1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_COMPLETION_H #define __LINUX_COMPLETION_H /* * (C) Copyright 2001 Linus Torvalds * * Atomic wait-for-completion handler data structures. * See kernel/sched/completion.c for details. */ #include <linux/swait.h> /* * struct completion - structure used to maintain state for a "completion" * * This is the opaque structure used to maintain the state for a "completion". * Completions currently use a FIFO to queue threads that have to wait for * the "completion" event. * * See also: complete(), wait_for_completion() (and friends _timeout, * _interruptible, _interruptible_timeout, and _killable), init_completion(), * reinit_completion(), and macros DECLARE_COMPLETION(), * DECLARE_COMPLETION_ONSTACK(). */ struct completion { unsigned int done; struct swait_queue_head wait; }; #define init_completion_map(x, m) __init_completion(x) #define init_completion(x) __init_completion(x) static inline void complete_acquire(struct completion *x) {} static inline void complete_release(struct completion *x) {} #define COMPLETION_INITIALIZER(work) \ { 0, __SWAIT_QUEUE_HEAD_INITIALIZER((work).wait) } #define COMPLETION_INITIALIZER_ONSTACK_MAP(work, map) \ (*({ init_completion_map(&(work), &(map)); &(work); })) #define COMPLETION_INITIALIZER_ONSTACK(work) \ (*({ init_completion(&work); &work; })) /** * DECLARE_COMPLETION - declare and initialize a completion structure * @work: identifier for the completion structure * * This macro declares and initializes a completion structure. Generally used * for static declarations. You should use the _ONSTACK variant for automatic * variables. */ #define DECLARE_COMPLETION(work) \ struct completion work = COMPLETION_INITIALIZER(work) /* * Lockdep needs to run a non-constant initializer for on-stack * completions - so we use the _ONSTACK() variant for those that * are on the kernel stack: */ /** * DECLARE_COMPLETION_ONSTACK - declare and initialize a completion structure * @work: identifier for the completion structure * * This macro declares and initializes a completion structure on the kernel * stack. */ #ifdef CONFIG_LOCKDEP # define DECLARE_COMPLETION_ONSTACK(work) \ struct completion work = COMPLETION_INITIALIZER_ONSTACK(work) # define DECLARE_COMPLETION_ONSTACK_MAP(work, map) \ struct completion work = COMPLETION_INITIALIZER_ONSTACK_MAP(work, map) #else # define DECLARE_COMPLETION_ONSTACK(work) DECLARE_COMPLETION(work) # define DECLARE_COMPLETION_ONSTACK_MAP(work, map) DECLARE_COMPLETION(work) #endif /** * init_completion - Initialize a dynamically allocated completion * @x: pointer to completion structure that is to be initialized * * This inline function will initialize a dynamically created completion * structure. */ static inline void __init_completion(struct completion *x) { x->done = 0; init_swait_queue_head(&x->wait); } /** * reinit_completion - reinitialize a completion structure * @x: pointer to completion structure that is to be reinitialized * * This inline function should be used to reinitialize a completion structure so it can * be reused. This is especially important after complete_all() is used. */ static inline void reinit_completion(struct completion *x) { x->done = 0; } extern void wait_for_completion(struct completion *); extern void wait_for_completion_io(struct completion *); extern int wait_for_completion_interruptible(struct completion *x); extern int wait_for_completion_killable(struct completion *x); extern unsigned long wait_for_completion_timeout(struct completion *x, unsigned long timeout); extern unsigned long wait_for_completion_io_timeout(struct completion *x, unsigned long timeout); extern long wait_for_completion_interruptible_timeout( struct completion *x, unsigned long timeout); extern long wait_for_completion_killable_timeout( struct completion *x, unsigned long timeout); extern bool try_wait_for_completion(struct completion *x); extern bool completion_done(struct completion *x); extern void complete(struct completion *); extern void complete_all(struct completion *); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TIMEKEEPING_H #define _LINUX_TIMEKEEPING_H #include <linux/errno.h> /* Included from linux/ktime.h */ void timekeeping_init(void); extern int timekeeping_suspended; /* Architecture timer tick functions: */ extern void update_process_times(int user); extern void xtime_update(unsigned long ticks); /* * Get and set timeofday */ extern int do_settimeofday64(const struct timespec64 *ts); extern int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz); /* * ktime_get() family: read the current time in a multitude of ways, * * The default time reference is CLOCK_MONOTONIC, starting at * boot time but not counting the time spent in suspend. * For other references, use the functions with "real", "clocktai", * "boottime" and "raw" suffixes. * * To get the time in a different format, use the ones wit * "ns", "ts64" and "seconds" suffix. * * See Documentation/core-api/timekeeping.rst for more details. */ /* * timespec64 based interfaces */ extern void ktime_get_raw_ts64(struct timespec64 *ts); extern void ktime_get_ts64(struct timespec64 *ts); extern void ktime_get_real_ts64(struct timespec64 *tv); extern void ktime_get_coarse_ts64(struct timespec64 *ts); extern void ktime_get_coarse_real_ts64(struct timespec64 *ts); void getboottime64(struct timespec64 *ts); /* * time64_t base interfaces */ extern time64_t ktime_get_seconds(void); extern time64_t __ktime_get_real_seconds(void); extern time64_t ktime_get_real_seconds(void); /* * ktime_t based interfaces */ enum tk_offsets { TK_OFFS_REAL, TK_OFFS_BOOT, TK_OFFS_TAI, TK_OFFS_MAX, }; extern ktime_t ktime_get(void); extern ktime_t ktime_get_with_offset(enum tk_offsets offs); extern ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs); extern ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs); extern ktime_t ktime_get_raw(void); extern u32 ktime_get_resolution_ns(void); /** * ktime_get_real - get the real (wall-) time in ktime_t format */ static inline ktime_t ktime_get_real(void) { return ktime_get_with_offset(TK_OFFS_REAL); } static inline ktime_t ktime_get_coarse_real(void) { return ktime_get_coarse_with_offset(TK_OFFS_REAL); } /** * ktime_get_boottime - Returns monotonic time since boot in ktime_t format * * This is similar to CLOCK_MONTONIC/ktime_get, but also includes the * time spent in suspend. */ static inline ktime_t ktime_get_boottime(void) { return ktime_get_with_offset(TK_OFFS_BOOT); } static inline ktime_t ktime_get_coarse_boottime(void) { return ktime_get_coarse_with_offset(TK_OFFS_BOOT); } /** * ktime_get_clocktai - Returns the TAI time of day in ktime_t format */ static inline ktime_t ktime_get_clocktai(void) { return ktime_get_with_offset(TK_OFFS_TAI); } static inline ktime_t ktime_get_coarse_clocktai(void) { return ktime_get_coarse_with_offset(TK_OFFS_TAI); } static inline ktime_t ktime_get_coarse(void) { struct timespec64 ts; ktime_get_coarse_ts64(&ts); return timespec64_to_ktime(ts); } static inline u64 ktime_get_coarse_ns(void) { return ktime_to_ns(ktime_get_coarse()); } static inline u64 ktime_get_coarse_real_ns(void) { return ktime_to_ns(ktime_get_coarse_real()); } static inline u64 ktime_get_coarse_boottime_ns(void) { return ktime_to_ns(ktime_get_coarse_boottime()); } static inline u64 ktime_get_coarse_clocktai_ns(void) { return ktime_to_ns(ktime_get_coarse_clocktai()); } /** * ktime_mono_to_real - Convert monotonic time to clock realtime */ static inline ktime_t ktime_mono_to_real(ktime_t mono) { return ktime_mono_to_any(mono, TK_OFFS_REAL); } static inline u64 ktime_get_ns(void) { return ktime_to_ns(ktime_get()); } static inline u64 ktime_get_real_ns(void) { return ktime_to_ns(ktime_get_real()); } static inline u64 ktime_get_boottime_ns(void) { return ktime_to_ns(ktime_get_boottime()); } static inline u64 ktime_get_clocktai_ns(void) { return ktime_to_ns(ktime_get_clocktai()); } static inline u64 ktime_get_raw_ns(void) { return ktime_to_ns(ktime_get_raw()); } extern u64 ktime_get_mono_fast_ns(void); extern u64 ktime_get_raw_fast_ns(void); extern u64 ktime_get_boot_fast_ns(void); extern u64 ktime_get_real_fast_ns(void); /* * timespec64/time64_t interfaces utilizing the ktime based ones * for API completeness, these could be implemented more efficiently * if needed. */ static inline void ktime_get_boottime_ts64(struct timespec64 *ts) { *ts = ktime_to_timespec64(ktime_get_boottime()); } static inline void ktime_get_coarse_boottime_ts64(struct timespec64 *ts) { *ts = ktime_to_timespec64(ktime_get_coarse_boottime()); } static inline time64_t ktime_get_boottime_seconds(void) { return ktime_divns(ktime_get_coarse_boottime(), NSEC_PER_SEC); } static inline void ktime_get_clocktai_ts64(struct timespec64 *ts) { *ts = ktime_to_timespec64(ktime_get_clocktai()); } static inline void ktime_get_coarse_clocktai_ts64(struct timespec64 *ts) { *ts = ktime_to_timespec64(ktime_get_coarse_clocktai()); } static inline time64_t ktime_get_clocktai_seconds(void) { return ktime_divns(ktime_get_coarse_clocktai(), NSEC_PER_SEC); } /* * RTC specific */ extern bool timekeeping_rtc_skipsuspend(void); extern bool timekeeping_rtc_skipresume(void); extern void timekeeping_inject_sleeptime64(const struct timespec64 *delta); /* * struct ktime_timestanps - Simultaneous mono/boot/real timestamps * @mono: Monotonic timestamp * @boot: Boottime timestamp * @real: Realtime timestamp */ struct ktime_timestamps { u64 mono; u64 boot; u64 real; }; /** * struct system_time_snapshot - simultaneous raw/real time capture with * counter value * @cycles: Clocksource counter value to produce the system times * @real: Realtime system time * @raw: Monotonic raw system time * @clock_was_set_seq: The sequence number of clock was set events * @cs_was_changed_seq: The sequence number of clocksource change events */ struct system_time_snapshot { u64 cycles; ktime_t real; ktime_t raw; unsigned int clock_was_set_seq; u8 cs_was_changed_seq; }; /** * struct system_device_crosststamp - system/device cross-timestamp * (synchronized capture) * @device: Device time * @sys_realtime: Realtime simultaneous with device time * @sys_monoraw: Monotonic raw simultaneous with device time */ struct system_device_crosststamp { ktime_t device; ktime_t sys_realtime; ktime_t sys_monoraw; }; /** * struct system_counterval_t - system counter value with the pointer to the * corresponding clocksource * @cycles: System counter value * @cs: Clocksource corresponding to system counter value. Used by * timekeeping code to verify comparibility of two cycle values */ struct system_counterval_t { u64 cycles; struct clocksource *cs; }; /* * Get cross timestamp between system clock and device clock */ extern int get_device_system_crosststamp( int (*get_time_fn)(ktime_t *device_time, struct system_counterval_t *system_counterval, void *ctx), void *ctx, struct system_time_snapshot *history, struct system_device_crosststamp *xtstamp); /* * Simultaneously snapshot realtime and monotonic raw clocks */ extern void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot); /* NMI safe mono/boot/realtime timestamps */ extern void ktime_get_fast_timestamps(struct ktime_timestamps *snap); /* * Persistent clock related interfaces */ extern int persistent_clock_is_local; extern void read_persistent_clock64(struct timespec64 *ts); void read_persistent_wall_and_boot_offset(struct timespec64 *wall_clock, struct timespec64 *boot_offset); extern int update_persistent_clock64(struct timespec64 now); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_FUTEX_H #define _ASM_X86_FUTEX_H #ifdef __KERNEL__ #include <linux/futex.h> #include <linux/uaccess.h> #include <asm/asm.h> #include <asm/errno.h> #include <asm/processor.h> #include <asm/smap.h> #define unsafe_atomic_op1(insn, oval, uaddr, oparg, label) \ do { \ int oldval = 0, ret; \ asm volatile("1:\t" insn "\n" \ "2:\n" \ "\t.section .fixup,\"ax\"\n" \ "3:\tmov\t%3, %1\n" \ "\tjmp\t2b\n" \ "\t.previous\n" \ _ASM_EXTABLE_UA(1b, 3b) \ : "=r" (oldval), "=r" (ret), "+m" (*uaddr) \ : "i" (-EFAULT), "0" (oparg), "1" (0)); \ if (ret) \ goto label; \ *oval = oldval; \ } while(0) #define unsafe_atomic_op2(insn, oval, uaddr, oparg, label) \ do { \ int oldval = 0, ret, tem; \ asm volatile("1:\tmovl %2, %0\n" \ "2:\tmovl\t%0, %3\n" \ "\t" insn "\n" \ "3:\t" LOCK_PREFIX "cmpxchgl %3, %2\n" \ "\tjnz\t2b\n" \ "4:\n" \ "\t.section .fixup,\"ax\"\n" \ "5:\tmov\t%5, %1\n" \ "\tjmp\t4b\n" \ "\t.previous\n" \ _ASM_EXTABLE_UA(1b, 5b) \ _ASM_EXTABLE_UA(3b, 5b) \ : "=&a" (oldval), "=&r" (ret), \ "+m" (*uaddr), "=&r" (tem) \ : "r" (oparg), "i" (-EFAULT), "1" (0)); \ if (ret) \ goto label; \ *oval = oldval; \ } while(0) static __always_inline int arch_futex_atomic_op_inuser(int op, int oparg, int *oval, u32 __user *uaddr) { if (!user_access_begin(uaddr, sizeof(u32))) return -EFAULT; switch (op) { case FUTEX_OP_SET: unsafe_atomic_op1("xchgl %0, %2", oval, uaddr, oparg, Efault); break; case FUTEX_OP_ADD: unsafe_atomic_op1(LOCK_PREFIX "xaddl %0, %2", oval, uaddr, oparg, Efault); break; case FUTEX_OP_OR: unsafe_atomic_op2("orl %4, %3", oval, uaddr, oparg, Efault); break; case FUTEX_OP_ANDN: unsafe_atomic_op2("andl %4, %3", oval, uaddr, ~oparg, Efault); break; case FUTEX_OP_XOR: unsafe_atomic_op2("xorl %4, %3", oval, uaddr, oparg, Efault); break; default: user_access_end(); return -ENOSYS; } user_access_end(); return 0; Efault: user_access_end(); return -EFAULT; } static inline int futex_atomic_cmpxchg_inatomic(u32 *uval, u32 __user *uaddr, u32 oldval, u32 newval) { int ret = 0; if (!user_access_begin(uaddr, sizeof(u32))) return -EFAULT; asm volatile("\n" "1:\t" LOCK_PREFIX "cmpxchgl %4, %2\n" "2:\n" "\t.section .fixup, \"ax\"\n" "3:\tmov %3, %0\n" "\tjmp 2b\n" "\t.previous\n" _ASM_EXTABLE_UA(1b, 3b) : "+r" (ret), "=a" (oldval), "+m" (*uaddr) : "i" (-EFAULT), "r" (newval), "1" (oldval) : "memory" ); user_access_end(); *uval = oldval; return ret; } #endif #endif /* _ASM_X86_FUTEX_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 #ifndef _LINUX_UNALIGNED_PACKED_STRUCT_H #define _LINUX_UNALIGNED_PACKED_STRUCT_H #include <linux/kernel.h> struct __una_u16 { u16 x; } __packed; struct __una_u32 { u32 x; } __packed; struct __una_u64 { u64 x; } __packed; static inline u16 __get_unaligned_cpu16(const void *p) { const struct __una_u16 *ptr = (const struct __una_u16 *)p; return ptr->x; } static inline u32 __get_unaligned_cpu32(const void *p) { const struct __una_u32 *ptr = (const struct __una_u32 *)p; return ptr->x; } static inline u64 __get_unaligned_cpu64(const void *p) { const struct __una_u64 *ptr = (const struct __una_u64 *)p; return ptr->x; } static inline void __put_unaligned_cpu16(u16 val, void *p) { struct __una_u16 *ptr = (struct __una_u16 *)p; ptr->x = val; } static inline void __put_unaligned_cpu32(u32 val, void *p) { struct __una_u32 *ptr = (struct __una_u32 *)p; ptr->x = val; } static inline void __put_unaligned_cpu64(u64 val, void *p) { struct __una_u64 *ptr = (struct __una_u64 *)p; ptr->x = val; } #endif /* _LINUX_UNALIGNED_PACKED_STRUCT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PART_STAT_H #define _LINUX_PART_STAT_H #include <linux/genhd.h> struct disk_stats { u64 nsecs[NR_STAT_GROUPS]; unsigned long sectors[NR_STAT_GROUPS]; unsigned long ios[NR_STAT_GROUPS]; unsigned long merges[NR_STAT_GROUPS]; unsigned long io_ticks; local_t in_flight[2]; }; /* * Macros to operate on percpu disk statistics: * * {disk|part|all}_stat_{add|sub|inc|dec}() modify the stat counters and should * be called between disk_stat_lock() and disk_stat_unlock(). * * part_stat_read() can be called at any time. */ #define part_stat_lock() preempt_disable() #define part_stat_unlock() preempt_enable() #define part_stat_get_cpu(part, field, cpu) \ (per_cpu_ptr((part)->dkstats, (cpu))->field) #define part_stat_get(part, field) \ part_stat_get_cpu(part, field, smp_processor_id()) #define part_stat_read(part, field) \ ({ \ typeof((part)->dkstats->field) res = 0; \ unsigned int _cpu; \ for_each_possible_cpu(_cpu) \ res += per_cpu_ptr((part)->dkstats, _cpu)->field; \ res; \ }) static inline void part_stat_set_all(struct hd_struct *part, int value) { int i; for_each_possible_cpu(i) memset(per_cpu_ptr(part->dkstats, i), value, sizeof(struct disk_stats)); } #define part_stat_read_accum(part, field) \ (part_stat_read(part, field[STAT_READ]) + \ part_stat_read(part, field[STAT_WRITE]) + \ part_stat_read(part, field[STAT_DISCARD])) #define __part_stat_add(part, field, addnd) \ __this_cpu_add((part)->dkstats->field, addnd) #define part_stat_add(part, field, addnd) do { \ __part_stat_add((part), field, addnd); \ if ((part)->partno) \ __part_stat_add(&part_to_disk((part))->part0, \ field, addnd); \ } while (0) #define part_stat_dec(gendiskp, field) \ part_stat_add(gendiskp, field, -1) #define part_stat_inc(gendiskp, field) \ part_stat_add(gendiskp, field, 1) #define part_stat_sub(gendiskp, field, subnd) \ part_stat_add(gendiskp, field, -subnd) #define part_stat_local_dec(gendiskp, field) \ local_dec(&(part_stat_get(gendiskp, field))) #define part_stat_local_inc(gendiskp, field) \ local_inc(&(part_stat_get(gendiskp, field))) #define part_stat_local_read(gendiskp, field) \ local_read(&(part_stat_get(gendiskp, field))) #define part_stat_local_read_cpu(gendiskp, field, cpu) \ local_read(&(part_stat_get_cpu(gendiskp, field, cpu))) #endif /* _LINUX_PART_STAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the TCP protocol. * * Version: @(#)tcp.h 1.0.2 04/28/93 * * Author: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _LINUX_TCP_H #define _LINUX_TCP_H #include <linux/skbuff.h> #include <linux/win_minmax.h> #include <net/sock.h> #include <net/inet_connection_sock.h> #include <net/inet_timewait_sock.h> #include <uapi/linux/tcp.h> static inline struct tcphdr *tcp_hdr(const struct sk_buff *skb) { return (struct tcphdr *)skb_transport_header(skb); } static inline unsigned int __tcp_hdrlen(const struct tcphdr *th) { return th->doff * 4; } static inline unsigned int tcp_hdrlen(const struct sk_buff *skb) { return __tcp_hdrlen(tcp_hdr(skb)); } static inline struct tcphdr *inner_tcp_hdr(const struct sk_buff *skb) { return (struct tcphdr *)skb_inner_transport_header(skb); } static inline unsigned int inner_tcp_hdrlen(const struct sk_buff *skb) { return inner_tcp_hdr(skb)->doff * 4; } static inline unsigned int tcp_optlen(const struct sk_buff *skb) { return (tcp_hdr(skb)->doff - 5) * 4; } /* TCP Fast Open */ #define TCP_FASTOPEN_COOKIE_MIN 4 /* Min Fast Open Cookie size in bytes */ #define TCP_FASTOPEN_COOKIE_MAX 16 /* Max Fast Open Cookie size in bytes */ #define TCP_FASTOPEN_COOKIE_SIZE 8 /* the size employed by this impl. */ /* TCP Fast Open Cookie as stored in memory */ struct tcp_fastopen_cookie { __le64 val[DIV_ROUND_UP(TCP_FASTOPEN_COOKIE_MAX, sizeof(u64))]; s8 len; bool exp; /* In RFC6994 experimental option format */ }; /* This defines a selective acknowledgement block. */ struct tcp_sack_block_wire { __be32 start_seq; __be32 end_seq; }; struct tcp_sack_block { u32 start_seq; u32 end_seq; }; /*These are used to set the sack_ok field in struct tcp_options_received */ #define TCP_SACK_SEEN (1 << 0) /*1 = peer is SACK capable, */ #define TCP_DSACK_SEEN (1 << 2) /*1 = DSACK was received from peer*/ struct tcp_options_received { /* PAWS/RTTM data */ int ts_recent_stamp;/* Time we stored ts_recent (for aging) */ u32 ts_recent; /* Time stamp to echo next */ u32 rcv_tsval; /* Time stamp value */ u32 rcv_tsecr; /* Time stamp echo reply */ u16 saw_tstamp : 1, /* Saw TIMESTAMP on last packet */ tstamp_ok : 1, /* TIMESTAMP seen on SYN packet */ dsack : 1, /* D-SACK is scheduled */ wscale_ok : 1, /* Wscale seen on SYN packet */ sack_ok : 3, /* SACK seen on SYN packet */ smc_ok : 1, /* SMC seen on SYN packet */ snd_wscale : 4, /* Window scaling received from sender */ rcv_wscale : 4; /* Window scaling to send to receiver */ u8 saw_unknown:1, /* Received unknown option */ unused:7; u8 num_sacks; /* Number of SACK blocks */ u16 user_mss; /* mss requested by user in ioctl */ u16 mss_clamp; /* Maximal mss, negotiated at connection setup */ }; static inline void tcp_clear_options(struct tcp_options_received *rx_opt) { rx_opt->tstamp_ok = rx_opt->sack_ok = 0; rx_opt->wscale_ok = rx_opt->snd_wscale = 0; #if IS_ENABLED(CONFIG_SMC) rx_opt->smc_ok = 0; #endif } /* This is the max number of SACKS that we'll generate and process. It's safe * to increase this, although since: * size = TCPOLEN_SACK_BASE_ALIGNED (4) + n * TCPOLEN_SACK_PERBLOCK (8) * only four options will fit in a standard TCP header */ #define TCP_NUM_SACKS 4 struct tcp_request_sock_ops; struct tcp_request_sock { struct inet_request_sock req; const struct tcp_request_sock_ops *af_specific; u64 snt_synack; /* first SYNACK sent time */ bool tfo_listener; bool is_mptcp; #if IS_ENABLED(CONFIG_MPTCP) bool drop_req; #endif u32 txhash; u32 rcv_isn; u32 snt_isn; u32 ts_off; u32 last_oow_ack_time; /* last SYNACK */ u32 rcv_nxt; /* the ack # by SYNACK. For * FastOpen it's the seq# * after data-in-SYN. */ u8 syn_tos; }; static inline struct tcp_request_sock *tcp_rsk(const struct request_sock *req) { return (struct tcp_request_sock *)req; } struct tcp_sock { /* inet_connection_sock has to be the first member of tcp_sock */ struct inet_connection_sock inet_conn; u16 tcp_header_len; /* Bytes of tcp header to send */ u16 gso_segs; /* Max number of segs per GSO packet */ /* * Header prediction flags * 0x5?10 << 16 + snd_wnd in net byte order */ __be32 pred_flags; /* * RFC793 variables by their proper names. This means you can * read the code and the spec side by side (and laugh ...) * See RFC793 and RFC1122. The RFC writes these in capitals. */ u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived * sum(delta(rcv_nxt)), or how many bytes * were acked. */ u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn * total number of segments in. */ u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn * total number of data segments in. */ u32 rcv_nxt; /* What we want to receive next */ u32 copied_seq; /* Head of yet unread data */ u32 rcv_wup; /* rcv_nxt on last window update sent */ u32 snd_nxt; /* Next sequence we send */ u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut * The total number of segments sent. */ u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut * total number of data segments sent. */ u64 bytes_sent; /* RFC4898 tcpEStatsPerfHCDataOctetsOut * total number of data bytes sent. */ u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked * sum(delta(snd_una)), or how many bytes * were acked. */ u32 dsack_dups; /* RFC4898 tcpEStatsStackDSACKDups * total number of DSACK blocks received */ u32 snd_una; /* First byte we want an ack for */ u32 snd_sml; /* Last byte of the most recently transmitted small packet */ u32 rcv_tstamp; /* timestamp of last received ACK (for keepalives) */ u32 lsndtime; /* timestamp of last sent data packet (for restart window) */ u32 last_oow_ack_time; /* timestamp of last out-of-window ACK */ u32 compressed_ack_rcv_nxt; u32 tsoffset; /* timestamp offset */ struct list_head tsq_node; /* anchor in tsq_tasklet.head list */ struct list_head tsorted_sent_queue; /* time-sorted sent but un-SACKed skbs */ u32 snd_wl1; /* Sequence for window update */ u32 snd_wnd; /* The window we expect to receive */ u32 max_window; /* Maximal window ever seen from peer */ u32 mss_cache; /* Cached effective mss, not including SACKS */ u32 window_clamp; /* Maximal window to advertise */ u32 rcv_ssthresh; /* Current window clamp */ /* Information of the most recently (s)acked skb */ struct tcp_rack { u64 mstamp; /* (Re)sent time of the skb */ u32 rtt_us; /* Associated RTT */ u32 end_seq; /* Ending TCP sequence of the skb */ u32 last_delivered; /* tp->delivered at last reo_wnd adj */ u8 reo_wnd_steps; /* Allowed reordering window */ #define TCP_RACK_RECOVERY_THRESH 16 u8 reo_wnd_persist:5, /* No. of recovery since last adj */ dsack_seen:1, /* Whether DSACK seen after last adj */ advanced:1; /* mstamp advanced since last lost marking */ } rack; u16 advmss; /* Advertised MSS */ u8 compressed_ack; u8 dup_ack_counter:2, tlp_retrans:1, /* TLP is a retransmission */ unused:5; u32 chrono_start; /* Start time in jiffies of a TCP chrono */ u32 chrono_stat[3]; /* Time in jiffies for chrono_stat stats */ u8 chrono_type:2, /* current chronograph type */ rate_app_limited:1, /* rate_{delivered,interval_us} limited? */ fastopen_connect:1, /* FASTOPEN_CONNECT sockopt */ fastopen_no_cookie:1, /* Allow send/recv SYN+data without a cookie */ is_sack_reneg:1, /* in recovery from loss with SACK reneg? */ fastopen_client_fail:2; /* reason why fastopen failed */ u8 nonagle : 4,/* Disable Nagle algorithm? */ thin_lto : 1,/* Use linear timeouts for thin streams */ recvmsg_inq : 1,/* Indicate # of bytes in queue upon recvmsg */ repair : 1, frto : 1;/* F-RTO (RFC5682) activated in CA_Loss */ u8 repair_queue; u8 save_syn:2, /* Save headers of SYN packet */ syn_data:1, /* SYN includes data */ syn_fastopen:1, /* SYN includes Fast Open option */ syn_fastopen_exp:1,/* SYN includes Fast Open exp. option */ syn_fastopen_ch:1, /* Active TFO re-enabling probe */ syn_data_acked:1,/* data in SYN is acked by SYN-ACK */ is_cwnd_limited:1;/* forward progress limited by snd_cwnd? */ u32 tlp_high_seq; /* snd_nxt at the time of TLP */ u32 tcp_tx_delay; /* delay (in usec) added to TX packets */ u64 tcp_wstamp_ns; /* departure time for next sent data packet */ u64 tcp_clock_cache; /* cache last tcp_clock_ns() (see tcp_mstamp_refresh()) */ /* RTT measurement */ u64 tcp_mstamp; /* most recent packet received/sent */ u32 srtt_us; /* smoothed round trip time << 3 in usecs */ u32 mdev_us; /* medium deviation */ u32 mdev_max_us; /* maximal mdev for the last rtt period */ u32 rttvar_us; /* smoothed mdev_max */ u32 rtt_seq; /* sequence number to update rttvar */ struct minmax rtt_min; u32 packets_out; /* Packets which are "in flight" */ u32 retrans_out; /* Retransmitted packets out */ u32 max_packets_out; /* max packets_out in last window */ u32 max_packets_seq; /* right edge of max_packets_out flight */ u16 urg_data; /* Saved octet of OOB data and control flags */ u8 ecn_flags; /* ECN status bits. */ u8 keepalive_probes; /* num of allowed keep alive probes */ u32 reordering; /* Packet reordering metric. */ u32 reord_seen; /* number of data packet reordering events */ u32 snd_up; /* Urgent pointer */ /* * Options received (usually on last packet, some only on SYN packets). */ struct tcp_options_received rx_opt; /* * Slow start and congestion control (see also Nagle, and Karn & Partridge) */ u32 snd_ssthresh; /* Slow start size threshold */ u32 snd_cwnd; /* Sending congestion window */ u32 snd_cwnd_cnt; /* Linear increase counter */ u32 snd_cwnd_clamp; /* Do not allow snd_cwnd to grow above this */ u32 snd_cwnd_used; u32 snd_cwnd_stamp; u32 prior_cwnd; /* cwnd right before starting loss recovery */ u32 prr_delivered; /* Number of newly delivered packets to * receiver in Recovery. */ u32 prr_out; /* Total number of pkts sent during Recovery. */ u32 delivered; /* Total data packets delivered incl. rexmits */ u32 delivered_ce; /* Like the above but only ECE marked packets */ u32 lost; /* Total data packets lost incl. rexmits */ u32 app_limited; /* limited until "delivered" reaches this val */ u64 first_tx_mstamp; /* start of window send phase */ u64 delivered_mstamp; /* time we reached "delivered" */ u32 rate_delivered; /* saved rate sample: packets delivered */ u32 rate_interval_us; /* saved rate sample: time elapsed */ u32 rcv_wnd; /* Current receiver window */ u32 write_seq; /* Tail(+1) of data held in tcp send buffer */ u32 notsent_lowat; /* TCP_NOTSENT_LOWAT */ u32 pushed_seq; /* Last pushed seq, required to talk to windows */ u32 lost_out; /* Lost packets */ u32 sacked_out; /* SACK'd packets */ struct hrtimer pacing_timer; struct hrtimer compressed_ack_timer; /* from STCP, retrans queue hinting */ struct sk_buff* lost_skb_hint; struct sk_buff *retransmit_skb_hint; /* OOO segments go in this rbtree. Socket lock must be held. */ struct rb_root out_of_order_queue; struct sk_buff *ooo_last_skb; /* cache rb_last(out_of_order_queue) */ /* SACKs data, these 2 need to be together (see tcp_options_write) */ struct tcp_sack_block duplicate_sack[1]; /* D-SACK block */ struct tcp_sack_block selective_acks[4]; /* The SACKS themselves*/ struct tcp_sack_block recv_sack_cache[4]; struct sk_buff *highest_sack; /* skb just after the highest * skb with SACKed bit set * (validity guaranteed only if * sacked_out > 0) */ int lost_cnt_hint; u32 prior_ssthresh; /* ssthresh saved at recovery start */ u32 high_seq; /* snd_nxt at onset of congestion */ u32 retrans_stamp; /* Timestamp of the last retransmit, * also used in SYN-SENT to remember stamp of * the first SYN. */ u32 undo_marker; /* snd_una upon a new recovery episode. */ int undo_retrans; /* number of undoable retransmissions. */ u64 bytes_retrans; /* RFC4898 tcpEStatsPerfOctetsRetrans * Total data bytes retransmitted */ u32 total_retrans; /* Total retransmits for entire connection */ u32 urg_seq; /* Seq of received urgent pointer */ unsigned int keepalive_time; /* time before keep alive takes place */ unsigned int keepalive_intvl; /* time interval between keep alive probes */ int linger2; /* Sock_ops bpf program related variables */ #ifdef CONFIG_BPF u8 bpf_sock_ops_cb_flags; /* Control calling BPF programs * values defined in uapi/linux/tcp.h */ #define BPF_SOCK_OPS_TEST_FLAG(TP, ARG) (TP->bpf_sock_ops_cb_flags & ARG) #else #define BPF_SOCK_OPS_TEST_FLAG(TP, ARG) 0 #endif u16 timeout_rehash; /* Timeout-triggered rehash attempts */ u32 rcv_ooopack; /* Received out-of-order packets, for tcpinfo */ /* Receiver side RTT estimation */ u32 rcv_rtt_last_tsecr; struct { u32 rtt_us; u32 seq; u64 time; } rcv_rtt_est; /* Receiver queue space */ struct { u32 space; u32 seq; u64 time; } rcvq_space; /* TCP-specific MTU probe information. */ struct { u32 probe_seq_start; u32 probe_seq_end; } mtu_probe; u32 mtu_info; /* We received an ICMP_FRAG_NEEDED / ICMPV6_PKT_TOOBIG * while socket was owned by user. */ #if IS_ENABLED(CONFIG_MPTCP) bool is_mptcp; #endif #if IS_ENABLED(CONFIG_SMC) bool syn_smc; /* SYN includes SMC */ #endif #ifdef CONFIG_TCP_MD5SIG /* TCP AF-Specific parts; only used by MD5 Signature support so far */ const struct tcp_sock_af_ops *af_specific; /* TCP MD5 Signature Option information */ struct tcp_md5sig_info __rcu *md5sig_info; #endif /* TCP fastopen related information */ struct tcp_fastopen_request *fastopen_req; /* fastopen_rsk points to request_sock that resulted in this big * socket. Used to retransmit SYNACKs etc. */ struct request_sock __rcu *fastopen_rsk; struct saved_syn *saved_syn; }; enum tsq_enum { TSQ_THROTTLED, TSQ_QUEUED, TCP_TSQ_DEFERRED, /* tcp_tasklet_func() found socket was owned */ TCP_WRITE_TIMER_DEFERRED, /* tcp_write_timer() found socket was owned */ TCP_DELACK_TIMER_DEFERRED, /* tcp_delack_timer() found socket was owned */ TCP_MTU_REDUCED_DEFERRED, /* tcp_v{4|6}_err() could not call * tcp_v{4|6}_mtu_reduced() */ }; enum tsq_flags { TSQF_THROTTLED = (1UL << TSQ_THROTTLED), TSQF_QUEUED = (1UL << TSQ_QUEUED), TCPF_TSQ_DEFERRED = (1UL << TCP_TSQ_DEFERRED), TCPF_WRITE_TIMER_DEFERRED = (1UL << TCP_WRITE_TIMER_DEFERRED), TCPF_DELACK_TIMER_DEFERRED = (1UL << TCP_DELACK_TIMER_DEFERRED), TCPF_MTU_REDUCED_DEFERRED = (1UL << TCP_MTU_REDUCED_DEFERRED), }; static inline struct tcp_sock *tcp_sk(const struct sock *sk) { return (struct tcp_sock *)sk; } struct tcp_timewait_sock { struct inet_timewait_sock tw_sk; #define tw_rcv_nxt tw_sk.__tw_common.skc_tw_rcv_nxt #define tw_snd_nxt tw_sk.__tw_common.skc_tw_snd_nxt u32 tw_rcv_wnd; u32 tw_ts_offset; u32 tw_ts_recent; /* The time we sent the last out-of-window ACK: */ u32 tw_last_oow_ack_time; int tw_ts_recent_stamp; u32 tw_tx_delay; #ifdef CONFIG_TCP_MD5SIG struct tcp_md5sig_key *tw_md5_key; #endif }; static inline struct tcp_timewait_sock *tcp_twsk(const struct sock *sk) { return (struct tcp_timewait_sock *)sk; } static inline bool tcp_passive_fastopen(const struct sock *sk) { return sk->sk_state == TCP_SYN_RECV && rcu_access_pointer(tcp_sk(sk)->fastopen_rsk) != NULL; } static inline void fastopen_queue_tune(struct sock *sk, int backlog) { struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; int somaxconn = READ_ONCE(sock_net(sk)->core.sysctl_somaxconn); queue->fastopenq.max_qlen = min_t(unsigned int, backlog, somaxconn); } static inline void tcp_move_syn(struct tcp_sock *tp, struct request_sock *req) { tp->saved_syn = req->saved_syn; req->saved_syn = NULL; } static inline void tcp_saved_syn_free(struct tcp_sock *tp) { kfree(tp->saved_syn); tp->saved_syn = NULL; } static inline u32 tcp_saved_syn_len(const struct saved_syn *saved_syn) { return saved_syn->mac_hdrlen + saved_syn->network_hdrlen + saved_syn->tcp_hdrlen; } struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, const struct sk_buff *orig_skb); static inline u16 tcp_mss_clamp(const struct tcp_sock *tp, u16 mss) { /* We use READ_ONCE() here because socket might not be locked. * This happens for listeners. */ u16 user_mss = READ_ONCE(tp->rx_opt.user_mss); return (user_mss && user_mss < mss) ? user_mss : mss; } int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, int pcount, int shiftlen); void tcp_sock_set_cork(struct sock *sk, bool on); int tcp_sock_set_keepcnt(struct sock *sk, int val); int tcp_sock_set_keepidle_locked(struct sock *sk, int val); int tcp_sock_set_keepidle(struct sock *sk, int val); int tcp_sock_set_keepintvl(struct sock *sk, int val); void tcp_sock_set_nodelay(struct sock *sk); void tcp_sock_set_quickack(struct sock *sk, int val); int tcp_sock_set_syncnt(struct sock *sk, int val); void tcp_sock_set_user_timeout(struct sock *sk, u32 val); #endif /* _LINUX_TCP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_GENERIC_NETLINK_H #define __NET_GENERIC_NETLINK_H #include <linux/genetlink.h> #include <net/netlink.h> #include <net/net_namespace.h> #define GENLMSG_DEFAULT_SIZE (NLMSG_DEFAULT_SIZE - GENL_HDRLEN) /** * struct genl_multicast_group - generic netlink multicast group * @name: name of the multicast group, names are per-family */ struct genl_multicast_group { char name[GENL_NAMSIZ]; }; struct genl_ops; struct genl_info; /** * struct genl_family - generic netlink family * @id: protocol family identifier (private) * @hdrsize: length of user specific header in bytes * @name: name of family * @version: protocol version * @maxattr: maximum number of attributes supported * @policy: netlink policy * @netnsok: set to true if the family can handle network * namespaces and should be presented in all of them * @parallel_ops: operations can be called in parallel and aren't * synchronized by the core genetlink code * @pre_doit: called before an operation's doit callback, it may * do additional, common, filtering and return an error * @post_doit: called after an operation's doit callback, it may * undo operations done by pre_doit, for example release locks * @mcgrps: multicast groups used by this family * @n_mcgrps: number of multicast groups * @mcgrp_offset: starting number of multicast group IDs in this family * (private) * @ops: the operations supported by this family * @n_ops: number of operations supported by this family * @small_ops: the small-struct operations supported by this family * @n_small_ops: number of small-struct operations supported by this family */ struct genl_family { int id; /* private */ unsigned int hdrsize; char name[GENL_NAMSIZ]; unsigned int version; unsigned int maxattr; unsigned int mcgrp_offset; /* private */ u8 netnsok:1; u8 parallel_ops:1; u8 n_ops; u8 n_small_ops; u8 n_mcgrps; const struct nla_policy *policy; int (*pre_doit)(const struct genl_ops *ops, struct sk_buff *skb, struct genl_info *info); void (*post_doit)(const struct genl_ops *ops, struct sk_buff *skb, struct genl_info *info); const struct genl_ops * ops; const struct genl_small_ops *small_ops; const struct genl_multicast_group *mcgrps; struct module *module; }; /** * struct genl_info - receiving information * @snd_seq: sending sequence number * @snd_portid: netlink portid of sender * @nlhdr: netlink message header * @genlhdr: generic netlink message header * @userhdr: user specific header * @attrs: netlink attributes * @_net: network namespace * @user_ptr: user pointers * @extack: extended ACK report struct */ struct genl_info { u32 snd_seq; u32 snd_portid; struct nlmsghdr * nlhdr; struct genlmsghdr * genlhdr; void * userhdr; struct nlattr ** attrs; possible_net_t _net; void * user_ptr[2]; struct netlink_ext_ack *extack; }; static inline struct net *genl_info_net(struct genl_info *info) { return read_pnet(&info->_net); } static inline void genl_info_net_set(struct genl_info *info, struct net *net) { write_pnet(&info->_net, net); } #define GENL_SET_ERR_MSG(info, msg) NL_SET_ERR_MSG((info)->extack, msg) enum genl_validate_flags { GENL_DONT_VALIDATE_STRICT = BIT(0), GENL_DONT_VALIDATE_DUMP = BIT(1), GENL_DONT_VALIDATE_DUMP_STRICT = BIT(2), }; /** * struct genl_small_ops - generic netlink operations (small version) * @cmd: command identifier * @internal_flags: flags used by the family * @flags: flags * @validate: validation flags from enum genl_validate_flags * @doit: standard command callback * @dumpit: callback for dumpers * * This is a cut-down version of struct genl_ops for users who don't need * most of the ancillary infra and want to save space. */ struct genl_small_ops { int (*doit)(struct sk_buff *skb, struct genl_info *info); int (*dumpit)(struct sk_buff *skb, struct netlink_callback *cb); u8 cmd; u8 internal_flags; u8 flags; u8 validate; }; /** * struct genl_ops - generic netlink operations * @cmd: command identifier * @internal_flags: flags used by the family * @flags: flags * @maxattr: maximum number of attributes supported * @policy: netlink policy (takes precedence over family policy) * @validate: validation flags from enum genl_validate_flags * @doit: standard command callback * @start: start callback for dumps * @dumpit: callback for dumpers * @done: completion callback for dumps */ struct genl_ops { int (*doit)(struct sk_buff *skb, struct genl_info *info); int (*start)(struct netlink_callback *cb); int (*dumpit)(struct sk_buff *skb, struct netlink_callback *cb); int (*done)(struct netlink_callback *cb); const struct nla_policy *policy; unsigned int maxattr; u8 cmd; u8 internal_flags; u8 flags; u8 validate; }; /** * struct genl_info - info that is available during dumpit op call * @family: generic netlink family - for internal genl code usage * @ops: generic netlink ops - for internal genl code usage * @attrs: netlink attributes */ struct genl_dumpit_info { const struct genl_family *family; struct genl_ops op; struct nlattr **attrs; }; static inline const struct genl_dumpit_info * genl_dumpit_info(struct netlink_callback *cb) { return cb->data; } int genl_register_family(struct genl_family *family); int genl_unregister_family(const struct genl_family *family); void genl_notify(const struct genl_family *family, struct sk_buff *skb, struct genl_info *info, u32 group, gfp_t flags); void *genlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, const struct genl_family *family, int flags, u8 cmd); /** * genlmsg_nlhdr - Obtain netlink header from user specified header * @user_hdr: user header as returned from genlmsg_put() * * Returns pointer to netlink header. */ static inline struct nlmsghdr *genlmsg_nlhdr(void *user_hdr) { return (struct nlmsghdr *)((char *)user_hdr - GENL_HDRLEN - NLMSG_HDRLEN); } /** * genlmsg_parse_deprecated - parse attributes of a genetlink message * @nlh: netlink message header * @family: genetlink message family * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct */ static inline int genlmsg_parse_deprecated(const struct nlmsghdr *nlh, const struct genl_family *family, struct nlattr *tb[], int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nlmsg_parse(nlh, family->hdrsize + GENL_HDRLEN, tb, maxtype, policy, NL_VALIDATE_LIBERAL, extack); } /** * genlmsg_parse - parse attributes of a genetlink message * @nlh: netlink message header * @family: genetlink message family * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct */ static inline int genlmsg_parse(const struct nlmsghdr *nlh, const struct genl_family *family, struct nlattr *tb[], int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nlmsg_parse(nlh, family->hdrsize + GENL_HDRLEN, tb, maxtype, policy, NL_VALIDATE_STRICT, extack); } /** * genl_dump_check_consistent - check if sequence is consistent and advertise if not * @cb: netlink callback structure that stores the sequence number * @user_hdr: user header as returned from genlmsg_put() * * Cf. nl_dump_check_consistent(), this just provides a wrapper to make it * simpler to use with generic netlink. */ static inline void genl_dump_check_consistent(struct netlink_callback *cb, void *user_hdr) { nl_dump_check_consistent(cb, genlmsg_nlhdr(user_hdr)); } /** * genlmsg_put_reply - Add generic netlink header to a reply message * @skb: socket buffer holding the message * @info: receiver info * @family: generic netlink family * @flags: netlink message flags * @cmd: generic netlink command * * Returns pointer to user specific header */ static inline void *genlmsg_put_reply(struct sk_buff *skb, struct genl_info *info, const struct genl_family *family, int flags, u8 cmd) { return genlmsg_put(skb, info->snd_portid, info->snd_seq, family, flags, cmd); } /** * genlmsg_end - Finalize a generic netlink message * @skb: socket buffer the message is stored in * @hdr: user specific header */ static inline void genlmsg_end(struct sk_buff *skb, void *hdr) { nlmsg_end(skb, hdr - GENL_HDRLEN - NLMSG_HDRLEN); } /** * genlmsg_cancel - Cancel construction of a generic netlink message * @skb: socket buffer the message is stored in * @hdr: generic netlink message header */ static inline void genlmsg_cancel(struct sk_buff *skb, void *hdr) { if (hdr) nlmsg_cancel(skb, hdr - GENL_HDRLEN - NLMSG_HDRLEN); } /** * genlmsg_multicast_netns - multicast a netlink message to a specific netns * @family: the generic netlink family * @net: the net namespace * @skb: netlink message as socket buffer * @portid: own netlink portid to avoid sending to yourself * @group: offset of multicast group in groups array * @flags: allocation flags */ static inline int genlmsg_multicast_netns(const struct genl_family *family, struct net *net, struct sk_buff *skb, u32 portid, unsigned int group, gfp_t flags) { if (WARN_ON_ONCE(group >= family->n_mcgrps)) return -EINVAL; group = family->mcgrp_offset + group; return nlmsg_multicast(net->genl_sock, skb, portid, group, flags); } /** * genlmsg_multicast - multicast a netlink message to the default netns * @family: the generic netlink family * @skb: netlink message as socket buffer * @portid: own netlink portid to avoid sending to yourself * @group: offset of multicast group in groups array * @flags: allocation flags */ static inline int genlmsg_multicast(const struct genl_family *family, struct sk_buff *skb, u32 portid, unsigned int group, gfp_t flags) { return genlmsg_multicast_netns(family, &init_net, skb, portid, group, flags); } /** * genlmsg_multicast_allns - multicast a netlink message to all net namespaces * @family: the generic netlink family * @skb: netlink message as socket buffer * @portid: own netlink portid to avoid sending to yourself * @group: offset of multicast group in groups array * @flags: allocation flags * * This function must hold the RTNL or rcu_read_lock(). */ int genlmsg_multicast_allns(const struct genl_family *family, struct sk_buff *skb, u32 portid, unsigned int group, gfp_t flags); /** * genlmsg_unicast - unicast a netlink message * @skb: netlink message as socket buffer * @portid: netlink portid of the destination socket */ static inline int genlmsg_unicast(struct net *net, struct sk_buff *skb, u32 portid) { return nlmsg_unicast(net->genl_sock, skb, portid); } /** * genlmsg_reply - reply to a request * @skb: netlink message to be sent back * @info: receiver information */ static inline int genlmsg_reply(struct sk_buff *skb, struct genl_info *info) { return genlmsg_unicast(genl_info_net(info), skb, info->snd_portid); } /** * gennlmsg_data - head of message payload * @gnlh: genetlink message header */ static inline void *genlmsg_data(const struct genlmsghdr *gnlh) { return ((unsigned char *) gnlh + GENL_HDRLEN); } /** * genlmsg_len - length of message payload * @gnlh: genetlink message header */ static inline int genlmsg_len(const struct genlmsghdr *gnlh) { struct nlmsghdr *nlh = (struct nlmsghdr *)((unsigned char *)gnlh - NLMSG_HDRLEN); return (nlh->nlmsg_len - GENL_HDRLEN - NLMSG_HDRLEN); } /** * genlmsg_msg_size - length of genetlink message not including padding * @payload: length of message payload */ static inline int genlmsg_msg_size(int payload) { return GENL_HDRLEN + payload; } /** * genlmsg_total_size - length of genetlink message including padding * @payload: length of message payload */ static inline int genlmsg_total_size(int payload) { return NLMSG_ALIGN(genlmsg_msg_size(payload)); } /** * genlmsg_new - Allocate a new generic netlink message * @payload: size of the message payload * @flags: the type of memory to allocate. */ static inline struct sk_buff *genlmsg_new(size_t payload, gfp_t flags) { return nlmsg_new(genlmsg_total_size(payload), flags); } /** * genl_set_err - report error to genetlink broadcast listeners * @family: the generic netlink family * @net: the network namespace to report the error to * @portid: the PORTID of a process that we want to skip (if any) * @group: the broadcast group that will notice the error * (this is the offset of the multicast group in the groups array) * @code: error code, must be negative (as usual in kernelspace) * * This function returns the number of broadcast listeners that have set the * NETLINK_RECV_NO_ENOBUFS socket option. */ static inline int genl_set_err(const struct genl_family *family, struct net *net, u32 portid, u32 group, int code) { if (WARN_ON_ONCE(group >= family->n_mcgrps)) return -EINVAL; group = family->mcgrp_offset + group; return netlink_set_err(net->genl_sock, portid, group, code); } static inline int genl_has_listeners(const struct genl_family *family, struct net *net, unsigned int group) { if (WARN_ON_ONCE(group >= family->n_mcgrps)) return -EINVAL; group = family->mcgrp_offset + group; return netlink_has_listeners(net->genl_sock, group); } #endif /* __NET_GENERIC_NETLINK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __IPC_NAMESPACE_H__ #define __IPC_NAMESPACE_H__ #include <linux/err.h> #include <linux/idr.h> #include <linux/rwsem.h> #include <linux/notifier.