp_bus: SFP bus attached to this PHY's fiber port * @attached_dev: The attached enet driver's device instance ptr * @adjust_link: Callback for the enet controller to respond to changes: in the * link state. * @phy_link_change: Callback for phylink for notification of link change * @macsec_ops: MACsec offloading ops. * * @speed: Current link speed * @duplex: Current duplex * @port: Current port * @pause: Current pause * @asym_pause: Current asymmetric pause * @supported: Combined MAC/PHY supported linkmodes * @advertising: Currently advertised linkmodes * @adv_old: Saved advertised while power saving for WoL * @lp_advertising: Current link partner advertised linkmodes * @eee_broken_modes: Energy efficient ethernet modes which should be prohibited * @autoneg: Flag autoneg being used * @link: Current link state * @autoneg_complete: Flag auto negotiation of the link has completed * @mdix: Current crossover * @mdix_ctrl: User setting of crossover * @interrupts: Flag interrupts have been enabled * @interface: enum phy_interface_t value * @skb: Netlink message for cable diagnostics * @nest: Netlink nest used for cable diagnostics * @ehdr: nNtlink header for cable diagnostics * @phy_led_triggers: Array of LED triggers * @phy_num_led_triggers: Number of triggers in @phy_led_triggers * @led_link_trigger: LED trigger for link up/down * @last_triggered: last LED trigger for link speed * @master_slave_set: User requested master/slave configuration * @master_slave_get: Current master/slave advertisement * @master_slave_state: Current master/slave configuration * @mii_ts: Pointer to time stamper callbacks * @lock: Mutex for serialization access to PHY * @state_queue: Work queue for state machine * @shared: Pointer to private data shared by phys in one package * @priv: Pointer to driver private data * * interrupts currently only supports enabled or disabled, * but could be changed in the future to support enabling * and disabling specific interrupts * * Contains some infrastructure for polling and interrupt * handling, as well as handling shifts in PHY hardware state */ struct phy_device { struct mdio_device mdio; /* Information about the PHY type */ /* And management functions */ struct phy_driver *drv; u32 phy_id; struct phy_c45_device_ids c45_ids; unsigned is_c45:1; unsigned is_internal:1; unsigned is_pseudo_fixed_link:1; unsigned is_gigabit_capable:1; unsigned has_fixups:1; unsigned suspended:1; unsigned suspended_by_mdio_bus:1; unsigned sysfs_links:1; unsigned loopback_enabled:1; unsigned downshifted_rate:1; unsigned autoneg:1; /* The most recently read link state */ unsigned link:1; unsigned autoneg_complete:1; /* Interrupts are enabled */ unsigned interrupts:1; enum phy_state state; u32 dev_flags; phy_interface_t interface; /* * forced speed & duplex (no autoneg) * partner speed & duplex & pause (autoneg) */ int speed; int duplex; int port; int pause; int asym_pause; u8 master_slave_get; u8 master_slave_set; u8 master_slave_state; /* Union of PHY and Attached devices' supported link modes */ /* See ethtool.h for more info */ __ETHTOOL_DECLARE_LINK_MODE_MASK(supported); __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); __ETHTOOL_DECLARE_LINK_MODE_MASK(lp_advertising); /* used with phy_speed_down */ __ETHTOOL_DECLARE_LINK_MODE_MASK(adv_old); /* Energy efficient ethernet modes which should be prohibited */ u32 eee_broken_modes; #ifdef CONFIG_LED_TRIGGER_PHY struct phy_led_trigger *phy_led_triggers; unsigned int phy_num_led_triggers; struct phy_led_trigger *last_triggered; struct phy_led_trigger *led_link_trigger; #endif /* * Interrupt number for this PHY * -1 means no interrupt */ int irq; /* private data pointer */ /* For use by PHYs to maintain extra state */ void *priv; /* shared data pointer */ /* For use by PHYs inside the same package that need a shared state. */ struct phy_package_shared *shared; /* Reporting cable test results */ struct sk_buff *skb; void *ehdr; struct nlattr *nest; /* Interrupt and Polling infrastructure */ struct delayed_work state_queue; struct mutex lock; /* This may be modified under the rtnl lock */ bool sfp_bus_attached; struct sfp_bus *sfp_bus; struct phylink *phylink; struct net_device *attached_dev; struct mii_timestamper *mii_ts; u8 mdix; u8 mdix_ctrl; void (*phy_link_change)(struct phy_device *phydev, bool up); void (*adjust_link)(struct net_device *dev); #if IS_ENABLED(CONFIG_MACSEC) /* MACsec management functions */ const struct macsec_ops *macsec_ops; #endif }; #define to_phy_device(d) container_of(to_mdio_device(d), \ struct phy_device, mdio) /** * struct phy_tdr_config - Configuration of a TDR raw test * * @first: Distance for first data collection point * @last: Distance for last data collection point * @step: Step between data collection points * @pair: Bitmap of cable pairs to collect data for * * A structure containing possible configuration parameters * for a TDR cable test. The driver does not need to implement * all the parameters, but should report what is actually used. * All distances are in centimeters. */ struct phy_tdr_config { u32 first; u32 last; u32 step; s8 pair; }; #define PHY_PAIR_ALL -1 /** * struct phy_driver - Driver structure for a particular PHY type * * @mdiodrv: Data common to all MDIO devices * @phy_id: The result of reading the UID registers of this PHY * type, and ANDing them with the phy_id_mask. This driver * only works for PHYs with IDs which match this field * @name: The friendly name of this PHY type * @phy_id_mask: Defines the important bits of the phy_id * @features: A mandatory list of features (speed, duplex, etc) * supported by this PHY * @flags: A bitfield defining certain other features this PHY * supports (like interrupts) * @driver_data: Static driver data * * All functions are optional. If config_aneg or read_status * are not implemented, the phy core uses the genphy versions. * Note that none of these functions should be called from * interrupt time. The goal is for the bus read/write functions * to be able to block when the bus transaction is happening, * and be freed up by an interrupt (The MPC85xx has this ability, * though it is not currently supported in the driver). */ struct phy_driver { struct mdio_driver_common mdiodrv; u32 phy_id; char *name; u32 phy_id_mask; const unsigned long * const features; u32 flags; const void *driver_data; /** * @soft_reset: Called to issue a PHY software reset */ int (*soft_reset)(struct phy_device *phydev); /** * @config_init: Called to initialize the PHY, * including after a reset */ int (*config_init)(struct phy_device *phydev); /** * @probe: Called during discovery. Used to set * up device-specific structures, if any */ int (*probe)(struct phy_device *phydev); /** * @get_features: Probe the hardware to determine what * abilities it has. Should only set phydev->supported. */ int (*get_features)(struct phy_device *phydev); /* PHY Power Management */ /** @suspend: Suspend the hardware, saving state if needed */ int (*suspend)(struct phy_device *phydev); /** @resume: Resume the hardware, restoring state if needed */ int (*resume)(struct phy_device *phydev); /** * @config_aneg: Configures the advertisement and resets * autonegotiation if phydev->autoneg is on, * forces the speed to the current settings in phydev * if phydev->autoneg is off */ int (*config_aneg)(struct phy_device *phydev); /** @aneg_done: Determines the auto negotiation result */ int (*aneg_done)(struct phy_device *phydev); /** @read_status: Determines the negotiated speed and duplex */ int (*read_status)(struct phy_device *phydev); /** @ack_interrupt: Clears any pending interrupts */ int (*ack_interrupt)(struct phy_device *phydev); /** @config_intr: Enables or disables interrupts */ int (*config_intr)(struct phy_device *phydev); /** * @did_interrupt: Checks if the PHY generated an interrupt. * For multi-PHY devices with shared PHY interrupt pin * Set interrupt bits have to be cleared. */ int (*did_interrupt)(struct phy_device *phydev); /** @handle_interrupt: Override default interrupt handling */ irqreturn_t (*handle_interrupt)(struct phy_device *phydev); /** @remove: Clears up any memory if needed */ void (*remove)(struct phy_device *phydev); /** * @match_phy_device: Returns true if this is a suitable * driver for the given phydev. If NULL, matching is based on * phy_id and phy_id_mask. */ int (*match_phy_device)(struct phy_device *phydev); /** * @set_wol: Some devices (e.g. qnap TS-119P II) require PHY * register changes to enable Wake on LAN, so set_wol is * provided to be called in the ethernet driver's set_wol * function. */ int (*set_wol)(struct phy_device *dev, struct ethtool_wolinfo *wol); /** * @get_wol: See set_wol, but for checking whether Wake on LAN * is enabled. */ void (*get_wol)(struct phy_device *dev, struct ethtool_wolinfo *wol); /** * @link_change_notify: Called to inform a PHY device driver * when the core is about to change the link state. This * callback is supposed to be used as fixup hook for drivers * that need to take action when the link state * changes. Drivers are by no means allowed to mess with the * PHY device structure in their implementations. */ void (*link_change_notify)(struct phy_device *dev); /** * @read_mmd: PHY specific driver override for reading a MMD * register. This function is optional for PHY specific * drivers. When not provided, the default MMD read function * will be used by phy_read_mmd(), which will use either a * direct read for Clause 45 PHYs or an indirect read for * Clause 22 PHYs. devnum is the MMD device number within the * PHY device, regnum is the register within the selected MMD * device. */ int (*read_mmd)(struct phy_device *dev, int devnum, u16 regnum); /** * @write_mmd: PHY specific driver override for writing a MMD * register. This function is optional for PHY specific * drivers. When not provided, the default MMD write function * will be used by phy_write_mmd(), which will use either a * direct write for Clause 45 PHYs, or an indirect write for * Clause 22 PHYs. devnum is the MMD device number within the * PHY device, regnum is the register within the selected MMD * device. val is the value to be written. */ int (*write_mmd)(struct phy_device *dev, int devnum, u16 regnum, u16 val); /** @read_page: Return the current PHY register page number */ int (*read_page)(struct phy_device *dev); /** @write_page: Set the current PHY register page number */ int (*write_page)(struct phy_device *dev, int page); /** * @module_info: Get the size and type of the eeprom contained * within a plug-in module */ int (*module_info)(struct phy_device *dev, struct ethtool_modinfo *modinfo); /** * @module_eeprom: Get the eeprom information from the plug-in * module */ int (*module_eeprom)(struct phy_device *dev, struct ethtool_eeprom *ee, u8 *data); /** @cable_test_start: Start a cable test */ int (*cable_test_start)(struct phy_device *dev); /** @cable_test_tdr_start: Start a raw TDR cable test */ int (*cable_test_tdr_start)(struct phy_device *dev, const struct phy_tdr_config *config); /** * @cable_test_get_status: Once per second, or on interrupt, * request the status of the test. */ int (*cable_test_get_status)(struct phy_device *dev, bool *finished); /* Get statistics from the PHY using ethtool */ /** @get_sset_count: Number of statistic counters */ int (*get_sset_count)(struct phy_device *dev); /** @get_strings: Names of the statistic counters */ void (*get_strings)(struct phy_device *dev, u8 *data); /** @get_stats: Return the statistic counter values */ void (*get_stats)(struct phy_device *dev, struct ethtool_stats *stats, u64 *data); /* Get and Set PHY tunables */ /** @get_tunable: Return the value of a tunable */ int (*get_tunable)(struct phy_device *dev, struct ethtool_tunable *tuna, void *data); /** @set_tunable: Set the value of a tunable */ int (*set_tunable)(struct phy_device *dev, struct ethtool_tunable *tuna, const void *data); /** @set_loopback: Set the loopback mood of the PHY */ int (*set_loopback)(struct phy_device *dev, bool enable); /** @get_sqi: Get the signal quality indication */ int (*get_sqi)(struct phy_device *dev); /** @get_sqi_max: Get the maximum signal quality indication */ int (*get_sqi_max)(struct phy_device *dev); }; #define to_phy_driver(d) container_of(to_mdio_common_driver(d), \ struct phy_driver, mdiodrv) #define PHY_ANY_ID "MATCH ANY PHY" #define PHY_ANY_UID 0xffffffff #define PHY_ID_MATCH_EXACT(id) .phy_id = (id), .phy_id_mask = GENMASK(31, 0) #define PHY_ID_MATCH_MODEL(id) .phy_id = (id), .phy_id_mask = GENMASK(31, 4) #define PHY_ID_MATCH_VENDOR(id) .phy_id = (id), .phy_id_mask = GENMASK(31, 10) /* A Structure for boards to register fixups with the PHY Lib */ struct phy_fixup { struct list_head list; char bus_id[MII_BUS_ID_SIZE + 3]; u32 phy_uid; u32 phy_uid_mask; int (*run)(struct phy_device *phydev); }; const char *phy_speed_to_str(int speed); const char *phy_duplex_to_str(unsigned int duplex); /* A structure for mapping a particular speed and duplex * combination to a particular SUPPORTED and ADVERTISED value */ struct phy_setting { u32 speed; u8 duplex; u8 bit; }; const struct phy_setting * phy_lookup_setting(int speed, int duplex, const unsigned long *mask, bool exact); size_t phy_speeds(unsigned int *speeds, size_t size, unsigned long *mask); void of_set_phy_supported(struct phy_device *phydev); void of_set_phy_eee_broken(struct phy_device *phydev); int