1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 // SPDX-License-Identifier: GPL-2.0-only #include "cgroup-internal.h" #include <linux/sched/cputime.h> static DEFINE_SPINLOCK(cgroup_rstat_lock); static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock); static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu) { return per_cpu_ptr(cgrp->rstat_cpu, cpu); } /** * cgroup_rstat_updated - keep track of updated rstat_cpu * @cgrp: target cgroup * @cpu: cpu on which rstat_cpu was updated * * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching * rstat_cpu->updated_children list. See the comment on top of * cgroup_rstat_cpu definition for details. */ void cgroup_rstat_updated(struct cgroup *cgrp, int cpu) { raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); struct cgroup *parent; unsigned long flags; /* nothing to do for root */ if (!cgroup_parent(cgrp)) return; /* * Speculative already-on-list test. This may race leading to * temporary inaccuracies, which is fine. * * Because @parent's updated_children is terminated with @parent * instead of NULL, we can tell whether @cgrp is on the list by * testing the next pointer for NULL. */ if (cgroup_rstat_cpu(cgrp, cpu)->updated_next) return; raw_spin_lock_irqsave(cpu_lock, flags); /* put @cgrp and all ancestors on the corresponding updated lists */ for (parent = cgroup_parent(cgrp); parent; cgrp = parent, parent = cgroup_parent(cgrp)) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); struct cgroup_rstat_cpu *prstatc = cgroup_rstat_cpu(parent, cpu); /* * Both additions and removals are bottom-up. If a cgroup * is already in the tree, all ancestors are. */ if (rstatc->updated_next) break; rstatc->updated_next = prstatc->updated_children; prstatc->updated_children = cgrp; } raw_spin_unlock_irqrestore(cpu_lock, flags); } /** * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree * @pos: current position * @root: root of the tree to traversal * @cpu: target cpu * * Walks the udpated rstat_cpu tree on @cpu from @root. %NULL @pos starts * the traversal and %NULL return indicates the end. During traversal, * each returned cgroup is unlinked from the tree. Must be called with the * matching cgroup_rstat_cpu_lock held. * * The only ordering guarantee is that, for a parent and a child pair * covered by a given traversal, if a child is visited, its parent is * guaranteed to be visited afterwards. */ static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos, struct cgroup *root, int cpu) { struct cgroup_rstat_cpu *rstatc; if (pos == root) return NULL; /* * We're gonna walk down to the first leaf and visit/remove it. We * can pick whatever unvisited node as the starting point. */ if (!pos) pos = root; else pos = cgroup_parent(pos); /* walk down to the first leaf */ while (true) { rstatc = cgroup_rstat_cpu(pos, cpu); if (rstatc->updated_children == pos) break; pos = rstatc->updated_children; } /* * Unlink @pos from the tree. As the updated_children list is * singly linked, we have to walk it to find the removal point. * However, due to the way we traverse, @pos will be the first * child in most cases. The only exception is @root. */ if (rstatc->updated_next) { struct cgroup *parent = cgroup_parent(pos); struct cgroup_rstat_cpu *prstatc = cgroup_rstat_cpu(parent, cpu); struct cgroup_rstat_cpu *nrstatc; struct cgroup **nextp; nextp = &prstatc->updated_children; while (true) { nrstatc = cgroup_rstat_cpu(*nextp, cpu); if (*nextp == pos) break; WARN_ON_ONCE(*nextp == parent); nextp = &nrstatc->updated_next; } *nextp = rstatc->updated_next; rstatc->updated_next = NULL; return pos; } /* only happens for @root */ return NULL; } /* see cgroup_rstat_flush() */ static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep) __releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock) { int cpu; lockdep_assert_held(&cgroup_rstat_lock); for_each_possible_cpu(cpu) { raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); struct cgroup *pos = NULL; raw_spin_lock(cpu_lock); while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) { struct cgroup_subsys_state *css; cgroup_base_stat_flush(pos, cpu); rcu_read_lock(); list_for_each_entry_rcu(css, &pos->rstat_css_list, rstat_css_node) css->ss->css_rstat_flush(css, cpu); rcu_read_unlock(); } raw_spin_unlock(cpu_lock); /* if @may_sleep, play nice and yield if necessary */ if (may_sleep && (need_resched() || spin_needbreak(&cgroup_rstat_lock))) { spin_unlock_irq(&cgroup_rstat_lock); if (!cond_resched()) cpu_relax(); spin_lock_irq(&cgroup_rstat_lock); } } } /** * cgroup_rstat_flush - flush stats in @cgrp's subtree * @cgrp: target cgroup * * Collect all per-cpu stats in @cgrp's subtree into the global counters * and propagate them upwards. After this function returns, all cgroups in * the subtree have up-to-date ->stat. * * This also gets all cgroups in the subtree including @cgrp off the * ->updated_children lists. * * This function may block. */ void cgroup_rstat_flush(struct cgroup *cgrp) { might_sleep(); spin_lock_irq(&cgroup_rstat_lock); cgroup_rstat_flush_locked(cgrp, true); spin_unlock_irq(&cgroup_rstat_lock); } /** * cgroup_rstat_flush_irqsafe - irqsafe version of cgroup_rstat_flush() * @cgrp: target cgroup * * This function can be called from any context. */ void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp) { unsigned long flags; spin_lock_irqsave(&cgroup_rstat_lock, flags); cgroup_rstat_flush_locked(cgrp, false); spin_unlock_irqrestore(&cgroup_rstat_lock, flags); } /** * cgroup_rstat_flush_begin - flush stats in @cgrp's subtree and hold * @cgrp: target cgroup * * Flush stats in @cgrp's subtree and prevent further flushes. Must be * paired with cgroup_rstat_flush_release(). * * This function may block. */ void cgroup_rstat_flush_hold(struct cgroup *cgrp) __acquires(&cgroup_rstat_lock) { might_sleep(); spin_lock_irq(&cgroup_rstat_lock); cgroup_rstat_flush_locked(cgrp, true); } /** * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold() */ void cgroup_rstat_flush_release(void) __releases(&cgroup_rstat_lock) { spin_unlock_irq(&cgroup_rstat_lock); } int cgroup_rstat_init(struct cgroup *cgrp) { int cpu; /* the root cgrp has rstat_cpu preallocated */ if (!cgrp->rstat_cpu) { cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu); if (!cgrp->rstat_cpu) return -ENOMEM; } /* ->updated_children list is self terminated */ for_each_possible_cpu(cpu) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); rstatc->updated_children = cgrp; u64_stats_init(&rstatc->bsync); } return 0; } void cgroup_rstat_exit(struct cgroup *cgrp) { int cpu; cgroup_rstat_flush(cgrp); /* sanity check */ for_each_possible_cpu(cpu) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); if (WARN_ON_ONCE(rstatc->updated_children != cgrp) || WARN_ON_ONCE(rstatc->updated_next)) return; } free_percpu(cgrp->rstat_cpu); cgrp->rstat_cpu = NULL; } void __init cgroup_rstat_boot(void) { int cpu; for_each_possible_cpu(cpu) raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu)); BUG_ON(cgroup_rstat_init(&cgrp_dfl_root.cgrp)); } /* * Functions for cgroup basic resource statistics implemented on top of * rstat. */ static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, struct cgroup_base_stat *src_bstat) { dst_bstat->cputime.utime += src_bstat->cputime.utime; dst_bstat->cputime.stime += src_bstat->cputime.stime; dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; } static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, struct cgroup_base_stat *src_bstat) { dst_bstat->cputime.utime -= src_bstat->cputime.utime; dst_bstat->cputime.stime -= src_bstat->cputime.stime; dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; } static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) { struct cgroup *parent = cgroup_parent(cgrp); struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); struct cgroup_base_stat cur, delta; unsigned seq; /* fetch the current per-cpu values */ do { seq = __u64_stats_fetch_begin(&rstatc->bsync); cur.cputime = rstatc->bstat.cputime; } while (__u64_stats_fetch_retry(&rstatc->bsync, seq)); /* propagate percpu delta to global */ delta = cur; cgroup_base_stat_sub(&delta, &rstatc->last_bstat); cgroup_base_stat_add(&cgrp->bstat, &delta); cgroup_base_stat_add(&rstatc->last_bstat, &delta); /* propagate global delta to parent */ if (parent) { delta = cgrp->bstat; cgroup_base_stat_sub(&delta, &cgrp->last_bstat); cgroup_base_stat_add(&parent->bstat, &delta); cgroup_base_stat_add(&cgrp->last_bstat, &delta); } } static struct cgroup_rstat_cpu * cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp) { struct cgroup_rstat_cpu *rstatc; rstatc = get_cpu_ptr(cgrp->rstat_cpu); u64_stats_update_begin(&rstatc->bsync); return rstatc; } static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, struct cgroup_rstat_cpu *rstatc) { u64_stats_update_end(&rstatc->bsync); cgroup_rstat_updated(cgrp, smp_processor_id()); put_cpu_ptr(rstatc); } void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) { struct cgroup_rstat_cpu *rstatc; rstatc = cgroup_base_stat_cputime_account_begin(cgrp); rstatc->bstat.cputime.sum_exec_runtime += delta_exec; cgroup_base_stat_cputime_account_end(cgrp, rstatc); } void __cgroup_account_cputime_field(struct cgroup *cgrp, enum cpu_usage_stat index, u64 delta_exec) { struct cgroup_rstat_cpu *rstatc; rstatc = cgroup_base_stat_cputime_account_begin(cgrp); switch (index) { case CPUTIME_USER: case CPUTIME_NICE: rstatc->bstat.cputime.utime += delta_exec; break; case CPUTIME_SYSTEM: case CPUTIME_IRQ: case CPUTIME_SOFTIRQ: rstatc->bstat.cputime.stime += delta_exec; break; default: break; } cgroup_base_stat_cputime_account_end(cgrp, rstatc); } /* * compute the cputime for the root cgroup by getting the per cpu data * at a global level, then categorizing the fields in a manner consistent * with how it is done by __cgroup_account_cputime_field for each bit of * cpu time attributed to a cgroup. */ static void root_cgroup_cputime(struct task_cputime *cputime) { int i; cputime->stime = 0; cputime->utime = 0; cputime->sum_exec_runtime = 0; for_each_possible_cpu(i) { struct kernel_cpustat kcpustat; u64 *cpustat = kcpustat.cpustat; u64 user = 0; u64 sys = 0; kcpustat_cpu_fetch(&kcpustat, i); user += cpustat[CPUTIME_USER]; user += cpustat[CPUTIME_NICE]; cputime->utime += user; sys += cpustat[CPUTIME_SYSTEM]; sys += cpustat[CPUTIME_IRQ]; sys += cpustat[CPUTIME_SOFTIRQ]; cputime->stime += sys; cputime->sum_exec_runtime += user; cputime->sum_exec_runtime += sys; cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL]; cputime->sum_exec_runtime += cpustat[CPUTIME_GUEST]; cputime->sum_exec_runtime += cpustat[CPUTIME_GUEST_NICE]; } } void cgroup_base_stat_cputime_show(struct seq_file *seq) { struct cgroup *cgrp = seq_css(seq)->cgroup; u64 usage, utime, stime; struct task_cputime cputime; if (cgroup_parent(cgrp)) { cgroup_rstat_flush_hold(cgrp); usage = cgrp->bstat.cputime.sum_exec_runtime; cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, &utime, &stime); cgroup_rstat_flush_release(); } else { root_cgroup_cputime(&cputime); usage = cputime.sum_exec_runtime; utime = cputime.utime; stime = cputime.stime; } do_div(usage, NSEC_PER_USEC); do_div(utime, NSEC_PER_USEC); do_div(stime, NSEC_PER_USEC); seq_printf(seq, "usage_usec %llu\n" "user_usec %llu\n" "system_usec %llu\n", usage, utime, stime); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 /* * The VGA aribiter manages VGA space routing and VGA resource decode to * allow multiple VGA devices to be used in a system in a safe way. * * (C) Copyright 2005 Benjamin Herrenschmidt <benh@kernel.crashing.org> * (C) Copyright 2007 Paulo R. Zanoni <przanoni@gmail.com> * (C) Copyright 2007, 2009 Tiago Vignatti <vignatti@freedesktop.org> * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS * IN THE SOFTWARE. * */ #ifndef LINUX_VGA_H #define LINUX_VGA_H #include <video/vga.h> /* Legacy VGA regions */ #define VGA_RSRC_NONE 0x00 #define VGA_RSRC_LEGACY_IO 0x01 #define VGA_RSRC_LEGACY_MEM 0x02 #define VGA_RSRC_LEGACY_MASK (VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM) /* Non-legacy access */ #define VGA_RSRC_NORMAL_IO 0x04 #define VGA_RSRC_NORMAL_MEM 0x08 /* Passing that instead of a pci_dev to use the system "default" * device, that is the one used by vgacon. Archs will probably * have to provide their own vga_default_device(); */ #define VGA_DEFAULT_DEVICE (NULL) struct pci_dev; /* For use by clients */ /** * vga_set_legacy_decoding * * @pdev: pci device of the VGA card * @decodes: bit mask of what legacy regions the card decodes * * Indicates to the arbiter if the card decodes legacy VGA IOs, * legacy VGA Memory, both, or none. All cards default to both, * the card driver (fbdev for example) should tell the arbiter * if it has disabled legacy decoding, so the card can be left * out of the arbitration process (and can be safe to take * interrupts at any time. */ #if defined(CONFIG_VGA_ARB) extern void vga_set_legacy_decoding(struct pci_dev *pdev, unsigned int decodes); #else static inline void vga_set_legacy_decoding(struct pci_dev *pdev, unsigned int decodes) { }; #endif #if defined(CONFIG_VGA_ARB) extern int vga_get(struct pci_dev *pdev, unsigned int rsrc, int interruptible); #else static inline int vga_get(struct pci_dev *pdev, unsigned int rsrc, int interruptible) { return 0; } #endif /** * vga_get_interruptible * @pdev: pci device of the VGA card or NULL for the system default * @rsrc: bit mask of resources to acquire and lock * * Shortcut to vga_get with interruptible set to true. * * On success, release the VGA resource again with vga_put(). */ static inline int vga_get_interruptible(struct pci_dev *pdev, unsigned int rsrc) { return vga_get(pdev, rsrc, 1); } /** * vga_get_uninterruptible - shortcut to vga_get() * @pdev: pci device of the VGA card or NULL for the system default * @rsrc: bit mask of resources to acquire and lock * * Shortcut to vga_get with interruptible set to false. * * On success, release the VGA resource again with vga_put(). */ static inline int vga_get_uninterruptible(struct pci_dev *pdev, unsigned int rsrc) { return vga_get(pdev, rsrc, 0); } #if defined(CONFIG_VGA_ARB) extern void vga_put(struct pci_dev *pdev, unsigned int rsrc); #else #define vga_put(pdev, rsrc) #endif #ifdef CONFIG_VGA_ARB extern struct pci_dev *vga_default_device(void); extern void vga_set_default_device(struct pci_dev *pdev); extern int vga_remove_vgacon(struct pci_dev *pdev); #else static inline struct pci_dev *vga_default_device(void) { return NULL; }; static inline void vga_set_default_device(struct pci_dev *pdev) { }; static inline int vga_remove_vgacon(struct pci_dev *pdev) { return 0; }; #endif /* * Architectures should define this if they have several * independent PCI domains that can afford concurrent VGA * decoding */ #ifndef __ARCH_HAS_VGA_CONFLICT static inline int vga_conflicts(struct pci_dev *p1, struct pci_dev *p2) { return 1; } #endif #if defined(CONFIG_VGA_ARB) int vga_client_register(struct pci_dev *pdev, void *cookie, void (*irq_set_state)(void *cookie, bool state), unsigned int (*set_vga_decode)(void *cookie, bool state)); #else static inline int vga_client_register(struct pci_dev *pdev, void *cookie, void (*irq_set_state)(void *cookie, bool state), unsigned int (*set_vga_decode)(void *cookie, bool state)) { return 0; } #endif #endif /* LINUX_VGA_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 /* SPDX-License-Identifier: GPL-2.0 */ /* * Wrapper functions for accessing the file_struct fd array. */ #ifndef __LINUX_FILE_H #define __LINUX_FILE_H #include <linux/compiler.h> #include <linux/types.h> #include <linux/posix_types.h> #include <linux/errno.h> struct file; extern void fput(struct file *); extern void fput_many(struct file *, unsigned int); struct file_operations; struct task_struct; struct vfsmount; struct dentry; struct inode; struct path; extern struct file *alloc_file_pseudo(struct inode *, struct vfsmount *, const char *, int flags, const struct file_operations *); extern struct file *alloc_file_clone(struct file *, int flags, const struct file_operations *); static inline void fput_light(struct file *file, int fput_needed) { if (fput_needed) fput(file); } struct fd { struct file *file; unsigned int flags; }; #define FDPUT_FPUT 1 #define FDPUT_POS_UNLOCK 2 static inline void fdput(struct fd fd) { if (fd.flags & FDPUT_FPUT) fput(fd.file); } extern struct file *fget(unsigned int fd); extern struct file *fget_many(unsigned int fd, unsigned int refs); extern struct file *fget_raw(unsigned int fd); extern struct file *fget_task(struct task_struct *task, unsigned int fd); extern unsigned long __fdget(unsigned int fd); extern unsigned long __fdget_raw(unsigned int fd); extern unsigned long __fdget_pos(unsigned int fd); extern void __f_unlock_pos(struct file *); static inline struct fd __to_fd(unsigned long v) { return (struct fd){(struct file *)(v & ~3),v & 3}; } static inline struct fd fdget(unsigned int fd) { return __to_fd(__fdget(fd)); } static inline struct fd fdget_raw(unsigned int fd) { return __to_fd(__fdget_raw(fd)); } static inline struct fd fdget_pos(int fd) { return __to_fd(__fdget_pos(fd)); } static inline void fdput_pos(struct fd f) { if (f.flags & FDPUT_POS_UNLOCK) __f_unlock_pos(f.file); fdput(f); } extern int f_dupfd(unsigned int from, struct file *file, unsigned flags); extern int replace_fd(unsigned fd, struct file *file, unsigned flags); extern void set_close_on_exec(unsigned int fd, int flag); extern bool get_close_on_exec(unsigned int fd); extern int __get_unused_fd_flags(unsigned flags, unsigned long nofile); extern int get_unused_fd_flags(unsigned flags); extern void put_unused_fd(unsigned int fd); extern void fd_install(unsigned int fd, struct file *file); extern int __receive_fd(int fd, struct file *file, int __user *ufd, unsigned int o_flags); static inline int receive_fd_user(struct file *file, int __user *ufd, unsigned int o_flags) { if (ufd == NULL) return -EFAULT; return __receive_fd(-1, file, ufd, o_flags); } static inline int receive_fd(struct file *file, unsigned int o_flags) { return __receive_fd(-1, file, NULL, o_flags); } static inline int receive_fd_replace(int fd, struct file *file, unsigned int o_flags) { return __receive_fd(fd, file, NULL, o_flags); } extern void flush_delayed_fput(void); extern void __fput_sync(struct file *); extern unsigned int sysctl_nr_open_min, sysctl_nr_open_max; #endif /* __LINUX_FILE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 /* SPDX-License-Identifier: GPL-2.0 */ /* * Portions of this file * Copyright(c) 2016-2017 Intel Deutschland GmbH * Copyright (C) 2018 - 2019 Intel Corporation */ #if !defined(__MAC80211_DRIVER_TRACE) || defined(TRACE_HEADER_MULTI_READ) #define __MAC80211_DRIVER_TRACE #include <linux/tracepoint.h> #include <net/mac80211.h> #include "ieee80211_i.h" #undef TRACE_SYSTEM #define TRACE_SYSTEM mac80211 #define MAXNAME 32 #define LOCAL_ENTRY __array(char, wiphy_name, 32) #define LOCAL_ASSIGN strlcpy(__entry->wiphy_name, wiphy_name(local->hw.wiphy), MAXNAME) #define LOCAL_PR_FMT "%s" #define LOCAL_PR_ARG __entry->wiphy_name #define STA_ENTRY __array(char, sta_addr, ETH_ALEN) #define STA_ASSIGN (sta ? memcpy(__entry->sta_addr, sta->addr, ETH_ALEN) : \ eth_zero_addr(__entry->sta_addr)) #define STA_NAMED_ASSIGN(s) memcpy(__entry->sta_addr, (s)->addr, ETH_ALEN) #define STA_PR_FMT " sta:%pM" #define STA_PR_ARG __entry->sta_addr #define VIF_ENTRY __field(enum nl80211_iftype, vif_type) __field(void *, sdata) \ __field(bool, p2p) \ __string(vif_name, sdata->name) #define VIF_ASSIGN __entry->vif_type = sdata->vif.type; __entry->sdata = sdata; \ __entry->p2p = sdata->vif.p2p; \ __assign_str(vif_name, sdata->name) #define VIF_PR_FMT " vif:%s(%d%s)" #define VIF_PR_ARG __get_str(vif_name), __entry->vif_type, __entry->p2p ? "/p2p" : "" #define CHANDEF_ENTRY __field(u32, control_freq) \ __field(u32, freq_offset) \ __field(u32, chan_width) \ __field(u32, center_freq1) \ __field(u32, freq1_offset) \ __field(u32, center_freq2) #define CHANDEF_ASSIGN(c) \ __entry->control_freq = (c) ? ((c)->chan ? (c)->chan->center_freq : 0) : 0; \ __entry->freq_offset = (c) ? ((c)->chan ? (c)->chan->freq_offset : 0) : 0; \ __entry->chan_width = (c) ? (c)->width : 0; \ __entry->center_freq1 = (c) ? (c)->center_freq1 : 0; \ __entry->freq1_offset = (c) ? (c)->freq1_offset : 0; \ __entry->center_freq2 = (c) ? (c)->center_freq2 : 0; #define CHANDEF_PR_FMT " control:%d.%03d MHz width:%d center: %d.%03d/%d MHz" #define CHANDEF_PR_ARG __entry->control_freq, __entry->freq_offset, __entry->chan_width, \ __entry->center_freq1, __entry->freq1_offset, __entry->center_freq2 #define MIN_CHANDEF_ENTRY \ __field(u32, min_control_freq) \ __field(u32, min_freq_offset) \ __field(u32, min_chan_width) \ __field(u32, min_center_freq1) \ __field(u32, min_freq1_offset) \ __field(u32, min_center_freq2) #define MIN_CHANDEF_ASSIGN(c) \ __entry->min_control_freq = (c)->chan ? (c)->chan->center_freq : 0; \ __entry->min_freq_offset = (c)->chan ? (c)->chan->freq_offset : 0; \ __entry->min_chan_width = (c)->width; \ __entry->min_center_freq1 = (c)->center_freq1; \ __entry->freq1_offset = (c)->freq1_offset; \ __entry->min_center_freq2 = (c)->center_freq2; #define MIN_CHANDEF_PR_FMT " min_control:%d.%03d MHz min_width:%d min_center: %d.%03d/%d MHz" #define MIN_CHANDEF_PR_ARG __entry->min_control_freq, __entry->min_freq_offset, \ __entry->min_chan_width, \ __entry->min_center_freq1, __entry->min_freq1_offset, \ __entry->min_center_freq2 #define CHANCTX_ENTRY CHANDEF_ENTRY \ MIN_CHANDEF_ENTRY \ __field(u8, rx_chains_static) \ __field(u8, rx_chains_dynamic) #define CHANCTX_ASSIGN CHANDEF_ASSIGN(&ctx->conf.def) \ MIN_CHANDEF_ASSIGN(&ctx->conf.min_def) \ __entry->rx_chains_static = ctx->conf.rx_chains_static; \ __entry->rx_chains_dynamic = ctx->conf.rx_chains_dynamic #define CHANCTX_PR_FMT CHANDEF_PR_FMT MIN_CHANDEF_PR_FMT " chains:%d/%d" #define CHANCTX_PR_ARG CHANDEF_PR_ARG, MIN_CHANDEF_PR_ARG, \ __entry->rx_chains_static, __entry->rx_chains_dynamic #define KEY_ENTRY __field(u32, cipher) \ __field(u8, hw_key_idx) \ __field(u8, flags) \ __field(s8, keyidx) #define KEY_ASSIGN(k) __entry->cipher = (k)->cipher; \ __entry->flags = (k)->flags; \ __entry->keyidx = (k)->keyidx; \ __entry->hw_key_idx = (k)->hw_key_idx; #define KEY_PR_FMT " cipher:0x%x, flags=%#x, keyidx=%d, hw_key_idx=%d" #define KEY_PR_ARG __entry->cipher, __entry->flags, __entry->keyidx, __entry->hw_key_idx #define AMPDU_ACTION_ENTRY __field(enum ieee80211_ampdu_mlme_action, \ ieee80211_ampdu_mlme_action) \ STA_ENTRY \ __field(u16, tid) \ __field(u16, ssn) \ __field(u16, buf_size) \ __field(bool, amsdu) \ __field(u16, timeout) \ __field(u16, action) #define AMPDU_ACTION_ASSIGN STA_NAMED_ASSIGN(params->sta); \ __entry->tid = params->tid; \ __entry->ssn = params->ssn; \ __entry->buf_size = params->buf_size; \ __entry->amsdu = params->amsdu; \ __entry->timeout = params->timeout; \ __entry->action = params->action; #define AMPDU_ACTION_PR_FMT STA_PR_FMT " tid %d, ssn %d, buf_size %u, amsdu %d, timeout %d action %d" #define AMPDU_ACTION_PR_ARG STA_PR_ARG, __entry->tid, __entry->ssn, \ __entry->buf_size, __entry->amsdu, __entry->timeout, \ __entry->action /* * Tracing for driver callbacks. */ DECLARE_EVENT_CLASS(local_only_evt, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local), TP_STRUCT__entry( LOCAL_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; ), TP_printk(LOCAL_PR_FMT, LOCAL_PR_ARG) ); DECLARE_EVENT_CLASS(local_sdata_addr_evt, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __array(char, addr, ETH_ALEN) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; memcpy(__entry->addr, sdata->vif.addr, ETH_ALEN); ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " addr:%pM", LOCAL_PR_ARG, VIF_PR_ARG, __entry->addr ) ); DECLARE_EVENT_CLASS(local_u32_evt, TP_PROTO(struct ieee80211_local *local, u32 value), TP_ARGS(local, value), TP_STRUCT__entry( LOCAL_ENTRY __field(u32, value) ), TP_fast_assign( LOCAL_ASSIGN; __entry->value = value; ), TP_printk( LOCAL_PR_FMT " value:%d", LOCAL_PR_ARG, __entry->value ) ); DECLARE_EVENT_CLASS(local_sdata_evt, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG ) ); DEFINE_EVENT(local_only_evt, drv_return_void, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); TRACE_EVENT(drv_return_int, TP_PROTO(struct ieee80211_local *local, int ret), TP_ARGS(local, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(int, ret) ), TP_fast_assign( LOCAL_ASSIGN; __entry->ret = ret; ), TP_printk(LOCAL_PR_FMT " - %d", LOCAL_PR_ARG, __entry->ret) ); TRACE_EVENT(drv_return_bool, TP_PROTO(struct ieee80211_local *local, bool ret), TP_ARGS(local, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(bool, ret) ), TP_fast_assign( LOCAL_ASSIGN; __entry->ret = ret; ), TP_printk(LOCAL_PR_FMT " - %s", LOCAL_PR_ARG, (__entry->ret) ? "true" : "false") ); TRACE_EVENT(drv_return_u32, TP_PROTO(struct ieee80211_local *local, u32 ret), TP_ARGS(local, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(u32, ret) ), TP_fast_assign( LOCAL_ASSIGN; __entry->ret = ret; ), TP_printk(LOCAL_PR_FMT " - %u", LOCAL_PR_ARG, __entry->ret) ); TRACE_EVENT(drv_return_u64, TP_PROTO(struct ieee80211_local *local, u64 ret), TP_ARGS(local, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(u64, ret) ), TP_fast_assign( LOCAL_ASSIGN; __entry->ret = ret; ), TP_printk(LOCAL_PR_FMT " - %llu", LOCAL_PR_ARG, __entry->ret) ); DEFINE_EVENT(local_only_evt, drv_start, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); DEFINE_EVENT(local_u32_evt, drv_get_et_strings, TP_PROTO(struct ieee80211_local *local, u32 sset), TP_ARGS(local, sset) ); DEFINE_EVENT(local_u32_evt, drv_get_et_sset_count, TP_PROTO(struct ieee80211_local *local, u32 sset), TP_ARGS(local, sset) ); DEFINE_EVENT(local_only_evt, drv_get_et_stats, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); DEFINE_EVENT(local_only_evt, drv_suspend, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); DEFINE_EVENT(local_only_evt, drv_resume, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); TRACE_EVENT(drv_set_wakeup, TP_PROTO(struct ieee80211_local *local, bool enabled), TP_ARGS(local, enabled), TP_STRUCT__entry( LOCAL_ENTRY __field(bool, enabled) ), TP_fast_assign( LOCAL_ASSIGN; __entry->enabled = enabled; ), TP_printk(LOCAL_PR_FMT " enabled:%d", LOCAL_PR_ARG, __entry->enabled) ); DEFINE_EVENT(local_only_evt, drv_stop, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); DEFINE_EVENT(local_sdata_addr_evt, drv_add_interface, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_change_interface, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum nl80211_iftype type, bool p2p), TP_ARGS(local, sdata, type, p2p), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u32, new_type) __field(bool, new_p2p) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->new_type = type; __entry->new_p2p = p2p; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " new type:%d%s", LOCAL_PR_ARG, VIF_PR_ARG, __entry->new_type, __entry->new_p2p ? "/p2p" : "" ) ); DEFINE_EVENT(local_sdata_addr_evt, drv_remove_interface, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_config, TP_PROTO(struct ieee80211_local *local, u32 changed), TP_ARGS(local, changed), TP_STRUCT__entry( LOCAL_ENTRY __field(u32, changed) __field(u32, flags) __field(int, power_level) __field(int, dynamic_ps_timeout) __field(u16, listen_interval) __field(u8, long_frame_max_tx_count) __field(u8, short_frame_max_tx_count) CHANDEF_ENTRY __field(int, smps) ), TP_fast_assign( LOCAL_ASSIGN; __entry->changed = changed; __entry->flags = local->hw.conf.flags; __entry->power_level = local->hw.conf.power_level; __entry->dynamic_ps_timeout = local->hw.conf.dynamic_ps_timeout; __entry->listen_interval = local->hw.conf.listen_interval; __entry->long_frame_max_tx_count = local->hw.conf.long_frame_max_tx_count; __entry->short_frame_max_tx_count = local->hw.conf.short_frame_max_tx_count; CHANDEF_ASSIGN(&local->hw.conf.chandef) __entry->smps = local->hw.conf.smps_mode; ), TP_printk( LOCAL_PR_FMT " ch:%#x" CHANDEF_PR_FMT, LOCAL_PR_ARG, __entry->changed, CHANDEF_PR_ARG ) ); TRACE_EVENT(drv_bss_info_changed, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *info, u32 changed), TP_ARGS(local, sdata, info, changed), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u32, changed) __field(bool, assoc) __field(bool, ibss_joined) __field(bool, ibss_creator) __field(u16, aid) __field(bool, cts) __field(bool, shortpre) __field(bool, shortslot) __field(bool, enable_beacon) __field(u8, dtimper) __field(u16, bcnint) __field(u16, assoc_cap) __field(u64, sync_tsf) __field(u32, sync_device_ts) __field(u8, sync_dtim_count) __field(u32, basic_rates) __array(int, mcast_rate, NUM_NL80211_BANDS) __field(u16, ht_operation_mode) __field(s32, cqm_rssi_thold) __field(s32, cqm_rssi_hyst) __field(u32, channel_width) __field(u32, channel_cfreq1) __field(u32, channel_cfreq1_offset) __dynamic_array(u32, arp_addr_list, info->arp_addr_cnt > IEEE80211_BSS_ARP_ADDR_LIST_LEN ? IEEE80211_BSS_ARP_ADDR_LIST_LEN : info->arp_addr_cnt) __field(int, arp_addr_cnt) __field(bool, qos) __field(bool, idle) __field(bool, ps) __dynamic_array(u8, ssid, info->ssid_len) __field(bool, hidden_ssid) __field(int, txpower) __field(u8, p2p_oppps_ctwindow) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->changed = changed; __entry->aid = info->aid; __entry->assoc = info->assoc; __entry->ibss_joined = info->ibss_joined; __entry->ibss_creator = info->ibss_creator; __entry->shortpre = info->use_short_preamble; __entry->cts = info->use_cts_prot; __entry->shortslot = info->use_short_slot; __entry->enable_beacon = info->enable_beacon; __entry->dtimper = info->dtim_period; __entry->bcnint = info->beacon_int; __entry->assoc_cap = info->assoc_capability; __entry->sync_tsf = info->sync_tsf; __entry->sync_device_ts = info->sync_device_ts; __entry->sync_dtim_count = info->sync_dtim_count; __entry->basic_rates = info->basic_rates; memcpy(__entry->mcast_rate, info->mcast_rate, sizeof(__entry->mcast_rate)); __entry->ht_operation_mode = info->ht_operation_mode; __entry->cqm_rssi_thold = info->cqm_rssi_thold; __entry->cqm_rssi_hyst = info->cqm_rssi_hyst; __entry->channel_width = info->chandef.width; __entry->channel_cfreq1 = info->chandef.center_freq1; __entry->channel_cfreq1_offset = info->chandef.freq1_offset; __entry->arp_addr_cnt = info->arp_addr_cnt; memcpy(__get_dynamic_array(arp_addr_list), info->arp_addr_list, sizeof(u32) * (info->arp_addr_cnt > IEEE80211_BSS_ARP_ADDR_LIST_LEN ? IEEE80211_BSS_ARP_ADDR_LIST_LEN : info->arp_addr_cnt)); __entry->qos = info->qos; __entry->idle = info->idle; __entry->ps = info->ps; memcpy(__get_dynamic_array(ssid), info->ssid, info->ssid_len); __entry->hidden_ssid = info->hidden_ssid; __entry->txpower = info->txpower; __entry->p2p_oppps_ctwindow = info->p2p_noa_attr.oppps_ctwindow; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " changed:%#x", LOCAL_PR_ARG, VIF_PR_ARG, __entry->changed ) ); TRACE_EVENT(drv_prepare_multicast, TP_PROTO(struct ieee80211_local *local, int mc_count), TP_ARGS(local, mc_count), TP_STRUCT__entry( LOCAL_ENTRY __field(int, mc_count) ), TP_fast_assign( LOCAL_ASSIGN; __entry->mc_count = mc_count; ), TP_printk( LOCAL_PR_FMT " prepare mc (%d)", LOCAL_PR_ARG, __entry->mc_count ) ); TRACE_EVENT(drv_configure_filter, TP_PROTO(struct ieee80211_local *local, unsigned int changed_flags, unsigned int *total_flags, u64 multicast), TP_ARGS(local, changed_flags, total_flags, multicast), TP_STRUCT__entry( LOCAL_ENTRY __field(unsigned int, changed) __field(unsigned int, total) __field(u64, multicast) ), TP_fast_assign( LOCAL_ASSIGN; __entry->changed = changed_flags; __entry->total = *total_flags; __entry->multicast = multicast; ), TP_printk( LOCAL_PR_FMT " changed:%#x total:%#x", LOCAL_PR_ARG, __entry->changed, __entry->total ) ); TRACE_EVENT(drv_config_iface_filter, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, unsigned int filter_flags, unsigned int changed_flags), TP_ARGS(local, sdata, filter_flags, changed_flags), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(unsigned int, filter_flags) __field(unsigned int, changed_flags) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->filter_flags = filter_flags; __entry->changed_flags = changed_flags; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " filter_flags: %#x changed_flags: %#x", LOCAL_PR_ARG, VIF_PR_ARG, __entry->filter_flags, __entry->changed_flags ) ); TRACE_EVENT(drv_set_tim, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, bool set), TP_ARGS(local, sta, set), TP_STRUCT__entry( LOCAL_ENTRY STA_ENTRY __field(bool, set) ), TP_fast_assign( LOCAL_ASSIGN; STA_ASSIGN; __entry->set = set; ), TP_printk( LOCAL_PR_FMT STA_PR_FMT " set:%d", LOCAL_PR_ARG, STA_PR_ARG, __entry->set ) ); TRACE_EVENT(drv_set_key, TP_PROTO(struct ieee80211_local *local, enum set_key_cmd cmd, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct ieee80211_key_conf *key), TP_ARGS(local, cmd, sdata, sta, key), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY KEY_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; KEY_ASSIGN(key); ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT KEY_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, KEY_PR_ARG ) ); TRACE_EVENT(drv_update_tkip_key, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_key_conf *conf, struct ieee80211_sta *sta, u32 iv32), TP_ARGS(local, sdata, conf, sta, iv32), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(u32, iv32) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->iv32 = iv32; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " iv32:%#x", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->iv32 ) ); DEFINE_EVENT(local_sdata_evt, drv_hw_scan, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DEFINE_EVENT(local_sdata_evt, drv_cancel_hw_scan, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DEFINE_EVENT(local_sdata_evt, drv_sched_scan_start, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DEFINE_EVENT(local_sdata_evt, drv_sched_scan_stop, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_sw_scan_start, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const u8 *mac_addr), TP_ARGS(local, sdata, mac_addr), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __array(char, mac_addr, ETH_ALEN) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; memcpy(__entry->mac_addr, mac_addr, ETH_ALEN); ), TP_printk(LOCAL_PR_FMT ", " VIF_PR_FMT ", addr:%pM", LOCAL_PR_ARG, VIF_PR_ARG, __entry->mac_addr) ); DEFINE_EVENT(local_sdata_evt, drv_sw_scan_complete, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_get_stats, TP_PROTO(struct ieee80211_local *local, struct ieee80211_low_level_stats *stats, int ret), TP_ARGS(local, stats, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(int, ret) __field(unsigned int, ackfail) __field(unsigned int, rtsfail) __field(unsigned int, fcserr) __field(unsigned int, rtssucc) ), TP_fast_assign( LOCAL_ASSIGN; __entry->ret = ret; __entry->ackfail = stats->dot11ACKFailureCount; __entry->rtsfail = stats->dot11RTSFailureCount; __entry->fcserr = stats->dot11FCSErrorCount; __entry->rtssucc = stats->dot11RTSSuccessCount; ), TP_printk( LOCAL_PR_FMT " ret:%d", LOCAL_PR_ARG, __entry->ret ) ); TRACE_EVENT(drv_get_key_seq, TP_PROTO(struct ieee80211_local *local, struct ieee80211_key_conf *key), TP_ARGS(local, key), TP_STRUCT__entry( LOCAL_ENTRY KEY_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; KEY_ASSIGN(key); ), TP_printk( LOCAL_PR_FMT KEY_PR_FMT, LOCAL_PR_ARG, KEY_PR_ARG ) ); DEFINE_EVENT(local_u32_evt, drv_set_frag_threshold, TP_PROTO(struct ieee80211_local *local, u32 value), TP_ARGS(local, value) ); DEFINE_EVENT(local_u32_evt, drv_set_rts_threshold, TP_PROTO(struct ieee80211_local *local, u32 value), TP_ARGS(local, value) ); TRACE_EVENT(drv_set_coverage_class, TP_PROTO(struct ieee80211_local *local, s16 value), TP_ARGS(local, value), TP_STRUCT__entry( LOCAL_ENTRY __field(s16, value) ), TP_fast_assign( LOCAL_ASSIGN; __entry->value = value; ), TP_printk( LOCAL_PR_FMT " value:%d", LOCAL_PR_ARG, __entry->value ) ); TRACE_EVENT(drv_sta_notify, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum sta_notify_cmd cmd, struct ieee80211_sta *sta), TP_ARGS(local, sdata, cmd, sta), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(u32, cmd) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->cmd = cmd; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " cmd:%d", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->cmd ) ); TRACE_EVENT(drv_sta_state, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state), TP_ARGS(local, sdata, sta, old_state, new_state), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(u32, old_state) __field(u32, new_state) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->old_state = old_state; __entry->new_state = new_state; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " state: %d->%d", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->old_state, __entry->new_state ) ); TRACE_EVENT(drv_sta_set_txpwr, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(s16, txpwr) __field(u8, type) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->txpwr = sta->txpwr.power; __entry->type = sta->txpwr.type; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " txpwr: %d type %d", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->txpwr, __entry->type ) ); TRACE_EVENT(drv_sta_rc_update, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u32 changed), TP_ARGS(local, sdata, sta, changed), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(u32, changed) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->changed = changed; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " changed: 0x%x", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->changed ) ); DECLARE_EVENT_CLASS(sta_event, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG ) ); DEFINE_EVENT(sta_event, drv_sta_statistics, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta) ); DEFINE_EVENT(sta_event, drv_sta_add, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta) ); DEFINE_EVENT(sta_event, drv_sta_remove, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta) ); DEFINE_EVENT(sta_event, drv_sta_pre_rcu_remove, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta) ); DEFINE_EVENT(sta_event, drv_sync_rx_queues, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta) ); DEFINE_EVENT(sta_event, drv_sta_rate_tbl_update, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta) ); TRACE_EVENT(drv_conf_tx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u16 ac, const struct ieee80211_tx_queue_params *params), TP_ARGS(local, sdata, ac, params), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u16, ac) __field(u16, txop) __field(u16, cw_min) __field(u16, cw_max) __field(u8, aifs) __field(bool, uapsd) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->ac = ac; __entry->txop = params->txop; __entry->cw_max = params->cw_max; __entry->cw_min = params->cw_min; __entry->aifs = params->aifs; __entry->uapsd = params->uapsd; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " AC:%d", LOCAL_PR_ARG, VIF_PR_ARG, __entry->ac ) ); DEFINE_EVENT(local_sdata_evt, drv_get_tsf, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_set_tsf, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u64 tsf), TP_ARGS(local, sdata, tsf), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u64, tsf) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->tsf = tsf; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " tsf:%llu", LOCAL_PR_ARG, VIF_PR_ARG, (unsigned long long)__entry->tsf ) ); TRACE_EVENT(drv_offset_tsf, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, s64 offset), TP_ARGS(local, sdata, offset), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(s64, tsf_offset) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->tsf_offset = offset; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " tsf offset:%lld", LOCAL_PR_ARG, VIF_PR_ARG, (unsigned long long)__entry->tsf_offset ) ); DEFINE_EVENT(local_sdata_evt, drv_reset_tsf, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DEFINE_EVENT(local_only_evt, drv_tx_last_beacon, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); TRACE_EVENT(drv_ampdu_action, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_ampdu_params *params), TP_ARGS(local, sdata, params), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY AMPDU_ACTION_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; AMPDU_ACTION_ASSIGN; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT AMPDU_ACTION_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, AMPDU_ACTION_PR_ARG ) ); TRACE_EVENT(drv_get_survey, TP_PROTO(struct ieee80211_local *local, int _idx, struct survey_info *survey), TP_ARGS(local, _idx, survey), TP_STRUCT__entry( LOCAL_ENTRY __field(int, idx) ), TP_fast_assign( LOCAL_ASSIGN; __entry->idx = _idx; ), TP_printk( LOCAL_PR_FMT " idx:%d", LOCAL_PR_ARG, __entry->idx ) ); TRACE_EVENT(drv_flush, TP_PROTO(struct ieee80211_local *local, u32 queues, bool drop), TP_ARGS(local, queues, drop), TP_STRUCT__entry( LOCAL_ENTRY __field(bool, drop) __field(u32, queues) ), TP_fast_assign( LOCAL_ASSIGN; __entry->drop = drop; __entry->queues = queues; ), TP_printk( LOCAL_PR_FMT " queues:0x%x drop:%d", LOCAL_PR_ARG, __entry->queues, __entry->drop ) ); TRACE_EVENT(drv_channel_switch, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_channel_switch *ch_switch), TP_ARGS(local, sdata, ch_switch), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY CHANDEF_ENTRY __field(u64, timestamp) __field(u32, device_timestamp) __field(bool, block_tx) __field(u8, count) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; CHANDEF_ASSIGN(&ch_switch->chandef) __entry->timestamp = ch_switch->timestamp; __entry->device_timestamp = ch_switch->device_timestamp; __entry->block_tx = ch_switch->block_tx; __entry->count = ch_switch->count; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " new " CHANDEF_PR_FMT " count:%d", LOCAL_PR_ARG, VIF_PR_ARG, CHANDEF_PR_ARG, __entry->count ) ); TRACE_EVENT(drv_set_antenna, TP_PROTO(struct ieee80211_local *local, u32 tx_ant, u32 rx_ant, int ret), TP_ARGS(local, tx_ant, rx_ant, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(u32, tx_ant) __field(u32, rx_ant) __field(int, ret) ), TP_fast_assign( LOCAL_ASSIGN; __entry->tx_ant = tx_ant; __entry->rx_ant = rx_ant; __entry->ret = ret; ), TP_printk( LOCAL_PR_FMT " tx_ant:%d rx_ant:%d ret:%d", LOCAL_PR_ARG, __entry->tx_ant, __entry->rx_ant, __entry->ret ) ); TRACE_EVENT(drv_get_antenna, TP_PROTO(struct ieee80211_local *local, u32 tx_ant, u32 rx_ant, int ret), TP_ARGS(local, tx_ant, rx_ant, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(u32, tx_ant) __field(u32, rx_ant) __field(int, ret) ), TP_fast_assign( LOCAL_ASSIGN; __entry->tx_ant = tx_ant; __entry->rx_ant = rx_ant; __entry->ret = ret; ), TP_printk( LOCAL_PR_FMT " tx_ant:%d rx_ant:%d ret:%d", LOCAL_PR_ARG, __entry->tx_ant, __entry->rx_ant, __entry->ret ) ); TRACE_EVENT(drv_remain_on_channel, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_channel *chan, unsigned int duration, enum ieee80211_roc_type type), TP_ARGS(local, sdata, chan, duration, type), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(int, center_freq) __field(int, freq_offset) __field(unsigned int, duration) __field(u32, type) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->center_freq = chan->center_freq; __entry->freq_offset = chan->freq_offset; __entry->duration = duration; __entry->type = type; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " freq:%d.