25 25 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 // SPDX-License-Identifier: GPL-2.0-or-later /* * Derived from arch/ppc/mm/extable.c and arch/i386/mm/extable.c. * * Copyright (C) 2004 Paul Mackerras, IBM Corp. */ #include <linux/bsearch.h> #include <linux/module.h> #include <linux/init.h> #include <linux/sort.h> #include <linux/uaccess.h> #include <linux/extable.h> #ifndef ARCH_HAS_RELATIVE_EXTABLE #define ex_to_insn(x) ((x)->insn) #else static inline unsigned long ex_to_insn(const struct exception_table_entry *x) { return (unsigned long)&x->insn + x->insn; } #endif #ifndef ARCH_HAS_SORT_EXTABLE #ifndef ARCH_HAS_RELATIVE_EXTABLE #define swap_ex NULL #else static void swap_ex(void *a, void *b, int size) { struct exception_table_entry *x = a, *y = b, tmp; int delta = b - a; tmp = *x; x->insn = y->insn + delta; y->insn = tmp.insn - delta; #ifdef swap_ex_entry_fixup swap_ex_entry_fixup(x, y, tmp, delta); #else x->fixup = y->fixup + delta; y->fixup = tmp.fixup - delta; #endif } #endif /* ARCH_HAS_RELATIVE_EXTABLE */ /* * The exception table needs to be sorted so that the binary * search that we use to find entries in it works properly. * This is used both for the kernel exception table and for * the exception tables of modules that get loaded. */ static int cmp_ex_sort(const void *a, const void *b) { const struct exception_table_entry *x = a, *y = b; /* avoid overflow */ if (ex_to_insn(x) > ex_to_insn(y)) return 1; if (ex_to_insn(x) < ex_to_insn(y)) return -1; return 0; } void sort_extable(struct exception_table_entry *start, struct exception_table_entry *finish) { sort(start, finish - start, sizeof(struct exception_table_entry), cmp_ex_sort, swap_ex); } #ifdef CONFIG_MODULES /* * If the exception table is sorted, any referring to the module init * will be at the beginning or the end. */ void trim_init_extable(struct module *m) { /*trim the beginning*/ while (m->num_exentries && within_module_init(ex_to_insn(&m->extable[0]), m)) { m->extable++; m->num_exentries--; } /*trim the end*/ while (m->num_exentries && within_module_init(ex_to_insn(&m->extable[m->num_exentries - 1]), m)) m->num_exentries--; } #endif /* CONFIG_MODULES */ #endif /* !ARCH_HAS_SORT_EXTABLE */ #ifndef ARCH_HAS_SEARCH_EXTABLE static int cmp_ex_search(const void *key, const void *elt) { const struct exception_table_entry *_elt = elt; unsigned long _key = *(unsigned long *)key; /* avoid overflow */ if (_key > ex_to_insn(_elt)) return 1; if (_key < ex_to_insn(_elt)) return -1; return 0; } /* * Search one exception table for an entry corresponding to the * given instruction address, and return the address of the entry, * or NULL if none is found. * We use a binary search, and thus we assume that the table is * already sorted. */ const struct exception_table_entry * search_extable(const struct exception_table_entry *base, const size_t num, unsigned long value) { return bsearch(&value, base, num, sizeof(struct exception_table_entry), cmp_ex_search); } #endif
1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 // SPDX-License-Identifier: GPL-2.0-only /* * IEEE802154.4 socket interface * * Copyright 2007, 2008 Siemens AG * * Written by: * Sergey Lapin <slapin@ossfans.org> * Maxim Gorbachyov <maxim.gorbachev@siemens.com> */ #include <linux/net.h> #include <linux/capability.h> #include <linux/module.h> #include <linux/if_arp.h> #include <linux/if.h> #include <linux/termios.h> /* For TIOCOUTQ/INQ */ #include <linux/list.h> #include <linux/slab.h> #include <linux/socket.h> #include <net/datalink.h> #include <net/psnap.h> #include <net/sock.h> #include <net/tcp_states.h> #include <net/route.h> #include <net/af_ieee802154.h> #include <net/ieee802154_netdev.h> /* Utility function for families */ static struct net_device* ieee802154_get_dev(struct net *net, const struct ieee802154_addr *addr) { struct net_device *dev = NULL; struct net_device *tmp; __le16 pan_id, short_addr; u8 hwaddr[IEEE802154_ADDR_LEN]; switch (addr->mode) { case IEEE802154_ADDR_LONG: ieee802154_devaddr_to_raw(hwaddr, addr->extended_addr); rcu_read_lock(); dev = dev_getbyhwaddr_rcu(net, ARPHRD_IEEE802154, hwaddr); if (dev) dev_hold(dev); rcu_read_unlock(); break; case IEEE802154_ADDR_SHORT: if (addr->pan_id == cpu_to_le16(IEEE802154_PANID_BROADCAST) || addr->short_addr == cpu_to_le16(IEEE802154_ADDR_UNDEF) || addr->short_addr == cpu_to_le16(IEEE802154_ADDR_BROADCAST)) break; rtnl_lock(); for_each_netdev(net, tmp) { if (tmp->type != ARPHRD_IEEE802154) continue; pan_id = tmp->ieee802154_ptr->pan_id; short_addr = tmp->ieee802154_ptr->short_addr; if (pan_id == addr->pan_id && short_addr == addr->short_addr) { dev = tmp; dev_hold(dev); break; } } rtnl_unlock(); break; default: pr_warn("Unsupported ieee802154 address type: %d\n", addr->mode); break; } return dev; } static int ieee802154_sock_release(struct socket *sock) { struct sock *sk = sock->sk; if (sk) { sock->sk = NULL; sk->sk_prot->close(sk, 0); } return 0; } static int ieee802154_sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; return sk->sk_prot->sendmsg(sk, msg, len); } static int ieee802154_sock_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sock *sk = sock->sk; if (sk->sk_prot->bind) return sk->sk_prot->bind(sk, uaddr, addr_len); return sock_no_bind(sock, uaddr, addr_len); } static int ieee802154_sock_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sock *sk = sock->sk; if (addr_len < sizeof(uaddr->sa_family)) return -EINVAL; if (uaddr->sa_family == AF_UNSPEC) return sk->sk_prot->disconnect(sk, flags); return sk->sk_prot->connect(sk, uaddr, addr_len); } static int ieee802154_dev_ioctl(struct sock *sk, struct ifreq __user *arg, unsigned int cmd) { struct ifreq ifr; int ret = -ENOIOCTLCMD; struct net_device *dev; if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) return -EFAULT; ifr.ifr_name[IFNAMSIZ-1] = 0; dev_load(sock_net(sk), ifr.ifr_name); dev = dev_get_by_name(sock_net(sk), ifr.ifr_name); if (!dev) return -ENODEV; if (dev->type == ARPHRD_IEEE802154 && dev->netdev_ops->ndo_do_ioctl) ret = dev->netdev_ops->ndo_do_ioctl(dev, &ifr, cmd); if (!ret && copy_to_user(arg, &ifr, sizeof(struct ifreq))) ret = -EFAULT; dev_put(dev); return ret; } static int ieee802154_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; switch (cmd) { case SIOCGIFADDR: case SIOCSIFADDR: return ieee802154_dev_ioctl(sk, (struct ifreq __user *)arg, cmd); default: if (!sk->sk_prot->ioctl) return -ENOIOCTLCMD; return sk->sk_prot->ioctl(sk, cmd, arg); } } /* RAW Sockets (802.15.4 created in userspace) */ static HLIST_HEAD(raw_head); static DEFINE_RWLOCK(raw_lock); static int raw_hash(struct sock *sk) { write_lock_bh(&raw_lock); sk_add_node(sk, &raw_head); sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); write_unlock_bh(&raw_lock); return 0; } static void raw_unhash(struct sock *sk) { write_lock_bh(&raw_lock); if (sk_del_node_init(sk)) sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); write_unlock_bh(&raw_lock); } static void raw_close(struct sock *sk, long timeout) { sk_common_release(sk); } static int raw_bind(struct sock *sk, struct sockaddr *_uaddr, int len) { struct ieee802154_addr addr; struct sockaddr_ieee802154 *uaddr = (struct sockaddr_ieee802154 *)_uaddr; int err = 0; struct net_device *dev = NULL; if (len < sizeof(*uaddr)) return -EINVAL; uaddr = (struct sockaddr_ieee802154 *)_uaddr; if (uaddr->family != AF_IEEE802154) return -EINVAL; lock_sock(sk); ieee802154_addr_from_sa(&addr, &uaddr->addr); dev = ieee802154_get_dev(sock_net(sk), &addr); if (!dev) { err = -ENODEV; goto out; } sk->sk_bound_dev_if = dev->ifindex; sk_dst_reset(sk); dev_put(dev); out: release_sock(sk); return err; } static int raw_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { return -ENOTSUPP; } static int raw_disconnect(struct sock *sk, int flags) { return 0; } static int raw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) { struct net_device *dev; unsigned int mtu; struct sk_buff *skb; int hlen, tlen; int err; if (msg->msg_flags & MSG_OOB) { pr_debug("msg->msg_flags = 0x%x\n", msg->msg_flags); return -EOPNOTSUPP; } lock_sock(sk); if (!sk->sk_bound_dev_if) dev = dev_getfirstbyhwtype(sock_net(sk), ARPHRD_IEEE802154); else dev = dev_get_by_index(sock_net(sk), sk->sk_bound_dev_if); release_sock(sk); if (!dev) { pr_debug("no dev\n"); err = -ENXIO; goto out; } mtu = IEEE802154_MTU; pr_debug("name = %s, mtu = %u\n", dev->name, mtu); if (size > mtu) { pr_debug("size = %zu, mtu = %u\n", size, mtu); err = -EMSGSIZE; goto out_dev; } hlen = LL_RESERVED_SPACE(dev); tlen = dev->needed_tailroom; skb = sock_alloc_send_skb(sk, hlen + tlen + size, msg->msg_flags & MSG_DONTWAIT, &err); if (!skb) goto out_dev; skb_reserve(skb, hlen); skb_reset_mac_header(skb); skb_reset_network_header(skb); err = memcpy_from_msg(skb_put(skb, size), msg, size); if (err < 0) goto out_skb; skb->dev = dev; skb->protocol = htons(ETH_P_IEEE802154); err = dev_queue_xmit(skb); if (err > 0) err = net_xmit_errno(err); dev_put(dev); return err ?: size; out_skb: kfree_skb(skb); out_dev: dev_put(dev); out: return err; } static int raw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len) { size_t copied = 0; int err = -EOPNOTSUPP; struct sk_buff *skb; skb = skb_recv_datagram(sk, flags, noblock, &err); if (!skb) goto out; copied = skb->len; if (len < copied) { msg->msg_flags |= MSG_TRUNC; copied = len; } err = skb_copy_datagram_msg(skb, 0, msg, copied); if (err) goto done; sock_recv_ts_and_drops(msg, sk, skb); if (flags & MSG_TRUNC) copied = skb->len; done: skb_free_datagram(sk, skb); out: if (err) return err; return copied; } static int raw_rcv_skb(struct sock *sk, struct sk_buff *skb) { skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) return NET_RX_DROP; if (sock_queue_rcv_skb(sk, skb) < 0) { kfree_skb(skb); return NET_RX_DROP; } return NET_RX_SUCCESS; } static void ieee802154_raw_deliver(struct net_device *dev, struct sk_buff *skb) { struct sock *sk; read_lock(&raw_lock); sk_for_each(sk, &raw_head) { bh_lock_sock(sk); if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dev->ifindex) { struct sk_buff *clone; clone = skb_clone(skb, GFP_ATOMIC); if (clone) raw_rcv_skb(sk, clone); } bh_unlock_sock(sk); } read_unlock(&raw_lock); } static int raw_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { return -EOPNOTSUPP; } static int raw_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { return -EOPNOTSUPP; } static struct proto ieee802154_raw_prot = { .name = "IEEE-802.15.4-RAW", .owner = THIS_MODULE, .obj_size = sizeof(struct sock), .close = raw_close, .bind = raw_bind, .sendmsg = raw_sendmsg, .recvmsg = raw_recvmsg, .hash = raw_hash, .unhash = raw_unhash, .connect = raw_connect, .disconnect = raw_disconnect, .getsockopt = raw_getsockopt, .setsockopt = raw_setsockopt, }; static const struct proto_ops ieee802154_raw_ops = { .family = PF_IEEE802154, .owner = THIS_MODULE, .release = ieee802154_sock_release, .bind = ieee802154_sock_bind, .connect = ieee802154_sock_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .poll = datagram_poll, .ioctl = ieee802154_sock_ioctl, .gettstamp = sock_gettstamp, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = sock_common_setsockopt, .getsockopt = sock_common_getsockopt, .sendmsg = ieee802154_sock_sendmsg, .recvmsg = sock_common_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; /* DGRAM Sockets (802.15.4 dataframes) */ static HLIST_HEAD(dgram_head); static DEFINE_RWLOCK(dgram_lock); struct dgram_sock { struct sock sk; struct ieee802154_addr src_addr; struct ieee802154_addr dst_addr; unsigned int bound:1; unsigned int connected:1; unsigned int want_ack:1; unsigned int want_lqi:1; unsigned int secen:1; unsigned int secen_override:1; unsigned int seclevel:3; unsigned int seclevel_override:1; }; static inline struct dgram_sock *dgram_sk(const struct sock *sk) { return container_of(sk, struct dgram_sock, sk); } static int dgram_hash(struct sock *sk) { write_lock_bh(&dgram_lock); sk_add_node(sk, &dgram_head); sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); write_unlock_bh(&dgram_lock); return 0; } static void dgram_unhash(struct sock *sk) { write_lock_bh(&dgram_lock); if (sk_del_node_init(sk)) sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); write_unlock_bh(&dgram_lock); } static int dgram_init(struct sock *sk) { struct dgram_sock *ro = dgram_sk(sk); ro->want_ack = 1; ro->want_lqi = 0; return 0; } static void dgram_close(struct sock *sk, long timeout) { sk_common_release(sk); } static int dgram_bind(struct sock *sk, struct sockaddr *uaddr, int len) { struct sockaddr_ieee802154 *addr = (struct sockaddr_ieee802154 *)uaddr; struct ieee802154_addr haddr; struct dgram_sock *ro = dgram_sk(sk); int err = -EINVAL; struct net_device *dev; lock_sock(sk); ro->bound = 0; if (len < sizeof(*addr)) goto out; if (addr->family != AF_IEEE802154) goto out; ieee802154_addr_from_sa(&haddr, &addr->addr); dev = ieee802154_get_dev(sock_net(sk), &haddr); if (!dev) { err = -ENODEV; goto out; } if (dev->type != ARPHRD_IEEE802154) { err = -ENODEV; goto out_put; } ro->src_addr = haddr; ro->bound = 1; err = 0; out_put: dev_put(dev); out: release_sock(sk); return err; } static int dgram_ioctl(struct sock *sk, int cmd, unsigned long arg) { switch (cmd) { case SIOCOUTQ: { int amount = sk_wmem_alloc_get(sk); return put_user(amount, (int __user *)arg); } case SIOCINQ: { struct sk_buff *skb; unsigned long amount; amount = 0; spin_lock_bh(&sk->sk_receive_queue.lock); skb = skb_peek(&sk->sk_receive_queue); if (skb) { /* We will only return the amount * of this packet since that is all * that will be read. */ amount = skb->len - ieee802154_hdr_length(skb); } spin_unlock_bh(&sk->sk_receive_queue.lock); return put_user(amount, (int __user *)arg); } } return -ENOIOCTLCMD; } /* FIXME: autobind */ static int dgram_connect(struct sock *sk, struct sockaddr *uaddr, int len) { struct sockaddr_ieee802154 *addr = (struct sockaddr_ieee802154 *)uaddr; struct dgram_sock *ro = dgram_sk(sk); int err = 0; if (len < sizeof(*addr)) return -EINVAL; if (addr->family != AF_IEEE802154) return -EINVAL; lock_sock(sk); if (!ro->bound) { err = -ENETUNREACH; goto out; } ieee802154_addr_from_sa(&ro->dst_addr, &addr->addr); ro->connected = 1; out: release_sock(sk); return err; } static int dgram_disconnect(struct sock *sk, int flags) { struct dgram_sock *ro = dgram_sk(sk); lock_sock(sk); ro->connected = 0; release_sock(sk); return 0; } static int dgram_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) { struct net_device *dev; unsigned int mtu; struct sk_buff *skb; struct ieee802154_mac_cb *cb; struct dgram_sock *ro = dgram_sk(sk); struct ieee802154_addr dst_addr; int hlen, tlen; int err; if (msg->msg_flags & MSG_OOB) { pr_debug("msg->msg_flags = 0x%x\n", msg->msg_flags); return -EOPNOTSUPP; } if (!ro->connected && !msg->msg_name) return -EDESTADDRREQ; else if (ro->connected && msg->msg_name) return -EISCONN; if (!ro->bound) dev = dev_getfirstbyhwtype(sock_net(sk), ARPHRD_IEEE802154); else dev = ieee802154_get_dev(sock_net(sk), &ro->src_addr); if (!dev) { pr_debug("no dev\n"); err = -ENXIO; goto out; } mtu = IEEE802154_MTU; pr_debug("name = %s, mtu = %u\n", dev->name, mtu); if (size > mtu) { pr_debug("size = %zu, mtu = %u\n", size, mtu); err = -EMSGSIZE; goto out_dev; } hlen = LL_RESERVED_SPACE(dev); tlen = dev->needed_tailroom; skb = sock_alloc_send_skb(sk, hlen + tlen + size, msg->msg_flags & MSG_DONTWAIT, &err); if (!skb) goto out_dev; skb_reserve(skb, hlen); skb_reset_network_header(skb); cb = mac_cb_init(skb); cb->type = IEEE802154_FC_TYPE_DATA; cb->ackreq = ro->want_ack; if (msg->msg_name) { DECLARE_SOCKADDR(struct sockaddr_ieee802154*, daddr, msg->msg_name); ieee802154_addr_from_sa(&dst_addr, &daddr->addr); } else { dst_addr = ro->dst_addr; } cb->secen = ro->secen; cb->secen_override = ro->secen_override; cb->seclevel = ro->seclevel; cb->seclevel_override = ro->seclevel_override; err = wpan_dev_hard_header(skb, dev, &dst_addr, ro->bound ? &ro->src_addr : NULL, size); if (err < 0) goto out_skb; err = memcpy_from_msg(skb_put(skb, size), msg, size); if (err < 0) goto out_skb; skb->dev = dev; skb->protocol = htons(ETH_P_IEEE802154); err = dev_queue_xmit(skb); if (err > 0) err = net_xmit_errno(err); dev_put(dev); return err ?: size; out_skb: kfree_skb(skb); out_dev: dev_put(dev); out: return err; } static int dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len) { size_t copied = 0; int err = -EOPNOTSUPP; struct sk_buff *skb; struct dgram_sock *ro = dgram_sk(sk); DECLARE_SOCKADDR(struct sockaddr_ieee802154 *, saddr, msg->msg_name); skb = skb_recv_datagram(sk, flags, noblock, &err); if (!skb) goto out; copied = skb->len; if (len < copied) { msg->msg_flags |= MSG_TRUNC; copied = len; } /* FIXME: skip headers if necessary ?! */ err = skb_copy_datagram_msg(skb, 0, msg, copied); if (err) goto done; sock_recv_ts_and_drops(msg, sk, skb); if (saddr) { /* Clear the implicit padding in struct sockaddr_ieee802154 * (16 bits between 'family' and 'addr') and in struct * ieee802154_addr_sa (16 bits at the end of the structure). */ memset(saddr, 0, sizeof(*saddr)); saddr->family = AF_IEEE802154; ieee802154_addr_to_sa(&saddr->addr, &mac_cb(skb)->source); *addr_len = sizeof(*saddr); } if (ro->want_lqi) { err = put_cmsg(msg, SOL_IEEE802154, WPAN_WANTLQI, sizeof(uint8_t), &(mac_cb(skb)->lqi)); if (err) goto done; } if (flags & MSG_TRUNC) copied = skb->len; done: skb_free_datagram(sk, skb); out: if (err) return err; return copied; } static int dgram_rcv_skb(struct sock *sk, struct sk_buff *skb) { skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) return NET_RX_DROP; if (sock_queue_rcv_skb(sk, skb) < 0) { kfree_skb(skb); return NET_RX_DROP; } return NET_RX_SUCCESS; } static inline bool ieee802154_match_sock(__le64 hw_addr, __le16 pan_id, __le16 short_addr, struct dgram_sock *ro) { if (!ro->bound) return true; if (ro->src_addr.mode == IEEE802154_ADDR_LONG && hw_addr == ro->src_addr.extended_addr) return true; if (ro->src_addr.mode == IEEE802154_ADDR_SHORT && pan_id == ro->src_addr.pan_id && short_addr == ro->src_addr.short_addr) return true; return false; } static int ieee802154_dgram_deliver(struct net_device *dev, struct sk_buff *skb) { struct sock *sk, *prev = NULL; int ret = NET_RX_SUCCESS; __le16 pan_id, short_addr; __le64 hw_addr; /* Data frame processing */ BUG_ON(dev->type != ARPHRD_IEEE802154); pan_id = dev->ieee802154_ptr->pan_id; short_addr = dev->ieee802154_ptr->short_addr; hw_addr = dev->ieee802154_ptr->extended_addr; read_lock(&dgram_lock); sk_for_each(sk, &dgram_head) { if (ieee802154_match_sock(hw_addr, pan_id, short_addr, dgram_sk(sk))) { if (prev) { struct sk_buff *clone; clone = skb_clone(skb, GFP_ATOMIC); if (clone) dgram_rcv_skb(prev, clone); } prev = sk; } } if (prev) { dgram_rcv_skb(prev, skb); } else { kfree_skb(skb); ret = NET_RX_DROP; } read_unlock(&dgram_lock); return ret; } static int dgram_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct dgram_sock *ro = dgram_sk(sk); int val, len; if (level != SOL_IEEE802154) return -EOPNOTSUPP; if (get_user(len, optlen)) return -EFAULT; len = min_t(unsigned int, len, sizeof(int)); switch (optname) { case WPAN_WANTACK: val = ro->want_ack; break; case WPAN_WANTLQI: val = ro->want_lqi; break; case WPAN_SECURITY: if (!ro->secen_override) val = WPAN_SECURITY_DEFAULT; else if (ro->secen) val = WPAN_SECURITY_ON; else val = WPAN_SECURITY_OFF; break; case WPAN_SECURITY_LEVEL: if (!ro->seclevel_override) val = WPAN_SECURITY_LEVEL_DEFAULT; else val = ro->seclevel; break; default: return -ENOPROTOOPT; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static int dgram_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct dgram_sock *ro = dgram_sk(sk); struct net *net = sock_net(sk); int val; int err = 0; if (optlen < sizeof(int)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(int))) return -EFAULT; lock_sock(sk); switch (optname) { case WPAN_WANTACK: ro->want_ack = !!val; break; case WPAN_WANTLQI: ro->want_lqi = !!val; break; case WPAN_SECURITY: if (!ns_capable(net->user_ns, CAP_NET_ADMIN) && !ns_capable(net->user_ns, CAP_NET_RAW)) { err = -EPERM; break; } switch (val) { case WPAN_SECURITY_DEFAULT: ro->secen_override = 0; break; case WPAN_SECURITY_ON: ro->secen_override = 1; ro->secen = 1; break; case WPAN_SECURITY_OFF: ro->secen_override = 1; ro->secen = 0; break; default: err = -EINVAL; break; } break; case WPAN_SECURITY_LEVEL: if (!ns_capable(net->user_ns, CAP_NET_ADMIN) && !ns_capable(net->user_ns, CAP_NET_RAW)) { err = -EPERM; break; } if (val < WPAN_SECURITY_LEVEL_DEFAULT || val > IEEE802154_SCF_SECLEVEL_ENC_MIC128) { err = -EINVAL; } else if (val == WPAN_SECURITY_LEVEL_DEFAULT) { ro->seclevel_override = 0; } else { ro->seclevel_override = 1; ro->seclevel = val; } break; default: err = -ENOPROTOOPT; break; } release_sock(sk); return err; } static struct proto ieee802154_dgram_prot = { .name = "IEEE-802.15.4-MAC", .owner = THIS_MODULE, .obj_size = sizeof(struct dgram_sock), .init = dgram_init, .close = dgram_close, .bind = dgram_bind, .sendmsg = dgram_sendmsg, .recvmsg = dgram_recvmsg, .hash = dgram_hash, .unhash = dgram_unhash, .connect = dgram_connect, .disconnect = dgram_disconnect, .ioctl = dgram_ioctl, .getsockopt = dgram_getsockopt, .setsockopt = dgram_setsockopt, }; static const struct proto_ops ieee802154_dgram_ops = { .family = PF_IEEE802154, .owner = THIS_MODULE, .release = ieee802154_sock_release, .bind = ieee802154_sock_bind, .connect = ieee802154_sock_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .poll = datagram_poll, .ioctl = ieee802154_sock_ioctl, .gettstamp = sock_gettstamp, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = sock_common_setsockopt, .getsockopt = sock_common_getsockopt, .sendmsg = ieee802154_sock_sendmsg, .recvmsg = sock_common_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static void ieee802154_sock_destruct(struct sock *sk) { skb_queue_purge(&sk->sk_receive_queue); } /* Create a socket. Initialise the socket, blank the addresses * set the state. */ static int ieee802154_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; int rc; struct proto *proto; const struct proto_ops *ops; if (!net_eq(net, &init_net)) return -EAFNOSUPPORT; switch (sock->type) { case SOCK_RAW: rc = -EPERM; if (!capable(CAP_NET_RAW)) goto out; proto = &ieee802154_raw_prot; ops = &ieee802154_raw_ops; break; case SOCK_DGRAM: proto = &ieee802154_dgram_prot; ops = &ieee802154_dgram_ops; break; default: rc = -ESOCKTNOSUPPORT; goto out; } rc = -ENOMEM; sk = sk_alloc(net, PF_IEEE802154, GFP_KERNEL, proto, kern); if (!sk) goto out; rc = 0; sock->ops = ops; sock_init_data(sock, sk); sk->sk_destruct = ieee802154_sock_destruct; sk->sk_family = PF_IEEE802154; /* Checksums on by default */ sock_set_flag(sk, SOCK_ZAPPED); if (sk->sk_prot->hash) { rc = sk->sk_prot->hash(sk); if (rc) { sk_common_release(sk); goto out; } } if (sk->sk_prot->init) { rc = sk->sk_prot->init(sk); if (rc) sk_common_release(sk); } out: return rc; } static const struct net_proto_family ieee802154_family_ops = { .family = PF_IEEE802154, .create = ieee802154_create, .owner = THIS_MODULE, }; static int ieee802154_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { if (!netif_running(dev)) goto drop; pr_debug("got frame, type %d, dev %p\n", dev->type, dev); #ifdef DEBUG print_hex_dump_bytes("ieee802154_rcv ", DUMP_PREFIX_NONE, skb->data, skb->len); #endif if (!net_eq(dev_net(dev), &init_net)) goto drop; ieee802154_raw_deliver(dev, skb); if (dev->type != ARPHRD_IEEE802154) goto drop; if (skb->pkt_type != PACKET_OTHERHOST) return ieee802154_dgram_deliver(dev, skb); drop: kfree_skb(skb); return NET_RX_DROP; } static struct packet_type ieee802154_packet_type = { .type = htons(ETH_P_IEEE802154), .func = ieee802154_rcv, }; static int __init af_ieee802154_init(void) { int rc; rc = proto_register(&ieee802154_raw_prot, 1); if (rc) goto out; rc = proto_register(&ieee802154_dgram_prot, 1); if (rc) goto err_dgram; /* Tell SOCKET that we are alive */ rc = sock_register(&ieee802154_family_ops); if (rc) goto err_sock; dev_add_pack(&ieee802154_packet_type); rc = 0; goto out; err_sock: proto_unregister(&ieee802154_dgram_prot); err_dgram: proto_unregister(&ieee802154_raw_prot); out: return rc; } static void __exit af_ieee802154_remove(void) { dev_remove_pack(&ieee802154_packet_type); sock_unregister(PF_IEEE802154); proto_unregister(&ieee802154_dgram_prot); proto_unregister(&ieee802154_raw_prot); } module_init(af_ieee802154_init); module_exit(af_ieee802154_remove); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_IEEE802154);
