2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 // SPDX-License-Identifier: GPL-2.0-only /* * mm/interval_tree.c - interval tree for mapping->i_mmap * * Copyright (C) 2012, Michel Lespinasse <walken@google.com> */ #include <linux/mm.h> #include <linux/fs.h> #include <linux/rmap.h> #include <linux/interval_tree_generic.h> static inline unsigned long vma_start_pgoff(struct vm_area_struct *v) { return v->vm_pgoff; } static inline unsigned long vma_last_pgoff(struct vm_area_struct *v) { return v->vm_pgoff + vma_pages(v) - 1; } INTERVAL_TREE_DEFINE(struct vm_area_struct, shared.rb, unsigned long, shared.rb_subtree_last, vma_start_pgoff, vma_last_pgoff,, vma_interval_tree) /* Insert node immediately after prev in the interval tree */ void vma_interval_tree_insert_after(struct vm_area_struct *node, struct vm_area_struct *prev, struct rb_root_cached *root) { struct rb_node **link; struct vm_area_struct *parent; unsigned long last = vma_last_pgoff(node); VM_BUG_ON_VMA(vma_start_pgoff(node) != vma_start_pgoff(prev), node); if (!prev->shared.rb.rb_right) { parent = prev; link = &prev->shared.rb.rb_right; } else { parent = rb_entry(prev->shared.rb.rb_right, struct vm_area_struct, shared.rb); if (parent->shared.rb_subtree_last < last) parent->shared.rb_subtree_last = last; while (parent->shared.rb.rb_left) { parent = rb_entry(parent->shared.rb.rb_left, struct vm_area_struct, shared.rb); if (parent->shared.rb_subtree_last < last) parent->shared.rb_subtree_last = last; } link = &parent->shared.rb.rb_left; } node->shared.rb_subtree_last = last; rb_link_node(&node->shared.rb, &parent->shared.rb, link); rb_insert_augmented(&node->shared.rb, &root->rb_root, &vma_interval_tree_augment); } static inline unsigned long avc_start_pgoff(struct anon_vma_chain *avc) { return vma_start_pgoff(avc->vma); } static inline unsigned long avc_last_pgoff(struct anon_vma_chain *avc) { return vma_last_pgoff(avc->vma); } INTERVAL_TREE_DEFINE(struct anon_vma_chain, rb, unsigned long, rb_subtree_last, avc_start_pgoff, avc_last_pgoff, static inline, __anon_vma_interval_tree) void anon_vma_interval_tree_insert(struct anon_vma_chain *node, struct rb_root_cached *root) { #ifdef CONFIG_DEBUG_VM_RB node->cached_vma_start = avc_start_pgoff(node); node->cached_vma_last = avc_last_pgoff(node); #endif __anon_vma_interval_tree_insert(node, root); } void anon_vma_interval_tree_remove(struct anon_vma_chain *node, struct rb_root_cached *root) { __anon_vma_interval_tree_remove(node, root); } struct anon_vma_chain * anon_vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long first, unsigned long last) { return __anon_vma_interval_tree_iter_first(root, first, last); } struct anon_vma_chain * anon_vma_interval_tree_iter_next(struct anon_vma_chain *node, unsigned long first, unsigned long last) { return __anon_vma_interval_tree_iter_next(node, first, last); } #ifdef CONFIG_DEBUG_VM_RB void anon_vma_interval_tree_verify(struct anon_vma_chain *node) { WARN_ON_ONCE(node->cached_vma_start != avc_start_pgoff(node)); WARN_ON_ONCE(node->cached_vma_last != avc_last_pgoff(node)); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright 2003-2005 Red Hat, Inc. All rights reserved. * Copyright 2003-2005 Jeff Garzik * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/driver-api/libata.rst */ #ifndef __LINUX_LIBATA_H__ #define __LINUX_LIBATA_H__ #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/scatterlist.h> #include <linux/io.h> #include <linux/ata.h> #include <linux/workqueue.h> #include <scsi/scsi_host.h> #include <linux/acpi.h> #include <linux/cdrom.h> #include <linux/sched.h> #include <linux/async.h> /* * Define if arch has non-standard setup. This is a _PCI_ standard * not a legacy or ISA standard. */ #ifdef CONFIG_ATA_NONSTANDARD #include <asm/libata-portmap.h> #else #define ATA_PRIMARY_IRQ(dev) 14 #define ATA_SECONDARY_IRQ(dev) 15 #endif /* * compile-time options: to be removed as soon as all the drivers are * converted to the new debugging mechanism */ #undef ATA_DEBUG /* debugging output */ #undef ATA_VERBOSE_DEBUG /* yet more debugging output */ #undef ATA_IRQ_TRAP /* define to ack screaming irqs */ #undef ATA_NDEBUG /* define to disable quick runtime checks */ /* note: prints function name for you */ #ifdef ATA_DEBUG #define DPRINTK(fmt, args...) printk(KERN_ERR "%s: " fmt, __func__, ## args) #ifdef ATA_VERBOSE_DEBUG #define VPRINTK(fmt, args...) printk(KERN_ERR "%s: " fmt, __func__, ## args) #else #define VPRINTK(fmt, args...) #endif /* ATA_VERBOSE_DEBUG */ #else #define DPRINTK(fmt, args...) #define VPRINTK(fmt, args...) #endif /* ATA_DEBUG */ #define ata_print_version_once(dev, version) \ ({ \ static bool __print_once; \ \ if (!__print_once) { \ __print_once = true; \ ata_print_version(dev, version); \ } \ }) /* NEW: debug levels */ #define HAVE_LIBATA_MSG 1 enum { ATA_MSG_DRV = 0x0001, ATA_MSG_INFO = 0x0002, ATA_MSG_PROBE = 0x0004, ATA_MSG_WARN = 0x0008, ATA_MSG_MALLOC = 0x0010, ATA_MSG_CTL = 0x0020, ATA_MSG_INTR = 0x0040, ATA_MSG_ERR = 0x0080, }; #define ata_msg_drv(p) ((p)->msg_enable & ATA_MSG_DRV) #define ata_msg_info(p) ((p)->msg_enable & ATA_MSG_INFO) #define ata_msg_probe(p) ((p)->msg_enable & ATA_MSG_PROBE) #define ata_msg_warn(p) ((p)->msg_enable & ATA_MSG_WARN) #define ata_msg_malloc(p) ((p)->msg_enable & ATA_MSG_MALLOC) #define ata_msg_ctl(p) ((p)->msg_enable & ATA_MSG_CTL) #define ata_msg_intr(p) ((p)->msg_enable & ATA_MSG_INTR) #define ata_msg_err(p) ((p)->msg_enable & ATA_MSG_ERR) static inline u32 ata_msg_init(int dval, int default_msg_enable_bits) { if (dval < 0 || dval >= (sizeof(u32) * 8)) return default_msg_enable_bits; /* should be 0x1 - only driver info msgs */ if (!dval) return 0; return (1 << dval) - 1; } /* defines only for the constants which don't work well as enums */ #define ATA_TAG_POISON 0xfafbfcfdU enum { /* various global constants */ LIBATA_MAX_PRD = ATA_MAX_PRD / 2, LIBATA_DUMB_MAX_PRD = ATA_MAX_PRD / 4, /* Worst case */ ATA_DEF_QUEUE = 1, ATA_MAX_QUEUE = 32, ATA_TAG_INTERNAL = ATA_MAX_QUEUE, ATA_SHORT_PAUSE = 16, ATAPI_MAX_DRAIN = 16 << 10, ATA_ALL_DEVICES = (1 << ATA_MAX_DEVICES) - 1, ATA_SHT_EMULATED = 1, ATA_SHT_THIS_ID = -1, /* struct ata_taskfile flags */ ATA_TFLAG_LBA48 = (1 << 0), /* enable 48-bit LBA and "HOB" */ ATA_TFLAG_ISADDR = (1 << 1), /* enable r/w to nsect/lba regs */ ATA_TFLAG_DEVICE = (1 << 2), /* enable r/w to device reg */ ATA_TFLAG_WRITE = (1 << 3), /* data dir: host->dev==1 (write) */ ATA_TFLAG_LBA = (1 << 4), /* enable LBA */ ATA_TFLAG_FUA = (1 << 5), /* enable FUA */ ATA_TFLAG_POLLING = (1 << 6), /* set nIEN to 1 and use polling */ /* struct ata_device stuff */ ATA_DFLAG_LBA = (1 << 0), /* device supports LBA */ ATA_DFLAG_LBA48 = (1 << 1), /* device supports LBA48 */ ATA_DFLAG_CDB_INTR = (1 << 2), /* device asserts INTRQ when ready for CDB */ ATA_DFLAG_NCQ = (1 << 3), /* device supports NCQ */ ATA_DFLAG_FLUSH_EXT = (1 << 4), /* do FLUSH_EXT instead of FLUSH */ ATA_DFLAG_ACPI_PENDING = (1 << 5), /* ACPI resume action pending */ ATA_DFLAG_ACPI_FAILED = (1 << 6), /* ACPI on devcfg has failed */ ATA_DFLAG_AN = (1 << 7), /* AN configured */ ATA_DFLAG_TRUSTED = (1 << 8), /* device supports trusted send/recv */ ATA_DFLAG_DMADIR = (1 << 10), /* device requires DMADIR */ ATA_DFLAG_CFG_MASK = (1 << 12) - 1, ATA_DFLAG_PIO = (1 << 12), /* device limited to PIO mode */ ATA_DFLAG_NCQ_OFF = (1 << 13), /* device limited to non-NCQ mode */ ATA_DFLAG_SLEEPING = (1 << 15), /* device is sleeping */ ATA_DFLAG_DUBIOUS_XFER = (1 << 16), /* data transfer not verified */ ATA_DFLAG_NO_UNLOAD = (1 << 17), /* device doesn't support unload */ ATA_DFLAG_UNLOCK_HPA = (1 << 18), /* unlock HPA */ ATA_DFLAG_NCQ_SEND_RECV = (1 << 19), /* device supports NCQ SEND and RECV */ ATA_DFLAG_NCQ_PRIO = (1 << 20), /* device supports NCQ priority */ ATA_DFLAG_NCQ_PRIO_ENABLE = (1 << 21), /* Priority cmds sent to dev */ ATA_DFLAG_INIT_MASK = (1 << 24) - 1, ATA_DFLAG_DETACH = (1 << 24), ATA_DFLAG_DETACHED = (1 << 25), ATA_DFLAG_DA = (1 << 26), /* device supports Device Attention */ ATA_DFLAG_DEVSLP = (1 << 27), /* device supports Device Sleep */ ATA_DFLAG_ACPI_DISABLED = (1 << 28), /* ACPI for the device is disabled */ ATA_DFLAG_D_SENSE = (1 << 29), /* Descriptor sense requested */ ATA_DFLAG_ZAC = (1 << 30), /* ZAC device */ ATA_DEV_UNKNOWN = 0, /* unknown device */ ATA_DEV_ATA = 1, /* ATA device */ ATA_DEV_ATA_UNSUP = 2, /* ATA device (unsupported) */ ATA_DEV_ATAPI = 3, /* ATAPI device */ ATA_DEV_ATAPI_UNSUP = 4, /* ATAPI device (unsupported) */ ATA_DEV_PMP = 5, /* SATA port multiplier */ ATA_DEV_PMP_UNSUP = 6, /* SATA port multiplier (unsupported) */ ATA_DEV_SEMB = 7, /* SEMB */ ATA_DEV_SEMB_UNSUP = 8, /* SEMB (unsupported) */ ATA_DEV_ZAC = 9, /* ZAC device */ ATA_DEV_ZAC_UNSUP = 10, /* ZAC device (unsupported) */ ATA_DEV_NONE = 11, /* no device */ /* struct ata_link flags */ /* NOTE: struct ata_force_param currently stores lflags in u16 */ ATA_LFLAG_NO_HRST = (1 << 1), /* avoid hardreset */ ATA_LFLAG_NO_SRST = (1 << 2), /* avoid softreset */ ATA_LFLAG_ASSUME_ATA = (1 << 3), /* assume ATA class */ ATA_LFLAG_ASSUME_SEMB = (1 << 4), /* assume SEMB class */ ATA_LFLAG_ASSUME_CLASS = ATA_LFLAG_ASSUME_ATA | ATA_LFLAG_ASSUME_SEMB, ATA_LFLAG_NO_RETRY = (1 << 5), /* don't retry this link */ ATA_LFLAG_DISABLED = (1 << 6), /* link is disabled */ ATA_LFLAG_SW_ACTIVITY = (1 << 7), /* keep activity stats */ ATA_LFLAG_NO_LPM = (1 << 8), /* disable LPM on this link */ ATA_LFLAG_RST_ONCE = (1 << 9), /* limit recovery to one reset */ ATA_LFLAG_CHANGED = (1 << 10), /* LPM state changed on this link */ ATA_LFLAG_NO_DB_DELAY = (1 << 11), /* no debounce delay on link resume */ /* struct ata_port flags */ ATA_FLAG_SLAVE_POSS = (1 << 0), /* host supports slave dev */ /* (doesn't imply presence) */ ATA_FLAG_SATA = (1 << 1), ATA_FLAG_NO_LPM = (1 << 2), /* host not happy with LPM */ ATA_FLAG_NO_LOG_PAGE = (1 << 5), /* do not issue log page read */ ATA_FLAG_NO_ATAPI = (1 << 6), /* No ATAPI support */ ATA_FLAG_PIO_DMA = (1 << 7), /* PIO cmds via DMA */ ATA_FLAG_PIO_LBA48 = (1 << 8), /* Host DMA engine is LBA28 only */ ATA_FLAG_PIO_POLLING = (1 << 9), /* use polling PIO if LLD * doesn't handle PIO interrupts */ ATA_FLAG_NCQ = (1 << 10), /* host supports NCQ */ ATA_FLAG_NO_POWEROFF_SPINDOWN = (1 << 11), /* don't spindown before poweroff */ ATA_FLAG_NO_HIBERNATE_SPINDOWN = (1 << 12), /* don't spindown before hibernation */ ATA_FLAG_DEBUGMSG = (1 << 13), ATA_FLAG_FPDMA_AA = (1 << 14), /* driver supports Auto-Activate */ ATA_FLAG_IGN_SIMPLEX = (1 << 15), /* ignore SIMPLEX */ ATA_FLAG_NO_IORDY = (1 << 16), /* controller lacks iordy */ ATA_FLAG_ACPI_SATA = (1 << 17), /* need native SATA ACPI layout */ ATA_FLAG_AN = (1 << 18), /* controller supports AN */ ATA_FLAG_PMP = (1 << 19), /* controller supports PMP */ ATA_FLAG_FPDMA_AUX = (1 << 20), /* controller supports H2DFIS aux field */ ATA_FLAG_EM = (1 << 21), /* driver supports enclosure * management */ ATA_FLAG_SW_ACTIVITY = (1 << 22), /* driver supports sw activity * led */ ATA_FLAG_NO_DIPM = (1 << 23), /* host not happy with DIPM */ ATA_FLAG_SAS_HOST = (1 << 24), /* SAS host */ /* bits 24:31 of ap->flags are reserved for LLD specific flags */ /* struct ata_port pflags */ ATA_PFLAG_EH_PENDING = (1 << 0), /* EH pending */ ATA_PFLAG_EH_IN_PROGRESS = (1 << 1), /* EH in progress */ ATA_PFLAG_FROZEN = (1 << 2), /* port is frozen */ ATA_PFLAG_RECOVERED = (1 << 3), /* recovery action performed */ ATA_PFLAG_LOADING = (1 << 4), /* boot/loading probe */ ATA_PFLAG_SCSI_HOTPLUG = (1 << 6), /* SCSI hotplug scheduled */ ATA_PFLAG_INITIALIZING = (1 << 7), /* being initialized, don't touch */ ATA_PFLAG_RESETTING = (1 << 8), /* reset in progress */ ATA_PFLAG_UNLOADING = (1 << 9), /* driver is being unloaded */ ATA_PFLAG_UNLOADED = (1 << 10), /* driver is unloaded */ ATA_PFLAG_SUSPENDED = (1 << 17), /* port is suspended (power) */ ATA_PFLAG_PM_PENDING = (1 << 18), /* PM operation pending */ ATA_PFLAG_INIT_GTM_VALID = (1 << 19), /* initial gtm data valid */ ATA_PFLAG_PIO32 = (1 << 20), /* 32bit PIO */ ATA_PFLAG_PIO32CHANGE = (1 << 21), /* 32bit PIO can be turned on/off */ ATA_PFLAG_EXTERNAL = (1 << 22), /* eSATA/external port */ /* struct ata_queued_cmd flags */ ATA_QCFLAG_ACTIVE = (1 << 0), /* cmd not yet ack'd to scsi lyer */ ATA_QCFLAG_DMAMAP = (1 << 1), /* SG table is DMA mapped */ ATA_QCFLAG_IO = (1 << 3), /* standard IO command */ ATA_QCFLAG_RESULT_TF = (1 << 4), /* result TF requested */ ATA_QCFLAG_CLEAR_EXCL = (1 << 5), /* clear excl_link on completion */ ATA_QCFLAG_QUIET = (1 << 6), /* don't report device error */ ATA_QCFLAG_RETRY = (1 << 7), /* retry after failure */ ATA_QCFLAG_FAILED = (1 << 16), /* cmd failed and is owned by EH */ ATA_QCFLAG_SENSE_VALID = (1 << 17), /* sense data valid */ ATA_QCFLAG_EH_SCHEDULED = (1 << 18), /* EH scheduled (obsolete) */ /* host set flags */ ATA_HOST_SIMPLEX = (1 << 0), /* Host is simplex, one DMA channel per host only */ ATA_HOST_STARTED = (1 << 1), /* Host started */ ATA_HOST_PARALLEL_SCAN = (1 << 2), /* Ports on this host can be scanned in parallel */ ATA_HOST_IGNORE_ATA = (1 << 3), /* Ignore ATA devices on this host. */ /* bits 24:31 of host->flags are reserved for LLD specific flags */ /* various lengths of time */ ATA_TMOUT_BOOT = 30000, /* heuristic */ ATA_TMOUT_BOOT_QUICK = 7000, /* heuristic */ ATA_TMOUT_INTERNAL_QUICK = 5000, ATA_TMOUT_MAX_PARK = 30000, /* * GoVault needs 2s and iVDR disk HHD424020F7SV00 800ms. 2s * is too much without parallel probing. Use 2s if parallel * probing is available, 800ms otherwise. */ ATA_TMOUT_FF_WAIT_LONG = 2000, ATA_TMOUT_FF_WAIT = 800, /* Spec mandates to wait for ">= 2ms" before checking status * after reset. We wait 150ms, because that was the magic * delay used for ATAPI devices in Hale Landis's ATADRVR, for * the period of time between when the ATA command register is * written, and then status is checked. Because waiting for * "a while" before checking status is fine, post SRST, we * perform this magic delay here as well. * * Old drivers/ide uses the 2mS rule and then waits for ready. */ ATA_WAIT_AFTER_RESET = 150, /* If PMP is supported, we have to do follow-up SRST. As some * PMPs don't send D2H Reg FIS after hardreset, LLDs are * advised to wait only for the following duration before * doing SRST. */ ATA_TMOUT_PMP_SRST_WAIT = 5000, /* When the LPM policy is set to ATA_LPM_MAX_POWER, there might * be a spurious PHY event, so ignore the first PHY event that * occurs within 10s after the policy change. */ ATA_TMOUT_SPURIOUS_PHY = 10000, /* ATA bus states */ BUS_UNKNOWN = 0, BUS_DMA = 1, BUS_IDLE = 2, BUS_NOINTR = 3, BUS_NODATA = 4, BUS_TIMER = 5, BUS_PIO = 6, BUS_EDD = 7, BUS_IDENTIFY = 8, BUS_PACKET = 9, /* SATA port states */ PORT_UNKNOWN = 0, PORT_ENABLED = 1, PORT_DISABLED = 2, /* encoding various smaller bitmaps into a single * unsigned long bitmap */ ATA_NR_PIO_MODES = 7, ATA_NR_MWDMA_MODES = 5, ATA_NR_UDMA_MODES = 8, ATA_SHIFT_PIO = 0, ATA_SHIFT_MWDMA = ATA_SHIFT_PIO + ATA_NR_PIO_MODES, ATA_SHIFT_UDMA = ATA_SHIFT_MWDMA + ATA_NR_MWDMA_MODES, ATA_SHIFT_PRIO = 6, ATA_PRIO_HIGH = 2, /* size of buffer to pad xfers ending on unaligned boundaries */ ATA_DMA_PAD_SZ = 4, /* ering size */ ATA_ERING_SIZE = 32, /* return values for ->qc_defer */ ATA_DEFER_LINK = 1, ATA_DEFER_PORT = 2, /* desc_len for ata_eh_info and context */ ATA_EH_DESC_LEN = 80, /* reset / recovery action types */ ATA_EH_REVALIDATE = (1 << 0), ATA_EH_SOFTRESET = (1 << 1), /* meaningful only in ->prereset */ ATA_EH_HARDRESET = (1 << 2), /* meaningful only in ->prereset */ ATA_EH_RESET = ATA_EH_SOFTRESET | ATA_EH_HARDRESET, ATA_EH_ENABLE_LINK = (1 << 3), ATA_EH_PARK = (1 << 5), /* unload heads and stop I/O */ ATA_EH_PERDEV_MASK = ATA_EH_REVALIDATE | ATA_EH_PARK, ATA_EH_ALL_ACTIONS = ATA_EH_REVALIDATE | ATA_EH_RESET | ATA_EH_ENABLE_LINK, /* ata_eh_info->flags */ ATA_EHI_HOTPLUGGED = (1 << 0), /* could have been hotplugged */ ATA_EHI_NO_AUTOPSY = (1 << 2), /* no autopsy */ ATA_EHI_QUIET = (1 << 3), /* be quiet */ ATA_EHI_NO_RECOVERY = (1 << 4), /* no recovery */ ATA_EHI_DID_SOFTRESET = (1 << 16), /* already soft-reset this port */ ATA_EHI_DID_HARDRESET = (1 << 17), /* already soft-reset this port */ ATA_EHI_PRINTINFO = (1 << 18), /* print configuration info */ ATA_EHI_SETMODE = (1 << 19), /* configure transfer mode */ ATA_EHI_POST_SETMODE = (1 << 20), /* revalidating after setmode */ ATA_EHI_DID_RESET = ATA_EHI_DID_SOFTRESET | ATA_EHI_DID_HARDRESET, /* mask of flags to transfer *to* the slave link */ ATA_EHI_TO_SLAVE_MASK = ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, /* max tries if error condition is still set after ->error_handler */ ATA_EH_MAX_TRIES = 5, /* sometimes resuming a link requires several retries */ ATA_LINK_RESUME_TRIES = 5, /* how hard are we gonna try to probe/recover devices */ ATA_PROBE_MAX_TRIES = 3, ATA_EH_DEV_TRIES = 3, ATA_EH_PMP_TRIES = 5, ATA_EH_PMP_LINK_TRIES = 3, SATA_PMP_RW_TIMEOUT = 3000, /* PMP read/write timeout */ /* This should match the actual table size of * ata_eh_cmd_timeout_table in libata-eh.c. */ ATA_EH_CMD_TIMEOUT_TABLE_SIZE = 6, /* Horkage types. May be set by libata or controller on drives (some horkage may be drive/controller pair dependent */ ATA_HORKAGE_DIAGNOSTIC = (1 << 0), /* Failed boot diag */ ATA_HORKAGE_NODMA = (1 << 1), /* DMA problems */ ATA_HORKAGE_NONCQ = (1 << 2), /* Don't use NCQ */ ATA_HORKAGE_MAX_SEC_128 = (1 << 3), /* Limit max sects to 128 */ ATA_HORKAGE_BROKEN_HPA = (1 << 4), /* Broken HPA */ ATA_HORKAGE_DISABLE = (1 << 5), /* Disable it */ ATA_HORKAGE_HPA_SIZE = (1 << 6), /* native size off by one */ ATA_HORKAGE_IVB = (1 << 8), /* cbl det validity bit bugs */ ATA_HORKAGE_STUCK_ERR = (1 << 9), /* stuck ERR on next PACKET */ ATA_HORKAGE_BRIDGE_OK = (1 << 10), /* no bridge limits */ ATA_HORKAGE_ATAPI_MOD16_DMA = (1 << 11), /* use ATAPI DMA for commands not multiple of 16 bytes */ ATA_HORKAGE_FIRMWARE_WARN = (1 << 12), /* firmware update warning */ ATA_HORKAGE_1_5_GBPS = (1 << 13), /* force 1.5 Gbps */ ATA_HORKAGE_NOSETXFER = (1 << 14), /* skip SETXFER, SATA only */ ATA_HORKAGE_BROKEN_FPDMA_AA = (1 << 15), /* skip AA */ ATA_HORKAGE_DUMP_ID = (1 << 16), /* dump IDENTIFY data */ ATA_HORKAGE_MAX_SEC_LBA48 = (1 << 17), /* Set max sects to 65535 */ ATA_HORKAGE_ATAPI_DMADIR = (1 << 18), /* device requires dmadir */ ATA_HORKAGE_NO_NCQ_TRIM = (1 << 19), /* don't use queued TRIM */ ATA_HORKAGE_NOLPM = (1 << 20), /* don't use LPM */ ATA_HORKAGE_WD_BROKEN_LPM = (1 << 21), /* some WDs have broken LPM */ ATA_HORKAGE_ZERO_AFTER_TRIM = (1 << 22),/* guarantees zero after trim */ ATA_HORKAGE_NO_DMA_LOG = (1 << 23), /* don't use DMA for log read */ ATA_HORKAGE_NOTRIM = (1 << 24), /* don't use TRIM */ ATA_HORKAGE_MAX_SEC_1024 = (1 << 25), /* Limit max sects to 1024 */ ATA_HORKAGE_MAX_TRIM_128M = (1 << 26), /* Limit max trim size to 128M */ ATA_HORKAGE_NO_NCQ_ON_ATI = (1 << 27), /* Disable NCQ on ATI chipset */ /* DMA mask for user DMA control: User visible values; DO NOT renumber */ ATA_DMA_MASK_ATA = (1 << 0), /* DMA on ATA Disk */ ATA_DMA_MASK_ATAPI = (1 << 1), /* DMA on ATAPI */ ATA_DMA_MASK_CFA = (1 << 2), /* DMA on CF Card */ /* ATAPI command types */ ATAPI_READ = 0, /* READs */ ATAPI_WRITE = 1, /* WRITEs */ ATAPI_READ_CD = 2, /* READ CD [MSF] */ ATAPI_PASS_THRU = 3, /* SAT pass-thru */ ATAPI_MISC = 4, /* the rest */ /* Timing constants */ ATA_TIMING_SETUP = (1 << 0), ATA_TIMING_ACT8B = (1 << 1), ATA_TIMING_REC8B = (1 << 2), ATA_TIMING_CYC8B = (1 << 3), ATA_TIMING_8BIT = ATA_TIMING_ACT8B | ATA_TIMING_REC8B | ATA_TIMING_CYC8B, ATA_TIMING_ACTIVE = (1 << 4), ATA_TIMING_RECOVER = (1 << 5), ATA_TIMING_DMACK_HOLD = (1 << 6), ATA_TIMING_CYCLE = (1 << 7), ATA_TIMING_UDMA = (1 << 8), ATA_TIMING_ALL = ATA_TIMING_SETUP | ATA_TIMING_ACT8B | ATA_TIMING_REC8B | ATA_TIMING_CYC8B | ATA_TIMING_ACTIVE | ATA_TIMING_RECOVER | ATA_TIMING_DMACK_HOLD | ATA_TIMING_CYCLE | ATA_TIMING_UDMA, /* ACPI constants */ ATA_ACPI_FILTER_SETXFER = 1 << 0, ATA_ACPI_FILTER_LOCK = 1 << 1, ATA_ACPI_FILTER_DIPM = 1 << 2, ATA_ACPI_FILTER_FPDMA_OFFSET = 1 << 3, /* FPDMA non-zero offset */ ATA_ACPI_FILTER_FPDMA_AA = 1 << 4, /* FPDMA auto activate */ ATA_ACPI_FILTER_DEFAULT = ATA_ACPI_FILTER_SETXFER | ATA_ACPI_FILTER_LOCK | ATA_ACPI_FILTER_DIPM, }; enum ata_xfer_mask { ATA_MASK_PIO = ((1LU << ATA_NR_PIO_MODES) - 1) << ATA_SHIFT_PIO, ATA_MASK_MWDMA = ((1LU << ATA_NR_MWDMA_MODES) - 1) << ATA_SHIFT_MWDMA, ATA_MASK_UDMA = ((1LU << ATA_NR_UDMA_MODES) - 1) << ATA_SHIFT_UDMA, }; enum hsm_task_states { HSM_ST_IDLE, /* no command on going */ HSM_ST_FIRST, /* (waiting the device to) write CDB or first data block */ HSM_ST, /* (waiting the device to) transfer data */ HSM_ST_LAST, /* (waiting the device to) complete command */ HSM_ST_ERR, /* error */ }; enum ata_completion_errors { AC_ERR_OK = 0, /* no error */ AC_ERR_DEV = (1 << 0), /* device reported error */ AC_ERR_HSM = (1 << 1), /* host state machine violation */ AC_ERR_TIMEOUT = (1 << 2), /* timeout */ AC_ERR_MEDIA = (1 << 3), /* media error */ AC_ERR_ATA_BUS = (1 << 4), /* ATA bus error */ AC_ERR_HOST_BUS = (1 << 5), /* host bus error */ AC_ERR_SYSTEM = (1 << 6), /* system error */ AC_ERR_INVALID = (1 << 7), /* invalid argument */ AC_ERR_OTHER = (1 << 8), /* unknown */ AC_ERR_NODEV_HINT = (1 << 9), /* polling device detection hint */ AC_ERR_NCQ = (1 << 10), /* marker for offending NCQ qc */ }; /* * Link power management policy: If you alter this, you also need to * alter libata-scsi.c (for the ascii descriptions) */ enum ata_lpm_policy { ATA_LPM_UNKNOWN, ATA_LPM_MAX_POWER, ATA_LPM_MED_POWER, ATA_LPM_MED_POWER_WITH_DIPM, /* Med power + DIPM as win IRST does */ ATA_LPM_MIN_POWER_WITH_PARTIAL, /* Min Power + partial and slumber */ ATA_LPM_MIN_POWER, /* Min power + no partial (slumber only) */ }; enum ata_lpm_hints { ATA_LPM_EMPTY = (1 << 0), /* port empty/probing */ ATA_LPM_HIPM = (1 << 1), /* may use HIPM */ ATA_LPM_WAKE_ONLY = (1 << 2), /* only wake up link */ }; /* forward declarations */ struct scsi_device; struct ata_port_operations; struct ata_port; struct ata_link; struct ata_queued_cmd; /* typedefs */ typedef void (*ata_qc_cb_t) (struct ata_queued_cmd *qc); typedef int (*ata_prereset_fn_t)(struct ata_link *link, unsigned long deadline); typedef int (*ata_reset_fn_t)(struct ata_link *link, unsigned int *classes, unsigned long deadline); typedef void (*ata_postreset_fn_t)(struct ata_link *link, unsigned int *classes); extern struct device_attribute dev_attr_unload_heads; #ifdef CONFIG_SATA_HOST extern struct device_attribute dev_attr_link_power_management_policy; extern struct device_attribute dev_attr_ncq_prio_enable; extern struct device_attribute dev_attr_em_message_type; extern struct device_attribute dev_attr_em_message; extern struct device_attribute dev_attr_sw_activity; #endif enum sw_activity { OFF, BLINK_ON, BLINK_OFF, }; struct ata_taskfile { unsigned long flags; /* ATA_TFLAG_xxx */ u8 protocol; /* ATA_PROT_xxx */ u8 ctl; /* control reg */ u8 hob_feature; /* additional data */ u8 hob_nsect; /* to support LBA48 */ u8 hob_lbal; u8 hob_lbam; u8 hob_lbah; u8 feature; u8 nsect; u8 lbal; u8 lbam; u8 lbah; u8 device; u8 command; /* IO operation */ u32 auxiliary; /* auxiliary field */ /* from SATA 3.1 and */ /* ATA-8 ACS-3 */ }; #ifdef CONFIG_ATA_SFF struct ata_ioports { void __iomem *cmd_addr; void __iomem *data_addr; void __iomem *error_addr; void __iomem *feature_addr; void __iomem *nsect_addr; void __iomem *lbal_addr; void __iomem *lbam_addr; void __iomem *lbah_addr; void __iomem *device_addr; void __iomem *status_addr; void __iomem *command_addr; void __iomem *altstatus_addr; void __iomem *ctl_addr; #ifdef CONFIG_ATA_BMDMA void __iomem *bmdma_addr; #endif /* CONFIG_ATA_BMDMA */ void __iomem *scr_addr; }; #endif /* CONFIG_ATA_SFF */ struct ata_host { spinlock_t lock; struct device *dev; void __iomem * const *iomap; unsigned int n_ports; unsigned int n_tags; /* nr of NCQ tags */ void *private_data; struct ata_port_operations *ops; unsigned long flags; struct kref kref; struct mutex eh_mutex; struct task_struct *eh_owner; struct ata_port *simplex_claimed; /* channel owning the DMA */ struct ata_port *ports[]; }; struct ata_queued_cmd { struct ata_port *ap; struct ata_device *dev; struct scsi_cmnd *scsicmd; void (*scsidone)(struct scsi_cmnd *); struct ata_taskfile tf; u8 cdb[ATAPI_CDB_LEN]; unsigned long flags; /* ATA_QCFLAG_xxx */ unsigned int tag; /* libata core tag */ unsigned int hw_tag; /* driver tag */ unsigned int n_elem; unsigned int orig_n_elem; int dma_dir; unsigned int sect_size; unsigned int nbytes; unsigned int extrabytes; unsigned int curbytes; struct scatterlist sgent; struct scatterlist *sg; struct scatterlist *cursg; unsigned int cursg_ofs; unsigned int err_mask; struct ata_taskfile result_tf; ata_qc_cb_t complete_fn; void *private_data; void *lldd_task; }; struct ata_port_stats { unsigned long unhandled_irq; unsigned long idle_irq; unsigned long rw_reqbuf; }; struct ata_ering_entry { unsigned int eflags; unsigned int err_mask; u64 timestamp; }; struct ata_ering { int cursor; struct ata_ering_entry ring[ATA_ERING_SIZE]; }; struct ata_device { struct ata_link *link; unsigned int devno; /* 0 or 1 */ unsigned int horkage; /* List of broken features */ unsigned long flags; /* ATA_DFLAG_xxx */ struct scsi_device *sdev; /* attached SCSI device */ void *private_data; #ifdef CONFIG_ATA_ACPI union acpi_object *gtf_cache; unsigned int gtf_filter; #endif #ifdef CONFIG_SATA_ZPODD void *zpodd; #endif struct device tdev; /* n_sector is CLEAR_BEGIN, read comment above CLEAR_BEGIN */ u64 n_sectors; /* size of device, if ATA */ u64 n_native_sectors; /* native size, if ATA */ unsigned int class; /* ATA_DEV_xxx */ unsigned long unpark_deadline; u8 pio_mode; u8 dma_mode; u8 xfer_mode; unsigned int xfer_shift; /* ATA_SHIFT_xxx */ unsigned int multi_count; /* sectors count for READ/WRITE MULTIPLE */ unsigned int max_sectors; /* per-device max sectors */ unsigned int cdb_len; /* per-dev xfer mask */ unsigned long pio_mask; unsigned long mwdma_mask; unsigned long udma_mask; /* for CHS addressing */ u16 cylinders; /* Number of cylinders */ u16 heads; /* Number of heads */ u16 sectors; /* Number of sectors per track */ union { u16 id[ATA_ID_WORDS]; /* IDENTIFY xxx DEVICE data */ u32 gscr[SATA_PMP_GSCR_DWORDS]; /* PMP GSCR block */ } ____cacheline_aligned; /* DEVSLP Timing Variables from Identify Device Data Log */ u8 devslp_timing[ATA_LOG_DEVSLP_SIZE]; /* NCQ send and receive log subcommand support */ u8 ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_SIZE]; u8 ncq_non_data_cmds[ATA_LOG_NCQ_NON_DATA_SIZE]; /* ZAC zone configuration */ u32 zac_zoned_cap; u32 zac_zones_optimal_open; u32 zac_zones_optimal_nonseq; u32 zac_zones_max_open; /* error history */ int spdn_cnt; /* ering is CLEAR_END, read comment above CLEAR_END */ struct ata_ering ering; }; /* Fields between ATA_DEVICE_CLEAR_BEGIN and ATA_DEVICE_CLEAR_END are * cleared to zero on ata_dev_init(). */ #define ATA_DEVICE_CLEAR_BEGIN offsetof(struct ata_device, n_sectors) #define ATA_DEVICE_CLEAR_END offsetof(struct ata_device, ering) struct ata_eh_info { struct ata_device *dev; /* offending device */ u32 serror; /* SError from LLDD */ unsigned int err_mask; /* port-wide err_mask */ unsigned int action; /* ATA_EH_* action mask */ unsigned int dev_action[ATA_MAX_DEVICES]; /* dev EH action */ unsigned int flags; /* ATA_EHI_* flags */ unsigned int probe_mask; char desc[ATA_EH_DESC_LEN]; int desc_len; }; struct ata_eh_context { struct ata_eh_info i; int tries[ATA_MAX_DEVICES]; int cmd_timeout_idx[ATA_MAX_DEVICES] [ATA_EH_CMD_TIMEOUT_TABLE_SIZE]; unsigned int classes[ATA_MAX_DEVICES]; unsigned int did_probe_mask; unsigned int unloaded_mask; unsigned int saved_ncq_enabled; u8 saved_xfer_mode[ATA_MAX_DEVICES]; /* timestamp for the last reset attempt or success */ unsigned long last_reset; }; struct ata_acpi_drive { u32 pio; u32 dma; } __packed; struct ata_acpi_gtm { struct ata_acpi_drive drive[2]; u32 flags; } __packed; struct ata_link { struct ata_port *ap; int pmp; /* port multiplier port # */ struct device tdev; unsigned int active_tag; /* active tag on this link */ u32 sactive; /* active NCQ commands */ unsigned int flags; /* ATA_LFLAG_xxx */ u32 saved_scontrol; /* SControl on probe */ unsigned int hw_sata_spd_limit; unsigned int sata_spd_limit; unsigned int sata_spd; /* current SATA PHY speed */ enum ata_lpm_policy lpm_policy; /* record runtime error info, protected by host_set lock */ struct ata_eh_info eh_info; /* EH context */ struct ata_eh_context eh_context; struct ata_device device[ATA_MAX_DEVICES]; unsigned long last_lpm_change; /* when last LPM change happened */ }; #define ATA_LINK_CLEAR_BEGIN offsetof(struct ata_link, active_tag) #define ATA_LINK_CLEAR_END offsetof(struct ata_link, device[0]) struct ata_port { struct Scsi_Host *scsi_host; /* our co-allocated scsi host */ struct ata_port_operations *ops; spinlock_t *lock; /* Flags owned by the EH context. Only EH should touch these once the port is active */ unsigned long flags; /* ATA_FLAG_xxx */ /* Flags that change dynamically, protected by ap->lock */ unsigned int pflags; /* ATA_PFLAG_xxx */ unsigned int print_id; /* user visible unique port ID */ unsigned int local_port_no; /* host local port num */ unsigned int port_no; /* 0 based port no. inside the host */ #ifdef CONFIG_ATA_SFF struct ata_ioports ioaddr; /* ATA cmd/ctl/dma register blocks */ u8 ctl; /* cache of ATA control register */ u8 last_ctl; /* Cache last written value */ struct ata_link* sff_pio_task_link; /* link currently used */ struct delayed_work sff_pio_task; #ifdef CONFIG_ATA_BMDMA struct ata_bmdma_prd *bmdma_prd; /* BMDMA SG list */ dma_addr_t bmdma_prd_dma; /* and its DMA mapping */ #endif /* CONFIG_ATA_BMDMA */ #endif /* CONFIG_ATA_SFF */ unsigned int pio_mask; unsigned int mwdma_mask; unsigned int udma_mask; unsigned int cbl; /* cable type; ATA_CBL_xxx */ struct ata_queued_cmd qcmd[ATA_MAX_QUEUE + 1]; unsigned long sas_tag_allocated; /* for sas tag allocation only */ u64 qc_active; int nr_active_links; /* #links with active qcs */ unsigned int sas_last_tag; /* track next tag hw expects */ struct ata_link link; /* host default link */ struct ata_link *slave_link; /* see ata_slave_link_init() */ int nr_pmp_links; /* nr of available PMP links */ struct ata_link *pmp_link; /* array of PMP links */ struct ata_link *excl_link; /* for PMP qc exclusion */ struct ata_port_stats stats; struct ata_host *host; struct device *dev; struct device tdev; struct mutex scsi_scan_mutex; struct delayed_work hotplug_task; struct work_struct scsi_rescan_task; unsigned int hsm_task_state; u32 msg_enable; struct list_head eh_done_q; wait_queue_head_t eh_wait_q; int eh_tries; struct completion park_req_pending; pm_message_t pm_mesg; enum ata_lpm_policy target_lpm_policy; struct timer_list fastdrain_timer; unsigned long fastdrain_cnt; async_cookie_t cookie; int em_message_type; void *private_data; #ifdef CONFIG_ATA_ACPI struct ata_acpi_gtm __acpi_init_gtm; /* use ata_acpi_init_gtm() */ #endif /* owned by EH */ u8 sector_buf[ATA_SECT_SIZE] ____cacheline_aligned; }; /* The following initializer overrides a method to NULL whether one of * its parent has the method defined or not. This is equivalent to * ERR_PTR(-ENOENT). Unfortunately, ERR_PTR doesn't render a constant * expression and thus can't be used as an initializer. */ #define ATA_OP_NULL (void *)(unsigned long)(-ENOENT) struct ata_port_operations { /* * Command execution */ int (*qc_defer)(struct ata_queued_cmd *qc); int (*check_atapi_dma)(struct ata_queued_cmd *qc); enum ata_completion_errors (*qc_prep)(struct ata_queued_cmd *qc); unsigned int (*qc_issue)(struct ata_queued_cmd *qc); bool (*qc_fill_rtf)(struct ata_queued_cmd *qc); /* * Configuration and exception handling */ int (*cable_detect)(struct ata_port *ap); unsigned long (*mode_filter)(struct ata_device *dev, unsigned long xfer_mask); void (*set_piomode)(struct ata_port *ap, struct ata_device *dev); void (*set_dmamode)(struct ata_port *ap, struct ata_device *dev); int (*set_mode)(struct ata_link *link, struct ata_device **r_failed_dev); unsigned int (*read_id)(struct ata_device *dev, struct ata_taskfile *tf, u16 *id); void (*dev_config)(struct ata_device *dev); void (*freeze)(struct ata_port *ap); void (*thaw)(struct ata_port *ap); ata_prereset_fn_t prereset; ata_reset_fn_t softreset; ata_reset_fn_t hardreset; ata_postreset_fn_t postreset; ata_prereset_fn_t pmp_prereset; ata_reset_fn_t pmp_softreset; ata_reset_fn_t pmp_hardreset; ata_postreset_fn_t pmp_postreset; void (*error_handler)(struct ata_port *ap); void (*lost_interrupt)(struct ata_port *ap); void (*post_internal_cmd)(struct ata_queued_cmd *qc); void (*sched_eh)(struct ata_port *ap); void (*end_eh)(struct ata_port *ap); /* * Optional features */ int (*scr_read)(struct ata_link *link, unsigned int sc_reg, u32 *val); int (*scr_write)(struct ata_link *link, unsigned int sc_reg, u32 val); void (*pmp_attach)(struct ata_port *ap); void (*pmp_detach)(struct ata_port *ap); int (*set_lpm)(struct ata_link *link, enum ata_lpm_policy policy, unsigned hints); /* * Start, stop, suspend and resume */ int (*port_suspend)(struct ata_port *ap, pm_message_t mesg); int (*port_resume)(struct ata_port *ap); int (*port_start)(struct ata_port *ap); void (*port_stop)(struct ata_port *ap); void (*host_stop)(struct ata_host *host); #ifdef CONFIG_ATA_SFF /* * SFF / taskfile oriented ops */ void (*sff_dev_select)(struct ata_port *ap, unsigned int device); void (*sff_set_devctl)(struct ata_port *ap, u8 ctl); u8 (*sff_check_status)(struct ata_port *ap); u8 (*sff_check_altstatus)(struct ata_port *ap); void (*sff_tf_load)(struct ata_port *ap, const struct ata_taskfile *tf); void (*sff_tf_read)(struct ata_port *ap, struct ata_taskfile *tf); void (*sff_exec_command)(struct ata_port *ap, const struct ata_taskfile *tf); unsigned int (*sff_data_xfer)(struct ata_queued_cmd *qc, unsigned char *buf, unsigned int buflen, int rw); void (*sff_irq_on)(struct ata_port *); bool (*sff_irq_check)(struct ata_port *); void (*sff_irq_clear)(struct ata_port *); void (*sff_drain_fifo)(struct ata_queued_cmd *qc); #ifdef CONFIG_ATA_BMDMA void (*bmdma_setup)(struct ata_queued_cmd *qc); void (*bmdma_start)(struct ata_queued_cmd *qc); void (*bmdma_stop)(struct ata_queued_cmd *qc); u8 (*bmdma_status)(struct ata_port *ap); #endif /* CONFIG_ATA_BMDMA */ #endif /* CONFIG_ATA_SFF */ ssize_t (*em_show)(struct ata_port *ap, char *buf); ssize_t (*em_store)(struct ata_port *ap, const char *message, size_t size); ssize_t (*sw_activity_show)(struct ata_device *dev, char *buf); ssize_t (*sw_activity_store)(struct ata_device *dev, enum sw_activity val); ssize_t (*transmit_led_message)(struct ata_port *ap, u32 state, ssize_t size); /* * Obsolete */ void (*phy_reset)(struct ata_port *ap); void (*eng_timeout)(struct ata_port *ap); /* * ->inherits must be the last field and all the preceding * fields must be pointers. */ const struct ata_port_operations *inherits; }; struct ata_port_info { unsigned long flags; unsigned long link_flags; unsigned long pio_mask; unsigned long mwdma_mask; unsigned long udma_mask; struct ata_port_operations *port_ops; void *private_data; }; struct ata_timing { unsigned short mode; /* ATA mode */ unsigned short setup; /* t1 */ unsigned short act8b; /* t2 for 8-bit I/O */ unsigned short rec8b; /* t2i for 8-bit I/O */ unsigned short cyc8b; /* t0 for 8-bit I/O */ unsigned short active; /* t2 or tD */ unsigned short recover; /* t2i or tK */ unsigned short dmack_hold; /* tj */ unsigned short cycle; /* t0 */ unsigned short udma; /* t2CYCTYP/2 */ }; /* * Core layer - drivers/ata/libata-core.c */ extern struct ata_port_operations ata_dummy_port_ops; extern const struct ata_port_info ata_dummy_port_info; static inline bool ata_is_atapi(u8 prot) { return prot & ATA_PROT_FLAG_ATAPI; } static inline bool ata_is_pio(u8 prot) { return prot & ATA_PROT_FLAG_PIO; } static inline bool ata_is_dma(u8 prot) { return prot & ATA_PROT_FLAG_DMA; } static inline bool ata_is_ncq(u8 prot) { return prot & ATA_PROT_FLAG_NCQ; } static inline bool ata_is_data(u8 prot) { return prot & (ATA_PROT_FLAG_PIO | ATA_PROT_FLAG_DMA); } static inline int is_multi_taskfile(struct ata_taskfile *tf) { return (tf->command == ATA_CMD_READ_MULTI) || (tf->command == ATA_CMD_WRITE_MULTI) || (tf->command == ATA_CMD_READ_MULTI_EXT) || (tf->command == ATA_CMD_WRITE_MULTI_EXT) || (tf->command == ATA_CMD_WRITE_MULTI_FUA_EXT); } static inline int ata_port_is_dummy(struct ata_port *ap) { return ap->ops == &ata_dummy_port_ops; } extern int ata_std_prereset(struct ata_link *link, unsigned long deadline); extern int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, int (*check_ready)(struct ata_link *link)); extern int sata_std_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline); extern void ata_std_postreset(struct ata_link *link, unsigned int *classes); extern struct ata_host *ata_host_alloc(struct device *dev, int max_ports); extern struct ata_host *ata_host_alloc_pinfo(struct device *dev, const struct ata_port_info * const * ppi, int n_ports); extern void ata_host_get(struct ata_host *host); extern void ata_host_put(struct ata_host *host); extern int ata_host_start(struct ata_host *host); extern int ata_host_register(struct ata_host *host, struct scsi_host_template *sht); extern int ata_host_activate(struct ata_host *host, int irq, irq_handler_t irq_handler, unsigned long irq_flags, struct scsi_host_template *sht); extern void ata_host_detach(struct ata_host *host); extern void ata_host_init(struct ata_host *, struct device *, struct ata_port_operations *); extern int ata_scsi_detect(struct scsi_host_template *sht); extern int ata_scsi_ioctl(struct scsi_device *dev, unsigned int cmd, void __user *arg); #ifdef CONFIG_COMPAT #define ATA_SCSI_COMPAT_IOCTL .compat_ioctl = ata_scsi_ioctl, #else #define ATA_SCSI_COMPAT_IOCTL /* empty */ #endif extern int ata_scsi_queuecmd(struct Scsi_Host *h, struct scsi_cmnd *cmd); #if IS_REACHABLE(CONFIG_ATA) bool ata_scsi_dma_need_drain(struct request *rq); #else #define ata_scsi_dma_need_drain NULL #endif extern int ata_sas_scsi_ioctl(struct ata_port *ap, struct scsi_device *dev, unsigned int cmd, void __user *arg); extern bool ata_link_online(struct ata_link *link); extern bool ata_link_offline(struct ata_link *link); #ifdef CONFIG_PM extern int ata_host_suspend(struct ata_host *host, pm_message_t mesg); extern void ata_host_resume(struct ata_host *host); extern void ata_sas_port_suspend(struct ata_port *ap); extern void ata_sas_port_resume(struct ata_port *ap); #else static inline void ata_sas_port_suspend(struct ata_port *ap) { } static inline void ata_sas_port_resume(struct ata_port *ap) { } #endif extern int ata_ratelimit(void); extern void ata_msleep(struct ata_port *ap, unsigned int msecs); extern u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, unsigned long interval, unsigned long timeout); extern int atapi_cmd_type(u8 opcode); extern unsigned long ata_pack_xfermask(unsigned long pio_mask, unsigned long mwdma_mask, unsigned long udma_mask); extern void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, unsigned long *mwdma_mask, unsigned long *udma_mask); extern u8 ata_xfer_mask2mode(unsigned long xfer_mask); extern unsigned long ata_xfer_mode2mask(u8 xfer_mode); extern int ata_xfer_mode2shift(unsigned long xfer_mode); extern const char *ata_mode_string(unsigned long xfer_mask); extern unsigned long ata_id_xfermask(const u16 *id); extern int ata_std_qc_defer(struct ata_queued_cmd *qc); extern enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc); extern void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, unsigned int n_elem); extern unsigned int ata_dev_classify(const struct ata_taskfile *tf); extern void ata_dev_disable(struct ata_device *adev); extern void ata_id_string(const u16 *id, unsigned char *s, unsigned int ofs, unsigned int len); extern void ata_id_c_string(const u16 *id, unsigned char *s, unsigned int ofs, unsigned int len); extern unsigned int ata_do_dev_read_id(struct ata_device *dev, struct ata_taskfile *tf, u16 *id); extern void ata_qc_complete(struct ata_queued_cmd *qc); extern u64 ata_qc_get_active(struct ata_port *ap); extern void ata_scsi_simulate(struct ata_device *dev, struct scsi_cmnd *cmd); extern int ata_std_bios_param(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]); extern void ata_scsi_unlock_native_capacity(struct scsi_device *sdev); extern int ata_scsi_slave_config(struct scsi_device *sdev); extern void ata_scsi_slave_destroy(struct scsi_device *sdev); extern int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth); extern int __ata_change_queue_depth(struct ata_port *ap, struct scsi_device *sdev, int queue_depth); extern struct ata_device *ata_dev_pair(struct ata_device *adev); extern int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev); extern void ata_scsi_port_error_handler(struct Scsi_Host *host, struct ata_port *ap); extern void ata_scsi_cmd_error_handler(struct Scsi_Host *host, struct ata_port *ap, struct list_head *eh_q); /* * SATA specific code - drivers/ata/libata-sata.c */ #ifdef CONFIG_SATA_HOST extern const unsigned long sata_deb_timing_normal[]; extern const unsigned long sata_deb_timing_hotplug[]; extern const unsigned long sata_deb_timing_long[]; static inline const unsigned long * sata_ehc_deb_timing(struct ata_eh_context *ehc) { if (ehc->i.flags & ATA_EHI_HOTPLUGGED) return sata_deb_timing_hotplug; else return sata_deb_timing_normal; } extern int sata_scr_valid(struct ata_link *link); extern int sata_scr_read(struct ata_link *link, int reg, u32 *val); extern int sata_scr_write(struct ata_link *link, int reg, u32 val); extern int sata_scr_write_flush(struct ata_link *link, int reg, u32 val); extern int sata_set_spd(struct ata_link *link); extern int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, unsigned long deadline, bool *online, int (*check_ready)(struct ata_link *)); extern int sata_link_resume(struct ata_link *link, const unsigned long *params, unsigned long deadline); extern void ata_eh_analyze_ncq_error(struct ata_link *link); #else static inline const unsigned long * sata_ehc_deb_timing(struct ata_eh_context *ehc) { return NULL; } static inline int sata_scr_valid(struct ata_link *link) { return 0; } static inline int sata_scr_read(struct ata_link *link, int reg, u32 *val) { return -EOPNOTSUPP; } static inline int sata_scr_write(struct ata_link *link, int reg, u32 val) { return -EOPNOTSUPP; } static inline int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) { return -EOPNOTSUPP; } static inline int sata_set_spd(struct ata_link *link) { return -EOPNOTSUPP; } static inline int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, unsigned long deadline, bool *online, int (*check_ready)(struct ata_link *)) { if (online) *online = false; return -EOPNOTSUPP; } static inline int sata_link_resume(struct ata_link *link, const unsigned long *params, unsigned long deadline) { return -EOPNOTSUPP; } static inline void ata_eh_analyze_ncq_error(struct ata_link *link) { } #endif extern int sata_link_debounce(struct ata_link *link, const unsigned long *params, unsigned long deadline); extern int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, bool spm_wakeup); extern int ata_slave_link_init(struct ata_port *ap); extern void ata_sas_port_destroy(struct ata_port *); extern struct ata_port *ata_sas_port_alloc(struct ata_host *, struct ata_port_info *, struct Scsi_Host *); extern void ata_sas_async_probe(struct ata_port *ap); extern int ata_sas_sync_probe(struct ata_port *ap); extern int ata_sas_port_init(struct ata_port *); extern int ata_sas_port_start(struct ata_port *ap); extern int ata_sas_tport_add(struct device *parent, struct ata_port *ap); extern void ata_sas_tport_delete(struct ata_port *ap); extern void ata_sas_port_stop(struct ata_port *ap); extern int ata_sas_slave_configure(struct scsi_device *, struct ata_port *); extern int ata_sas_queuecmd(struct scsi_cmnd *cmd, struct ata_port *ap); extern void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis); extern void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf); extern int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active); extern bool sata_lpm_ignore_phy_events(struct ata_link *link); extern int sata_async_notification(struct ata_port *ap); extern int ata_cable_40wire(struct ata_port *ap); extern int ata_cable_80wire(struct ata_port *ap); extern int ata_cable_sata(struct ata_port *ap); extern int ata_cable_ignore(struct ata_port *ap); extern int ata_cable_unknown(struct ata_port *ap); /* Timing helpers */ extern unsigned int ata_pio_need_iordy(const struct ata_device *); extern u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle); /* PCI */ #ifdef CONFIG_PCI struct pci_dev; struct pci_bits { unsigned int reg; /* PCI config register to read */ unsigned int width; /* 1 (8 bit), 2 (16 bit), 4 (32 bit) */ unsigned long mask; unsigned long val; }; extern int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits); extern void ata_pci_shutdown_one(struct pci_dev *pdev); extern void ata_pci_remove_one(struct pci_dev *pdev); #ifdef CONFIG_PM extern void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg); extern int __must_check ata_pci_device_do_resume(struct pci_dev *pdev); extern int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg); extern int ata_pci_device_resume(struct pci_dev *pdev); #endif /* CONFIG_PM */ #endif /* CONFIG_PCI */ struct platform_device; extern int ata_platform_remove_one(struct platform_device *pdev); /* * ACPI - drivers/ata/libata-acpi.c */ #ifdef CONFIG_ATA_ACPI static inline const struct ata_acpi_gtm *ata_acpi_init_gtm(struct ata_port *ap) { if (ap->pflags & ATA_PFLAG_INIT_GTM_VALID) return &ap->__acpi_init_gtm; return NULL; } int ata_acpi_stm(struct ata_port *ap, const struct ata_acpi_gtm *stm); int ata_acpi_gtm(struct ata_port *ap, struct ata_acpi_gtm *stm); unsigned long ata_acpi_gtm_xfermask(struct ata_device *dev, const struct ata_acpi_gtm *gtm); int ata_acpi_cbl_80wire(struct ata_port *ap, const struct ata_acpi_gtm *gtm); #else static inline const struct ata_acpi_gtm *ata_acpi_init_gtm(struct ata_port *ap) { return NULL; } static inline int ata_acpi_stm(const struct ata_port *ap, struct ata_acpi_gtm *stm) { return -ENOSYS; } static inline int ata_acpi_gtm(const struct ata_port *ap, struct ata_acpi_gtm *stm) { return -ENOSYS; } static inline unsigned int ata_acpi_gtm_xfermask(struct ata_device *dev, const struct ata_acpi_gtm *gtm) { return 0; } static inline int ata_acpi_cbl_80wire(struct ata_port *ap, const struct ata_acpi_gtm *gtm) { return 0; } #endif /* * EH - drivers/ata/libata-eh.c */ extern void ata_port_schedule_eh(struct ata_port *ap); extern void ata_port_wait_eh(struct ata_port *ap); extern int ata_link_abort(struct ata_link *link); extern int ata_port_abort(struct ata_port *ap); extern int ata_port_freeze(struct ata_port *ap); extern void ata_eh_freeze_port(struct ata_port *ap); extern void ata_eh_thaw_port(struct ata_port *ap); extern void ata_eh_qc_complete(struct ata_queued_cmd *qc); extern void ata_eh_qc_retry(struct ata_queued_cmd *qc); extern void ata_do_eh(struct ata_port *ap, ata_prereset_fn_t prereset, ata_reset_fn_t softreset, ata_reset_fn_t hardreset, ata_postreset_fn_t postreset); extern void ata_std_error_handler(struct ata_port *ap); extern void ata_std_sched_eh(struct ata_port *ap); extern void ata_std_end_eh(struct ata_port *ap); extern int ata_link_nr_enabled(struct ata_link *link); /* * Base operations to inherit from and initializers for sht * * Operations * * base : Common to all libata drivers. * sata : SATA controllers w/ native interface. * pmp : SATA controllers w/ PMP support. * sff : SFF ATA controllers w/o BMDMA support. * bmdma : SFF ATA controllers w/ BMDMA support. * * sht initializers * * BASE : Common to all libata drivers. The user must set * sg_tablesize and dma_boundary. * PIO : SFF ATA controllers w/ only PIO support. * BMDMA : SFF ATA controllers w/ BMDMA support. sg_tablesize and * dma_boundary are set to BMDMA limits. * NCQ : SATA controllers supporting NCQ. The user must set * sg_tablesize, dma_boundary and can_queue. */ extern const struct ata_port_operations ata_base_port_ops; extern const struct ata_port_operations sata_port_ops; extern struct device_attribute *ata_common_sdev_attrs[]; /* * All sht initializers (BASE, PIO, BMDMA, NCQ) must be instantiated * by the edge drivers. Because the 'module' field of sht must be the * edge driver's module reference, otherwise the driver can be unloaded * even if the scsi_device is being accessed. */ #define __ATA_BASE_SHT(drv_name) \ .module = THIS_MODULE, \ .name = drv_name, \ .ioctl = ata_scsi_ioctl, \ ATA_SCSI_COMPAT_IOCTL \ .queuecommand = ata_scsi_queuecmd, \ .dma_need_drain = ata_scsi_dma_need_drain, \ .can_queue = ATA_DEF_QUEUE, \ .tag_alloc_policy = BLK_TAG_ALLOC_RR, \ .this_id = ATA_SHT_THIS_ID, \ .emulated = ATA_SHT_EMULATED, \ .proc_name = drv_name, \ .slave_configure = ata_scsi_slave_config, \ .slave_destroy = ata_scsi_slave_destroy, \ .bios_param = ata_std_bios_param, \ .unlock_native_capacity = ata_scsi_unlock_native_capacity #define ATA_BASE_SHT(drv_name) \ __ATA_BASE_SHT(drv_name), \ .sdev_attrs = ata_common_sdev_attrs #ifdef CONFIG_SATA_HOST extern struct device_attribute *ata_ncq_sdev_attrs[]; #define ATA_NCQ_SHT(drv_name) \ __ATA_BASE_SHT(drv_name), \ .sdev_attrs = ata_ncq_sdev_attrs, \ .change_queue_depth = ata_scsi_change_queue_depth #endif /* * PMP helpers */ #ifdef CONFIG_SATA_PMP static inline bool sata_pmp_supported(struct ata_port *ap) { return ap->flags & ATA_FLAG_PMP; } static inline bool sata_pmp_attached(struct ata_port *ap) { return ap->nr_pmp_links != 0; } static inline bool ata_is_host_link(const struct ata_link *link) { return link == &link->ap->link || link == link->ap->slave_link; } #else /* CONFIG_SATA_PMP */ static inline bool sata_pmp_supported(struct ata_port *ap) { return false; } static inline bool sata_pmp_attached(struct ata_port *ap) { return false; } static inline bool ata_is_host_link(const struct ata_link *link) { return 1; } #endif /* CONFIG_SATA_PMP */ static inline int sata_srst_pmp(struct ata_link *link) { if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) return SATA_PMP_CTRL_PORT; return link->pmp; } /* * printk helpers */ __printf(3, 4) void ata_port_printk(const struct ata_port *ap, const char *level, const char *fmt, ...); __printf(3, 4) void ata_link_printk(const struct ata_link *link, const char *level, const char *fmt, ...); __printf(3, 4) void ata_dev_printk(const struct ata_device *dev, const char *level, const char *fmt, ...); #define ata_port_err(ap, fmt, ...) \ ata_port_printk(ap, KERN_ERR, fmt, ##__VA_ARGS__) #define ata_port_warn(ap, fmt, ...) \ ata_port_printk(ap, KERN_WARNING, fmt, ##__VA_ARGS__) #define ata_port_notice(ap, fmt, ...) \ ata_port_printk(ap, KERN_NOTICE, fmt, ##__VA_ARGS__) #define ata_port_info(ap, fmt, ...) \ ata_port_printk(ap, KERN_INFO, fmt, ##__VA_ARGS__) #define ata_port_dbg(ap, fmt, ...) \ ata_port_printk(ap, KERN_DEBUG, fmt, ##__VA_ARGS__) #define ata_link_err(link, fmt, ...) \ ata_link_printk(link, KERN_ERR, fmt, ##__VA_ARGS__) #define ata_link_warn(link, fmt, ...) \ ata_link_printk(link, KERN_WARNING, fmt, ##__VA_ARGS__) #define ata_link_notice(link, fmt, ...) \ ata_link_printk(link, KERN_NOTICE, fmt, ##__VA_ARGS__) #define ata_link_info(link, fmt, ...) \ ata_link_printk(link, KERN_INFO, fmt, ##__VA_ARGS__) #define ata_link_dbg(link, fmt, ...) \ ata_link_printk(link, KERN_DEBUG, fmt, ##__VA_ARGS__) #define ata_dev_err(dev, fmt, ...) \ ata_dev_printk(dev, KERN_ERR, fmt, ##__VA_ARGS__) #define ata_dev_warn(dev, fmt, ...) \ ata_dev_printk(dev, KERN_WARNING, fmt, ##__VA_ARGS__) #define ata_dev_notice(dev, fmt, ...) \ ata_dev_printk(dev, KERN_NOTICE, fmt, ##__VA_ARGS__) #define ata_dev_info(dev, fmt, ...) \ ata_dev_printk(dev, KERN_INFO, fmt, ##__VA_ARGS__) #define ata_dev_dbg(dev, fmt, ...) \ ata_dev_printk(dev, KERN_DEBUG, fmt, ##__VA_ARGS__) void ata_print_version(const struct device *dev, const char *version); /* * ata_eh_info helpers */ extern __printf(2, 3) void __ata_ehi_push_desc(struct ata_eh_info *ehi, const char *fmt, ...); extern __printf(2, 3) void ata_ehi_push_desc(struct ata_eh_info *ehi, const char *fmt, ...); extern void ata_ehi_clear_desc(struct ata_eh_info *ehi); static inline void ata_ehi_hotplugged(struct ata_eh_info *ehi) { ehi->probe_mask |= (1 << ATA_MAX_DEVICES) - 1; ehi->flags |= ATA_EHI_HOTPLUGGED; ehi->action |= ATA_EH_RESET | ATA_EH_ENABLE_LINK; ehi->err_mask |= AC_ERR_ATA_BUS; } /* * port description helpers */ extern __printf(2, 3) void ata_port_desc(struct ata_port *ap, const char *fmt, ...); #ifdef CONFIG_PCI extern void ata_port_pbar_desc(struct ata_port *ap, int bar, ssize_t offset, const char *name); #endif static inline bool ata_tag_internal(unsigned int tag) { return tag == ATA_TAG_INTERNAL; } static inline bool ata_tag_valid(unsigned int tag) { return tag < ATA_MAX_QUEUE || ata_tag_internal(tag); } #define __ata_qc_for_each(ap, qc, tag, max_tag, fn) \ for ((tag) = 0; (tag) < (max_tag) && \ ({ qc = fn((ap), (tag)); 1; }); (tag)++) \ /* * Internal use only, iterate commands ignoring error handling and * status of 'qc'. */ #define ata_qc_for_each_raw(ap, qc, tag) \ __ata_qc_for_each(ap, qc, tag, ATA_MAX_QUEUE, __ata_qc_from_tag) /* * Iterate all potential commands that can be queued */ #define ata_qc_for_each(ap, qc, tag) \ __ata_qc_for_each(ap, qc, tag, ATA_MAX_QUEUE, ata_qc_from_tag) /* * Like ata_qc_for_each, but with the internal tag included */ #define ata_qc_for_each_with_internal(ap, qc, tag) \ __ata_qc_for_each(ap, qc, tag, ATA_MAX_QUEUE + 1, ata_qc_from_tag) /* * device helpers */ static inline unsigned int ata_class_enabled(unsigned int class) { return class == ATA_DEV_ATA || class == ATA_DEV_ATAPI || class == ATA_DEV_PMP || class == ATA_DEV_SEMB || class == ATA_DEV_ZAC; } static inline unsigned int ata_class_disabled(unsigned int class) { return class == ATA_DEV_ATA_UNSUP || class == ATA_DEV_ATAPI_UNSUP || class == ATA_DEV_PMP_UNSUP || class == ATA_DEV_SEMB_UNSUP || class == ATA_DEV_ZAC_UNSUP; } static inline unsigned int ata_class_absent(unsigned int class) { return !ata_class_enabled(class) && !ata_class_disabled(class); } static inline unsigned int ata_dev_enabled(const struct ata_device *dev) { return ata_class_enabled(dev->class); } static inline unsigned int ata_dev_disabled(const struct ata_device *dev) { return ata_class_disabled(dev->class); } static inline unsigned int ata_dev_absent(const struct ata_device *dev) { return ata_class_absent(dev->class); } /* * link helpers */ static inline int ata_link_max_devices(const struct ata_link *link) { if (ata_is_host_link(link) && link->ap->flags & ATA_FLAG_SLAVE_POSS) return 2; return 1; } static inline int ata_link_active(struct ata_link *link) { return ata_tag_valid(link->active_tag) || link->sactive; } /* * Iterators * * ATA_LITER_* constants are used to select link iteration mode and * ATA_DITER_* device iteration mode. * * For a custom iteration directly using ata_{link|dev}_next(), if * @link or @dev, respectively, is NULL, the first element is * returned. @dev and @link can be any valid device or link and the * next element according to the iteration mode will be returned. * After the last element, NULL is returned. */ enum ata_link_iter_mode { ATA_LITER_EDGE, /* if present, PMP links only; otherwise, * host link. no slave link */ ATA_LITER_HOST_FIRST, /* host link followed by PMP or slave links */ ATA_LITER_PMP_FIRST, /* PMP links followed by host link, * slave link still comes after host link */ }; enum ata_dev_iter_mode { ATA_DITER_ENABLED, ATA_DITER_ENABLED_REVERSE, ATA_DITER_ALL, ATA_DITER_ALL_REVERSE, }; extern struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, enum ata_link_iter_mode mode); extern struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, enum ata_dev_iter_mode mode); /* * Shortcut notation for iterations * * ata_for_each_link() iterates over each link of @ap according to * @mode. @link points to the current link in the loop. @link is * NULL after loop termination. ata_for_each_dev() works the same way * except that it iterates over each device of @link. * * Note that the mode prefixes ATA_{L|D}ITER_ shouldn't need to be * specified when using the following shorthand notations. Only the * mode itself (EDGE, HOST_FIRST, ENABLED, etc...) should be * specified. This not only increases brevity but also makes it * impossible to use ATA_LITER_* for device iteration or vice-versa. */ #define ata_for_each_link(link, ap, mode) \ for ((link) = ata_link_next(NULL, (ap), ATA_LITER_##mode); (link); \ (link) = ata_link_next((link), (ap), ATA_LITER_##mode)) #define ata_for_each_dev(dev, link, mode) \ for ((dev) = ata_dev_next(NULL, (link), ATA_DITER_##mode); (dev); \ (dev) = ata_dev_next((dev), (link), ATA_DITER_##mode)) /** * ata_ncq_enabled - Test whether NCQ is enabled * @dev: ATA device to test for * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * 1 if NCQ is enabled for @dev, 0 otherwise. */ static inline int ata_ncq_enabled(struct ata_device *dev) { if (!IS_ENABLED(CONFIG_SATA_HOST)) return 0; return (dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF | ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ; } static inline bool ata_fpdma_dsm_supported(struct ata_device *dev) { return (dev->flags & ATA_DFLAG_NCQ_SEND_RECV) && (dev->ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] & ATA_LOG_NCQ_SEND_RECV_DSM_TRIM); } static inline bool ata_fpdma_read_log_supported(struct ata_device *dev) { return (dev->flags & ATA_DFLAG_NCQ_SEND_RECV) && (dev->ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_RD_LOG_OFFSET] & ATA_LOG_NCQ_SEND_RECV_RD_LOG_SUPPORTED); } static inline bool ata_fpdma_zac_mgmt_in_supported(struct ata_device *dev) { return (dev->flags & ATA_DFLAG_NCQ_SEND_RECV) && (dev->ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_ZAC_MGMT_OFFSET] & ATA_LOG_NCQ_SEND_RECV_ZAC_MGMT_IN_SUPPORTED); } static inline bool ata_fpdma_zac_mgmt_out_supported(struct ata_device *dev) { return (dev->ncq_non_data_cmds[ATA_LOG_NCQ_NON_DATA_ZAC_MGMT_OFFSET] & ATA_LOG_NCQ_NON_DATA_ZAC_MGMT_OUT); } static inline void ata_qc_set_polling(struct ata_queued_cmd *qc) { qc->tf.ctl |= ATA_NIEN; } static inline struct ata_queued_cmd *__ata_qc_from_tag(struct ata_port *ap, unsigned int tag) { if (ata_tag_valid(tag)) return &ap->qcmd[tag]; return NULL; } static inline struct ata_queued_cmd *ata_qc_from_tag(struct ata_port *ap, unsigned int tag) { struct ata_queued_cmd *qc = __ata_qc_from_tag(ap, tag); if (unlikely(!qc) || !ap->ops->error_handler) return qc; if ((qc->flags & (ATA_QCFLAG_ACTIVE | ATA_QCFLAG_FAILED)) == ATA_QCFLAG_ACTIVE) return qc; return NULL; } static inline unsigned int ata_qc_raw_nbytes(struct ata_queued_cmd *qc) { return qc->nbytes - min(qc->extrabytes, qc->nbytes); } static inline void ata_tf_init(struct ata_device *dev, struct ata_taskfile *tf) { memset(tf, 0, sizeof(*tf)); #ifdef CONFIG_ATA_SFF tf->ctl = dev->link->ap->ctl; #else tf->ctl = ATA_DEVCTL_OBS; #endif if (dev->devno == 0) tf->device = ATA_DEVICE_OBS; else tf->device = ATA_DEVICE_OBS | ATA_DEV1; } static inline void ata_qc_reinit(struct ata_queued_cmd *qc) { qc->dma_dir = DMA_NONE; qc->sg = NULL; qc->flags = 0; qc->cursg = NULL; qc->cursg_ofs = 0; qc->nbytes = qc->extrabytes = qc->curbytes = 0; qc->n_elem = 0; qc->err_mask = 0; qc->sect_size = ATA_SECT_SIZE; ata_tf_init(qc->dev, &qc->tf); /* init result_tf such that it indicates normal completion */ qc->result_tf.command = ATA_DRDY; qc->result_tf.feature = 0; } static inline int ata_try_flush_cache(const struct ata_device *dev) { return ata_id_wcache_enabled(dev->id) || ata_id_has_flush(dev->id) || ata_id_has_flush_ext(dev->id); } static inline unsigned int ac_err_mask(u8 status) { if (status & (ATA_BUSY | ATA_DRQ)) return AC_ERR_HSM; if (status & (ATA_ERR | ATA_DF)) return AC_ERR_DEV; return 0; } static inline unsigned int __ac_err_mask(u8 status) { unsigned int mask = ac_err_mask(status); if (mask == 0) return AC_ERR_OTHER; return mask; } static inline struct ata_port *ata_shost_to_port(struct Scsi_Host *host) { return *(struct ata_port **)&host->hostdata[0]; } static inline int ata_check_ready(u8 status) { if (!(status & ATA_BUSY)) return 1; /* 0xff indicates either no device or device not ready */ if (status == 0xff) return -ENODEV; return 0; } static inline unsigned long ata_deadline(unsigned long from_jiffies, unsigned long timeout_msecs) { return from_jiffies + msecs_to_jiffies(timeout_msecs); } /* Don't open code these in drivers as there are traps. Firstly the range may change in future hardware and specs, secondly 0xFF means 'no DMA' but is > UDMA_0. Dyma ddreigiau */ static inline int ata_using_mwdma(struct ata_device *adev) { if (adev->dma_mode >= XFER_MW_DMA_0 && adev->dma_mode <= XFER_MW_DMA_4) return 1; return 0; } static inline int ata_using_udma(struct ata_device *adev) { if (adev->dma_mode >= XFER_UDMA_0 && adev->dma_mode <= XFER_UDMA_7) return 1; return 0; } static inline int ata_dma_enabled(struct ata_device *adev) { return (adev->dma_mode == 0xFF ? 0 : 1); } /************************************************************************** * PATA timings - drivers/ata/libata-pata-timings.c */ extern const struct ata_timing *ata_timing_find_mode(u8 xfer_mode); extern int ata_timing_compute(struct ata_device *, unsigned short, struct ata_timing *, int, int); extern void ata_timing_merge(const struct ata_timing *, const struct ata_timing *, struct ata_timing *, unsigned int); /************************************************************************** * PMP - drivers/ata/libata-pmp.c */ #ifdef CONFIG_SATA_PMP extern const struct ata_port_operations sata_pmp_port_ops; extern int sata_pmp_qc_defer_cmd_switch(struct ata_queued_cmd *qc); extern void sata_pmp_error_handler(struct ata_port *ap); #else /* CONFIG_SATA_PMP */ #define sata_pmp_port_ops sata_port_ops #define sata_pmp_qc_defer_cmd_switch ata_std_qc_defer #define sata_pmp_error_handler ata_std_error_handler #endif /* CONFIG_SATA_PMP */ /************************************************************************** * SFF - drivers/ata/libata-sff.c */ #ifdef CONFIG_ATA_SFF extern const struct ata_port_operations ata_sff_port_ops; extern const struct ata_port_operations ata_bmdma32_port_ops; /* PIO only, sg_tablesize and dma_boundary limits can be removed */ #define ATA_PIO_SHT(drv_name) \ ATA_BASE_SHT(drv_name), \ .sg_tablesize = LIBATA_MAX_PRD, \ .dma_boundary = ATA_DMA_BOUNDARY extern void ata_sff_dev_select(struct ata_port *ap, unsigned int device); extern u8 ata_sff_check_status(struct ata_port *ap); extern void ata_sff_pause(struct ata_port *ap); extern void ata_sff_dma_pause(struct ata_port *ap); extern int ata_sff_busy_sleep(struct ata_port *ap, unsigned long timeout_pat, unsigned long timeout); extern int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline); extern void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf); extern void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf); extern void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf); extern unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, unsigned int buflen, int rw); extern unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, unsigned int buflen, int rw); extern void ata_sff_irq_on(struct ata_port *ap); extern void ata_sff_irq_clear(struct ata_port *ap); extern int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, u8 status, int in_wq); extern void ata_sff_queue_work(struct work_struct *work); extern void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay); extern void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay); extern unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc); extern bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc); extern unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc); extern irqreturn_t ata_sff_interrupt(int irq, void *dev_instance); extern void ata_sff_lost_interrupt(struct ata_port *ap); extern void ata_sff_freeze(struct ata_port *ap); extern void ata_sff_thaw(struct ata_port *ap); extern int ata_sff_prereset(struct ata_link *link, unsigned long deadline); extern unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, u8 *r_err); extern int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, unsigned long deadline); extern int ata_sff_softreset(struct ata_link *link, unsigned int *classes, unsigned long deadline); extern int sata_sff_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline); extern void ata_sff_postreset(struct ata_link *link, unsigned int *classes); extern void ata_sff_drain_fifo(struct ata_queued_cmd *qc); extern void ata_sff_error_handler(struct ata_port *ap); extern void ata_sff_std_ports(struct ata_ioports *ioaddr); #ifdef CONFIG_PCI extern int ata_pci_sff_init_host(struct ata_host *host); extern int ata_pci_sff_prepare_host(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct ata_host **r_host); extern int ata_pci_sff_activate_host(struct ata_host *host, irq_handler_t irq_handler, struct scsi_host_template *sht); extern int ata_pci_sff_init_one(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct scsi_host_template *sht, void *host_priv, int hflags); #endif /* CONFIG_PCI */ #ifdef CONFIG_ATA_BMDMA extern const struct ata_port_operations ata_bmdma_port_ops; #define ATA_BMDMA_SHT(drv_name) \ ATA_BASE_SHT(drv_name), \ .sg_tablesize = LIBATA_MAX_PRD, \ .dma_boundary = ATA_DMA_BOUNDARY extern enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc); extern unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc); extern enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc); extern unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc); extern irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance); extern void ata_bmdma_error_handler(struct ata_port *ap); extern void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc); extern void ata_bmdma_irq_clear(struct ata_port *ap); extern void ata_bmdma_setup(struct ata_queued_cmd *qc); extern void ata_bmdma_start(struct ata_queued_cmd *qc); extern void ata_bmdma_stop(struct ata_queued_cmd *qc); extern u8 ata_bmdma_status(struct ata_port *ap); extern int ata_bmdma_port_start(struct ata_port *ap); extern int ata_bmdma_port_start32(struct ata_port *ap); #ifdef CONFIG_PCI extern int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev); extern void ata_pci_bmdma_init(struct ata_host *host); extern int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct ata_host **r_host); extern int ata_pci_bmdma_init_one(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct scsi_host_template *sht, void *host_priv, int hflags); #endif /* CONFIG_PCI */ #endif /* CONFIG_ATA_BMDMA */ /** * ata_sff_busy_wait - Wait for a port status register * @ap: Port to wait for. * @bits: bits that must be clear * @max: number of 10uS waits to perform * * Waits up to max*10 microseconds for the selected bits in the port's * status register to be cleared. * Returns final value of status register. * * LOCKING: * Inherited from caller. */ static inline u8 ata_sff_busy_wait(struct ata_port *ap, unsigned int bits, unsigned int max) { u8 status; do { udelay(10); status = ap->ops->sff_check_status(ap); max--; } while (status != 0xff && (status & bits) && (max > 0)); return status; } /** * ata_wait_idle - Wait for a port to be idle. * @ap: Port to wait for. * * Waits up to 10ms for port's BUSY and DRQ signals to clear. * Returns final value of status register. * * LOCKING: * Inherited from caller. */ static inline u8 ata_wait_idle(struct ata_port *ap) { u8 status = ata_sff_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000); #ifdef ATA_DEBUG if (status != 0xff && (status & (ATA_BUSY | ATA_DRQ))) ata_port_printk(ap, KERN_DEBUG, "abnormal Status 0x%X\n", status); #endif return status; } #endif /* CONFIG_ATA_SFF */ #endif /* __LINUX_LIBATA_H__ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Scatterlist Cryptographic API. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 David S. Miller (davem@redhat.com) * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> * * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> * and Nettle, by Niels Möller. */ #ifndef _LINUX_CRYPTO_H #define _LINUX_CRYPTO_H #include <linux/atomic.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/bug.h> #include <linux/refcount.h> #include <linux/slab.h> #include <linux/completion.h> /* * Autoloaded crypto modules should only use a prefixed name to avoid allowing * arbitrary modules to be loaded. Loading from userspace may still need the * unprefixed names, so retains those aliases as well. * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro * expands twice on the same line. Instead, use a separate base name for the * alias. */ #define MODULE_ALIAS_CRYPTO(name) \ __MODULE_INFO(alias, alias_userspace, name); \ __MODULE_INFO(alias, alias_crypto, "crypto-" name) /* * Algorithm masks and types. */ #define CRYPTO_ALG_TYPE_MASK 0x0000000f #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 #define CRYPTO_ALG_TYPE_KPP 0x00000008 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b #define CRYPTO_ALG_TYPE_RNG 0x0000000c #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d #define CRYPTO_ALG_TYPE_HASH 0x0000000e #define CRYPTO_ALG_TYPE_SHASH 0x0000000e #define CRYPTO_ALG_TYPE_AHASH 0x0000000f #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e #define CRYPTO_ALG_LARVAL 0x00000010 #define CRYPTO_ALG_DEAD 0x00000020 #define CRYPTO_ALG_DYING 0x00000040 #define CRYPTO_ALG_ASYNC 0x00000080 /* * Set if the algorithm (or an algorithm which it uses) requires another * algorithm of the same type to handle corner cases. */ #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 /* * Set if the algorithm has passed automated run-time testing. Note that * if there is no run-time testing for a given algorithm it is considered * to have passed. */ #define CRYPTO_ALG_TESTED 0x00000400 /* * Set if the algorithm is an instance that is built from templates. */ #define CRYPTO_ALG_INSTANCE 0x00000800 /* Set this bit if the algorithm provided is hardware accelerated but * not available to userspace via instruction set or so. */ #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 /* * Mark a cipher as a service implementation only usable by another * cipher and never by a normal user of the kernel crypto API */ #define CRYPTO_ALG_INTERNAL 0x00002000 /* * Set if the algorithm has a ->setkey() method but can be used without * calling it first, i.e. there is a default key. */ #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 /* * Don't trigger module loading */ #define CRYPTO_NOLOAD 0x00008000 /* * The algorithm may allocate memory during request processing, i.e. during * encryption, decryption, or hashing. Users can request an algorithm with this * flag unset if they can't handle memory allocation failures. * * This flag is currently only implemented for algorithms of type "skcipher", * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not * have this flag set even if they allocate memory. * * In some edge cases, algorithms can allocate memory regardless of this flag. * To avoid these cases, users must obey the following usage constraints: * skcipher: * - The IV buffer and all scatterlist elements must be aligned to the * algorithm's alignmask. * - If the data were to be divided into chunks of size * crypto_skcipher_walksize() (with any remainder going at the end), no * chunk can cross a page boundary or a scatterlist element boundary. * aead: * - The IV buffer and all scatterlist elements must be aligned to the * algorithm's alignmask. * - The first scatterlist element must contain all the associated data, * and its pages must be !PageHighMem. * - If the plaintext/ciphertext were to be divided into chunks of size * crypto_aead_walksize() (with the remainder going at the end), no chunk * can cross a page boundary or a scatterlist element boundary. * ahash: * - The result buffer must be aligned to the algorithm's alignmask. * - crypto_ahash_finup() must not be used unless the algorithm implements * ->finup() natively. */ #define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000 /* * Transform masks and values (for crt_flags). */ #define CRYPTO_TFM_NEED_KEY 0x00000001 #define CRYPTO_TFM_REQ_MASK 0x000fff00 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 /* * Miscellaneous stuff. */ #define CRYPTO_MAX_ALG_NAME 128 /* * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual * declaration) is used to ensure that the crypto_tfm context structure is * aligned correctly for the given architecture so that there are no alignment * faults for C data types. On architectures that support non-cache coherent * DMA, such as ARM or arm64, it also takes into account the minimal alignment * that is required to ensure that the context struct member does not share any * cachelines with the rest of the struct. This is needed to ensure that cache * maintenance for non-coherent DMA (cache invalidation in particular) does not * affect data that may be accessed by the CPU concurrently. */ #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) struct scatterlist; struct crypto_async_request; struct crypto_tfm; struct crypto_type; typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); /** * DOC: Block Cipher Context Data Structures * * These data structures define the operating context for each block cipher * type. */ struct crypto_async_request { struct list_head list; crypto_completion_t complete; void *data; struct crypto_tfm *tfm; u32 flags; }; /** * DOC: Block Cipher Algorithm Definitions * * These data structures define modular crypto algorithm implementations, * managed via crypto_register_alg() and crypto_unregister_alg(). */ /** * struct cipher_alg - single-block symmetric ciphers definition * @cia_min_keysize: Minimum key size supported by the transformation. This is * the smallest key length supported by this transformation * algorithm. This must be set to one of the pre-defined * values as this is not hardware specific. Possible values * for this field can be found via git grep "_MIN_KEY_SIZE" * include/crypto/ * @cia_max_keysize: Maximum key size supported by the transformation. This is * the largest key length supported by this transformation * algorithm. This must be set to one of the pre-defined values * as this is not hardware specific. Possible values for this * field can be found via git grep "_MAX_KEY_SIZE" * include/crypto/ * @cia_setkey: Set key for the transformation. This function is used to either * program a supplied key into the hardware or store the key in the * transformation context for programming it later. Note that this * function does modify the transformation context. This function * can be called multiple times during the existence of the * transformation object, so one must make sure the key is properly * reprogrammed into the hardware. This function is also * responsible for checking the key length for validity. * @cia_encrypt: Encrypt a single block. This function is used to encrypt a * single block of data, which must be @cra_blocksize big. This * always operates on a full @cra_blocksize and it is not possible * to encrypt a block of smaller size. The supplied buffers must * therefore also be at least of @cra_blocksize size. Both the * input and output buffers are always aligned to @cra_alignmask. * In case