phy_speed_down_core(struct phy_device *phydev); /** * phy_is_started - Convenience function to check whether PHY is started * @phydev: The phy_device struct */ static inline bool phy_is_started(struct phy_device *phydev) { return phydev->state >= PHY_UP; } void phy_resolve_aneg_pause(struct phy_device *phydev); void phy_resolve_aneg_linkmode(struct phy_device *phydev); void phy_check_downshift(struct phy_device *phydev); /** * phy_read - Convenience function for reading a given PHY register * @phydev: the phy_device struct * @regnum: register number to read * * NOTE: MUST NOT be called from interrupt context, * because the bus read/write functions may wait for an interrupt * to conclude the operation. */ static inline int phy_read(struct phy_device *phydev, u32 regnum) { return mdiobus_read(phydev->mdio.bus, phydev->mdio.addr, regnum); } #define phy_read_poll_timeout(phydev, regnum, val, cond, sleep_us, \ timeout_us, sleep_before_read) \ ({ \ int __ret = read_poll_timeout(phy_read, val, (cond) || val < 0, \ sleep_us, timeout_us, sleep_before_read, phydev, regnum); \ if (val < 0) \ __ret = val; \ if (__ret) \ phydev_err(phydev, "%s failed: %d\n", __func__, __ret); \ __ret; \ }) /** * __phy_read - convenience function for reading a given PHY register * @phydev: the phy_device struct * @regnum: register number to read * * The caller must have taken the MDIO bus lock. */ static inline int __phy_read(struct phy_device *phydev, u32 regnum) { return __mdiobus_read(phydev->mdio.bus, phydev->mdio.addr, regnum); } /** * phy_write - Convenience function for writing a given PHY register * @phydev: the phy_device struct * @regnum: register number to write * @val: value to write to @regnum * * NOTE: MUST NOT be called from interrupt context, * because the bus read/write functions may wait for an interrupt * to conclude the operation. */ static inline int phy_write(struct phy_device *phydev, u32 regnum, u16 val) { return mdiobus_write(phydev->mdio.bus, phydev->mdio.addr, regnum, val); } /** * __phy_write - Convenience function for writing a given PHY register * @phydev: the phy_device struct * @regnum: register number to write * @val: value to write to @regnum * * The caller must have taken the MDIO bus lock. */ static inline int __phy_write(struct phy_device *phydev, u32 regnum, u16 val) { return __mdiobus_write(phydev->mdio.bus, phydev->mdio.addr, regnum, val); } /** * __phy_modify_changed() - Convenience function for modifying a PHY register * @phydev: a pointer to a &struct phy_device * @regnum: register number * @mask: bit mask of bits to clear * @set: bit mask of bits to set * * Unlocked helper function which allows a PHY register to be modified as * new register value = (old register value & ~mask) | set * * Returns negative errno, 0 if there was no change, and 1 in case of change */ static inline int __phy_modify_changed(struct phy_device *phydev, u32 regnum, u16 mask, u16 set) { return __mdiobus_modify_changed(phydev->mdio.bus, phydev->mdio.addr, regnum, mask, set); } /* * phy_read_mmd - Convenience function for reading a register * from an MMD on a given PHY. */ int phy_read_mmd(struct phy_device *phydev, int devad, u32 regnum); /** * phy_read_mmd_poll_timeout - Periodically poll a PHY register until a * condition is met or a timeout occurs * * @phydev: The phy_device struct * @devaddr: The MMD to read from * @regnum: The register on the MMD to read * @val: Variable to read the register into * @cond: Break condition (usually involving @val) * @sleep_us: Maximum time to sleep between reads in us (0 * tight-loops). Should be less than ~20ms since usleep_range * is used (see Documentation/timers/timers-howto.rst). * @timeout_us: Timeout in us, 0 means never timeout * @sleep_before_read: if it is true, sleep @sleep_us before read. * Returns 0 on success and -ETIMEDOUT upon a timeout. In either * case, the last read value at @args is stored in @val. Must not * be called from atomic context if sleep_us or timeout_us are used. */ #define phy_read_mmd_poll_timeout(phydev, devaddr, regnum, val, cond, \ sleep_us, timeout_us, sleep_before_read) \ ({ \ int __ret = read_poll_timeout(phy_read_mmd, val, (cond) || val < 0, \ sleep_us, timeout_us, sleep_before_read, \ phydev, devaddr, regnum); \ if (val < 0) \ __ret = val; \ if (__ret) \ phydev_err(phydev, "%s failed: %d\n", __func__, __ret); \ __ret; \ }) /* * __phy_read_mmd - Convenience function for reading a register * from an MMD on a given PHY. */ int __phy_read_mmd(struct phy_device *phydev, int devad, u32 regnum); /* * phy_write_mmd - Convenience function for writing a register * on an MMD on a given PHY. */ int phy_write_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 val); /* * __phy_write_mmd - Convenience function for writing a register * on an MMD on a given PHY. */ int __phy_write_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 val); int __phy_modify_changed(struct phy_device *phydev, u32 regnum, u16 mask, u16 set); int phy_modify_changed(struct phy_device *phydev, u32 regnum, u16 mask, u16 set); int __phy_modify(struct phy_device *phydev, u32 regnum, u16 mask, u16 set); int phy_modify(struct phy_device *phydev, u32 regnum, u16 mask, u16 set); int __phy_modify_mmd_changed(struct phy_device *phydev, int devad, u32 regnum, u16 mask, u16 set); int phy_modify_mmd_changed(struct phy_device *phydev, int devad, u32 regnum, u16 mask, u16 set); int __phy_modify_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 mask, u16 set); int phy_modify_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 mask, u16 set); /** * __phy_set_bits - Convenience function for setting bits in a PHY register * @phydev: the phy_device struct * @regnum: register number to write * @val: bits to set * * The caller must have taken the MDIO bus lock. */ static inline int __phy_set_bits(struct phy_device *phydev, u32 regnum, u16 val) { return __phy_modify(phydev, regnum, 0, val); } /** * __phy_clear_bits - Convenience function for clearing bits in a PHY register * @phydev: the phy_device struct * @regnum: register number to write * @val: bits to clear * * The caller must have taken the MDIO bus lock. */ static inline int __phy_clear_bits(struct phy_device *phydev, u32 regnum, u16 val) { return __phy_modify(phydev, regnum, val, 0); } /** * phy_set_bits - Convenience function for setting bits in a PHY register * @phydev: the phy_device struct * @regnum: register number to write * @val: bits to set */ static inline int phy_set_bits(struct phy_device *phydev, u32 regnum, u16 val) { return phy_modify(phydev, regnum, 0, val); } /** * phy_clear_bits - Convenience function for clearing bits in a PHY register * @phydev: the phy_device struct * @regnum: register number to write * @val: bits to clear */ static inline int phy_clear_bits(struct phy_device *phydev, u32 regnum, u16 val) { return phy_modify(phydev, regnum, val, 0); } /** * __phy_set_bits_mmd - Convenience function for setting bits in a register * on MMD * @phydev: the phy_device struct * @devad: the MMD containing register to modify * @regnum: register number to modify * @val: bits to set * * The caller must have taken the MDIO bus lock. */ static inline int __phy_set_bits_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 val) { return __phy_modify_mmd(phydev, devad, regnum, 0, val); } /** * __phy_clear_bits_mmd - Convenience function for clearing bits in a register * on MMD * @phydev: the phy_device struct * @devad: the MMD containing register to modify * @regnum: register number to modify * @val: bits to clear * * The caller must have taken the MDIO bus lock. */ static inline int __phy_clear_bits_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 val) { return __phy_modify_mmd(phydev, devad, regnum, val, 0); } /** * phy_set_bits_mmd - Convenience function for setting bits in a register * on MMD * @phydev: the phy_device struct * @devad: the MMD containing register to modify * @regnum: register number to modify * @val: bits to set */ static inline int phy_set_bits_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 val) { return phy_modify_mmd(phydev, devad, regnum, 0, val); } /** * phy_clear_bits_mmd - Convenience function for clearing bits in a register * on MMD * @phydev: the phy_device struct * @devad: the MMD containing register to modify * @regnum: register number to modify * @val: bits to clear */ static inline int phy_clear_bits_mmd(struct phy_device *phydev, int devad, u32 regnum, u16 val) { return phy_modify_mmd(phydev, devad, regnum, val, 0); } /** * phy_interrupt_is_valid - Convenience function for testing a given PHY irq * @phydev: the phy_device struct * * NOTE: must be kept in sync with addition/removal of PHY_POLL and * PHY_IGNORE_INTERRUPT */ static inline bool phy_interrupt_is_valid(struct phy_device *phydev) { return phydev->irq != PHY_POLL && phydev->irq != PHY_IGNORE_INTERRUPT; } /** * phy_polling_mode - Convenience function for testing whether polling is * used to detect PHY status changes * @phydev: the phy_device struct */ static inline bool phy_polling_mode(struct phy_device *phydev) { if (phydev->state == PHY_CABLETEST) if (phydev->drv->flags & PHY_POLL_CABLE_TEST) return true; return phydev->irq == PHY_POLL; } /** * phy_has_hwtstamp - Tests whether a PHY time stamp configuration. * @phydev: the phy_device struct */ static inline bool phy_has_hwtstamp(struct phy_device *phydev) { return phydev && phydev->mii_ts && phydev->mii_ts->hwtstamp; } /** * phy_has_rxtstamp - Tests whether a PHY supports receive time stamping. * @phydev: the phy_device struct */ static inline bool phy_has_rxtstamp(struct phy_device *phydev) { return phydev && phydev->mii_ts && phydev->mii_ts->rxtstamp; } /** * phy_has_tsinfo - Tests whether a PHY reports time stamping and/or * PTP hardware clock capabilities. * @phydev: the phy_device struct */ static inline bool phy_has_tsinfo(struct phy_device *phydev) { return phydev && phydev->mii_ts && phydev->mii_ts->ts_info; } /** * phy_has_txtstamp - Tests whether a PHY supports transmit time stamping. * @phydev: the phy_device struct */ static inline bool phy_has_txtstamp(struct phy_device *phydev) { return phydev && phydev->mii_ts && phydev->mii_ts->txtstamp; } static inline int phy_hwtstamp(struct phy_device *phydev, struct ifreq *ifr) { return phydev->mii_ts->hwtstamp(phydev->mii_ts, ifr); } static inline bool phy_rxtstamp(struct phy_device *phydev, struct sk_buff *skb, int type) { return phydev->mii_ts->rxtstamp(phydev->mii_ts, skb, type); } static inline int phy_ts_info(struct phy_device *phydev, struct ethtool_ts_info *tsinfo) { return phydev->mii_ts->ts_info(phydev->mii_ts, tsinfo); } static inline void phy_txtstamp(struct phy_device *phydev, struct sk_buff *skb, int type) { phydev->mii_ts->txtstamp(phydev->mii_ts, skb, type); } /** * phy_is_internal - Convenience function for testing if a PHY is internal * @phydev: the phy_device struct */ static inline bool phy_is_internal(struct phy_device *phydev) { return phydev->is_internal; } /** * phy_interface_mode_is_rgmii - Convenience function for testing if a * PHY interface mode is RGMII (all variants) * @mode: the &phy_interface_t enum */ static inline bool phy_interface_mode_is_rgmii(phy_interface_t mode) { return mode >= PHY_INTERFACE_MODE_RGMII && mode <= PHY_INTERFACE_MODE_RGMII_TXID; }; /** * phy_interface_mode_is_8023z() - does the PHY interface mode use 802.3z * negotiation * @mode: one of &enum phy_interface_t * * Returns true if the PHY interface mode uses the 16-bit negotiation * word as defined in 802.3z. (See 802.3-2015 37.2.1 Config_Reg encoding) */ static inline bool phy_interface_mode_is_8023z(phy_interface_t mode) { return mode == PHY_INTERFACE_MODE_1000BASEX || mode == PHY_INTERFACE_MODE_2500BASEX; } /** * phy_interface_is_rgmii - Convenience function for testing if a PHY interface * is RGMII (all variants) * @phydev: the phy_device struct */ static inline bool phy_interface_is_rgmii(struct phy_device *phydev) { return phy_interface_mode_is_rgmii(phydev->interface); }; /** * phy_is_pseudo_fixed_link - Convenience function for testing if this * PHY is the CPU port facing side of an Ethernet switch, or similar. * @phydev: the phy_device struct */ static inline bool phy_is_pseudo_fixed_link(struct phy_device *phydev) { return phydev->is_pseudo_fixed_link; } int phy_save_page(struct phy_device *phydev); int phy_select_page(struct phy_device *phydev, int page); int phy_restore_page(struct phy_device *phydev, int oldpage, int ret); int phy_read_paged(struct phy_device *phydev, int page, u32 regnum); int phy_write_paged(struct phy_device *phydev, int page, u32 regnum, u16 val); int phy_modify_paged_changed(struct phy_device *phydev, int page, u32 regnum, u16 mask, u16 set); int phy_modify_paged(struct phy_device *phydev, int page, u32 regnum, u16 mask, u16 set); struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, bool is_c45, struct phy_c45_device_ids *c45_ids); #if IS_ENABLED(CONFIG_PHYLIB) struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45); int phy_device_register(struct phy_device *phy); void phy_device_free(struct phy_device *phydev); #else static inline struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) { return NULL; } static inline int phy_device_register(struct phy_device *phy) { return 0; } static inline void phy_device_free(struct phy_device *phydev) { } #endif /* CONFIG_PHYLIB */ void phy_device_remove(struct