1 2 1 1 2 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 // SPDX-License-Identifier: GPL-2.0-or-later /* * RAW sockets for IPv6 * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * * Adapted from linux/net/ipv4/raw.c * * Fixes: * Hideaki YOSHIFUJI : sin6_scope_id support * YOSHIFUJI,H.@USAGI : raw checksum (RFC2292(bis) compliance) * Kazunori MIYAZAWA @USAGI: change process style to use ip6_append_data */ #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/slab.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/icmpv6.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> #include <linux/skbuff.h> #include <linux/compat.h> #include <linux/uaccess.h> #include <asm/ioctls.h> #include <net/net_namespace.h> #include <net/ip.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/ndisc.h> #include <net/protocol.h> #include <net/ip6_route.h> #include <net/ip6_checksum.h> #include <net/addrconf.h> #include <net/transp_v6.h> #include <net/udp.h> #include <net/inet_common.h> #include <net/tcp_states.h> #if IS_ENABLED(CONFIG_IPV6_MIP6) #include <net/mip6.h> #endif #include <linux/mroute6.h> #include <net/raw.h> #include <net/rawv6.h> #include <net/xfrm.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/export.h> #define ICMPV6_HDRLEN 4 /* ICMPv6 header, RFC 4443 Section 2.1 */ struct raw_hashinfo raw_v6_hashinfo = { .lock = __RW_LOCK_UNLOCKED(raw_v6_hashinfo.lock), }; EXPORT_SYMBOL_GPL(raw_v6_hashinfo); struct sock *__raw_v6_lookup(struct net *net, struct sock *sk, unsigned short num, const struct in6_addr *loc_addr, const struct in6_addr *rmt_addr, int dif, int sdif) { bool is_multicast = ipv6_addr_is_multicast(loc_addr); sk_for_each_from(sk) if (inet_sk(sk)->inet_num == num) { if (!net_eq(sock_net(sk), net)) continue; if (!ipv6_addr_any(&sk->sk_v6_daddr) && !ipv6_addr_equal(&sk->sk_v6_daddr, rmt_addr)) continue; if (!raw_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) continue; if (!ipv6_addr_any(&sk->sk_v6_rcv_saddr)) { if (ipv6_addr_equal(&sk->sk_v6_rcv_saddr, loc_addr)) goto found; if (is_multicast && inet6_mc_check(sk, loc_addr, rmt_addr)) goto found; continue; } goto found; } sk = NULL; found: return sk; } EXPORT_SYMBOL_GPL(__raw_v6_lookup); /* * 0 - deliver * 1 - block */ static int icmpv6_filter(const struct sock *sk, const struct sk_buff *skb) { struct icmp6hdr _hdr; const struct icmp6hdr *hdr; /* We require only the four bytes of the ICMPv6 header, not any * additional bytes of message body in "struct icmp6hdr". */ hdr = skb_header_pointer(skb, skb_transport_offset(skb), ICMPV6_HDRLEN, &_hdr); if (hdr) { const __u32 *data = &raw6_sk(sk)->filter.data[0]; unsigned int type = hdr->icmp6_type; return (data[type >> 5] & (1U << (type & 31))) != 0; } return 1; } #if IS_ENABLED(CONFIG_IPV6_MIP6) typedef int mh_filter_t(struct sock *sock, struct sk_buff *skb); static mh_filter_t __rcu *mh_filter __read_mostly; int rawv6_mh_filter_register(mh_filter_t filter) { rcu_assign_pointer(mh_filter, filter); return 0; } EXPORT_SYMBOL(rawv6_mh_filter_register); int rawv6_mh_filter_unregister(mh_filter_t filter) { RCU_INIT_POINTER(mh_filter, NULL); synchronize_rcu(); return 0; } EXPORT_SYMBOL(rawv6_mh_filter_unregister); #endif /* * demultiplex raw sockets. * (should consider queueing the skb in the sock receive_queue * without calling rawv6.c) * * Caller owns SKB so we must make clones. */ static bool ipv6_raw_deliver(struct sk_buff *skb, int nexthdr) { const struct in6_addr *saddr; const struct in6_addr *daddr; struct sock *sk; bool delivered = false; __u8 hash; struct net *net; saddr = &ipv6_hdr(skb)->saddr; daddr = saddr + 1; hash = nexthdr & (RAW_HTABLE_SIZE - 1); read_lock(&raw_v6_hashinfo.lock); sk = sk_head(&raw_v6_hashinfo.ht[hash]); if (!sk) goto out; net = dev_net(skb->dev); sk = __raw_v6_lookup(net, sk, nexthdr, daddr, saddr, inet6_iif(skb), inet6_sdif(skb)); while (sk) { int filtered; delivered = true; switch (nexthdr) { case IPPROTO_ICMPV6: filtered = icmpv6_filter(sk, skb); break; #if IS_ENABLED(CONFIG_IPV6_MIP6) case IPPROTO_MH: { /* XXX: To validate MH only once for each packet, * this is placed here. It should be after checking * xfrm policy, however it doesn't. The checking xfrm * policy is placed in rawv6_rcv() because it is * required for each socket. */ mh_filter_t *filter; filter = rcu_dereference(mh_filter); filtered = filter ? (*filter)(sk, skb) : 0; break; } #endif default: filtered = 0; break; } if (filtered < 0) break; if (filtered == 0) { struct sk_buff *clone = skb_clone(skb, GFP_ATOMIC); /* Not releasing hash table! */ if (clone) { nf_reset_ct(clone); rawv6_rcv(sk, clone); } } sk = __raw_v6_lookup(net, sk_next(sk), nexthdr, daddr, saddr, inet6_iif(skb), inet6_sdif(skb)); } out: read_unlock(&raw_v6_hashinfo.lock); return delivered; } bool raw6_local_deliver(struct sk_buff *skb, int nexthdr) { struct sock *raw_sk; raw_sk = sk_head(&raw_v6_hashinfo.ht[nexthdr & (RAW_HTABLE_SIZE - 1)]); if (raw_sk && !ipv6_raw_deliver(skb, nexthdr)) raw_sk = NULL; return raw_sk != NULL; } /* This cleans up af_inet6 a bit. -DaveM */ static int rawv6_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len) { struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); struct sockaddr_in6 *addr = (struct sockaddr_in6 *) uaddr; __be32 v4addr = 0; int addr_type; int err; if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; if (addr->sin6_family != AF_INET6) return -EINVAL; addr_type = ipv6_addr_type(&addr->sin6_addr); /* Raw sockets are IPv6 only */ if (addr_type == IPV6_ADDR_MAPPED) return -EADDRNOTAVAIL; lock_sock(sk); err = -EINVAL; if (sk->sk_state != TCP_CLOSE) goto out; rcu_read_lock(); /* Check if the address belongs to the host. */ if (addr_type != IPV6_ADDR_ANY) { struct net_device *dev = NULL; if (__ipv6_addr_needs_scope_id(addr_type)) { if (addr_len >= sizeof(struct sockaddr_in6) && addr->sin6_scope_id) { /* Override any existing binding, if another * one is supplied by user. */ sk->sk_bound_dev_if = addr->sin6_scope_id; } /* Binding to link-local address requires an interface */ if (!sk->sk_bound_dev_if) goto out_unlock; } if (sk->sk_bound_dev_if) { err = -ENODEV; dev = dev_get_by_index_rcu(sock_net(sk), sk->sk_bound_dev_if); if (!dev) goto out_unlock; } /* ipv4 addr of the socket is invalid. Only the * unspecified and mapped address have a v4 equivalent. */ v4addr = LOOPBACK4_IPV6; if (!(addr_type & IPV6_ADDR_MULTICAST) && !ipv6_can_nonlocal_bind(sock_net(sk), inet)) { err = -EADDRNOTAVAIL; if (!ipv6_chk_addr(sock_net(sk), &addr->sin6_addr, dev, 0)) { goto out_unlock; } } } inet->inet_rcv_saddr = inet->inet_saddr = v4addr; sk->sk_v6_rcv_saddr = addr->sin6_addr; if (!(addr_type & IPV6_ADDR_MULTICAST)) np->saddr = addr->sin6_addr; err = 0; out_unlock: rcu_read_unlock(); out: release_sock(sk); return err; } static void rawv6_err(struct sock *sk, struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); int err; int harderr; /* Report error on raw socket, if: 1. User requested recverr. 2. Socket is connected (otherwise the error indication is useless without recverr and error is hard. */ if (!np->recverr && sk->sk_state != TCP_ESTABLISHED) return; harderr = icmpv6_err_convert(type, code, &err); if (type == ICMPV6_PKT_TOOBIG) { ip6_sk_update_pmtu(skb, sk, info); harderr = (np->pmtudisc == IPV6_PMTUDISC_DO); } if (type == NDISC_REDIRECT) { ip6_sk_redirect(skb, sk); return; } if (np->recverr) { u8 *payload = skb->data; if (!inet->hdrincl) payload += offset; ipv6_icmp_error(sk, skb, err, 0, ntohl(info), payload); } if (np->recverr || harderr) { sk->sk_err = err; sk->sk_error_report(sk); } } void raw6_icmp_error(struct sk_buff *skb, int nexthdr, u8 type, u8 code, int inner_offset, __be32 info) { struct sock *sk; int hash; const struct in6_addr *saddr, *daddr; struct net *net; hash = nexthdr & (RAW_HTABLE_SIZE - 1); read_lock(&raw_v6_hashinfo.lock); sk = sk_head(&raw_v6_hashinfo.ht[hash]); if (sk) { /* Note: ipv6_hdr(skb) != skb->data */ const struct ipv6hdr *ip6h = (const struct ipv6hdr *)skb->data; saddr = &ip6h->saddr; daddr = &ip6h->daddr; net = dev_net(skb->dev); while ((sk = __raw_v6_lookup(net, sk, nexthdr, saddr, daddr, inet6_iif(skb), inet6_iif(skb)))) { rawv6_err(sk, skb, NULL, type, code, inner_offset, info); sk = sk_next(sk); } } read_unlock(&raw_v6_hashinfo.lock); } static inline int rawv6_rcv_skb(struct sock *sk, struct sk_buff *skb) { if ((raw6_sk(sk)->checksum || rcu_access_pointer(sk->sk_filter)) && skb_checksum_complete(skb)) { atomic_inc(&sk->sk_drops); kfree_skb(skb); return NET_RX_DROP; } /* Charge it to the socket. */ skb_dst_drop(skb); if (sock_queue_rcv_skb(sk, skb) < 0) { kfree_skb(skb); return NET_RX_DROP; } return 0; } /* * This is next to useless... * if we demultiplex in network layer we don't need the extra call * just to queue the skb... * maybe we could have the network decide upon a hint if it * should call raw_rcv for demultiplexing */ int rawv6_rcv(struct sock *sk, struct sk_buff *skb) { struct inet_sock *inet = inet_sk(sk); struct raw6_sock *rp = raw6_sk(sk); if (!xfrm6_policy_check(sk, XFRM_POLICY_IN, skb)) { atomic_inc(&sk->sk_drops); kfree_skb(skb); return NET_RX_DROP; } if (!rp->checksum) skb->ip_summed = CHECKSUM_UNNECESSARY; if (skb->ip_summed == CHECKSUM_COMPLETE) { skb_postpull_rcsum(skb, skb_network_header(skb), skb_network_header_len(skb)); if (!csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, skb->len, inet->inet_num, skb->csum)) skb->ip_summed = CHECKSUM_UNNECESSARY; } if (!skb_csum_unnecessary(skb)) skb->csum = ~csum_unfold(csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, skb->len, inet->inet_num, 0)); if (inet->hdrincl) { if (skb_checksum_complete(skb)) { atomic_inc(&sk->sk_drops); kfree_skb(skb); return NET_RX_DROP; } } rawv6_rcv_skb(sk, skb); return 0; } /* * This should be easy, if there is something there * we return it, otherwise we block. */ static int rawv6_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len) { struct ipv6_pinfo *np = inet6_sk(sk); DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); struct sk_buff *skb; size_t copied; int err; if (flags & MSG_OOB) return -EOPNOTSUPP; if (flags & MSG_ERRQUEUE) return ipv6_recv_error(sk, msg, len, addr_len); if (np->rxpmtu && np->rxopt.bits.rxpmtu) return ipv6_recv_rxpmtu(sk, msg, len, addr_len); skb = skb_recv_datagram(sk, flags, noblock, &err); if (!skb) goto out; copied = skb->len; if (copied > len) { copied = len; msg->msg_flags |= MSG_TRUNC; } if (skb_csum_unnecessary(skb)) { err = skb_copy_datagram_msg(skb, 0, msg, copied); } else if (msg->msg_flags&MSG_TRUNC) { if (__skb_checksum_complete(skb)) goto csum_copy_err; err = skb_copy_datagram_msg(skb, 0, msg, copied); } else { err = skb_copy_and_csum_datagram_msg(skb, 0, msg); if (err == -EINVAL) goto csum_copy_err; } if (err) goto out_free; /* Copy the address. */ if (sin6) { sin6->sin6_family = AF_INET6; sin6->sin6_port = 0; sin6->sin6_addr = ipv6_hdr(skb)->saddr; sin6->sin6_flowinfo = 0; sin6->sin6_scope_id = ipv6_iface_scope_id(&sin6->sin6_addr, inet6_iif(skb)); *addr_len = sizeof(*sin6); } sock_recv_ts_and_drops(msg, sk, skb); if (np->rxopt.all) ip6_datagram_recv_ctl(sk, msg, skb); err = copied; if (flags & MSG_TRUNC) err = skb->len; out_free: skb_free_datagram(sk, skb); out: return err; csum_copy_err: skb_kill_datagram(sk, skb, flags); /* Error for blocking case is chosen to masquerade as some normal condition. */ err = (flags&MSG_DONTWAIT) ? -EAGAIN : -EHOSTUNREACH; goto out; } static int rawv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6, struct raw6_sock *rp) { struct sk_buff *skb; int err = 0; int offset; int len; int total_len; __wsum tmp_csum; __sum16 csum; if (!rp->checksum) goto send; skb = skb_peek(&sk->sk_write_queue); if (!skb) goto out; offset = rp->offset; total_len = inet_sk(sk)->cork.base.length; if (offset >= total_len - 1) { err = -EINVAL; ip6_flush_pending_frames(sk); goto out; } /* should be check HW csum miyazawa */ if (skb_queue_len(&sk->sk_write_queue) == 1) { /* * Only one fragment on the socket. */ tmp_csum = skb->csum; } else { struct sk_buff *csum_skb = NULL; tmp_csum = 0; skb_queue_walk(&sk->sk_write_queue, skb) { tmp_csum = csum_add(tmp_csum, skb->csum); if (csum_skb) continue; len = skb->len - skb_transport_offset(skb); if (offset >= len) { offset -= len; continue; } csum_skb = skb; } skb = csum_skb; } offset += skb_transport_offset(skb); err = skb_copy_bits(skb, offset, &csum, 2); if (err < 0) { ip6_flush_pending_frames(sk); goto out; } /* in case cksum was not initialized */ if (unlikely(csum)) tmp_csum = csum_sub(tmp_csum, csum_unfold(csum)); csum = csum_ipv6_magic(&fl6->saddr, &fl6->daddr, total_len, fl6->flowi6_proto, tmp_csum); if (csum == 0 && fl6->flowi6_proto == IPPROTO_UDP) csum = CSUM_MANGLED_0; BUG_ON(skb_store_bits(skb, offset, &csum, 2)); send: err = ip6_push_pending_frames(sk); out: return err; } static int rawv6_send_hdrinc(struct sock *sk, struct msghdr *msg, int length, struct flowi6 *fl6, struct dst_entry **dstp, unsigned int flags, const struct sockcm_cookie *sockc) { struct ipv6_pinfo *np = inet6_sk(sk); struct net *net = sock_net(sk); struct ipv6hdr *iph; struct sk_buff *skb; int err; struct rt6_info *rt = (struct rt6_info *)*dstp; int hlen = LL_RESERVED_SPACE(rt->dst.dev); int tlen = rt->dst.dev->needed_tailroom; if (length > rt->dst.dev->mtu) { ipv6_local_error(sk, EMSGSIZE, fl6, rt->dst.dev->mtu); return -EMSGSIZE; } if (length < sizeof(struct ipv6hdr)) return -EINVAL; if (flags&MSG_PROBE) goto out; skb = sock_alloc_send_skb(sk, length + hlen + tlen + 15, flags & MSG_DONTWAIT, &err); if (!skb) goto error; skb_reserve(skb, hlen); skb->protocol = htons(ETH_P_IPV6); skb->priority = sk->sk_priority; skb->mark = sockc->mark; skb->tstamp = sockc->transmit_time; skb_put(skb, length); skb_reset_network_header(skb); iph = ipv6_hdr(skb); skb->ip_summed = CHECKSUM_NONE; skb_setup_tx_timestamp(skb, sockc->tsflags); if (flags & MSG_CONFIRM) skb_set_dst_pending_confirm(skb, 1); skb->transport_header = skb->network_header; err = memcpy_from_msg(iph, msg, length); if (err) { err = -EFAULT; kfree_skb(skb); goto error; } skb_dst_set(skb, &rt->dst); *dstp = NULL; /* if egress device is enslaved to an L3 master device pass the * skb to its handler for processing */ skb = l3mdev_ip6_out(sk, skb); if (unlikely(!skb)) return 0; /* Acquire rcu_read_lock() in case we need to use rt->rt6i_idev * in the error path. Since skb has been freed, the dst could * have been queued for deletion. */ rcu_read_lock(); IP6_UPD_PO_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUT, skb->len); err = NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, rt->dst.dev, dst_output); if (err > 0) err = net_xmit_errno(err); if (err) { IP6_INC_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); rcu_read_unlock(); goto error_check; } rcu_read_unlock(); out: return 0; error: IP6_INC_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); error_check: if (err == -ENOBUFS && !np->recverr) err = 0; return err; } struct raw6_frag_vec { struct msghdr *msg; int hlen; char c[4]; }; static int rawv6_probe_proto_opt(struct raw6_frag_vec *rfv, struct flowi6 *fl6) { int err = 0; switch (fl6->flowi6_proto) { case IPPROTO_ICMPV6: rfv->hlen = 2; err = memcpy_from_msg(rfv->c, rfv->msg, rfv->hlen); if (!err) { fl6->fl6_icmp_type = rfv->c[0]; fl6->fl6_icmp_code = rfv->c[1]; } break; case IPPROTO_MH: rfv->hlen = 4; err = memcpy_from_msg(rfv->c, rfv->msg, rfv->hlen); if (!err) fl6->fl6_mh_type = rfv->c[2]; } return err; } static int raw6_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) { struct raw6_frag_vec *rfv = from; if (offset < rfv->hlen) { int copy = min(rfv->hlen - offset, len); if (skb->ip_summed == CHECKSUM_PARTIAL) memcpy(to, rfv->c + offset, copy); else skb->csum = csum_block_add( skb->csum, csum_partial_copy_nocheck(rfv->c + offset, to, copy), odd); odd = 0; offset += copy; to += copy; len -= copy; if (!len) return 0; } offset -= rfv->hlen; return ip_generic_getfrag(rfv->msg, to, offset, len, odd, skb); } static int rawv6_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) { struct ipv6_txoptions *opt_to_free = NULL; struct ipv6_txoptions opt_space; DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); struct in6_addr *daddr, *final_p, final; struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); struct raw6_sock *rp = raw6_sk(sk); struct ipv6_txoptions *opt = NULL; struct ip6_flowlabel *flowlabel = NULL; struct dst_entry *dst = NULL; struct raw6_frag_vec rfv; struct flowi6 fl6; struct ipcm6_cookie ipc6; int addr_len = msg->msg_namelen; int hdrincl; u16 proto; int err; /* Rough check on arithmetic overflow, better check is made in ip6_append_data(). */ if (len > INT_MAX) return -EMSGSIZE; /* Mirror BSD error message compatibility */ if (msg->msg_flags & MSG_OOB) return -EOPNOTSUPP; /* hdrincl should be READ_ONCE(inet->hdrincl) * but READ_ONCE() doesn't work with bit fields. * Doing this indirectly yields the same result. */ hdrincl = inet->hdrincl; hdrincl = READ_ONCE(hdrincl); /* * Get and verify the address. */ memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_mark = sk->sk_mark; fl6.flowi6_uid = sk->sk_uid; ipcm6_init(&ipc6); ipc6.sockc.tsflags = sk->sk_tsflags; ipc6.sockc.mark = sk->sk_mark; if (sin6) { if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; if (sin6->sin6_family && sin6->sin6_family != AF_INET6) return -EAFNOSUPPORT; /* port is the proto value [0..255] carried in nexthdr */ proto = ntohs(sin6->sin6_port); if (!proto) proto = inet->inet_num; else if (proto != inet->inet_num) return -EINVAL; if (proto > 255) return -EINVAL; daddr = &sin6->sin6_addr; if (np->sndflow) { fl6.flowlabel = sin6->sin6_flowinfo&IPV6_FLOWINFO_MASK; if (fl6.flowlabel&IPV6_FLOWLABEL_MASK) { flowlabel = fl6_sock_lookup(sk, fl6.flowlabel); if (IS_ERR(flowlabel)) return -EINVAL; } } /* * Otherwise it will be difficult to maintain * sk->sk_dst_cache. */ if (sk->sk_state == TCP_ESTABLISHED && ipv6_addr_equal(daddr, &sk->sk_v6_daddr)) daddr = &sk->sk_v6_daddr; if (addr_len >= sizeof(struct sockaddr_in6) && sin6->sin6_scope_id && __ipv6_addr_needs_scope_id(__ipv6_addr_type(daddr))) fl6.flowi6_oif = sin6->sin6_scope_id; } else { if (sk->sk_state != TCP_ESTABLISHED) return -EDESTADDRREQ; proto = inet->inet_num; daddr = &sk->sk_v6_daddr; fl6.flowlabel = np->flow_label; } if (fl6.flowi6_oif == 0) fl6.flowi6_oif = sk->sk_bound_dev_if; if (msg->msg_controllen) { opt = &opt_space; memset(opt, 0, sizeof(struct ipv6_txoptions)); opt->tot_len = sizeof(struct ipv6_txoptions); ipc6.opt = opt; err = ip6_datagram_send_ctl(sock_net(sk), sk, msg, &fl6, &ipc6); if (err < 0) { fl6_sock_release(flowlabel); return err; } if ((fl6.flowlabel&IPV6_FLOWLABEL_MASK) && !flowlabel) { flowlabel = fl6_sock_lookup(sk, fl6.flowlabel); if (IS_ERR(flowlabel)) return -EINVAL; } if (!(opt->opt_nflen|opt->opt_flen)) opt = NULL; } if (!opt) { opt = txopt_get(np); opt_to_free = opt; } if (flowlabel) opt = fl6_merge_options(&opt_space, flowlabel, opt); opt = ipv6_fixup_options(&opt_space, opt); fl6.flowi6_proto = proto; fl6.flowi6_mark = ipc6.sockc.mark; if (!hdrincl) { rfv.msg = msg; rfv.hlen = 0; err = rawv6_probe_proto_opt(&rfv, &fl6); if (err) goto out; } if (!ipv6_addr_any(daddr)) fl6.daddr = *daddr; else fl6.daddr.s6_addr[15] = 0x1; /* :: means loopback (BSD'ism) */ if (ipv6_addr_any(&fl6.saddr) && !ipv6_addr_any(&np->saddr)) fl6.saddr = np->saddr; final_p = fl6_update_dst(&fl6, opt, &final); if (!fl6.flowi6_oif && ipv6_addr_is_multicast(&fl6.daddr)) fl6.flowi6_oif = np->mcast_oif; else if (!fl6.flowi6_oif) fl6.flowi6_oif = np->ucast_oif; security_sk_classify_flow(sk, flowi6_to_flowi(&fl6)); if (hdrincl) fl6.flowi6_flags |= FLOWI_FLAG_KNOWN_NH; if (ipc6.tclass < 0) ipc6.tclass = np->tclass; fl6.flowlabel = ip6_make_flowinfo(ipc6.tclass, fl6.flowlabel); dst = ip6_dst_lookup_flow(sock_net(sk), sk, &fl6, final_p); if (IS_ERR(dst)) { err = PTR_ERR(dst); goto out; } if (ipc6.hlimit < 0) ipc6.hlimit = ip6_sk_dst_hoplimit(np, &fl6, dst); if (ipc6.dontfrag < 0) ipc6.dontfrag = np->dontfrag; if (msg->msg_flags&MSG_CONFIRM) goto do_confirm; back_from_confirm: if (hdrincl) err = rawv6_send_hdrinc(sk, msg, len, &fl6, &dst, msg->msg_flags, &ipc6.sockc); else { ipc6.opt = opt; lock_sock(sk); err = ip6_append_data(sk, raw6_getfrag, &rfv, len, 0, &ipc6, &fl6, (struct rt6_info *)dst, msg->msg_flags); if (err) ip6_flush_pending_frames(sk); else if (!(msg->msg_flags & MSG_MORE)) err = rawv6_push_pending_frames(sk, &fl6, rp); release_sock(sk); } done: dst_release(dst); out: fl6_sock_release(flowlabel); txopt_put(opt_to_free); return err < 0 ? err : len; do_confirm: if (msg->msg_flags & MSG_PROBE) dst_confirm_neigh(dst, &fl6.daddr); if (!(msg->msg_flags & MSG_PROBE) || len) goto back_from_confirm; err = 0; goto done; } static int rawv6_seticmpfilter(struct sock *sk, int level, int optname, sockptr_t optval, int optlen) { switch (optname) { case ICMPV6_FILTER: if (optlen > sizeof(struct icmp6_filter)) optlen = sizeof(struct icmp6_filter); if (copy_from_sockptr(&raw6_sk(sk)->filter, optval, optlen)) return -EFAULT; return 0; default: return -ENOPROTOOPT; } return 0; } static int rawv6_geticmpfilter(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { int len; switch (optname) { case ICMPV6_FILTER: if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; if (len > sizeof(struct icmp6_filter)) len = sizeof(struct icmp6_filter); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &raw6_sk(sk)->filter, len)) return -EFAULT; return 0; default: return -ENOPROTOOPT; } return 0; } static int do_rawv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct raw6_sock *rp = raw6_sk(sk); int val; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; switch (optname) { case IPV6_HDRINCL: if (sk->sk_type != SOCK_RAW) return -EINVAL; inet_sk(sk)->hdrincl = !!val; return 0; case IPV6_CHECKSUM: if (inet_sk(sk)->inet_num == IPPROTO_ICMPV6 && level == IPPROTO_IPV6) { /* * RFC3542 tells that IPV6_CHECKSUM socket * option in the IPPROTO_IPV6 level is not * allowed on ICMPv6 sockets. * If you want to set it, use IPPROTO_RAW * level IPV6_CHECKSUM socket option * (Linux extension). */ return -EINVAL; } /* You may get strange result with a positive odd offset; RFC2292bis agrees with me. */ if (val > 0 && (val&1)) return -EINVAL; if (val < 0) { rp->checksum = 0; } else { rp->checksum = 1; rp->offset = val; } return 0; default: return -ENOPROTOOPT; } } static int rawv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { switch (level) { case SOL_RAW: break; case SOL_ICMPV6: if (inet_sk(sk)->inet_num != IPPROTO_ICMPV6) return -EOPNOTSUPP; return rawv6_seticmpfilter(sk, level, optname, optval, optlen); case SOL_IPV6: if (optname == IPV6_CHECKSUM || optname == IPV6_HDRINCL) break; fallthrough; default: return ipv6_setsockopt(sk, level, optname, optval, optlen); } return do_rawv6_setsockopt(sk, level, optname, optval, optlen); } static int do_rawv6_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct raw6_sock *rp = raw6_sk(sk); int val, len; if (get_user(len, optlen)) return -EFAULT; switch (optname) { case IPV6_HDRINCL: val = inet_sk(sk)->hdrincl; break; case IPV6_CHECKSUM: /* * We allow getsockopt() for IPPROTO_IPV6-level * IPV6_CHECKSUM socket option on ICMPv6 sockets * since RFC3542 is silent about it. */ if (rp->checksum == 0) val = -1; else val = rp->offset; break; default: return -ENOPROTOOPT; } len = min_t(unsigned int, sizeof(int), len); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static int rawv6_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { switch (level) { case SOL_RAW: break; case SOL_ICMPV6: if (inet_sk(sk)->inet_num != IPPROTO_ICMPV6) return -EOPNOTSUPP; return rawv6_geticmpfilter(sk, level, optname, optval, optlen); case SOL_IPV6: if (optname == IPV6_CHECKSUM || optname == IPV6_HDRINCL) break; fallthrough; default: return ipv6_getsockopt(sk, level, optname, optval, optlen); } return do_rawv6_getsockopt(sk, level, optname, optval, optlen); } static int rawv6_ioctl(struct sock *sk, int cmd, unsigned long arg) { switch (cmd) { case SIOCOUTQ: { int amount = sk_wmem_alloc_get(sk); return put_user(amount, (int __user *)arg); } case SIOCINQ: { struct sk_buff *skb; int amount = 0; spin_lock_bh(&sk->sk_receive_queue.lock); skb = skb_peek(&sk->sk_receive_queue); if (skb) amount = skb->len; spin_unlock_bh(&sk->sk_receive_queue.lock); return put_user(amount, (int __user *)arg); } default: #ifdef CONFIG_IPV6_MROUTE return ip6mr_ioctl(sk, cmd, (void __user *)arg); #else return -ENOIOCTLCMD; #endif } } #ifdef CONFIG_COMPAT static int compat_rawv6_ioctl(struct sock *sk, unsigned int cmd, unsigned long arg) { switch (cmd) { case SIOCOUTQ: case SIOCINQ: return -ENOIOCTLCMD; default: #ifdef CONFIG_IPV6_MROUTE return ip6mr_compat_ioctl(sk, cmd, compat_ptr(arg)); #else return -ENOIOCTLCMD; #endif } } #endif static void rawv6_close(struct sock *sk, long timeout) { if (inet_sk(sk)->inet_num == IPPROTO_RAW) ip6_ra_control(sk, -1); ip6mr_sk_done(sk); sk_common_release(sk); } static void raw6_destroy(struct sock *sk) { lock_sock(sk); ip6_flush_pending_frames(sk); release_sock(sk); inet6_destroy_sock(sk); } static int rawv6_init_sk(struct sock *sk) { struct raw6_sock *rp = raw6_sk(sk); switch (inet_sk(sk)->inet_num) { case IPPROTO_ICMPV6: rp->checksum = 1; rp->offset = 2; break; case IPPROTO_MH: rp->checksum = 1; rp->offset = 4; break; default: break; } return 0; } struct proto rawv6_prot = { .name = "RAWv6", .owner = THIS_MODULE, .close = rawv6_close, .destroy = raw6_destroy, .connect = ip6_datagram_connect_v6_only, .disconnect = __udp_disconnect, .ioctl = rawv6_ioctl, .init = rawv6_init_sk, .setsockopt = rawv6_setsockopt, .getsockopt = rawv6_getsockopt, .sendmsg = rawv6_sendmsg, .recvmsg = rawv6_recvmsg, .bind = rawv6_bind, .backlog_rcv = rawv6_rcv_skb, .hash = raw_hash_sk, .unhash = raw_unhash_sk, .obj_size = sizeof(struct raw6_sock), .useroffset = offsetof(struct raw6_sock, filter), .usersize = sizeof_field(struct raw6_sock, filter), .h.raw_hash = &raw_v6_hashinfo, #ifdef CONFIG_COMPAT .compat_ioctl = compat_rawv6_ioctl, #endif .diag_destroy = raw_abort, }; #ifdef CONFIG_PROC_FS static int raw6_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) { seq_puts(seq, IPV6_SEQ_DGRAM_HEADER); } else { struct sock *sp = v; __u16 srcp = inet_sk(sp)->inet_num; ip6_dgram_sock_seq_show(seq, v, srcp, 0, raw_seq_private(seq)->bucket); } return 0; } static const struct seq_operations raw6_seq_ops = { .start = raw_seq_start, .next = raw_seq_next, .stop = raw_seq_stop, .show = raw6_seq_show, }; static int __net_init raw6_init_net(struct net *net) { if (!proc_create_net_data("raw6", 0444, net->proc_net, &raw6_seq_ops, sizeof(struct raw_iter_state), &raw_v6_hashinfo)) return -ENOMEM; return 0; } static void __net_exit raw6_exit_net(struct net *net) { remove_proc_entry("raw6", net->proc_net); } static struct pernet_operations raw6_net_ops = { .init = raw6_init_net, .exit = raw6_exit_net, }; int __init raw6_proc_init(void) { return register_pernet_subsys(&raw6_net_ops); } void raw6_proc_exit(void) { unregister_pernet_subsys(&raw6_net_ops); } #endif /* CONFIG_PROC_FS */ /* Same as inet6_dgram_ops, sans udp_poll. */ const struct proto_ops inet6_sockraw_ops = { .family = PF_INET6, .owner = THIS_MODULE, .release = inet6_release, .bind = inet6_bind, .connect = inet_dgram_connect, /* ok */ .socketpair = sock_no_socketpair, /* a do nothing */ .accept = sock_no_accept, /* a do nothing */ .getname = inet6_getname, .poll = datagram_poll, /* ok */ .ioctl = inet6_ioctl, /* must change */ .gettstamp = sock_gettstamp, .listen = sock_no_listen, /* ok */ .shutdown = inet_shutdown, /* ok */ .setsockopt = sock_common_setsockopt, /* ok */ .getsockopt = sock_common_getsockopt, /* ok */ .sendmsg = inet_sendmsg, /* ok */ .recvmsg = sock_common_recvmsg, /* ok */ .