either of the input or output buffer supplied by user * of the crypto API is not aligned to @cra_alignmask, the crypto * API will re-align the buffers. The re-alignment means that a * new buffer will be allocated, the data will be copied into the * new buffer, then the processing will happen on the new buffer, * then the data will be copied back into the original buffer and * finally the new buffer will be freed. In case a software * fallback was put in place in the @cra_init call, this function * might need to use the fallback if the algorithm doesn't support * all of the key sizes. In case the key was stored in * transformation context, the key might need to be re-programmed * into the hardware in this function. This function shall not * modify the transformation context, as this function may be * called in parallel with the same transformation object. * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to * @cia_encrypt, and the conditions are exactly the same. * * All fields are mandatory and must be filled. */ struct cipher_alg { unsigned int cia_min_keysize; unsigned int cia_max_keysize; int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen); void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); }; /** * struct compress_alg - compression/decompression algorithm * @coa_compress: Compress a buffer of specified length, storing the resulting * data in the specified buffer. Return the length of the * compressed data in dlen. * @coa_decompress: Decompress the source buffer, storing the uncompressed * data in the specified buffer. The length of the data is * returned in dlen. * * All fields are mandatory. */ struct compress_alg { int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); }; #ifdef CONFIG_CRYPTO_STATS /* * struct crypto_istat_aead - statistics for AEAD algorithm * @encrypt_cnt: number of encrypt requests * @encrypt_tlen: total data size handled by encrypt requests * @decrypt_cnt: number of decrypt requests * @decrypt_tlen: total data size handled by decrypt requests * @err_cnt: number of error for AEAD requests */ struct crypto_istat_aead { atomic64_t encrypt_cnt; atomic64_t encrypt_tlen; atomic64_t decrypt_cnt; atomic64_t decrypt_tlen; atomic64_t err_cnt; }; /* * struct crypto_istat_akcipher - statistics for akcipher algorithm * @encrypt_cnt: number of encrypt requests * @encrypt_tlen: total data size handled by encrypt requests * @decrypt_cnt: number of decrypt requests * @decrypt_tlen: total data size handled by decrypt requests * @verify_cnt: number of verify operation * @sign_cnt: number of sign requests * @err_cnt: number of error for akcipher requests */ struct crypto_istat_akcipher { atomic64_t encrypt_cnt; atomic64_t encrypt_tlen; atomic64_t decrypt_cnt; atomic64_t decrypt_tlen; atomic64_t verify_cnt; atomic64_t sign_cnt; atomic64_t err_cnt; }; /* * struct crypto_istat_cipher - statistics for cipher algorithm * @encrypt_cnt: number of encrypt requests * @encrypt_tlen: total data size handled by encrypt requests * @decrypt_cnt: number of decrypt requests * @decrypt_tlen: total data size handled by decrypt requests * @err_cnt: number of error for cipher requests */ struct crypto_istat_cipher { atomic64_t encrypt_cnt; atomic64_t encrypt_tlen; atomic64_t decrypt_cnt; atomic64_t decrypt_tlen; atomic64_t err_cnt; }; /* * struct crypto_istat_compress - statistics for compress algorithm * @compress_cnt: number of compress requests * @compress_tlen: total data size handled by compress requests * @decompress_cnt: number of decompress requests * @decompress_tlen: total data size handled by decompress requests * @err_cnt: number of error for compress requests */ struct crypto_istat_compress { atomic64_t compress_cnt; atomic64_t compress_tlen; atomic64_t decompress_cnt; atomic64_t decompress_tlen; atomic64_t err_cnt; }; /* * struct crypto_istat_hash - statistics for has algorithm * @hash_cnt: number of hash requests * @hash_tlen: total data size hashed * @err_cnt: number of error for hash requests */ struct crypto_istat_hash { atomic64_t hash_cnt; atomic64_t hash_tlen; atomic64_t err_cnt; }; /* * struct crypto_istat_kpp - statistics for KPP algorithm * @setsecret_cnt: number of setsecrey operation * @generate_public_key_cnt: number of generate_public_key operation * @compute_shared_secret_cnt: number of compute_shared_secret operation * @err_cnt: number of error for KPP requests */ struct crypto_istat_kpp { atomic64_t setsecret_cnt; atomic64_t generate_public_key_cnt; atomic64_t compute_shared_secret_cnt; atomic64_t err_cnt; }; /* * struct crypto_istat_rng: statistics for RNG algorithm * @generate_cnt: number of RNG generate requests * @generate_tlen: total data size of generated data by the RNG * @seed_cnt: number of times the RNG was seeded * @err_cnt: number of error for RNG requests */ struct crypto_istat_rng { atomic64_t generate_cnt; atomic64_t generate_tlen; atomic64_t seed_cnt; atomic64_t err_cnt; }; #endif /* CONFIG_CRYPTO_STATS */ #define cra_cipher cra_u.cipher #define cra_compress cra_u.compress /** * struct crypto_alg - definition of a cryptograpic cipher algorithm * @cra_flags: Flags describing this transformation. See include/linux/crypto.h * CRYPTO_ALG_* flags for the flags which go in here. Those are * used for fine-tuning the description of the transformation * algorithm. * @cra_blocksize: Minimum block size of this transformation. The size in bytes * of the smallest possible unit which can be transformed with * this algorithm. The users must respect this value. * In case of HASH transformation, it is possible for a smaller * block than @cra_blocksize to be passed to the crypto API for * transformation, in case of any other transformation type, an * error will be returned upon any attempt to transform smaller * than @cra_blocksize chunks. * @cra_ctxsize: Size of the operational context of the transformation. This * value informs the kernel crypto API about the memory size * needed to be allocated for the transformation context. * @cra_alignmask: Alignment mask for the input and output data buffer. The data * buffer containing the input data for the algorithm must be * aligned to this alignment mask. The data buffer for the * output data must be aligned to this alignment mask. Note that * the Crypto API will do the re-alignment in software, but * only under special conditions and there is a performance hit. * The re-alignment happens at these occasions for different * @cra_u types: cipher -- For both input data and output data * buffer; ahash -- For output hash destination buf; shash -- * For output hash destination buf. * This is needed on hardware which is flawed by design and * cannot pick data from arbitrary addresses. * @cra_priority: Priority of this transformation implementation. In case * multiple transformations with same @cra_name are available to * the Crypto API, the kernel will use the one with highest * @cra_priority. * @cra_name: Generic name (usable by multiple implementations) of the * transformation algorithm. This is the name of the transformation * itself. This field is used by the kernel when looking up the * providers of particular transformation. * @cra_driver_name: Unique name of the transformation provider. This is the * name of the provider of the transformation. This can be any * arbitrary value, but in the usual case, this contains the * name of the chip or provider and the name of the * transformation algorithm. * @cra_type: Type of the cryptographic transformation. This is a pointer to * struct crypto_type, which implements callbacks common for all * transformation types. There are multiple options, such as * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type. * This field might be empty. In that case, there are no common * callbacks. This is the case for: cipher, compress, shash. * @cra_u: Callbacks implementing the transformation. This is a union of * multiple structures. Depending on the type of transformation selected * by @cra_type and @cra_flags above, the associated structure must be * filled with callbacks. This field might be empty. This is the case * for ahash, shash. * @cra_init: Initialize the cryptographic transformation object. This function * is used to initialize the cryptographic transformation object. * This function is called only once at the instantiation time, right * after the transformation context was allocated. In case the * cryptographic hardware has some special requirements which need to * be handled by software, this function shall check for the precise * requirement of the transformation and put any software fallbacks * in place. * @cra_exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @cra_init, used to remove various changes set in * @cra_init. * @cra_u.cipher: Union member which contains a single-block symmetric cipher * definition. See @struct @cipher_alg. * @cra_u.compress: Union member which contains a (de)compression algorithm. * See @struct @compress_alg. * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE * @cra_list: internally used * @cra_users: internally used * @cra_refcnt: internally used * @cra_destroy: internally used * * @stats: union of all possible crypto_istat_xxx structures * @stats.aead: statistics for AEAD algorithm * @stats.akcipher: statistics for akcipher algorithm * @stats.cipher: statistics for cipher algorithm * @stats.compress: statistics for compress algorithm * @stats.hash: statistics for hash algorithm * @stats.rng: statistics for rng algorithm * @stats.kpp: statistics for KPP algorithm * * The struct crypto_alg describes a generic Crypto API algorithm and is common * for all of the transformations. Any variable not documented here shall not * be used by a cipher implementation as it is internal to the Crypto API. */ struct crypto_alg { struct list_head cra_list; struct list_head cra_users; u32 cra_flags; unsigned int cra_blocksize; unsigned int cra_ctxsize; unsigned int cra_alignmask; int cra_priority; refcount_t cra_refcnt; char cra_name[CRYPTO_MAX_ALG_NAME]; char cra_driver_name[CRYPTO_MAX_ALG_NAME]; const struct crypto_type *cra_type; union { struct cipher_alg cipher; struct compress_alg compress; } cra_u; int (*cra_init)(struct crypto_tfm *tfm); void (*cra_exit)(struct crypto_tfm *tfm); void (*cra_destroy)(struct crypto_alg *alg); struct module *cra_module; #ifdef CONFIG_CRYPTO_STATS union { struct crypto_istat_aead aead; struct crypto_istat_akcipher akcipher; struct crypto_istat_cipher cipher; struct crypto_istat_compress compress; struct crypto_istat_hash hash; struct crypto_istat_rng rng; struct crypto_istat_kpp kpp; } stats; #endif /* CONFIG_CRYPTO_STATS */ } CRYPTO_MINALIGN_ATTR; #ifdef CONFIG_CRYPTO_STATS void crypto_stats_init(struct crypto_alg *alg); void crypto_stats_get(struct crypto_alg *alg); void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); #else static inline void crypto_stats_init(struct crypto_alg *alg) {} static inline void crypto_stats_get(struct crypto_alg *alg) {} static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) {} static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) {} static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) {} static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) {} static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) {} static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) {} static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) {} static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) {} static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) {} static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) {} static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) {} #endif /* * A helper struct for waiting for completion of async crypto ops */ struct crypto_wait { struct completion completion; int err; }; /* * Macro for declaring a crypto op async wait object on stack */ #define DECLARE_CRYPTO_WAIT(_wait) \ struct crypto_wait _wait = { \ COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } /* * Async ops completion helper functioons */ void crypto_req_done(struct crypto_async_request *req, int err); static inline int crypto_wait_req(int err, struct crypto_wait *wait) { switch (err) { case -EINPROGRESS: case -EBUSY: wait_for_completion(&wait->completion); reinit_completion(&wait->completion); err = wait->err; break; } return err; } static inline void crypto_init_wait(struct crypto_wait *wait) { init_completion(&wait->completion); } /* * Algorithm registration interface. */ int crypto_register_alg(struct crypto_alg *alg); void crypto_unregister_alg(struct crypto_alg *alg); int crypto_register_algs(struct crypto_alg *algs, int count); void crypto_unregister_algs(struct crypto_alg *algs, int count); /* * Algorithm query interface. */ int crypto_has_alg(const char *name, u32 type, u32 mask); /* * Transforms: user-instantiated objects which encapsulate algorithms * and core processing logic. Managed via crypto_alloc_*() and * crypto_free_*(), as well as the various helpers below. */ struct crypto_tfm { u32 crt_flags; int node; void (*exit)(struct crypto_tfm *tfm); struct crypto_alg *__crt_alg; void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; }; struct crypto_cipher { struct crypto_tfm base; }; struct crypto_comp { struct crypto_tfm base; }; enum { CRYPTOA_UNSPEC, CRYPTOA_ALG, CRYPTOA_TYPE, CRYPTOA_U32, __CRYPTOA_MAX, }; #define CRYPTOA_MAX (__CRYPTOA_MAX - 1) /* Maximum number of (rtattr) parameters for each template. */ #define CRYPTO_MAX_ATTRS 32 struct crypto_attr_alg { char name[CRYPTO_MAX_ALG_NAME]; }; struct crypto_attr_type { u32 type; u32 mask; }; struct crypto_attr_u32 { u32 num; }; /* * Transform user interface. */ struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); static inline void crypto_free_tfm(struct crypto_tfm *tfm) { return crypto_destroy_tfm(tfm, tfm); } int alg_test(const char *driver, const char *alg, u32 type, u32 mask); /* * Transform helpers which query the underlying algorithm. */ static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_name; } static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_driver_name; } static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_priority; } static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; } static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_blocksize; } static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_alignmask; } static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) { return tfm->crt_flags; } static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) { tfm->crt_flags |= flags; } static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) { tfm->crt_flags &= ~flags; } static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) { return tfm->__crt_ctx; } static inline unsigned int crypto_tfm_ctx_alignment(void) { struct crypto_tfm *tfm; return __alignof__(tfm->__crt_ctx); } /** * DOC: Single Block Cipher API * * The single block cipher API is used with the ciphers of type * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). * * Using the single block cipher API calls, operations with the basic cipher * primitive can be implemented. These cipher primitives exclude any block * chaining operations including IV handling. * * The purpose of this single block cipher API is to support the implementation * of templates or other concepts that only need to perform the cipher operation * on one block at a time. Templates invoke the underlying cipher primitive * block-wise and process either the input or the output data of these cipher * operations. */ static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) { return (struct crypto_cipher *)tfm; } /** * crypto_alloc_cipher() - allocate single block cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * single block cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a single block cipher. The returned struct * crypto_cipher is the cipher handle that is required for any subsequent API * invocation for that single block cipher. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_CIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); } static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) { return &tfm->base; } /** * crypto_free_cipher() - zeroize and free the single block cipher handle * @tfm: cipher handle to be freed */ static inline void crypto_free_cipher(struct crypto_cipher *tfm) { crypto_free_tfm(crypto_cipher_tfm(tfm)); } /** * crypto_has_cipher() - Search for the availability of a single block cipher * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * single block cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Return: true when the single block cipher is known to the kernel crypto API; * false otherwise */ static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_CIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_has_alg(alg_name, type, mask); } /** * crypto_cipher_blocksize() - obtain block size for cipher * @tfm: cipher handle * * The block size for the single block cipher referenced with the cipher handle * tfm is returned. The caller may use that information to allocate appropriate * memory for the data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) { return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); } static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) { return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); } static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) { return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); } static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, u32 flags) { crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); } static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); } /** * crypto_cipher_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the single block cipher referenced by the * cipher handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_cipher_setkey(struct crypto_cipher *tfm, const u8 *key, unsigned int keylen); /** * crypto_cipher_encrypt_one() - encrypt one block of plaintext * @tfm: cipher handle * @dst: points to the buffer that will be filled with the ciphertext * @src: buffer holding the plaintext to be encrypted * * Invoke the encryption operation of one block. The caller must ensure that * the plaintext and ciphertext buffers are at least one block in size. */ void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, u8 *dst, const u8 *src); /** * crypto_cipher_decrypt_one() - decrypt one block of ciphertext * @tfm: cipher handle * @dst: points to the buffer that will be filled with the plaintext * @src: buffer holding the ciphertext to be decrypted * * Invoke the decryption operation of one block. The caller must ensure that * the plaintext and ciphertext buffers are at least one block in size. */ void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, u8 *dst, const u8 *src); static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) { return (struct crypto_comp *)tfm; } static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_COMPRESS; mask |= CRYPTO_ALG_TYPE_MASK; return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); } static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) { return &tfm->base; } static inline void crypto_free_comp(struct crypto_comp *tfm) { crypto_free_tfm(crypto_comp_tfm(tfm)); } static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_COMPRESS; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_has_alg(alg_name, type, mask); } static inline const char *crypto_comp_name(struct crypto_comp *tfm) { return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); } int crypto_comp_compress(struct crypto_comp *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); int crypto_comp_decompress(struct crypto_comp *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); #endif /* _LINUX_CRYPTO_H */
3 4 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 /* SPDX-License-Identifier: GPL-2.0 */ /* * This header provides generic wrappers for memory access instrumentation that * the compiler cannot emit for: KASAN, KCSAN. */ #ifndef _LINUX_INSTRUMENTED_H #define _LINUX_INSTRUMENTED_H #include <linux/compiler.h> #include <linux/kasan-checks.h> #include <linux/kcsan-checks.h> #include <linux/types.h> /** * instrument_read - instrument regular read access * * Instrument a regular read access. The instrumentation should be inserted * before the actual read happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_read(const volatile void *v, size_t size) { kasan_check_read(v, size); kcsan_check_read(v, size); } /** * instrument_write - instrument regular write access * * Instrument a regular write access. The instrumentation should be inserted * before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_write(v, size); } /** * instrument_read_write - instrument regular read-write access * * Instrument a regular write access. The instrumentation should be inserted * before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_read_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_read_write(v, size); } /** * instrument_atomic_read - instrument atomic read access * * Instrument an atomic read access. The instrumentation should be inserted * before the actual read happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_atomic_read(const volatile void *v, size_t size) { kasan_check_read(v, size); kcsan_check_atomic_read(v, size); } /** * instrument_atomic_write - instrument atomic write access * * Instrument an atomic write access. The instrumentation should be inserted * before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_atomic_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_atomic_write(v, size); } /** * instrument_atomic_read_write - instrument atomic read-write access * * Instrument an atomic read-write access. The instrumentation should be * inserted before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_atomic_read_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_atomic_read_write(v, size); } /** * instrument_copy_to_user - instrument reads of copy_to_user * * Instrument reads from kernel memory, that are due to copy_to_user (and * variants). The instrumentation must be inserted before the accesses. * * @to destination address * @from source address * @n number of bytes to copy */ static __always_inline void instrument_copy_to_user(void __user *to, const void *from, unsigned long n) { kasan_check_read(from, n); kcsan_check_read(from, n); } /** * instrument_copy_from_user - instrument writes of copy_from_user * * Instrument writes to kernel memory, that are due to copy_from_user (and * variants). The instrumentation should be inserted before the accesses. * * @to destination address * @from source address * @n number of bytes to copy */ static __always_inline void instrument_copy_from_user(const void *to, const void __user *from, unsigned long n) { kasan_check_write(to, n); kcsan_check_write(to, n); } #endif /* _LINUX_INSTRUMENTED_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 /* SPDX-License-Identifier: GPL-2.0 */ /* Freezer declarations */ #ifndef FREEZER_H_INCLUDED #define FREEZER_H_INCLUDED #include <linux/debug_locks.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/atomic.h> #ifdef CONFIG_FREEZER extern atomic_t system_freezing_cnt; /* nr of freezing conds in effect */ extern bool pm_freezing; /* PM freezing in effect */ extern bool pm_nosig_freezing; /* PM nosig freezing in effect */ /* * Timeout for stopping processes */ extern unsigned int freeze_timeout_msecs; /* * Check if a process has been frozen */ static inline bool frozen(struct task_struct *p) { return p->flags & PF_FROZEN; } extern bool freezing_slow_path(struct task_struct *p); /* * Check if there is a request to freeze a process */ static inline bool freezing(struct task_struct *p) { if (likely(!atomic_read(&system_freezing_cnt))) return false; return freezing_slow_path(p); } /* Takes and releases task alloc lock using task_lock() */ extern void __thaw_task(struct task_struct *t); extern bool __refrigerator(bool check_kthr_stop); extern int freeze_processes(void); extern int freeze_kernel_threads(void); extern void thaw_processes(void); extern void thaw_kernel_threads(void); /* * DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION * If try_to_freeze causes a lockdep warning it means the caller may deadlock */ static inline bool try_to_freeze_unsafe(void) { might_sleep(); if (likely(!freezing(current))) return false; return __refrigerator(false); } static inline bool try_to_freeze(void) { if (!(current->flags & PF_NOFREEZE)) debug_check_no_locks_held(); return try_to_freeze_unsafe(); } extern bool freeze_task(struct task_struct *p); extern bool set_freezable(void); #ifdef CONFIG_CGROUP_FREEZER extern bool cgroup_freezing(struct task_struct *task); #else /* !CONFIG_CGROUP_FREEZER */ static inline bool cgroup_freezing(struct task_struct *task) { return false; } #endif /* !CONFIG_CGROUP_FREEZER */ /* * The PF_FREEZER_SKIP flag should be set by a vfork parent right before it * calls wait_for_completion(&vfork) and reset right after it returns from this * function. Next, the parent should call try_to_freeze() to freeze itself * appropriately in case the child has exited before the freezing of tasks is * complete. However, we don't want kernel threads to be frozen in unexpected * places, so we allow them to block freeze_processes() instead or to set * PF_NOFREEZE if needed. Fortunately, in the ____call_usermodehelper() case the * parent won't really block freeze_processes(), since ____call_usermodehelper() * (the child) does a little before exec/exit and it can't be frozen before * waking up the parent. */ /** * freezer_do_not_count - tell freezer to ignore %current * * Tell freezers to ignore the current task when determining whether the * target frozen state is reached. IOW, the current task will be * considered frozen enough by freezers. * * The caller shouldn't do anything which isn't allowed for a frozen task * until freezer_cont() is called. Usually, freezer[_do_not]_count() pair * wrap a scheduling operation and nothing much else. */ static inline void freezer_do_not_count(void) { current->flags |= PF_FREEZER_SKIP; } /** * freezer_count - tell freezer to stop ignoring %current * * Undo freezer_do_not_count(). It tells freezers that %current should be * considered again and tries to freeze if freezing condition is already in * effect. */ static inline void freezer_count(void) { current->flags &= ~PF_FREEZER_SKIP; /* * If freezing is in progress, the following paired with smp_mb() * in freezer_should_skip() ensures that either we see %true * freezing() or freezer_should_skip() sees !PF_FREEZER_SKIP. */ smp_mb(); try_to_freeze(); } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline void freezer_count_unsafe(void) { current->flags &= ~PF_FREEZER_SKIP; smp_mb(); try_to_freeze_unsafe(); } /** * freezer_should_skip - whether to skip a task when determining frozen * state is reached * @p: task in quesion * * This function is used by freezers after establishing %true freezing() to * test whether a task should be skipped when determining the target frozen * state is reached. IOW, if this function returns %true, @p is considered * frozen enough. */ static inline bool freezer_should_skip(struct task_struct *p) { /* * The following smp_mb() paired with the one in freezer_count() * ensures that either freezer_count() sees %true freezing() or we * see cleared %PF_FREEZER_SKIP and return %false. This makes it * impossible for a task to slip frozen state testing after * clearing %PF_FREEZER_SKIP. */ smp_mb(); return p->flags & PF_FREEZER_SKIP; } /* * These functions are intended to be used whenever you want allow a sleeping * task to be frozen. Note that neither return any clear indication of * whether a freeze event happened while in this function. */ /* Like schedule(), but should not block the freezer. */ static inline void freezable_schedule(void) { freezer_do_not_count(); schedule(); freezer_count(); } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline void freezable_schedule_unsafe(void) { freezer_do_not_count(); schedule(); freezer_count_unsafe(); } /* * Like schedule_timeout(), but should not block the freezer. Do not * call this with locks held. */ static inline long freezable_schedule_timeout(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout(timeout); freezer_count(); return __retval; } /* * Like schedule_timeout_interruptible(), but should not block the freezer. Do not * call this with locks held. */ static inline long freezable_schedule_timeout_interruptible(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_interruptible(timeout); freezer_count(); return __retval; } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline long freezable_schedule_timeout_interruptible_unsafe(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_interruptible(timeout); freezer_count_unsafe(); return __retval; } /* Like schedule_timeout_killable(), but should not block the freezer. */ static inline long freezable_schedule_timeout_killable(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_killable(timeout); freezer_count(); return __retval; } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline long freezable_schedule_timeout_killable_unsafe(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_killable(timeout); freezer_count_unsafe(); return __retval; } /* * Like schedule_hrtimeout_range(), but should not block the freezer. Do not * call this with locks held. */ static inline int freezable_schedule_hrtimeout_range(ktime_t *expires, u64 delta, const enum hrtimer_mode mode) { int __retval; freezer_do_not_count(); __retval = schedule_hrtimeout_range(expires, delta, mode); freezer_count(); return __retval; } /* * Freezer-friendly wrappers around wait_event_interruptible(), * wait_event_killable() and wait_event_interruptible_timeout(), originally * defined in <linux/wait.h> */ /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ #define wait_event_freezekillable_unsafe(wq, condition) \ ({ \ int __retval; \ freezer_do_not_count(); \ __retval = wait_event_killable(wq, (condition)); \ freezer_count_unsafe(); \ __retval; \ }) #else /* !CONFIG_FREEZER */ static inline bool frozen(struct task_struct *p) { return false; } static inline bool freezing(struct task_struct *p) { return false; } static inline void __thaw_task(struct task_struct *t) {} static inline bool __refrigerator(bool check_kthr_stop) { return false; } static inline int freeze_processes(void) { return -ENOSYS; } static inline int freeze_kernel_threads(void) { return -ENOSYS; } static inline void thaw_processes(void) {} static inline void thaw_kernel_threads(void) {} static inline bool try_to_freeze_nowarn(void) { return false; } static inline bool try_to_freeze(void) { return false; } static inline void freezer_do_not_count(void) {} static inline void freezer_count(void) {} static inline int freezer_should_skip(struct task_struct *p) { return 0; } static inline void set_freezable(void) {} #define freezable_schedule() schedule() #define freezable_schedule_unsafe() schedule() #define freezable_schedule_timeout(timeout) schedule_timeout(timeout) #define freezable_schedule_timeout_interruptible(timeout) \ schedule_timeout_interruptible(timeout) #define freezable_schedule_timeout_interruptible_unsafe(timeout) \ schedule_timeout_interruptible(timeout) #define freezable_schedule_timeout_killable(timeout) \ schedule_timeout_killable(timeout) #define freezable_schedule_timeout_killable_unsafe(timeout) \ schedule_timeout_killable(timeout) #define freezable_schedule_hrtimeout_range(expires, delta, mode) \ schedule_hrtimeout_range(expires, delta, mode) #define wait_event_freezekillable_unsafe(wq, condition) \ wait_event_killable(wq, condition) #endif /* !CONFIG_FREEZER */ #endif /* FREEZER_H_INCLUDED */
2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2004 IBM Corporation * * Author: Serge Hallyn <serue@us.ibm.com> */ #include <linux/export.h> #include <linux/uts.h> #include <linux/utsname.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/cred.h> #include <linux/user_namespace.h> #include <linux/proc_ns.h> #include <linux/sched/task.h> static struct kmem_cache *uts_ns_cache __ro_after_init; static struct ucounts *inc_uts_namespaces(struct user_namespace *ns) { return inc_ucount(ns, current_euid(), UCOUNT_UTS_NAMESPACES); } static void dec_uts_namespaces(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_UTS_NAMESPACES); } static struct uts_namespace *create_uts_ns(void) { struct uts_namespace *uts_ns; uts_ns = kmem_cache_alloc(uts_ns_cache, GFP_KERNEL); if (uts_ns) kref_init(&uts_ns->kref); return uts_ns; } /* * Clone a new ns copying an original utsname, setting refcount to 1 * @old_ns: namespace to clone * Return ERR_PTR(-ENOMEM) on error (failure to allocate), new ns otherwise */ static struct uts_namespace *clone_uts_ns(struct user_namespace *user_ns, struct uts_namespace *old_ns) { struct uts_namespace *ns; struct ucounts *ucounts; int err; err = -ENOSPC; ucounts = inc_uts_namespaces(user_ns); if (!ucounts) goto fail; err = -ENOMEM; ns = create_uts_ns(); if (!ns) goto fail_dec; err = ns_alloc_inum(&ns->ns); if (err) goto fail_free; ns->ucounts = ucounts; ns->ns.ops = &utsns_operations; down_read(&uts_sem); memcpy(&ns->name, &old_ns->name, sizeof(ns->name)); ns->user_ns = get_user_ns(user_ns); up_read(&uts_sem); return ns; fail_free: kmem_cache_free(uts_ns_cache, ns); fail_dec: dec_uts_namespaces(ucounts); fail: return ERR_PTR(err); } /* * Copy task tsk's utsname namespace, or clone it if flags * specifies CLONE_NEWUTS. In latter case, changes to the * utsname of this process won't be seen by parent, and vice * versa. */ struct uts_namespace *copy_utsname(unsigned long flags, struct user_namespace *user_ns, struct uts_namespace *old_ns) { struct uts_namespace *new_ns; BUG_ON(!old_ns); get_uts_ns(old_ns); if (!(flags & CLONE_NEWUTS)) return old_ns; new_ns = clone_uts_ns(user_ns, old_ns); put_uts_ns(old_ns); return new_ns; } void free_uts_ns(struct kref *kref) { struct uts_namespace *ns; ns = container_of(kref, struct uts_namespace, kref); dec_uts_namespaces(ns->ucounts); put_user_ns(ns->user_ns); ns_free_inum(&ns->ns); kmem_cache_free(uts_ns_cache, ns); } static inline struct uts_namespace *to_uts_ns(struct ns_common *ns) { return container_of(ns, struct uts_namespace, ns); } static struct ns_common *utsns_get(struct task_struct *task) { struct uts_namespace *ns = NULL; struct nsproxy *nsproxy; task_lock(task); nsproxy = task->nsproxy; if (nsproxy) { ns = nsproxy->uts_ns; get_uts_ns(ns); } task_unlock(task); return ns ? &ns->ns : NULL; } static void utsns_put(struct ns_common *ns) { put_uts_ns(to_uts_ns(ns)); } static int utsns_install(struct nsset *nsset, struct ns_common *new) { struct nsproxy *nsproxy = nsset->nsproxy; struct uts_namespace *ns = to_uts_ns(new); if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN) || !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) return -EPERM; get_uts_ns(ns); put_uts_ns(nsproxy->uts_ns); nsproxy->uts_ns = ns; return 0; } static struct user_namespace *utsns_owner(struct ns_common *ns) { return to_uts_ns(ns)->user_ns; } const struct proc_ns_operations utsns_operations = { .name = "uts", .type = CLONE_NEWUTS, .get = utsns_get, .put = utsns_put, .install = utsns_install, .owner = utsns_owner, }; void __init uts_ns_init(void) { uts_ns_cache = kmem_cache_create_usercopy( "uts_namespace", sizeof(struct uts_namespace), 0, SLAB_PANIC|SLAB_ACCOUNT, offsetof(struct uts_namespace, name), sizeof_field(struct uts_namespace, name), NULL); }