phy_device *phydev); int phy_init_hw(struct phy_device *phydev); int phy_suspend(struct phy_device *phydev); int phy_resume(struct phy_device *phydev); int __phy_resume(struct phy_device *phydev); int phy_loopback(struct phy_device *phydev, bool enable); void phy_sfp_attach(void *upstream, struct sfp_bus *bus); void phy_sfp_detach(void *upstream, struct sfp_bus *bus); int phy_sfp_probe(struct phy_device *phydev, const struct sfp_upstream_ops *ops); struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, phy_interface_t interface); struct phy_device *phy_find_first(struct mii_bus *bus); int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, u32 flags, phy_interface_t interface); int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, void (*handler)(struct net_device *), phy_interface_t interface); struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, void (*handler)(struct net_device *), phy_interface_t interface); void phy_disconnect(struct phy_device *phydev); void phy_detach(struct phy_device *phydev); void phy_start(struct phy_device *phydev); void phy_stop(struct phy_device *phydev); int phy_start_aneg(struct phy_device *phydev); int phy_aneg_done(struct phy_device *phydev); int phy_speed_down(struct phy_device *phydev, bool sync); int phy_speed_up(struct phy_device *phydev); int phy_restart_aneg(struct phy_device *phydev); int phy_reset_after_clk_enable(struct phy_device *phydev); #if IS_ENABLED(CONFIG_PHYLIB) int phy_start_cable_test(struct phy_device *phydev, struct netlink_ext_ack *extack); int phy_start_cable_test_tdr(struct phy_device *phydev, struct netlink_ext_ack *extack, const struct phy_tdr_config *config); #else static inline int phy_start_cable_test(struct phy_device *phydev, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "Kernel not compiled with PHYLIB support"); return -EOPNOTSUPP; } static inline int phy_start_cable_test_tdr(struct phy_device *phydev, struct netlink_ext_ack *extack, const struct phy_tdr_config *config) { NL_SET_ERR_MSG(extack, "Kernel not compiled with PHYLIB support"); return -EOPNOTSUPP; } #endif int phy_cable_test_result(struct phy_device *phydev, u8 pair, u16 result); int phy_cable_test_fault_length(struct phy_device *phydev, u8 pair, u16 cm); static inline void phy_device_reset(struct phy_device *phydev, int value) { mdio_device_reset(&phydev->mdio, value); } #define phydev_err(_phydev, format, args...) \ dev_err(&_phydev->mdio.dev, format, ##args) #define phydev_info(_phydev, format, args...) \ dev_info(&_phydev->mdio.dev, format, ##args) #define phydev_warn(_phydev, format, args...) \ dev_warn(&_phydev->mdio.dev, format, ##args) #define phydev_dbg(_phydev, format, args...) \ dev_dbg(&_phydev->mdio.dev, format, ##args) static inline const char *phydev_name(const struct phy_device *phydev) { return dev_name(&phydev->mdio.dev); } static inline void phy_lock_mdio_bus(struct phy_device *phydev) { mutex_lock(&phydev->mdio.bus->mdio_lock); } static inline void phy_unlock_mdio_bus(struct phy_device *phydev) { mutex_unlock(&phydev->mdio.bus->mdio_lock); } void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) __printf(2, 3); char *phy_attached_info_irq(struct phy_device *phydev) __malloc; void phy_attached_info(struct phy_device *phydev); /* Clause 22 PHY */ int genphy_read_abilities(struct phy_device *phydev); int genphy_setup_forced(struct phy_device *phydev); int genphy_restart_aneg(struct phy_device *phydev); int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart); int genphy_config_eee_advert(struct phy_device *phydev); int __genphy_config_aneg(struct phy_device *phydev, bool changed); int genphy_aneg_done(struct phy_device *phydev); int genphy_update_link(struct phy_device *phydev); int genphy_read_lpa(struct phy_device *phydev); int genphy_read_status_fixed(struct phy_device *phydev); int genphy_read_status(struct phy_device *phydev); int genphy_suspend(struct phy_device *phydev); int genphy_resume(struct phy_device *phydev); int genphy_loopback(struct phy_device *phydev, bool enable); int genphy_soft_reset(struct phy_device *phydev); static inline int genphy_config_aneg(struct phy_device *phydev) { return __genphy_config_aneg(phydev, false); } static inline int genphy_no_ack_interrupt(struct phy_device *phydev) { return 0; } static inline int genphy_no_config_intr(struct phy_device *phydev) { return 0; } int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum); int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, u16 regnum, u16 val); /* Clause 37 */ int genphy_c37_config_aneg(struct phy_device *phydev); int genphy_c37_read_status(struct phy_device *phydev); /* Clause 45 PHY */ int genphy_c45_restart_aneg(struct phy_device *phydev); int genphy_c45_check_and_restart_aneg(struct phy_device *phydev, bool restart); int genphy_c45_aneg_done(struct phy_device *phydev); int genphy_c45_read_link(struct phy_device *phydev); int genphy_c45_read_lpa(struct phy_device *phydev); int genphy_c45_read_pma(struct phy_device *phydev); int genphy_c45_pma_setup_forced(struct phy_device *phydev); int genphy_c45_an_config_aneg(struct phy_device *phydev); int genphy_c45_an_disable_aneg(struct phy_device *phydev); int genphy_c45_read_mdix(struct phy_device *phydev); int genphy_c45_pma_read_abilities(struct phy_device *phydev); int genphy_c45_read_status(struct phy_device *phydev); int genphy_c45_config_aneg(struct phy_device *phydev); /* Generic C45 PHY driver */ extern struct phy_driver genphy_c45_driver; /* The gen10g_* functions are the old Clause 45 stub */ int gen10g_config_aneg(struct phy_device *phydev); static inline int phy_read_status(struct phy_device *phydev) { if (!phydev->drv) return -EIO; if (phydev->drv->read_status) return phydev->drv->read_status(phydev); else return genphy_read_status(phydev); } void phy_driver_unregister(struct phy_driver *drv); void phy_drivers_unregister(struct phy_driver *drv, int n); int phy_driver_register(struct phy_driver *new_driver, struct module *owner); int phy_drivers_register(struct phy_driver *new_driver, int n, struct module *owner); void phy_state_machine(struct work_struct *work); void phy_queue_state_machine(struct phy_device *phydev, unsigned long jiffies); void phy_mac_interrupt(struct phy_device *phydev); void phy_start_machine(struct phy_device *phydev); void phy_stop_machine(struct phy_device *phydev); void phy_ethtool_ksettings_get(struct phy_device *phydev, struct ethtool_link_ksettings *cmd); int phy_ethtool_ksettings_set(struct phy_device *phydev, const struct ethtool_link_ksettings *cmd); int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd); int phy_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd); int phy_do_ioctl_running(struct net_device *dev, struct ifreq *ifr, int cmd); int phy_disable_interrupts(struct phy_device *phydev); void phy_request_interrupt(struct phy_device *phydev); void phy_free_interrupt(struct phy_device *phydev); void phy_print_status(struct phy_device *phydev); int phy_set_max_speed(struct phy_device *phydev, u32 max_speed); void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode); void phy_advertise_supported(struct phy_device *phydev); void phy_support_sym_pause(struct phy_device *phydev); void phy_support_asym_pause(struct phy_device *phydev); void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, bool autoneg); void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx); bool phy_validate_pause(struct phy_device *phydev, struct ethtool_pauseparam *pp); void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause); s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, const int *delay_values, int size, bool is_rx); void phy_resolve_pause(unsigned long *local_adv, unsigned long *partner_adv, bool *tx_pause, bool *rx_pause); int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, int (*run)(struct phy_device *)); int phy_register_fixup_for_id(const char *bus_id, int (*run)(struct phy_device *)); int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, int (*run)(struct phy_device *)); int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask); int phy_unregister_fixup_for_id(const char *bus_id); int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask); int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable); int phy_get_eee_err(struct phy_device *phydev); int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data); int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data); int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol); void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol); int phy_ethtool_get_link_ksettings(struct net_device *ndev, struct ethtool_link_ksettings *cmd); int phy_ethtool_set_link_ksettings(struct net_device *ndev, const struct ethtool_link_ksettings *cmd); int phy_ethtool_nway_reset(struct net_device *ndev); int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size); void phy_package_leave(struct phy_device *phydev); int devm_phy_package_join(struct device *dev, struct phy_device *phydev, int addr, size_t priv_size); #if IS_ENABLED(CONFIG_PHYLIB) int __init mdio_bus_init(void); void mdio_bus_exit(void); #endif int phy_ethtool_get_strings(struct phy_device *phydev, u8 *data); int phy_ethtool_get_sset_count(struct phy_device *phydev); int phy_ethtool_get_stats(struct phy_device *phydev, struct ethtool_stats *stats, u64 *data); static inline int phy_package_read(struct phy_device *phydev, u32 regnum) { struct phy_package_shared *shared = phydev->shared; if (!shared) return -EIO; return mdiobus_read(phydev->mdio.bus, shared->addr, regnum); } static inline int __phy_package_read(struct phy_device *phydev, u32 regnum) { struct phy_package_shared *shared = phydev->shared; if (!shared) return -EIO; return __mdiobus_read(phydev->mdio.bus, shared->addr, regnum); } static inline int phy_package_write(struct phy_device *phydev, u32 regnum, u16 val) { struct phy_package_shared *shared = phydev->shared; if (!shared) return -EIO; return mdiobus_write(phydev->mdio.bus, shared->addr, regnum, val); } static inline int __phy_package_write(struct phy_device *phydev, u32 regnum, u16 val) { struct phy_package_shared *shared = phydev->shared; if (!shared) return -EIO; return __mdiobus_write(phydev->mdio.bus, shared->addr, regnum, val); } static inline bool __phy_package_set_once(struct phy_device *phydev, unsigned int b) { struct phy_package_shared *shared = phydev->shared; if (!shared) return false; return !test_and_set_bit(b, &shared->flags); } static inline bool phy_package_init_once(struct phy_device *phydev) { return __phy_package_set_once(phydev, PHY_SHARED_F_INIT_DONE); } static inline bool phy_package_probe_once(struct phy_device *phydev) { return __phy_package_set_once(phydev, PHY_SHARED_F_PROBE_DONE); } extern struct bus_type mdio_bus_type; struct mdio_board_info { const char *bus_id; char modalias[MDIO_NAME_SIZE]; int mdio_addr; const void *platform_data; }; #if IS_ENABLED(CONFIG_MDIO_DEVICE) int mdiobus_register_board_info(const struct mdio_board_info *info, unsigned int n); #else static inline int mdiobus_register_board_info(const struct mdio_board_info *i, unsigned int n) { return 0; } #endif /** * phy_module_driver() - Helper macro for registering PHY drivers * @__phy_drivers: array of PHY drivers to register * @__count: Numbers of members in array * * Helper macro for PHY drivers which do not do anything special in module * init/exit. Each module may only use this macro once, and calling it * replaces module_init() and module_exit(). */ #define phy_module_driver(__phy_drivers, __count) \ static int __init phy_module_init(void) \ { \ return phy_drivers_register(__phy_drivers, __count, THIS_MODULE); \ } \ module_init(phy_module_init); \ static void __exit phy_module_exit(void) \ { \ phy_drivers_unregister(__phy_drivers, __count); \ } \ module_exit(phy_module_exit) #define module_phy_driver(__phy_drivers) \ phy_module_driver(__phy_drivers, ARRAY_SIZE(__phy_drivers)) bool phy_driver_is_genphy(struct phy_device *phydev); bool phy_driver_is_genphy_10g(struct phy_device *phydev); #endif /* __PHY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PID_H #define _LINUX_PID_H #include <linux/rculist.h> #include <linux/wait.h> #include <linux/refcount.h> enum pid_type { PIDTYPE_PID, PIDTYPE_TGID, PIDTYPE_PGID, PIDTYPE_SID, PIDTYPE_MAX, }; /* * What is struct pid? * * A struct pid is the kernel's internal notion of a process identifier. * It refers to individual tasks, process groups, and sessions. While * there are processes attached to it the struct pid lives in a hash * table, so it and then the processes that it refers to can be found * quickly from the numeric pid value. The attached processes may be * quickly accessed by following pointers from struct pid. * * Storing pid_t values in the kernel and referring to them later has a * problem. The process originally with that pid may have exited and the * pid allocator wrapped, and another process could have come along * and been assigned that pid. * * Referring to user space processes by holding a reference to struct * task_struct has a problem. When the user space process exits * the now useless task_struct is still kept. A task_struct plus a * stack consumes around 10K of low kernel memory. More precisely * this is THREAD_SIZE + sizeof(struct task_struct). By comparison * a struct pid is about 64 bytes. * * Holding a reference to struct pid solves both of these problems. * It