%03dMHz duration:%dms type=%d", LOCAL_PR_ARG, VIF_PR_ARG, __entry->center_freq, __entry->freq_offset, __entry->duration, __entry->type ) ); DEFINE_EVENT(local_sdata_evt, drv_cancel_remain_on_channel, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_set_ringparam, TP_PROTO(struct ieee80211_local *local, u32 tx, u32 rx), TP_ARGS(local, tx, rx), TP_STRUCT__entry( LOCAL_ENTRY __field(u32, tx) __field(u32, rx) ), TP_fast_assign( LOCAL_ASSIGN; __entry->tx = tx; __entry->rx = rx; ), TP_printk( LOCAL_PR_FMT " tx:%d rx %d", LOCAL_PR_ARG, __entry->tx, __entry->rx ) ); TRACE_EVENT(drv_get_ringparam, TP_PROTO(struct ieee80211_local *local, u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max), TP_ARGS(local, tx, tx_max, rx, rx_max), TP_STRUCT__entry( LOCAL_ENTRY __field(u32, tx) __field(u32, tx_max) __field(u32, rx) __field(u32, rx_max) ), TP_fast_assign( LOCAL_ASSIGN; __entry->tx = *tx; __entry->tx_max = *tx_max; __entry->rx = *rx; __entry->rx_max = *rx_max; ), TP_printk( LOCAL_PR_FMT " tx:%d tx_max %d rx %d rx_max %d", LOCAL_PR_ARG, __entry->tx, __entry->tx_max, __entry->rx, __entry->rx_max ) ); DEFINE_EVENT(local_only_evt, drv_tx_frames_pending, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); DEFINE_EVENT(local_only_evt, drv_offchannel_tx_cancel_wait, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); TRACE_EVENT(drv_set_bitrate_mask, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const struct cfg80211_bitrate_mask *mask), TP_ARGS(local, sdata, mask), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u32, legacy_2g) __field(u32, legacy_5g) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->legacy_2g = mask->control[NL80211_BAND_2GHZ].legacy; __entry->legacy_5g = mask->control[NL80211_BAND_5GHZ].legacy; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " 2G Mask:0x%x 5G Mask:0x%x", LOCAL_PR_ARG, VIF_PR_ARG, __entry->legacy_2g, __entry->legacy_5g ) ); TRACE_EVENT(drv_set_rekey_data, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_gtk_rekey_data *data), TP_ARGS(local, sdata, data), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __array(u8, kek, NL80211_KEK_LEN) __array(u8, kck, NL80211_KCK_LEN) __array(u8, replay_ctr, NL80211_REPLAY_CTR_LEN) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; memcpy(__entry->kek, data->kek, NL80211_KEK_LEN); memcpy(__entry->kck, data->kck, NL80211_KCK_LEN); memcpy(__entry->replay_ctr, data->replay_ctr, NL80211_REPLAY_CTR_LEN); ), TP_printk(LOCAL_PR_FMT VIF_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG) ); TRACE_EVENT(drv_event_callback, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const struct ieee80211_event *_event), TP_ARGS(local, sdata, _event), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u32, type) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->type = _event->type; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " event:%d", LOCAL_PR_ARG, VIF_PR_ARG, __entry->type ) ); DECLARE_EVENT_CLASS(release_evt, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, u16 tids, int num_frames, enum ieee80211_frame_release_type reason, bool more_data), TP_ARGS(local, sta, tids, num_frames, reason, more_data), TP_STRUCT__entry( LOCAL_ENTRY STA_ENTRY __field(u16, tids) __field(int, num_frames) __field(int, reason) __field(bool, more_data) ), TP_fast_assign( LOCAL_ASSIGN; STA_ASSIGN; __entry->tids = tids; __entry->num_frames = num_frames; __entry->reason = reason; __entry->more_data = more_data; ), TP_printk( LOCAL_PR_FMT STA_PR_FMT " TIDs:0x%.4x frames:%d reason:%d more:%d", LOCAL_PR_ARG, STA_PR_ARG, __entry->tids, __entry->num_frames, __entry->reason, __entry->more_data ) ); DEFINE_EVENT(release_evt, drv_release_buffered_frames, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, u16 tids, int num_frames, enum ieee80211_frame_release_type reason, bool more_data), TP_ARGS(local, sta, tids, num_frames, reason, more_data) ); DEFINE_EVENT(release_evt, drv_allow_buffered_frames, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, u16 tids, int num_frames, enum ieee80211_frame_release_type reason, bool more_data), TP_ARGS(local, sta, tids, num_frames, reason, more_data) ); TRACE_EVENT(drv_mgd_prepare_tx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u16 duration), TP_ARGS(local, sdata, duration), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u32, duration) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->duration = duration; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " duration: %u", LOCAL_PR_ARG, VIF_PR_ARG, __entry->duration ) ); DEFINE_EVENT(local_sdata_evt, drv_mgd_protect_tdls_discover, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DECLARE_EVENT_CLASS(local_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_chanctx *ctx), TP_ARGS(local, ctx), TP_STRUCT__entry( LOCAL_ENTRY CHANCTX_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; CHANCTX_ASSIGN; ), TP_printk( LOCAL_PR_FMT CHANCTX_PR_FMT, LOCAL_PR_ARG, CHANCTX_PR_ARG ) ); DEFINE_EVENT(local_chanctx, drv_add_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_chanctx *ctx), TP_ARGS(local, ctx) ); DEFINE_EVENT(local_chanctx, drv_remove_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_chanctx *ctx), TP_ARGS(local, ctx) ); TRACE_EVENT(drv_change_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, u32 changed), TP_ARGS(local, ctx, changed), TP_STRUCT__entry( LOCAL_ENTRY CHANCTX_ENTRY __field(u32, changed) ), TP_fast_assign( LOCAL_ASSIGN; CHANCTX_ASSIGN; __entry->changed = changed; ), TP_printk( LOCAL_PR_FMT CHANCTX_PR_FMT " changed:%#x", LOCAL_PR_ARG, CHANCTX_PR_ARG, __entry->changed ) ); #if !defined(__TRACE_VIF_ENTRY) #define __TRACE_VIF_ENTRY struct trace_vif_entry { enum nl80211_iftype vif_type; bool p2p; char vif_name[IFNAMSIZ]; } __packed; struct trace_chandef_entry { u32 control_freq; u32 freq_offset; u32 chan_width; u32 center_freq1; u32 freq1_offset; u32 center_freq2; } __packed; struct trace_switch_entry { struct trace_vif_entry vif; struct trace_chandef_entry old_chandef; struct trace_chandef_entry new_chandef; } __packed; #define SWITCH_ENTRY_ASSIGN(to, from) local_vifs[i].to = vifs[i].from #endif TRACE_EVENT(drv_switch_vif_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_vif_chanctx_switch *vifs, int n_vifs, enum ieee80211_chanctx_switch_mode mode), TP_ARGS(local, vifs, n_vifs, mode), TP_STRUCT__entry( LOCAL_ENTRY __field(int, n_vifs) __field(u32, mode) __dynamic_array(u8, vifs, sizeof(struct trace_switch_entry) * n_vifs) ), TP_fast_assign( LOCAL_ASSIGN; __entry->n_vifs = n_vifs; __entry->mode = mode; { struct trace_switch_entry *local_vifs = __get_dynamic_array(vifs); int i; for (i = 0; i < n_vifs; i++) { struct ieee80211_sub_if_data *sdata; sdata = container_of(vifs[i].vif, struct ieee80211_sub_if_data, vif); SWITCH_ENTRY_ASSIGN(vif.vif_type, vif->type); SWITCH_ENTRY_ASSIGN(vif.p2p, vif->p2p); strncpy(local_vifs[i].vif.vif_name, sdata->name, sizeof(local_vifs[i].vif.vif_name)); SWITCH_ENTRY_ASSIGN(old_chandef.control_freq, old_ctx->def.chan->center_freq); SWITCH_ENTRY_ASSIGN(old_chandef.freq_offset, old_ctx->def.chan->freq_offset); SWITCH_ENTRY_ASSIGN(old_chandef.chan_width, old_ctx->def.width); SWITCH_ENTRY_ASSIGN(old_chandef.center_freq1, old_ctx->def.center_freq1); SWITCH_ENTRY_ASSIGN(old_chandef.freq1_offset, old_ctx->def.freq1_offset); SWITCH_ENTRY_ASSIGN(old_chandef.center_freq2, old_ctx->def.center_freq2); SWITCH_ENTRY_ASSIGN(new_chandef.control_freq, new_ctx->def.chan->center_freq); SWITCH_ENTRY_ASSIGN(new_chandef.freq_offset, new_ctx->def.chan->freq_offset); SWITCH_ENTRY_ASSIGN(new_chandef.chan_width, new_ctx->def.width); SWITCH_ENTRY_ASSIGN(new_chandef.center_freq1, new_ctx->def.center_freq1); SWITCH_ENTRY_ASSIGN(new_chandef.freq1_offset, new_ctx->def.freq1_offset); SWITCH_ENTRY_ASSIGN(new_chandef.center_freq2, new_ctx->def.center_freq2); } } ), TP_printk( LOCAL_PR_FMT " n_vifs:%d mode:%d", LOCAL_PR_ARG, __entry->n_vifs, __entry->mode ) ); DECLARE_EVENT_CLASS(local_sdata_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_chanctx *ctx), TP_ARGS(local, sdata, ctx), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY CHANCTX_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; CHANCTX_ASSIGN; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT CHANCTX_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, CHANCTX_PR_ARG ) ); DEFINE_EVENT(local_sdata_chanctx, drv_assign_vif_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_chanctx *ctx), TP_ARGS(local, sdata, ctx) ); DEFINE_EVENT(local_sdata_chanctx, drv_unassign_vif_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_chanctx *ctx), TP_ARGS(local, sdata, ctx) ); TRACE_EVENT(drv_start_ap, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *info), TP_ARGS(local, sdata, info), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u8, dtimper) __field(u16, bcnint) __dynamic_array(u8, ssid, info->ssid_len) __field(bool, hidden_ssid) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->dtimper = info->dtim_period; __entry->bcnint = info->beacon_int; memcpy(__get_dynamic_array(ssid), info->ssid, info->ssid_len); __entry->hidden_ssid = info->hidden_ssid; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG ) ); DEFINE_EVENT(local_sdata_evt, drv_stop_ap, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_reconfig_complete, TP_PROTO(struct ieee80211_local *local, enum ieee80211_reconfig_type reconfig_type), TP_ARGS(local, reconfig_type), TP_STRUCT__entry( LOCAL_ENTRY __field(u8, reconfig_type) ), TP_fast_assign( LOCAL_ASSIGN; __entry->reconfig_type = reconfig_type; ), TP_printk( LOCAL_PR_FMT " reconfig_type:%d", LOCAL_PR_ARG, __entry->reconfig_type ) ); #if IS_ENABLED(CONFIG_IPV6) DEFINE_EVENT(local_sdata_evt, drv_ipv6_addr_change, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); #endif TRACE_EVENT(drv_join_ibss, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *info), TP_ARGS(local, sdata, info), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u8, dtimper) __field(u16, bcnint) __dynamic_array(u8, ssid, info->ssid_len) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->dtimper = info->dtim_period; __entry->bcnint = info->beacon_int; memcpy(__get_dynamic_array(ssid), info->ssid, info->ssid_len); ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG ) ); DEFINE_EVENT(local_sdata_evt, drv_leave_ibss, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_get_expected_throughput, TP_PROTO(struct ieee80211_sta *sta), TP_ARGS(sta), TP_STRUCT__entry( STA_ENTRY ), TP_fast_assign( STA_ASSIGN; ), TP_printk( STA_PR_FMT, STA_PR_ARG ) ); TRACE_EVENT(drv_start_nan, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_nan_conf *conf), TP_ARGS(local, sdata, conf), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u8, master_pref) __field(u8, bands) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->master_pref = conf->master_pref; __entry->bands = conf->bands; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT ", master preference: %u, bands: 0x%0x", LOCAL_PR_ARG, VIF_PR_ARG, __entry->master_pref, __entry->bands ) ); TRACE_EVENT(drv_stop_nan, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG ) ); TRACE_EVENT(drv_nan_change_conf, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_nan_conf *conf, u32 changes), TP_ARGS(local, sdata, conf, changes), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u8, master_pref) __field(u8, bands) __field(u32, changes) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->master_pref = conf->master_pref; __entry->bands = conf->bands; __entry->changes = changes; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT ", master preference: %u, bands: 0x%0x, changes: 0x%x", LOCAL_PR_ARG, VIF_PR_ARG, __entry->master_pref, __entry->bands, __entry->changes ) ); TRACE_EVENT(drv_add_nan_func, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const struct cfg80211_nan_func *func), TP_ARGS(local, sdata, func), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u8, type) __field(u8, inst_id) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->type = func->type; __entry->inst_id = func->instance_id; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT ", type: %u, inst_id: %u", LOCAL_PR_ARG, VIF_PR_ARG, __entry->type, __entry->inst_id ) ); TRACE_EVENT(drv_del_nan_func, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u8 instance_id), TP_ARGS(local, sdata, instance_id), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u8, instance_id) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->instance_id = instance_id; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT ", instance_id: %u", LOCAL_PR_ARG, VIF_PR_ARG, __entry->instance_id ) ); DEFINE_EVENT(local_sdata_evt, drv_start_pmsr, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DEFINE_EVENT(local_sdata_evt, drv_abort_pmsr, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); /* * Tracing for API calls that drivers call. */ TRACE_EVENT(api_start_tx_ba_session, TP_PROTO(struct ieee80211_sta *sta, u16 tid), TP_ARGS(sta, tid), TP_STRUCT__entry( STA_ENTRY __field(u16, tid) ), TP_fast_assign( STA_ASSIGN; __entry->tid = tid; ), TP_printk( STA_PR_FMT " tid:%d", STA_PR_ARG, __entry->tid ) ); TRACE_EVENT(api_start_tx_ba_cb, TP_PROTO(struct ieee80211_sub_if_data *sdata, const u8 *ra, u16 tid), TP_ARGS(sdata, ra, tid), TP_STRUCT__entry( VIF_ENTRY __array(u8, ra, ETH_ALEN) __field(u16, tid) ), TP_fast_assign( VIF_ASSIGN; memcpy(__entry->ra, ra, ETH_ALEN); __entry->tid = tid; ), TP_printk( VIF_PR_FMT " ra:%pM tid:%d", VIF_PR_ARG, __entry->ra, __entry->tid ) ); TRACE_EVENT(api_stop_tx_ba_session, TP_PROTO(struct ieee80211_sta *sta, u16 tid), TP_ARGS(sta, tid), TP_STRUCT__entry( STA_ENTRY __field(u16, tid) ), TP_fast_assign( STA_ASSIGN; __entry->tid = tid; ), TP_printk( STA_PR_FMT " tid:%d", STA_PR_ARG, __entry->tid ) ); TRACE_EVENT(api_stop_tx_ba_cb, TP_PROTO(struct ieee80211_sub_if_data *sdata, const u8 *ra, u16 tid), TP_ARGS(sdata, ra, tid), TP_STRUCT__entry( VIF_ENTRY __array(u8, ra, ETH_ALEN) __field(u16, tid) ), TP_fast_assign( VIF_ASSIGN; memcpy(__entry->ra, ra, ETH_ALEN); __entry->tid = tid; ), TP_printk( VIF_PR_FMT " ra:%pM tid:%d", VIF_PR_ARG, __entry->ra, __entry->tid ) ); DEFINE_EVENT(local_only_evt, api_restart_hw, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); TRACE_EVENT(api_beacon_loss, TP_PROTO(struct ieee80211_sub_if_data *sdata), TP_ARGS(sdata), TP_STRUCT__entry( VIF_ENTRY ), TP_fast_assign( VIF_ASSIGN; ), TP_printk( VIF_PR_FMT, VIF_PR_ARG ) ); TRACE_EVENT(api_connection_loss, TP_PROTO(struct ieee80211_sub_if_data *sdata), TP_ARGS(sdata), TP_STRUCT__entry( VIF_ENTRY ), TP_fast_assign( VIF_ASSIGN; ), TP_printk( VIF_PR_FMT, VIF_PR_ARG ) ); TRACE_EVENT(api_cqm_rssi_notify, TP_PROTO(struct ieee80211_sub_if_data *sdata, enum nl80211_cqm_rssi_threshold_event rssi_event, s32 rssi_level), TP_ARGS(sdata, rssi_event, rssi_level), TP_STRUCT__entry( VIF_ENTRY __field(u32, rssi_event) __field(s32, rssi_level) ), TP_fast_assign( VIF_ASSIGN; __entry->rssi_event = rssi_event; __entry->rssi_level = rssi_level; ), TP_printk( VIF_PR_FMT " event:%d rssi:%d", VIF_PR_ARG, __entry->rssi_event, __entry->rssi_level ) ); DEFINE_EVENT(local_sdata_evt, api_cqm_beacon_loss_notify, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(api_scan_completed, TP_PROTO(struct ieee80211_local *local, bool aborted), TP_ARGS(local, aborted), TP_STRUCT__entry( LOCAL_ENTRY __field(bool, aborted) ), TP_fast_assign( LOCAL_ASSIGN; __entry->aborted = aborted; ), TP_printk( LOCAL_PR_FMT " aborted:%d", LOCAL_PR_ARG, __entry->aborted ) ); TRACE_EVENT(api_sched_scan_results, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local), TP_STRUCT__entry( LOCAL_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; ), TP_printk( LOCAL_PR_FMT, LOCAL_PR_ARG ) ); TRACE_EVENT(api_sched_scan_stopped, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local), TP_STRUCT__entry( LOCAL_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; ), TP_printk( LOCAL_PR_FMT, LOCAL_PR_ARG ) ); TRACE_EVENT(api_sta_block_awake, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, bool block), TP_ARGS(local, sta, block), TP_STRUCT__entry( LOCAL_ENTRY STA_ENTRY __field(bool, block) ), TP_fast_assign( LOCAL_ASSIGN; STA_ASSIGN; __entry->block = block; ), TP_printk( LOCAL_PR_FMT STA_PR_FMT " block:%d", LOCAL_PR_ARG, STA_PR_ARG, __entry->block ) ); TRACE_EVENT(api_chswitch_done, TP_PROTO(struct ieee80211_sub_if_data *sdata, bool success), TP_ARGS(sdata, success), TP_STRUCT__entry( VIF_ENTRY __field(bool, success) ), TP_fast_assign( VIF_ASSIGN; __entry->success = success; ), TP_printk( VIF_PR_FMT " success=%d", VIF_PR_ARG, __entry->success ) ); DEFINE_EVENT(local_only_evt, api_ready_on_channel, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); DEFINE_EVENT(local_only_evt, api_remain_on_channel_expired, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); TRACE_EVENT(api_gtk_rekey_notify, TP_PROTO(struct ieee80211_sub_if_data *sdata, const u8 *bssid, const u8 *replay_ctr), TP_ARGS(sdata, bssid, replay_ctr), TP_STRUCT__entry( VIF_ENTRY __array(u8, bssid, ETH_ALEN) __array(u8, replay_ctr, NL80211_REPLAY_CTR_LEN) ), TP_fast_assign( VIF_ASSIGN; memcpy(__entry->bssid, bssid, ETH_ALEN); memcpy(__entry->replay_ctr, replay_ctr, NL80211_REPLAY_CTR_LEN); ), TP_printk(VIF_PR_FMT, VIF_PR_ARG) ); TRACE_EVENT(api_enable_rssi_reports, TP_PROTO(struct ieee80211_sub_if_data *sdata, int rssi_min_thold, int rssi_max_thold), TP_ARGS(sdata, rssi_min_thold, rssi_max_thold), TP_STRUCT__entry( VIF_ENTRY __field(int, rssi_min_thold) __field(int, rssi_max_thold) ), TP_fast_assign( VIF_ASSIGN; __entry->rssi_min_thold = rssi_min_thold; __entry->rssi_max_thold = rssi_max_thold; ), TP_printk( VIF_PR_FMT " rssi_min_thold =%d, rssi_max_thold = %d", VIF_PR_ARG, __entry->rssi_min_thold, __entry->rssi_max_thold ) ); TRACE_EVENT(api_eosp, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta), TP_ARGS(local, sta), TP_STRUCT__entry( LOCAL_ENTRY STA_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; STA_ASSIGN; ), TP_printk( LOCAL_PR_FMT STA_PR_FMT, LOCAL_PR_ARG, STA_PR_ARG ) ); TRACE_EVENT(api_send_eosp_nullfunc, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, u8 tid), TP_ARGS(local, sta, tid), TP_STRUCT__entry( LOCAL_ENTRY STA_ENTRY __field(u8, tid) ), TP_fast_assign( LOCAL_ASSIGN; STA_ASSIGN; __entry->tid = tid; ), TP_printk( LOCAL_PR_FMT STA_PR_FMT " tid:%d", LOCAL_PR_ARG, STA_PR_ARG, __entry->tid ) ); TRACE_EVENT(api_sta_set_buffered, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, u8 tid, bool buffered), TP_ARGS(local, sta, tid, buffered), TP_STRUCT__entry( LOCAL_ENTRY STA_ENTRY __field(u8, tid) __field(bool, buffered) ), TP_fast_assign( LOCAL_ASSIGN; STA_ASSIGN; __entry->tid = tid; __entry->buffered = buffered; ), TP_printk( LOCAL_PR_FMT STA_PR_FMT " tid:%d buffered:%d", LOCAL_PR_ARG, STA_PR_ARG, __entry->tid, __entry->buffered ) ); /* * Tracing for internal functions * (which may also be called in response to driver calls) */ TRACE_EVENT(wake_queue, TP_PROTO(struct ieee80211_local *local, u16 queue, enum queue_stop_reason reason), TP_ARGS(local, queue, reason), TP_STRUCT__entry( LOCAL_ENTRY __field(u16, queue) __field(u32, reason) ), TP_fast_assign( LOCAL_ASSIGN; __entry->queue = queue; __entry->reason = reason; ), TP_printk( LOCAL_PR_FMT " queue:%d, reason:%d", LOCAL_PR_ARG, __entry->queue, __entry->reason ) ); TRACE_EVENT(stop_queue, TP_PROTO(struct ieee80211_local *local, u16 queue, enum queue_stop_reason reason), TP_ARGS(local, queue, reason), TP_STRUCT__entry( LOCAL_ENTRY __field(u16, queue) __field(u32, reason) ), TP_fast_assign( LOCAL_ASSIGN; __entry->queue = queue; __entry->reason = reason; ), TP_printk( LOCAL_PR_FMT " queue:%d, reason:%d", LOCAL_PR_ARG, __entry->queue, __entry->reason ) ); TRACE_EVENT(drv_set_default_unicast_key, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, int key_idx), TP_ARGS(local, sdata, key_idx), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(int, key_idx) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->key_idx = key_idx; ), TP_printk(LOCAL_PR_FMT VIF_PR_FMT " key_idx:%d", LOCAL_PR_ARG, VIF_PR_ARG, __entry->key_idx) ); TRACE_EVENT(api_radar_detected, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local), TP_STRUCT__entry( LOCAL_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; ), TP_printk( LOCAL_PR_FMT " radar detected", LOCAL_PR_ARG ) ); TRACE_EVENT(drv_channel_switch_beacon, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_chan_def *chandef), TP_ARGS(local, sdata, chandef), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY CHANDEF_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; CHANDEF_ASSIGN(chandef); ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " channel switch to " CHANDEF_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, CHANDEF_PR_ARG ) ); TRACE_EVENT(drv_pre_channel_switch, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_channel_switch *ch_switch), TP_ARGS(local, sdata, ch_switch), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY CHANDEF_ENTRY __field(u64, timestamp) __field(u32, device_timestamp) __field(bool, block_tx) __field(u8, count) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; CHANDEF_ASSIGN(&ch_switch->chandef) __entry->timestamp = ch_switch->timestamp; __entry->device_timestamp = ch_switch->device_timestamp; __entry->block_tx = ch_switch->block_tx; __entry->count = ch_switch->count; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " prepare channel switch to " CHANDEF_PR_FMT " count:%d block_tx:%d timestamp:%llu", LOCAL_PR_ARG, VIF_PR_ARG, CHANDEF_PR_ARG, __entry->count, __entry->block_tx, __entry->timestamp ) ); DEFINE_EVENT(local_sdata_evt, drv_post_channel_switch, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DEFINE_EVENT(local_sdata_evt, drv_abort_channel_switch, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_channel_switch_rx_beacon, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_channel_switch *ch_switch), TP_ARGS(local, sdata, ch_switch), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY CHANDEF_ENTRY __field(u64, timestamp) __field(u32, device_timestamp) __field(bool, block_tx) __field(u8, count) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; CHANDEF_ASSIGN(&ch_switch->chandef) __entry->timestamp = ch_switch->timestamp; __entry->device_timestamp = ch_switch->device_timestamp; __entry->block_tx = ch_switch->block_tx; __entry->count = ch_switch->count; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " received a channel switch beacon to " CHANDEF_PR_FMT " count:%d block_tx:%d timestamp:%llu", LOCAL_PR_ARG, VIF_PR_ARG, CHANDEF_PR_ARG, __entry->count, __entry->block_tx, __entry->timestamp ) ); TRACE_EVENT(drv_get_txpower, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, int dbm, int ret), TP_ARGS(local, sdata, dbm, ret), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(int, dbm) __field(int, ret) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->dbm = dbm; __entry->ret = ret; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " dbm:%d ret:%d", LOCAL_PR_ARG, VIF_PR_ARG, __entry->dbm, __entry->ret ) ); TRACE_EVENT(drv_tdls_channel_switch, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u8 oper_class, struct cfg80211_chan_def *chandef), TP_ARGS(local, sdata, sta, oper_class, chandef), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(u8, oper_class) CHANDEF_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->oper_class = oper_class; CHANDEF_ASSIGN(chandef) ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " tdls channel switch to" CHANDEF_PR_FMT " oper_class:%d " STA_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, CHANDEF_PR_ARG, __entry->oper_class, STA_PR_ARG ) ); TRACE_EVENT(drv_tdls_cancel_channel_switch, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " tdls cancel channel switch with " STA_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG ) ); TRACE_EVENT(drv_tdls_recv_channel_switch, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_tdls_ch_sw_params *params), TP_ARGS(local, sdata, params), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u8, action_code) STA_ENTRY CHANDEF_ENTRY __field(u32, status) __field(bool, peer_initiator) __field(u32, timestamp) __field(u16, switch_time) __field(u16, switch_timeout) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_NAMED_ASSIGN(params->sta); CHANDEF_ASSIGN(params->chandef) __entry->peer_initiator = params->sta->tdls_initiator; __entry->action_code = params->action_code; __entry->status = params->status; __entry->timestamp = params->timestamp; __entry->switch_time = params->switch_time; __entry->switch_timeout = params->switch_timeout; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " received tdls channel switch packet" " action:%d status:%d time:%d switch time:%d switch" " timeout:%d initiator: %d chan:" CHANDEF_PR_FMT STA_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, __entry->action_code, __entry->status, __entry->timestamp, __entry->switch_time, __entry->switch_timeout, __entry->peer_initiator, CHANDEF_PR_ARG, STA_PR_ARG ) ); TRACE_EVENT(drv_wake_tx_queue, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct txq_info *txq), TP_ARGS(local, sdata, txq), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(u8, ac) __field(u8, tid) ), TP_fast_assign( struct ieee80211_sta *sta = txq->txq.sta; LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->ac = txq->txq.ac; __entry->tid = txq->txq.tid; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " ac:%d tid:%d", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->ac, __entry->tid ) ); TRACE_EVENT(drv_get_ftm_responder_stats, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_ftm_responder_stats *ftm_stats), TP_ARGS(local, sdata, ftm_stats), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG ) ); DEFINE_EVENT(local_sdata_addr_evt, drv_update_vif_offload, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_sta_set_4addr, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, bool enabled), TP_ARGS(local, sdata, sta, enabled), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(bool, enabled) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->enabled = enabled; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " enabled:%d", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->enabled ) ); #endif /* !__MAC80211_DRIVER_TRACE || TRACE_HEADER_MULTI_READ */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE trace #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 /* * Copyright (c) 1982, 1986 Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Robert Elz at The University of Melbourne. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef _LINUX_QUOTA_ #define _LINUX_QUOTA_ #include <linux/list.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/spinlock.h> #include <linux/wait.h> #include <linux/percpu_counter.h> #include <linux/dqblk_xfs.h> #include <linux/dqblk_v1.h> #include <linux/dqblk_v2.h> #include <linux/atomic.h> #include <linux/uidgid.h> #include <linux/projid.h> #include <uapi/linux/quota.h> #undef USRQUOTA #undef GRPQUOTA #undef PRJQUOTA enum quota_type { USRQUOTA = 0, /* element used for user quotas */ GRPQUOTA = 1, /* element used for group quotas */ PRJQUOTA = 2, /* element used for project quotas */ }; /* Masks for quota types when used as a bitmask */ #define QTYPE_MASK_USR (1 << USRQUOTA) #define QTYPE_MASK_GRP (1 << GRPQUOTA) #define QTYPE_MASK_PRJ (1 << PRJQUOTA) typedef __kernel_uid32_t qid_t; /* Type in which we store ids in memory */ typedef long long qsize_t; /* Type in which we store sizes */ struct kqid { /* Type in which we store the quota identifier */ union { kuid_t uid; kgid_t gid; kprojid_t projid; }; enum quota_type type; /* USRQUOTA (uid) or GRPQUOTA (gid) or PRJQUOTA (projid) */ }; extern bool qid_eq(struct kqid left, struct kqid right); extern bool qid_lt(struct kqid left, struct kqid right); extern qid_t from_kqid(struct user_namespace *to, struct kqid qid); extern qid_t from_kqid_munged(struct user_namespace *to, struct kqid qid); extern bool qid_valid(struct kqid qid); /** * make_kqid - Map a user-namespace, type, qid tuple into a kqid. * @from: User namespace that the qid is in * @type: The type of quota * @qid: Quota identifier * * Maps a user-namespace, type qid tuple into a kernel internal * kqid, and returns that kqid. * * When there is no mapping defined for the user-namespace, type, * qid tuple an invalid kqid is returned. Callers are expected to * test for and handle handle invalid kqids being returned. * Invalid kqids may be tested for using qid_valid(). */ static inline struct kqid make_kqid(struct user_namespace *from, enum quota_type type, qid_t qid) { struct kqid kqid; kqid.type = type; switch (type) { case USRQUOTA: kqid.uid = make_kuid(from, qid); break; case GRPQUOTA: kqid.gid = make_kgid(from, qid); break; case PRJQUOTA: kqid.projid = make_kprojid(from, qid); break; default: BUG(); } return kqid; } /** * make_kqid_invalid - Explicitly make an invalid kqid * @type: The type of quota identifier * * Returns an invalid kqid with the specified type. */ static inline struct kqid make_kqid_invalid(enum quota_type type) { struct kqid kqid; kqid.type = type; switch (type) { case USRQUOTA: kqid.uid = INVALID_UID; break; case GRPQUOTA: kqid.gid = INVALID_GID; break; case PRJQUOTA: kqid.projid = INVALID_PROJID; break; default: BUG(); } return kqid; } /** * make_kqid_uid - Make a kqid from a kuid * @uid: The kuid to make the quota identifier from */ static inline struct kqid make_kqid_uid(kuid_t uid) { struct kqid kqid; kqid.type = USRQUOTA; kqid.uid = uid; return kqid; } /** * make_kqid_gid - Make a kqid from a kgid * @gid: The kgid to make the quota identifier from */ static inline struct kqid make_kqid_gid(kgid_t gid) { struct kqid kqid; kqid.type = GRPQUOTA; kqid.gid = gid; return kqid; } /** * make_kqid_projid - Make a kqid from a projid * @projid: The kprojid to make the quota identifier from */ static inline struct kqid make_kqid_projid(kprojid_t projid) { struct kqid kqid; kqid.type = PRJQUOTA; kqid.projid = projid; return kqid; } /** * qid_has_mapping - Report if a qid maps into a user namespace. * @ns: The user namespace to see if a value maps into. * @qid: The kernel internal quota identifier to test. */ static inline bool qid_has_mapping(struct user_namespace *ns, struct kqid qid) { return from_kqid(ns, qid) != (qid_t) -1; } extern spinlock_t dq_data_lock; /* Maximal numbers of writes for quota operation (insert/delete/update) * (over VFS all formats) */ #define DQUOT_INIT_ALLOC max(V1_INIT_ALLOC, V2_INIT_ALLOC) #define DQUOT_INIT_REWRITE max(V1_INIT_REWRITE, V2_INIT_REWRITE) #define DQUOT_DEL_ALLOC max(V1_DEL_ALLOC, V2_DEL_ALLOC) #define DQUOT_DEL_REWRITE max(V1_DEL_REWRITE, V2_DEL_REWRITE) /* * Data for one user/group kept in memory */ struct mem_dqblk { qsize_t dqb_bhardlimit; /* absolute limit on disk blks alloc */ qsize_t dqb_bsoftlimit; /* preferred limit on disk blks */ qsize_t dqb_curspace; /* current used space */ qsize_t dqb_rsvspace; /* current reserved space for delalloc*/ qsize_t dqb_ihardlimit; /* absolute limit on allocated inodes */ qsize_t dqb_isoftlimit; /* preferred inode limit */ qsize_t dqb_curinodes; /* current # allocated inodes */ time64_t dqb_btime; /* time limit for excessive disk use */ time64_t dqb_itime; /* time limit for excessive inode use */ }; /* * Data for one quotafile kept in memory */ struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format; int dqi_fmt_id; /* Id of the dqi_format - used when turning * quotas on after remount RW */ struct list_head dqi_dirty_list; /* List of dirty dquots [dq_list_lock] */ unsigned long dqi_flags; /* DFQ_ flags [dq_data_lock] */ unsigned int dqi_bgrace; /* Space grace time [dq_data_lock] */ unsigned int dqi_igrace; /* Inode grace time [dq_data_lock] */ qsize_t dqi_max_spc_limit; /* Maximum space limit [static] */ qsize_t dqi_max_ino_limit; /* Maximum inode limit [static] */ void *dqi_priv; }; struct super_block; /* Mask for flags passed to userspace */ #define DQF_GETINFO_MASK (DQF_ROOT_SQUASH | DQF_SYS_FILE) /* Mask for flags modifiable from userspace */ #define DQF_SETINFO_MASK DQF_ROOT_SQUASH enum { DQF_INFO_DIRTY_B = DQF_PRIVATE, }; #define DQF_INFO_DIRTY (1 << DQF_INFO_DIRTY_B) /* Is info dirty? */ extern void mark_info_dirty(struct super_block *sb, int type); static inline int info_dirty(struct mem_dqinfo *info) { return test_bit(DQF_INFO_DIRTY_B, &info->dqi_flags); } enum { DQST_LOOKUPS, DQST_DROPS, DQST_READS, DQST_WRITES, DQST_CACHE_HITS, DQST_ALLOC_DQUOTS, DQST_FREE_DQUOTS, DQST_SYNCS, _DQST_DQSTAT_LAST }; struct dqstats { unsigned long stat[_DQST_DQSTAT_LAST]; struct percpu_counter counter[_DQST_DQSTAT_LAST]; }; extern struct dqstats dqstats; static inline void dqstats_inc(unsigned int type) { percpu_counter_inc(&dqstats.counter[type]); } static inline void dqstats_dec(unsigned int type) { percpu_counter_dec(&dqstats.counter[type]); } #define DQ_MOD_B 0 /* dquot modified since read */ #define DQ_BLKS_B 1 /* uid/gid has been warned about blk limit */ #define DQ_INODES_B 2 /* uid/gid has been warned about inode limit */ #define DQ_FAKE_B 3 /* no limits only usage */ #define DQ_READ_B 4 /* dquot was read into memory */ #define DQ_ACTIVE_B 5 /* dquot is active (dquot_release not called) */ #define DQ_LASTSET_B 6 /* Following 6 bits (see QIF_) are reserved\ * for the mask of entries set via SETQUOTA\ * quotactl. They are set under dq_data_lock\ * and the quota format handling dquot can\ * clear them when it sees fit. */ struct dquot { struct hlist_node dq_hash; /* Hash list in memory [dq_list_lock] */ struct list_head dq_inuse; /* List of all quotas [dq_list_lock] */ struct list_head dq_free; /* Free list element [dq_list_lock] */ struct list_head dq_dirty; /* List of dirty dquots [dq_list_lock] */ struct mutex dq_lock; /* dquot IO lock */ spinlock_t dq_dqb_lock; /* Lock protecting dq_dqb changes */ atomic_t dq_count; /* Use count */ struct super_block *dq_sb; /* superblock this applies to */ struct kqid dq_id; /* ID this applies to (uid, gid, projid) */ loff_t dq_off; /* Offset of dquot on disk [dq_lock, stable once set] */ unsigned long dq_flags; /* See DQ_* */ struct mem_dqblk dq_dqb; /* Diskquota usage [dq_dqb_lock] */ }; /* Operations which must be implemented by each quota format */ struct quota_format_ops { int (*check_quota_file)(struct super_block *sb, int type); /* Detect whether file is in our format */ int (*read_file_info)(struct super_block *sb, int type); /* Read main info about file - called on quotaon() */ int (*write_file_info)(struct super_block *sb, int type); /* Write main info about file */ int (*free_file_info)(struct super_block *sb, int type); /* Called on quotaoff() */ int (*read_dqblk)(struct dquot *dquot); /* Read structure for one user */ int (*commit_dqblk)(struct dquot *dquot); /* Write structure for one user */ int (*release_dqblk)(struct dquot *dquot); /* Called when last reference to dquot is being dropped */ int (*get_next_id)(struct super_block *sb, struct kqid *qid); /* Get next ID with existing structure in the quota file */ }; /* Operations working with dquots */ struct dquot_operations { int (*write_dquot) (struct dquot *); /* Ordinary dquot write */ struct dquot *(*alloc_dquot)(struct super_block *, int); /* Allocate memory for new dquot */ void (*destroy_dquot)(struct dquot *); /* Free memory for dquot */ int (*acquire_dquot) (struct dquot *); /* Quota is going to be created on disk */ int (*release_dquot) (struct dquot *); /* Quota is going to be deleted from disk */ int (*mark_dirty) (struct dquot *); /* Dquot is marked dirty */ int (*write_info) (struct super_block *, int); /* Write of quota "superblock" */ /* get reserved quota for delayed alloc, value returned is managed by * quota code only */ qsize_t *(*get_reserved_space) (struct inode *); int (*get_projid) (struct inode *, kprojid_t *);/* Get project ID */ /* Get number of inodes that were charged for a given inode */ int (*get_inode_usage) (struct inode *, qsize_t *); /* Get next ID with active quota structure */ int (*get_next_id) (struct super_block *sb, struct kqid *qid); }; struct path; /* Structure for communicating via ->get_dqblk() & ->set_dqblk() */ struct qc_dqblk { int d_fieldmask; /* mask of fields to change in ->set_dqblk() */ u64 d_spc_hardlimit; /* absolute limit on used space */ u64 d_spc_softlimit; /* preferred limit on used space */ u64 d_ino_hardlimit; /* maximum # allocated inodes */ u64 d_ino_softlimit; /* preferred inode limit */ u64 d_space; /* Space owned by the user */ u64 d_ino_count; /* # inodes owned by the user */ s64 d_ino_timer; /* zero if within inode limits */ /* if not, we refuse service */ s64 d_spc_timer; /* similar to above; for space */ int d_ino_warns; /* # warnings issued wrt num inodes */ int d_spc_warns; /* # warnings issued wrt used space */ u64 d_rt_spc_hardlimit; /* absolute limit on realtime space */ u64 d_rt_spc_softlimit; /* preferred limit on RT space */ u64 d_rt_space; /* realtime space owned */ s64 d_rt_spc_timer; /* similar to above; for RT space */ int d_rt_spc_warns; /* # warnings issued wrt RT space */ }; /* * Field specifiers for ->set_dqblk() in struct qc_dqblk and also for * ->set_info() in struct qc_info */ #define QC_INO_SOFT (1<<0) #define QC_INO_HARD (1<<1) #define QC_SPC_SOFT (1<<2) #define QC_SPC_HARD (1<<3) #define QC_RT_SPC_SOFT (1<<4) #define QC_RT_SPC_HARD (1<<5) #define QC_LIMIT_MASK (QC_INO_SOFT | QC_INO_HARD | QC_SPC_SOFT | QC_SPC_HARD | \ QC_RT_SPC_SOFT | QC_RT_SPC_HARD) #define QC_SPC_TIMER (1<<6) #define QC_INO_TIMER (1<<7) #define QC_RT_SPC_TIMER (1<<8) #define QC_TIMER_MASK (QC_SPC_TIMER | QC_INO_TIMER | QC_RT_SPC_TIMER) #define QC_SPC_WARNS (1<<9) #define QC_INO_WARNS (1<<10) #define QC_RT_SPC_WARNS (1<<11) #define QC_WARNS_MASK (QC_SPC_WARNS | QC_INO_WARNS | QC_RT_SPC_WARNS) #define QC_SPACE (1<<12) #define QC_INO_COUNT (1<<13) #define QC_RT_SPACE (1<<14) #define QC_ACCT_MASK (QC_SPACE | QC_INO_COUNT | QC_RT_SPACE) #define QC_FLAGS (1<<15) #define QCI_SYSFILE (1 << 0) /* Quota file is hidden from userspace */ #define QCI_ROOT_SQUASH (1 << 1) /* Root squash turned on */ #define QCI_ACCT_ENABLED (1 << 2) /* Quota accounting enabled */ #define QCI_LIMITS_ENFORCED (1 << 3) /* Quota limits enforced */ /* Structures for communicating via ->get_state */ struct qc_type_state { unsigned int flags; /* Flags QCI_* */ unsigned int spc_timelimit; /* Time after which space softlimit is * enforced */ unsigned int ino_timelimit; /* Ditto for inode softlimit */ unsigned int rt_spc_timelimit; /* Ditto for real-time space */ unsigned int spc_warnlimit; /* Limit for number of space warnings */ unsigned int ino_warnlimit; /* Ditto for inodes */ unsigned int rt_spc_warnlimit; /* Ditto for real-time space */ unsigned long long ino; /* Inode number of quota file */ blkcnt_t blocks; /* Number of 512-byte blocks in the file */ blkcnt_t nextents; /* Number of extents in the file */ }; struct qc_state { unsigned int s_incoredqs; /* Number of dquots in core */ struct qc_type_state s_state[MAXQUOTAS]; /* Per quota type information */ }; /* Structure for communicating via ->set_info */ struct qc_info { int i_fieldmask; /* mask of fields to change in ->set_info() */ unsigned int i_flags; /* Flags QCI_* */ unsigned int i_spc_timelimit; /* Time after which space softlimit is * enforced */ unsigned int i_ino_timelimit; /* Ditto for inode softlimit */ unsigned int i_rt_spc_timelimit;/* Ditto for real-time space */ unsigned int i_spc_warnlimit; /* Limit for number of space warnings */ unsigned int i_ino_warnlimit; /* Limit for number of inode warnings */ unsigned int i_rt_spc_warnlimit; /* Ditto for real-time space */ }; /* Operations handling requests from userspace */ struct quotactl_ops { int (*quota_on)(struct super_block *, int, int, const struct path *); int (*quota_off)(struct super_block *, int); int (*quota_enable)(struct super_block *, unsigned int); int (*quota_disable)(struct super_block *, unsigned int); int (*quota_sync)(struct super_block *, int); int (*set_info)(struct super_block *, int, struct qc_info *); int (*get_dqblk)(struct super_block *, struct kqid, struct qc_dqblk *); int (*get_nextdqblk)(struct super_block *, struct kqid *, struct qc_dqblk *); int (*set_dqblk)(struct super_block *, struct kqid, struct qc_dqblk *); int (*get_state)(struct super_block *, struct qc_state *); int (*rm_xquota)(struct super_block *, unsigned int); }; struct quota_format_type { int qf_fmt_id; /* Quota format id */ const struct quota_format_ops *qf_ops; /* Operations of format */ struct module *qf_owner; /* Module implementing quota format */ struct quota_format_type *qf_next; }; /** * Quota state flags - they actually come in two flavors - for users and groups. * * Actual typed flags layout: * USRQUOTA GRPQUOTA * DQUOT_USAGE_ENABLED 0x0001 0x0002 * DQUOT_LIMITS_ENABLED 0x0004 0x0008 * DQUOT_SUSPENDED 0x0010 0x0020 * * Following bits are used for non-typed flags: * DQUOT_QUOTA_SYS_FILE 0x0040 * DQUOT_NEGATIVE_USAGE 0x0080 */ enum { _DQUOT_USAGE_ENABLED = 0, /* Track disk usage for users */ _DQUOT_LIMITS_ENABLED, /* Enforce quota limits for users */ _DQUOT_SUSPENDED, /* User diskquotas are off, but * we have necessary info in * memory to turn them on */ _DQUOT_STATE_FLAGS }; #define DQUOT_USAGE_ENABLED (1 << _DQUOT_USAGE_ENABLED * MAXQUOTAS) #define DQUOT_LIMITS_ENABLED (1 << _DQUOT_LIMITS_ENABLED * MAXQUOTAS) #define DQUOT_SUSPENDED (1 << _DQUOT_SUSPENDED * MAXQUOTAS) #define DQUOT_STATE_FLAGS (DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED | \ DQUOT_SUSPENDED) /* Other quota flags */ #define DQUOT_STATE_LAST (_DQUOT_STATE_FLAGS * MAXQUOTAS) #define DQUOT_QUOTA_SYS_FILE (1 << DQUOT_STATE_LAST) /* Quota file is a special * system file and user cannot * touch it. Filesystem is * responsible for setting * S_NOQUOTA, S_NOATIME flags */ #define DQUOT_NEGATIVE_USAGE (1 << (DQUOT_STATE_LAST + 1)) /* Allow negative quota usage */ /* Do not track dirty dquots in a list */ #define DQUOT_NOLIST_DIRTY (1 << (DQUOT_STATE_LAST + 2)) static inline unsigned int dquot_state_flag(unsigned int flags, int type) { return flags << type; } static inline unsigned int dquot_generic_flag(unsigned int flags, int type) { return (flags >> type) & DQUOT_STATE_FLAGS; } /* Bitmap of quota types where flag is set in flags */ static __always_inline unsigned dquot_state_types(unsigned flags, unsigned flag) { BUILD_BUG_ON_NOT_POWER_OF_2(flag); return (flags / flag) & ((1 << MAXQUOTAS) - 1); } #ifdef CONFIG_QUOTA_NETLINK_INTERFACE extern void quota_send_warning(struct kqid qid, dev_t dev, const char warntype); #else static inline void quota_send_warning(struct kqid qid, dev_t dev, const char warntype) { return; } #endif /* CONFIG_QUOTA_NETLINK_INTERFACE */ struct quota_info { unsigned int flags; /* Flags for diskquotas on this device */ struct rw_semaphore dqio_sem; /* Lock quota file while I/O in progress */ struct inode *files[MAXQUOTAS]; /* inodes of quotafiles */ struct mem_dqinfo info[MAXQUOTAS]; /* Information for each quota type */ const struct quota_format_ops *ops[MAXQUOTAS]; /* Operations for each type */ }; int register_quota_format(struct quota_format_type *fmt); void unregister_quota_format(struct quota_format_type *fmt); struct quota_module_name { int qm_fmt_id; char *qm_mod_name; }; #define INIT_QUOTA_MODULE_NAMES {\ {QFMT_VFS_OLD, "quota_v1"},\ {QFMT_VFS_V0, "quota_v2"},\ {QFMT_VFS_V1, "quota_v2"},\ {0, NULL}} #endif /* _QUOTA_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Forwarding Information Base. * * Authors: A.N.Kuznetsov, <kuznet@ms2.inr.ac.ru> */ #ifndef _NET_IP_FIB_H #define _NET_IP_FIB_H #include <net/flow.h> #include <linux/seq_file.h> #include <linux/rcupdate.h> #include <net/fib_notifier.h> #include <net/fib_rules.h> #include <net/inetpeer.