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM random #if !defined(_TRACE_RANDOM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RANDOM_H #include <linux/writeback.h> #include <linux/tracepoint.h> TRACE_EVENT(add_device_randomness, TP_PROTO(int bytes, unsigned long IP), TP_ARGS(bytes, IP), TP_STRUCT__entry( __field( int, bytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->bytes = bytes; __entry->IP = IP; ), TP_printk("bytes %d caller %pS", __entry->bytes, (void *)__entry->IP) ); DECLARE_EVENT_CLASS(random__mix_pool_bytes, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, bytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->bytes = bytes; __entry->IP = IP; ), TP_printk("%s pool: bytes %d caller %pS", __entry->pool_name, __entry->bytes, (void *)__entry->IP) ); DEFINE_EVENT(random__mix_pool_bytes, mix_pool_bytes, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP) ); DEFINE_EVENT(random__mix_pool_bytes, mix_pool_bytes_nolock, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP) ); TRACE_EVENT(credit_entropy_bits, TP_PROTO(const char *pool_name, int bits, int entropy_count, unsigned long IP), TP_ARGS(pool_name, bits, entropy_count, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, bits ) __field( int, entropy_count ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->bits = bits; __entry->entropy_count = entropy_count; __entry->IP = IP; ), TP_printk("%s pool: bits %d entropy_count %d caller %pS", __entry->pool_name, __entry->bits, __entry->entropy_count, (void *)__entry->IP) ); TRACE_EVENT(push_to_pool, TP_PROTO(const char *pool_name, int pool_bits, int input_bits), TP_ARGS(pool_name, pool_bits, input_bits), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, pool_bits ) __field( int, input_bits ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->pool_bits = pool_bits; __entry->input_bits = input_bits; ), TP_printk("%s: pool_bits %d input_pool_bits %d", __entry->pool_name, __entry->pool_bits, __entry->input_bits) ); TRACE_EVENT(debit_entropy, TP_PROTO(const char *pool_name, int debit_bits), TP_ARGS(pool_name, debit_bits), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, debit_bits ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->debit_bits = debit_bits; ), TP_printk("%s: debit_bits %d", __entry->pool_name, __entry->debit_bits) ); TRACE_EVENT(add_input_randomness, TP_PROTO(int input_bits), TP_ARGS(input_bits), TP_STRUCT__entry( __field( int, input_bits ) ), TP_fast_assign( __entry->input_bits = input_bits; ), TP_printk("input_pool_bits %d", __entry->input_bits) ); TRACE_EVENT(add_disk_randomness, TP_PROTO(dev_t dev, int input_bits), TP_ARGS(dev, input_bits), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, input_bits ) ), TP_fast_assign( __entry->dev = dev; __entry->input_bits = input_bits; ), TP_printk("dev %d,%d input_pool_bits %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->input_bits) ); TRACE_EVENT(xfer_secondary_pool, TP_PROTO(const char *pool_name, int xfer_bits, int request_bits, int pool_entropy, int input_entropy), TP_ARGS(pool_name, xfer_bits, request_bits, pool_entropy, input_entropy), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, xfer_bits ) __field( int, request_bits ) __field( int, pool_entropy ) __field( int, input_entropy ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->xfer_bits = xfer_bits; __entry->request_bits = request_bits; __entry->pool_entropy = pool_entropy; __entry->input_entropy = input_entropy; ), TP_printk("pool %s xfer_bits %d request_bits %d pool_entropy %d " "input_entropy %d", __entry->pool_name, __entry->xfer_bits, __entry->request_bits, __entry->pool_entropy, __entry->input_entropy) ); DECLARE_EVENT_CLASS(random__get_random_bytes, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP), TP_STRUCT__entry( __field( int, nbytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->nbytes = nbytes; __entry->IP = IP; ), TP_printk("nbytes %d caller %pS", __entry->nbytes, (void *)__entry->IP) ); DEFINE_EVENT(random__get_random_bytes, get_random_bytes, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP) ); DEFINE_EVENT(random__get_random_bytes, get_random_bytes_arch, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP) ); DECLARE_EVENT_CLASS(random__extract_entropy, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, nbytes ) __field( int, entropy_count ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->nbytes = nbytes; __entry->entropy_count = entropy_count; __entry->IP = IP; ), TP_printk("%s pool: nbytes %d entropy_count %d caller %pS", __entry->pool_name, __entry->nbytes, __entry->entropy_count, (void *)__entry->IP) ); DEFINE_EVENT(random__extract_entropy, extract_entropy, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP) ); DEFINE_EVENT(random__extract_entropy, extract_entropy_user, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP) ); TRACE_EVENT(random_read, TP_PROTO(int got_bits, int need_bits, int pool_left, int input_left), TP_ARGS(got_bits, need_bits, pool_left, input_left), TP_STRUCT__entry( __field( int, got_bits ) __field( int, need_bits ) __field( int, pool_left ) __field( int, input_left ) ), TP_fast_assign( __entry->got_bits = got_bits; __entry->need_bits = need_bits; __entry->pool_left = pool_left; __entry->input_left = input_left; ), TP_printk("got_bits %d still_needed_bits %d " "blocking_pool_entropy_left %d input_entropy_left %d", __entry->got_bits, __entry->got_bits, __entry->pool_left, __entry->input_left) ); TRACE_EVENT(urandom_read, TP_PROTO(int got_bits, int pool_left, int input_left), TP_ARGS(got_bits, pool_left, input_left), TP_STRUCT__entry( __field( int, got_bits ) __field( int, pool_left ) __field( int, input_left ) ), TP_fast_assign( __entry->got_bits = got_bits; __entry->pool_left = pool_left; __entry->input_left = input_left; ), TP_printk("got_bits %d nonblocking_pool_entropy_left %d " "input_entropy_left %d", __entry->got_bits, __entry->pool_left, __entry->input_left) ); TRACE_EVENT(prandom_u32, TP_PROTO(unsigned int ret), TP_ARGS(ret), TP_STRUCT__entry( __field( unsigned int, ret) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret=%u" , __entry->ret) ); #endif /* _TRACE_RANDOM_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 /* SPDX-License-Identifier: GPL-2.0 */ /* * This header file contains public constants and structures used by * the SCSI initiator code. */ #ifndef _SCSI_SCSI_H #define _SCSI_SCSI_H #include <linux/types.h> #include <linux/scatterlist.h> #include <linux/kernel.h> #include <scsi/scsi_common.h> #include <scsi/scsi_proto.h> struct scsi_cmnd; enum scsi_timeouts { SCSI_DEFAULT_EH_TIMEOUT = 10 * HZ, }; /* * DIX-capable adapters effectively support infinite chaining for the * protection information scatterlist */ #define SCSI_MAX_PROT_SG_SEGMENTS 0xFFFF /* * Special value for scanning to specify scanning or rescanning of all * possible channels, (target) ids, or luns on a given shost. */ #define SCAN_WILD_CARD ~0 /** scsi_status_is_good - check the status return. * * @status: the status passed up from the driver (including host and * driver components) * * This returns true for known good conditions that may be treated as * command completed normally */ static inline int scsi_status_is_good(int status) { /* * FIXME: bit0 is listed as reserved in SCSI-2, but is * significant in SCSI-3. For now, we follow the SCSI-2 * behaviour and ignore reserved bits. */ status &= 0xfe; return ((status == SAM_STAT_GOOD) || (status == SAM_STAT_CONDITION_MET) || /* Next two "intermediate" statuses are obsolete in SAM-4 */ (status == SAM_STAT_INTERMEDIATE) || (status == SAM_STAT_INTERMEDIATE_CONDITION_MET) || /* FIXME: this is obsolete in SAM-3 */ (status == SAM_STAT_COMMAND_TERMINATED)); } /* * standard mode-select header prepended to all mode-select commands */ struct ccs_modesel_head { __u8 _r1; /* reserved */ __u8 medium; /* device-specific medium type */ __u8 _r2; /* reserved */ __u8 block_desc_length; /* block descriptor length */ __u8 density; /* device-specific density code */ __u8 number_blocks_hi; /* number of blocks in this block desc */ __u8 number_blocks_med; __u8 number_blocks_lo; __u8 _r3; __u8 block_length_hi; /* block length for blocks in this desc */ __u8 block_length_med; __u8 block_length_lo; }; /* * The Well Known LUNS (SAM-3) in our int representation of a LUN */ #define SCSI_W_LUN_BASE 0xc100 #define SCSI_W_LUN_REPORT_LUNS (SCSI_W_LUN_BASE + 1) #define SCSI_W_LUN_ACCESS_CONTROL (SCSI_W_LUN_BASE + 2) #define SCSI_W_LUN_TARGET_LOG_PAGE (SCSI_W_LUN_BASE + 3) static inline int scsi_is_wlun(u64 lun) { return (lun & 0xff00) == SCSI_W_LUN_BASE; } /* * MESSAGE CODES */ #define COMMAND_COMPLETE 0x00 #define EXTENDED_MESSAGE 0x01 #define EXTENDED_MODIFY_DATA_POINTER 0x00 #define EXTENDED_SDTR 0x01 #define EXTENDED_EXTENDED_IDENTIFY 0x02 /* SCSI-I only */ #define EXTENDED_WDTR 0x03 #define EXTENDED_PPR 0x04 #define EXTENDED_MODIFY_BIDI_DATA_PTR 0x05 #define SAVE_POINTERS 0x02 #define RESTORE_POINTERS 0x03 #define DISCONNECT 0x04 #define INITIATOR_ERROR 0x05 #define ABORT_TASK_SET 0x06 #define MESSAGE_REJECT 0x07 #define NOP 0x08 #define MSG_PARITY_ERROR 0x09 #define LINKED_CMD_COMPLETE 0x0a #define LINKED_FLG_CMD_COMPLETE 0x0b #define TARGET_RESET 0x0c #define ABORT_TASK 0x0d #define CLEAR_TASK_SET 0x0e #define INITIATE_RECOVERY 0x0f /* SCSI-II only */ #define RELEASE_RECOVERY 0x10 /* SCSI-II only */ #define CLEAR_ACA 0x16 #define LOGICAL_UNIT_RESET 0x17 #define SIMPLE_QUEUE_TAG 0x20 #define HEAD_OF_QUEUE_TAG 0x21 #define ORDERED_QUEUE_TAG 0x22 #define IGNORE_WIDE_RESIDUE 0x23 #define ACA 0x24 #define QAS_REQUEST 0x55 /* Old SCSI2 names, don't use in new code */ #define BUS_DEVICE_RESET TARGET_RESET #define ABORT ABORT_TASK_SET /* * Host byte codes */ #define DID_OK 0x00 /* NO error */ #define DID_NO_CONNECT 0x01 /* Couldn't connect before timeout period */ #define DID_BUS_BUSY 0x02 /* BUS stayed busy through time out period */ #define DID_TIME_OUT 0x03 /* TIMED OUT for other reason */ #define DID_BAD_TARGET 0x04 /* BAD target. */ #define DID_ABORT 0x05 /* Told to abort for some other reason */ #define DID_PARITY 0x06 /* Parity error */ #define DID_ERROR 0x07 /* Internal error */ #define DID_RESET 0x08 /* Reset by somebody. */ #define DID_BAD_INTR 0x09 /* Got an interrupt we weren't expecting. */ #define DID_PASSTHROUGH 0x0a /* Force command past mid-layer */ #define DID_SOFT_ERROR 0x0b /* The low level driver just wish a retry */ #define DID_IMM_RETRY 0x0c /* Retry without decrementing retry count */ #define DID_REQUEUE 0x0d /* Requeue command (no immediate retry) also * without decrementing the retry count */ #define DID_TRANSPORT_DISRUPTED 0x0e /* Transport error disrupted execution * and the driver blocked the port to * recover the link. Transport class will * retry or fail IO */ #define DID_TRANSPORT_FAILFAST 0x0f /* Transport class fastfailed the io */ #define DID_TARGET_FAILURE 0x10 /* Permanent target failure, do not retry on * other paths */ #define DID_NEXUS_FAILURE 0x11 /* Permanent nexus failure, retry on other * paths might yield different results */ #define DID_ALLOC_FAILURE 0x12 /* Space allocation on the device failed */ #define DID_MEDIUM_ERROR 0x13 /* Medium error */ #define DRIVER_OK 0x00 /* Driver status */ /* * These indicate the error that occurred, and what is available. */ #define DRIVER_BUSY 0x01 #define DRIVER_SOFT 0x02 #define DRIVER_MEDIA 0x03 #define DRIVER_ERROR 0x04 #define DRIVER_INVALID 0x05 #define DRIVER_TIMEOUT 0x06 #define DRIVER_HARD 0x07 #define DRIVER_SENSE 0x08 /* * Internal return values. */ #define NEEDS_RETRY 0x2001 #define SUCCESS 0x2002 #define FAILED 0x2003 #define QUEUED 0x2004 #define SOFT_ERROR 0x2005 #define ADD_TO_MLQUEUE 0x2006 #define TIMEOUT_ERROR 0x2007 #define SCSI_RETURN_NOT_HANDLED 0x2008 #define FAST_IO_FAIL 0x2009 /* * Midlevel queue return values. */ #define SCSI_MLQUEUE_HOST_BUSY 0x1055 #define SCSI_MLQUEUE_DEVICE_BUSY 0x1056 #define SCSI_MLQUEUE_EH_RETRY 0x1057 #define SCSI_MLQUEUE_TARGET_BUSY 0x1058 /* * Use these to separate status msg and our bytes * * These are set by: * * status byte = set from target device * msg_byte = return status from host adapter itself. * host_byte = set by low-level driver to indicate status. * driver_byte = set by mid-level. */ #define status_byte(result) (((result) >> 1) & 0x7f) #define msg_byte(result) (((result) >> 8) & 0xff) #define host_byte(result) (((result) >> 16) & 0xff) #define driver_byte(result) (((result) >> 24) & 0xff) #define sense_class(sense) (((sense) >> 4) & 0x7) #define sense_error(sense) ((sense) & 0xf) #define sense_valid(sense) ((sense) & 0x80) /* * default timeouts */ #define FORMAT_UNIT_TIMEOUT (2 * 60 * 60 * HZ) #define START_STOP_TIMEOUT (60 * HZ) #define MOVE_MEDIUM_TIMEOUT (5 * 60 * HZ) #define READ_ELEMENT_STATUS_TIMEOUT (5 * 60 * HZ) #define READ_DEFECT_DATA_TIMEOUT (60 * HZ ) #define IDENTIFY_BASE 0x80 #define IDENTIFY(can_disconnect, lun) (IDENTIFY_BASE |\ ((can_disconnect) ? 0x40 : 0) |\ ((lun) & 0x07)) /* * struct scsi_device::scsi_level values. For SCSI devices other than those * prior to SCSI-2 (i.e. over 12 years old) this value is (resp[2] + 1) * where "resp" is a byte array of the response to an INQUIRY. The scsi_level * variable is visible to the user via sysfs. */ #define SCSI_UNKNOWN 0 #define SCSI_1 1 #define SCSI_1_CCS 2 #define SCSI_2 3 #define SCSI_3 4 /* SPC */ #define SCSI_SPC_2 5 #define SCSI_SPC_3 6 /* * INQ PERIPHERAL QUALIFIERS */ #define SCSI_INQ_PQ_CON 0x00 #define SCSI_INQ_PQ_NOT_CON 0x01 #define SCSI_INQ_PQ_NOT_CAP 0x03 /* * Here are some scsi specific ioctl commands which are sometimes useful. * * Note that include/linux/cdrom.h also defines IOCTL 0x5300 - 0x5395 */ /* Used to obtain PUN and LUN info. Conflicts with CDROMAUDIOBUFSIZ */ #define SCSI_IOCTL_GET_IDLUN 0x5382 /* 0x5383 and 0x5384 were used for SCSI_IOCTL_TAGGED_{ENABLE,DISABLE} */ /* Used to obtain the host number of a device. */ #define SCSI_IOCTL_PROBE_HOST 0x5385 /* Used to obtain the bus number for a device */ #define SCSI_IOCTL_GET_BUS_NUMBER 0x5386 /* Used to obtain the PCI location of a device */ #define SCSI_IOCTL_GET_PCI 0x5387 #endif /* _SCSI_SCSI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HUGE_MM_H #define _LINUX_HUGE_MM_H #include <linux/sched/coredump.h> #include <linux/mm_types.h> #include <linux/fs.h> /* only for vma_is_dax() */ vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf); int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd); int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, pud_t *dst_pud, pud_t *src_pud, unsigned long addr, struct vm_area_struct *vma); #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud); #else static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) { } #endif vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd); struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, unsigned int flags); bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long next); int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr); int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, unsigned long addr); bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd); int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, pgprot_t newprot, unsigned long cp_flags); vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, pgprot_t pgprot, bool write); /** * vmf_insert_pfn_pmd - insert a pmd size pfn * @vmf: Structure describing the fault * @pfn: pfn to insert * @pgprot: page protection to use * @write: whether it's a write fault * * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. * * Return: vm_fault_t value. */ static inline vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) { return vmf_insert_pfn_pmd_prot(vmf, pfn, vmf->vma->vm_page_prot, write); } vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, pgprot_t pgprot, bool write); /** * vmf_insert_pfn_pud - insert a pud size pfn * @vmf: Structure describing the fault * @pfn: pfn to insert * @pgprot: page protection to use * @write: whether it's a write fault * * Insert a pud size pfn. See vmf_insert_pfn() for additional info. * * Return: vm_fault_t value. */ static inline vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) { return vmf_insert_pfn_pud_prot(vmf, pfn, vmf->vma->vm_page_prot, write); } enum transparent_hugepage_flag { TRANSPARENT_HUGEPAGE_NEVER_DAX, TRANSPARENT_HUGEPAGE_FLAG, TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG, TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG, #ifdef CONFIG_DEBUG_VM TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG, #endif }; struct kobject; struct kobj_attribute; ssize_t single_hugepage_flag_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count, enum transparent_hugepage_flag flag); ssize_t single_hugepage_flag_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf, enum transparent_hugepage_flag flag); extern struct kobj_attribute shmem_enabled_attr; #define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT) #define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER) #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define HPAGE_PMD_SHIFT PMD_SHIFT #define HPAGE_PMD_SIZE ((1UL) << HPAGE_PMD_SHIFT) #define HPAGE_PMD_MASK (~(HPAGE_PMD_SIZE - 1)) #define HPAGE_PUD_SHIFT PUD_SHIFT #define HPAGE_PUD_SIZE ((1UL) << HPAGE_PUD_SHIFT) #define HPAGE_PUD_MASK (~(HPAGE_PUD_SIZE - 1)) extern unsigned long transparent_hugepage_flags; static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, unsigned long haddr) { /* Don't have to check pgoff for anonymous vma */ if (!vma_is_anonymous(vma)) { if (!IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, HPAGE_PMD_NR)) return false; } if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) return false; return true; } static inline bool transhuge_vma_enabled(struct vm_area_struct *vma, unsigned long vm_flags) { /* Explicitly disabled through madvise. */ if ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) return false; return true; } /* * to be used on vmas which are known to support THP. * Use transparent_hugepage_active otherwise */ static inline bool __transparent_hugepage_enabled(struct vm_area_struct *vma) { /* * If the hardware/firmware marked hugepage support disabled. */ if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX)) return false; if (!transhuge_vma_enabled(vma, vma->vm_flags)) return false; if (vma_is_temporary_stack(vma)) return false; if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_FLAG)) return true; if (vma_is_dax(vma)) return true; if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)) return !!(vma->vm_flags & VM_HUGEPAGE); return false; } bool transparent_hugepage_active(struct vm_area_struct *vma); #define transparent_hugepage_use_zero_page() \ (transparent_hugepage_flags & \ (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG)) unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); void prep_transhuge_page(struct page *page); void free_transhuge_page(struct page *page); bool is_transparent_hugepage(struct page *page); bool can_split_huge_page(struct page *page, int *pextra_pins); int split_huge_page_to_list(struct page *page, struct list_head *list); static inline int split_huge_page(struct page *page) { return split_huge_page_to_list(page, NULL); } void deferred_split_huge_page(struct page *page); void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, unsigned long address, bool freeze, struct page *page); #define split_huge_pmd(__vma, __pmd, __address) \ do { \ pmd_t *____pmd = (__pmd); \ if (is_swap_pmd(*____pmd) || pmd_trans_huge(*____pmd) \ || pmd_devmap(*____pmd)) \ __split_huge_pmd(__vma, __pmd, __address, \ false, NULL); \ } while (0) void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, bool freeze, struct page *page); void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, unsigned long address); #define split_huge_pud(__vma, __pud, __address) \ do { \ pud_t *____pud = (__pud); \ if (pud_trans_huge(*____pud) \ || pud_devmap(*____pud)) \ __split_huge_pud(__vma, __pud, __address); \ } while (0) int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags, int advice); void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start, unsigned long end, long adjust_next); spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma); spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma); static inline int is_swap_pmd(pmd_t pmd) { return !pmd_none(pmd) && !pmd_present(pmd); } /* mmap_lock must be held on entry */ static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) { if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) return __pmd_trans_huge_lock(pmd, vma); else return NULL; } static inline spinlock_t *pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) { if (pud_trans_huge(*pud) || pud_devmap(*pud)) return __pud_trans_huge_lock(pud, vma); else return NULL; } /** * thp_head - Head page of a transparent huge page. * @page: Any page (tail, head or regular) found in the page cache. */ static inline struct page *thp_head(struct page *page) { return compound_head(page); } /** * thp_order - Order of a transparent huge page. * @page: Head page of a transparent huge page. */ static inline unsigned int thp_order(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); if (PageHead(page)) return HPAGE_PMD_ORDER; return 0; } /** * thp_nr_pages - The number of regular pages in this huge page. * @page: The head page of a huge page. */ static inline int thp_nr_pages(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); if (PageHead(page)) return HPAGE_PMD_NR; return 1; } struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, int flags, struct dev_pagemap **pgmap); struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud, int flags, struct dev_pagemap **pgmap); vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t orig_pmd); extern struct page *huge_zero_page; extern unsigned long huge_zero_pfn; static inline bool is_huge_zero_page(struct page *page) { return READ_ONCE(huge_zero_page) == page; } static inline bool is_huge_zero_pmd(pmd_t pmd) { return READ_ONCE(huge_zero_pfn) == pmd_pfn(pmd) && pmd_present(pmd); } static inline bool is_huge_zero_pud(pud_t pud) { return false; } struct page *mm_get_huge_zero_page(struct mm_struct *mm); void mm_put_huge_zero_page(struct mm_struct *mm); #define mk_huge_pmd(page, prot) pmd_mkhuge(mk_pmd(page, prot)) static inline bool thp_migration_supported(void) { return IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION); } static inline struct list_head *page_deferred_list(struct page *page) { /* * Global or memcg deferred list in the second tail pages is * occupied by compound_head. */ return &page[2].deferred_list; } #else /* CONFIG_TRANSPARENT_HUGEPAGE */ #define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; }) #define HPAGE_PMD_MASK ({ BUILD_BUG(); 0; }) #define HPAGE_PMD_SIZE ({ BUILD_BUG(); 0; }) #define HPAGE_PUD_SHIFT ({ BUILD_BUG(); 0; }) #define HPAGE_PUD_MASK ({ BUILD_BUG(); 0; }) #define HPAGE_PUD_SIZE ({ BUILD_BUG(); 0; }) static inline struct page *thp_head(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); return page; } static inline unsigned int thp_order(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); return 0; } static inline int thp_nr_pages(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); return 1; } static inline bool __transparent_hugepage_enabled(struct vm_area_struct *vma) { return false; } static inline bool transparent_hugepage_active(struct vm_area_struct *vma) { return false; } static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, unsigned long haddr) { return false; } static inline bool transhuge_vma_enabled(struct vm_area_struct *vma, unsigned long vm_flags) { return false; } static inline void prep_transhuge_page(struct page *page) {} static inline bool is_transparent_hugepage(struct page *page) { return false; } #define transparent_hugepage_flags 0UL #define thp_get_unmapped_area NULL static inline bool can_split_huge_page(struct page *page, int *pextra_pins) { BUILD_BUG(); return false; } static inline int split_huge_page_to_list(struct page *page, struct list_head *list) { return 0; } static inline int split_huge_page(struct page *page) { return 0; } static inline void deferred_split_huge_page(struct page *page) {} #define split_huge_pmd(__vma, __pmd, __address) \ do { } while (0) static inline void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, unsigned long address, bool freeze, struct page *page) {} static inline void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, bool freeze, struct page *page) {} #define split_huge_pud(__vma, __pmd, __address) \ do { } while (0) static inline int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags, int advice) { BUG(); return 0; } static inline void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start, unsigned long end, long adjust_next) { } static inline int is_swap_pmd(pmd_t pmd) { return 0; } static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) { return NULL; } static inline spinlock_t *pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) { return NULL; } static inline vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t orig_pmd) { return 0; } static inline bool is_huge_zero_page(struct page *page) { return false; } static inline bool is_huge_zero_pmd(pmd_t pmd) { return false; } static inline bool is_huge_zero_pud(pud_t pud) { return false; } static inline void mm_put_huge_zero_page(struct mm_struct *mm) { return; } static inline struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, int flags, struct dev_pagemap **pgmap) { return NULL; } static inline struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud, int flags, struct dev_pagemap **pgmap) { return NULL; } static inline bool thp_migration_supported(void) { return false; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /** * thp_size - Size of a transparent huge page. * @page: Head page of a transparent huge page. * * Return: Number of bytes in this page. */ static inline unsigned long thp_size(struct page *page) { return PAGE_SIZE << thp_order(page); } #endif /* _LINUX_HUGE_MM_H */
9 9 9 9 8 9 9 9 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/ioctl.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include <linux/syscalls.h> #include <linux/mm.h> #include <linux/capability.h> #include <linux/compat.h> #include <linux/file.h> #include <linux/fs.h> #include <linux/security.h> #include <linux/export.h> #include <linux/uaccess.h> #include <linux/writeback.h> #include <linux/buffer_head.h> #include <linux/falloc.h> #include <linux/sched/signal.h> #include <linux/fiemap.h> #include "internal.h" #include <asm/ioctls.h> /* So that the fiemap access checks can't overflow on 32 bit machines. */ #define FIEMAP_MAX_EXTENTS (UINT_MAX / sizeof(struct fiemap_extent)) /** * vfs_ioctl - call filesystem specific ioctl methods * @filp: open file to invoke ioctl method on * @cmd: ioctl command to execute * @arg: command-specific argument for ioctl * * Invokes filesystem specific ->unlocked_ioctl, if one exists; otherwise * returns -ENOTTY. * * Returns 0 on success, -errno on error. */ long vfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { int error = -ENOTTY; if (!filp->f_op->unlocked_ioctl) goto out; error = filp->f_op->unlocked_ioctl(filp, cmd, arg); if (error == -ENOIOCTLCMD) error = -ENOTTY; out: return error; } EXPORT_SYMBOL(vfs_ioctl); static int ioctl_fibmap(struct file *filp, int __user *p) { struct inode *inode = file_inode(filp); struct super_block *sb = inode->i_sb; int error, ur_block; sector_t block; if (!capable(CAP_SYS_RAWIO)) return -EPERM; error = get_user(ur_block, p); if (error) return error; if (ur_block < 0) return -EINVAL; block = ur_block; error = bmap(inode, &block); if (block > INT_MAX) { error = -ERANGE; pr_warn_ratelimited("[%s/%d] FS: %s File: %pD4 would truncate fibmap result\n", current->comm, task_pid_nr(current), sb->s_id, filp); } if (error) ur_block = 0; else ur_block = block; if (put_user(ur_block, p)) error = -EFAULT; return error; } /** * fiemap_fill_next_extent - Fiemap helper function * @fieinfo: Fiemap context passed into ->fiemap * @logical: Extent logical start offset, in bytes * @phys: Extent physical start offset, in bytes * @len: Extent length, in bytes * @flags: FIEMAP_EXTENT flags that describe this extent * * Called from file system ->fiemap callback. Will populate extent * info as passed in via arguments and copy to user memory. On * success, extent count on fieinfo is incremented. * * Returns 0 on success, -errno on error, 1 if this was the last * extent that will fit in user array. */ #define SET_UNKNOWN_FLAGS (FIEMAP_EXTENT_DELALLOC) #define SET_NO_UNMOUNTED_IO_FLAGS (FIEMAP_EXTENT_DATA_ENCRYPTED) #define SET_NOT_ALIGNED_FLAGS (FIEMAP_EXTENT_DATA_TAIL|FIEMAP_EXTENT_DATA_INLINE) int fiemap_fill_next_extent(struct fiemap_extent_info *fieinfo, u64 logical, u64 phys, u64 len, u32 flags) { struct fiemap_extent extent; struct fiemap_extent __user *dest = fieinfo->fi_extents_start; /* only count the extents */ if (fieinfo->fi_extents_max == 0) { fieinfo->fi_extents_mapped++; return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0; } if (fieinfo->fi_extents_mapped >= fieinfo->fi_extents_max) return 1; if (flags & SET_UNKNOWN_FLAGS) flags |= FIEMAP_EXTENT_UNKNOWN; if (flags & SET_NO_UNMOUNTED_IO_FLAGS) flags |= FIEMAP_EXTENT_ENCODED; if (flags & SET_NOT_ALIGNED_FLAGS) flags |= FIEMAP_EXTENT_NOT_ALIGNED; memset(&extent, 0, sizeof(extent)); extent.fe_logical = logical; extent.fe_physical = phys; extent.fe_length = len; extent.fe_flags = flags; dest += fieinfo->fi_extents_mapped; if (copy_to_user(dest, &extent, sizeof(extent))) return -EFAULT; fieinfo->fi_extents_mapped++; if (fieinfo->fi_extents_mapped == fieinfo->fi_extents_max) return 1; return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0; } EXPORT_SYMBOL(fiemap_fill_next_extent); /** * fiemap_prep - check validity of requested flags for fiemap * @inode: Inode to operate on * @fieinfo: Fiemap context passed into ->fiemap * @start: Start of the mapped range * @len: Length of the mapped range, can be truncated by this function. * @supported_flags: Set of fiemap flags that the file system understands * * This function must be called from each ->fiemap instance to validate the * fiemap request against the file system parameters. * * Returns 0 on success, or a negative error on failure. */ int fiemap_prep(struct inode *inode, struct fiemap_extent_info *fieinfo, u64 start, u64 *len, u32 supported_flags) { u64 maxbytes = inode->i_sb->s_maxbytes; u32 incompat_flags; int ret = 0; if (*len == 0) return -EINVAL; if (start > maxbytes) return -EFBIG; /* * Shrink request scope to what the fs can actually handle. */ if (*len > maxbytes || (maxbytes - *len) < start) *len = maxbytes - start; supported_flags |= FIEMAP_FLAG_SYNC; supported_flags &= FIEMAP_FLAGS_COMPAT; incompat_flags = fieinfo->fi_flags & ~supported_flags; if (incompat_flags) { fieinfo->fi_flags = incompat_flags; return -EBADR; } if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) ret = filemap_write_and_wait(inode->i_mapping); return ret; } EXPORT_SYMBOL(fiemap_prep); static int ioctl_fiemap(struct file *filp, struct fiemap __user *ufiemap) { struct fiemap fiemap; struct fiemap_extent_info fieinfo = { 0, }; struct inode *inode = file_inode(filp); int error; if (!inode->i_op->fiemap) return -EOPNOTSUPP; if (copy_from_user(&fiemap, ufiemap, sizeof(fiemap))) return -EFAULT; if (fiemap.fm_extent_count > FIEMAP_MAX_EXTENTS) return -EINVAL; fieinfo.fi_flags = fiemap.fm_flags; fieinfo.fi_extents_max = fiemap.fm_extent_count; fieinfo.fi_extents_start = ufiemap->fm_extents; error = inode->i_op->fiemap(inode, &fieinfo, fiemap.fm_start, fiemap.fm_length); fiemap.fm_flags = fieinfo.fi_flags; fiemap.fm_mapped_extents = fieinfo.fi_extents_mapped; if (copy_to_user(ufiemap, &fiemap, sizeof(fiemap))) error = -EFAULT; return error; } static long ioctl_file_clone(struct file *dst_file, unsigned long srcfd, u64 off, u64 olen, u64 destoff) { struct fd src_file = fdget(srcfd); loff_t cloned; int ret; if (!src_file.file) return -EBADF; ret = -EXDEV; if (src_file.file->f_path.mnt != dst_file->f_path.mnt) goto fdput; cloned = vfs_clone_file_range(src_file.file, off, dst_file, destoff, olen, 0); if (cloned < 0) ret = cloned; else if (olen && cloned != olen) ret = -EINVAL; else ret = 0; fdput: fdput(src_file); return ret; } static long ioctl_file_clone_range(struct file *file, struct file_clone_range __user *argp) { struct file_clone_range args; if (copy_from_user(&args, argp, sizeof(args))) return -EFAULT; return ioctl_file_clone(file, args.src_fd, args.src_offset, args.src_length, args.dest_offset); } #ifdef CONFIG_BLOCK static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) { return (offset >> inode->i_blkbits); } static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) { return (blk << inode->i_blkbits); } /** * __generic_block_fiemap - FIEMAP for block based inodes (no locking) * @inode: the inode to map * @fieinfo: the fiemap info struct that will be passed back to userspace * @start: where to start mapping in the inode * @len: how much space to map * @get_block: the fs's get_block function * * This does FIEMAP for block based inodes. Basically it will just loop * through get_block until we hit the number of extents we want to map, or we * go past the end of the file and hit a hole. * * If it is possible to have data blocks beyond a hole past @inode->i_size, then * please do not use this function, it will stop at the first unmapped block * beyond i_size. * * If you use this function directly, you need to do your own locking. Use * generic_block_fiemap if you want the locking done for you. */ static int __generic_block_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, loff_t start, loff_t len, get_block_t *get_block) { struct buffer_head map_bh; sector_t start_blk, last_blk; loff_t isize = i_size_read(inode); u64 logical = 0, phys = 0, size = 0; u32 flags = FIEMAP_EXTENT_MERGED; bool past_eof = false, whole_file = false; int ret = 0; ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_SYNC); if (ret) return ret; /* * Either the i_mutex or other appropriate locking needs to be held * since we expect isize to not change at all through the duration of * this call. */ if (len >= isize) { whole_file = true; len = isize; } /* * Some filesystems can't deal with being asked to map less than * blocksize, so make sure our len is at least block length. */ if (logical_to_blk(inode, len) == 0) len = blk_to_logical(inode, 1); start_blk = logical_to_blk(inode, start); last_blk = logical_to_blk(inode, start + len - 1); do { /* * we set b_size to the total size we want so it will map as * many contiguous blocks as possible at once */ memset(&map_bh, 0, sizeof(struct buffer_head)); map_bh.b_size = len; ret = get_block(inode, start_blk, &map_bh, 0); if (ret) break; /* HOLE */ if (!buffer_mapped(&map_bh)) { start_blk++; /* * We want to handle the case where there is an * allocated block at the front of the file, and then * nothing but holes up to the end of the file properly, * to make sure that extent at the front gets properly * marked with FIEMAP_EXTENT_LAST */ if (!past_eof && blk_to_logical(inode, start_blk) >= isize) past_eof = 1; /* * First hole after going past the EOF, this is our * last extent */ if (past_eof && size) { flags = FIEMAP_EXTENT_MERGED|FIEMAP_EXTENT_LAST; ret = fiemap_fill_next_extent(fieinfo, logical, phys, size, flags); } else if (size) { ret = fiemap_fill_next_extent(fieinfo, logical, phys, size, flags); size = 0; } /* if we have holes up to/past EOF then we're done */ if (start_blk > last_blk || past_eof || ret) break; } else { /* * We have gone over the length of what we wanted to * map, and it wasn't the entire file, so add the extent * we got last time and exit. * * This is for the case where say we want to map all the * way up to the second to the last block in a file, but * the last block is a hole, making the second to last * block FIEMAP_EXTENT_LAST. In this case we want to * see if there is a hole after the second to last block * so we can mark it properly. If we found data after * we exceeded the length we were requesting, then we * are good to go, just add the extent to the fieinfo * and break */ if (start_blk > last_blk && !whole_file) { ret = fiemap_fill_next_extent(fieinfo, logical, phys, size, flags); break; } /* * if size != 0 then we know we already have an extent * to add, so add it. */ if (size) { ret = fiemap_fill_next_extent(fieinfo, logical, phys, size, flags); if (ret) break; } logical = blk_to_logical(inode, start_blk); phys = blk_to_logical(inode, map_bh.b_blocknr); size = map_bh.b_size; flags = FIEMAP_EXTENT_MERGED; start_blk += logical_to_blk(inode, size); /* * If we are past the EOF, then we need to make sure as * soon as we find a hole that the last extent we found * is marked with FIEMAP_EXTENT_LAST */ if (!past_eof && logical + size >= isize) past_eof = true; } cond_resched(); if (fatal_signal_pending(current)) { ret = -EINTR; break; } } while (1); /* If ret is 1 then we just hit the end of the extent array */ if (ret == 1) ret = 0; return ret; } /** * generic_block_fiemap - FIEMAP for block based inodes * @inode: The inode to map * @fieinfo: The mapping information * @start: The initial block to map * @len: The length of the extect to attempt to map * @get_block: The block mapping function for the fs * * Calls __generic_block_fiemap to map the inode, after taking * the inode's mutex lock. */ int generic_block_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, u64 start, u64 len, get_block_t *get_block) { int ret; inode_lock(inode); ret = __generic_block_fiemap(inode, fieinfo, start, len, get_block); inode_unlock(inode); return ret; } EXPORT_SYMBOL(generic_block_fiemap); #endif /* CONFIG_BLOCK */ /* * This provides compatibility with legacy XFS pre-allocation ioctls * which predate the fallocate syscall. * * Only the l_start, l_len and l_whence fields of the 'struct space_resv' * are used here, rest are ignored. */ static int ioctl_preallocate(struct file *filp, int mode, void __user *argp) { struct inode *inode = file_inode(filp); struct space_resv sr; if (copy_from_user(&sr, argp, sizeof(sr))) return -EFAULT; switch (sr.l_whence) { case SEEK_SET: break; case SEEK_CUR: sr.l_start += filp->f_pos; break; case SEEK_END: sr.l_start += i_size_read(inode); break; default: return -EINVAL; } return vfs_fallocate(filp, mode | FALLOC_FL_KEEP_SIZE, sr.l_start, sr.l_len); } /* on ia32 l_start is on a 32-bit boundary */ #if defined CONFIG_COMPAT && defined(CONFIG_X86_64) /* just account for different alignment */ static int compat_ioctl_preallocate(struct file *file, int mode, struct space_resv_32 __user *argp) { struct inode *inode = file_inode(file); struct space_resv_32 sr; if (copy_from_user(&sr, argp, sizeof(sr))) return -EFAULT; switch (sr.l_whence) { case SEEK_SET: break; case SEEK_CUR: sr.l_start += file->f_pos; break; case SEEK_END: sr.l_start += i_size_read(inode); break; default: return -EINVAL; } return vfs_fallocate(file, mode | FALLOC_FL_KEEP_SIZE, sr.l_start, sr.l_len); } #endif static int file_ioctl(struct file *filp, unsigned int cmd, int __user *p) { switch (cmd) { case FIBMAP: return ioctl_fibmap(filp, p); case FS_IOC_RESVSP: case FS_IOC_RESVSP64: return ioctl_preallocate(filp, 0, p); case FS_IOC_UNRESVSP: case FS_IOC_UNRESVSP64: return ioctl_preallocate(filp, FALLOC_FL_PUNCH_HOLE, p); case FS_IOC_ZERO_RANGE: return ioctl_preallocate(filp, FALLOC_FL_ZERO_RANGE, p); } return -ENOIOCTLCMD; } static int ioctl_fionbio(struct file *filp, int __user *argp) { unsigned int flag; int on, error; error = get_user(on, argp); if (error) return error; flag = O_NONBLOCK; #ifdef __sparc__ /* SunOS compatibility item. */ if (O_NONBLOCK != O_NDELAY) flag |= O_NDELAY; #endif spin_lock(&filp->f_lock); if (on) filp->f_flags |= flag; else filp->f_flags &= ~flag; spin_unlock(&filp->f_lock); return error; } static int ioctl_fioasync(unsigned int fd, struct file *filp, int __user *argp) { unsigned int flag; int on, error; error = get_user(on, argp); if (error) return error; flag = on ? FASYNC : 0; /* Did FASYNC state change ? */ if ((flag ^ filp->f_flags) & FASYNC) { if (filp->f_op->fasync) /* fasync() adjusts filp->f_flags */ error = filp->f_op->fasync(fd, filp, on); else error = -ENOTTY; } return error < 0 ? error : 0; } static int ioctl_fsfreeze(struct file *filp) { struct super_block *sb = file_inode(filp)->i_sb; if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) return -EPERM; /* If filesystem doesn't support freeze feature, return. */ if (sb->s_op->freeze_fs == NULL && sb->s_op->freeze_super == NULL) return -EOPNOTSUPP; /* Freeze */ if (sb->s_op->freeze_super) return sb->s_op->freeze_super(sb); return freeze_super(sb); } static int ioctl_fsthaw(struct file *filp) { struct super_block *sb = file_inode(filp)->i_sb; if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) return -EPERM; /* Thaw */ if (sb->s_op->thaw_super) return sb->s_op->thaw_super(sb); return thaw_super(sb); } static int ioctl_file_dedupe_range(struct file *file, struct file_dedupe_range __user *argp) { struct file_dedupe_range *same = NULL; int ret; unsigned long size; u16 count; if (get_user(count, &argp->dest_count)) { ret = -EFAULT; goto out; } size = offsetof(struct file_dedupe_range __user, info[count]); if (size > PAGE_SIZE) { ret = -ENOMEM; goto out; } same = memdup_user(argp, size); if (IS_ERR(same)) { ret = PTR_ERR(same); same = NULL; goto out; } same->dest_count = count; ret = vfs_dedupe_file_range(file, same); if (ret) goto out; ret = copy_to_user(argp, same, size); if (ret) ret = -EFAULT; out: kfree(same); return ret; } /* * do_vfs_ioctl() is not for drivers and not intended to be EXPORT_SYMBOL()'d. * It's just a simple helper for sys_ioctl and compat_sys_ioctl. * * When you add any new common ioctls to the switches above and below, * please ensure they have compatible arguments in compat mode. */ static int do_vfs_ioctl(struct file *filp, unsigned int fd, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; struct inode *inode = file_inode(filp); switch (cmd) { case FIOCLEX: set_close_on_exec(fd, 1); return 0; case FIONCLEX: set_close_on_exec(fd, 0); return 0; case FIONBIO: return ioctl_fionbio(filp, argp); case FIOASYNC: return ioctl_fioasync(fd, filp, argp); case FIOQSIZE: if (S_ISDIR(inode->i_mode) || S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) { loff_t res = inode_get_bytes(inode); return copy_to_user(argp, &res, sizeof(res)) ? -EFAULT : 0; } return -ENOTTY; case FIFREEZE: return ioctl_fsfreeze(filp); case FITHAW: return ioctl_fsthaw(filp); case FS_IOC_FIEMAP: return ioctl_fiemap(filp, argp); case FIGETBSZ: /* anon_bdev filesystems may not have a block size */ if (!inode->i_sb->s_blocksize) return -EINVAL; return put_user(inode->i_sb->s_blocksize, (int __user *)argp); case FICLONE: return ioctl_file_clone(filp, arg, 0, 0, 0); case FICLONERANGE: return ioctl_file_clone_range(filp, argp); case FIDEDUPERANGE: return ioctl_file_dedupe_range(filp, argp); case FIONREAD: if (!S_ISREG(inode->i_mode)) return vfs_ioctl(filp, cmd, arg); return put_user(i_size_read(inode) - filp->f_pos, (int __user *)argp); default: if (S_ISREG(inode->i_mode)) return file_ioctl(filp, cmd, argp); break; } return -ENOIOCTLCMD; } SYSCALL_DEFINE3(ioctl, unsigned int, fd, unsigned int, cmd, unsigned long, arg) { struct fd f = fdget(fd); int error; if (!f.file) return -EBADF; error = security_file_ioctl(f.file, cmd, arg); if (error) goto out; error = do_vfs_ioctl(f.file, fd, cmd, arg); if (error == -ENOIOCTLCMD) error = vfs_ioctl(f.file, cmd, arg); out: fdput(f); return error; } #ifdef CONFIG_COMPAT /** * compat_ptr_ioctl - generic implementation of .compat_ioctl file operation * * This is not normally called as a function, but instead set in struct * file_operations as * * .compat_ioctl = compat_ptr_ioctl, * * On most architectures, the compat_ptr_ioctl() just passes all arguments * to the corresponding ->ioctl handler. The exception is arch/s390, where * compat_ptr() clears the top bit of a 32-bit pointer value, so user space * pointers to the second 2GB alias the first 2GB, as is the case for * native 32-bit s390 user space. * * The compat_ptr_ioctl() function must therefore be used only with ioctl * functions that either ignore the argument or pass a pointer to a * compatible data type. * * If any ioctl command handled by fops->unlocked_ioctl passes a plain * integer instead of a pointer, or any of the passed data types * is incompatible between 32-bit and 64-bit architectures, a proper * handler is required instead of compat_ptr_ioctl. */ long compat_ptr_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { if (!file->f_op->unlocked_ioctl) return -ENOIOCTLCMD; return file->f_op->unlocked_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); } EXPORT_SYMBOL(compat_ptr_ioctl); COMPAT_SYSCALL_DEFINE3(ioctl, unsigned int, fd, unsigned int, cmd, compat_ulong_t, arg) { struct fd f = fdget(fd); int error; if (!f.file) return -EBADF; /* RED-PEN how should LSM module know it's handling 32bit? */ error = security_file_ioctl(f.file, cmd, arg); if (error) goto out; switch (cmd) { /* FICLONE takes an int argument, so don't use compat_ptr() */ case FICLONE: error = ioctl_file_clone(f.file, arg, 0, 0, 0); break; #if defined(CONFIG_X86_64) /* these get messy on amd64 due to alignment differences */ case FS_IOC_RESVSP_32: case FS_IOC_RESVSP64_32: error = compat_ioctl_preallocate(f.file, 0, compat_ptr(arg)); break; case FS_IOC_UNRESVSP_32: case FS_IOC_UNRESVSP64_32: error = compat_ioctl_preallocate(f.file, FALLOC_FL_PUNCH_HOLE, compat_ptr(arg)); break; case FS_IOC_ZERO_RANGE_32: error = compat_ioctl_preallocate(f.file, FALLOC_FL_ZERO_RANGE, compat_ptr(arg)); break; #endif /* * everything else in do_vfs_ioctl() takes either a compatible * pointer argument or no argument -- call it with a modified * argument. */ default: error = do_vfs_ioctl(f.file, fd, cmd, (unsigned long)compat_ptr(arg)); if (error != -ENOIOCTLCMD) break; if (f.file->f_op->compat_ioctl) error = f.file->f_op->compat_ioctl(f.file, cmd, arg); if (error == -ENOIOCTLCMD) error = -ENOTTY; break; } out: fdput(f); return error; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_SIGNAL_H #define _LINUX_SCHED_SIGNAL_H #include <linux/rculist.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/sched/jobctl.h> #include <linux/sched/task.h> #include <linux/cred.h> #include <linux/refcount.h> #include <linux/posix-timers.h> #include <linux/mm_types.h> #include <asm/ptrace.h> /* * Types defining task->signal and task->sighand and APIs using them: */ struct sighand_struct { spinlock_t siglock; refcount_t count; wait_queue_head_t signalfd_wqh; struct k_sigaction action[_NSIG]; }; /* * Per-process accounting stats: */ struct pacct_struct { int ac_flag; long ac_exitcode; unsigned long ac_mem; u64 ac_utime, ac_stime; unsigned long ac_minflt, ac_majflt; }; struct cpu_itimer { u64 expires; u64 incr; }; /* * This is the atomic variant of task_cputime, which can be used for * storing and updating task_cputime statistics without locking. */ struct task_cputime_atomic { atomic64_t utime; atomic64_t stime; atomic64_t sum_exec_runtime; }; #define INIT_CPUTIME_ATOMIC \ (struct task_cputime_atomic) { \ .utime = ATOMIC64_INIT(0), \ .stime = ATOMIC64_INIT(0), \ .sum_exec_runtime = ATOMIC64_INIT(0), \ } /** * struct thread_group_cputimer - thread group interval timer counts * @cputime_atomic: atomic thread group interval timers. * * This structure contains the version of task_cputime, above, that is * used for thread group CPU timer calculations. */ struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic; }; struct multiprocess_signals { sigset_t signal; struct hlist_node node; }; /* * NOTE! "signal_struct" does not have its own * locking, because a shared signal_struct always * implies a shared sighand_struct, so locking * sighand_struct is always a proper superset of * the locking of signal_struct. */ struct signal_struct { refcount_t sigcnt; atomic_t live; int nr_threads; struct list_head thread_head; wait_queue_head_t wait_chldexit; /* for wait4() */ /* current thread group signal load-balancing target: */ struct task_struct *curr_target; /* shared signal handling: */ struct sigpending shared_pending; /* For collecting multiprocess signals during fork */ struct hlist_head multiprocess; /* thread group exit support */ int group_exit_code; /* overloaded: * - notify group_exit_task when ->count is equal to notify_count * - everyone except group_exit_task is stopped during signal delivery * of fatal signals, group_exit_task processes the signal. */ int notify_count; struct task_struct *group_exit_task; /* thread group stop support, overloads group_exit_code too */ int group_stop_count; unsigned int flags; /* see SIGNAL_* flags below */ /* * PR_SET_CHILD_SUBREAPER marks a process, like a service * manager, to re-parent orphan (double-forking) child processes * to this process instead of 'init'. The service manager is * able to receive SIGCHLD signals and is able to investigate * the process until it calls wait(). All children of this * process will inherit a flag if they should look for a * child_subreaper process at exit. */ unsigned int is_child_subreaper:1; unsigned int has_child_subreaper:1; #ifdef CONFIG_POSIX_TIMERS /* POSIX.1b Interval Timers */ int posix_timer_id; struct list_head posix_timers; /* ITIMER_REAL timer for the process */ struct hrtimer real_timer; ktime_t it_real_incr; /* * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these * values are defined to 0 and 1 respectively */ struct cpu_itimer it[2]; /* * Thread group totals for process CPU timers. * See thread_group_cputimer(), et al, for details. */ struct thread_group_cputimer cputimer; #endif /* Empty if CONFIG_POSIX_TIMERS=n */ struct posix_cputimers posix_cputimers; /* PID/PID hash table linkage. */ struct pid *pids[PIDTYPE_MAX]; #ifdef CONFIG_NO_HZ_FULL atomic_t tick_dep_mask; #endif struct pid *tty_old_pgrp; /* boolean value for session group leader */ int leader; struct tty_struct *tty; /* NULL if no tty */ #ifdef CONFIG_SCHED_AUTOGROUP struct autogroup *autogroup; #endif /* * Cumulative resource counters for dead threads in the group, * and for reaped dead child processes forked by this group. * Live threads maintain their own counters and add to these * in __exit_signal, except for the group leader. */ seqlock_t stats_lock; u64 utime, stime, cutime, cstime; u64 gtime; u64 cgtime; struct prev_cputime prev_cputime; unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; unsigned long inblock, oublock, cinblock, coublock; unsigned long maxrss, cmaxrss; struct task_io_accounting ioac; /* * Cumulative ns of schedule CPU time fo dead threads in the * group, not including a zombie group leader, (This only differs * from jiffies_to_ns(utime + stime) if sched_clock uses something * other than jiffies.) */ unsigned long long sum_sched_runtime; /* * We don't bother to synchronize most readers of this at all, * because there is no reader checking a limit that actually needs * to get both rlim_cur and rlim_max atomically, and either one * alone is a single word that can safely be read normally. * getrlimit/setrlimit use task_lock(current->group_leader) to * protect this instead of the siglock, because they really * have no need to disable irqs. */ struct rlimit rlim[RLIM_NLIMITS]; #ifdef CONFIG_BSD_PROCESS_ACCT struct pacct_struct pacct; /* per-process accounting information */ #endif #ifdef CONFIG_TASKSTATS struct taskstats *stats; #endif #ifdef CONFIG_AUDIT unsigned audit_tty; struct tty_audit_buf *tty_audit_buf; #endif /* * Thread is the potential origin of an oom condition; kill first on * oom */ bool oom_flag_origin; short oom_score_adj; /* OOM kill score adjustment */ short oom_score_adj_min; /* OOM kill score adjustment min value. * Only settable by CAP_SYS_RESOURCE. */ struct mm_struct *oom_mm; /* recorded mm when the thread group got * killed by the oom killer */ struct mutex cred_guard_mutex; /* guard against foreign influences on * credential calculations * (notably. ptrace) * Deprecated do not use in new code. * Use exec_update_lock instead. */ struct rw_semaphore exec_update_lock; /* Held while task_struct is * being updated during exec, * and may have inconsistent * permissions. */ } __randomize_layout; /* * Bits in flags field of signal_struct. */ #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ /* * Pending notifications to parent. */ #define SIGNAL_CLD_STOPPED 0x00000010 #define SIGNAL_CLD_CONTINUED 0x00000020 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ SIGNAL_STOP_CONTINUED) static inline void signal_set_stop_flags(struct signal_struct *sig, unsigned int flags) { WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; } /* If true, all threads except ->group_exit_task have pending SIGKILL */ static inline int signal_group_exit(const struct signal_struct *sig) { return (sig->flags & SIGNAL_GROUP_EXIT) || (sig->group_exit_task != NULL); } extern void flush_signals(struct task_struct *); extern void ignore_signals(struct task_struct *); extern void flush_signal_handlers(struct task_struct *, int force_default); extern int dequeue_signal(struct task_struct *task, sigset_t *mask, kernel_siginfo_t *info); static inline int kernel_dequeue_signal(void) { struct task_struct *task = current; kernel_siginfo_t __info; int ret; spin_lock_irq(&task->sighand->siglock); ret = dequeue_signal(task, &task->blocked, &__info); spin_unlock_irq(&task->sighand->siglock); return ret; } static inline void kernel_signal_stop(void) { spin_lock_irq(&current->sighand->siglock); if (current->jobctl & JOBCTL_STOP_DEQUEUED) set_special_state(TASK_STOPPED); spin_unlock_irq(&current->sighand->siglock); schedule(); } #ifdef __ARCH_SI_TRAPNO # define ___ARCH_SI_TRAPNO(_a1) , _a1 #else # define ___ARCH_SI_TRAPNO(_a1) #endif #ifdef __ia64__ # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 #else # define ___ARCH_SI_IA64(_a1, _a2, _a3) #endif int force_sig_fault_to_task(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) , struct task_struct *t); int force_sig_fault(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)); int send_sig_fault(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) , struct task_struct *t); int force_sig_mceerr(int code, void __user *, short); int send_sig_mceerr(int code, void __user *, short, struct task_struct *); int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); int force_sig_pkuerr(void __user *addr, u32 pkey); int force_sig_ptrace_errno_trap(int errno, void __user *addr); extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); extern void force_sigsegv(int sig); extern int force_sig_info(struct kernel_siginfo *); extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, const struct cred *); extern int kill_pgrp(struct pid *pid, int sig, int priv); extern int kill_pid(struct pid *pid, int sig, int priv); extern __must_check bool do_notify_parent(struct task_struct *, int); extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); extern void force_sig(int); extern int send_sig(int, struct task_struct *, int); extern int zap_other_threads(struct task_struct *p); extern struct sigqueue *sigqueue_alloc(void); extern void sigqueue_free(struct sigqueue *); extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); static inline int restart_syscall(void) { set_tsk_thread_flag(current, TIF_SIGPENDING); return -ERESTARTNOINTR; } static inline int signal_pending(struct task_struct *p) { return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); } static inline int __fatal_signal_pending(struct task_struct *p) { return unlikely(sigismember(&p->pending.signal, SIGKILL)); } static inline int fatal_signal_pending(struct task_struct *p) { return signal_pending(p) && __fatal_signal_pending(p); } static inline int signal_pending_state(long state, struct task_struct *p) { if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) return 0; if (!signal_pending(p)) return 0; return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); } /* * This should only be used in fault handlers to decide whether we * should stop the current fault routine to handle the signals * instead, especially with the case where we've got interrupted with * a VM_FAULT_RETRY. */ static inline bool fault_signal_pending(vm_fault_t fault_flags, struct pt_regs *regs) { return unlikely((fault_flags & VM_FAULT_RETRY) && (fatal_signal_pending(current) || (user_mode(regs) && signal_pending(current)))); } /* * Reevaluate whether the task has signals pending delivery. * Wake the task if so. * This is required every time the blocked sigset_t changes. * callers must hold sighand->siglock. */ extern void recalc_sigpending_and_wake(struct task_struct *t); extern void recalc_sigpending(void); extern void calculate_sigpending(void); extern void signal_wake_up_state(struct task_struct *t, unsigned int state); static inline void signal_wake_up(struct task_struct *t, bool resume) { signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); } static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) { signal_wake_up_state(t, resume ? __TASK_TRACED : 0); } void task_join_group_stop(struct task_struct *task); #ifdef TIF_RESTORE_SIGMASK /* * Legacy restore_sigmask accessors. These are inefficient on * SMP architectures because they require atomic operations. */ /** * set_restore_sigmask() - make sure saved_sigmask processing gets done * * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code * will run before returning to user mode, to process the flag. For * all callers, TIF_SIGPENDING is already set or it's no harm to set * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the * arch code will notice on return to user mode, in case those bits * are scarce. We set TIF_SIGPENDING here to ensure that the arch * signal code always gets run when TIF_RESTORE_SIGMASK is set. */ static inline void set_restore_sigmask(void) { set_thread_flag(TIF_RESTORE_SIGMASK); } static inline void clear_tsk_restore_sigmask(struct task_struct *task) { clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); } static inline void clear_restore_sigmask(void) { clear_thread_flag(TIF_RESTORE_SIGMASK); } static inline bool test_tsk_restore_sigmask(struct task_struct *task) { return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); } static inline bool test_restore_sigmask(void) { return test_thread_flag(TIF_RESTORE_SIGMASK); } static inline bool test_and_clear_restore_sigmask(void) { return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); } #else /* TIF_RESTORE_SIGMASK */ /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ static inline void set_restore_sigmask(void) { current->restore_sigmask = true; } static inline void clear_tsk_restore_sigmask(struct task_struct *task) { task->restore_sigmask = false; } static inline void clear_restore_sigmask(void) { current->restore_sigmask = false; } static inline bool test_restore_sigmask(void) { return current->restore_sigmask; } static inline bool test_tsk_restore_sigmask(struct task_struct *task) { return task->restore_sigmask; } static inline bool test_and_clear_restore_sigmask(void) { if (!current->restore_sigmask) return false; current->restore_sigmask = false; return true; } #endif static inline void restore_saved_sigmask(void) { if (test_and_clear_restore_sigmask()) __set_current_blocked(&current->saved_sigmask); } extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); static inline void restore_saved_sigmask_unless(bool interrupted) { if (interrupted) WARN_ON(!test_thread_flag(TIF_SIGPENDING)); else restore_saved_sigmask(); } static inline sigset_t *sigmask_to_save(void) { sigset_t *res = &current->blocked; if (unlikely(test_restore_sigmask())) res = &current->saved_sigmask; return res; } static inline int kill_cad_pid(int sig, int priv) { return kill_pid(cad_pid, sig, priv); } /* These can be the second arg to send_sig_info/send_group_sig_info. */ #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) static inline int __on_sig_stack(unsigned long sp) { #ifdef CONFIG_STACK_GROWSUP return sp >= current->sas_ss_sp && sp - current->sas_ss_sp < current->sas_ss_size; #else return sp > current->sas_ss_sp && sp - current->sas_ss_sp <= current->sas_ss_size; #endif } /* * True if we are on the alternate signal stack. */ static inline int on_sig_stack(unsigned long sp) { /* * If the signal stack is SS_AUTODISARM then, by construction, we * can't be on the signal stack unless user code deliberately set * SS_AUTODISARM when we were already on it. * * This improves reliability: if user state gets corrupted such that * the stack pointer points very close to the end of the signal stack, * then this check will enable the signal to be handled anyway. */ if (current->sas_ss_flags & SS_AUTODISARM) return 0; return __on_sig_stack(sp); } static inline int sas_ss_flags(unsigned long sp) { if (!current->sas_ss_size) return SS_DISABLE; return on_sig_stack(sp) ? SS_ONSTACK : 0; } static inline void sas_ss_reset(struct task_struct *p) { p->sas_ss_sp = 0; p->sas_ss_size = 0; p->sas_ss_flags = SS_DISABLE; } static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) { if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) #ifdef CONFIG_STACK_GROWSUP return current->sas_ss_sp; #else return current->sas_ss_sp + current->sas_ss_size; #endif return sp; } extern void __cleanup_sighand(struct sighand_struct *); extern void flush_itimer_signals(void); #define tasklist_empty() \ list_empty(&init_task.tasks) #define next_task(p) \ list_entry_rcu((p)->tasks.next, struct task_struct, tasks) #define for_each_process(p) \ for (p = &init_task ; (p = next_task(p)) != &init_task ; ) extern bool current_is_single_threaded(void); /* * Careful: do_each_thread/while_each_thread is a double loop so * 'break' will not work as expected - use goto instead. */ #define do_each_thread(g, t) \ for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do #define while_each_thread(g, t) \ while ((t = next_thread(t)) != g) #define __for_each_thread(signal, t) \ list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) #define for_each_thread(p, t) \ __for_each_thread((p)->signal, t) /* Careful: this is a double loop, 'break' won't work as expected. */ #define for_each_process_thread(p, t) \ for_each_process(p) for_each_thread(p, t) typedef int (*proc_visitor)(struct task_struct *p, void *data); void walk_process_tree(struct task_struct *top, proc_visitor, void *); static inline struct pid *task_pid_type(struct task_struct *task, enum pid_type type) { struct pid *pid; if (type == PIDTYPE_PID) pid = task_pid(task); else pid = task->signal->pids[type]; return pid; } static inline struct pid *task_tgid(struct task_struct *task) { return task->signal->pids[PIDTYPE_TGID]; } /* * Without tasklist or RCU lock it is not safe to dereference * the result of task_pgrp/task_session even if task == current, * we can race with another thread doing sys_setsid/sys_setpgid. */ static inline struct pid *task_pgrp(struct task_struct *task) { return task->signal->pids[PIDTYPE_PGID]; } static inline struct pid *task_session(struct task_struct *task) { return task->signal->pids[PIDTYPE_SID]; } static inline int get_nr_threads(struct task_struct *task) { return task->signal->nr_threads; } static inline bool thread_group_leader(struct task_struct *p) { return p->exit_signal >= 0; } static inline bool same_thread_group(struct task_struct *p1, struct task_struct *p2) { return p1->signal == p2->signal; } static inline struct task_struct *next_thread(const struct task_struct *p) { return list_entry_rcu(p->thread_group.next, struct task_struct, thread_group); } static inline int thread_group_empty(struct task_struct *p) { return list_empty(&p->thread_group); } #define delay_group_leader(p) \ (thread_group_leader(p) && !thread_group_empty(p)) extern bool thread_group_exited(struct pid *pid); extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, unsigned long *flags); static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, unsigned long *flags) { struct sighand_struct *ret; ret = __lock_task_sighand(task, flags); (void)__cond_lock(&task->sighand->siglock, ret); return ret; } static inline void unlock_task_sighand(struct task_struct *task, unsigned long *flags) { spin_unlock_irqrestore(&task->sighand->siglock, *flags); } static inline unsigned long task_rlimit(const struct task_struct *task, unsigned int limit) { return READ_ONCE(task->signal->rlim[limit].rlim_cur); } static inline unsigned long task_rlimit_max(const struct task_struct *task, unsigned int limit) { return READ_ONCE(task->signal->rlim[limit].rlim_max); } static inline unsigned long rlimit(unsigned int limit) { return task_rlimit(current, limit); } static inline unsigned long rlimit_max(unsigned int limit) { return task_rlimit_max(current, limit); } #endif /* _LINUX_SCHED_SIGNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the IP router. * * Version: @(#)route.h 1.0.4 05/27/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Fixes: * Alan Cox : Reformatted. Added ip_rt_local() * Alan Cox : Support for TCP parameters. * Alexey Kuznetsov: Major changes for new routing code. * Mike McLagan : Routing by source * Robert Olsson : Added rt_cache statistics */ #ifndef _ROUTE_H #define _ROUTE_H #include <net/dst.h> #include <net/inetpeer.h> #include <net/flow.h> #include <net/inet_sock.h> #include <net/ip_fib.h> #include <net/arp.h> #include <net/ndisc.h> #include <linux/in_route.h> #include <linux/rtnetlink.h> #include <linux/rcupdate.h> #include <linux/route.h> #include <linux/ip.h> #include <linux/cache.h> #include <linux/security.h> /* IPv4 datagram length is stored into 16bit field (tot_len) */ #define IP_MAX_MTU 0xFFFFU #define RTO_ONLINK 0x01 #define RT_CONN_FLAGS(sk) (RT_TOS(inet_sk(sk)->tos) | sock_flag(sk, SOCK_LOCALROUTE)) #define RT_CONN_FLAGS_TOS(sk,tos) (RT_TOS(tos) | sock_flag(sk, SOCK_LOCALROUTE)) struct fib_nh; struct fib_info; struct uncached_list; struct rtable { struct dst_entry dst; int rt_genid; unsigned int rt_flags; __u16 rt_type; __u8 rt_is_input; __u8 rt_uses_gateway; int rt_iif; u8 rt_gw_family; /* Info on neighbour */ union { __be32 rt_gw4; struct in6_addr rt_gw6; }; /* Miscellaneous cached information */ u32 rt_mtu_locked:1, rt_pmtu:31; struct list_head rt_uncached; struct uncached_list *rt_uncached_list; }; static inline bool rt_is_input_route(const struct rtable *rt) { return rt->rt_is_input != 0; } static inline bool rt_is_output_route(const struct rtable *rt) { return rt->rt_is_input == 0; } static inline __be32 rt_nexthop(const struct rtable *rt, __be32 daddr) { if (rt->rt_gw_family == AF_INET) return rt->rt_gw4; return daddr; } struct ip_rt_acct { __u32 o_bytes; __u32 o_packets; __u32 i_bytes; __u32 i_packets; }; struct rt_cache_stat { unsigned int in_slow_tot; unsigned int in_slow_mc; unsigned int in_no_route; unsigned int in_brd; unsigned int in_martian_dst; unsigned int in_martian_src; unsigned int out_slow_tot; unsigned int out_slow_mc; }; extern struct ip_rt_acct __percpu *ip_rt_acct; struct in_device; int ip_rt_init(void); void rt_cache_flush(struct net *net); void rt_flush_dev(struct net_device *dev); struct rtable *ip_route_output_key_hash(struct net *net, struct flowi4 *flp, const struct sk_buff *skb); struct rtable *ip_route_output_key_hash_rcu(struct net *net, struct flowi4 *flp, struct fib_result *res, const struct sk_buff *skb); static inline struct rtable *__ip_route_output_key(struct net *net, struct flowi4 *flp) { return ip_route_output_key_hash(net, flp, NULL); } struct rtable *ip_route_output_flow(struct net *, struct flowi4 *flp, const struct sock *sk); struct rtable *ip_route_output_tunnel(struct sk_buff *skb, struct net_device *dev, struct net *net, __be32 *saddr, const struct ip_tunnel_info *info, u8 protocol, bool use_cache); struct dst_entry *ipv4_blackhole_route(struct net *net, struct dst_entry *dst_orig); static inline struct rtable *ip_route_output_key(struct net *net, struct flowi4 *flp) { return ip_route_output_flow(net, flp, NULL); } static inline struct rtable *ip_route_output(struct net *net, __be32 daddr, __be32 saddr, u8 tos, int oif) { struct flowi4 fl4 = { .flowi4_oif = oif, .flowi4_tos = tos, .daddr = daddr, .saddr = saddr, }; return ip_route_output_key(net, &fl4); } static inline struct rtable *ip_route_output_ports(struct net *net, struct flowi4 *fl4, struct sock *sk, __be32 daddr, __be32 saddr, __be16 dport, __be16 sport, __u8 proto, __u8 tos, int oif) { flowi4_init_output(fl4, oif, sk ? sk->sk_mark : 0, tos, RT_SCOPE_UNIVERSE, proto, sk ? inet_sk_flowi_flags(sk) : 0, daddr, saddr, dport, sport, sock_net_uid(net, sk)); if (sk) security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); return ip_route_output_flow(net, fl4, sk); } static inline struct rtable *ip_route_output_gre(struct net *net, struct flowi4 *fl4, __be32 daddr, __be32 saddr, __be32 gre_key, __u8 tos, int oif) { memset(fl4, 0, sizeof(*fl4)); fl4->flowi4_oif = oif; fl4->daddr = daddr; fl4->saddr = saddr; fl4->flowi4_tos = tos; fl4->flowi4_proto = IPPROTO_GRE; fl4->fl4_gre_key = gre_key; return ip_route_output_key(net, fl4); } int ip_mc_validate_source(struct sk_buff *skb, __be32 daddr, __be32 saddr, u8 tos, struct net_device *dev, struct in_device *in_dev, u32 *itag); int ip_route_input_noref(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin); int ip_route_input_rcu(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin, struct fib_result *res); int ip_route_use_hint(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin, const struct sk_buff *hint); static inline int ip_route_input(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin) { int err; rcu_read_lock(); err = ip_route_input_noref(skb, dst, src, tos, devin); if (!err) { skb_dst_force(skb); if (!skb_dst(skb)) err = -EINVAL; } rcu_read_unlock(); return err; } void ipv4_update_pmtu(struct sk_buff *skb, struct net *net, u32 mtu, int oif, u8 protocol); void ipv4_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, u32 mtu); void ipv4_redirect(struct sk_buff *skb, struct net *net, int oif, u8 protocol); void ipv4_sk_redirect(struct sk_buff *skb, struct sock *sk); void ip_rt_send_redirect(struct sk_buff *skb); unsigned int inet_addr_type(struct net *net, __be32 addr); unsigned int inet_addr_type_table(struct net *net, __be32 addr, u32 tb_id); unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev, __be32 addr); unsigned int inet_addr_type_dev_table(struct net *net, const struct net_device *dev, __be32 addr); void ip_rt_multicast_event(struct in_device *); int ip_rt_ioctl(struct net *, unsigned int cmd, struct rtentry *rt); void ip_rt_get_source(u8 *src, struct sk_buff *skb, struct rtable *rt); struct rtable *rt_dst_alloc(struct net_device *dev, unsigned int flags, u16 type, bool nopolicy, bool noxfrm); struct rtable *rt_dst_clone(struct net_device *dev, struct rtable *rt); struct in_ifaddr; void fib_add_ifaddr(struct in_ifaddr *); void fib_del_ifaddr(struct in_ifaddr *, struct in_ifaddr *); void fib_modify_prefix_metric(struct in_ifaddr *ifa, u32 new_metric); void rt_add_uncached_list(struct rtable *rt); void rt_del_uncached_list(struct rtable *rt); int fib_dump_info_fnhe(struct sk_buff *skb, struct netlink_callback *cb, u32 table_id, struct fib_info *fi, int *fa_index, int fa_start, unsigned int flags); static inline void ip_rt_put(struct rtable *rt) { /* dst_release() accepts a NULL parameter. * We rely on dst being first structure in struct rtable */ BUILD_BUG_ON(offsetof(struct rtable, dst) != 0); dst_release(&rt->dst); } #define IPTOS_RT_MASK (IPTOS_TOS_MASK & ~3) extern const __u8 ip_tos2prio[16]; static inline char rt_tos2priority(u8 tos) { return ip_tos2prio[IPTOS_TOS(tos)>>1]; } /* ip_route_connect() and ip_route_newports() work in tandem whilst * binding a socket for a new outgoing connection. * * In order to use IPSEC properly, we must, in the end, have a * route that was looked up using all available keys including source * and destination ports. * * However, if a source port needs to be allocated (the user specified * a wildcard source port) we need to obtain addressing information * in order to perform that allocation. * * So ip_route_connect() looks up a route using wildcarded source and * destination ports in the key, simply so that we can get a pair of * addresses to use for port allocation. * * Later, once the ports are allocated, ip_route_newports() will make * another route lookup if needed to make sure we catch any IPSEC * rules keyed on the port information. * * The callers allocate the flow key on their stack, and must pass in * the same flowi4 object to both the ip_route_connect() and the * ip_route_newports() calls. */ static inline void ip_route_connect_init(struct flowi4 *fl4, __be32 dst, __be32 src, u32 tos, int oif, u8 protocol, __be16 sport, __be16 dport, struct sock *sk) { __u8 flow_flags = 0; if (inet_sk(sk)->transparent) flow_flags |= FLOWI_FLAG_ANYSRC; flowi4_init_output(fl4, oif, sk->sk_mark, tos, RT_SCOPE_UNIVERSE, protocol, flow_flags, dst, src, dport, sport, sk->sk_uid); } static inline struct rtable *ip_route_connect(struct flowi4 *fl4, __be32 dst, __be32 src, u32 tos, int oif, u8 protocol, __be16 sport, __be16 dport, struct sock *sk) { struct net *net = sock_net(sk); struct rtable *rt; ip_route_connect_init(fl4, dst, src, tos, oif, protocol, sport, dport, sk); if (!dst || !src) { rt = __ip_route_output_key(net, fl4); if (IS_ERR(rt)) return rt; ip_rt_put(rt); flowi4_update_output(fl4, oif, tos, fl4->daddr, fl4->saddr); } security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); return ip_route_output_flow(net, fl4, sk); } static inline struct rtable *ip_route_newports(struct flowi4 *fl4, struct rtable *rt, __be16 orig_sport, __be16 orig_dport, __be16 sport, __be16 dport, struct sock *sk) { if (sport != orig_sport || dport != orig_dport) { fl4->fl4_dport = dport; fl4->fl4_sport = sport; ip_rt_put(rt); flowi4_update_output(fl4, sk->sk_bound_dev_if, RT_CONN_FLAGS(sk), fl4->daddr, fl4->saddr); security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); return ip_route_output_flow(sock_net(sk), fl4, sk); } return rt; } static inline int inet_iif(const struct sk_buff *skb) { struct rtable *rt = skb_rtable(skb); if (rt && rt->rt_iif) return rt->rt_iif; return skb->skb_iif; } static inline int ip4_dst_hoplimit(const struct dst_entry *dst) { int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT); struct net *net = dev_net(dst->dev); if (hoplimit == 0) hoplimit = net->ipv4.sysctl_ip_default_ttl; return hoplimit; } static inline struct neighbour *ip_neigh_gw4(struct net_device *dev, __be32 daddr) { struct neighbour *neigh; neigh = __ipv4_neigh_lookup_noref(dev, daddr); if (unlikely(!neigh)) neigh = __neigh_create(&arp_tbl, &daddr, dev, false); return neigh; } static inline struct neighbour *ip_neigh_for_gw(struct rtable *rt, struct sk_buff *skb, bool *is_v6gw) { struct net_device *dev = rt->dst.dev; struct neighbour *neigh; if (likely(rt->rt_gw_family == AF_INET)) { neigh = ip_neigh_gw4(dev, rt->rt_gw4); } else if (rt->rt_gw_family == AF_INET6) { neigh = ip_neigh_gw6(dev, &rt->rt_gw6); *is_v6gw = true; } else { neigh = ip_neigh_gw4(dev, ip_hdr(skb)->daddr); } return neigh; } #endif /* _ROUTE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 /* SPDX-License-Identifier: GPL-2.0 */ /* * Statically sized hash table implementation * (C) 2012 Sasha Levin <levinsasha928@gmail.com> */ #ifndef _LINUX_HASHTABLE_H #define _LINUX_HASHTABLE_H #include <linux/list.