is small so holding a reference does not consume a lot of * resources, and since a new struct pid is allocated when the numeric pid * value is reused (when pids wrap around) we don't mistakenly refer to new * processes. */ /* * struct upid is used to get the id of the struct pid, as it is * seen in particular namespace. Later the struct pid is found with * find_pid_ns() using the int nr and struct pid_namespace *ns. */ struct upid { int nr; struct pid_namespace *ns; }; struct pid { refcount_t count; unsigned int level; spinlock_t lock; /* lists of tasks that use this pid */ struct hlist_head tasks[PIDTYPE_MAX]; struct hlist_head inodes; /* wait queue for pidfd notifications */ wait_queue_head_t wait_pidfd; struct rcu_head rcu; struct upid numbers[1]; }; extern struct pid init_struct_pid; extern const struct file_operations pidfd_fops; struct file; extern struct pid *pidfd_pid(const struct file *file); struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags); static inline struct pid *get_pid(struct pid *pid) { if (pid) refcount_inc(&pid->count); return pid; } extern void put_pid(struct pid *pid); extern struct task_struct *pid_task(struct pid *pid, enum pid_type); static inline bool pid_has_task(struct pid *pid, enum pid_type type) { return !hlist_empty(&pid->tasks[type]); } extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type); extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type); /* * these helpers must be called with the tasklist_lock write-held. */ extern void attach_pid(struct task_struct *task, enum pid_type); extern void detach_pid(struct task_struct *task, enum pid_type); extern void change_pid(struct task_struct *task, enum pid_type, struct pid *pid); extern void exchange_tids(struct task_struct *task, struct task_struct *old); extern void transfer_pid(struct task_struct *old, struct task_struct *new, enum pid_type); struct pid_namespace; extern struct pid_namespace init_pid_ns; extern int pid_max; extern int pid_max_min, pid_max_max; /* * look up a PID in the hash table. Must be called with the tasklist_lock * or rcu_read_lock() held. * * find_pid_ns() finds the pid in the namespace specified * find_vpid() finds the pid by its virtual id, i.e. in the current namespace * * see also find_task_by_vpid() set in include/linux/sched.h */ extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns); extern struct pid *find_vpid(int nr); /* * Lookup a PID in the hash table, and return with it's count elevated. */ extern struct pid *find_get_pid(int nr); extern struct pid *find_ge_pid(int nr, struct pid_namespace *); extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, size_t set_tid_size); extern void free_pid(struct pid *pid); extern void disable_pid_allocation(struct pid_namespace *ns); /* * ns_of_pid() returns the pid namespace in which the specified pid was * allocated. * * NOTE: * ns_of_pid() is expected to be called for a process (task) that has * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid * is expected to be non-NULL. If @pid is NULL, caller should handle * the resulting NULL pid-ns. */ static inline struct pid_namespace *ns_of_pid(struct pid *pid) { struct pid_namespace *ns = NULL; if (pid) ns = pid->numbers[pid->level].ns; return ns; } /* * is_child_reaper returns true if the pid is the init process * of the current namespace. As this one could be checked before * pid_ns->child_reaper is assigned in copy_process, we check * with the pid number. */ static inline bool is_child_reaper(struct pid *pid) { return pid->numbers[pid->level].nr == 1; } /* * the helpers to get the pid's id seen from different namespaces * * pid_nr() : global id, i.e. the id seen from the init namespace; * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * pid_nr_ns() : id seen from the ns specified. * * see also task_xid_nr() etc in include/linux/sched.h */ static inline pid_t pid_nr(struct pid *pid) { pid_t nr = 0; if (pid) nr = pid->numbers[0].nr; return nr; } pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns); pid_t pid_vnr(struct pid *pid); #define do_each_pid_task(pid, type, task) \ do { \ if ((pid) != NULL) \ hlist_for_each_entry_rcu((task), \ &(pid)->tasks[type], pid_links[type]) { /* * Both old and new leaders may be attached to * the same pid in the middle of de_thread(). */ #define while_each_pid_task(pid, type, task) \ if (type == PIDTYPE_PID) \ break; \ } \ } while (0) #define do_each_pid_thread(pid, type, task) \ do_each_pid_task(pid, type, task) { \ struct task_struct *tg___ = task; \ for_each_thread(tg___, task) { #define while_each_pid_thread(pid, type, task) \ } \ task = tg___; \ } while_each_pid_task(pid, type, task) #endif /* _LINUX_PID_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 /* * include/net/tipc.h: Include file for TIPC message header routines * * Copyright (c) 2017 Ericsson AB * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef _TIPC_HDR_H #define _TIPC_HDR_H #include <linux/random.h> #define KEEPALIVE_MSG_MASK 0x0e080000 /* LINK_PROTOCOL + MSG_IS_KEEPALIVE */ struct tipc_basic_hdr { __be32 w[4]; }; static inline __be32 tipc_hdr_rps_key(struct tipc_basic_hdr *hdr) { u32 w0 = ntohl(hdr->w[0]); bool keepalive_msg = (w0 & KEEPALIVE_MSG_MASK) == KEEPALIVE_MSG_MASK; __be32 key; /* Return source node identity as key */ if (likely(!keepalive_msg)) return hdr->w[3]; /* Spread PROBE/PROBE_REPLY messages across the cores */ get_random_bytes(&key, sizeof(key)); return key; } #endif
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1994 Linus Torvalds * * Pentium III FXSR, SSE support * General FPU state handling cleanups * Gareth Hughes <gareth@valinux.com>, May 2000 * x86-64 work by Andi Kleen 2002 */ #ifndef _ASM_X86_FPU_INTERNAL_H #define _ASM_X86_FPU_INTERNAL_H #include <linux/compat.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/mm.h> #include <asm/user.h> #include <asm/fpu/api.h> #include <asm/fpu/xstate.h> #include <asm/fpu/xcr.h> #include <asm/cpufeature.h> #include <asm/trace/fpu.h> /* * High level FPU state handling functions: */ extern void fpu__prepare_read(struct fpu *fpu); extern void fpu__prepare_write(struct fpu *fpu); extern void fpu__save(struct fpu *fpu); extern int fpu__restore_sig(void __user *buf, int ia32_frame); extern void fpu__drop(struct fpu *fpu); extern int fpu__copy(struct task_struct *dst, struct task_struct *src); extern void fpu__clear_user_states(struct fpu *fpu); extern void fpu__clear_all(struct fpu *fpu); extern int fpu__exception_code(struct fpu *fpu, int trap_nr); /* * Boot time FPU initialization functions: */ extern void fpu__init_cpu(void); extern void fpu__init_system_xstate(void); extern void fpu__init_cpu_xstate(void); extern void fpu__init_system(struct cpuinfo_x86 *c); extern void fpu__init_check_bugs(void); extern void fpu__resume_cpu(void); extern u64 fpu__get_supported_xfeatures_mask(void); /* * Debugging facility: */ #ifdef CONFIG_X86_DEBUG_FPU # define WARN_ON_FPU(x) WARN_ON_ONCE(x) #else # define WARN_ON_FPU(x) ({ (void)(x); 0; }) #endif /* * FPU related CPU feature flag helper routines: */ static __always_inline __pure bool use_xsaveopt(void) { return static_cpu_has(X86_FEATURE_XSAVEOPT); } static __always_inline __pure bool use_xsave(void) { return static_cpu_has(X86_FEATURE_XSAVE); } static __always_inline __pure bool use_fxsr(void) { return static_cpu_has(X86_FEATURE_FXSR); } /* * fpstate handling functions: */ extern union fpregs_state init_fpstate; extern void fpstate_init(union fpregs_state *state); #ifdef CONFIG_MATH_EMULATION extern void fpstate_init_soft(struct swregs_state *soft); #else static inline void fpstate_init_soft(struct swregs_state *soft) {} #endif static inline void fpstate_init_xstate(struct xregs_state *xsave) { /* * XRSTORS requires these bits set in xcomp_bv, or it will * trigger #GP: */ xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask_all; } static inline void fpstate_init_fxstate(struct fxregs_state *fx) { fx->cwd = 0x37f; fx->mxcsr = MXCSR_DEFAULT; } extern void fpstate_sanitize_xstate(struct fpu *fpu); /* Returns 0 or the negated trap number, which results in -EFAULT for #PF */ #define user_insn(insn, output, input...) \ ({ \ int err; \ \ might_fault(); \ \ asm volatile(ASM_STAC "\n" \ "1: " #insn "\n" \ "2: " ASM_CLAC "\n" \ ".section .fixup,\"ax\"\n" \ "3: negl %%eax\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE_FAULT(1b, 3b) \ : [err] "=a" (err), output \ : "0"(0), input); \ err; \ }) #define kernel_insn_err(insn, output, input...) \ ({ \ int err; \ asm volatile("1:" #insn "\n\t" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: movl $-1,%[err]\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 3b) \ : [err] "=r" (err), output \ : "0"(0), input); \ err; \ }) #define kernel_insn(insn, output, input...) \ asm volatile("1:" #insn "\n\t" \ "2:\n" \ _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_fprestore) \ : output : input) static inline int copy_fregs_to_user(struct fregs_state __user *fx) { return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx)); } static inline int copy_fxregs_to_user(struct fxregs_state __user *fx) { if (IS_ENABLED(CONFIG_X86_32)) return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); else return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); } static inline void copy_kernel_to_fxregs(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_kernel_to_fxregs_err(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) return kernel_insn_err(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else return kernel_insn_err(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_user_to_fxregs(struct fxregs_state __user *fx) { if (IS_ENABLED(CONFIG_X86_32)) return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline void copy_kernel_to_fregs(struct fregs_state *fx) { kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_kernel_to_fregs_err(struct fregs_state *fx) { return kernel_insn_err(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_user_to_fregs(struct fregs_state __user *fx) { return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline void copy_fxregs_to_kernel(struct fpu *fpu) { if (IS_ENABLED(CONFIG_X86_32)) asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave)); else asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave)); } static inline void fxsave(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) asm volatile( "fxsave %[fx]" : [fx] "=m" (*fx)); else asm volatile("fxsaveq %[fx]" : [fx] "=m" (*fx)); } /* These macros all use (%edi)/(%rdi) as the single memory argument. */ #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27" #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37" #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f" #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f" #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f" /* * After this @err contains 0 on success or the negated trap number when * the operation raises an exception. For faults this results in -EFAULT. */ #define XSTATE_OP(op, st, lmask, hmask, err) \ asm volatile("1:" op "\n\t" \ "xor %[err], %[err]\n" \ "2:\n\t" \ ".pushsection .fixup,\"ax\"\n\t" \ "3: negl %%eax\n\t" \ "jmp 2b\n\t" \ ".popsection\n\t" \ _ASM_EXTABLE_FAULT(1b, 3b) \ : [err] "=a" (err) \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact * format and supervisor states in addition to modified optimization in * XSAVEOPT. * * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT * supports modified optimization which is not supported by XSAVE. * * We use XSAVE as a fallback. * * The 661 label is defined in the ALTERNATIVE* macros as the address of the * original instruction which gets replaced. We need to use it here as the * address of the instruction where we might get an exception at. */ #define XSTATE_XSAVE(st, lmask, hmask, err) \ asm volatile(ALTERNATIVE_2(XSAVE, \ XSAVEOPT, X86_FEATURE_XSAVEOPT, \ XSAVES, X86_FEATURE_XSAVES) \ "\n" \ "xor %[err], %[err]\n" \ "3:\n" \ ".pushsection .fixup,\"ax\"\n" \ "4: movl $-2, %[err]\n" \ "jmp 3b\n" \ ".popsection\n" \ _ASM_EXTABLE(661b, 4b) \ : [err] "=r" (err) \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact * XSAVE area format. */ #define XSTATE_XRESTORE(st, lmask, hmask) \ asm volatile(ALTERNATIVE(XRSTOR, \ XRSTORS, X86_FEATURE_XSAVES) \ "\n" \ "3:\n" \ _ASM_EXTABLE_HANDLE(661b, 3b, ex_handler_fprestore)\ : \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * This function is called only during boot time when x86 caps are not set * up and alternative can not be used yet. */ static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate) { u64 mask = -1; u32 lmask = mask; u32 hmask = mask >> 32; int err; WARN_ON(system_state != SYSTEM_BOOTING); if (boot_cpu_has(X86_FEATURE_XSAVES)) XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); else XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); /* * We should never fault when copying from a kernel buffer, and the FPU * state we set at boot time should be valid. */ WARN_ON_FPU(err); } /* * Save processor xstate to xsave area. */ static inline void copy_xregs_to_kernel(struct xregs_state *xstate) { u64 mask = xfeatures_mask_all; u32 lmask = mask; u32 hmask = mask >> 32; int err; WARN_ON_FPU(!alternatives_patched); XSTATE_XSAVE(xstate, lmask, hmask, err); /* We should never fault when copying to a kernel buffer: */ WARN_ON_FPU(err); } /* * Restore processor xstate from xsave area. */ static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask) { u32 lmask = mask; u32 hmask = mask >> 32; XSTATE_XRESTORE(xstate, lmask, hmask); } /* * Save xstate to user space xsave area. * * We don't use modified optimization because xrstor/xrstors might track * a different application. * * We don't use compacted format xsave area for * backward compatibility for old applications which don't understand * compacted format of xsave area. */ static inline int copy_xregs_to_user(struct xregs_state __user *buf) { u64 mask = xfeatures_mask_user(); u32 lmask = mask; u32 hmask = mask >> 32; int err; /* * Clear the xsave header first, so that reserved fields are * initialized to zero. */ err = __clear_user(&buf->header, sizeof(buf->header)); if (unlikely(err)) return -EFAULT; stac(); XSTATE_OP(XSAVE, buf, lmask, hmask, err); clac(); return err; } /* * Restore xstate from user space xsave area. */ static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask) { struct xregs_state *xstate = ((__force struct xregs_state *)buf); u32 lmask = mask; u32 hmask = mask >> 32; int err; stac(); XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); clac(); return err; } /* * Restore xstate from kernel space xsave area, return an error code instead of * an exception. */ static inline int copy_kernel_to_xregs_err(struct xregs_state *xstate, u64 mask) { u32 lmask = mask; u32 hmask = mask >> 32; int err; if (static_cpu_has(X86_FEATURE_XSAVES)) XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); else XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); return err; } extern int copy_fpregs_to_fpstate(struct fpu *fpu); static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask) { if (use_xsave()) { copy_kernel_to_xregs(&fpstate->xsave, mask); } else { if (use_fxsr()) copy_kernel_to_fxregs(&fpstate->fxsave); else copy_kernel_to_fregs(&fpstate->fsave); } } static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate) { /* * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is * pending. Clear the x87 state here by setting it to fixed values. * "m" is a random variable that should be in L1. */ if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { asm volatile( "fnclex\n\t" "emms\n\t" "fildl %P[addr]" /* set F?P to defined value */ : : [addr] "m" (fpstate)); } __copy_kernel_to_fpregs(fpstate, -1); } extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size); /* * FPU context switch related helper methods: */ DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); /* * The in-register FPU state for an FPU context on a CPU is assumed to be * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx * matches the FPU. * * If the FPU register state is valid, the kernel can skip restoring the * FPU state from memory. * * Any code that clobbers the FPU registers or updates the in-memory * FPU state for a task MUST let the rest of the kernel know that the * FPU registers are no longer valid for this task. * * Either one of these invalidation functions is enough. Invalidate * a resource you control: CPU if using the CPU for something else * (with preemption disabled), FPU for the current task, or a task that * is prevented from running by the current task. */ static inline void __cpu_invalidate_fpregs_state(void) { __this_cpu_write(fpu_fpregs_owner_ctx, NULL); } static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu) { fpu->last_cpu = -1; } static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu) { return fpu == this_cpu_read(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu; } /* * These generally need preemption protection to work, * do try to avoid using these on their own: */ static inline void fpregs_deactivate(struct fpu *fpu) { this_cpu_write(fpu_fpregs_owner_ctx, NULL); trace_x86_fpu_regs_deactivated(fpu); } static inline void fpregs_activate(struct fpu *fpu) { this_cpu_write(fpu_fpregs_owner_ctx, fpu); trace_x86_fpu_regs_activated(fpu); } /* * Internal helper, do not use directly. Use switch_fpu_return() instead. */ static inline void __fpregs_load_activate(void) { struct fpu *fpu = &current->thread.fpu; int cpu = smp_processor_id(); if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) return; if (!fpregs_state_valid(fpu, cpu)) { copy_kernel_to_fpregs(&fpu->state); fpregs_activate(fpu); fpu->last_cpu = cpu; } clear_thread_flag(TIF_NEED_FPU_LOAD); } /* * FPU state switching for scheduling. * * This is a two-stage process: * * - switch_fpu_prepare() saves the old state. * This is done within the context of the old process. * * - switch_fpu_finish() sets TIF_NEED_FPU_LOAD; the floating point state * will get loaded on return to userspace, or when the kernel needs it. * * If TIF_NEED_FPU_LOAD is cleared then the CPU's FPU registers * are saved in the current thread's FPU register state. * * If TIF_NEED_FPU_LOAD is set then CPU's FPU registers may not * hold current()'s FPU registers. It is required to load the * registers before returning to userland or using the content * otherwise. * * The FPU context is only stored/restored for a user task and * PF_KTHREAD is used to distinguish between kernel and user threads. */ static inline void switch_fpu_prepare(struct fpu *old_fpu, int cpu) { if (static_cpu_has(X86_FEATURE_FPU) && !(current->flags & PF_KTHREAD)) { if (!copy_fpregs_to_fpstate(old_fpu)) old_fpu->last_cpu = -1; else old_fpu->last_cpu = cpu; /* But leave fpu_fpregs_owner_ctx! */ trace_x86_fpu_regs_deactivated(old_fpu); } } /* * Misc helper functions: */ /* * Load PKRU from the FPU context if available. Delay loading of the * complete FPU state until the return to userland. */ static inline void switch_fpu_finish(struct fpu *new_fpu) { u32 pkru_val = init_pkru_value; struct pkru_state *pk; if (!static_cpu_has(X86_FEATURE_FPU)) return; set_thread_flag(TIF_NEED_FPU_LOAD); if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return; /* * PKRU state is switched eagerly because it needs to be valid before we * return to userland e.g. for a copy_to_user() operation. */ if (!(current->flags & PF_KTHREAD)) { /* * If the PKRU bit in xsave.header.xfeatures is not set, * then the PKRU component was in init state, which means * XRSTOR will set PKRU to 0. If the bit is not set then * get_xsave_addr() will return NULL because the PKRU value * in memory is not valid. This means pkru_val has to be * set to 0 and not to init_pkru_value. */ pk = get_xsave_addr(&new_fpu->state.xsave, XFEATURE_PKRU); pkru_val = pk ? pk->pkru : 0; } __write_pkru(pkru_val); } #endif /* _ASM_X86_FPU_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* Copyright (C) 2016 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. * * This file is provided under a dual BSD/GPLv2 license. * * SipHash: a fast short-input PRF * https://131002.net/siphash/ * * This implementation is specifically for SipHash2-4 for a secure PRF * and HalfSipHash1-3/SipHash1-3 for an insecure PRF only suitable for * hashtables. */ #ifndef _LINUX_SIPHASH_H #define _LINUX_SIPHASH_H #include <linux/types.h> #include <linux/kernel.h> #define SIPHASH_ALIGNMENT __alignof__(u64) typedef struct { u64 key[2]; } siphash_key_t; static inline bool siphash_key_is_zero(const siphash_key_t *key) { return !(key->key[0] | key->key[1]); } u64 __siphash_aligned(const void *data, size_t len, const siphash_key_t *key); #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS u64 __siphash_unaligned(const void *data, size_t len, const siphash_key_t *key); #endif u64 siphash_1u64(const u64 a, const siphash_key_t *key); u64 siphash_2u64(const u64 a, const u64 b, const siphash_key_t *key); u64 siphash_3u64(const u64 a, const u64 b, const u64 c, const siphash_key_t *key); u64 siphash_4u64(const u64 a, const u64 b, const u64 c, const u64 d, const siphash_key_t *key); u64 siphash_1u32(const u32 a, const siphash_key_t *key); u64 siphash_3u32(const u32 a, const u32 b, const u32 c, const siphash_key_t *key); static inline u64 siphash_2u32(const u32 a, const u32 b, const siphash_key_t *key) { return siphash_1u64((u64)b << 32 | a, key); } static inline u64 siphash_4u32(const u32 a, const u32 b, const u32 c, const u32 d, const siphash_key_t *key) { return siphash_2u64((u64)b << 32 | a, (u64)d << 32 | c, key); } static inline u64 ___siphash_aligned(const __le64 *data, size_t len, const siphash_key_t *key) { if (__builtin_constant_p(len) && len == 4) return siphash_1u32(le32_to_cpup((const __le32 *)data), key); if (__builtin_constant_p(len) && len == 8) return siphash_1u64(le64_to_cpu(data[0]), key); if (__builtin_constant_p(len) && len == 16) return siphash_2u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), key); if (__builtin_constant_p(len) && len == 24) return siphash_3u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), le64_to_cpu(data[2]), key); if (__builtin_constant_p(len) && len == 32) return siphash_4u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), le64_to_cpu(data[2]), le64_to_cpu(data[3]), key); return __siphash_aligned(data, len, key); } /** * siphash - compute 64-bit siphash PRF value * @data: buffer to hash * @size: size of @data * @key: the siphash key */ static inline u64 siphash(const void *data, size_t len, const siphash_key_t *key) { #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS if (!IS_ALIGNED((unsigned long)data, SIPHASH_ALIGNMENT)) return __siphash_unaligned(data, len, key); #endif return ___siphash_aligned(data, len, key); } #define HSIPHASH_ALIGNMENT __alignof__(unsigned long) typedef struct { unsigned long key[2]; } hsiphash_key_t; u32 __hsiphash_aligned(const void *data, size_t len, const hsiphash_key_t *key); #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS u32 __hsiphash_unaligned(const void *data, size_t len, const hsiphash_key_t *key); #endif u32 hsiphash_1u32(const u32 a, const hsiphash_key_t *key); u32 hsiphash_2u32(const u32 a, const u32 b, const hsiphash_key_t *key); u32 hsiphash_3u32(const u32 a, const u32 b, const u32 c, const hsiphash_key_t *key); u32 hsiphash_4u32(const u32 a, const u32 b, const u32 c, const u32 d, const hsiphash_key_t *key); static inline u32 ___hsiphash_aligned(const __le32 *data, size_t len, const hsiphash_key_t *key) { if (__builtin_constant_p(len) && len == 4) return hsiphash_1u32(le32_to_cpu(data[0]), key); if (__builtin_constant_p(len) && len == 8) return hsiphash_2u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), key); if (__builtin_constant_p(len) && len == 12) return hsiphash_3u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), le32_to_cpu(data[2]), key); if (__builtin_constant_p(len) && len == 16) return hsiphash_4u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), le32_to_cpu(data[2]), le32_to_cpu(data[3]), key); return __hsiphash_aligned(data, len, key); } /** * hsiphash - compute 32-bit hsiphash PRF value * @data: buffer to hash * @size: size of @data * @key: the hsiphash key */ static inline u32 hsiphash(const void *data, size_t len, const hsiphash_key_t *key) { #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS if (!IS_ALIGNED((unsigned long)data, HSIPHASH_ALIGNMENT)) return __hsiphash_unaligned(data, len, key); #endif return ___hsiphash_aligned(data, len, key); } #endif /* _LINUX_SIPHASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_COMPAT_H #define _ASM_X86_COMPAT_H /* * Architecture specific compatibility types */ #include <linux/types.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <asm/processor.h> #include <asm/user32.h> #include <asm/unistd.h> #include <asm-generic/compat.h> #define COMPAT_USER_HZ 100 #define COMPAT_UTS_MACHINE "i686\0\0" typedef u16 __compat_uid_t; typedef u16 __compat_gid_t; typedef u32 __compat_uid32_t; typedef u32 __compat_gid32_t; typedef u16 compat_mode_t; typedef u16 compat_dev_t; typedef u16 compat_nlink_t; typedef u16 compat_ipc_pid_t; typedef u32 compat_caddr_t; typedef __kernel_fsid_t compat_fsid_t; struct compat_stat { compat_dev_t st_dev; u16 __pad1; compat_ino_t st_ino; compat_mode_t st_mode; compat_nlink_t st_nlink; __compat_uid_t st_uid; __compat_gid_t st_gid; compat_dev_t st_rdev; u16 __pad2; u32 st_size; u32 st_blksize; u32 st_blocks; u32 st_atime; u32 st_atime_nsec; u32 st_mtime; u32 st_mtime_nsec; u32 st_ctime; u32 st_ctime_nsec; u32 __unused4; u32 __unused5; }; struct compat_flock { short l_type; short l_whence; compat_off_t l_start; compat_off_t l_len; compat_pid_t l_pid; }; #define F_GETLK64 12 /* using 'struct flock64' */ #define F_SETLK64 13 #define F_SETLKW64 14 /* * IA32 uses 4 byte alignment for 64 bit quantities, * so we need to pack this structure. */ struct compat_flock64 { short l_type; short l_whence; compat_loff_t l_start; compat_loff_t l_len; compat_pid_t l_pid; } __attribute__((packed)); struct compat_statfs { int f_type; int f_bsize; int f_blocks; int f_bfree; int f_bavail; int f_files; int f_ffree; compat_fsid_t f_fsid; int f_namelen; /* SunOS ignores this field. */ int f_frsize; int f_flags; int f_spare[4]; }; #define COMPAT_RLIM_INFINITY 0xffffffff typedef u32 compat_old_sigset_t; /* at least 32 bits */ #define _COMPAT_NSIG 64 #define _COMPAT_NSIG_BPW 32 typedef u32 compat_sigset_word; #define COMPAT_OFF_T_MAX 0x7fffffff struct compat_ipc64_perm { compat_key_t key; __compat_uid32_t uid; __compat_gid32_t gid; __compat_uid32_t cuid; __compat_gid32_t cgid; unsigned short mode; unsigned short __pad1; unsigned short seq; unsigned short __pad2; compat_ulong_t unused1; compat_ulong_t unused2; }; struct compat_semid64_ds { struct compat_ipc64_perm sem_perm; compat_ulong_t sem_otime; compat_ulong_t sem_otime_high; compat_ulong_t sem_ctime; compat_ulong_t sem_ctime_high; compat_ulong_t sem_nsems; compat_ulong_t __unused3; compat_ulong_t __unused4; }; struct compat_msqid64_ds { struct compat_ipc64_perm msg_perm; compat_ulong_t msg_stime; compat_ulong_t msg_stime_high; compat_ulong_t msg_rtime; compat_ulong_t msg_rtime_high; compat_ulong_t msg_ctime; compat_ulong_t msg_ctime_high; compat_ulong_t msg_cbytes; compat_ulong_t msg_qnum; compat_ulong_t msg_qbytes; compat_pid_t msg_lspid; compat_pid_t msg_lrpid; compat_ulong_t __unused4; compat_ulong_t __unused5; }; struct compat_shmid64_ds { struct compat_ipc64_perm shm_perm; compat_size_t shm_segsz; compat_ulong_t shm_atime; compat_ulong_t shm_atime_high; compat_ulong_t shm_dtime; compat_ulong_t shm_dtime_high; compat_ulong_t shm_ctime; compat_ulong_t shm_ctime_high; compat_pid_t shm_cpid; compat_pid_t shm_lpid; compat_ulong_t shm_nattch; compat_ulong_t __unused4; compat_ulong_t __unused5; }; /* * The type of struct elf_prstatus.pr_reg in compatible core dumps. */ typedef struct user_regs_struct compat_elf_gregset_t; /* Full regset -- prstatus on x32, otherwise on ia32 */ #define PRSTATUS_SIZE(S, R) (R != sizeof(S.pr_reg) ? 