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/refcount.h> #include <linux/rhashtable-types.h> struct user_namespace; struct ipc_ids { int in_use; unsigned short seq; struct rw_semaphore rwsem; struct idr ipcs_idr; int max_idx; int last_idx; /* For wrap around detection */ #ifdef CONFIG_CHECKPOINT_RESTORE int next_id; #endif struct rhashtable key_ht; }; struct ipc_namespace { refcount_t count; struct ipc_ids ids[3]; int sem_ctls[4]; int used_sems; unsigned int msg_ctlmax; unsigned int msg_ctlmnb; unsigned int msg_ctlmni; atomic_t msg_bytes; atomic_t msg_hdrs; size_t shm_ctlmax; size_t shm_ctlall; unsigned long shm_tot; int shm_ctlmni; /* * Defines whether IPC_RMID is forced for _all_ shm segments regardless * of shmctl() */ int shm_rmid_forced; struct notifier_block ipcns_nb; /* The kern_mount of the mqueuefs sb. We take a ref on it */ struct vfsmount *mq_mnt; /* # queues in this ns, protected by mq_lock */ unsigned int mq_queues_count; /* next fields are set through sysctl */ unsigned int mq_queues_max; /* initialized to DFLT_QUEUESMAX */ unsigned int mq_msg_max; /* initialized to DFLT_MSGMAX */ unsigned int mq_msgsize_max; /* initialized to DFLT_MSGSIZEMAX */ unsigned int mq_msg_default; unsigned int mq_msgsize_default; /* user_ns which owns the ipc ns */ struct user_namespace *user_ns; struct ucounts *ucounts; struct llist_node mnt_llist; struct ns_common ns; } __randomize_layout; extern struct ipc_namespace init_ipc_ns; extern spinlock_t mq_lock; #ifdef CONFIG_SYSVIPC extern void shm_destroy_orphaned(struct ipc_namespace *ns); #else /* CONFIG_SYSVIPC */ static inline void shm_destroy_orphaned(struct ipc_namespace *ns) {} #endif /* CONFIG_SYSVIPC */ #ifdef CONFIG_POSIX_MQUEUE extern int mq_init_ns(struct ipc_namespace *ns); /* * POSIX Message Queue default values: * * MIN_*: Lowest value an admin can set the maximum unprivileged limit to * DFLT_*MAX: Default values for the maximum unprivileged limits * DFLT_{MSG,MSGSIZE}: Default values used when the user doesn't supply * an attribute to the open call and the queue must be created * HARD_*: Highest value the maximums can be set to. These are enforced * on CAP_SYS_RESOURCE apps as well making them inviolate (so make them * suitably high) * * POSIX Requirements: * Per app minimum openable message queues - 8. This does not map well * to the fact that we limit the number of queues on a per namespace * basis instead of a per app basis. So, make the default high enough * that no given app should have a hard time opening 8 queues. * Minimum maximum for HARD_MSGMAX - 32767. I bumped this to 65536. * Minimum maximum for HARD_MSGSIZEMAX - POSIX is silent on this. However, * we have run into a situation where running applications in the wild * require this to be at least 5MB, and preferably 10MB, so I set the * value to 16MB in hopes that this user is the worst of the bunch and * the new maximum will handle anyone else. I may have to revisit this * in the future. */ #define DFLT_QUEUESMAX 256 #define MIN_MSGMAX 1 #define DFLT_MSG 10U #define DFLT_MSGMAX 10 #define HARD_MSGMAX 65536 #define MIN_MSGSIZEMAX 128 #define DFLT_MSGSIZE 8192U #define DFLT_MSGSIZEMAX 8192 #define HARD_MSGSIZEMAX (16*1024*1024) #else static inline int mq_init_ns(struct ipc_namespace *ns) { return 0; } #endif #if defined(CONFIG_IPC_NS) extern struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns); static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { if (ns) refcount_inc(&ns->count); return ns; } extern void put_ipc_ns(struct ipc_namespace *ns); #else static inline struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns) { if (flags & CLONE_NEWIPC) return ERR_PTR(-EINVAL); return ns; } static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { return ns; } static inline void put_ipc_ns(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_POSIX_MQUEUE_SYSCTL struct ctl_table_header; extern struct ctl_table_header *mq_register_sysctl_table(void); #else /* CONFIG_POSIX_MQUEUE_SYSCTL */ static inline struct ctl_table_header *mq_register_sysctl_table(void) { return NULL; } #endif /* CONFIG_POSIX_MQUEUE_SYSCTL */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Fast and scalable bitmaps. * * Copyright (C) 2016 Facebook * Copyright (C) 2013-2014 Jens Axboe */ #ifndef __LINUX_SCALE_BITMAP_H #define __LINUX_SCALE_BITMAP_H #include <linux/kernel.h> #include <linux/slab.h> struct seq_file; /** * struct sbitmap_word - Word in a &struct sbitmap. */ struct sbitmap_word { /** * @depth: Number of bits being used in @word/@cleared */ unsigned long depth; /** * @word: word holding free bits */ unsigned long word ____cacheline_aligned_in_smp; /** * @cleared: word holding cleared bits */ unsigned long cleared ____cacheline_aligned_in_smp; /** * @swap_lock: Held while swapping word <-> cleared */ spinlock_t swap_lock; } ____cacheline_aligned_in_smp; /** * struct sbitmap - Scalable bitmap. * * A &struct sbitmap is spread over multiple cachelines to avoid ping-pong. This * trades off higher memory usage for better scalability. */ struct sbitmap { /** * @depth: Number of bits used in the whole bitmap. */ unsigned int depth; /** * @shift: log2(number of bits used per word) */ unsigned int shift; /** * @map_nr: Number of words (cachelines) being used for the bitmap. */ unsigned int map_nr; /** * @map: Allocated bitmap. */ struct sbitmap_word *map; }; #define SBQ_WAIT_QUEUES 8 #define SBQ_WAKE_BATCH 8 /** * struct sbq_wait_state - Wait queue in a &struct sbitmap_queue. */ struct sbq_wait_state { /** * @wait_cnt: Number of frees remaining before we wake up. */ atomic_t wait_cnt; /** * @wait: Wait queue. */ wait_queue_head_t wait; } ____cacheline_aligned_in_smp; /** * struct sbitmap_queue - Scalable bitmap with the added ability to wait on free * bits. * * A &struct sbitmap_queue uses multiple wait queues and rolling wakeups to * avoid contention on the wait queue spinlock. This ensures that we don't hit a * scalability wall when we run out of free bits and have to start putting tasks * to sleep. */ struct sbitmap_queue { /** * @sb: Scalable bitmap. */ struct sbitmap sb; /* * @alloc_hint: Cache of last successfully allocated or freed bit. * * This is per-cpu, which allows multiple users to stick to different * cachelines until the map is exhausted. */ unsigned int __percpu *alloc_hint; /** * @wake_batch: Number of bits which must be freed before we wake up any * waiters. */ unsigned int wake_batch; /** * @wake_index: Next wait queue in @ws to wake up. */ atomic_t wake_index; /** * @ws: Wait queues. */ struct sbq_wait_state *ws; /* * @ws_active: count of currently active ws waitqueues */ atomic_t ws_active; /** * @round_robin: Allocate bits in strict round-robin order. */ bool round_robin; /** * @min_shallow_depth: The minimum shallow depth which may be passed to * sbitmap_queue_get_shallow() or __sbitmap_queue_get_shallow(). */ unsigned int min_shallow_depth; }; /** * sbitmap_init_node() - Initialize a &struct sbitmap on a specific memory node. * @sb: Bitmap to initialize. * @depth: Number of bits to allocate. * @shift: Use 2^@shift bits per word in the bitmap; if a negative number if * given, a good default is chosen. * @flags: Allocation flags. * @node: Memory node to allocate on. * * Return: Zero on success or negative errno on failure. */ int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, gfp_t flags, int node); /** * sbitmap_free() - Free memory used by a &struct sbitmap. * @sb: Bitmap to free. */ static inline void sbitmap_free(struct sbitmap *sb) { kfree(sb->map); sb->map = NULL; } /** * sbitmap_resize() - Resize a &struct sbitmap. * @sb: Bitmap to resize. * @depth: New number of bits to resize to. * * Doesn't reallocate anything. It's up to the caller to ensure that the new * depth doesn't exceed the depth that the sb was initialized with. */ void sbitmap_resize(struct sbitmap *sb, unsigned int depth); /** * sbitmap_get() - Try to allocate a free bit from a &struct sbitmap. * @sb: Bitmap to allocate from. * @alloc_hint: Hint for where to start searching for a free bit. * @round_robin: If true, be stricter about allocation order; always allocate * starting from the last allocated bit. This is less efficient * than the default behavior (false). * * This operation provides acquire barrier semantics if it succeeds. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin); /** * sbitmap_get_shallow() - Try to allocate a free bit from a &struct sbitmap, * limiting the depth used from each word. * @sb: Bitmap to allocate from. * @alloc_hint: Hint for where to start searching for a free bit. * @shallow_depth: The maximum number of bits to allocate from a single word. * * This rather specific operation allows for having multiple users with * different allocation limits. E.g., there can be a high-priority class that * uses sbitmap_get() and a low-priority class that uses sbitmap_get_shallow() * with a @shallow_depth of (1 << (@sb->shift - 1)). Then, the low-priority * class can only allocate half of the total bits in the bitmap, preventing it * from starving out the high-priority class. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint, unsigned long shallow_depth); /** * sbitmap_any_bit_set() - Check for a set bit in a &struct sbitmap. * @sb: Bitmap to check. * * Return: true if any bit in the bitmap is set, false otherwise. */ bool sbitmap_any_bit_set(const struct sbitmap *sb); #define SB_NR_TO_INDEX(sb, bitnr) ((bitnr) >> (sb)->shift) #define SB_NR_TO_BIT(sb, bitnr) ((bitnr) & ((1U << (sb)->shift) - 1U)) typedef bool (*sb_for_each_fn)(struct sbitmap *, unsigned int, void *); /** * __sbitmap_for_each_set() - Iterate over each set bit in a &struct sbitmap. * @start: Where to start the iteration. * @sb: Bitmap to iterate over. * @fn: Callback. Should return true to continue or false to break early. * @data: Pointer to pass to callback. * * This is inline even though it's non-trivial so that the function calls to the * callback will hopefully get optimized away. */ static inline void __sbitmap_for_each_set(struct sbitmap *sb, unsigned int start, sb_for_each_fn fn, void *data) { unsigned int index; unsigned int nr; unsigned int scanned = 0; if (start >= sb->depth) start = 0; index = SB_NR_TO_INDEX(sb, start); nr = SB_NR_TO_BIT(sb, start); while (scanned < sb->depth) { unsigned long word; unsigned int depth = min_t(unsigned int, sb->map[index].depth - nr, sb->depth - scanned); scanned += depth; word = sb->map[index].word & ~sb->map[index].cleared; if (!word) goto next; /* * On the first iteration of the outer loop, we need to add the * bit offset back to the size of the word for find_next_bit(). * On all other iterations, nr is zero, so this is a noop. */ depth += nr; while (1) { nr = find_next_bit(&word, depth, nr); if (nr >= depth) break; if (!fn(sb, (index << sb->shift) + nr, data)) return; nr++; } next: nr = 0; if (++index >= sb->map_nr) index = 0; } } /** * sbitmap_for_each_set() - Iterate over each set bit in a &struct sbitmap. * @sb: Bitmap to iterate over. * @fn: Callback. Should return true to continue or false to break early. * @data: Pointer to pass to callback. */ static inline void sbitmap_for_each_set(struct sbitmap *sb, sb_for_each_fn fn, void *data) { __sbitmap_for_each_set(sb, 0, fn, data); } static inline unsigned long *__sbitmap_word(struct sbitmap *sb, unsigned int bitnr) { return &sb->map[SB_NR_TO_INDEX(sb, bitnr)].word; } /* Helpers equivalent to the operations in asm/bitops.h and linux/bitmap.h */ static inline void sbitmap_set_bit(struct sbitmap *sb, unsigned int bitnr) { set_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } static inline void sbitmap_clear_bit(struct sbitmap *sb, unsigned int bitnr) { clear_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } /* * This one is special, since it doesn't actually clear the bit, rather it * sets the corresponding bit in the ->cleared mask instead. Paired with * the caller doing sbitmap_deferred_clear() if a given index is full, which * will clear the previously freed entries in the corresponding ->word. */ static inline void sbitmap_deferred_clear_bit(struct sbitmap *sb, unsigned int bitnr) { unsigned long *addr = &sb->map[SB_NR_TO_INDEX(sb, bitnr)].cleared; set_bit(SB_NR_TO_BIT(sb, bitnr), addr); } static inline void sbitmap_clear_bit_unlock(struct sbitmap *sb, unsigned int bitnr) { clear_bit_unlock(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } static inline int sbitmap_test_bit(struct sbitmap *sb, unsigned int bitnr) { return test_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } /** * sbitmap_show() - Dump &struct sbitmap information to a &struct seq_file. * @sb: Bitmap to show. * @m: struct seq_file to write to. * * This is intended for debugging. The format may change at any time. */ void sbitmap_show(struct sbitmap *sb, struct seq_file *m); /** * sbitmap_bitmap_show() - Write a hex dump of a &struct sbitmap to a &struct * seq_file. * @sb: Bitmap to show. * @m: struct seq_file to write to. * * This is intended for debugging. The output isn't guaranteed to be internally * consistent. */ void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m); /** * sbitmap_queue_init_node() - Initialize a &struct sbitmap_queue on a specific * memory node. * @sbq: Bitmap queue to initialize. * @depth: See sbitmap_init_node(). * @shift: See sbitmap_init_node(). * @round_robin: See sbitmap_get(). * @flags: Allocation flags. * @node: Memory node to allocate on. * * Return: Zero on success or negative errno on failure. */ int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, int shift, bool round_robin, gfp_t flags, int node); /** * sbitmap_queue_free() - Free memory used by a &struct sbitmap_queue. * * @sbq: Bitmap queue to free. */ static inline void sbitmap_queue_free(struct sbitmap_queue *sbq) { kfree(sbq->ws); free_percpu(sbq->alloc_hint); sbitmap_free(&sbq->sb); } /** * sbitmap_queue_resize() - Resize a &struct sbitmap_queue. * @sbq: Bitmap queue to resize. * @depth: New number of bits to resize to. * * Like sbitmap_resize(), this doesn't reallocate anything. It has to do * some extra work on the &struct sbitmap_queue, so it's not safe to just * resize the underlying &struct sbitmap. */ void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth); /** * __sbitmap_queue_get() - Try to allocate a free bit from a &struct * sbitmap_queue with preemption already disabled. * @sbq: Bitmap queue to allocate from. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int __sbitmap_queue_get(struct sbitmap_queue *sbq); /** * __sbitmap_queue_get_shallow() - Try to allocate a free bit from a &struct * sbitmap_queue, limiting the depth used from each word, with preemption * already disabled. * @sbq: Bitmap queue to allocate from. * @shallow_depth: The maximum number of bits to allocate from a single word. * See sbitmap_get_shallow(). * * If you call this, make sure to call sbitmap_queue_min_shallow_depth() after * initializing @sbq. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, unsigned int shallow_depth); /** * sbitmap_queue_get() - Try to allocate a free bit from a &struct * sbitmap_queue. * @sbq: Bitmap queue to allocate from. * @cpu: Output parameter; will contain the CPU we ran on (e.g., to be passed to * sbitmap_queue_clear()). * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ static inline int sbitmap_queue_get(struct sbitmap_queue *sbq, unsigned int *cpu) { int nr; *cpu = get_cpu(); nr = __sbitmap_queue_get(sbq); put_cpu(); return nr; } /** * sbitmap_queue_get_shallow() - Try to allocate a free bit from a &struct * sbitmap_queue, limiting the depth used from each word. * @sbq: Bitmap queue to allocate from. * @cpu: Output parameter; will contain the CPU we ran on (e.g., to be passed to * sbitmap_queue_clear()). * @shallow_depth: The maximum number of bits to allocate from a single word. * See sbitmap_get_shallow(). * * If you call this, make sure to call sbitmap_queue_min_shallow_depth() after * initializing @sbq. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ static inline int sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, unsigned int *cpu, unsigned int shallow_depth) { int nr; *cpu = get_cpu(); nr = __sbitmap_queue_get_shallow(sbq, shallow_depth); put_cpu(); return nr; } /** * sbitmap_queue_min_shallow_depth() - Inform a &struct sbitmap_queue of the * minimum shallow depth that will be used. * @sbq: Bitmap queue in question. * @min_shallow_depth: The minimum shallow depth that will be passed to * sbitmap_queue_get_shallow() or __sbitmap_queue_get_shallow(). * * sbitmap_queue_clear() batches wakeups as an optimization. The batch size * depends on the depth of the bitmap. Since the shallow allocation functions * effectively operate with a different depth, the shallow depth must be taken * into account when calculating the batch size. This function must be called * with the minimum shallow depth that will be used. Failure to do so can result * in missed wakeups. */ void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, unsigned int min_shallow_depth); /** * sbitmap_queue_clear() - Free an allocated bit and wake up waiters on a * &struct sbitmap_queue. * @sbq: Bitmap to free from. * @nr: Bit number to free. * @cpu: CPU the bit was allocated on. */ void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, unsigned int cpu); static inline int sbq_index_inc(int index) { return (index + 1) & (SBQ_WAIT_QUEUES - 1); } static inline void sbq_index_atomic_inc(atomic_t *index) { int old = atomic_read(index); int new = sbq_index_inc(old); atomic_cmpxchg(index, old, new); } /** * sbq_wait_ptr() - Get the next wait queue to use for a &struct * sbitmap_queue. * @sbq: Bitmap queue to wait on. * @wait_index: A counter per "user" of @sbq. */ static inline struct sbq_wait_state *sbq_wait_ptr(struct sbitmap_queue *sbq, atomic_t *wait_index) { struct sbq_wait_state *ws; ws = &sbq->ws[atomic_read(wait_index)]; sbq_index_atomic_inc(wait_index); return ws; } /** * sbitmap_queue_wake_all() - Wake up everything waiting on a &struct * sbitmap_queue. * @sbq: Bitmap queue to wake up. */ void sbitmap_queue_wake_all(struct sbitmap_queue *sbq); /** * sbitmap_queue_wake_up() - Wake up some of waiters in one waitqueue * on a &struct sbitmap_queue. * @sbq: Bitmap queue to wake up. */ void sbitmap_queue_wake_up(struct sbitmap_queue *sbq); /** * sbitmap_queue_show() - Dump &struct sbitmap_queue information to a &struct * seq_file. * @sbq: Bitmap queue to show. * @m: struct seq_file to write to. * * This is intended for debugging. The format may change at any time. */ void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m); struct sbq_wait { struct sbitmap_queue *sbq; /* if set, sbq_wait is accounted */ struct wait_queue_entry wait; }; #define DEFINE_SBQ_WAIT(name) \ struct sbq_wait name = { \ .sbq = NULL, \ .wait = { \ .private = current, \ .func = autoremove_wake_function, \ .entry = LIST_HEAD_INIT((name).wait.entry), \ } \ } /* * Wrapper around prepare_to_wait_exclusive(), which maintains some extra * internal state. */ void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait, int state); /* * Must be paired with sbitmap_prepare_to_wait(). */ void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait); /* * Wrapper around add_wait_queue(), which maintains some extra internal state */ void sbitmap_add_wait_queue(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait); /* * Must be paired with sbitmap_add_wait_queue() */ void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait); #endif /* __LINUX_SCALE_BITMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NET_SCM_H #define __LINUX_NET_SCM_H #include <linux/limits.h> #include <linux/net.h> #include <linux/cred.h> #include <linux/security.h> #include <linux/pid.h> #include <linux/nsproxy.h> #include <linux/sched/signal.h> /* Well, we should have at least one descriptor open * to accept passed FDs 8) */ #define SCM_MAX_FD 253 struct scm_creds { u32 pid; kuid_t uid; kgid_t gid; }; struct scm_fp_list { short count; short max; struct user_struct *user; struct file *fp[SCM_MAX_FD]; }; struct scm_cookie { struct pid *pid; /* Skb credentials */ struct scm_fp_list *fp; /* Passed files */ struct scm_creds creds; /* Skb credentials */ #ifdef CONFIG_SECURITY_NETWORK u32 secid; /* Passed security ID */ #endif }; void scm_detach_fds(struct msghdr *msg, struct scm_cookie *scm); void scm_detach_fds_compat(struct msghdr *msg, struct scm_cookie *scm); int __scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm); void __scm_destroy(struct scm_cookie *scm); struct scm_fp_list *scm_fp_dup(struct scm_fp_list *fpl); #ifdef CONFIG_SECURITY_NETWORK static __inline__ void unix_get_peersec_dgram(struct socket *sock, struct scm_cookie *scm) { security_socket_getpeersec_dgram(sock, NULL, &scm->secid); } #else static __inline__ void unix_get_peersec_dgram(struct socket *sock, struct scm_cookie *scm) { } #endif /* CONFIG_SECURITY_NETWORK */ static __inline__ void scm_set_cred(struct scm_cookie *scm, struct pid *pid, kuid_t uid, kgid_t gid) { scm->pid = get_pid(pid); scm->creds.pid = pid_vnr(pid); scm->creds.uid = uid; scm->creds.gid = gid; } static __inline__ void scm_destroy_cred(struct scm_cookie *scm) { put_pid(scm->pid); scm->pid = NULL; } static __inline__ void scm_destroy(struct scm_cookie *scm) { scm_destroy_cred(scm); if (scm->fp) __scm_destroy(scm); } static __inline__ int scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm, bool forcecreds) { memset(scm, 0, sizeof(*scm)); scm->creds.uid = INVALID_UID; scm->creds.gid = INVALID_GID; if (forcecreds) scm_set_cred(scm, task_tgid(current), current_uid(), current_gid()); unix_get_peersec_dgram(sock, scm); if (msg->msg_controllen <= 0) return 0; return __scm_send(sock, msg, scm); } #ifdef CONFIG_SECURITY_NETWORK static inline void scm_passec(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm) { char *secdata; u32 seclen; int err; if (test_bit(SOCK_PASSSEC, &sock->flags)) { err = security_secid_to_secctx(scm->secid, &secdata, &seclen); if (!err) { put_cmsg(msg, SOL_SOCKET, SCM_SECURITY, seclen, secdata); security_release_secctx(secdata, seclen); } } } #else static inline void scm_passec(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm) { } #endif /* CONFIG_SECURITY_NETWORK */ static __inline__ void scm_recv(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm, int flags) { if (!msg->msg_control) { if (test_bit(SOCK_PASSCRED, &sock->flags) || scm->fp) msg->msg_flags |= MSG_CTRUNC; scm_destroy(scm); return; } if (test_bit(SOCK_PASSCRED, &sock->flags)) { struct user_namespace *current_ns = current_user_ns(); struct ucred ucreds = { .pid = scm->creds.pid, .uid = from_kuid_munged(current_ns, scm->creds.uid), .gid = from_kgid_munged(current_ns, scm->creds.gid), }; put_cmsg(msg, SOL_SOCKET, SCM_CREDENTIALS, sizeof(ucreds), &ucreds); } scm_destroy_cred(scm); scm_passec(sock, msg, scm); if (!scm->fp) return; scm_detach_fds(msg, scm); } #endif /* __LINUX_NET_SCM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _IPV6_FRAG_H #define _IPV6_FRAG_H #include <linux/kernel.h> #include <net/addrconf.h> #include <net/ipv6.h> #include <net/inet_frag.h> enum ip6_defrag_users { IP6_DEFRAG_LOCAL_DELIVER, IP6_DEFRAG_CONNTRACK_IN, __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX, IP6_DEFRAG_CONNTRACK_OUT, __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX, IP6_DEFRAG_CONNTRACK_BRIDGE_IN, __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX, }; /* * Equivalent of ipv4 struct ip */ struct frag_queue { struct inet_frag_queue q; int iif; __u16 nhoffset; u8 ecn; }; #if IS_ENABLED(CONFIG_IPV6) static inline void ip6frag_init(struct inet_frag_queue *q, const void *a) { struct frag_queue *fq = container_of(q, struct frag_queue, q); const struct frag_v6_compare_key *key = a; q->key.v6 = *key; fq->ecn = 0; } static inline u32 ip6frag_key_hashfn(const void *data, u32 len, u32 seed) { return jhash2(data, sizeof(struct frag_v6_compare_key) / sizeof(u32), seed); } static inline u32 ip6frag_obj_hashfn(const void *data, u32 len, u32 seed) { const struct inet_frag_queue *fq = data; return jhash2((const u32 *)&fq->key.v6, sizeof(struct frag_v6_compare_key) / sizeof(u32), seed); } static inline int ip6frag_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr) { const struct frag_v6_compare_key *key = arg->key; const struct inet_frag_queue *fq = ptr; return !!memcmp(&fq->key, key, sizeof(*key)); } static inline void ip6frag_expire_frag_queue(struct net *net, struct frag_queue *fq) { struct net_device *dev = NULL; struct sk_buff *head; rcu_read_lock(); if (fq->q.fqdir->dead) goto out_rcu_unlock; spin_lock(&fq->q.lock); if (fq->q.flags & INET_FRAG_COMPLETE) goto out; inet_frag_kill(&fq->q); dev = dev_get_by_index_rcu(net, fq->iif); if (!dev) goto out; __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMFAILS); __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMTIMEOUT); /* Don't send error if the first segment did not arrive. */ if (!(fq->q.flags & INET_FRAG_FIRST_IN)) goto out; /* sk_buff::dev and sk_buff::rbnode are unionized. So we * pull the head out of the tree in order to be able to * deal with head->dev. */ head = inet_frag_pull_head(&fq->q); if (!head) goto out; head->dev = dev; spin_unlock(&fq->q.lock); icmpv6_send(head, ICMPV6_TIME_EXCEED, ICMPV6_EXC_FRAGTIME, 0); kfree_skb(head); goto out_rcu_unlock; out: spin_unlock(&fq->q.lock); out_rcu_unlock: rcu_read_unlock(); inet_frag_put(&fq->q); } /* Check if the upper layer header is truncated in the first fragment. */ static inline bool ipv6frag_thdr_truncated(struct sk_buff *skb, int start, u8 *nexthdrp) { u8 nexthdr = *nexthdrp; __be16 frag_off; int offset; offset = ipv6_skip_exthdr(skb, start, &nexthdr, &frag_off); if (offset < 0 || (frag_off & htons(IP6_OFFSET))) return false; switch (nexthdr) { case NEXTHDR_TCP: offset += sizeof(struct tcphdr); break; case NEXTHDR_UDP: offset += sizeof(struct udphdr); break; case NEXTHDR_ICMP: offset += sizeof(struct icmp6hdr); break; default: offset += 1; } if (offset > skb->len) return true; return false; } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_COMPACTION_H #define _LINUX_COMPACTION_H /* * Determines how hard direct compaction should try to succeed. * Lower value means higher priority, analogically to reclaim priority. */ enum compact_priority { COMPACT_PRIO_SYNC_FULL, MIN_COMPACT_PRIORITY = COMPACT_PRIO_SYNC_FULL, COMPACT_PRIO_SYNC_LIGHT, MIN_COMPACT_COSTLY_PRIORITY = COMPACT_PRIO_SYNC_LIGHT, DEF_COMPACT_PRIORITY = COMPACT_PRIO_SYNC_LIGHT, COMPACT_PRIO_ASYNC, INIT_COMPACT_PRIORITY = COMPACT_PRIO_ASYNC }; /* Return values for compact_zone() and try_to_compact_pages() */ /* When adding new states, please adjust include/trace/events/compaction.h */ enum compact_result { /* For more detailed tracepoint output - internal to compaction */ COMPACT_NOT_SUITABLE_ZONE, /* * compaction didn't start as it was not possible or direct reclaim * was more suitable */ COMPACT_SKIPPED, /* compaction didn't start as it was deferred due to past failures */ COMPACT_DEFERRED, /* For more detailed tracepoint output - internal to compaction */ COMPACT_NO_SUITABLE_PAGE, /* compaction should continue to another pageblock */ COMPACT_CONTINUE, /* * The full zone was compacted scanned but wasn't successfull to compact * suitable pages. */ COMPACT_COMPLETE, /* * direct compaction has scanned part of the zone but wasn't successfull * to compact suitable pages. */ COMPACT_PARTIAL_SKIPPED, /* compaction terminated prematurely due to lock contentions */ COMPACT_CONTENDED, /* * direct compaction terminated after concluding that the allocation * should now succeed */ COMPACT_SUCCESS, }; struct alloc_context; /* in mm/internal.h */ /* * Number of free order-0 pages that should be available above given watermark * to make sure compaction has reasonable chance of not running out of free * pages that it needs to isolate as migration target during its work. */ static inline unsigned long compact_gap(unsigned int order) { /* * Although all the isolations for migration are temporary, compaction * free scanner may have up to 1 << order pages on its list and then * try to split an (order - 1) free page. At that point, a gap of * 1 << order might not be enough, so it's safer to require twice that * amount. Note that the number of pages on the list is also * effectively limited by COMPACT_CLUSTER_MAX, as that's the maximum * that the migrate scanner can have isolated on migrate list, and free * scanner is only invoked when the number of isolated free pages is * lower than that. But it's not worth to complicate the formula here * as a bigger gap for higher orders than strictly necessary can also * improve chances of compaction success. */ return 2UL << order; } #ifdef CONFIG_COMPACTION extern int sysctl_compact_memory; extern unsigned int sysctl_compaction_proactiveness; extern int sysctl_compaction_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos); extern int sysctl_extfrag_threshold; extern int sysctl_compact_unevictable_allowed; extern unsigned int extfrag_for_order(struct zone *zone, unsigned int order); extern int fragmentation_index(struct zone *zone, unsigned int order); extern enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, unsigned int alloc_flags, const struct alloc_context *ac, enum compact_priority prio, struct page **page); extern void reset_isolation_suitable(pg_data_t *pgdat); extern enum compact_result compaction_suitable(struct zone *zone, int order, unsigned int alloc_flags, int highest_zoneidx); extern void defer_compaction(struct zone *zone, int order); extern bool compaction_deferred(struct zone *zone, int order); extern void compaction_defer_reset(struct zone *zone, int order, bool alloc_success); extern bool compaction_restarting(struct zone *zone, int order); /* Compaction has made some progress and retrying makes sense */ static inline bool compaction_made_progress(enum compact_result result) { /* * Even though this might sound confusing this in fact tells us * that the compaction successfully isolated and migrated some * pageblocks. */ if (result == COMPACT_SUCCESS) return true; return false; } /* Compaction has failed and it doesn't make much sense to keep retrying. */ static inline bool compaction_failed(enum compact_result result) { /* All zones were scanned completely and still not result. */ if (result == COMPACT_COMPLETE) return true; return false; } /* Compaction needs reclaim to be performed first, so it can continue. */ static inline bool compaction_needs_reclaim(enum compact_result result) { /* * Compaction backed off due to watermark checks for order-0 * so the regular reclaim has to try harder and reclaim something. */ if (result == COMPACT_SKIPPED) return true; return false; } /* * Compaction has backed off for some reason after doing some work or none * at all. It might be throttling or lock contention. Retrying might be still * worthwhile, but with a higher priority if allowed. */ static inline bool compaction_withdrawn(enum compact_result result) { /* * If compaction is deferred for high-order allocations, it is * because sync compaction recently failed. If this is the case * and the caller requested a THP allocation, we do not want * to heavily disrupt the system, so we fail the allocation * instead of entering direct reclaim. */ if (result == COMPACT_DEFERRED) return true; /* * If compaction in async mode encounters contention or blocks higher * priority task we back off early rather than cause stalls. */ if (result == COMPACT_CONTENDED) return true; /* * Page scanners have met but we haven't scanned full zones so this * is a back off in fact. */ if (result == COMPACT_PARTIAL_SKIPPED) return true; return false; } bool compaction_zonelist_suitable(struct alloc_context *ac, int order, int alloc_flags); extern int kcompactd_run(int nid); extern void kcompactd_stop(int nid); extern void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx); #else static inline void reset_isolation_suitable(pg_data_t *pgdat) { } static inline enum compact_result compaction_suitable(struct zone *zone, int order, int alloc_flags, int highest_zoneidx) { return COMPACT_SKIPPED; } static inline void defer_compaction(struct zone *zone, int order) { } static inline bool compaction_deferred(struct zone *zone, int order) { return true; } static inline bool compaction_made_progress(enum compact_result result) { return false; } static inline bool compaction_failed(enum compact_result result) { return false; } static inline bool compaction_needs_reclaim(enum compact_result result) { return false; } static inline bool compaction_withdrawn(enum compact_result result) { return true; } static inline int kcompactd_run(int nid) { return 0; } static inline void kcompactd_stop(int nid) { } static inline void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) { } #endif /* CONFIG_COMPACTION */ struct node; #if defined(CONFIG_COMPACTION) && defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) extern int compaction_register_node(struct node *node); extern void compaction_unregister_node(struct node *node); #else static inline int compaction_register_node(struct node *node) { return 0; } static inline void compaction_unregister_node(struct node *node) { } #endif /* CONFIG_COMPACTION && CONFIG_SYSFS && CONFIG_NUMA */ #endif /* _LINUX_COMPACTION_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 /* SPDX-License-Identifier: GPL-2.0+ WITH Linux-syscall-note */ /* * Copyright 1997 Transmeta Corporation - All Rights Reserved * Copyright 1999-2000 Jeremy Fitzhardinge <jeremy@goop.org> * Copyright 2005-2006,2013,2017-2018 Ian Kent <raven@themaw.net> * * This file is part of the Linux kernel and is made available under * the terms of the GNU General Public License, version 2, or at your * option, any later version, incorporated herein by reference. * * ----------------------------------------------------------------------- */ #ifndef _UAPI_LINUX_AUTO_FS_H #define _UAPI_LINUX_AUTO_FS_H #include <linux/types.h> #include <linux/limits.h> #ifndef __KERNEL__ #include <sys/ioctl.h> #endif /* __KERNEL__ */ #define AUTOFS_PROTO_VERSION 5 #define AUTOFS_MIN_PROTO_VERSION 3 #define AUTOFS_MAX_PROTO_VERSION 5 #define AUTOFS_PROTO_SUBVERSION 5 /* * The wait_queue_token (autofs_wqt_t) is part of a structure which is passed * back to the kernel via ioctl from userspace. On architectures where 32- and * 64-bit userspace binaries can be executed it's important that the size of * autofs_wqt_t stays constant between 32- and 64-bit Linux kernels so that we * do not break the binary ABI interface by changing the structure size. */ #if defined(__ia64__) || defined(__alpha__) /* pure 64bit architectures */ typedef unsigned long autofs_wqt_t; #else typedef unsigned int autofs_wqt_t; #endif /* Packet types */ #define autofs_ptype_missing 0 /* Missing entry (mount request) */ #define autofs_ptype_expire 1 /* Expire entry (umount request) */ struct autofs_packet_hdr { int proto_version; /* Protocol version */ int type; /* Type of packet */ }; struct autofs_packet_missing { struct autofs_packet_hdr hdr; autofs_wqt_t wait_queue_token; int len; char name[NAME_MAX+1]; }; /* v3 expire (via ioctl) */ struct autofs_packet_expire { struct autofs_packet_hdr hdr; int len; char name[NAME_MAX+1]; }; #define AUTOFS_IOCTL 0x93 enum { AUTOFS_IOC_READY_CMD = 0x60, AUTOFS_IOC_FAIL_CMD, AUTOFS_IOC_CATATONIC_CMD, AUTOFS_IOC_PROTOVER_CMD, AUTOFS_IOC_SETTIMEOUT_CMD, AUTOFS_IOC_EXPIRE_CMD, }; #define AUTOFS_IOC_READY _IO(AUTOFS_IOCTL, AUTOFS_IOC_READY_CMD) #define AUTOFS_IOC_FAIL _IO(AUTOFS_IOCTL, AUTOFS_IOC_FAIL_CMD) #define AUTOFS_IOC_CATATONIC _IO(AUTOFS_IOCTL, AUTOFS_IOC_CATATONIC_CMD) #define AUTOFS_IOC_PROTOVER _IOR(AUTOFS_IOCTL, \ AUTOFS_IOC_PROTOVER_CMD, int) #define AUTOFS_IOC_SETTIMEOUT32 _IOWR(AUTOFS_IOCTL, \ AUTOFS_IOC_SETTIMEOUT_CMD, \ compat_ulong_t) #define AUTOFS_IOC_SETTIMEOUT _IOWR(AUTOFS_IOCTL, \ AUTOFS_IOC_SETTIMEOUT_CMD, \ unsigned long) #define AUTOFS_IOC_EXPIRE _IOR(AUTOFS_IOCTL, \ AUTOFS_IOC_EXPIRE_CMD, \ struct autofs_packet_expire) /* autofs version 4 and later definitions */ /* Mask for expire behaviour */ #define AUTOFS_EXP_NORMAL 0x00 #define AUTOFS_EXP_IMMEDIATE 0x01 #define AUTOFS_EXP_LEAVES 0x02 #define AUTOFS_EXP_FORCED 0x04 #define AUTOFS_TYPE_ANY 0U #define AUTOFS_TYPE_INDIRECT 1U #define AUTOFS_TYPE_DIRECT 2U #define AUTOFS_TYPE_OFFSET 4U static inline void set_autofs_type_indirect(unsigned int *type) { *type = AUTOFS_TYPE_INDIRECT; } static inline unsigned int autofs_type_indirect(unsigned int type) { return (type == AUTOFS_TYPE_INDIRECT); } static inline void set_autofs_type_direct(unsigned int *type) { *type = AUTOFS_TYPE_DIRECT; } static inline unsigned int autofs_type_direct(unsigned int type) { return (type == AUTOFS_TYPE_DIRECT); } static inline void set_autofs_type_offset(unsigned int *type) { *type = AUTOFS_TYPE_OFFSET; } static inline unsigned int autofs_type_offset(unsigned int type) { return (type == AUTOFS_TYPE_OFFSET); } static inline unsigned int autofs_type_trigger(unsigned int type) { return (type == AUTOFS_TYPE_DIRECT || type == AUTOFS_TYPE_OFFSET); } /* * This isn't really a type as we use it to say "no type set" to * indicate we want to search for "any" mount in the * autofs_dev_ioctl_ismountpoint() device ioctl function. */ static inline void set_autofs_type_any(unsigned int *type) { *type = AUTOFS_TYPE_ANY; } static inline unsigned int autofs_type_any(unsigned int type) { return (type == AUTOFS_TYPE_ANY); } /* Daemon notification packet types */ enum autofs_notify { NFY_NONE, NFY_MOUNT, NFY_EXPIRE }; /* Kernel protocol version 4 packet types */ /* Expire entry (umount request) */ #define autofs_ptype_expire_multi 2 /* Kernel protocol version 5 packet types */ /* Indirect mount missing and expire requests. */ #define autofs_ptype_missing_indirect 3 #define autofs_ptype_expire_indirect 4 /* Direct mount missing and expire requests */ #define autofs_ptype_missing_direct 5 #define autofs_ptype_expire_direct 6 /* v4 multi expire (via pipe) */ struct autofs_packet_expire_multi { struct autofs_packet_hdr hdr; autofs_wqt_t wait_queue_token; int len; char name[NAME_MAX+1]; }; union autofs_packet_union { struct autofs_packet_hdr hdr; struct autofs_packet_missing missing; struct autofs_packet_expire expire; struct autofs_packet_expire_multi expire_multi; }; /* autofs v5 common packet struct */ struct autofs_v5_packet { struct autofs_packet_hdr hdr; autofs_wqt_t wait_queue_token; __u32 dev; __u64 ino; __u32 uid; __u32 gid; __u32 pid; __u32 tgid; __u32 len; char name[NAME_MAX+1]; }; typedef struct autofs_v5_packet autofs_packet_missing_indirect_t; typedef struct autofs_v5_packet autofs_packet_expire_indirect_t; typedef struct autofs_v5_packet autofs_packet_missing_direct_t; typedef struct autofs_v5_packet autofs_packet_expire_direct_t; union autofs_v5_packet_union { struct autofs_packet_hdr hdr; struct autofs_v5_packet v5_packet; autofs_packet_missing_indirect_t missing_indirect; autofs_packet_expire_indirect_t expire_indirect; autofs_packet_missing_direct_t missing_direct; autofs_packet_expire_direct_t expire_direct; }; enum { AUTOFS_IOC_EXPIRE_MULTI_CMD = 0x66, /* AUTOFS_IOC_EXPIRE_CMD + 1 */ AUTOFS_IOC_PROTOSUBVER_CMD, AUTOFS_IOC_ASKUMOUNT_CMD = 0x70, /* AUTOFS_DEV_IOCTL_VERSION_CMD - 1 */ }; #define AUTOFS_IOC_EXPIRE_MULTI _IOW(AUTOFS_IOCTL, \ AUTOFS_IOC_EXPIRE_MULTI_CMD, int) #define AUTOFS_IOC_PROTOSUBVER _IOR(AUTOFS_IOCTL, \ AUTOFS_IOC_PROTOSUBVER_CMD, int) #define AUTOFS_IOC_ASKUMOUNT _IOR(AUTOFS_IOCTL, \ AUTOFS_IOC_ASKUMOUNT_CMD, int) #endif /* _UAPI_LINUX_AUTO_FS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KASAN_H #define _LINUX_KASAN_H #include <linux/types.h> struct kmem_cache; struct page; struct vm_struct; struct task_struct; #ifdef CONFIG_KASAN #include <linux/pgtable.h> #include <asm/kasan.h> /* kasan_data struct is used in KUnit tests for KASAN expected failures */ struct kunit_kasan_expectation { bool report_expected; bool report_found; }; extern unsigned char kasan_early_shadow_page[PAGE_SIZE]; extern pte_t kasan_early_shadow_pte[PTRS_PER_PTE]; extern pmd_t kasan_early_shadow_pmd[PTRS_PER_PMD]; extern pud_t kasan_early_shadow_pud[PTRS_PER_PUD]; extern p4d_t kasan_early_shadow_p4d[MAX_PTRS_PER_P4D]; int kasan_populate_early_shadow(const void *shadow_start, const void *shadow_end); static inline void *kasan_mem_to_shadow(const void *addr) { return (void *)((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET; } /* Enable reporting bugs after kasan_disable_current() */ extern void kasan_enable_current(void); /* Disable reporting bugs for current task */ extern void kasan_disable_current(void); void kasan_unpoison_shadow(const void *address, size_t size); void kasan_unpoison_task_stack(struct task_struct *task); void kasan_alloc_pages(struct page *page, unsigned int order); void kasan_free_pages(struct page *page, unsigned int order); void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, slab_flags_t *flags); void kasan_poison_slab(struct page *page); void kasan_unpoison_object_data(struct kmem_cache *cache, void *object); void kasan_poison_object_data(struct kmem_cache *cache, void *object); void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, const void *object); void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags); void kasan_kfree_large(void *ptr, unsigned long ip); void kasan_poison_kfree(void *ptr, unsigned long ip); void * __must_check kasan_kmalloc(struct kmem_cache *s, const void *object, size_t size, gfp_t flags); void * __must_check kasan_krealloc(const void *object, size_t new_size, gfp_t flags); void * __must_check kasan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags); bool kasan_slab_free(struct kmem_cache *s, void *object, unsigned long ip); struct kasan_cache { int alloc_meta_offset; int free_meta_offset; }; /* * These functions provide a special case to support backing module * allocations with real shadow memory. With KASAN vmalloc, the special * case is unnecessary, as the work is handled in the generic case. */ #ifndef CONFIG_KASAN_VMALLOC int kasan_module_alloc(void *addr, size_t size); void kasan_free_shadow(const struct vm_struct *vm); #else static inline int kasan_module_alloc(void *addr, size_t size) { return 0; } static inline void kasan_free_shadow(const struct vm_struct *vm) {} #endif int kasan_add_zero_shadow(void *start, unsigned long size); void kasan_remove_zero_shadow(void *start, unsigned long size); size_t __ksize(const void *); static inline void kasan_unpoison_slab(const void *ptr) { kasan_unpoison_shadow(ptr, __ksize(ptr)); } size_t kasan_metadata_size(struct kmem_cache *cache); bool kasan_save_enable_multi_shot(void); void kasan_restore_multi_shot(bool enabled); #else /* CONFIG_KASAN */ static inline void kasan_unpoison_shadow(const void *address, size_t size) {} static inline void kasan_unpoison_task_stack(struct task_struct *task) {} static inline void kasan_enable_current(void) {} static inline void kasan_disable_current(void) {} static inline void kasan_alloc_pages(struct page *page, unsigned int order) {} static inline void kasan_free_pages(struct page *page, unsigned int order) {} static inline void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, slab_flags_t *flags) {} static inline void kasan_poison_slab(struct page *page) {} static inline void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) {} static inline void kasan_poison_object_data(struct kmem_cache *cache, void *object) {} static inline void *kasan_init_slab_obj(struct kmem_cache *cache, const void *object) { return (void *)object; } static inline void *kasan_kmalloc_large(void *ptr, size_t size, gfp_t flags) { return ptr; } static inline void kasan_kfree_large(void *ptr, unsigned long ip) {} static inline void kasan_poison_kfree(void *ptr, unsigned long ip) {} static inline void *kasan_kmalloc(struct kmem_cache *s, const void *object, size_t size, gfp_t flags) { return (void *)object; } static inline void *kasan_krealloc(const void *object, size_t new_size, gfp_t flags) { return (void *)object; } static inline void *kasan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags) { return object; } static inline bool kasan_slab_free(struct kmem_cache *s, void *object, unsigned long ip) { return false; } static inline int kasan_module_alloc(void *addr, size_t size) { return 0; } static inline void kasan_free_shadow(const struct vm_struct *vm) {} static inline int kasan_add_zero_shadow(void *start, unsigned long size) { return 0; } static inline void kasan_remove_zero_shadow(void *start, unsigned long size) {} static inline void kasan_unpoison_slab(const void *ptr) { } static inline size_t kasan_metadata_size(struct kmem_cache *cache) { return 0; } #endif /* CONFIG_KASAN */ #ifdef CONFIG_KASAN_GENERIC #define KASAN_SHADOW_INIT 0 void kasan_cache_shrink(struct kmem_cache *cache); void kasan_cache_shutdown(struct kmem_cache *cache); void kasan_record_aux_stack(void *ptr); #else /* CONFIG_KASAN_GENERIC */ static inline void kasan_cache_shrink(struct kmem_cache *cache) {} static inline void kasan_cache_shutdown(struct kmem_cache *cache) {} static inline void kasan_record_aux_stack(void *ptr) {} #endif /* CONFIG_KASAN_GENERIC */ #ifdef CONFIG_KASAN_SW_TAGS #define KASAN_SHADOW_INIT 0xFF void kasan_init_tags(void); void *kasan_reset_tag(const void *addr); bool kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip); #else /* CONFIG_KASAN_SW_TAGS */ static inline void kasan_init_tags(void) { } static inline void *kasan_reset_tag(const void *addr) { return (void *)addr; } #endif /* CONFIG_KASAN_SW_TAGS */ #ifdef CONFIG_KASAN_VMALLOC int kasan_populate_vmalloc(unsigned long addr, unsigned long size); void kasan_poison_vmalloc(const void *start, unsigned long size); void kasan_unpoison_vmalloc(const void *start, unsigned long size); void kasan_release_vmalloc(unsigned long start, unsigned long end, unsigned long free_region_start, unsigned long free_region_end); #else static inline int kasan_populate_vmalloc(unsigned long start, unsigned long size) { return 0; } static inline void kasan_poison_vmalloc(const void *start, unsigned long size) { } static inline void kasan_unpoison_vmalloc(const void *start, unsigned long size) { } static inline void kasan_release_vmalloc(unsigned long start, unsigned long end, unsigned long free_region_start, unsigned long free_region_end) {} #endif #ifdef CONFIG_KASAN_INLINE void kasan_non_canonical_hook(unsigned long addr); #else /* CONFIG_KASAN_INLINE */ static inline void kasan_non_canonical_hook(unsigned long addr) { } #endif /* CONFIG_KASAN_INLINE */ #endif /* LINUX_KASAN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_MM_H #define _LINUX_SCHED_MM_H #include <linux/kernel.h> #include <linux/atomic.h> #include <linux/sched.h> #include <linux/mm_types.h> #include <linux/gfp.h> #include <linux/sync_core.h> /* * Routines for handling mm_structs */ extern struct mm_struct *mm_alloc(void); /** * mmgrab() - Pin a &struct mm_struct. * @mm: The &struct mm_struct to pin. * * Make sure that @mm will not get freed even after the owning task * exits. This doesn't guarantee that the associated address space * will still exist later on and mmget_not_zero() has to be used before * accessing it. * * This is a preferred way to pin @mm for a longer/unbounded amount * of time. * * Use mmdrop() to release the reference acquired by mmgrab(). * * See also <Documentation/vm/active_mm.rst> for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmgrab(struct mm_struct *mm) { atomic_inc(&mm->mm_count); } extern void __mmdrop(struct mm_struct *mm); static inline void mmdrop(struct mm_struct *mm) { /* * The implicit full barrier implied by atomic_dec_and_test() is * required by the membarrier system call before returning to * user-space, after storing to rq->curr. */ if (unlikely(atomic_dec_and_test(&mm->mm_count))) __mmdrop(mm); } /** * mmget() - Pin the address space associated with a &struct mm_struct. * @mm: The address space to pin. * * Make sure that the address space of the given &struct mm_struct doesn't * go away. This does not protect against parts of the address space being * modified or freed, however. * * Never use this function to pin this address space for an * unbounded/indefinite amount of time. * * Use mmput() to release the reference acquired by mmget(). * * See also <Documentation/vm/active_mm.rst> for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmget(struct mm_struct *mm) { atomic_inc(&mm->mm_users); } static inline bool mmget_not_zero(struct mm_struct *mm) { return atomic_inc_not_zero(&mm->mm_users); } /* mmput gets rid of the mappings and all user-space */ extern void mmput(struct mm_struct *); #ifdef CONFIG_MMU /* same as above but performs the slow path from the async context. Can * be called from the atomic context as well */ void mmput_async(struct mm_struct *); #endif /* Grab a reference to a task's mm, if it is not already going away */ extern struct mm_struct *get_task_mm(struct task_struct *task); /* * Grab a reference to a task's mm, if it is not already going away * and ptrace_may_access with the mode parameter passed to it * succeeds. */ extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); /* Remove the current tasks stale references to the old mm_struct on exit() */ extern void exit_mm_release(struct task_struct *, struct mm_struct *); /* Remove the current tasks stale references to the old mm_struct on exec() */ extern void exec_mm_release(struct task_struct *, struct mm_struct *); #ifdef CONFIG_MEMCG extern void mm_update_next_owner(struct mm_struct *mm); #else static inline void mm_update_next_owner(struct mm_struct *mm) { } #endif /* CONFIG_MEMCG */ #ifdef CONFIG_MMU extern void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack); extern unsigned long arch_get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); #else static inline void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) {} #endif static inline bool in_vfork(struct task_struct *tsk) { bool ret; /* * need RCU to access ->real_parent if CLONE_VM was used along with * CLONE_PARENT. * * We check real_parent->mm == tsk->mm because CLONE_VFORK does not * imply CLONE_VM * * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus * ->real_parent is not necessarily the task doing vfork(), so in * theory we can't rely on task_lock() if we want to dereference it. * * And in this case we can't trust the real_parent->mm == tsk->mm * check, it can be false negative. But we do not care, if init or * another oom-unkillable task does this it should blame itself. */ rcu_read_lock(); ret = tsk->vfork_done && rcu_dereference(tsk->real_parent)->mm == tsk->mm; rcu_read_unlock(); return ret; } /* * Applies per-task gfp context to the given allocation flags. * PF_MEMALLOC_NOIO implies GFP_NOIO * PF_MEMALLOC_NOFS implies GFP_NOFS */ static inline gfp_t current_gfp_context(gfp_t flags) { unsigned int pflags = READ_ONCE(current->flags); if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS))) { /* * NOIO implies both NOIO and NOFS and it is a weaker context * so always make sure it makes precedence */ if (pflags & PF_MEMALLOC_NOIO) flags &= ~(__GFP_IO | __GFP_FS); else if (pflags & PF_MEMALLOC_NOFS) flags &= ~__GFP_FS; } return flags; } #ifdef CONFIG_LOCKDEP extern void __fs_reclaim_acquire(void); extern void __fs_reclaim_release(void); extern void fs_reclaim_acquire(gfp_t gfp_mask); extern void fs_reclaim_release(gfp_t gfp_mask); #else static inline void __fs_reclaim_acquire(void) { } static inline void __fs_reclaim_release(void) { } static inline void fs_reclaim_acquire(gfp_t gfp_mask) { } static inline void fs_reclaim_release(gfp_t gfp_mask) { } #endif /** * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope. * * This functions marks the beginning of the GFP_NOIO allocation scope. * All further allocations will implicitly drop __GFP_IO flag and so * they are safe for the IO critical section from the allocation recursion * point of view. Use memalloc_noio_restore to end the scope with flags * returned by this function. * * This function is safe to be used from any context. */ static inline unsigned int memalloc_noio_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOIO; current->flags |= PF_MEMALLOC_NOIO; return flags; } /** * memalloc_noio_restore - Ends the implicit GFP_NOIO scope. * @flags: Flags to restore. * * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function. * Always make sure that the given flags is the return value from the * pairing memalloc_noio_save call. */ static inline void memalloc_noio_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; } /** * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope. * * This functions marks the beginning of the GFP_NOFS allocation scope. * All further allocations will implicitly drop __GFP_FS flag and so * they are safe for the FS critical section from the allocation recursion * point of view. Use memalloc_nofs_restore to end the scope with flags * returned by this function. * * This function is safe to be used from any context. */ static inline unsigned int memalloc_nofs_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOFS; current->flags |= PF_MEMALLOC_NOFS; return flags; } /** * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope. * @flags: Flags to restore. * * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function. * Always make sure that the given flags is the return value from the * pairing memalloc_nofs_save call. */ static inline void memalloc_nofs_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags; } static inline unsigned int memalloc_noreclaim_save(void) { unsigned int flags = current->flags & PF_MEMALLOC; current->flags |= PF_MEMALLOC; return flags; } static inline void memalloc_noreclaim_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC) | flags; } #ifdef CONFIG_CMA static inline unsigned int memalloc_nocma_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOCMA; current->flags |= PF_MEMALLOC_NOCMA; return flags; } static inline void memalloc_nocma_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags; } #else static inline unsigned int memalloc_nocma_save(void) { return 0; } static inline void memalloc_nocma_restore(unsigned int flags) { } #endif #ifdef CONFIG_MEMCG DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg); /** * set_active_memcg - Starts the remote memcg charging scope. * @memcg: memcg to charge. * * This function marks the beginning of the remote memcg charging scope. All the * __GFP_ACCOUNT allocations till the end of the scope will be charged to the * given memcg. * * NOTE: This function can nest. Users must save the return value and * reset the previous value after their own charging scope is over. */ static inline struct mem_cgroup * set_active_memcg(struct mem_cgroup *memcg) { struct mem_cgroup *old; if (in_interrupt()) { old = this_cpu_read(int_active_memcg); this_cpu_write(int_active_memcg, memcg); } else { old = current->active_memcg; current->active_memcg = memcg; } return old; } #else static inline struct mem_cgroup * set_active_memcg(struct mem_cgroup *memcg) { return NULL; } #endif #ifdef CONFIG_MEMBARRIER enum { MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0), MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1), MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2), MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3), MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4), MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5), MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY = (1U << 6), MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ = (1U << 7), }; enum { MEMBARRIER_FLAG_SYNC_CORE = (1U << 0), MEMBARRIER_FLAG_RSEQ = (1U << 1), }; #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS #include <asm/membarrier.h> #endif static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) { if (current->mm != mm) return; if (likely(!(atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE))) return; sync_core_before_usermode(); } extern void membarrier_exec_mmap(struct mm_struct *mm); #else #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS static inline void membarrier_arch_switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { } #endif static inline void membarrier_exec_mmap(struct mm_struct *mm) { } static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) { } #endif #endif /* _LINUX_SCHED_MM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_BARRIER_H #define _ASM_X86_BARRIER_H #include <asm/alternative.h> #include <asm/nops.h> /* * Force strict CPU ordering. * And yes, this might be required on UP too when we're talking * to devices. */ #ifdef CONFIG_X86_32 #define mb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "mfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #define rmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "lfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #define wmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "sfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #else #define mb() asm volatile("mfence":::"memory") #define rmb() asm volatile("lfence":::"memory") #define wmb() asm volatile("sfence" ::: "memory") #endif /** * array_index_mask_nospec() - generate a mask that is ~0UL when the * bounds check succeeds and 0 otherwise * @index: array element index * @size: number of elements in array * * Returns: * 0 - (index < size) */ static inline unsigned long array_index_mask_nospec(unsigned long index, unsigned long size) { unsigned long mask; asm volatile ("cmp %1,%2; sbb %0,%0;" :"=r" (mask) :"g"(size),"r" (index) :"cc"); return mask; } /* Override the default implementation from linux/nospec.h. */ #define array_index_mask_nospec array_index_mask_nospec /* Prevent speculative execution past this barrier. */ #define barrier_nospec() alternative("", "lfence", X86_FEATURE_LFENCE_RDTSC) #define dma_rmb() barrier() #define dma_wmb() barrier() #ifdef CONFIG_X86_32 #define __smp_mb() asm volatile("lock; addl $0,-4(%%esp)" ::: "memory", "cc") #else #define __smp_mb() asm volatile("lock; addl $0,-4(%%rsp)" ::: "memory", "cc") #endif #define __smp_rmb() dma_rmb() #define __smp_wmb() barrier() #define __smp_store_mb(var, value) do { (void)xchg(&var, value); } while (0) #define __smp_store_release(p, v) \ do { \ compiletime_assert_atomic_type(*p); \ barrier(); \ WRITE_ONCE(*p, v); \ } while (0) #define __smp_load_acquire(p) \ ({ \ typeof(*p) ___p1 = READ_ONCE(*p); \ compiletime_assert_atomic_type(*p); \ barrier(); \ ___p1; \ }) /* Atomic operations are already serializing on x86 */ #define __smp_mb__before_atomic() do { } while (0) #define __smp_mb__after_atomic() do { } while (0) #include <asm-generic/barrier.h> /* * Make previous memory operations globally visible before * a WRMSR. * * MFENCE makes writes visible, but only affects load/store * instructions. WRMSR is unfortunately not a load/store * instruction and is unaffected by MFENCE. The LFENCE ensures * that the WRMSR is not reordered. * * Most WRMSRs are full serializing instructions themselves and * do not require this barrier. This is only required for the * IA32_TSC_DEADLINE and X2APIC MSRs. */ static inline void weak_wrmsr_fence(void) { asm volatile("mfence; lfence" : : : "memory"); } #endif /* _ASM_X86_BARRIER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_GENHD_H #define _LINUX_GENHD_H /* * genhd.h Copyright (C) 1992 Drew Eckhardt * Generic hard disk header file by * Drew Eckhardt * * <drew@colorado.edu> */ #include <linux/types.h> #include <linux/kdev_t.h> #include <linux/rcupdate.h> #include <linux/slab.h> #include <linux/percpu-refcount.h> #include <linux/uuid.h> #include <linux/blk_types.h> #include <asm/local.h> #define dev_to_disk(device) container_of((device), struct gendisk, part0.__dev) #define dev_to_part(device) container_of((device), struct hd_struct, __dev) #define disk_to_dev(disk) (&(disk)->part0.__dev) #define part_to_dev(part) (&((part)->__dev)) extern const struct device_type disk_type; extern struct device_type part_type; extern struct class block_class; #define DISK_MAX_PARTS 256 #define DISK_NAME_LEN 32 #include <linux/major.h> #include <linux/device.h> #include <linux/smp.h> #include <linux/string.h> #include <linux/fs.h> #include <linux/workqueue.h> #define PARTITION_META_INFO_VOLNAMELTH 64 /* * Enough for the string representation of any kind of UUID plus NULL. * EFI UUID is 36 characters. MSDOS UUID is 11 characters. */ #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) struct partition_meta_info { char uuid[PARTITION_META_INFO_UUIDLTH]; u8 volname[PARTITION_META_INFO_VOLNAMELTH]; }; struct hd_struct { sector_t start_sect; /* * nr_sects is protected by sequence counter. One might extend a * partition while IO is happening to it and update of nr_sects * can be non-atomic on 32bit machines with 64bit sector_t. */ sector_t nr_sects; #if BITS_PER_LONG==32 && defined(CONFIG_SMP) seqcount_t nr_sects_seq; #endif unsigned long stamp; struct disk_stats __percpu *dkstats; struct percpu_ref ref; struct device __dev; struct kobject *holder_dir; int policy, partno; struct partition_meta_info *info; #ifdef CONFIG_FAIL_MAKE_REQUEST int make_it_fail; #endif struct rcu_work rcu_work; }; /** * DOC: genhd capability flags * * ``GENHD_FL_REMOVABLE`` (0x0001): indicates that the block device * gives access to removable media. * When set, the device remains present even when media is not * inserted. * Must not be set for devices which are removed entirely when the * media is removed. * * ``GENHD_FL_CD`` (0x0008): the block device is a CD-ROM-style * device. * Affects responses to the ``CDROM_GET_CAPABILITY`` ioctl. * * ``GENHD_FL_UP`` (0x0010): indicates that the block device is "up", * with a similar meaning to network interfaces. * * ``GENHD_FL_SUPPRESS_PARTITION_INFO`` (0x0020): don't include * partition information in ``/proc/partitions`` or in the output of * printk_all_partitions(). * Used for the null block device and some MMC devices. * * ``GENHD_FL_EXT_DEVT`` (0x0040): the driver supports extended * dynamic ``dev_t``, i.e. it wants extended device numbers * (``BLOCK_EXT_MAJOR``). * This affects the maximum number of partitions. * * ``GENHD_FL_NATIVE_CAPACITY`` (0x0080): based on information in the * partition table, the device's capacity has been extended to its * native capacity; i.e. the device has hidden capacity used by one * of the partitions (this is a flag used so that native capacity is * only ever unlocked once). * * ``GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE`` (0x0100): event polling is * blocked whenever a writer holds an exclusive lock. * * ``GENHD_FL_NO_PART_SCAN`` (0x0200): partition scanning is disabled. * Used for loop devices in their default settings and some MMC * devices. * * ``GENHD_FL_HIDDEN`` (0x0400): the block device is hidden; it * doesn't produce events, doesn't appear in sysfs, and doesn't have * an associated ``bdev``. * Implies ``GENHD_FL_SUPPRESS_PARTITION_INFO`` and * ``GENHD_FL_NO_PART_SCAN``. * Used for multipath devices. */ #define GENHD_FL_REMOVABLE 0x0001 /* 2 is unused (used to be GENHD_FL_DRIVERFS) */ /* 4 is unused (used to be GENHD_FL_MEDIA_CHANGE_NOTIFY) */ #define GENHD_FL_CD 0x0008 #define GENHD_FL_UP 0x0010 #define GENHD_FL_SUPPRESS_PARTITION_INFO 0x0020 #define GENHD_FL_EXT_DEVT 0x0040 #define GENHD_FL_NATIVE_CAPACITY 0x0080 #define GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE 0x0100 #define GENHD_FL_NO_PART_SCAN 0x0200 #define GENHD_FL_HIDDEN 0x0400 enum { DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ }; enum { /* Poll even if events_poll_msecs is unset */ DISK_EVENT_FLAG_POLL = 1 << 0, /* Forward events to udev */ DISK_EVENT_FLAG_UEVENT = 1 << 1, }; struct disk_part_tbl { struct rcu_head rcu_head; int len; struct hd_struct __rcu *last_lookup; struct hd_struct __rcu *part[]; }; struct disk_events; struct badblocks; struct blk_integrity { const struct blk_integrity_profile *profile; unsigned char flags; unsigned char tuple_size; unsigned char interval_exp; unsigned char tag_size; }; struct gendisk { /* major, first_minor and minors are input parameters only, * don't use directly. Use disk_devt() and disk_max_parts(). */ int major; /* major number of driver */ int first_minor; int minors; /* maximum number of minors, =1 for * disks that can't be partitioned. */ char disk_name[DISK_NAME_LEN]; /* name of major driver */ unsigned short events; /* supported events */ unsigned short event_flags; /* flags related to event processing */ /* Array of pointers to partitions indexed by partno. * Protected with matching bdev lock but stat and other * non-critical accesses use RCU. Always access through * helpers. */ struct disk_part_tbl __rcu *part_tbl; struct hd_struct part0; const struct block_device_operations *fops; struct request_queue *queue; void *private_data; int flags; unsigned long state; #define GD_NEED_PART_SCAN 0 struct rw_semaphore lookup_sem; struct kobject *slave_dir; struct timer_rand_state *random; atomic_t sync_io; /* RAID */ struct disk_events *ev; #ifdef CONFIG_BLK_DEV_INTEGRITY struct kobject integrity_kobj; #endif /* CONFIG_BLK_DEV_INTEGRITY */ #if IS_ENABLED(CONFIG_CDROM) struct cdrom_device_info *cdi; #endif int node_id; struct badblocks *bb; struct lockdep_map lockdep_map; }; #if IS_REACHABLE(CONFIG_CDROM) #define disk_to_cdi(disk) ((disk)->cdi) #else #define disk_to_cdi(disk) NULL #endif static inline struct gendisk *part_to_disk(struct hd_struct *part) { if (likely(part)) { if (part->partno) return dev_to_disk(part_to_dev(part)->parent); else return dev_to_disk(part_to_dev(part)); } return NULL; } static inline int disk_max_parts(struct gendisk *disk) { if (disk->flags & GENHD_FL_EXT_DEVT) return DISK_MAX_PARTS; return disk->minors; } static inline bool disk_part_scan_enabled(struct gendisk *disk) { return disk_max_parts(disk) > 1 && !(disk->flags & GENHD_FL_NO_PART_SCAN); } static inline dev_t disk_devt(struct gendisk *disk) { return MKDEV(disk->major, disk->first_minor); } static inline dev_t part_devt(struct hd_struct *part) { return part_to_dev(part)->devt; } extern struct hd_struct *__disk_get_part(struct gendisk *disk, int partno); extern struct hd_struct *disk_get_part(struct gendisk *disk, int partno); static inline void disk_put_part(struct hd_struct *part) { if (likely(part)) put_device(part_to_dev(part)); } static inline void hd_sects_seq_init(struct hd_struct *p) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) seqcount_init(&p->nr_sects_seq); #endif } /* * Smarter partition iterator without context limits. */ #define DISK_PITER_REVERSE (1 << 0) /* iterate in the reverse direction */ #define DISK_PITER_INCL_EMPTY (1 << 1) /* include 0-sized parts */ #define DISK_PITER_INCL_PART0 (1 << 2) /* include partition 0 */ #define DISK_PITER_INCL_EMPTY_PART0 (1 << 3) /* include empty partition 0 */ struct disk_part_iter { struct gendisk *disk; struct hd_struct *part; int idx; unsigned int flags; }; extern void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, unsigned int flags); extern struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter); extern void disk_part_iter_exit(struct disk_part_iter *piter); extern bool disk_has_partitions(struct gendisk *disk); /* block/genhd.c */ extern void device_add_disk(struct device *parent, struct gendisk *disk, const struct attribute_group **groups); static inline void add_disk(struct gendisk *disk) { device_add_disk(NULL, disk, NULL); } extern void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk); static inline void add_disk_no_queue_reg(struct gendisk *disk) { device_add_disk_no_queue_reg(NULL, disk); } extern void del_gendisk(struct gendisk *gp); extern struct gendisk *get_gendisk(dev_t dev, int *partno); extern struct block_device *bdget_disk(struct gendisk *disk, int partno); extern void set_device_ro(struct block_device *bdev, int flag); extern void set_disk_ro(struct gendisk *disk, int flag); static inline int get_disk_ro(struct gendisk *disk) { return disk->part0.policy; } extern void disk_block_events(struct gendisk *disk); extern void disk_unblock_events(struct gendisk *disk); extern void disk_flush_events(struct gendisk *disk, unsigned int mask); bool set_capacity_revalidate_and_notify(struct gendisk *disk, sector_t size, bool update_bdev); /* drivers/char/random.c */ extern void add_disk_randomness(struct gendisk *disk) __latent_entropy; extern void rand_initialize_disk(struct gendisk *disk); static inline sector_t get_start_sect(struct block_device *bdev) { return bdev->bd_part->start_sect; } static inline sector_t get_capacity(struct gendisk *disk) { return disk->part0.nr_sects; } static inline void set_capacity(struct gendisk *disk, sector_t size) { disk->part0.nr_sects = size; } int bdev_disk_changed(struct block_device *bdev, bool invalidate); int blk_add_partitions(struct gendisk *disk, struct block_device *bdev); int blk_drop_partitions(struct block_device *bdev); extern struct gendisk *__alloc_disk_node(int minors, int node_id); extern struct kobject *get_disk_and_module(struct gendisk *disk); extern void put_disk(struct gendisk *disk); extern void put_disk_and_module(struct gendisk *disk); extern void blk_register_region(dev_t devt, unsigned long range, struct module *module, struct kobject *(*probe)(dev_t, int *, void *), int (*lock)(dev_t, void *), void *data); extern void blk_unregister_region(dev_t devt, unsigned long range); #define alloc_disk_node(minors, node_id) \ ({ \ static struct lock_class_key __key; \ const char *__name; \ struct gendisk *__disk; \ \ __name = "(gendisk_completion)"#minors"("#node_id")"; \ \ __disk = __alloc_disk_node(minors, node_id); \ \ if (__disk) \ lockdep_init_map(&__disk->lockdep_map, __name, &__key, 0); \ \ __disk; \ }) #define alloc_disk(minors) alloc_disk_node(minors, NUMA_NO_NODE) int register_blkdev(unsigned int major, const char *name); void unregister_blkdev(unsigned int major, const char *name); void revalidate_disk_size(struct gendisk *disk, bool verbose); bool bdev_check_media_change(struct block_device *bdev); int __invalidate_device(struct block_device *bdev, bool kill_dirty); void bd_set_nr_sectors(struct block_device *bdev, sector_t sectors); /* for drivers/char/raw.c: */ int blkdev_ioctl(struct block_device *, fmode_t, unsigned, unsigned long); long compat_blkdev_ioctl(struct file *, unsigned, unsigned long); #ifdef CONFIG_SYSFS int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); #else static inline int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) { return 0; } static inline void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) { } #endif /* CONFIG_SYSFS */ #ifdef CONFIG_BLOCK void printk_all_partitions(void); dev_t blk_lookup_devt(const char *name, int partno); #else /* CONFIG_BLOCK */ static inline void printk_all_partitions(void) { } static inline dev_t blk_lookup_devt(const char *name, int partno) { dev_t devt = MKDEV(0, 0); return devt; } #endif /* CONFIG_BLOCK */ #endif /* _LINUX_GENHD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> */ #ifndef _IP6_FIB_H #define _IP6_FIB_H #include <linux/ipv6_route.h> #include <linux/rtnetlink.h> #include <linux/spinlock.h> #include <linux/notifier.h> #include <net/dst.h> #include <net/flow.h> #include <net/ip_fib.h> #include <net/netlink.h> #include <net/inetpeer.h> #include <net/fib_notifier.h> #include <linux/indirect_call_wrapper.h> #ifdef CONFIG_IPV6_MULTIPLE_TABLES #define FIB6_TABLE_HASHSZ 256 #else #define FIB6_TABLE_HASHSZ 1 #endif #define RT6_DEBUG 2 #if RT6_DEBUG >= 3 #define RT6_TRACE(x...) pr_debug(x) #else #define RT6_TRACE(x...) do { ; } while (0) #endif struct rt6_info; struct fib6_info; struct fib6_config { u32 fc_table; u32 fc_metric; int fc_dst_len; int fc_src_len; int fc_ifindex; u32 fc_flags; u32 fc_protocol; u16 fc_type; /* only 8 bits are used */ u16 fc_delete_all_nh : 1, fc_ignore_dev_down:1, __unused : 14; u32 fc_nh_id; struct in6_addr fc_dst; struct in6_addr fc_src; struct in6_addr fc_prefsrc; struct in6_addr fc_gateway; unsigned long fc_expires; struct nlattr *fc_mx; int fc_mx_len; int fc_mp_len; struct nlattr *fc_mp; struct nl_info fc_nlinfo; struct nlattr *fc_encap; u16 fc_encap_type; bool fc_is_fdb; }; struct fib6_node { struct fib6_node __rcu *parent; struct fib6_node __rcu *left; struct fib6_node __rcu *right; #ifdef CONFIG_IPV6_SUBTREES struct fib6_node __rcu *subtree; #endif struct fib6_info __rcu *leaf; __u16 fn_bit; /* bit key */ __u16 fn_flags; int fn_sernum; struct fib6_info __rcu *rr_ptr; struct rcu_head rcu; }; struct fib6_gc_args { int timeout; int more; }; #ifndef CONFIG_IPV6_SUBTREES #define FIB6_SUBTREE(fn) NULL static inline bool fib6_routes_require_src(const struct net *net) { return false; } static inline void fib6_routes_require_src_inc(struct net *net) {} static inline void fib6_routes_require_src_dec(struct net *net) {} #else static inline bool fib6_routes_require_src(const struct net *net) { return net->ipv6.fib6_routes_require_src > 0; } static inline void fib6_routes_require_src_inc(struct net *net) { net->ipv6.fib6_routes_require_src++; } static inline void fib6_routes_require_src_dec(struct net *net) { net->ipv6.fib6_routes_require_src--; } #define FIB6_SUBTREE(fn) (rcu_dereference_protected((fn)->subtree, 1)) #endif /* * routing information * */ struct rt6key { struct in6_addr addr; int plen; }; struct fib6_table; struct rt6_exception_bucket { struct hlist_head chain; int depth; }; struct rt6_exception { struct hlist_node hlist; struct rt6_info *rt6i; unsigned long stamp; struct rcu_head rcu; }; #define FIB6_EXCEPTION_BUCKET_SIZE_SHIFT 10 #define FIB6_EXCEPTION_BUCKET_SIZE (1 << FIB6_EXCEPTION_BUCKET_SIZE_SHIFT) #define FIB6_MAX_DEPTH 5 struct fib6_nh { struct fib_nh_common nh_common; #ifdef CONFIG_IPV6_ROUTER_PREF unsigned long last_probe; #endif struct rt6_info * __percpu *rt6i_pcpu; struct rt6_exception_bucket __rcu *rt6i_exception_bucket; }; struct fib6_info { struct fib6_table *fib6_table; struct fib6_info __rcu *fib6_next; struct fib6_node __rcu *fib6_node; /* Multipath routes: * siblings is a list of fib6_info that have the same metric/weight, * destination, but not the same gateway. nsiblings is just a cache * to speed up lookup. */ union { struct list_head fib6_siblings; struct list_head nh_list; }; unsigned int fib6_nsiblings; refcount_t fib6_ref; unsigned long expires; struct dst_metrics *fib6_metrics; #define fib6_pmtu fib6_metrics->metrics[RTAX_MTU-1] struct rt6key fib6_dst; u32 fib6_flags; struct rt6key fib6_src; struct rt6key fib6_prefsrc; u32 fib6_metric; u8 fib6_protocol; u8 fib6_type; u8 should_flush:1, dst_nocount:1, dst_nopolicy:1, fib6_destroying:1, offload:1, trap:1, unused:2; struct rcu_head rcu; struct nexthop *nh; struct fib6_nh fib6_nh[]; }; struct rt6_info { struct dst_entry dst; struct fib6_info __rcu *from; int sernum; struct rt6key rt6i_dst; struct rt6key rt6i_src; struct in6_addr rt6i_gateway; struct inet6_dev *rt6i_idev; u32 rt6i_flags; struct list_head rt6i_uncached; struct uncached_list *rt6i_uncached_list; /* more non-fragment space at head required */ unsigned short rt6i_nfheader_len; }; struct fib6_result { struct fib6_nh *nh; struct fib6_info *f6i; u32 fib6_flags; u8 fib6_type; struct rt6_info *rt6; }; #define for_each_fib6_node_rt_rcu(fn) \ for (rt = rcu_dereference((fn)->leaf); rt; \ rt = rcu_dereference(rt->fib6_next)) #define for_each_fib6_walker_rt(w) \ for (rt = (w)->leaf; rt; \ rt = rcu_dereference_protected(rt->fib6_next, 1)) static inline struct inet6_dev *ip6_dst_idev(struct dst_entry *dst) { return ((struct rt6_info *)dst)->rt6i_idev; } static inline bool fib6_requires_src(const struct fib6_info *rt) { return rt->fib6_src.plen > 0; } static inline void fib6_clean_expires(struct fib6_info *f6i) { f6i->fib6_flags &= ~RTF_EXPIRES; f6i->expires = 0; } static inline void fib6_set_expires(struct fib6_info *f6i, unsigned long expires) { f6i->expires = expires; f6i->fib6_flags |= RTF_EXPIRES; } static inline bool fib6_check_expired(const struct fib6_info *f6i) { if (f6i->fib6_flags & RTF_EXPIRES) return time_after(jiffies, f6i->expires); return false; } /* Function to safely get fn->sernum for passed in rt * and store result in passed in cookie. * Return true if we can get cookie safely * Return false if not */ static inline bool fib6_get_cookie_safe(const struct fib6_info *f6i, u32 *cookie) { struct fib6_node *fn; bool status = false; fn = rcu_dereference(f6i->fib6_node); if (fn) { *cookie = fn->fn_sernum; /* pairs with smp_wmb() in fib6_update_sernum_upto_root() */ smp_rmb(); status = true; } return status; } static inline u32 rt6_get_cookie(const struct rt6_info *rt) { struct fib6_info *from; u32 cookie = 0; if (rt->sernum) return rt->sernum; rcu_read_lock(); from = rcu_dereference(rt->from); if (from) fib6_get_cookie_safe(from, &cookie); rcu_read_unlock(); return cookie; } static inline void ip6_rt_put(struct rt6_info *rt) { /* dst_release() accepts a NULL parameter. * We rely on dst being first structure in struct rt6_info */ BUILD_BUG_ON(offsetof(struct rt6_info, dst) != 0); dst_release(&rt->dst); } struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh); void fib6_info_destroy_rcu(struct rcu_head *head); static inline void fib6_info_hold(struct fib6_info *f6i) { refcount_inc(&f6i->fib6_ref); } static inline bool fib6_info_hold_safe(struct fib6_info *f6i) { return refcount_inc_not_zero(&f6i->fib6_ref); } static inline void fib6_info_release(struct fib6_info *f6i) { if (f6i && refcount_dec_and_test(&f6i->fib6_ref)) call_rcu(&f6i->rcu, fib6_info_destroy_rcu); } static inline void fib6_info_hw_flags_set(struct fib6_info *f6i, bool offload, bool trap) { f6i->offload = offload; f6i->trap = trap; } enum fib6_walk_state { #ifdef CONFIG_IPV6_SUBTREES FWS_S, #endif FWS_L, FWS_R, FWS_C, FWS_U }; struct fib6_walker { struct list_head lh; struct fib6_node *root, *node; struct fib6_info *leaf; enum fib6_walk_state state; unsigned int skip; unsigned int count; unsigned int skip_in_node; int (*func)(struct fib6_walker *); void *args; }; struct rt6_statistics { __u32 fib_nodes; /* all fib6 nodes */ __u32 fib_route_nodes; /* intermediate nodes */ __u32 fib_rt_entries; /* rt entries in fib table */ __u32 fib_rt_cache; /* cached rt entries in exception table */ __u32 fib_discarded_routes; /* total number of routes delete */ /* The following stats are not protected by any lock */ atomic_t fib_rt_alloc; /* total number of routes alloced */ atomic_t fib_rt_uncache; /* rt entries in uncached list */ }; #define RTN_TL_ROOT 0x0001 #define RTN_ROOT 0x0002 /* tree root node */ #define RTN_RTINFO 0x0004 /* node with valid routing info */ /* * priority levels (or metrics) * */ struct fib6_table { struct hlist_node tb6_hlist; u32 tb6_id; spinlock_t tb6_lock; struct fib6_node tb6_root; struct inet_peer_base tb6_peers; unsigned int flags; unsigned int fib_seq; #define RT6_TABLE_HAS_DFLT_ROUTER BIT(0) }; #define RT6_TABLE_UNSPEC RT_TABLE_UNSPEC #define RT6_TABLE_MAIN RT_TABLE_MAIN #define RT6_TABLE_DFLT RT6_TABLE_MAIN #define RT6_TABLE_INFO RT6_TABLE_MAIN #define RT6_TABLE_PREFIX RT6_TABLE_MAIN #ifdef CONFIG_IPV6_MULTIPLE_TABLES #define FIB6_TABLE_MIN 1 #define FIB6_TABLE_MAX RT_TABLE_MAX #define RT6_TABLE_LOCAL RT_TABLE_LOCAL #else #define FIB6_TABLE_MIN RT_TABLE_MAIN #define FIB6_TABLE_MAX FIB6_TABLE_MIN #define RT6_TABLE_LOCAL RT6_TABLE_MAIN #endif typedef struct rt6_info *(*pol_lookup_t)(struct net *, struct fib6_table *, struct flowi6 *, const struct sk_buff *, int); struct fib6_entry_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib6_info *rt; unsigned int nsiblings; }; /* * exported functions */ struct fib6_table *fib6_get_table(struct net *net, u32 id); struct fib6_table *fib6_new_table(struct net *net, u32 id); struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, const struct sk_buff *skb, int flags, pol_lookup_t lookup); /* called with rcu lock held; can return error pointer * caller needs to select path */ int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, struct fib6_result *res, int flags); /* called with rcu lock held; caller needs to select path */ int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, struct flowi6 *fl6, struct fib6_result *res, int strict); void fib6_select_path(const struct net *net, struct fib6_result *res, struct flowi6 *fl6, int oif, bool have_oif_match, const struct sk_buff *skb, int strict); struct fib6_node *fib6_node_lookup(struct fib6_node *root, const struct in6_addr *daddr, const struct in6_addr *saddr); struct fib6_node *fib6_locate(struct fib6_node *root, const struct in6_addr *daddr, int dst_len, const struct in6_addr *saddr, int src_len, bool exact_match); void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *arg), void *arg); void fib6_clean_all_skip_notify(struct net *net, int (*func)(struct fib6_info *, void *arg), void *arg); int fib6_add(struct fib6_node *root, struct fib6_info *rt, struct nl_info *info, struct netlink_ext_ack *extack); int fib6_del(struct fib6_info *rt, struct nl_info *info); static inline void rt6_get_prefsrc(const struct rt6_info *rt, struct in6_addr *addr) { const struct fib6_info *from; rcu_read_lock(); from = rcu_dereference(rt->from); if (from) { *addr = from->fib6_prefsrc.addr; } else { struct in6_addr in6_zero = {}; *addr = in6_zero; } rcu_read_unlock(); } int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); void fib6_nh_release(struct fib6_nh *fib6_nh); int call_fib6_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, struct netlink_ext_ack *extack); int call_fib6_multipath_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, unsigned int nsiblings, struct netlink_ext_ack *extack); int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt); void fib6_rt_update(struct net *net, struct fib6_info *rt, struct nl_info *info); void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, unsigned int flags); void fib6_run_gc(unsigned long expires, struct net *net, bool force); void fib6_gc_cleanup(void); int fib6_init(void); struct ipv6_route_iter { struct seq_net_private p; struct fib6_walker w; loff_t skip; struct fib6_table *tbl; int sernum; }; extern const struct seq_operations ipv6_route_seq_ops; int call_fib6_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info); int call_fib6_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info); int __net_init fib6_notifier_init(struct net *net); void __net_exit fib6_notifier_exit(struct net *net); unsigned int fib6_tables_seq_read(struct net *net); int fib6_tables_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); void fib6_update_sernum(struct net *net, struct fib6_info *rt); void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt); void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i); void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val); static inline bool fib6_metric_locked(struct fib6_info *f6i, int metric) { return !!(f6i->fib6_metrics->metrics[RTAX_LOCK - 1] & (1 << metric)); } #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) struct bpf_iter__ipv6_route { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct fib6_info *, rt); }; #endif INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_output(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_input(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *__ip6_route_redirect(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_lookup(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); static inline struct rt6_info *pol_lookup_func(pol_lookup_t lookup, struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { return INDIRECT_CALL_4(lookup, ip6_pol_route_output, ip6_pol_route_input, ip6_pol_route_lookup, __ip6_route_redirect, net, table, fl6, skb, flags); } #ifdef CONFIG_IPV6_MULTIPLE_TABLES static inline bool fib6_has_custom_rules(const struct net *net) { return net->ipv6.fib6_has_custom_rules; } int fib6_rules_init(void); void fib6_rules_cleanup(void); bool fib6_rule_default(const struct fib_rule *rule); int fib6_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); unsigned int fib6_rules_seq_read(struct net *net); static inline bool fib6_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi6 *fl6, struct flow_keys *flkeys) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; if (!net->ipv6.fib6_rules_require_fldissect) return false; skb_flow_dissect_flow_keys(skb, flkeys, flag); fl6->fl6_sport = flkeys->ports.src; fl6->fl6_dport = flkeys->ports.dst; fl6->flowi6_proto = flkeys->basic.ip_proto; return true; } #else static inline bool fib6_has_custom_rules(const struct net *net) { return false; } static inline int fib6_rules_init(void) { return 0; } static inline void fib6_rules_cleanup(void) { return ; } static inline bool fib6_rule_default(const struct fib_rule *rule) { return true; } static inline int fib6_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static inline unsigned int fib6_rules_seq_read(struct net *net) { return 0; } static inline bool fib6_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi6 *fl6, struct flow_keys *flkeys) { return false; } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __FS_NOTIFY_FSNOTIFY_H_ #define __FS_NOTIFY_FSNOTIFY_H_ #include <linux/list.h> #include <linux/fsnotify.h> #include <linux/srcu.h> #include <linux/types.h> #include "../mount.h" static inline struct inode *fsnotify_conn_inode( struct fsnotify_mark_connector *conn) { return container_of(conn->obj, struct inode, i_fsnotify_marks); } static inline struct mount *fsnotify_conn_mount( struct fsnotify_mark_connector *conn) { return container_of(conn->obj, struct mount, mnt_fsnotify_marks); } static inline struct super_block *fsnotify_conn_sb( struct fsnotify_mark_connector *conn) { return container_of(conn->obj, struct super_block, s_fsnotify_marks); } /* destroy all events sitting in this groups notification queue */ extern void fsnotify_flush_notify(struct fsnotify_group *group); /* protects reads of inode and vfsmount marks list */ extern struct srcu_struct fsnotify_mark_srcu; /* compare two groups for sorting of marks lists */ extern int fsnotify_compare_groups(struct fsnotify_group *a, struct fsnotify_group *b); /* Destroy all marks attached to an object via connector */ extern void fsnotify_destroy_marks(fsnotify_connp_t *connp); /* run the list of all marks associated with inode and destroy them */ static inline void fsnotify_clear_marks_by_inode(struct inode *inode) { fsnotify_destroy_marks(&inode->i_fsnotify_marks); } /* run the list of all marks associated with vfsmount and destroy them */ static inline void fsnotify_clear_marks_by_mount(struct vfsmount *mnt) { fsnotify_destroy_marks(&real_mount(mnt)->mnt_fsnotify_marks); } /* run the list of all marks associated with sb and destroy them */ static inline void fsnotify_clear_marks_by_sb(struct super_block *sb) { fsnotify_destroy_marks(&sb->s_fsnotify_marks); } /* * update the dentry->d_flags of all of inode's children to indicate if inode cares * about events that happen to its children. */ extern void __fsnotify_update_child_dentry_flags(struct inode *inode); /* allocate and destroy and event holder to attach events to notification/access queues */ extern struct fsnotify_event_holder *fsnotify_alloc_event_holder(void); extern void fsnotify_destroy_event_holder(struct fsnotify_event_holder *holder); extern struct kmem_cache *fsnotify_mark_connector_cachep; #endif /* __FS_NOTIFY_FSNOTIFY_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 /* SPDX-License-Identifier: GPL-2.0 */ /* * NFS internal definitions */ #include "nfs4_fs.h" #include <linux/fs_context.h> #include <linux/security.h> #include <linux/crc32.h> #include <linux/sunrpc/addr.h> #include <linux/nfs_page.h> #include <linux/wait_bit.h> #define NFS_SB_MASK (SB_RDONLY|SB_NOSUID|SB_NODEV|SB_NOEXEC|SB_SYNCHRONOUS) extern const struct export_operations nfs_export_ops; struct nfs_string; struct nfs_pageio_descriptor; static inline void nfs_attr_check_mountpoint(struct super_block *parent, struct nfs_fattr *fattr) { if (!nfs_fsid_equal(&NFS_SB(parent)->fsid, &fattr->fsid)) fattr->valid |= NFS_ATTR_FATTR_MOUNTPOINT; } static inline int nfs_attr_use_mounted_on_fileid(struct nfs_fattr *fattr) { if (((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) == 0) || (((fattr->valid & NFS_ATTR_FATTR_MOUNTPOINT) == 0) && ((fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) == 0))) return 0; return 1; } static inline bool nfs_lookup_is_soft_revalidate(const struct dentry *dentry) { if (!