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/refcount.h> struct fib_config { u8 fc_dst_len; u8 fc_tos; u8 fc_protocol; u8 fc_scope; u8 fc_type; u8 fc_gw_family; /* 2 bytes unused */ u32 fc_table; __be32 fc_dst; union { __be32 fc_gw4; struct in6_addr fc_gw6; }; int fc_oif; u32 fc_flags; u32 fc_priority; __be32 fc_prefsrc; u32 fc_nh_id; struct nlattr *fc_mx; struct rtnexthop *fc_mp; int fc_mx_len; int fc_mp_len; u32 fc_flow; u32 fc_nlflags; struct nl_info fc_nlinfo; struct nlattr *fc_encap; u16 fc_encap_type; }; struct fib_info; struct rtable; struct fib_nh_exception { struct fib_nh_exception __rcu *fnhe_next; int fnhe_genid; __be32 fnhe_daddr; u32 fnhe_pmtu; bool fnhe_mtu_locked; __be32 fnhe_gw; unsigned long fnhe_expires; struct rtable __rcu *fnhe_rth_input; struct rtable __rcu *fnhe_rth_output; unsigned long fnhe_stamp; struct rcu_head rcu; }; struct fnhe_hash_bucket { struct fib_nh_exception __rcu *chain; }; #define FNHE_HASH_SHIFT 11 #define FNHE_HASH_SIZE (1 << FNHE_HASH_SHIFT) #define FNHE_RECLAIM_DEPTH 5 struct fib_nh_common { struct net_device *nhc_dev; int nhc_oif; unsigned char nhc_scope; u8 nhc_family; u8 nhc_gw_family; unsigned char nhc_flags; struct lwtunnel_state *nhc_lwtstate; union { __be32 ipv4; struct in6_addr ipv6; } nhc_gw; int nhc_weight; atomic_t nhc_upper_bound; /* v4 specific, but allows fib6_nh with v4 routes */ struct rtable __rcu * __percpu *nhc_pcpu_rth_output; struct rtable __rcu *nhc_rth_input; struct fnhe_hash_bucket __rcu *nhc_exceptions; }; struct fib_nh { struct fib_nh_common nh_common; struct hlist_node nh_hash; struct fib_info *nh_parent; #ifdef CONFIG_IP_ROUTE_CLASSID __u32 nh_tclassid; #endif __be32 nh_saddr; int nh_saddr_genid; #define fib_nh_family nh_common.nhc_family #define fib_nh_dev nh_common.nhc_dev #define fib_nh_oif nh_common.nhc_oif #define fib_nh_flags nh_common.nhc_flags #define fib_nh_lws nh_common.nhc_lwtstate #define fib_nh_scope nh_common.nhc_scope #define fib_nh_gw_family nh_common.nhc_gw_family #define fib_nh_gw4 nh_common.nhc_gw.ipv4 #define fib_nh_gw6 nh_common.nhc_gw.ipv6 #define fib_nh_weight nh_common.nhc_weight #define fib_nh_upper_bound nh_common.nhc_upper_bound }; /* * This structure contains data shared by many of routes. */ struct nexthop; struct fib_info { struct hlist_node fib_hash; struct hlist_node fib_lhash; struct list_head nh_list; struct net *fib_net; int fib_treeref; refcount_t fib_clntref; unsigned int fib_flags; unsigned char fib_dead; unsigned char fib_protocol; unsigned char fib_scope; unsigned char fib_type; __be32 fib_prefsrc; u32 fib_tb_id; u32 fib_priority; struct dst_metrics *fib_metrics; #define fib_mtu fib_metrics->metrics[RTAX_MTU-1] #define fib_window fib_metrics->metrics[RTAX_WINDOW-1] #define fib_rtt fib_metrics->metrics[RTAX_RTT-1] #define fib_advmss fib_metrics->metrics[RTAX_ADVMSS-1] int fib_nhs; bool fib_nh_is_v6; bool nh_updated; struct nexthop *nh; struct rcu_head rcu; struct fib_nh fib_nh[]; }; #ifdef CONFIG_IP_MULTIPLE_TABLES struct fib_rule; #endif struct fib_table; struct fib_result { __be32 prefix; unsigned char prefixlen; unsigned char nh_sel; unsigned char type; unsigned char scope; u32 tclassid; struct fib_nh_common *nhc; struct fib_info *fi; struct fib_table *table; struct hlist_head *fa_head; }; struct fib_result_nl { __be32 fl_addr; /* To be looked up*/ u32 fl_mark; unsigned char fl_tos; unsigned char fl_scope; unsigned char tb_id_in; unsigned char tb_id; /* Results */ unsigned char prefixlen; unsigned char nh_sel; unsigned char type; unsigned char scope; int err; }; #ifdef CONFIG_IP_MULTIPLE_TABLES #define FIB_TABLE_HASHSZ 256 #else #define FIB_TABLE_HASHSZ 2 #endif __be32 fib_info_update_nhc_saddr(struct net *net, struct fib_nh_common *nhc, unsigned char scope); __be32 fib_result_prefsrc(struct net *net, struct fib_result *res); #define FIB_RES_NHC(res) ((res).nhc) #define FIB_RES_DEV(res) (FIB_RES_NHC(res)->nhc_dev) #define FIB_RES_OIF(res) (FIB_RES_NHC(res)->nhc_oif) struct fib_rt_info { struct fib_info *fi; u32 tb_id; __be32 dst; int dst_len; u8 tos; u8 type; u8 offload:1, trap:1, unused:6; }; struct fib_entry_notifier_info { struct fib_notifier_info info; /* must be first */ u32 dst; int dst_len; struct fib_info *fi; u8 tos; u8 type; u32 tb_id; }; struct fib_nh_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib_nh *fib_nh; }; int call_fib4_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info); int call_fib4_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info); int __net_init fib4_notifier_init(struct net *net); void __net_exit fib4_notifier_exit(struct net *net); void fib_info_notify_update(struct net *net, struct nl_info *info); int fib_notify(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); struct fib_table { struct hlist_node tb_hlist; u32 tb_id; int tb_num_default; struct rcu_head rcu; unsigned long *tb_data; unsigned long __data[]; }; struct fib_dump_filter { u32 table_id; /* filter_set is an optimization that an entry is set */ bool filter_set; bool dump_routes; bool dump_exceptions; unsigned char protocol; unsigned char rt_type; unsigned int flags; struct net_device *dev; }; int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, struct fib_result *res, int fib_flags); int fib_table_insert(struct net *, struct fib_table *, struct fib_config *, struct netlink_ext_ack *extack); int fib_table_delete(struct net *, struct fib_table *, struct fib_config *, struct netlink_ext_ack *extack); int fib_table_dump(struct fib_table *table, struct sk_buff *skb, struct netlink_callback *cb, struct fib_dump_filter *filter); int fib_table_flush(struct net *net, struct fib_table *table, bool flush_all); struct fib_table *fib_trie_unmerge(struct fib_table *main_tb); void fib_table_flush_external(struct fib_table *table); void fib_free_table(struct fib_table *tb); #ifndef CONFIG_IP_MULTIPLE_TABLES #define TABLE_LOCAL_INDEX (RT_TABLE_LOCAL & (FIB_TABLE_HASHSZ - 1)) #define TABLE_MAIN_INDEX (RT_TABLE_MAIN & (FIB_TABLE_HASHSZ - 1)) static inline struct fib_table *fib_get_table(struct net *net, u32 id) { struct hlist_node *tb_hlist; struct hlist_head *ptr; ptr = id == RT_TABLE_LOCAL ? &net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX] : &net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]; tb_hlist = rcu_dereference_rtnl(hlist_first_rcu(ptr)); return hlist_entry(tb_hlist, struct fib_table, tb_hlist); } static inline struct fib_table *fib_new_table(struct net *net, u32 id) { return fib_get_table(net, id); } static inline int fib_lookup(struct net *net, const struct flowi4 *flp, struct fib_result *res, unsigned int flags) { struct fib_table *tb; int err = -ENETUNREACH; rcu_read_lock(); tb = fib_get_table(net, RT_TABLE_MAIN); if (tb) err = fib_table_lookup(tb, flp, res, flags | FIB_LOOKUP_NOREF); if (err == -EAGAIN) err = -ENETUNREACH; rcu_read_unlock(); return err; } static inline bool fib4_has_custom_rules(const struct net *net) { return false; } static inline bool fib4_rule_default(const struct fib_rule *rule) { return true; } static inline int fib4_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static inline unsigned int fib4_rules_seq_read(struct net *net) { return 0; } static inline bool fib4_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi4 *fl4, struct flow_keys *flkeys) { return false; } #else /* CONFIG_IP_MULTIPLE_TABLES */ int __net_init fib4_rules_init(struct net *net); void __net_exit fib4_rules_exit(struct net *net); struct fib_table *fib_new_table(struct net *net, u32 id); struct fib_table *fib_get_table(struct net *net, u32 id); int __fib_lookup(struct net *net, struct flowi4 *flp, struct fib_result *res, unsigned int flags); static inline int fib_lookup(struct net *net, struct flowi4 *flp, struct fib_result *res, unsigned int flags) { struct fib_table *tb; int err = -ENETUNREACH; flags |= FIB_LOOKUP_NOREF; if (net->ipv4.fib_has_custom_rules) return __fib_lookup(net, flp, res, flags); rcu_read_lock(); res->tclassid = 0; tb = rcu_dereference_rtnl(net->ipv4.fib_main); if (tb) err = fib_table_lookup(tb, flp, res, flags); if (!err) goto out; tb = rcu_dereference_rtnl(net->ipv4.fib_default); if (tb) err = fib_table_lookup(tb, flp, res, flags); out: if (err == -EAGAIN) err = -ENETUNREACH; rcu_read_unlock(); return err; } static inline bool fib4_has_custom_rules(const struct net *net) { return net->ipv4.fib_has_custom_rules; } bool fib4_rule_default(const struct fib_rule *rule); int fib4_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); unsigned int fib4_rules_seq_read(struct net *net); static inline bool fib4_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi4 *fl4, struct flow_keys *flkeys) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; if (!net->ipv4.fib_rules_require_fldissect) return false; skb_flow_dissect_flow_keys(skb, flkeys, flag); fl4->fl4_sport = flkeys->ports.src; fl4->fl4_dport = flkeys->ports.dst; fl4->flowi4_proto = flkeys->basic.ip_proto; return true; } #endif /* CONFIG_IP_MULTIPLE_TABLES */ /* Exported by fib_frontend.c */ extern const struct nla_policy rtm_ipv4_policy[]; void ip_fib_init(void); int fib_gw_from_via(struct fib_config *cfg, struct nlattr *nla, struct netlink_ext_ack *extack); __be32 fib_compute_spec_dst(struct sk_buff *skb); bool fib_info_nh_uses_dev(struct fib_info *fi, const struct net_device *dev); int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst, u8 tos, int oif, struct net_device *dev, struct in_device *idev, u32 *itag); #ifdef CONFIG_IP_ROUTE_CLASSID static inline int fib_num_tclassid_users(struct net *net) { return net->ipv4.fib_num_tclassid_users; } #else static inline int fib_num_tclassid_users(struct net *net) { return 0; } #endif int fib_unmerge(struct net *net); static inline bool nhc_l3mdev_matches_dev(const struct fib_nh_common *nhc, const struct net_device *dev) { if (nhc->nhc_dev == dev || l3mdev_master_ifindex_rcu(nhc->nhc_dev) == dev->ifindex) return true; return false; } /* Exported by fib_semantics.c */ int ip_fib_check_default(__be32 gw, struct net_device *dev); int fib_sync_down_dev(struct net_device *dev, unsigned long event, bool force); int fib_sync_down_addr(struct net_device *dev, __be32 local); int fib_sync_up(struct net_device *dev, unsigned char nh_flags); void fib_sync_mtu(struct net_device *dev, u32 orig_mtu); void fib_nhc_update_mtu(struct fib_nh_common *nhc, u32 new, u32 orig); #ifdef CONFIG_IP_ROUTE_MULTIPATH int fib_multipath_hash(const struct net *net, const struct flowi4 *fl4, const struct sk_buff *skb, struct flow_keys *flkeys); #endif int fib_check_nh(struct net *net, struct fib_nh *nh, u32 table, u8 scope, struct netlink_ext_ack *extack); void fib_select_multipath(struct fib_result *res, int hash); void fib_select_path(struct net *net, struct fib_result *res, struct flowi4 *fl4, const struct sk_buff *skb); int fib_nh_init(struct net *net, struct fib_nh *fib_nh, struct fib_config *cfg, int nh_weight, struct netlink_ext_ack *extack); void fib_nh_release(struct net *net, struct fib_nh *fib_nh); int fib_nh_common_init(struct net *net, struct fib_nh_common *nhc, struct nlattr *fc_encap, u16 fc_encap_type, void *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); void fib_nh_common_release(struct fib_nh_common *nhc); /* Exported by fib_trie.c */ void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri); void fib_trie_init(void); struct fib_table *fib_trie_table(u32 id, struct fib_table *alias); bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, const struct flowi4 *flp); static inline void fib_combine_itag(u32 *itag, const struct fib_result *res) { #ifdef CONFIG_IP_ROUTE_CLASSID struct fib_nh_common *nhc = res->nhc; #ifdef CONFIG_IP_MULTIPLE_TABLES u32 rtag; #endif if (nhc->nhc_family == AF_INET) { struct fib_nh *nh; nh = container_of(nhc, struct fib_nh, nh_common); *itag = nh->nh_tclassid << 16; } else { *itag = 0; } #ifdef CONFIG_IP_MULTIPLE_TABLES rtag = res->tclassid; if (*itag == 0) *itag = (rtag<<16); *itag |= (rtag>>16); #endif #endif } void fib_flush(struct net *net); void free_fib_info(struct fib_info *fi); static inline void fib_info_hold(struct fib_info *fi) { refcount_inc(&fi->fib_clntref); } static inline void fib_info_put(struct fib_info *fi) { if (refcount_dec_and_test(&fi->fib_clntref)) free_fib_info(fi); } #ifdef CONFIG_PROC_FS int __net_init fib_proc_init(struct net *net); void __net_exit fib_proc_exit(struct net *net); #else static inline int fib_proc_init(struct net *net) { return 0; } static inline void fib_proc_exit(struct net *net) { } #endif u32 ip_mtu_from_fib_result(struct fib_result *res, __be32 daddr); int ip_valid_fib_dump_req(struct net *net, const struct nlmsghdr *nlh, struct fib_dump_filter *filter, struct netlink_callback *cb); int fib_nexthop_info(struct sk_buff *skb, const struct fib_nh_common *nh, u8 rt_family, unsigned char *flags, bool skip_oif); int fib_add_nexthop(struct sk_buff *skb, const struct fib_nh_common *nh, int nh_weight, u8 rt_family, u32 nh_tclassid); #endif /* _NET_FIB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * linux/drivers/char/serial_core.h * * Copyright (C) 2000 Deep Blue Solutions Ltd. */ #ifndef LINUX_SERIAL_CORE_H #define LINUX_SERIAL_CORE_H #include <linux/bitops.h> #include <linux/compiler.h> #include <linux/console.h> #include <linux/interrupt.h> #include <linux/circ_buf.h> #include <linux/spinlock.h> #include <linux/sched.h> #include <linux/tty.h> #include <linux/mutex.h> #include <linux/sysrq.h> #include <uapi/linux/serial_core.h> #ifdef CONFIG_SERIAL_CORE_CONSOLE #define uart_console(port) \ ((port)->cons && (port)->cons->index == (port)->line) #else #define uart_console(port) ({ (void)port; 0; }) #endif struct uart_port; struct serial_struct; struct device; struct gpio_desc; /* * This structure describes all the operations that can be done on the * physical hardware. See Documentation/driver-api/serial/driver.rst for details. */ struct uart_ops { unsigned int (*tx_empty)(struct uart_port *); void (*set_mctrl)(struct uart_port *, unsigned int mctrl); unsigned int (*get_mctrl)(struct uart_port *); void (*stop_tx)(struct uart_port *); void (*start_tx)(struct uart_port *); void (*throttle)(struct uart_port *); void (*unthrottle)(struct uart_port *); void (*send_xchar)(struct uart_port *, char ch); void (*stop_rx)(struct uart_port *); void (*enable_ms)(struct uart_port *); void (*break_ctl)(struct uart_port *, int ctl); int (*startup)(struct uart_port *); void (*shutdown)(struct uart_port *); void (*flush_buffer)(struct uart_port *); void (*set_termios)(struct uart_port *, struct ktermios *new, struct ktermios *old); void (*set_ldisc)(struct uart_port *, struct ktermios *); void (*pm)(struct uart_port *, unsigned int state, unsigned int oldstate); /* * Return a string describing the type of the port */ const char *(*type)(struct uart_port *); /* * Release IO and memory resources used by the port. * This includes iounmap if necessary. */ void (*release_port)(struct uart_port *); /* * Request IO and memory resources used by the port. * This includes iomapping the port if necessary. */ int (*request_port)(struct uart_port *); void (*config_port)(struct uart_port *, int); int (*verify_port)(struct uart_port *, struct serial_struct *); int (*ioctl)(struct uart_port *, unsigned int, unsigned long); #ifdef CONFIG_CONSOLE_POLL int (*poll_init)(struct uart_port *); void (*poll_put_char)(struct uart_port *, unsigned char); int (*poll_get_char)(struct uart_port *); #endif }; #define NO_POLL_CHAR 0x00ff0000 #define UART_CONFIG_TYPE (1 << 0) #define UART_CONFIG_IRQ (1 << 1) struct uart_icount { __u32 cts; __u32 dsr; __u32 rng; __u32 dcd; __u32 rx; __u32 tx; __u32 frame; __u32 overrun; __u32 parity; __u32 brk; __u32 buf_overrun; }; typedef unsigned int __bitwise upf_t; typedef unsigned int __bitwise upstat_t; struct uart_port { spinlock_t lock; /* port lock */ unsigned long iobase; /* in/out[bwl] */ unsigned char __iomem *membase; /* read/write[bwl] */ unsigned int (*serial_in)(struct uart_port *, int); void (*serial_out)(struct uart_port *, int, int); void (*set_termios)(struct uart_port *, struct ktermios *new, struct ktermios *old); void (*set_ldisc)(struct uart_port *, struct ktermios *); unsigned int (*get_mctrl)(struct uart_port *); void (*set_mctrl)(struct uart_port *, unsigned int); unsigned int (*get_divisor)(struct uart_port *, unsigned int baud, unsigned int *frac); void (*set_divisor)(struct uart_port *, unsigned int baud, unsigned int quot, unsigned int quot_frac); int (*startup)(struct uart_port *port); void (*shutdown)(struct uart_port *port); void (*throttle)(struct uart_port *port); void (*unthrottle)(struct uart_port *port); int (*handle_irq)(struct uart_port *); void (*pm)(struct uart_port *, unsigned int state, unsigned int old); void (*handle_break)(struct uart_port *); int (*rs485_config)(struct uart_port *, struct serial_rs485 *rs485); int (*iso7816_config)(struct uart_port *, struct serial_iso7816 *iso7816); unsigned int irq; /* irq number */ unsigned long irqflags; /* irq flags */ unsigned int uartclk; /* base uart clock */ unsigned int fifosize; /* tx fifo size */ unsigned char x_char; /* xon/xoff char */ unsigned char regshift; /* reg offset shift */ unsigned char iotype; /* io access style */ unsigned char quirks; /* internal quirks */ #define UPIO_PORT (SERIAL_IO_PORT) /* 8b I/O port access */ #define UPIO_HUB6 (SERIAL_IO_HUB6) /* Hub6 ISA card */ #define UPIO_MEM (SERIAL_IO_MEM) /* driver-specific */ #define UPIO_MEM32 (SERIAL_IO_MEM32) /* 32b little endian */ #define UPIO_AU (SERIAL_IO_AU) /* Au1x00 and RT288x type IO */ #define UPIO_TSI (SERIAL_IO_TSI) /* Tsi108/109 type IO */ #define UPIO_MEM32BE (SERIAL_IO_MEM32BE) /* 32b big endian */ #define UPIO_MEM16 (SERIAL_IO_MEM16) /* 16b little endian */ /* quirks must be updated while holding port mutex */ #define UPQ_NO_TXEN_TEST BIT(0) unsigned int read_status_mask; /* driver specific */ unsigned int ignore_status_mask; /* driver specific */ struct uart_state *state; /* pointer to parent state */ struct uart_icount icount; /* statistics */ struct console *cons; /* struct console, if any */ /* flags must be updated while holding port mutex */ upf_t flags; /* * These flags must be equivalent to the flags defined in * include/uapi/linux/tty_flags.h which are the userspace definitions * assigned from the serial_struct flags in uart_set_info() * [for bit definitions in the UPF_CHANGE_MASK] * * Bits [0..UPF_LAST_USER] are userspace defined/visible/changeable * The remaining bits are serial-core specific and not modifiable by * userspace. */ #define UPF_FOURPORT ((__force upf_t) ASYNC_FOURPORT /* 1 */ ) #define UPF_SAK ((__force upf_t) ASYNC_SAK /* 2 */ ) #define UPF_SPD_HI ((__force upf_t) ASYNC_SPD_HI /* 4 */ ) #define UPF_SPD_VHI ((__force upf_t) ASYNC_SPD_VHI /* 5 */ ) #define UPF_SPD_CUST ((__force upf_t) ASYNC_SPD_CUST /* 0x0030 */ ) #define UPF_SPD_WARP ((__force upf_t) ASYNC_SPD_WARP /* 0x1010 */ ) #define UPF_SPD_MASK ((__force upf_t) ASYNC_SPD_MASK /* 0x1030 */ ) #define UPF_SKIP_TEST ((__force upf_t) ASYNC_SKIP_TEST /* 6 */ ) #define UPF_AUTO_IRQ ((__force upf_t) ASYNC_AUTO_IRQ /* 7 */ ) #define UPF_HARDPPS_CD ((__force upf_t) ASYNC_HARDPPS_CD /* 11 */ ) #define UPF_SPD_SHI ((__force upf_t) ASYNC_SPD_SHI /* 12 */ ) #define UPF_LOW_LATENCY ((__force upf_t) ASYNC_LOW_LATENCY /* 13 */ ) #define UPF_BUGGY_UART ((__force upf_t) ASYNC_BUGGY_UART /* 14 */ ) #define UPF_MAGIC_MULTIPLIER ((__force upf_t) ASYNC_MAGIC_MULTIPLIER /* 16 */ ) #define UPF_NO_THRE_TEST ((__force upf_t) (1 << 19)) /* Port has hardware-assisted h/w flow control */ #define UPF_AUTO_CTS ((__force upf_t) (1 << 20)) #define UPF_AUTO_RTS ((__force upf_t) (1 << 21)) #define UPF_HARD_FLOW ((__force upf_t) (UPF_AUTO_CTS | UPF_AUTO_RTS)) /* Port has hardware-assisted s/w flow control */ #define UPF_SOFT_FLOW ((__force upf_t) (1 << 22)) #define UPF_CONS_FLOW ((__force upf_t) (1 << 23)) #define UPF_SHARE_IRQ ((__force upf_t) (1 << 24)) #define UPF_EXAR_EFR ((__force upf_t) (1 << 25)) #define UPF_BUG_THRE ((__force upf_t) (1 << 26)) /* The exact UART type is known and should not be probed. */ #define UPF_FIXED_TYPE ((__force upf_t) (1 << 27)) #define UPF_BOOT_AUTOCONF ((__force upf_t) (1 << 28)) #define UPF_FIXED_PORT ((__force upf_t) (1 << 29)) #define UPF_DEAD ((__force upf_t) (1 << 30)) #define UPF_IOREMAP ((__force upf_t) (1 << 31)) #define __UPF_CHANGE_MASK 0x17fff #define UPF_CHANGE_MASK ((__force upf_t) __UPF_CHANGE_MASK) #define UPF_USR_MASK ((__force upf_t) (UPF_SPD_MASK|UPF_LOW_LATENCY)) #if __UPF_CHANGE_MASK > ASYNC_FLAGS #error Change mask not equivalent to userspace-visible bit defines #endif /* * Must hold termios_rwsem, port mutex and port lock to change; * can hold any one lock to read. */ upstat_t status; #define UPSTAT_CTS_ENABLE ((__force upstat_t) (1 << 0)) #define UPSTAT_DCD_ENABLE ((__force upstat_t) (1 << 1)) #define UPSTAT_AUTORTS ((__force upstat_t) (1 << 2)) #define UPSTAT_AUTOCTS ((__force upstat_t) (1 << 3)) #define UPSTAT_AUTOXOFF ((__force upstat_t) (1 << 4)) #define UPSTAT_SYNC_FIFO ((__force upstat_t) (1 << 5)) int hw_stopped; /* sw-assisted CTS flow state */ unsigned int mctrl; /* current modem ctrl settings */ unsigned int timeout; /* character-based timeout */ unsigned int type; /* port type */ const struct uart_ops *ops; unsigned int custom_divisor; unsigned int line; /* port index */ unsigned int minor; resource_size_t mapbase; /* for ioremap */ resource_size_t mapsize; struct device *dev; /* parent device */ unsigned long sysrq; /* sysrq timeout */ unsigned int sysrq_ch; /* char for sysrq */ unsigned char has_sysrq; unsigned char sysrq_seq; /* index in sysrq_toggle_seq */ unsigned char hub6; /* this should be in the 8250 driver */ unsigned char suspended; unsigned char console_reinit; const char *name; /* port name */ struct attribute_group *attr_group; /* port specific attributes */ const struct attribute_group **tty_groups; /* all attributes (serial core use only) */ struct serial_rs485 rs485; struct gpio_desc *rs485_term_gpio; /* enable RS485 bus termination */ struct serial_iso7816 iso7816; void *private_data; /* generic platform data pointer */ }; static inline int serial_port_in(struct uart_port *up, int offset) { return up->serial_in(up, offset); } static inline void serial_port_out(struct uart_port *up, int offset, int value) { up->serial_out(up, offset, value); } /** * enum uart_pm_state - power states for UARTs * @UART_PM_STATE_ON: UART is powered, up and operational * @UART_PM_STATE_OFF: UART is powered off * @UART_PM_STATE_UNDEFINED: sentinel */ enum uart_pm_state { UART_PM_STATE_ON = 0, UART_PM_STATE_OFF = 3, /* number taken from ACPI */ UART_PM_STATE_UNDEFINED, }; /* * This is the state information which is persistent across opens. */ struct uart_state { struct tty_port port; enum uart_pm_state pm_state; struct circ_buf xmit; atomic_t refcount; wait_queue_head_t remove_wait; struct uart_port *uart_port; }; #define UART_XMIT_SIZE PAGE_SIZE /* number of characters left in xmit buffer before we ask for more */ #define WAKEUP_CHARS 256 struct module; struct tty_driver; struct uart_driver { struct module *owner; const char *driver_name; const char *dev_name; int major; int minor; int nr; struct console *cons; /* * these are private; the low level driver should not * touch these; they should be initialised to NULL */ struct uart_state *state; struct tty_driver *tty_driver; }; void uart_write_wakeup(struct uart_port *port); /* * Baud rate helpers. */ void uart_update_timeout(struct uart_port *port, unsigned int cflag, unsigned int baud); unsigned int uart_get_baud_rate(struct uart_port *port, struct ktermios *termios, struct ktermios *old, unsigned int min, unsigned int max); unsigned int uart_get_divisor(struct uart_port *port, unsigned int baud); /* Base timer interval for polling */ static inline int uart_poll_timeout(struct uart_port *port) { int timeout = port->timeout; return timeout > 6 ? (timeout / 2 - 2) : 1; } /* * Console helpers. */ struct earlycon_device { struct console *con; struct uart_port port; char options[16]; /* e.g., 115200n8 */ unsigned int baud; }; struct earlycon_id { char name[15]; char name_term; /* In case compiler didn't '\0' term name */ char compatible[128]; int (*setup)(struct earlycon_device *, const char *options); }; extern const struct earlycon_id *__earlycon_table[]; extern const struct earlycon_id *__earlycon_table_end[]; #if defined(CONFIG_SERIAL_EARLYCON) && !defined(MODULE) #define EARLYCON_USED_OR_UNUSED __used #else #define EARLYCON_USED_OR_UNUSED __maybe_unused #endif #define _OF_EARLYCON_DECLARE(_name, compat, fn, unique_id) \ static const struct earlycon_id unique_id \ EARLYCON_USED_OR_UNUSED __initconst \ = { .name = __stringify(_name), \ .compatible = compat, \ .setup = fn }; \ static const struct earlycon_id EARLYCON_USED_OR_UNUSED \ __section("__earlycon_table") \ * const __PASTE(__p, unique_id) = &unique_id #define OF_EARLYCON_DECLARE(_name, compat, fn) \ _OF_EARLYCON_DECLARE(_name, compat, fn, \ __UNIQUE_ID(__earlycon_##_name)) #define EARLYCON_DECLARE(_name, fn) OF_EARLYCON_DECLARE(_name, "", fn) extern int of_setup_earlycon(const struct earlycon_id *match, unsigned long node, const char *options); #ifdef CONFIG_SERIAL_EARLYCON extern bool earlycon_acpi_spcr_enable __initdata; int setup_earlycon(char *buf); #else static const bool earlycon_acpi_spcr_enable EARLYCON_USED_OR_UNUSED; static inline int setup_earlycon(char *buf) { return 0; } #endif struct uart_port *uart_get_console(struct uart_port *ports, int nr, struct console *c); int uart_parse_earlycon(char *p, unsigned char *iotype, resource_size_t *addr, char **options); void uart_parse_options(const char *options, int *baud, int *parity, int *bits, int *flow); int uart_set_options(struct uart_port *port, struct console *co, int baud, int parity, int bits, int flow); struct tty_driver *uart_console_device(struct console *co, int *index); void uart_console_write(struct uart_port *port, const char *s, unsigned int count, void (*putchar)(struct uart_port *, int)); /* * Port/driver registration/removal */ int uart_register_driver(struct uart_driver *uart); void uart_unregister_driver(struct uart_driver *uart); int uart_add_one_port(struct uart_driver *reg, struct uart_port *port); int uart_remove_one_port(struct uart_driver *reg, struct uart_port *port); int uart_match_port(struct uart_port *port1, struct uart_port *port2); /* * Power Management */ int uart_suspend_port(struct uart_driver *reg, struct uart_port *port); int uart_resume_port(struct uart_driver *reg, struct uart_port *port); #define uart_circ_empty(circ) ((circ)->head == (circ)->tail) #define uart_circ_clear(circ) ((circ)->head = (circ)->tail = 0) #define uart_circ_chars_pending(circ) \ (CIRC_CNT((circ)->head, (circ)->tail, UART_XMIT_SIZE)) #define uart_circ_chars_free(circ) \ (CIRC_SPACE((circ)->head, (circ)->tail, UART_XMIT_SIZE)) static inline int uart_tx_stopped(struct uart_port *port) { struct tty_struct *tty = port->state->port.tty; if ((tty && tty->stopped) || port->hw_stopped) return 1; return 0; } static inline bool uart_cts_enabled(struct uart_port *uport) { return !!(uport->status & UPSTAT_CTS_ENABLE); } static inline bool uart_softcts_mode(struct uart_port *uport) { upstat_t mask = UPSTAT_CTS_ENABLE | UPSTAT_AUTOCTS; return ((uport->status & mask) == UPSTAT_CTS_ENABLE); } /* * The following are helper functions for the low level drivers. */ extern void uart_handle_dcd_change(struct uart_port *uport, unsigned int status); extern void uart_handle_cts_change(struct uart_port *uport, unsigned int status); extern void uart_insert_char(struct uart_port *port, unsigned int status, unsigned int overrun, unsigned int ch, unsigned int flag); #ifdef CONFIG_MAGIC_SYSRQ_SERIAL #define SYSRQ_TIMEOUT (HZ * 5) bool uart_try_toggle_sysrq(struct uart_port *port, unsigned int ch); static inline int uart_handle_sysrq_char(struct uart_port *port, unsigned int ch) { if (!port->sysrq) return 0; if (ch && time_before(jiffies, port->sysrq)) { if (sysrq_mask()) { handle_sysrq(ch); port->sysrq = 0; return 1; } if (uart_try_toggle_sysrq(port, ch)) return 1; } port->sysrq = 0; return 0; } static inline int uart_prepare_sysrq_char(struct uart_port *port, unsigned int ch) { if (!port->sysrq) return 0; if (ch && time_before(jiffies, port->sysrq)) { if (sysrq_mask()) { port->sysrq_ch = ch; port->sysrq = 0; return 1; } if (uart_try_toggle_sysrq(port, ch)) return 1; } port->sysrq = 0; return 0; } static inline void uart_unlock_and_check_sysrq(struct uart_port *port, unsigned long irqflags) { int sysrq_ch; if (!port->has_sysrq) { spin_unlock_irqrestore(&port->lock, irqflags); return; } sysrq_ch = port->sysrq_ch; port->sysrq_ch = 0; spin_unlock_irqrestore(&port->lock, irqflags); if (sysrq_ch) handle_sysrq(sysrq_ch); } #else /* CONFIG_MAGIC_SYSRQ_SERIAL */ static inline int uart_handle_sysrq_char(struct uart_port *port, unsigned int ch) { return 0; } static inline int uart_prepare_sysrq_char(struct uart_port *port, unsigned int ch) { return 0; } static inline void uart_unlock_and_check_sysrq(struct uart_port *port, unsigned long irqflags) { spin_unlock_irqrestore(&port->lock, irqflags); } #endif /* CONFIG_MAGIC_SYSRQ_SERIAL */ /* * We do the SysRQ and SAK checking like this... */ static inline int uart_handle_break(struct uart_port *port) { struct uart_state *state = port->state; if (port->handle_break) port->handle_break(port); #ifdef CONFIG_MAGIC_SYSRQ_SERIAL if (port->has_sysrq && uart_console(port)) { if (!port->sysrq) { port->sysrq = jiffies + SYSRQ_TIMEOUT; return 1; } port->sysrq = 0; } #endif if (port->flags & UPF_SAK) do_SAK(state->port.tty); return 0; } /* * UART_ENABLE_MS - determine if port should enable modem status irqs */ #define UART_ENABLE_MS(port,cflag) ((port)->flags & UPF_HARDPPS_CD || \ (cflag) & CRTSCTS || \ !((cflag) & CLOCAL)) int uart_get_rs485_mode(struct uart_port *port); #endif /* LINUX_SERIAL_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KBD_KERN_H #define _KBD_KERN_H #include <linux/tty.h> #include <linux/interrupt.h> #include <linux/keyboard.h> extern struct tasklet_struct keyboard_tasklet; extern char *func_table[MAX_NR_FUNC]; extern char func_buf[]; extern char *funcbufptr; extern int funcbufsize, funcbufleft; /* * kbd->xxx contains the VC-local things (flag settings etc..) * * Note: externally visible are LED_SCR, LED_NUM, LED_CAP defined in kd.h * The code in KDGETLED / KDSETLED depends on the internal and * external order being the same. * * Note: lockstate is used as index in the array key_map. */ struct kbd_struct { unsigned char lockstate; /* 8 modifiers - the names do not have any meaning at all; they can be associated to arbitrarily chosen keys */ #define VC_SHIFTLOCK KG_SHIFT /* shift lock mode */ #define VC_ALTGRLOCK KG_ALTGR /* altgr lock mode */ #define VC_CTRLLOCK KG_CTRL /* control lock mode */ #define VC_ALTLOCK KG_ALT /* alt lock mode */ #define VC_SHIFTLLOCK KG_SHIFTL /* shiftl lock mode */ #define VC_SHIFTRLOCK KG_SHIFTR /* shiftr lock mode */ #define VC_CTRLLLOCK KG_CTRLL /* ctrll lock mode */ #define VC_CTRLRLOCK KG_CTRLR /* ctrlr lock mode */ unsigned char slockstate; /* for `sticky' Shift, Ctrl, etc. */ unsigned char ledmode:1; #define LED_SHOW_FLAGS 0 /* traditional state */ #define LED_SHOW_IOCTL 1 /* only change leds upon ioctl */ unsigned char ledflagstate:4; /* flags, not lights */ unsigned char default_ledflagstate:4; #define VC_SCROLLOCK 0 /* scroll-lock mode */ #define VC_NUMLOCK 1 /* numeric lock mode */ #define VC_CAPSLOCK 2 /* capslock mode */ #define VC_KANALOCK 3 /* kanalock mode */ unsigned char kbdmode:3; /* one 3-bit value */ #define VC_XLATE 0 /* translate keycodes using keymap */ #define VC_MEDIUMRAW 1 /* medium raw (keycode) mode */ #define VC_RAW 2 /* raw (scancode) mode */ #define VC_UNICODE 3 /* Unicode mode */ #define VC_OFF 4 /* disabled mode */ unsigned char modeflags:5; #define VC_APPLIC 0 /* application key mode */ #define VC_CKMODE 1 /* cursor key mode */ #define VC_REPEAT 2 /* keyboard repeat */ #define VC_CRLF 3 /* 0 - enter sends CR, 1 - enter sends CRLF */ #define VC_META 4 /* 0 - meta, 1 - meta=prefix with ESC */ }; extern int kbd_init(void); extern void setledstate(struct kbd_struct *kbd, unsigned int led); extern int do_poke_blanked_console; extern void (*kbd_ledfunc)(unsigned int led); extern int set_console(int nr); extern void schedule_console_callback(void); /* FIXME: review locking for vt.c callers */ static inline void set_leds(void) { tasklet_schedule(&keyboard_tasklet); } static inline int vc_kbd_mode(struct kbd_struct * kbd, int flag) { return ((kbd->modeflags >> flag) & 1); } static inline int vc_kbd_led(struct kbd_struct * kbd, int flag) { return ((kbd->ledflagstate >> flag) & 1); } static inline void set_vc_kbd_mode(struct kbd_struct * kbd, int flag) { kbd->modeflags |= 1 << flag; } static inline void set_vc_kbd_led(struct kbd_struct * kbd, int flag) { kbd->ledflagstate |= 1 << flag; } static inline void clr_vc_kbd_mode(struct kbd_struct * kbd, int flag) { kbd->modeflags &= ~(1 << flag); } static inline void clr_vc_kbd_led(struct kbd_struct * kbd, int flag) { kbd->ledflagstate &= ~(1 << flag); } static inline void chg_vc_kbd_lock(struct kbd_struct * kbd, int flag) { kbd->lockstate ^= 1 << flag; } static inline void chg_vc_kbd_slock(struct kbd_struct * kbd, int flag) { kbd->slockstate ^= 1 << flag; } static inline void chg_vc_kbd_mode(struct kbd_struct * kbd, int flag) { kbd->modeflags ^= 1 << flag; } static inline void chg_vc_kbd_led(struct kbd_struct * kbd, int flag) { kbd->ledflagstate ^= 1 << flag; } #define U(x) ((x) ^ 0xf000) #define BRL_UC_ROW 0x2800 /* keyboard.c */ struct console; void compute_shiftstate(void); /* defkeymap.c */ extern unsigned int keymap_count; #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef __SOUND_CORE_H #define __SOUND_CORE_H /* * Main header file for the ALSA driver * Copyright (c) 1994-2001 by Jaroslav Kysela <perex@perex.cz> */ #include <linux/device.h> #include <linux/sched.h> /* wake_up() */ #include <linux/mutex.h> /* struct mutex */ #include <linux/rwsem.h> /* struct rw_semaphore */ #include <linux/pm.h> /* pm_message_t */ #include <linux/stringify.h> #include <linux/printk.h> /* number of supported soundcards */ #ifdef CONFIG_SND_DYNAMIC_MINORS #define SNDRV_CARDS CONFIG_SND_MAX_CARDS #else #define SNDRV_CARDS 8 /* don't change - minor numbers */ #endif #define CONFIG_SND_MAJOR 116 /* standard configuration */ /* forward declarations */ struct pci_dev; struct module; struct completion; /* device allocation stuff */ /* type of the object used in snd_device_*() * this also defines the calling order */ enum snd_device_type { SNDRV_DEV_LOWLEVEL, SNDRV_DEV_INFO, SNDRV_DEV_BUS, SNDRV_DEV_CODEC, SNDRV_DEV_PCM, SNDRV_DEV_COMPRESS, SNDRV_DEV_RAWMIDI, SNDRV_DEV_TIMER, SNDRV_DEV_SEQUENCER, SNDRV_DEV_HWDEP, SNDRV_DEV_JACK, SNDRV_DEV_CONTROL, /* NOTE: this must be the last one */ }; enum snd_device_state { SNDRV_DEV_BUILD, SNDRV_DEV_REGISTERED, SNDRV_DEV_DISCONNECTED, }; struct snd_device; struct snd_device_ops { int (*dev_free)(struct snd_device *dev); int (*dev_register)(struct snd_device *dev); int (*dev_disconnect)(struct snd_device *dev); }; struct snd_device { struct list_head list; /* list of registered devices */ struct snd_card *card; /* card which holds this device */ enum snd_device_state state; /* state of the device */ enum snd_device_type type; /* device type */ void *device_data; /* device structure */ const struct snd_device_ops *ops; /* operations */ }; #define snd_device(n) list_entry(n, struct snd_device, list) /* main structure for soundcard */ struct snd_card { int number; /* number of soundcard (index to snd_cards) */ char id[16]; /* id string of this card */ char driver[16]; /* driver name */ char shortname[32]; /* short name of this soundcard */ char longname[80]; /* name of this soundcard */ char irq_descr[32]; /* Interrupt description */ char mixername[80]; /* mixer name */ char components[128]; /* card components delimited with space */ struct module *module; /* top-level module */ void *private_data; /* private data for soundcard */ void (*private_free) (struct snd_card *card); /* callback for freeing of private data */ struct list_head devices; /* devices */ struct device ctl_dev; /* control device */ unsigned int last_numid; /* last used numeric ID */ struct rw_semaphore controls_rwsem; /* controls list lock */ rwlock_t ctl_files_rwlock; /* ctl_files list lock */ int controls_count; /* count of all controls */ int user_ctl_count; /* count of all user controls */ struct list_head controls; /* all controls for this card */ struct list_head ctl_files; /* active control files */ struct snd_info_entry *proc_root; /* root for soundcard specific files */ struct proc_dir_entry *proc_root_link; /* number link to real id */ struct list_head files_list; /* all files associated to this card */ struct snd_shutdown_f_ops *s_f_ops; /* file operations in the shutdown state */ spinlock_t files_lock; /* lock the files for this card */ int shutdown; /* this card is going down */ struct completion *release_completion; struct device *dev; /* device assigned to this card */ struct device card_dev; /* cardX object for sysfs */ const struct attribute_group *dev_groups[4]; /* assigned sysfs attr */ bool registered; /* card_dev is registered? */ int sync_irq; /* assigned irq, used for PCM sync */ wait_queue_head_t remove_sleep; size_t total_pcm_alloc_bytes; /* total amount of allocated buffers */ struct mutex memory_mutex; /* protection for the above */ #ifdef CONFIG_PM unsigned int power_state; /* power state */ wait_queue_head_t power_sleep; #endif #if IS_ENABLED(CONFIG_SND_MIXER_OSS) struct snd_mixer_oss *mixer_oss; int mixer_oss_change_count; #endif }; #define dev_to_snd_card(p) container_of(p, struct snd_card, card_dev) #ifdef CONFIG_PM static inline unsigned int snd_power_get_state(struct snd_card *card) { return card->power_state; } static inline void snd_power_change_state(struct snd_card *card, unsigned int state) { card->power_state = state; wake_up(&card->power_sleep); } /* init.c */ int snd_power_wait(struct snd_card *card, unsigned int power_state); #else /* ! CONFIG_PM */ static inline int snd_power_wait(struct snd_card *card, unsigned int state) { return 0; } #define snd_power_get_state(card) ({ (void)(card); SNDRV_CTL_POWER_D0; }) #define snd_power_change_state(card, state) do { (void)(card); } while (0) #endif /* CONFIG_PM */ struct snd_minor { int type; /* SNDRV_DEVICE_TYPE_XXX */ int card; /* card number */ int device; /* device number */ const struct file_operations *f_ops; /* file operations */ void *private_data; /* private data for f_ops->open */ struct device *dev; /* device for sysfs */ struct snd_card *card_ptr; /* assigned card instance */ }; /* return a device pointer linked to each sound device as a parent */ static inline struct device *snd_card_get_device_link(struct snd_card *card) { return card ? &card->card_dev : NULL; } /* sound.c */ extern int snd_major; extern int snd_ecards_limit; extern struct class *sound_class; void snd_request_card(int card); void snd_device_initialize(struct device *dev, struct snd_card *card); int snd_register_device(int type, struct snd_card *card, int dev, const struct file_operations *f_ops, void *private_data, struct device *device); int snd_unregister_device(struct device *dev); void *snd_lookup_minor_data(unsigned int minor, int type); #ifdef CONFIG_SND_OSSEMUL int snd_register_oss_device(int type, struct snd_card *card, int dev, const struct file_operations *f_ops, void *private_data); int snd_unregister_oss_device(int type, struct snd_card *card, int dev); void *snd_lookup_oss_minor_data(unsigned int minor, int type); #endif int snd_minor_info_init(void); /* sound_oss.c */ #ifdef CONFIG_SND_OSSEMUL int snd_minor_info_oss_init(void); #else static inline int snd_minor_info_oss_init(void) { return 0; } #endif /* memory.c */ int copy_to_user_fromio(void __user *dst, const volatile void __iomem *src, size_t count); int copy_from_user_toio(volatile void __iomem *dst, const void __user *src, size_t count); /* init.c */ int snd_card_locked(int card); #if IS_ENABLED(CONFIG_SND_MIXER_OSS) #define SND_MIXER_OSS_NOTIFY_REGISTER 0 #define SND_MIXER_OSS_NOTIFY_DISCONNECT 1 #define SND_MIXER_OSS_NOTIFY_FREE 2 extern int (*snd_mixer_oss_notify_callback)(struct snd_card *card, int cmd); #endif int snd_card_new(struct device *parent, int idx, const char *xid, struct module *module, int extra_size, struct snd_card **card_ret); int snd_card_disconnect(struct snd_card *card); void snd_card_disconnect_sync(struct snd_card *card); int snd_card_free(struct snd_card *card); int snd_card_free_when_closed(struct snd_card *card); void snd_card_set_id(struct snd_card *card, const char *id); int snd_card_register(struct snd_card *card); int snd_card_info_init(void); int snd_card_add_dev_attr(struct snd_card *card, const struct attribute_group *group); int snd_component_add(struct snd_card *card, const char *component); int snd_card_file_add(struct snd_card *card, struct file *file); int snd_card_file_remove(struct snd_card *card, struct file *file); struct snd_card *snd_card_ref(int card); /** * snd_card_unref - Unreference the card object * @card: the card object to unreference * * Call this function for the card object that was obtained via snd_card_ref() * or snd_lookup_minor_data(). */ static inline void snd_card_unref(struct snd_card *card) { put_device(&card->card_dev); } #define snd_card_set_dev(card, devptr) ((card)->dev = (devptr)) /* device.c */ int snd_device_new(struct snd_card *card, enum snd_device_type type, void *device_data, const struct snd_device_ops *ops); int snd_device_register(struct snd_card *card, void *device_data); int snd_device_register_all(struct snd_card *card); void snd_device_disconnect(struct snd_card *card, void *device_data); void snd_device_disconnect_all(struct snd_card *card); void snd_device_free(struct snd_card *card, void *device_data); void snd_device_free_all(struct snd_card *card); int snd_device_get_state(struct snd_card *card, void *device_data); /* isadma.c */ #ifdef CONFIG_ISA_DMA_API #define DMA_MODE_NO_ENABLE 0x0100 void snd_dma_program(unsigned long dma, unsigned long addr, unsigned int size, unsigned short mode); void snd_dma_disable(unsigned long dma); unsigned int snd_dma_pointer(unsigned long dma, unsigned int size); #endif /* misc.c */ struct resource; void release_and_free_resource(struct resource *res); /* --- */ /* sound printk debug levels */ enum { SND_PR_ALWAYS, SND_PR_DEBUG, SND_PR_VERBOSE, }; #if defined(CONFIG_SND_DEBUG) || defined(CONFIG_SND_VERBOSE_PRINTK) __printf(4, 5) void __snd_printk(unsigned int level, const char *file, int line, const char *format, ...); #else #define __snd_printk(level, file, line, format, ...) \ printk(format, ##__VA_ARGS__) #endif /** * snd_printk - printk wrapper * @fmt: format string * * Works like printk() but prints the file and the line of the caller * when configured with CONFIG_SND_VERBOSE_PRINTK. */ #define snd_printk(fmt, ...) \ __snd_printk(0, __FILE__, __LINE__, fmt, ##__VA_ARGS__) #ifdef CONFIG_SND_DEBUG /** * snd_printd - debug printk * @fmt: format string * * Works like snd_printk() for debugging purposes. * Ignored when CONFIG_SND_DEBUG is not set. */ #define snd_printd(fmt, ...) \ __snd_printk(1, __FILE__, __LINE__, fmt, ##__VA_ARGS__) #define _snd_printd(level, fmt, ...) \ __snd_printk(level, __FILE__, __LINE__, fmt, ##__VA_ARGS__) /** * snd_BUG - give a BUG warning message and stack trace * * Calls WARN() if CONFIG_SND_DEBUG is set. * Ignored when CONFIG_SND_DEBUG is not set. */ #define snd_BUG() WARN(1, "BUG?