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/hash.h> #include <linux/rculist.h> #define DEFINE_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] = \ { [0 ... ((1 << (bits)) - 1)] = HLIST_HEAD_INIT } #define DEFINE_READ_MOSTLY_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] __read_mostly = \ { [0 ... ((1 << (bits)) - 1)] = HLIST_HEAD_INIT } #define DECLARE_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] #define HASH_SIZE(name) (ARRAY_SIZE(name)) #define HASH_BITS(name) ilog2(HASH_SIZE(name)) /* Use hash_32 when possible to allow for fast 32bit hashing in 64bit kernels. */ #define hash_min(val, bits) \ (sizeof(val) <= 4 ? hash_32(val, bits) : hash_long(val, bits)) static inline void __hash_init(struct hlist_head *ht, unsigned int sz) { unsigned int i; for (i = 0; i < sz; i++) INIT_HLIST_HEAD(&ht[i]); } /** * hash_init - initialize a hash table * @hashtable: hashtable to be initialized * * Calculates the size of the hashtable from the given parameter, otherwise * same as hash_init_size. * * This has to be a macro since HASH_BITS() will not work on pointers since * it calculates the size during preprocessing. */ #define hash_init(hashtable) __hash_init(hashtable, HASH_SIZE(hashtable)) /** * hash_add - add an object to a hashtable * @hashtable: hashtable to add to * @node: the &struct hlist_node of the object to be added * @key: the key of the object to be added */ #define hash_add(hashtable, node, key) \ hlist_add_head(node, &hashtable[hash_min(key, HASH_BITS(hashtable))]) /** * hash_add_rcu - add an object to a rcu enabled hashtable * @hashtable: hashtable to add to * @node: the &struct hlist_node of the object to be added * @key: the key of the object to be added */ #define hash_add_rcu(hashtable, node, key) \ hlist_add_head_rcu(node, &hashtable[hash_min(key, HASH_BITS(hashtable))]) /** * hash_hashed - check whether an object is in any hashtable * @node: the &struct hlist_node of the object to be checked */ static inline bool hash_hashed(struct hlist_node *node) { return !hlist_unhashed(node); } static inline bool __hash_empty(struct hlist_head *ht, unsigned int sz) { unsigned int i; for (i = 0; i < sz; i++) if (!hlist_empty(&ht[i])) return false; return true; } /** * hash_empty - check whether a hashtable is empty * @hashtable: hashtable to check * * This has to be a macro since HASH_BITS() will not work on pointers since * it calculates the size during preprocessing. */ #define hash_empty(hashtable) __hash_empty(hashtable, HASH_SIZE(hashtable)) /** * hash_del - remove an object from a hashtable * @node: &struct hlist_node of the object to remove */ static inline void hash_del(struct hlist_node *node) { hlist_del_init(node); } /** * hash_del_rcu - remove an object from a rcu enabled hashtable * @node: &struct hlist_node of the object to remove */ static inline void hash_del_rcu(struct hlist_node *node) { hlist_del_init_rcu(node); } /** * hash_for_each - iterate over a hashtable * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each(name, bkt, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry(obj, &name[bkt], member) /** * hash_for_each_rcu - iterate over a rcu enabled hashtable * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each_rcu(name, bkt, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry_rcu(obj, &name[bkt], member) /** * hash_for_each_safe - iterate over a hashtable safe against removal of * hash entry * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @tmp: a &struct hlist_node used for temporary storage * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each_safe(name, bkt, tmp, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry_safe(obj, tmp, &name[bkt], member) /** * hash_for_each_possible - iterate over all possible objects hashing to the * same bucket * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible(name, obj, member, key) \ hlist_for_each_entry(obj, &name[hash_min(key, HASH_BITS(name))], member) /** * hash_for_each_possible_rcu - iterate over all possible objects hashing to the * same bucket in an rcu enabled hashtable * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible_rcu(name, obj, member, key, cond...) \ hlist_for_each_entry_rcu(obj, &name[hash_min(key, HASH_BITS(name))],\ member, ## cond) /** * hash_for_each_possible_rcu_notrace - iterate over all possible objects hashing * to the same bucket in an rcu enabled hashtable in a rcu enabled hashtable * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over * * This is the same as hash_for_each_possible_rcu() except that it does * not do any RCU debugging or tracing. */ #define hash_for_each_possible_rcu_notrace(name, obj, member, key) \ hlist_for_each_entry_rcu_notrace(obj, \ &name[hash_min(key, HASH_BITS(name))], member) /** * hash_for_each_possible_safe - iterate over all possible objects hashing to the * same bucket safe against removals * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @tmp: a &struct hlist_node used for temporary storage * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible_safe(name, obj, tmp, member, key) \ hlist_for_each_entry_safe(obj, tmp,\ &name[hash_min(key, HASH_BITS(name))], member) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* md.h : kernel internal structure of the Linux MD driver Copyright (C) 1996-98 Ingo Molnar, Gadi Oxman */ #ifndef _MD_MD_H #define _MD_MD_H #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <linux/badblocks.h> #include <linux/kobject.h> #include <linux/list.h> #include <linux/mm.h> #include <linux/mutex.h> #include <linux/timer.h> #include <linux/wait.h> #include <linux/workqueue.h> #include "md-cluster.h" #define MaxSector (~(sector_t)0) /* * These flags should really be called "NO_RETRY" rather than * "FAILFAST" because they don't make any promise about time lapse, * only about the number of retries, which will be zero. * REQ_FAILFAST_DRIVER is not included because * Commit: 4a27446f3e39 ("[SCSI] modify scsi to handle new fail fast flags.") * seems to suggest that the errors it avoids retrying should usually * be retried. */ #define MD_FAILFAST (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT) /* * The struct embedded in rdev is used to serialize IO. */ struct serial_in_rdev { struct rb_root_cached serial_rb; spinlock_t serial_lock; wait_queue_head_t serial_io_wait; }; /* * MD's 'extended' device */ struct md_rdev { struct list_head same_set; /* RAID devices within the same set */ sector_t sectors; /* Device size (in 512bytes sectors) */ struct mddev *mddev; /* RAID array if running */ int last_events; /* IO event timestamp */ /* * If meta_bdev is non-NULL, it means that a separate device is * being used to store the metadata (superblock/bitmap) which * would otherwise be contained on the same device as the data (bdev). */ struct block_device *meta_bdev; struct block_device *bdev; /* block device handle */ struct page *sb_page, *bb_page; int sb_loaded; __u64 sb_events; sector_t data_offset; /* start of data in array */ sector_t new_data_offset;/* only relevant while reshaping */ sector_t sb_start; /* offset of the super block (in 512byte sectors) */ int sb_size; /* bytes in the superblock */ int preferred_minor; /* autorun support */ struct kobject kobj; /* A device can be in one of three states based on two flags: * Not working: faulty==1 in_sync==0 * Fully working: faulty==0 in_sync==1 * Working, but not * in sync with array * faulty==0 in_sync==0 * * It can never have faulty==1, in_sync==1 * This reduces the burden of testing multiple flags in many cases */ unsigned long flags; /* bit set of 'enum flag_bits' bits. */ wait_queue_head_t blocked_wait; int desc_nr; /* descriptor index in the superblock */ int raid_disk; /* role of device in array */ int new_raid_disk; /* role that the device will have in * the array after a level-change completes. */ int saved_raid_disk; /* role that device used to have in the * array and could again if we did a partial * resync from the bitmap */ union { sector_t recovery_offset;/* If this device has been partially * recovered, this is where we were * up to. */ sector_t journal_tail; /* If this device is a journal device, * this is the journal tail (journal * recovery start point) */ }; atomic_t nr_pending; /* number of pending requests. * only maintained for arrays that * support hot removal */ atomic_t read_errors; /* number of consecutive read errors that * we have tried to ignore. */ time64_t last_read_error; /* monotonic time since our * last read error */ atomic_t corrected_errors; /* number of corrected read errors, * for reporting to userspace and storing * in superblock. */ struct serial_in_rdev *serial; /* used for raid1 io serialization */ struct work_struct del_work; /* used for delayed sysfs removal */ struct kernfs_node *sysfs_state; /* handle for 'state' * sysfs entry */ /* handle for 'unacknowledged_bad_blocks' sysfs dentry */ struct kernfs_node *sysfs_unack_badblocks; /* handle for 'bad_blocks' sysfs dentry */ struct kernfs_node *sysfs_badblocks; struct badblocks badblocks; struct { short offset; /* Offset from superblock to start of PPL. * Not used by external metadata. */ unsigned int size; /* Size in sectors of the PPL space */ sector_t sector; /* First sector of the PPL space */ } ppl; }; enum flag_bits { Faulty, /* device is known to have a fault */ In_sync, /* device is in_sync with rest of array */ Bitmap_sync, /* ..actually, not quite In_sync. Need a * bitmap-based recovery to get fully in sync. * The bit is only meaningful before device * has been passed to pers->hot_add_disk. */ WriteMostly, /* Avoid reading if at all possible */ AutoDetected, /* added by auto-detect */ Blocked, /* An error occurred but has not yet * been acknowledged by the metadata * handler, so don't allow writes * until it is cleared */ WriteErrorSeen, /* A write error has been seen on this * device */ FaultRecorded, /* Intermediate state for clearing * Blocked. The Fault is/will-be * recorded in the metadata, but that * metadata hasn't been stored safely * on disk yet. */ BlockedBadBlocks, /* A writer is blocked because they * found an unacknowledged bad-block. * This can safely be cleared at any * time, and the writer will re-check. * It may be set at any time, and at * worst the writer will timeout and * re-check. So setting it as * accurately as possible is good, but * not absolutely critical. */ WantReplacement, /* This device is a candidate to be * hot-replaced, either because it has * reported some faults, or because * of explicit request. */ Replacement, /* This device is a replacement for * a want_replacement device with same * raid_disk number. */ Candidate, /* For clustered environments only: * This device is seen locally but not * by the whole cluster */ Journal, /* This device is used as journal for * raid-5/6. * Usually, this device should be faster * than other devices in the array */ ClusterRemove, RemoveSynchronized, /* synchronize_rcu() was called after * this device was known to be faulty, * so it is safe to remove without * another synchronize_rcu() call. */ ExternalBbl, /* External metadata provides bad * block management for a disk */ FailFast, /* Minimal retries should be attempted on * this device, so use REQ_FAILFAST_DEV. * Also don't try to repair failed reads. * It is expects that no bad block log * is present. */ LastDev, /* Seems to be the last working dev as * it didn't fail, so don't use FailFast * any more for metadata */ CollisionCheck, /* * check if there is collision between raid1 * serial bios. */ }; static inline int is_badblock(struct md_rdev *rdev, sector_t s, int sectors, sector_t *first_bad, int *bad_sectors) { if (unlikely(rdev->badblocks.count)) { int rv = badblocks_check(&rdev->badblocks, rdev->data_offset + s, sectors, first_bad, bad_sectors); if (rv) *first_bad -= rdev->data_offset; return rv; } return 0; } extern int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, int is_new); extern int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, int is_new); struct md_cluster_info; /* change UNSUPPORTED_MDDEV_FLAGS for each array type if new flag is added */ enum mddev_flags { MD_ARRAY_FIRST_USE, /* First use of array, needs initialization */ MD_CLOSING, /* If set, we are closing the array, do not open * it then */ MD_JOURNAL_CLEAN, /* A raid with journal is already clean */ MD_HAS_JOURNAL, /* The raid array has journal feature set */ MD_CLUSTER_RESYNC_LOCKED, /* cluster raid only, which means node * already took resync lock, need to * release the lock */ MD_FAILFAST_SUPPORTED, /* Using MD_FAILFAST on metadata writes is * supported as calls to md_error() will * never cause the array to become failed. */ MD_HAS_PPL, /* The raid array has PPL feature set */ MD_HAS_MULTIPLE_PPLS, /* The raid array has multiple PPLs feature set */ MD_ALLOW_SB_UPDATE, /* md_check_recovery is allowed to update * the metadata without taking reconfig_mutex. */ MD_UPDATING_SB, /* md_check_recovery is updating the metadata * without explicitly holding reconfig_mutex. */ MD_NOT_READY, /* do_md_run() is active, so 'array_state' * must not report that array is ready yet */ MD_BROKEN, /* This is used in RAID-0/LINEAR only, to stop * I/O in case an array member is gone/failed. */ }; enum mddev_sb_flags { MD_SB_CHANGE_DEVS, /* Some device status has changed */ MD_SB_CHANGE_CLEAN, /* transition to or from 'clean' */ MD_SB_CHANGE_PENDING, /* switch from 'clean' to 'active' in progress */ MD_SB_NEED_REWRITE, /* metadata write needs to be repeated */ }; #define NR_SERIAL_INFOS 8 /* record current range of serialize IOs */ struct serial_info { struct rb_node node; sector_t start; /* start sector of rb node */ sector_t last; /* end sector of rb node */ sector_t _subtree_last; /* highest sector in subtree of rb node */ }; struct mddev { void *private; struct md_personality *pers; dev_t unit; int md_minor; struct list_head disks; unsigned long flags; unsigned long sb_flags; int suspended; atomic_t active_io; int ro; int sysfs_active; /* set when sysfs deletes * are happening, so run/ * takeover/stop are not safe */ struct gendisk *gendisk; struct kobject kobj; int hold_active; #define UNTIL_IOCTL 1 #define UNTIL_STOP 2 /* Superblock information */ int major_version, minor_version, patch_version; int persistent; int external; /* metadata is * managed externally */ char metadata_type[17]; /* externally set*/ int chunk_sectors; time64_t ctime, utime; int level, layout; char clevel[16]; int raid_disks; int max_disks; sector_t dev_sectors; /* used size of * component devices */ sector_t array_sectors; /* exported array size */ int external_size; /* size managed * externally */ __u64 events; /* If the last 'event' was simply a clean->dirty transition, and * we didn't write it to the spares, then it is safe and simple * to just decrement the event count on a dirty->clean transition. * So we record that possibility here. */ int can_decrease_events; char uuid[16]; /* If the array is being reshaped, we need to record the * new shape and an indication of where we are up to. * This is written to the superblock. * If reshape_position is MaxSector, then no reshape is happening (yet). */ sector_t reshape_position; int delta_disks, new_level, new_layout; int new_chunk_sectors; int reshape_backwards; struct md_thread *thread; /* management thread */ struct md_thread *sync_thread; /* doing resync or reconstruct */ /* 'last_sync_action' is initialized to "none". It is set when a * sync operation (i.e "data-check", "requested-resync", "resync", * "recovery", or "reshape") is started. It holds this value even * when the sync thread is "frozen" (interrupted) or "idle" (stopped * or finished). It is overwritten when a new sync operation is begun. */ char *last_sync_action; sector_t curr_resync; /* last block scheduled */ /* As resync requests can complete out of order, we cannot easily track * how much resync has been completed. So we occasionally pause until * everything completes, then set curr_resync_completed to curr_resync. * As such it may be well behind the real resync mark, but it is a value * we are certain of. */ sector_t curr_resync_completed; unsigned long resync_mark; /* a recent timestamp */ sector_t resync_mark_cnt;/* blocks written at resync_mark */ sector_t curr_mark_cnt; /* blocks scheduled now */ sector_t resync_max_sectors; /* may be set by personality */ atomic64_t resync_mismatches; /* count of sectors where * parity/replica mismatch found */ /* allow user-space to request suspension of IO to regions of the array */ sector_t suspend_lo; sector_t suspend_hi; /* if zero, use the system-wide default */ int sync_speed_min; int sync_speed_max; /* resync even though the same disks are shared among md-devices */ int parallel_resync; int ok_start_degraded; unsigned long recovery; /* If a RAID personality determines that recovery (of a particular * device) will fail due to a read error on the source device, it * takes a copy of this number and does not attempt recovery again * until this number changes. */ int recovery_disabled; int in_sync; /* know to not need resync */ /* 'open_mutex' avoids races between 'md_open' and 'do_md_stop', so * that we are never stopping an array while it is open. * 'reconfig_mutex' protects all other reconfiguration. * These locks are separate due to conflicting interactions * with bdev->bd_mutex. * Lock ordering is: * reconfig_mutex -> bd_mutex * bd_mutex -> open_mutex: e.g. __blkdev_get -> md_open */ struct mutex open_mutex; struct mutex reconfig_mutex; atomic_t active; /* general refcount */ atomic_t openers; /* number of active opens */ int changed; /* True if we might need to * reread partition info */ int degraded; /* whether md should consider * adding a spare */ atomic_t recovery_active; /* blocks scheduled, but not written */ wait_queue_head_t recovery_wait; sector_t recovery_cp; sector_t resync_min; /* user requested sync * starts here */ sector_t resync_max; /* resync should pause * when it gets here */ struct kernfs_node *sysfs_state; /* handle for 'array_state' * file in sysfs. */ struct kernfs_node *sysfs_action; /* handle for 'sync_action' */ struct kernfs_node *sysfs_completed; /*handle for 'sync_completed' */ struct kernfs_node *sysfs_degraded; /*handle for 'degraded' */ struct kernfs_node *sysfs_level; /*handle for 'level' */ struct work_struct del_work; /* used for delayed sysfs removal */ /* "lock" protects: * flush_bio transition from NULL to !NULL * rdev superblocks, events * clearing MD_CHANGE_* * in_sync - and related safemode and MD_CHANGE changes * pers (also protected by reconfig_mutex and pending IO). * clearing ->bitmap * clearing ->bitmap_info.file * changing ->resync_{min,max} * setting MD_RECOVERY_RUNNING (which interacts with resync_{min,max}) */ spinlock_t lock; wait_queue_head_t sb_wait; /* for waiting on superblock updates */ atomic_t pending_writes; /* number of active superblock writes */ unsigned int safemode; /* if set, update "clean" superblock * when no writes pending. */ unsigned int safemode_delay; struct timer_list safemode_timer; struct percpu_ref writes_pending; int sync_checkers; /* # of threads checking writes_pending */ struct request_queue *queue; /* for plugging ... */ struct bitmap *bitmap; /* the bitmap for the device */ struct { struct file *file; /* the bitmap file */ loff_t offset; /* offset from superblock of * start of bitmap. May be * negative, but not '0' * For external metadata, offset * from start of device. */ unsigned long space; /* space available at this offset */ loff_t default_offset; /* this is the offset to use when * hot-adding a bitmap. It should * eventually be settable by sysfs. */ unsigned long default_space; /* space available at * default offset */ struct mutex mutex; unsigned long chunksize; unsigned long daemon_sleep; /* how many jiffies between updates? */ unsigned long max_write_behind; /* write-behind mode */ int external; int nodes; /* Maximum number of nodes in the cluster */ char cluster_name[64]; /* Name of the cluster */ } bitmap_info; atomic_t max_corr_read_errors; /* max read retries */ struct list_head all_mddevs; struct attribute_group *to_remove; struct bio_set bio_set; struct bio_set sync_set; /* for sync operations like * metadata and bitmap writes */ mempool_t md_io_pool; /* Generic flush handling. * The last to finish preflush schedules a worker to submit * the rest of the request (without the REQ_PREFLUSH flag). */ struct bio *flush_bio; atomic_t flush_pending; ktime_t start_flush, last_flush; /* last_flush is when the last completed * flush was started. */ struct work_struct flush_work; struct work_struct event_work; /* used by dm to report failure event */ mempool_t *serial_info_pool; void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev); struct md_cluster_info *cluster_info; unsigned int good_device_nr; /* good device num within cluster raid */ unsigned int noio_flag; /* for memalloc scope API */ bool has_superblocks:1; bool fail_last_dev:1; bool serialize_policy:1; }; enum recovery_flags { /* * If neither SYNC or RESHAPE are set, then it is a recovery. */ MD_RECOVERY_RUNNING, /* a thread is running, or about to be started */ MD_RECOVERY_SYNC, /* actually doing a resync, not a recovery */ MD_RECOVERY_RECOVER, /* doing recovery, or need to try it. */ MD_RECOVERY_INTR, /* resync needs to be aborted for some reason */ MD_RECOVERY_DONE, /* thread is done and is waiting to be reaped */ MD_RECOVERY_NEEDED, /* we might need to start a resync/recover */ MD_RECOVERY_REQUESTED, /* user-space has requested a sync (used with SYNC) */ MD_RECOVERY_CHECK, /* user-space request for check-only, no repair */ MD_RECOVERY_RESHAPE, /* A reshape is happening */ MD_RECOVERY_FROZEN, /* User request to abort, and not restart, any action */ MD_RECOVERY_ERROR, /* sync-action interrupted because io-error */ MD_RECOVERY_WAIT, /* waiting for pers->start() to finish */ MD_RESYNCING_REMOTE, /* remote node is running resync thread */ }; static inline int __must_check mddev_lock(struct mddev *mddev) { return mutex_lock_interruptible(&mddev->reconfig_mutex); } /* Sometimes we need to take the lock in a situation where * failure due to interrupts is not acceptable. */ static inline void mddev_lock_nointr(struct mddev *mddev) { mutex_lock(&mddev->reconfig_mutex); } static inline int mddev_trylock(struct mddev *mddev) { return mutex_trylock(&mddev->reconfig_mutex); } extern void mddev_unlock(struct mddev *mddev); static inline void md_sync_acct(struct block_device *bdev, unsigned long nr_sectors) { atomic_add(nr_sectors, &bdev->bd_disk->sync_io); } static inline void md_sync_acct_bio(struct bio *bio, unsigned long nr_sectors) { atomic_add(nr_sectors, &bio->bi_disk->sync_io); } struct md_personality { char *name; int level; struct list_head list; struct module *owner; bool __must_check (*make_request)(struct mddev *mddev, struct bio *bio); /* * start up works that do NOT require md_thread. tasks that * requires md_thread should go into start() */ int (*run)(struct mddev *mddev); /* start up works that require md threads */ int (*start)(struct mddev *mddev); void (*free)(struct mddev *mddev, void *priv); void (*status)(struct seq_file *seq, struct mddev *mddev); /* error_handler must set ->faulty and clear ->in_sync * if appropriate, and should abort recovery if needed */ void (*error_handler)(struct mddev *mddev, struct md_rdev *rdev); int (*hot_add_disk) (struct mddev *mddev, struct md_rdev *rdev); int (*hot_remove_disk) (struct mddev *mddev, struct md_rdev *rdev); int (*spare_active) (struct mddev *mddev); sector_t (*sync_request)(struct mddev *mddev, sector_t sector_nr, int *skipped); int (*resize) (struct mddev *mddev, sector_t sectors); sector_t (*size) (struct mddev *mddev, sector_t sectors, int raid_disks); int (*check_reshape) (struct mddev *mddev); int (*start_reshape) (struct mddev *mddev); void (*finish_reshape) (struct mddev *mddev); void (*update_reshape_pos) (struct mddev *mddev); /* quiesce suspends or resumes internal processing. * 1 - stop new actions and wait for action io to complete * 0 - return to normal behaviour */ void (*quiesce) (struct mddev *mddev, int quiesce); /* takeover is used to transition an array from one * personality to another. The new personality must be able * to handle the data in the current layout. * e.g. 2drive raid1 -> 2drive raid5 * ndrive raid5 -> degraded n+1drive raid6 with special layout * If the takeover succeeds, a new 'private' structure is returned. * This needs to be installed and then ->run used to activate the * array. */ void *(*takeover) (struct mddev *mddev); /* Changes the consistency policy of an active array. */ int (*change_consistency_policy)(struct mddev *mddev, const char *buf); }; struct md_sysfs_entry { struct attribute attr; ssize_t (*show)(struct mddev *, char *); ssize_t (*store)(struct mddev *, const char *, size_t); }; extern struct attribute_group md_bitmap_group; static inline struct kernfs_node *sysfs_get_dirent_safe(struct kernfs_node *sd, char *name) { if (sd) return sysfs_get_dirent(sd, name); return sd; } static inline void sysfs_notify_dirent_safe(struct kernfs_node *sd) { if (sd) sysfs_notify_dirent(sd); } static inline char * mdname (struct mddev * mddev) { return mddev->gendisk ? mddev->gendisk->disk_name : "mdX"; } static inline int sysfs_link_rdev(struct mddev *mddev, struct md_rdev *rdev) { char nm[20]; if (!test_bit(Replacement, &rdev->flags) && !test_bit(Journal, &rdev->flags) && mddev->kobj.sd) { sprintf(nm, "rd%d", rdev->raid_disk); return sysfs_create_link(&mddev->kobj, &rdev->kobj, nm); } else return 0; } static inline void sysfs_unlink_rdev(struct mddev *mddev, struct md_rdev *rdev) { char nm[20]; if (!test_bit(Replacement, &rdev->flags) && !test_bit(Journal, &rdev->flags) && mddev->kobj.sd) { sprintf(nm, "rd%d", rdev->raid_disk); sysfs_remove_link(&mddev->kobj, nm); } } /* * iterates through some rdev ringlist. It's safe to remove the * current 'rdev'. Dont touch 'tmp' though. */ #define rdev_for_each_list(rdev, tmp, head) \ list_for_each_entry_safe(rdev, tmp, head, same_set) /* * iterates through the 'same array disks' ringlist */ #define rdev_for_each(rdev, mddev) \ list_for_each_entry(rdev, &((mddev)->disks), same_set) #define rdev_for_each_safe(rdev, tmp, mddev) \ list_for_each_entry_safe(rdev, tmp, &((mddev)->disks), same_set) #define rdev_for_each_rcu(rdev, mddev) \ list_for_each_entry_rcu(rdev, &((mddev)->disks), same_set) struct md_thread { void (*run) (struct md_thread *thread); struct mddev *mddev; wait_queue_head_t wqueue; unsigned long flags; struct task_struct *tsk; unsigned long timeout; void *private; }; #define THREAD_WAKEUP 0 static inline void safe_put_page(struct page *p) { if (p) put_page(p); } extern int register_md_personality(struct md_personality *p); extern int unregister_md_personality(struct md_personality *p); extern int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module); extern int unregister_md_cluster_operations(void); extern int md_setup_cluster(struct mddev *mddev, int nodes); extern void md_cluster_stop(struct mddev *mddev); extern struct md_thread *md_register_thread( void (*run)(struct md_thread *thread), struct mddev *mddev, const char *name); extern void md_unregister_thread(struct md_thread **threadp); extern void md_wakeup_thread(struct md_thread *thread); extern void md_check_recovery(struct mddev *mddev); extern void md_reap_sync_thread(struct mddev *mddev); extern int mddev_init_writes_pending(struct mddev *mddev); extern bool md_write_start(struct mddev *mddev, struct bio *bi); extern void md_write_inc(struct mddev *mddev, struct bio *bi); extern void md_write_end(struct mddev *mddev); extern void md_done_sync(struct mddev *mddev, int blocks, int ok); extern void md_error(struct mddev *mddev, struct md_rdev *rdev); extern void md_finish_reshape(struct mddev *mddev); extern bool __must_check md_flush_request(struct mddev *mddev, struct bio *bio); extern void md_super_write(struct mddev *mddev, struct md_rdev *rdev, sector_t sector, int size, struct page *page); extern int md_super_wait(struct mddev *mddev); extern int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, struct page *page, int op, int op_flags, bool metadata_op); extern void md_do_sync(struct md_thread *thread); extern void md_new_event(struct mddev *mddev); extern void md_allow_write(struct mddev *mddev); extern void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev); extern void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors); extern int md_check_no_bitmap(struct mddev *mddev); extern int md_integrity_register(struct mddev *mddev); extern int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev); extern int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale); extern void mddev_init(struct mddev *mddev); extern int md_run(struct mddev *mddev); extern int md_start(struct mddev *mddev); extern void md_stop(struct mddev *mddev); extern void md_stop_writes(struct mddev *mddev); extern int md_rdev_init(struct md_rdev *rdev); extern void md_rdev_clear(struct md_rdev *rdev); extern void md_handle_request(struct mddev *mddev, struct bio *bio); extern void mddev_suspend(struct mddev *mddev); extern void mddev_resume(struct mddev *mddev); extern struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, struct mddev *mddev); extern void md_reload_sb(struct mddev *mddev, int raid_disk); extern void md_update_sb(struct mddev *mddev, int force); extern void md_kick_rdev_from_array(struct md_rdev * rdev); extern void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, bool is_suspend); extern void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, bool is_suspend); struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr); struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev); static inline bool is_mddev_broken(struct md_rdev *rdev, const char *md_type) { int flags = rdev->bdev->bd_disk->flags; if (!(flags & GENHD_FL_UP)) { if (!test_and_set_bit(MD_BROKEN, &rdev->mddev->flags)) pr_warn("md: %s: %s array has a missing/failed member\n", mdname(rdev->mddev), md_type); return true; } return false; } static inline void rdev_dec_pending(struct md_rdev *rdev, struct mddev *mddev) { int faulty = test_bit(Faulty, &rdev->flags); if (atomic_dec_and_test(&rdev->nr_pending) && faulty) { set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); } } extern struct md_cluster_operations *md_cluster_ops; static inline int mddev_is_clustered(struct mddev *mddev) { return mddev->cluster_info && mddev->bitmap_info.nodes > 1; } /* clear unsupported mddev_flags */ static inline void mddev_clear_unsupported_flags(struct mddev *mddev, unsigned long unsupported_flags) { mddev->flags &= ~unsupported_flags; } static inline void mddev_check_writesame(struct mddev *mddev, struct bio *bio) { if (bio_op(bio) == REQ_OP_WRITE_SAME && !bio->bi_disk->queue->limits.max_write_same_sectors) mddev->queue->limits.max_write_same_sectors = 0; } static inline void mddev_check_write_zeroes(struct mddev *mddev, struct bio *bio) { if (bio_op(bio) == REQ_OP_WRITE_ZEROES && !bio->bi_disk->queue->limits.max_write_zeroes_sectors) mddev->queue->limits.max_write_zeroes_sectors = 0; } struct mdu_array_info_s; struct mdu_disk_info_s; extern int mdp_major; void md_autostart_arrays(int part); int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info); int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info); int do_md_run(struct mddev *mddev); extern const struct block_device_operations md_fops; #endif /* _MD_MD_H */
1 1 2 2 1 2 2 1 1 2 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 // SPDX-License-Identifier: GPL-2.0 #include <linux/mount.h> #include <linux/pseudo_fs.h> #include <linux/file.h> #include <linux/fs.h> #include <linux/proc_fs.h> #include <linux/proc_ns.h> #include <linux/magic.h> #include <linux/ktime.h> #include <linux/seq_file.h> #include <linux/user_namespace.h> #include <linux/nsfs.h> #include <linux/uaccess.h> #include "internal.h" static struct vfsmount *nsfs_mnt; static long ns_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); static const struct file_operations ns_file_operations = { .llseek = no_llseek, .unlocked_ioctl = ns_ioctl, }; static char *ns_dname(struct dentry *dentry, char *buffer, int buflen) { struct inode *inode = d_inode(dentry); const struct proc_ns_operations *ns_ops = dentry->d_fsdata; return dynamic_dname(dentry, buffer, buflen, "%s:[%lu]", ns_ops->name, inode->i_ino); } static void ns_prune_dentry(struct dentry *dentry) { struct inode *inode = d_inode(dentry); if (inode) { struct ns_common *ns = inode->i_private; atomic_long_set(&ns->stashed, 0); } } const struct dentry_operations ns_dentry_operations = { .d_prune = ns_prune_dentry, .d_delete = always_delete_dentry, .d_dname = ns_dname, }; static void nsfs_evict(struct inode *inode) { struct ns_common *ns = inode->i_private; clear_inode(inode); ns->ops->put(ns); } static int __ns_get_path(struct path *path, struct ns_common *ns) { struct vfsmount *mnt = nsfs_mnt; struct dentry *dentry; struct inode *inode; unsigned long d; rcu_read_lock(); d = atomic_long_read(&ns->stashed); if (!d) goto slow; dentry = (struct dentry *)d; if (!lockref_get_not_dead(&dentry->d_lockref)) goto slow; rcu_read_unlock(); ns->ops->put(ns); got_it: path->mnt = mntget(mnt); path->dentry = dentry; return 0; slow: rcu_read_unlock(); inode = new_inode_pseudo(mnt->mnt_sb); if (!inode) { ns->ops->put(ns); return -ENOMEM; } inode->i_ino = ns->inum; inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); inode->i_flags |= S_IMMUTABLE; inode->i_mode = S_IFREG | S_IRUGO; inode->i_fop = &ns_file_operations; inode->i_private = ns; dentry = d_alloc_anon(mnt->mnt_sb); if (!dentry) { iput(inode); return -ENOMEM; } d_instantiate(dentry, inode); dentry->d_fsdata = (void *)ns->ops; d = atomic_long_cmpxchg(&ns->stashed, 0, (unsigned long)dentry); if (d) { d_delete(dentry); /* make sure ->d_prune() does nothing */ dput(dentry); cpu_relax(); return -EAGAIN; } goto got_it; } int ns_get_path_cb(struct path *path, ns_get_path_helper_t *ns_get_cb, void *private_data) { int ret; do { struct ns_common *ns = ns_get_cb(private_data); if (!ns) return -ENOENT; ret = __ns_get_path(path, ns); } while (ret == -EAGAIN); return ret; } struct ns_get_path_task_args { const struct proc_ns_operations *ns_ops; struct task_struct *task; }; static struct ns_common *ns_get_path_task(void *private_data) { struct ns_get_path_task_args *args = private_data; return args->ns_ops->get(args->task); } int ns_get_path(struct path *path, struct task_struct *task, const struct proc_ns_operations *ns_ops) { struct ns_get_path_task_args args = { .ns_ops = ns_ops, .task = task, }; return ns_get_path_cb(path, ns_get_path_task, &args); } int open_related_ns(struct ns_common *ns, struct ns_common *(*get_ns)(struct ns_common *ns)) { struct path path = {}; struct file *f; int err; int fd; fd = get_unused_fd_flags(O_CLOEXEC); if (fd < 0) return fd; do { struct ns_common *relative; relative = get_ns(ns); if (IS_ERR(relative)) { put_unused_fd(fd); return PTR_ERR(relative); } err = __ns_get_path(&path, relative); } while (err == -EAGAIN); if (err) { put_unused_fd(fd); return err; } f = dentry_open(&path, O_RDONLY, current_cred()); path_put(&path); if (IS_ERR(f)) { put_unused_fd(fd); fd = PTR_ERR(f); } else fd_install(fd, f); return fd; } EXPORT_SYMBOL_GPL(open_related_ns); static long ns_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct user_namespace *user_ns; struct ns_common *ns = get_proc_ns(file_inode(filp)); uid_t __user *argp; uid_t uid; switch (ioctl) { case NS_GET_USERNS: return open_related_ns(ns, ns_get_owner); case NS_GET_PARENT: if (!ns->ops->get_parent) return -EINVAL; return open_related_ns(ns, ns->ops->get_parent); case NS_GET_NSTYPE: return ns->ops->type; case NS_GET_OWNER_UID: if (ns->ops->type != CLONE_NEWUSER) return -EINVAL; user_ns = container_of(ns, struct user_namespace, ns); argp = (uid_t __user *) arg; uid = from_kuid_munged(current_user_ns(), user_ns->owner); return put_user(uid, argp); default: return -ENOTTY; } } int ns_get_name(char *buf, size_t size, struct task_struct *task, const struct proc_ns_operations *ns_ops) { struct ns_common *ns; int res = -ENOENT; const char *name; ns = ns_ops->get(task); if (ns) { name = ns_ops->real_ns_name ? : ns_ops->name; res = snprintf(buf, size, "%s:[%u]", name, ns->inum); ns_ops->put(ns); } return res; } bool proc_ns_file(const struct file *file) { return file->f_op == &ns_file_operations; } struct file *proc_ns_fget(int fd) { struct file *file; file = fget(fd); if (!file) return ERR_PTR(-EBADF); if (file->f_op != &ns_file_operations) goto out_invalid; return file; out_invalid: fput(file); return ERR_PTR(-EINVAL); } /** * ns_match() - Returns true if current namespace matches dev/ino provided. * @ns_common: current ns * @dev: dev_t from nsfs that will be matched against current nsfs * @ino: ino_t from nsfs that will be matched against current nsfs * * Return: true if dev and ino matches the current nsfs. */ bool ns_match(const struct ns_common *ns, dev_t dev, ino_t ino) { return (ns->inum == ino) && (nsfs_mnt->mnt_sb->s_dev == dev); } static int nsfs_show_path(struct seq_file *seq, struct dentry *dentry) { struct inode *inode = d_inode(dentry); const struct proc_ns_operations *ns_ops = dentry->d_fsdata; seq_printf(seq, "%s:[%lu]", ns_ops->name, inode->i_ino); return 0; } static const struct super_operations nsfs_ops = { .statfs = simple_statfs, .evict_inode = nsfs_evict, .show_path = nsfs_show_path, }; static int nsfs_init_fs_context(struct fs_context *fc) { struct pseudo_fs_context *ctx = init_pseudo(fc, NSFS_MAGIC); if (!ctx) return -ENOMEM; ctx->ops = &nsfs_ops; ctx->dops = &ns_dentry_operations; return 0; } static struct file_system_type nsfs = { .name = "nsfs", .init_fs_context = nsfs_init_fs_context, .kill_sb = kill_anon_super, }; void __init nsfs_init(void) { nsfs_mnt = kern_mount(&nsfs); if (IS_ERR(nsfs_mnt)) panic("can't set nsfs up\n"); nsfs_mnt->mnt_sb->s_flags &= ~SB_NOUSER; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TTY_H #define _LINUX_TTY_H #include <linux/fs.h> #include <linux/major.h> #include <linux/termios.h> #include <linux/workqueue.h> #include <linux/tty_driver.h> #include <linux/tty_ldisc.h> #include <linux/mutex.h> #include <linux/tty_flags.h> #include <linux/seq_file.h> #include <uapi/linux/tty.h> #include <linux/rwsem.h> #include <linux/llist.h> /* * Lock subclasses for tty locks * * TTY_LOCK_NORMAL is for normal ttys and master ptys. * TTY_LOCK_SLAVE is for slave ptys only. * * Lock subclasses are necessary for handling nested locking with pty pairs. * tty locks which use nested locking: * * legacy_mutex - Nested tty locks are necessary for releasing pty pairs. * The stable lock order is master pty first, then slave pty. * termios_rwsem - The stable lock order is tty_buffer lock->termios_rwsem. * Subclassing this lock enables the slave pty to hold its * termios_rwsem when claiming the master tty_buffer lock. * tty_buffer lock - slave ptys can claim nested buffer lock when handling * signal chars. The stable lock order is slave pty, then * master. */ enum { TTY_LOCK_NORMAL = 0, TTY_LOCK_SLAVE, }; /* * (Note: the *_driver.minor_start values 1, 64, 128, 192 are * hardcoded at present.) */ #define NR_UNIX98_PTY_DEFAULT 4096 /* Default maximum for Unix98 ptys */ #define NR_UNIX98_PTY_RESERVE 1024 /* Default reserve for main devpts */ #define NR_UNIX98_PTY_MAX (1 << MINORBITS) /* Absolute limit */ /* * This character is the same as _POSIX_VDISABLE: it cannot be used as * a c_cc[] character, but indicates that a particular special character * isn't in use (eg VINTR has no character etc) */ #define __DISABLED_CHAR '\0' struct tty_buffer { union { struct tty_buffer *next; struct llist_node free; }; int used; int size; int commit; int read; int flags; /* Data points here */ unsigned long data[]; }; /* Values for .flags field of tty_buffer */ #define TTYB_NORMAL 1 /* buffer has no flags buffer */ static inline unsigned char *char_buf_ptr(struct tty_buffer *b, int ofs) { return ((unsigned char *)b->data) + ofs; } static inline char *flag_buf_ptr(struct tty_buffer *b, int ofs) { return (char *)char_buf_ptr(b, ofs) + b->size; } struct tty_bufhead { struct tty_buffer *head; /* Queue head */ struct work_struct work; struct mutex lock; atomic_t priority; struct tty_buffer sentinel; struct llist_head free; /* Free queue head */ atomic_t mem_used; /* In-use buffers excluding free list */ int mem_limit; struct tty_buffer *tail; /* Active buffer */ }; /* * When a break, frame error, or parity error happens, these codes are * stuffed into the flags buffer. */ #define TTY_NORMAL 0 #define TTY_BREAK 1 #define TTY_FRAME 2 #define TTY_PARITY 3 #define TTY_OVERRUN 4 #define INTR_CHAR(tty) ((tty)->termios.c_cc[VINTR]) #define QUIT_CHAR(tty) ((tty)->termios.c_cc[VQUIT]) #define ERASE_CHAR(tty) ((tty)->termios.c_cc[VERASE]) #define KILL_CHAR(tty) ((tty)->termios.c_cc[VKILL]) #define EOF_CHAR(tty) ((tty)->termios.c_cc[VEOF]) #define TIME_CHAR(tty) ((tty)->termios.c_cc[VTIME]) #define MIN_CHAR(tty) ((tty)->termios.c_cc[VMIN]) #define SWTC_CHAR(tty) ((tty)->termios.c_cc[VSWTC]) #define START_CHAR(tty) ((tty)->termios.c_cc[VSTART]) #define STOP_CHAR(tty) ((tty)->termios.c_cc[VSTOP]) #define SUSP_CHAR(tty) ((tty)->termios.c_cc[VSUSP]) #define EOL_CHAR(tty) ((tty)->termios.c_cc[VEOL]) #define REPRINT_CHAR(tty) ((tty)->termios.c_cc[VREPRINT]) #define DISCARD_CHAR(tty) ((tty)->termios.c_cc[VDISCARD]) #define WERASE_CHAR(tty) ((tty)->termios.c_cc[VWERASE]) #define LNEXT_CHAR(tty) ((tty)->termios.c_cc[VLNEXT]) #define EOL2_CHAR(tty) ((tty)->termios.c_cc[VEOL2]) #define _I_FLAG(tty, f) ((tty)->termios.c_iflag & (f)) #define _O_FLAG(tty, f) ((tty)->termios.c_oflag & (f)) #define _C_FLAG(tty, f) ((tty)->termios.c_cflag & (f)) #define _L_FLAG(tty, f) ((tty)->termios.c_lflag & (f)) #define I_IGNBRK(tty) _I_FLAG((tty), IGNBRK) #define I_BRKINT(tty) _I_FLAG((tty), BRKINT) #define I_IGNPAR(tty) _I_FLAG((tty), IGNPAR) #define I_PARMRK(tty) _I_FLAG((tty), PARMRK) #define I_INPCK(tty) _I_FLAG((tty), INPCK) #define I_ISTRIP(tty) _I_FLAG((tty), ISTRIP) #define I_INLCR(tty) _I_FLAG((tty), INLCR) #define I_IGNCR(tty) _I_FLAG((tty), IGNCR) #define I_ICRNL(tty) _I_FLAG((tty), ICRNL) #define I_IUCLC(tty) _I_FLAG((tty), IUCLC) #define I_IXON(tty) _I_FLAG((tty), IXON) #define I_IXANY(tty) _I_FLAG((tty), IXANY) #define I_IXOFF(tty) _I_FLAG((tty), IXOFF) #define I_IMAXBEL(tty) _I_FLAG((tty), IMAXBEL) #define I_IUTF8(tty) _I_FLAG((tty), IUTF8) #define O_OPOST(tty) _O_FLAG((tty), OPOST) #define O_OLCUC(tty) _O_FLAG((tty), OLCUC) #define O_ONLCR(tty) _O_FLAG((tty), ONLCR) #define O_OCRNL(tty) _O_FLAG((tty), OCRNL) #define O_ONOCR(tty) _O_FLAG((tty), ONOCR) #define O_ONLRET(tty) _O_FLAG((tty), ONLRET) #define O_OFILL(tty) _O_FLAG((tty), OFILL) #define O_OFDEL(tty) _O_FLAG((tty), OFDEL) #define O_NLDLY(tty) _O_FLAG((tty), NLDLY) #define O_CRDLY(tty) _O_FLAG((tty), CRDLY) #define O_TABDLY(tty) _O_FLAG((tty), TABDLY) #define O_BSDLY(tty) _O_FLAG((tty), BSDLY) #define O_VTDLY(tty) _O_FLAG((tty), VTDLY) #define O_FFDLY(tty) _O_FLAG((tty), FFDLY) #define C_BAUD(tty) _C_FLAG((tty), CBAUD) #define C_CSIZE(tty) _C_FLAG((tty), CSIZE) #define C_CSTOPB(tty) _C_FLAG((tty), CSTOPB) #define C_CREAD(tty) _C_FLAG((tty), CREAD) #define C_PARENB(tty) _C_FLAG((tty), PARENB) #define C_PARODD(tty) _C_FLAG((tty), PARODD) #define C_HUPCL(tty) _C_FLAG((tty), HUPCL) #define C_CLOCAL(tty) _C_FLAG((tty), CLOCAL) #define C_CIBAUD(tty) _C_FLAG((tty), CIBAUD) #define C_CRTSCTS(tty) _C_FLAG((tty), CRTSCTS) #define C_CMSPAR(tty) _C_FLAG((tty), CMSPAR) #define L_ISIG(tty) _L_FLAG((tty), ISIG) #define L_ICANON(tty) _L_FLAG((tty), ICANON) #define L_XCASE(tty) _L_FLAG((tty), XCASE) #define L_ECHO(tty) _L_FLAG((tty), ECHO) #define L_ECHOE(tty) _L_FLAG((tty), ECHOE) #define L_ECHOK(tty) _L_FLAG((tty), ECHOK) #define L_ECHONL(tty) _L_FLAG((tty), ECHONL) #define L_NOFLSH(tty) _L_FLAG((tty), NOFLSH) #define L_TOSTOP(tty) _L_FLAG((tty), TOSTOP) #define L_ECHOCTL(tty) _L_FLAG((tty), ECHOCTL) #define L_ECHOPRT(tty) _L_FLAG((tty), ECHOPRT) #define L_ECHOKE(tty) _L_FLAG((tty), ECHOKE) #define L_FLUSHO(tty) _L_FLAG((tty), FLUSHO) #define L_PENDIN(tty) _L_FLAG((tty), PENDIN) #define L_IEXTEN(tty) _L_FLAG((tty), IEXTEN) #define L_EXTPROC(tty) _L_FLAG((tty), EXTPROC) struct device; struct signal_struct; /* * Port level information. Each device keeps its own port level information * so provide a common structure for those ports wanting to use common support * routines. * * The tty port has a different lifetime to the tty so must be kept apart. * In addition be careful as tty -> port mappings are valid for the life * of the tty object but in many cases port -> tty mappings are valid only * until a hangup so don't use the wrong path. */ struct tty_port; struct tty_port_operations { /* Return 1 if the carrier is raised */ int (*carrier_raised)(struct tty_port *port); /* Control the DTR line */ void (*dtr_rts)(struct tty_port *port, int raise); /* Called when the last close completes or a hangup finishes IFF the port was initialized. Do not use to free resources. Called under the port mutex to serialize against activate/shutdowns */ void (*shutdown)(struct tty_port *port); /* Called under the port mutex from tty_port_open, serialized using the port mutex */ /* FIXME: long term getting the tty argument *out* of this would be good for consoles */ int (*activate)(struct tty_port *port, struct tty_struct *tty); /* Called on the final put of a port */ void (*destruct)(struct tty_port *port); }; struct tty_port_client_operations { int (*receive_buf)(struct tty_port *port, const unsigned char *, const unsigned char *, size_t); void (*write_wakeup)(struct tty_port *port); }; extern const struct tty_port_client_operations tty_port_default_client_ops; struct tty_port { struct tty_bufhead buf; /* Locked internally */ struct tty_struct *tty; /* Back pointer */ struct tty_struct *itty; /* internal back ptr */ const struct tty_port_operations *ops; /* Port operations */ const struct tty_port_client_operations *client_ops; /* Port client operations */ spinlock_t lock; /* Lock protecting tty field */ int blocked_open; /* Waiting to open */ int count; /* Usage count */ wait_queue_head_t open_wait; /* Open waiters */ wait_queue_head_t delta_msr_wait; /* Modem status change */ unsigned long flags; /* User TTY flags ASYNC_ */ unsigned long iflags; /* Internal flags TTY_PORT_ */ unsigned char console:1, /* port is a console */ low_latency:1; /* optional: tune for latency */ struct mutex mutex; /* Locking */ struct mutex buf_mutex; /* Buffer alloc lock */ unsigned char *xmit_buf; /* Optional buffer */ unsigned int close_delay; /* Close port delay */ unsigned int closing_wait; /* Delay for output */ int drain_delay; /* Set to zero if no pure time based drain is needed else set to size of fifo */ struct kref kref; /* Ref counter */ void *client_data; }; /* tty_port::iflags bits -- use atomic bit ops */ #define TTY_PORT_INITIALIZED 0 /* device is initialized */ #define TTY_PORT_SUSPENDED 1 /* device is suspended */ #define TTY_PORT_ACTIVE 2 /* device is open */ /* * uart drivers: use the uart_port::status field and the UPSTAT_* defines * for s/w-based flow control steering and carrier detection status */ #define TTY_PORT_CTS_FLOW 3 /* h/w flow control enabled */ #define TTY_PORT_CHECK_CD 4 /* carrier detect enabled */ #define TTY_PORT_KOPENED 5 /* device exclusively opened by kernel */ /* * Where all of the state associated with a tty is kept while the tty * is open. Since the termios state should be kept even if the tty * has been closed --- for things like the baud rate, etc --- it is * not stored here, but rather a pointer to the real state is stored * here. Possible the winsize structure should have the same * treatment, but (1) the default 80x24 is usually right and (2) it's * most often used by a windowing system, which will set the correct * size each time the window is created or resized anyway. * - TYT, 9/14/92 */ struct tty_operations; struct tty_struct { int magic; struct kref kref; struct device *dev; struct tty_driver *driver; const struct tty_operations *ops; int index; /* Protects ldisc changes: Lock tty not pty */ struct ld_semaphore ldisc_sem; struct tty_ldisc *ldisc; struct mutex atomic_write_lock; struct mutex legacy_mutex; struct mutex throttle_mutex; struct rw_semaphore termios_rwsem; struct mutex winsize_mutex; spinlock_t ctrl_lock; spinlock_t flow_lock; /* Termios values are protected by the termios rwsem */ struct ktermios termios, termios_locked; char name[64]; struct pid *pgrp; /* Protected by ctrl lock */ /* * Writes protected by both ctrl lock and legacy mutex, readers must use * at least one of them. */ struct pid *session; unsigned long flags; int count; struct winsize winsize; /* winsize_mutex */ unsigned long stopped:1, /* flow_lock */ flow_stopped:1, unused:BITS_PER_LONG - 2; int hw_stopped; unsigned long ctrl_status:8, /* ctrl_lock */ packet:1, unused_ctrl:BITS_PER_LONG - 9; unsigned int receive_room; /* Bytes free for queue */ int flow_change; struct tty_struct *link; struct fasync_struct *fasync; wait_queue_head_t write_wait; wait_queue_head_t read_wait; struct work_struct hangup_work; void *disc_data; void *driver_data; spinlock_t files_lock; /* protects tty_files list */ struct list_head tty_files; #define N_TTY_BUF_SIZE 4096 int closing; unsigned char *write_buf; int write_cnt; /* If the tty has a pending do_SAK, queue it here - akpm */ struct work_struct SAK_work; struct tty_port *port; } __randomize_layout; /* Each of a tty's open files has private_data pointing to tty_file_private */ struct tty_file_private { struct tty_struct *tty; struct file *file; struct list_head list; }; /* tty magic number */ #define TTY_MAGIC 0x5401 /* * These bits are used in the flags field of the tty structure. * * So that interrupts won't be able to mess up the queues, * copy_to_cooked must be atomic with respect to itself, as must * tty->write. Thus, you must use the inline functions set_bit() and * clear_bit() to make things atomic. */ #define TTY_THROTTLED 0 /* Call unthrottle() at threshold min */ #define TTY_IO_ERROR 1 /* Cause an I/O error (may be no ldisc too) */ #define TTY_OTHER_CLOSED 2 /* Other side (if any) has closed */ #define TTY_EXCLUSIVE 3 /* Exclusive open mode */ #define TTY_DO_WRITE_WAKEUP 5 /* Call write_wakeup after queuing new */ #define TTY_LDISC_OPEN 11 /* Line discipline is open */ #define TTY_PTY_LOCK 16 /* pty private */ #define TTY_NO_WRITE_SPLIT 17 /* Preserve write boundaries to driver */ #define TTY_HUPPED 18 /* Post driver->hangup() */ #define TTY_HUPPING 19 /* Hangup in progress */ #define TTY_LDISC_CHANGING 20 /* Change pending - non-block IO */ #define TTY_LDISC_HALTED 22 /* Line discipline is halted */ /* Values for tty->flow_change */ #define TTY_THROTTLE_SAFE 1 #define TTY_UNTHROTTLE_SAFE 2 static inline void __tty_set_flow_change(struct tty_struct *tty, int val) { tty->flow_change = val; } static inline void tty_set_flow_change(struct tty_struct *tty, int val) { tty->flow_change = val; smp_mb(); } static inline bool tty_io_nonblock(struct tty_struct *tty, struct file *file) { return file->f_flags & O_NONBLOCK || test_bit(TTY_LDISC_CHANGING, &tty->flags); } static inline bool tty_io_error(struct tty_struct *tty) { return test_bit(TTY_IO_ERROR, &tty->flags); } static inline bool tty_throttled(struct tty_struct *tty) { return test_bit(TTY_THROTTLED, &tty->flags); } #ifdef CONFIG_TTY extern void tty_kref_put(struct tty_struct *tty); extern struct pid *tty_get_pgrp(struct tty_struct *tty); extern void tty_vhangup_self(void); extern void disassociate_ctty(int priv); extern dev_t tty_devnum(struct tty_struct *tty); extern void proc_clear_tty(struct task_struct *p); extern struct tty_struct *get_current_tty(void); /* tty_io.c */ extern int __init tty_init(void); extern const char *tty_name(const struct tty_struct *tty); extern struct tty_struct *tty_kopen(dev_t device); extern void tty_kclose(struct tty_struct *tty); extern int tty_dev_name_to_number(const char *name, dev_t *number); extern int tty_ldisc_lock(struct tty_struct *tty, unsigned long timeout); extern void tty_ldisc_unlock(struct tty_struct *tty); extern ssize_t redirected_tty_write(struct kiocb *, struct iov_iter *); #else static inline void tty_kref_put(struct tty_struct *tty) { } static inline struct pid *tty_get_pgrp(struct tty_struct *tty) { return NULL; } static inline void tty_vhangup_self(void) { } static inline void disassociate_ctty(int priv) { } static inline dev_t tty_devnum(struct tty_struct *tty) { return 0; } static inline void proc_clear_tty(struct task_struct *p) { } static inline struct tty_struct *get_current_tty(void) { return NULL; } /* tty_io.c */ static inline int __init tty_init(void) { return 0; } static inline const char *tty_name(const struct tty_struct *tty) { return "(none)"; } static inline struct tty_struct *tty_kopen(dev_t device) { return ERR_PTR(-ENODEV); } static inline void tty_kclose(struct tty_struct *tty) { } static inline int tty_dev_name_to_number(const char *name, dev_t *number) { return -ENOTSUPP; } #endif extern struct ktermios tty_std_termios; extern int vcs_init(void); extern struct class *tty_class; /** * tty_kref_get - get a tty reference * @tty: tty device * * Return a new reference to a tty object. The caller must hold * sufficient locks/counts to ensure that their existing reference cannot * go away */ static inline struct tty_struct *tty_kref_get(struct tty_struct *tty) { if (tty) kref_get(&tty->kref); return tty; } extern const char *tty_driver_name(const struct tty_struct *tty); extern void tty_wait_until_sent(struct tty_struct *tty, long timeout); extern int __tty_check_change(struct tty_struct *tty, int sig); extern int tty_check_change(struct tty_struct *tty); extern void __stop_tty(struct tty_struct *tty); extern void stop_tty(struct tty_struct *tty); extern void __start_tty(struct tty_struct *tty); extern void start_tty(struct tty_struct *tty); extern int tty_register_driver(struct tty_driver *driver); extern int tty_unregister_driver(struct tty_driver *driver); extern struct device *tty_register_device(struct tty_driver *driver, unsigned index, struct device *dev); extern struct device *tty_register_device_attr(struct tty_driver *driver, unsigned index, struct device *device, void *drvdata, const struct attribute_group **attr_grp); extern void tty_unregister_device(struct tty_driver *driver, unsigned index); extern void tty_write_message(struct tty_struct *tty, char *msg); extern int tty_send_xchar(struct tty_struct *tty, char ch); extern int tty_put_char(struct tty_struct *tty, unsigned char c); extern int tty_chars_in_buffer(struct tty_struct *tty); extern int tty_write_room(struct tty_struct *tty); extern void tty_driver_flush_buffer(struct tty_struct *tty); extern void tty_throttle(struct tty_struct *tty); extern void tty_unthrottle(struct tty_struct *tty); extern int tty_throttle_safe(struct tty_struct *tty); extern int tty_unthrottle_safe(struct tty_struct *tty); extern int tty_do_resize(struct tty_struct *tty, struct winsize *ws); extern int is_current_pgrp_orphaned(void); extern void tty_hangup(struct tty_struct *tty); extern void tty_vhangup(struct tty_struct *tty); extern void tty_vhangup_session(struct tty_struct *tty); extern int tty_hung_up_p(struct file *filp); extern void do_SAK(struct tty_struct *tty); extern void __do_SAK(struct tty_struct *tty); extern void tty_open_proc_set_tty(struct file *filp, struct tty_struct *tty); extern int tty_signal_session_leader(struct tty_struct *tty, int exit_session); extern void session_clear_tty(struct pid *session); extern void no_tty(void); extern void tty_buffer_free_all(struct tty_port *port); extern void tty_buffer_flush(struct tty_struct *tty, struct tty_ldisc *ld); extern void tty_buffer_init(struct tty_port *port); extern void tty_buffer_set_lock_subclass(struct tty_port *port); extern bool tty_buffer_restart_work(struct tty_port *port); extern bool tty_buffer_cancel_work(struct tty_port *port); extern void tty_buffer_flush_work(struct tty_port *port); extern speed_t tty_termios_baud_rate(struct ktermios *termios); extern speed_t tty_termios_input_baud_rate(struct ktermios *termios); extern void tty_termios_encode_baud_rate(struct ktermios *termios, speed_t ibaud, speed_t obaud); extern void tty_encode_baud_rate(struct tty_struct *tty, speed_t ibaud, speed_t obaud); /** * tty_get_baud_rate - get tty bit rates * @tty: tty to query * * Returns the baud rate as an integer for this terminal. The * termios lock must be held by the caller and the terminal bit * flags may be updated. * * Locking: none */ static inline speed_t tty_get_baud_rate(struct tty_struct *tty) { return tty_termios_baud_rate(&tty->termios); } extern void tty_termios_copy_hw(struct ktermios *new, struct ktermios *old); extern int tty_termios_hw_change(const struct ktermios *a, const struct ktermios *b); extern int tty_set_termios(struct tty_struct *tty, struct ktermios *kt); extern struct tty_ldisc *tty_ldisc_ref(struct tty_struct *); extern void tty_ldisc_deref(struct tty_ldisc *); extern struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *); extern void tty_ldisc_hangup(struct tty_struct *tty, bool reset); extern int tty_ldisc_reinit(struct tty_struct *tty, int disc); extern const struct seq_operations tty_ldiscs_seq_ops; extern void tty_wakeup(struct tty_struct *tty); extern void tty_ldisc_flush(struct tty_struct *tty); extern long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg); extern int tty_mode_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg); extern long tty_jobctrl_ioctl(struct tty_struct *tty, struct tty_struct *real_tty, struct file *file, unsigned int cmd, unsigned long arg); extern int tty_perform_flush(struct tty_struct *tty, unsigned long arg); extern void tty_default_fops(struct file_operations *fops); extern struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx); extern int tty_alloc_file(struct file *file); extern void tty_add_file(struct tty_struct *tty, struct file *file); extern void tty_free_file(struct file *file); extern struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx); extern void tty_release_struct(struct tty_struct *tty, int idx); extern int tty_release(struct inode *inode, struct file *filp); extern void tty_init_termios(struct tty_struct *tty); extern void tty_save_termios(struct tty_struct *tty); extern int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty); extern struct mutex tty_mutex; #define tty_is_writelocked(tty) (mutex_is_locked(&tty->atomic_write_lock)) extern void tty_port_init(struct tty_port *port); extern void tty_port_link_device(struct tty_port *port, struct tty_driver *driver, unsigned index); extern struct device *tty_port_register_device(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device); extern struct device *tty_port_register_device_attr(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device, void *drvdata, const struct attribute_group **attr_grp); extern struct device *tty_port_register_device_serdev(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device); extern struct device *tty_port_register_device_attr_serdev(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device, void *drvdata, const struct attribute_group **attr_grp); extern void tty_port_unregister_device(struct tty_port *port, struct tty_driver *driver, unsigned index); extern int tty_port_alloc_xmit_buf(struct tty_port *port); extern void tty_port_free_xmit_buf(struct tty_port *port); extern void tty_port_destroy(struct tty_port *port); extern void tty_port_put(struct tty_port *port); static inline struct tty_port *tty_port_get(struct tty_port *port) { if (port && kref_get_unless_zero(&port->kref)) return port; return NULL; } /* If the cts flow control is enabled, return true. */ static inline bool tty_port_cts_enabled(struct tty_port *port) { return test_bit(TTY_PORT_CTS_FLOW, &port->iflags); } static inline void tty_port_set_cts_flow(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_CTS_FLOW, &port->iflags); else clear_bit(TTY_PORT_CTS_FLOW, &port->iflags); } static inline bool tty_port_active(struct tty_port *port) { return test_bit(TTY_PORT_ACTIVE, &port->iflags); } static inline void tty_port_set_active(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_ACTIVE, &port->iflags); else clear_bit(TTY_PORT_ACTIVE, &port->iflags); } static inline bool tty_port_check_carrier(struct tty_port *port) { return test_bit(TTY_PORT_CHECK_CD, &port->iflags); } static inline void tty_port_set_check_carrier(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_CHECK_CD, &port->iflags); else clear_bit(TTY_PORT_CHECK_CD, &port->iflags); } static inline bool tty_port_suspended(struct tty_port *port) { return test_bit(TTY_PORT_SUSPENDED, &port->iflags); } static inline void tty_port_set_suspended(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_SUSPENDED, &port->iflags); else clear_bit(TTY_PORT_SUSPENDED, &port->iflags); } static inline bool tty_port_initialized(struct tty_port *port) { return test_bit(TTY_PORT_INITIALIZED, &port->iflags); } static inline void tty_port_set_initialized(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_INITIALIZED, &port->iflags); else clear_bit(TTY_PORT_INITIALIZED, &port->iflags); } static inline bool tty_port_kopened(struct tty_port *port) { return test_bit(TTY_PORT_KOPENED, &port->iflags); } static inline void tty_port_set_kopened(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_KOPENED, &port->iflags); else clear_bit(TTY_PORT_KOPENED, &port->iflags); } extern struct tty_struct *tty_port_tty_get(struct tty_port *port); extern void tty_port_tty_set(struct tty_port *port, struct tty_struct *tty); extern int tty_port_carrier_raised(struct tty_port *port); extern void tty_port_raise_dtr_rts(struct tty_port *port); extern void tty_port_lower_dtr_rts(struct tty_port *port); extern void tty_port_hangup(struct tty_port *port); extern void tty_port_tty_hangup(struct tty_port *port, bool check_clocal); extern void tty_port_tty_wakeup(struct tty_port *port); extern int tty_port_block_til_ready(struct tty_port *port, struct tty_struct *tty, struct file *filp); extern int tty_port_close_start(struct tty_port *port, struct tty_struct *tty, struct file *filp); extern void tty_port_close_end(struct tty_port *port, struct tty_struct *tty); extern void tty_port_close(struct tty_port *port, struct tty_struct *tty, struct file *filp); extern int tty_port_install(struct tty_port *port, struct tty_driver *driver, struct tty_struct *tty); extern int tty_port_open(struct tty_port *port, struct tty_struct *tty, struct file *filp); static inline int tty_port_users(struct tty_port *port) { return port->count + port->blocked_open; } extern int tty_register_ldisc(int disc, struct tty_ldisc_ops *new_ldisc); extern int tty_unregister_ldisc(int disc); extern int tty_set_ldisc(struct tty_struct *tty, int disc); extern int tty_ldisc_setup(struct tty_struct *tty, struct tty_struct *o_tty); extern void tty_ldisc_release(struct tty_struct *tty); extern int __must_check tty_ldisc_init(struct tty_struct *tty); extern void tty_ldisc_deinit(struct tty_struct *tty); extern int tty_ldisc_receive_buf(struct tty_ldisc *ld, const unsigned char *p, char *f, int count); /* n_tty.c */ extern void n_tty_inherit_ops(struct tty_ldisc_ops *ops); #ifdef CONFIG_TTY extern void __init n_tty_init(void); #else static inline void n_tty_init(void) { } #endif /* tty_audit.c */ #ifdef CONFIG_AUDIT extern void tty_audit_add_data(struct tty_struct *tty, const void *data, size_t size); extern void tty_audit_exit(void); extern void tty_audit_fork(struct signal_struct *sig); extern void tty_audit_tiocsti(struct tty_struct *tty, char ch); extern int tty_audit_push(void); #else static inline void tty_audit_add_data(struct tty_struct *tty, const void *data, size_t size) { } static inline void tty_audit_tiocsti(struct tty_struct *tty, char ch) { } static inline void tty_audit_exit(void) { } static inline void tty_audit_fork(struct signal_struct *sig) { } static inline int tty_audit_push(void) { return 0; } #endif /* tty_ioctl.c */ extern int n_tty_ioctl_helper(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg); /* vt.c */ extern int vt_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg); extern long vt_compat_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg); /* tty_mutex.c */ /* functions for preparation of BKL removal */ extern void tty_lock(struct tty_struct *tty); extern int tty_lock_interruptible(struct tty_struct *tty); extern void tty_unlock(struct tty_struct *tty); extern void tty_lock_slave(struct tty_struct *tty); extern void tty_unlock_slave(struct tty_struct *tty); extern void tty_set_lock_subclass(struct tty_struct *tty); #ifdef CONFIG_PROC_FS extern void proc_tty_register_driver(struct tty_driver *); extern void proc_tty_unregister_driver(struct tty_driver *); #else static inline void proc_tty_register_driver(struct tty_driver *d) {} static inline void proc_tty_unregister_driver(struct tty_driver *d) {} #endif #define tty_msg(fn, tty, f, ...) \ fn("%s %s: " f, tty_driver_name(tty), tty_name(tty), ##__VA_ARGS__) #define tty_debug(tty, f, ...) tty_msg(pr_debug, tty, f, ##__VA_ARGS__) #define tty_info(tty, f, ...) tty_msg(pr_info, tty, f, ##__VA_ARGS__) #define tty_notice(tty, f, ...) tty_msg(pr_notice, tty, f, ##__VA_ARGS__) #define tty_warn(tty, f, ...) tty_msg(pr_warn, tty, f, ##__VA_ARGS__) #define tty_err(tty, f, ...) tty_msg(pr_err, tty, f, ##__VA_ARGS__) #define tty_info_ratelimited(tty, f, ...) \ tty_msg(pr_info_ratelimited, tty, f, ##__VA_ARGS__) #endif
2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RCULIST_BL_H #define _LINUX_RCULIST_BL_H /* * RCU-protected bl list version. See include/linux/list_bl.h. */ #include <linux/list_bl.h> #include <linux/rcupdate.h> static inline void hlist_bl_set_first_rcu(struct hlist_bl_head *h, struct hlist_bl_node *n) { LIST_BL_BUG_ON((unsigned long)n & LIST_BL_LOCKMASK); LIST_BL_BUG_ON(((unsigned long)h->first & LIST_BL_LOCKMASK) != LIST_BL_LOCKMASK); rcu_assign_pointer(h->first, (struct hlist_bl_node *)((unsigned long)n | LIST_BL_LOCKMASK)); } static inline struct hlist_bl_node *hlist_bl_first_rcu(struct hlist_bl_head *h) { return (struct hlist_bl_node *) ((unsigned long)rcu_dereference_check(h->first, hlist_bl_is_locked(h)) & ~LIST_BL_LOCKMASK); } /** * hlist_bl_del_rcu - deletes entry from hash list without re-initialization * @n: the element to delete from the hash list. * * Note: hlist_bl_unhashed() on entry does not return true after this, * the entry is in an undefined state. It is useful for RCU based * lockfree traversal. * * In particular, it means that we can not poison the forward * pointers that may still be used for walking the hash list. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_bl_add_head_rcu() * or hlist_bl_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_bl_for_each_entry(). */ static inline void hlist_bl_del_rcu(struct hlist_bl_node *n) { __hlist_bl_del(n); n->pprev = LIST_POISON2; } /** * hlist_bl_add_head_rcu * @n: the element to add to the hash list. * @h: the list to add to. * * Description: * Adds the specified element to the specified hlist_bl, * while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_bl_add_head_rcu() * or hlist_bl_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_bl_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. Regardless of the type of CPU, the * list-traversal primitive must be guarded by rcu_read_lock(). */ static inline void hlist_bl_add_head_rcu(struct hlist_bl_node *n, struct hlist_bl_head *h) { struct hlist_bl_node *first; /* don't need hlist_bl_first_rcu because we're under lock */ first = hlist_bl_first(h); n->next = first; if (first) first->pprev = &n->next; n->pprev = &h->first; /* need _rcu because we can have concurrent lock free readers */ hlist_bl_set_first_rcu(h, n); } /** * hlist_bl_for_each_entry_rcu - iterate over rcu list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_bl_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_bl_node within the struct. * */ #define hlist_bl_for_each_entry_rcu(tpos, pos, head, member) \ for (pos = hlist_bl_first_rcu(head); \ pos && \ ({ tpos = hlist_bl_entry(pos, typeof(*tpos), member); 1; }); \ pos = rcu_dereference_raw(pos->next)) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0 */ /* * Portions of this file * Copyright (C) 2018 Intel Corporation */ #ifndef __NET_WIRELESS_NL80211_H #define __NET_WIRELESS_NL80211_H #include "core.h" int nl80211_init(void); void nl80211_exit(void); void *nl80211hdr_put(struct sk_buff *skb, u32 portid, u32 seq, int flags, u8 cmd); bool nl80211_put_sta_rate(struct sk_buff *msg, struct rate_info *info, int attr); static inline u64 wdev_id(struct wireless_dev *wdev) { return (u64)wdev->identifier | ((u64)wiphy_to_rdev(wdev->wiphy)->wiphy_idx << 32); } int nl80211_prepare_wdev_dump(struct netlink_callback *cb, struct cfg80211_registered_device **rdev, struct wireless_dev **wdev); int nl80211_parse_chandef(struct cfg80211_registered_device *rdev, struct genl_info *info, struct cfg80211_chan_def *chandef); int nl80211_parse_random_mac(struct nlattr **attrs, u8 *mac_addr, u8 *mac_addr_mask); void nl80211_notify_wiphy(struct cfg80211_registered_device *rdev, enum nl80211_commands cmd); void nl80211_notify_iface(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_commands cmd); void nl80211_send_scan_start(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); struct sk_buff *nl80211_build_scan_msg(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, bool aborted); void nl80211_send_scan_msg(struct cfg80211_registered_device *rdev, struct sk_buff *msg); void nl80211_send_sched_scan(struct cfg80211_sched_scan_request *req, u32 cmd); void nl80211_common_reg_change_event(enum nl80211_commands cmd_id, struct regulatory_request *request); static inline void nl80211_send_reg_change_event(struct regulatory_request *request) { nl80211_common_reg_change_event(NL80211_CMD_REG_CHANGE, request); } static inline void nl80211_send_wiphy_reg_change_event(struct regulatory_request *request) { nl80211_common_reg_change_event(NL80211_CMD_WIPHY_REG_CHANGE, request); } void nl80211_send_rx_auth(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_rx_assoc(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp, int uapsd_queues, const u8 *req_ies, size_t req_ies_len); void nl80211_send_deauth(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_disassoc(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_auth_timeout(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, gfp_t gfp); void nl80211_send_assoc_timeout(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, gfp_t gfp); void nl80211_send_connect_result(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_connect_resp_params *params, gfp_t gfp); void nl80211_send_roamed(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_roam_info *info, gfp_t gfp); void nl80211_send_port_authorized(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *bssid); void nl80211_send_disconnected(struct cfg80211_registered_device *rdev, struct net_device *netdev, u16 reason, const u8 *ie, size_t ie_len, bool from_ap); void nl80211_michael_mic_failure(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, enum nl80211_key_type key_type, int key_id, const u8 *tsc, gfp_t gfp); void nl80211_send_beacon_hint_event(struct wiphy *wiphy, struct ieee80211_channel *channel_before, struct ieee80211_channel *channel_after); void nl80211_send_ibss_bssid(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *bssid, gfp_t gfp); int nl80211_send_mgmt(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u32 nlpid, int freq, int sig_dbm, const u8 *buf, size_t len, u32 flags, gfp_t gfp); void nl80211_radar_notify(struct cfg80211_registered_device *rdev, const struct cfg80211_chan_def *chandef, enum nl80211_radar_event event, struct net_device *netdev, gfp_t gfp); void nl80211_send_ap_stopped(struct wireless_dev *wdev); void cfg80211_rdev_free_coalesce(struct cfg80211_registered_device *rdev); /* peer measurement */ int nl80211_pmsr_start(struct sk_buff *skb, struct genl_info *info); int nl80211_pmsr_dump_results(struct sk_buff *skb, struct netlink_callback *cb); #endif /* __NET_WIRELESS_NL80211_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 // SPDX-License-Identifier: GPL-2.0 /* * kobject.h - generic kernel object infrastructure. * * Copyright (c) 2002-2003 Patrick Mochel * Copyright (c) 2002-2003 Open Source Development Labs * Copyright (c) 2006-2008 Greg Kroah-Hartman <greg@kroah.com> * Copyright (c) 2006-2008 Novell Inc. * * Please read Documentation/core-api/kobject.rst before using the kobject * interface, ESPECIALLY the parts about reference counts and object * destructors. */ #ifndef _KOBJECT_H_ #define _KOBJECT_H_ #include <linux/types.h> #include <linux/list.h> #include <linux/sysfs.h> #include <linux/compiler.h> #include <linux/spinlock.h> #include <linux/kref.h> #include <linux/kobject_ns.h> #include <linux/kernel.h> #include <linux/wait.h> #include <linux/atomic.h> #include <linux/workqueue.h> #include <linux/uidgid.h> #define UEVENT_HELPER_PATH_LEN 256 #define UEVENT_NUM_ENVP 64 /* number of env pointers */ #define UEVENT_BUFFER_SIZE 2048 /* buffer for the variables */ #ifdef CONFIG_UEVENT_HELPER /* path to the userspace helper executed on an event */ extern char uevent_helper[]; #endif /* counter to tag the uevent, read only except for the kobject core */ extern u64 uevent_seqnum; /* * The actions here must match the index to the string array * in lib/kobject_uevent.c * * Do not add new actions here without checking with the driver-core * maintainers. Action strings are not meant to express subsystem * or device specific properties. In most cases you want to send a * kobject_uevent_env(kobj, KOBJ_CHANGE, env) with additional event * specific variables added to the event environment. */ enum kobject_action { KOBJ_ADD, KOBJ_REMOVE, KOBJ_CHANGE, KOBJ_MOVE, KOBJ_ONLINE, KOBJ_OFFLINE, KOBJ_BIND, KOBJ_UNBIND, }; struct kobject { const char *name; struct list_head entry; struct kobject *parent; struct kset *kset; struct kobj_type *ktype; struct kernfs_node *sd; /* sysfs directory entry */ struct kref kref; #ifdef CONFIG_DEBUG_KOBJECT_RELEASE struct delayed_work release; #endif unsigned int state_initialized:1; unsigned int state_in_sysfs:1; unsigned int state_add_uevent_sent:1; unsigned int state_remove_uevent_sent:1; unsigned int uevent_suppress:1; }; extern __printf(2, 3) int kobject_set_name(struct kobject *kobj, const char *name, ...); extern __printf(2, 0) int kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list vargs); static inline const char *kobject_name(const struct kobject *kobj) { return kobj->name; } extern void kobject_init(struct kobject *kobj, struct kobj_type *ktype); extern __printf(3, 4) __must_check int kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...); extern __printf(4, 5) __must_check int kobject_init_and_add(struct kobject *kobj, struct kobj_type *ktype, struct kobject *parent, const char *fmt, ...); extern void kobject_del(struct kobject *kobj); extern struct kobject * __must_check kobject_create(void); extern struct kobject * __must_check kobject_create_and_add(const char *name, struct kobject *parent); extern int __must_check kobject_rename(struct kobject *, const char *new_name); extern int __must_check kobject_move(struct kobject *, struct kobject *); extern struct kobject *kobject_get(struct kobject *kobj); extern struct kobject * __must_check kobject_get_unless_zero( struct kobject *kobj); extern void kobject_put(struct kobject *kobj); extern const void *kobject_namespace(struct kobject *kobj); extern void kobject_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid); extern char *kobject_get_path(struct kobject *kobj, gfp_t flag); /** * kobject_has_children - Returns whether a kobject has children. * @kobj: the object to test * * This will return whether a kobject has other kobjects as children. * * It does NOT account for the presence of attribute files, only sub * directories. It also assumes there is no concurrent addition or * removal of such children, and thus relies on external locking. */ static inline bool kobject_has_children(struct kobject *kobj) { WARN_ON_ONCE(kref_read(&kobj->kref) == 0); return kobj->sd && kobj->sd->dir.subdirs; } struct kobj_type { void (*release)(struct kobject *kobj); const struct sysfs_ops *sysfs_ops; struct attribute **default_attrs; /* use default_groups instead */ const struct attribute_group **default_groups; const struct kobj_ns_type_operations *(*child_ns_type)(struct kobject *kobj); const void *(*namespace)(struct kobject *kobj); void (*get_ownership)(struct kobject *kobj, kuid_t *uid, kgid_t *gid); }; struct kobj_uevent_env { char *argv[3]; char *envp[UEVENT_NUM_ENVP]; int envp_idx; char buf[UEVENT_BUFFER_SIZE]; int buflen; }; struct kset_uevent_ops { int (* const filter)(struct kset *kset, struct kobject *kobj); const char *(* const name)(struct kset *kset, struct kobject *kobj); int (* const uevent)(struct kset *kset, struct kobject *kobj, struct kobj_uevent_env *env); }; struct kobj_attribute { struct attribute attr; ssize_t (*show)(struct kobject *kobj, struct kobj_attribute *attr, char *buf); ssize_t (*store)(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count); }; extern const struct sysfs_ops kobj_sysfs_ops; struct sock; /** * struct kset - a set of kobjects of a specific type, belonging to a specific subsystem. * * A kset defines a group of kobjects. They can be individually * different "types" but overall these kobjects all want to be grouped * together and operated on in the same manner. ksets are used to * define the attribute callbacks and other common events that happen to * a kobject. * * @list: the list of all kobjects for this kset * @list_lock: a lock for iterating over the kobjects * @kobj: the embedded kobject for this kset (recursion, isn't it fun...) * @uevent_ops: the set of uevent operations for this kset. These are * called whenever a kobject has something happen to it so that the kset * can add new environment variables, or filter out the uevents if so * desired. */ struct kset { struct list_head list; spinlock_t list_lock; struct kobject kobj; const struct kset_uevent_ops *uevent_ops; } __randomize_layout; extern void kset_init(struct kset *kset); extern int __must_check kset_register(struct kset *kset); extern void kset_unregister(struct kset *kset); extern struct kset * __must_check kset_create_and_add(const char *name, const struct kset_uevent_ops *u, struct kobject *parent_kobj); static inline struct kset *to_kset(struct kobject *kobj) { return kobj ? container_of(kobj, struct kset, kobj) : NULL; } static inline struct kset *kset_get(struct kset *k) { return k ? to_kset(kobject_get(&k->kobj)) : NULL; } static inline void kset_put(struct kset *k) { kobject_put(&k->kobj); } static inline struct kobj_type *get_ktype(struct kobject *kobj) { return kobj->ktype; } extern struct kobject *kset_find_obj(struct kset *, const char *); /* The global /sys/kernel/ kobject for people to chain off of */ extern struct kobject *kernel_kobj; /* The global /sys/kernel/mm/ kobject for people to chain off of */ extern struct kobject *mm_kobj; /* The global /sys/hypervisor/ kobject for people to chain off of */ extern struct kobject *hypervisor_kobj; /* The global /sys/power/ kobject for people to chain off of */ extern struct kobject *power_kobj; /* The global /sys/firmware/ kobject for people to chain off of */ extern struct kobject *firmware_kobj; int kobject_uevent(struct kobject *kobj, enum kobject_action action); int kobject_uevent_env(struct kobject *kobj, enum kobject_action action, char *envp[]); int kobject_synth_uevent(struct kobject *kobj, const char *buf, size_t count); __printf(2, 3) int add_uevent_var(struct kobj_uevent_env *env, const char *format, ...); #endif /* _KOBJECT_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_LWTUNNEL_H #define __NET_LWTUNNEL_H 1 #include <linux/lwtunnel.