(NFS_SB(dentry->d_sb)->flags & NFS_MOUNT_SOFTREVAL)) return false; if (!d_is_positive(dentry) || !NFS_FH(d_inode(dentry))->size) return false; return true; } /* * Note: RFC 1813 doesn't limit the number of auth flavors that * a server can return, so make something up. */ #define NFS_MAX_SECFLAVORS (12) /* * Value used if the user did not specify a port value. */ #define NFS_UNSPEC_PORT (-1) #define NFS_UNSPEC_RETRANS (UINT_MAX) #define NFS_UNSPEC_TIMEO (UINT_MAX) /* * Maximum number of pages that readdir can use for creating * a vmapped array of pages. */ #define NFS_MAX_READDIR_PAGES 8 struct nfs_client_initdata { unsigned long init_flags; const char *hostname; /* Hostname of the server */ const struct sockaddr *addr; /* Address of the server */ const char *nodename; /* Hostname of the client */ const char *ip_addr; /* IP address of the client */ size_t addrlen; struct nfs_subversion *nfs_mod; int proto; u32 minorversion; unsigned int nconnect; struct net *net; const struct rpc_timeout *timeparms; const struct cred *cred; }; /* * In-kernel mount arguments */ struct nfs_fs_context { bool internal; bool skip_reconfig_option_check; bool need_mount; bool sloppy; unsigned int flags; /* NFS{,4}_MOUNT_* flags */ unsigned int rsize, wsize; unsigned int timeo, retrans; unsigned int acregmin, acregmax; unsigned int acdirmin, acdirmax; unsigned int namlen; unsigned int options; unsigned int bsize; struct nfs_auth_info auth_info; rpc_authflavor_t selected_flavor; char *client_address; unsigned int version; unsigned int minorversion; char *fscache_uniq; unsigned short protofamily; unsigned short mountfamily; struct { union { struct sockaddr address; struct sockaddr_storage _address; }; size_t addrlen; char *hostname; u32 version; int port; unsigned short protocol; } mount_server; struct { union { struct sockaddr address; struct sockaddr_storage _address; }; size_t addrlen; char *hostname; char *export_path; int port; unsigned short protocol; unsigned short nconnect; unsigned short export_path_len; } nfs_server; struct nfs_fh *mntfh; struct nfs_server *server; struct nfs_subversion *nfs_mod; /* Information for a cloned mount. */ struct nfs_clone_mount { struct super_block *sb; struct dentry *dentry; struct nfs_fattr *fattr; unsigned int inherited_bsize; } clone_data; }; #define nfs_errorf(fc, fmt, ...) ((fc)->log.log ? \ errorf(fc, fmt, ## __VA_ARGS__) : \ ({ dprintk(fmt "\n", ## __VA_ARGS__); })) #define nfs_ferrorf(fc, fac, fmt, ...) ((fc)->log.log ? \ errorf(fc, fmt, ## __VA_ARGS__) : \ ({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); })) #define nfs_invalf(fc, fmt, ...) ((fc)->log.log ? \ invalf(fc, fmt, ## __VA_ARGS__) : \ ({ dprintk(fmt "\n", ## __VA_ARGS__); -EINVAL; })) #define nfs_finvalf(fc, fac, fmt, ...) ((fc)->log.log ? \ invalf(fc, fmt, ## __VA_ARGS__) : \ ({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); -EINVAL; })) #define nfs_warnf(fc, fmt, ...) ((fc)->log.log ? \ warnf(fc, fmt, ## __VA_ARGS__) : \ ({ dprintk(fmt "\n", ## __VA_ARGS__); })) #define nfs_fwarnf(fc, fac, fmt, ...) ((fc)->log.log ? \ warnf(fc, fmt, ## __VA_ARGS__) : \ ({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); })) static inline struct nfs_fs_context *nfs_fc2context(const struct fs_context *fc) { return fc->fs_private; } /* mount_clnt.c */ struct nfs_mount_request { struct sockaddr *sap; size_t salen; char *hostname; char *dirpath; u32 version; unsigned short protocol; struct nfs_fh *fh; int noresvport; unsigned int *auth_flav_len; rpc_authflavor_t *auth_flavs; struct net *net; }; extern int nfs_mount(struct nfs_mount_request *info); extern void nfs_umount(const struct nfs_mount_request *info); /* client.c */ extern const struct rpc_program nfs_program; extern void nfs_clients_init(struct net *net); extern void nfs_clients_exit(struct net *net); extern struct nfs_client *nfs_alloc_client(const struct nfs_client_initdata *); int nfs_create_rpc_client(struct nfs_client *, const struct nfs_client_initdata *, rpc_authflavor_t); struct nfs_client *nfs_get_client(const struct nfs_client_initdata *); int nfs_probe_fsinfo(struct nfs_server *server, struct nfs_fh *, struct nfs_fattr *); void nfs_server_insert_lists(struct nfs_server *); void nfs_server_remove_lists(struct nfs_server *); void nfs_init_timeout_values(struct rpc_timeout *to, int proto, int timeo, int retrans); int nfs_init_server_rpcclient(struct nfs_server *, const struct rpc_timeout *t, rpc_authflavor_t); struct nfs_server *nfs_alloc_server(void); void nfs_server_copy_userdata(struct nfs_server *, struct nfs_server *); extern void nfs_put_client(struct nfs_client *); extern void nfs_free_client(struct nfs_client *); extern struct nfs_client *nfs4_find_client_ident(struct net *, int); extern struct nfs_client * nfs4_find_client_sessionid(struct net *, const struct sockaddr *, struct nfs4_sessionid *, u32); extern struct nfs_server *nfs_create_server(struct fs_context *); extern struct nfs_server *nfs4_create_server(struct fs_context *); extern struct nfs_server *nfs4_create_referral_server(struct fs_context *); extern int nfs4_update_server(struct nfs_server *server, const char *hostname, struct sockaddr *sap, size_t salen, struct net *net); extern void nfs_free_server(struct nfs_server *server); extern struct nfs_server *nfs_clone_server(struct nfs_server *, struct nfs_fh *, struct nfs_fattr *, rpc_authflavor_t); extern bool nfs_client_init_is_complete(const struct nfs_client *clp); extern int nfs_client_init_status(const struct nfs_client *clp); extern int nfs_wait_client_init_complete(const struct nfs_client *clp); extern void nfs_mark_client_ready(struct nfs_client *clp, int state); extern struct nfs_client *nfs4_set_ds_client(struct nfs_server *mds_srv, const struct sockaddr *ds_addr, int ds_addrlen, int ds_proto, unsigned int ds_timeo, unsigned int ds_retrans, u32 minor_version); extern struct rpc_clnt *nfs4_find_or_create_ds_client(struct nfs_client *, struct inode *); extern struct nfs_client *nfs3_set_ds_client(struct nfs_server *mds_srv, const struct sockaddr *ds_addr, int ds_addrlen, int ds_proto, unsigned int ds_timeo, unsigned int ds_retrans); #ifdef CONFIG_PROC_FS extern int __init nfs_fs_proc_init(void); extern void nfs_fs_proc_exit(void); extern int nfs_fs_proc_net_init(struct net *net); extern void nfs_fs_proc_net_exit(struct net *net); #else static inline int nfs_fs_proc_net_init(struct net *net) { return 0; } static inline void nfs_fs_proc_net_exit(struct net *net) { } static inline int nfs_fs_proc_init(void) { return 0; } static inline void nfs_fs_proc_exit(void) { } #endif /* callback_xdr.c */ extern const struct svc_version nfs4_callback_version1; extern const struct svc_version nfs4_callback_version4; /* fs_context.c */ extern struct file_system_type nfs_fs_type; /* pagelist.c */ extern int __init nfs_init_nfspagecache(void); extern void nfs_destroy_nfspagecache(void); extern int __init nfs_init_readpagecache(void); extern void nfs_destroy_readpagecache(void); extern int __init nfs_init_writepagecache(void); extern void nfs_destroy_writepagecache(void); extern int __init nfs_init_directcache(void); extern void nfs_destroy_directcache(void); extern void nfs_pgheader_init(struct nfs_pageio_descriptor *desc, struct nfs_pgio_header *hdr, void (*release)(struct nfs_pgio_header *hdr)); void nfs_set_pgio_error(struct nfs_pgio_header *hdr, int error, loff_t pos); int nfs_iocounter_wait(struct nfs_lock_context *l_ctx); extern const struct nfs_pageio_ops nfs_pgio_rw_ops; struct nfs_pgio_header *nfs_pgio_header_alloc(const struct nfs_rw_ops *); void nfs_pgio_header_free(struct nfs_pgio_header *); int nfs_generic_pgio(struct nfs_pageio_descriptor *, struct nfs_pgio_header *); int nfs_initiate_pgio(struct rpc_clnt *clnt, struct nfs_pgio_header *hdr, const struct cred *cred, const struct nfs_rpc_ops *rpc_ops, const struct rpc_call_ops *call_ops, int how, int flags); void nfs_free_request(struct nfs_page *req); struct nfs_pgio_mirror * nfs_pgio_current_mirror(struct nfs_pageio_descriptor *desc); static inline bool nfs_match_open_context(const struct nfs_open_context *ctx1, const struct nfs_open_context *ctx2) { return cred_fscmp(ctx1->cred, ctx2->cred) == 0 && ctx1->state == ctx2->state; } /* nfs2xdr.c */ extern const struct rpc_procinfo nfs_procedures[]; extern int nfs2_decode_dirent(struct xdr_stream *, struct nfs_entry *, bool); /* nfs3xdr.c */ extern const struct rpc_procinfo nfs3_procedures[]; extern int nfs3_decode_dirent(struct xdr_stream *, struct nfs_entry *, bool); /* nfs4xdr.c */ #if IS_ENABLED(CONFIG_NFS_V4) extern int nfs4_decode_dirent(struct xdr_stream *, struct nfs_entry *, bool); #endif #ifdef CONFIG_NFS_V4_1 extern const u32 nfs41_maxread_overhead; extern const u32 nfs41_maxwrite_overhead; extern const u32 nfs41_maxgetdevinfo_overhead; #endif /* nfs4proc.c */ #if IS_ENABLED(CONFIG_NFS_V4) extern const struct rpc_procinfo nfs4_procedures[]; #endif #ifdef CONFIG_NFS_V4_SECURITY_LABEL extern struct nfs4_label *nfs4_label_alloc(struct nfs_server *server, gfp_t flags); static inline struct nfs4_label * nfs4_label_copy(struct nfs4_label *dst, struct nfs4_label *src) { if (!dst || !src) return NULL; if (src->len > NFS4_MAXLABELLEN) return NULL; dst->lfs = src->lfs; dst->pi = src->pi; dst->len = src->len; memcpy(dst->label, src->label, src->len); return dst; } static inline void nfs4_label_free(struct nfs4_label *label) { if (label) { kfree(label->label); kfree(label); } return; } static inline void nfs_zap_label_cache_locked(struct nfs_inode *nfsi) { if (nfs_server_capable(&nfsi->vfs_inode, NFS_CAP_SECURITY_LABEL)) nfsi->cache_validity |= NFS_INO_INVALID_LABEL; } #else static inline struct nfs4_label *nfs4_label_alloc(struct nfs_server *server, gfp_t flags) { return NULL; } static inline void nfs4_label_free(void *label) {} static inline void nfs_zap_label_cache_locked(struct nfs_inode *nfsi) { } static inline struct nfs4_label * nfs4_label_copy(struct nfs4_label *dst, struct nfs4_label *src) { return NULL; } #endif /* CONFIG_NFS_V4_SECURITY_LABEL */ /* proc.c */ void nfs_close_context(struct nfs_open_context *ctx, int is_sync); extern struct nfs_client *nfs_init_client(struct nfs_client *clp, const struct nfs_client_initdata *); /* dir.c */ extern void nfs_advise_use_readdirplus(struct inode *dir); extern void nfs_force_use_readdirplus(struct inode *dir); extern unsigned long nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc); extern unsigned long nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc); struct dentry *nfs_lookup(struct inode *, struct dentry *, unsigned int); int nfs_create(struct inode *, struct dentry *, umode_t, bool); int nfs_mkdir(struct inode *, struct dentry *, umode_t); int nfs_rmdir(struct inode *, struct dentry *); int nfs_unlink(struct inode *, struct dentry *); int nfs_symlink(struct inode *, struct dentry *, const char *); int nfs_link(struct dentry *, struct inode *, struct dentry *); int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t); int nfs_rename(struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); /* file.c */ int nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync); loff_t nfs_file_llseek(struct file *, loff_t, int); ssize_t nfs_file_read(struct kiocb *, struct iov_iter *); int nfs_file_mmap(struct file *, struct vm_area_struct *); ssize_t nfs_file_write(struct kiocb *, struct iov_iter *); int nfs_file_release(struct inode *, struct file *); int nfs_lock(struct file *, int, struct file_lock *); int nfs_flock(struct file *, int, struct file_lock *); int nfs_check_flags(int); /* inode.c */ extern struct workqueue_struct *nfsiod_workqueue; extern struct inode *nfs_alloc_inode(struct super_block *sb); extern void nfs_free_inode(struct inode *); extern int nfs_write_inode(struct inode *, struct writeback_control *); extern int nfs_drop_inode(struct inode *); extern void nfs_clear_inode(struct inode *); extern void nfs_evict_inode(struct inode *); void nfs_zap_acl_cache(struct inode *inode); extern bool nfs_check_cache_invalid(struct inode *, unsigned long); extern int nfs_wait_bit_killable(struct wait_bit_key *key, int mode); extern int nfs_wait_atomic_killable(atomic_t *p, unsigned int mode); /* super.c */ extern const struct super_operations nfs_sops; bool nfs_auth_info_match(const struct nfs_auth_info *, rpc_authflavor_t); int nfs_try_get_tree(struct fs_context *); int nfs_get_tree_common(struct fs_context *); void nfs_kill_super(struct super_block *); extern struct rpc_stat nfs_rpcstat; extern int __init register_nfs_fs(void); extern void __exit unregister_nfs_fs(void); extern bool nfs_sb_active(struct super_block *sb); extern void nfs_sb_deactive(struct super_block *sb); extern int nfs_client_for_each_server(struct nfs_client *clp, int (*fn)(struct nfs_server *, void *), void *data); /* io.c */ extern void nfs_start_io_read(struct inode *inode); extern void nfs_end_io_read(struct inode *inode); extern void nfs_start_io_write(struct inode *inode); extern void nfs_end_io_write(struct inode *inode); extern void nfs_start_io_direct(struct inode *inode); extern void nfs_end_io_direct(struct inode *inode); static inline bool nfs_file_io_is_buffered(struct nfs_inode *nfsi) { return test_bit(NFS_INO_ODIRECT, &nfsi->flags) == 0; } /* namespace.c */ #define NFS_PATH_CANONICAL 1 extern char *nfs_path(char **p, struct dentry *dentry, char *buffer, ssize_t buflen, unsigned flags); extern struct vfsmount *nfs_d_automount(struct path *path); int nfs_submount(struct fs_context *, struct nfs_server *); int nfs_do_submount(struct fs_context *); /* getroot.c */ extern int nfs_get_root(struct super_block *s, struct fs_context *fc); #if IS_ENABLED(CONFIG_NFS_V4) extern int nfs4_get_rootfh(struct nfs_server *server, struct nfs_fh *mntfh, bool); #endif struct nfs_pgio_completion_ops; /* read.c */ extern void nfs_pageio_init_read(struct nfs_pageio_descriptor *pgio, struct inode *inode, bool force_mds, const struct nfs_pgio_completion_ops *compl_ops); extern void nfs_read_prepare(struct rpc_task *task, void *calldata); extern void nfs_pageio_reset_read_mds(struct nfs_pageio_descriptor *pgio); /* super.c */ void nfs_umount_begin(struct super_block *); int nfs_statfs(struct dentry *, struct kstatfs *); int nfs_show_options(struct seq_file *, struct dentry *); int nfs_show_devname(struct seq_file *, struct dentry *); int nfs_show_path(struct seq_file *, struct dentry *); int nfs_show_stats(struct seq_file *, struct dentry *); int nfs_reconfigure(struct fs_context *); /* write.c */ extern void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, struct inode *inode, int ioflags, bool force_mds, const struct nfs_pgio_completion_ops *compl_ops); extern void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio); extern void nfs_commit_free(struct nfs_commit_data *p); extern void nfs_write_prepare(struct rpc_task *task, void *calldata); extern void nfs_commit_prepare(struct rpc_task *task, void *calldata); extern int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data, const struct nfs_rpc_ops *nfs_ops, const struct rpc_call_ops *call_ops, int how, int flags); extern void nfs_init_commit(struct nfs_commit_data *data, struct list_head *head, struct pnfs_layout_segment *lseg, struct nfs_commit_info *cinfo); int nfs_scan_commit_list(struct list_head *src, struct list_head *dst, struct nfs_commit_info *cinfo, int max); unsigned long nfs_reqs_to_commit(struct nfs_commit_info *); int nfs_scan_commit(struct inode *inode, struct list_head *dst, struct nfs_commit_info *cinfo); void nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, struct nfs_commit_info *cinfo, u32 ds_commit_idx); int nfs_write_need_commit(struct nfs_pgio_header *); void nfs_writeback_update_inode(struct nfs_pgio_header *hdr); int nfs_generic_commit_list(struct inode *inode, struct list_head *head, int how, struct nfs_commit_info *cinfo); void nfs_retry_commit(struct list_head *page_list, struct pnfs_layout_segment *lseg, struct nfs_commit_info *cinfo, u32 ds_commit_idx); void nfs_commitdata_release(struct nfs_commit_data *data); void nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo); void nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst, struct nfs_commit_info *cinfo); void nfs_request_remove_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo); void nfs_init_cinfo(struct nfs_commit_info *cinfo, struct inode *inode, struct nfs_direct_req *dreq); int nfs_key_timeout_notify(struct file *filp, struct inode *inode); bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode); void nfs_pageio_stop_mirroring(struct nfs_pageio_descriptor *pgio); int nfs_filemap_write_and_wait_range(struct address_space *mapping, loff_t lstart, loff_t lend); #ifdef CONFIG_NFS_V4_1 static inline void pnfs_bucket_clear_pnfs_ds_commit_verifiers(struct pnfs_commit_bucket *buckets, unsigned int nbuckets) { unsigned int i; for (i = 0; i < nbuckets; i++) buckets[i].direct_verf.committed = NFS_INVALID_STABLE_HOW; } static inline void nfs_clear_pnfs_ds_commit_verifiers(struct pnfs_ds_commit_info *cinfo) { struct pnfs_commit_array *array; rcu_read_lock(); list_for_each_entry_rcu(array, &cinfo->commits, cinfo_list) pnfs_bucket_clear_pnfs_ds_commit_verifiers(array->buckets, array->nbuckets); rcu_read_unlock(); } #else static inline void nfs_clear_pnfs_ds_commit_verifiers(struct pnfs_ds_commit_info *cinfo) { } #endif #ifdef CONFIG_MIGRATION extern int nfs_migrate_page(struct address_space *, struct page *, struct page *, enum migrate_mode); #endif static inline int nfs_write_verifier_cmp(const struct nfs_write_verifier *v1, const struct nfs_write_verifier *v2) { return memcmp(v1->data, v2->data, sizeof(v1->data)); } static inline bool nfs_write_match_verf(const struct nfs_writeverf *verf, struct nfs_page *req) { return verf->committed > NFS_UNSTABLE && !nfs_write_verifier_cmp(&req->wb_verf, &verf->verifier); } /* unlink.c */ extern struct rpc_task * nfs_async_rename(struct inode *old_dir, struct inode *new_dir, struct dentry *old_dentry, struct dentry *new_dentry, void (*complete)(struct rpc_task *, struct nfs_renamedata *)); extern int nfs_sillyrename(struct inode *dir, struct dentry *dentry); /* direct.c */ void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, struct nfs_direct_req *dreq); extern ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq); /* nfs4proc.c */ extern struct nfs_client *nfs4_init_client(struct nfs_client *clp, const struct nfs_client_initdata *); extern int nfs40_walk_client_list(struct nfs_client *clp, struct nfs_client **result, const struct cred *cred); extern int nfs41_walk_client_list(struct nfs_client *clp, struct nfs_client **result, const struct cred *cred); extern void nfs4_test_session_trunk(struct rpc_clnt *clnt, struct rpc_xprt *xprt, void *data); static inline struct inode *nfs_igrab_and_active(struct inode *inode) { struct super_block *sb = inode->i_sb; if (sb && nfs_sb_active(sb)) { if (igrab(inode)) return inode; nfs_sb_deactive(sb); } return NULL; } static inline void nfs_iput_and_deactive(struct inode *inode) { if (inode != NULL) { struct super_block *sb = inode->i_sb; iput(inode); nfs_sb_deactive(sb); } } /* * Determine the device name as a string */ static inline char *nfs_devname(struct dentry *dentry, char *buffer, ssize_t buflen) { char *dummy; return nfs_path(&dummy, dentry, buffer, buflen, NFS_PATH_CANONICAL); } /* * Determine the actual block size (and log2 thereof) */ static inline unsigned long nfs_block_bits(unsigned long bsize, unsigned char *nrbitsp) { /* make sure blocksize is a power of two */ if ((bsize & (bsize - 1)) || nrbitsp) { unsigned char nrbits; for (nrbits = 31; nrbits && !(bsize & (1 << nrbits)); nrbits--) ; bsize = 1 << nrbits; if (nrbitsp) *nrbitsp = nrbits; } return bsize; } /* * Calculate the number of 512byte blocks used. */ static inline blkcnt_t nfs_calc_block_size(u64 tsize) { blkcnt_t used = (tsize + 511) >> 9; return (used > ULONG_MAX) ? ULONG_MAX : used; } /* * Compute and set NFS server blocksize */ static inline unsigned long nfs_block_size(unsigned long bsize, unsigned char *nrbitsp) { if (bsize < NFS_MIN_FILE_IO_SIZE) bsize = NFS_DEF_FILE_IO_SIZE; else if (bsize >= NFS_MAX_FILE_IO_SIZE) bsize = NFS_MAX_FILE_IO_SIZE; return nfs_block_bits(bsize, nrbitsp); } /* * Determine the maximum file size for a superblock */ static inline void nfs_super_set_maxbytes(struct super_block *sb, __u64 maxfilesize) { sb->s_maxbytes = (loff_t)maxfilesize; if (sb->s_maxbytes > MAX_LFS_FILESIZE || sb->s_maxbytes <= 0) sb->s_maxbytes = MAX_LFS_FILESIZE; } /* * Record the page as unstable (an extra writeback period) and mark its * inode as dirty. */ static inline void nfs_mark_page_unstable(struct page *page, struct nfs_commit_info *cinfo) { if (!cinfo->dreq) { struct inode *inode = page_file_mapping(page)->host; /* This page is really still in write-back - just that the * writeback is happening on the server now. */ inc_node_page_state(page, NR_WRITEBACK); inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); __mark_inode_dirty(inode, I_DIRTY_DATASYNC); } } /* * Determine the number of bytes of data the page contains */ static inline unsigned int nfs_page_length(struct page *page) { loff_t i_size = i_size_read(page_file_mapping(page)->host); if (i_size > 0) { pgoff_t index = page_index(page); pgoff_t end_index = (i_size - 1) >> PAGE_SHIFT; if (index < end_index) return PAGE_SIZE; if (index == end_index) return ((i_size - 1) & ~PAGE_MASK) + 1; } return 0; } /* * Convert a umode to a dirent->d_type */ static inline unsigned char nfs_umode_to_dtype(umode_t mode) { return (mode >> 12) & 15; } /* * Determine the number of pages in an array of length 'len' and * with a base offset of 'base' */ static inline unsigned int nfs_page_array_len(unsigned int base, size_t len) { return ((unsigned long)len + (unsigned long)base + PAGE_SIZE - 1) >> PAGE_SHIFT; } /* * Convert a struct timespec64 into a 64-bit change attribute * * This does approximately the same thing as timespec64_to_ns(), * but for calculation efficiency, we multiply the seconds by * 1024*1024*1024. */ static inline u64 nfs_timespec_to_change_attr(const struct timespec64 *ts) { return ((u64)ts->tv_sec << 30) + ts->tv_nsec; } #ifdef CONFIG_CRC32 /** * nfs_fhandle_hash - calculate the crc32 hash for the filehandle * @fh - pointer to filehandle * * returns a crc32 hash for the filehandle that is compatible with * the one displayed by "wireshark". */ static inline u32 nfs_fhandle_hash(const struct nfs_fh *fh) { return ~crc32_le(0xFFFFFFFF, &fh->data[0], fh->size); } static inline u32 nfs_stateid_hash(const nfs4_stateid *stateid) { return ~crc32_le(0xFFFFFFFF, &stateid->other[0], NFS4_STATEID_OTHER_SIZE); } #else static inline u32 nfs_fhandle_hash(const struct nfs_fh *fh) { return 0; } static inline u32 nfs_stateid_hash(nfs4_stateid *stateid) { return 0; } #endif static inline bool nfs_error_is_fatal(int err) { switch (err) { case -ERESTARTSYS: case -EINTR: case -EACCES: case -EDQUOT: case -EFBIG: case -EIO: case -ENOSPC: case -EROFS: case -ESTALE: case -E2BIG: case -ENOMEM: case -ETIMEDOUT: return true; default: return false; } } static inline bool nfs_error_is_fatal_on_server(int err) { switch (err) { case 0: case -ERESTARTSYS: case -EINTR: return false; } return nfs_error_is_fatal(err); } /* * Select between a default port value and a user-specified port value. * If a zero value is set, then autobind will be used. */ static inline void nfs_set_port(struct sockaddr *sap, int *port, const unsigned short default_port) { if (*port == NFS_UNSPEC_PORT) *port = default_port; rpc_set_port(sap, *port); }
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VMALLOC_H #define _LINUX_VMALLOC_H #include <linux/spinlock.h> #include <linux/init.h> #include <linux/list.h> #include <linux/llist.h> #include <asm/page.h> /* pgprot_t */ #include <linux/rbtree.h> #include <linux/overflow.h> #include <asm/vmalloc.h> struct vm_area_struct; /* vma defining user mapping in mm_types.h */ struct notifier_block; /* in notifier.h */ /* bits in flags of vmalloc's vm_struct below */ #define VM_IOREMAP 0x00000001 /* ioremap() and friends */ #define VM_ALLOC 0x00000002 /* vmalloc() */ #define VM_MAP 0x00000004 /* vmap()ed pages */ #define VM_USERMAP 0x00000008 /* suitable for remap_vmalloc_range */ #define VM_DMA_COHERENT 0x00000010 /* dma_alloc_coherent */ #define VM_UNINITIALIZED 0x00000020 /* vm_struct is not fully initialized */ #define VM_NO_GUARD 0x00000040 /* don't add guard page */ #define VM_KASAN 0x00000080 /* has allocated kasan shadow memory */ #define VM_FLUSH_RESET_PERMS 0x00000100 /* reset direct map and flush TLB on unmap, can't be freed in atomic context */ #define VM_MAP_PUT_PAGES 0x00000200 /* put pages and free array in vfree */ /* * VM_KASAN is used slighly differently depending on CONFIG_KASAN_VMALLOC. * * If IS_ENABLED(CONFIG_KASAN_VMALLOC), VM_KASAN is set on a vm_struct after * shadow memory has been mapped. It's used to handle allocation errors so that * we don't try to poision shadow on free if it was never allocated. * * Otherwise, VM_KASAN is set for kasan_module_alloc() allocations and used to * determine which allocations need the module shadow freed. */ /* bits [20..32] reserved for arch specific ioremap internals */ /* * Maximum alignment for ioremap() regions. * Can be overriden by arch-specific value. */ #ifndef IOREMAP_MAX_ORDER #define IOREMAP_MAX_ORDER (7 + PAGE_SHIFT) /* 128 pages */ #endif struct vm_struct { struct vm_struct *next; void *addr; unsigned long size; unsigned long flags; struct page **pages; unsigned int nr_pages; phys_addr_t phys_addr; const void *caller; }; struct vmap_area { unsigned long va_start; unsigned long va_end; struct rb_node rb_node; /* address sorted rbtree */ struct list_head list; /* address sorted list */ /* * The following three variables can be packed, because * a vmap_area object is always one of the three states: * 1) in "free" tree (root is vmap_area_root) * 2) in "busy" tree (root is free_vmap_area_root) * 3) in purge list (head is vmap_purge_list) */ union { unsigned long subtree_max_size; /* in "free" tree */ struct vm_struct *vm; /* in "busy" tree */ struct llist_node purge_list; /* in purge list */ }; }; /* * Highlevel APIs for driver use */ extern void vm_unmap_ram(const void *mem, unsigned int count); extern void *vm_map_ram(struct page **pages, unsigned int count, int node); extern void vm_unmap_aliases(void); #ifdef CONFIG_MMU extern void __init vmalloc_init(void); extern unsigned long vmalloc_nr_pages(void); #else static inline void vmalloc_init(void) { } static inline unsigned long vmalloc_nr_pages(void) { return 0; } #endif extern void *vmalloc(unsigned long size); extern void *vzalloc(unsigned long size); extern void *vmalloc_user(unsigned long size); extern void *vmalloc_node(unsigned long size, int node); extern void *vzalloc_node(unsigned long size, int node); extern void *vmalloc_32(unsigned long size); extern void *vmalloc_32_user(unsigned long size); extern void *__vmalloc(unsigned long size, gfp_t gfp_mask); extern void *__vmalloc_node_range(unsigned long size, unsigned long align, unsigned long start, unsigned long end, gfp_t gfp_mask, pgprot_t prot, unsigned long vm_flags, int node, const void *caller); void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, int node, const void *caller); extern void vfree(const void *addr); extern void vfree_atomic(const void *addr); extern void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot); void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot); extern void vunmap(const void *addr); extern int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, void *kaddr, unsigned long pgoff, unsigned long size); extern int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, unsigned long pgoff); /* * Architectures can set this mask to a combination of PGTBL_P?D_MODIFIED values * and let generic vmalloc and ioremap code know when arch_sync_kernel_mappings() * needs to be called. */ #ifndef ARCH_PAGE_TABLE_SYNC_MASK #define ARCH_PAGE_TABLE_SYNC_MASK 0 #endif /* * There is no default implementation for arch_sync_kernel_mappings(). It is * relied upon the compiler to optimize calls out if ARCH_PAGE_TABLE_SYNC_MASK * is 0. */ void arch_sync_kernel_mappings(unsigned long start, unsigned long end); /* * Lowlevel-APIs (not for driver use!) */ static inline size_t get_vm_area_size(const struct vm_struct *area) { if (!(area->flags & VM_NO_GUARD)) /* return actual size without guard page */ return area->size - PAGE_SIZE; else return area->size; } extern struct vm_struct *get_vm_area(unsigned long size, unsigned long flags); extern struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, const void *caller); extern struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, unsigned long start, unsigned long end, const void *caller); void free_vm_area(struct vm_struct *area); extern struct vm_struct *remove_vm_area(const void *addr); extern struct vm_struct *find_vm_area(const void *addr); #ifdef CONFIG_MMU extern int map_kernel_range_noflush(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages); int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages); extern void unmap_kernel_range_noflush(unsigned long addr, unsigned long size); extern void unmap_kernel_range(unsigned long addr, unsigned long size); static inline void set_vm_flush_reset_perms(void *addr) { struct vm_struct *vm = find_vm_area(addr); if (vm) vm->flags |= VM_FLUSH_RESET_PERMS; } #else static inline int map_kernel_range_noflush(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages) { return size >> PAGE_SHIFT; } #define map_kernel_range map_kernel_range_noflush static inline void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) { } #define unmap_kernel_range unmap_kernel_range_noflush static inline void set_vm_flush_reset_perms(void *addr) { } #endif /* for /dev/kmem */ extern long vread(char *buf, char *addr, unsigned long count); extern long vwrite(char *buf, char *addr, unsigned long count); /* * Internals. Dont't use.. */ extern struct list_head vmap_area_list; extern __init void vm_area_add_early(struct vm_struct *vm); extern __init void vm_area_register_early(struct vm_struct *vm, size_t align); #ifdef CONFIG_SMP # ifdef CONFIG_MMU struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align); void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms); # else static inline struct vm_struct ** pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align) { return NULL; } static inline void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) { } # endif #endif #ifdef CONFIG_MMU #define VMALLOC_TOTAL (VMALLOC_END - VMALLOC_START) #else #define VMALLOC_TOTAL 0UL #endif int register_vmap_purge_notifier(struct notifier_block *nb); int unregister_vmap_purge_notifier(struct notifier_block *nb); #endif /* _LINUX_VMALLOC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NSPROXY_H #define _LINUX_NSPROXY_H #include <linux/spinlock.h> #include <linux/sched.h> struct mnt_namespace; struct uts_namespace; struct ipc_namespace; struct pid_namespace; struct cgroup_namespace; struct fs_struct; /* * A structure to contain pointers to all per-process * namespaces - fs (mount), uts, network, sysvipc, etc. * * The pid namespace is an exception -- it's accessed using * task_active_pid_ns. The pid namespace here is the * namespace that children will use. * * 'count' is the number of tasks holding a reference. * The count for each namespace, then, will be the number * of nsproxies pointing to it, not the number of tasks. * * The nsproxy is shared by tasks which share all namespaces. * As soon as a single namespace is cloned or unshared, the * nsproxy is copied. */ struct nsproxy { atomic_t count; struct uts_namespace *uts_ns; struct ipc_namespace *ipc_ns; struct mnt_namespace *mnt_ns; struct pid_namespace *pid_ns_for_children; struct net *net_ns; struct time_namespace *time_ns; struct time_namespace *time_ns_for_children; struct cgroup_namespace *cgroup_ns; }; extern struct nsproxy init_nsproxy; /* * A structure to encompass all bits needed to install * a partial or complete new set of namespaces. * * If a new user namespace is requested cred will * point to a modifiable set of credentials. If a pointer * to a modifiable set is needed nsset_cred() must be * used and tested. */ struct nsset { unsigned flags; struct nsproxy *nsproxy; struct fs_struct *fs; const struct cred *cred; }; static inline struct cred *nsset_cred(struct nsset *set) { if (set->flags & CLONE_NEWUSER) return (struct cred *)set->cred; return NULL; } /* * the namespaces access rules are: * * 1. only current task is allowed to change tsk->nsproxy pointer or * any pointer on the nsproxy itself. Current must hold the task_lock * when changing tsk->nsproxy. * * 2. when accessing (i.e. reading) current task's namespaces - no * precautions should be taken - just dereference the pointers * * 3. the access to other task namespaces is performed like this * task_lock(task); * nsproxy = task->nsproxy; * if (nsproxy != NULL) { * / * * * work with the namespaces here * * e.g. get the reference on one of them * * / * } / * * * NULL task->nsproxy means that this task is * * almost dead (zombie) * * / * task_unlock(task); * */ int copy_namespaces(unsigned long flags, struct task_struct *tsk); void exit_task_namespaces(struct task_struct *tsk); void switch_task_namespaces(struct task_struct *tsk, struct nsproxy *new); void free_nsproxy(struct nsproxy *ns); int unshare_nsproxy_namespaces(unsigned long, struct nsproxy **, struct cred *, struct fs_struct *); int __init nsproxy_cache_init(void); static inline void put_nsproxy(struct nsproxy *ns) { if (atomic_dec_and_test(&ns->count)) { free_nsproxy(ns); } } static inline void get_nsproxy(struct nsproxy *ns) { atomic_inc(&ns->count); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef INT_BLK_MQ_H #define INT_BLK_MQ_H #include "blk-stat.h" #include "blk-mq-tag.h" struct blk_mq_tag_set; struct blk_mq_ctxs { struct kobject kobj; struct blk_mq_ctx __percpu *queue_ctx; }; /** * struct blk_mq_ctx - State for a software queue facing the submitting CPUs */ struct blk_mq_ctx { struct { spinlock_t lock; struct list_head rq_lists[HCTX_MAX_TYPES]; } ____cacheline_aligned_in_smp; unsigned int cpu; unsigned short index_hw[HCTX_MAX_TYPES]; struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES]; /* incremented at dispatch time */ unsigned long rq_dispatched[2]; unsigned long rq_merged; /* incremented at completion time */ unsigned long ____cacheline_aligned_in_smp rq_completed[2]; struct request_queue *queue; struct blk_mq_ctxs *ctxs; struct kobject kobj; } ____cacheline_aligned_in_smp; void blk_mq_exit_queue(struct request_queue *q); int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr); void blk_mq_wake_waiters(struct request_queue *q); bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *, unsigned int); void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, bool kick_requeue_list); void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list); struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *start); void blk_mq_put_rq_ref(struct request *rq); /* * Internal helpers for allocating/freeing the request map */ void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, unsigned int hctx_idx); void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags); struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, unsigned int hctx_idx, unsigned int nr_tags, unsigned int reserved_tags, unsigned int flags); int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, unsigned int hctx_idx, unsigned int depth); /* * Internal helpers for request insertion into sw queues */ void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, bool at_head); void blk_mq_request_bypass_insert(struct request *rq, bool at_head, bool run_queue); void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, struct list_head *list); /* Used by blk_insert_cloned_request() to issue request directly */ blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last); void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, struct list_head *list); /* * CPU -> queue mappings */ extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int); /* * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue * @q: request queue * @type: the hctx type index * @cpu: CPU */ static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q, enum hctx_type type, unsigned int cpu) { return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]]; } /* * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue * @q: request queue * @flags: request command flags * @cpu: cpu ctx */ static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, unsigned int flags, struct blk_mq_ctx *ctx) { enum hctx_type type = HCTX_TYPE_DEFAULT; /* * The caller ensure that if REQ_HIPRI, poll must be enabled. */ if (flags & REQ_HIPRI) type = HCTX_TYPE_POLL; else if ((flags & REQ_OP_MASK) == REQ_OP_READ) type = HCTX_TYPE_READ; return ctx->hctxs[type]; } /* * sysfs helpers */ extern void blk_mq_sysfs_init(struct request_queue *q); extern void blk_mq_sysfs_deinit(struct request_queue *q); extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q); extern int blk_mq_sysfs_register(struct request_queue *q); extern void blk_mq_sysfs_unregister(struct request_queue *q); extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx); void blk_mq_release(struct request_queue *q); static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q, unsigned int cpu) { return per_cpu_ptr(q->queue_ctx, cpu); } /* * This assumes per-cpu software queueing queues. They could be per-node * as well, for instance. For now this is hardcoded as-is. Note that we don't * care about preemption, since we know the ctx's are persistent. This does * mean that we can't rely on ctx always matching the currently running CPU. */ static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q) { return __blk_mq_get_ctx(q, raw_smp_processor_id()); } struct blk_mq_alloc_data { /* input parameter */ struct request_queue *q; blk_mq_req_flags_t flags; unsigned int shallow_depth; unsigned int cmd_flags; /* input & output parameter */ struct blk_mq_ctx *ctx; struct blk_mq_hw_ctx *hctx; }; static inline bool blk_mq_is_sbitmap_shared(unsigned int flags) { return flags & BLK_MQ_F_TAG_HCTX_SHARED; } static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data) { if (data->q->elevator) return data->hctx->sched_tags; return data->hctx->tags; } static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx) { return test_bit(BLK_MQ_S_STOPPED, &hctx->state); } static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx) { return hctx->nr_ctx && hctx->tags; } unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part); void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, unsigned int inflight[2]); static inline void blk_mq_put_dispatch_budget(struct request_queue *q) { if (q->mq_ops->put_budget) q->mq_ops->put_budget(q); } static inline bool blk_mq_get_dispatch_budget(struct request_queue *q) { if (q->mq_ops->get_budget) return q->mq_ops->get_budget(q); return true; } static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx) { if (blk_mq_is_sbitmap_shared(hctx->flags)) atomic_inc(&hctx->queue->nr_active_requests_shared_sbitmap); else atomic_inc(&hctx->nr_active); } static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx) { if (blk_mq_is_sbitmap_shared(hctx->flags)) atomic_dec(&hctx->queue->nr_active_requests_shared_sbitmap); else atomic_dec(&hctx->nr_active); } static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx) { if (blk_mq_is_sbitmap_shared(hctx->flags)) return atomic_read(&hctx->queue->nr_active_requests_shared_sbitmap); return atomic_read(&hctx->nr_active); } static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) { blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag); rq->tag = BLK_MQ_NO_TAG; if (rq->rq_flags & RQF_MQ_INFLIGHT) { rq->rq_flags &= ~RQF_MQ_INFLIGHT; __blk_mq_dec_active_requests(hctx); } } static inline void blk_mq_put_driver_tag(struct request *rq) { if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG) return; __blk_mq_put_driver_tag(rq->mq_hctx, rq); } static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap) { int cpu; for_each_possible_cpu(cpu) qmap->mq_map[cpu] = 0; } /* * blk_mq_plug() - Get caller context plug * @q: request queue * @bio : the bio being submitted by the caller context * * Plugging, by design, may delay the insertion of BIOs into the elevator in * order to increase BIO merging opportunities. This however can cause BIO * insertion order to change from the order in which submit_bio() is being * executed in the case of multiple contexts concurrently issuing BIOs to a * device, even if these context are synchronized to tightly control BIO issuing * order. While this is not a problem with regular block devices, this ordering * change can cause write BIO failures with zoned block devices as these * require sequential write patterns to zones. Prevent this from happening by * ignoring the plug state of a BIO issuing context if the target request queue * is for a zoned block device and the BIO to plug is a write operation. * * Return current->plug if the bio can be plugged and NULL otherwise */ static inline struct blk_plug *blk_mq_plug(struct request_queue *q, struct bio *bio) { /* * For regular block devices or read operations, use the context plug * which may be NULL if blk_start_plug() was not executed. */ if (!blk_queue_is_zoned(q) || !op_is_write(bio_op(bio))) return current->plug; /* Zoned block device write operation case: do not plug the BIO */ return NULL; } /* * For shared tag users, we track the number of currently active users * and attempt to provide a fair share of the tag depth for each of them. */ static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt) { unsigned int depth, users; if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) return true; /* * Don't try dividing an ant */ if (bt->sb.depth == 1) return true; if (blk_mq_is_sbitmap_shared(hctx->flags)) { struct request_queue *q = hctx->queue; struct blk_mq_tag_set *set = q->tag_set; if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags)) return true; users = atomic_read(&set->active_queues_shared_sbitmap); } else { if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) return true; users = atomic_read(&hctx->tags->active_queues); } if (!users) return true; /* * Allow at least some tags */ depth = max((bt->sb.depth + users - 1) / users, 4U); return __blk_mq_active_requests(hctx) < depth; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MM_TYPES_H #define _LINUX_MM_TYPES_H #include <linux/mm_types_task.h> #include <linux/auxvec.