\n") /** * snd_printd_ratelimit - Suppress high rates of output when * CONFIG_SND_DEBUG is enabled. */ #define snd_printd_ratelimit() printk_ratelimit() /** * snd_BUG_ON - debugging check macro * @cond: condition to evaluate * * Has the same behavior as WARN_ON when CONFIG_SND_DEBUG is set, * otherwise just evaluates the conditional and returns the value. */ #define snd_BUG_ON(cond) WARN_ON((cond)) #else /* !CONFIG_SND_DEBUG */ __printf(1, 2) static inline void snd_printd(const char *format, ...) {} __printf(2, 3) static inline void _snd_printd(int level, const char *format, ...) {} #define snd_BUG() do { } while (0) #define snd_BUG_ON(condition) ({ \ int __ret_warn_on = !!(condition); \ unlikely(__ret_warn_on); \ }) static inline bool snd_printd_ratelimit(void) { return false; } #endif /* CONFIG_SND_DEBUG */ #ifdef CONFIG_SND_DEBUG_VERBOSE /** * snd_printdd - debug printk * @format: format string * * Works like snd_printk() for debugging purposes. * Ignored when CONFIG_SND_DEBUG_VERBOSE is not set. */ #define snd_printdd(format, ...) \ __snd_printk(2, __FILE__, __LINE__, format, ##__VA_ARGS__) #else __printf(1, 2) static inline void snd_printdd(const char *format, ...) {} #endif #define SNDRV_OSS_VERSION ((3<<16)|(8<<8)|(1<<4)|(0)) /* 3.8.1a */ /* for easier backward-porting */ #if IS_ENABLED(CONFIG_GAMEPORT) #define gameport_set_dev_parent(gp,xdev) ((gp)->dev.parent = (xdev)) #define gameport_set_port_data(gp,r) ((gp)->port_data = (r)) #define gameport_get_port_data(gp) (gp)->port_data #endif /* PCI quirk list helper */ struct snd_pci_quirk { unsigned short subvendor; /* PCI subvendor ID */ unsigned short subdevice; /* PCI subdevice ID */ unsigned short subdevice_mask; /* bitmask to match */ int value; /* value */ #ifdef CONFIG_SND_DEBUG_VERBOSE const char *name; /* name of the device (optional) */ #endif }; #define _SND_PCI_QUIRK_ID_MASK(vend, mask, dev) \ .subvendor = (vend), .subdevice = (dev), .subdevice_mask = (mask) #define _SND_PCI_QUIRK_ID(vend, dev) \ _SND_PCI_QUIRK_ID_MASK(vend, 0xffff, dev) #define SND_PCI_QUIRK_ID(vend,dev) {_SND_PCI_QUIRK_ID(vend, dev)} #ifdef CONFIG_SND_DEBUG_VERBOSE #define SND_PCI_QUIRK(vend,dev,xname,val) \ {_SND_PCI_QUIRK_ID(vend, dev), .value = (val), .name = (xname)} #define SND_PCI_QUIRK_VENDOR(vend, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, 0, 0), .value = (val), .name = (xname)} #define SND_PCI_QUIRK_MASK(vend, mask, dev, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, mask, dev), \ .value = (val), .name = (xname)} #define snd_pci_quirk_name(q) ((q)->name) #else #define SND_PCI_QUIRK(vend,dev,xname,val) \ {_SND_PCI_QUIRK_ID(vend, dev), .value = (val)} #define SND_PCI_QUIRK_MASK(vend, mask, dev, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, mask, dev), .value = (val)} #define SND_PCI_QUIRK_VENDOR(vend, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, 0, 0), .value = (val)} #define snd_pci_quirk_name(q) "" #endif #ifdef CONFIG_PCI const struct snd_pci_quirk * snd_pci_quirk_lookup(struct pci_dev *pci, const struct snd_pci_quirk *list); const struct snd_pci_quirk * snd_pci_quirk_lookup_id(u16 vendor, u16 device, const struct snd_pci_quirk *list); #else static inline const struct snd_pci_quirk * snd_pci_quirk_lookup(struct pci_dev *pci, const struct snd_pci_quirk *list) { return NULL; } static inline const struct snd_pci_quirk * snd_pci_quirk_lookup_id(u16 vendor, u16 device, const struct snd_pci_quirk *list) { return NULL; } #endif #endif /* __SOUND_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_WAIT_BIT_H #define _LINUX_WAIT_BIT_H /* * Linux wait-bit related types and methods: */ #include <linux/wait.h> struct wait_bit_key { void *flags; int bit_nr; unsigned long timeout; }; struct wait_bit_queue_entry { struct wait_bit_key key; struct wait_queue_entry wq_entry; }; #define __WAIT_BIT_KEY_INITIALIZER(word, bit) \ { .flags = word, .bit_nr = bit, } typedef int wait_bit_action_f(struct wait_bit_key *key, int mode); void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit); int __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode); int __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode); void wake_up_bit(void *word, int bit); int out_of_line_wait_on_bit(void *word, int, wait_bit_action_f *action, unsigned int mode); int out_of_line_wait_on_bit_timeout(void *word, int, wait_bit_action_f *action, unsigned int mode, unsigned long timeout); int out_of_line_wait_on_bit_lock(void *word, int, wait_bit_action_f *action, unsigned int mode); struct wait_queue_head *bit_waitqueue(void *word, int bit); extern void __init wait_bit_init(void); int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key); #define DEFINE_WAIT_BIT(name, word, bit) \ struct wait_bit_queue_entry name = { \ .key = __WAIT_BIT_KEY_INITIALIZER(word, bit), \ .wq_entry = { \ .private = current, \ .func = wake_bit_function, \ .entry = \ LIST_HEAD_INIT((name).wq_entry.entry), \ }, \ } extern int bit_wait(struct wait_bit_key *key, int mode); extern int bit_wait_io(struct wait_bit_key *key, int mode); extern int bit_wait_timeout(struct wait_bit_key *key, int mode); extern int bit_wait_io_timeout(struct wait_bit_key *key, int mode); /** * wait_on_bit - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * There is a standard hashed waitqueue table for generic use. This * is the part of the hashtable's accessor API that waits on a bit. * For instance, if one were to have waiters on a bitflag, one would * call wait_on_bit() in threads waiting for the bit to clear. * One uses wait_on_bit() where one is waiting for the bit to clear, * but has no intention of setting it. * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, bit_wait, mode); } /** * wait_on_bit_io - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared. This is similar to wait_on_bit(), but calls * io_schedule() instead of schedule() for the actual waiting. * * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit_io(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, bit_wait_io, mode); } /** * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * @timeout: timeout, in jiffies * * Use the standard hashed waitqueue table to wait for a bit * to be cleared. This is similar to wait_on_bit(), except also takes a * timeout parameter. * * Returned value will be zero if the bit was cleared before the * @timeout elapsed, or non-zero if the @timeout elapsed or process * received a signal and the mode permitted wakeup on that signal. */ static inline int wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode, unsigned long timeout) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit_timeout(word, bit, bit_wait_timeout, mode, timeout); } /** * wait_on_bit_action - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @action: the function used to sleep, which may take special actions * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared, and allow the waiting action to be specified. * This is like wait_on_bit() but allows fine control of how the waiting * is done. * * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action, unsigned mode) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, action, mode); } /** * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * There is a standard hashed waitqueue table for generic use. This * is the part of the hashtable's accessor API that waits on a bit * when one intends to set it, for instance, trying to lock bitflags. * For instance, if one were to have waiters trying to set bitflag * and waiting for it to clear before setting it, one would call * wait_on_bit() in threads waiting to be able to set the bit. * One uses wait_on_bit_lock() where one is waiting for the bit to * clear with the intention of setting it, and when done, clearing it. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode); } /** * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared and then to atomically set it. This is similar * to wait_on_bit(), but calls io_schedule() instead of schedule() * for the actual waiting. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode); } /** * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @action: the function used to sleep, which may take special actions * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared and then to set it, and allow the waiting action * to be specified. * This is like wait_on_bit() but allows fine control of how the waiting * is done. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, action, mode); } extern void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int flags); extern void wake_up_var(void *var); extern wait_queue_head_t *__var_waitqueue(void *p); #define ___wait_var_event(var, condition, state, exclusive, ret, cmd) \ ({ \ __label__ __out; \ struct wait_queue_head *__wq_head = __var_waitqueue(var); \ struct wait_bit_queue_entry __wbq_entry; \ long __ret = ret; /* explicit shadow */ \ \ init_wait_var_entry(&__wbq_entry, var, \ exclusive ? WQ_FLAG_EXCLUSIVE : 0); \ for (;;) { \ long __int = prepare_to_wait_event(__wq_head, \ &__wbq_entry.wq_entry, \ state); \ if (condition) \ break; \ \ if (___wait_is_interruptible(state) && __int) { \ __ret = __int; \ goto __out; \ } \ \ cmd; \ } \ finish_wait(__wq_head, &__wbq_entry.wq_entry); \ __out: __ret; \ }) #define __wait_var_event(var, condition) \ ___wait_var_event(var, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ schedule()) #define wait_var_event(var, condition) \ do { \ might_sleep(); \ if (condition) \ break; \ __wait_var_event(var, condition); \ } while (0) #define __wait_var_event_killable(var, condition) \ ___wait_var_event(var, condition, TASK_KILLABLE, 0, 0, \ schedule()) #define wait_var_event_killable(var, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_var_event_killable(var, condition); \ __ret; \ }) #define __wait_var_event_timeout(var, condition, timeout) \ ___wait_var_event(var, ___wait_cond_timeout(condition), \ TASK_UNINTERRUPTIBLE, 0, timeout, \ __ret = schedule_timeout(__ret)) #define wait_var_event_timeout(var, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_var_event_timeout(var, condition, timeout); \ __ret; \ }) #define __wait_var_event_interruptible(var, condition) \ ___wait_var_event(var, condition, TASK_INTERRUPTIBLE, 0, 0, \ schedule()) #define wait_var_event_interruptible(var, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_var_event_interruptible(var, condition); \ __ret; \ }) /** * clear_and_wake_up_bit - clear a bit and wake up anyone waiting on that bit * * @bit: the bit of the word being waited on * @word: the word being waited on, a kernel virtual address * * You can use this helper if bitflags are manipulated atomically rather than * non-atomically under a lock. */ static inline void clear_and_wake_up_bit(int bit, void *word) { clear_bit_unlock(bit, word); /* See wake_up_bit() for which memory barrier you need to use. */ smp_mb__after_atomic(); wake_up_bit(word, bit); } #endif /* _LINUX_WAIT_BIT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM xdp #if !defined(_TRACE_XDP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_XDP_H #include <linux/netdevice.h> #include <linux/filter.h> #include <linux/tracepoint.h> #include <linux/bpf.h> #define __XDP_ACT_MAP(FN) \ FN(ABORTED) \ FN(DROP) \ FN(PASS) \ FN(TX) \ FN(REDIRECT) #define __XDP_ACT_TP_FN(x) \ TRACE_DEFINE_ENUM(XDP_##x); #define __XDP_ACT_SYM_FN(x) \ { XDP_##x, #x }, #define __XDP_ACT_SYM_TAB \ __XDP_ACT_MAP(__XDP_ACT_SYM_FN) { -1, NULL } __XDP_ACT_MAP(__XDP_ACT_TP_FN) TRACE_EVENT(xdp_exception, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, u32 act), TP_ARGS(dev, xdp, act), TP_STRUCT__entry( __field(int, prog_id) __field(u32, act) __field(int, ifindex) ), TP_fast_assign( __entry->prog_id = xdp->aux->id; __entry->act = act; __entry->ifindex = dev->ifindex; ), TP_printk("prog_id=%d action=%s ifindex=%d", __entry->prog_id, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->ifindex) ); TRACE_EVENT(xdp_bulk_tx, TP_PROTO(const struct net_device *dev, int sent, int drops, int err), TP_ARGS(dev, sent, drops, err), TP_STRUCT__entry( __field(int, ifindex) __field(u32, act) __field(int, drops) __field(int, sent) __field(int, err) ), TP_fast_assign( __entry->ifindex = dev->ifindex; __entry->act = XDP_TX; __entry->drops = drops; __entry->sent = sent; __entry->err = err; ), TP_printk("ifindex=%d action=%s sent=%d drops=%d err=%d", __entry->ifindex, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->sent, __entry->drops, __entry->err) ); #ifndef __DEVMAP_OBJ_TYPE #define __DEVMAP_OBJ_TYPE struct _bpf_dtab_netdev { struct net_device *dev; }; #endif /* __DEVMAP_OBJ_TYPE */ #define devmap_ifindex(tgt, map) \ (((map->map_type == BPF_MAP_TYPE_DEVMAP || \ map->map_type == BPF_MAP_TYPE_DEVMAP_HASH)) ? \ ((struct _bpf_dtab_netdev *)tgt)->dev->ifindex : 0) DECLARE_EVENT_CLASS(xdp_redirect_template, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index), TP_STRUCT__entry( __field(int, prog_id) __field(u32, act) __field(int, ifindex) __field(int, err) __field(int, to_ifindex) __field(u32, map_id) __field(int, map_index) ), TP_fast_assign( __entry->prog_id = xdp->aux->id; __entry->act = XDP_REDIRECT; __entry->ifindex = dev->ifindex; __entry->err = err; __entry->to_ifindex = map ? devmap_ifindex(tgt, map) : index; __entry->map_id = map ? map->id : 0; __entry->map_index = map ? index : 0; ), TP_printk("prog_id=%d action=%s ifindex=%d to_ifindex=%d err=%d" " map_id=%d map_index=%d", __entry->prog_id, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->ifindex, __entry->to_ifindex, __entry->err, __entry->map_id, __entry->map_index) ); DEFINE_EVENT(xdp_redirect_template, xdp_redirect, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index) ); DEFINE_EVENT(xdp_redirect_template, xdp_redirect_err, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index) ); #define _trace_xdp_redirect(dev, xdp, to) \ trace_xdp_redirect(dev, xdp, NULL, 0, NULL, to); #define _trace_xdp_redirect_err(dev, xdp, to, err) \ trace_xdp_redirect_err(dev, xdp, NULL, err, NULL, to); #define _trace_xdp_redirect_map(dev, xdp, to, map, index) \ trace_xdp_redirect(dev, xdp, to, 0, map, index); #define _trace_xdp_redirect_map_err(dev, xdp, to, map, index, err) \ trace_xdp_redirect_err(dev, xdp, to, err, map, index); /* not used anymore, but kept around so as not to break old programs */ DEFINE_EVENT(xdp_redirect_template, xdp_redirect_map, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index) ); DEFINE_EVENT(xdp_redirect_template, xdp_redirect_map_err, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index) ); TRACE_EVENT(xdp_cpumap_kthread, TP_PROTO(int map_id, unsigned int processed, unsigned int drops, int sched, struct xdp_cpumap_stats *xdp_stats), TP_ARGS(map_id, processed, drops, sched, xdp_stats), TP_STRUCT__entry( __field(int, map_id) __field(u32, act) __field(int, cpu) __field(unsigned int, drops) __field(unsigned int, processed) __field(int, sched) __field(unsigned int, xdp_pass) __field(unsigned int, xdp_drop) __field(unsigned int, xdp_redirect) ), TP_fast_assign( __entry->map_id = map_id; __entry->act = XDP_REDIRECT; __entry->cpu = smp_processor_id(); __entry->drops = drops; __entry->processed = processed; __entry->sched = sched; __entry->xdp_pass = xdp_stats->pass; __entry->xdp_drop = xdp_stats->drop; __entry->xdp_redirect = xdp_stats->redirect; ), TP_printk("kthread" " cpu=%d map_id=%d action=%s" " processed=%u drops=%u" " sched=%d" " xdp_pass=%u xdp_drop=%u xdp_redirect=%u", __entry->cpu, __entry->map_id, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->processed, __entry->drops, __entry->sched, __entry->xdp_pass, __entry->xdp_drop, __entry->xdp_redirect) ); TRACE_EVENT(xdp_cpumap_enqueue, TP_PROTO(int map_id, unsigned int processed, unsigned int drops, int to_cpu), TP_ARGS(map_id, processed, drops, to_cpu), TP_STRUCT__entry( __field(int, map_id) __field(u32, act) __field(int, cpu) __field(unsigned int, drops) __field(unsigned int, processed) __field(int, to_cpu) ), TP_fast_assign( __entry->map_id = map_id; __entry->act = XDP_REDIRECT; __entry->cpu = smp_processor_id(); __entry->drops = drops; __entry->processed = processed; __entry->to_cpu = to_cpu; ), TP_printk("enqueue" " cpu=%d map_id=%d action=%s" " processed=%u drops=%u" " to_cpu=%d", __entry->cpu, __entry->map_id, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->processed, __entry->drops, __entry->to_cpu) ); TRACE_EVENT(xdp_devmap_xmit, TP_PROTO(const struct net_device *from_dev, const struct net_device *to_dev, int sent, int drops, int err), TP_ARGS(from_dev, to_dev, sent, drops, err), TP_STRUCT__entry( __field(int, from_ifindex) __field(u32, act) __field(int, to_ifindex) __field(int, drops) __field(int, sent) __field(int, err) ), TP_fast_assign( __entry->from_ifindex = from_dev->ifindex; __entry->act = XDP_REDIRECT; __entry->to_ifindex = to_dev->ifindex; __entry->drops = drops; __entry->sent = sent; __entry->err = err; ), TP_printk("ndo_xdp_xmit" " from_ifindex=%d to_ifindex=%d action=%s" " sent=%d drops=%d" " err=%d", __entry->from_ifindex, __entry->to_ifindex, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->sent, __entry->drops, __entry->err) ); /* Expect users already include <net/xdp.h>, but not xdp_priv.h */ #include <net/xdp_priv.h> #define __MEM_TYPE_MAP(FN) \ FN(PAGE_SHARED) \ FN(PAGE_ORDER0) \ FN(PAGE_POOL) \ FN(XSK_BUFF_POOL) #define __MEM_TYPE_TP_FN(x) \ TRACE_DEFINE_ENUM(MEM_TYPE_##x); #define __MEM_TYPE_SYM_FN(x) \ { MEM_TYPE_##x, #x }, #define __MEM_TYPE_SYM_TAB \ __MEM_TYPE_MAP(__MEM_TYPE_SYM_FN) { -1, 0 } __MEM_TYPE_MAP(__MEM_TYPE_TP_FN) TRACE_EVENT(mem_disconnect, TP_PROTO(const struct xdp_mem_allocator *xa), TP_ARGS(xa), TP_STRUCT__entry( __field(const struct xdp_mem_allocator *, xa) __field(u32, mem_id) __field(u32, mem_type) __field(const void *, allocator) ), TP_fast_assign( __entry->xa = xa; __entry->mem_id = xa->mem.id; __entry->mem_type = xa->mem.type; __entry->allocator = xa->allocator; ), TP_printk("mem_id=%d mem_type=%s allocator=%p", __entry->mem_id, __print_symbolic(__entry->mem_type, __MEM_TYPE_SYM_TAB), __entry->allocator ) ); TRACE_EVENT(mem_connect, TP_PROTO(const struct xdp_mem_allocator *xa, const struct xdp_rxq_info *rxq), TP_ARGS(xa, rxq), TP_STRUCT__entry( __field(const struct xdp_mem_allocator *, xa) __field(u32, mem_id) __field(u32, mem_type) __field(const void *, allocator) __field(const struct xdp_rxq_info *, rxq) __field(int, ifindex) ), TP_fast_assign( __entry->xa = xa; __entry->mem_id = xa->mem.id; __entry->mem_type = xa->mem.type; __entry->allocator = xa->allocator; __entry->rxq = rxq; __entry->ifindex = rxq->dev->ifindex; ), TP_printk("mem_id=%d mem_type=%s allocator=%p" " ifindex=%d", __entry->mem_id, __print_symbolic(__entry->mem_type, __MEM_TYPE_SYM_TAB), __entry->allocator, __entry->ifindex ) ); TRACE_EVENT(mem_return_failed, TP_PROTO(const struct xdp_mem_info *mem, const struct page *page), TP_ARGS(mem, page), TP_STRUCT__entry( __field(const struct page *, page) __field(u32, mem_id) __field(u32, mem_type) ), TP_fast_assign( __entry->page = page; __entry->mem_id = mem->id; __entry->mem_type = mem->type; ), TP_printk("mem_id=%d mem_type=%s page=%p", __entry->mem_id, __print_symbolic(__entry->mem_type, __MEM_TYPE_SYM_TAB), __entry->page ) ); #endif /* _TRACE_XDP_H */ #include <trace/define_trace.h>
1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1992 obz under the linux copyright * * Dynamic diacritical handling - aeb@cwi.nl - Dec 1993 * Dynamic keymap and string allocation - aeb@cwi.nl - May 1994 * Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995 * Some code moved for less code duplication - Andi Kleen - Mar 1997 * Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001 */ #include <linux/types.h> #include <linux/errno.h> #include <linux/sched/signal.h> #include <linux/tty.h> #include <linux/timer.h> #include <linux/kernel.h> #include <linux/compat.h> #include <linux/module.h> #include <linux/kd.h> #include <linux/vt.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/major.h> #include <linux/fs.h> #include <linux/console.h> #include <linux/consolemap.h> #include <linux/signal.h> #include <linux/suspend.h> #include <linux/timex.h> #include <asm/io.h> #include <linux/uaccess.h> #include <linux/nospec.h> #include <linux/kbd_kern.h> #include <linux/vt_kern.h> #include <linux/kbd_diacr.h> #include <linux/selection.h> bool vt_dont_switch; static inline bool vt_in_use(unsigned int i) { const struct vc_data *vc = vc_cons[i].d; /* * console_lock must be held to prevent the vc from being deallocated * while we're checking whether it's in-use. */ WARN_CONSOLE_UNLOCKED(); return vc && kref_read(&vc->port.kref) > 1; } static inline bool vt_busy(int i) { if (vt_in_use(i)) return true; if (i == fg_console) return true; if (vc_is_sel(vc_cons[i].d)) return true; return false; } /* * Console (vt and kd) routines, as defined by USL SVR4 manual, and by * experimentation and study of X386 SYSV handling. * * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console, * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing * to the current console is done by the main ioctl code. */ #ifdef CONFIG_X86 #include <asm/syscalls.h> #endif static void complete_change_console(struct vc_data *vc); /* * User space VT_EVENT handlers */ struct vt_event_wait { struct list_head list; struct vt_event event; int done; }; static LIST_HEAD(vt_events); static DEFINE_SPINLOCK(vt_event_lock); static DECLARE_WAIT_QUEUE_HEAD(vt_event_waitqueue); /** * vt_event_post * @event: the event that occurred * @old: old console * @new: new console * * Post an VT event to interested VT handlers */ void vt_event_post(unsigned int event, unsigned int old, unsigned int new) { struct list_head *pos, *head; unsigned long flags; int wake = 0; spin_lock_irqsave(&vt_event_lock, flags); head = &vt_events; list_for_each(pos, head) { struct vt_event_wait *ve = list_entry(pos, struct vt_event_wait, list); if (!(ve->event.event & event)) continue; ve->event.event = event; /* kernel view is consoles 0..n-1, user space view is console 1..n with 0 meaning current, so we must bias */ ve->event.oldev = old + 1; ve->event.newev = new + 1; wake = 1; ve->done = 1; } spin_unlock_irqrestore(&vt_event_lock, flags); if (wake) wake_up_interruptible(&vt_event_waitqueue); } static void __vt_event_queue(struct vt_event_wait *vw) { unsigned long flags; /* Prepare the event */ INIT_LIST_HEAD(&vw->list); vw->done = 0; /* Queue our event */ spin_lock_irqsave(&vt_event_lock, flags); list_add(&vw->list, &vt_events); spin_unlock_irqrestore(&vt_event_lock, flags); } static void __vt_event_wait(struct vt_event_wait *vw) { /* Wait for it to pass */ wait_event_interruptible(vt_event_waitqueue, vw->done); } static void __vt_event_dequeue(struct vt_event_wait *vw) { unsigned long flags; /* Dequeue it */ spin_lock_irqsave(&vt_event_lock, flags); list_del(&vw->list); spin_unlock_irqrestore(&vt_event_lock, flags); } /** * vt_event_wait - wait for an event * @vw: our event * * Waits for an event to occur which completes our vt_event_wait * structure. On return the structure has wv->done set to 1 for success * or 0 if some event such as a signal ended the wait. */ static void vt_event_wait(struct vt_event_wait *vw) { __vt_event_queue(vw); __vt_event_wait(vw); __vt_event_dequeue(vw); } /** * vt_event_wait_ioctl - event ioctl handler * @event: argument to ioctl (the event) * * Implement the VT_WAITEVENT ioctl using the VT event interface */ static int vt_event_wait_ioctl(struct vt_event __user *event) { struct vt_event_wait vw; if (copy_from_user(&vw.event, event, sizeof(struct vt_event))) return -EFAULT; /* Highest supported event for now */ if (vw.event.event & ~VT_MAX_EVENT) return -EINVAL; vt_event_wait(&vw); /* If it occurred report it */ if (vw.done) { if (copy_to_user(event, &vw.event, sizeof(struct vt_event))) return -EFAULT; return 0; } return -EINTR; } /** * vt_waitactive - active console wait * @n: new console * * Helper for event waits. Used to implement the legacy * event waiting ioctls in terms of events */ int vt_waitactive(int n) { struct vt_event_wait vw; do { vw.event.event = VT_EVENT_SWITCH; __vt_event_queue(&vw); if (n == fg_console + 1) { __vt_event_dequeue(&vw); break; } __vt_event_wait(&vw); __vt_event_dequeue(&vw); if (vw.done == 0) return -EINTR; } while (vw.event.newev != n); return 0; } /* * these are the valid i/o ports we're allowed to change. they map all the * video ports */ #define GPFIRST 0x3b4 #define GPLAST 0x3df #define GPNUM (GPLAST - GPFIRST + 1) /* * currently, setting the mode from KD_TEXT to KD_GRAPHICS doesn't do a whole * lot. i'm not sure if it should do any restoration of modes or what... * * XXX It should at least call into the driver, fbdev's definitely need to * restore their engine state. --BenH * * Called with the console lock held. */ static int vt_kdsetmode(struct vc_data *vc, unsigned long mode) { switch (mode) { case KD_GRAPHICS: break; case KD_TEXT0: case KD_TEXT1: mode = KD_TEXT; fallthrough; case KD_TEXT: break; default: return -EINVAL; } if (vc->vc_mode == mode) return 0; vc->vc_mode = mode; if (vc->vc_num != fg_console) return 0; /* explicitly blank/unblank the screen if switching modes */ if (mode == KD_TEXT) do_unblank_screen(1); else do_blank_screen(1); return 0; } static int vt_k_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg, bool perm) { struct vc_data *vc = tty->driver_data; void __user *up = (void __user *)arg; unsigned int console = vc->vc_num; int ret; switch (cmd) { case KIOCSOUND: if (!perm) return -EPERM; /* * The use of PIT_TICK_RATE is historic, it used to be * the platform-dependent CLOCK_TICK_RATE between 2.6.12 * and 2.6.36, which was a minor but unfortunate ABI * change. kd_mksound is locked by the input layer. */ if (arg) arg = PIT_TICK_RATE / arg; kd_mksound(arg, 0); break; case KDMKTONE: if (!perm) return -EPERM; { unsigned int ticks, count; /* * Generate the tone for the appropriate number of ticks. * If the time is zero, turn off sound ourselves. */ ticks = msecs_to_jiffies((arg >> 16) & 0xffff); count = ticks ? (arg & 0xffff) : 0; if (count) count = PIT_TICK_RATE / count; kd_mksound(count, ticks); break; } case KDGKBTYPE: /* * this is naïve. */ return put_user(KB_101, (char __user *)arg); /* * These cannot be implemented on any machine that implements * ioperm() in user level (such as Alpha PCs) or not at all. * * XXX: you should never use these, just call ioperm directly.. */ #ifdef CONFIG_X86 case KDADDIO: case KDDELIO: /* * KDADDIO and KDDELIO may be able to add ports beyond what * we reject here, but to be safe... * * These are locked internally via sys_ioperm */ if (arg < GPFIRST || arg > GPLAST) return -EINVAL; return ksys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0; case KDENABIO: case KDDISABIO: return ksys_ioperm(GPFIRST, GPNUM, (cmd == KDENABIO)) ? -ENXIO : 0; #endif /* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */ case KDKBDREP: { struct kbd_repeat kbrep; if (!capable(CAP_SYS_TTY_CONFIG)) return -EPERM; if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat))) return -EFAULT; ret = kbd_rate(&kbrep); if (ret) return ret; if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat))) return -EFAULT; break; } case KDSETMODE: if (!perm) return -EPERM; console_lock(); ret = vt_kdsetmode(vc, arg); console_unlock(); return ret; case KDGETMODE: return put_user(vc->vc_mode, (int __user *)arg); case KDMAPDISP: case KDUNMAPDISP: /* * these work like a combination of mmap and KDENABIO. * this could be easily finished. */ return -EINVAL; case KDSKBMODE: if (!perm) return -EPERM; ret = vt_do_kdskbmode(console, arg); if (ret) return ret; tty_ldisc_flush(tty); break; case KDGKBMODE: return put_user(vt_do_kdgkbmode(console), (int __user *)arg); /* this could be folded into KDSKBMODE, but for compatibility reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */ case KDSKBMETA: return vt_do_kdskbmeta(console, arg); case KDGKBMETA: /* FIXME: should review whether this is worth locking */ return put_user(vt_do_kdgkbmeta(console), (int __user *)arg); case KDGETKEYCODE: case KDSETKEYCODE: if(!capable(CAP_SYS_TTY_CONFIG)) perm = 0; return vt_do_kbkeycode_ioctl(cmd, up, perm); case KDGKBENT: case KDSKBENT: return vt_do_kdsk_ioctl(cmd, up, perm, console); case KDGKBSENT: case KDSKBSENT: return vt_do_kdgkb_ioctl(cmd, up, perm); /* Diacritical processing. Handled in keyboard.c as it has to operate on the keyboard locks and structures */ case KDGKBDIACR: case KDGKBDIACRUC: case KDSKBDIACR: case KDSKBDIACRUC: return vt_do_diacrit(cmd, up, perm); /* the ioctls below read/set the flags usually shown in the leds */ /* don't use them - they will go away without warning */ case KDGKBLED: case KDSKBLED: case KDGETLED: case KDSETLED: return vt_do_kdskled(console, cmd, arg, perm); /* * A process can indicate its willingness to accept signals * generated by pressing an appropriate key combination. * Thus, one can have a daemon that e.g. spawns a new console * upon a keypress and then changes to it. * See also the kbrequest field of inittab(5). */ case KDSIGACCEPT: if (!perm || !capable(CAP_KILL)) return -EPERM; if (!valid_signal(arg) || arg < 1 || arg == SIGKILL) return -EINVAL; spin_lock_irq(&vt_spawn_con.lock); put_pid(vt_spawn_con.pid); vt_spawn_con.pid = get_pid(task_pid(current)); vt_spawn_con.sig = arg; spin_unlock_irq(&vt_spawn_con.lock); break; case KDFONTOP: { struct console_font_op op; if (copy_from_user(&op, up, sizeof(op))) return -EFAULT; if (!perm && op.op != KD_FONT_OP_GET) return -EPERM; ret = con_font_op(vc, &op); if (ret) return ret; if (copy_to_user(up, &op, sizeof(op))) return -EFAULT; break; } default: return -ENOIOCTLCMD; } return 0; } static inline int do_fontx_ioctl(struct vc_data *vc, int cmd, struct consolefontdesc __user *user_cfd, struct console_font_op *op) { struct consolefontdesc cfdarg; int i; if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc))) return -EFAULT; switch (cmd) { case PIO_FONTX: op->op = KD_FONT_OP_SET; op->flags = KD_FONT_FLAG_OLD; op->width = 8; op->height = cfdarg.charheight; op->charcount = cfdarg.charcount; op->data = cfdarg.chardata; return con_font_op(vc, op); case GIO_FONTX: op->op = KD_FONT_OP_GET; op->flags = KD_FONT_FLAG_OLD; op->width = 8; op->height = cfdarg.charheight; op->charcount = cfdarg.charcount; op->data = cfdarg.chardata; i = con_font_op(vc, op); if (i) return i; cfdarg.charheight = op->height; cfdarg.charcount = op->charcount; if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc))) return -EFAULT; return 0; } return -EINVAL; } static int vt_io_fontreset(struct vc_data *vc, struct console_font_op *op) { int ret; if (__is_defined(BROKEN_GRAPHICS_PROGRAMS)) { /* * With BROKEN_GRAPHICS_PROGRAMS defined, the default font is * not saved. */ return -ENOSYS; } op->op = KD_FONT_OP_SET_DEFAULT; op->data = NULL; ret = con_font_op(vc, op); if (ret) return ret; console_lock(); con_set_default_unimap(vc); console_unlock(); return 0; } static inline int do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud, bool perm, struct vc_data *vc) { struct unimapdesc tmp; if (copy_from_user(&tmp, user_ud, sizeof tmp)) return -EFAULT; switch (cmd) { case PIO_UNIMAP: if (!perm) return -EPERM; return con_set_unimap(vc, tmp.entry_ct, tmp.entries); case GIO_UNIMAP: if (!perm && fg_console != vc->vc_num) return -EPERM; return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries); } return 0; } static int vt_io_ioctl(struct vc_data *vc, unsigned int cmd, void __user *up, bool perm) { struct console_font_op op; /* used in multiple places here */ switch (cmd) { case PIO_FONT: if (!perm) return -EPERM; op.op = KD_FONT_OP_SET; op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC; /* Compatibility */ op.width = 8; op.height = 0; op.charcount = 256; op.data = up; return con_font_op(vc, &op); case GIO_FONT: op.op = KD_FONT_OP_GET; op.flags = KD_FONT_FLAG_OLD; op.width = 8; op.height = 32; op.charcount = 256; op.data = up; return con_font_op(vc, &op); case PIO_CMAP: if (!perm) return -EPERM; return con_set_cmap(up); case GIO_CMAP: return con_get_cmap(up); case PIO_FONTX: if (!perm) return -EPERM; fallthrough; case GIO_FONTX: return do_fontx_ioctl(vc, cmd, up, &op); case PIO_FONTRESET: if (!perm) return -EPERM; return vt_io_fontreset(vc, &op); case PIO_SCRNMAP: if (!perm) return -EPERM; return con_set_trans_old(up); case GIO_SCRNMAP: return con_get_trans_old(up); case PIO_UNISCRNMAP: if (!perm) return -EPERM; return con_set_trans_new(up); case GIO_UNISCRNMAP: return con_get_trans_new(up); case PIO_UNIMAPCLR: if (!perm) return -EPERM; con_clear_unimap(vc); break; case PIO_UNIMAP: case GIO_UNIMAP: return do_unimap_ioctl(cmd, up, perm, vc); default: return -ENOIOCTLCMD; } return 0; } static int vt_reldisp(struct vc_data *vc, unsigned int swtch) { int newvt, ret; if (vc->vt_mode.mode != VT_PROCESS) return -EINVAL; /* Switched-to response */ if (vc->vt_newvt < 0) { /* If it's just an ACK, ignore it */ return swtch == VT_ACKACQ ? 