144 : 296) #define SET_PR_FPVALID(S, V, R) \ do { *(int *) (((void *) &((S)->pr_reg)) + R) = (V); } \ while (0) #ifdef CONFIG_X86_X32_ABI #define COMPAT_USE_64BIT_TIME \ (!!(task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT)) #endif static inline void __user *arch_compat_alloc_user_space(long len) { compat_uptr_t sp; if (test_thread_flag(TIF_IA32)) { sp = task_pt_regs(current)->sp; } else { /* -128 for the x32 ABI redzone */ sp = task_pt_regs(current)->sp - 128; } return (void __user *)round_down(sp - len, 16); } static inline bool in_x32_syscall(void) { #ifdef CONFIG_X86_X32_ABI if (task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT) return true; #endif return false; } static inline bool in_32bit_syscall(void) { return in_ia32_syscall() || in_x32_syscall(); } #ifdef CONFIG_COMPAT static inline bool in_compat_syscall(void) { return in_32bit_syscall(); } #define in_compat_syscall in_compat_syscall /* override the generic impl */ #define compat_need_64bit_alignment_fixup in_ia32_syscall #endif struct compat_siginfo; #ifdef CONFIG_X86_X32_ABI int copy_siginfo_to_user32(struct compat_siginfo __user *to, const kernel_siginfo_t *from); #define copy_siginfo_to_user32 copy_siginfo_to_user32 #endif /* CONFIG_X86_X32_ABI */ #endif /* _ASM_X86_COMPAT_H */
2 1 1 1 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2000-2001 Qualcomm Incorporated Copyright (C) 2009-2010 Gustavo F. Padovan <gustavo@padovan.org> Copyright (C) 2010 Google Inc. Copyright (C) 2011 ProFUSION Embedded Systems Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ /* Bluetooth L2CAP sockets. */ #include <linux/module.h> #include <linux/export.h> #include <linux/sched/signal.h> #include <net/bluetooth/bluetooth.h> #include <net/bluetooth/hci_core.h> #include <net/bluetooth/l2cap.h> #include "smp.h" static struct bt_sock_list l2cap_sk_list = { .lock = __RW_LOCK_UNLOCKED(l2cap_sk_list.lock) }; static const struct proto_ops l2cap_sock_ops; static void l2cap_sock_init(struct sock *sk, struct sock *parent); static struct sock *l2cap_sock_alloc(struct net *net, struct socket *sock, int proto, gfp_t prio, int kern); bool l2cap_is_socket(struct socket *sock) { return sock && sock->ops == &l2cap_sock_ops; } EXPORT_SYMBOL(l2cap_is_socket); static int l2cap_validate_bredr_psm(u16 psm) { /* PSM must be odd and lsb of upper byte must be 0 */ if ((psm & 0x0101) != 0x0001) return -EINVAL; /* Restrict usage of well-known PSMs */ if (psm < L2CAP_PSM_DYN_START && !capable(CAP_NET_BIND_SERVICE)) return -EACCES; return 0; } static int l2cap_validate_le_psm(u16 psm) { /* Valid LE_PSM ranges are defined only until 0x00ff */ if (psm > L2CAP_PSM_LE_DYN_END) return -EINVAL; /* Restrict fixed, SIG assigned PSM values to CAP_NET_BIND_SERVICE */ if (psm < L2CAP_PSM_LE_DYN_START && !capable(CAP_NET_BIND_SERVICE)) return -EACCES; return 0; } static int l2cap_sock_bind(struct socket *sock, struct sockaddr *addr, int alen) { struct sock *sk = sock->sk; struct l2cap_chan *chan = l2cap_pi(sk)->chan; struct sockaddr_l2 la; int len, err = 0; BT_DBG("sk %p", sk); if (!addr || alen < offsetofend(struct sockaddr, sa_family) || addr->sa_family != AF_BLUETOOTH) return -EINVAL; memset(&la, 0, sizeof(la)); len = min_t(unsigned int, sizeof(la), alen); memcpy(&la, addr, len); if (la.l2_cid && la.l2_psm) return -EINVAL; if (!bdaddr_type_is_valid(la.l2_bdaddr_type)) return -EINVAL; if (bdaddr_type_is_le(la.l2_bdaddr_type)) { /* We only allow ATT user space socket */ if (la.l2_cid && la.l2_cid != cpu_to_le16(L2CAP_CID_ATT)) return -EINVAL; } lock_sock(sk); if (sk->sk_state != BT_OPEN) { err = -EBADFD; goto done; } if (la.l2_psm) { __u16 psm = __le16_to_cpu(la.l2_psm); if (la.l2_bdaddr_type == BDADDR_BREDR) err = l2cap_validate_bredr_psm(psm); else err = l2cap_validate_le_psm(psm); if (err) goto done; } bacpy(&chan->src, &la.l2_bdaddr); chan->src_type = la.l2_bdaddr_type; if (la.l2_cid) err = l2cap_add_scid(chan, __le16_to_cpu(la.l2_cid)); else err = l2cap_add_psm(chan, &la.l2_bdaddr, la.l2_psm); if (err < 0) goto done; switch (chan->chan_type) { case L2CAP_CHAN_CONN_LESS: if (__le16_to_cpu(la.l2_psm) == L2CAP_PSM_3DSP) chan->sec_level = BT_SECURITY_SDP; break; case L2CAP_CHAN_CONN_ORIENTED: if (__le16_to_cpu(la.l2_psm) == L2CAP_PSM_SDP || __le16_to_cpu(la.l2_psm) == L2CAP_PSM_RFCOMM) chan->sec_level = BT_SECURITY_SDP; break; case L2CAP_CHAN_RAW: chan->sec_level = BT_SECURITY_SDP; break; case L2CAP_CHAN_FIXED: /* Fixed channels default to the L2CAP core not holding a * hci_conn reference for them. For fixed channels mapping to * L2CAP sockets we do want to hold a reference so set the * appropriate flag to request it. */ set_bit(FLAG_HOLD_HCI_CONN, &chan->flags); break; } if (chan->psm && bdaddr_type_is_le(chan->src_type)) chan->mode = L2CAP_MODE_LE_FLOWCTL; chan->state = BT_BOUND; sk->sk_state = BT_BOUND; done: release_sock(sk); return err; } static int l2cap_sock_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) { struct sock *sk = sock->sk; struct l2cap_chan *chan = l2cap_pi(sk)->chan; struct sockaddr_l2 la; int len, err = 0; bool zapped; BT_DBG("sk %p", sk); lock_sock(sk); zapped = sock_flag(sk, SOCK_ZAPPED); release_sock(sk); if (zapped) return -EINVAL; if (!addr || alen < offsetofend(struct sockaddr, sa_family) || addr->sa_family != AF_BLUETOOTH) return -EINVAL; memset(&la, 0, sizeof(la)); len = min_t(unsigned int, sizeof(la), alen); memcpy(&la, addr, len); if (la.l2_cid && la.l2_psm) return -EINVAL; if (!bdaddr_type_is_valid(la.l2_bdaddr_type)) return -EINVAL; /* Check that the socket wasn't bound to something that * conflicts with the address given to connect(). If chan->src * is BDADDR_ANY it means bind() was never used, in which case * chan->src_type and la.l2_bdaddr_type do not need to match. */ if (chan->src_type == BDADDR_BREDR && bacmp(&chan->src, BDADDR_ANY) && bdaddr_type_is_le(la.l2_bdaddr_type)) { /* Old user space versions will try to incorrectly bind * the ATT socket using BDADDR_BREDR. We need to accept * this and fix up the source address type only when * both the source CID and destination CID indicate * ATT. Anything else is an invalid combination. */ if (chan->scid != L2CAP_CID_ATT || la.l2_cid != cpu_to_le16(L2CAP_CID_ATT)) return -EINVAL; /* We don't have the hdev available here to make a * better decision on random vs public, but since all * user space versions that exhibit this issue anyway do * not support random local addresses assuming public * here is good enough. */ chan->src_type = BDADDR_LE_PUBLIC; } if (chan->src_type != BDADDR_BREDR && la.l2_bdaddr_type == BDADDR_BREDR) return -EINVAL; if (bdaddr_type_is_le(la.l2_bdaddr_type)) { /* We only allow ATT user space socket */ if (la.l2_cid && la.l2_cid != cpu_to_le16(L2CAP_CID_ATT)) return -EINVAL; } if (chan->psm && bdaddr_type_is_le(chan->src_type) && !chan->mode) chan->mode = L2CAP_MODE_LE_FLOWCTL; err = l2cap_chan_connect(chan, la.l2_psm, __le16_to_cpu(la.l2_cid), &la.l2_bdaddr, la.l2_bdaddr_type); if (err) return err; lock_sock(sk); err = bt_sock_wait_state(sk, BT_CONNECTED, sock_sndtimeo(sk, flags & O_NONBLOCK)); release_sock(sk); return err; } static int l2cap_sock_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; struct l2cap_chan *chan = l2cap_pi(sk)->chan; int err = 0; BT_DBG("sk %p backlog %d", sk, backlog); lock_sock(sk); if (sk->sk_state != BT_BOUND) { err = -EBADFD; goto done; } if (sk->sk_type != SOCK_SEQPACKET && sk->sk_type != SOCK_STREAM) { err = -EINVAL; goto done; } switch (chan->mode) { case L2CAP_MODE_BASIC: case L2CAP_MODE_LE_FLOWCTL: break; case L2CAP_MODE_EXT_FLOWCTL: if (!enable_ecred) { err = -EOPNOTSUPP; goto done; } break; case L2CAP_MODE_ERTM: case L2CAP_MODE_STREAMING: if (!disable_ertm) break; fallthrough; default: err = -EOPNOTSUPP; goto done; } sk->sk_max_ack_backlog = backlog; sk->sk_ack_backlog = 0; /* Listening channels need to use nested locking in order not to * cause lockdep warnings when the created child channels end up * being locked in the same thread as the parent channel. */ atomic_set(&chan->nesting, L2CAP_NESTING_PARENT); chan->state = BT_LISTEN; sk->sk_state = BT_LISTEN; done: release_sock(sk); return err; } static int l2cap_sock_accept(struct socket *sock, struct socket *newsock, int flags, bool kern) { DEFINE_WAIT_FUNC(wait, woken_wake_function); struct sock *sk = sock->sk, *nsk; long timeo; int err = 0; lock_sock_nested(sk, L2CAP_NESTING_PARENT); timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); BT_DBG("sk %p timeo %ld", sk, timeo); /* Wait for an incoming connection. (wake-one). */ add_wait_queue_exclusive(sk_sleep(sk), &wait); while (1) { if (sk->sk_state != BT_LISTEN) { err = -EBADFD; break; } nsk = bt_accept_dequeue(sk, newsock); if (nsk) break; if (!timeo) { err = -EAGAIN; break; } if (signal_pending(current)) { err = sock_intr_errno(timeo); break; } release_sock(sk); timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); lock_sock_nested(sk, L2CAP_NESTING_PARENT); } remove_wait_queue(sk_sleep(sk), &wait); if (err) goto done; newsock->state = SS_CONNECTED; BT_DBG("new socket %p", nsk); done: release_sock(sk); return err; } static int l2cap_sock_getname(struct socket *sock, struct sockaddr *addr, int peer) { struct sockaddr_l2 *la = (struct sockaddr_l2 *) addr; struct sock *sk = sock->sk; struct l2cap_chan *chan = l2cap_pi(sk)->chan; BT_DBG("sock %p, sk %p", sock, sk); if (peer && sk->sk_state != BT_CONNECTED && sk->sk_state != BT_CONNECT && sk->sk_state != BT_CONNECT2 && sk->sk_state != BT_CONFIG) return -ENOTCONN; memset(la, 0, sizeof(struct sockaddr_l2)); addr->sa_family = AF_BLUETOOTH; la->l2_psm = chan->psm; if (peer) { bacpy(&la->l2_bdaddr, &chan->dst); la->l2_cid = cpu_to_le16(chan->dcid); la->l2_bdaddr_type = chan->dst_type; } else { bacpy(&la->l2_bdaddr, &chan->src); la->l2_cid = cpu_to_le16(chan->scid); la->l2_bdaddr_type = chan->src_type; } return sizeof(struct sockaddr_l2); } static int l2cap_get_mode(struct l2cap_chan *chan) { switch (chan->mode) { case L2CAP_MODE_BASIC: return BT_MODE_BASIC; case L2CAP_MODE_ERTM: return BT_MODE_ERTM; case L2CAP_MODE_STREAMING: return BT_MODE_STREAMING; case L2CAP_MODE_LE_FLOWCTL: return BT_MODE_LE_FLOWCTL; case L2CAP_MODE_EXT_FLOWCTL: return BT_MODE_EXT_FLOWCTL; } return -EINVAL; } static int l2cap_sock_getsockopt_old(struct socket *sock, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; struct l2cap_chan *chan = l2cap_pi(sk)->chan; struct l2cap_options opts; struct l2cap_conninfo cinfo; int len, err = 0; u32 opt; BT_DBG("sk %p", sk); if (get_user(len, optlen)) return -EFAULT; lock_sock(sk); switch (optname) { case L2CAP_OPTIONS: /* LE sockets should use BT_SNDMTU/BT_RCVMTU, but since * legacy ATT code depends on getsockopt for * L2CAP_OPTIONS we need to let this pass. */ if (bdaddr_type_is_le(chan->src_type) && chan->scid != L2CAP_CID_ATT) { err = -EINVAL; break; } /* Only BR/EDR modes are supported here */ switch (chan->mode) { case L2CAP_MODE_BASIC: case L2CAP_MODE_ERTM: case L2CAP_MODE_STREAMING: break; default: err = -EINVAL; break; } if (err < 0) break; memset(&opts, 0, sizeof(opts)); opts.imtu = chan->imtu; opts.omtu = chan->omtu; opts.flush_to = chan->flush_to; opts.mode = chan->mode; opts.fcs = chan->fcs; opts.max_tx = chan->max_tx; opts.txwin_size = chan->tx_win; BT_DBG("mode 0x%2.2x", chan->mode); len = min_t(unsigned int, len, sizeof(opts)); if (copy_to_user(optval, (char *) &opts, len)) err = -EFAULT; break; case L2CAP_LM: switch (chan->sec_level) { case BT_SECURITY_LOW: opt = L2CAP_LM_AUTH; break; case BT_SECURITY_MEDIUM: opt = L2CAP_LM_AUTH | L2CAP_LM_ENCRYPT; break; case BT_SECURITY_HIGH: opt = L2CAP_LM_AUTH | L2CAP_LM_ENCRYPT | L2CAP_LM_SECURE; break; case BT_SECURITY_FIPS: opt = L2CAP_LM_AUTH | L2CAP_LM_ENCRYPT | L2CAP_LM_SECURE | L2CAP_LM_FIPS; break; default: opt = 0; break; } if (test_bit(FLAG_ROLE_SWITCH, &chan->flags)) opt |= L2CAP_LM_MASTER; if (test_bit(FLAG_FORCE_RELIABLE, &chan->flags)) opt |= L2CAP_LM_RELIABLE; if (put_user(opt, (u32 __user *) optval)) err = -EFAULT; break; case L2CAP_CONNINFO: if (sk->sk_state != BT_CONNECTED && !