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/rbtree.h> #include <linux/rwsem.h> #include <linux/completion.h> #include <linux/cpumask.h> #include <linux/uprobes.h> #include <linux/page-flags-layout.h> #include <linux/workqueue.h> #include <linux/seqlock.h> #include <asm/mmu.h> #ifndef AT_VECTOR_SIZE_ARCH #define AT_VECTOR_SIZE_ARCH 0 #endif #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) #define INIT_PASID 0 struct address_space; struct mem_cgroup; /* * Each physical page in the system has a struct page associated with * it to keep track of whatever it is we are using the page for at the * moment. Note that we have no way to track which tasks are using * a page, though if it is a pagecache page, rmap structures can tell us * who is mapping it. * * If you allocate the page using alloc_pages(), you can use some of the * space in struct page for your own purposes. The five words in the main * union are available, except for bit 0 of the first word which must be * kept clear. Many users use this word to store a pointer to an object * which is guaranteed to be aligned. If you use the same storage as * page->mapping, you must restore it to NULL before freeing the page. * * If your page will not be mapped to userspace, you can also use the four * bytes in the mapcount union, but you must call page_mapcount_reset() * before freeing it. * * If you want to use the refcount field, it must be used in such a way * that other CPUs temporarily incrementing and then decrementing the * refcount does not cause problems. On receiving the page from * alloc_pages(), the refcount will be positive. * * If you allocate pages of order > 0, you can use some of the fields * in each subpage, but you may need to restore some of their values * afterwards. * * SLUB uses cmpxchg_double() to atomically update its freelist and * counters. That requires that freelist & counters be adjacent and * double-word aligned. We align all struct pages to double-word * boundaries, and ensure that 'freelist' is aligned within the * struct. */ #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) #else #define _struct_page_alignment #endif struct page { unsigned long flags; /* Atomic flags, some possibly * updated asynchronously */ /* * Five words (20/40 bytes) are available in this union. * WARNING: bit 0 of the first word is used for PageTail(). That * means the other users of this union MUST NOT use the bit to * avoid collision and false-positive PageTail(). */ union { struct { /* Page cache and anonymous pages */ /** * @lru: Pageout list, eg. active_list protected by * pgdat->lru_lock. Sometimes used as a generic list * by the page owner. */ struct list_head lru; /* See page-flags.h for PAGE_MAPPING_FLAGS */ struct address_space *mapping; pgoff_t index; /* Our offset within mapping. */ /** * @private: Mapping-private opaque data. * Usually used for buffer_heads if PagePrivate. * Used for swp_entry_t if PageSwapCache. * Indicates order in the buddy system if PageBuddy. */ unsigned long private; }; struct { /* page_pool used by netstack */ /** * @dma_addr: might require a 64-bit value on * 32-bit architectures. */ unsigned long dma_addr[2]; }; struct { /* slab, slob and slub */ union { struct list_head slab_list; struct { /* Partial pages */ struct page *next; #ifdef CONFIG_64BIT int pages; /* Nr of pages left */ int pobjects; /* Approximate count */ #else short int pages; short int pobjects; #endif }; }; struct kmem_cache *slab_cache; /* not slob */ /* Double-word boundary */ void *freelist; /* first free object */ union { void *s_mem; /* slab: first object */ unsigned long counters; /* SLUB */ struct { /* SLUB */ unsigned inuse:16; unsigned objects:15; unsigned frozen:1; }; }; }; struct { /* Tail pages of compound page */ unsigned long compound_head; /* Bit zero is set */ /* First tail page only */ unsigned char compound_dtor; unsigned char compound_order; atomic_t compound_mapcount; unsigned int compound_nr; /* 1 << compound_order */ }; struct { /* Second tail page of compound page */ unsigned long _compound_pad_1; /* compound_head */ atomic_t hpage_pinned_refcount; /* For both global and memcg */ struct list_head deferred_list; }; struct { /* Page table pages */ unsigned long _pt_pad_1; /* compound_head */ pgtable_t pmd_huge_pte; /* protected by page->ptl */ unsigned long _pt_pad_2; /* mapping */ union { struct mm_struct *pt_mm; /* x86 pgds only */ atomic_t pt_frag_refcount; /* powerpc */ }; #if ALLOC_SPLIT_PTLOCKS spinlock_t *ptl; #else spinlock_t ptl; #endif }; struct { /* ZONE_DEVICE pages */ /** @pgmap: Points to the hosting device page map. */ struct dev_pagemap *pgmap; void *zone_device_data; /* * ZONE_DEVICE private pages are counted as being * mapped so the next 3 words hold the mapping, index, * and private fields from the source anonymous or * page cache page while the page is migrated to device * private memory. * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also * use the mapping, index, and private fields when * pmem backed DAX files are mapped. */ }; /** @rcu_head: You can use this to free a page by RCU. */ struct rcu_head rcu_head; }; union { /* This union is 4 bytes in size. */ /* * If the page can be mapped to userspace, encodes the number * of times this page is referenced by a page table. */ atomic_t _mapcount; /* * If the page is neither PageSlab nor mappable to userspace, * the value stored here may help determine what this page * is used for. See page-flags.h for a list of page types * which are currently stored here. */ unsigned int page_type; unsigned int active; /* SLAB */ int units; /* SLOB */ }; /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ atomic_t _refcount; #ifdef CONFIG_MEMCG union { struct mem_cgroup *mem_cgroup; struct obj_cgroup **obj_cgroups; }; #endif /* * On machines where all RAM is mapped into kernel address space, * we can simply calculate the virtual address. On machines with * highmem some memory is mapped into kernel virtual memory * dynamically, so we need a place to store that address. * Note that this field could be 16 bits on x86 ... ;) * * Architectures with slow multiplication can define * WANT_PAGE_VIRTUAL in asm/page.h */ #if defined(WANT_PAGE_VIRTUAL) void *virtual; /* Kernel virtual address (NULL if not kmapped, ie. highmem) */ #endif /* WANT_PAGE_VIRTUAL */ #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS int _last_cpupid; #endif } _struct_page_alignment; static inline atomic_t *compound_mapcount_ptr(struct page *page) { return &page[1].compound_mapcount; } static inline atomic_t *compound_pincount_ptr(struct page *page) { return &page[2].hpage_pinned_refcount; } /* * Used for sizing the vmemmap region on some architectures */ #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) #define page_private(page) ((page)->private) static inline void set_page_private(struct page *page, unsigned long private) { page->private = private; } struct page_frag_cache { void * va; #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) __u16 offset; __u16 size; #else __u32 offset; #endif /* we maintain a pagecount bias, so that we dont dirty cache line * containing page->_refcount every time we allocate a fragment. */ unsigned int pagecnt_bias; bool pfmemalloc; }; typedef unsigned long vm_flags_t; /* * A region containing a mapping of a non-memory backed file under NOMMU * conditions. These are held in a global tree and are pinned by the VMAs that * map parts of them. */ struct vm_region { struct rb_node vm_rb; /* link in global region tree */ vm_flags_t vm_flags; /* VMA vm_flags */ unsigned long vm_start; /* start address of region */ unsigned long vm_end; /* region initialised to here */ unsigned long vm_top; /* region allocated to here */ unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ struct file *vm_file; /* the backing file or NULL */ int vm_usage; /* region usage count (access under nommu_region_sem) */ bool vm_icache_flushed : 1; /* true if the icache has been flushed for * this region */ }; #ifdef CONFIG_USERFAULTFD #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) struct vm_userfaultfd_ctx { struct userfaultfd_ctx *ctx; }; #else /* CONFIG_USERFAULTFD */ #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) struct vm_userfaultfd_ctx {}; #endif /* CONFIG_USERFAULTFD */ /* * This struct describes a virtual memory area. There is one of these * per VM-area/task. A VM area is any part of the process virtual memory * space that has a special rule for the page-fault handlers (ie a shared * library, the executable area etc). */ struct vm_area_struct { /* The first cache line has the info for VMA tree walking. */ unsigned long vm_start; /* Our start address within vm_mm. */ unsigned long vm_end; /* The first byte after our end address within vm_mm. */ /* linked list of VM areas per task, sorted by address */ struct vm_area_struct *vm_next, *vm_prev; struct rb_node vm_rb; /* * Largest free memory gap in bytes to the left of this VMA. * Either between this VMA and vma->vm_prev, or between one of the * VMAs below us in the VMA rbtree and its ->vm_prev. This helps * get_unmapped_area find a free area of the right size. */ unsigned long rb_subtree_gap; /* Second cache line starts here. */ struct mm_struct *vm_mm; /* The address space we belong to. */ /* * Access permissions of this VMA. * See vmf_insert_mixed_prot() for discussion. */ pgprot_t vm_page_prot; unsigned long vm_flags; /* Flags, see mm.h. */ /* * For areas with an address space and backing store, * linkage into the address_space->i_mmap interval tree. */ struct { struct rb_node rb; unsigned long rb_subtree_last; } shared; /* * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma * list, after a COW of one of the file pages. A MAP_SHARED vma * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack * or brk vma (with NULL file) can only be in an anon_vma list. */ struct list_head anon_vma_chain; /* Serialized by mmap_lock & * page_table_lock */ struct anon_vma *anon_vma; /* Serialized by page_table_lock */ /* Function pointers to deal with this struct. */ const struct vm_operations_struct *vm_ops; /* Information about our backing store: */ unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE units */ struct file * vm_file; /* File we map to (can be NULL). */ void * vm_private_data; /* was vm_pte (shared mem) */ #ifdef CONFIG_SWAP atomic_long_t swap_readahead_info; #endif #ifndef CONFIG_MMU struct vm_region *vm_region; /* NOMMU mapping region */ #endif #ifdef CONFIG_NUMA struct mempolicy *vm_policy; /* NUMA policy for the VMA */ #endif struct vm_userfaultfd_ctx vm_userfaultfd_ctx; } __randomize_layout; struct core_thread { struct task_struct *task; struct core_thread *next; }; struct core_state { atomic_t nr_threads; struct core_thread dumper; struct completion startup; }; struct kioctx_table; struct mm_struct { struct { struct vm_area_struct *mmap; /* list of VMAs */ struct rb_root mm_rb; u64 vmacache_seqnum; /* per-thread vmacache */ #ifdef CONFIG_MMU unsigned long (*get_unmapped_area) (struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); #endif unsigned long mmap_base; /* base of mmap area */ unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES /* Base adresses for compatible mmap() */ unsigned long mmap_compat_base; unsigned long mmap_compat_legacy_base; #endif unsigned long task_size; /* size of task vm space */ unsigned long highest_vm_end; /* highest vma end address */ pgd_t * pgd; #ifdef CONFIG_MEMBARRIER /** * @membarrier_state: Flags controlling membarrier behavior. * * This field is close to @pgd to hopefully fit in the same * cache-line, which needs to be touched by switch_mm(). */ atomic_t membarrier_state; #endif /** * @mm_users: The number of users including userspace. * * Use mmget()/mmget_not_zero()/mmput() to modify. When this * drops to 0 (i.e. when the task exits and there are no other * temporary reference holders), we also release a reference on * @mm_count (which may then free the &struct mm_struct if * @mm_count also drops to 0). */ atomic_t mm_users; /** * @mm_count: The number of references to &struct mm_struct * (@mm_users count as 1). * * Use mmgrab()/mmdrop() to modify. When this drops to 0, the * &struct mm_struct is freed. */ atomic_t mm_count; /** * @has_pinned: Whether this mm has pinned any pages. This can * be either replaced in the future by @pinned_vm when it * becomes stable, or grow into a counter on its own. We're * aggresive on this bit now - even if the pinned pages were * unpinned later on, we'll still keep this bit set for the * lifecycle of this mm just for simplicity. */ atomic_t has_pinned; #ifdef CONFIG_MMU atomic_long_t pgtables_bytes; /* PTE page table pages */ #endif int map_count; /* number of VMAs */ spinlock_t page_table_lock; /* Protects page tables and some * counters */ /* * With some kernel config, the current mmap_lock's offset * inside 'mm_struct' is at 0x120, which is very optimal, as * its two hot fields 'count' and 'owner' sit in 2 different * cachelines, and when mmap_lock is highly contended, both * of the 2 fields will be accessed frequently, current layout * will help to reduce cache bouncing. * * So please be careful with adding new fields before * mmap_lock, which can easily push the 2 fields into one * cacheline. */ struct rw_semaphore mmap_lock; struct list_head mmlist; /* List of maybe swapped mm's. These * are globally strung together off * init_mm.mmlist, and are protected * by mmlist_lock */ unsigned long hiwater_rss; /* High-watermark of RSS usage */ unsigned long hiwater_vm; /* High-water virtual memory usage */ unsigned long total_vm; /* Total pages mapped */ unsigned long locked_vm; /* Pages that have PG_mlocked set */ atomic64_t pinned_vm; /* Refcount permanently increased */ unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ unsigned long stack_vm; /* VM_STACK */ unsigned long def_flags; /** * @write_protect_seq: Locked when any thread is write * protecting pages mapped by this mm to enforce a later COW, * for instance during page table copying for fork(). */ seqcount_t write_protect_seq; spinlock_t arg_lock; /* protect the below fields */ unsigned long start_code, end_code, start_data, end_data; unsigned long start_brk, brk, start_stack; unsigned long arg_start, arg_end, env_start, env_end; unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ /* * Special counters, in some configurations protected by the * page_table_lock, in other configurations by being atomic. */ struct mm_rss_stat rss_stat; struct linux_binfmt *binfmt; /* Architecture-specific MM context */ mm_context_t context; unsigned long flags; /* Must use atomic bitops to access */ struct core_state *core_state; /* coredumping support */ #ifdef CONFIG_AIO spinlock_t ioctx_lock; struct kioctx_table __rcu *ioctx_table; #endif #ifdef CONFIG_MEMCG /* * "owner" points to a task that is regarded as the canonical * user/owner of this mm. All of the following must be true in * order for it to be changed: * * current == mm->owner * current->mm != mm * new_owner->mm == mm * new_owner->alloc_lock is held */ struct task_struct __rcu *owner; #endif struct user_namespace *user_ns; /* store ref to file /proc/<pid>/exe symlink points to */ struct file __rcu *exe_file; #ifdef CONFIG_MMU_NOTIFIER struct mmu_notifier_subscriptions *notifier_subscriptions; #endif #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS pgtable_t pmd_huge_pte; /* protected by page_table_lock */ #endif #ifdef CONFIG_NUMA_BALANCING /* * numa_next_scan is the next time that the PTEs will be marked * pte_numa. NUMA hinting faults will gather statistics and * migrate pages to new nodes if necessary. */ unsigned long numa_next_scan; /* Restart point for scanning and setting pte_numa */ unsigned long numa_scan_offset; /* numa_scan_seq prevents two threads setting pte_numa */ int numa_scan_seq; #endif /* * An operation with batched TLB flushing is going on. Anything * that can move process memory needs to flush the TLB when * moving a PROT_NONE or PROT_NUMA mapped page. */ atomic_t tlb_flush_pending; #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH /* See flush_tlb_batched_pending() */ bool tlb_flush_batched; #endif struct uprobes_state uprobes_state; #ifdef CONFIG_HUGETLB_PAGE atomic_long_t hugetlb_usage; #endif struct work_struct async_put_work; #ifdef CONFIG_IOMMU_SUPPORT u32 pasid; #endif } __randomize_layout; /* * The mm_cpumask needs to be at the end of mm_struct, because it * is dynamically sized based on nr_cpu_ids. */ unsigned long cpu_bitmap[]; }; extern struct mm_struct init_mm; /* Pointer magic because the dynamic array size confuses some compilers. */ static inline void mm_init_cpumask(struct mm_struct *mm) { unsigned long cpu_bitmap = (unsigned long)mm; cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); cpumask_clear((struct cpumask *)cpu_bitmap); } /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ static inline cpumask_t *mm_cpumask(struct mm_struct *mm) { return (struct cpumask *)&mm->cpu_bitmap; } struct mmu_gather; extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end); extern void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end); static inline void init_tlb_flush_pending(struct mm_struct *mm) { atomic_set(&mm->tlb_flush_pending, 0); } static inline void inc_tlb_flush_pending(struct mm_struct *mm) { atomic_inc(&mm->tlb_flush_pending); /* * The only time this value is relevant is when there are indeed pages * to flush. And we'll only flush pages after changing them, which * requires the PTL. * * So the ordering here is: * * atomic_inc(&mm->tlb_flush_pending); * spin_lock(&ptl); * ... * set_pte_at(); * spin_unlock(&ptl); * * spin_lock(&ptl) * mm_tlb_flush_pending(); * .... * spin_unlock(&ptl); * * flush_tlb_range(); * atomic_dec(&mm->tlb_flush_pending); * * Where the increment if constrained by the PTL unlock, it thus * ensures that the increment is visible if the PTE modification is * visible. After all, if there is no PTE modification, nobody cares * about TLB flushes either. * * This very much relies on users (mm_tlb_flush_pending() and * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc * locks (PPC) the unlock of one doesn't order against the lock of * another PTL. * * The decrement is ordered by the flush_tlb_range(), such that * mm_tlb_flush_pending() will not return false unless all flushes have * completed. */ } static inline void dec_tlb_flush_pending(struct mm_struct *mm) { /* * See inc_tlb_flush_pending(). * * This cannot be smp_mb__before_atomic() because smp_mb() simply does * not order against TLB invalidate completion, which is what we need. * * Therefore we must rely on tlb_flush_*() to guarantee order. */ atomic_dec(&mm->tlb_flush_pending); } static inline bool mm_tlb_flush_pending(struct mm_struct *mm) { /* * Must be called after having acquired the PTL; orders against that * PTLs release and therefore ensures that if we observe the modified * PTE we must also observe the increment from inc_tlb_flush_pending(). * * That is, it only guarantees to return true if there is a flush * pending for _this_ PTL. */ return atomic_read(&mm->tlb_flush_pending); } static inline bool mm_tlb_flush_nested(struct mm_struct *mm) { /* * Similar to mm_tlb_flush_pending(), we must have acquired the PTL * for which there is a TLB flush pending in order to guarantee * we've seen both that PTE modification and the increment. * * (no requirement on actually still holding the PTL, that is irrelevant) */ return atomic_read(&mm->tlb_flush_pending) > 1; } struct vm_fault; /** * typedef vm_fault_t - Return type for page fault handlers. * * Page fault handlers return a bitmask of %VM_FAULT values. */ typedef __bitwise unsigned int vm_fault_t; /** * enum vm_fault_reason - Page fault handlers return a bitmask of * these values to tell the core VM what happened when handling the * fault. Used to decide whether a process gets delivered SIGBUS or * just gets major/minor fault counters bumped up. * * @VM_FAULT_OOM: Out Of Memory * @VM_FAULT_SIGBUS: Bad access * @VM_FAULT_MAJOR: Page read from storage * @VM_FAULT_WRITE: Special case for get_user_pages * @VM_FAULT_HWPOISON: Hit poisoned small page * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded * in upper bits * @VM_FAULT_SIGSEGV: segmentation fault * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page * @VM_FAULT_LOCKED: ->fault locked the returned page * @VM_FAULT_RETRY: ->fault blocked, must retry * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small * @VM_FAULT_DONE_COW: ->fault has fully handled COW * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs * fsync() to complete (for synchronous page faults * in DAX) * @VM_FAULT_HINDEX_MASK: mask HINDEX value * */ enum vm_fault_reason { VM_FAULT_OOM = (__force vm_fault_t)0x000001, VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, VM_FAULT_WRITE = (__force vm_fault_t)0x000008, VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, VM_FAULT_RETRY = (__force vm_fault_t)0x000400, VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, }; /* Encode hstate index for a hwpoisoned large page */ #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) #define VM_FAULT_RESULT_TRACE \ { VM_FAULT_OOM, "OOM" }, \ { VM_FAULT_SIGBUS, "SIGBUS" }, \ { VM_FAULT_MAJOR, "MAJOR" }, \ { VM_FAULT_WRITE, "WRITE" }, \ { VM_FAULT_HWPOISON, "HWPOISON" }, \ { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ { VM_FAULT_NOPAGE, "NOPAGE" }, \ { VM_FAULT_LOCKED, "LOCKED" }, \ { VM_FAULT_RETRY, "RETRY" }, \ { VM_FAULT_FALLBACK, "FALLBACK" }, \ { VM_FAULT_DONE_COW, "DONE_COW" }, \ { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } struct vm_special_mapping { const char *name; /* The name, e.g. "[vdso]". */ /* * If .fault is not provided, this points to a * NULL-terminated array of pages that back the special mapping. * * This must not be NULL unless .fault is provided. */ struct page **pages; /* * If non-NULL, then this is called to resolve page faults * on the special mapping. If used, .pages is not checked. */ vm_fault_t (*fault)(const struct vm_special_mapping *sm, struct vm_area_struct *vma, struct vm_fault *vmf); int (*mremap)(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma); }; enum tlb_flush_reason { TLB_FLUSH_ON_TASK_SWITCH, TLB_REMOTE_SHOOTDOWN, TLB_LOCAL_SHOOTDOWN, TLB_LOCAL_MM_SHOOTDOWN, TLB_REMOTE_SEND_IPI, NR_TLB_FLUSH_REASONS, }; /* * A swap entry has to fit into a "unsigned long", as the entry is hidden * in the "index" field of the swapper address space. */ typedef struct { unsigned long val; } swp_entry_t; #endif /* _LINUX_MM_TYPES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2014 Felix Fietkau <nbd@nbd.name> * Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> */ #ifndef _LINUX_BITFIELD_H #define _LINUX_BITFIELD_H #include <linux/build_bug.h> #include <asm/byteorder.h> /* * Bitfield access macros * * FIELD_{GET,PREP} macros take as first parameter shifted mask * from which they extract the base mask and shift amount. * Mask must be a compilation time constant. * * Example: * * #define REG_FIELD_A GENMASK(6, 0) * #define REG_FIELD_B BIT(7) * #define REG_FIELD_C GENMASK(15, 8) * #define REG_FIELD_D GENMASK(31, 16) * * Get: * a = FIELD_GET(REG_FIELD_A, reg); * b = FIELD_GET(REG_FIELD_B, reg); * * Set: * reg = FIELD_PREP(REG_FIELD_A, 1) | * FIELD_PREP(REG_FIELD_B, 0) | * FIELD_PREP(REG_FIELD_C, c) | * FIELD_PREP(REG_FIELD_D, 0x40); * * Modify: * reg &= ~REG_FIELD_C; * reg |= FIELD_PREP(REG_FIELD_C, c); */ #define __bf_shf(x) (__builtin_ffsll(x) - 1) #define __BF_FIELD_CHECK(_mask, _reg, _val, _pfx) \ ({ \ BUILD_BUG_ON_MSG(!__builtin_constant_p(_mask), \ _pfx "mask is not constant"); \ BUILD_BUG_ON_MSG((_mask) == 0, _pfx "mask is zero"); \ BUILD_BUG_ON_MSG(__builtin_constant_p(_val) ? \ ~((_mask) >> __bf_shf(_mask)) & (_val) : 0, \ _pfx "value too large for the field"); \ BUILD_BUG_ON_MSG((_mask) > (typeof(_reg))~0ull, \ _pfx "type of reg too small for mask"); \ __BUILD_BUG_ON_NOT_POWER_OF_2((_mask) + \ (1ULL << __bf_shf(_mask))); \ }) /** * FIELD_MAX() - produce the maximum value representable by a field * @_mask: shifted mask defining the field's length and position * * FIELD_MAX() returns the maximum value that can be held in the field * specified by @_mask. */ #define FIELD_MAX(_mask) \ ({ \ __BF_FIELD_CHECK(_mask, 0ULL, 0ULL, "FIELD_MAX: "); \ (typeof(_mask))((_mask) >> __bf_shf(_mask)); \ }) /** * FIELD_FIT() - check if value fits in the field * @_mask: shifted mask defining the field's length and position * @_val: value to test against the field * * Return: true if @_val can fit inside @_mask, false if @_val is too big. */ #define FIELD_FIT(_mask, _val) \ ({ \ __BF_FIELD_CHECK(_mask, 0ULL, 0ULL, "FIELD_FIT: "); \ !((((typeof(_mask))_val) << __bf_shf(_mask)) & ~(_mask)); \ }) /** * FIELD_PREP() - prepare a bitfield element * @_mask: shifted mask defining the field's length and position * @_val: value to put in the field * * FIELD_PREP() masks and shifts up the value. The result should * be combined with other fields of the bitfield using logical OR. */ #define FIELD_PREP(_mask, _val) \ ({ \ __BF_FIELD_CHECK(_mask, 0ULL, _val, "FIELD_PREP: "); \ ((typeof(_mask))(_val) << __bf_shf(_mask)) & (_mask); \ }) /** * FIELD_GET() - extract a bitfield element * @_mask: shifted mask defining the field's length and position * @_reg: value of entire bitfield * * FIELD_GET() extracts the field specified by @_mask from the * bitfield passed in as @_reg by masking and shifting it down. */ #define FIELD_GET(_mask, _reg) \ ({ \ __BF_FIELD_CHECK(_mask, _reg, 0U, "FIELD_GET: "); \ (typeof(_mask))(((_reg) & (_mask)) >> __bf_shf(_mask)); \ }) extern void __compiletime_error("value doesn't fit into mask") __field_overflow(void); extern void __compiletime_error("bad bitfield mask") __bad_mask(void); static __always_inline u64 field_multiplier(u64 field) { if ((field | (field - 1)) & ((field | (field - 1)) + 1)) __bad_mask(); return field & -field; } static __always_inline u64 field_mask(u64 field) { return field / field_multiplier(field); } #define field_max(field) ((typeof(field))field_mask(field)) #define ____MAKE_OP(type,base,to,from) \ static __always_inline __##type type##_encode_bits(base v, base field) \ { \ if (__builtin_constant_p(v) && (v & ~field_mask(field))) \ __field_overflow(); \ return to((v & field_mask(field)) * field_multiplier(field)); \ } \ static __always_inline __##type type##_replace_bits(__##type old, \ base val, base field) \ { \ return (old & ~to(field)) | type##_encode_bits(val, field); \ } \ static __always_inline void type##p_replace_bits(__##type *p, \ base val, base field) \ { \ *p = (*p & ~to(field)) | type##_encode_bits(val, field); \ } \ static __always_inline base type##_get_bits(__##type v, base field) \ { \ return (from(v) & field)/field_multiplier(field); \ } #define __MAKE_OP(size) \ ____MAKE_OP(le##size,u##size,cpu_to_le##size,le##size##_to_cpu) \ ____MAKE_OP(be##size,u##size,cpu_to_be##size,be##size##_to_cpu) \ ____MAKE_OP(u##size,u##size,,) ____MAKE_OP(u8,u8,,) __MAKE_OP(16) __MAKE_OP(32) __MAKE_OP(64) #undef __MAKE_OP #undef ____MAKE_OP #endif
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines * which can be dynamically activated and de-activated by the line * discipline handling modules (like SLIP). */ #include <linux/types.h> #include <linux/termios.h> #include <linux/errno.h> #include <linux/sched/signal.h> #include <linux/kernel.h> #include <linux/major.h> #include <linux/tty.h> #include <linux/fcntl.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/bitops.h> #include <linux/mutex.h> #include <linux/compat.h> #include <asm/io.h> #include <linux/uaccess.h> #undef TTY_DEBUG_WAIT_UNTIL_SENT #ifdef TTY_DEBUG_WAIT_UNTIL_SENT # define tty_debug_wait_until_sent(tty, f, args...) tty_debug(tty, f, ##args) #else # define tty_debug_wait_until_sent(tty, f, args...) do {} while (0) #endif #undef DEBUG /* * Internal flag options for termios setting behavior */ #define TERMIOS_FLUSH 1 #define TERMIOS_WAIT 2 #define TERMIOS_TERMIO 4 #define TERMIOS_OLD 8 /** * tty_chars_in_buffer - characters pending * @tty: terminal * * Return the number of bytes of data in the device private * output queue. If no private method is supplied there is assumed * to be no queue on the device. */ int tty_chars_in_buffer(struct tty_struct *tty) { if (tty->ops->chars_in_buffer) return tty->ops->chars_in_buffer(tty); else return 0; } EXPORT_SYMBOL(tty_chars_in_buffer); /** * tty_write_room - write queue space * @tty: terminal * * Return the number of bytes that can be queued to this device * at the present time. The result should be treated as a guarantee * and the driver cannot offer a value it later shrinks by more than * the number of bytes written. If no method is provided 2K is always * returned and data may be lost as there will be no flow control. */ int tty_write_room(struct tty_struct *tty) { if (tty->ops->write_room) return tty->ops->write_room(tty); return 2048; } EXPORT_SYMBOL(tty_write_room); /** * tty_driver_flush_buffer - discard internal buffer * @tty: terminal * * Discard the internal output buffer for this device. If no method * is provided then either the buffer cannot be hardware flushed or * there is no buffer driver side. */ void tty_driver_flush_buffer(struct tty_struct *tty) { if (tty->ops->flush_buffer) tty->ops->flush_buffer(tty); } EXPORT_SYMBOL(tty_driver_flush_buffer); /** * tty_throttle - flow control * @tty: terminal * * Indicate that a tty should stop transmitting data down the stack. * Takes the termios rwsem to protect against parallel throttle/unthrottle * and also to ensure the driver can consistently reference its own * termios data at this point when implementing software flow control. */ void tty_throttle(struct tty_struct *tty) { down_write(&tty->termios_rwsem); /* check TTY_THROTTLED first so it indicates our state */ if (!test_and_set_bit(TTY_THROTTLED, &tty->flags) && tty->ops->throttle) tty->ops->throttle(tty); tty->flow_change = 0; up_write(&tty->termios_rwsem); } EXPORT_SYMBOL(tty_throttle); /** * tty_unthrottle - flow control * @tty: terminal * * Indicate that a tty may continue transmitting data down the stack. * Takes the termios rwsem to protect against parallel throttle/unthrottle * and also to ensure the driver can consistently reference its own * termios data at this point when implementing software flow control. * * Drivers should however remember that the stack can issue a throttle, * then change flow control method, then unthrottle. */ void tty_unthrottle(struct tty_struct *tty) { down_write(&tty->termios_rwsem); if (test_and_clear_bit(TTY_THROTTLED, &tty->flags) && tty->ops->unthrottle) tty->ops->unthrottle(tty); tty->flow_change = 0; up_write(&tty->termios_rwsem); } EXPORT_SYMBOL(tty_unthrottle); /** * tty_throttle_safe - flow control * @tty: terminal * * Similar to tty_throttle() but will only attempt throttle * if tty->flow_change is TTY_THROTTLE_SAFE. Prevents an accidental * throttle due to race conditions when throttling is conditional * on factors evaluated prior to throttling. * * Returns 0 if tty is throttled (or was already throttled) */ int tty_throttle_safe(struct tty_struct *tty) { int ret = 0; mutex_lock(&tty->throttle_mutex); if (!tty_throttled(tty)) { if (tty->flow_change != TTY_THROTTLE_SAFE) ret = 1; else { set_bit(TTY_THROTTLED, &tty->flags); if (tty->ops->throttle) tty->ops->throttle(tty); } } mutex_unlock(&tty->throttle_mutex); return ret; } /** * tty_unthrottle_safe - flow control * @tty: terminal * * Similar to tty_unthrottle() but will only attempt unthrottle * if tty->flow_change is TTY_UNTHROTTLE_SAFE. Prevents an accidental * unthrottle due to race conditions when unthrottling is conditional * on factors evaluated prior to unthrottling. * * Returns 0 if tty is unthrottled (or was already unthrottled) */ int tty_unthrottle_safe(struct tty_struct *tty) { int ret = 0; mutex_lock(&tty->throttle_mutex); if (tty_throttled(tty)) { if (tty->flow_change != TTY_UNTHROTTLE_SAFE) ret = 1; else { clear_bit(TTY_THROTTLED, &tty->flags); if (tty->ops->unthrottle) tty->ops->unthrottle(tty); } } mutex_unlock(&tty->throttle_mutex); return ret; } /** * tty_wait_until_sent - wait for I/O to finish * @tty: tty we are waiting for * @timeout: how long we will wait * * Wait for characters pending in a tty driver to hit the wire, or * for a timeout to occur (eg due to flow control) * * Locking: none */ void tty_wait_until_sent(struct tty_struct *tty, long timeout) { tty_debug_wait_until_sent(tty, "wait until sent, timeout=%ld\n", timeout); if (!timeout) timeout = MAX_SCHEDULE_TIMEOUT; timeout = wait_event_interruptible_timeout(tty->write_wait, !tty_chars_in_buffer(tty), timeout); if (timeout <= 0) return; if (timeout == MAX_SCHEDULE_TIMEOUT) timeout = 0; if (tty->ops->wait_until_sent) tty->ops->wait_until_sent(tty, timeout); } EXPORT_SYMBOL(tty_wait_until_sent); /* * Termios Helper Methods */ static void unset_locked_termios(struct tty_struct *tty, struct ktermios *old) { struct ktermios *termios = &tty->termios; struct ktermios *locked = &tty->termios_locked; int i; #define NOSET_MASK(x, y, z) (x = ((x) & ~(z)) | ((y) & (z))) NOSET_MASK(termios->c_iflag, old->c_iflag, locked->c_iflag); NOSET_MASK(termios->c_oflag, old->c_oflag, locked->c_oflag); NOSET_MASK(termios->c_cflag, old->c_cflag, locked->c_cflag); NOSET_MASK(termios->c_lflag, old->c_lflag, locked->c_lflag); termios->c_line = locked->c_line ? old->c_line : termios->c_line; for (i = 0; i < NCCS; i++) termios->c_cc[i] = locked->c_cc[i] ? old->c_cc[i] : termios->c_cc[i]; /* FIXME: What should we do for i/ospeed */ } /** * tty_termios_copy_hw - copy hardware settings * @new: New termios * @old: Old termios * * Propagate the hardware specific terminal setting bits from * the old termios structure to the new one. This is used in cases * where the hardware does not support reconfiguration or as a helper * in some cases where only minimal reconfiguration is supported */ void tty_termios_copy_hw(struct ktermios *new, struct ktermios *old) { /* The bits a dumb device handles in software. Smart devices need to always provide a set_termios method */ new->c_cflag &= HUPCL | CREAD | CLOCAL; new->c_cflag |= old->c_cflag & ~(HUPCL | CREAD | CLOCAL); new->c_ispeed = old->c_ispeed; new->c_ospeed = old->c_ospeed; } EXPORT_SYMBOL(tty_termios_copy_hw); /** * tty_termios_hw_change - check for setting change * @a: termios * @b: termios to compare * * Check if any of the bits that affect a dumb device have changed * between the two termios structures, or a speed change is needed. */ int tty_termios_hw_change(const struct ktermios *a, const struct ktermios *b) { if (a->c_ispeed != b->c_ispeed || a->c_ospeed != b->c_ospeed) return 1; if ((a->c_cflag ^ b->c_cflag) & ~(HUPCL | CREAD | CLOCAL)) return 1; return 0; } EXPORT_SYMBOL(tty_termios_hw_change); /** * tty_set_termios - update termios values * @tty: tty to update * @new_termios: desired new value * * Perform updates to the termios values set on this terminal. * A master pty's termios should never be set. * * Locking: termios_rwsem */ int tty_set_termios(struct tty_struct *tty, struct ktermios *new_termios) { struct ktermios old_termios; struct tty_ldisc *ld; WARN_ON(tty->driver->type == TTY_DRIVER_TYPE_PTY && tty->driver->subtype == PTY_TYPE_MASTER); /* * Perform the actual termios internal changes under lock. */ /* FIXME: we need to decide on some locking/ordering semantics for the set_termios notification eventually */ down_write(&tty->termios_rwsem); old_termios = tty->termios; tty->termios = *new_termios; unset_locked_termios(tty, &old_termios); if (tty->ops->set_termios) tty->ops->set_termios(tty, &old_termios); else tty_termios_copy_hw(&tty->termios, &old_termios); ld = tty_ldisc_ref(tty); if (ld != NULL) { if (ld->ops->set_termios) ld->ops->set_termios(tty, &old_termios); tty_ldisc_deref(ld); } up_write(&tty->termios_rwsem); return 0; } EXPORT_SYMBOL_GPL(tty_set_termios); /** * set_termios - set termios values for a tty * @tty: terminal device * @arg: user data * @opt: option information * * Helper function to prepare termios data and run necessary other * functions before using tty_set_termios to do the actual changes. * * Locking: * Called functions take ldisc and termios_rwsem locks */ static int set_termios(struct tty_struct *tty, void __user *arg, int opt) { struct ktermios tmp_termios; struct tty_ldisc *ld; int retval = tty_check_change(tty); if (retval) return retval; down_read(&tty->termios_rwsem); tmp_termios = tty->termios; up_read(&tty->termios_rwsem); if (opt & TERMIOS_TERMIO) { if (user_termio_to_kernel_termios(&tmp_termios, (struct termio __user *)arg)) return -EFAULT; #ifdef TCGETS2 } else if (opt & TERMIOS_OLD) { if (user_termios_to_kernel_termios_1(&tmp_termios, (struct termios __user *)arg)) return -EFAULT; } else { if (user_termios_to_kernel_termios(&tmp_termios, (struct termios2 __user *)arg)) return -EFAULT; } #else } else if (user_termios_to_kernel_termios(&tmp_termios, (struct termios __user *)arg)) return -EFAULT; #endif /* If old style Bfoo values are used then load c_ispeed/c_ospeed * with the real speed so its unconditionally usable */ tmp_termios.c_ispeed = tty_termios_input_baud_rate(&tmp_termios); tmp_termios.c_ospeed = tty_termios_baud_rate(&tmp_termios); ld = tty_ldisc_ref(tty); if (ld != NULL) { if ((opt & TERMIOS_FLUSH) && ld->ops->flush_buffer) ld->ops->flush_buffer(tty); tty_ldisc_deref(ld); } if (opt & TERMIOS_WAIT) { tty_wait_until_sent(tty, 0); if (signal_pending(current)) return -ERESTARTSYS; } tty_set_termios(tty, &tmp_termios); /* FIXME: Arguably if tmp_termios == tty->termios AND the actual requested termios was not tmp_termios then we may want to return an error as no user requested change has succeeded */ return 0; } static void copy_termios(struct tty_struct *tty, struct ktermios *kterm) { down_read(&tty->termios_rwsem); *kterm = tty->termios; up_read(&tty->termios_rwsem); } static void copy_termios_locked(struct tty_struct *tty, struct ktermios *kterm) { down_read(&tty->termios_rwsem); *kterm = tty->termios_locked; up_read(&tty->termios_rwsem); } static int get_termio(struct tty_struct *tty, struct termio __user *termio) { struct ktermios kterm; copy_termios(tty, &kterm); if (kernel_termios_to_user_termio(termio, &kterm)) return -EFAULT; return 0; } #ifdef TIOCGETP /* * These are deprecated, but there is limited support.. * * The "sg_flags" translation is a joke.. */ static int get_sgflags(struct tty_struct *tty) { int flags = 0; if (!L_ICANON(tty)) { if (L_ISIG(tty)) flags |= 0x02; /* cbreak */ else flags |= 0x20; /* raw */ } if (L_ECHO(tty)) flags |= 0x08; /* echo */ if (O_OPOST(tty)) if (O_ONLCR(tty)) flags |= 0x10; /* crmod */ return flags; } static int get_sgttyb(struct tty_struct *tty, struct sgttyb __user *sgttyb) { struct sgttyb tmp; down_read(&tty->termios_rwsem); tmp.sg_ispeed = tty->termios.c_ispeed; tmp.sg_ospeed = tty->termios.c_ospeed; tmp.sg_erase = tty->termios.c_cc[VERASE]; tmp.sg_kill = tty->termios.c_cc[VKILL]; tmp.sg_flags = get_sgflags(tty); up_read(&tty->termios_rwsem); return copy_to_user(sgttyb, &tmp, sizeof(tmp)) ? -EFAULT : 0; } static void set_sgflags(struct ktermios *termios, int flags) { termios->c_iflag = ICRNL | IXON; termios->c_oflag = 0; termios->c_lflag = ISIG | ICANON; if (flags & 0x02) { /* cbreak */ termios->c_iflag = 0; termios->c_lflag &= ~ICANON; } if (flags & 0x08) { /* echo */ termios->c_lflag |= ECHO | ECHOE | ECHOK | ECHOCTL | ECHOKE | IEXTEN; } if (flags & 0x10) { /* crmod */ termios->c_oflag |= OPOST | ONLCR; } if (flags & 0x20) { /* raw */ termios->c_iflag = 0; termios->c_lflag &= ~(ISIG | ICANON); } if (!(termios->c_lflag & ICANON)) { termios->c_cc[VMIN] = 1; termios->c_cc[VTIME] = 0; } } /** * set_sgttyb - set legacy terminal values * @tty: tty structure * @sgttyb: pointer to old style terminal structure * * Updates a terminal from the legacy BSD style terminal information * structure. * * Locking: termios_rwsem */ static int set_sgttyb(struct tty_struct *tty, struct sgttyb __user *sgttyb) { int retval; struct sgttyb tmp; struct ktermios termios; retval = tty_check_change(tty); if (retval) return retval; if (copy_from_user(&tmp, sgttyb, sizeof(tmp))) return -EFAULT; down_write(&tty->termios_rwsem); termios = tty->termios; termios.c_cc[VERASE] = tmp.sg_erase; termios.c_cc[VKILL] = tmp.sg_kill; set_sgflags(&termios, tmp.sg_flags); /* Try and encode into Bfoo format */ #ifdef BOTHER tty_termios_encode_baud_rate(&termios, termios.c_ispeed, termios.c_ospeed); #endif up_write(&tty->termios_rwsem); tty_set_termios(tty, &termios); return 0; } #endif #ifdef TIOCGETC static int get_tchars(struct tty_struct *tty, struct tchars __user *tchars) { struct tchars tmp; down_read(&tty->termios_rwsem); tmp.t_intrc = tty->termios.c_cc[VINTR]; tmp.t_quitc = tty->termios.c_cc[VQUIT]; tmp.t_startc = tty->termios.c_cc[VSTART]; tmp.t_stopc = tty->termios.c_cc[VSTOP]; tmp.t_eofc = tty->termios.c_cc[VEOF]; tmp.t_brkc = tty->termios.c_cc[VEOL2]; /* what is brkc anyway? */ up_read(&tty->termios_rwsem); return copy_to_user(tchars, &tmp, sizeof(tmp)) ? -EFAULT : 0; } static int set_tchars(struct tty_struct *tty, struct tchars __user *tchars) { struct tchars tmp; if (copy_from_user(&tmp, tchars, sizeof(tmp))) return -EFAULT; down_write(&tty->termios_rwsem); tty->termios.c_cc[VINTR] = tmp.t_intrc; tty->termios.c_cc[VQUIT] = tmp.t_quitc; tty->termios.c_cc[VSTART] = tmp.t_startc; tty->termios.c_cc[VSTOP] = tmp.t_stopc; tty->termios.c_cc[VEOF] = tmp.t_eofc; tty->termios.c_cc[VEOL2] = tmp.t_brkc; /* what is brkc anyway? */ up_write(&tty->termios_rwsem); return 0; } #endif #ifdef TIOCGLTC static int get_ltchars(struct tty_struct *tty, struct ltchars __user *ltchars) { struct ltchars tmp; down_read(&tty->termios_rwsem); tmp.t_suspc = tty->termios.c_cc[VSUSP]; /* what is dsuspc anyway? */ tmp.t_dsuspc = tty->termios.c_cc[VSUSP]; tmp.t_rprntc = tty->termios.c_cc[VREPRINT]; /* what is flushc anyway? */ tmp.t_flushc = tty->termios.c_cc[VEOL2]; tmp.t_werasc = tty->termios.c_cc[VWERASE]; tmp.t_lnextc = tty->termios.c_cc[VLNEXT]; up_read(&tty->termios_rwsem); return copy_to_user(ltchars, &tmp, sizeof(tmp)) ? -EFAULT : 0; } static int set_ltchars(struct tty_struct *tty, struct ltchars __user *ltchars) { struct ltchars tmp; if (copy_from_user(&tmp, ltchars, sizeof(tmp))) return -EFAULT; down_write(&tty->termios_rwsem); tty->termios.c_cc[VSUSP] = tmp.t_suspc; /* what is dsuspc anyway? */ tty->termios.c_cc[VEOL2] = tmp.t_dsuspc; tty->termios.c_cc[VREPRINT] = tmp.t_rprntc; /* what is flushc anyway? */ tty->termios.c_cc[VEOL2] = tmp.t_flushc; tty->termios.c_cc[VWERASE] = tmp.t_werasc; tty->termios.c_cc[VLNEXT] = tmp.t_lnextc; up_write(&tty->termios_rwsem); return 0; } #endif /** * tty_change_softcar - carrier change ioctl helper * @tty: tty to update * @arg: enable/disable CLOCAL * * Perform a change to the CLOCAL state and call into the driver * layer to make it visible. All done with the termios rwsem */ static int tty_change_softcar(struct tty_struct *tty, int arg) { int ret = 0; int bit = arg ? CLOCAL : 0; struct ktermios old; down_write(&tty->termios_rwsem); old = tty->termios; tty->termios.c_cflag &= ~CLOCAL; tty->termios.c_cflag |= bit; if (tty->ops->set_termios) tty->ops->set_termios(tty, &old); if (C_CLOCAL(tty) != bit) ret = -EINVAL; up_write(&tty->termios_rwsem); return ret; } /** * tty_mode_ioctl - mode related ioctls * @tty: tty for the ioctl * @file: file pointer for the tty * @cmd: command * @arg: ioctl argument * * Perform non line discipline specific mode control ioctls. This * is designed to be called by line disciplines to ensure they provide * consistent mode setting. */ int tty_mode_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg) { struct tty_struct *real_tty; void __user *p = (void __user *)arg; int ret = 0; struct ktermios kterm; BUG_ON(file == NULL); if (tty->driver->type == TTY_DRIVER_TYPE_PTY && tty->driver->subtype == PTY_TYPE_MASTER) real_tty = tty->link; else real_tty = tty; switch (cmd) { #ifdef TIOCGETP case TIOCGETP: return get_sgttyb(real_tty, (struct sgttyb __user *) arg); case TIOCSETP: case TIOCSETN: return set_sgttyb(real_tty, (struct sgttyb __user *) arg); #endif #ifdef TIOCGETC case TIOCGETC: return get_tchars(real_tty, p); case TIOCSETC: return set_tchars(real_tty, p); #endif #ifdef TIOCGLTC case TIOCGLTC: return get_ltchars(real_tty, p); case TIOCSLTC: return set_ltchars(real_tty, p); #endif case TCSETSF: return set_termios(real_tty, p, TERMIOS_FLUSH | TERMIOS_WAIT | TERMIOS_OLD); case TCSETSW: return set_termios(real_tty, p, TERMIOS_WAIT | TERMIOS_OLD); case TCSETS: return set_termios(real_tty, p, TERMIOS_OLD); #ifndef TCGETS2 case TCGETS: copy_termios(real_tty, &kterm); if (kernel_termios_to_user_termios((struct termios __user *)arg, &kterm)) ret = -EFAULT; return ret; #else case TCGETS: copy_termios(real_tty, &kterm); if (kernel_termios_to_user_termios_1((struct termios __user *)arg, &kterm)) ret = -EFAULT; return ret; case TCGETS2: copy_termios(real_tty, &kterm); if (kernel_termios_to_user_termios((struct termios2 __user *)arg, &kterm)) ret = -EFAULT; return ret; case TCSETSF2: return set_termios(real_tty, p, TERMIOS_FLUSH | TERMIOS_WAIT); case TCSETSW2: return set_termios(real_tty, p, TERMIOS_WAIT); case TCSETS2: return set_termios(real_tty, p, 0); #endif case TCGETA: return get_termio(real_tty, p); case TCSETAF: return set_termios(real_tty, p, TERMIOS_FLUSH | TERMIOS_WAIT | TERMIOS_TERMIO); case TCSETAW: return set_termios(real_tty, p, TERMIOS_WAIT | TERMIOS_TERMIO); case TCSETA: return set_termios(real_tty, p, TERMIOS_TERMIO); #ifndef TCGETS2 case TIOCGLCKTRMIOS: copy_termios_locked(real_tty, &kterm); if (kernel_termios_to_user_termios((struct termios __user *)arg, &kterm)) ret = -EFAULT; return ret; case TIOCSLCKTRMIOS: if (!capable(CAP_SYS_ADMIN)) return -EPERM; copy_termios_locked(real_tty, &kterm); if (user_termios_to_kernel_termios(&kterm, (struct termios __user *) arg)) return -EFAULT; down_write(&real_tty->termios_rwsem); real_tty->termios_locked = kterm; up_write(&real_tty->termios_rwsem); return 0; #else case TIOCGLCKTRMIOS: copy_termios_locked(real_tty, &kterm); if (kernel_termios_to_user_termios_1((struct termios __user *)arg, &kterm)) ret = -EFAULT; return ret; case TIOCSLCKTRMIOS: if (!capable(CAP_SYS_ADMIN)) return -EPERM; copy_termios_locked(real_tty, &kterm); if (user_termios_to_kernel_termios_1(&kterm, (struct termios __user *) arg)) return -EFAULT; down_write(&real_tty->termios_rwsem); real_tty->termios_locked = kterm; up_write(&real_tty->termios_rwsem); return ret; #endif #ifdef TCGETX case TCGETX: case TCSETX: case TCSETXW: case TCSETXF: return -ENOTTY; #endif case TIOCGSOFTCAR: copy_termios(real_tty, &kterm); ret = put_user((kterm.c_cflag & CLOCAL) ? 1 : 0, (int __user *)arg); return ret; case TIOCSSOFTCAR: if (get_user(arg, (unsigned int __user *) arg)) return -EFAULT; return tty_change_softcar(real_tty, arg); default: return -ENOIOCTLCMD; } } EXPORT_SYMBOL_GPL(tty_mode_ioctl); /* Caller guarantees ldisc reference is held */ static int __tty_perform_flush(struct tty_struct *tty, unsigned long arg) { struct tty_ldisc *ld = tty->ldisc; switch (arg) { case TCIFLUSH: if (ld && ld->ops->flush_buffer) { ld->ops->flush_buffer(tty); tty_unthrottle(tty); } break; case TCIOFLUSH: if (ld && ld->ops->flush_buffer) { ld->ops->flush_buffer(tty); tty_unthrottle(tty); } fallthrough; case TCOFLUSH: tty_driver_flush_buffer(tty); break; default: return -EINVAL; } return 0; } int tty_perform_flush(struct tty_struct *tty, unsigned long arg) { struct tty_ldisc *ld; int retval = tty_check_change(tty); if (retval) return retval; ld = tty_ldisc_ref_wait(tty); retval = __tty_perform_flush(tty, arg); if (ld) tty_ldisc_deref(ld); return retval; } EXPORT_SYMBOL_GPL(tty_perform_flush); int n_tty_ioctl_helper(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg) { int retval; switch (cmd) { case TCXONC: retval = tty_check_change(tty); if (retval) return retval; switch (arg) { case TCOOFF: spin_lock_irq(&tty->flow_lock); if (!tty->flow_stopped) { tty->flow_stopped = 1; __stop_tty(tty); } spin_unlock_irq(&tty->flow_lock); break; case TCOON: spin_lock_irq(&tty->flow_lock); if (tty->flow_stopped) { tty->flow_stopped = 0; __start_tty(tty); } spin_unlock_irq(&tty->flow_lock); break; case TCIOFF: if (STOP_CHAR(tty) != __DISABLED_CHAR) retval = tty_send_xchar(tty, STOP_CHAR(tty)); break; case TCION: if (START_CHAR(tty) != __DISABLED_CHAR) retval = tty_send_xchar(tty, START_CHAR(tty)); break; default: return -EINVAL; } return retval; case TCFLSH: retval = tty_check_change(tty); if (retval) return retval; return __tty_perform_flush(tty, arg); default: /* Try the mode commands */ return tty_mode_ioctl(tty, file, cmd, arg); } } EXPORT_SYMBOL(n_tty_ioctl_helper);