0 : -EINVAL; } /* Switching-from response */ if (swtch == 0) { /* Switch disallowed, so forget we were trying to do it. */ vc->vt_newvt = -1; return 0; } /* The current vt has been released, so complete the switch. */ newvt = vc->vt_newvt; vc->vt_newvt = -1; ret = vc_allocate(newvt); if (ret) return ret; /* * When we actually do the console switch, make sure we are atomic with * respect to other console switches.. */ complete_change_console(vc_cons[newvt].d); return 0; } static int vt_setactivate(struct vt_setactivate __user *sa) { struct vt_setactivate vsa; struct vc_data *nvc; int ret; if (copy_from_user(&vsa, sa, sizeof(vsa))) return -EFAULT; if (vsa.console == 0 || vsa.console > MAX_NR_CONSOLES) return -ENXIO; vsa.console = array_index_nospec(vsa.console, MAX_NR_CONSOLES + 1); vsa.console--; console_lock(); ret = vc_allocate(vsa.console); if (ret) { console_unlock(); return ret; } /* * This is safe providing we don't drop the console sem between * vc_allocate and finishing referencing nvc. */ nvc = vc_cons[vsa.console].d; nvc->vt_mode = vsa.mode; nvc->vt_mode.frsig = 0; put_pid(nvc->vt_pid); nvc->vt_pid = get_pid(task_pid(current)); console_unlock(); /* Commence switch and lock */ /* Review set_console locks */ set_console(vsa.console); return 0; } /* deallocate a single console, if possible (leave 0) */ static int vt_disallocate(unsigned int vc_num) { struct vc_data *vc = NULL; int ret = 0; console_lock(); if (vt_busy(vc_num)) ret = -EBUSY; else if (vc_num) vc = vc_deallocate(vc_num); console_unlock(); if (vc && vc_num >= MIN_NR_CONSOLES) tty_port_put(&vc->port); return ret; } /* deallocate all unused consoles, but leave 0 */ static void vt_disallocate_all(void) { struct vc_data *vc[MAX_NR_CONSOLES]; int i; console_lock(); for (i = 1; i < MAX_NR_CONSOLES; i++) if (!vt_busy(i)) vc[i] = vc_deallocate(i); else vc[i] = NULL; console_unlock(); for (i = 1; i < MAX_NR_CONSOLES; i++) { if (vc[i] && i >= MIN_NR_CONSOLES) tty_port_put(&vc[i]->port); } } static int vt_resizex(struct vc_data *vc, struct vt_consize __user *cs) { struct vt_consize v; int i; if (copy_from_user(&v, cs, sizeof(struct vt_consize))) return -EFAULT; /* FIXME: Should check the copies properly */ if (!v.v_vlin) v.v_vlin = vc->vc_scan_lines; if (v.v_clin) { int rows = v.v_vlin / v.v_clin; if (v.v_rows != rows) { if (v.v_rows) /* Parameters don't add up */ return -EINVAL; v.v_rows = rows; } } if (v.v_vcol && v.v_ccol) { int cols = v.v_vcol / v.v_ccol; if (v.v_cols != cols) { if (v.v_cols) return -EINVAL; v.v_cols = cols; } } if (v.v_clin > 32) return -EINVAL; for (i = 0; i < MAX_NR_CONSOLES; i++) { struct vc_data *vcp; if (!vc_cons[i].d) continue; console_lock(); vcp = vc_cons[i].d; if (vcp) { int ret; int save_scan_lines = vcp->vc_scan_lines; int save_cell_height = vcp->vc_cell_height; if (v.v_vlin) vcp->vc_scan_lines = v.v_vlin; if (v.v_clin) vcp->vc_cell_height = v.v_clin; vcp->vc_resize_user = 1; ret = vc_resize(vcp, v.v_cols, v.v_rows); if (ret) { vcp->vc_scan_lines = save_scan_lines; vcp->vc_cell_height = save_cell_height; console_unlock(); return ret; } } console_unlock(); } return 0; } /* * We handle the console-specific ioctl's here. We allow the * capability to modify any console, not just the fg_console. */ int vt_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) { struct vc_data *vc = tty->driver_data; void __user *up = (void __user *)arg; int i, perm; int ret; /* * To have permissions to do most of the vt ioctls, we either have * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG. */ perm = 0; if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG)) perm = 1; ret = vt_k_ioctl(tty, cmd, arg, perm); if (ret != -ENOIOCTLCMD) return ret; ret = vt_io_ioctl(vc, cmd, up, perm); if (ret != -ENOIOCTLCMD) return ret; switch (cmd) { case TIOCLINUX: return tioclinux(tty, arg); case VT_SETMODE: { struct vt_mode tmp; if (!perm) return -EPERM; if (copy_from_user(&tmp, up, sizeof(struct vt_mode))) return -EFAULT; if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS) return -EINVAL; console_lock(); vc->vt_mode = tmp; /* the frsig is ignored, so we set it to 0 */ vc->vt_mode.frsig = 0; put_pid(vc->vt_pid); vc->vt_pid = get_pid(task_pid(current)); /* no switch is required -- saw@shade.msu.ru */ vc->vt_newvt = -1; console_unlock(); break; } case VT_GETMODE: { struct vt_mode tmp; int rc; console_lock(); memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode)); console_unlock(); rc = copy_to_user(up, &tmp, sizeof(struct vt_mode)); if (rc) return -EFAULT; break; } /* * Returns global vt state. Note that VT 0 is always open, since * it's an alias for the current VT, and people can't use it here. * We cannot return state for more than 16 VTs, since v_state is short. */ case VT_GETSTATE: { struct vt_stat __user *vtstat = up; unsigned short state, mask; if (put_user(fg_console + 1, &vtstat->v_active)) return -EFAULT; state = 1; /* /dev/tty0 is always open */ console_lock(); /* required by vt_in_use() */ for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask; ++i, mask <<= 1) if (vt_in_use(i)) state |= mask; console_unlock(); return put_user(state, &vtstat->v_state); } /* * Returns the first available (non-opened) console. */ case VT_OPENQRY: console_lock(); /* required by vt_in_use() */ for (i = 0; i < MAX_NR_CONSOLES; ++i) if (!vt_in_use(i)) break; console_unlock(); i = i < MAX_NR_CONSOLES ? (i+1) : -1; return put_user(i, (int __user *)arg); /* * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num, * with num >= 1 (switches to vt 0, our console, are not allowed, just * to preserve sanity). */ case VT_ACTIVATE: if (!perm) return -EPERM; if (arg == 0 || arg > MAX_NR_CONSOLES) return -ENXIO; arg--; console_lock(); ret = vc_allocate(arg); console_unlock(); if (ret) return ret; set_console(arg); break; case VT_SETACTIVATE: if (!perm) return -EPERM; return vt_setactivate(up); /* * wait until the specified VT has been activated */ case VT_WAITACTIVE: if (!perm) return -EPERM; if (arg == 0 || arg > MAX_NR_CONSOLES) return -ENXIO; return vt_waitactive(arg); /* * If a vt is under process control, the kernel will not switch to it * immediately, but postpone the operation until the process calls this * ioctl, allowing the switch to complete. * * According to the X sources this is the behavior: * 0: pending switch-from not OK * 1: pending switch-from OK * 2: completed switch-to OK */ case VT_RELDISP: if (!perm) return -EPERM; console_lock(); ret = vt_reldisp(vc, arg); console_unlock(); return ret; /* * Disallocate memory associated to VT (but leave VT1) */ case VT_DISALLOCATE: if (arg > MAX_NR_CONSOLES) return -ENXIO; if (arg == 0) vt_disallocate_all(); else return vt_disallocate(--arg); break; case VT_RESIZE: { struct vt_sizes __user *vtsizes = up; struct vc_data *vc; ushort ll,cc; if (!perm) return -EPERM; if (get_user(ll, &vtsizes->v_rows) || get_user(cc, &vtsizes->v_cols)) return -EFAULT; console_lock(); for (i = 0; i < MAX_NR_CONSOLES; i++) { vc = vc_cons[i].d; if (vc) { vc->vc_resize_user = 1; /* FIXME: review v tty lock */ vc_resize(vc_cons[i].d, cc, ll); } } console_unlock(); break; } case VT_RESIZEX: if (!perm) return -EPERM; return vt_resizex(vc, up); case VT_LOCKSWITCH: if (!capable(CAP_SYS_TTY_CONFIG)) return -EPERM; vt_dont_switch = true; break; case VT_UNLOCKSWITCH: if (!capable(CAP_SYS_TTY_CONFIG)) return -EPERM; vt_dont_switch = false; break; case VT_GETHIFONTMASK: return put_user(vc->vc_hi_font_mask, (unsigned short __user *)arg); case VT_WAITEVENT: return vt_event_wait_ioctl((struct vt_event __user *)arg); default: return -ENOIOCTLCMD; } return 0; } void reset_vc(struct vc_data *vc) { vc->vc_mode = KD_TEXT; vt_reset_unicode(vc->vc_num); vc->vt_mode.mode = VT_AUTO; vc->vt_mode.waitv = 0; vc->vt_mode.relsig = 0; vc->vt_mode.acqsig = 0; vc->vt_mode.frsig = 0; put_pid(vc->vt_pid); vc->vt_pid = NULL; vc->vt_newvt = -1; if (!in_interrupt()) /* Via keyboard.c:SAK() - akpm */ reset_palette(vc); } void vc_SAK(struct work_struct *work) { struct vc *vc_con = container_of(work, struct vc, SAK_work); struct vc_data *vc; struct tty_struct *tty; console_lock(); vc = vc_con->d; if (vc) { /* FIXME: review tty ref counting */ tty = vc->port.tty; /* * SAK should also work in all raw modes and reset * them properly. */ if (tty) __do_SAK(tty); reset_vc(vc); } console_unlock(); } #ifdef CONFIG_COMPAT struct compat_consolefontdesc { unsigned short charcount; /* characters in font (256 or 512) */ unsigned short charheight; /* scan lines per character (1-32) */ compat_caddr_t chardata; /* font data in expanded form */ }; static inline int compat_fontx_ioctl(struct vc_data *vc, int cmd, struct compat_consolefontdesc __user *user_cfd, int perm, struct console_font_op *op) { struct compat_consolefontdesc cfdarg; int i; if (copy_from_user(&cfdarg, user_cfd, sizeof(struct compat_consolefontdesc))) return -EFAULT; switch (cmd) { case PIO_FONTX: if (!perm) return -EPERM; op->op = KD_FONT_OP_SET; op->flags = KD_FONT_FLAG_OLD; op->width = 8; op->height = cfdarg.charheight; op->charcount = cfdarg.charcount; op->data = compat_ptr(cfdarg.chardata); return con_font_op(vc, op); case GIO_FONTX: op->op = KD_FONT_OP_GET; op->flags = KD_FONT_FLAG_OLD; op->width = 8; op->height = cfdarg.charheight; op->charcount = cfdarg.charcount; op->data = compat_ptr(cfdarg.chardata); i = con_font_op(vc, op); if (i) return i; cfdarg.charheight = op->height; cfdarg.charcount = op->charcount; if (copy_to_user(user_cfd, &cfdarg, sizeof(struct compat_consolefontdesc))) return -EFAULT; return 0; } return -EINVAL; } struct compat_console_font_op { compat_uint_t op; /* operation code KD_FONT_OP_* */ compat_uint_t flags; /* KD_FONT_FLAG_* */ compat_uint_t width, height; /* font size */ compat_uint_t charcount; compat_caddr_t data; /* font data with height fixed to 32 */ }; static inline int compat_kdfontop_ioctl(struct compat_console_font_op __user *fontop, int perm, struct console_font_op *op, struct vc_data *vc) { int i; if (copy_from_user(op, fontop, sizeof(struct compat_console_font_op))) return -EFAULT; if (!perm && op->op != KD_FONT_OP_GET) return -EPERM; op->data = compat_ptr(((struct compat_console_font_op *)op)->data); i = con_font_op(vc, op); if (i) return i; ((struct compat_console_font_op *)op)->data = (unsigned long)op->data; if (copy_to_user(fontop, op, sizeof(struct compat_console_font_op))) return -EFAULT; return 0; } struct compat_unimapdesc { unsigned short entry_ct; compat_caddr_t entries; }; static inline int compat_unimap_ioctl(unsigned int cmd, struct compat_unimapdesc __user *user_ud, int perm, struct vc_data *vc) { struct compat_unimapdesc tmp; struct unipair __user *tmp_entries; if (copy_from_user(&tmp, user_ud, sizeof tmp)) return -EFAULT; tmp_entries = compat_ptr(tmp.entries); switch (cmd) { case PIO_UNIMAP: if (!perm) return -EPERM; return con_set_unimap(vc, tmp.entry_ct, tmp_entries); case GIO_UNIMAP: if (!perm && fg_console != vc->vc_num) return -EPERM; return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp_entries); } return 0; } long vt_compat_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) { struct vc_data *vc = tty->driver_data; struct console_font_op op; /* used in multiple places here */ void __user *up = compat_ptr(arg); int perm; /* * To have permissions to do most of the vt ioctls, we either have * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG. */ perm = 0; if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG)) perm = 1; switch (cmd) { /* * these need special handlers for incompatible data structures */ case PIO_FONTX: case GIO_FONTX: return compat_fontx_ioctl(vc, cmd, up, perm, &op); case KDFONTOP: return compat_kdfontop_ioctl(up, perm, &op, vc); case PIO_UNIMAP: case GIO_UNIMAP: return compat_unimap_ioctl(cmd, up, perm, vc); /* * all these treat 'arg' as an integer */ case KIOCSOUND: case KDMKTONE: #ifdef CONFIG_X86 case KDADDIO: case KDDELIO: #endif case KDSETMODE: case KDMAPDISP: case KDUNMAPDISP: case KDSKBMODE: case KDSKBMETA: case KDSKBLED: case KDSETLED: case KDSIGACCEPT: case VT_ACTIVATE: case VT_WAITACTIVE: case VT_RELDISP: case VT_DISALLOCATE: case VT_RESIZE: case VT_RESIZEX: return vt_ioctl(tty, cmd, arg); /* * the rest has a compatible data structure behind arg, * but we have to convert it to a proper 64 bit pointer. */ default: return vt_ioctl(tty, cmd, (unsigned long)up); } } #endif /* CONFIG_COMPAT */ /* * Performs the back end of a vt switch. Called under the console * semaphore. */ static void complete_change_console(struct vc_data *vc) { unsigned char old_vc_mode; int old = fg_console; last_console = fg_console; /* * If we're switching, we could be going from KD_GRAPHICS to * KD_TEXT mode or vice versa, which means we need to blank or * unblank the screen later. */ old_vc_mode = vc_cons[fg_console].d->vc_mode; switch_screen(vc); /* * This can't appear below a successful kill_pid(). If it did, * then the *blank_screen operation could occur while X, having * received acqsig, is waking up on another processor. This * condition can lead to overlapping accesses to the VGA range * and the framebuffer (causing system lockups). * * To account for this we duplicate this code below only if the * controlling process is gone and we've called reset_vc. */ if (old_vc_mode != vc->vc_mode) { if (vc->vc_mode == KD_TEXT) do_unblank_screen(1); else do_blank_screen(1); } /* * If this new console is under process control, send it a signal * telling it that it has acquired. Also check if it has died and * clean up (similar to logic employed in change_console()) */ if (vc->vt_mode.mode == VT_PROCESS) { /* * Send the signal as privileged - kill_pid() will * tell us if the process has gone or something else * is awry */ if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) { /* * The controlling process has died, so we revert back to * normal operation. In this case, we'll also change back * to KD_TEXT mode. I'm not sure if this is strictly correct * but it saves the agony when the X server dies and the screen * remains blanked due to KD_GRAPHICS! It would be nice to do * this outside of VT_PROCESS but there is no single process * to account for and tracking tty count may be undesirable. */ reset_vc(vc); if (old_vc_mode != vc->vc_mode) { if (vc->vc_mode == KD_TEXT) do_unblank_screen(1); else do_blank_screen(1); } } } /* * Wake anyone waiting for their VT to activate */ vt_event_post(VT_EVENT_SWITCH, old, vc->vc_num); return; } /* * Performs the front-end of a vt switch */ void change_console(struct vc_data *new_vc) { struct vc_data *vc; if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch) return; /* * If this vt is in process mode, then we need to handshake with * that process before switching. Essentially, we store where that * vt wants to switch to and wait for it to tell us when it's done * (via VT_RELDISP ioctl). * * We also check to see if the controlling process still exists. * If it doesn't, we reset this vt to auto mode and continue. * This is a cheap way to track process control. The worst thing * that can happen is: we send a signal to a process, it dies, and * the switch gets "lost" waiting for a response; hopefully, the * user will try again, we'll detect the process is gone (unless * the user waits just the right amount of time :-) and revert the * vt to auto control. */ vc = vc_cons[fg_console].d; if (vc->vt_mode.mode == VT_PROCESS) { /* * Send the signal as privileged - kill_pid() will * tell us if the process has gone or something else * is awry. * * We need to set vt_newvt *before* sending the signal or we * have a race. */ vc->vt_newvt = new_vc->vc_num; if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) { /* * It worked. Mark the vt to switch to and * return. The process needs to send us a * VT_RELDISP ioctl to complete the switch. */ return; } /* * The controlling process has died, so we revert back to * normal operation. In this case, we'll also change back * to KD_TEXT mode. I'm not sure if this is strictly correct * but it saves the agony when the X server dies and the screen * remains blanked due to KD_GRAPHICS! It would be nice to do * this outside of VT_PROCESS but there is no single process * to account for and tracking tty count may be undesirable. */ reset_vc(vc); /* * Fall through to normal (VT_AUTO) handling of the switch... */ } /* * Ignore all switches in KD_GRAPHICS+VT_AUTO mode */ if (vc->vc_mode == KD_GRAPHICS) return; complete_change_console(new_vc); } /* Perform a kernel triggered VT switch for suspend/resume */ static int disable_vt_switch; int vt_move_to_console(unsigned int vt, int alloc) { int prev; console_lock(); /* Graphics mode - up to X */ if (disable_vt_switch) { console_unlock(); return 0; } prev = fg_console; if (alloc && vc_allocate(vt)) { /* we can't have a free VC for now. Too bad, * we don't want to mess the screen for now. */ console_unlock(); return -ENOSPC; } if (set_console(vt)) { /* * We're unable to switch to the SUSPEND_CONSOLE. * Let the calling function know so it can decide * what to do. */ console_unlock(); return -EIO; } console_unlock(); if (vt_waitactive(vt + 1)) { pr_debug("Suspend: Can't switch VCs."); return -EINTR; } return prev; } /* * Normally during a suspend, we allocate a new console and switch to it. * When we resume, we switch back to the original console. This switch * can be slow, so on systems where the framebuffer can handle restoration * of video registers anyways, there's little point in doing the console * switch. This function allows you to disable it by passing it '0'. */ void pm_set_vt_switch(int do_switch) { console_lock(); disable_vt_switch = !do_switch; console_unlock(); } EXPORT_SYMBOL(pm_set_vt_switch);
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 // SPDX-License-Identifier: GPL-2.0 /* * linux/kernel/capability.c * * Copyright (C) 1997 Andrew Main <zefram@fysh.org> * * Integrated into 2.1.97+, Andrew G. Morgan <morgan@kernel.org> * 30 May 2002: Cleanup, Robert M. Love <rml@tech9.net> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/audit.h> #include <linux/capability.h> #include <linux/mm.h> #include <linux/export.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/pid_namespace.h> #include <linux/user_namespace.h> #include <linux/uaccess.h> /* * Leveraged for setting/resetting capabilities */ const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET; EXPORT_SYMBOL(__cap_empty_set); int file_caps_enabled = 1; static int __init file_caps_disable(char *str) { file_caps_enabled = 0; return 1; } __setup("no_file_caps", file_caps_disable); #ifdef CONFIG_MULTIUSER /* * More recent versions of libcap are available from: * * http://www.kernel.org/pub/linux/libs/security/linux-privs/ */ static void warn_legacy_capability_use(void) { char name[sizeof(current->comm)]; pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n", get_task_comm(name, current)); } /* * Version 2 capabilities worked fine, but the linux/capability.h file * that accompanied their introduction encouraged their use without * the necessary user-space source code changes. As such, we have * created a version 3 with equivalent functionality to version 2, but * with a header change to protect legacy source code from using * version 2 when it wanted to use version 1. If your system has code * that trips the following warning, it is using version 2 specific * capabilities and may be doing so insecurely. * * The remedy is to either upgrade your version of libcap (to 2.10+, * if the application is linked against it), or recompile your * application with modern kernel headers and this warning will go * away. */ static void warn_deprecated_v2(void) { char name[sizeof(current->comm)]; pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n", get_task_comm(name, current)); } /* * Version check. Return the number of u32s in each capability flag * array, or a negative value on error. */ static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy) { __u32 version; if (get_user(version, &header->version)) return -EFAULT; switch (version) { case _LINUX_CAPABILITY_VERSION_1: warn_legacy_capability_use(); *tocopy = _LINUX_CAPABILITY_U32S_1; break; case _LINUX_CAPABILITY_VERSION_2: warn_deprecated_v2(); fallthrough; /* v3 is otherwise equivalent to v2 */ case _LINUX_CAPABILITY_VERSION_3: *tocopy = _LINUX_CAPABILITY_U32S_3; break; default: if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version)) return -EFAULT; return -EINVAL; } return 0; } /* * The only thing that can change the capabilities of the current * process is the current process. As such, we can't be in this code * at the same time as we are in the process of setting capabilities * in this process. The net result is that we can limit our use of * locks to when we are reading the caps of another process. */ static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp, kernel_cap_t *pIp, kernel_cap_t *pPp) { int ret; if (pid && (pid != task_pid_vnr(current))) { struct task_struct *target; rcu_read_lock(); target = find_task_by_vpid(pid); if (!target) ret = -ESRCH; else ret = security_capget(target, pEp, pIp, pPp); rcu_read_unlock(); } else ret = security_capget(current, pEp, pIp, pPp); return ret; } /** * sys_capget - get the capabilities of a given process. * @header: pointer to struct that contains capability version and * target pid data * @dataptr: pointer to struct that contains the effective, permitted, * and inheritable capabilities that are returned * * Returns 0 on success and < 0 on error. */ SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr) { int ret = 0; pid_t pid; unsigned tocopy; kernel_cap_t pE, pI, pP; ret = cap_validate_magic(header, &tocopy); if ((dataptr == NULL) || (ret != 0)) return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret; if (get_user(pid, &header->pid)) return -EFAULT; if (pid < 0) return -EINVAL; ret = cap_get_target_pid(pid, &pE, &pI, &pP); if (!ret) { struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; unsigned i; for (i = 0; i < tocopy; i++) { kdata[i].effective = pE.cap[i]; kdata[i].permitted = pP.cap[i]; kdata[i].inheritable = pI.cap[i]; } /* * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S, * we silently drop the upper capabilities here. This * has the effect of making older libcap * implementations implicitly drop upper capability * bits when they perform a: capget/modify/capset * sequence. * * This behavior is considered fail-safe * behavior. Upgrading the application to a newer * version of libcap will enable access to the newer * capabilities. * * An alternative would be to return an error here * (-ERANGE), but that causes legacy applications to * unexpectedly fail; the capget/modify/capset aborts * before modification is attempted and the application * fails. */ if (copy_to_user(dataptr, kdata, tocopy * sizeof(struct __user_cap_data_struct))) { return -EFAULT; } } return ret; } /** * sys_capset - set capabilities for a process or (*) a group of processes * @header: pointer to struct that contains capability version and * target pid data * @data: pointer to struct that contains the effective, permitted, * and inheritable capabilities * * Set capabilities for the current process only. The ability to any other * process(es) has been deprecated and removed. * * The restrictions on setting capabilities are specified as: * * I: any raised capabilities must be a subset of the old permitted * P: any raised capabilities must be a subset of the old permitted * E: must be set to a subset of new permitted * * Returns 0 on success and < 0 on error. */ SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data) { struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; unsigned i, tocopy, copybytes; kernel_cap_t inheritable, permitted, effective; struct cred *new; int ret; pid_t pid; ret = cap_validate_magic(header, &tocopy); if (ret != 0) return ret; if (get_user(pid, &header->pid)) return -EFAULT; /* may only affect current now */ if (pid != 0 && pid != task_pid_vnr(current)) return -EPERM; copybytes = tocopy * sizeof(struct __user_cap_data_struct); if (copybytes > sizeof(kdata)) return -EFAULT; if (copy_from_user(&kdata, data, copybytes)) return -EFAULT; for (i = 0; i < tocopy; i++) { effective.cap[i] = kdata[i].effective; permitted.cap[i] = kdata[i].permitted; inheritable.cap[i] = kdata[i].inheritable; } while (i < _KERNEL_CAPABILITY_U32S) { effective.cap[i] = 0; permitted.cap[i] = 0; inheritable.cap[i] = 0; i++; } effective.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; new = prepare_creds(); if (!new) return -ENOMEM; ret = security_capset(new, current_cred(), &effective, &inheritable, &permitted); if (ret < 0) goto error; audit_log_capset(new, current_cred()); return commit_creds(new); error: abort_creds(new); return ret; } /** * has_ns_capability - Does a task have a capability in a specific user ns * @t: The task in question * @ns: target user namespace * @cap: The capability to be tested for * * Return true if the specified task has the given superior capability * currently in effect to the specified user namespace, false if not. * * Note that this does not set PF_SUPERPRIV on the task. */ bool has_ns_capability(struct task_struct *t, struct user_namespace *ns, int cap) { int ret; rcu_read_lock(); ret = security_capable(__task_cred(t), ns, cap, CAP_OPT_NONE); rcu_read_unlock(); return (ret == 0); } /** * has_capability - Does a task have a capability in init_user_ns * @t: The task in question * @cap: The capability to be tested for * * Return true if the specified task has the given superior capability * currently in effect to the initial user namespace, false if not. * * Note that this does not set PF_SUPERPRIV on the task. */ bool has_capability(struct task_struct *t, int cap) { return has_ns_capability(t, &init_user_ns, cap); } EXPORT_SYMBOL(has_capability); /** * has_ns_capability_noaudit - Does a task have a capability (unaudited) * in a specific user ns. * @t: The task in question * @ns: target user namespace * @cap: The capability to be tested for * * Return true if the specified task has the given superior capability * currently in effect to the specified user namespace, false if not. * Do not write an audit message for the check. * * Note that this does not set PF_SUPERPRIV on the task. */ bool has_ns_capability_noaudit(struct task_struct *t, struct user_namespace *ns, int cap) { int ret; rcu_read_lock(); ret = security_capable(__task_cred(t), ns, cap, CAP_OPT_NOAUDIT); rcu_read_unlock(); return (ret == 0); } /** * has_capability_noaudit - Does a task have a capability (unaudited) in the * initial user ns * @t: The task in question * @cap: The capability to be tested for * * Return true if the specified task has the given superior capability * currently in effect to init_user_ns, false if not. Don't write an * audit message for the check. * * Note that this does not set PF_SUPERPRIV on the task. */ bool has_capability_noaudit(struct task_struct *t, int cap) { return has_ns_capability_noaudit(t, &init_user_ns, cap); } static bool ns_capable_common(struct user_namespace *ns, int cap, unsigned int opts) { int capable; if (unlikely(!cap_valid(cap))) { pr_crit("capable() called with invalid cap=%u\n", cap); BUG(); } capable = security_capable(current_cred(), ns, cap, opts); if (capable == 0) { current->flags |= PF_SUPERPRIV; return true; } return false; } /** * ns_capable - Determine if the current task has a superior capability in effect * @ns: The usernamespace we want the capability in * @cap: The capability to be tested for * * Return true if the current task has the given superior capability currently * available for use, false if not. * * This sets PF_SUPERPRIV on the task if the capability is available on the * assumption that it's about to be used. */ bool ns_capable(struct user_namespace *ns, int cap) { return ns_capable_common(ns, cap, CAP_OPT_NONE); } EXPORT_SYMBOL(ns_capable); /** * ns_capable_noaudit - Determine if the current task has a superior capability * (unaudited) in effect * @ns: The usernamespace we want the capability in * @cap: The capability to be tested for * * Return true if the current task has the given superior capability currently * available for use, false if not. * * This sets PF_SUPERPRIV on the task if the capability is available on the * assumption that it's about to be used. */ bool ns_capable_noaudit(struct user_namespace *ns, int cap) { return ns_capable_common(ns, cap, CAP_OPT_NOAUDIT); } EXPORT_SYMBOL(ns_capable_noaudit); /** * ns_capable_setid - Determine if the current task has a superior capability * in effect, while signalling that this check is being done from within a * setid or setgroups syscall. * @ns: The usernamespace we want the capability in * @cap: The capability to be tested for * * Return true if the current task has the given superior capability currently * available for use, false if not. * * This sets PF_SUPERPRIV on the task if the capability is available on the * assumption that it's about to be used. */ bool ns_capable_setid(struct user_namespace *ns, int cap) { return ns_capable_common(ns, cap, CAP_OPT_INSETID); } EXPORT_SYMBOL(ns_capable_setid); /** * capable - Determine if the current task has a superior capability in effect * @cap: The capability to be tested for * * Return true if the current task has the given superior capability currently * available for use, false if not. * * This sets PF_SUPERPRIV on the task if the capability is available on the * assumption that it's about to be used. */ bool capable(int cap) { return ns_capable(&init_user_ns, cap); } EXPORT_SYMBOL(capable); #endif /* CONFIG_MULTIUSER */ /** * file_ns_capable - Determine if the file's opener had a capability in effect * @file: The file we want to check * @ns: The usernamespace we want the capability in * @cap: The capability to be tested for * * Return true if task that opened the file had a capability in effect * when the file was opened. * * This does not set PF_SUPERPRIV because the caller may not * actually be privileged. */ bool file_ns_capable(const struct file *file, struct user_namespace *ns, int cap) { if (WARN_ON_ONCE(!cap_valid(cap))) return false; if (security_capable(file->f_cred, ns, cap, CAP_OPT_NONE) == 0) return true; return false; } EXPORT_SYMBOL(file_ns_capable); /** * privileged_wrt_inode_uidgid - Do capabilities in the namespace work over the inode? * @ns: The user namespace in question * @inode: The inode in question * * Return true if the inode uid and gid are within the namespace. */ bool privileged_wrt_inode_uidgid(struct user_namespace *ns, const struct inode *inode) { return kuid_has_mapping(ns, inode->i_uid) && kgid_has_mapping(ns, inode->i_gid); } /** * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped * @inode: The inode in question * @cap: The capability in question * * Return true if the current task has the given capability targeted at * its own user namespace and that the given inode's uid and gid are * mapped into the current user namespace. */ bool capable_wrt_inode_uidgid(const struct inode *inode, int cap) { struct user_namespace *ns = current_user_ns(); return ns_capable(ns, cap) && privileged_wrt_inode_uidgid(ns, inode); } EXPORT_SYMBOL(capable_wrt_inode_uidgid); /** * ptracer_capable - Determine if the ptracer holds CAP_SYS_PTRACE in the namespace * @tsk: The task that may be ptraced * @ns: The user namespace to search for CAP_SYS_PTRACE in * * Return true if the task that is ptracing the current task had CAP_SYS_PTRACE * in the specified user namespace. */ bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns) { int ret = 0; /* An absent tracer adds no restrictions */ const struct cred *cred; rcu_read_lock(); cred = rcu_dereference(tsk->ptracer_cred); if (cred) ret = security_capable(cred, ns, CAP_SYS_PTRACE, CAP_OPT_NOAUDIT); rcu_read_unlock(); return (ret == 0); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2000-2001 Qualcomm Incorporated Copyright (C) 2009-2010 Gustavo F. Padovan <gustavo@padovan.org> Copyright (C) 2010 Google Inc. Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __L2CAP_H #define __L2CAP_H #include <asm/unaligned.h> #include <linux/atomic.h> /* L2CAP defaults */ #define L2CAP_DEFAULT_MTU 672 #define L2CAP_DEFAULT_MIN_MTU 48 #define L2CAP_DEFAULT_FLUSH_TO 0xFFFF #define L2CAP_EFS_DEFAULT_FLUSH_TO 0xFFFFFFFF #define L2CAP_DEFAULT_TX_WINDOW 63 #define L2CAP_DEFAULT_EXT_WINDOW 0x3FFF #define L2CAP_DEFAULT_MAX_TX 3 #define L2CAP_DEFAULT_RETRANS_TO 2000 /* 2 seconds */ #define L2CAP_DEFAULT_MONITOR_TO 12000 /* 12 seconds */ #define L2CAP_DEFAULT_MAX_PDU_SIZE 1492 /* Sized for AMP packet */ #define L2CAP_DEFAULT_ACK_TO 200 #define L2CAP_DEFAULT_MAX_SDU_SIZE 0xFFFF #define L2CAP_DEFAULT_SDU_ITIME 0xFFFFFFFF #define L2CAP_DEFAULT_ACC_LAT 0xFFFFFFFF #define L2CAP_BREDR_MAX_PAYLOAD 1019 /* 3-DH5 packet */ #define L2CAP_LE_MIN_MTU 23 #define L2CAP_ECRED_CONN_SCID_MAX 5 #define L2CAP_DISC_TIMEOUT msecs_to_jiffies(100) #define L2CAP_DISC_REJ_TIMEOUT msecs_to_jiffies(5000) #define L2CAP_ENC_TIMEOUT msecs_to_jiffies(5000) #define L2CAP_CONN_TIMEOUT msecs_to_jiffies(40000) #define L2CAP_INFO_TIMEOUT msecs_to_jiffies(4000) #define L2CAP_MOVE_TIMEOUT msecs_to_jiffies(4000) #define L2CAP_MOVE_ERTX_TIMEOUT msecs_to_jiffies(60000) #define L2CAP_WAIT_ACK_POLL_PERIOD msecs_to_jiffies(200) #define L2CAP_WAIT_ACK_TIMEOUT msecs_to_jiffies(10000) #define L2CAP_A2MP_DEFAULT_MTU 670 /* L2CAP socket address */ struct sockaddr_l2 { sa_family_t l2_family; __le16 l2_psm; bdaddr_t l2_bdaddr; __le16 l2_cid; __u8 l2_bdaddr_type; }; /* L2CAP socket options */ #define L2CAP_OPTIONS 0x01 struct l2cap_options { __u16 omtu; __u16 imtu; __u16 flush_to; __u8 mode; __u8 fcs; __u8 max_tx; __u16 txwin_size; }; #define L2CAP_CONNINFO 0x02 struct l2cap_conninfo { __u16 hci_handle; __u8 dev_class[3]; }; #define L2CAP_LM 0x03 #define L2CAP_LM_MASTER 0x0001 #define L2CAP_LM_AUTH 0x0002 #define L2CAP_LM_ENCRYPT 0x0004 #define L2CAP_LM_TRUSTED 0x0008 #define L2CAP_LM_RELIABLE 0x0010 #define L2CAP_LM_SECURE 0x0020 #define L2CAP_LM_FIPS 0x0040 /* L2CAP command codes */ #define L2CAP_COMMAND_REJ 0x01 #define L2CAP_CONN_REQ 0x02 #define L2CAP_CONN_RSP 0x03 #define L2CAP_CONF_REQ 0x04 #define L2CAP_CONF_RSP 0x05 #define L2CAP_DISCONN_REQ 0x06 #define L2CAP_DISCONN_RSP 0x07 #define L2CAP_ECHO_REQ 0x08 #define L2CAP_ECHO_RSP 0x09 #define L2CAP_INFO_REQ 0x0a #define L2CAP_INFO_RSP 0x0b #define L2CAP_CREATE_CHAN_REQ 0x0c #define L2CAP_CREATE_CHAN_RSP 0x0d #define L2CAP_MOVE_CHAN_REQ 0x0e #define L2CAP_MOVE_CHAN_RSP 0x0f #define L2CAP_MOVE_CHAN_CFM 0x10 #define L2CAP_MOVE_CHAN_CFM_RSP 0x11 #define L2CAP_CONN_PARAM_UPDATE_REQ 0x12 #define L2CAP_CONN_PARAM_UPDATE_RSP 0x13 #define L2CAP_LE_CONN_REQ 0x14 #define L2CAP_LE_CONN_RSP 0x15 #define L2CAP_LE_CREDITS 0x16 #define L2CAP_ECRED_CONN_REQ 0x17 #define L2CAP_ECRED_CONN_RSP 0x18 #define L2CAP_ECRED_RECONF_REQ 0x19 #define L2CAP_ECRED_RECONF_RSP 0x1a /* L2CAP extended feature mask */ #define L2CAP_FEAT_FLOWCTL 0x00000001 #define L2CAP_FEAT_RETRANS 0x00000002 #define L2CAP_FEAT_BIDIR_QOS 0x00000004 #define L2CAP_FEAT_ERTM 0x00000008 #define L2CAP_FEAT_STREAMING 0x00000010 #define L2CAP_FEAT_FCS 0x00000020 #define L2CAP_FEAT_EXT_FLOW 0x00000040 #define L2CAP_FEAT_FIXED_CHAN 0x00000080 #define L2CAP_FEAT_EXT_WINDOW 0x00000100 #define L2CAP_FEAT_UCD 0x00000200 /* L2CAP checksum option */ #define L2CAP_FCS_NONE 0x00 #define L2CAP_FCS_CRC16 0x01 /* L2CAP fixed channels */ #define L2CAP_FC_SIG_BREDR 0x02 #define L2CAP_FC_CONNLESS 0x04 #define L2CAP_FC_A2MP 0x08 #define L2CAP_FC_ATT 0x10 #define L2CAP_FC_SIG_LE 0x20 #define L2CAP_FC_SMP_LE 0x40 #define L2CAP_FC_SMP_BREDR 0x80 /* L2CAP Control Field bit masks */ #define L2CAP_CTRL_SAR 0xC000 #define L2CAP_CTRL_REQSEQ 0x3F00 #define L2CAP_CTRL_TXSEQ 0x007E #define L2CAP_CTRL_SUPERVISE 0x000C #define L2CAP_CTRL_RETRANS 0x0080 #define L2CAP_CTRL_FINAL 0x0080 #define L2CAP_CTRL_POLL 0x0010 #define L2CAP_CTRL_FRAME_TYPE 0x0001 /* I- or S-Frame */ #define L2CAP_CTRL_TXSEQ_SHIFT 1 #define L2CAP_CTRL_SUPER_SHIFT 2 #define L2CAP_CTRL_POLL_SHIFT 4 #define L2CAP_CTRL_FINAL_SHIFT 7 #define L2CAP_CTRL_REQSEQ_SHIFT 8 #define L2CAP_CTRL_SAR_SHIFT 14 /* L2CAP Extended Control Field bit mask */ #define L2CAP_EXT_CTRL_TXSEQ 0xFFFC0000 #define L2CAP_EXT_CTRL_SAR 0x00030000 #define L2CAP_EXT_CTRL_SUPERVISE 0x00030000 #define L2CAP_EXT_CTRL_REQSEQ 0x0000FFFC #define L2CAP_EXT_CTRL_POLL 0x00040000 #define L2CAP_EXT_CTRL_FINAL 0x00000002 #define L2CAP_EXT_CTRL_FRAME_TYPE 0x00000001 /* I- or S-Frame */ #define L2CAP_EXT_CTRL_FINAL_SHIFT 1 #define L2CAP_EXT_CTRL_REQSEQ_SHIFT 2 #define L2CAP_EXT_CTRL_SAR_SHIFT 16 #define L2CAP_EXT_CTRL_SUPER_SHIFT 16 #define L2CAP_EXT_CTRL_POLL_SHIFT 18 #define L2CAP_EXT_CTRL_TXSEQ_SHIFT 18 /* L2CAP Supervisory Function */ #define L2CAP_SUPER_RR 0x00 #define L2CAP_SUPER_REJ 0x01 #define L2CAP_SUPER_RNR 0x02 #define L2CAP_SUPER_SREJ 0x03 /* L2CAP Segmentation and Reassembly */ #define L2CAP_SAR_UNSEGMENTED 0x00 #define L2CAP_SAR_START 0x01 #define L2CAP_SAR_END 0x02 #define L2CAP_SAR_CONTINUE 0x03 /* L2CAP Command rej. reasons */ #define L2CAP_REJ_NOT_UNDERSTOOD 0x0000 #define L2CAP_REJ_MTU_EXCEEDED 0x0001 #define L2CAP_REJ_INVALID_CID 0x0002 /* L2CAP structures */ struct l2cap_hdr { __le16 len; __le16 cid; } __packed; #define L2CAP_HDR_SIZE 4 #define L2CAP_ENH_HDR_SIZE 6 #define L2CAP_EXT_HDR_SIZE 8 #define L2CAP_FCS_SIZE 2 #define L2CAP_SDULEN_SIZE 2 #define L2CAP_PSMLEN_SIZE 2 #define L2CAP_ENH_CTRL_SIZE 2 #define L2CAP_EXT_CTRL_SIZE 4 struct l2cap_cmd_hdr { __u8 code; __u8 ident; __le16 len; } __packed; #define L2CAP_CMD_HDR_SIZE 4 struct l2cap_cmd_rej_unk { __le16 reason; } __packed; struct l2cap_cmd_rej_mtu { __le16 reason; __le16 max_mtu; } __packed; struct l2cap_cmd_rej_cid { __le16 reason; __le16 scid; __le16 dcid; } __packed; struct l2cap_conn_req { __le16 psm; __le16 scid; } __packed; struct l2cap_conn_rsp { __le16 dcid; __le16 scid; __le16 result; __le16 status; } __packed; /* protocol/service multiplexer (PSM) */ #define L2CAP_PSM_SDP 0x0001 #define L2CAP_PSM_RFCOMM 0x0003 #define L2CAP_PSM_3DSP 0x0021 #define L2CAP_PSM_IPSP 0x0023 /* 6LoWPAN */ #define L2CAP_PSM_DYN_START 0x1001 #define L2CAP_PSM_DYN_END 0xffff #define L2CAP_PSM_AUTO_END 0x10ff #define L2CAP_PSM_LE_DYN_START 0x0080 #define L2CAP_PSM_LE_DYN_END 0x00ff /* channel identifier */ #define L2CAP_CID_SIGNALING 0x0001 #define L2CAP_CID_CONN_LESS 0x0002 #define L2CAP_CID_A2MP 0x0003 #define L2CAP_CID_ATT 0x0004 #define L2CAP_CID_LE_SIGNALING 0x0005 #define L2CAP_CID_SMP 0x0006 #define L2CAP_CID_SMP_BREDR 0x0007 #define L2CAP_CID_DYN_START 0x0040 #define L2CAP_CID_DYN_END 0xffff #define L2CAP_CID_LE_DYN_END 0x007f /* connect/create channel results */ #define L2CAP_CR_SUCCESS 0x0000 #define L2CAP_CR_PEND 0x0001 #define L2CAP_CR_BAD_PSM 0x0002 #define L2CAP_CR_SEC_BLOCK 0x0003 #define L2CAP_CR_NO_MEM 0x0004 #define L2CAP_CR_BAD_AMP 0x0005 #define L2CAP_CR_INVALID_SCID 0x0006 #define L2CAP_CR_SCID_IN_USE 0x0007 /* credit based connect results */ #define L2CAP_CR_LE_SUCCESS 0x0000 #define L2CAP_CR_LE_BAD_PSM 0x0002 #define L2CAP_CR_LE_NO_MEM 0x0004 #define L2CAP_CR_LE_AUTHENTICATION 0x0005 #define L2CAP_CR_LE_AUTHORIZATION 0x0006 #define L2CAP_CR_LE_BAD_KEY_SIZE 0x0007 #define L2CAP_CR_LE_ENCRYPTION 0x0008 #define L2CAP_CR_LE_INVALID_SCID 0x0009 #define L2CAP_CR_LE_SCID_IN_USE 0X000A #define L2CAP_CR_LE_UNACCEPT_PARAMS 0X000B #define L2CAP_CR_LE_INVALID_PARAMS 0X000C /* connect/create channel status */ #define L2CAP_CS_NO_INFO 0x0000 #define L2CAP_CS_AUTHEN_PEND 0x0001 #define L2CAP_CS_AUTHOR_PEND 0x0002 struct l2cap_conf_req { __le16 dcid; __le16 flags; __u8 data[]; } __packed; struct l2cap_conf_rsp { __le16 scid; __le16 flags; __le16 result; __u8 data[]; } __packed; #define L2CAP_CONF_SUCCESS 0x0000 #define L2CAP_CONF_UNACCEPT 0x0001 #define L2CAP_CONF_REJECT 0x0002 #define L2CAP_CONF_UNKNOWN 0x0003 #define L2CAP_CONF_PENDING 0x0004 #define L2CAP_CONF_EFS_REJECT 0x0005 /* configuration req/rsp continuation flag */ #define L2CAP_CONF_FLAG_CONTINUATION 0x0001 struct l2cap_conf_opt { __u8 type; __u8 len; __u8 val[]; } __packed; #define L2CAP_CONF_OPT_SIZE 2 #define L2CAP_CONF_HINT 0x80 #define L2CAP_CONF_MASK 0x7f #define L2CAP_CONF_MTU 0x01 #define L2CAP_CONF_FLUSH_TO 0x02 #define L2CAP_CONF_QOS 0x03 #define L2CAP_CONF_RFC 0x04 #define L2CAP_CONF_FCS 0x05 #define L2CAP_CONF_EFS 0x06 #define L2CAP_CONF_EWS 0x07 #define L2CAP_CONF_MAX_SIZE 22 struct l2cap_conf_rfc { __u8 mode; __u8 txwin_size; __u8 max_transmit; __le16 retrans_timeout; __le16 monitor_timeout; __le16 max_pdu_size; } __packed; #define L2CAP_MODE_BASIC 0x00 #define L2CAP_MODE_RETRANS 0x01 #define L2CAP_MODE_FLOWCTL 0x02 #define L2CAP_MODE_ERTM 0x03 #define L2CAP_MODE_STREAMING 0x04 /* Unlike the above this one doesn't actually map to anything that would * ever be sent over the air. Therefore, use a value that's unlikely to * ever be used in the BR/EDR configuration phase. */ #define L2CAP_MODE_LE_FLOWCTL 0x80 #define L2CAP_MODE_EXT_FLOWCTL 0x81 struct l2cap_conf_efs { __u8 id; __u8 stype; __le16 msdu; __le32 sdu_itime; __le32 acc_lat; __le32 flush_to; } __packed; #define L2CAP_SERV_NOTRAFIC 0x00 #define L2CAP_SERV_BESTEFFORT 0x01 #define L2CAP_SERV_GUARANTEED 0x02 #define L2CAP_BESTEFFORT_ID 0x01 struct l2cap_disconn_req { __le16 dcid; __le16 scid; } __packed; struct l2cap_disconn_rsp { __le16 dcid; __le16 scid; } __packed; struct l2cap_info_req { __le16 type; } __packed; struct l2cap_info_rsp { __le16 type; __le16 result; __u8 data[]; } __packed; struct l2cap_create_chan_req { __le16 psm; __le16 scid; __u8 amp_id; } __packed; struct l2cap_create_chan_rsp { __le16 dcid; __le16 scid; __le16 result; __le16 status; } __packed; struct l2cap_move_chan_req { __le16 icid; __u8 dest_amp_id; } __packed; struct l2cap_move_chan_rsp { __le16 icid; __le16 result; } __packed; #define L2CAP_MR_SUCCESS 0x0000 #define L2CAP_MR_PEND 0x0001 #define L2CAP_MR_BAD_ID 0x0002 #define L2CAP_MR_SAME_ID 0x0003 #define L2CAP_MR_NOT_SUPP 0x0004 #define L2CAP_MR_COLLISION 0x0005 #define L2CAP_MR_NOT_ALLOWED 0x0006 struct l2cap_move_chan_cfm { __le16 icid; __le16 result; } __packed; #define L2CAP_MC_CONFIRMED 0x0000 #define L2CAP_MC_UNCONFIRMED 0x0001 struct l2cap_move_chan_cfm_rsp { __le16 icid; } __packed; /* info type */ #define L2CAP_IT_CL_MTU 0x0001 #define L2CAP_IT_FEAT_MASK 0x0002 #define L2CAP_IT_FIXED_CHAN 0x0003 /* info result */ #define L2CAP_IR_SUCCESS 0x0000 #define L2CAP_IR_NOTSUPP 0x0001 struct l2cap_conn_param_update_req { __le16 min; __le16 max; __le16 latency; __le16 to_multiplier; } __packed; struct l2cap_conn_param_update_rsp { __le16 result; } __packed; /* Connection Parameters result */ #define L2CAP_CONN_PARAM_ACCEPTED 0x0000 #define L2CAP_CONN_PARAM_REJECTED 0x0001 struct l2cap_le_conn_req { __le16 psm; __le16 scid; __le16 mtu; __le16 mps; __le16 credits; } __packed; struct l2cap_le_conn_rsp { __le16 dcid; __le16 mtu; __le16 mps; __le16 credits; __le16 result; } __packed; struct l2cap_le_credits { __le16 cid; __le16 credits; } __packed; #define L2CAP_ECRED_MIN_MTU 64 #define L2CAP_ECRED_MIN_MPS 64 struct l2cap_ecred_conn_req { __le16 psm; __le16 mtu; __le16 mps; __le16 credits; __le16 scid[]; } __packed; struct l2cap_ecred_conn_rsp { __le16 mtu; __le16 mps; __le16 credits; __le16 result; __le16 dcid[]; }; struct l2cap_ecred_reconf_req { __le16 mtu; __le16 mps; __le16 scid[]; } __packed; #define L2CAP_RECONF_SUCCESS 0x0000 #define L2CAP_RECONF_INVALID_MTU 0x0001 #define L2CAP_RECONF_INVALID_MPS 0x0002 struct l2cap_ecred_reconf_rsp { __le16 result; } __packed; /* ----- L2CAP channels and connections ----- */ struct l2cap_seq_list { __u16 head; __u16 tail; __u16 mask; __u16 *list; }; #define L2CAP_SEQ_LIST_CLEAR 0xFFFF #define L2CAP_SEQ_LIST_TAIL 0x8000 struct l2cap_chan { struct l2cap_conn *conn; struct hci_conn *hs_hcon; struct hci_chan *hs_hchan; struct kref kref; atomic_t nesting; __u8 state; bdaddr_t dst; __u8 dst_type; bdaddr_t src; __u8 src_type; __le16 psm; __le16 sport; __u16 dcid; __u16 scid; __u16 imtu; __u16 omtu; __u16 flush_to; __u8 mode; __u8 chan_type; __u8 chan_policy; __u8 sec_level; __u8 ident; __u8 conf_req[64]; __u8 conf_len; __u8 num_conf_req; __u8 num_conf_rsp; __u8 fcs; __u16 tx_win; __u16 tx_win_max; __u16 ack_win; __u8 max_tx; __u16 retrans_timeout; __u16 monitor_timeout; __u16 mps; __u16 tx_credits; __u16 rx_credits; __u8 tx_state; __u8 rx_state; unsigned long conf_state; unsigned long conn_state; unsigned long flags; __u8 remote_amp_id; __u8 local_amp_id; __u8 move_id; __u8 move_state; __u8 move_role; __u16 next_tx_seq; __u16 expected_ack_seq; __u16 expected_tx_seq; __u16 buffer_seq; __u16 srej_save_reqseq; __u16 last_acked_seq; __u16 frames_sent; __u16 unacked_frames; __u8 retry_count; __u16 sdu_len; struct sk_buff *sdu; struct sk_buff *sdu_last_frag; __u16 remote_tx_win; __u8 remote_max_tx; __u16 remote_mps; __u8 local_id; __u8 local_stype; __u16 local_msdu; __u32 local_sdu_itime; __u32 local_acc_lat; __u32 local_flush_to; __u8 remote_id; __u8 remote_stype; __u16 remote_msdu; __u32 remote_sdu_itime; __u32 remote_acc_lat; __u32 remote_flush_to; struct delayed_work chan_timer; struct delayed_work retrans_timer; struct delayed_work monitor_timer; struct delayed_work ack_timer; struct sk_buff *tx_send_head; struct sk_buff_head tx_q; struct sk_buff_head srej_q; struct l2cap_seq_list srej_list; struct l2cap_seq_list retrans_list; struct list_head list; struct list_head global_l; void *data; const struct l2cap_ops *ops; struct mutex lock; }; struct l2cap_ops { char *name; struct l2cap_chan *(*new_connection) (struct l2cap_chan *chan); int (*recv) (struct l2cap_chan * chan, struct sk_buff *skb); void (*teardown) (struct l2cap_chan *chan, int err); void (*close) (struct l2cap_chan *chan); void (*state_change) (struct l2cap_chan *chan, int state, int err); void (*ready) (struct l2cap_chan *chan); void (*defer) (struct l2cap_chan *chan); void (*resume) (struct l2cap_chan *chan); void (*suspend) (struct l2cap_chan *chan); void (*set_shutdown) (struct l2cap_chan *chan); long (*get_sndtimeo) (struct l2cap_chan *chan); struct pid *(*get_peer_pid) (struct l2cap_chan *chan); struct sk_buff *(*alloc_skb) (struct l2cap_chan *chan, unsigned long hdr_len, unsigned long len, int nb); int (*filter) (struct l2cap_chan * chan, struct sk_buff *skb); }; struct l2cap_conn { struct hci_conn *hcon; struct hci_chan *hchan; unsigned int mtu; __u32 feat_mask; __u8 remote_fixed_chan; __u8 local_fixed_chan; __u8 info_state; __u8 info_ident; struct delayed_work info_timer; struct sk_buff *rx_skb; __u32 rx_len; __u8 tx_ident; struct mutex ident_lock; struct sk_buff_head pending_rx; struct work_struct pending_rx_work; struct work_struct id_addr_update_work; __u8 disc_reason; struct l2cap_chan *smp; struct list_head chan_l; struct mutex chan_lock; struct kref ref; struct list_head users; }; struct l2cap_user { struct list_head list; int (*probe) (struct l2cap_conn *conn, struct l2cap_user *user); void (*remove) (struct l2cap_conn *conn, struct l2cap_user *user); }; #define L2CAP_INFO_CL_MTU_REQ_SENT 0x01 #define L2CAP_INFO_FEAT_MASK_REQ_SENT 0x04 #define L2CAP_INFO_FEAT_MASK_REQ_DONE 0x08 #define L2CAP_CHAN_RAW 1 #define L2CAP_CHAN_CONN_LESS 2 #define L2CAP_CHAN_CONN_ORIENTED 3 #define L2CAP_CHAN_FIXED 4 /* ----- L2CAP socket info ----- */ #define l2cap_pi(sk) ((struct l2cap_pinfo *) sk) struct l2cap_pinfo { struct bt_sock bt; struct l2cap_chan *chan; struct sk_buff *rx_busy_skb; }; enum { CONF_REQ_SENT, CONF_INPUT_DONE, CONF_OUTPUT_DONE, CONF_MTU_DONE, CONF_MODE_DONE, CONF_CONNECT_PEND, CONF_RECV_NO_FCS, CONF_STATE2_DEVICE, CONF_EWS_RECV, CONF_LOC_CONF_PEND, CONF_REM_CONF_PEND, CONF_NOT_COMPLETE, }; #define L2CAP_CONF_MAX_CONF_REQ 2 #define L2CAP_CONF_MAX_CONF_RSP 2 enum { CONN_SREJ_SENT, CONN_WAIT_F, CONN_SREJ_ACT, CONN_SEND_PBIT, CONN_REMOTE_BUSY, CONN_LOCAL_BUSY, CONN_REJ_ACT, CONN_SEND_FBIT, CONN_RNR_SENT, }; /* Definitions for flags in l2cap_chan */ enum { FLAG_ROLE_SWITCH, FLAG_FORCE_ACTIVE, FLAG_FORCE_RELIABLE, FLAG_FLUSHABLE, FLAG_EXT_CTRL, FLAG_EFS_ENABLE, FLAG_DEFER_SETUP, FLAG_LE_CONN_REQ_SENT, FLAG_ECRED_CONN_REQ_SENT, FLAG_PENDING_SECURITY, FLAG_HOLD_HCI_CONN, }; /* Lock nesting levels for L2CAP channels. We need these because lockdep * otherwise considers all channels equal and will e.g. complain about a * connection oriented channel triggering SMP procedures or a listening * channel creating and locking a child channel. */ enum { L2CAP_NESTING_SMP, L2CAP_NESTING_NORMAL, L2CAP_NESTING_PARENT, }; enum { L2CAP_TX_STATE_XMIT, L2CAP_TX_STATE_WAIT_F, }; enum { L2CAP_RX_STATE_RECV, L2CAP_RX_STATE_SREJ_SENT, L2CAP_RX_STATE_MOVE, L2CAP_RX_STATE_WAIT_P, L2CAP_RX_STATE_WAIT_F, }; enum { L2CAP_TXSEQ_EXPECTED, L2CAP_TXSEQ_EXPECTED_SREJ, L2CAP_TXSEQ_UNEXPECTED, L2CAP_TXSEQ_UNEXPECTED_SREJ, L2CAP_TXSEQ_DUPLICATE, L2CAP_TXSEQ_DUPLICATE_SREJ, L2CAP_TXSEQ_INVALID, L2CAP_TXSEQ_INVALID_IGNORE, }; enum { L2CAP_EV_DATA_REQUEST, L2CAP_EV_LOCAL_BUSY_DETECTED, L2CAP_EV_LOCAL_BUSY_CLEAR, L2CAP_EV_RECV_REQSEQ_AND_FBIT, L2CAP_EV_RECV_FBIT, L2CAP_EV_RETRANS_TO, L2CAP_EV_MONITOR_TO, L2CAP_EV_EXPLICIT_POLL, L2CAP_EV_RECV_IFRAME, L2CAP_EV_RECV_RR, L2CAP_EV_RECV_REJ, L2CAP_EV_RECV_RNR, L2CAP_EV_RECV_SREJ, L2CAP_EV_RECV_FRAME, }; enum { L2CAP_MOVE_ROLE_NONE, L2CAP_MOVE_ROLE_INITIATOR, L2CAP_MOVE_ROLE_RESPONDER, }; enum { L2CAP_MOVE_STABLE, L2CAP_MOVE_WAIT_REQ, L2CAP_MOVE_WAIT_RSP, L2CAP_MOVE_WAIT_RSP_SUCCESS, L2CAP_MOVE_WAIT_CONFIRM, L2CAP_MOVE_WAIT_CONFIRM_RSP, L2CAP_MOVE_WAIT_LOGICAL_COMP, L2CAP_MOVE_WAIT_LOGICAL_CFM, L2CAP_MOVE_WAIT_LOCAL_BUSY, L2CAP_MOVE_WAIT_PREPARE, }; void l2cap_chan_hold(struct l2cap_chan *c); void l2cap_chan_put(struct l2cap_chan *c); static inline void l2cap_chan_lock(struct l2cap_chan *chan) { mutex_lock_nested(&chan->lock, atomic_read(&chan->nesting)); } static inline void l2cap_chan_unlock(struct l2cap_chan *chan) { mutex_unlock(&chan->lock); } static inline void l2cap_set_timer(struct l2cap_chan *chan, struct delayed_work *work, long timeout) { BT_DBG("chan %p state %s timeout %ld", chan, state_to_string(chan->state), timeout); /* If delayed work cancelled do not hold(chan) since it is already done with previous set_timer */ if (!cancel_delayed_work(work)) l2cap_chan_hold(chan); schedule_delayed_work(work, timeout); } static inline bool l2cap_clear_timer(struct l2cap_chan *chan, struct delayed_work *work) { bool ret; /* put(chan) if delayed work cancelled otherwise it is done in delayed work function */ ret = cancel_delayed_work(work); if (ret) l2cap_chan_put(chan); return ret; } #define __set_chan_timer(c, t) l2cap_set_timer(c, &c->chan_timer, (t)) #define __clear_chan_timer(c) l2cap_clear_timer(c, &c->chan_timer) #define __clear_retrans_timer(c) l2cap_clear_timer(c, &c->retrans_timer) #define __clear_monitor_timer(c) l2cap_clear_timer(c, &c->monitor_timer) #define __set_ack_timer(c) l2cap_set_timer(c, &chan->ack_timer, \ msecs_to_jiffies(L2CAP_DEFAULT_ACK_TO)); #define __clear_ack_timer(c) l2cap_clear_timer(c, &c->ack_timer) static inline int __seq_offset(struct l2cap_chan *chan, __u16 seq1, __u16 seq2) { if (seq1 >= seq2) return seq1 - seq2; else return chan->tx_win_max + 1 - seq2 + seq1; } static inline __u16 __next_seq(struct l2cap_chan *chan, __u16 seq) { return (seq + 1) % (chan->tx_win_max + 1); } static inline struct l2cap_chan *l2cap_chan_no_new_connection(struct l2cap_chan *chan) { return NULL; } static inline int l2cap_chan_no_recv(struct l2cap_chan *chan, struct sk_buff *skb) { return -ENOSYS; } static inline struct sk_buff *l2cap_chan_no_alloc_skb(struct l2cap_chan *chan, unsigned long hdr_len, unsigned long len, int nb) { return ERR_PTR(-ENOSYS); } static inline void l2cap_chan_no_teardown(struct l2cap_chan *chan, int err) { } static inline void l2cap_chan_no_close(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_ready(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_state_change(struct l2cap_chan *chan, int state, int err) { } static inline void l2cap_chan_no_defer(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_suspend(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_resume(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_set_shutdown(struct l2cap_chan *chan) { } static inline long l2cap_chan_no_get_sndtimeo(struct l2cap_chan *chan) { return 0; } extern bool disable_ertm; extern bool enable_ecred; int l2cap_init_sockets(void); void l2cap_cleanup_sockets(void); bool l2cap_is_socket(struct socket *sock); void __l2cap_le_connect_rsp_defer(struct l2cap_chan *chan); void __l2cap_ecred_conn_rsp_defer(struct l2cap_chan *chan); void __l2cap_connect_rsp_defer(struct l2cap_chan *chan); int l2cap_add_psm(struct l2cap_chan *chan, bdaddr_t *src, __le16 psm); int l2cap_add_scid(struct l2cap_chan *chan, __u16 scid); struct l2cap_chan *l2cap_chan_create(void); void l2cap_chan_close(struct l2cap_chan *chan, int reason); int l2cap_chan_connect(struct l2cap_chan *chan, __le16 psm, u16 cid, bdaddr_t *dst, u8 dst_type); int l2cap_chan_reconfigure(struct l2cap_chan *chan, __u16 mtu); int l2cap_chan_send(struct l2cap_chan *chan, struct msghdr *msg, size_t len); void l2cap_chan_busy(struct l2cap_chan *chan, int busy); int l2cap_chan_check_security(struct l2cap_chan *chan, bool initiator); void l2cap_chan_set_defaults(struct l2cap_chan *chan); int l2cap_ertm_init(struct l2cap_chan *chan); void l2cap_chan_add(struct l2cap_conn *conn, struct l2cap_chan *chan); void __l2cap_chan_add(struct l2cap_conn *conn, struct l2cap_chan *chan); typedef void (*l2cap_chan_func_t)(struct l2cap_chan *chan, void *data); void l2cap_chan_list(struct l2cap_conn *conn, l2cap_chan_func_t func, void *data); void l2cap_chan_del(struct l2cap_chan *chan, int err); void l2cap_send_conn_req(struct l2cap_chan *chan); void l2cap_move_start(struct l2cap_chan *chan); void l2cap_logical_cfm(struct l2cap_chan *chan, struct hci_chan *hchan, u8 status); void __l2cap_physical_cfm(struct l2cap_chan *chan, int result); struct l2cap_conn *l2cap_conn_get(struct l2cap_conn *conn); void l2cap_conn_put(struct l2cap_conn *conn); int l2cap_register_user(struct l2cap_conn *conn, struct l2cap_user *user); void l2cap_unregister_user(struct l2cap_conn *conn, struct l2cap_user *user); #endif /* __L2CAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Definitions for the 'struct sk_buff' memory handlers. * * Authors: * Alan Cox, <gw4pts@gw4pts.ampr.org> * Florian La Roche, <rzsfl@rz.uni-sb.de> */ #ifndef _LINUX_SKBUFF_H #define _LINUX_SKBUFF_H #include <linux/kernel.h> #include <linux/compiler.h> #include <linux/time.h> #include <linux/bug.h> #include <linux/bvec.h> #include <linux/cache.h> #include <linux/rbtree.h> #include <linux/socket.h> #include <linux/refcount.h> #include <linux/atomic.h> #include <asm/types.h> #include <linux/spinlock.h> #include <linux/net.h> #include <linux/textsearch.h> #include <net/checksum.h> #include <linux/rcupdate.h> #include <linux/hrtimer.h> #include <linux/dma-mapping.h> #include <linux/netdev_features.h> #include <linux/sched.h> #include <linux/sched/clock.h> #include <net/flow_dissector.h> #include <linux/splice.h> #include <linux/in6.h> #include <linux/if_packet.h> #include <net/flow.h> #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <linux/netfilter/nf_conntrack_common.h> #endif /* The interface for checksum offload between the stack and networking drivers * is as follows... * * A. IP checksum related features * * Drivers advertise checksum offload capabilities in the features of a device. * From the stack's point of view these are capabilities offered by the driver. * A driver typically only advertises features that it is capable of offloading * to its device. * * The checksum related features are: * * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one * IP (one's complement) checksum for any combination * of protocols or protocol layering. The checksum is * computed and set in a packet per the CHECKSUM_PARTIAL * interface (see below). * * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain * TCP or UDP packets over IPv4. These are specifically * unencapsulated packets of the form IPv4|TCP or * IPv4|UDP where the Protocol field in the IPv4 header * is TCP or UDP. The IPv4 header may contain IP options. * This feature cannot be set in features for a device * with NETIF_F_HW_CSUM also set. This feature is being * DEPRECATED (see below). * * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain * TCP or UDP packets over IPv6. These are specifically * unencapsulated packets of the form IPv6|TCP or * IPv6|UDP where the Next Header field in the IPv6 * header is either TCP or UDP. IPv6 extension headers * are not supported with this feature. This feature * cannot be set in features for a device with * NETIF_F_HW_CSUM also set. This feature is being * DEPRECATED (see below). * * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. * This flag is only used to disable the RX checksum * feature for a device. The stack will accept receive * checksum indication in packets received on a device * regardless of whether NETIF_F_RXCSUM is set. * * B. Checksumming of received packets by device. Indication of checksum * verification is set in skb->ip_summed. Possible values are: * * CHECKSUM_NONE: * * Device did not checksum this packet e.g. due to lack of capabilities. * The packet contains full (though not verified) checksum in packet but * not in skb->csum. Thus, skb->csum is undefined in this case. * * CHECKSUM_UNNECESSARY: * * The hardware you're dealing with doesn't calculate the full checksum * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY * if their checksums are okay. skb->csum is still undefined in this case * though. A driver or device must never modify the checksum field in the * packet even if checksum is verified. * * CHECKSUM_UNNECESSARY is applicable to following protocols: * TCP: IPv6 and IPv4. * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a * zero UDP checksum for either IPv4 or IPv6, the networking stack * may perform further validation in this case. * GRE: only if the checksum is present in the header. * SCTP: indicates the CRC in SCTP header has been validated. * FCOE: indicates the CRC in FC frame has been validated. * * skb->csum_level indicates the number of consecutive checksums found in * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet * and a device is able to verify the checksums for UDP (possibly zero), * GRE (checksum flag is set) and TCP, skb->csum_level would be set to * two. If the device were only able to verify the UDP checksum and not * GRE, either because it doesn't support GRE checksum or because GRE * checksum is bad, skb->csum_level would be set to zero (TCP checksum is * not considered in this case). * * CHECKSUM_COMPLETE: * * This is the most generic way. The device supplied checksum of the _whole_ * packet as seen by netif_rx() and fills in skb->csum. This means the * hardware doesn't need to parse L3/L4 headers to implement this. * * Notes: * - Even if device supports only some protocols, but is able to produce * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. * * CHECKSUM_PARTIAL: * * A checksum is set up to be offloaded to a device as described in the * output description for CHECKSUM_PARTIAL. This may occur on a packet * received directly from another Linux OS, e.g., a virtualized Linux kernel * on the same host, or it may be set in the input path in GRO or remote * checksum offload. For the purposes of checksum verification, the checksum * referred to by skb->csum_start + skb->csum_offset and any preceding * checksums in the packet are considered verified. Any checksums in the * packet that are after the checksum being offloaded are not considered to * be verified. * * C. Checksumming on transmit for non-GSO. The stack requests checksum offload * in the skb->ip_summed for a packet. Values are: * * CHECKSUM_PARTIAL: * * The driver is required to checksum the packet as seen by hard_start_xmit() * from skb->csum_start up to the end, and to record/write the checksum at * offset skb->csum_start + skb->csum_offset. A driver may verify that the * csum_start and csum_offset values are valid values given the length and * offset of the packet, but it should not attempt to validate that the * checksum refers to a legitimate transport layer checksum -- it is the * purview of the stack to validate that csum_start and csum_offset are set * correctly. * * When the stack requests checksum offload for a packet, the driver MUST * ensure that the checksum is set correctly. A driver can either offload the * checksum calculation to the device, or call skb_checksum_help (in the case * that the device does not support offload for a particular checksum). * * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate * checksum offload capability. * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based * on network device checksumming capabilities: if a packet does not match * them, skb_checksum_help or skb_crc32c_help (depending on the value of * csum_not_inet, see item D.) is called to resolve the checksum. * * CHECKSUM_NONE: * * The skb was already checksummed by the protocol, or a checksum is not * required. * * CHECKSUM_UNNECESSARY: * * This has the same meaning as CHECKSUM_NONE for checksum offload on * output. * * CHECKSUM_COMPLETE: * Not used in checksum output. If a driver observes a packet with this value * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set. * * D. Non-IP checksum (CRC) offloads * * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of * offloading the SCTP CRC in a packet. To perform this offload the stack * will set csum_start and csum_offset accordingly, set ip_summed to * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. * A driver that supports both IP checksum offload and SCTP CRC32c offload * must verify which offload is configured for a packet by testing the * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. * * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of * offloading the FCOE CRC in a packet. To perform this offload the stack * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset * accordingly. Note that there is no indication in the skbuff that the * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports * both IP checksum offload and FCOE CRC offload must verify which offload * is configured for a packet, presumably by inspecting packet headers. * * E. Checksumming on output with GSO. * * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as * part of the GSO operation is implied. If a checksum is being offloaded * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and * csum_offset are set to refer to the outermost checksum being offloaded * (two offloaded checksums are possible with UDP encapsulation). */ /* Don't change this without changing skb_csum_unnecessary! */ #define CHECKSUM_NONE 0 #define CHECKSUM_UNNECESSARY 1 #define CHECKSUM_COMPLETE 2 #define CHECKSUM_PARTIAL 3 /* Maximum value in skb->csum_level */ #define SKB_MAX_CSUM_LEVEL 3 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) #define SKB_WITH_OVERHEAD(X) \ ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) #define SKB_MAX_ORDER(X, ORDER) \ SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) /* return minimum truesize of one skb containing X bytes of data */ #define SKB_TRUESIZE(X) ((X) + \ SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) struct ahash_request; struct net_device; struct scatterlist; struct pipe_inode_info; struct iov_iter; struct napi_struct; struct bpf_prog; union bpf_attr; struct skb_ext; #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) struct nf_bridge_info { enum { BRNF_PROTO_UNCHANGED, BRNF_PROTO_8021Q, BRNF_PROTO_PPPOE } orig_proto:8; u8 pkt_otherhost:1; u8 in_prerouting:1; u8 bridged_dnat:1; __u16 frag_max_size; struct net_device *physindev; /* always valid & non-NULL from FORWARD on, for physdev match */ struct net_device *physoutdev; union { /* prerouting: detect dnat in orig/reply direction */ __be32 ipv4_daddr; struct in6_addr ipv6_daddr; /* after prerouting + nat detected: store original source * mac since neigh resolution overwrites it, only used while * skb is out in neigh layer. */ char neigh_header[8]; }; }; #endif #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) /* Chain in tc_skb_ext will be used to share the tc chain with * ovs recirc_id. It will be set to the current chain by tc * and read by ovs to recirc_id. */ struct tc_skb_ext { __u32 chain; __u16 mru; }; #endif struct sk_buff_head { /* These two members must be first. */ struct sk_buff *next; struct sk_buff *prev; __u32 qlen; spinlock_t lock; }; struct sk_buff; /* To allow 64K frame to be packed as single skb without frag_list we * require 64K/PAGE_SIZE pages plus 1 additional page to allow for * buffers which do not start on a page boundary. * * Since GRO uses frags we allocate at least 16 regardless of page * size. */ #if (65536/PAGE_SIZE + 1) < 16 #define MAX_SKB_FRAGS 16UL #else #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) #endif extern int sysctl_max_skb_frags; /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to * segment using its current segmentation instead. */ #define GSO_BY_FRAGS 0xFFFF typedef struct bio_vec skb_frag_t; /** * skb_frag_size() - Returns the size of a skb fragment * @frag: skb fragment */ static inline unsigned int skb_frag_size(const skb_frag_t *frag) { return frag->bv_len; } /** * skb_frag_size_set() - Sets the size of a skb fragment * @frag: skb fragment * @size: size of fragment */ static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) { frag->bv_len = size; } /** * skb_frag_size_add() - Increments the size of a skb fragment by @delta * @frag: skb fragment * @delta: value to add */ static inline void skb_frag_size_add(skb_frag_t *frag, int delta) { frag->bv_len += delta; } /** * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta * @frag: skb fragment * @delta: value to subtract */ static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) { frag->bv_len -= delta; } /** * skb_frag_must_loop - Test if %p is a high memory page * @p: fragment's page */ static inline bool skb_frag_must_loop(struct page *p) { #if defined(CONFIG_HIGHMEM) if (PageHighMem(p)) return true; #endif return false; } /** * skb_frag_foreach_page - loop over pages in a fragment * * @f: skb frag to operate on * @f_off: offset from start of f->bv_page * @f_len: length from f_off to loop over * @p: (temp var) current page * @p_off: (temp var) offset from start of current page, * non-zero only on first page. * @p_len: (temp var) length in current page, * < PAGE_SIZE only on first and last page. * @copied: (temp var) length so far, excluding current p_len. * * A fragment can hold a compound page, in which case per-page * operations, notably kmap_atomic, must be called for each * regular page. */ #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ p_off = (f_off) & (PAGE_SIZE - 1), \ p_len = skb_frag_must_loop(p) ? \ min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ copied = 0; \ copied < f_len; \ copied += p_len, p++, p_off = 0, \ p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ #define HAVE_HW_TIME_STAMP /** * struct skb_shared_hwtstamps - hardware time stamps * @hwtstamp: hardware time stamp transformed into duration * since arbitrary point in time * * Software time stamps generated by ktime_get_real() are stored in * skb->tstamp. * * hwtstamps can only be compared against other hwtstamps from * the same device. * * This structure is attached to packets as part of the * &skb_shared_info. Use skb_hwtstamps() to get a pointer. */ struct skb_shared_hwtstamps { ktime_t hwtstamp; }; /* Definitions for tx_flags in struct skb_shared_info */ enum { /* generate hardware time stamp */ SKBTX_HW_TSTAMP = 1 << 0, /* generate software time stamp when queueing packet to NIC */ SKBTX_SW_TSTAMP = 1 << 1, /* device driver is going to provide hardware time stamp */ SKBTX_IN_PROGRESS = 1 << 2, /* device driver supports TX zero-copy buffers */ SKBTX_DEV_ZEROCOPY = 1 << 3, /* generate wifi status information (where possible) */ SKBTX_WIFI_STATUS = 1 << 4, /* This indicates at least one fragment might be overwritten * (as in vmsplice(), sendfile() ...) * If we need to compute a TX checksum, we'll need to copy * all frags to avoid possible bad checksum */ SKBTX_SHARED_FRAG = 1 << 5, /* generate software time stamp when entering packet scheduling */ SKBTX_SCHED_TSTAMP = 1 << 6, }; #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ SKBTX_SCHED_TSTAMP) #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) /* * The callback notifies userspace to release buffers when skb DMA is done in * lower device, the skb last reference should be 0 when calling this. * The zerocopy_success argument is true if zero copy transmit occurred, * false on data copy or out of memory error caused by data copy attempt. * The ctx field is used to track device context. * The desc field is used to track userspace buffer index. */ struct ubuf_info { void (*callback)(struct ubuf_info *, bool zerocopy_success); union { struct { unsigned long desc; void *ctx; }; struct { u32 id; u16 len; u16 zerocopy:1; u32 bytelen; }; }; refcount_t refcnt; struct mmpin { struct user_struct *user; unsigned int num_pg; } mmp; }; #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) int mm_account_pinned_pages(struct mmpin *mmp, size_t size); void mm_unaccount_pinned_pages(struct mmpin *mmp); struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, struct ubuf_info *uarg); static inline void sock_zerocopy_get(struct ubuf_info *uarg) { refcount_inc(&uarg->refcnt); } void sock_zerocopy_put(struct ubuf_info *uarg); void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, struct msghdr *msg, int len, struct ubuf_info *uarg); /* This data is invariant across clones and lives at * the end of the header data, ie. at skb->end. */ struct skb_shared_info { __u8 __unused; __u8 meta_len; __u8 nr_frags; __u8 tx_flags; unsigned short gso_size; /* Warning: this field is not always filled in (UFO)! */ unsigned short gso_segs; struct sk_buff *frag_list; struct skb_shared_hwtstamps hwtstamps; unsigned int gso_type; u32 tskey; /* * Warning : all fields before dataref are cleared in __alloc_skb() */ atomic_t dataref; /* Intermediate layers must ensure that destructor_arg * remains valid until skb destructor */ void * destructor_arg; /* must be last field, see pskb_expand_head() */ skb_frag_t frags[MAX_SKB_FRAGS]; }; /* We divide dataref into two halves. The higher 16 bits hold references * to the payload part of skb->data. The lower 16 bits hold references to * the entire skb->data. A clone of a headerless skb holds the length of * the header in skb->hdr_len. * * All users must obey the rule that the skb->data reference count must be * greater than or equal to the payload reference count. * * Holding a reference to the payload part means that the user does not * care about modifications to the header part of skb->data. */ #define SKB_DATAREF_SHIFT 16 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) enum { SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ }; enum { SKB_GSO_TCPV4 = 1 << 0, /* This indicates the skb is from an untrusted source. */ SKB_GSO_DODGY = 1 << 1, /* This indicates the tcp segment has CWR set. */ SKB_GSO_TCP_ECN = 1 << 2, SKB_GSO_TCP_FIXEDID = 1 << 3, SKB_GSO_TCPV6 = 1 << 4, SKB_GSO_FCOE = 1 << 5, SKB_GSO_GRE = 1 << 6, SKB_GSO_GRE_CSUM = 1 << 7, SKB_GSO_IPXIP4 = 1 << 8, SKB_GSO_IPXIP6 = 1 << 9, SKB_GSO_UDP_TUNNEL = 1 << 10, SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, SKB_GSO_PARTIAL = 1 << 12, SKB_GSO_TUNNEL_REMCSUM = 1 << 13, SKB_GSO_SCTP = 1 << 14, SKB_GSO_ESP = 1 << 15, SKB_GSO_UDP = 1 << 16, SKB_GSO_UDP_L4 = 1 << 17, SKB_GSO_FRAGLIST = 1 << 18, }; #if BITS_PER_LONG > 32 #define NET_SKBUFF_DATA_USES_OFFSET 1 #endif #ifdef NET_SKBUFF_DATA_USES_OFFSET typedef unsigned int sk_buff_data_t; #else typedef unsigned char *sk_buff_data_t; #endif /** * struct sk_buff - socket buffer * @next: Next buffer in list * @prev: Previous buffer in list * @tstamp: Time we arrived/left * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point * for retransmit timer * @rbnode: RB tree node, alternative to next/prev for netem/tcp * @list: queue head * @sk: Socket we are owned by * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in * fragmentation management * @dev: Device we arrived on/are leaving by * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL * @cb: Control buffer. Free for use by every layer. Put private vars here * @_skb_refdst: destination entry (with norefcount bit) * @sp: the security path, used for xfrm * @len: Length of actual data * @data_len: Data length * @mac_len: Length of link layer header * @hdr_len: writable header length of cloned skb * @csum: Checksum (must include start/offset pair) * @csum_start: Offset from skb->head where checksumming should start * @csum_offset: Offset from csum_start where checksum should be stored * @priority: Packet queueing priority * @ignore_df: allow local fragmentation * @cloned: Head may be cloned (check refcnt to be sure) * @ip_summed: Driver fed us an IP checksum * @nohdr: Payload reference only, must not modify header * @pkt_type: Packet class * @fclone: skbuff clone status * @ipvs_property: skbuff is owned by ipvs * @inner_protocol_type: whether the inner protocol is * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO * @remcsum_offload: remote checksum offload is enabled * @offload_fwd_mark: Packet was L2-forwarded in hardware * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware * @tc_skip_classify: do not classify packet. set by IFB device * @tc_at_ingress: used within tc_classify to distinguish in/egress * @redirected: packet was redirected by packet classifier * @from_ingress: packet was redirected from the ingress path * @peeked: this packet has been seen already, so stats have been * done for it, don't do them again * @nf_trace: netfilter packet trace flag * @protocol: Packet protocol from driver * @destructor: Destruct function * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) * @_nfct: Associated connection, if any (with nfctinfo bits) * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c * @skb_iif: ifindex of device we arrived on * @tc_index: Traffic control index * @hash: the packet hash * @queue_mapping: Queue mapping for multiqueue devices * @head_frag: skb was allocated from page fragments, * not allocated by kmalloc() or vmalloc(). * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves * @active_extensions: active extensions (skb_ext_id types) * @ndisc_nodetype: router type (from link layer) * @ooo_okay: allow the mapping of a socket to a queue to be changed * @l4_hash: indicate hash is a canonical 4-tuple hash over transport * ports. * @sw_hash: indicates hash was computed in software stack * @wifi_acked_valid: wifi_acked was set * @wifi_acked: whether frame was acked on wifi or not * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS * @encapsulation: indicates the inner headers in the skbuff are valid * @encap_hdr_csum: software checksum is needed * @csum_valid: checksum is already valid * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL * @csum_complete_sw: checksum was completed by software * @csum_level: indicates the number of consecutive checksums found in * the packet minus one that have been verified as * CHECKSUM_UNNECESSARY (max 3) * @dst_pending_confirm: need to confirm neighbour * @decrypted: Decrypted SKB * @napi_id: id of the NAPI struct this skb came from * @sender_cpu: (aka @napi_id) source CPU in XPS * @secmark: security marking * @mark: Generic packet mark * @reserved_tailroom: (aka @mark) number of bytes of free space available * at the tail of an sk_buff * @vlan_present: VLAN tag is present * @vlan_proto: vlan encapsulation protocol * @vlan_tci: vlan tag control information * @inner_protocol: Protocol (encapsulation) * @inner_ipproto: (aka @inner_protocol) stores ipproto when * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; * @inner_transport_header: Inner transport layer header (encapsulation) * @inner_network_header: Network layer header (encapsulation) * @inner_mac_header: Link layer header (encapsulation) * @transport_header: Transport layer header * @network_header: Network layer header * @mac_header: Link layer header * @tail: Tail pointer * @end: End pointer * @head: Head of buffer * @data: Data head pointer * @truesize: Buffer size * @users: User count - see {datagram,tcp}.c * @extensions: allocated extensions, valid if active_extensions is nonzero */ struct sk_buff { union { struct { /* These two members must be first. */ struct sk_buff *next; struct sk_buff *prev; union { struct net_device *dev; /* Some protocols might use this space to store information, * while device pointer would be NULL. * UDP receive path is one user. */ unsigned long dev_scratch; }; }; struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ struct list_head list; }; union { struct sock *sk; int ip_defrag_offset; }; union { ktime_t tstamp; u64 skb_mstamp_ns; /* earliest departure time */ }; /* * This is the control buffer. It is free to use for every * layer. Please put your private variables there. If you * want to keep them across layers you have to do a skb_clone() * first. This is owned by whoever has the skb queued ATM. */ char cb[48] __aligned(8); union { struct { unsigned long _skb_refdst; void (*destructor)(struct sk_buff *skb); }; struct list_head tcp_tsorted_anchor; }; #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) unsigned long _nfct; #endif unsigned int len, data_len; __u16 mac_len, hdr_len; /* Following fields are _not_ copied in __copy_skb_header() * Note that queue_mapping is here mostly to fill a hole. */ __u16 queue_mapping; /* if you move cloned around you also must adapt those constants */ #ifdef __BIG_ENDIAN_BITFIELD #define CLONED_MASK (1 << 7) #else #define CLONED_MASK 1 #endif #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) /* private: */ __u8 __cloned_offset[0]; /* public: */ __u8 cloned:1, nohdr:1, fclone:2, peeked:1, head_frag:1, pfmemalloc:1; #ifdef CONFIG_SKB_EXTENSIONS __u8 active_extensions; #endif /* fields enclosed in headers_start/headers_end are copied * using a single memcpy() in __copy_skb_header() */ /* private: */ __u32 headers_start[0]; /* public: */ /* if you move pkt_type around you also must adapt those constants */ #ifdef __BIG_ENDIAN_BITFIELD #define PKT_TYPE_MAX (7 << 5) #else #define PKT_TYPE_MAX 7 #endif #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) /* private: */ __u8 __pkt_type_offset[0]; /* public: */ __u8 pkt_type:3; __u8 ignore_df:1; __u8 nf_trace:1; __u8 ip_summed:2; __u8 ooo_okay:1; __u8 l4_hash:1; __u8 sw_hash:1; __u8 wifi_acked_valid:1; __u8 wifi_acked:1; __u8 no_fcs:1; /* Indicates the inner headers are valid in the skbuff. */ __u8 encapsulation:1; __u8 encap_hdr_csum:1; __u8 csum_valid:1; #ifdef __BIG_ENDIAN_BITFIELD #define PKT_VLAN_PRESENT_BIT 7 #else #define PKT_VLAN_PRESENT_BIT 0 #endif #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset) /* private: */ __u8 __pkt_vlan_present_offset[0]; /* public: */ __u8 vlan_present:1; __u8 csum_complete_sw:1; __u8 csum_level:2; __u8 csum_not_inet:1; __u8 dst_pending_confirm:1; #ifdef CONFIG_IPV6_NDISC_NODETYPE __u8 ndisc_nodetype:2; #endif __u8 ipvs_property:1; __u8 inner_protocol_type:1; __u8 remcsum_offload:1; #ifdef CONFIG_NET_SWITCHDEV __u8 offload_fwd_mark:1; __u8 offload_l3_fwd_mark:1; #endif #ifdef CONFIG_NET_CLS_ACT __u8 tc_skip_classify:1; __u8 tc_at_ingress:1; #endif #ifdef CONFIG_NET_REDIRECT __u8 redirected:1; __u8 from_ingress:1; #endif #ifdef CONFIG_TLS_DEVICE __u8 decrypted:1; #endif #ifdef CONFIG_NET_SCHED __u16 tc_index; /* traffic control index */ #endif union { __wsum csum; struct { __u16 csum_start; __u16 csum_offset; }; }; __u32 priority; int skb_iif; __u32 hash; __be16 vlan_proto; __u16 vlan_tci; #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) union { unsigned int napi_id; unsigned int sender_cpu; }; #endif #ifdef CONFIG_NETWORK_SECMARK __u32 secmark; #endif union { __u32 mark; __u32 reserved_tailroom; }; union { __be16 inner_protocol; __u8 inner_ipproto; }; __u16 inner_transport_header; __u16 inner_network_header; __u16 inner_mac_header; __be16 protocol; __u16 transport_header; __u16 network_header; __u16 mac_header; /* private: */ __u32 headers_end[0]; /* public: */ /* These elements must be at the end, see alloc_skb() for details. */ sk_buff_data_t tail; sk_buff_data_t end; unsigned char *head, *data; unsigned int truesize; refcount_t users; #ifdef CONFIG_SKB_EXTENSIONS /* only useable after checking ->active_extensions != 0 */ struct skb_ext *extensions; #endif }; #ifdef __KERNEL__ /* * Handling routines are only of interest to the kernel */ #define SKB_ALLOC_FCLONE 0x01 #define SKB_ALLOC_RX 0x02 #define SKB_ALLOC_NAPI 0x04 /** * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves * @skb: buffer */ static inline bool skb_pfmemalloc(const struct sk_buff *skb) { return unlikely(skb->pfmemalloc); } /* * skb might have a dst pointer attached, refcounted or not. * _skb_refdst low order bit is set if refcount was _not_ taken */ #define SKB_DST_NOREF 1UL #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) /** * skb_dst - returns skb dst_entry * @skb: buffer * * Returns skb dst_entry, regardless of reference taken or not. */ static inline struct dst_entry *skb_dst(const struct sk_buff *skb) { /* If refdst was not refcounted, check we still are in a * rcu_read_lock section */ WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && !rcu_read_lock_held() && !rcu_read_lock_bh_held()); return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); } /** * skb_dst_set - sets skb dst * @skb: buffer * @dst: dst entry * * Sets skb dst, assuming a reference was taken on dst and should * be released by skb_dst_drop() */ static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) { skb->_skb_refdst = (unsigned long)dst; } /** * skb_dst_set_noref - sets skb dst, hopefully, without taking reference * @skb: buffer * @dst: dst entry * * Sets skb dst, assuming a reference was not taken on dst. * If dst entry is cached, we do not take reference and dst_release * will be avoided by refdst_drop. If dst entry is not cached, we take * reference, so that last dst_release can destroy the dst immediately. */ static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) { WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; } /** * skb_dst_is_noref - Test if skb dst isn't refcounted * @skb: buffer */ static inline bool skb_dst_is_noref(const struct sk_buff *skb) { return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); } /** * skb_rtable - Returns the skb &rtable * @skb: buffer */ static inline struct rtable *skb_rtable(const struct sk_buff *skb) { return (struct rtable *)skb_dst(skb); } /* For mangling skb->pkt_type from user space side from applications * such as nft, tc, etc, we only allow a conservative subset of * possible pkt_types to be set. */ static inline bool skb_pkt_type_ok(u32 ptype) { return ptype <= PACKET_OTHERHOST; } /** * skb_napi_id - Returns the skb's NAPI id * @skb: buffer */ static inline unsigned int skb_napi_id(const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL return skb->napi_id; #else return 0; #endif } /** * skb_unref - decrement the skb's reference count * @skb: buffer * * Returns true if we can free the skb. */ static inline bool skb_unref(struct sk_buff *skb) { if (unlikely(!skb)) return false; if (likely(refcount_read(&skb->users) == 1)) smp_rmb(); else if (likely(!refcount_dec_and_test(&skb->users))) return false; return true; } void skb_release_head_state(struct sk_buff *skb); void kfree_skb(struct sk_buff *skb); void kfree_skb_list(struct sk_buff *segs); void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); void skb_tx_error(struct sk_buff *skb); #ifdef CONFIG_TRACEPOINTS void consume_skb(struct sk_buff *skb); #else static inline void consume_skb(struct sk_buff *skb) { return kfree_skb(skb); } #endif void __consume_stateless_skb(struct sk_buff *skb); void __kfree_skb(struct sk_buff *skb); extern struct kmem_cache *skbuff_head_cache; void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, bool *fragstolen, int *delta_truesize); struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, int node); struct sk_buff *__build_skb(void *data, unsigned int frag_size); struct sk_buff *build_skb(void *data, unsigned int frag_size); struct sk_buff *build_skb_around(struct sk_buff *skb, void *data, unsigned int frag_size); /** * alloc_skb - allocate a network buffer * @size: size to allocate * @priority: allocation mask * * This function is a convenient wrapper around __alloc_skb(). */ static inline struct sk_buff *alloc_skb(unsigned int size, gfp_t priority) { return __alloc_skb(size, priority, 0, NUMA_NO_NODE); } struct sk_buff *alloc_skb_with_frags(unsigned long header_len, unsigned long data_len, int max_page_order, int *errcode, gfp_t gfp_mask); struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); /* Layout of fast clones : [skb1][skb2][fclone_ref] */ struct sk_buff_fclones { struct sk_buff skb1; struct sk_buff skb2; refcount_t fclone_ref; }; /** * skb_fclone_busy - check if fclone is busy * @sk: socket * @skb: buffer * * Returns true if skb is a fast clone, and its clone is not freed. * Some drivers call skb_orphan() in their ndo_start_xmit(), * so we also check that this didnt happen. */ static inline bool skb_fclone_busy(const struct sock *sk, const struct sk_buff *skb) { const struct sk_buff_fclones *fclones; fclones = container_of(skb, struct sk_buff_fclones, skb1); return skb->fclone == SKB_FCLONE_ORIG && refcount_read(&fclones->fclone_ref) > 1 && fclones->skb2.sk == sk; } /** * alloc_skb_fclone - allocate a network buffer from fclone cache * @size: size to allocate * @priority: allocation mask * * This function is a convenient wrapper around __alloc_skb(). */ static inline struct sk_buff *alloc_skb_fclone(unsigned int size, gfp_t priority) { return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); } struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); void skb_headers_offset_update(struct sk_buff *skb, int off); int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, gfp_t gfp_mask, bool fclone); static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask) { return __pskb_copy_fclone(skb, headroom, gfp_mask, false); } int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom); struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, int newtailroom, gfp_t priority); int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, int offset, int len); int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len); int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); /** * skb_pad - zero pad the tail of an skb * @skb: buffer to pad * @pad: space to pad * * Ensure that a buffer is followed by a padding area that is zero * filled. Used by network drivers which may DMA or transfer data * beyond the buffer end onto the wire. * * May return error in out of memory cases. The skb is freed on error. */ static inline int skb_pad(struct sk_buff *skb, int pad) { return __skb_pad(skb, pad, true); } #define dev_kfree_skb(a) consume_skb(a) int skb_append_pagefrags(struct sk_buff *skb, struct page *page, int offset, size_t size); struct skb_seq_state { __u32 lower_offset; __u32 upper_offset; __u32 frag_idx; __u32 stepped_offset; struct sk_buff *root_skb; struct sk_buff *cur_skb; __u8 *frag_data; }; void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, unsigned int to, struct skb_seq_state *st); unsigned int skb_seq_read(unsigned int consumed, const u8 **data, struct skb_seq_state *st); void skb_abort_seq_read(struct skb_seq_state *st); unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, unsigned int to, struct ts_config *config); /* * Packet hash types specify the type of hash in skb_set_hash. * * Hash types refer to the protocol layer addresses which are used to * construct a packet's hash. The hashes are used to differentiate or identify * flows of the protocol layer for the hash type. Hash types are either * layer-2 (L2), layer-3 (L3), or layer-4 (L4). * * Properties of hashes: * * 1) Two packets in different flows have different hash values * 2) Two packets in the same flow should have the same hash value * * A hash at a higher layer is considered to be more specific. A driver should * set the most specific hash possible. * * A driver cannot indicate a more specific hash than the layer at which a hash * was computed. For instance an L3 hash cannot be set as an L4 hash. * * A driver may indicate a hash level which is less specific than the * actual layer the hash was computed on. For instance, a hash computed * at L4 may be considered an L3 hash. This should only be done if the * driver can't unambiguously determine that the HW computed the hash at * the higher layer. Note that the "should" in the second property above * permits this. */ enum pkt_hash_types { PKT_HASH_TYPE_NONE, /* Undefined type */ PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ }; static inline void skb_clear_hash(struct sk_buff *skb) { skb->hash = 0; skb->sw_hash = 0; skb->l4_hash = 0; } static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) { if (!skb->l4_hash) skb_clear_hash(skb); } static