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, #ifdef CONFIG_COMPAT .compat_ioctl = inet6_compat_ioctl, #endif }; static struct inet_protosw rawv6_protosw = { .type = SOCK_RAW, .protocol = IPPROTO_IP, /* wild card */ .prot = &rawv6_prot, .ops = &inet6_sockraw_ops, .flags = INET_PROTOSW_REUSE, }; int __init rawv6_init(void) { return inet6_register_protosw(&rawv6_protosw); } void rawv6_exit(void) { inet6_unregister_protosw(&rawv6_protosw); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Access to user system call parameters and results * * Copyright (C) 2008-2009 Red Hat, Inc. All rights reserved. * * See asm-generic/syscall.h for descriptions of what we must do here. */ #ifndef _ASM_X86_SYSCALL_H #define _ASM_X86_SYSCALL_H #include <uapi/linux/audit.h> #include <linux/sched.h> #include <linux/err.h> #include <asm/thread_info.h> /* for TS_COMPAT */ #include <asm/unistd.h> typedef long (*sys_call_ptr_t)(const struct pt_regs *); extern const sys_call_ptr_t sys_call_table[]; #if defined(CONFIG_X86_32) #define ia32_sys_call_table sys_call_table #endif #if defined(CONFIG_IA32_EMULATION) extern const sys_call_ptr_t ia32_sys_call_table[]; #endif #ifdef CONFIG_X86_X32_ABI extern const sys_call_ptr_t x32_sys_call_table[]; #endif /* * Only the low 32 bits of orig_ax are meaningful, so we return int. * This importantly ignores the high bits on 64-bit, so comparisons * sign-extend the low 32 bits. */ static inline int syscall_get_nr(struct task_struct *task, struct pt_regs *regs) { return regs->orig_ax; } static inline void syscall_rollback(struct task_struct *task, struct pt_regs *regs) { regs->ax = regs->orig_ax; } static inline long syscall_get_error(struct task_struct *task, struct pt_regs *regs) { unsigned long error = regs->ax; #ifdef CONFIG_IA32_EMULATION /* * TS_COMPAT is set for 32-bit syscall entries and then * remains set until we return to user mode. */ if (task->thread_info.status & (TS_COMPAT|TS_I386_REGS_POKED)) /* * Sign-extend the value so (int)-EFOO becomes (long)-EFOO * and will match correctly in comparisons. */ error = (long) (int) error; #endif return IS_ERR_VALUE(error) ? error : 0; } static inline long syscall_get_return_value(struct task_struct *task, struct pt_regs *regs) { return regs->ax; } static inline void syscall_set_return_value(struct task_struct *task, struct pt_regs *regs, int error, long val) { regs->ax = (long) error ?: val; } #ifdef CONFIG_X86_32 static inline void syscall_get_arguments(struct task_struct *task, struct pt_regs *regs, unsigned long *args) { memcpy(args, &regs->bx, 6 * sizeof(args[0])); } static inline void syscall_set_arguments(struct task_struct *task, struct pt_regs *regs, unsigned int i, unsigned int n, const unsigned long *args) { BUG_ON(i + n > 6); memcpy(&regs->bx + i, args, n * sizeof(args[0])); } static inline int syscall_get_arch(struct task_struct *task) { return AUDIT_ARCH_I386; } #else /* CONFIG_X86_64 */ static inline void syscall_get_arguments(struct task_struct *task, struct pt_regs *regs, unsigned long *args) { # ifdef CONFIG_IA32_EMULATION if (task->thread_info.status & TS_COMPAT) { *args++ = regs->bx; *args++ = regs->cx; *args++ = regs->dx; *args++ = regs->si; *args++ = regs->di; *args = regs->bp; } else # endif { *args++ = regs->di; *args++ = regs->si; *args++ = regs->dx; *args++ = regs->r10; *args++ = regs->r8; *args = regs->r9; } } static inline void syscall_set_arguments(struct task_struct *task, struct pt_regs *regs, const unsigned long *args) { # ifdef CONFIG_IA32_EMULATION if (task->thread_info.status & TS_COMPAT) { regs->bx = *args++; regs->cx = *args++; regs->dx = *args++; regs->si = *args++; regs->di = *args++; regs->bp = *args; } else # endif { regs->di = *args++; regs->si = *args++; regs->dx = *args++; regs->r10 = *args++; regs->r8 = *args++; regs->r9 = *args; } } static inline int syscall_get_arch(struct task_struct *task) { /* x32 tasks should be considered AUDIT_ARCH_X86_64. */ return (IS_ENABLED(CONFIG_IA32_EMULATION) && task->thread_info.status & TS_COMPAT) ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64; } void do_syscall_64(unsigned long nr, struct pt_regs *regs); void do_int80_syscall_32(struct pt_regs *regs); long do_fast_syscall_32(struct pt_regs *regs); #endif /* CONFIG_X86_32 */ #endif /* _ASM_X86_SYSCALL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __MAC802154_DRIVER_OPS #define __MAC802154_DRIVER_OPS #include <linux/types.h> #include <linux/rtnetlink.h> #include <net/mac802154.h> #include "ieee802154_i.h" #include "trace.h" static inline int drv_xmit_async(struct ieee802154_local *local, struct sk_buff *skb) { return local->ops->xmit_async(&local->hw, skb); } static inline int drv_xmit_sync(struct ieee802154_local *local, struct sk_buff *skb) { might_sleep(); return local->ops->xmit_sync(&local->hw, skb); } static inline int drv_start(struct ieee802154_local *local) { int ret; might_sleep(); trace_802154_drv_start(local); local->started = true; smp_mb(); ret = local->ops->start(&local->hw); trace_802154_drv_return_int(local, ret); return ret; } static inline void drv_stop(struct ieee802154_local *local) { might_sleep(); trace_802154_drv_stop(local); local->ops->stop(&local->hw); trace_802154_drv_return_void(local); /* sync away all work on the tasklet before clearing started */ tasklet_disable(&local->tasklet); tasklet_enable(&local->tasklet); barrier(); local->started = false; } static inline int drv_set_channel(struct ieee802154_local *local, u8 page, u8 channel) { int ret; might_sleep(); trace_802154_drv_set_channel(local, page, channel); ret = local->ops->set_channel(&local->hw, page, channel); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_tx_power(struct ieee802154_local *local, s32 mbm) { int ret; might_sleep(); if (!local->ops->set_txpower) { WARN_ON(1); return -EOPNOTSUPP; } trace_802154_drv_set_tx_power(local, mbm); ret = local->ops->set_txpower(&local->hw, mbm); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_cca_mode(struct ieee802154_local *local, const struct wpan_phy_cca *cca) { int ret; might_sleep(); if (!local->ops->set_cca_mode) { WARN_ON(1); return -EOPNOTSUPP; } trace_802154_drv_set_cca_mode(local, cca); ret = local->ops->set_cca_mode(&local->hw, cca); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_lbt_mode(struct ieee802154_local *local, bool mode) { int ret; might_sleep(); if (!local->ops->set_lbt) { WARN_ON(1); return -EOPNOTSUPP; } trace_802154_drv_set_lbt_mode(local, mode); ret = local->ops->set_lbt(&local->hw, mode); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_cca_ed_level(struct ieee802154_local *local, s32 mbm) { int ret; might_sleep(); if (!local->ops->set_cca_ed_level) { WARN_ON(1); return -EOPNOTSUPP; } trace_802154_drv_set_cca_ed_level(local, mbm); ret = local->ops->set_cca_ed_level(&local->hw, mbm); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_pan_id(struct ieee802154_local *local, __le16 pan_id) { struct ieee802154_hw_addr_filt filt; int ret; might_sleep(); if (!local->ops->set_hw_addr_filt) { WARN_ON(1); return -EOPNOTSUPP; } filt.pan_id = pan_id; trace_802154_drv_set_pan_id(local, pan_id); ret = local->ops->set_hw_addr_filt(&local->hw, &filt, IEEE802154_AFILT_PANID_CHANGED); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_extended_addr(struct ieee802154_local *local, __le64 extended_addr) { struct ieee802154_hw_addr_filt filt; int ret; might_sleep(); if (!local->ops->set_hw_addr_filt) { WARN_ON(1); return -EOPNOTSUPP; } filt.ieee_addr = extended_addr; trace_802154_drv_set_extended_addr(local, extended_addr); ret = local->ops->set_hw_addr_filt(&local->hw, &filt, IEEE802154_AFILT_IEEEADDR_CHANGED); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_short_addr(struct ieee802154_local *local, __le16 short_addr) { struct ieee802154_hw_addr_filt filt; int ret; might_sleep(); if (!local->ops->set_hw_addr_filt) { WARN_ON(1); return -EOPNOTSUPP; } filt.short_addr = short_addr; trace_802154_drv_set_short_addr(local, short_addr); ret = local->ops->set_hw_addr_filt(&local->hw, &filt, IEEE802154_AFILT_SADDR_CHANGED); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_pan_coord(struct ieee802154_local *local, bool is_coord) { struct ieee802154_hw_addr_filt filt; int ret; might_sleep(); if (!local->ops->set_hw_addr_filt) { WARN_ON(1); return -EOPNOTSUPP; } filt.pan_coord = is_coord; trace_802154_drv_set_pan_coord(local, is_coord); ret = local->ops->set_hw_addr_filt(&local->hw, &filt, IEEE802154_AFILT_PANC_CHANGED); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_csma_params(struct ieee802154_local *local, u8 min_be, u8 max_be, u8 max_csma_backoffs) { int ret; might_sleep(); if (!local->ops->set_csma_params) { WARN_ON(1); return -EOPNOTSUPP; } trace_802154_drv_set_csma_params(local, min_be, max_be, max_csma_backoffs); ret = local->ops->set_csma_params(&local->hw, min_be, max_be, max_csma_backoffs); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_max_frame_retries(struct ieee802154_local *local, s8 max_frame_retries) { int ret; might_sleep(); if (!local->ops->set_frame_retries) { WARN_ON(1); return -EOPNOTSUPP; } trace_802154_drv_set_max_frame_retries(local, max_frame_retries); ret = local->ops->set_frame_retries(&local->hw, max_frame_retries); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_promiscuous_mode(struct ieee802154_local *local, bool on) { int ret; might_sleep(); if (!local->ops->set_promiscuous_mode) { WARN_ON(1); return -EOPNOTSUPP; } trace_802154_drv_set_promiscuous_mode(local, on); ret = local->ops->set_promiscuous_mode(&local->hw, on); trace_802154_drv_return_int(local, ret); return ret; } #endif /* __MAC802154_DRIVER_OPS */
135 137 137 137 137 135 129 129 129 3 129 135 136 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 // SPDX-License-Identifier: GPL-2.0 /* * Lockless hierarchical page accounting & limiting * * Copyright (C) 2014 Red Hat, Inc., Johannes Weiner */ #include <linux/page_counter.h> #include <linux/atomic.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/sched.h> #include <linux/bug.h> #include <asm/page.h> static void propagate_protected_usage(struct page_counter *c, unsigned long usage) { unsigned long protected, old_protected; unsigned long low, min; long delta; if (!c->parent) return; min = READ_ONCE(c->min); if (min || atomic_long_read(&c->min_usage)) { protected = min(usage, min); old_protected = atomic_long_xchg(&c->min_usage, protected); delta = protected - old_protected; if (delta) atomic_long_add(delta, &c->parent->children_min_usage); } low = READ_ONCE(c->low); if (low || atomic_long_read(&c->low_usage)) { protected = min(usage, low); old_protected = atomic_long_xchg(&c->low_usage, protected); delta = protected - old_protected; if (delta) atomic_long_add(delta, &c->parent->children_low_usage); } } /** * page_counter_cancel - take pages out of the local counter * @counter: counter * @nr_pages: number of pages to cancel */ void page_counter_cancel(struct page_counter *counter, unsigned long nr_pages) { long new; new = atomic_long_sub_return(nr_pages, &counter->usage); propagate_protected_usage(counter, new); /* More uncharges than charges? */ WARN_ON_ONCE(new < 0); } /** * page_counter_charge - hierarchically charge pages * @counter: counter * @nr_pages: number of pages to charge * * NOTE: This does not consider any configured counter limits. */ void page_counter_charge(struct page_counter *counter, unsigned long nr_pages) { struct page_counter *c; for (c = counter; c; c = c->parent) { long new; new = atomic_long_add_return(nr_pages, &c->usage); propagate_protected_usage(c, new); /* * This is indeed racy, but we can live with some * inaccuracy in the watermark. */ if (new > READ_ONCE(c->watermark)) WRITE_ONCE(c->watermark, new); } } /** * page_counter_try_charge - try to hierarchically charge pages * @counter: counter * @nr_pages: number of pages to charge * @fail: points first counter to hit its limit, if any * * Returns %true on success, or %false and @fail if the counter or one * of its ancestors has hit its configured limit. */ bool page_counter_try_charge(struct page_counter *counter, unsigned long nr_pages, struct page_counter **fail) { struct page_counter *c; for (c = counter; c; c = c->parent) { long new; /* * Charge speculatively to avoid an expensive CAS. If * a bigger charge fails, it might falsely lock out a * racing smaller charge and send it into reclaim * early, but the error is limited to the difference * between the two sizes, which is less than 2M/4M in * case of a THP locking out a regular page charge. * * The atomic_long_add_return() implies a full memory * barrier between incrementing the count and reading * the limit. When racing with page_counter_set_max(), * we either see the new limit or the setter sees the * counter has changed and retries. */ new = atomic_long_add_return(nr_pages, &c->usage); if (new > c->max) { atomic_long_sub(nr_pages, &c->usage); propagate_protected_usage(c, new); /* * This is racy, but we can live with some * inaccuracy in the failcnt which is only used * to report stats. */ data_race(c->failcnt++); *fail = c; goto failed; } propagate_protected_usage(c, new); /* * Just like with failcnt, we can live with some * inaccuracy in the watermark. */ if (new > READ_ONCE(c->watermark)) WRITE_ONCE(c->watermark, new); } return true; failed: for (c = counter; c != *fail; c = c->parent) page_counter_cancel(c, nr_pages); return false; } /** * page_counter_uncharge - hierarchically uncharge pages * @counter: counter * @nr_pages: number of pages to uncharge */ void page_counter_uncharge(struct page_counter *counter, unsigned long nr_pages) { struct page_counter *c; for (c = counter; c; c = c->parent) page_counter_cancel(c, nr_pages); } /** * page_counter_set_max - set the maximum number of pages allowed * @counter: counter * @nr_pages: limit to set * * Returns 0 on success, -EBUSY if the current number of pages on the * counter already exceeds the specified limit. * * The caller must serialize invocations on the same counter. */ int page_counter_set_max(struct page_counter *counter, unsigned long nr_pages) { for (;;) { unsigned long old; long usage; /* * Update the limit while making sure that it's not * below the concurrently-changing counter value. * * The xchg implies two full memory barriers before * and after, so the read-swap-read is ordered and * ensures coherency with page_counter_try_charge(): * that function modifies the count before checking * the limit, so if it sees the old limit, we see the * modified counter and retry. */ usage = atomic_long_read(&counter->usage); if (usage > nr_pages) return -EBUSY; old = xchg(&counter->max, nr_pages); if (atomic_long_read(&counter->usage) <= usage) return 0; counter->max = old; cond_resched(); } } /** * page_counter_set_min - set the amount of protected memory * @counter: counter * @nr_pages: value to set * * The caller must serialize invocations on the same counter. */ void page_counter_set_min(struct page_counter *counter, unsigned long nr_pages) { struct page_counter *c; WRITE_ONCE(counter->min, nr_pages); for (c = counter; c; c = c->parent) propagate_protected_usage(c, atomic_long_read(&c->usage)); } /** * page_counter_set_low - set the amount of protected memory * @counter: counter * @nr_pages: value to set * * The caller must serialize invocations on the same counter. */ void page_counter_set_low(struct page_counter *counter, unsigned long nr_pages) { struct page_counter *c; WRITE_ONCE(counter->low, nr_pages); for (c = counter; c; c = c->parent) propagate_protected_usage(c, atomic_long_read(&c->usage)); } /** * page_counter_memparse - memparse() for page counter limits * @buf: string to parse * @max: string meaning maximum possible value * @nr_pages: returns the result in number of pages * * Returns -EINVAL, or 0 and @nr_pages on success. @nr_pages will be * limited to %PAGE_COUNTER_MAX. */ int page_counter_memparse(const char *buf, const char *max, unsigned long *nr_pages) { char *end; u64 bytes; if (!strcmp(buf, max)) { *nr_pages = PAGE_COUNTER_MAX; return 0; } bytes = memparse(buf, &end); if (*end != '\0') return -EINVAL; *nr_pages = min(bytes / PAGE_SIZE, (u64)PAGE_COUNTER_MAX); return 0; }
4 4 4 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 // SPDX-License-Identifier: GPL-2.0 /* * linux/lib/kasprintf.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include <stdarg.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/string.h> /* Simplified asprintf. */ char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap) { unsigned int first, second; char *p; va_list aq; va_copy(aq, ap); first = vsnprintf(NULL, 0, fmt, aq); va_end(aq); p = kmalloc_track_caller(first+1, gfp); if (!p) return NULL; second = vsnprintf(p, first+1, fmt, ap); WARN(first != second, "different return values (%u and %u) from vsnprintf(\"%s\", ...)", first, second, fmt); return p; } EXPORT_SYMBOL(kvasprintf); /* * If fmt contains no % (or is exactly %s), use kstrdup_const. If fmt * (or the sole vararg) points to rodata, we will then save a memory * allocation and string copy. In any case, the return value should be * freed using kfree_const(). */ const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list ap) { if (!strchr(fmt, '%')) return kstrdup_const(fmt, gfp); if (!strcmp(fmt, "%s")) return kstrdup_const(va_arg(ap, const char*), gfp); return kvasprintf(gfp, fmt, ap); } EXPORT_SYMBOL(kvasprintf_const); char *kasprintf(gfp_t gfp, const char *fmt, ...) { va_list ap; char *p; va_start(ap, fmt); p = kvasprintf(gfp, fmt, ap); va_end(ap); return p; } EXPORT_SYMBOL(kasprintf);
1 10 12 14 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_IVERSION_H #define _LINUX_IVERSION_H #include <linux/fs.h> /* * The inode->i_version field: * --------------------------- * The change attribute (i_version) is mandated by NFSv4 and is mostly for * knfsd, but is also used for other purposes (e.g. IMA). The i_version must * appear different to observers if there was a change to the inode's data or * metadata since it was last queried. * * Observers see the i_version as a 64-bit number that never decreases. If it * remains the same since it was last checked, then nothing has changed in the * inode. If it's different then something has changed. Observers cannot infer * anything about the nature or magnitude of the changes from the value, only * that the inode has changed in some fashion. * * Not all filesystems properly implement the i_version counter. Subsystems that * want to use i_version field on an inode should first check whether the * filesystem sets the SB_I_VERSION flag (usually via the IS_I_VERSION macro). * * Those that set SB_I_VERSION will automatically have their i_version counter * incremented on writes to normal files. If the SB_I_VERSION is not set, then * the VFS will not touch it on writes, and the filesystem can use it how it * wishes. Note that the filesystem is always responsible for updating the * i_version on namespace changes in directories (mkdir, rmdir, unlink, etc.). * We consider these sorts of filesystems to have a kernel-managed i_version. * * It may be impractical for filesystems to keep i_version updates atomic with * respect to the changes that cause them. They should, however, guarantee * that i_version updates are never visible before the changes that caused * them. Also, i_version updates should never be delayed longer than it takes * the original change to reach disk. * * This implementation uses the low bit in the i_version field as a flag to * track when the value has been queried. If it has not been queried since it * was last incremented, we can skip the increment in most cases. * * In the event that we're updating the ctime, we will usually go ahead and * bump the i_version anyway. Since that has to go to stable storage in some * fashion, we might as well increment it as well. * * With this implementation, the value should always appear to observers to * increase over time if the file has changed. It's recommended to use * inode_eq_iversion() helper to compare values. * * Note that some filesystems (e.g. NFS and AFS) just use the field to store * a server-provided value (for the most part). For that reason, those * filesystems do not set SB_I_VERSION. These filesystems are considered to * have a self-managed i_version. * * Persistently storing the i_version * ---------------------------------- * Queries of the i_version field are not gated on them hitting the backing * store. It's always possible that the host could crash after allowing * a query of the value but before it has made it to disk. * * To mitigate this problem, filesystems should always use * inode_set_iversion_queried when loading an existing inode from disk. This * ensures that the next attempted inode increment will result in the value * changing. * * Storing the value to disk therefore does not count as a query, so those * filesystems should use inode_peek_iversion to grab the value to be stored. * There is no need to flag the value as having been queried in that case. */ /* * We borrow the lowest bit in the i_version to use as a flag to tell whether * it has been queried since we last incremented it. If it has, then we must * increment it on the next change. After that, we can clear the flag and * avoid incrementing it again until it has again been queried. */ #define I_VERSION_QUERIED_SHIFT (1) #define I_VERSION_QUERIED (1ULL << (I_VERSION_QUERIED_SHIFT - 1)) #define I_VERSION_INCREMENT (1ULL << I_VERSION_QUERIED_SHIFT) /** * inode_set_iversion_raw - set i_version to the specified raw value * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val. This function is for use by * filesystems that self-manage the i_version. * * For example, the NFS client stores its NFSv4 change attribute in this way, * and the AFS client stores the data_version from the server here. */ static inline void inode_set_iversion_raw(struct inode *inode, u64 val) { atomic64_set(&inode->i_version, val); } /** * inode_peek_iversion_raw - grab a "raw" iversion value * @inode: inode from which i_version should be read * * Grab a "raw" inode->i_version value and return it. The i_version is not * flagged or converted in any way. This is mostly used to access a self-managed * i_version. * * With those filesystems, we want to treat the i_version as an entirely * opaque value. */ static inline u64 inode_peek_iversion_raw(const struct inode *inode) { return atomic64_read(&inode->i_version); } /** * inode_set_max_iversion_raw - update i_version new value is larger * @inode: inode to set * @val: new i_version to set * * Some self-managed filesystems (e.g Ceph) will only update the i_version * value if the new value is larger than the one we already have. */ static inline void inode_set_max_iversion_raw(struct inode *inode, u64 val) { u64 cur, old; cur = inode_peek_iversion_raw(inode); for (;;) { if (cur > val) break; old = atomic64_cmpxchg(&inode->i_version, cur, val); if (likely(old == cur)) break; cur = old; } } /** * inode_set_iversion - set i_version to a particular value * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val. This function is for filesystems with * a kernel-managed i_version, for initializing a newly-created inode from * scratch. * * In this case, we do not set the QUERIED flag since we know that this value * has never been queried. */ static inline void inode_set_iversion(struct inode *inode, u64 val) { inode_set_iversion_raw(inode, val << I_VERSION_QUERIED_SHIFT); } /** * inode_set_iversion_queried - set i_version to a particular value as quereied * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val, and flag it for increment on the next * change. * * Filesystems that persistently store the i_version on disk should use this * when loading an existing inode from disk. * * When loading in an i_version value from a backing store, we can't be certain * that it wasn't previously viewed before being stored. Thus, we must assume * that it was, to ensure that we don't end up handing out the same value for * different versions of the same inode. */ static inline void inode_set_iversion_queried(struct inode *inode, u64 val) { inode_set_iversion_raw(inode, (val << I_VERSION_QUERIED_SHIFT) | I_VERSION_QUERIED); } /** * inode_maybe_inc_iversion - increments i_version * @inode: inode with the i_version that should be updated * @force: increment the counter even if it's not necessary? * * Every time the inode is modified, the i_version field must be seen to have * changed by any observer. * * If "force" is set or the QUERIED flag is set, then ensure that we increment * the value, and clear the queried flag. * * In the common case where neither is set, then we can return "false" without * updating i_version. * * If this function returns false, and no other metadata has changed, then we * can avoid logging the metadata. */ static inline bool inode_maybe_inc_iversion(struct inode *inode, bool force) { u64 cur, old, new; /* * The i_version field is not strictly ordered with any other inode * information, but the legacy inode_inc_iversion code used a spinlock * to serialize increments. * * Here, we add full memory barriers to ensure that any de-facto * ordering with other info is preserved. * * This barrier pairs with the barrier in inode_query_iversion() */ smp_mb(); cur = inode_peek_iversion_raw(inode); for (;;) { /* If flag is clear then we needn't do anything */ if (!force && !(cur & I_VERSION_QUERIED)) return false; /* Since lowest bit is flag, add 2 to avoid it */ new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; old = atomic64_cmpxchg(&inode->i_version, cur, new); if (likely(old == cur)) break; cur = old; } return true; } /** * inode_inc_iversion - forcibly increment i_version * @inode: inode that needs to be updated * * Forcbily increment the i_version field. This always results in a change to * the observable value. */ static inline void inode_inc_iversion(struct inode *inode) { inode_maybe_inc_iversion(inode, true); } /** * inode_iversion_need_inc - is the i_version in need of being incremented? * @inode: inode to check * * Returns whether the inode->i_version counter needs incrementing on the next * change. Just fetch the value and check the QUERIED flag. */ static inline bool inode_iversion_need_inc(struct inode *inode) { return inode_peek_iversion_raw(inode) & I_VERSION_QUERIED; } /** * inode_inc_iversion_raw - forcibly increment raw i_version * @inode: inode that needs to be updated * * Forcbily increment the raw i_version field. This always results in a change * to the raw value. * * NFS will use the i_version field to store the value from the server. It * mostly treats it as opaque, but in the case where it holds a write * delegation, it must increment the value itself. This function does that. */ static inline void inode_inc_iversion_raw(struct inode *inode) { atomic64_inc(&inode->i_version); } /** * inode_peek_iversion - read i_version without flagging it to be incremented * @inode: inode from which i_version should be read * * Read the inode i_version counter for an inode without registering it as a * query. * * This is typically used by local filesystems that need to store an i_version * on disk. In that situation, it's not necessary to flag it as having been * viewed, as the result won't be used to gauge changes from that point. */ static inline u64 inode_peek_iversion(const struct inode *inode) { return inode_peek_iversion_raw(inode) >> I_VERSION_QUERIED_SHIFT; } /** * inode_query_iversion - read i_version for later use * @inode: inode from which i_version should be read * * Read the inode i_version counter. This should be used by callers that wish * to store the returned i_version for later comparison. This will guarantee * that a later query of the i_version will result in a different value if * anything has changed. * * In this implementation, we fetch the current value, set the QUERIED flag and * then try to swap it into place with a cmpxchg, if it wasn't already set. If * that fails, we try again with the newly fetched value from the cmpxchg. */ static inline u64 inode_query_iversion(struct inode *inode) { u64 cur, old, new; cur = inode_peek_iversion_raw(inode); for (;;) { /* If flag is already set, then no need to swap */ if (cur & I_VERSION_QUERIED) { /* * This barrier (and the implicit barrier in the * cmpxchg below) pairs with the barrier in * inode_maybe_inc_iversion(). */ smp_mb(); break; } new = cur | I_VERSION_QUERIED; old = atomic64_cmpxchg(&inode->i_version, cur, new); if (likely(old == cur)) break; cur = old; } return cur >> I_VERSION_QUERIED_SHIFT; } /** * inode_eq_iversion_raw - check whether the raw i_version counter has changed * @inode: inode to check * @old: old value to check against its i_version * * Compare the current raw i_version counter with a previous one. Returns true * if they are the same or false if they are different. */ static inline bool inode_eq_iversion_raw(const struct inode *inode, u64 old) { return inode_peek_iversion_raw(inode) == old; } /** * inode_eq_iversion - check whether the i_version counter has changed * @inode: inode to check * @old: old value to check against its i_version * * Compare an i_version counter with a previous one. Returns true if they are * the same, and false if they are different. * * Note that we don't need to set the QUERIED flag in this case, as the value * in the inode is not being recorded for later use. */ static inline bool inode_eq_iversion(const struct inode *inode, u64 old) { return inode_peek_iversion(inode) == old; } #endif