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_BL_H #define _LINUX_LIST_BL_H #include <linux/list.h> #include <linux/bit_spinlock.h> /* * Special version of lists, where head of the list has a lock in the lowest * bit. This is useful for scalable hash tables without increasing memory * footprint overhead. * * For modification operations, the 0 bit of hlist_bl_head->first * pointer must be set. * * With some small modifications, this can easily be adapted to store several * arbitrary bits (not just a single lock bit), if the need arises to store * some fast and compact auxiliary data. */ #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) #define LIST_BL_LOCKMASK 1UL #else #define LIST_BL_LOCKMASK 0UL #endif #ifdef CONFIG_DEBUG_LIST #define LIST_BL_BUG_ON(x) BUG_ON(x) #else #define LIST_BL_BUG_ON(x) #endif struct hlist_bl_head { struct hlist_bl_node *first; }; struct hlist_bl_node { struct hlist_bl_node *next, **pprev; }; #define INIT_HLIST_BL_HEAD(ptr) \ ((ptr)->first = NULL) static inline void INIT_HLIST_BL_NODE(struct hlist_bl_node *h) { h->next = NULL; h->pprev = NULL; } #define hlist_bl_entry(ptr, type, member) container_of(ptr,type,member) static inline bool hlist_bl_unhashed(const struct hlist_bl_node *h) { return !h->pprev; } static inline struct hlist_bl_node *hlist_bl_first(struct hlist_bl_head *h) { return (struct hlist_bl_node *) ((unsigned long)h->first & ~LIST_BL_LOCKMASK); } static inline void hlist_bl_set_first(struct hlist_bl_head *h, struct hlist_bl_node *n) { LIST_BL_BUG_ON((unsigned long)n & LIST_BL_LOCKMASK); LIST_BL_BUG_ON(((unsigned long)h->first & LIST_BL_LOCKMASK) != LIST_BL_LOCKMASK); h->first = (struct hlist_bl_node *)((unsigned long)n | LIST_BL_LOCKMASK); } static inline bool hlist_bl_empty(const struct hlist_bl_head *h) { return !((unsigned long)READ_ONCE(h->first) & ~LIST_BL_LOCKMASK); } static inline void hlist_bl_add_head(struct hlist_bl_node *n, struct hlist_bl_head *h) { struct hlist_bl_node *first = hlist_bl_first(h); n->next = first; if (first) first->pprev = &n->next; n->pprev = &h->first; hlist_bl_set_first(h, n); } static inline void hlist_bl_add_before(struct hlist_bl_node *n, struct hlist_bl_node *next) { struct hlist_bl_node **pprev = next->pprev; n->pprev = pprev; n->next = next; next->pprev = &n->next; /* pprev may be `first`, so be careful not to lose the lock bit */ WRITE_ONCE(*pprev, (struct hlist_bl_node *) ((uintptr_t)n | ((uintptr_t)*pprev & LIST_BL_LOCKMASK))); } static inline void hlist_bl_add_behind(struct hlist_bl_node *n, struct hlist_bl_node *prev) { n->next = prev->next; n->pprev = &prev->next; prev->next = n; if (n->next) n->next->pprev = &n->next; } static inline void __hlist_bl_del(struct hlist_bl_node *n) { struct hlist_bl_node *next = n->next; struct hlist_bl_node **pprev = n->pprev; LIST_BL_BUG_ON((unsigned long)n & LIST_BL_LOCKMASK); /* pprev may be `first`, so be careful not to lose the lock bit */ WRITE_ONCE(*pprev, (struct hlist_bl_node *) ((unsigned long)next | ((unsigned long)*pprev & LIST_BL_LOCKMASK))); if (next) next->pprev = pprev; } static inline void hlist_bl_del(struct hlist_bl_node *n) { __hlist_bl_del(n); n->next = LIST_POISON1; n->pprev = LIST_POISON2; } static inline void hlist_bl_del_init(struct hlist_bl_node *n) { if (!hlist_bl_unhashed(n)) { __hlist_bl_del(n); INIT_HLIST_BL_NODE(n); } } static inline void hlist_bl_lock(struct hlist_bl_head *b) { bit_spin_lock(0, (unsigned long *)b); } static inline void hlist_bl_unlock(struct hlist_bl_head *b) { __bit_spin_unlock(0, (unsigned long *)b); } static inline bool hlist_bl_is_locked(struct hlist_bl_head *b) { return bit_spin_is_locked(0, (unsigned long *)b); } /** * hlist_bl_for_each_entry - iterate over list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * */ #define hlist_bl_for_each_entry(tpos, pos, head, member) \ for (pos = hlist_bl_first(head); \ pos && \ ({ tpos = hlist_bl_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) /** * hlist_bl_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @n: another &struct hlist_node to use as temporary storage * @head: the head for your list. * @member: the name of the hlist_node within the struct. */ #define hlist_bl_for_each_entry_safe(tpos, pos, n, head, member) \ for (pos = hlist_bl_first(head); \ pos && ({ n = pos->next; 1; }) && \ ({ tpos = hlist_bl_entry(pos, typeof(*tpos), member); 1;}); \ pos = n) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Tracing hooks * * Copyright (C) 2008-2009 Red Hat, Inc. All rights reserved. * * This file defines hook entry points called by core code where * user tracing/debugging support might need to do something. These * entry points are called tracehook_*(). Each hook declared below * has a detailed kerneldoc comment giving the context (locking et * al) from which it is called, and the meaning of its return value. * * Each function here typically has only one call site, so it is ok * to have some nontrivial tracehook_*() inlines. In all cases, the * fast path when no tracing is enabled should be very short. * * The purpose of this file and the tracehook_* layer is to consolidate * the interface that the kernel core and arch code uses to enable any * user debugging or tracing facility (such as ptrace). The interfaces * here are carefully documented so that maintainers of core and arch * code do not need to think about the implementation details of the * tracing facilities. Likewise, maintainers of the tracing code do not * need to understand all the calling core or arch code in detail, just * documented circumstances of each call, such as locking conditions. * * If the calling core code changes so that locking is different, then * it is ok to change the interface documented here. The maintainer of * core code changing should notify the maintainers of the tracing code * that they need to work out the change. * * Some tracehook_*() inlines take arguments that the current tracing * implementations might not necessarily use. These function signatures * are chosen to pass in all the information that is on hand in the * caller and might conceivably be relevant to a tracer, so that the * core code won't have to be updated when tracing adds more features. * If a call site changes so that some of those parameters are no longer * already on hand without extra work, then the tracehook_* interface * can change so there is no make-work burden on the core code. The * maintainer of core code changing should notify the maintainers of the * tracing code that they need to work out the change. */ #ifndef _LINUX_TRACEHOOK_H #define _LINUX_TRACEHOOK_H 1 #include <linux/sched.h> #include <linux/ptrace.h> #include <linux/security.h> #include <linux/task_work.h> #include <linux/memcontrol.h> #include <linux/blk-cgroup.h> struct linux_binprm; /* * ptrace report for syscall entry and exit looks identical. */ static inline int ptrace_report_syscall(struct pt_regs *regs, unsigned long message) { int ptrace = current->ptrace; if (!(ptrace & PT_PTRACED)) return 0; current->ptrace_message = message; ptrace_notify(SIGTRAP | ((ptrace & PT_TRACESYSGOOD) ? 0x80 : 0)); /* * this isn't the same as continuing with a signal, but it will do * for normal use. strace only continues with a signal if the * stopping signal is not SIGTRAP. -brl */ if (current->exit_code) { send_sig(current->exit_code, current, 1); current->exit_code = 0; } current->ptrace_message = 0; return fatal_signal_pending(current); } /** * tracehook_report_syscall_entry - task is about to attempt a system call * @regs: user register state of current task * * This will be called if %TIF_SYSCALL_TRACE or %TIF_SYSCALL_EMU have been set, * when the current task has just entered the kernel for a system call. * Full user register state is available here. Changing the values * in @regs can affect the system call number and arguments to be tried. * It is safe to block here, preventing the system call from beginning. * * Returns zero normally, or nonzero if the calling arch code should abort * the system call. That must prevent normal entry so no system call is * made. If @task ever returns to user mode after this, its register state * is unspecified, but should be something harmless like an %ENOSYS error * return. It should preserve enough information so that syscall_rollback() * can work (see asm-generic/syscall.h). * * Called without locks, just after entering kernel mode. */ static inline __must_check int tracehook_report_syscall_entry( struct pt_regs *regs) { return ptrace_report_syscall(regs, PTRACE_EVENTMSG_SYSCALL_ENTRY); } /** * tracehook_report_syscall_exit - task has just finished a system call * @regs: user register state of current task * @step: nonzero if simulating single-step or block-step * * This will be called if %TIF_SYSCALL_TRACE has been set, when the * current task has just finished an attempted system call. Full * user register state is available here. It is safe to block here, * preventing signals from being processed. * * If @step is nonzero, this report is also in lieu of the normal * trap that would follow the system call instruction because * user_enable_block_step() or user_enable_single_step() was used. * In this case, %TIF_SYSCALL_TRACE might not be set. * * Called without locks, just before checking for pending signals. */ static inline void tracehook_report_syscall_exit(struct pt_regs *regs, int step) { if (step) user_single_step_report(regs); else ptrace_report_syscall(regs, PTRACE_EVENTMSG_SYSCALL_EXIT); } /** * tracehook_signal_handler - signal handler setup is complete * @stepping: nonzero if debugger single-step or block-step in use * * Called by the arch code after a signal handler has been set up. * Register and stack state reflects the user handler about to run. * Signal mask changes have already been made. * * Called without locks, shortly before returning to user mode * (or handling more signals). */ static inline void tracehook_signal_handler(int stepping) { if (stepping) ptrace_notify(SIGTRAP); } /** * set_notify_resume - cause tracehook_notify_resume() to be called * @task: task that will call tracehook_notify_resume() * * Calling this arranges that @task will call tracehook_notify_resume() * before returning to user mode. If it's already running in user mode, * it will enter the kernel and call tracehook_notify_resume() soon. * If it's blocked, it will not be woken. */ static inline void set_notify_resume(struct task_struct *task) { #ifdef TIF_NOTIFY_RESUME if (!test_and_set_tsk_thread_flag(task, TIF_NOTIFY_RESUME)) kick_process(task); #endif } /** * tracehook_notify_resume - report when about to return to user mode * @regs: user-mode registers of @current task * * This is called when %TIF_NOTIFY_RESUME has been set. Now we are * about to return to user mode, and the user state in @regs can be * inspected or adjusted. The caller in arch code has cleared * %TIF_NOTIFY_RESUME before the call. If the flag gets set again * asynchronously, this will be called again before we return to * user mode. * * Called without locks. */ static inline void tracehook_notify_resume(struct pt_regs *regs) { clear_thread_flag(TIF_NOTIFY_RESUME); /* * This barrier pairs with task_work_add()->set_notify_resume() after * hlist_add_head(task->task_works); */ smp_mb__after_atomic(); if (unlikely(current->task_works)) task_work_run(); #ifdef CONFIG_KEYS_REQUEST_CACHE if (unlikely(current->cached_requested_key)) { key_put(current->cached_requested_key); current->cached_requested_key = NULL; } #endif mem_cgroup_handle_over_high(); blkcg_maybe_throttle_current(); } #endif /* <linux/tracehook.h> */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMIOTRACE_H #define _LINUX_MMIOTRACE_H #include <linux/types.h> #include <linux/list.h> struct kmmio_probe; struct pt_regs; typedef void (*kmmio_pre_handler_t)(struct kmmio_probe *, struct pt_regs *, unsigned long addr); typedef void (*kmmio_post_handler_t)(struct kmmio_probe *, unsigned long condition, struct pt_regs *); struct kmmio_probe { /* kmmio internal list: */ struct list_head list; /* start location of the probe point: */ unsigned long addr; /* length of the probe region: */ unsigned long len; /* Called before addr is executed: */ kmmio_pre_handler_t pre_handler; /* Called after addr is executed: */ kmmio_post_handler_t post_handler; void *private; }; extern unsigned int kmmio_count; extern int register_kmmio_probe(struct kmmio_probe *p); extern void unregister_kmmio_probe(struct kmmio_probe *p); extern int kmmio_init(void); extern void kmmio_cleanup(void); #ifdef CONFIG_MMIOTRACE /* kmmio is active by some kmmio_probes? */ static inline int is_kmmio_active(void) { return kmmio_count; } /* Called from page fault handler. */ extern int kmmio_handler(struct pt_regs *regs, unsigned long addr); /* Called from ioremap.c */ extern void mmiotrace_ioremap(resource_size_t offset, unsigned long size, void __iomem *addr); extern void mmiotrace_iounmap(volatile void __iomem *addr); /* For anyone to insert markers. Remember trailing newline. */ extern __printf(1, 2) int mmiotrace_printk(const char *fmt, ...); #else /* !CONFIG_MMIOTRACE: */ static inline int is_kmmio_active(void) { return 0; } static inline int kmmio_handler(struct pt_regs *regs, unsigned long addr) { return 0; } static inline void mmiotrace_ioremap(resource_size_t offset, unsigned long size, void __iomem *addr) { } static inline void mmiotrace_iounmap(volatile void __iomem *addr) { } static inline __printf(1, 2) int mmiotrace_printk(const char *fmt, ...) { return 0; } #endif /* CONFIG_MMIOTRACE */ enum mm_io_opcode { MMIO_READ = 0x1, /* struct mmiotrace_rw */ MMIO_WRITE = 0x2, /* struct mmiotrace_rw */ MMIO_PROBE = 0x3, /* struct mmiotrace_map */ MMIO_UNPROBE = 0x4, /* struct mmiotrace_map */ MMIO_UNKNOWN_OP = 0x5, /* struct mmiotrace_rw */ }; struct mmiotrace_rw { resource_size_t phys; /* PCI address of register */ unsigned long value; unsigned long pc; /* optional program counter */ int map_id; unsigned char opcode; /* one of MMIO_{READ,WRITE,UNKNOWN_OP} */ unsigned char width; /* size of register access in bytes */ }; struct mmiotrace_map { resource_size_t phys; /* base address in PCI space */ unsigned long virt; /* base virtual address */ unsigned long len; /* mapping size */ int map_id; unsigned char opcode; /* MMIO_PROBE or MMIO_UNPROBE */ }; /* in kernel/trace/trace_mmiotrace.c */ extern void enable_mmiotrace(void); extern void disable_mmiotrace(void); extern void mmio_trace_rw(struct mmiotrace_rw *rw); extern void mmio_trace_mapping(struct mmiotrace_map *map); extern __printf(1, 0) int mmio_trace_printk(const char *fmt, va_list args); #endif /* _LINUX_MMIOTRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ADDRCONF_H #define _ADDRCONF_H #define MAX_RTR_SOLICITATIONS -1 /* unlimited */ #define RTR_SOLICITATION_INTERVAL (4*HZ) #define RTR_SOLICITATION_MAX_INTERVAL (3600*HZ) /* 1 hour */ #define TEMP_VALID_LIFETIME (7*86400) #define TEMP_PREFERRED_LIFETIME (86400) #define REGEN_MAX_RETRY (3) #define MAX_DESYNC_FACTOR (600) #define ADDR_CHECK_FREQUENCY (120*HZ) #define IPV6_MAX_ADDRESSES 16 #define ADDRCONF_TIMER_FUZZ_MINUS (HZ > 50 ? HZ / 50 : 1) #define ADDRCONF_TIMER_FUZZ (HZ / 4) #define ADDRCONF_TIMER_FUZZ_MAX (HZ) #define ADDRCONF_NOTIFY_PRIORITY 0 #include <linux/in.h> #include <linux/in6.h> struct prefix_info { __u8 type; __u8 length; __u8 prefix_len; #if defined(__BIG_ENDIAN_BITFIELD) __u8 onlink : 1, autoconf : 1, reserved : 6; #elif defined(__LITTLE_ENDIAN_BITFIELD) __u8 reserved : 6, autoconf : 1, onlink : 1; #else #error "Please fix <asm/byteorder.h>" #endif __be32 valid; __be32 prefered; __be32 reserved2; struct in6_addr prefix; }; #include <linux/ipv6.h> #include <linux/netdevice.h> #include <net/if_inet6.h> #include <net/ipv6.h> struct in6_validator_info { struct in6_addr i6vi_addr; struct inet6_dev *i6vi_dev; struct netlink_ext_ack *extack; }; struct ifa6_config { const struct in6_addr *pfx; unsigned int plen; const struct in6_addr *peer_pfx; u32 rt_priority; u32 ifa_flags; u32 preferred_lft; u32 valid_lft; u16 scope; }; int addrconf_init(void); void addrconf_cleanup(void); int addrconf_add_ifaddr(struct net *net, void __user *arg); int addrconf_del_ifaddr(struct net *net, void __user *arg); int addrconf_set_dstaddr(struct net *net, void __user *arg); int ipv6_chk_addr(struct net *net, const struct in6_addr *addr, const struct net_device *dev, int strict); int ipv6_chk_addr_and_flags(struct net *net, const struct in6_addr *addr, const struct net_device *dev, bool skip_dev_check, int strict, u32 banned_flags); #if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE) int ipv6_chk_home_addr(struct net *net, const struct in6_addr *addr); #endif int ipv6_chk_rpl_srh_loop(struct net *net, const struct in6_addr *segs, unsigned char nsegs); bool ipv6_chk_custom_prefix(const struct in6_addr *addr, const unsigned int prefix_len, struct net_device *dev); int ipv6_chk_prefix(const struct in6_addr *addr, struct net_device *dev); struct net_device *ipv6_dev_find(struct net *net, const struct in6_addr *addr, struct net_device *dev); struct inet6_ifaddr *ipv6_get_ifaddr(struct net *net, const struct in6_addr *addr, struct net_device *dev, int strict); int ipv6_dev_get_saddr(struct net *net, const struct net_device *dev, const struct in6_addr *daddr, unsigned int srcprefs, struct in6_addr *saddr); int __ipv6_get_lladdr(struct inet6_dev *idev, struct in6_addr *addr, u32 banned_flags); int ipv6_get_lladdr(struct net_device *dev, struct in6_addr *addr, u32 banned_flags); bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, bool match_wildcard); bool inet_rcv_saddr_any(const struct sock *sk); void addrconf_join_solict(struct net_device *dev, const struct in6_addr *addr); void addrconf_leave_solict(struct inet6_dev *idev, const struct in6_addr *addr); void addrconf_add_linklocal(struct inet6_dev *idev, const struct in6_addr *addr, u32 flags); int addrconf_prefix_rcv_add_addr(struct net *net, struct net_device *dev, const struct prefix_info *pinfo, struct inet6_dev *in6_dev, const struct in6_addr *addr, int addr_type, u32 addr_flags, bool sllao, bool tokenized, __u32 valid_lft, u32 prefered_lft); static inline void addrconf_addr_eui48_base(u8 *eui, const char *const addr) { memcpy(eui, addr, 3); eui[3] = 0xFF; eui[4] = 0xFE; memcpy(eui + 5, addr + 3, 3); } static inline void addrconf_addr_eui48(u8 *eui, const char *const addr) { addrconf_addr_eui48_base(eui, addr); eui[0] ^= 2; } static inline int addrconf_ifid_eui48(u8 *eui, struct net_device *dev) { if (dev->addr_len != ETH_ALEN) return -1; /* * The zSeries OSA network cards can be shared among various * OS instances, but the OSA cards have only one MAC address. * This leads to duplicate address conflicts in conjunction * with IPv6 if more than one instance uses the same card. * * The driver for these cards can deliver a unique 16-bit * identifier for each instance sharing the same card. It is * placed instead of 0xFFFE in the interface identifier. The * "u" bit of the interface identifier is not inverted in this * case. Hence the resulting interface identifier has local * scope according to RFC2373. */ addrconf_addr_eui48_base(eui, dev->dev_addr); if (dev->dev_id) { eui[3] = (dev->dev_id >> 8) & 0xFF; eui[4] = dev->dev_id & 0xFF; } else { eui[0] ^= 2; } return 0; } static inline unsigned long addrconf_timeout_fixup(u32 timeout, unsigned int unit) { if (timeout == 0xffffffff) return ~0UL; /* * Avoid arithmetic overflow. * Assuming unit is constant and non-zero, this "if" statement * will go away on 64bit archs. */ if (0xfffffffe > LONG_MAX / unit && timeout > LONG_MAX / unit) return LONG_MAX / unit; return timeout; } static inline int addrconf_finite_timeout(unsigned long timeout) { return ~timeout; } /* * IPv6 Address Label subsystem (addrlabel.c) */ int ipv6_addr_label_init(void); void ipv6_addr_label_cleanup(void); int ipv6_addr_label_rtnl_register(void); u32 ipv6_addr_label(struct net *net, const struct in6_addr *addr, int type, int ifindex); /* * multicast prototypes (mcast.c) */ static inline bool ipv6_mc_may_pull(struct sk_buff *skb, unsigned int len) { if (skb_transport_offset(skb) + ipv6_transport_len(skb) < len) return false; return pskb_may_pull(skb, len); } int ipv6_sock_mc_join(struct sock *sk, int ifindex, const struct in6_addr *addr); int ipv6_sock_mc_drop(struct sock *sk, int ifindex, const struct in6_addr *addr); void __ipv6_sock_mc_close(struct sock *sk); void ipv6_sock_mc_close(struct sock *sk); bool inet6_mc_check(struct sock *sk, const struct in6_addr *mc_addr, const struct in6_addr *src_addr); int ipv6_dev_mc_inc(struct net_device *dev, const struct in6_addr *addr); int __ipv6_dev_mc_dec(struct inet6_dev *idev, const struct in6_addr *addr); int ipv6_dev_mc_dec(struct net_device *dev, const struct in6_addr *addr); void ipv6_mc_up(struct inet6_dev *idev); void ipv6_mc_down(struct inet6_dev *idev); void ipv6_mc_unmap(struct inet6_dev *idev); void ipv6_mc_remap(struct inet6_dev *idev); void ipv6_mc_init_dev(struct inet6_dev *idev); void ipv6_mc_destroy_dev(struct inet6_dev *idev); int ipv6_mc_check_mld(struct sk_buff *skb); void addrconf_dad_failure(struct sk_buff *skb, struct inet6_ifaddr *ifp); bool ipv6_chk_mcast_addr(struct net_device *dev, const struct in6_addr *group, const struct in6_addr *src_addr); void ipv6_mc_dad_complete(struct inet6_dev *idev); /* * identify MLD packets for MLD filter exceptions */ static inline bool ipv6_is_mld(struct sk_buff *skb, int nexthdr, int offset) { struct icmp6hdr *hdr; if (nexthdr != IPPROTO_ICMPV6 || !pskb_network_may_pull(skb, offset + sizeof(struct icmp6hdr))) return false; hdr = (struct icmp6hdr *)(skb_network_header(skb) + offset); switch (hdr->icmp6_type) { case ICMPV6_MGM_QUERY: case ICMPV6_MGM_REPORT: case ICMPV6_MGM_REDUCTION: case ICMPV6_MLD2_REPORT: return true; default: break; } return false; } void addrconf_prefix_rcv(struct net_device *dev, u8 *opt, int len, bool sllao); /* * anycast prototypes (anycast.c) */ int ipv6_sock_ac_join(struct sock *sk, int ifindex, const struct in6_addr *addr); int ipv6_sock_ac_drop(struct sock *sk, int ifindex, const struct in6_addr *addr); void __ipv6_sock_ac_close(struct sock *sk); void ipv6_sock_ac_close(struct sock *sk); int __ipv6_dev_ac_inc(struct inet6_dev *idev, const struct in6_addr *addr); int __ipv6_dev_ac_dec(struct inet6_dev *idev, const struct in6_addr *addr); void ipv6_ac_destroy_dev(struct inet6_dev *idev); bool ipv6_chk_acast_addr(struct net *net, struct net_device *dev, const struct in6_addr *addr); bool ipv6_chk_acast_addr_src(struct net *net, struct net_device *dev, const struct in6_addr *addr); int ipv6_anycast_init(void); void ipv6_anycast_cleanup(void); /* Device notifier */ int register_inet6addr_notifier(struct notifier_block *nb); int unregister_inet6addr_notifier(struct notifier_block *nb); int inet6addr_notifier_call_chain(unsigned long val, void *v); int register_inet6addr_validator_notifier(struct notifier_block *nb); int unregister_inet6addr_validator_notifier(struct notifier_block *nb); int inet6addr_validator_notifier_call_chain(unsigned long val, void *v); void inet6_netconf_notify_devconf(struct net *net, int event, int type, int ifindex, struct ipv6_devconf *devconf); /** * __in6_dev_get - get inet6_dev pointer from netdevice * @dev: network device * * Caller must hold rcu_read_lock or RTNL, because this function * does not take a reference on the inet6_dev. */ static inline struct inet6_dev *__in6_dev_get(const struct net_device *dev) { return rcu_dereference_rtnl(dev->ip6_ptr); } /** * __in6_dev_stats_get - get inet6_dev pointer for stats * @dev: network device * @skb: skb for original incoming interface if neeeded * * Caller must hold rcu_read_lock or RTNL, because this function * does not take a reference on the inet6_dev. */ static inline struct inet6_dev *__in6_dev_stats_get(const struct net_device *dev, const struct sk_buff *skb) { if (netif_is_l3_master(dev)) dev = dev_get_by_index_rcu(dev_net(dev), inet6_iif(skb)); return __in6_dev_get(dev); } /** * __in6_dev_get_safely - get inet6_dev pointer from netdevice * @dev: network device * * This is a safer version of __in6_dev_get */ static inline struct inet6_dev *__in6_dev_get_safely(const struct net_device *dev) { if (likely(dev)) return rcu_dereference_rtnl(dev->ip6_ptr); else return NULL; } /** * in6_dev_get - get inet6_dev pointer from netdevice * @dev: network device * * This version can be used in any context, and takes a reference * on the inet6_dev. Callers must use in6_dev_put() later to * release this reference. */ static inline struct inet6_dev *in6_dev_get(const struct net_device *dev) { struct inet6_dev *idev; rcu_read_lock(); idev = rcu_dereference(dev->ip6_ptr); if (idev) refcount_inc(&idev->refcnt); rcu_read_unlock(); return idev; } static inline struct neigh_parms *__in6_dev_nd_parms_get_rcu(const struct net_device *dev) { struct inet6_dev *idev = __in6_dev_get(dev); return idev ? idev->nd_parms : NULL; } void in6_dev_finish_destroy(struct inet6_dev *idev); static inline void in6_dev_put(struct inet6_dev *idev) { if (refcount_dec_and_test(&idev->refcnt)) in6_dev_finish_destroy(idev); } static inline void in6_dev_put_clear(struct inet6_dev **pidev) { struct inet6_dev *idev = *pidev; if (idev) { in6_dev_put(idev); *pidev = NULL; } } static inline void __in6_dev_put(struct inet6_dev *idev) { refcount_dec(&idev->refcnt); } static inline void in6_dev_hold(struct inet6_dev *idev) { refcount_inc(&idev->refcnt); } /* called with rcu_read_lock held */ static inline bool ip6_ignore_linkdown(const struct net_device *dev) { const struct inet6_dev *idev = __in6_dev_get(dev); return !!idev->cnf.ignore_routes_with_linkdown; } void inet6_ifa_finish_destroy(struct inet6_ifaddr *ifp); static inline void in6_ifa_put(struct inet6_ifaddr *ifp) { if (refcount_dec_and_test(&ifp->refcnt)) inet6_ifa_finish_destroy(ifp); } static inline void __in6_ifa_put(struct inet6_ifaddr *ifp) { refcount_dec(&ifp->refcnt); } static inline void in6_ifa_hold(struct inet6_ifaddr *ifp) { refcount_inc(&ifp->refcnt); } /* * compute link-local solicited-node multicast address */ static inline void addrconf_addr_solict_mult(const struct in6_addr *addr, struct in6_addr *solicited) { ipv6_addr_set(solicited, htonl(0xFF020000), 0, htonl(0x1), htonl(0xFF000000) | addr->s6_addr32[3]); } static inline bool ipv6_addr_is_ll_all_nodes(const struct in6_addr *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 __be64 *p = (__force __be64 *)addr; return ((p[0] ^ cpu_to_be64(0xff02000000000000UL)) | (p[1] ^ cpu_to_be64(1))) == 0UL; #else return ((addr->s6_addr32[0] ^ htonl(0xff020000)) | addr->s6_addr32[1] | addr->s6_addr32[2] | (addr->s6_addr32[3] ^ htonl(0x00000001))) == 0; #endif } static inline bool ipv6_addr_is_ll_all_routers(const struct in6_addr *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 __be64 *p = (__force __be64 *)addr; return ((p[0] ^ cpu_to_be64(0xff02000000000000UL)) | (p[1] ^ cpu_to_be64(2))) == 0UL; #else return ((addr->s6_addr32[0] ^ htonl(0xff020000)) | addr->s6_addr32[1] | addr->s6_addr32[2] | (addr->s6_addr32[3] ^ htonl(0x00000002))) == 0; #endif } static inline bool ipv6_addr_is_isatap(const struct in6_addr *addr) { return (addr->s6_addr32[2] | htonl(0x02000000)) == htonl(0x02005EFE); } static inline bool ipv6_addr_is_solict_mult(const struct in6_addr *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 __be64 *p = (__force __be64 *)addr; return ((p[0] ^ cpu_to_be64(0xff02000000000000UL)) | ((p[1] ^ cpu_to_be64(0x00000001ff000000UL)) & cpu_to_be64(0xffffffffff000000UL))) == 0UL; #else return ((addr->s6_addr32[0] ^ htonl(0xff020000)) | addr->s6_addr32[1] | (addr->s6_addr32[2] ^ htonl(0x00000001)) | (addr->s6_addr[12] ^ 0xff)) == 0; #endif } static inline bool ipv6_addr_is_all_snoopers(const struct in6_addr *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 __be64 *p = (__force __be64 *)addr; return ((p[0] ^ cpu_to_be64(0xff02000000000000UL)) | (p[1] ^ cpu_to_be64(0x6a))) == 0UL; #else return ((addr->s6_addr32[0] ^ htonl(0xff020000)) | addr->s6_addr32[1] | addr->s6_addr32[2] | (addr->s6_addr32[3] ^ htonl(0x0000006a))) == 0; #endif } #ifdef CONFIG_PROC_FS int if6_proc_init(void); void if6_proc_exit(void); #endif #endif
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_FS_H #define _LINUX_FS_H #include <linux/linkage.h> #include <linux/wait_bit.h> #include <linux/kdev_t.h> #include <linux/dcache.h> #include <linux/path.h> #include <linux/stat.h> #include <linux/cache.h> #include <linux/list.h> #include <linux/list_lru.h> #include <linux/llist.h> #include <linux/radix-tree.h> #include <linux/xarray.h> #include <linux/rbtree.h> #include <linux/init.h> #include <linux/pid.h> #include <linux/bug.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/mm_types.h> #include <linux/capability.h> #include <linux/semaphore.h> #include <linux/fcntl.h> #include <linux/rculist_bl.h> #include <linux/atomic.h> #include <linux/shrinker.h> #include <linux/migrate_mode.h> #include <linux/uidgid.h> #include <linux/lockdep.h> #include <linux/percpu-rwsem.h> #include <linux/workqueue.h> #include <linux/delayed_call.h> #include <linux/uuid.h> #include <linux/errseq.h> #include <linux/ioprio.h> #include <linux/fs_types.h> #include <linux/build_bug.h> #include <linux/stddef.h> #include <asm/byteorder.h> #include <uapi/linux/fs.h> struct backing_dev_info; struct bdi_writeback; struct bio; struct export_operations; struct fiemap_extent_info; struct hd_geometry; struct iovec; struct kiocb; struct kobject; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct vm_area_struct; struct vfsmount; struct cred; struct swap_info_struct; struct seq_file; struct workqueue_struct; struct iov_iter; struct fscrypt_info; struct fscrypt_operations; struct fsverity_info; struct fsverity_operations; struct fs_context; struct fs_parameter_spec; extern void __init inode_init(void); extern void __init inode_init_early(void); extern void __init files_init(void); extern void __init files_maxfiles_init(void); extern struct files_stat_struct files_stat; extern unsigned long get_max_files(void); extern unsigned int sysctl_nr_open; extern struct inodes_stat_t inodes_stat; extern int leases_enable, lease_break_time; extern int sysctl_protected_symlinks; extern int sysctl_protected_hardlinks; extern int sysctl_protected_fifos; extern int sysctl_protected_regular; typedef __kernel_rwf_t rwf_t; struct buffer_head; typedef int (get_block_t)(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create); typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, ssize_t bytes, void *private); #define MAY_EXEC 0x00000001 #define MAY_WRITE 0x00000002 #define MAY_READ 0x00000004 #define MAY_APPEND 0x00000008 #define MAY_ACCESS 0x00000010 #define MAY_OPEN 0x00000020 #define MAY_CHDIR 0x00000040 /* called from RCU mode, don't block */ #define MAY_NOT_BLOCK 0x00000080 /* * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() */ /* file is open for reading */ #define FMODE_READ ((__force fmode_t)0x1) /* file is open for writing */ #define FMODE_WRITE ((__force fmode_t)0x2) /* file is seekable */ #define FMODE_LSEEK ((__force fmode_t)0x4) /* file can be accessed using pread */ #define FMODE_PREAD ((__force fmode_t)0x8) /* file can be accessed using pwrite */ #define FMODE_PWRITE ((__force fmode_t)0x10) /* File is opened for execution with sys_execve / sys_uselib */ #define FMODE_EXEC ((__force fmode_t)0x20) /* File is opened with O_NDELAY (only set for block devices) */ #define FMODE_NDELAY ((__force fmode_t)0x40) /* File is opened with O_EXCL (only set for block devices) */ #define FMODE_EXCL ((__force fmode_t)0x80) /* File is opened using open(.., 3, ..) and is writeable only for ioctls (specialy hack for floppy.c) */ #define FMODE_WRITE_IOCTL ((__force fmode_t)0x100) /* 32bit hashes as llseek() offset (for directories) */ #define FMODE_32BITHASH ((__force fmode_t)0x200) /* 64bit hashes as llseek() offset (for directories) */ #define FMODE_64BITHASH ((__force fmode_t)0x400) /* * Don't update ctime and mtime. * * Currently a special hack for the XFS open_by_handle ioctl, but we'll * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. */ #define FMODE_NOCMTIME ((__force fmode_t)0x800) /* Expect random access pattern */ #define FMODE_RANDOM ((__force fmode_t)0x1000) /* File is huge (eg. /dev/kmem): treat loff_t as unsigned */ #define FMODE_UNSIGNED_OFFSET ((__force fmode_t)0x2000) /* File is opened with O_PATH; almost nothing can be done with it */ #define FMODE_PATH ((__force fmode_t)0x4000) /* File needs atomic accesses to f_pos */ #define FMODE_ATOMIC_POS ((__force fmode_t)0x8000) /* Write access to underlying fs */ #define FMODE_WRITER ((__force fmode_t)0x10000) /* Has read method(s) */ #define FMODE_CAN_READ ((__force fmode_t)0x20000) /* Has write method(s) */ #define FMODE_CAN_WRITE ((__force fmode_t)0x40000) #define FMODE_OPENED ((__force fmode_t)0x80000) #define FMODE_CREATED ((__force fmode_t)0x100000) /* File is stream-like */ #define FMODE_STREAM ((__force fmode_t)0x200000) /* File was opened by fanotify and shouldn't generate fanotify events */ #define FMODE_NONOTIFY ((__force fmode_t)0x4000000) /* File is capable of returning -EAGAIN if I/O will block */ #define FMODE_NOWAIT ((__force fmode_t)0x8000000) /* File represents mount that needs unmounting */ #define FMODE_NEED_UNMOUNT ((__force fmode_t)0x10000000) /* File does not contribute to nr_files count */ #define FMODE_NOACCOUNT ((__force fmode_t)0x20000000) /* File supports async buffered reads */ #define FMODE_BUF_RASYNC ((__force fmode_t)0x40000000) /* * Attribute flags. These should be or-ed together to figure out what * has been changed! */ #define ATTR_MODE (1 << 0) #define ATTR_UID (1 << 1) #define ATTR_GID (1 << 2) #define ATTR_SIZE (1 << 3) #define ATTR_ATIME (1 << 4) #define ATTR_MTIME (1 << 5) #define ATTR_CTIME (1 << 6) #define ATTR_ATIME_SET (1 << 7) #define ATTR_MTIME_SET (1 << 8) #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ #define ATTR_KILL_SUID (1 << 11) #define ATTR_KILL_SGID (1 << 12) #define ATTR_FILE (1 << 13) #define ATTR_KILL_PRIV (1 << 14) #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ #define ATTR_TIMES_SET (1 << 16) #define ATTR_TOUCH (1 << 17) /* * Whiteout is represented by a char device. The following constants define the * mode and device number to use. */ #define WHITEOUT_MODE 0 #define WHITEOUT_DEV 0 /* * This is the Inode Attributes structure, used for notify_change(). It * uses the above definitions as flags, to know which values have changed. * Also, in this manner, a Filesystem can look at only the values it cares * about. Basically, these are the attributes that the VFS layer can * request to change from the FS layer. * * Derek Atkins <warlord@MIT.EDU> 94-10-20 */ struct iattr { unsigned int ia_valid; umode_t ia_mode; kuid_t ia_uid; kgid_t ia_gid; loff_t ia_size; struct timespec64 ia_atime; struct timespec64 ia_mtime; struct timespec64 ia_ctime; /* * Not an attribute, but an auxiliary info for filesystems wanting to * implement an ftruncate() like method. NOTE: filesystem should * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). */ struct file *ia_file; }; /* * Includes for diskquotas. */ #include <linux/quota.h> /* * Maximum number of layers of fs stack. Needs to be limited to * prevent kernel stack overflow */ #define FILESYSTEM_MAX_STACK_DEPTH 2 /** * enum positive_aop_returns - aop return codes with specific semantics * * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has * completed, that the page is still locked, and * should be considered active. The VM uses this hint * to return the page to the active list -- it won't * be a candidate for writeback again in the near * future. Other callers must be careful to unlock * the page if they get this return. Returned by * writepage(); * * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has * unlocked it and the page might have been truncated. * The caller should back up to acquiring a new page and * trying again. The aop will be taking reasonable * precautions not to livelock. If the caller held a page * reference, it should drop it before retrying. Returned * by readpage(). * * address_space_operation functions return these large constants to indicate * special semantics to the caller. These are much larger than the bytes in a * page to allow for functions that return the number of bytes operated on in a * given page. */ enum positive_aop_returns { AOP_WRITEPAGE_ACTIVATE = 0x80000, AOP_TRUNCATED_PAGE = 0x80001, }; #define AOP_FLAG_CONT_EXPAND 0x0001 /* called from cont_expand */ #define AOP_FLAG_NOFS 0x0002 /* used by filesystem to direct * helper code (eg buffer layer) * to clear GFP_FS from alloc */ /* * oh the beauties of C type declarations. */ struct page; struct address_space; struct writeback_control; struct readahead_control; /* * Write life time hint values. * Stored in struct inode as u8. */ enum rw_hint { WRITE_LIFE_NOT_SET = 0, WRITE_LIFE_NONE = RWH_WRITE_LIFE_NONE, WRITE_LIFE_SHORT = RWH_WRITE_LIFE_SHORT, WRITE_LIFE_MEDIUM = RWH_WRITE_LIFE_MEDIUM, WRITE_LIFE_LONG = RWH_WRITE_LIFE_LONG, WRITE_LIFE_EXTREME = RWH_WRITE_LIFE_EXTREME, }; /* Match RWF_* bits to IOCB bits */ #define IOCB_HIPRI (__force int) RWF_HIPRI #define IOCB_DSYNC (__force int) RWF_DSYNC #define IOCB_SYNC (__force int) RWF_SYNC #define IOCB_NOWAIT (__force int) RWF_NOWAIT #define IOCB_APPEND (__force int) RWF_APPEND /* non-RWF related bits - start at 16 */ #define IOCB_EVENTFD (1 << 16) #define IOCB_DIRECT (1 << 17) #define IOCB_WRITE (1 << 18) /* iocb->ki_waitq is valid */ #define IOCB_WAITQ (1 << 19) #define IOCB_NOIO (1 << 20) struct kiocb { struct file *ki_filp; /* The 'ki_filp' pointer is shared in a union for aio */ randomized_struct_fields_start loff_t ki_pos; void (*ki_complete)(struct kiocb *iocb, long ret, long ret2); void *private; int ki_flags; u16 ki_hint; u16 ki_ioprio; /* See linux/ioprio.h */ union { unsigned int ki_cookie; /* for ->iopoll */ struct wait_page_queue *ki_waitq; /* for async buffered IO */ }; randomized_struct_fields_end }; static inline bool is_sync_kiocb(struct kiocb *kiocb) { return kiocb->ki_complete == NULL; } /* * "descriptor" for what we're up to with a read. * This allows us to use the same read code yet * have multiple different users of the data that * we read from a file. * * The simplest case just copies the data to user * mode. */ typedef struct { size_t written; size_t count; union { char __user *buf; void *data; } arg; int error; } read_descriptor_t; typedef int (*read_actor_t)(read_descriptor_t *, struct page *, unsigned long, unsigned long); struct address_space_operations { int (*writepage)(struct page *page, struct writeback_control *wbc); int (*readpage)(struct file *, struct page *); /* Write back some dirty pages from this mapping. */ int (*writepages)(struct address_space *, struct writeback_control *); /* Set a page dirty. Return true if this dirtied it */ int (*set_page_dirty)(struct page *page); /* * Reads in the requested pages. Unlike ->readpage(), this is * PURELY used for read-ahead!. */ int (*readpages)(struct file *filp, struct address_space *mapping, struct list_head *pages, unsigned nr_pages); void (*readahead)(struct readahead_control *); int (*write_begin)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata); int (*write_end)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata); /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ sector_t (*bmap)(struct address_space *, sector_t); void (*invalidatepage) (struct page *, unsigned int, unsigned int); int (*releasepage) (struct page *, gfp_t); void (*freepage)(struct page *); ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); /* * migrate the contents of a page to the specified target. If * migrate_mode is MIGRATE_ASYNC, it must not block. */ int (*migratepage) (struct address_space *, struct page *, struct page *, enum migrate_mode); bool (*isolate_page)(struct page *, isolate_mode_t); void (*putback_page)(struct page *); int (*launder_page) (struct page *); int (*is_partially_uptodate) (struct page *, unsigned long, unsigned long); void (*is_dirty_writeback) (struct page *, bool *, bool *); int (*error_remove_page)(struct address_space *, struct page *); /* swapfile support */ int (*swap_activate)(struct swap_info_struct *sis, struct file *file, sector_t *span); void (*swap_deactivate)(struct file *file); }; extern const struct address_space_operations empty_aops; /* * pagecache_write_begin/pagecache_write_end must be used by general code * to write into the pagecache. */ int pagecache_write_begin(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata); int pagecache_write_end(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata); /** * struct address_space - Contents of a cacheable, mappable object. * @host: Owner, either the inode or the block_device. * @i_pages: Cached pages. * @gfp_mask: Memory allocation flags to use for allocating pages. * @i_mmap_writable: Number of VM_SHARED mappings. * @nr_thps: Number of THPs in the pagecache (non-shmem only). * @i_mmap: Tree of private and shared mappings. * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. * @nrpages: Number of page entries, protected by the i_pages lock. * @nrexceptional: Shadow or DAX entries, protected by the i_pages lock. * @writeback_index: Writeback starts here. * @a_ops: Methods. * @flags: Error bits and flags (AS_*). * @wb_err: The most recent error which has occurred. * @private_lock: For use by the owner of the address_space. * @private_list: For use by the owner of the address_space. * @private_data: For use by the owner of the address_space. */ struct address_space { struct inode *host; struct xarray i_pages; gfp_t gfp_mask; atomic_t i_mmap_writable; #ifdef CONFIG_READ_ONLY_THP_FOR_FS /* number of thp, only for non-shmem files */ atomic_t nr_thps; #endif struct rb_root_cached i_mmap; struct rw_semaphore i_mmap_rwsem; unsigned long nrpages; unsigned long nrexceptional; pgoff_t writeback_index; const struct address_space_operations *a_ops; unsigned long flags; errseq_t wb_err; spinlock_t private_lock; struct list_head private_list; void *private_data; } __attribute__((aligned(sizeof(long)))) __randomize_layout; /* * On most architectures that alignment is already the case; but * must be enforced here for CRIS, to let the least significant bit * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. */ /* XArray tags, for tagging dirty and writeback pages in the pagecache. */ #define PAGECACHE_TAG_DIRTY XA_MARK_0 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1 #define PAGECACHE_TAG_TOWRITE XA_MARK_2 /* * Returns true if any of the pages in the mapping are marked with the tag. */ static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) { return xa_marked(&mapping->i_pages, tag); } static inline void i_mmap_lock_write(struct address_space *mapping) { down_write(&mapping->i_mmap_rwsem); } static inline int i_mmap_trylock_write(struct address_space *mapping) { return down_write_trylock(&mapping->i_mmap_rwsem); } static inline void i_mmap_unlock_write(struct address_space *mapping) { up_write(&mapping->i_mmap_rwsem); } static inline void i_mmap_lock_read(struct address_space *mapping) { down_read(&mapping->i_mmap_rwsem); } static inline void i_mmap_unlock_read(struct address_space *mapping) { up_read(&mapping->i_mmap_rwsem); } static inline void i_mmap_assert_locked(struct address_space *mapping) { lockdep_assert_held(&mapping->i_mmap_rwsem); } static inline void i_mmap_assert_write_locked(struct address_space *mapping) { lockdep_assert_held_write(&mapping->i_mmap_rwsem); } /* * Might pages of this file be mapped into userspace? */ static inline int mapping_mapped(struct address_space *mapping) { return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); } /* * Might pages of this file have been modified in userspace? * Note that i_mmap_writable counts all VM_SHARED vmas: do_mmap * marks vma as VM_SHARED if it is shared, and the file was opened for * writing i.e. vma may be mprotected writable even if now readonly. * * If i_mmap_writable is negative, no new writable mappings are allowed. You * can only deny writable mappings, if none exists right now. */ static inline int mapping_writably_mapped(struct address_space *mapping) { return atomic_read(&mapping->i_mmap_writable) > 0; } static inline int mapping_map_writable(struct address_space *mapping) { return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 0 : -EPERM; } static inline void mapping_unmap_writable(struct address_space *mapping) { atomic_dec(&mapping->i_mmap_writable); } static inline int mapping_deny_writable(struct address_space *mapping) { return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 0 : -EBUSY; } static inline void mapping_allow_writable(struct address_space *mapping) { atomic_inc(&mapping->i_mmap_writable); } /* * Use sequence counter to get consistent i_size on 32-bit processors. */ #if BITS_PER_LONG==32 && defined(CONFIG_SMP) #include <linux/seqlock.h> #define __NEED_I_SIZE_ORDERED #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) #else #define i_size_ordered_init(inode) do { } while (0) #endif struct posix_acl; #define ACL_NOT_CACHED ((void *)(-1)) #define ACL_DONT_CACHE ((void *)(-3)) static inline struct posix_acl * uncached_acl_sentinel(struct task_struct *task) { return (void *)task + 1; } static inline bool is_uncached_acl(struct posix_acl *acl) { return (long)acl & 1; } #define IOP_FASTPERM 0x0001 #define IOP_LOOKUP 0x0002 #define IOP_NOFOLLOW 0x0004 #define IOP_XATTR 0x0008 #define IOP_DEFAULT_READLINK 0x0010 struct fsnotify_mark_connector; /* * Keep mostly read-only and often accessed (especially for * the RCU path lookup and 'stat' data) fields at the beginning * of the 'struct inode' */ struct inode { umode_t i_mode; unsigned short i_opflags; kuid_t i_uid; kgid_t i_gid; unsigned int i_flags; #ifdef CONFIG_FS_POSIX_ACL struct posix_acl *i_acl; struct posix_acl *i_default_acl; #endif const struct inode_operations *i_op; struct super_block *i_sb; struct address_space *i_mapping; #ifdef CONFIG_SECURITY void *i_security; #endif /* Stat data, not accessed from path walking */ unsigned long i_ino; /* * Filesystems may only read i_nlink directly. They shall use the * following functions for modification: * * (set|clear|inc|drop)_nlink * inode_(inc|dec)_link_count */ union { const unsigned int i_nlink; unsigned int __i_nlink; }; dev_t i_rdev; loff_t i_size; struct timespec64 i_atime; struct timespec64 i_mtime; struct timespec64 i_ctime; spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ unsigned short i_bytes; u8 i_blkbits; u8 i_write_hint; blkcnt_t i_blocks; #ifdef __NEED_I_SIZE_ORDERED seqcount_t i_size_seqcount; #endif /* Misc */ unsigned long i_state; struct rw_semaphore i_rwsem; unsigned long dirtied_when; /* jiffies of first dirtying */ unsigned long dirtied_time_when; struct hlist_node i_hash; struct list_head i_io_list; /* backing dev IO list */ #ifdef CONFIG_CGROUP_WRITEBACK struct bdi_writeback *i_wb; /* the associated cgroup wb */ /* foreign inode detection, see wbc_detach_inode() */ int i_wb_frn_winner; u16 i_wb_frn_avg_time; u16 i_wb_frn_history; #endif struct list_head i_lru; /* inode LRU list */ struct list_head i_sb_list; struct list_head i_wb_list; /* backing dev writeback list */ union { struct hlist_head i_dentry; struct rcu_head i_rcu; }; atomic64_t i_version; atomic64_t i_sequence; /* see futex */ atomic_t i_count; atomic_t i_dio_count; atomic_t i_writecount; #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) atomic_t i_readcount; /* struct files open RO */ #endif union { const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ void (*free_inode)(struct inode *); }; struct file_lock_context *i_flctx; struct address_space i_data; struct list_head i_devices; union { struct pipe_inode_info *i_pipe; struct block_device *i_bdev; struct cdev *i_cdev; char *i_link; unsigned i_dir_seq; }; __u32 i_generation; #ifdef CONFIG_FSNOTIFY __u32 i_fsnotify_mask; /* all events this inode cares about */ struct fsnotify_mark_connector __rcu *i_fsnotify_marks; #endif #ifdef CONFIG_FS_ENCRYPTION struct fscrypt_info *i_crypt_info; #endif #ifdef CONFIG_FS_VERITY struct fsverity_info *i_verity_info; #endif void *i_private; /* fs or device private pointer */ } __randomize_layout; struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); static inline unsigned int i_blocksize(const struct inode *node) { return (1 << node->i_blkbits); } static inline int inode_unhashed(struct inode *inode) { return hlist_unhashed(&inode->i_hash); } /* * __mark_inode_dirty