inline void __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) { skb->l4_hash = is_l4; skb->sw_hash = is_sw; skb->hash = hash; } static inline void skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) { /* Used by drivers to set hash from HW */ __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); } static inline void __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) { __skb_set_hash(skb, hash, true, is_l4); } void __skb_get_hash(struct sk_buff *skb); u32 __skb_get_hash_symmetric(const struct sk_buff *skb); u32 skb_get_poff(const struct sk_buff *skb); u32 __skb_get_poff(const struct sk_buff *skb, void *data, const struct flow_keys_basic *keys, int hlen); __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, void *data, int hlen_proto); static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto) { return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); } void skb_flow_dissector_init(struct flow_dissector *flow_dissector, const struct flow_dissector_key *key, unsigned int key_count); struct bpf_flow_dissector; bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, __be16 proto, int nhoff, int hlen, unsigned int flags); bool __skb_flow_dissect(const struct net *net, const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, void *data, __be16 proto, int nhoff, int hlen, unsigned int flags); static inline bool skb_flow_dissect(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, unsigned int flags) { return __skb_flow_dissect(NULL, skb, flow_dissector, target_container, NULL, 0, 0, 0, flags); } static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, struct flow_keys *flow, unsigned int flags) { memset(flow, 0, sizeof(*flow)); return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, flow, NULL, 0, 0, 0, flags); } static inline bool skb_flow_dissect_flow_keys_basic(const struct net *net, const struct sk_buff *skb, struct flow_keys_basic *flow, void *data, __be16 proto, int nhoff, int hlen, unsigned int flags) { memset(flow, 0, sizeof(*flow)); return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, data, proto, nhoff, hlen, flags); } void skb_flow_dissect_meta(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container); /* Gets a skb connection tracking info, ctinfo map should be a * map of mapsize to translate enum ip_conntrack_info states * to user states. */ void skb_flow_dissect_ct(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, u16 *ctinfo_map, size_t mapsize); void skb_flow_dissect_tunnel_info(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container); void skb_flow_dissect_hash(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container); static inline __u32 skb_get_hash(struct sk_buff *skb) { if (!skb->l4_hash && !skb->sw_hash) __skb_get_hash(skb); return skb->hash; } static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) { if (!skb->l4_hash && !skb->sw_hash) { struct flow_keys keys; __u32 hash = __get_hash_from_flowi6(fl6, &keys); __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); } return skb->hash; } __u32 skb_get_hash_perturb(const struct sk_buff *skb, const siphash_key_t *perturb); static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) { return skb->hash; } static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) { to->hash = from->hash; to->sw_hash = from->sw_hash; to->l4_hash = from->l4_hash; }; static inline void skb_copy_decrypted(struct sk_buff *to, const struct sk_buff *from) { #ifdef CONFIG_TLS_DEVICE to->decrypted = from->decrypted; #endif } #ifdef NET_SKBUFF_DATA_USES_OFFSET static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) { return skb->head + skb->end; } static inline unsigned int skb_end_offset(const struct sk_buff *skb) { return skb->end; } #else static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) { return skb->end; } static inline unsigned int skb_end_offset(const struct sk_buff *skb) { return skb->end - skb->head; } #endif /* Internal */ #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) { return &skb_shinfo(skb)->hwtstamps; } static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) { bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; return is_zcopy ? skb_uarg(skb) : NULL; } static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, bool *have_ref) { if (skb && uarg && !skb_zcopy(skb)) { if (unlikely(have_ref && *have_ref)) *have_ref = false; else sock_zerocopy_get(uarg); skb_shinfo(skb)->destructor_arg = uarg; skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; } } static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) { skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; } static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) { return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; } static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) { return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); } /* Release a reference on a zerocopy structure */ static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) { struct ubuf_info *uarg = skb_zcopy(skb); if (uarg) { if (skb_zcopy_is_nouarg(skb)) { /* no notification callback */ } else if (uarg->callback == sock_zerocopy_callback) { uarg->zerocopy = uarg->zerocopy && zerocopy; sock_zerocopy_put(uarg); } else { uarg->callback(uarg, zerocopy); } skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; } } /* Abort a zerocopy operation and revert zckey on error in send syscall */ static inline void skb_zcopy_abort(struct sk_buff *skb) { struct ubuf_info *uarg = skb_zcopy(skb); if (uarg) { sock_zerocopy_put_abort(uarg, false); skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; } } static inline void skb_mark_not_on_list(struct sk_buff *skb) { skb->next = NULL; } /* Iterate through singly-linked GSO fragments of an skb. */ #define skb_list_walk_safe(first, skb, next_skb) \ for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) static inline void skb_list_del_init(struct sk_buff *skb) { __list_del_entry(&skb->list); skb_mark_not_on_list(skb); } /** * skb_queue_empty - check if a queue is empty * @list: queue head * * Returns true if the queue is empty, false otherwise. */ static inline int skb_queue_empty(const struct sk_buff_head *list) { return list->next == (const struct sk_buff *) list; } /** * skb_queue_empty_lockless - check if a queue is empty * @list: queue head * * Returns true if the queue is empty, false otherwise. * This variant can be used in lockless contexts. */ static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) { return READ_ONCE(list->next) == (const struct sk_buff *) list; } /** * skb_queue_is_last - check if skb is the last entry in the queue * @list: queue head * @skb: buffer * * Returns true if @skb is the last buffer on the list. */ static inline bool skb_queue_is_last(const struct sk_buff_head *list, const struct sk_buff *skb) { return skb->next == (const struct sk_buff *) list; } /** * skb_queue_is_first - check if skb is the first entry in the queue * @list: queue head * @skb: buffer * * Returns true if @skb is the first buffer on the list. */ static inline bool skb_queue_is_first(const struct sk_buff_head *list, const struct sk_buff *skb) { return skb->prev == (const struct sk_buff *) list; } /** * skb_queue_next - return the next packet in the queue * @list: queue head * @skb: current buffer * * Return the next packet in @list after @skb. It is only valid to * call this if skb_queue_is_last() evaluates to false. */ static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, const struct sk_buff *skb) { /* This BUG_ON may seem severe, but if we just return then we * are going to dereference garbage. */ BUG_ON(skb_queue_is_last(list, skb)); return skb->next; } /** * skb_queue_prev - return the prev packet in the queue * @list: queue head * @skb: current buffer * * Return the prev packet in @list before @skb. It is only valid to * call this if skb_queue_is_first() evaluates to false. */ static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, const struct sk_buff *skb) { /* This BUG_ON may seem severe, but if we just return then we * are going to dereference garbage. */ BUG_ON(skb_queue_is_first(list, skb)); return skb->prev; } /** * skb_get - reference buffer * @skb: buffer to reference * * Makes another reference to a socket buffer and returns a pointer * to the buffer. */ static inline struct sk_buff *skb_get(struct sk_buff *skb) { refcount_inc(&skb->users); return skb; } /* * If users == 1, we are the only owner and can avoid redundant atomic changes. */ /** * skb_cloned - is the buffer a clone * @skb: buffer to check * * Returns true if the buffer was generated with skb_clone() and is * one of multiple shared copies of the buffer. Cloned buffers are * shared data so must not be written to under normal circumstances. */ static inline int skb_cloned(const struct sk_buff *skb) { return skb->cloned && (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; } static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_cloned(skb)) return pskb_expand_head(skb, 0, 0, pri); return 0; } /** * skb_header_cloned - is the header a clone * @skb: buffer to check * * Returns true if modifying the header part of the buffer requires * the data to be copied. */ static inline int skb_header_cloned(const struct sk_buff *skb) { int dataref; if (!skb->cloned) return 0; dataref = atomic_read(&skb_shinfo(skb)->dataref); dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); return dataref != 1; } static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_header_cloned(skb)) return pskb_expand_head(skb, 0, 0, pri); return 0; } /** * __skb_header_release - release reference to header * @skb: buffer to operate on */ static inline void __skb_header_release(struct sk_buff *skb) { skb->nohdr = 1; atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); } /** * skb_shared - is the buffer shared * @skb: buffer to check * * Returns true if more than one person has a reference to this * buffer. */ static inline int skb_shared(const struct sk_buff *skb) { return refcount_read(&skb->users) != 1; } /** * skb_share_check - check if buffer is shared and if so clone it * @skb: buffer to check * @pri: priority for memory allocation * * If the buffer is shared the buffer is cloned and the old copy * drops a reference. A new clone with a single reference is returned. * If the buffer is not shared the original buffer is returned. When * being called from interrupt status or with spinlocks held pri must * be GFP_ATOMIC. * * NULL is returned on a memory allocation failure. */ static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_shared(skb)) { struct sk_buff *nskb = skb_clone(skb, pri); if (likely(nskb)) consume_skb(skb); else kfree_skb(skb); skb = nskb; } return skb; } /* * Copy shared buffers into a new sk_buff. We effectively do COW on * packets to handle cases where we have a local reader and forward * and a couple of other messy ones. The normal one is tcpdumping * a packet thats being forwarded. */ /** * skb_unshare - make a copy of a shared buffer * @skb: buffer to check * @pri: priority for memory allocation * * If the socket buffer is a clone then this function creates a new * copy of the data, drops a reference count on the old copy and returns * the new copy with the reference count at 1. If the buffer is not a clone * the original buffer is returned. When called with a spinlock held or * from interrupt state @pri must be %GFP_ATOMIC * * %NULL is returned on a memory allocation failure. */ static inline struct sk_buff *skb_unshare(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_cloned(skb)) { struct sk_buff *nskb = skb_copy(skb, pri); /* Free our shared copy */ if (likely(nskb)) consume_skb(skb); else kfree_skb(skb); skb = nskb; } return skb; } /** * skb_peek - peek at the head of an &sk_buff_head * @list_: list to peek at * * Peek an &sk_buff. Unlike most other operations you _MUST_ * be careful with this one. A peek leaves the buffer on the * list and someone else may run off with it. You must hold * the appropriate locks or have a private queue to do this. * * Returns %NULL for an empty list or a pointer to the head element. * The reference count is not incremented and the reference is therefore * volatile. Use with caution. */ static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) { struct sk_buff *skb = list_->next; if (skb == (struct sk_buff *)list_) skb = NULL; return skb; } /** * __skb_peek - peek at the head of a non-empty &sk_buff_head * @list_: list to peek at * * Like skb_peek(), but the caller knows that the list is not empty. */ static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) { return list_->next; } /** * skb_peek_next - peek skb following the given one from a queue * @skb: skb to start from * @list_: list to peek at * * Returns %NULL when the end of the list is met or a pointer to the * next element. The reference count is not incremented and the * reference is therefore volatile. Use with caution. */ static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, const struct sk_buff_head *list_) { struct sk_buff *next = skb->next; if (next == (struct sk_buff *)list_) next = NULL; return next; } /** * skb_peek_tail - peek at the tail of an &sk_buff_head * @list_: list to peek at * * Peek an &sk_buff. Unlike most other operations you _MUST_ * be careful with this one. A peek leaves the buffer on the * list and someone else may run off with it. You must hold * the appropriate locks or have a private queue to do this. * * Returns %NULL for an empty list or a pointer to the tail element. * The reference count is not incremented and the reference is therefore * volatile. Use with caution. */ static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) { struct sk_buff *skb = READ_ONCE(list_->prev); if (skb == (struct sk_buff *)list_) skb = NULL; return skb; } /** * skb_queue_len - get queue length * @list_: list to measure * * Return the length of an &sk_buff queue. */ static inline __u32 skb_queue_len(const struct sk_buff_head *list_) { return list_->qlen; } /** * skb_queue_len_lockless - get queue length * @list_: list to measure * * Return the length of an &sk_buff queue. * This variant can be used in lockless contexts. */ static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) { return READ_ONCE(list_->qlen); } /** * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head * @list: queue to initialize * * This initializes only the list and queue length aspects of * an sk_buff_head object. This allows to initialize the list * aspects of an sk_buff_head without reinitializing things like * the spinlock. It can also be used for on-stack sk_buff_head * objects where the spinlock is known to not be used. */ static inline void __skb_queue_head_init(struct sk_buff_head *list) { list->prev = list->next = (struct sk_buff *)list; list->qlen = 0; } /* * This function creates a split out lock class for each invocation; * this is needed for now since a whole lot of users of the skb-queue * infrastructure in drivers have different locking usage (in hardirq) * than the networking core (in softirq only). In the long run either the * network layer or drivers should need annotation to consolidate the * main types of usage into 3 classes. */ static inline void skb_queue_head_init(struct sk_buff_head *list) { spin_lock_init(&list->lock); __skb_queue_head_init(list); } static inline void skb_queue_head_init_class(struct sk_buff_head *list, struct lock_class_key *class) { skb_queue_head_init(list); lockdep_set_class(&list->lock, class); } /* * Insert an sk_buff on a list. * * The "__skb_xxxx()" functions are the non-atomic ones that * can only be called with interrupts disabled. */ static inline void __skb_insert(struct sk_buff *newsk, struct sk_buff *prev, struct sk_buff *next, struct sk_buff_head *list) { /* See skb_queue_empty_lockless() and skb_peek_tail() * for the opposite READ_ONCE() */ WRITE_ONCE(newsk->next, next); WRITE_ONCE(newsk->prev, prev); WRITE_ONCE(next->prev, newsk); WRITE_ONCE(prev->next, newsk); WRITE_ONCE(list->qlen, list->qlen + 1); } static inline void __skb_queue_splice(const struct sk_buff_head *list, struct sk_buff *prev, struct sk_buff *next) { struct sk_buff *first = list->next; struct sk_buff *last = list->prev; WRITE_ONCE(first->prev, prev); WRITE_ONCE(prev->next, first); WRITE_ONCE(last->next, next); WRITE_ONCE(next->prev, last); } /** * skb_queue_splice - join two skb lists, this is designed for stacks * @list: the new list to add * @head: the place to add it in the first list */ static inline void skb_queue_splice(const struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, (struct sk_buff *) head, head->next); head->qlen += list->qlen; } } /** * skb_queue_splice_init - join two skb lists and reinitialise the emptied list * @list: the new list to add * @head: the place to add it in the first list * * The list at @list is reinitialised */ static inline void skb_queue_splice_init(struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, (struct sk_buff *) head, head->next); head->qlen += list->qlen; __skb_queue_head_init(list); } } /** * skb_queue_splice_tail - join two skb lists, each list being a queue * @list: the new list to add * @head: the place to add it in the first list */ static inline void skb_queue_splice_tail(const struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, head->prev, (struct sk_buff *) head); head->qlen += list->qlen; } } /** * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list * @list: the new list to add * @head: the place to add it in the first list * * Each of the lists is a queue. * The list at @list is reinitialised */ static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, head->prev, (struct sk_buff *) head); head->qlen += list->qlen; __skb_queue_head_init(list); } } /** * __skb_queue_after - queue a buffer at the list head * @list: list to use * @prev: place after this buffer * @newsk: buffer to queue * * Queue a buffer int the middle of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ static inline void __skb_queue_after(struct sk_buff_head *list, struct sk_buff *prev, struct sk_buff *newsk) { __skb_insert(newsk, prev, prev->next, list); } void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); static inline void __skb_queue_before(struct sk_buff_head *list, struct sk_buff *next, struct sk_buff *newsk) { __skb_insert(newsk, next->prev, next, list); } /** * __skb_queue_head - queue a buffer at the list head * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the start of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ static inline void __skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) { __skb_queue_after(list, (struct sk_buff *)list, newsk); } void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); /** * __skb_queue_tail - queue a buffer at the list tail * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the end of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ static inline void __skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) { __skb_queue_before(list, (struct sk_buff *)list, newsk); } void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); /* * remove sk_buff from list. _Must_ be called atomically, and with * the list known.. */ void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) { struct sk_buff *next, *prev; WRITE_ONCE(list->qlen, list->qlen - 1); next = skb->next; prev = skb->prev; skb->next = skb->prev = NULL; WRITE_ONCE(next->prev, prev); WRITE_ONCE(prev->next, next); } /** * __skb_dequeue - remove from the head of the queue * @list: list to dequeue from * * Remove the head of the list. This function does not take any locks * so must be used with appropriate locks held only. The head item is * returned or %NULL if the list is empty. */ static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) { struct sk_buff *skb = skb_peek(list); if (skb) __skb_unlink(skb, list); return skb; } struct sk_buff *skb_dequeue(struct sk_buff_head *list); /** * __skb_dequeue_tail - remove from the tail of the queue * @list: list to dequeue from * * Remove the tail of the list. This function does not take any locks * so must be used with appropriate locks held only. The tail item is * returned or %NULL if the list is empty. */ static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) { struct sk_buff *skb = skb_peek_tail(list); if (skb) __skb_unlink(skb, list); return skb; } struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); static inline bool skb_is_nonlinear(const struct sk_buff *skb) { return skb->data_len; } static inline unsigned int skb_headlen(const struct sk_buff *skb) { return skb->len - skb->data_len; } static inline unsigned int __skb_pagelen(const struct sk_buff *skb) { unsigned int i, len = 0; for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) len += skb_frag_size(&skb_shinfo(skb)->frags[i]); return len; } static inline unsigned int skb_pagelen(const struct sk_buff *skb) { return skb_headlen(skb) + __skb_pagelen(skb); } /** * __skb_fill_page_desc - initialise a paged fragment in an skb * @skb: buffer containing fragment to be initialised * @i: paged fragment index to initialise * @page: the page to use for this fragment * @off: the offset to the data with @page * @size: the length of the data * * Initialises the @i'th fragment of @skb to point to &size bytes at * offset @off within @page. * * Does not take any additional reference on the fragment. */ static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, struct page *page, int off, int size) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; /* * Propagate page pfmemalloc to the skb if we can. The problem is * that not all callers have unique ownership of the page but rely * on page_is_pfmemalloc doing the right thing(tm). */ frag->bv_page = page; frag->bv_offset = off; skb_frag_size_set(frag, size); page = compound_head(page); if (page_is_pfmemalloc(page)) skb->pfmemalloc = true; } /** * skb_fill_page_desc - initialise a paged fragment in an skb * @skb: buffer containing fragment to be initialised * @i: paged fragment index to initialise * @page: the page to use for this fragment * @off: the offset to the data with @page * @size: the length of the data * * As per __skb_fill_page_desc() -- initialises the @i'th fragment of * @skb to point to @size bytes at offset @off within @page. In * addition updates @skb such that @i is the last fragment. * * Does not take any additional reference on the fragment. */ static inline void skb_fill_page_desc(struct sk_buff *skb, int i, struct page *page, int off, int size) { __skb_fill_page_desc(skb, i, page, off, size); skb_shinfo(skb)->nr_frags = i + 1; } void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, int size, unsigned int truesize); void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, unsigned int truesize); #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) #ifdef NET_SKBUFF_DATA_USES_OFFSET static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) { return skb->head + skb->tail; } static inline void skb_reset_tail_pointer(struct sk_buff *skb) { skb->tail = skb->data - skb->head; } static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) { skb_reset_tail_pointer(skb); skb->tail += offset; } #else /* NET_SKBUFF_DATA_USES_OFFSET */ static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) { return skb->tail; } static inline void skb_reset_tail_pointer(struct sk_buff *skb) { skb->tail = skb->data; } static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) { skb->tail = skb->data + offset; } #endif /* NET_SKBUFF_DATA_USES_OFFSET */ /* * Add data to an sk_buff */ void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); void *skb_put(struct sk_buff *skb, unsigned int len); static inline void *__skb_put(struct sk_buff *skb, unsigned int len) { void *tmp = skb_tail_pointer(skb); SKB_LINEAR_ASSERT(skb); skb->tail += len; skb->len += len; return tmp; } static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) { void *tmp = __skb_put(skb, len); memset(tmp, 0, len); return tmp; } static inline void *__skb_put_data(struct sk_buff *skb, const void *data, unsigned int len) { void *tmp = __skb_put(skb, len); memcpy(tmp, data, len); return tmp; } static inline void __skb_put_u8(struct sk_buff *skb, u8 val) { *(u8 *)__skb_put(skb, 1) = val; } static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) { void *tmp = skb_put(skb, len); memset(tmp, 0, len); return tmp; } static inline void *skb_put_data(struct sk_buff *skb, const void *data, unsigned int len) { void *tmp = skb_put(skb, len); memcpy(tmp, data, len); return tmp; } static inline void skb_put_u8(struct sk_buff *skb, u8 val) { *(u8 *)skb_put(skb, 1) = val; } void *skb_push(struct sk_buff *skb, unsigned int len); static inline void *__skb_push(struct sk_buff *skb, unsigned int len) { skb->data -= len; skb->len += len; return skb->data; } void *skb_pull(struct sk_buff *skb, unsigned int len); static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) { skb->len -= len; BUG_ON(skb->len < skb->data_len); return skb->data += len; } static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) { return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); } void *__pskb_pull_tail(struct sk_buff *skb, int delta); static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) { if (len > skb_headlen(skb) && !__pskb_pull_tail(skb, len - skb_headlen(skb))) return NULL; skb->len -= len; return skb->data += len; } static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) { return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); } static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) { if (likely(len <= skb_headlen(skb))) return true; if (unlikely(len > skb->len)) return false; return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; } void skb_condense(struct sk_buff *skb); /** * skb_headroom - bytes at buffer head * @skb: buffer to check * * Return the number of bytes of free space at the head of an &sk_buff. */ static inline unsigned int skb_headroom(const struct sk_buff *skb) { return skb->data - skb->head; } /** * skb_tailroom - bytes at buffer end * @skb: buffer to check * * Return the number of bytes of free space at the tail of an sk_buff */ static inline int skb_tailroom(const struct sk_buff *skb) { return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; } /** * skb_availroom - bytes at buffer end * @skb: buffer to check * * Return the number of bytes of free space at the tail of an sk_buff * allocated by sk_stream_alloc() */ static inline int skb_availroom(const struct sk_buff *skb) { if (skb_is_nonlinear(skb)) return 0; return skb->end - skb->tail - skb->reserved_tailroom; } /** * skb_reserve - adjust headroom * @skb: buffer to alter * @len: bytes to move * * Increase the headroom of an empty &sk_buff by reducing the tail * room. This is only allowed for an empty buffer. */ static inline void skb_reserve(struct sk_buff *skb, int len) { skb->data += len; skb->tail += len; } /** * skb_tailroom_reserve - adjust reserved_tailroom * @skb: buffer to alter * @mtu: maximum amount of headlen permitted * @needed_tailroom: minimum amount of reserved_tailroom * * Set reserved_tailroom so that headlen can be as large as possible but * not larger than mtu and tailroom cannot be smaller than * needed_tailroom. * The required headroom should already have been reserved before using * this function. */ static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, unsigned int needed_tailroom) { SKB_LINEAR_ASSERT(skb); if (mtu < skb_tailroom(skb) - needed_tailroom) /* use at most mtu */ skb->reserved_tailroom = skb_tailroom(skb) - mtu; else /* use up to all available space */ skb->reserved_tailroom = needed_tailroom; } #define ENCAP_TYPE_ETHER 0 #define ENCAP_TYPE_IPPROTO 1 static inline void skb_set_inner_protocol(struct sk_buff *skb, __be16 protocol) { skb->inner_protocol = protocol; skb->inner_protocol_type = ENCAP_TYPE_ETHER; } static inline void skb_set_inner_ipproto(struct sk_buff *skb, __u8 ipproto) { skb->inner_ipproto = ipproto; skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; } static inline void skb_reset_inner_headers(struct sk_buff *skb) { skb->inner_mac_header = skb->mac_header; skb->inner_network_header = skb->network_header; skb->inner_transport_header = skb->transport_header; } static inline void skb_reset_mac_len(struct sk_buff *skb) { skb->mac_len = skb->network_header - skb->mac_header; } static inline unsigned char *skb_inner_transport_header(const struct sk_buff *skb) { return skb->head + skb->inner_transport_header; } static inline int skb_inner_transport_offset(const struct sk_buff *skb) { return skb_inner_transport_header(skb) - skb->data; } static inline void skb_reset_inner_transport_header(struct sk_buff *skb) { skb->inner_transport_header = skb->data - skb->head; } static inline void skb_set_inner_transport_header(struct sk_buff *skb, const int offset) { skb_reset_inner_transport_header(skb); skb->inner_transport_header += offset; } static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) { return skb->head + skb->inner_network_header; } static inline void skb_reset_inner_network_header(struct sk_buff *skb) { skb->inner_network_header = skb->data - skb->head; } static inline void skb_set_inner_network_header(struct sk_buff *skb, const int offset) { skb_reset_inner_network_header(skb); skb->inner_network_header += offset; } static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) { return skb->head + skb->inner_mac_header; } static inline void skb_reset_inner_mac_header(struct sk_buff *skb) { skb->inner_mac_header = skb->data - skb->head; } static inline void skb_set_inner_mac_header(struct sk_buff *skb, const int offset) { skb_reset_inner_mac_header(skb); skb->inner_mac_header += offset; } static inline bool skb_transport_header_was_set(const struct sk_buff *skb) { return skb->transport_header != (typeof(skb->transport_header))~0U; } static inline unsigned char *skb_transport_header(const struct sk_buff *skb) { return skb->head + skb->transport_header; } static inline void skb_reset_transport_header(struct sk_buff *skb) { skb->transport_header = skb->data - skb->head; } static inline void skb_set_transport_header(struct sk_buff *skb, const int offset) { skb_reset_transport_header(skb); skb->transport_header += offset; } static inline unsigned char *skb_network_header(const struct sk_buff *skb) { return skb->head + skb->network_header; } static inline void skb_reset_network_header(struct sk_buff *skb) { skb->network_header = skb->data - skb->head; } static inline void skb_set_network_header(struct sk_buff *skb, const int offset) { skb_reset_network_header(skb); skb->network_header += offset; } static inline unsigned char *skb_mac_header(const struct sk_buff *skb) { return skb->head + skb->mac_header; } static inline int skb_mac_offset(const struct sk_buff *skb) { return skb_mac_header(skb) - skb->data; } static inline u32 skb_mac_header_len(const struct sk_buff *skb) { return skb->network_header - skb->mac_header; } static inline int skb_mac_header_was_set(const struct sk_buff *skb) { return skb->mac_header != (typeof(skb->mac_header))~0U; } static inline void skb_unset_mac_header(struct sk_buff *skb) { skb->mac_header = (typeof(skb->mac_header))~0U; } static inline void skb_reset_mac_header(struct sk_buff *skb) { skb->mac_header = skb->data - skb->head; } static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) { skb_reset_mac_header(skb); skb->mac_header += offset; } static inline void skb_pop_mac_header(struct sk_buff *skb) { skb->mac_header = skb->network_header; } static inline void skb_probe_transport_header(struct sk_buff *skb) { struct flow_keys_basic keys; if (skb_transport_header_was_set(skb)) return; if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, NULL, 0, 0, 0, 0)) skb_set_transport_header(skb, keys.control.thoff); } static inline void skb_mac_header_rebuild(struct sk_buff *skb) { if (skb_mac_header_was_set(skb)) { const unsigned char *old_mac = skb_mac_header(skb); skb_set_mac_header(skb, -skb->mac_len); memmove(skb_mac_header(skb), old_mac, skb->mac_len); } } static inline int skb_checksum_start_offset(const struct sk_buff *skb) { return skb->csum_start - skb_headroom(skb); } static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) { return skb->head + skb->csum_start; } static inline int skb_transport_offset(const struct sk_buff *skb) { return skb_transport_header(skb) - skb->data; } static inline u32 skb_network_header_len(const struct sk_buff *skb) { return skb->transport_header - skb->network_header; } static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) { return skb->inner_transport_header - skb->inner_network_header; } static inline int skb_network_offset(const struct sk_buff *skb) { return skb_network_header(skb) - skb->data; } static inline int skb_inner_network_offset(const struct sk_buff *skb) { return skb_inner_network_header(skb) - skb->data; } static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) { return pskb_may_pull(skb, skb_network_offset(skb) + len); } /* * CPUs often take a performance hit when accessing unaligned memory * locations. The actual performance hit varies, it can be small if the * hardware handles it or large if we have to take an exception and fix it * in software. * * Since an ethernet header is 14 bytes network drivers often end up with * the IP header at an unaligned offset. The IP header can be aligned by * shifting the start of the packet by 2 bytes. Drivers should do this * with: * * skb_reserve(skb, NET_IP_ALIGN); * * The downside to this alignment of the IP header is that the DMA is now * unaligned. On some architectures the cost of an unaligned DMA is high * and this cost outweighs the gains made by aligning the IP header. * * Since this trade off varies between architectures, we allow NET_IP_ALIGN * to be overridden. */ #ifndef NET_IP_ALIGN #define NET_IP_ALIGN 2 #endif /* * The networking layer reserves some headroom in skb data (via * dev_alloc_skb). This is used to avoid having to reallocate skb data when * the header has to grow. In the default case, if the header has to grow * 32 bytes or less we avoid the reallocation. * * Unfortunately this headroom changes the DMA alignment of the resulting * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive * on some architectures. An architecture can override this value, * perhaps setting it to a cacheline in size (since that will maintain * cacheline alignment of the DMA). It must be a power of 2. * * Various parts of the networking layer expect at least 32 bytes of * headroom, you should not reduce this. * * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) * to reduce average number of cache lines per packet. * get_rps_cpu() for example only access one 64 bytes aligned block : * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) */ #ifndef NET_SKB_PAD #define NET_SKB_PAD max(32, L1_CACHE_BYTES) #endif int ___pskb_trim(struct sk_buff *skb, unsigned int len); static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) { if (WARN_ON(skb_is_nonlinear(skb))) return; skb->len = len; skb_set_tail_pointer(skb, len); } static inline void __skb_trim(struct sk_buff *skb, unsigned int len) { __skb_set_length(skb, len); } void skb_trim(struct sk_buff *skb, unsigned int len); static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) { if (skb->data_len) return ___pskb_trim(skb, len); __skb_trim(skb, len); return 0; } static inline int pskb_trim(struct sk_buff *skb, unsigned int len) { return (len < skb->len) ? __pskb_trim(skb, len) : 0; } /** * pskb_trim_unique - remove end from a paged unique (not cloned) buffer * @skb: buffer to alter * @len: new length * * This is identical to pskb_trim except that the caller knows that * the skb is not cloned so we should never get an error due to out- * of-memory. */ static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) { int err = pskb_trim(skb, len); BUG_ON(err); } static inline int __skb_grow(struct sk_buff *skb, unsigned int len) { unsigned int diff = len - skb->len; if (skb_tailroom(skb) < diff) { int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), GFP_ATOMIC); if (ret) return ret; } __skb_set_length(skb, len); return 0; } /** * skb_orphan - orphan a buffer * @skb: buffer to orphan * * If a buffer currently has an owner then we call the owner's * destructor function and make the @skb unowned. The buffer continues * to exist but is no longer charged to its former owner. */ static inline void skb_orphan(struct sk_buff *skb) { if (skb->destructor) { skb->destructor(skb); skb->destructor = NULL; skb->sk = NULL; } else { BUG_ON(skb->sk); } } /** * skb_orphan_frags - orphan the frags contained in a buffer * @skb: buffer to orphan frags from * @gfp_mask: allocation mask for replacement pages * * For each frag in the SKB which needs a destructor (i.e. has an * owner) create a copy of that frag and release the original * page by calling the destructor. */ static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) { if (likely(!skb_zcopy(skb))) return 0; if (!skb_zcopy_is_nouarg(skb) && skb_uarg(skb)->callback == sock_zerocopy_callback) return 0; return skb_copy_ubufs(skb, gfp_mask); } /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) { if (likely(!skb_zcopy(skb))) return 0; return skb_copy_ubufs(skb, gfp_mask); } /** * __skb_queue_purge - empty a list * @list: list to empty * * Delete all buffers on an &sk_buff list. Each buffer is removed from * the list and one reference dropped. This function does not take the * list lock and the caller must hold the relevant locks to use it. */ static inline void __skb_queue_purge(struct sk_buff_head *list) { struct sk_buff *skb; while ((skb = __skb_dequeue(list)) != NULL) kfree_skb(skb); } void skb_queue_purge(struct sk_buff_head *list); unsigned int skb_rbtree_purge(struct rb_root *root); void *netdev_alloc_frag(unsigned int fragsz); struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, gfp_t gfp_mask); /** * netdev_alloc_skb - allocate an skbuff for rx on a specific device * @dev: network device to receive on * @length: length to allocate * * Allocate a new &sk_buff and assign it a usage count of one. The * buffer has unspecified headroom built in. Users should allocate * the headroom they think they need without accounting for the * built in space. The built in space is used for optimisations. * * %NULL is returned if there is no free memory. Although this function * allocates memory it can be called from an interrupt. */ static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, unsigned int length) { return __netdev_alloc_skb(dev, length, GFP_ATOMIC); } /* legacy helper around __netdev_alloc_skb() */ static inline struct sk_buff *__dev_alloc_skb(unsigned int length, gfp_t gfp_mask) { return __netdev_alloc_skb(NULL, length, gfp_mask); } /* legacy helper around netdev_alloc_skb() */ static inline struct sk_buff *dev_alloc_skb(unsigned int length) { return netdev_alloc_skb(NULL, length); } static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, unsigned int length, gfp_t gfp) { struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); if (NET_IP_ALIGN && skb) skb_reserve(skb, NET_IP_ALIGN); return skb; } static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, unsigned int length) { return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); } static inline void skb_free_frag(void *addr) { page_frag_free(addr); } void *napi_alloc_frag(unsigned int fragsz); struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int length, gfp_t gfp_mask); static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length) { return __napi_alloc_skb(napi, length, GFP_ATOMIC); } void napi_consume_skb(struct sk_buff *skb, int budget); void __kfree_skb_flush(void); void __kfree_skb_defer(struct sk_buff *skb); /** * __dev_alloc_pages - allocate page for network Rx * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx * @order: size of the allocation * * Allocate a new page. * * %NULL is returned if there is no free memory. */ static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, unsigned int order) { /* This piece of code contains several assumptions. * 1. This is for device Rx, therefor a cold page is preferred. * 2. The expectation is the user wants a compound page. * 3. If requesting a order 0 page it will not be compound * due to the check to see if order has a value in prep_new_page * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to * code in gfp_to_alloc_flags that should be enforcing this. */ gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); } static inline struct page *dev_alloc_pages(unsigned int order) { return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); } /** * __dev_alloc_page - allocate a page for network Rx * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx * * Allocate a new page. * * %NULL is returned if there is no free memory. */ static inline struct page *__dev_alloc_page(gfp_t gfp_mask) { return __dev_alloc_pages(gfp_mask, 0); } static inline struct page *dev_alloc_page(void) { return dev_alloc_pages(0); } /** * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page * @page: The page that was allocated from skb_alloc_page * @skb: The skb that may need pfmemalloc set */ static inline void skb_propagate_pfmemalloc(struct page *page, struct sk_buff *skb) { if (page_is_pfmemalloc(page)) skb->pfmemalloc = true; } /** * skb_frag_off() - Returns the offset of a skb fragment * @frag: the paged fragment */ static inline unsigned int skb_frag_off(const skb_frag_t *frag) { return frag->bv_offset; } /** * skb_frag_off_add() - Increments the offset of a skb fragment by @delta * @frag: skb fragment * @delta: value to add */ static inline void skb_frag_off_add(skb_frag_t *frag, int delta) { frag->bv_offset += delta; } /** * skb_frag_off_set() - Sets the offset of a skb fragment * @frag: skb fragment * @offset: offset of fragment */ static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) { frag->bv_offset = offset; } /** * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment * @fragto: skb fragment where offset is set * @fragfrom: skb fragment offset is copied from */ static