1 81 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _MM_PERCPU_INTERNAL_H #define _MM_PERCPU_INTERNAL_H #include <linux/types.h> #include <linux/percpu.h> /* * There are two chunk types: root and memcg-aware. * Chunks of each type have separate slots list. * * Memcg-aware chunks have an attached vector of obj_cgroup pointers, which is * used to store memcg membership data of a percpu object. Obj_cgroups are * ref-counted pointers to a memory cgroup with an ability to switch dynamically * to the parent memory cgroup. This allows to reclaim a deleted memory cgroup * without reclaiming of all outstanding objects, which hold a reference at it. */ enum pcpu_chunk_type { PCPU_CHUNK_ROOT, #ifdef CONFIG_MEMCG_KMEM PCPU_CHUNK_MEMCG, #endif PCPU_NR_CHUNK_TYPES, PCPU_FAIL_ALLOC = PCPU_NR_CHUNK_TYPES }; /* * pcpu_block_md is the metadata block struct. * Each chunk's bitmap is split into a number of full blocks. * All units are in terms of bits. * * The scan hint is the largest known contiguous area before the contig hint. * It is not necessarily the actual largest contig hint though. There is an * invariant that the scan_hint_start > contig_hint_start iff * scan_hint == contig_hint. This is necessary because when scanning forward, * we don't know if a new contig hint would be better than the current one. */ struct pcpu_block_md { int scan_hint; /* scan hint for block */ int scan_hint_start; /* block relative starting position of the scan hint */ int contig_hint; /* contig hint for block */ int contig_hint_start; /* block relative starting position of the contig hint */ int left_free; /* size of free space along the left side of the block */ int right_free; /* size of free space along the right side of the block */ int first_free; /* block position of first free */ int nr_bits; /* total bits responsible for */ }; struct pcpu_chunk { #ifdef CONFIG_PERCPU_STATS int nr_alloc; /* # of allocations */ size_t max_alloc_size; /* largest allocation size */ #endif struct list_head list; /* linked to pcpu_slot lists */ int free_bytes; /* free bytes in the chunk */ struct pcpu_block_md chunk_md; void *base_addr; /* base address of this chunk */ unsigned long *alloc_map; /* allocation map */ unsigned long *bound_map; /* boundary map */ struct pcpu_block_md *md_blocks; /* metadata blocks */ void *data; /* chunk data */ bool immutable; /* no [de]population allowed */ int start_offset; /* the overlap with the previous region to have a page aligned base_addr */ int end_offset; /* additional area required to have the region end page aligned */ #ifdef CONFIG_MEMCG_KMEM struct obj_cgroup **obj_cgroups; /* vector of object cgroups */ #endif int nr_pages; /* # of pages served by this chunk */ int nr_populated; /* # of populated pages */ int nr_empty_pop_pages; /* # of empty populated pages */ unsigned long populated[]; /* populated bitmap */ }; extern spinlock_t pcpu_lock; extern struct list_head *pcpu_chunk_lists; extern int pcpu_nr_slots; extern int pcpu_nr_empty_pop_pages[]; extern struct pcpu_chunk *pcpu_first_chunk; extern struct pcpu_chunk *pcpu_reserved_chunk; /** * pcpu_chunk_nr_blocks - converts nr_pages to # of md_blocks * @chunk: chunk of interest * * This conversion is from the number of physical pages that the chunk * serves to the number of bitmap blocks used. */ static inline int pcpu_chunk_nr_blocks(struct pcpu_chunk *chunk) { return chunk->nr_pages * PAGE_SIZE / PCPU_BITMAP_BLOCK_SIZE; } /** * pcpu_nr_pages_to_map_bits - converts the pages to size of bitmap * @pages: number of physical pages * * This conversion is from physical pages to the number of bits * required in the bitmap. */ static inline int pcpu_nr_pages_to_map_bits(int pages) { return pages * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; } /** * pcpu_chunk_map_bits - helper to convert nr_pages to size of bitmap * @chunk: chunk of interest * * This conversion is from the number of physical pages that the chunk * serves to the number of bits in the bitmap. */ static inline int pcpu_chunk_map_bits(struct pcpu_chunk *chunk) { return pcpu_nr_pages_to_map_bits(chunk->nr_pages); } #ifdef CONFIG_MEMCG_KMEM static inline enum pcpu_chunk_type pcpu_chunk_type(struct pcpu_chunk *chunk) { if (chunk->obj_cgroups) return PCPU_CHUNK_MEMCG; return PCPU_CHUNK_ROOT; } static inline bool pcpu_is_memcg_chunk(enum pcpu_chunk_type chunk_type) { return chunk_type == PCPU_CHUNK_MEMCG; } #else static inline enum pcpu_chunk_type pcpu_chunk_type(struct pcpu_chunk *chunk) { return PCPU_CHUNK_ROOT; } static inline bool pcpu_is_memcg_chunk(enum pcpu_chunk_type chunk_type) { return false; } #endif static inline struct list_head *pcpu_chunk_list(enum pcpu_chunk_type chunk_type) { return &pcpu_chunk_lists[pcpu_nr_slots * pcpu_is_memcg_chunk(chunk_type)]; } #ifdef CONFIG_PERCPU_STATS #include <linux/spinlock.h> struct percpu_stats { u64 nr_alloc; /* lifetime # of allocations */ u64 nr_dealloc; /* lifetime # of deallocations */ u64 nr_cur_alloc; /* current # of allocations */ u64 nr_max_alloc; /* max # of live allocations */ u32 nr_chunks; /* current # of live chunks */ u32 nr_max_chunks; /* max # of live chunks */ size_t min_alloc_size; /* min allocaiton size */ size_t max_alloc_size; /* max allocation size */ }; extern struct percpu_stats pcpu_stats; extern struct pcpu_alloc_info pcpu_stats_ai; /* * For debug purposes. We don't care about the flexible array. */ static inline void pcpu_stats_save_ai(const struct pcpu_alloc_info *ai) { memcpy(&pcpu_stats_ai, ai, sizeof(struct pcpu_alloc_info)); /* initialize min_alloc_size to unit_size */ pcpu_stats.min_alloc_size = pcpu_stats_ai.unit_size; } /* * pcpu_stats_area_alloc - increment area allocation stats * @chunk: the location of the area being allocated * @size: size of area to allocate in bytes * * CONTEXT: * pcpu_lock. */ static inline void pcpu_stats_area_alloc(struct pcpu_chunk *chunk, size_t size) { lockdep_assert_held(&pcpu_lock); pcpu_stats.nr_alloc++; pcpu_stats.nr_cur_alloc++; pcpu_stats.nr_max_alloc = max(pcpu_stats.nr_max_alloc, pcpu_stats.nr_cur_alloc); pcpu_stats.min_alloc_size = min(pcpu_stats.min_alloc_size, size); pcpu_stats.max_alloc_size = max(pcpu_stats.max_alloc_size, size); chunk->nr_alloc++; chunk->max_alloc_size = max(chunk->max_alloc_size, size); } /* * pcpu_stats_area_dealloc - decrement allocation stats * @chunk: the location of the area being deallocated * * CONTEXT: * pcpu_lock. */ static inline void pcpu_stats_area_dealloc(struct pcpu_chunk *chunk) { lockdep_assert_held(&pcpu_lock); pcpu_stats.nr_dealloc++; pcpu_stats.nr_cur_alloc--; chunk->nr_alloc--; } /* * pcpu_stats_chunk_alloc - increment chunk stats */ static inline void pcpu_stats_chunk_alloc(void) { unsigned long flags; spin_lock_irqsave(&pcpu_lock, flags); pcpu_stats.nr_chunks++; pcpu_stats.nr_max_chunks = max(pcpu_stats.nr_max_chunks, pcpu_stats.nr_chunks); spin_unlock_irqrestore(&pcpu_lock, flags); } /* * pcpu_stats_chunk_dealloc - decrement chunk stats */ static inline void pcpu_stats_chunk_dealloc(void) { unsigned long flags; spin_lock_irqsave(&pcpu_lock, flags); pcpu_stats.nr_chunks--; spin_unlock_irqrestore(&pcpu_lock, flags); } #else static inline void pcpu_stats_save_ai(const struct pcpu_alloc_info *ai) { } static inline void pcpu_stats_area_alloc(struct pcpu_chunk *chunk, size_t size) { } static inline void pcpu_stats_area_dealloc(struct pcpu_chunk *chunk) { } static inline void pcpu_stats_chunk_alloc(void) { } static inline void pcpu_stats_chunk_dealloc(void) { } #endif /* !CONFIG_PERCPU_STATS */ #endif
1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 // SPDX-License-Identifier: GPL-2.0 /* * linux/kernel/sys.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include <linux/export.h> #include <linux/mm.h> #include <linux/utsname.h> #include <linux/mman.h> #include <linux/reboot.h> #include <linux/prctl.h> #include <linux/highuid.h> #include <linux/fs.h> #include <linux/kmod.h> #include <linux/perf_event.h> #include <linux/resource.h> #include <linux/kernel.h> #include <linux/workqueue.h> #include <linux/capability.h> #include <linux/device.h> #include <linux/key.h> #include <linux/times.h> #include <linux/posix-timers.h> #include <linux/security.h> #include <linux/dcookies.h> #include <linux/suspend.h> #include <linux/tty.h> #include <linux/signal.h> #include <linux/cn_proc.h> #include <linux/getcpu.h> #include <linux/task_io_accounting_ops.h> #include <linux/seccomp.h> #include <linux/cpu.h> #include <linux/personality.h> #include <linux/ptrace.h> #include <linux/fs_struct.h> #include <linux/file.h> #include <linux/mount.h> #include <linux/gfp.h> #include <linux/syscore_ops.h> #include <linux/version.h> #include <linux/ctype.h> #include <linux/compat.h> #include <linux/syscalls.h> #include <linux/kprobes.h> #include <linux/user_namespace.h> #include <linux/time_namespace.h> #include <linux/binfmts.h> #include <linux/sched.h> #include <linux/sched/autogroup.h> #include <linux/sched/loadavg.h> #include <linux/sched/stat.h> #include <linux/sched/mm.h> #include <linux/sched/coredump.h> #include <linux/sched/task.h> #include <linux/sched/cputime.h> #include <linux/rcupdate.h> #include <linux/uidgid.h> #include <linux/cred.h> #include <linux/nospec.h> #include <linux/kmsg_dump.h> /* Move somewhere else to avoid recompiling? */ #include <generated/utsrelease.h> #include <linux/uaccess.h> #include <asm/io.h> #include <asm/unistd.h> #include "uid16.h" #ifndef SET_UNALIGN_CTL # define SET_UNALIGN_CTL(a, b) (-EINVAL) #endif #ifndef GET_UNALIGN_CTL # define GET_UNALIGN_CTL(a, b) (-EINVAL) #endif #ifndef SET_FPEMU_CTL # define SET_FPEMU_CTL(a, b) (-EINVAL) #endif #ifndef GET_FPEMU_CTL # define GET_FPEMU_CTL(a, b) (-EINVAL) #endif #ifndef SET_FPEXC_CTL # define SET_FPEXC_CTL(a, b) (-EINVAL) #endif #ifndef GET_FPEXC_CTL # define GET_FPEXC_CTL(a, b) (-EINVAL) #endif #ifndef GET_ENDIAN # define GET_ENDIAN(a, b) (-EINVAL) #endif #ifndef SET_ENDIAN # define SET_ENDIAN(a, b) (-EINVAL) #endif #ifndef GET_TSC_CTL # define GET_TSC_CTL(a) (-EINVAL) #endif #ifndef SET_TSC_CTL # define SET_TSC_CTL(a) (-EINVAL) #endif #ifndef GET_FP_MODE # define GET_FP_MODE(a) (-EINVAL) #endif #ifndef SET_FP_MODE # define SET_FP_MODE(a,b) (-EINVAL) #endif #ifndef SVE_SET_VL # define SVE_SET_VL(a) (-EINVAL) #endif #ifndef SVE_GET_VL # define SVE_GET_VL() (-EINVAL) #endif #ifndef PAC_RESET_KEYS # define PAC_RESET_KEYS(a, b) (-EINVAL) #endif #ifndef SET_TAGGED_ADDR_CTRL # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL) #endif #ifndef GET_TAGGED_ADDR_CTRL # define GET_TAGGED_ADDR_CTRL() (-EINVAL) #endif /* * this is where the system-wide overflow UID and GID are defined, for * architectures that now have 32-bit UID/GID but didn't in the past */ int overflowuid = DEFAULT_OVERFLOWUID; int overflowgid = DEFAULT_OVERFLOWGID; EXPORT_SYMBOL(overflowuid); EXPORT_SYMBOL(overflowgid); /* * the same as above, but for filesystems which can only store a 16-bit * UID and GID. as such, this is needed on all architectures */ int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; int fs_overflowgid = DEFAULT_FS_OVERFLOWGID; EXPORT_SYMBOL(fs_overflowuid); EXPORT_SYMBOL(fs_overflowgid); /* * Returns true if current's euid is same as p's uid or euid, * or has CAP_SYS_NICE to p's user_ns. * * Called with rcu_read_lock, creds are safe */ static bool set_one_prio_perm(struct task_struct *p) { const struct cred *cred = current_cred(), *pcred = __task_cred(p); if (uid_eq(pcred->uid, cred->euid) || uid_eq(pcred->euid, cred->euid)) return true; if (ns_capable(pcred->user_ns, CAP_SYS_NICE)) return true; return false; } /* * set the priority of a task * - the caller must hold the RCU read lock */ static int set_one_prio(struct task_struct *p, int niceval, int error) { int no_nice; if (!set_one_prio_perm(p)) { error = -EPERM; goto out; } if (niceval < task_nice(p) && !can_nice(p, niceval)) { error = -EACCES; goto out; } no_nice = security_task_setnice(p, niceval); if (no_nice) { error = no_nice; goto out; } if (error == -ESRCH) error = 0; set_user_nice(p, niceval); out: return error; } SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) { struct task_struct *g, *p; struct user_struct *user; const struct cred *cred = current_cred(); int error = -EINVAL; struct pid *pgrp; kuid_t uid; if (which > PRIO_USER || which < PRIO_PROCESS) goto out; /* normalize: avoid signed division (rounding problems) */ error = -ESRCH; if (niceval < MIN_NICE) niceval = MIN_NICE; if (niceval > MAX_NICE) niceval = MAX_NICE; rcu_read_lock(); read_lock(&tasklist_lock); switch (which) { case PRIO_PROCESS: if (who) p = find_task_by_vpid(who); else p = current; if (p) error = set_one_prio(p, niceval, error); break; case PRIO_PGRP: if (who) pgrp = find_vpid(who); else pgrp = task_pgrp(current); do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { error = set_one_prio(p, niceval, error); } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); break; case PRIO_USER: uid = make_kuid(cred->user_ns, who); user = cred->user; if (!who) uid = cred->uid; else if (!uid_eq(uid, cred->uid)) { user = find_user(uid); if (!user) goto out_unlock; /* No processes for this user */ } do_each_thread(g, p) { if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) error = set_one_prio(p, niceval, error); } while_each_thread(g, p); if (!uid_eq(uid, cred->uid)) free_uid(user); /* For find_user() */ break; } out_unlock: read_unlock(&tasklist_lock); rcu_read_unlock(); out: return error; } /* * Ugh. To avoid negative return values, "getpriority()" will * not return the normal nice-value, but a negated value that * has been offset by 20 (ie it returns 40..1 instead of -20..19) * to stay compatible. */ SYSCALL_DEFINE2(getpriority, int, which, int, who) { struct task_struct *g, *p; struct user_struct *user; const struct cred *cred = current_cred(); long niceval, retval = -ESRCH; struct pid *pgrp; kuid_t uid; if (which > PRIO_USER || which < PRIO_PROCESS) return -EINVAL; rcu_read_lock(); read_lock(&tasklist_lock); switch (which) { case PRIO_PROCESS: if (who) p = find_task_by_vpid(who); else p = current; if (p) { niceval = nice_to_rlimit(task_nice(p)); if (niceval > retval) retval = niceval; } break; case PRIO_PGRP: if (who) pgrp = find_vpid(who); else pgrp = task_pgrp(current); do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { niceval = nice_to_rlimit(task_nice(p)); if (niceval > retval) retval = niceval; } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); break; case PRIO_USER: uid = make_kuid(cred->user_ns, who); user = cred->user; if (!who) uid = cred->uid; else if (!uid_eq(uid, cred->uid)) { user = find_user(uid); if (!user) goto out_unlock; /* No processes for this user */ } do_each_thread(g, p) { if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) { niceval = nice_to_rlimit(task_nice(p)); if (niceval > retval) retval = niceval; } } while_each_thread(g, p); if (!uid_eq(uid, cred->uid)) free_uid(user); /* for find_user() */ break; } out_unlock: read_unlock(&tasklist_lock); rcu_read_unlock(); return retval; } /* * Unprivileged users may change the real gid to the effective gid * or vice versa. (BSD-style) * * If you set the real gid at all, or set the effective gid to a value not * equal to the real gid, then the saved gid is set to the new effective gid. * * This makes it possible for a setgid program to completely drop its * privileges, which is often a useful assertion to make when you are doing * a security audit over a program. * * The general idea is that a program which uses just setregid() will be * 100% compatible with BSD. A program which uses just setgid() will be * 100% compatible with POSIX with saved IDs. * * SMP: There are not races, the GIDs are checked only by filesystem * operations (as far as semantic preservation is concerned). */ #ifdef CONFIG_MULTIUSER long __sys_setregid(gid_t rgid, gid_t egid) { struct user_namespace *ns = current_user_ns(); const struct cred *old; struct cred *new; int retval; kgid_t krgid, kegid; krgid = make_kgid(ns, rgid); kegid = make_kgid(ns, egid); if ((rgid != (gid_t) -1) && !gid_valid(krgid)) return -EINVAL; if ((egid != (gid_t) -1) && !gid_valid(kegid)) return -EINVAL; new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); retval = -EPERM; if (rgid != (gid_t) -1) { if (gid_eq(old->gid, krgid) || gid_eq(old->egid, krgid) || ns_capable_setid(old->user_ns, CAP_SETGID)) new->gid = krgid; else goto error; } if (egid != (gid_t) -1) { if (gid_eq(old->gid, kegid) || gid_eq(old->egid, kegid) || gid_eq(old->sgid, kegid) || ns_capable_setid(old->user_ns, CAP_SETGID)) new->egid = kegid; else goto error; } if (rgid != (gid_t) -1 || (egid != (gid_t) -1 && !gid_eq(kegid, old->gid))) new->sgid = new->egid; new->fsgid = new->egid; retval = security_task_fix_setgid(new, old, LSM_SETID_RE); if (retval < 0) goto error; return commit_creds(new); error: abort_creds(new); return retval; } SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) { return __sys_setregid(rgid, egid); } /* * setgid() is implemented like SysV w/ SAVED_IDS * * SMP: Same implicit races as above. */ long __sys_setgid(gid_t gid) { struct user_namespace *ns = current_user_ns(); const struct cred *old; struct cred *new; int retval; kgid_t kgid; kgid = make_kgid(ns, gid); if (!gid_valid(kgid)) return -EINVAL; new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); retval = -EPERM; if (ns_capable_setid(old->user_ns, CAP_SETGID)) new->gid = new->egid = new->sgid = new->fsgid = kgid; else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid)) new->egid = new->fsgid = kgid; else goto error; retval = security_task_fix_setgid(new, old, LSM_SETID_ID); if (retval < 0) goto error; return commit_creds(new); error: abort_creds(new); return retval; } SYSCALL_DEFINE1(setgid, gid_t, gid) { return __sys_setgid(gid); } /* * change the user struct in a credentials set to match the new UID */ static int set_user(struct cred *new) { struct user_struct *new_user; new_user = alloc_uid(new->uid); if (!new_user) return -EAGAIN; /* * We don't fail in case of NPROC limit excess here because too many * poorly written programs don't check set*uid() return code, assuming * it never fails if called by root. We may still enforce NPROC limit * for programs doing set*uid()+execve() by harmlessly deferring the * failure to the execve() stage. */ if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) && new_user != INIT_USER) current->flags |= PF_NPROC_EXCEEDED; else current->flags &= ~PF_NPROC_EXCEEDED; free_uid(new->user); new->user = new_user; return 0; } /* * Unprivileged users may change the real uid to the effective uid * or vice versa. (BSD-style) * * If you set the real uid at all, or set the effective uid to a value not * equal to the real uid, then the saved uid is set to the new effective uid. * * This makes it possible for a setuid program to completely drop its * privileges, which is often a useful assertion to make when you are doing * a security audit over a program. * * The general idea is that a program which uses just setreuid() will be * 100% compatible with BSD. A program which uses just setuid() will be * 100% compatible with POSIX with saved IDs. */ long __sys_setreuid(uid_t ruid, uid_t euid) { struct user_namespace *ns = current_user_ns(); const struct cred *old; struct cred *new; int retval; kuid_t kruid, keuid; kruid = make_kuid(ns, ruid); keuid = make_kuid(ns, euid); if ((ruid != (uid_t) -1) && !uid_valid(kruid)) return -EINVAL; if ((euid != (uid_t) -1) && !uid_valid(keuid)) return -EINVAL; new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); retval = -EPERM; if (ruid != (uid_t) -1) { new->uid = kruid; if (!uid_eq(old->uid, kruid) && !uid_eq(old->euid, kruid) && !ns_capable_setid(old->user_ns, CAP_SETUID)) goto error; } if (euid != (uid_t) -1) { new->euid = keuid; if (!uid_eq(old->uid, keuid) && !uid_eq(old->euid, keuid) && !uid_eq(old->suid, keuid) && !ns_capable_setid(old->user_ns, CAP_SETUID)) goto error; } if (!uid_eq(new->uid, old->uid)) { retval = set_user(new); if (retval < 0) goto error; } if (ruid != (uid_t) -1 || (euid != (uid_t) -1 && !uid_eq(keuid, old->uid))) new->suid = new->euid; new->fsuid = new->euid; retval = security_task_fix_setuid(new, old, LSM_SETID_RE); if (retval < 0) goto error; return commit_creds(new); error: abort_creds(new); return retval; } SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) { return __sys_setreuid(ruid, euid); } /* * setuid() is implemented like SysV with SAVED_IDS * * Note that SAVED_ID's is deficient in that a setuid root program * like sendmail, for example, cannot set its uid to be a normal * user and then switch back, because if you're root, setuid() sets * the saved uid too. If you don't like this, blame the bright people * in the POSIX committee and/or USG. Note that the BSD-style setreuid() * will allow a root program to temporarily drop privileges and be able to * regain them by swapping the real and effective uid. */ long __sys_setuid(uid_t uid) { struct user_namespace *ns = current_user_ns(); const struct cred *old; struct cred *new; int retval; kuid_t kuid; kuid = make_kuid(ns, uid); if (!uid_valid(kuid)) return -EINVAL; new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); retval = -EPERM; if (ns_capable_setid(old->user_ns, CAP_SETUID)) { new->suid = new->uid = kuid; if (!uid_eq(kuid, old->uid)) { retval = set_user(new); if (retval < 0) goto error; } } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) { goto error; } new->fsuid = new->euid = kuid; retval = security_task_fix_setuid(new, old, LSM_SETID_ID); if (retval < 0) goto error; return commit_creds(new); error: abort_creds(new); return retval; } SYSCALL_DEFINE1(setuid, uid_t, uid) { return __sys_setuid(uid); } /* * This function implements a generic ability to update ruid, euid, * and suid. This allows you to implement the 4.4 compatible seteuid(). */ long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) { struct user_namespace *ns = current_user_ns(); const struct cred *old; struct cred *new; int retval; kuid_t kruid, keuid, ksuid; kruid = make_kuid(ns, ruid); keuid = make_kuid(ns, euid); ksuid = make_kuid(ns, suid); if ((ruid != (uid_t) -1) && !uid_valid(kruid)) return -EINVAL; if ((euid != (uid_t) -1) && !uid_valid(keuid)) return -EINVAL; if ((suid != (uid_t) -1) && !uid_valid(ksuid)) return -EINVAL; new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); retval = -EPERM; if (!ns_capable_setid(old->user_ns, CAP_SETUID)) { if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) && !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid)) goto error; if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) && !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid)) goto error; if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) && !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid)) goto error; } if (ruid != (uid_t) -1) { new->uid = kruid; if (!uid_eq(kruid, old->uid)) { retval = set_user(new); if (retval < 0) goto error; } } if (euid != (uid_t) -1) new->euid = keuid; if (suid != (uid_t) -1) new->suid = ksuid; new->fsuid = new->euid; retval = security_task_fix_setuid(new, old, LSM_SETID_RES); if (retval < 0) goto error; return commit_creds(new); error: abort_creds(new); return retval; } SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) { return __sys_setresuid(ruid, euid, suid); } SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp) { const struct cred *cred = current_cred(); int retval; uid_t ruid, euid, suid; ruid = from_kuid_munged(cred->user_ns, cred->uid); euid = from_kuid_munged(cred->user_ns, cred->euid); suid = from_kuid_munged(cred->user_ns, cred->suid); retval = put_user(ruid, ruidp); if (!retval) { retval = put_user(euid, euidp); if (!retval) return put_user(suid, suidp); } return retval; } /* * Same as above, but for rgid, egid, sgid. */ long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) { struct user_namespace *ns = current_user_ns(); const struct cred *old; struct cred *new; int retval; kgid_t krgid, kegid, ksgid; krgid = make_kgid(ns, rgid); kegid = make_kgid(ns, egid); ksgid = make_kgid(ns, sgid); if ((rgid != (gid_t) -1) && !gid_valid(krgid)) return -EINVAL; if ((egid != (gid_t) -1) && !gid_valid(kegid)) return -EINVAL; if ((sgid != (gid_t) -1) && !gid_valid(ksgid)) return -EINVAL; new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); retval = -EPERM; if (!ns_capable_setid(old->user_ns, CAP_SETGID)) { if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) && !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid)) goto error; if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) && !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid)) goto error; if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) && !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid)) goto error; } if (rgid != (gid_t) -1) new->gid = krgid; if (egid != (gid_t) -1) new->egid = kegid; if (sgid != (gid_t) -1) new->sgid = ksgid; new->fsgid = new->egid; retval = security_task_fix_setgid(new, old, LSM_SETID_RES); if (retval < 0) goto error; return commit_creds(new); error: abort_creds(new); return retval; } SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) { return __sys_setresgid(rgid, egid, sgid); } SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp) { const struct cred *cred = current_cred(); int retval; gid_t rgid, egid, sgid; rgid = from_kgid_munged(cred->user_ns, cred->gid); egid = from_kgid_munged(cred->user_ns, cred->egid); sgid = from_kgid_munged(cred->user_ns, cred->sgid); retval = put_user(rgid, rgidp); if (!retval) { retval = put_user(egid, egidp); if (!retval) retval = put_user(sgid, sgidp); } return retval; } /* * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This * is used for "access()" and for the NFS daemon (letting nfsd stay at * whatever uid it wants to). It normally shadows "euid", except when * explicitly set by setfsuid() or for access.. */ long __sys_setfsuid(uid_t uid) { const struct cred *old; struct cred *new; uid_t old_fsuid; kuid_t kuid; old = current_cred(); old_fsuid = from_kuid_munged(old->user_ns, old->fsuid); kuid = make_kuid(old->user_ns, uid); if (!uid_valid(kuid)) return old_fsuid; new = prepare_creds(); if (!new) return old_fsuid; if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) || uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) || ns_capable_setid(old->user_ns, CAP_SETUID)) { if (!uid_eq(kuid, old->fsuid)) { new->fsuid = kuid; if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) goto change_okay; } } abort_creds(new); return old_fsuid; change_okay: commit_creds(new); return old_fsuid; } SYSCALL_DEFINE1(setfsuid, uid_t, uid) { return __sys_setfsuid(uid); } /* * Samma på svenska.. */ long __sys_setfsgid(gid_t gid) { const struct cred *old; struct cred *new; gid_t old_fsgid; kgid_t kgid; old = current_cred(); old_fsgid = from_kgid_munged(old->user_ns, old->fsgid); kgid = make_kgid(old->user_ns, gid); if (!gid_valid(kgid)) return old_fsgid; new = prepare_creds(); if (!new) return old_fsgid; if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) || gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) || ns_capable_setid(old->user_ns, CAP_SETGID)) { if (!gid_eq(kgid, old->fsgid)) { new->fsgid = kgid; if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0) goto change_okay; } } abort_creds(new); return old_fsgid; change_okay: commit_creds(new); return old_fsgid; } SYSCALL_DEFINE1(setfsgid, gid_t, gid) { return __sys_setfsgid(gid); } #endif /* CONFIG_MULTIUSER */ /** * sys_getpid - return the thread group id of the current process * * Note, despite the name, this returns the tgid not the pid. The tgid and * the pid are identical unless CLONE_THREAD was specified on clone() in * which case the tgid is the same in all threads of the same group. * * This is SMP safe as current->tgid does not change. */ SYSCALL_DEFINE0(getpid) { return task_tgid_vnr(current); } /* Thread ID - the internal kernel "pid" */ SYSCALL_DEFINE0(gettid) { return task_pid_vnr(current); } /* * Accessing ->real_parent is not SMP-safe, it could * change from under us. However, we can use a stale * value of ->real_parent under rcu_read_lock(), see * release_task()->call_rcu(delayed_put_task_struct). */ SYSCALL_DEFINE0(getppid) { int pid; rcu_read_lock(); pid = task_tgid_vnr(rcu_dereference(current->real_parent)); rcu_read_unlock(); return pid; } SYSCALL_DEFINE0(getuid) { /* Only we change this so SMP safe */ return from_kuid_munged(current_user_ns(), current_uid()); } SYSCALL_DEFINE0(geteuid) { /* Only we change this so SMP safe */ return from_kuid_munged(current_user_ns(), current_euid()); } SYSCALL_DEFINE0(getgid) { /* Only we change this so SMP safe */ return from_kgid_munged(current_user_ns(), current_gid()); } SYSCALL_DEFINE0(getegid) { /* Only we change this so SMP safe */ return from_kgid_munged(current_user_ns(), current_egid()); } static void do_sys_times(struct tms *tms) { u64 tgutime, tgstime, cutime, cstime; thread_group_cputime_adjusted(current, &tgutime, &tgstime); cutime = current->signal->cutime; cstime = current->signal->cstime; tms->tms_utime = nsec_to_clock_t(tgutime); tms->tms_stime = nsec_to_clock_t(tgstime); tms->tms_cutime = nsec_to_clock_t(cutime); tms->tms_cstime = nsec_to_clock_t(cstime); } SYSCALL_DEFINE1(times, struct tms __user *, tbuf) { if (tbuf) { struct tms tmp; do_sys_times(&tmp); if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) return -EFAULT; } force_successful_syscall_return(); return (long) jiffies_64_to_clock_t(get_jiffies_64()); } #ifdef CONFIG_COMPAT static compat_clock_t clock_t_to_compat_clock_t(clock_t x) { return compat_jiffies_to_clock_t(clock_t_to_jiffies(x)); } COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf) { if (tbuf) { struct tms tms; struct compat_tms tmp; do_sys_times(&tms); /* Convert our struct tms to the compat version. */ tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime); tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime); tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime); tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime); if (copy_to_user(tbuf, &tmp, sizeof(tmp))) return -EFAULT; } force_successful_syscall_return(); return compat_jiffies_to_clock_t(jiffies); } #endif /* * This needs some heavy checking ... * I just haven't the stomach for it. I also don't fully * understand sessions/pgrp etc. Let somebody who does explain it. * * OK, I think I have the protection semantics right.... this is really * only important on a multi-user system anyway, to make sure one user * can't send a signal to a process owned by another. -TYT, 12/12/91 * * !PF_FORKNOEXEC check to conform completely to POSIX. */ SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) { struct task_struct *p; struct task_struct *group_leader = current->group_leader; struct pid *pgrp; int err; if (!pid) pid = task_pid_vnr(group_leader); if (!pgid) pgid = pid; if (pgid < 0) return -EINVAL; rcu_read_lock(); /* From this point forward we keep holding onto the tasklist lock * so that our parent does not change from under us. -DaveM */ write_lock_irq(&tasklist_lock); err = -ESRCH; p = find_task_by_vpid(pid); if (!p) goto out; err = -EINVAL; if (!thread_group_leader(p)) goto out; if (same_thread_group(p->real_parent, group_leader)) { err = -EPERM; if (task_session(p) != task_session(group_leader)) goto out; err = -EACCES; if (!