expects inodes to be hashed. Since we don't * want special inodes in the fileset inode space, we make them * appear hashed, but do not put on any lists. hlist_del() * will work fine and require no locking. */ static inline void inode_fake_hash(struct inode *inode) { hlist_add_fake(&inode->i_hash); } /* * inode->i_mutex nesting subclasses for the lock validator: * * 0: the object of the current VFS operation * 1: parent * 2: child/target * 3: xattr * 4: second non-directory * 5: second parent (when locking independent directories in rename) * * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two * non-directories at once. * * The locking order between these classes is * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory */ enum inode_i_mutex_lock_class { I_MUTEX_NORMAL, I_MUTEX_PARENT, I_MUTEX_CHILD, I_MUTEX_XATTR, I_MUTEX_NONDIR2, I_MUTEX_PARENT2, }; static inline void inode_lock(struct inode *inode) { down_write(&inode->i_rwsem); } static inline void inode_unlock(struct inode *inode) { up_write(&inode->i_rwsem); } static inline void inode_lock_shared(struct inode *inode) { down_read(&inode->i_rwsem); } static inline void inode_unlock_shared(struct inode *inode) { up_read(&inode->i_rwsem); } static inline int inode_trylock(struct inode *inode) { return down_write_trylock(&inode->i_rwsem); } static inline int inode_trylock_shared(struct inode *inode) { return down_read_trylock(&inode->i_rwsem); } static inline int inode_is_locked(struct inode *inode) { return rwsem_is_locked(&inode->i_rwsem); } static inline void inode_lock_nested(struct inode *inode, unsigned subclass) { down_write_nested(&inode->i_rwsem, subclass); } static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) { down_read_nested(&inode->i_rwsem, subclass); } void lock_two_nondirectories(struct inode *, struct inode*); void unlock_two_nondirectories(struct inode *, struct inode*); /* * NOTE: in a 32bit arch with a preemptable kernel and * an UP compile the i_size_read/write must be atomic * with respect to the local cpu (unlike with preempt disabled), * but they don't need to be atomic with respect to other cpus like in * true SMP (so they need either to either locally disable irq around * the read or for example on x86 they can be still implemented as a * cmpxchg8b without the need of the lock prefix). For SMP compiles * and 64bit archs it makes no difference if preempt is enabled or not. */ static inline loff_t i_size_read(const struct inode *inode) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) loff_t i_size; unsigned int seq; do { seq = read_seqcount_begin(&inode->i_size_seqcount); i_size = inode->i_size; } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); return i_size; #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) loff_t i_size; preempt_disable(); i_size = inode->i_size; preempt_enable(); return i_size; #else return inode->i_size; #endif } /* * NOTE: unlike i_size_read(), i_size_write() does need locking around it * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount * can be lost, resulting in subsequent i_size_read() calls spinning forever. */ static inline void i_size_write(struct inode *inode, loff_t i_size) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) preempt_disable(); write_seqcount_begin(&inode->i_size_seqcount); inode->i_size = i_size; write_seqcount_end(&inode->i_size_seqcount); preempt_enable(); #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) preempt_disable(); inode->i_size = i_size; preempt_enable(); #else inode->i_size = i_size; #endif } static inline unsigned iminor(const struct inode *inode) { return MINOR(inode->i_rdev); } static inline unsigned imajor(const struct inode *inode) { return MAJOR(inode->i_rdev); } struct fown_struct { rwlock_t lock; /* protects pid, uid, euid fields */ struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ kuid_t uid, euid; /* uid/euid of process setting the owner */ int signum; /* posix.1b rt signal to be delivered on IO */ }; /* * Track a single file's readahead state */ struct file_ra_state { pgoff_t start; /* where readahead started */ unsigned int size; /* # of readahead pages */ unsigned int async_size; /* do asynchronous readahead when there are only # of pages ahead */ unsigned int ra_pages; /* Maximum readahead window */ unsigned int mmap_miss; /* Cache miss stat for mmap accesses */ loff_t prev_pos; /* Cache last read() position */ }; /* * Check if @index falls in the readahead windows. */ static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) { return (index >= ra->start && index < ra->start + ra->size); } struct file { union { struct llist_node fu_llist; struct rcu_head fu_rcuhead; } f_u; struct path f_path; struct inode *f_inode; /* cached value */ const struct file_operations *f_op; /* * Protects f_ep_links, f_flags. * Must not be taken from IRQ context. */ spinlock_t f_lock; enum rw_hint f_write_hint; atomic_long_t f_count; unsigned int f_flags; fmode_t f_mode; struct mutex f_pos_lock; loff_t f_pos; struct fown_struct f_owner; const struct cred *f_cred; struct file_ra_state f_ra; u64 f_version; #ifdef CONFIG_SECURITY void *f_security; #endif /* needed for tty driver, and maybe others */ void *private_data; #ifdef CONFIG_EPOLL /* Used by fs/eventpoll.c to link all the hooks to this file */ struct list_head f_ep_links; struct list_head f_tfile_llink; #endif /* #ifdef CONFIG_EPOLL */ struct address_space *f_mapping; errseq_t f_wb_err; errseq_t f_sb_err; /* for syncfs */ } __randomize_layout __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ struct file_handle { __u32 handle_bytes; int handle_type; /* file identifier */ unsigned char f_handle[]; }; static inline struct file *get_file(struct file *f) { atomic_long_inc(&f->f_count); return f; } #define get_file_rcu_many(x, cnt) \ atomic_long_add_unless(&(x)->f_count, (cnt), 0) #define get_file_rcu(x) get_file_rcu_many((x), 1) #define file_count(x) atomic_long_read(&(x)->f_count) #define MAX_NON_LFS ((1UL<<31) - 1) /* Page cache limit. The filesystems should put that into their s_maxbytes limits, otherwise bad things can happen in VM. */ #if BITS_PER_LONG==32 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) #elif BITS_PER_LONG==64 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) #endif #define FL_POSIX 1 #define FL_FLOCK 2 #define FL_DELEG 4 /* NFSv4 delegation */ #define FL_ACCESS 8 /* not trying to lock, just looking */ #define FL_EXISTS 16 /* when unlocking, test for existence */ #define FL_LEASE 32 /* lease held on this file */ #define FL_CLOSE 64 /* unlock on close */ #define FL_SLEEP 128 /* A blocking lock */ #define FL_DOWNGRADE_PENDING 256 /* Lease is being downgraded */ #define FL_UNLOCK_PENDING 512 /* Lease is being broken */ #define FL_OFDLCK 1024 /* lock is "owned" by struct file */ #define FL_LAYOUT 2048 /* outstanding pNFS layout */ #define FL_CLOSE_POSIX (FL_POSIX | FL_CLOSE) /* * Special return value from posix_lock_file() and vfs_lock_file() for * asynchronous locking. */ #define FILE_LOCK_DEFERRED 1 /* legacy typedef, should eventually be removed */ typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock *, struct file_lock *); void (*fl_release_private)(struct file_lock *); }; struct lock_manager_operations { fl_owner_t (*lm_get_owner)(fl_owner_t); void (*lm_put_owner)(fl_owner_t); void (*lm_notify)(struct file_lock *); /* unblock callback */ int (*lm_grant)(struct file_lock *, int); bool (*lm_break)(struct file_lock *); int (*lm_change)(struct file_lock *, int, struct list_head *); void (*lm_setup)(struct file_lock *, void **); bool (*lm_breaker_owns_lease)(struct file_lock *); }; struct lock_manager { struct list_head list; /* * NFSv4 and up also want opens blocked during the grace period; * NLM doesn't care: */ bool block_opens; }; struct net; void locks_start_grace(struct net *, struct lock_manager *); void locks_end_grace(struct lock_manager *); bool locks_in_grace(struct net *); bool opens_in_grace(struct net *); /* that will die - we need it for nfs_lock_info */ #include <linux/nfs_fs_i.h> /* * struct file_lock represents a generic "file lock". It's used to represent * POSIX byte range locks, BSD (flock) locks, and leases. It's important to * note that the same struct is used to represent both a request for a lock and * the lock itself, but the same object is never used for both. * * FIXME: should we create a separate "struct lock_request" to help distinguish * these two uses? * * The varous i_flctx lists are ordered by: * * 1) lock owner * 2) lock range start * 3) lock range end * * Obviously, the last two criteria only matter for POSIX locks. */ struct file_lock { struct file_lock *fl_blocker; /* The lock, that is blocking us */ struct list_head fl_list; /* link into file_lock_context */ struct hlist_node fl_link; /* node in global lists */ struct list_head fl_blocked_requests; /* list of requests with * ->fl_blocker pointing here */ struct list_head fl_blocked_member; /* node in * ->fl_blocker->fl_blocked_requests */ fl_owner_t fl_owner; unsigned int fl_flags; unsigned char fl_type; unsigned int fl_pid; int fl_link_cpu; /* what cpu's list is this on? */ wait_queue_head_t fl_wait; struct file *fl_file; loff_t fl_start; loff_t fl_end; struct fasync_struct * fl_fasync; /* for lease break notifications */ /* for lease breaks: */ unsigned long fl_break_time; unsigned long fl_downgrade_time; const struct file_lock_operations *fl_ops; /* Callbacks for filesystems */ const struct lock_manager_operations *fl_lmops; /* Callbacks for lockmanagers */ union { struct nfs_lock_info nfs_fl; struct nfs4_lock_info nfs4_fl; struct { struct list_head link; /* link in AFS vnode's pending_locks list */ int state; /* state of grant or error if -ve */ unsigned int debug_id; } afs; } fl_u; } __randomize_layout; struct file_lock_context { spinlock_t flc_lock; struct list_head flc_flock; struct list_head flc_posix; struct list_head flc_lease; }; /* The following constant reflects the upper bound of the file/locking space */ #ifndef OFFSET_MAX #define INT_LIMIT(x) (~((x)1 << (sizeof(x)*8 - 1))) #define OFFSET_MAX INT_LIMIT(loff_t) #define OFFT_OFFSET_MAX INT_LIMIT(off_t) #endif extern void send_sigio(struct fown_struct *fown, int fd, int band); #define locks_inode(f) file_inode(f) #ifdef CONFIG_FILE_LOCKING extern int fcntl_getlk(struct file *, unsigned int, struct flock *); extern int fcntl_setlk(unsigned int, struct file *, unsigned int, struct flock *); #if BITS_PER_LONG == 32 extern int fcntl_getlk64(struct file *, unsigned int, struct flock64 *); extern int fcntl_setlk64(unsigned int, struct file *, unsigned int, struct flock64 *); #endif extern int fcntl_setlease(unsigned int fd, struct file *filp, long arg); extern int fcntl_getlease(struct file *filp); /* fs/locks.c */ void locks_free_lock_context(struct inode *inode); void locks_free_lock(struct file_lock *fl); extern void locks_init_lock(struct file_lock *); extern struct file_lock * locks_alloc_lock(void); extern void locks_copy_lock(struct file_lock *, struct file_lock *); extern void locks_copy_conflock(struct file_lock *, struct file_lock *); extern void locks_remove_posix(struct file *, fl_owner_t); extern void locks_remove_file(struct file *); extern void locks_release_private(struct file_lock *); extern void posix_test_lock(struct file *, struct file_lock *); extern int posix_lock_file(struct file *, struct file_lock *, struct file_lock *); extern int locks_delete_block(struct file_lock *); extern int vfs_test_lock(struct file *, struct file_lock *); extern int vfs_lock_file(struct file *, unsigned int, struct file_lock *, struct file_lock *); extern int vfs_cancel_lock(struct file *filp, struct file_lock *fl); extern int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl); extern int __break_lease(struct inode *inode, unsigned int flags, unsigned int type); extern void lease_get_mtime(struct inode *, struct timespec64 *time); extern int generic_setlease(struct file *, long, struct file_lock **, void **priv); extern int vfs_setlease(struct file *, long, struct file_lock **, void **); extern int lease_modify(struct file_lock *, int, struct list_head *); struct notifier_block; extern int lease_register_notifier(struct notifier_block *); extern void lease_unregister_notifier(struct notifier_block *); struct files_struct; extern void show_fd_locks(struct seq_file *f, struct file *filp, struct files_struct *files); #else /* !CONFIG_FILE_LOCKING */ static inline int fcntl_getlk(struct file *file, unsigned int cmd, struct flock __user *user) { return -EINVAL; } static inline int fcntl_setlk(unsigned int fd, struct file *file, unsigned int cmd, struct flock __user *user) { return -EACCES; } #if BITS_PER_LONG == 32 static inline int fcntl_getlk64(struct file *file, unsigned int cmd, struct flock64 __user *user) { return -EINVAL; } static inline int fcntl_setlk64(unsigned int fd, struct file *file, unsigned int cmd, struct flock64 __user *user) { return -EACCES; } #endif static inline int fcntl_setlease(unsigned int fd, struct file *filp, long arg) { return -EINVAL; } static inline int fcntl_getlease(struct file *filp) { return F_UNLCK; } static inline void locks_free_lock_context(struct inode *inode) { } static inline void locks_init_lock(struct file_lock *fl) { return; } static inline void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) { return; } static inline void locks_copy_lock(struct file_lock *new, struct file_lock *fl) { return; } static inline void locks_remove_posix(struct file *filp, fl_owner_t owner) { return; } static inline void locks_remove_file(struct file *filp) { return; } static inline void posix_test_lock(struct file *filp, struct file_lock *fl) { return; } static inline int posix_lock_file(struct file *filp, struct file_lock *fl, struct file_lock *conflock) { return -ENOLCK; } static inline int locks_delete_block(struct file_lock *waiter) { return -ENOENT; } static inline int vfs_test_lock(struct file *filp, struct file_lock *fl) { return 0; } static inline int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) { return -ENOLCK; } static inline int vfs_cancel_lock(struct file *filp, struct file_lock *fl) { return 0; } static inline int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) { return -ENOLCK; } static inline int __break_lease(struct inode *inode, unsigned int mode, unsigned int type) { return 0; } static inline void lease_get_mtime(struct inode *inode, struct timespec64 *time) { return; } static inline int generic_setlease(struct file *filp, long arg, struct file_lock **flp, void **priv) { return -EINVAL; } static inline int vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv) { return -EINVAL; } static inline int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose) { return -EINVAL; } struct files_struct; static inline void show_fd_locks(struct seq_file *f, struct file *filp, struct files_struct *files) {} #endif /* !CONFIG_FILE_LOCKING */ static inline struct inode *file_inode(const struct file *f) { return f->f_inode; } static inline struct dentry *file_dentry(const struct file *file) { return d_real(file->f_path.dentry, file_inode(file)); } static inline int locks_lock_file_wait(struct file *filp, struct file_lock *fl) { return locks_lock_inode_wait(locks_inode(filp), fl); } struct fasync_struct { rwlock_t fa_lock; int magic; int fa_fd; struct fasync_struct *fa_next; /* singly linked list */ struct file *fa_file; struct rcu_head fa_rcu; }; #define FASYNC_MAGIC 0x4601 /* SMP safe fasync helpers: */ extern int fasync_helper(int, struct file *, int, struct fasync_struct **); extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); extern int fasync_remove_entry(struct file *, struct fasync_struct **); extern struct fasync_struct *fasync_alloc(void); extern void fasync_free(struct fasync_struct *); /* can be called from interrupts */ extern void kill_fasync(struct fasync_struct **, int, int); extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); extern int f_setown(struct file *filp, unsigned long arg, int force); extern void f_delown(struct file *filp); extern pid_t f_getown(struct file *filp); extern int send_sigurg(struct fown_struct *fown); /* * sb->s_flags. Note that these mirror the equivalent MS_* flags where * represented in both. */ #define SB_RDONLY 1 /* Mount read-only */ #define SB_NOSUID 2 /* Ignore suid and sgid bits */ #define SB_NODEV 4 /* Disallow access to device special files */ #define SB_NOEXEC 8 /* Disallow program execution */ #define SB_SYNCHRONOUS 16 /* Writes are synced at once */ #define SB_MANDLOCK 64 /* Allow mandatory locks on an FS */ #define SB_DIRSYNC 128 /* Directory modifications are synchronous */ #define SB_NOATIME 1024 /* Do not update access times. */ #define SB_NODIRATIME 2048 /* Do not update directory access times */ #define SB_SILENT 32768 #define SB_POSIXACL (1<<16) /* VFS does not apply the umask */ #define SB_INLINECRYPT (1<<17) /* Use blk-crypto for encrypted files */ #define SB_KERNMOUNT (1<<22) /* this is a kern_mount call */ #define SB_I_VERSION (1<<23) /* Update inode I_version field */ #define SB_LAZYTIME (1<<25) /* Update the on-disk [acm]times lazily */ /* These sb flags are internal to the kernel */ #define SB_SUBMOUNT (1<<26) #define SB_FORCE (1<<27) #define SB_NOSEC (1<<28) #define SB_BORN (1<<29) #define SB_ACTIVE (1<<30) #define SB_NOUSER (1<<31) /* These flags relate to encoding and casefolding */ #define SB_ENC_STRICT_MODE_FL (1 << 0) #define sb_has_strict_encoding(sb) \ (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) /* * Umount options */ #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ #define MNT_DETACH 0x00000002 /* Just detach from the tree */ #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ /* sb->s_iflags */ #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ /* sb->s_iflags to limit user namespace mounts */ #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 #define SB_I_UNTRUSTED_MOUNTER 0x00000040 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ /* Possible states of 'frozen' field */ enum { SB_UNFROZEN = 0, /* FS is unfrozen */ SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop * internal threads if needed) */ SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ }; #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) struct sb_writers { int frozen; /* Is sb frozen? */ wait_queue_head_t wait_unfrozen; /* for get_super_thawed() */ struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; }; struct super_block { struct list_head s_list; /* Keep this first */ dev_t s_dev; /* search index; _not_ kdev_t */ unsigned char s_blocksize_bits; unsigned long s_blocksize; loff_t s_maxbytes; /* Max file size */ struct file_system_type *s_type; const struct super_operations *s_op; const struct dquot_operations *dq_op; const struct quotactl_ops *s_qcop; const struct export_operations *s_export_op; unsigned long s_flags; unsigned long s_iflags; /* internal SB_I_* flags */ unsigned long s_magic; struct dentry *s_root; struct rw_semaphore s_umount; int s_count; atomic_t s_active; #ifdef CONFIG_SECURITY void *s_security; #endif const struct xattr_handler **s_xattr; #ifdef CONFIG_FS_ENCRYPTION const struct fscrypt_operations *s_cop; struct key *s_master_keys; /* master crypto keys in use */ #endif #ifdef CONFIG_FS_VERITY const struct fsverity_operations *s_vop; #endif #ifdef CONFIG_UNICODE struct unicode_map *s_encoding; __u16 s_encoding_flags; #endif struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ struct list_head s_mounts; /* list of mounts; _not_ for fs use */ struct block_device *s_bdev; struct backing_dev_info *s_bdi; struct mtd_info *s_mtd; struct hlist_node s_instances; unsigned int s_quota_types; /* Bitmask of supported quota types */ struct quota_info s_dquot; /* Diskquota specific options */ struct sb_writers s_writers; /* * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and * s_fsnotify_marks together for cache efficiency. They are frequently * accessed and rarely modified. */ void *s_fs_info; /* Filesystem private info */ /* Granularity of c/m/atime in ns (cannot be worse than a second) */ u32 s_time_gran; /* Time limits for c/m/atime in seconds */ time64_t s_time_min; time64_t s_time_max; #ifdef CONFIG_FSNOTIFY __u32 s_fsnotify_mask; struct fsnotify_mark_connector __rcu *s_fsnotify_marks; #endif char s_id[32]; /* Informational name */ uuid_t s_uuid; /* UUID */ unsigned int s_max_links; fmode_t s_mode; /* * The next field is for VFS *only*. No filesystems have any business * even looking at it. You had been warned. */ struct mutex s_vfs_rename_mutex; /* Kludge */ /* * Filesystem subtype. If non-empty the filesystem type field * in /proc/mounts will be "type.subtype" */ const char *s_subtype; const struct dentry_operations *s_d_op; /* default d_op for dentries */ /* * Saved pool identifier for cleancache (-1 means none) */ int cleancache_poolid; struct shrinker s_shrink; /* per-sb shrinker handle */ /* Number of inodes with nlink == 0 but still referenced */ atomic_long_t s_remove_count; /* Pending fsnotify inode refs */ atomic_long_t s_fsnotify_inode_refs; /* Being remounted read-only */ int s_readonly_remount; /* per-sb errseq_t for reporting writeback errors via syncfs */ errseq_t s_wb_err; /* AIO completions deferred from interrupt context */ struct workqueue_struct *s_dio_done_wq; struct hlist_head s_pins; /* * Owning user namespace and default context in which to * interpret filesystem uids, gids, quotas, device nodes, * xattrs and security labels. */ struct user_namespace *s_user_ns; /* * The list_lru structure is essentially just a pointer to a table * of per-node lru lists, each of which has its own spinlock. * There is no need to put them into separate cachelines. */ struct list_lru s_dentry_lru; struct list_lru s_inode_lru; struct rcu_head rcu; struct work_struct destroy_work; struct mutex s_sync_lock; /* sync serialisation lock */ /* * Indicates how deep in a filesystem stack this SB is */ int s_stack_depth; /* s_inode_list_lock protects s_inodes */ spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; struct list_head s_inodes; /* all inodes */ spinlock_t s_inode_wblist_lock; struct list_head s_inodes_wb; /* writeback inodes */ } __randomize_layout; /* Helper functions so that in most cases filesystems will * not need to deal directly with kuid_t and kgid_t and can * instead deal with the raw numeric values that are stored * in the filesystem. */ static inline uid_t i_uid_read(const struct inode *inode) { return from_kuid(inode->i_sb->s_user_ns, inode->i_uid); } static inline gid_t i_gid_read(const struct inode *inode) { return from_kgid(inode->i_sb->s_user_ns, inode->i_gid); } static inline void i_uid_write(struct inode *inode, uid_t uid) { inode->i_uid = make_kuid(inode->i_sb->s_user_ns, uid); } static inline void i_gid_write(struct inode *inode, gid_t gid) { inode->i_gid = make_kgid(inode->i_sb->s_user_ns, gid); } extern struct timespec64 current_time(struct inode *inode); /* * Snapshotting support. */ /* * These are internal functions, please use sb_start_{write,pagefault,intwrite} * instead. */ static inline void __sb_end_write(struct super_block *sb, int level) { percpu_up_read(sb->s_writers.rw_sem + level-1); } static inline void __sb_start_write(struct super_block *sb, int level) { percpu_down_read(sb->s_writers.rw_sem + level - 1); } static inline bool __sb_start_write_trylock(struct super_block *sb, int level) { return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); } #define __sb_writers_acquired(sb, lev) \ percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) #define __sb_writers_release(sb, lev) \ percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) /** * sb_end_write - drop write access to a superblock * @sb: the super we wrote to * * Decrement number of writers to the filesystem. Wake up possible waiters * wanting to freeze the filesystem. */ static inline void sb_end_write(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_WRITE); } /** * sb_end_pagefault - drop write access to a superblock from a page fault * @sb: the super we wrote to * * Decrement number of processes handling write page fault to the filesystem. * Wake up possible waiters wanting to freeze the filesystem. */ static inline void sb_end_pagefault(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_PAGEFAULT); } /** * sb_end_intwrite - drop write access to a superblock for internal fs purposes * @sb: the super we wrote to * * Decrement fs-internal number of writers to the filesystem. Wake up possible * waiters wanting to freeze the filesystem. */ static inline void sb_end_intwrite(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_FS); } /** * sb_start_write - get write access to a superblock * @sb: the super we write to * * When a process wants to write data or metadata to a file system (i.e. dirty * a page or an inode), it should embed the operation in a sb_start_write() - * sb_end_write() pair to get exclusion against file system freezing. This * function increments number of writers preventing freezing. If the file * system is already frozen, the function waits until the file system is * thawed. * * Since freeze protection behaves as a lock, users have to preserve * ordering of freeze protection and other filesystem locks. Generally, * freeze protection should be the outermost lock. In particular, we have: * * sb_start_write * -> i_mutex (write path, truncate, directory ops, ...) * -> s_umount (freeze_super, thaw_super) */ static inline void sb_start_write(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_WRITE); } static inline bool sb_start_write_trylock(struct super_block *sb) { return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); } /** * sb_start_pagefault - get write access to a superblock from a page fault * @sb: the super we write to * * When a process starts handling write page fault, it should embed the * operation into sb_start_pagefault() - sb_end_pagefault() pair to get * exclusion against file system freezing. This is needed since the page fault * is going to dirty a page. This function increments number of running page * faults preventing freezing. If the file system is already frozen, the * function waits until the file system is thawed. * * Since page fault freeze protection behaves as a lock, users have to preserve * ordering of freeze protection and other filesystem locks. It is advised to * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault * handling code implies lock dependency: * * mmap_lock * -> sb_start_pagefault */ static inline void sb_start_pagefault(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_PAGEFAULT); } /* * sb_start_intwrite - get write access to a superblock for internal fs purposes * @sb: the super we write to * * This is the third level of protection against filesystem freezing. It is * free for use by a filesystem. The only requirement is that it must rank * below sb_start_pagefault. * * For example filesystem can call sb_start_intwrite() when starting a * transaction which somewhat eases handling of freezing for internal sources * of filesystem changes (internal fs threads, discarding preallocation on file * close, etc.). */ static inline void sb_start_intwrite(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_FS); } static inline bool sb_start_intwrite_trylock(struct super_block *sb) { return __sb_start_write_trylock(sb, SB_FREEZE_FS); } extern bool inode_owner_or_capable(const struct inode *inode); /* * VFS helper functions.. */ extern int vfs_create(struct inode *, struct dentry *, umode_t, bool); extern int vfs_mkdir(struct inode *, struct dentry *, umode_t); extern int vfs_mknod(struct inode *, struct dentry *, umode_t, dev_t); extern int vfs_symlink(struct inode *, struct dentry *, const char *); extern int vfs_link(struct dentry *, struct inode *, struct dentry *, struct inode **); extern int vfs_rmdir(struct inode *, struct dentry *); extern int vfs_unlink(struct inode *, struct dentry *, struct inode **); extern int vfs_rename(struct inode *, struct dentry *, struct inode *, struct dentry *, struct inode **, unsigned int); static inline int vfs_whiteout(struct inode *dir, struct dentry *dentry) { return vfs_mknod(dir, dentry, S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); } extern struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag); int vfs_mkobj(struct dentry *, umode_t, int (*f)(struct dentry *, umode_t, void *), void *); int vfs_fchown(struct file *file, uid_t user, gid_t group); int vfs_fchmod(struct file *file, umode_t mode); int vfs_utimes(const struct path *path, struct timespec64 *times); extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #ifdef CONFIG_COMPAT extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #else #define compat_ptr_ioctl NULL #endif /* * VFS file helper functions. */ extern void inode_init_owner(struct inode *inode, const struct inode *dir, umode_t mode); extern bool may_open_dev(const struct path *path); /* * This is the "filldir" function type, used by readdir() to let * the kernel specify what kind of dirent layout it wants to have. * This allows the kernel to read directories into kernel space or * to have different dirent layouts depending on the binary type. */ struct dir_context; typedef int (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, unsigned); struct dir_context { filldir_t actor; loff_t pos; }; /* * These flags let !MMU mmap() govern direct device mapping vs immediate * copying more easily for MAP_PRIVATE, especially for ROM filesystems. * * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) * NOMMU_MAP_READ: Can be mapped for reading * NOMMU_MAP_WRITE: Can be mapped for writing * NOMMU_MAP_EXEC: Can be mapped for execution */ #define NOMMU_MAP_COPY 0x00000001 #define NOMMU_MAP_DIRECT 0x00000008 #define NOMMU_MAP_READ VM_MAYREAD #define NOMMU_MAP_WRITE VM_MAYWRITE #define NOMMU_MAP_EXEC VM_MAYEXEC #define NOMMU_VMFLAGS \ (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) /* * These flags control the behavior of the remap_file_range function pointer. * If it is called with len == 0 that means "remap to end of source file". * See Documentation/filesystems/vfs.rst for more details about this call. * * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request */ #define REMAP_FILE_DEDUP (1 << 0) #define REMAP_FILE_CAN_SHORTEN (1 << 1) /* * These flags signal that the caller is ok with altering various aspects of * the behavior of the remap operation. The changes must be made by the * implementation; the vfs remap helper functions can take advantage of them. * Flags in this category exist to preserve the quirky behavior of the hoisted * btrfs clone/dedupe ioctls. */ #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) struct iov_iter; struct file_operations { struct module *owner; loff_t (*llseek) (struct file *, loff_t, int); ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); int (*iopoll)(struct kiocb *kiocb, bool spin); int (*iterate) (struct file *, struct dir_context *); int (*iterate_shared) (struct file *, struct dir_context *); __poll_t (*poll) (struct file *, struct poll_table_struct *); long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); long (*compat_ioctl) (struct file *, unsigned int, unsigned long); int (*mmap) (struct file *, struct vm_area_struct *); unsigned long mmap_supported_flags; int (*open) (struct inode *, struct file *); int (*flush) (struct file *, fl_owner_t id); int (*release) (struct inode *, struct file *); int (*fsync) (struct file *, loff_t, loff_t, int datasync); int (*fasync) (int, struct file *, int); int (*lock) (struct file *, int, struct file_lock *); ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int); unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); int (*check_flags)(int); int (*flock) (struct file *, int, struct file_lock *); ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); int (*setlease)(struct file *, long, struct file_lock **, void **); long (*fallocate)(struct file *file, int mode, loff_t offset, loff_t len); void (*show_fdinfo)(struct seq_file *m, struct file *f); #ifndef CONFIG_MMU unsigned (*mmap_capabilities)(struct file *); #endif ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, loff_t, size_t, unsigned int); loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags); int (*fadvise)(struct file *, loff_t, loff_t, int); } __randomize_layout; struct inode_operations { struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); int (*permission) (struct inode *, int); struct posix_acl * (*get_acl)(struct inode *, int); int (*readlink) (struct dentry *, char __user *,int); int (*create) (struct inode *,struct dentry *, umode_t, bool); int (*link) (struct dentry *,struct inode *,struct dentry *); int (*unlink) (struct inode *,struct dentry *); int (*symlink) (struct inode *,struct dentry *,const char *); int (*mkdir) (struct inode *,struct dentry *,umode_t); int (*rmdir) (struct inode *,struct dentry *); int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t); int (*rename) (struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); int (*setattr) (struct dentry *, struct iattr *); int (*getattr) (const struct path *, struct kstat *, u32, unsigned int); ssize_t (*listxattr) (struct dentry *, char *, size_t); int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, u64 len); int (*update_time)(struct inode *, struct timespec64 *, int); int (*atomic_open)(struct inode *, struct dentry *, struct file *, unsigned open_flag, umode_t create_mode); int (*tmpfile) (struct inode *, struct dentry *, umode_t); int (*set_acl)(struct inode *, struct posix_acl *, int); } ____cacheline_aligned; static inline ssize_t call_read_iter(struct file *file, struct kiocb *kio, struct iov_iter *iter) { return file->f_op->read_iter(kio, iter); } static inline ssize_t call_write_iter(struct file *file, struct kiocb *kio, struct iov_iter *iter) { return file->f_op->write_iter(kio, iter); } static inline int call_mmap(struct file *file, struct vm_area_struct *vma) { return file->f_op->mmap(file, vma); } extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, loff_t, size_t, unsigned int); extern ssize_t generic_copy_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, size_t len, unsigned int flags); extern int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t *count, unsigned int remap_flags); extern loff_t do_clone_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags); extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags); extern int vfs_dedupe_file_range(struct file *file, struct file_dedupe_range *same); extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, struct file *dst_file, loff_t dst_pos, loff_t len, unsigned int remap_flags); struct super_operations { struct inode *(*alloc_inode)(struct super_block *sb); void (*destroy_inode)(struct inode *); void (*free_inode)(struct inode *); void (*dirty_inode) (struct inode *, int flags); int (*write_inode) (struct inode *, struct writeback_control *wbc); int (*drop_inode) (struct inode *); void (*evict_inode) (struct inode *); void (*put_super) (struct super_block *); int (*sync_fs)(struct super_block *sb, int wait); int (*freeze_super) (struct super_block *); int (*freeze_fs) (struct super_block *); int (*thaw_super) (struct super_block *); int (*unfreeze_fs) (struct super_block *); int (*statfs) (struct dentry *, struct kstatfs *); int (*remount_fs) (struct super_block *, int *, char *); void (*umount_begin) (struct super_block *); int (*show_options)(struct seq_file *, struct dentry *); int (*show_devname)(struct seq_file *, struct dentry *); int (*show_path)(struct seq_file *, struct dentry *); int (*show_stats)(struct seq_file *, struct dentry *); #ifdef CONFIG_QUOTA ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); struct dquot **(*get_dquots)(struct inode *); #endif int (*bdev_try_to_free_page)(struct super_block*, struct page*, gfp_t); long (*nr_cached_objects)(struct super_block *, struct shrink_control *); long (*free_cached_objects)(struct super_block *, struct shrink_control *); }; /* * Inode flags - they have no relation to superblock flags now */ #define S_SYNC (1 << 0) /* Writes are synced at once */ #define S_NOATIME (1 << 1) /* Do not update access times */ #define S_APPEND (1 << 2) /* Append-only file */ #define S_IMMUTABLE (1 << 3) /* Immutable file */ #define S_DEAD (1 << 4) /* removed, but still open directory */ #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ #define S_PRIVATE (1 << 9) /* Inode is fs-internal */ #define S_IMA (1 << 10) /* Inode has an associated IMA struct */ #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ #ifdef CONFIG_FS_DAX #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ #else #define S_DAX 0 /* Make all the DAX code disappear */ #endif #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ #define S_CASEFOLD (1 << 15) /* Casefolded file */ #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ /* * Note that nosuid etc flags are inode-specific: setting some file-system * flags just means all the inodes inherit those flags by default. It might be * possible to override it selectively if you really wanted to with some * ioctl() that is not currently implemented. * * Exception: SB_RDONLY is always applied to the entire file system. * * Unfortunately, it is possible to change a filesystems flags with it mounted * with files in use. This means that all of the inodes will not have their * i_flags updated. Hence, i_flags no longer inherit the superblock mount * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org */ #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ ((inode)->i_flags & S_SYNC)) #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) #define IS_IMA(inode) ((inode)->i_flags & S_IMA) #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) #define IS_DAX(inode) ((inode)->i_flags & S_DAX) #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ (inode)->i_rdev == WHITEOUT_DEV) static inline bool HAS_UNMAPPED_ID(struct inode *inode) { return !uid_valid(inode->i_uid) || !gid_valid(inode->i_gid); } static inline enum rw_hint file_write_hint(struct file *file) { if (file->f_write_hint != WRITE_LIFE_NOT_SET) return file->f_write_hint; return file_inode(file)->i_write_hint; } static inline int iocb_flags(struct file *file); static inline u16 ki_hint_validate(enum rw_hint hint) { typeof(((struct kiocb *)0)->ki_hint) max_hint = -1; if (hint <= max_hint) return hint; return 0; } static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) { *kiocb = (struct kiocb) { .ki_filp = filp, .ki_flags = iocb_flags(filp), .ki_hint = ki_hint_validate(file_write_hint(filp)), .ki_ioprio = get_current_ioprio(), }; } static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, struct file *filp) { *kiocb = (struct kiocb) { .ki_filp = filp, .ki_flags = kiocb_src->ki_flags, .ki_hint = kiocb_src->ki_hint, .ki_ioprio = kiocb_src->ki_ioprio, .ki_pos = kiocb_src->ki_pos, }; } /* * Inode state bits. Protected by inode->i_lock * * Three bits determine the dirty state of the inode, I_DIRTY_SYNC, * I_DIRTY_DATASYNC and I_DIRTY_PAGES. * * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at * various stages of removing an inode. * * Two bits are used for locking and completion notification, I_NEW and I_SYNC. * * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on * fdatasync(). i_atime is the usual cause. * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of * these changes separately from I_DIRTY_SYNC so that we * don't have to write inode on fdatasync() when only * mtime has changed in it. * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. * I_NEW Serves as both a mutex and completion notification. * New inodes set I_NEW. If two processes both create * the same inode, one of them will release its inode and * wait for I_NEW to be released before returning. * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can * also cause waiting on I_NEW, without I_NEW actually * being set. find_inode() uses this to prevent returning * nearly-dead inodes. * I_WILL_FREE Must be set when calling write_inode_now() if i_count * is zero. I_FREEING must be set when I_WILL_FREE is * cleared. * I_FREEING Set when inode is about to be freed but still has dirty * pages or buffers attached or the inode itself is still * dirty. * I_CLEAR Added by clear_inode(). In this state the inode is * clean and can be destroyed. Inode keeps I_FREEING. * * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are * prohibited for many purposes. iget() must wait for * the inode to be completely released, then create it * anew. Other functions will just ignore such inodes, * if appropriate. I_NEW is used for waiting. * * I_SYNC Writeback of inode is running. The bit is set during * data writeback, and cleared with a wakeup on the bit * address once it is done. The bit is also used to pin * the inode in memory for flusher thread. * * I_REFERENCED Marks the inode as recently references on the LRU list. * * I_DIO_WAKEUP Never set. Only used as a key for wait_on_bit(). * * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to * synchronize competing switching instances and to tell * wb stat updates to grab the i_pages lock. See * inode_switch_wbs_work_fn() for details. * * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper * and work dirs among overlayfs mounts. * * I_CREATING New object's inode in the middle of setting up. * * I_DONTCACHE Evict inode as soon as it is not used anymore. * * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. * Used to detect that mark_inode_dirty() should not move * inode between dirty lists. * * Q: What is the difference between I_WILL_FREE and I_FREEING? */ #define I_DIRTY_SYNC (1 << 0) #define I_DIRTY_DATASYNC (1 << 1) #define I_DIRTY_PAGES (1 << 2) #define __I_NEW 3 #define I_NEW (1 << __I_NEW) #define I_WILL_FREE (1 << 4) #define I_FREEING (1 << 5) #define I_CLEAR (1 << 6) #define __I_SYNC 7 #define I_SYNC (1 << __I_SYNC) #define I_REFERENCED (1 << 8) #define __I_DIO_WAKEUP 9 #define I_DIO_WAKEUP (1 << __I_DIO_WAKEUP) #define I_LINKABLE (1 << 10) #define I_DIRTY_TIME (1 << 11) #define I_WB_SWITCH (1 << 13) #define I_OVL_INUSE (1 << 14) #define I_CREATING (1 << 15) #define I_DONTCACHE (1 << 16) #define I_SYNC_QUEUED (1 << 17) #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) extern void __mark_inode_dirty(struct inode *, int); static inline void mark_inode_dirty(struct inode *inode) { __mark_inode_dirty(inode, I_DIRTY); } static inline void mark_inode_dirty_sync(struct inode *inode) { __mark_inode_dirty(inode, I_DIRTY_SYNC); } extern void inc_nlink(struct inode *inode); extern void drop_nlink(struct inode *inode); extern void clear_nlink(struct inode *inode); extern void set_nlink(struct inode *inode, unsigned int nlink); static inline void inode_inc_link_count(struct inode *inode) { inc_nlink(inode); mark_inode_dirty(inode); } static inline void inode_dec_link_count(struct inode *inode) { drop_nlink(inode); mark_inode_dirty(inode); } enum file_time_flags { S_ATIME = 1, S_MTIME = 2, S_CTIME = 4, S_VERSION = 8, }; extern bool atime_needs_update(const struct path *, struct inode *); extern void touch_atime(const struct path *); static inline void file_accessed(struct file *file) { if (!(file->f_flags & O_NOATIME)) touch_atime(&file->f_path); } extern int file_modified(struct file *file); int sync_inode(struct inode *inode, struct writeback_control *wbc); int sync_inode_metadata(struct inode *inode, int wait); struct file_system_type { const char *name; int fs_flags; #define FS_REQUIRES_DEV 1 #define FS_BINARY_MOUNTDATA 2 #define FS_HAS_SUBTYPE 4 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ #define FS_THP_SUPPORT 8192 /* Remove once all fs converted */ #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ int (*init_fs_context)(struct fs_context *); const struct fs_parameter_spec *parameters; struct dentry *(*mount) (struct file_system_type *, int, const char *, void *); void (*kill_sb) (struct super_block *); struct module *owner; struct file_system_type * next; struct hlist_head fs_supers; struct lock_class_key s_lock_key; struct lock_class_key s_umount_key; struct lock_class_key s_vfs_rename_key; struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; struct lock_class_key i_lock_key; struct lock_class_key i_mutex_key; struct lock_class_key i_mutex_dir_key; }; #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) extern struct dentry *mount_bdev(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_single(struct file_system_type *fs_type, int flags, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_nodev(struct file_system_type *fs_type, int flags, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); void generic_shutdown_super(struct super_block *sb); void kill_block_super(struct super_block *sb); void kill_anon_super(struct super_block *sb); void kill_litter_super(struct super_block *sb); void deactivate_super(struct super_block *sb); void deactivate_locked_super(struct super_block *sb); int set_anon_super(struct super_block *s, void *data); int set_anon_super_fc(struct super_block *s, struct fs_context *fc); int get_anon_bdev(dev_t *); void free_anon_bdev(dev_t); struct super_block *sget_fc(struct fs_context *fc, int (*test)(struct super_block *, struct fs_context *), int (*set)(struct super_block *, struct fs_context *)); struct super_block *sget(struct file_system_type *type, int (*test)(struct super_block *,void *), int (*set)(struct super_block *,void *), int flags, void *data); /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ #define fops_get(fops) \ (((fops) && try_module_get((fops)->owner) ? (fops) : NULL)) #define fops_put(fops) \ do { if (fops) module_put((fops)->owner); } while(0) /* * This one is to be used *ONLY* from ->open() instances. * fops must be non-NULL, pinned down *and* module dependencies * should be sufficient to pin the caller down as well. */ #define replace_fops(f, fops) \ do { \ struct file *__file = (f); \ fops_put(__file->f_op); \ BUG_ON(!