inline void skb_frag_off_copy(skb_frag_t *fragto, const skb_frag_t *fragfrom) { fragto->bv_offset = fragfrom->bv_offset; } /** * skb_frag_page - retrieve the page referred to by a paged fragment * @frag: the paged fragment * * Returns the &struct page associated with @frag. */ static inline struct page *skb_frag_page(const skb_frag_t *frag) { return frag->bv_page; } /** * __skb_frag_ref - take an addition reference on a paged fragment. * @frag: the paged fragment * * Takes an additional reference on the paged fragment @frag. */ static inline void __skb_frag_ref(skb_frag_t *frag) { get_page(skb_frag_page(frag)); } /** * skb_frag_ref - take an addition reference on a paged fragment of an skb. * @skb: the buffer * @f: the fragment offset. * * Takes an additional reference on the @f'th paged fragment of @skb. */ static inline void skb_frag_ref(struct sk_buff *skb, int f) { __skb_frag_ref(&skb_shinfo(skb)->frags[f]); } /** * __skb_frag_unref - release a reference on a paged fragment. * @frag: the paged fragment * * Releases a reference on the paged fragment @frag. */ static inline void __skb_frag_unref(skb_frag_t *frag) { put_page(skb_frag_page(frag)); } /** * skb_frag_unref - release a reference on a paged fragment of an skb. * @skb: the buffer * @f: the fragment offset * * Releases a reference on the @f'th paged fragment of @skb. */ static inline void skb_frag_unref(struct sk_buff *skb, int f) { __skb_frag_unref(&skb_shinfo(skb)->frags[f]); } /** * skb_frag_address - gets the address of the data contained in a paged fragment * @frag: the paged fragment buffer * * Returns the address of the data within @frag. The page must already * be mapped. */ static inline void *skb_frag_address(const skb_frag_t *frag) { return page_address(skb_frag_page(frag)) + skb_frag_off(frag); } /** * skb_frag_address_safe - gets the address of the data contained in a paged fragment * @frag: the paged fragment buffer * * Returns the address of the data within @frag. Checks that the page * is mapped and returns %NULL otherwise. */ static inline void *skb_frag_address_safe(const skb_frag_t *frag) { void *ptr = page_address(skb_frag_page(frag)); if (unlikely(!ptr)) return NULL; return ptr + skb_frag_off(frag); } /** * skb_frag_page_copy() - sets the page in a fragment from another fragment * @fragto: skb fragment where page is set * @fragfrom: skb fragment page is copied from */ static inline void skb_frag_page_copy(skb_frag_t *fragto, const skb_frag_t *fragfrom) { fragto->bv_page = fragfrom->bv_page; } /** * __skb_frag_set_page - sets the page contained in a paged fragment * @frag: the paged fragment * @page: the page to set * * Sets the fragment @frag to contain @page. */ static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) { frag->bv_page = page; } /** * skb_frag_set_page - sets the page contained in a paged fragment of an skb * @skb: the buffer * @f: the fragment offset * @page: the page to set * * Sets the @f'th fragment of @skb to contain @page. */ static inline void skb_frag_set_page(struct sk_buff *skb, int f, struct page *page) { __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); } bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); /** * skb_frag_dma_map - maps a paged fragment via the DMA API * @dev: the device to map the fragment to * @frag: the paged fragment to map * @offset: the offset within the fragment (starting at the * fragment's own offset) * @size: the number of bytes to map * @dir: the direction of the mapping (``PCI_DMA_*``) * * Maps the page associated with @frag to @device. */ static inline dma_addr_t skb_frag_dma_map(struct device *dev, const skb_frag_t *frag, size_t offset, size_t size, enum dma_data_direction dir) { return dma_map_page(dev, skb_frag_page(frag), skb_frag_off(frag) + offset, size, dir); } static inline struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) { return __pskb_copy(skb, skb_headroom(skb), gfp_mask); } static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, gfp_t gfp_mask) { return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); } /** * skb_clone_writable - is the header of a clone writable * @skb: buffer to check * @len: length up to which to write * * Returns true if modifying the header part of the cloned buffer * does not requires the data to be copied. */ static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) { return !skb_header_cloned(skb) && skb_headroom(skb) + len <= skb->hdr_len; } static inline int skb_try_make_writable(struct sk_buff *skb, unsigned int write_len) { return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); } static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, int cloned) { int delta = 0; if (headroom > skb_headroom(skb)) delta = headroom - skb_headroom(skb); if (delta || cloned) return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, GFP_ATOMIC); return 0; } /** * skb_cow - copy header of skb when it is required * @skb: buffer to cow * @headroom: needed headroom * * If the skb passed lacks sufficient headroom or its data part * is shared, data is reallocated. If reallocation fails, an error * is returned and original skb is not changed. * * The result is skb with writable area skb->head...skb->tail * and at least @headroom of space at head. */ static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) { return __skb_cow(skb, headroom, skb_cloned(skb)); } /** * skb_cow_head - skb_cow but only making the head writable * @skb: buffer to cow * @headroom: needed headroom * * This function is identical to skb_cow except that we replace the * skb_cloned check by skb_header_cloned. It should be used when * you only need to push on some header and do not need to modify * the data. */ static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) { return __skb_cow(skb, headroom, skb_header_cloned(skb)); } /** * skb_padto - pad an skbuff up to a minimal size * @skb: buffer to pad * @len: minimal length * * Pads up a buffer to ensure the trailing bytes exist and are * blanked. If the buffer already contains sufficient data it * is untouched. Otherwise it is extended. Returns zero on * success. The skb is freed on error. */ static inline int skb_padto(struct sk_buff *skb, unsigned int len) { unsigned int size = skb->len; if (likely(size >= len)) return 0; return skb_pad(skb, len - size); } /** * __skb_put_padto - increase size and pad an skbuff up to a minimal size * @skb: buffer to pad * @len: minimal length * @free_on_error: free buffer on error * * Pads up a buffer to ensure the trailing bytes exist and are * blanked. If the buffer already contains sufficient data it * is untouched. Otherwise it is extended. Returns zero on * success. The skb is freed on error if @free_on_error is true. */ static inline int __must_check __skb_put_padto(struct sk_buff *skb, unsigned int len, bool free_on_error) { unsigned int size = skb->len; if (unlikely(size < len)) { len -= size; if (__skb_pad(skb, len, free_on_error)) return -ENOMEM; __skb_put(skb, len); } return 0; } /** * skb_put_padto - increase size and pad an skbuff up to a minimal size * @skb: buffer to pad * @len: minimal length * * Pads up a buffer to ensure the trailing bytes exist and are * blanked. If the buffer already contains sufficient data it * is untouched. Otherwise it is extended. Returns zero on * success. The skb is freed on error. */ static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) { return __skb_put_padto(skb, len, true); } static inline int skb_add_data(struct sk_buff *skb, struct iov_iter *from, int copy) { const int off = skb->len; if (skb->ip_summed == CHECKSUM_NONE) { __wsum csum = 0; if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, &csum, from)) { skb->csum = csum_block_add(skb->csum, csum, off); return 0; } } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) return 0; __skb_trim(skb, off); return -EFAULT; } static inline bool skb_can_coalesce(struct sk_buff *skb, int i, const struct page *page, int off) { if (skb_zcopy(skb)) return false; if (i) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; return page == skb_frag_page(frag) && off == skb_frag_off(frag) + skb_frag_size(frag); } return false; } static inline int __skb_linearize(struct sk_buff *skb) { return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; } /** * skb_linearize - convert paged skb to linear one * @skb: buffer to linarize * * If there is no free memory -ENOMEM is returned, otherwise zero * is returned and the old skb data released. */ static inline int skb_linearize(struct sk_buff *skb) { return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; } /** * skb_has_shared_frag - can any frag be overwritten * @skb: buffer to test * * Return true if the skb has at least one frag that might be modified * by an external entity (as in vmsplice()/sendfile()) */ static inline bool skb_has_shared_frag(const struct sk_buff *skb) { return skb_is_nonlinear(skb) && skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; } /** * skb_linearize_cow - make sure skb is linear and writable * @skb: buffer to process * * If there is no free memory -ENOMEM is returned, otherwise zero * is returned and the old skb data released. */ static inline int skb_linearize_cow(struct sk_buff *skb) { return skb_is_nonlinear(skb) || skb_cloned(skb) ? __skb_linearize(skb) : 0; } static __always_inline void __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, unsigned int off) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_block_sub(skb->csum, csum_partial(start, len, 0), off); else if (skb->ip_summed == CHECKSUM_PARTIAL && skb_checksum_start_offset(skb) < 0) skb->ip_summed = CHECKSUM_NONE; } /** * skb_postpull_rcsum - update checksum for received skb after pull * @skb: buffer to update * @start: start of data before pull * @len: length of data pulled * * After doing a pull on a received packet, you need to call this to * update the CHECKSUM_COMPLETE checksum, or set ip_summed to * CHECKSUM_NONE so that it can be recomputed from scratch. */ static inline void skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len) { __skb_postpull_rcsum(skb, start, len, 0); } static __always_inline void __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, unsigned int off) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_block_add(skb->csum, csum_partial(start, len, 0), off); } /** * skb_postpush_rcsum - update checksum for received skb after push * @skb: buffer to update * @start: start of data after push * @len: length of data pushed * * After doing a push on a received packet, you need to call this to * update the CHECKSUM_COMPLETE checksum. */ static inline void skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len) { __skb_postpush_rcsum(skb, start, len, 0); } void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); /** * skb_push_rcsum - push skb and update receive checksum * @skb: buffer to update * @len: length of data pulled * * This function performs an skb_push on the packet and updates * the CHECKSUM_COMPLETE checksum. It should be used on * receive path processing instead of skb_push unless you know * that the checksum difference is zero (e.g., a valid IP header) * or you are setting ip_summed to CHECKSUM_NONE. */ static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) { skb_push(skb, len); skb_postpush_rcsum(skb, skb->data, len); return skb->data; } int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); /** * pskb_trim_rcsum - trim received skb and update checksum * @skb: buffer to trim * @len: new length * * This is exactly the same as pskb_trim except that it ensures the * checksum of received packets are still valid after the operation. * It can change skb pointers. */ static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) { if (likely(len >= skb->len)) return 0; return pskb_trim_rcsum_slow(skb, len); } static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; __skb_trim(skb, len); return 0; } static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; return __skb_grow(skb, len); } #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) #define skb_rb_first(root) rb_to_skb(rb_first(root)) #define skb_rb_last(root) rb_to_skb(rb_last(root)) #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) #define skb_queue_walk(queue, skb) \ for (skb = (queue)->next; \ skb != (struct sk_buff *)(queue); \ skb = skb->next) #define skb_queue_walk_safe(queue, skb, tmp) \ for (skb = (queue)->next, tmp = skb->next; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->next) #define skb_queue_walk_from(queue, skb) \ for (; skb != (struct sk_buff *)(queue); \ skb = skb->next) #define skb_rbtree_walk(skb, root) \ for (skb = skb_rb_first(root); skb != NULL; \ skb = skb_rb_next(skb)) #define skb_rbtree_walk_from(skb) \ for (; skb != NULL; \ skb = skb_rb_next(skb)) #define skb_rbtree_walk_from_safe(skb, tmp) \ for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ skb = tmp) #define skb_queue_walk_from_safe(queue, skb, tmp) \ for (tmp = skb->next; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->next) #define skb_queue_reverse_walk(queue, skb) \ for (skb = (queue)->prev; \ skb != (struct sk_buff *)(queue); \ skb = skb->prev) #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ for (skb = (queue)->prev, tmp = skb->prev; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->prev) #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ for (tmp = skb->prev; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->prev) static inline bool skb_has_frag_list(const struct sk_buff *skb) { return skb_shinfo(skb)->frag_list != NULL; } static inline void skb_frag_list_init(struct sk_buff *skb) { skb_shinfo(skb)->frag_list = NULL; } #define skb_walk_frags(skb, iter) \ for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, int *err, long *timeo_p, const struct sk_buff *skb); struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, struct sk_buff_head *queue, unsigned int flags, int *off, int *err, struct sk_buff **last); struct sk_buff *__skb_try_recv_datagram(struct sock *sk, struct sk_buff_head *queue, unsigned int flags, int *off, int *err, struct sk_buff **last); struct sk_buff *__skb_recv_datagram(struct sock *sk, struct sk_buff_head *sk_queue, unsigned int flags, int *off, int *err); struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, int *err); __poll_t datagram_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait); int skb_copy_datagram_iter(const struct sk_buff *from, int offset, struct iov_iter *to, int size); static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, struct msghdr *msg, int size) { return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); } int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, struct msghdr *msg); int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, struct iov_iter *to, int len, struct ahash_request *hash); int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, struct iov_iter *from, int len); int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); void skb_free_datagram(struct sock *sk, struct sk_buff *skb); void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); static inline void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb) { __skb_free_datagram_locked(sk, skb, 0); } int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, int len); int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, struct pipe_inode_info *pipe, unsigned int len, unsigned int flags); int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, int len); void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); unsigned int skb_zerocopy_headlen(const struct sk_buff *from); int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen); void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); void skb_scrub_packet(struct sk_buff *skb, bool xnet); bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, unsigned int offset); struct sk_buff *skb_vlan_untag(struct sk_buff *skb); int skb_ensure_writable(struct sk_buff *skb, int write_len); int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); int skb_vlan_pop(struct sk_buff *skb); int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); int skb_eth_pop(struct sk_buff *skb); int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, const unsigned char *src); int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, int mac_len, bool ethernet); int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, bool ethernet); int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); int skb_mpls_dec_ttl(struct sk_buff *skb); struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, gfp_t gfp); static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) { return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; } static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) { return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; } struct skb_checksum_ops { __wsum (*update)(const void *mem, int len, __wsum wsum); __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); }; extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum, const struct skb_checksum_ops *ops); __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum); static inline void * __must_check __skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *data, int hlen, void *buffer) { if (hlen - offset >= len) return data + offset; if (!skb || skb_copy_bits(skb, offset, buffer, len) < 0) return NULL; return buffer; } static inline void * __must_check skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) { return __skb_header_pointer(skb, offset, len, skb->data, skb_headlen(skb), buffer); } /** * skb_needs_linearize - check if we need to linearize a given skb * depending on the given device features. * @skb: socket buffer to check * @features: net device features * * Returns true if either: * 1. skb has frag_list and the device doesn't support FRAGLIST, or * 2. skb is fragmented and the device does not support SG. */ static inline bool skb_needs_linearize(struct sk_buff *skb, netdev_features_t features) { return skb_is_nonlinear(skb) && ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); } static inline void skb_copy_from_linear_data(const struct sk_buff *skb, void *to, const unsigned int len) { memcpy(to, skb->data, len); } static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, const int offset, void *to, const unsigned int len) { memcpy(to, skb->data + offset, len); } static inline void skb_copy_to_linear_data(struct sk_buff *skb, const void *from, const unsigned int len) { memcpy(skb->data, from, len); } static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, const int offset, const void *from, const unsigned int len) { memcpy(skb->data + offset, from, len); } void skb_init(void); static inline ktime_t skb_get_ktime(const struct sk_buff *skb) { return skb->tstamp; } /** * skb_get_timestamp - get timestamp from a skb * @skb: skb to get stamp from * @stamp: pointer to struct __kernel_old_timeval to store stamp in * * Timestamps are stored in the skb as offsets to a base timestamp. * This function converts the offset back to a struct timeval and stores * it in stamp. */ static inline void skb_get_timestamp(const struct sk_buff *skb, struct __kernel_old_timeval *stamp) { *stamp = ns_to_kernel_old_timeval(skb->tstamp); } static inline void skb_get_new_timestamp(const struct sk_buff *skb, struct __kernel_sock_timeval *stamp) { struct timespec64 ts = ktime_to_timespec64(skb->tstamp); stamp->tv_sec = ts.tv_sec; stamp->tv_usec = ts.tv_nsec / 1000; } static inline void skb_get_timestampns(const struct sk_buff *skb, struct __kernel_old_timespec *stamp) { struct timespec64 ts = ktime_to_timespec64(skb->tstamp); stamp->tv_sec = ts.tv_sec; stamp->tv_nsec = ts.tv_nsec; } static inline void skb_get_new_timestampns(const struct sk_buff *skb, struct __kernel_timespec *stamp) { struct timespec64 ts = ktime_to_timespec64(skb->tstamp); stamp->tv_sec = ts.tv_sec; stamp->tv_nsec = ts.tv_nsec; } static inline void __net_timestamp(struct sk_buff *skb) { skb->tstamp = ktime_get_real(); } static inline ktime_t net_timedelta(ktime_t t) { return ktime_sub(ktime_get_real(), t); } static inline ktime_t net_invalid_timestamp(void) { return 0; } static inline u8 skb_metadata_len(const struct sk_buff *skb) { return skb_shinfo(skb)->meta_len; } static inline void *skb_metadata_end(const struct sk_buff *skb) { return skb_mac_header(skb); } static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, const struct sk_buff *skb_b, u8 meta_len) { const void *a = skb_metadata_end(skb_a); const void *b = skb_metadata_end(skb_b); /* Using more efficient varaiant than plain call to memcmp(). */ #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 u64 diffs = 0; switch (meta_len) { #define __it(x, op) (x -= sizeof(u##op)) #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) case 32: diffs |= __it_diff(a, b, 64); fallthrough; case 24: diffs |= __it_diff(a, b, 64); fallthrough; case 16: diffs |= __it_diff(a, b, 64); fallthrough; case 8: diffs |= __it_diff(a, b, 64); break; case 28: diffs |= __it_diff(a, b, 64); fallthrough; case 20: diffs |= __it_diff(a, b, 64); fallthrough; case 12: diffs |= __it_diff(a, b, 64); fallthrough; case 4: diffs |= __it_diff(a, b, 32); break; } return diffs; #else return memcmp(a - meta_len, b - meta_len, meta_len); #endif } static inline bool skb_metadata_differs(const struct sk_buff *skb_a, const struct sk_buff *skb_b) { u8 len_a = skb_metadata_len(skb_a); u8 len_b = skb_metadata_len(skb_b); if (!(len_a | len_b)) return false; return len_a != len_b ? true : __skb_metadata_differs(skb_a, skb_b, len_a); } static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) { skb_shinfo(skb)->meta_len = meta_len; } static inline void skb_metadata_clear(struct sk_buff *skb) { skb_metadata_set(skb, 0); } struct sk_buff *skb_clone_sk(struct sk_buff *skb); #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING void skb_clone_tx_timestamp(struct sk_buff *skb); bool skb_defer_rx_timestamp(struct sk_buff *skb); #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ static inline void skb_clone_tx_timestamp(struct sk_buff *skb) { } static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) { return false; } #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ /** * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps * * PHY drivers may accept clones of transmitted packets for * timestamping via their phy_driver.txtstamp method. These drivers * must call this function to return the skb back to the stack with a * timestamp. * * @skb: clone of the original outgoing packet * @hwtstamps: hardware time stamps * */ void skb_complete_tx_timestamp(struct sk_buff *skb, struct skb_shared_hwtstamps *hwtstamps); void __skb_tstamp_tx(struct sk_buff *orig_skb, struct skb_shared_hwtstamps *hwtstamps, struct sock *sk, int tstype); /** * skb_tstamp_tx - queue clone of skb with send time stamps * @orig_skb: the original outgoing packet * @hwtstamps: hardware time stamps, may be NULL if not available * * If the skb has a socket associated, then this function clones the * skb (thus sharing the actual data and optional structures), stores * the optional hardware time stamping information (if non NULL) or * generates a software time stamp (otherwise), then queues the clone * to the error queue of the socket. Errors are silently ignored. */ void skb_tstamp_tx(struct sk_buff *orig_skb, struct skb_shared_hwtstamps *hwtstamps); /** * skb_tx_timestamp() - Driver hook for transmit timestamping * * Ethernet MAC Drivers should call this function in their hard_xmit() * function immediately before giving the sk_buff to the MAC hardware. * * Specifically, one should make absolutely sure that this function is * called before TX completion of this packet can trigger. Otherwise * the packet could potentially already be freed. * * @skb: A socket buffer. */ static inline void skb_tx_timestamp(struct sk_buff *skb) { skb_clone_tx_timestamp(skb); if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) skb_tstamp_tx(skb, NULL); } /** * skb_complete_wifi_ack - deliver skb with wifi status * * @skb: the original outgoing packet * @acked: ack status * */ void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); __sum16 __skb_checksum_complete(struct sk_buff *skb); static inline int skb_csum_unnecessary(const struct sk_buff *skb) { return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || skb->csum_valid || (skb->ip_summed == CHECKSUM_PARTIAL && skb_checksum_start_offset(skb) >= 0)); } /** * skb_checksum_complete - Calculate checksum of an entire packet * @skb: packet to process * * This function calculates the checksum over the entire packet plus * the value of skb->csum. The latter can be used to supply the * checksum of a pseudo header as used by TCP/UDP. It returns the * checksum. * * For protocols that contain complete checksums such as ICMP/TCP/UDP, * this function can be used to verify that checksum on received * packets. In that case the function should return zero if the * checksum is correct. In particular, this function will return zero * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the * hardware has already verified the correctness of the checksum. */ static inline __sum16 skb_checksum_complete(struct sk_buff *skb) { return skb_csum_unnecessary(skb) ? 0 : __skb_checksum_complete(skb); } static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_UNNECESSARY) { if (skb->csum_level == 0) skb->ip_summed = CHECKSUM_NONE; else skb->csum_level--; } } static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_UNNECESSARY) { if (skb->csum_level < SKB_MAX_CSUM_LEVEL) skb->csum_level++; } else if (skb->ip_summed == CHECKSUM_NONE) { skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum_level = 0; } } static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_UNNECESSARY) { skb->ip_summed = CHECKSUM_NONE; skb->csum_level = 0; } } /* Check if we need to perform checksum complete validation. * * Returns true if checksum complete is needed, false otherwise * (either checksum is unnecessary or zero checksum is allowed). */ static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, bool zero_okay, __sum16 check) { if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { skb->csum_valid = 1; __skb_decr_checksum_unnecessary(skb); return false; } return true; } /* For small packets <= CHECKSUM_BREAK perform checksum complete directly * in checksum_init. */ #define CHECKSUM_BREAK 76 /* Unset checksum-complete * * Unset checksum complete can be done when packet is being modified * (uncompressed for instance) and checksum-complete value is * invalidated. */ static inline void skb_checksum_complete_unset(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; } /* Validate (init) checksum based on checksum complete. * * Return values: * 0: checksum is validated or try to in skb_checksum_complete. In the latter * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo * checksum is stored in skb->csum for use in __skb_checksum_complete * non-zero: value of invalid checksum * */ static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, bool complete, __wsum psum) { if (skb->ip_summed == CHECKSUM_COMPLETE) { if (!csum_fold(csum_add(psum, skb->csum))) { skb->csum_valid = 1; return 0; } } skb->csum = psum; if (complete || skb->len <= CHECKSUM_BREAK) { __sum16 csum; csum = __skb_checksum_complete(skb); skb->csum_valid = !csum; return csum; } return 0; } static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) { return 0; } /* Perform checksum validate (init). Note that this is a macro since we only * want to calculate the pseudo header which is an input function if necessary. * First we try to validate without any computation (checksum unnecessary) and * then calculate based on checksum complete calling the function to compute * pseudo header. * * Return values: * 0: checksum is validated or try to in skb_checksum_complete * non-zero: value of invalid checksum */ #define __skb_checksum_validate(skb, proto, complete, \ zero_okay, check, compute_pseudo) \ ({ \ __sum16 __ret = 0; \ skb->csum_valid = 0; \ if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ __ret = __skb_checksum_validate_complete(skb, \ complete, compute_pseudo(skb, proto)); \ __ret; \ }) #define skb_checksum_init(skb, proto, compute_pseudo) \ __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) #define skb_checksum_validate(skb, proto, compute_pseudo) \ __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) #define skb_checksum_validate_zero_check(skb, proto, check, \ compute_pseudo) \ __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) #define skb_checksum_simple_validate(skb) \ __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) static inline bool __skb_checksum_convert_check(struct sk_buff *skb) { return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); } static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) { skb->csum = ~pseudo; skb->ip_summed = CHECKSUM_COMPLETE; } #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ do { \ if (__skb_checksum_convert_check(skb)) \ __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ } while (0) static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, u16 start, u16 offset) { skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = ((unsigned char *)ptr + start) - skb->head; skb->csum_offset = offset - start; } /* Update skbuf and packet to reflect the remote checksum offload operation. * When called, ptr indicates the starting point for skb->csum when * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete * here, skb_postpull_rcsum is done so skb->csum start is ptr. */ static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, int start, int offset, bool nopartial) { __wsum delta; if (!nopartial) { skb_remcsum_adjust_partial(skb, ptr, start, offset); return; } if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { __skb_checksum_complete(skb); skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); } delta = remcsum_adjust(ptr, skb->csum, start, offset); /* Adjust skb->csum since we changed the packet */ skb->csum = csum_add(skb->csum, delta); } static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) return (void *)(skb->_nfct & NFCT_PTRMASK); #else return NULL; #endif } static inline unsigned long skb_get_nfct(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) return skb->_nfct; #else return 0UL; #endif } static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) skb->_nfct = nfct; #endif } #ifdef CONFIG_SKB_EXTENSIONS enum skb_ext_id { #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) SKB_EXT_BRIDGE_NF, #endif #ifdef CONFIG_XFRM SKB_EXT_SEC_PATH, #endif #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) TC_SKB_EXT, #endif #if IS_ENABLED(CONFIG_MPTCP) SKB_EXT_MPTCP, #endif #if IS_ENABLED(CONFIG_KCOV) SKB_EXT_KCOV_HANDLE, #endif SKB_EXT_NUM, /* must be last */ }; /** * struct skb_ext - sk_buff extensions * @refcnt: 1 on allocation, deallocated on 0 * @offset: offset to add to @data to obtain extension address * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units * @data: start of extension data, variable sized * * Note: offsets/lengths are stored in chunks of 8 bytes, this allows * to use 'u8' types while allowing up to 2kb worth of extension data. */ struct skb_ext { refcount_t refcnt; u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ u8 chunks; /* same */ char data[] __aligned(8); }; struct skb_ext *__skb_ext_alloc(gfp_t flags); void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, struct skb_ext *ext); void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); void __skb_ext_put(struct skb_ext *ext); static inline void skb_ext_put(struct sk_buff *skb) { if (skb->active_extensions) __skb_ext_put(skb->extensions); } static inline void __skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) { dst->active_extensions = src->active_extensions; if (src->active_extensions) { struct skb_ext *ext = src->extensions; refcount_inc(&ext->refcnt); dst->extensions = ext; } } static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) { skb_ext_put(dst); __skb_ext_copy(dst, src); } static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) { return !!ext->offset[i]; } static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) { return skb->active_extensions & (1 << id); } static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) { if (skb_ext_exist(skb, id)) __skb_ext_del(skb, id); } static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) { if (skb_ext_exist(skb, id)) { struct skb_ext *ext = skb->extensions; return (void *)ext + (ext->offset[id] << 3); } return NULL; } static inline void skb_ext_reset(struct sk_buff *skb) { if (unlikely(skb->active_extensions)) { __skb_ext_put(skb->extensions); skb->active_extensions = 0; } } static inline bool skb_has_extensions(struct sk_buff *skb) { return unlikely(skb->active_extensions); } #else static inline void skb_ext_put(struct sk_buff *skb) {} static inline void skb_ext_reset(struct sk_buff *skb) {} static inline void skb_ext_del(struct sk_buff *skb, int unused) {} static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } #endif /* CONFIG_SKB_EXTENSIONS */ static inline void nf_reset_ct(struct sk_buff *skb) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) nf_conntrack_put(skb_nfct(skb)); skb->_nfct = 0; #endif } static inline void nf_reset_trace(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) skb->nf_trace = 0; #endif } static inline void ipvs_reset(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_IP_VS) skb->ipvs_property = 0; #endif } /* Note: This doesn't put any conntrack info in dst. */ static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, bool copy) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) dst->_nfct = src->_nfct; nf_conntrack_get(skb_nfct(src)); #endif #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) if (copy) dst->nf_trace = src->nf_trace; #endif } static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) nf_conntrack_put(skb_nfct(dst)); #endif __nf_copy(dst, src, true); } #ifdef CONFIG_NETWORK_SECMARK static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) { to->secmark = from->secmark; } static inline void skb_init_secmark(struct sk_buff *skb) { skb->secmark = 0; } #else static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) { } static inline void skb_init_secmark(struct sk_buff *skb) { } #endif static inline int secpath_exists(const struct sk_buff *skb) { #ifdef CONFIG_XFRM return skb_ext_exist(skb, SKB_EXT_SEC_PATH); #else return 0; #endif } static inline bool skb_irq_freeable(const struct sk_buff *skb) { return !skb->destructor && !secpath_exists(skb) && !skb_nfct(skb) && !skb->_skb_refdst && !skb_has_frag_list(skb); } static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) { skb->queue_mapping = queue_mapping; } static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) { return skb->queue_mapping; } static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) { to->queue_mapping = from->queue_mapping; } static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) { skb->queue_mapping = rx_queue + 1; } static inline u16 skb_get_rx_queue(const struct sk_buff *skb) { return skb->queue_mapping - 1; } static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) { return skb->queue_mapping != 0; } static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) { skb->dst_pending_confirm = val; } static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) { return skb->dst_pending_confirm != 0; } static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) { #ifdef CONFIG_XFRM return skb_ext_find(skb, SKB_EXT_SEC_PATH); #else return NULL; #endif } /* Keeps track of mac header offset relative to skb->head. * It is useful for TSO of Tunneling protocol. e.g. GRE. * For non-tunnel skb it points to skb_mac_header() and for * tunnel skb it points to outer mac header. * Keeps track of level of encapsulation of network headers. */ struct skb_gso_cb { union { int mac_offset; int data_offset; }; int encap_level; __wsum csum; __u16 csum_start; }; #define SKB_GSO_CB_OFFSET 32 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) { return (skb_mac_header(inner_skb) - inner_skb->head) - SKB_GSO_CB(inner_skb)->mac_offset; } static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) { int new_headroom, headroom; int ret; headroom = skb_headroom(skb); ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); if (ret) return ret; new_headroom = skb_headroom(skb); SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); return 0; } static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) { /* Do not update partial checksums if remote checksum is enabled. */ if (skb->remcsum_offload) return; SKB_GSO_CB(skb)->csum = res; SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; } /* Compute the checksum for a gso segment. First compute the checksum value * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and * then add in skb->csum (checksum from csum_start to end of packet). * skb->csum and csum_start are then updated to reflect the checksum of the * resultant packet starting from the transport header-- the resultant checksum * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo * header. */ static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) { unsigned char *csum_start = skb_transport_header(skb); int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; __wsum partial = SKB_GSO_CB(skb)->csum; SKB_GSO_CB(skb)->csum = res; SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; return csum_fold(csum_partial(csum_start, plen, partial)); } static inline bool skb_is_gso(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_size; } /* Note: Should be called only if skb_is_gso(skb) is true */ static inline bool skb_is_gso_v6(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; } /* Note: Should be called only if skb_is_gso(skb) is true */ static inline bool skb_is_gso_sctp(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; } /* Note: Should be called only if skb_is_gso(skb) is true */ static inline bool skb_is_gso_tcp(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); } static inline void skb_gso_reset(struct sk_buff *skb) { skb_shinfo(skb)->gso_size = 0; skb_shinfo(skb)->gso_segs = 0; skb_shinfo(skb)->gso_type = 0; } static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, u16 increment) { if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) return; shinfo->gso_size += increment; } static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, u16 decrement) { if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) return; shinfo->gso_size -= decrement; } void __skb_warn_lro_forwarding(const struct sk_buff *skb); static inline bool skb_warn_if_lro(const struct sk_buff *skb) { /* LRO sets gso_size but not gso_type, whereas if GSO is really * wanted then gso_type will be set. */ const struct skb_shared_info *shinfo = skb_shinfo(skb); if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { __skb_warn_lro_forwarding(skb); return true; } return false; } static inline void skb_forward_csum(struct sk_buff *skb) { /* Unfortunately we don't support this one. Any brave souls? */ if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; } /** * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE * @skb: skb to check * * fresh skbs have their ip_summed set to CHECKSUM_NONE. * Instead of forcing ip_summed to CHECKSUM_NONE, we can * use this helper, to document places where we make this assertion. */ static inline void skb_checksum_none_assert(const struct sk_buff *skb) { #ifdef DEBUG BUG_ON(skb->ip_summed != CHECKSUM_NONE); #endif } bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); int skb_checksum_setup(struct sk_buff *skb, bool recalculate); struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, unsigned int transport_len, __sum16(*skb_chkf)(struct sk_buff *skb)); /** * skb_head_is_locked - Determine if the skb->head is locked down * @skb: skb to check * * The head on skbs build around a head frag can be removed if they are * not cloned. This function returns true if the skb head is locked down * due to either being allocated via kmalloc, or by being a clone with * multiple references to the head. */ static inline bool skb_head_is_locked(const struct sk_buff *skb) { return !skb->head_frag || skb_cloned(skb); } /* Local Checksum Offload. * Compute outer checksum based on the assumption that the * inner checksum will be offloaded later. * See Documentation/networking/checksum-offloads.rst for * explanation of how this works. * Fill in outer checksum adjustment (e.g. with sum of outer * pseudo-header) before calling. * Also ensure that inner checksum is in linear data area. */ static inline __wsum lco_csum(struct sk_buff *skb) { unsigned char *csum_start = skb_checksum_start(skb); unsigned char *l4_hdr = skb_transport_header(skb); __wsum partial; /* Start with complement of inner checksum adjustment */ partial = ~csum_unfold(*(__force __sum16 *)(csum_start + skb->csum_offset)); /* Add in checksum of our headers (incl. outer checksum * adjustment filled in by caller) and return result. */ return csum_partial(l4_hdr, csum_start - l4_hdr, partial); } static inline bool skb_is_redirected(const struct sk_buff *skb) { #ifdef CONFIG_NET_REDIRECT return skb->redirected; #else return false; #endif } static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) { #ifdef CONFIG_NET_REDIRECT skb->redirected = 1; skb->from_ingress = from_ingress; if (skb->from_ingress) skb->tstamp = 0; #endif } static inline void skb_reset_redirect(struct sk_buff *skb) { #ifdef CONFIG_NET_REDIRECT skb->redirected = 0; #endif } #if IS_ENABLED(CONFIG_KCOV) && IS_ENABLED(CONFIG_SKB_EXTENSIONS) static inline void skb_set_kcov_handle(struct sk_buff *skb, const u64 kcov_handle) { /* Do not allocate skb extensions only to set kcov_handle to zero * (as it is zero by default). However, if the extensions are * already allocated, update kcov_handle anyway since * skb_set_kcov_handle can be called to zero a previously set * value. */ if (skb_has_extensions(skb) || kcov_handle) { u64 *kcov_handle_ptr = skb_ext_add(skb, SKB_EXT_KCOV_HANDLE); if (kcov_handle_ptr)