(p->flags & PF_FORKNOEXEC)) goto out; } else { err = -ESRCH; if (p != group_leader) goto out; } err = -EPERM; if (p->signal->leader) goto out; pgrp = task_pid(p); if (pgid != pid) { struct task_struct *g; pgrp = find_vpid(pgid); g = pid_task(pgrp, PIDTYPE_PGID); if (!g || task_session(g) != task_session(group_leader)) goto out; } err = security_task_setpgid(p, pgid); if (err) goto out; if (task_pgrp(p) != pgrp) change_pid(p, PIDTYPE_PGID, pgrp); err = 0; out: /* All paths lead to here, thus we are safe. -DaveM */ write_unlock_irq(&tasklist_lock); rcu_read_unlock(); return err; } static int do_getpgid(pid_t pid) { struct task_struct *p; struct pid *grp; int retval; rcu_read_lock(); if (!pid) grp = task_pgrp(current); else { retval = -ESRCH; p = find_task_by_vpid(pid); if (!p) goto out; grp = task_pgrp(p); if (!grp) goto out; retval = security_task_getpgid(p); if (retval) goto out; } retval = pid_vnr(grp); out: rcu_read_unlock(); return retval; } SYSCALL_DEFINE1(getpgid, pid_t, pid) { return do_getpgid(pid); } #ifdef __ARCH_WANT_SYS_GETPGRP SYSCALL_DEFINE0(getpgrp) { return do_getpgid(0); } #endif SYSCALL_DEFINE1(getsid, pid_t, pid) { struct task_struct *p; struct pid *sid; int retval; rcu_read_lock(); if (!pid) sid = task_session(current); else { retval = -ESRCH; p = find_task_by_vpid(pid); if (!p) goto out; sid = task_session(p); if (!sid) goto out; retval = security_task_getsid(p); if (retval) goto out; } retval = pid_vnr(sid); out: rcu_read_unlock(); return retval; } static void set_special_pids(struct pid *pid) { struct task_struct *curr = current->group_leader; if (task_session(curr) != pid) change_pid(curr, PIDTYPE_SID, pid); if (task_pgrp(curr) != pid) change_pid(curr, PIDTYPE_PGID, pid); } int ksys_setsid(void) { struct task_struct *group_leader = current->group_leader; struct pid *sid = task_pid(group_leader); pid_t session = pid_vnr(sid); int err = -EPERM; write_lock_irq(&tasklist_lock); /* Fail if I am already a session leader */ if (group_leader->signal->leader) goto out; /* Fail if a process group id already exists that equals the * proposed session id. */ if (pid_task(sid, PIDTYPE_PGID)) goto out; group_leader->signal->leader = 1; set_special_pids(sid); proc_clear_tty(group_leader); err = session; out: write_unlock_irq(&tasklist_lock); if (err > 0) { proc_sid_connector(group_leader); sched_autogroup_create_attach(group_leader); } return err; } SYSCALL_DEFINE0(setsid) { return ksys_setsid(); } DECLARE_RWSEM(uts_sem); #ifdef COMPAT_UTS_MACHINE #define override_architecture(name) \ (personality(current->personality) == PER_LINUX32 && \ copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ sizeof(COMPAT_UTS_MACHINE))) #else #define override_architecture(name) 0 #endif /* * Work around broken programs that cannot handle "Linux 3.0". * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be * 2.6.60. */ static int override_release(char __user *release, size_t len) { int ret = 0; if (current->personality & UNAME26) { const char *rest = UTS_RELEASE; char buf[65] = { 0 }; int ndots = 0; unsigned v; size_t copy; while (*rest) { if (*rest == '.' && ++ndots >= 3) break; if (!isdigit(*rest) && *rest != '.') break; rest++; } v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60; copy = clamp_t(size_t, len, 1, sizeof(buf)); copy = scnprintf(buf, copy, "2.6.%u%s", v, rest); ret = copy_to_user(release, buf, copy + 1); } return ret; } SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) { struct new_utsname tmp; down_read(&uts_sem); memcpy(&tmp, utsname(), sizeof(tmp)); up_read(&uts_sem); if (copy_to_user(name, &tmp, sizeof(tmp))) return -EFAULT; if (override_release(name->release, sizeof(name->release))) return -EFAULT; if (override_architecture(name)) return -EFAULT; return 0; } #ifdef __ARCH_WANT_SYS_OLD_UNAME /* * Old cruft */ SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) { struct old_utsname tmp; if (!name) return -EFAULT; down_read(&uts_sem); memcpy(&tmp, utsname(), sizeof(tmp)); up_read(&uts_sem); if (copy_to_user(name, &tmp, sizeof(tmp))) return -EFAULT; if (override_release(name->release, sizeof(name->release))) return -EFAULT; if (override_architecture(name)) return -EFAULT; return 0; } SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) { struct oldold_utsname tmp; if (!name) return -EFAULT; memset(&tmp, 0, sizeof(tmp)); down_read(&uts_sem); memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN); memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN); memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN); memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN); memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN); up_read(&uts_sem); if (copy_to_user(name, &tmp, sizeof(tmp))) return -EFAULT; if (override_architecture(name)) return -EFAULT; if (override_release(name->release, sizeof(name->release))) return -EFAULT; return 0; } #endif SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) { int errno; char tmp[__NEW_UTS_LEN]; if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) return -EPERM; if (len < 0 || len > __NEW_UTS_LEN) return -EINVAL; errno = -EFAULT; if (!copy_from_user(tmp, name, len)) { struct new_utsname *u; down_write(&uts_sem); u = utsname(); memcpy(u->nodename, tmp, len); memset(u->nodename + len, 0, sizeof(u->nodename) - len); errno = 0; uts_proc_notify(UTS_PROC_HOSTNAME); up_write(&uts_sem); } return errno; } #ifdef __ARCH_WANT_SYS_GETHOSTNAME SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) { int i; struct new_utsname *u; char tmp[__NEW_UTS_LEN + 1]; if (len < 0) return -EINVAL; down_read(&uts_sem); u = utsname(); i = 1 + strlen(u->nodename); if (i > len) i = len; memcpy(tmp, u->nodename, i); up_read(&uts_sem); if (copy_to_user(name, tmp, i)) return -EFAULT; return 0; } #endif /* * Only setdomainname; getdomainname can be implemented by calling * uname() */ SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) { int errno; char tmp[__NEW_UTS_LEN]; if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) return -EPERM; if (len < 0 || len > __NEW_UTS_LEN) return -EINVAL; errno = -EFAULT; if (!copy_from_user(tmp, name, len)) { struct new_utsname *u; down_write(&uts_sem); u = utsname(); memcpy(u->domainname, tmp, len); memset(u->domainname + len, 0, sizeof(u->domainname) - len); errno = 0; uts_proc_notify(UTS_PROC_DOMAINNAME); up_write(&uts_sem); } return errno; } SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) { struct rlimit value; int ret; ret = do_prlimit(current, resource, NULL, &value); if (!ret) ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; return ret; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct compat_rlimit __user *, rlim) { struct rlimit r; struct compat_rlimit r32; if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit))) return -EFAULT; if (r32.rlim_cur == COMPAT_RLIM_INFINITY) r.rlim_cur = RLIM_INFINITY; else r.rlim_cur = r32.rlim_cur; if (r32.rlim_max == COMPAT_RLIM_INFINITY) r.rlim_max = RLIM_INFINITY; else r.rlim_max = r32.rlim_max; return do_prlimit(current, resource, &r, NULL); } COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct compat_rlimit __user *, rlim) { struct rlimit r; int ret; ret = do_prlimit(current, resource, NULL, &r); if (!ret) { struct compat_rlimit r32; if (r.rlim_cur > COMPAT_RLIM_INFINITY) r32.rlim_cur = COMPAT_RLIM_INFINITY; else r32.rlim_cur = r.rlim_cur; if (r.rlim_max > COMPAT_RLIM_INFINITY) r32.rlim_max = COMPAT_RLIM_INFINITY; else r32.rlim_max = r.rlim_max; if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit))) return -EFAULT; } return ret; } #endif #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT /* * Back compatibility for getrlimit. Needed for some apps. */ SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, struct rlimit __user *, rlim) { struct rlimit x; if (resource >= RLIM_NLIMITS) return -EINVAL; resource = array_index_nospec(resource, RLIM_NLIMITS); task_lock(current->group_leader); x = current->signal->rlim[resource]; task_unlock(current->group_leader); if (x.rlim_cur > 0x7FFFFFFF) x.rlim_cur = 0x7FFFFFFF; if (x.rlim_max > 0x7FFFFFFF) x.rlim_max = 0x7FFFFFFF; return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, struct compat_rlimit __user *, rlim) { struct rlimit r; if (resource >= RLIM_NLIMITS) return -EINVAL; resource = array_index_nospec(resource, RLIM_NLIMITS); task_lock(current->group_leader); r = current->signal->rlim[resource]; task_unlock(current->group_leader); if (r.rlim_cur > 0x7FFFFFFF) r.rlim_cur = 0x7FFFFFFF; if (r.rlim_max > 0x7FFFFFFF) r.rlim_max = 0x7FFFFFFF; if (put_user(r.rlim_cur, &rlim->rlim_cur) || put_user(r.rlim_max, &rlim->rlim_max)) return -EFAULT; return 0; } #endif #endif static inline bool rlim64_is_infinity(__u64 rlim64) { #if BITS_PER_LONG < 64 return rlim64 >= ULONG_MAX; #else return rlim64 == RLIM64_INFINITY; #endif } static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) { if (rlim->rlim_cur == RLIM_INFINITY) rlim64->rlim_cur = RLIM64_INFINITY; else rlim64->rlim_cur = rlim->rlim_cur; if (rlim->rlim_max == RLIM_INFINITY) rlim64->rlim_max = RLIM64_INFINITY; else rlim64->rlim_max = rlim->rlim_max; } static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) { if (rlim64_is_infinity(rlim64->rlim_cur)) rlim->rlim_cur = RLIM_INFINITY; else rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; if (rlim64_is_infinity(rlim64->rlim_max)) rlim->rlim_max = RLIM_INFINITY; else rlim->rlim_max = (unsigned long)rlim64->rlim_max; } /* make sure you are allowed to change @tsk limits before calling this */ int do_prlimit(struct task_struct *tsk, unsigned int resource, struct rlimit *new_rlim, struct rlimit *old_rlim) { struct rlimit *rlim; int retval = 0; if (resource >= RLIM_NLIMITS) return -EINVAL; if (new_rlim) { if (new_rlim->rlim_cur > new_rlim->rlim_max) return -EINVAL; if (resource == RLIMIT_NOFILE && new_rlim->rlim_max > sysctl_nr_open) return -EPERM; } /* protect tsk->signal and tsk->sighand from disappearing */ read_lock(&tasklist_lock); if (!tsk->sighand) { retval = -ESRCH; goto out; } rlim = tsk->signal->rlim + resource; task_lock(tsk->group_leader); if (new_rlim) { /* Keep the capable check against init_user_ns until cgroups can contain all limits */ if (new_rlim->rlim_max > rlim->rlim_max && !capable(CAP_SYS_RESOURCE)) retval = -EPERM; if (!retval) retval = security_task_setrlimit(tsk, resource, new_rlim); } if (!retval) { if (old_rlim) *old_rlim = *rlim; if (new_rlim) *rlim = *new_rlim; } task_unlock(tsk->group_leader); /* * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not * infite. In case of RLIM_INFINITY the posix CPU timer code * ignores the rlimit. */ if (!retval && new_rlim && resource == RLIMIT_CPU && new_rlim->rlim_cur != RLIM_INFINITY && IS_ENABLED(CONFIG_POSIX_TIMERS)) update_rlimit_cpu(tsk, new_rlim->rlim_cur); out: read_unlock(&tasklist_lock); return retval; } /* rcu lock must be held */ static int check_prlimit_permission(struct task_struct *task, unsigned int flags) { const struct cred *cred = current_cred(), *tcred; bool id_match; if (current == task) return 0; tcred = __task_cred(task); id_match = (uid_eq(cred->uid, tcred->euid) && uid_eq(cred->uid, tcred->suid) && uid_eq(cred->uid, tcred->uid) && gid_eq(cred->gid, tcred->egid) && gid_eq(cred->gid, tcred->sgid) && gid_eq(cred->gid, tcred->gid)); if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE)) return -EPERM; return security_task_prlimit(cred, tcred, flags); } SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, const struct rlimit64 __user *, new_rlim, struct rlimit64 __user *, old_rlim) { struct rlimit64 old64, new64; struct rlimit old, new; struct task_struct *tsk; unsigned int checkflags = 0; int ret; if (old_rlim) checkflags |= LSM_PRLIMIT_READ; if (new_rlim) { if (copy_from_user(&new64, new_rlim, sizeof(new64))) return -EFAULT; rlim64_to_rlim(&new64, &new); checkflags |= LSM_PRLIMIT_WRITE; } rcu_read_lock(); tsk = pid ? find_task_by_vpid(pid) : current; if (!tsk) { rcu_read_unlock(); return -ESRCH; } ret = check_prlimit_permission(tsk, checkflags); if (ret) { rcu_read_unlock(); return ret; } get_task_struct(tsk); rcu_read_unlock(); ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, old_rlim ? &old : NULL); if (!ret && old_rlim) { rlim_to_rlim64(&old, &old64); if (copy_to_user(old_rlim, &old64, sizeof(old64))) ret = -EFAULT; } put_task_struct(tsk); return ret; } SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) { struct rlimit new_rlim; if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) return -EFAULT; return do_prlimit(current, resource, &new_rlim, NULL); } /* * It would make sense to put struct rusage in the task_struct, * except that would make the task_struct be *really big*. After * task_struct gets moved into malloc'ed memory, it would * make sense to do this. It will make moving the rest of the information * a lot simpler! (Which we're not doing right now because we're not * measuring them yet). * * When sampling multiple threads for RUSAGE_SELF, under SMP we might have * races with threads incrementing their own counters. But since word * reads are atomic, we either get new values or old values and we don't * care which for the sums. We always take the siglock to protect reading * the c* fields from p->signal from races with exit.c updating those * fields when reaping, so a sample either gets all the additions of a * given child after it's reaped, or none so this sample is before reaping. * * Locking: * We need to take the siglock for CHILDEREN, SELF and BOTH * for the cases current multithreaded, non-current single threaded * non-current multithreaded. Thread traversal is now safe with * the siglock held. * Strictly speaking, we donot need to take the siglock if we are current and * single threaded, as no one else can take our signal_struct away, no one * else can reap the children to update signal->c* counters, and no one else * can race with the signal-> fields. If we do not take any lock, the * signal-> fields could be read out of order while another thread was just * exiting. So we should place a read memory barrier when we avoid the lock. * On the writer side, write memory barrier is implied in __exit_signal * as __exit_signal releases the siglock spinlock after updating the signal-> * fields. But we don't do this yet to keep things simple. * */ static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) { r->ru_nvcsw += t->nvcsw; r->ru_nivcsw += t->nivcsw; r->ru_minflt += t->min_flt; r->ru_majflt += t->maj_flt; r->ru_inblock += task_io_get_inblock(t); r->ru_oublock += task_io_get_oublock(t); } void getrusage(struct task_struct *p, int who, struct rusage *r) { struct task_struct *t; unsigned long flags; u64 tgutime, tgstime, utime, stime; unsigned long maxrss = 0; memset((char *)r, 0, sizeof (*r)); utime = stime = 0; if (who == RUSAGE_THREAD) { task_cputime_adjusted(current, &utime, &stime); accumulate_thread_rusage(p, r); maxrss = p->signal->maxrss; goto out; } if (!lock_task_sighand(p, &flags)) return; switch (who) { case RUSAGE_BOTH: case RUSAGE_CHILDREN: utime = p->signal->cutime; stime = p->signal->cstime; r->ru_nvcsw = p->signal->cnvcsw; r->ru_nivcsw = p->signal->cnivcsw; r->ru_minflt = p->signal->cmin_flt; r->ru_majflt = p->signal->cmaj_flt; r->ru_inblock = p->signal->cinblock; r->ru_oublock = p->signal->coublock; maxrss = p->signal->cmaxrss; if (who == RUSAGE_CHILDREN) break; fallthrough; case RUSAGE_SELF: thread_group_cputime_adjusted(p, &tgutime, &tgstime); utime += tgutime; stime += tgstime; r->ru_nvcsw += p->signal->nvcsw; r->ru_nivcsw += p->signal->nivcsw; r->ru_minflt += p->signal->min_flt; r->ru_majflt += p->signal->maj_flt; r->ru_inblock += p->signal->inblock; r->ru_oublock += p->signal->oublock; if (maxrss < p->signal->maxrss) maxrss = p->signal->maxrss; t = p; do { accumulate_thread_rusage(t, r); } while_each_thread(p, t); break; default: BUG(); } unlock_task_sighand(p, &flags); out: r->ru_utime = ns_to_kernel_old_timeval(utime); r->ru_stime = ns_to_kernel_old_timeval(stime); if (who != RUSAGE_CHILDREN) { struct mm_struct *mm = get_task_mm(p); if (mm) { setmax_mm_hiwater_rss(&maxrss, mm); mmput(mm); } } r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ } SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) { struct rusage r; if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && who != RUSAGE_THREAD) return -EINVAL; getrusage(current, who, &r); return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru) { struct rusage r; if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && who != RUSAGE_THREAD) return -EINVAL; getrusage(current, who, &r); return put_compat_rusage(&r, ru); } #endif SYSCALL_DEFINE1(umask, int, mask) { mask = xchg(&current->fs->umask, mask & S_IRWXUGO); return mask; } static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd) { struct fd exe; struct file *old_exe, *exe_file; struct inode *inode; int err; exe = fdget(fd); if (!exe.file) return -EBADF; inode = file_inode(exe.file); /* * Because the original mm->exe_file points to executable file, make * sure that this one is executable as well, to avoid breaking an * overall picture. */ err = -EACCES; if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path)) goto exit; err = inode_permission(inode, MAY_EXEC); if (err) goto exit; /* * Forbid mm->exe_file change if old file still mapped. */ exe_file = get_mm_exe_file(mm); err = -EBUSY; if (exe_file) { struct vm_area_struct *vma; mmap_read_lock(mm); for (vma = mm->mmap; vma; vma = vma->vm_next) { if (!vma->vm_file) continue; if (path_equal(&vma->vm_file->f_path, &exe_file->f_path)) goto exit_err; } mmap_read_unlock(mm); fput(exe_file); } err = 0; /* set the new file, lockless */ get_file(exe.file); old_exe = xchg(&mm->exe_file, exe.file); if (old_exe) fput(old_exe); exit: fdput(exe); return err; exit_err: mmap_read_unlock(mm); fput(exe_file); goto exit; } /* * Check arithmetic relations of passed addresses. * * WARNING: we don't require any capability here so be very careful * in what is allowed for modification from userspace. */ static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map) { unsigned long mmap_max_addr = TASK_SIZE; int error = -EINVAL, i; static const unsigned char offsets[] = { offsetof(struct prctl_mm_map, start_code), offsetof(struct prctl_mm_map, end_code), offsetof(struct prctl_mm_map, start_data), offsetof(struct prctl_mm_map, end_data), offsetof(struct prctl_mm_map, start_brk), offsetof(struct prctl_mm_map, brk), offsetof(struct prctl_mm_map, start_stack), offsetof(struct prctl_mm_map, arg_start), offsetof(struct prctl_mm_map, arg_end), offsetof(struct prctl_mm_map, env_start), offsetof(struct prctl_mm_map, env_end), }; /* * Make sure the members are not somewhere outside * of allowed address space. */ for (i = 0; i < ARRAY_SIZE(offsets); i++) { u64 val = *(u64 *)((char *)prctl_map + offsets[i]); if ((unsigned long)val >= mmap_max_addr || (unsigned long)val < mmap_min_addr) goto out; } /* * Make sure the pairs are ordered. */ #define __prctl_check_order(__m1, __op, __m2) \ ((unsigned long)prctl_map->__m1 __op \ (unsigned long)prctl_map->__m2) ? 0 : -EINVAL error = __prctl_check_order(start_code, <, end_code); error |= __prctl_check_order(start_data,<=, end_data); error |= __prctl_check_order(start_brk, <=, brk); error |= __prctl_check_order(arg_start, <=, arg_end); error |= __prctl_check_order(env_start, <=, env_end); if (error) goto out; #undef __prctl_check_order error = -EINVAL; /* * Neither we should allow to override limits if they set. */ if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk, prctl_map->start_brk, prctl_map->end_data, prctl_map->start_data)) goto out; error = 0; out: return error; } #ifdef CONFIG_CHECKPOINT_RESTORE static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size) { struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, }; unsigned long user_auxv[AT_VECTOR_SIZE]; struct mm_struct *mm = current->mm; int error; BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256); if (opt == PR_SET_MM_MAP_SIZE) return put_user((unsigned int)sizeof(prctl_map), (unsigned int __user *)addr); if (data_size != sizeof(prctl_map)) return -EINVAL; if (copy_from_user(&prctl_map, addr, sizeof(prctl_map))) return -EFAULT; error = validate_prctl_map_addr(&prctl_map); if (error) return error; if (prctl_map.auxv_size) { /* * Someone is trying to cheat the auxv vector. */ if (!prctl_map.auxv || prctl_map.auxv_size > sizeof(mm->saved_auxv)) return -EINVAL; memset(user_auxv, 0, sizeof(user_auxv)); if (copy_from_user(user_auxv, (const void __user *)prctl_map.auxv, prctl_map.auxv_size)) return -EFAULT; /* Last entry must be AT_NULL as specification requires */ user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL; user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL; } if (prctl_map.exe_fd != (u32)-1) { /* * Check if the current user is checkpoint/restore capable. * At the time of this writing, it checks for CAP_SYS_ADMIN * or CAP_CHECKPOINT_RESTORE. * Note that a user with access to ptrace can masquerade an * arbitrary program as any executable, even setuid ones. * This may have implications in the tomoyo subsystem. */ if (!checkpoint_restore_ns_capable(current_user_ns())) return -EPERM; error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd); if (error) return error; } /* * arg_lock protects concurent updates but we still need mmap_lock for * read to exclude races with sys_brk. */ mmap_read_lock(mm); /* * We don't validate if these members are pointing to * real present VMAs because application may have correspond * VMAs already unmapped and kernel uses these members for statistics * output in procfs mostly, except * * - @start_brk/@brk which are used in do_brk_flags but kernel lookups * for VMAs when updating these memvers so anything wrong written * here cause kernel to swear at userspace program but won't lead * to any problem in kernel itself */ spin_lock(&mm->arg_lock); mm->start_code = prctl_map.start_code; mm->end_code = prctl_map.end_code; mm->start_data = prctl_map.start_data; mm->end_data = prctl_map.end_data; mm->start_brk = prctl_map.start_brk; mm->brk = prctl_map.brk; mm->start_stack = prctl_map.start_stack; mm->arg_start = prctl_map.arg_start; mm->arg_end = prctl_map.arg_end; mm->env_start = prctl_map.env_start; mm->env_end = prctl_map.env_end; spin_unlock(&mm->arg_lock); /* * Note this update of @saved_auxv is lockless thus * if someone reads this member in procfs while we're * updating -- it may get partly updated results. It's * known and acceptable trade off: we leave it as is to * not introduce additional locks here making the kernel * more complex. */ if (prctl_map.auxv_size) memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv)); mmap_read_unlock(mm); return 0; } #endif /* CONFIG_CHECKPOINT_RESTORE */ static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr, unsigned long len) { /* * This doesn't move the auxiliary vector itself since it's pinned to * mm_struct, but it permits filling the vector with new values. It's * up to the caller to provide sane values here, otherwise userspace * tools which use this vector might be unhappy. */ unsigned long user_auxv[AT_VECTOR_SIZE]; if (len > sizeof(user_auxv)) return -EINVAL; if (copy_from_user(user_auxv, (const void __user *)addr, len)) return -EFAULT; /* Make sure the last entry is always AT_NULL */ user_auxv[AT_VECTOR_SIZE - 2] = 0; user_auxv[AT_VECTOR_SIZE - 1] = 0; BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); task_lock(current); memcpy(mm->saved_auxv, user_auxv, len); task_unlock(current); return 0; } static int prctl_set_mm(int opt, unsigned long addr, unsigned long arg4, unsigned long arg5) { struct mm_struct *mm = current->mm; struct prctl_mm_map prctl_map = { .auxv = NULL, .auxv_size = 0, .exe_fd = -1, }; struct vm_area_struct *vma; int error; if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV && opt != PR_SET_MM_MAP && opt != PR_SET_MM_MAP_SIZE))) return -EINVAL; #ifdef CONFIG_CHECKPOINT_RESTORE if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE) return prctl_set_mm_map(opt, (const void __user *)addr, arg4); #endif if (!capable(CAP_SYS_RESOURCE)) return -EPERM; if (opt == PR_SET_MM_EXE_FILE) return prctl_set_mm_exe_file(mm, (unsigned int)addr); if (opt == PR_SET_MM_AUXV) return prctl_set_auxv(mm, addr, arg4); if (addr >= TASK_SIZE || addr < mmap_min_addr) return -EINVAL; error = -EINVAL; /* * arg_lock protects concurent updates of arg boundaries, we need * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr * validation. */ mmap_read_lock(mm); vma = find_vma(mm, addr); spin_lock(&mm->arg_lock); prctl_map.start_code = mm->start_code; prctl_map.end_code = mm->end_code; prctl_map.start_data = mm->start_data; prctl_map.end_data = mm->end_data; prctl_map.start_brk = mm->start_brk; prctl_map.brk = mm->brk; prctl_map.start_stack = mm->start_stack; prctl_map.arg_start = mm->arg_start; prctl_map.arg_end = mm->arg_end; prctl_map.env_start = mm->env_start; prctl_map.env_end = mm->env_end; switch (opt) { case PR_SET_MM_START_CODE: prctl_map.start_code = addr; break; case PR_SET_MM_END_CODE: prctl_map.end_code = addr; break; case PR_SET_MM_START_DATA: prctl_map.start_data = addr; break; case PR_SET_MM_END_DATA: prctl_map.end_data = addr; break; case PR_SET_MM_START_STACK: prctl_map.start_stack = addr; break; case PR_SET_MM_START_BRK: prctl_map.start_brk = addr; break; case PR_SET_MM_BRK: prctl_map.brk = addr; break; case PR_SET_MM_ARG_START: prctl_map.arg_start = addr; break; case PR_SET_MM_ARG_END: prctl_map.arg_end = addr; break; case PR_SET_MM_ENV_START: prctl_map.env_start = addr; break; case PR_SET_MM_ENV_END: prctl_map.env_end = addr; break; default: goto out; } error = validate_prctl_map_addr(&prctl_map); if (error) goto out; switch (opt) { /* * If command line arguments and environment * are placed somewhere else on stack, we can * set them up here, ARG_START/END to setup * command line argumets and ENV_START/END * for environment. */ case PR_SET_MM_START_STACK: case PR_SET_MM_ARG_START: case PR_SET_MM_ARG_END: case PR_SET_MM_ENV_START: case PR_SET_MM_ENV_END: if (!vma) { error = -EFAULT; goto out; } } mm->start_code = prctl_map.start_code; mm->end_code = prctl_map.end_code; mm->start_data = prctl_map.start_data; mm->end_data = prctl_map.end_data; mm->start_brk = prctl_map.start_brk; mm->brk = prctl_map.brk; mm->start_stack = prctl_map.start_stack; mm->arg_start = prctl_map.arg_start; mm->arg_end = prctl_map.arg_end; mm->env_start = prctl_map.env_start; mm->env_end = prctl_map.env_end; error = 0; out: spin_unlock(&mm->arg_lock); mmap_read_unlock(mm); return error; } #ifdef CONFIG_CHECKPOINT_RESTORE static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr) { return