(__file->f_op = (fops))); \ } while(0) extern int register_filesystem(struct file_system_type *); extern int unregister_filesystem(struct file_system_type *); extern struct vfsmount *kern_mount(struct file_system_type *); extern void kern_unmount(struct vfsmount *mnt); extern int may_umount_tree(struct vfsmount *); extern int may_umount(struct vfsmount *); extern long do_mount(const char *, const char __user *, const char *, unsigned long, void *); extern struct vfsmount *collect_mounts(const struct path *); extern void drop_collected_mounts(struct vfsmount *); extern int iterate_mounts(int (*)(struct vfsmount *, void *), void *, struct vfsmount *); extern int vfs_statfs(const struct path *, struct kstatfs *); extern int user_statfs(const char __user *, struct kstatfs *); extern int fd_statfs(int, struct kstatfs *); extern int freeze_super(struct super_block *super); extern int thaw_super(struct super_block *super); extern bool our_mnt(struct vfsmount *mnt); extern __printf(2, 3) int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); extern int super_setup_bdi(struct super_block *sb); extern int current_umask(void); extern void ihold(struct inode * inode); extern void iput(struct inode *); extern int generic_update_time(struct inode *, struct timespec64 *, int); /* /sys/fs */ extern struct kobject *fs_kobj; #define MAX_RW_COUNT (INT_MAX & PAGE_MASK) #ifdef CONFIG_MANDATORY_FILE_LOCKING extern int locks_mandatory_locked(struct file *); extern int locks_mandatory_area(struct inode *, struct file *, loff_t, loff_t, unsigned char); /* * Candidates for mandatory locking have the setgid bit set * but no group execute bit - an otherwise meaningless combination. */ static inline int __mandatory_lock(struct inode *ino) { return (ino->i_mode & (S_ISGID | S_IXGRP)) == S_ISGID; } /* * ... and these candidates should be on SB_MANDLOCK mounted fs, * otherwise these will be advisory locks */ static inline int mandatory_lock(struct inode *ino) { return IS_MANDLOCK(ino) && __mandatory_lock(ino); } static inline int locks_verify_locked(struct file *file) { if (mandatory_lock(locks_inode(file))) return locks_mandatory_locked(file); return 0; } static inline int locks_verify_truncate(struct inode *inode, struct file *f, loff_t size) { if (!inode->i_flctx || !mandatory_lock(inode)) return 0; if (size < inode->i_size) { return locks_mandatory_area(inode, f, size, inode->i_size - 1, F_WRLCK); } else { return locks_mandatory_area(inode, f, inode->i_size, size - 1, F_WRLCK); } } #else /* !CONFIG_MANDATORY_FILE_LOCKING */ static inline int locks_mandatory_locked(struct file *file) { return 0; } static inline int locks_mandatory_area(struct inode *inode, struct file *filp, loff_t start, loff_t end, unsigned char type) { return 0; } static inline int __mandatory_lock(struct inode *inode) { return 0; } static inline int mandatory_lock(struct inode *inode) { return 0; } static inline int locks_verify_locked(struct file *file) { return 0; } static inline int locks_verify_truncate(struct inode *inode, struct file *filp, size_t size) { return 0; } #endif /* CONFIG_MANDATORY_FILE_LOCKING */ #ifdef CONFIG_FILE_LOCKING static inline int break_lease(struct inode *inode, unsigned int mode) { /* * Since this check is lockless, we must ensure that any refcounts * taken are done before checking i_flctx->flc_lease. Otherwise, we * could end up racing with tasks trying to set a new lease on this * file. */ smp_mb(); if (inode->i_flctx && !list_empty_careful(&inode->i_flctx->flc_lease)) return __break_lease(inode, mode, FL_LEASE); return 0; } static inline int break_deleg(struct inode *inode, unsigned int mode) { /* * Since this check is lockless, we must ensure that any refcounts * taken are done before checking i_flctx->flc_lease. Otherwise, we * could end up racing with tasks trying to set a new lease on this * file. */ smp_mb(); if (inode->i_flctx && !list_empty_careful(&inode->i_flctx->flc_lease)) return __break_lease(inode, mode, FL_DELEG); return 0; } static inline int try_break_deleg(struct inode *inode, struct inode **delegated_inode) { int ret; ret = break_deleg(inode, O_WRONLY|O_NONBLOCK); if (ret == -EWOULDBLOCK && delegated_inode) { *delegated_inode = inode; ihold(inode); } return ret; } static inline int break_deleg_wait(struct inode **delegated_inode) { int ret; ret = break_deleg(*delegated_inode, O_WRONLY); iput(*delegated_inode); *delegated_inode = NULL; return ret; } static inline int break_layout(struct inode *inode, bool wait) { smp_mb(); if (inode->i_flctx && !list_empty_careful(&inode->i_flctx->flc_lease)) return __break_lease(inode, wait ? O_WRONLY : O_WRONLY | O_NONBLOCK, FL_LAYOUT); return 0; } #else /* !CONFIG_FILE_LOCKING */ static inline int break_lease(struct inode *inode, unsigned int mode) { return 0; } static inline int break_deleg(struct inode *inode, unsigned int mode) { return 0; } static inline int try_break_deleg(struct inode *inode, struct inode **delegated_inode) { return 0; } static inline int break_deleg_wait(struct inode **delegated_inode) { BUG(); return 0; } static inline int break_layout(struct inode *inode, bool wait) { return 0; } #endif /* CONFIG_FILE_LOCKING */ /* fs/open.c */ struct audit_names; struct filename { const char *name; /* pointer to actual string */ const __user char *uptr; /* original userland pointer */ int refcnt; struct audit_names *aname; const char iname[]; }; static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); extern long vfs_truncate(const struct path *, loff_t); extern int do_truncate(struct dentry *, loff_t start, unsigned int time_attrs, struct file *filp); extern int vfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len); extern long do_sys_open(int dfd, const char __user *filename, int flags, umode_t mode); extern struct file *file_open_name(struct filename *, int, umode_t); extern struct file *filp_open(const char *, int, umode_t); extern struct file *file_open_root(struct dentry *, struct vfsmount *, const char *, int, umode_t); extern struct file * dentry_open(const struct path *, int, const struct cred *); extern struct file * open_with_fake_path(const struct path *, int, struct inode*, const struct cred *); static inline struct file *file_clone_open(struct file *file) { return dentry_open(&file->f_path, file->f_flags, file->f_cred); } extern int filp_close(struct file *, fl_owner_t id); extern struct filename *getname_flags(const char __user *, int, int *); extern struct filename *getname(const char __user *); extern struct filename *getname_kernel(const char *); extern void putname(struct filename *name); extern int finish_open(struct file *file, struct dentry *dentry, int (*open)(struct inode *, struct file *)); extern int finish_no_open(struct file *file, struct dentry *dentry); /* fs/dcache.c */ extern void __init vfs_caches_init_early(void); extern void __init vfs_caches_init(void); extern struct kmem_cache *names_cachep; #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) extern struct super_block *blockdev_superblock; static inline bool sb_is_blkdev_sb(struct super_block *sb) { return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; } void emergency_thaw_all(void); extern int sync_filesystem(struct super_block *); extern const struct file_operations def_blk_fops; extern const struct file_operations def_chr_fops; /* fs/char_dev.c */ #define CHRDEV_MAJOR_MAX 512 /* Marks the bottom of the first segment of free char majors */ #define CHRDEV_MAJOR_DYN_END 234 /* Marks the top and bottom of the second segment of free char majors */ #define CHRDEV_MAJOR_DYN_EXT_START 511 #define CHRDEV_MAJOR_DYN_EXT_END 384 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); extern int register_chrdev_region(dev_t, unsigned, const char *); extern int __register_chrdev(unsigned int major, unsigned int baseminor, unsigned int count, const char *name, const struct file_operations *fops); extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, unsigned int count, const char *name); extern void unregister_chrdev_region(dev_t, unsigned); extern void chrdev_show(struct seq_file *,off_t); static inline int register_chrdev(unsigned int major, const char *name, const struct file_operations *fops) { return __register_chrdev(major, 0, 256, name, fops); } static inline void unregister_chrdev(unsigned int major, const char *name) { __unregister_chrdev(major, 0, 256, name); } extern void init_special_inode(struct inode *, umode_t, dev_t); /* Invalid inode operations -- fs/bad_inode.c */ extern void make_bad_inode(struct inode *); extern bool is_bad_inode(struct inode *); unsigned long invalidate_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t end); void invalidate_mapping_pagevec(struct address_space *mapping, pgoff_t start, pgoff_t end, unsigned long *nr_pagevec); static inline void invalidate_remote_inode(struct inode *inode) { if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) invalidate_mapping_pages(inode->i_mapping, 0, -1); } extern int invalidate_inode_pages2(struct address_space *mapping); extern int invalidate_inode_pages2_range(struct address_space *mapping, pgoff_t start, pgoff_t end); extern int write_inode_now(struct inode *, int); extern int filemap_fdatawrite(struct address_space *); extern int filemap_flush(struct address_space *); extern int filemap_fdatawait_keep_errors(struct address_space *mapping); extern int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend); extern int filemap_fdatawait_range_keep_errors(struct address_space *mapping, loff_t start_byte, loff_t end_byte); static inline int filemap_fdatawait(struct address_space *mapping) { return filemap_fdatawait_range(mapping, 0, LLONG_MAX); } extern bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend); extern int filemap_write_and_wait_range(struct address_space *mapping, loff_t lstart, loff_t lend); extern int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, loff_t end, int sync_mode); extern int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, loff_t end); extern int filemap_check_errors(struct address_space *mapping); extern void __filemap_set_wb_err(struct address_space *mapping, int err); static inline int filemap_write_and_wait(struct address_space *mapping) { return filemap_write_and_wait_range(mapping, 0, LLONG_MAX); } extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, loff_t lend); extern int __must_check file_check_and_advance_wb_err(struct file *file); extern int __must_check file_write_and_wait_range(struct file *file, loff_t start, loff_t end); static inline int file_write_and_wait(struct file *file) { return file_write_and_wait_range(file, 0, LLONG_MAX); } /** * filemap_set_wb_err - set a writeback error on an address_space * @mapping: mapping in which to set writeback error * @err: error to be set in mapping * * When writeback fails in some way, we must record that error so that * userspace can be informed when fsync and the like are called. We endeavor * to report errors on any file that was open at the time of the error. Some * internal callers also need to know when writeback errors have occurred. * * When a writeback error occurs, most filesystems will want to call * filemap_set_wb_err to record the error in the mapping so that it will be * automatically reported whenever fsync is called on the file. */ static inline void filemap_set_wb_err(struct address_space *mapping, int err) { /* Fastpath for common case of no error */ if (unlikely(err)) __filemap_set_wb_err(mapping, err); } /** * filemap_check_wb_err - has an error occurred since the mark was sampled? * @mapping: mapping to check for writeback errors * @since: previously-sampled errseq_t * * Grab the errseq_t value from the mapping, and see if it has changed "since" * the given value was sampled. * * If it has then report the latest error set, otherwise return 0. */ static inline int filemap_check_wb_err(struct address_space *mapping, errseq_t since) { return errseq_check(&mapping->wb_err, since); } /** * filemap_sample_wb_err - sample the current errseq_t to test for later errors * @mapping: mapping to be sampled * * Writeback errors are always reported relative to a particular sample point * in the past. This function provides those sample points. */ static inline errseq_t filemap_sample_wb_err(struct address_space *mapping) { return errseq_sample(&mapping->wb_err); } /** * file_sample_sb_err - sample the current errseq_t to test for later errors * @file: file pointer to be sampled * * Grab the most current superblock-level errseq_t value for the given * struct file. */ static inline errseq_t file_sample_sb_err(struct file *file) { return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err); } extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync); extern int vfs_fsync(struct file *file, int datasync); extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, unsigned int flags); /* * Sync the bytes written if this was a synchronous write. Expect ki_pos * to already be updated for the write, and will return either the amount * of bytes passed in, or an error if syncing the file failed. */ static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) { if (iocb->ki_flags & IOCB_DSYNC) { int ret = vfs_fsync_range(iocb->ki_filp, iocb->ki_pos - count, iocb->ki_pos - 1, (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); if (ret) return ret; } return count; } extern void emergency_sync(void); extern void emergency_remount(void); #ifdef CONFIG_BLOCK extern int bmap(struct inode *inode, sector_t *block); #else static inline int bmap(struct inode *inode, sector_t *block) { return -EINVAL; } #endif extern int notify_change(struct dentry *, struct iattr *, struct inode **); extern int inode_permission(struct inode *, int); extern int generic_permission(struct inode *, int); extern int __check_sticky(struct inode *dir, struct inode *inode); static inline bool execute_ok(struct inode *inode) { return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); } static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) { return (inode->i_mode ^ mode) & S_IFMT; } static inline void file_start_write(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return; sb_start_write(file_inode(file)->i_sb); } static inline bool file_start_write_trylock(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return true; return sb_start_write_trylock(file_inode(file)->i_sb); } static inline void file_end_write(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return; __sb_end_write(file_inode(file)->i_sb, SB_FREEZE_WRITE); } /* * get_write_access() gets write permission for a file. * put_write_access() releases this write permission. * This is used for regular files. * We cannot support write (and maybe mmap read-write shared) accesses and * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode * can have the following values: * 0: no writers, no VM_DENYWRITE mappings * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist * > 0: (i_writecount) users are writing to the file. * * Normally we operate on that counter with atomic_{inc,dec} and it's safe * except for the cases where we don't hold i_writecount yet. Then we need to * use {get,deny}_write_access() - these functions check the sign and refuse * to do the change if sign is wrong. */ static inline int get_write_access(struct inode *inode) { return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; } static inline int deny_write_access(struct file *file) { struct inode *inode = file_inode(file); return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; } static inline void put_write_access(struct inode * inode) { atomic_dec(&inode->i_writecount); } static inline void allow_write_access(struct file *file) { if (file) atomic_inc(&file_inode(file)->i_writecount); } static inline bool inode_is_open_for_write(const struct inode *inode) { return atomic_read(&inode->i_writecount) > 0; } #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) static inline void i_readcount_dec(struct inode *inode) { BUG_ON(!atomic_read(&inode->i_readcount)); atomic_dec(&inode->i_readcount); } static inline void i_readcount_inc(struct inode *inode) { atomic_inc(&inode->i_readcount); } #else static inline void i_readcount_dec(struct inode *inode) { return; } static inline void i_readcount_inc(struct inode *inode) { return; } #endif extern int do_pipe_flags(int *, int); extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); extern struct file * open_exec(const char *); /* fs/dcache.c -- generic fs support functions */ extern bool is_subdir(struct dentry *, struct dentry *); extern bool path_is_under(const struct path *, const struct path *); extern char *file_path(struct file *, char *, int); #include <linux/err.h> /* needed for stackable file system support */ extern loff_t default_llseek(struct file *file, loff_t offset, int whence); extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); extern int inode_init_always(struct super_block *, struct inode *); extern void inode_init_once(struct inode *); extern void address_space_init_once(struct address_space *mapping); extern struct inode * igrab(struct inode *); extern ino_t iunique(struct super_block *, ino_t); extern int inode_needs_sync(struct inode *inode); extern int generic_delete_inode(struct inode *inode); static inline int generic_drop_inode(struct inode *inode) { return !inode->i_nlink || inode_unhashed(inode); } extern void d_mark_dontcache(struct inode *inode); extern struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data); extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data); extern struct inode *ilookup(struct super_block *sb, unsigned long ino); extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data); extern struct inode * iget5_locked(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *); extern struct inode * iget_locked(struct super_block *, unsigned long); extern struct inode *find_inode_nowait(struct super_block *, unsigned long, int (*match)(struct inode *, unsigned long, void *), void *data); extern struct inode *find_inode_rcu(struct super_block *, unsigned long, int (*)(struct inode *, void *), void *); extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); extern int insert_inode_locked(struct inode *); #ifdef CONFIG_DEBUG_LOCK_ALLOC extern void lockdep_annotate_inode_mutex_key(struct inode *inode); #else static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; #endif extern void unlock_new_inode(struct inode *); extern void discard_new_inode(struct inode *); extern unsigned int get_next_ino(void); extern void evict_inodes(struct super_block *sb); /* * Userspace may rely on the the inode number being non-zero. For example, glibc * simply ignores files with zero i_ino in unlink() and other places. * * As an additional complication, if userspace was compiled with * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the * lower 32 bits, so we need to check that those aren't zero explicitly. With * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but * better safe than sorry. */ static inline bool is_zero_ino(ino_t ino) { return (u32)ino == 0; } extern void __iget(struct inode * inode); extern void iget_failed(struct inode *); extern void clear_inode(struct inode *); extern void __destroy_inode(struct inode *); extern struct inode *new_inode_pseudo(struct super_block *sb); extern struct inode *new_inode(struct super_block *sb); extern void free_inode_nonrcu(struct inode *inode); extern int should_remove_suid(struct dentry *); extern int file_remove_privs(struct file *); extern void __insert_inode_hash(struct inode *, unsigned long hashval); static inline void insert_inode_hash(struct inode *inode) { __insert_inode_hash(inode, inode->i_ino); } extern void __remove_inode_hash(struct inode *); static inline void remove_inode_hash(struct inode *inode) { if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) __remove_inode_hash(inode); } extern void inode_sb_list_add(struct inode *inode); extern int sb_set_blocksize(struct super_block *, int); extern int sb_min_blocksize(struct super_block *, int); extern int generic_file_mmap(struct file *, struct vm_area_struct *); extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); extern int generic_write_check_limits(struct file *file, loff_t pos, loff_t *count); extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); extern ssize_t generic_file_buffered_read(struct kiocb *iocb, struct iov_iter *to, ssize_t already_read); extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); extern ssize_t generic_perform_write(struct file *, struct iov_iter *, loff_t); ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, rwf_t flags); ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, rwf_t flags); ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, struct iov_iter *iter); ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, struct iov_iter *iter); /* fs/block_dev.c */ extern ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to); extern ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from); extern int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync); extern void block_sync_page(struct page *page); /* fs/splice.c */ extern ssize_t generic_file_splice_read(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); extern ssize_t iter_file_splice_write(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); extern ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, loff_t *, size_t len, unsigned int flags); extern long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, loff_t *opos, size_t len, unsigned int flags); extern void file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); extern loff_t no_llseek(struct file *file, loff_t offset, int whence); extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, int whence, loff_t maxsize, loff_t eof); extern loff_t fixed_size_llseek(struct file *file, loff_t offset, int whence, loff_t size); extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); extern loff_t no_seek_end_llseek(struct file *, loff_t, int); extern int generic_file_open(struct inode * inode, struct file * filp); extern int nonseekable_open(struct inode * inode, struct file * filp); extern int stream_open(struct inode * inode, struct file * filp); #ifdef CONFIG_BLOCK typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, loff_t file_offset); enum { /* need locking between buffered and direct access */ DIO_LOCKING = 0x01, /* filesystem does not support filling holes */ DIO_SKIP_HOLES = 0x02, }; ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, struct block_device *bdev, struct iov_iter *iter, get_block_t get_block, dio_iodone_t end_io, dio_submit_t submit_io, int flags); static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, struct iov_iter *iter, get_block_t get_block) { return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, get_block, NULL, NULL, DIO_LOCKING | DIO_SKIP_HOLES); } #endif void inode_dio_wait(struct inode *inode); /* * inode_dio_begin - signal start of a direct I/O requests * @inode: inode the direct I/O happens on * * This is called once we've finished processing a direct I/O request, * and is used to wake up callers waiting for direct I/O to be quiesced. */ static inline void inode_dio_begin(struct inode *inode) { atomic_inc(&inode->i_dio_count); } /* * inode_dio_end - signal finish of a direct I/O requests * @inode: inode the direct I/O happens on * * This is called once we've finished processing a direct I/O request, * and is used to wake up callers waiting for direct I/O to be quiesced. */ static inline void inode_dio_end(struct inode *inode) { if (atomic_dec_and_test(&inode->i_dio_count)) wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); } /* * Warn about a page cache invalidation failure diring a direct I/O write. */ void dio_warn_stale_pagecache(struct file *filp); extern void inode_set_flags(struct inode *inode, unsigned int flags, unsigned int mask); extern const struct file_operations generic_ro_fops; #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) extern int readlink_copy(char __user *, int, const char *); extern int page_readlink(struct dentry *, char __user *, int); extern const char *page_get_link(struct dentry *, struct inode *, struct delayed_call *); extern void page_put_link(void *); extern int __page_symlink(struct inode *inode, const char *symname, int len, int nofs); extern int page_symlink(struct inode *inode, const char *symname, int len); extern const struct inode_operations page_symlink_inode_operations; extern void kfree_link(void *); extern void generic_fillattr(struct inode *, struct kstat *); extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); void __inode_add_bytes(struct inode *inode, loff_t bytes); void inode_add_bytes(struct inode *inode, loff_t bytes); void __inode_sub_bytes(struct inode *inode, loff_t bytes); void inode_sub_bytes(struct inode *inode, loff_t bytes); static inline loff_t __inode_get_bytes(struct inode *inode) { return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; } loff_t inode_get_bytes(struct inode *inode); void inode_set_bytes(struct inode *inode, loff_t bytes); const char *simple_get_link(struct dentry *, struct inode *, struct delayed_call *); extern const struct inode_operations simple_symlink_inode_operations; extern int iterate_dir(struct file *, struct dir_context *); int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, int flags); int vfs_fstat(int fd, struct kstat *stat); static inline int vfs_stat(const char __user *filename, struct kstat *stat) { return vfs_fstatat(AT_FDCWD, filename, stat, 0); } static inline int vfs_lstat(const char __user *name, struct kstat *stat) { return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); } extern const char *vfs_get_link(struct dentry *, struct delayed_call *); extern int vfs_readlink(struct dentry *, char __user *, int); extern struct file_system_type *get_filesystem(struct file_system_type *fs); extern void put_filesystem(struct file_system_type *fs); extern struct file_system_type *get_fs_type(const char *name); extern struct super_block *get_super(struct block_device *); extern struct super_block *get_super_thawed(struct block_device *); extern struct super_block *get_super_exclusive_thawed(struct block_device *bdev); extern struct super_block *get_active_super(struct block_device *bdev); extern void drop_super(struct super_block *sb); extern void drop_super_exclusive(struct super_block *sb); extern void iterate_supers(void (*)(struct super_block *, void *), void *); extern void iterate_supers_type(struct file_system_type *, void (*)(struct super_block *, void *), void *); extern int dcache_dir_open(struct inode *, struct file *); extern int dcache_dir_close(struct inode *, struct file *); extern loff_t dcache_dir_lseek(struct file *, loff_t, int); extern int dcache_readdir(struct file *, struct dir_context *); extern int simple_setattr(struct dentry *, struct iattr *); extern int simple_getattr(const struct path *, struct kstat *, u32, unsigned int); extern int simple_statfs(struct dentry *, struct kstatfs *); extern int simple_open(struct inode *inode, struct file *file); extern int simple_link(struct dentry *, struct inode *, struct dentry *); extern int simple_unlink(struct inode *, struct dentry *); extern int simple_rmdir(struct inode *, struct dentry *); extern int simple_rename(struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); extern void simple_recursive_removal(struct dentry *, void (*callback)(struct dentry *)); extern int noop_fsync(struct file *, loff_t, loff_t, int); extern int noop_set_page_dirty(struct page *page); extern void noop_invalidatepage(struct page *page, unsigned int offset, unsigned int length); extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); extern int simple_empty(struct dentry *); extern int simple_readpage(struct file *file, struct page *page); extern int simple_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata); extern int simple_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata); extern int always_delete_dentry(const struct dentry *); extern struct inode *alloc_anon_inode(struct super_block *); extern int simple_nosetlease(struct file *, long, struct file_lock **, void **); extern const struct dentry_operations simple_dentry_operations; extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); extern const struct file_operations simple_dir_operations; extern const struct inode_operations simple_dir_inode_operations; extern void make_empty_dir_inode(struct inode *inode); extern bool is_empty_dir_inode(struct inode *inode); struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; struct dentry *d_alloc_name(struct dentry *, const char *); extern int simple_fill_super(struct super_block *, unsigned long, const struct tree_descr *); extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); extern void simple_release_fs(struct vfsmount **mount, int *count); extern ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, const void *from, size_t available); extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, const void __user *from, size_t count); extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); extern int generic_file_fsync(struct file *, loff_t, loff_t, int); extern int generic_check_addressable(unsigned, u64); #ifdef CONFIG_UNICODE extern int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str); extern int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, const char *str, const struct qstr *name); #endif #ifdef CONFIG_MIGRATION extern int buffer_migrate_page(struct address_space *, struct page *, struct page *, enum migrate_mode); extern int buffer_migrate_page_norefs(struct address_space *, struct page *, struct page *, enum migrate_mode); #else #define buffer_migrate_page NULL #define buffer_migrate_page_norefs NULL #endif extern int setattr_prepare(struct dentry *, struct iattr *); extern int inode_newsize_ok(const struct inode *, loff_t offset); extern void setattr_copy(struct inode *inode, const struct iattr *attr); extern int file_update_time(struct file *file); static inline bool vma_is_dax(const struct vm_area_struct *vma) { return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); } static inline bool vma_is_fsdax(struct vm_area_struct *vma) { struct inode *inode; if (!vma->vm_file) return false; if (!vma_is_dax(vma)) return false; inode = file_inode(vma->vm_file); if (S_ISCHR(inode->i_mode)) return false; /* device-dax */ return true; } static inline int iocb_flags(struct file *file) { int res = 0; if (file->f_flags & O_APPEND) res |= IOCB_APPEND; if (file->f_flags & O_DIRECT) res |= IOCB_DIRECT; if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host)) res |= IOCB_DSYNC; if (file->f_flags & __O_SYNC) res |= IOCB_SYNC; return res; } static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags) { int kiocb_flags = 0; /* make sure there's no overlap between RWF and private IOCB flags */ BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); if (!flags) return 0; if (unlikely(flags & ~RWF_SUPPORTED)) return -EOPNOTSUPP; if (flags & RWF_NOWAIT) { if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) return -EOPNOTSUPP; kiocb_flags |= IOCB_NOIO; } kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); if (flags & RWF_SYNC) kiocb_flags |= IOCB_DSYNC; ki->ki_flags |= kiocb_flags; return 0; } static inline ino_t parent_ino(struct dentry *dentry) { ino_t res; /* * Don't strictly need d_lock here? If the parent ino could change * then surely we'd have a deeper race in the caller? */ spin_lock(&dentry->d_lock); res = dentry->d_parent->d_inode->i_ino; spin_unlock(&dentry->d_lock); return res; } /* Transaction based IO helpers */ /* * An argresp is stored in an allocated page and holds the * size of the argument or response, along with its content */ struct simple_transaction_argresp { ssize_t size; char data[]; }; #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) char *simple_transaction_get(struct file *file, const char __user *buf, size_t size); ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos); int simple_transaction_release(struct inode *inode, struct file *file); void simple_transaction_set(struct file *file, size_t n); /* * simple attribute files * * These attributes behave similar to those in sysfs: * * Writing to an attribute immediately sets a value, an open file can be * written to multiple times. * * Reading from an attribute creates a buffer from the value that might get * read with multiple read calls. When the attribute has been read * completely, no further read calls are possible until the file is opened * again. * * All attributes contain a text representation of a numeric value * that are accessed with the get() and set() functions. */ #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ static int __fops ## _open(struct inode *inode, struct file *file) \ { \ __simple_attr_check_format(__fmt, 0ull); \ return simple_attr_open(inode, file, __get, __set, __fmt); \ } \ static const struct file_operations __fops = { \ .owner = THIS_MODULE, \ .open = __fops ## _open, \ .release = simple_attr_release, \ .read = simple_attr_read, \ .write = simple_attr_write, \ .llseek = generic_file_llseek, \ } static inline __printf(1, 2) void __simple_attr_check_format(const char *fmt, ...) { /* don't do anything, just let the compiler check the arguments; */ } int simple_attr_open(struct inode *inode, struct file *file, int (*get)(void *, u64 *), int (*set)(void *, u64), const char *fmt); int simple_attr_release(struct inode *inode, struct file *file); ssize_t simple_attr_read(struct file *file, char __user *buf, size_t len, loff_t *ppos); ssize_t simple_attr_write(struct file *file, const char __user *buf, size_t len, loff_t *ppos); struct ctl_table; int proc_nr_files(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int __init get_filesystem_list(char *buf); #define __FMODE_EXEC ((__force int) FMODE_EXEC) #define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ (flag & __FMODE_NONOTIFY))) static inline bool is_sxid(umode_t mode) { return (mode & S_ISUID) || ((mode & S_ISGID) && (mode & S_IXGRP)); } static inline int check_sticky(struct inode *dir, struct inode *inode) { if (!(dir->i_mode & S_ISVTX)) return 0; return __check_sticky(dir, inode); } static inline void inode_has_no_xattr(struct inode *inode) { if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) inode->i_flags |= S_NOSEC; } static inline bool is_root_inode(struct inode *inode) { return inode == inode->i_sb->s_root->d_inode; } static inline bool dir_emit(struct dir_context *ctx, const char *name, int namelen, u64 ino, unsigned type) { return ctx->actor(ctx, name, namelen, ctx->pos, ino, type) == 0; } static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) { return ctx->actor(ctx, ".", 1, ctx->pos, file->f_path.dentry->d_inode->i_ino, DT_DIR) == 0; } static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) { return ctx->actor(ctx, "..", 2, ctx->pos, parent_ino(file->f_path.dentry), DT_DIR) == 0; } static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) { if (ctx->pos == 0) { if (!dir_emit_dot(file, ctx)) return false; ctx->pos = 1; } if (ctx->pos == 1) { if (!dir_emit_dotdot(file, ctx)) return false; ctx->pos = 2; } return true; } static inline bool dir_relax(struct inode *inode) { inode_unlock(inode); inode_lock(inode); return !IS_DEADDIR(inode); } static inline bool dir_relax_shared(struct inode *inode) { inode_unlock_shared(inode); inode_lock_shared(inode); return !IS_DEADDIR(inode); } extern bool path_noexec(const struct path *path); extern void inode_nohighmem(struct inode *inode); /* mm/fadvise.c */ extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, int advice); extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, int advice); int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags, unsigned int flags); int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa, struct fsxattr *fa); static inline void simple_fill_fsxattr(struct fsxattr *fa, __u32 xflags) { memset(fa, 0, sizeof(*fa)); fa->fsx_xflags = xflags; } /* * Flush file data before changing attributes. Caller must hold any locks * required to prevent further writes to this file until we're done setting * flags. */ static inline int inode_drain_writes(struct inode *inode) { inode_dio_wait(inode); return filemap_write_and_wait(inode->i_mapping); } #endif /* _LINUX_FS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef INT_BLK_MQ_TAG_H #define INT_BLK_MQ_TAG_H /* * Tag address space map. */ struct blk_mq_tags { unsigned int nr_tags; unsigned int nr_reserved_tags; atomic_t active_queues; struct sbitmap_queue *bitmap_tags; struct sbitmap_queue *breserved_tags; struct sbitmap_queue __bitmap_tags; struct sbitmap_queue __breserved_tags; struct request **rqs; struct request **static_rqs; struct list_head page_list; /* * used to clear request reference in rqs[] before freeing one * request pool */ spinlock_t lock; }; extern struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags, unsigned int reserved_tags, int node, unsigned int flags); extern void blk_mq_free_tags(struct blk_mq_tags *tags, unsigned int flags); extern int blk_mq_init_shared_sbitmap(struct blk_mq_tag_set *set, unsigned int flags); extern void blk_mq_exit_shared_sbitmap(struct blk_mq_tag_set *set); extern unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data); extern void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx, unsigned int tag); extern int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags **tags, unsigned int depth, bool can_grow); extern void blk_mq_tag_resize_shared_sbitmap(struct blk_mq_tag_set *set, unsigned int size); extern void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool); void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn, void *priv); void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn, void *priv); static inline struct sbq_wait_state *bt_wait_ptr(struct sbitmap_queue *bt, struct blk_mq_hw_ctx *hctx) { if (!hctx) return &bt->ws[0]; return sbq_wait_ptr(bt, &hctx->wait_index); } enum { BLK_MQ_NO_TAG = -1U, BLK_MQ_TAG_MIN = 1, BLK_MQ_TAG_MAX = BLK_MQ_NO_TAG - 1, }; extern bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *); extern void __blk_mq_tag_idle(struct blk_mq_hw_ctx *); static inline bool blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) { if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) return false; return __blk_mq_tag_busy(hctx); } static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) { if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) return; __blk_mq_tag_idle(hctx); } static inline bool blk_mq_tag_is_reserved(struct blk_mq_tags *tags, unsigned int tag) { return tag < tags->nr_reserved_tags; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 // SPDX-License-Identifier: GPL-2.0+ /* * ext4_jbd2.h * * Written by Stephen C. Tweedie <sct@redhat.com>, 1999 * * Copyright 1998--1999 Red Hat corp --- All Rights Reserved * * Ext4-specific journaling extensions. */ #ifndef _EXT4_JBD2_H #define _EXT4_JBD2_H #include <linux/fs.h> #include <linux/jbd2.h> #include "ext4.h" #define EXT4_JOURNAL(inode) (EXT4_SB((inode)->i_sb)->s_journal) /* Define the number of blocks we need to account to a transaction to * modify one block of data. * * We may have to touch one inode, one bitmap buffer, up to three * indirection blocks, the group and superblock summaries, and the data * block to complete the transaction. * * For extents-enabled fs we may have to allocate and modify up to * 5 levels of tree, data block (for each of these we need bitmap + group * summaries), root which is stored in the inode, sb */ #define EXT4_SINGLEDATA_TRANS_BLOCKS(sb) \ (ext4_has_feature_extents(sb) ? 20U : 8U) /* Extended attribute operations touch at most two data buffers, * two bitmap buffers, and two group summaries, in addition to the inode * and the superblock, which are already accounted for. */ #define EXT4_XATTR_TRANS_BLOCKS 6U /* Define the minimum size for a transaction which modifies data. This * needs to take into account the fact that we may end up modifying two * quota files too (one for the group, one for the user quota). The * superblock only gets updated once, of course, so don't bother * counting that again for the quota updates. */ #define EXT4_DATA_TRANS_BLOCKS(sb) (EXT4_SINGLEDATA_TRANS_BLOCKS(sb) + \ EXT4_XATTR_TRANS_BLOCKS - 2 + \ EXT4_MAXQUOTAS_TRANS_BLOCKS(sb)) /* * Define the number of metadata blocks we need to account to modify data. * * This include super block, inode block, quota blocks and xattr blocks */ #define EXT4_META_TRANS_BLOCKS(sb) (EXT4_XATTR_TRANS_BLOCKS + \ EXT4_MAXQUOTAS_TRANS_BLOCKS(sb)) /* Define an arbitrary limit for the amount of data we will anticipate * writing to any given transaction. For unbounded transactions such as * write(2) and truncate(2) we can write more than this, but we always * start off at the maximum transaction size and grow the transaction * optimistically as we go. */ #define EXT4_MAX_TRANS_DATA 64U /* We break up a large truncate or write transaction once the handle's * buffer credits gets this low, we need either to extend the * transaction or to start a new one. Reserve enough space here for * inode, bitmap, superblock, group and indirection updates for at least * one block, plus two quota updates. Quota allocations are not * needed. */ #define EXT4_RESERVE_TRANS_BLOCKS 12U /* * Number of credits needed if we need to insert an entry into a * directory. For each new index block, we need 4 blocks (old index * block, new index block, bitmap block, bg summary). For normal * htree directories there are 2 levels; if the largedir feature * enabled it's 3 levels. */ #define EXT4_INDEX_EXTRA_TRANS_BLOCKS 12U #ifdef CONFIG_QUOTA /* Amount of blocks needed for quota update - we know that the structure was * allocated so we need to update only data block */ #define EXT4_QUOTA_TRANS_BLOCKS(sb) ((test_opt(sb, QUOTA) ||\ ext4_has_feature_quota(sb)) ? 1 : 0) /* Amount of blocks needed for quota insert/delete - we do some block writes * but inode, sb and group updates are done only once */ #define EXT4_QUOTA_INIT_BLOCKS(sb) ((test_opt(sb, QUOTA) ||\ ext4_has_feature_quota(sb)) ?\ (DQUOT_INIT_ALLOC*(EXT4_SINGLEDATA_TRANS_BLOCKS(sb)-3)\ +3+DQUOT_INIT_REWRITE) : 0) #define EXT4_QUOTA_DEL_BLOCKS(sb) ((test_opt(sb, QUOTA) ||\ ext4_has_feature_quota(sb)) ?\ (DQUOT_DEL_ALLOC*(EXT4_SINGLEDATA_TRANS_BLOCKS(sb)-3)\ +3+DQUOT_DEL_REWRITE) : 0) #else #define EXT4_QUOTA_TRANS_BLOCKS(sb) 0 #define EXT4_QUOTA_INIT_BLOCKS(sb) 0 #define EXT4_QUOTA_DEL_BLOCKS(sb) 0 #endif #define EXT4_MAXQUOTAS_TRANS_BLOCKS(sb) (EXT4_MAXQUOTAS*EXT4_QUOTA_TRANS_BLOCKS(sb)) #define EXT4_MAXQUOTAS_INIT_BLOCKS(sb) (EXT4_MAXQUOTAS*EXT4_QUOTA_INIT_BLOCKS(sb)) #define EXT4_MAXQUOTAS_DEL_BLOCKS(sb) (EXT4_MAXQUOTAS*EXT4_QUOTA_DEL_BLOCKS(sb)) /* * Ext4 handle operation types -- for logging purposes */ #define EXT4_HT_MISC 0 #define EXT4_HT_INODE 1 #define EXT4_HT_WRITE_PAGE 2 #define EXT4_HT_MAP_BLOCKS 3 #define EXT4_HT_DIR 4 #define EXT4_HT_TRUNCATE 5 #define EXT4_HT_QUOTA 6 #define EXT4_HT_RESIZE 7 #define EXT4_HT_MIGRATE 8 #define EXT4_HT_MOVE_EXTENTS 9 #define EXT4_HT_XATTR 10 #define EXT4_HT_EXT_CONVERT 11 #define EXT4_HT_MAX 12 /** * struct ext4_journal_cb_entry - Base structure for callback information. * * This struct is a 'seed' structure for a using with your own callback * structs. If you are using callbacks you must allocate one of these * or another struct of your own definition which has this struct * as it's first element and pass it to ext4_journal_callback_add(). */ struct ext4_journal_cb_entry { /* list information for other callbacks attached to the same handle */ struct list_head jce_list; /* Function to call with this callback structure */ void (*jce_func)(struct super_block *sb, struct ext4_journal_cb_entry *jce, int error); /* user data goes here */ }; /** * ext4_journal_callback_add: add a function to call after transaction commit * @handle: active journal transaction handle to register callback on * @func: callback function to call after the transaction has committed: * @sb: superblock of current filesystem for transaction * @jce: returned journal callback data * @rc: journal state at commit (0 = transaction committed properly) * @jce: journal callback data (internal and function private data struct) * * The registered function will be called in the context of the journal thread * after the transaction for which the handle was created has completed. * * No locks are held when the callback function is called, so it is safe to * call blocking functions from within the callback, but the callback should * not block or run for too long, or the filesystem will be blocked waiting for * the next transaction to commit. No journaling functions can be used, or * there is a risk of deadlock. * * There is no guaranteed calling order of multiple registered callbacks on * the same transaction. */ static inline void _ext4_journal_callback_add(handle_t *handle, struct ext4_journal_cb_entry *jce) { /* Add the jce to transaction's private list */ list_add_tail(&jce->jce_list, &handle->h_transaction->t_private_list); } static inline void ext4_journal_callback_add(handle_t *handle, void (*func)(struct super_block *sb, struct ext4_journal_cb_entry *jce, int rc), struct ext4_journal_cb_entry *jce) { struct ext4_sb_info *sbi = EXT4_SB(handle->h_transaction->t_journal->j_private); /* Add the jce to transaction's private list */ jce->jce_func = func; spin_lock(&sbi->s_md_lock); _ext4_journal_callback_add(handle, jce); spin_unlock(&sbi->s_md_lock); } /** * ext4_journal_callback_del: delete a registered callback