(sk->sk_state == BT_CONNECT2 && test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags))) { err = -ENOTCONN; break; } memset(&cinfo, 0, sizeof(cinfo)); cinfo.hci_handle = chan->conn->hcon->handle; memcpy(cinfo.dev_class, chan->conn->hcon->dev_class, 3); len = min_t(unsigned int, len, sizeof(cinfo)); if (copy_to_user(optval, (char *) &cinfo, len)) err = -EFAULT; break; default: err = -ENOPROTOOPT; break; } release_sock(sk); return err; } static int l2cap_sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; struct l2cap_chan *chan = l2cap_pi(sk)->chan; struct bt_security sec; struct bt_power pwr; u32 phys; int len, mode, err = 0; BT_DBG("sk %p", sk); if (level == SOL_L2CAP) return l2cap_sock_getsockopt_old(sock, optname, optval, optlen); if (level != SOL_BLUETOOTH) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; lock_sock(sk); switch (optname) { case BT_SECURITY: if (chan->chan_type != L2CAP_CHAN_CONN_ORIENTED && chan->chan_type != L2CAP_CHAN_FIXED && chan->chan_type != L2CAP_CHAN_RAW) { err = -EINVAL; break; } memset(&sec, 0, sizeof(sec)); if (chan->conn) { sec.level = chan->conn->hcon->sec_level; if (sk->sk_state == BT_CONNECTED) sec.key_size = chan->conn->hcon->enc_key_size; } else { sec.level = chan->sec_level; } len = min_t(unsigned int, len, sizeof(sec)); if (copy_to_user(optval, (char *) &sec, len)) err = -EFAULT; break; case BT_DEFER_SETUP: if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) { err = -EINVAL; break; } if (put_user(test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags), (u32 __user *) optval)) err = -EFAULT; break; case BT_FLUSHABLE: if (put_user(test_bit(FLAG_FLUSHABLE, &chan->flags), (u32 __user *) optval)) err = -EFAULT; break; case BT_POWER: if (sk->sk_type != SOCK_SEQPACKET && sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_RAW) { err = -EINVAL; break; } pwr.force_active = test_bit(FLAG_FORCE_ACTIVE, &chan->flags); len = min_t(unsigned int, len, sizeof(pwr)); if (copy_to_user(optval, (char *) &pwr, len)) err = -EFAULT; break; case BT_CHANNEL_POLICY: if (put_user(chan->chan_policy, (u32 __user *) optval)) err = -EFAULT; break; case BT_SNDMTU: if (!bdaddr_type_is_le(chan->src_type)) { err = -EINVAL; break; } if (sk->sk_state != BT_CONNECTED) { err = -ENOTCONN; break; } if (put_user(chan->omtu, (u16 __user *) optval)) err = -EFAULT; break; case BT_RCVMTU: if (!bdaddr_type_is_le(chan->src_type)) { err = -EINVAL; break; } if (put_user(chan->imtu, (u16 __user *) optval)) err = -EFAULT; break; case BT_PHY: if (sk->sk_state != BT_CONNECTED) { err = -ENOTCONN; break; } phys = hci_conn_get_phy(chan->conn->hcon); if (put_user(phys, (u32 __user *) optval)) err = -EFAULT; break; case BT_MODE: if (!enable_ecred) { err = -ENOPROTOOPT; break; } if (chan->chan_type != L2CAP_CHAN_CONN_ORIENTED) { err = -EINVAL; break; } mode = l2cap_get_mode(chan); if (mode < 0) { err = mode; break; } if (put_user(mode, (u8 __user *) optval)) err = -EFAULT; break; default: err = -ENOPROTOOPT; break; } release_sock(sk); return err; } static bool l2cap_valid_mtu(struct l2cap_chan *chan, u16 mtu) { switch (chan->scid) { case L2CAP_CID_ATT: if (mtu < L2CAP_LE_MIN_MTU) return false; break; default: if (mtu < L2CAP_DEFAULT_MIN_MTU) return false; } return true; } static int l2cap_sock_setsockopt_old(struct socket *sock, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct l2cap_chan *chan = l2cap_pi(sk)->chan; struct l2cap_options opts; int len, err = 0; u32 opt; BT_DBG("sk %p", sk); lock_sock(sk); switch (optname) { case L2CAP_OPTIONS: if (bdaddr_type_is_le(chan->src_type)) { err = -EINVAL; break; } if (sk->sk_state == BT_CONNECTED) { err = -EINVAL; break; } opts.imtu = chan->imtu; opts.omtu = chan->omtu; opts.flush_to = chan->flush_to; opts.mode = chan->mode; opts.fcs = chan->fcs; opts.max_tx = chan->max_tx; opts.txwin_size = chan->tx_win; len = min_t(unsigned int, sizeof(opts), optlen); if (copy_from_sockptr(&opts, optval, len)) { err = -EFAULT; break; } if (opts.txwin_size > L2CAP_DEFAULT_EXT_WINDOW) { err = -EINVAL; break; } if (!l2cap_valid_mtu(chan, opts.imtu)) { err = -EINVAL; break; } /* Only BR/EDR modes are supported here */ switch (opts.mode) { case L2CAP_MODE_BASIC: clear_bit(CONF_STATE2_DEVICE, &chan->conf_state); break; case L2CAP_MODE_ERTM: case L2CAP_MODE_STREAMING: if (!disable_ertm) break; fallthrough; default: err = -EINVAL; break; } if (err < 0) break; chan->mode = opts.mode; BT_DBG("mode 0x%2.2x", chan->mode); chan->imtu = opts.imtu; chan->omtu = opts.omtu; chan->fcs = opts.fcs; chan->max_tx = opts.max_tx; chan->tx_win = opts.txwin_size; chan->flush_to = opts.flush_to; break; case L2CAP_LM: if (copy_from_sockptr(&opt, optval, sizeof(u32))) { err = -EFAULT; break; } if (opt & L2CAP_LM_FIPS) { err = -EINVAL; break; } if (opt & L2CAP_LM_AUTH) chan->sec_level = BT_SECURITY_LOW; if (opt & L2CAP_LM_ENCRYPT) chan->sec_level = BT_SECURITY_MEDIUM; if (opt & L2CAP_LM_SECURE) chan->sec_level = BT_SECURITY_HIGH; if (opt & L2CAP_LM_MASTER) set_bit(FLAG_ROLE_SWITCH, &chan->flags); else clear_bit(FLAG_ROLE_SWITCH, &chan->flags); if (opt & L2CAP_LM_RELIABLE) set_bit(FLAG_FORCE_RELIABLE, &chan->flags); else clear_bit(FLAG_FORCE_RELIABLE, &chan->flags); break; default: err = -ENOPROTOOPT; break; } release_sock(sk); return err; } static int l2cap_set_mode(struct l2cap_chan *chan, u8 mode) { switch (mode) { case BT_MODE_BASIC: if (bdaddr_type_is_le(chan->src_type)) return -EINVAL; mode = L2CAP_MODE_BASIC; clear_bit(CONF_STATE2_DEVICE, &chan->conf_state); break; case BT_MODE_ERTM: if (!disable_ertm || bdaddr_type_is_le(chan->src_type)) return -EINVAL; mode = L2CAP_MODE_ERTM; break; case BT_MODE_STREAMING: if (!disable_ertm || bdaddr_type_is_le(chan->src_type)) return -EINVAL; mode = L2CAP_MODE_STREAMING; break; case BT_MODE_LE_FLOWCTL: if (!bdaddr_type_is_le(chan->src_type)) return -EINVAL; mode = L2CAP_MODE_LE_FLOWCTL; break; case BT_MODE_EXT_FLOWCTL: /* TODO: Add support for ECRED PDUs to BR/EDR */ if (!bdaddr_type_is_le(chan->src_type)) return -EINVAL; mode = L2CAP_MODE_EXT_FLOWCTL; break; default: return -EINVAL; } chan->mode = mode; return 0; } static int l2cap_sock_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct l2cap_chan *chan = l2cap_pi(sk)->chan; struct bt_security sec; struct bt_power pwr; struct l2cap_conn *conn; int len, err = 0; u32 opt; BT_DBG("sk %p", sk); if (level == SOL_L2CAP) return l2cap_sock_setsockopt_old(sock, optname, optval, optlen); if (level != SOL_BLUETOOTH) return -ENOPROTOOPT; lock_sock(sk); switch (optname) { case BT_SECURITY: if (chan->chan_type != L2CAP_CHAN_CONN_ORIENTED && chan->chan_type != L2CAP_CHAN_FIXED && chan->chan_type != L2CAP_CHAN_RAW) { err = -EINVAL; break; } sec.level = BT_SECURITY_LOW; len = min_t(unsigned int, sizeof(sec), optlen); if (copy_from_sockptr(&sec, optval, len)) { err = -EFAULT; break; } if (sec.level < BT_SECURITY_LOW || sec.level > BT_SECURITY_FIPS) { err = -EINVAL; break; } chan->sec_level = sec.level; if (!chan->conn) break; conn = chan->conn; /* change security for LE channels */ if (chan->scid == L2CAP_CID_ATT) { if (smp_conn_security(conn->hcon, sec.level)) { err = -EINVAL; break; } set_bit(FLAG_PENDING_SECURITY, &chan->flags); sk->sk_state = BT_CONFIG; chan->state = BT_CONFIG; /* or for ACL link */ } else if ((sk->sk_state == BT_CONNECT2 && test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags)) || sk->sk_state == BT_CONNECTED) { if (!l2cap_chan_check_security(chan, true)) set_bit(BT_SK_SUSPEND, &bt_sk(sk)->flags); else sk->sk_state_change(sk); } else { err = -EINVAL; } break; case BT_DEFER_SETUP: if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) { err = -EINVAL; break; } if (copy_from_sockptr(&opt, optval, sizeof(u32))) { err = -EFAULT; break; } if (opt) { set_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags); set_bit(FLAG_DEFER_SETUP, &chan->flags); } else { clear_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags); clear_bit(FLAG_DEFER_SETUP, &chan->flags); } break; case BT_FLUSHABLE: if (copy_from_sockptr(&opt, optval, sizeof(u32))) { err = -EFAULT; break; } if (opt > BT_FLUSHABLE_ON) { err = -EINVAL; break; } if (opt == BT_FLUSHABLE_OFF) { conn = chan->conn; /* proceed further only when we have l2cap_conn and No Flush support in the LM */ if (!conn || !lmp_no_flush_capable(conn->hcon->hdev)) { err = -EINVAL; break; } } if (opt) set_bit(FLAG_FLUSHABLE, &chan->flags); else clear_bit(FLAG_FLUSHABLE, &chan->flags); break; case BT_POWER: if (chan->chan_type != L2CAP_CHAN_CONN_ORIENTED && chan->chan_type != L2CAP_CHAN_RAW) { err = -EINVAL; break; } pwr.force_active = BT_POWER_FORCE_ACTIVE_ON; len = min_t(unsigned int, sizeof(pwr), optlen); if (copy_from_sockptr(&pwr, optval, len)) { err = -EFAULT; break; } if (pwr.force_active) set_bit(FLAG_FORCE_ACTIVE, &chan->flags); else clear_bit(FLAG_FORCE_ACTIVE, &chan->flags); break; case BT_CHANNEL_POLICY: if (copy_from_sockptr(&opt, optval, sizeof(u32))) { err = -EFAULT; break; } if (opt > BT_CHANNEL_POLICY_AMP_PREFERRED) { err = -EINVAL; break; } if (chan->mode != L2CAP_MODE_ERTM && chan->mode != L2CAP_MODE_STREAMING) { err = -EOPNOTSUPP; break; } chan->chan_policy = (u8) opt; if (sk->sk_state == BT_CONNECTED && chan->move_role == L2CAP_MOVE_ROLE_NONE) l2cap_move_start(chan); break; case BT_SNDMTU: if (!bdaddr_type_is_le(chan->src_type)) { err = -EINVAL; break; } /* Setting is not supported as it's the remote side that * decides this. */ err = -EPERM; break; case BT_RCVMTU: if (!bdaddr_type_is_le(chan->src_type)) { err = -EINVAL; break; } if (chan->mode == L2CAP_MODE_LE_FLOWCTL && sk->sk_state == BT_CONNECTED) { err = -EISCONN; break; } if (copy_from_sockptr(&opt, optval, sizeof(u16))) { err = -EFAULT; break; } if (chan->mode == L2CAP_MODE_EXT_FLOWCTL && sk->sk_state == BT_CONNECTED) err = l2cap_chan_reconfigure(chan, opt); else chan->imtu = opt; break; case BT_MODE: if (!enable_ecred) { err = -ENOPROTOOPT; break; } BT_DBG("sk->sk_state %u", sk->sk_state); if (sk->sk_state != BT_BOUND) { err = -EINVAL; break; } if (chan->chan_type != L2CAP_CHAN_CONN_ORIENTED) { err = -EINVAL; break; } if (copy_from_sockptr(&opt, optval, sizeof(u8))) { err = -EFAULT; break; } BT_DBG("opt %u", opt); err = l2cap_set_mode(chan, opt); if (err) break; BT_DBG("mode 0x%2.2x", chan->mode); break; default: err = -ENOPROTOOPT; break; } release_sock(sk); return err; } static int l2cap_sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct l2cap_chan *chan = l2cap_pi(sk)->chan; int err; BT_DBG("sock %p, sk %p", sock, sk); err = sock_error(sk); if (err) return err; if (msg->msg_flags & MSG_OOB) return -EOPNOTSUPP; if (sk->sk_state != BT_CONNECTED) return -ENOTCONN; lock_sock(sk); err = bt_sock_wait_ready(sk, msg->msg_flags); release_sock(sk); if (err) return err; l2cap_chan_lock(chan); err = l2cap_chan_send(chan, msg, len); l2cap_chan_unlock(chan); return err; } static int l2cap_sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct sock *sk = sock->sk; struct l2cap_pinfo *pi = l2cap_pi(sk); int err; lock_sock(sk); if (sk->sk_state == BT_CONNECT2 && test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags)) { if (pi->chan->mode == L2CAP_MODE_EXT_FLOWCTL) { sk->sk_state = BT_CONNECTED; pi->chan->state = BT_CONNECTED; __l2cap_ecred_conn_rsp_defer(pi->chan); } else if (bdaddr_type_is_le(pi->chan->src_type)) { sk->sk_state = BT_CONNECTED; pi->chan->state = BT_CONNECTED; __l2cap_le_connect_rsp_defer(pi->chan); } else { sk->sk_state = BT_CONFIG; pi->chan->state = BT_CONFIG; __l2cap_connect_rsp_defer(pi->chan); } err = 0; goto done; } release_sock(sk); if (sock->type == SOCK_STREAM) err = bt_sock_stream_recvmsg(sock, msg, len, flags); else err = bt_sock_recvmsg(sock, msg, len, flags); if (pi->chan->mode != L2CAP_MODE_ERTM) return err; /* Attempt to put pending rx data in the socket buffer */ lock_sock(sk); if (!test_bit(CONN_LOCAL_BUSY, &pi->chan->conn_state)) goto done; if (pi->rx_busy_skb) { if (!__sock_queue_rcv_skb(sk, pi->rx_busy_skb)) pi->rx_busy_skb = NULL; else goto done; } /* Restore data flow when half of the receive buffer is * available. This avoids resending large numbers of * frames. */ if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf >> 1) l2cap_chan_busy(pi->chan, 0); done: release_sock(sk); return err; } /* Kill socket (only if zapped and orphan) * Must be called on unlocked socket, with l2cap channel lock. */ static void l2cap_sock_kill(struct sock *sk) { if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket) return; BT_DBG("sk %p state %s", sk, state_to_string(sk->sk_state)); /* Kill poor orphan */ l2cap_chan_put(l2cap_pi(sk)->chan); sock_set_flag(sk, SOCK_DEAD); sock_put(sk); } static int __l2cap_wait_ack(struct sock *sk, struct l2cap_chan *chan) { DECLARE_WAITQUEUE(wait, current); int err = 0; int timeo = L2CAP_WAIT_ACK_POLL_PERIOD; /* Timeout to prevent infinite loop */ unsigned long timeout = jiffies + L2CAP_WAIT_ACK_TIMEOUT; add_wait_queue(sk_sleep(sk), &wait); set_current_state(TASK_INTERRUPTIBLE); do { BT_DBG("Waiting for %d ACKs, timeout %04d ms", chan->unacked_frames, time_after(jiffies, timeout) ? 