put_user(me->clear_child_tid, tid_addr); } #else static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr) { return -EINVAL; } #endif static int propagate_has_child_subreaper(struct task_struct *p, void *data) { /* * If task has has_child_subreaper - all its decendants * already have these flag too and new decendants will * inherit it on fork, skip them. * * If we've found child_reaper - skip descendants in * it's subtree as they will never get out pidns. */ if (p->signal->has_child_subreaper || is_child_reaper(task_pid(p))) return 0; p->signal->has_child_subreaper = 1; return 1; } int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which) { return -EINVAL; } int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which, unsigned long ctrl) { return -EINVAL; } #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE) SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, unsigned long, arg4, unsigned long, arg5) { struct task_struct *me = current; unsigned char comm[sizeof(me->comm)]; long error; error = security_task_prctl(option, arg2, arg3, arg4, arg5); if (error != -ENOSYS) return error; error = 0; switch (option) { case PR_SET_PDEATHSIG: if (!valid_signal(arg2)) { error = -EINVAL; break; } me->pdeath_signal = arg2; break; case PR_GET_PDEATHSIG: error = put_user(me->pdeath_signal, (int __user *)arg2); break; case PR_GET_DUMPABLE: error = get_dumpable(me->mm); break; case PR_SET_DUMPABLE: if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) { error = -EINVAL; break; } set_dumpable(me->mm, arg2); break; case PR_SET_UNALIGN: error = SET_UNALIGN_CTL(me, arg2); break; case PR_GET_UNALIGN: error = GET_UNALIGN_CTL(me, arg2); break; case PR_SET_FPEMU: error = SET_FPEMU_CTL(me, arg2); break; case PR_GET_FPEMU: error = GET_FPEMU_CTL(me, arg2); break; case PR_SET_FPEXC: error = SET_FPEXC_CTL(me, arg2); break; case PR_GET_FPEXC: error = GET_FPEXC_CTL(me, arg2); break; case PR_GET_TIMING: error = PR_TIMING_STATISTICAL; break; case PR_SET_TIMING: if (arg2 != PR_TIMING_STATISTICAL) error = -EINVAL; break; case PR_SET_NAME: comm[sizeof(me->comm) - 1] = 0; if (strncpy_from_user(comm, (char __user *)arg2, sizeof(me->comm) - 1) < 0) return -EFAULT; set_task_comm(me, comm); proc_comm_connector(me); break; case PR_GET_NAME: get_task_comm(comm, me); if (copy_to_user((char __user *)arg2, comm, sizeof(comm))) return -EFAULT; break; case PR_GET_ENDIAN: error = GET_ENDIAN(me, arg2); break; case PR_SET_ENDIAN: error = SET_ENDIAN(me, arg2); break; case PR_GET_SECCOMP: error = prctl_get_seccomp(); break; case PR_SET_SECCOMP: error = prctl_set_seccomp(arg2, (char __user *)arg3); break; case PR_GET_TSC: error = GET_TSC_CTL(arg2); break; case PR_SET_TSC: error = SET_TSC_CTL(arg2); break; case PR_TASK_PERF_EVENTS_DISABLE: error = perf_event_task_disable(); break; case PR_TASK_PERF_EVENTS_ENABLE: error = perf_event_task_enable(); break; case PR_GET_TIMERSLACK: if (current->timer_slack_ns > ULONG_MAX) error = ULONG_MAX; else error = current->timer_slack_ns; break; case PR_SET_TIMERSLACK: if (arg2 <= 0) current->timer_slack_ns = current->default_timer_slack_ns; else current->timer_slack_ns = arg2; break; case PR_MCE_KILL: if (arg4 | arg5) return -EINVAL; switch (arg2) { case PR_MCE_KILL_CLEAR: if (arg3 != 0) return -EINVAL; current->flags &= ~PF_MCE_PROCESS; break; case PR_MCE_KILL_SET: current->flags |= PF_MCE_PROCESS; if (arg3 == PR_MCE_KILL_EARLY) current->flags |= PF_MCE_EARLY; else if (arg3 == PR_MCE_KILL_LATE) current->flags &= ~PF_MCE_EARLY; else if (arg3 == PR_MCE_KILL_DEFAULT) current->flags &= ~(PF_MCE_EARLY|PF_MCE_PROCESS); else return -EINVAL; break; default: return -EINVAL; } break; case PR_MCE_KILL_GET: if (arg2 | arg3 | arg4 | arg5) return -EINVAL; if (current->flags & PF_MCE_PROCESS) error = (current->flags & PF_MCE_EARLY) ? PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; else error = PR_MCE_KILL_DEFAULT; break; case PR_SET_MM: error = prctl_set_mm(arg2, arg3, arg4, arg5); break; case PR_GET_TID_ADDRESS: error = prctl_get_tid_address(me, (int __user * __user *)arg2); break; case PR_SET_CHILD_SUBREAPER: me->signal->is_child_subreaper = !!arg2; if (!arg2) break; walk_process_tree(me, propagate_has_child_subreaper, NULL); break; case PR_GET_CHILD_SUBREAPER: error = put_user(me->signal->is_child_subreaper, (int __user *)arg2); break; case PR_SET_NO_NEW_PRIVS: if (arg2 != 1 || arg3 || arg4 || arg5) return -EINVAL; task_set_no_new_privs(current); break; case PR_GET_NO_NEW_PRIVS: if (arg2 || arg3 || arg4 || arg5) return -EINVAL; return task_no_new_privs(current) ? 1 : 0; case PR_GET_THP_DISABLE: if (arg2 || arg3 || arg4 || arg5) return -EINVAL; error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags); break; case PR_SET_THP_DISABLE: if (arg3 || arg4 || arg5) return -EINVAL; if (mmap_write_lock_killable(me->mm)) return -EINTR; if (arg2) set_bit(MMF_DISABLE_THP, &me->mm->flags); else clear_bit(MMF_DISABLE_THP, &me->mm->flags); mmap_write_unlock(me->mm); break; case PR_MPX_ENABLE_MANAGEMENT: case PR_MPX_DISABLE_MANAGEMENT: /* No longer implemented: */ return -EINVAL; case PR_SET_FP_MODE: error = SET_FP_MODE(me, arg2); break; case PR_GET_FP_MODE: error = GET_FP_MODE(me); break; case PR_SVE_SET_VL: error = SVE_SET_VL(arg2); break; case PR_SVE_GET_VL: error = SVE_GET_VL(); break; case PR_GET_SPECULATION_CTRL: if (arg3 || arg4 || arg5) return -EINVAL; error = arch_prctl_spec_ctrl_get(me, arg2); break; case PR_SET_SPECULATION_CTRL: if (arg4 || arg5) return -EINVAL; error = arch_prctl_spec_ctrl_set(me, arg2, arg3); break; case PR_PAC_RESET_KEYS: if (arg3 || arg4 || arg5) return -EINVAL; error = PAC_RESET_KEYS(me, arg2); break; case PR_SET_TAGGED_ADDR_CTRL: if (arg3 || arg4 || arg5) return -EINVAL; error = SET_TAGGED_ADDR_CTRL(arg2); break; case PR_GET_TAGGED_ADDR_CTRL: if (arg2 || arg3 || arg4 || arg5) return -EINVAL; error = GET_TAGGED_ADDR_CTRL(); break; case PR_SET_IO_FLUSHER: if (!capable(CAP_SYS_RESOURCE)) return -EPERM; if (arg3 || arg4 || arg5) return -EINVAL; if (arg2 == 1) current->flags |= PR_IO_FLUSHER; else if (!arg2) current->flags &= ~PR_IO_FLUSHER; else return -EINVAL; break; case PR_GET_IO_FLUSHER: if (!capable(CAP_SYS_RESOURCE)) return -EPERM; if (arg2 || arg3 || arg4 || arg5) return -EINVAL; error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER; break; default: error = -EINVAL; break; } return error; } SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, struct getcpu_cache __user *, unused) { int err = 0; int cpu = raw_smp_processor_id(); if (cpup) err |= put_user(cpu, cpup); if (nodep) err |= put_user(cpu_to_node(cpu), nodep); return err ? -EFAULT : 0; } /** * do_sysinfo - fill in sysinfo struct * @info: pointer to buffer to fill */ static int do_sysinfo(struct sysinfo *info) { unsigned long mem_total, sav_total; unsigned int mem_unit, bitcount; struct timespec64 tp; memset(info, 0, sizeof(struct sysinfo)); ktime_get_boottime_ts64(&tp); timens_add_boottime(&tp); info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT); info->procs = nr_threads; si_meminfo(info); si_swapinfo(info); /* * If the sum of all the available memory (i.e. ram + swap) * is less than can be stored in a 32 bit unsigned long then * we can be binary compatible with 2.2.x kernels. If not, * well, in that case 2.2.x was broken anyways... * * -Erik Andersen <andersee@debian.org> */ mem_total = info->totalram + info->totalswap; if (mem_total < info->totalram || mem_total < info->totalswap) goto out; bitcount = 0; mem_unit = info->mem_unit; while (mem_unit > 1) { bitcount++; mem_unit >>= 1; sav_total = mem_total; mem_total <<= 1; if (mem_total < sav_total) goto out; } /* * If mem_total did not overflow, multiply all memory values by * info->mem_unit and set it to 1. This leaves things compatible * with 2.2.x, and also retains compatibility with earlier 2.4.x * kernels... */ info->mem_unit = 1; info->totalram <<= bitcount; info->freeram <<= bitcount; info->sharedram <<= bitcount; info->bufferram <<= bitcount; info->totalswap <<= bitcount; info->freeswap <<= bitcount; info->totalhigh <<= bitcount; info->freehigh <<= bitcount; out: return 0; } SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info) { struct sysinfo val; do_sysinfo(&val); if (copy_to_user(info, &val, sizeof(struct sysinfo))) return -EFAULT; return 0; } #ifdef CONFIG_COMPAT struct compat_sysinfo { s32 uptime; u32 loads[3]; u32 totalram; u32 freeram; u32 sharedram; u32 bufferram; u32 totalswap; u32 freeswap; u16 procs; u16 pad; u32 totalhigh; u32 freehigh; u32 mem_unit; char _f[20-2*sizeof(u32)-sizeof(int)]; }; COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info) { struct sysinfo s; struct compat_sysinfo s_32; do_sysinfo(&s); /* Check to see if any memory value is too large for 32-bit and scale * down if needed */ if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) { int bitcount = 0; while (s.mem_unit < PAGE_SIZE) { s.mem_unit <<= 1; bitcount++; } s.totalram >>= bitcount; s.freeram >>= bitcount; s.sharedram >>= bitcount; s.bufferram >>= bitcount; s.totalswap >>= bitcount; s.freeswap >>= bitcount; s.totalhigh >>= bitcount; s.freehigh >>= bitcount; } memset(&s_32, 0, sizeof(s_32)); s_32.uptime = s.uptime; s_32.loads[0] = s.loads[0]; s_32.loads[1] = s.loads[1]; s_32.loads[2] = s.loads[2]; s_32.totalram = s.totalram; s_32.freeram = s.freeram; s_32.sharedram = s.sharedram; s_32.bufferram = s.bufferram; s_32.totalswap = s.totalswap; s_32.freeswap = s.freeswap; s_32.procs = s.procs; s_32.totalhigh = s.totalhigh; s_32.freehigh = s.freehigh; s_32.mem_unit = s.mem_unit; if (copy_to_user(info, &s_32, sizeof(s_32))) return -EFAULT; return 0; } #endif /* CONFIG_COMPAT */
2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 7 1 1 1 1 1 1 2 2 1 1 2 2 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 /* * Resizable virtual memory filesystem for Linux. * * Copyright (C) 2000 Linus Torvalds. * 2000 Transmeta Corp. * 2000-2001 Christoph Rohland * 2000-2001 SAP AG * 2002 Red Hat Inc. * Copyright (C) 2002-2011 Hugh Dickins. * Copyright (C) 2011 Google Inc. * Copyright (C) 2002-2005 VERITAS Software Corporation. * Copyright (C) 2004 Andi Kleen, SuSE Labs * * Extended attribute support for tmpfs: * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> * * tiny-shmem: * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> * * This file is released under the GPL. */ #include <linux/fs.h> #include <linux/init.h> #include <linux/vfs.h> #include <linux/mount.h> #include <linux/ramfs.h> #include <linux/pagemap.h> #include <linux/file.h> #include <linux/mm.h> #include <linux/random.h> #include <linux/sched/signal.h> #include <linux/export.h> #include <linux/swap.h> #include <linux/uio.h> #include <linux/khugepaged.h> #include <linux/hugetlb.h> #include <linux/frontswap.h> #include <linux/fs_parser.h> #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ static struct vfsmount *shm_mnt; #ifdef CONFIG_SHMEM /* * This virtual memory filesystem is heavily based on the ramfs. It * extends ramfs by the ability to use swap and honor resource limits * which makes it a completely usable filesystem. */ #include <linux/xattr.h> #include <linux/exportfs.h> #include <linux/posix_acl.h> #include <linux/posix_acl_xattr.h> #include <linux/mman.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/backing-dev.h> #include <linux/shmem_fs.h> #include <linux/writeback.h> #include <linux/blkdev.h> #include <linux/pagevec.h> #include <linux/percpu_counter.h> #include <linux/falloc.h> #include <linux/splice.h> #include <linux/security.h> #include <linux/swapops.h> #include <linux/mempolicy.h> #include <linux/namei.h> #include <linux/ctype.h> #include <linux/migrate.h> #include <linux/highmem.h> #include <linux/seq_file.h> #include <linux/magic.h> #include <linux/syscalls.h> #include <linux/fcntl.h> #include <uapi/linux/memfd.h> #include <linux/userfaultfd_k.h> #include <linux/rmap.h> #include <linux/uuid.h> #include <linux/uaccess.h> #include "internal.h" #define BLOCKS_PER_PAGE (PAGE_SIZE/512) #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) /* Pretend that each entry is of this size in directory's i_size */ #define BOGO_DIRENT_SIZE 20 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ #define SHORT_SYMLINK_LEN 128 /* * shmem_fallocate communicates with shmem_fault or shmem_writepage via * inode->i_private (with i_mutex making sure that it has only one user at * a time): we would prefer not to enlarge the shmem inode just for that. */ struct shmem_falloc { wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ pgoff_t start; /* start of range currently being fallocated */ pgoff_t next; /* the next page offset to be fallocated */ pgoff_t nr_falloced; /* how many new pages have been fallocated */ pgoff_t nr_unswapped; /* how often writepage refused to swap out */ }; struct shmem_options { unsigned long long blocks; unsigned long long inodes; struct mempolicy *mpol; kuid_t uid; kgid_t gid; umode_t mode; bool full_inums; int huge; int seen; #define SHMEM_SEEN_BLOCKS 1 #define SHMEM_SEEN_INODES 2 #define SHMEM_SEEN_HUGE 4 #define SHMEM_SEEN_INUMS 8 }; #ifdef CONFIG_TMPFS static unsigned long shmem_default_max_blocks(void) { return totalram_pages() / 2; } static unsigned long shmem_default_max_inodes(void) { unsigned long nr_pages = totalram_pages(); return min(nr_pages - totalhigh_pages(), nr_pages / 2); } #endif static bool shmem_should_replace_page(struct page *page, gfp_t gfp); static int shmem_replace_page(struct page **pagep, gfp_t gfp, struct shmem_inode_info *info, pgoff_t index); static int shmem_swapin_page(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp, gfp_t gfp, struct vm_area_struct *vma, vm_fault_t *fault_type); static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp, gfp_t gfp, struct vm_area_struct *vma, struct vm_fault *vmf, vm_fault_t *fault_type); int shmem_getpage(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp) { return shmem_getpage_gfp(inode, index, pagep, sgp, mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); } static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) { return sb->s_fs_info; } /* * shmem_file_setup pre-accounts the whole fixed size of a VM object, * for shared memory and for shared anonymous (/dev/zero) mappings * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), * consistent with the pre-accounting of private mappings ... */ static inline int shmem_acct_size(unsigned long flags, loff_t size) { return (flags & VM_NORESERVE) ? 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); } static inline void shmem_unacct_size(unsigned long flags, loff_t size) { if (!(flags & VM_NORESERVE)) vm_unacct_memory(VM_ACCT(size)); } static inline int shmem_reacct_size(unsigned long flags, loff_t oldsize, loff_t newsize) { if (!(flags & VM_NORESERVE)) { if (VM_ACCT(newsize) > VM_ACCT(oldsize)) return security_vm_enough_memory_mm(current->mm, VM_ACCT(newsize) - VM_ACCT(oldsize)); else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); } return 0; } /* * ... whereas tmpfs objects are accounted incrementally as * pages are allocated, in order to allow large sparse files. * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. */ static inline int shmem_acct_block(unsigned long flags, long pages) { if (!(flags & VM_NORESERVE)) return 0; return security_vm_enough_memory_mm(current->mm, pages * VM_ACCT(PAGE_SIZE)); } static inline void shmem_unacct_blocks(unsigned long flags, long pages) { if (flags & VM_NORESERVE) vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); } static inline bool shmem_inode_acct_block(struct inode *inode, long pages) { struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); if (shmem_acct_block(info->flags, pages)) return false; if (sbinfo->max_blocks) { if (percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks - pages) > 0) goto unacct; percpu_counter_add(&sbinfo->used_blocks, pages); } return true; unacct: shmem_unacct_blocks(info->flags, pages); return false; } static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) { struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); if (sbinfo->max_blocks) percpu_counter_sub(&sbinfo->used_blocks, pages); shmem_unacct_blocks(info->flags, pages); } static const struct super_operations shmem_ops; static const struct address_space_operations shmem_aops; static const struct file_operations shmem_file_operations; static const struct inode_operations shmem_inode_operations; static const struct inode_operations shmem_dir_inode_operations; static const struct inode_operations shmem_special_inode_operations; static const struct vm_operations_struct shmem_vm_ops; static struct file_system_type shmem_fs_type; bool vma_is_shmem(struct vm_area_struct *vma) { return vma->vm_ops == &shmem_vm_ops; } static LIST_HEAD(shmem_swaplist); static DEFINE_MUTEX(shmem_swaplist_mutex); /* * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and * produces a novel ino for the newly allocated inode. * * It may also be called when making a hard link to permit the space needed by * each dentry. However, in that case, no new inode number is needed since that * internally draws from another pool of inode numbers (currently global * get_next_ino()). This case is indicated by passing NULL as inop. */ #define SHMEM_INO_BATCH 1024 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); ino_t ino; if (!(sb->s_flags & SB_KERNMOUNT)) { spin_lock(&sbinfo->stat_lock); if (sbinfo->max_inodes) { if (!sbinfo->free_inodes) { spin_unlock(&sbinfo->stat_lock); return -ENOSPC; } sbinfo->free_inodes--; } if (inop) { ino = sbinfo->next_ino++; if (unlikely(is_zero_ino(ino))) ino = sbinfo->next_ino++; if (unlikely(!sbinfo->full_inums && ino > UINT_MAX)) { /* * Emulate get_next_ino uint wraparound for * compatibility */ if (IS_ENABLED(CONFIG_64BIT)) pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", __func__, MINOR(sb->s_dev)); sbinfo->next_ino = 1; ino = sbinfo->next_ino++; } *inop = ino; } spin_unlock(&sbinfo->stat_lock); } else if (inop) { /* * __shmem_file_setup, one of our callers, is lock-free: it * doesn't hold stat_lock in shmem_reserve_inode since * max_inodes is always 0, and is called from potentially * unknown contexts. As such, use a per-cpu batched allocator * which doesn't require the per-sb stat_lock unless we are at * the batch boundary. * * We don't need to worry about inode{32,64} since SB_KERNMOUNT * shmem mounts are not exposed to userspace, so we don't need * to worry about things like glibc compatibility. */ ino_t *next_ino; next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); ino = *next_ino; if (unlikely(ino % SHMEM_INO_BATCH == 0)) { spin_lock(&sbinfo->stat_lock); ino = sbinfo->next_ino; sbinfo->next_ino += SHMEM_INO_BATCH; spin_unlock(&sbinfo->stat_lock); if (unlikely(is_zero_ino(ino))) ino++; } *inop = ino; *next_ino = ++ino; put_cpu(); } return 0; } static void shmem_free_inode(struct super_block *sb) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); if (sbinfo->max_inodes) { spin_lock(&sbinfo->stat_lock); sbinfo->free_inodes++; spin_unlock(&sbinfo->stat_lock); } } /** * shmem_recalc_inode - recalculate the block usage of an inode * @inode: inode to recalc * * We have to calculate the free blocks since the mm can drop * undirtied hole pages behind our back. * * But normally info->alloced == inode->i_mapping->nrpages + info->swapped * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) * * It has to be called with the spinlock held. */ static void shmem_recalc_inode(struct inode *inode) { struct shmem_inode_info *info = SHMEM_I(inode); long freed; freed = info->alloced - info->swapped - inode->i_mapping->nrpages; if (freed > 0) { info->alloced -= freed; inode->i_blocks -= freed * BLOCKS_PER_PAGE; shmem_inode_unacct_blocks(inode, freed); } } bool shmem_charge(struct inode *inode, long pages) { struct shmem_inode_info *info = SHMEM_I(inode); unsigned long flags; if (!shmem_inode_acct_block(inode, pages)) return false; /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ inode->i_mapping->nrpages += pages; spin_lock_irqsave(&info->lock, flags); info->alloced += pages; inode->i_blocks += pages * BLOCKS_PER_PAGE; shmem_recalc_inode(inode); spin_unlock_irqrestore(&info->lock, flags); return true; } void shmem_uncharge(struct inode *inode, long pages) { struct shmem_inode_info *info = SHMEM_I(inode); unsigned long flags; /* nrpages adjustment done by __delete_from_page_cache() or caller */ spin_lock_irqsave(&info->lock, flags); info->alloced -= pages; inode->i_blocks -= pages * BLOCKS_PER_PAGE; shmem_recalc_inode(inode); spin_unlock_irqrestore(&info->lock, flags); shmem_inode_unacct_blocks(inode, pages); } /* * Replace item expected in xarray by a new item, while holding xa_lock. */ static int shmem_replace_entry(struct address_space *mapping, pgoff_t index, void *expected, void *replacement) { XA_STATE(xas, &mapping->i_pages, index); void *item; VM_BUG_ON(!expected); VM_BUG_ON(!replacement); item = xas_load(&xas); if (item != expected) return -ENOENT; xas_store(&xas, replacement); return 0; } /* * Sometimes, before we decide whether to proceed or to fail, we must check * that an entry was not already brought back from swap by a racing thread. * * Checking page is not enough: by the time a SwapCache page is locked, it * might be reused, and again be SwapCache, using the same swap as before. */ static bool shmem_confirm_swap(struct address_space *mapping, pgoff_t index, swp_entry_t swap) { return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); } /* * Definitions for "huge tmpfs": tmpfs mounted with the huge= option * * SHMEM_HUGE_NEVER: * disables huge pages for the mount; * SHMEM_HUGE_ALWAYS: * enables huge pages for the mount; * SHMEM_HUGE_WITHIN_SIZE: * only allocate huge pages if the page will be fully within i_size, * also respect fadvise()/madvise() hints; * SHMEM_HUGE_ADVISE: * only allocate huge pages if requested with fadvise()/madvise(); */ #define SHMEM_HUGE_NEVER 0 #define SHMEM_HUGE_ALWAYS 1 #define SHMEM_HUGE_WITHIN_SIZE 2 #define SHMEM_HUGE_ADVISE 3 /* * Special values. * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: * * SHMEM_HUGE_DENY: * disables huge on shm_mnt and all mounts, for emergency use; * SHMEM_HUGE_FORCE: * enables huge on shm_mnt and all mounts, w/o needing option, for testing; * */ #define SHMEM_HUGE_DENY (-1) #define SHMEM_HUGE_FORCE (-2) #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* ifdef here to avoid bloating shmem.o when not necessary */ static int shmem_huge __read_mostly; #if defined(CONFIG_SYSFS) static int shmem_parse_huge(const char *str) { if (!strcmp(str, "never")) return SHMEM_HUGE_NEVER; if (!strcmp(str, "always")) return SHMEM_HUGE_ALWAYS; if (!strcmp(str, "within_size")) return SHMEM_HUGE_WITHIN_SIZE; if (!strcmp(str, "advise")) return SHMEM_HUGE_ADVISE; if (!strcmp(str, "deny")) return SHMEM_HUGE_DENY; if (!strcmp(str, "force")) return SHMEM_HUGE_FORCE; return -EINVAL; } #endif #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) static const char *shmem_format_huge(int huge) { switch (huge) { case SHMEM_HUGE_NEVER: return "never"; case SHMEM_HUGE_ALWAYS: return "always"; case SHMEM_HUGE_WITHIN_SIZE: return "within_size"; case SHMEM_HUGE_ADVISE: return "advise"; case SHMEM_HUGE_DENY: return "deny"; case SHMEM_HUGE_FORCE: return "force"; default: VM_BUG_ON(1); return "bad_val"; } } #endif static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, struct shrink_control *sc, unsigned long nr_to_split) { LIST_HEAD(list), *pos, *next; LIST_HEAD(to_remove); struct inode *inode; struct shmem_inode_info *info; struct page *page; unsigned long batch = sc ? sc->nr_to_scan : 128; int removed = 0, split = 0; if (list_empty(&sbinfo->shrinklist)) return SHRINK_STOP; spin_lock(&sbinfo->shrinklist_lock); list_for_each_safe(pos, next, &sbinfo->shrinklist) { info = list_entry(pos, struct shmem_inode_info, shrinklist); /* pin the inode */ inode = igrab(&info->vfs_inode); /* inode is about to be evicted */ if (!inode) { list_del_init(&info->shrinklist); removed++; goto next; } /* Check if there's anything to gain */ if (round_up(inode->i_size, PAGE_SIZE) == round_up(inode->i_size, HPAGE_PMD_SIZE)) { list_move(&info->shrinklist, &to_remove); removed++; goto next; } list_move(&info->shrinklist, &list); next: if (!