0 : jiffies_to_msecs(timeout - jiffies)); if (!timeo) timeo = L2CAP_WAIT_ACK_POLL_PERIOD; if (signal_pending(current)) { err = sock_intr_errno(timeo); break; } release_sock(sk); timeo = schedule_timeout(timeo); lock_sock(sk); set_current_state(TASK_INTERRUPTIBLE); err = sock_error(sk); if (err) break; if (time_after(jiffies, timeout)) { err = -ENOLINK; break; } } while (chan->unacked_frames > 0 && chan->state == BT_CONNECTED); set_current_state(TASK_RUNNING); remove_wait_queue(sk_sleep(sk), &wait); return err; } static int l2cap_sock_shutdown(struct socket *sock, int how) { struct sock *sk = sock->sk; struct l2cap_chan *chan; struct l2cap_conn *conn; int err = 0; BT_DBG("sock %p, sk %p, how %d", sock, sk, how); /* 'how' parameter is mapped to sk_shutdown as follows: * SHUT_RD (0) --> RCV_SHUTDOWN (1) * SHUT_WR (1) --> SEND_SHUTDOWN (2) * SHUT_RDWR (2) --> SHUTDOWN_MASK (3) */ how++; if (!sk) return 0; lock_sock(sk); if ((sk->sk_shutdown & how) == how) goto shutdown_already; BT_DBG("Handling sock shutdown"); /* prevent sk structure from being freed whilst unlocked */ sock_hold(sk); chan = l2cap_pi(sk)->chan; /* prevent chan structure from being freed whilst unlocked */ l2cap_chan_hold(chan); BT_DBG("chan %p state %s", chan, state_to_string(chan->state)); if (chan->mode == L2CAP_MODE_ERTM && chan->unacked_frames > 0 && chan->state == BT_CONNECTED) { err = __l2cap_wait_ack(sk, chan); /* After waiting for ACKs, check whether shutdown * has already been actioned to close the L2CAP * link such as by l2cap_disconnection_req(). */ if ((sk->sk_shutdown & how) == how) goto shutdown_matched; } /* Try setting the RCV_SHUTDOWN bit, return early if SEND_SHUTDOWN * is already set */ if ((how & RCV_SHUTDOWN) && !(sk->sk_shutdown & RCV_SHUTDOWN)) { sk->sk_shutdown |= RCV_SHUTDOWN; if ((sk->sk_shutdown & how) == how) goto shutdown_matched; } sk->sk_shutdown |= SEND_SHUTDOWN; release_sock(sk); l2cap_chan_lock(chan); conn = chan->conn; if (conn) /* prevent conn structure from being freed */ l2cap_conn_get(conn); l2cap_chan_unlock(chan); if (conn) /* mutex lock must be taken before l2cap_chan_lock() */ mutex_lock(&conn->chan_lock); l2cap_chan_lock(chan); l2cap_chan_close(chan, 0); l2cap_chan_unlock(chan); if (conn) { mutex_unlock(&conn->chan_lock); l2cap_conn_put(conn); } lock_sock(sk); if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime && !(current->flags & PF_EXITING)) err = bt_sock_wait_state(sk, BT_CLOSED, sk->sk_lingertime); shutdown_matched: l2cap_chan_put(chan); sock_put(sk); shutdown_already: if (!err && sk->sk_err) err = -sk->sk_err; release_sock(sk); BT_DBG("Sock shutdown complete err: %d", err); return err; } static int l2cap_sock_release(struct socket *sock) { struct sock *sk = sock->sk; int err; struct l2cap_chan *chan; BT_DBG("sock %p, sk %p", sock, sk); if (!sk) return 0; bt_sock_unlink(&l2cap_sk_list, sk); err = l2cap_sock_shutdown(sock, SHUT_RDWR); chan = l2cap_pi(sk)->chan; l2cap_chan_hold(chan); l2cap_chan_lock(chan); sock_orphan(sk); l2cap_sock_kill(sk); l2cap_chan_unlock(chan); l2cap_chan_put(chan); return err; } static void l2cap_sock_cleanup_listen(struct sock *parent) { struct sock *sk; BT_DBG("parent %p state %s", parent, state_to_string(parent->sk_state)); /* Close not yet accepted channels */ while ((sk = bt_accept_dequeue(parent, NULL))) { struct l2cap_chan *chan = l2cap_pi(sk)->chan; BT_DBG("child chan %p state %s", chan, state_to_string(chan->state)); l2cap_chan_hold(chan); l2cap_chan_lock(chan); __clear_chan_timer(chan); l2cap_chan_close(chan, ECONNRESET); l2cap_sock_kill(sk); l2cap_chan_unlock(chan); l2cap_chan_put(chan); } } static struct l2cap_chan *l2cap_sock_new_connection_cb(struct l2cap_chan *chan) { struct sock *sk, *parent = chan->data; lock_sock(parent); /* Check for backlog size */ if (sk_acceptq_is_full(parent)) { BT_DBG("backlog full %d", parent->sk_ack_backlog); release_sock(parent); return NULL; } sk = l2cap_sock_alloc(sock_net(parent), NULL, BTPROTO_L2CAP, GFP_ATOMIC, 0); if (!sk) { release_sock(parent); return NULL; } bt_sock_reclassify_lock(sk, BTPROTO_L2CAP); l2cap_sock_init(sk, parent); bt_accept_enqueue(parent, sk, false); release_sock(parent); return l2cap_pi(sk)->chan; } static int l2cap_sock_recv_cb(struct l2cap_chan *chan, struct sk_buff *skb) { struct sock *sk = chan->data; int err; lock_sock(sk); if (l2cap_pi(sk)->rx_busy_skb) { err = -ENOMEM; goto done; } if (chan->mode != L2CAP_MODE_ERTM && chan->mode != L2CAP_MODE_STREAMING) { /* Even if no filter is attached, we could potentially * get errors from security modules, etc. */ err = sk_filter(sk, skb); if (err) goto done; } err = __sock_queue_rcv_skb(sk, skb); /* For ERTM, handle one skb that doesn't fit into the recv * buffer. This is important to do because the data frames * have already been acked, so the skb cannot be discarded. * * Notify the l2cap core that the buffer is full, so the * LOCAL_BUSY state is entered and no more frames are * acked and reassembled until there is buffer space * available. */ if (err < 0 && chan->mode == L2CAP_MODE_ERTM) { l2cap_pi(sk)->rx_busy_skb = skb; l2cap_chan_busy(chan, 1); err = 0; } done: release_sock(sk); return err; } static void l2cap_sock_close_cb(struct l2cap_chan *chan) { struct sock *sk = chan->data; l2cap_sock_kill(sk); } static void l2cap_sock_teardown_cb(struct l2cap_chan *chan, int err) { struct sock *sk = chan->data; struct sock *parent; BT_DBG("chan %p state %s", chan, state_to_string(chan->state)); /* This callback can be called both for server (BT_LISTEN) * sockets as well as "normal" ones. To avoid lockdep warnings * with child socket locking (through l2cap_sock_cleanup_listen) * we need separation into separate nesting levels. The simplest * way to accomplish this is to inherit the nesting level used * for the channel. */ lock_sock_nested(sk, atomic_read(&chan->nesting)); parent = bt_sk(sk)->parent; switch (chan->state) { case BT_OPEN: case BT_BOUND: case BT_CLOSED: break; case BT_LISTEN: l2cap_sock_cleanup_listen(sk); sk->sk_state = BT_CLOSED; chan->state = BT_CLOSED; break; default: sk->sk_state = BT_CLOSED; chan->state = BT_CLOSED; sk->sk_err = err; if (parent) { bt_accept_unlink(sk); parent->sk_data_ready(parent); } else { sk->sk_state_change(sk); } break; } release_sock(sk); /* Only zap after cleanup to avoid use after free race */ sock_set_flag(sk, SOCK_ZAPPED); } static void l2cap_sock_state_change_cb(struct l2cap_chan *chan, int state, int err) { struct sock *sk = chan->data; sk->sk_state = state; if (err) sk->sk_err = err; } static struct sk_buff *l2cap_sock_alloc_skb_cb(struct l2cap_chan *chan, unsigned long hdr_len, unsigned long len, int nb) { struct sock *sk = chan->data; struct sk_buff *skb; int err; l2cap_chan_unlock(chan); skb = bt_skb_send_alloc(sk, hdr_len + len, nb, &err); l2cap_chan_lock(chan); if (!skb) return ERR_PTR(err); skb->priority = sk->sk_priority; bt_cb(skb)->l2cap.chan = chan; return skb; } static void l2cap_sock_ready_cb(struct l2cap_chan *chan) { struct sock *sk = chan->data; struct sock *parent; lock_sock(sk); parent = bt_sk(sk)->parent; BT_DBG("sk %p, parent %p", sk, parent); sk->sk_state = BT_CONNECTED; sk->sk_state_change(sk); if (parent) parent->sk_data_ready(parent); release_sock(sk); } static void l2cap_sock_defer_cb(struct l2cap_chan *chan) { struct sock *parent, *sk = chan->data; lock_sock(sk); parent = bt_sk(sk)->parent; if (parent) parent->sk_data_ready(parent); release_sock(sk); } static void l2cap_sock_resume_cb(struct l2cap_chan *chan) { struct sock *sk = chan->data; if (test_and_clear_bit(FLAG_PENDING_SECURITY, &chan->flags)) { sk->sk_state = BT_CONNECTED; chan->state = BT_CONNECTED; } clear_bit(BT_SK_SUSPEND, &bt_sk(sk)->flags); sk->sk_state_change(sk); } static void l2cap_sock_set_shutdown_cb(struct l2cap_chan *chan) { struct sock *sk = chan->data; lock_sock(sk); sk->sk_shutdown = SHUTDOWN_MASK; release_sock(sk); } static long l2cap_sock_get_sndtimeo_cb(struct l2cap_chan *chan) { struct sock *sk = chan->data; return sk->sk_sndtimeo; } static struct pid *l2cap_sock_get_peer_pid_cb(struct l2cap_chan *chan) { struct sock *sk = chan->data; return sk->sk_peer_pid; } static void l2cap_sock_suspend_cb(struct l2cap_chan *chan) { struct sock *sk = chan->data; set_bit(BT_SK_SUSPEND, &bt_sk(sk)->flags); sk->sk_state_change(sk); } static int l2cap_sock_filter(struct l2cap_chan *chan, struct sk_buff *skb) { struct sock *sk = chan->data; switch (chan->mode) { case L2CAP_MODE_ERTM: case L2CAP_MODE_STREAMING: return sk_filter(sk, skb); } return 0; } static const struct l2cap_ops l2cap_chan_ops = { .name = "L2CAP Socket Interface", .new_connection = l2cap_sock_new_connection_cb, .recv = l2cap_sock_recv_cb, .close = l2cap_sock_close_cb, .teardown = l2cap_sock_teardown_cb, .state_change = l2cap_sock_state_change_cb, .ready = l2cap_sock_ready_cb, .defer = l2cap_sock_defer_cb, .resume = l2cap_sock_resume_cb, .suspend = l2cap_sock_suspend_cb, .set_shutdown = l2cap_sock_set_shutdown_cb, .get_sndtimeo = l2cap_sock_get_sndtimeo_cb, .get_peer_pid = l2cap_sock_get_peer_pid_cb, .alloc_skb = l2cap_sock_alloc_skb_cb, .filter = l2cap_sock_filter, }; static void l2cap_sock_destruct(struct sock *sk) { BT_DBG("sk %p", sk); if (l2cap_pi(sk)->chan) l2cap_chan_put(l2cap_pi(sk)->chan); if (l2cap_pi(sk)->rx_busy_skb) { kfree_skb(l2cap_pi(sk)->rx_busy_skb); l2cap_pi(sk)->rx_busy_skb = NULL; } skb_queue_purge(&sk->sk_receive_queue); skb_queue_purge(&sk->sk_write_queue); } static void l2cap_skb_msg_name(struct sk_buff *skb, void *msg_name, int *msg_namelen) { DECLARE_SOCKADDR(struct sockaddr_l2 *, la, msg_name); memset(la, 0, sizeof(struct sockaddr_l2)); la->l2_family = AF_BLUETOOTH; la->l2_psm = bt_cb(skb)->l2cap.psm; bacpy(&la->l2_bdaddr, &bt_cb(skb)->l2cap.bdaddr); *msg_namelen = sizeof(struct sockaddr_l2); } static void l2cap_sock_init(struct sock *sk, struct sock *parent) { struct l2cap_chan *chan = l2cap_pi(sk)->chan; BT_DBG("sk %p", sk); if (parent) { struct l2cap_chan *pchan = l2cap_pi(parent)->chan; sk->sk_type = parent->sk_type; bt_sk(sk)->flags = bt_sk(parent)->flags; chan->chan_type = pchan->chan_type; chan->imtu = pchan->imtu; chan->omtu = pchan->omtu; chan->conf_state = pchan->conf_state; chan->mode = pchan->mode; chan->fcs = pchan->fcs; chan->max_tx = pchan->max_tx; chan->tx_win = pchan->tx_win; chan->tx_win_max = pchan->tx_win_max; chan->sec_level = pchan->sec_level; chan->flags = pchan->flags; chan->tx_credits = pchan->tx_credits; chan->rx_credits = pchan->rx_credits; if (chan->chan_type == L2CAP_CHAN_FIXED) { chan->scid = pchan->scid; chan->dcid = pchan->scid; } security_sk_clone(parent, sk); } else { switch (sk->sk_type) { case SOCK_RAW: chan->chan_type = L2CAP_CHAN_RAW; break; case SOCK_DGRAM: chan->chan_type = L2CAP_CHAN_CONN_LESS; bt_sk(sk)->skb_msg_name = l2cap_skb_msg_name; break; case SOCK_SEQPACKET: case SOCK_STREAM: chan->chan_type = L2CAP_CHAN_CONN_ORIENTED; break; } chan->imtu = L2CAP_DEFAULT_MTU; chan->omtu = 0; if (!disable_ertm && sk->sk_type == SOCK_STREAM) { chan->mode = L2CAP_MODE_ERTM; set_bit(CONF_STATE2_DEVICE, &chan->conf_state); } else { chan->mode = L2CAP_MODE_BASIC; } l2cap_chan_set_defaults(chan); } /* Default config options */ chan->flush_to = L2CAP_DEFAULT_FLUSH_TO; chan->data = sk; chan->ops = &l2cap_chan_ops; } static struct proto l2cap_proto = { .name = "L2CAP", .owner = THIS_MODULE, .obj_size = sizeof(struct l2cap_pinfo) }; static struct sock *l2cap_sock_alloc(struct net *net, struct socket *sock, int proto, gfp_t prio, int kern) { struct sock *sk; struct l2cap_chan *chan; sk = sk_alloc(net, PF_BLUETOOTH, prio, &l2cap_proto, kern); if (!sk) return NULL; sock_init_data(sock, sk); INIT_LIST_HEAD(&bt_sk(sk)->accept_q); sk->sk_destruct = l2cap_sock_destruct; sk->sk_sndtimeo = L2CAP_CONN_TIMEOUT; sock_reset_flag(sk, SOCK_ZAPPED); sk->sk_protocol = proto; sk->sk_state = BT_OPEN; chan = l2cap_chan_create(); if (!chan) { sk_free(sk); return NULL; } l2cap_chan_hold(chan); l2cap_pi(sk)->chan = chan; return sk; } static int l2cap_sock_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; BT_DBG("sock %p", sock); sock->state = SS_UNCONNECTED; if (sock->type != SOCK_SEQPACKET && sock->type != SOCK_STREAM && sock->type != SOCK_DGRAM && sock->type != SOCK_RAW) return -ESOCKTNOSUPPORT; if (sock->type == SOCK_RAW && !kern && !capable(CAP_NET_RAW)) return -EPERM; sock->ops = &l2cap_sock_ops; sk = l2cap_sock_alloc(net, sock, protocol, GFP_ATOMIC, kern); if (!sk) return -ENOMEM; l2cap_sock_init(sk, NULL); bt_sock_link(&l2cap_sk_list, sk); return 0; } static const struct proto_ops l2cap_sock_ops = { .family = PF_BLUETOOTH, .owner = THIS_MODULE, .release = l2cap_sock_release, .bind = l2cap_sock_bind, .connect = l2cap_sock_connect, .listen = l2cap_sock_listen, .accept = l2cap_sock_accept, .getname = l2cap_sock_getname, .sendmsg = l2cap_sock_sendmsg, .recvmsg = l2cap_sock_recvmsg, .poll = bt_sock_poll, .ioctl = bt_sock_ioctl, .gettstamp = sock_gettstamp, .mmap = sock_no_mmap, .socketpair = sock_no_socketpair, .shutdown = l2cap_sock_shutdown, .setsockopt = l2cap_sock_setsockopt, .getsockopt = l2cap_sock_getsockopt }; static const struct net_proto_family l2cap_sock_family_ops = { .family = PF_BLUETOOTH, .owner = THIS_MODULE, .create = l2cap_sock_create, }; int __init l2cap_init_sockets(void) { int err; BUILD_BUG_ON(sizeof(struct sockaddr_l2) > sizeof(struct sockaddr)); err = proto_register(&l2cap_proto, 0); if (err < 0) return err; err = bt_sock_register(BTPROTO_L2CAP, &l2cap_sock_family_ops); if (err < 0) { BT_ERR("L2CAP socket registration failed"); goto error; } err = bt_procfs_init(&init_net, "l2cap", &l2cap_sk_list, NULL); if (err < 0) { BT_ERR("Failed to create L2CAP proc file"); bt_sock_unregister(BTPROTO_L2CAP); goto error; } BT_INFO("L2CAP socket layer initialized"); return 0; error: proto_unregister(&l2cap_proto); return err; } void l2cap_cleanup_sockets(void) { bt_procfs_cleanup(&i