--batch) break; } spin_unlock(&sbinfo->shrinklist_lock); list_for_each_safe(pos, next, &to_remove) { info = list_entry(pos, struct shmem_inode_info, shrinklist); inode = &info->vfs_inode; list_del_init(&info->shrinklist); iput(inode); } list_for_each_safe(pos, next, &list) { int ret; info = list_entry(pos, struct shmem_inode_info, shrinklist); inode = &info->vfs_inode; if (nr_to_split && split >= nr_to_split) goto leave; page = find_get_page(inode->i_mapping, (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); if (!page) goto drop; /* No huge page at the end of the file: nothing to split */ if (!PageTransHuge(page)) { put_page(page); goto drop; } /* * Leave the inode on the list if we failed to lock * the page at this time. * * Waiting for the lock may lead to deadlock in the * reclaim path. */ if (!trylock_page(page)) { put_page(page); goto leave; } ret = split_huge_page(page); unlock_page(page); put_page(page); /* If split failed leave the inode on the list */ if (ret) goto leave; split++; drop: list_del_init(&info->shrinklist); removed++; leave: iput(inode); } spin_lock(&sbinfo->shrinklist_lock); list_splice_tail(&list, &sbinfo->shrinklist); sbinfo->shrinklist_len -= removed; spin_unlock(&sbinfo->shrinklist_lock); return split; } static long shmem_unused_huge_scan(struct super_block *sb, struct shrink_control *sc) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); if (!READ_ONCE(sbinfo->shrinklist_len)) return SHRINK_STOP; return shmem_unused_huge_shrink(sbinfo, sc, 0); } static long shmem_unused_huge_count(struct super_block *sb, struct shrink_control *sc) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); return READ_ONCE(sbinfo->shrinklist_len); } #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ #define shmem_huge SHMEM_HUGE_DENY static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, struct shrink_control *sc, unsigned long nr_to_split) { return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) { if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && shmem_huge != SHMEM_HUGE_DENY) return true; return false; } /* * Like add_to_page_cache_locked, but error if expected item has gone. */ static int shmem_add_to_page_cache(struct page *page, struct address_space *mapping, pgoff_t index, void *expected, gfp_t gfp, struct mm_struct *charge_mm) { XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); unsigned long i = 0; unsigned long nr = compound_nr(page); int error; VM_BUG_ON_PAGE(PageTail(page), page); VM_BUG_ON_PAGE(index != round_down(index, nr), page); VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(!PageSwapBacked(page), page); VM_BUG_ON(expected && PageTransHuge(page)); page_ref_add(page, nr); page->mapping = mapping; page->index = index; if (!PageSwapCache(page)) { error = mem_cgroup_charge(page, charge_mm, gfp); if (error) { if (PageTransHuge(page)) { count_vm_event(THP_FILE_FALLBACK); count_vm_event(THP_FILE_FALLBACK_CHARGE); } goto error; } } cgroup_throttle_swaprate(page, gfp); do { void *entry; xas_lock_irq(&xas); entry = xas_find_conflict(&xas); if (entry != expected) xas_set_err(&xas, -EEXIST); xas_create_range(&xas); if (xas_error(&xas)) goto unlock; next: xas_store(&xas, page); if (++i < nr) { xas_next(&xas); goto next; } if (PageTransHuge(page)) { count_vm_event(THP_FILE_ALLOC); __inc_node_page_state(page, NR_SHMEM_THPS); } mapping->nrpages += nr; __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); __mod_lruvec_page_state(page, NR_SHMEM, nr); unlock: xas_unlock_irq(&xas); } while (xas_nomem(&xas, gfp)); if (xas_error(&xas)) { error = xas_error(&xas); goto error; } return 0; error: page->mapping = NULL; page_ref_sub(page, nr); return error; } /* * Like delete_from_page_cache, but substitutes swap for page. */ static void shmem_delete_from_page_cache(struct page *page, void *radswap) { struct address_space *mapping = page->mapping; int error; VM_BUG_ON_PAGE(PageCompound(page), page); xa_lock_irq(&mapping->i_pages); error = shmem_replace_entry(mapping, page->index, page, radswap); page->mapping = NULL; mapping->nrpages--; __dec_lruvec_page_state(page, NR_FILE_PAGES); __dec_lruvec_page_state(page, NR_SHMEM); xa_unlock_irq(&mapping->i_pages); put_page(page); BUG_ON(error); } /* * Remove swap entry from page cache, free the swap and its page cache. */ static int shmem_free_swap(struct address_space *mapping, pgoff_t index, void *radswap) { void *old; old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); if (old != radswap) return -ENOENT; free_swap_and_cache(radix_to_swp_entry(radswap)); return 0; } /* * Determine (in bytes) how many of the shmem object's pages mapped by the * given offsets are swapped out. * * This is safe to call without i_mutex or the i_pages lock thanks to RCU, * as long as the inode doesn't go away and racy results are not a problem. */ unsigned long shmem_partial_swap_usage(struct address_space *mapping, pgoff_t start, pgoff_t end) { XA_STATE(xas, &mapping->i_pages, start); struct page *page; unsigned long swapped = 0; rcu_read_lock(); xas_for_each(&xas, page, end - 1) { if (xas_retry(&xas, page)) continue; if (xa_is_value(page)) swapped++; if (need_resched()) { xas_pause(&xas); cond_resched_rcu(); } } rcu_read_unlock(); return swapped << PAGE_SHIFT; } /* * Determine (in bytes) how many of the shmem object's pages mapped by the * given vma is swapped out. * * This is safe to call without i_mutex or the i_pages lock thanks to RCU, * as long as the inode doesn't go away and racy results are not a problem. */ unsigned long shmem_swap_usage(struct vm_area_struct *vma) { struct inode *inode = file_inode(vma->vm_file); struct shmem_inode_info *info = SHMEM_I(inode); struct address_space *mapping = inode->i_mapping; unsigned long swapped; /* Be careful as we don't hold info->lock */ swapped = READ_ONCE(info->swapped); /* * The easier cases are when the shmem object has nothing in swap, or * the vma maps it whole. Then we can simply use the stats that we * already track. */ if (!swapped) return 0; if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) return swapped << PAGE_SHIFT; /* Here comes the more involved part */ return shmem_partial_swap_usage(mapping, linear_page_index(vma, vma->vm_start), linear_page_index(vma, vma->vm_end)); } /* * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. */ void shmem_unlock_mapping(struct address_space *mapping) { struct pagevec pvec; pgoff_t indices[PAGEVEC_SIZE]; pgoff_t index = 0; pagevec_init(&pvec); /* * Minor point, but we might as well stop if someone else SHM_LOCKs it. */ while (!mapping_unevictable(mapping)) { /* * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it * has finished, if it hits a row of PAGEVEC_SIZE swap entries. */ pvec.nr = find_get_entries(mapping, index, PAGEVEC_SIZE, pvec.pages, indices); if (!pvec.nr) break; index = indices[pvec.nr - 1] + 1; pagevec_remove_exceptionals(&pvec); check_move_unevictable_pages(&pvec); pagevec_release(&pvec); cond_resched(); } } /* * Check whether a hole-punch or truncation needs to split a huge page, * returning true if no split was required, or the split has been successful. * * Eviction (or truncation to 0 size) should never need to split a huge page; * but in rare cases might do so, if shmem_undo_range() failed to trylock on * head, and then succeeded to trylock on tail. * * A split can only succeed when there are no additional references on the * huge page: so the split below relies upon find_get_entries() having stopped * when it found a subpage of the huge page, without getting further references. */ static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) { if (!PageTransCompound(page)) return true; /* Just proceed to delete a huge page wholly within the range punched */ if (PageHead(page) && page->index >= start && page->index + HPAGE_PMD_NR <= end) return true; /* Try to split huge page, so we can truly punch the hole or truncate */ return split_huge_page(page) >= 0; } /* * Remove range of pages and swap entries from page cache, and free them. * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. */ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, bool unfalloc) { struct address_space *mapping = inode->i_mapping; struct shmem_inode_info *info = SHMEM_I(inode); pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; pgoff_t end = (lend + 1) >> PAGE_SHIFT; unsigned int partial_start = lstart & (PAGE_SIZE - 1); unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); struct pagevec pvec; pgoff_t indices[PAGEVEC_SIZE]; long nr_swaps_freed = 0; pgoff_t index; int i; if (lend == -1) end = -1; /* unsigned, so actually very big */ pagevec_init(&pvec); index = start; while (index < end) { pvec.nr = find_get_entries(mapping, index, min(end - index, (pgoff_t)PAGEVEC_SIZE), pvec.pages, indices); if (!pvec.nr) break; for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; index = indices[i]; if (index >= end) break; if (xa_is_value(page)) { if (unfalloc) continue; nr_swaps_freed += !shmem_free_swap(mapping, index, page); continue; } VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); if (!trylock_page(page)) continue; if ((!unfalloc || !PageUptodate(page)) && page_mapping(page) == mapping) { VM_BUG_ON_PAGE(PageWriteback(page), page); if (shmem_punch_compound(page, start, end)) truncate_inode_page(mapping, page); } unlock_page(page); } pagevec_remove_exceptionals(&pvec); pagevec_release(&pvec); cond_resched(); index++; } if (partial_start) { struct page *page = NULL; shmem_getpage(inode, start - 1, &page, SGP_READ); if (page) { unsigned int top = PAGE_SIZE; if (start > end) { top = partial_end; partial_end = 0; } zero_user_segment(page, partial_start, top); set_page_dirty(page); unlock_page(page); put_page(page); } } if (partial_end) { struct page *page = NULL; shmem_getpage(inode, end, &page, SGP_READ); if (page) { zero_user_segment(page, 0, partial_end); set_page_dirty(page); unlock_page(page); put_page(page); } } if (start >= end) return; index = start; while (index < end) { cond_resched(); pvec.nr = find_get_entries(mapping, index, min(end - index, (pgoff_t)PAGEVEC_SIZE), pvec.pages, indices); if (!pvec.nr) { /* If all gone or hole-punch or unfalloc, we're done */ if (index == start || end != -1) break; /* But if truncating, restart to make sure all gone */ index = start; continue; } for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; index = indices[i]; if (index >= end) break; if (xa_is_value(page)) { if (unfalloc) continue; if (shmem_free_swap(mapping, index, page)) { /* Swap was replaced by page: retry */ index--; break; } nr_swaps_freed++; continue; } lock_page(page); if (!unfalloc || !PageUptodate(page)) { if (page_mapping(page) != mapping) { /* Page was replaced by swap: retry */ unlock_page(page); index--; break; } VM_BUG_ON_PAGE(PageWriteback(page), page); if (shmem_punch_compound(page, start, end)) truncate_inode_page(mapping, page); else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { /* Wipe the page and don't get stuck */ clear_highpage(page); flush_dcache_page(page); set_page_dirty(page); if (index < round_up(start, HPAGE_PMD_NR)) start = index + 1; } } unlock_page(page); } pagevec_remove_exceptionals(&pvec); pagevec_release(&pvec); index++; } spin_lock_irq(&info->lock); info->swapped -= nr_swaps_freed; shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); } void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) { shmem_undo_range(inode, lstart, lend, false); inode->i_ctime = inode->i_mtime = current_time(inode); } EXPORT_SYMBOL_GPL(shmem_truncate_range); static int shmem_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = path->dentry->d_inode; struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); if (info->alloced - info->swapped != inode->i_mapping->nrpages) { spin_lock_irq(&info->lock); shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); } generic_fillattr(inode, stat); if (is_huge_enabled(sb_info)) stat->blksize = HPAGE_PMD_SIZE; return 0; } static int shmem_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); int error; error = setattr_prepare(dentry, attr); if (error) return error; if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { loff_t oldsize = inode->i_size; loff_t newsize = attr->ia_size; /* protected by i_mutex */ if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || (newsize > oldsize && (info->seals & F_SEAL_GROW))) return -EPERM; if (newsize != oldsize) { error = shmem_reacct_size(SHMEM_I(inode)->flags, oldsize, newsize); if (error) return error; i_size_write(inode, newsize); inode->i_ctime = inode->i_mtime = current_time(inode); } if (newsize <= oldsize) { loff_t holebegin = round_up(newsize, PAGE_SIZE); if (oldsize > holebegin) unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); if (info->alloced) shmem_truncate_range(inode, newsize, (loff_t)-1); /* unmap again to remove racily COWed private pages */ if (oldsize > holebegin) unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); /* * Part of the huge page can be beyond i_size: subject * to shrink under memory pressure. */ if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { spin_lock(&sbinfo->shrinklist_lock); /* * _careful to defend against unlocked access to * ->shrink_list in shmem_unused_huge_shrink() */ if (list_empty_careful(&info->shrinklist)) { list_add_tail(&info->shrinklist, &sbinfo->shrinklist); sbinfo->shrinklist_len++; } spin_unlock(&sbinfo->shrinklist_lock); } } } setattr_copy(inode, attr); if (attr->ia_valid & ATTR_MODE) error = posix_acl_chmod(inode, inode->i_mode); return error; } static void shmem_evict_inode(struct inode *inode) { struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); if (inode->i_mapping->a_ops == &shmem_aops) { shmem_unacct_size(info->flags, inode->i_size); inode->i_size = 0; shmem_truncate_range(inode, 0, (loff_t)-1); if (!list_empty(&info->shrinklist)) { spin_lock(&sbinfo->shrinklist_lock); if (!list_empty(&info->shrinklist)) { list_del_init(&info->shrinklist); sbinfo->shrinklist_len--; } spin_unlock(&sbinfo->shrinklist_lock); } while (!list_empty(&info->swaplist)) { /* Wait while shmem_unuse() is scanning this inode... */ wait_var_event(&info->stop_eviction, !atomic_read(&info->stop_eviction)); mutex_lock(&shmem_swaplist_mutex); /* ...but beware of the race if we peeked too early */ if (!atomic_read(&info->stop_eviction)) list_del_init(&info->swaplist); mutex_unlock(&shmem_swaplist_mutex); } } simple_xattrs_free(&info->xattrs); WARN_ON(inode->i_blocks); shmem_free_inode(inode->i_sb); clear_inode(inode); } extern struct swap_info_struct *swap_info[]; static int shmem_find_swap_entries(struct address_space *mapping, pgoff_t start, unsigned int nr_entries, struct page **entries, pgoff_t *indices, unsigned int type, bool frontswap) { XA_STATE(xas, &mapping->i_pages, start); struct page *page; swp_entry_t entry; unsigned int ret = 0; if (!nr_entries) return 0; rcu_read_lock(); xas_for_each(&xas, page, ULONG_MAX) { if (xas_retry(&xas, page)) continue; if (!xa_is_value(page)) continue; entry = radix_to_swp_entry(page); if (swp_type(entry) != type) continue; if (frontswap && !frontswap_test(swap_info[type], swp_offset(entry))) continue; indices[ret] = xas.xa_index; entries[ret] = page; if (need_resched()) { xas_pause(&xas); cond_resched_rcu(); } if (++ret == nr_entries) break; } rcu_read_unlock(); return ret; } /* * Move the swapped pages for an inode to page cache. Returns the count * of pages swapped in, or the error in case of failure. */ static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, pgoff_t *indices) { int i = 0; int ret = 0; int error = 0; struct address_space *mapping = inode->i_mapping; for (i = 0; i < pvec.nr; i++) { struct page *page = pvec.pages[i]; if (!xa_is_value(page)) continue; error = shmem_swapin_page(inode, indices[i], &page, SGP_CACHE, mapping_gfp_mask(mapping), NULL, NULL); if (error == 0) { unlock_page(page); put_page(page); ret++; } if (error == -ENOMEM) break; error = 0; } return error ? error : ret; } /* * If swap found in inode, free it and move page from swapcache to filecache. */ static int shmem_unuse_inode(struct inode *inode, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { struct address_space *mapping = inode->i_mapping; pgoff_t start = 0; struct pagevec pvec; pgoff_t indices[PAGEVEC_SIZE]; bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); int ret = 0; pagevec_init(&pvec); do { unsigned int nr_entries = PAGEVEC_SIZE; if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) nr_entries = *fs_pages_to_unuse; pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, pvec.pages, indices, type, frontswap); if (pvec.nr == 0) { ret = 0; break; } ret = shmem_unuse_swap_entries(inode, pvec, indices); if (ret < 0) break; if (frontswap_partial) { *fs_pages_to_unuse -= ret; if (*fs_pages_to_unuse == 0) { ret = FRONTSWAP_PAGES_UNUSED; break; } } start = indices[pvec.nr - 1]; } while (true); return ret; } /* * Read all the shared memory data that resides in the swap * device 'type' back into memory, so the swap device can be * unused. */ int shmem_unuse(unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { struct shmem_inode_info *info, *next; int error = 0; if (list_empty(&shmem_swaplist)) return 0; mutex_lock(&shmem_swaplist_mutex); list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { if (!info->swapped) { list_del_init(&info->swaplist); continue; } /* * Drop the swaplist mutex while searching the inode for swap; * but before doing so, make sure shmem_evict_inode() will not * remove placeholder inode from swaplist, nor let it be freed * (igrab() would protect from unlink, but not from unmount). */ atomic_inc(&info->stop_eviction); mutex_unlock(&shmem_swaplist_mutex); error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, fs_pages_to_unuse); cond_resched(); mutex_lock(&shmem_swaplist_mutex); next = list_next_entry(info, swaplist); if (!info->swapped) list_del_init(&info->swaplist); if (atomic_dec_and_test(&info->stop_eviction)) wake_up_var(&info->stop_eviction); if (error) break; } mutex_unlock(&shmem_swaplist_mutex); return error; } /* * Move the page from the page cache to the swap cache. */ static int shmem_writepage(struct page *page, struct writeback_control *wbc) { struct shmem_inode_info *info; struct address_space *mapping; struct inode *inode; swp_entry_t swap; pgoff_t index; VM_BUG_ON_PAGE(PageCompound(page), page); BUG_ON(!PageLocked(page)); mapping = page->mapping; index = page->index; inode = mapping->host; info = SHMEM_I(inode); if (info->flags & VM_LOCKED) goto redirty; if (!total_swap_pages) goto redirty; /* * Our capabilities prevent regular writeback or sync from ever calling * shmem_writepage; but a stacking filesystem might use ->writepage of * its underlying filesystem, in which case tmpfs should write out to * swap only in response to memory pressure, and not for the writeback * threads or sync. */ if (!wbc->for_reclaim) { WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ goto redirty; } /* * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC * value into swapfile.c, the only way we can correctly account for a * fallocated page arriving here is now to initialize it and write it. * * That's okay for a page already fallocated earlier, but if we have * not yet completed the fallocation, then (a) we want to keep track * of this page in case we have to undo it, and (b) it may not be a * good idea to continue anyway, once we're pushing into swap. So * reactivate the page, and let shmem_fallocate() quit when too many. */ if (!PageUptodate(page)) { if (inode->i_private) { struct shmem_falloc *shmem_falloc; spin_lock(&inode->i_lock); shmem_falloc = inode->i_private; if (shmem_falloc && !shmem_falloc->waitq && index >= shmem_falloc->start && index < shmem_falloc->next) shmem_falloc->nr_unswapped++; else shmem_falloc = NULL; spin_unlock(&inode->i_lock); if (shmem_falloc) goto redirty; } clear_highpage(page); flush_dcache_page(page); SetPageUptodate(page); } swap = get_swap_page(page); if (!swap.val) goto redirty; /* * Add inode to shmem_unuse()'s list of swapped-out inodes, * if it's not already there. Do it now before the page is * moved to swap cache, when its pagelock no longer protects * the inode from eviction. But don't unlock the mutex until * we've incremented swapped, because shmem_unuse_inode() will * prune a !swapped inode from the swaplist under this mutex. */ mutex_lock(&shmem_swaplist_mutex); if (list_empty(&info->swaplist)) list_add(&info->swaplist, &shmem_swaplist); if (add_to_swap_cache(page, swap, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, NULL) == 0) { spin_lock_irq(&info->lock); shmem_recalc_inode(inode); info->swapped++; spin_unlock_irq(&info->lock); swap_shmem_alloc(swap); shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); mutex_unlock(&shmem_swaplist_mutex); BUG_ON(page_mapped(page)); swap_writepage(page, wbc); return 0; } mutex_unlock(&shmem_swaplist_mutex); put_swap_page(page, swap); redirty: set_page_dirty(page); if (wbc->for_reclaim) return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ unlock_page(page); return 0; } #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) { char buffer[64]; if (!mpol || mpol->mode == MPOL_DEFAULT) return; /* show nothing */ mpol_to_str(buffer, sizeof(buffer), mpol); seq_printf(seq, ",mpol=%s", buffer); } static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) { struct mempolicy *mpol = NULL; if (sbinfo->mpol) { spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ mpol = sbinfo->mpol; mpol_get(mpol); spin_unlock(&sbinfo->stat_lock); } return mpol; } #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) { } static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) { return NULL; } #endif /* CONFIG_NUMA && CONFIG_TMPFS */ #ifndef CONFIG_NUMA #define vm_policy vm_private_data #endif static void shmem_pseudo_vma_init(struct vm_area_struct *vma, struct shmem_inode_info *info, pgoff_t index) { /* Create a pseudo vma that just contains the policy */ vma_init(vma, NULL); /* Bias interleave by inode number to distribute better across nodes */ vma->vm_pgoff = index + info->vfs_inode.i_ino; vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); } static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) { /* Drop reference taken by mpol_shared_policy_lookup() */ mpol_cond_put(vma->vm_policy); } static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, struct shmem_inode_info *info, pgoff_t index) { struct vm_area_struct pvma; struct page *page; struct vm_fault vmf; shmem_pseudo_vma_init(&pvma, info, index); vmf.vma = &pvma; vmf.address = 0; page = swap_cluster_readahead(swap, gfp, &vmf); shmem_pseudo_vma_destroy(&pvma); return page; } static struct page *shmem_alloc_hugepage(gfp_t gfp, struct shmem_inode_info *info, pgoff_t index) { struct vm_area_struct pvma; struct address_space *mapping = info->vfs_inode.i_mapping; pgoff_t hindex; struct page *page; hindex = round_down(index, HPAGE_PMD_NR); if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, XA_PRESENT)) return NULL; shmem_pseudo_vma_init(&pvma, info, hindex); page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); shmem_pseudo_vma_destroy(&pvma); if (page) prep_transhuge_page(page); else count_vm_event(THP_FILE_FALLBACK); return page; } static struct page *shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info, pgoff_t index) { struct vm_area_struct pvma; struct page *page; shmem_pseudo_vma_init(&pvma, info, index); page = alloc_page_vma(gfp, &pvma, 0); shmem_pseudo_vma_destroy(&pvma); return page; } static struct page *shmem_alloc_and_acct_page(gfp_t gfp, struct inode *inode, pgoff_t index, bool huge) { struct shmem_inode_info *info = SHMEM_I(inode); struct page *page; int nr; int err = -ENOSPC; if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) huge = false; nr = huge ? HPAGE_PMD_NR : 1; if (!shmem_inode_acct_block(inode, nr)) goto failed; if (huge) page = shmem_alloc_hugepage(gfp, info, index); else page = shmem_alloc_page(gfp, info, index); if (page) { __SetPageLocked(page); __SetPageSwapBacked(page); return page; } err = -ENOMEM; shmem_inode_unacct_blocks(inode, nr); failed: return ERR_PTR(err); } /* * When a page is moved from swapcache to shmem filecache (either by the * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of * shmem_unuse_inode()), it may have been read in earlier from swap, in * ignorance of the mapping it belongs to. If that mapping has special * constraints (like the gma500 GEM driver, which requires RAM below 4GB), * we may need to copy to a suitable page before moving to filecache. * * In a future release, this may well be extended to respect cpuset and * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); * but for now it is a simple matter of zone. */ static bool shmem_should_replace_page(struct page *page, gfp_t gfp) { return page_zonenum(page) > gfp_zone(gfp); } static int shmem_replace_page(struct page **pagep, gfp_t gfp, struct shmem_inode_info *info, pgoff_t index) { struct page *oldpage, *newpage; struct address_space *swap_mapping; swp_entry_t entry; pgoff_t swap_index; int error; oldpage = *pagep; entry.val = page_private(oldpage); swap_index = swp_offset(entry); swap_mapping = page_mapping(oldpage); /* * We have arrived here because our zones are constrained, so don't * limit chance of success by further cpuset and node constraints. */ gfp &= ~GFP_CONSTRAINT_MASK; newpage = shmem_alloc_page(gfp, info, index); if (!newpage) return -ENOMEM; get_page(newpage); copy_highpage(newpage, oldpage); flush_dcache_page(newpage); __SetPageLocked(newpage); __SetPageSwapBacked(newpage); SetPageUptodate(newpage); set_page_private(newpage, entry.val); SetPageSwapCache(newpage); /* * Our caller will very soon move newpage out of swapcache, but it's * a nice clean interface for us to replace oldpage by newpage there. */ xa_lock_irq(&swap_mapping->i_pages); error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); if (!error) { mem_cgroup_migrate(oldpage, newpage); __inc_lruvec_page_state(newpage, NR_FILE_PAGES); __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); } xa_unlock_irq(&swap_mapping->i_pages); if (unlikely(error)) { /* * Is this possible? I think not, now that our callers check * both PageSwapCache and page_private after getting page lock; * but be defensive. Reverse old to newpage for clear and free. */ oldpage = newpage; } else { lru_cache_add(newpage); *pagep = newpage; } ClearPageSwapCache(oldpage); set_page_private(oldpage, 0); unlock_page(oldpage); put_page(oldpage); put_page(oldpage); return error; } /* * Swap in the page pointed to by *pagep. * Caller has to make sure that *pagep contains a valid swapped page. * Returns 0 and the page in pagep if success. On failure, returns the * error code and NULL in *pagep. */ static int shmem_swapin_page(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp, gfp_t gfp, struct vm_area_struct *vma, vm_fault_t *fault_type) { struct address_space *mapping = inode->i_mapping; struct shmem_inode_info *info = SHMEM_I(inode); struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; struct page *page; swp_entry_t swap; int error; VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); swap = radix_to_swp_entry(*pagep); *pagep = NULL; /* Look it up and read it in.. */ page = lookup_swap_cache(swap, NULL, 0); if (!page) { /* Or update major stats only when swapin succeeds?? */ if (fault_type) { *fault_type |= VM_FAULT_MAJOR; count_vm_event(PGMAJFAULT); count_memcg_event_mm(charge_mm, PGMAJFAULT); } /* Here we actually start the io */ page = shmem_swapin(swap, gfp, info, index); if (!page) { error = -ENOMEM; goto failed; } } /* We have to do this with page locked to prevent races */ lock_page(page); if (!PageSwapCache(page) || page_private(page) != swap.val || !shmem_confirm_swap(mapping, index, swap)) { error = -EEXIST; goto unlock; } if (!PageUptodate(page)) { error = -EIO; goto failed; } wait_on_page_writeback(page); /* * Some architectures may have to restore extra metadata to the * physical page after reading from swap. */ arch_swap_restore(swap, page); if (shmem_should_replace_page(page, gfp)) { error = shmem_replace_page(&page, gfp, info, index); if (error) goto failed; } error = shmem_add_to_page_cache(page, mapping, index, swp_to_radix_entry(swap), gfp, charge_mm); if (error) goto failed; spin_lock_irq(&info->lock); info->swapped--; shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); if (sgp == SGP_WRITE) mark_page_accessed(page); delete_from_swap_cache(page); set_page_dirty(page); swap_free(swap); *pagep = page; return 0; failed: if (!shmem_confirm_swap(mapping, index, swap)) error = -EEXIST; unlock: if (page) { unlock_page(page); put_page(page); } return error; } /* * shmem_getpage_gfp - find page in cache, or get from swap, or allocate * * If we allocate a new one we do not mark it dirty. That's up to the * vm. If we swap it in we mark it dirty since we also free the swap * entry since a page cannot live in both the swap and page cache. * * vmf and fault_type are only supplied by shmem_fault: * otherwise they are NULL. */ static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp, gfp_t gfp, struct vm_area_struct *vma, struct vm_fault *vmf, vm_fault_t *fault_type) { struct address_space *mapping = inode->i_mapping; struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo; struct mm_struct *charge_mm; struct page *page; enum sgp_type sgp_huge = sgp; pgoff_t hindex = index; int error; int once = 0; int alloced = 0; if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) return -EFBIG; if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) sgp = SGP_CACHE; repeat: if (sgp <= SGP_CACHE && ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { return -EINVAL; } sbinfo = SHMEM_SB(inode->i_sb); charge_mm = vma ? vma->vm_mm : current->mm; page = find_lock_entry(mapping, index); if (xa_is_value(page)) { error = shmem_swapin_page(inode, index, &page, sgp, gfp, vma, fault_type); if (error == -EEXIST) goto repeat; *pagep = page; return error; } if (page) hindex = page->index; if (page && sgp == SGP_WRITE) mark_page_accessed(page); /* fallocated page? */ if (page && !PageUptodate(page)) { if (sgp != SGP_READ) goto clear; unlock_page(page); put_page(page); page = NULL; hindex = index; } if (page || sgp == SGP_READ) goto out; /* * Fast cache lookup did not find it: * bring it back from swap or allocate. */ if (vma && userfaultfd_missing(vma)) { *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); return 0; } /* shmem_symlink() */ if (mapping->a_ops != &shmem_aops) goto alloc_nohuge; if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) goto alloc_nohuge; if (shmem_huge == SHMEM_HUGE_FORCE) goto alloc_huge; switch (sbinfo->huge) { case SHMEM_HUGE_NEVER: goto alloc_nohuge; case SHMEM_HUGE_WITHIN_SIZE: { loff_t i_size; pgoff_t off; off = round_up(index, HPAGE_PMD_NR); i_size = round_up(i_size_read(inode), PAGE_SIZE); if (i_size >= HPAGE_PMD_SIZE && i_size >> PAGE_SHIFT >= off) goto alloc_huge; fallthrough; } case SHMEM_HUGE_ADVISE: if (sgp_huge == SGP_HUGE) goto alloc_huge; /* TODO: implement fadvise() hints */ goto alloc_nohuge; } alloc_huge: page = shmem_alloc_and_acct_page(gfp, inode, index, true); if (IS_ERR(page)) { alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode, index, false); } if (IS_ERR(page)) { int retry = 5; error = PTR_ERR(page); page = NULL; if (error != -ENOSPC) goto unlock; /* * Try to reclaim some space by splitting a huge page * beyond i_size on the filesystem. */ while (retry--) { int ret; ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); if (ret == SHRINK_STOP) break; if (ret) goto alloc_nohuge; } goto unlock; } if (PageTransHuge(page)) hindex = round_down(index, HPAGE_PMD_NR); else hindex = index; if (sgp == SGP_WRITE) __SetPageReferenced(page); error = shmem_add_to_page_cache(page, mapping, hindex, NULL, gfp & GFP_RECLAIM_MASK, charge_mm); if (error) goto unacct; lru_cache_add(page); spin_lock_irq(&info->lock); info->alloced += compound_nr(page); inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); alloced = true; if (PageTransHuge(page) && DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < hindex + HPAGE_PMD_NR - 1) { /* * Part of the huge page is beyond i_size: subject * to shrink under memory pressure. */ spin_lock(&sbinfo->shrinklist_lock); /* * _careful to defend against unlocked access to * ->shrink_list in shmem_unused_huge_shrink() */ if (list_empty_careful(&info->shrinklist)) { list_add_tail(&info->shrinklist, &sbinfo->shrinklist); sbinfo->shrinklist_len++; } spin_unlock(&sbinfo->shrinklist_lock); } /* * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. */ if (sgp == SGP_FALLOC) sgp = SGP_WRITE; clear: /* * Let SGP_WRITE caller clear ends if write does not fill page; * but SGP_FALLOC on a page fallocated earlier must initialize * it now, lest undo on failure cancel our earlier guarantee. */ if (sgp != SGP_WRITE && !PageUptodate(page)) { int i; for (i = 0; i < compound_nr(page); i++) { clear_highpage(page + i); flush_dcache_page(page + i); } SetPageUptodate(page); } /* Perhaps the file has been truncated since we checked */ if (sgp <= SGP_CACHE && ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { if (alloced) { ClearPageDirty(page); delete_from_page_cache(page); spin_lock_irq(&info->lock); shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); } error = -EINVAL; goto unlock; } out: *pagep = page + index - hindex; return 0; /* * Error recovery. */ unacct: shmem_inode_unacct_blocks(inode, compound_nr(page)); if (PageTransHuge(page)) { unlock_page(page); put_page(page); goto alloc_nohuge; } unlock: if (page) { unlock_page(page); put_page(page); } if (error == -ENOSPC && !once++) { spin_lock_irq(&info->lock); shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); goto repeat; } if (error == -EEXIST) goto repeat; return error; } /* * This is like autoremove_wake_function, but it removes the wait queue * entry unconditionally - even if something else had already woken the * target. */ static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) { int ret = default_wake_function(wait, mode, sync, key); list_del_init(&wait->entry); return ret; } static vm_fault_t shmem_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct inode *inode = file_inode(vma->vm_file); gfp_t gfp = mapping_gfp_mask(inode->i_mapping); enum sgp_type sgp; int err; vm_fault_t ret = VM_FAULT_LOCKED; /* * Trinity finds that probing a hole which tmpfs is punching can * prevent the hole-punch from ever completing: which in turn * locks writers out with its hold on i_mutex. So refrain from * faulting pages into the hole while it's being punched. Although * shmem_undo_range() does remove the additions, it may be unable to * keep up, as each new page needs its own unmap_mapping_range() call, * and the i_mmap tree grows ever slower to scan if new vmas are added. * * It does not matter if we sometimes reach this check just before the * hole-punch begins, so that one fault then races with the punch: * we just need to make racing faults a rare case. * * The implementation below would be much simpler if we just used a * standard mutex or completion: but we cannot take i_mutex in fault, * and bloating every shmem inode for this unlikely case would be sad. */ if (unlikely(inode->i_private)) { struct shmem_falloc *shmem_falloc; spin_lock(&inode->i_lock); shmem_falloc = inode->i_private; if (shmem_falloc && shmem_falloc->waitq && vmf->pgoff >= shmem_falloc->start && vmf->pgoff < shmem_falloc->next) { struct file *fpin; wait_queue_head_t *shmem_falloc_waitq; DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); ret = VM_FAULT_NOPAGE; fpin = maybe_unlock_mmap_for_io(vmf, NULL); if (fpin) ret = VM_FAULT_RETRY; shmem_falloc_waitq = shmem_falloc->waitq; prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, TASK_UNINTERRUPTIBLE); spin_unlock(&inode->i_lock); schedule(); /* * shmem_falloc_waitq points into the shmem_fallocate() * stack of the hole-punching task: shmem_falloc_waitq * is usually invalid by the time we reach here, but * finish_wait() does not dereference it in that case; * though i_lock needed lest racing with wake_up_all(). */ spin_lock(&inode->i_lock); finish_wait(shmem_falloc_waitq, &shmem_fault_wait); spin_unlock(&inode->i_lock); if (fpin) fput(fpin); return ret; } spin_unlock(&inode->i_lock); } sgp = SGP_CACHE; if ((vma->vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) sgp = SGP_NOHUGE; else if (vma->vm_flags & VM_HUGEPAGE) sgp = SGP_HUGE; err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, gfp, vma, vmf, &ret); if (err) return vmf_error(err); return ret; } unsigned long shmem_get_unmapped_area(struct file *file, unsigned long uaddr, unsigned long len, unsigned long pgoff, unsigned long flags) { unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); unsigned long addr; unsigned long offset; unsigned long inflated_len; unsigned long inflated_addr; unsigned long inflated_offset; if (len > TASK_SIZE) return -ENOMEM; get_area = current->mm->get_unmapped_area; addr = get_area(file, uaddr, len, pgoff, flags); if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) return addr; if (IS_ERR_VALUE(addr)) return addr; if (addr & ~PAGE_MASK) return addr; if (addr > TASK_SIZE - len) return addr; if (shmem_huge == SHMEM_HUGE_DENY) return addr; if (len < HPAGE_PMD_SIZE) return addr; if (flags & MAP_FIXED) return addr; /* * Our priority is to support MAP_SHARED mapped hugely; * and support MAP_PRIVATE mapped hugely too, until it is COWed. * But if caller specified an address hint and we allocated area there * successfully, respect that as before. */ if (uaddr == addr) return addr; if (shmem_huge != SHMEM_HUGE_FORCE) { struct super_block *sb; if (file) { VM_BUG_ON(file->f_op != &shmem_file_operations); sb = file_inode(file)->i_sb; } else { /* * Called directly from mm/mmap.c, or drivers/char/mem.c * for "/dev/zero", to create a shared anonymous object. */ if (IS_ERR(shm_mnt)) return addr; sb = shm_mnt->mnt_sb; } if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) return addr; } offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); if (offset && offset + len < 2 * HPAGE_PMD_SIZE) return addr; if ((addr & (HPAGE_PMD_SIZE-1)) == offset) return addr; inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; if (inflated_len > TASK_SIZE) return addr; if (inflated_len < len) return addr; inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); if (IS_ERR_VALUE(inflated_addr)) return addr; if (inflated_addr & ~PAGE_MASK) return addr; inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); inflated_addr += offset - inflated_offset; if (inflated_offset > offset) inflated_addr += HPAGE_PMD_SIZE; if (inflated_addr > TASK_SIZE - len) return addr; return inflated_addr; } #ifdef CONFIG_NUMA static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) { struct inode *inode = file_inode(vma->vm_file); return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); } static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, unsigned long addr) { struct inode *inode = file_inode(vma->vm_file); pgoff_t index; index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); } #endif int shmem_lock(struct file *file, int lock, struct user_struct *user) { struct inode *inode = file_inode(file); struct shmem_inode_info *info = SHMEM_I(inode); int retval = -ENOMEM; /* * What serializes the accesses to info->flags? * ipc_lock_object() when called from shmctl_do_lock(), * no serialization needed when called from shm_destroy(). */ if (lock && !(info->flags & VM_LOCKED)) { if (!user_shm_lock(inode->i_size, user)) goto out_nomem; info->flags |= VM_LOCKED; mapping_set_unevictable(file->f_mapping); } if (!lock && (info->flags & VM_LOCKED) && user) { user_shm_unlock(inode->i_size, user); info->flags &= ~VM_LOCKED; mapping_clear_unevictable(file->f_mapping); } retval = 0; out_nomem: return retval; } static int shmem_mmap(struct file *file, struct vm_area_struct *vma) { struct shmem_inode_info *info = SHMEM_I(file_inode(file)); int ret; ret = seal_check_future_write(info->seals, vma); if (ret) return ret; /* arm64 - allow memory tagging on RAM-based files */ vma->vm_flags |= VM_MTE_ALLOWED; file_accessed(file); vma->vm_ops = &shmem_vm_ops; if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < (vma->vm_end & HPAGE_PMD_MASK)) { khugepaged_enter(vma, vma->vm_flags); } return 0; } static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, umode_t mode, dev_t dev, unsigned long flags) { struct inode *inode; struct shmem_inode_info *info; struct shmem_sb_info *sbinfo = SHMEM_SB(sb); ino_t ino; if (shmem_reserve_inode(sb, &ino)) return NULL; inode = new_inode(sb); if (inode) { inode->i_ino = ino; inode_init_owner(inode, dir, mode); inode->i_blocks = 0; inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); inode->i_generation = prandom_u32(); info = SHMEM_I(inode); memset(info, 0, (char *)inode - (char *)info); spin_lock_init(&info->lock); atomic_set(&info->stop_eviction, 0); info->seals = F_SEAL_SEAL; info->flags = flags & VM_NORESERVE; INIT_LIST_HEAD(&info->shrinklist); INIT_LIST_HEAD(&info->swaplist); simple_xattrs_init(&info->xattrs); cache_no_acl(inode); switch (mode & S_IFMT) { default: inode->i_op = &shmem_special_inode_operations; init_special_inode(inode, mode, dev); break; case S_IFREG: inode->i_mapping->a_ops = &shmem_aops; inode->i_op = &shmem_inode_operations; inode->i_fop = &shmem_file_operations; mpol_shared_policy_init(&info->policy, shmem_get_sbmpol(sbinfo)); break; case S_IFDIR: inc_nlink(inode); /* Some things misbehave if size == 0 on a directory */ inode->i_size = 2 * BOGO_DIRENT_SIZE; inode->i_op = &shmem_dir_inode_operations; inode->i_fop = &simple_dir_operations; break; case S_IFLNK: /* * Must not load anything in the rbtree, * mpol_free_shared_policy will not be called. */ mpol_shared_policy_init(&info->policy, NULL); break; } lockdep_annotate_inode_mutex_key(inode); } else shmem_free_inode(sb); return inode; } bool shmem_mapping(struct address_space *mapping) { return mapping->a_ops == &shmem_aops; } static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, pmd_t *dst_pmd, struct vm_area_struct *dst_vma, unsigned long dst_addr, unsigned long src_addr, bool zeropage, struct page **pagep) { struct inode *inode = file_inode(dst_vma->vm_file); struct shmem_inode_info *info = SHMEM_I(inode); struct address_space *mapping = inode->i_mapping; gfp_t gfp = mapping_gfp_mask(mapping); pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); spinlock_t *ptl; void *page_kaddr; struct page *page; pte_t _dst_pte, *dst_pte; int ret; pgoff_t offset, max_off; ret = -ENOMEM; if (!shmem_inode_acct_block(inode, 1)) { /* * We may have got a page, returned -ENOENT triggering a retry, * and now we find ourselves with -ENOMEM. Release the page, to * avoid a BUG_ON in our caller. */ if (unlikely(*pagep)) { put_page(*pagep); *pagep = NULL; } goto out; } if (!*pagep) { page = shmem_alloc_page(gfp, info, pgoff); if (!page) goto out_unacct_blocks; if (!zeropage) { /* mcopy_atomic */ page_kaddr = kmap_atomic(page); ret = copy_from_user(page_kaddr, (const void __user *)src_addr, PAGE_SIZE); kunmap_atomic(page_kaddr); /* fallback to copy_from_user outside mmap_lock */ if (unlikely(ret)) { *pagep = page; shmem_inode_unacct_blocks(inode, 1); /* don't free the page */ return -ENOENT; } } else { /* mfill_zeropage_atomic */ clear_highpage(page); } } else { page = *pagep; *pagep = NULL; } VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); __SetPageLocked(page); __SetPageSwapBacked(page); __SetPageUptodate(page); ret = -EFAULT; offset = linear_page_index(dst_vma, dst_addr); max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); if (unlikely(offset >= max_off)) goto out_release; ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, gfp & GFP_RECLAIM_MASK, dst_mm); if (ret) goto out_release; _dst_pte = mk_pte(page, dst_vma->vm_page_prot); if (dst_vma->vm_flags & VM_WRITE) _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); else { /* * We don't set the pte dirty if the vma has no * VM_WRITE permission, so mark the page dirty or it * could be freed from under us. We could do it * unconditionally before unlock_page(), but doing it * only if VM_WRITE is not set is faster. */ set_page_dirty(page); } dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); ret = -EFAULT; max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); if (unlikely(offset >= max_off)) goto out_release_unlock; ret = -EEXIST; if (!pte_none(*dst_pte)) goto out_release_unlock; lru_cache_add(page); spin_lock_irq(&info->lock); info->alloced++; inode->i_blocks += BLOCKS_PER_PAGE; shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); inc_mm_counter(dst_mm, mm_counter_file(page)); page_add_file_rmap(page, false); set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); /* No need to invalidate - it was non-present before */ update_mmu_cache(dst_vma, dst_addr, dst_pte); pte_unmap_unlock(dst_pte, ptl); unlock_page(page); ret = 0; out: return ret; out_release_unlock: pte_unmap_unlock(dst_pte, ptl); ClearPageDirty(page); delete_from_page_cache(page); out_release: unlock_page(page); put_page(page); out_unacct_blocks: shmem_inode_unacct_blocks(inode, 1); goto out; } int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, pmd_t *dst_pmd, struct vm_area_struct *dst_vma, unsigned long dst_addr, unsigned long src_addr, struct page **pagep) { return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, dst_addr, src_addr, false, pagep); } int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, pmd_t *dst_pmd, struct vm_area_struct *dst_vma, unsigned long dst_addr) { struct page *page = NULL; return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 0, true, &page); } #ifdef CONFIG_TMPFS static const struct inode_operations shmem_symlink_inode_operations; static const struct inode_operations shmem_short_symlink_operations; #ifdef CONFIG_TMPFS_XATTR static int shmem_initxattrs(struct inode *, const struct xattr *, void *); #else #define shmem_initxattrs NULL #endif static int shmem_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { struct inode *inode = mapping->host; struct shmem_inode_info *info = SHMEM_I(inode); pgoff_t index = pos >> PAGE_SHIFT; /* i_mutex is held by caller */ if (unlikely(info->seals & (F_SEAL_GROW | F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) return -EPERM; if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) return -EPERM; } return shmem_getpage(inode, index, pagep, SGP_WRITE); } static int shmem_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct inode *inode = mapping->host; if (pos + copied > inode->i_size) i_size_write(inode, pos + copied); if (!PageUptodate(page)) { struct page *head = compound_head(page); if (PageTransCompound(page)) { int i; for (i = 0; i < HPAGE_PMD_NR; i++) { if (head + i == page) continue; clear_highpage(head + i); flush_dcache_page(head + i); } } if (copied < PAGE_SIZE) { unsigned from = pos & (PAGE_SIZE - 1); zero_user_segments(page, 0, from, from + copied, PAGE_SIZE); } SetPageUptodate(head); } set_page_dirty(page); unlock_page(page); put_page(page); return copied; } static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); struct address_space *mapping = inode->i_mapping; pgoff_t index; unsigned long offset; enum sgp_type sgp = SGP_READ; int error = 0; ssize_t retval = 0; loff_t *ppos = &iocb->ki_pos; /* * Might this read be for a stacking filesystem? Then when reading * holes of a sparse file, we actually need to allocate those pages, * and even mark them dirty, so it cannot exceed the max_blocks limit. */ if (!iter_is_iovec(to)) sgp = SGP_CACHE; index = *ppos >> PAGE_SHIFT; offset = *ppos & ~PAGE_MASK; for (;;) { struct page *page = NULL; pgoff_t end_index; unsigned long nr, ret; loff_t i_size = i_size_read(inode); end_index = i_size >> PAGE_SHIFT; if (index > end_index) break; if (index == end_index) { nr = i_size & ~PAGE_MASK; if (nr <= offset) break; } error = shmem_getpage(inode, index, &page, sgp); if (error) { if (error == -EINVAL) error = 0; break; } if (page) { if (sgp == SGP_CACHE) set_page_dirty(page); unlock_page(page); } /* * We must evaluate after, since reads (unlike writes) * are called without i_mutex protection against truncate */ nr = PAGE_SIZE; i_size = i_size_read(inode); end_index = i_size >> PAGE_SHIFT; if (index == end_index) { nr = i_size & ~PAGE_MASK; if (nr <= offset) { if (page) put_page(page); break; } } nr -= offset; if (page) { /* * If users can be writing to this page using arbitrary * virtual addresses, take care about potential aliasing * before reading the page on the kernel side. */ if (mapping_writably_mapped(mapping)) flush_dcache_page(page); /* * Mark the page accessed if we read the beginning. */ if (!offset) mark_page_accessed(page); } else { page = ZERO_PAGE(0); get_page(page); } /* * Ok, we have the page, and it's up-to-date, so * now we can copy it to user space... */ ret = copy_page_to_iter(page, offset, nr, to); retval += ret; offset += ret; index += offset >> PAGE_SHIFT; offset &= ~PAGE_MASK; put_page(page); if (!iov_iter_count(to)) break; if (ret < nr) { error = -EFAULT; break; } cond_resched(); } *ppos = ((loff_t) index << PAGE_SHIFT) + offset; file_accessed(file); return retval ? retval : error; } /* * llseek SEEK_DATA or SEEK_HOLE through the page cache. */ static pgoff_t shmem_seek_hole_data(struct address_space *mapping, pgoff_t index, pgoff_t end, int whence) { struct page *page; struct pagevec pvec; pgoff_t indices[PAGEVEC_SIZE]; bool done = false; int i; pagevec_init(&pvec); pvec.nr = 1; /* start small: we may be there already */ while (!done) { pvec.nr = find_get_entries(mapping, index, pvec.nr, pvec.pages, indices); if (!pvec.nr) { if (whence == SEEK_DATA) index = end; break; } for (i = 0; i < pvec.nr; i++, index++) { if (index < indices[i]) { if (whence == SEEK_HOLE) { done = true; break; } index = indices[i]; } page = pvec.pages[i]; if (page && !xa_is_value(page)) { if (!PageUptodate(page)) page = NULL; } if (index >= end || (page && whence == SEEK_DATA) || (!page && whence == SEEK_HOLE)) { done = true; break; } } pagevec_remove_exceptionals(&pvec); pagevec_release(&pvec); pvec.nr = PAGEVEC_SIZE; cond_resched(); } return index; } static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) { struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; pgoff_t start, end; loff_t new_offset; if (whence != SEEK_DATA && whence != SEEK_HOLE) return generic_file_llseek_size(file, offset, whence, MAX_LFS_FILESIZE, i_size_read(inode)); inode_lock(inode); /* We're holding i_mutex so we can access i_size directly */ if (offset < 0 || offset >= inode->i_size) offset = -ENXIO; else { start = offset >> PAGE_SHIFT; end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; new_offset = shmem_seek_hole_data(mapping, start, end, whence); new_offset <<= PAGE_SHIFT; if (new_offset > offset) { if (new_offset < inode->i_size) offset = new_offset; else if (whence == SEEK_DATA) offset = -ENXIO; else offset = inode->i_size; } } if (offset >= 0) offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); inode_unlock(inode); return offset; } static long shmem_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file_inode(file); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_falloc shmem_falloc; pgoff_t start, index, end; int error; if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) return -EOPNOTSUPP; inode_lock(inode); if (mode & FALLOC_FL_PUNCH_HOLE) { struct address_space *mapping = file->f_mapping; loff_t unmap_start = round_up(offset, PAGE_SIZE); loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); /* protected by i_mutex */ if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { error = -EPERM; goto out; } shmem_falloc.waitq = &shmem_falloc_waitq; shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; spin_lock(&inode->i_lock); inode->i_private = &shmem_falloc; spin_unlock(&inode->i_lock); if ((u64)unmap_end > (u64)unmap_start) unmap_mapping_range(mapping, unmap_start, 1 + unmap_end - unmap_start, 0); shmem_truncate_range(inode, offset, offset + len - 1); /* No need to unmap again: hole-punching leaves COWed pages */ spin_lock(&inode->i_lock); inode->i_private = NULL; wake_up_all(&shmem_falloc_waitq); WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); spin_unlock(&inode->i_lock); error = 0; goto out; } /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ error = inode_newsize_ok(inode, offset + len); if (error) goto out; if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { error = -EPERM; goto out; } start = offset >> PAGE_SHIFT; end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Try to avoid a swapstorm if len is impossible to satisfy */ if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { error = -ENOSPC; goto out; } shmem_falloc.waitq = NULL; shmem_falloc.start = start; shmem_falloc.next = start; shmem_falloc.nr_falloced = 0; shmem_falloc.nr_unswapped = 0; spin_lock(&inode->i_lock); inode->i_private = &shmem_falloc; spin_unlock(&inode->i_lock); for (index = start; index < end; index++) { struct page *page; /* * Good, the fallocate(2) manpage permits EINTR: we may have * been interrupted because we are using up too much memory. */ if (signal_pending(current)) error = -EINTR; else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) error = -ENOMEM; else error = shmem_getpage(inode, index, &page, SGP_FALLOC); if (error) { /* Remove the !PageUptodate pages we added */ if (index > start) { shmem_undo_range(inode, (loff_t)start << PAGE_SHIFT, ((loff_t)index << PAGE_SHIFT) - 1, true); } goto undone; } /* * Inform shmem_writepage() how far we have reached. * No need for lock or barrier: we have the page lock. */ shmem_falloc.next++; if (!PageUptodate(page)) shmem_falloc.nr_falloced++; /* * If !PageUptodate, leave it that way so that freeable pages * can be recognized if we need to rollback on error later. * But set_page_dirty so that memory pressure will swap rather * than free the pages we are allocating (and SGP_CACHE pages * might still be clean: we now need to mark those dirty too). */ set_page_dirty(page); unlock_page(page); put_page(page); cond_resched(); } if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) i_size_write(inode, offset + len); inode->i_ctime = current_time(inode); undone: spin_lock(&inode->i_lock); inode->i_private = NULL; spin_unlock(&inode->i_lock); out: inode_unlock(inode); return error; } static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) { struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); buf->f_type = TMPFS_MAGIC; buf->f_bsize = PAGE_SIZE; buf->f_namelen = NAME_MAX; if (sbinfo->max_blocks) { buf->f_blocks = sbinfo->max_blocks; buf->f_bavail = buf->f_bfree = sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks); } if (sbinfo->max_inodes) { buf->f_files = sbinfo->max_inodes; buf->f_ffree = sbinfo->free_inodes; } /* else leave those fields 0 like simple_statfs */ return 0; } /* * File creation. Allocate an inode, and we're done.. */ static int shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) { struct inode *inode; int error = -ENOSPC; inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); if (inode) { error = simple_acl_create(dir, inode); if (error) goto out_iput; error = security_inode_init_security(inode, dir, &dentry->d_name, shmem_initxattrs, NULL); if (error && error != -EOPNOTSUPP) goto out_iput; error = 0; dir->i_size += BOGO_DIRENT_SIZE; dir->i_ctime = dir->i_mtime = current_time(dir); d_instantiate(dentry, inode); dget(dentry); /* Extra count - pin the dentry in core */ } return error; out_iput: iput(inode); return error; } static int shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) { struct inode *inode; int error = -ENOSPC; inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); if (inode) { error = security_inode_init_security(inode, dir, NULL, shmem_initxattrs, NULL); if (error && error != -EOPNOTSUPP) goto out_iput; error = simple_acl_create(dir, inode); if (error) goto out_iput; d_tmpfile(dentry, inode); } return error; out_iput: iput(inode); return error; } static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) { int error; if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) return error; inc_nlink(dir); return 0; } static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) { return shmem_mknod(dir, dentry, mode | S_IFREG, 0); } /* * Link a file.. */ static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(old_dentry); int ret = 0; /* * No ordinary (disk based) filesystem counts links as inodes; * but each new link needs a new dentry, pinning lowmem, and * tmpfs dentries cannot be pruned until they are unlinked. * But if an O_TMPFILE file is linked into the tmpfs, the * first link must skip that, to get the accounting right. */ if (inode->i_nlink) { ret = shmem_reserve_inode(inode->i_sb, NULL); if (ret) goto out; } dir->i_size += BOGO_DIRENT_SIZE; inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); inc_nlink(inode); ihold(inode); /* New dentry reference */ dget(dentry); /* Extra pinning count for the created dentry */ d_instantiate(dentry, inode); out: return ret; } static int shmem_unlink(struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(dentry); if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) shmem_free_inode(inode->i_sb); dir->i_size -= BOGO_DIRENT_SIZE; inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); drop_nlink(inode); dput(dentry); /* Undo the count from "create" - this does all the work */ return 0; } static int shmem_rmdir(struct inode *dir, struct dentry *dentry) { if (!simple_empty(dentry)) return -ENOTEMPTY; drop_nlink(d_inode(dentry)); drop_nlink(dir); return shmem_unlink(dir, dentry); } static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { bool old_is_dir = d_is_dir(old_dentry); bool new_is_dir = d_is_dir(new_dentry); if (old_dir != new_dir && old_is_dir != new_is_dir) { if (old_is_dir) { drop_nlink(old_dir); inc_nlink(new_dir); } else { drop_nlink(new_dir); inc_nlink(old_dir); } } old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = new_dir->i_mtime = d_inode(old_dentry)->i_ctime = d_inode(new_dentry)->i_ctime = current_time(old_dir); return 0; } static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) { struct dentry *whiteout; int error; whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); if (!whiteout) return -ENOMEM; error = shmem_mknod(old_dir, whiteout, S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); dput(whiteout); if (error) return error; /* * Cheat and hash the whiteout while the old dentry is still in * place, instead of playing games with FS_RENAME_DOES_D_MOVE. * * d_lookup() will consistently find one of them at this point, * not sure which one, but that isn't even important. */ d_rehash(whiteout); return 0; } /* * The VFS layer already does all the dentry stuff for rename, * we just have to decrement the usage count for the target if * it exists so that the VFS layer correctly free's it when it * gets overwritten. */ static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { struct inode *inode = d_inode(old_dentry); int they_are_dirs = S_ISDIR(inode->i_mode); if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) return -EINVAL; if (flags & RENAME_EXCHANGE) return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); if (!simple_empty(new_dentry)) return -ENOTEMPTY; if (flags & RENAME_WHITEOUT) { int error; error = shmem_whiteout(old_dir, old_dentry); if (error) return error; } if (d_really_is_positive(new_dentry)) { (void) shmem_unlink(new_dir, new_dentry); if (they_are_dirs) { drop_nlink(d_inode(new_dentry));