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/types.h> #include <net/route.h> #define LWTUNNEL_HASH_BITS 7 #define LWTUNNEL_HASH_SIZE (1 << LWTUNNEL_HASH_BITS) /* lw tunnel state flags */ #define LWTUNNEL_STATE_OUTPUT_REDIRECT BIT(0) #define LWTUNNEL_STATE_INPUT_REDIRECT BIT(1) #define LWTUNNEL_STATE_XMIT_REDIRECT BIT(2) enum { LWTUNNEL_XMIT_DONE, LWTUNNEL_XMIT_CONTINUE, }; struct lwtunnel_state { __u16 type; __u16 flags; __u16 headroom; atomic_t refcnt; int (*orig_output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*orig_input)(struct sk_buff *); struct rcu_head rcu; __u8 data[]; }; struct lwtunnel_encap_ops { int (*build_state)(struct net *net, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack); void (*destroy_state)(struct lwtunnel_state *lws); int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*input)(struct sk_buff *skb); int (*fill_encap)(struct sk_buff *skb, struct lwtunnel_state *lwtstate); int (*get_encap_size)(struct lwtunnel_state *lwtstate); int (*cmp_encap)(struct lwtunnel_state *a, struct lwtunnel_state *b); int (*xmit)(struct sk_buff *skb); struct module *owner; }; #ifdef CONFIG_LWTUNNEL void lwtstate_free(struct lwtunnel_state *lws); static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { if (lws) atomic_inc(&lws->refcnt); return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { if (!lws) return; if (atomic_dec_and_test(&lws->refcnt)) lwtstate_free(lws); } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_OUTPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_INPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_XMIT_REDIRECT)) return true; return false; } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { if ((lwtunnel_xmit_redirect(lwtstate) || lwtunnel_output_redirect(lwtstate)) && lwtstate->headroom < mtu) return lwtstate->headroom; return 0; } int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack); int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack); int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack); int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr); int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate); struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len); int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b); int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb); int lwtunnel_input(struct sk_buff *skb); int lwtunnel_xmit(struct sk_buff *skb); int bpf_lwt_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len, bool ingress); static inline void lwtunnel_set_redirect(struct dst_entry *dst) { if (lwtunnel_output_redirect(dst->lwtstate)) { dst->lwtstate->orig_output = dst->output; dst->output = lwtunnel_output; } if (lwtunnel_input_redirect(dst->lwtstate)) { dst->lwtstate->orig_input = dst->input; dst->input = lwtunnel_input; } } #else static inline void lwtstate_free(struct lwtunnel_state *lws) { } static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline void lwtunnel_set_redirect(struct dst_entry *dst) { } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { return 0; } static inline int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "CONFIG_LWTUNNEL is not enabled in this kernel"); return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack) { /* return 0 since we are not walking attr looking for * RTA_ENCAP_TYPE attribute on nexthops. */ return 0; } static inline int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr) { return 0; } static inline int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate) { return 0; } static inline struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len) { return NULL; } static inline int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b) { return 0; } static inline int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_input(struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_xmit(struct sk_buff *skb) { return -EOPNOTSUPP; } #endif /* CONFIG_LWTUNNEL */ #define MODULE_ALIAS_RTNL_LWT(encap_type) MODULE_ALIAS("rtnl-lwt-" __stringify(encap_type)) #endif /* __NET_LWTUNNEL_H */
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_GFP_H #define __LINUX_GFP_H #include <linux/mmdebug.h> #include <linux/mmzone.h> #include <linux/stddef.h> #include <linux/linkage.h> #include <linux/topology.h> struct vm_area_struct; /* * In case of changes, please don't forget to update * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c */ /* Plain integer GFP bitmasks. Do not use this directly. */ #define ___GFP_DMA 0x01u #define ___GFP_HIGHMEM 0x02u #define ___GFP_DMA32 0x04u #define ___GFP_MOVABLE 0x08u #define ___GFP_RECLAIMABLE 0x10u #define ___GFP_HIGH 0x20u #define ___GFP_IO 0x40u #define ___GFP_FS 0x80u #define ___GFP_ZERO 0x100u #define ___GFP_ATOMIC 0x200u #define ___GFP_DIRECT_RECLAIM 0x400u #define ___GFP_KSWAPD_RECLAIM 0x800u #define ___GFP_WRITE 0x1000u #define ___GFP_NOWARN 0x2000u #define ___GFP_RETRY_MAYFAIL 0x4000u #define ___GFP_NOFAIL 0x8000u #define ___GFP_NORETRY 0x10000u #define ___GFP_MEMALLOC 0x20000u #define ___GFP_COMP 0x40000u #define ___GFP_NOMEMALLOC 0x80000u #define ___GFP_HARDWALL 0x100000u #define ___GFP_THISNODE 0x200000u #define ___GFP_ACCOUNT 0x400000u #ifdef CONFIG_LOCKDEP #define ___GFP_NOLOCKDEP 0x800000u #else #define ___GFP_NOLOCKDEP 0 #endif /* If the above are modified, __GFP_BITS_SHIFT may need updating */ /* * Physical address zone modifiers (see linux/mmzone.h - low four bits) * * Do not put any conditional on these. If necessary modify the definitions * without the underscores and use them consistently. The definitions here may * be used in bit comparisons. */ #define __GFP_DMA ((__force gfp_t)___GFP_DMA) #define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM) #define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32) #define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */ #define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE) /** * DOC: Page mobility and placement hints * * Page mobility and placement hints * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * These flags provide hints about how mobile the page is. Pages with similar * mobility are placed within the same pageblocks to minimise problems due * to external fragmentation. * * %__GFP_MOVABLE (also a zone modifier) indicates that the page can be * moved by page migration during memory compaction or can be reclaimed. * * %__GFP_RECLAIMABLE is used for slab allocations that specify * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers. * * %__GFP_WRITE indicates the caller intends to dirty the page. Where possible, * these pages will be spread between local zones to avoid all the dirty * pages being in one zone (fair zone allocation policy). * * %__GFP_HARDWALL enforces the cpuset memory allocation policy. * * %__GFP_THISNODE forces the allocation to be satisfied from the requested * node with no fallbacks or placement policy enforcements. * * %__GFP_ACCOUNT causes the allocation to be accounted to kmemcg. */ #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE) #define __GFP_WRITE ((__force gfp_t)___GFP_WRITE) #define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL) #define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE) #define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT) /** * DOC: Watermark modifiers * * Watermark modifiers -- controls access to emergency reserves * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * %__GFP_HIGH indicates that the caller is high-priority and that granting * the request is necessary before the system can make forward progress. * For example, creating an IO context to clean pages. * * %__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is * high priority. Users are typically interrupt handlers. This may be * used in conjunction with %__GFP_HIGH * * %__GFP_MEMALLOC allows access to all memory. This should only be used when * the caller guarantees the allocation will allow more memory to be freed * very shortly e.g. process exiting or swapping. Users either should * be the MM or co-ordinating closely with the VM (e.g. swap over NFS). * Users of this flag have to be extremely careful to not deplete the reserve * completely and implement a throttling mechanism which controls the * consumption of the reserve based on the amount of freed memory. * Usage of a pre-allocated pool (e.g. mempool) should be always considered * before using this flag. * * %__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves. * This takes precedence over the %__GFP_MEMALLOC flag if both are set. */ #define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC) #define __GFP_HIGH ((__force gfp_t)___GFP_HIGH) #define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC) #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC) /** * DOC: Reclaim modifiers * * Reclaim modifiers * ~~~~~~~~~~~~~~~~~ * Please note that all the following flags are only applicable to sleepable * allocations (e.g. %GFP_NOWAIT and %GFP_ATOMIC will ignore them). * * %__GFP_IO can start physical IO. * * %__GFP_FS can call down to the low-level FS. Clearing the flag avoids the * allocator recursing into the filesystem which might already be holding * locks. * * %__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim. * This flag can be cleared to avoid unnecessary delays when a fallback * option is available. * * %__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when * the low watermark is reached and have it reclaim pages until the high * watermark is reached. A caller may wish to clear this flag when fallback * options are available and the reclaim is likely to disrupt the system. The * canonical example is THP allocation where a fallback is cheap but * reclaim/compaction may cause indirect stalls. * * %__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim. * * The default allocator behavior depends on the request size. We have a concept * of so called costly allocations (with order > %PAGE_ALLOC_COSTLY_ORDER). * !costly allocations are too essential to fail so they are implicitly * non-failing by default (with some exceptions like OOM victims might fail so * the caller still has to check for failures) while costly requests try to be * not disruptive and back off even without invoking the OOM killer. * The following three modifiers might be used to override some of these * implicit rules * * %__GFP_NORETRY: The VM implementation will try only very lightweight * memory direct reclaim to get some memory under memory pressure (thus * it can sleep). It will avoid disruptive actions like OOM killer. The * caller must handle the failure which is quite likely to happen under * heavy memory pressure. The flag is suitable when failure can easily be * handled at small cost, such as reduced throughput * * %__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim * procedures that have previously failed if there is some indication * that progress has been made else where. It can wait for other * tasks to attempt high level approaches to freeing memory such as * compaction (which removes fragmentation) and page-out. * There is still a definite limit to the number of retries, but it is * a larger limit than with %__GFP_NORETRY. * Allocations with this flag may fail, but only when there is * genuinely little unused memory. While these allocations do not * directly trigger the OOM killer, their failure indicates that * the system is likely to need to use the OOM killer soon. The * caller must handle failure, but can reasonably do so by failing * a higher-level request, or completing it only in a much less * efficient manner. * If the allocation does fail, and the caller is in a position to * free some non-essential memory, doing so could benefit the system * as a whole. * * %__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller * cannot handle allocation failures. The allocation could block * indefinitely but will never return with failure. Testing for * failure is pointless. * New users should be evaluated carefully (and the flag should be * used only when there is no reasonable failure policy) but it is * definitely preferable to use the flag rather than opencode endless * loop around allocator. * Using this flag for costly allocations is _highly_ discouraged. */ #define __GFP_IO ((__force gfp_t)___GFP_IO) #define __GFP_FS ((__force gfp_t)___GFP_FS) #define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */ #define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */ #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM)) #define __GFP_RETRY_MAYFAIL ((__force gfp_t)___GFP_RETRY_MAYFAIL) #define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL) #define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY) /** * DOC: Action modifiers * * Action modifiers * ~~~~~~~~~~~~~~~~ * * %__GFP_NOWARN suppresses allocation failure reports. * * %__GFP_COMP address compound page metadata. * * %__GFP_ZERO returns a zeroed page on success. */ #define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN) #define __GFP_COMP ((__force gfp_t)___GFP_COMP) #define __GFP_ZERO ((__force gfp_t)___GFP_ZERO) /* Disable lockdep for GFP context tracking */ #define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP) /* Room for N __GFP_FOO bits */ #define __GFP_BITS_SHIFT (23 + IS_ENABLED(CONFIG_LOCKDEP)) #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1)) /** * DOC: Useful GFP flag combinations * * Useful GFP flag combinations * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * Useful GFP flag combinations that are commonly used. It is recommended * that subsystems start with one of these combinations and then set/clear * %__GFP_FOO flags as necessary. * * %GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower * watermark is applied to allow access to "atomic reserves". * The current implementation doesn't support NMI and few other strict * non-preemptive contexts (e.g. raw_spin_lock). The same applies to %GFP_NOWAIT. * * %GFP_KERNEL is typical for kernel-internal allocations. The caller requires * %ZONE_NORMAL or a lower zone for direct access but can direct reclaim. * * %GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is * accounted to kmemcg. * * %GFP_NOWAIT is for kernel allocations that should not stall for direct * reclaim, start physical IO or use any filesystem callback. * * %GFP_NOIO will use direct reclaim to discard clean pages or slab pages * that do not require the starting of any physical IO. * Please try to avoid using this flag directly and instead use * memalloc_noio_{save,restore} to mark the whole scope which cannot * perform any IO with a short explanation why. All allocation requests * will inherit GFP_NOIO implicitly. * * %GFP_NOFS will use direct reclaim but will not use any filesystem interfaces. * Please try to avoid using this flag directly and instead use * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't * recurse into the FS layer with a short explanation why. All allocation * requests will inherit GFP_NOFS implicitly. * * %GFP_USER is for userspace allocations that also need to be directly * accessibly by the kernel or hardware. It is typically used by hardware * for buffers that are mapped to userspace (e.g. graphics) that hardware * still must DMA to. cpuset limits are enforced for these allocations. * * %GFP_DMA exists for historical reasons and should be avoided where possible. * The flags indicates that the caller requires that the lowest zone be * used (%ZONE_DMA or 16M on x86-64). Ideally, this would be removed but * it would require careful auditing as some users really require it and * others use the flag to avoid lowmem reserves in %ZONE_DMA and treat the * lowest zone as a type of emergency reserve. * * %GFP_DMA32 is similar to %GFP_DMA except that the caller requires a 32-bit * address. * * %GFP_HIGHUSER is for userspace allocations that may be mapped to userspace, * do not need to be directly accessible by the kernel but that cannot * move once in use. An example may be a hardware allocation that maps * data directly into userspace but has no addressing limitations. * * %GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not * need direct access to but can use kmap() when access is required. They * are expected to be movable via page reclaim or page migration. Typically, * pages on the LRU would also be allocated with %GFP_HIGHUSER_MOVABLE. * * %GFP_TRANSHUGE and %GFP_TRANSHUGE_LIGHT are used for THP allocations. They * are compound allocations that will generally fail quickly if memory is not * available and will not wake kswapd/kcompactd on failure. The _LIGHT * version does not attempt reclaim/compaction at all and is by default used * in page fault path, while the non-light is used by khugepaged. */ #define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM) #define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS) #define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT) #define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM) #define GFP_NOIO (__GFP_RECLAIM) #define GFP_NOFS (__GFP_RECLAIM | __GFP_IO) #define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL) #define GFP_DMA __GFP_DMA #define GFP_DMA32 __GFP_DMA32 #define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM) #define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE) #define GFP_TRANSHUGE_LIGHT ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \ __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM) #define GFP_TRANSHUGE (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM) /* Convert GFP flags to their corresponding migrate type */ #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE) #define GFP_MOVABLE_SHIFT 3 static inline int gfp_migratetype(const gfp_t gfp_flags) { VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK); BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE); BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE); if (unlikely(page_group_by_mobility_disabled)) return MIGRATE_UNMOVABLE; /* Group based on mobility */ return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT; } #undef GFP_MOVABLE_MASK #undef GFP_MOVABLE_SHIFT static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags) { return !!(gfp_flags & __GFP_DIRECT_RECLAIM); } /** * gfpflags_normal_context - is gfp_flags a normal sleepable context? * @gfp_flags: gfp_flags to test * * Test whether @gfp_flags indicates that the allocation is from the * %current context and allowed to sleep. * * An allocation being allowed to block doesn't mean it owns the %current * context. When direct reclaim path tries to allocate memory, the * allocation context is nested inside whatever %current was doing at the * time of the original allocation. The nested allocation may be allowed * to block but modifying anything %current owns can corrupt the outer * context's expectations. * * %true result from this function indicates that the allocation context * can sleep and use anything that's associated with %current. */ static inline bool gfpflags_normal_context(const gfp_t gfp_flags) { return (gfp_flags & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC)) == __GFP_DIRECT_RECLAIM; } #ifdef CONFIG_HIGHMEM #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM #else #define OPT_ZONE_HIGHMEM ZONE_NORMAL #endif #ifdef CONFIG_ZONE_DMA #define OPT_ZONE_DMA ZONE_DMA #else #define OPT_ZONE_DMA ZONE_NORMAL #endif #ifdef CONFIG_ZONE_DMA32 #define OPT_ZONE_DMA32 ZONE_DMA32 #else #define OPT_ZONE_DMA32 ZONE_NORMAL #endif /* * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT * bits long and there are 16 of them to cover all possible combinations of * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM. * * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA. * But GFP_MOVABLE is not only a zone specifier but also an allocation * policy. Therefore __GFP_MOVABLE plus another zone selector is valid. * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1". * * bit result * ================= * 0x0 => NORMAL * 0x1 => DMA or NORMAL * 0x2 => HIGHMEM or NORMAL * 0x3 => BAD (DMA+HIGHMEM) * 0x4 => DMA32 or NORMAL * 0x5 => BAD (DMA+DMA32) * 0x6 => BAD (HIGHMEM+DMA32) * 0x7 => BAD (HIGHMEM+DMA32+DMA) * 0x8 => NORMAL (MOVABLE+0) * 0x9 => DMA or NORMAL (MOVABLE+DMA) * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too) * 0xb => BAD (MOVABLE+HIGHMEM+DMA) * 0xc => DMA32 or NORMAL (MOVABLE+DMA32) * 0xd => BAD (MOVABLE+DMA32+DMA) * 0xe => BAD (MOVABLE+DMA32+HIGHMEM) * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA) * * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms. */ #if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4 /* ZONE_DEVICE is not a valid GFP zone specifier */ #define GFP_ZONES_SHIFT 2 #else #define GFP_ZONES_SHIFT ZONES_SHIFT #endif #if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG #error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer #endif #define GFP_ZONE_TABLE ( \ (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \ | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \ | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \ | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \ | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \ | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \ | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\ | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\ ) /* * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per * entry starting with bit 0. Bit is set if the combination is not * allowed. */ #define GFP_ZONE_BAD ( \ 1 << (___GFP_DMA | ___GFP_HIGHMEM) \ | 1 << (___GFP_DMA | ___GFP_DMA32) \ | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \ | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \ | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \ | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \ | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \ | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \ ) static inline enum zone_type gfp_zone(gfp_t flags) { enum zone_type z; int bit = (__force int) (flags & GFP_ZONEMASK); z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) & ((1 << GFP_ZONES_SHIFT) - 1); VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1); return z; } /* * There is only one page-allocator function, and two main namespaces to * it. The alloc_page*() variants return 'struct page *' and as such * can allocate highmem pages, the *get*page*() variants return * virtual kernel addresses to the allocated page(s). */ static inline int gfp_zonelist(gfp_t flags) { #ifdef CONFIG_NUMA if (unlikely(flags & __GFP_THISNODE)) return ZONELIST_NOFALLBACK; #endif return ZONELIST_FALLBACK; } /* * We get the zone list from the current node and the gfp_mask. * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones. * There are two zonelists per node, one for all zones with memory and * one containing just zones from the node the zonelist belongs to. * * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets * optimized to &contig_page_data at compile-time. */ static inline struct zonelist *node_zonelist(int nid, gfp_t flags) { return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags); } #ifndef HAVE_ARCH_FREE_PAGE static inline void arch_free_page(struct page *page, int order) { } #endif #ifndef HAVE_ARCH_ALLOC_PAGE static inline void arch_alloc_page(struct page *page, int order) { } #endif #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE static inline int arch_make_page_accessible(struct page *page) { return 0; } #endif struct page * __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, nodemask_t *nodemask); static inline struct page * __alloc_pages(gfp_t gfp_mask, unsigned int order, int preferred_nid) { return __alloc_pages_nodemask(gfp_mask, order, preferred_nid, NULL); } /* * Allocate pages, preferring the node given as nid. The node must be valid and * online. For more general interface, see alloc_pages_node(). */ static inline struct page * __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) { VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES); VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid)); return __alloc_pages(gfp_mask, order, nid); } /* * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE, * prefer the current CPU's closest node. Otherwise node must be valid and * online. */ static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) { if (nid == NUMA_NO_NODE) nid = numa_mem_id(); return __alloc_pages_node(nid, gfp_mask, order); } #ifdef CONFIG_NUMA extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order); static inline struct page * alloc_pages(gfp_t gfp_mask, unsigned int order) { return alloc_pages_current(gfp_mask, order); } extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order, struct vm_area_struct *vma, unsigned long addr, int node, bool hugepage); #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true) #else static inline struct page *alloc_pages(gfp_t gfp_mask, unsigned int order) { return alloc_pages_node(numa_node_id(), gfp_mask, order); } #define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\ alloc_pages(gfp_mask, order) #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ alloc_pages(gfp_mask, order) #endif #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0) #define alloc_page_vma(gfp_mask, vma, addr) \ alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false) extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order); extern unsigned long get_zeroed_page(gfp_t gfp_mask); void *alloc_pages_exact(size_t size, gfp_t gfp_mask); void free_pages_exact(void *virt, size_t size); void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask); #define __get_free_page(gfp_mask) \ __get_free_pages((gfp_mask), 0) #define __get_dma_pages(gfp_mask, order) \ __get_free_pages((gfp_mask) | GFP_DMA, (order)) extern void __free_pages(struct page *page, unsigned int order); extern void free_pages(unsigned long addr, unsigned int order); extern void free_unref_page(struct page *page); extern void free_unref_page_list(struct list_head *list); struct page_frag_cache; extern void __page_frag_cache_drain(struct page *page, unsigned int count); extern void *page_frag_alloc(struct page_frag_cache *nc, unsigned int fragsz, gfp_t gfp_mask); extern void page_frag_free(void *addr); #define __free_page(page) __free_pages((page), 0) #define free_page(addr) free_pages((addr), 0) void page_alloc_init(void); void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp); void drain_all_pages(struct zone *zone); void drain_local_pages(struct zone *zone); void page_alloc_init_late(void); /* * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what * GFP flags are used before interrupts are enabled. Once interrupts are * enabled, it is set to __GFP_BITS_MASK while the system is running. During * hibernation, it is used by PM to avoid I/O during memory allocation while * devices are suspended. */ extern gfp_t gfp_allowed_mask; /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */ bool gfp_pfmemalloc_allowed(gfp_t gfp_mask); extern void pm_restrict_gfp_mask(void); extern void pm_restore_gfp_mask(void); #ifdef CONFIG_PM_SLEEP extern bool pm_suspended_storage(void); #else static inline bool pm_suspended_storage(void) { return false; } #endif /* CONFIG_PM_SLEEP */ #ifdef CONFIG_CONTIG_ALLOC /* The below functions must be run on a range from a single zone. */ extern int alloc_contig_range(unsigned long start, unsigned long end, unsigned migratetype, gfp_t gfp_mask); extern struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, int nid, nodemask_t *nodemask); #endif void free_contig_range(unsigned long pfn, unsigned int nr_pages); #ifdef CONFIG_CMA /* CMA stuff */ extern void init_cma_reserved_pageblock(struct page *page); #endif #endif /* __LINUX_GFP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RATELIMIT_H #define _LINUX_RATELIMIT_H #include <linux/ratelimit_types.h> #include <linux/sched.h> #include <linux/spinlock.h> static inline void ratelimit_state_init(struct ratelimit_state *rs, int interval, int burst) { memset(rs, 0, sizeof(*rs)); raw_spin_lock_init(&rs->lock); rs->interval = interval; rs->burst = burst; } static inline void ratelimit_default_init(struct ratelimit_state *rs) { return ratelimit_state_init(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); } static inline void ratelimit_state_exit(struct ratelimit_state *rs) { if (!(rs->flags & RATELIMIT_MSG_ON_RELEASE)) return; if (rs->missed) { pr_warn("%s: %d output lines suppressed due to ratelimiting\n", current->comm, rs->missed); rs->missed = 0; } } static inline void ratelimit_set_flags(struct ratelimit_state *rs, unsigned long flags) { rs->flags = flags; } extern struct ratelimit_state printk_ratelimit_state; #ifdef CONFIG_PRINTK #define WARN_ON_RATELIMIT(condition, state) ({ \ bool __rtn_cond = !!(condition); \ WARN_ON(__rtn_cond && __ratelimit(state)); \ __rtn_cond; \ }) #define WARN_RATELIMIT(condition, format, ...) \ ({ \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ int rtn = !!(condition); \ \ if (unlikely(rtn && __ratelimit(&_rs))) \ WARN(rtn, format, ##__VA_ARGS__); \ \ rtn; \ }) #else #define WARN_ON_RATELIMIT(condition, state) \ WARN_ON(condition) #define WARN_RATELIMIT(condition, format, ...) \ ({ \ int rtn = WARN(condition, format, ##__VA_ARGS__); \ rtn; \ }) #endif #endif /* _LINUX_RATELIMIT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NETLINK_H #define __LINUX_NETLINK_H #include <linux/capability.h> #include <linux/skbuff.h> #include <linux/export.h> #include <net/scm.h> #include <uapi/linux/netlink.h> struct net; static inline struct nlmsghdr *nlmsg_hdr(const struct sk_buff *skb) { return (struct nlmsghdr *)skb->data; } enum netlink_skb_flags { NETLINK_SKB_DST = 0x8, /* Dst set in sendto or sendmsg */ }; struct netlink_skb_parms { struct scm_creds creds; /* Skb credentials */ __u32 portid; __u32 dst_group; __u32 flags; struct sock *sk; bool nsid_is_set; int nsid; }; #define NETLINK_CB(skb) (*(struct netlink_skb_parms*)&((skb)->cb)) #define NETLINK_CREDS(skb) (&NETLINK_CB((skb)).creds) void netlink_table_grab(void); void netlink_table_ungrab(void); #define NL_CFG_F_NONROOT_RECV (1 << 0) #define NL_CFG_F_NONROOT_SEND (1 << 1) /* optional Netlink kernel configuration parameters */ struct netlink_kernel_cfg { unsigned int groups; unsigned int flags; void (*input)(struct sk_buff *skb); struct mutex *cb_mutex; int (*bind)(struct net *net, int group); void (*unbind)(struct net *net, int group); bool (*compare)(struct net *net, struct sock *sk); }; struct sock *__netlink_kernel_create(struct net *net, int unit, struct module *module, struct netlink_kernel_cfg *cfg); static inline struct sock * netlink_kernel_create(struct net *net, int unit, struct netlink_kernel_cfg *cfg) { return __netlink_kernel_create(net, unit, THIS_MODULE, cfg); } /* this can be increased when necessary - don't expose to userland */ #define NETLINK_MAX_COOKIE_LEN 20 /** * struct netlink_ext_ack - netlink extended ACK report struct * @_msg: message string to report - don't access directly, use * %NL_SET_ERR_MSG * @bad_attr: attribute with error * @policy: policy for a bad attribute * @cookie: cookie data to return to userspace (for success) * @cookie_len: actual cookie data length */ struct netlink_ext_ack { const char *_msg; const struct nlattr *bad_attr; const struct nla_policy *policy; u8 cookie[NETLINK_MAX_COOKIE_LEN]; u8 cookie_len; }; /* Always use this macro, this allows later putting the * message into a separate section or such for things * like translation or listing all possible messages. * Currently string formatting is not supported (due * to the lack of an output buffer.) */ #define NL_SET_ERR_MSG(extack, msg) do { \ static const char __msg[] = msg; \ struct netlink_ext_ack *__extack = (extack); \ \ if (__extack) \ __extack->_msg = __msg; \ } while (0) #define NL_SET_ERR_MSG_MOD(extack, msg) \ NL_SET_ERR_MSG((extack), KBUILD_MODNAME ": " msg) #define NL_SET_BAD_ATTR_POLICY(extack, attr, pol) do { \ if ((extack)) { \ (extack)->bad_attr = (attr); \ (extack)->policy = (pol); \ } \ } while (0) #define NL_SET_BAD_ATTR(extack, attr) NL_SET_BAD_ATTR_POLICY(extack, attr, NULL) #define NL_SET_ERR_MSG_ATTR_POL(extack, attr, pol, msg) do { \ static const char __msg[] = msg; \ struct netlink_ext_ack *__extack = (extack); \ \ if (__extack) { \ __extack->_msg = __msg; \ __extack->bad_attr = (attr); \ __extack->policy = (pol); \ } \ } while (0) #define NL_SET_ERR_MSG_ATTR(extack, attr, msg) \ NL_SET_ERR_MSG_ATTR_POL(extack, attr, NULL, msg) static inline void nl_set_extack_cookie_u64(struct netlink_ext_ack *extack, u64 cookie) { u64 __cookie = cookie; if (!extack) return; memcpy(extack->cookie, &__cookie, sizeof(__cookie)); extack->cookie_len = sizeof(__cookie); } static inline void nl_set_extack_cookie_u32(struct netlink_ext_ack *extack, u32 cookie) { u32 __cookie = cookie; if (!extack) return; memcpy(extack->cookie, &__cookie, sizeof(__cookie)); extack->cookie_len = sizeof(__cookie); } void netlink_kernel_release(struct sock *sk); int __netlink_change_ngroups(struct sock *sk, unsigned int groups); int netlink_change_ngroups(struct sock *sk, unsigned int groups); void __netlink_clear_multicast_users(struct sock *sk, unsigned int group); void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, const struct netlink_ext_ack *extack); int netlink_has_listeners(struct sock *sk, unsigned int group); bool netlink_strict_get_check(struct sk_buff *skb); int netlink_unicast(struct sock *ssk, struct sk_buff *skb, __u32 portid, int nonblock); int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, __u32 portid, __u32 group, gfp_t allocation); int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, __u32 portid, __u32 group, gfp_t allocation, int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), void *filter_data); int netlink_set_err(struct sock *ssk, __u32 portid, __u32 group, int code); int netlink_register_notifier(struct notifier_block *nb); int netlink_unregister_notifier(struct notifier_block *nb); /* finegrained unicast helpers: */ struct sock *netlink_getsockbyfilp(struct file *filp); int netlink_attachskb(struct sock *sk, struct sk_buff *skb, long *timeo, struct sock *ssk); void netlink_detachskb(struct sock *sk, struct sk_buff *skb); int netlink_sendskb(struct sock *sk, struct sk_buff *skb); static inline struct sk_buff * netlink_skb_clone(struct sk_buff *skb, gfp_t gfp_mask) { struct sk_buff *nskb; nskb = skb_clone(skb, gfp_mask); if (!nskb) return NULL; /* This is a large skb, set destructor callback to release head */ if (is_vmalloc_addr(skb->head)) nskb->destructor = skb->destructor; return nskb; } /* * skb should fit one page. This choice is good for headerless malloc. * But we should limit to 8K so that userspace does not have to * use enormous buffer sizes on recvmsg() calls just to avoid * MSG_TRUNC when PAGE_SIZE is very large. */ #if PAGE_SIZE < 8192UL #define NLMSG_GOODSIZE SKB_WITH_OVERHEAD(PAGE_SIZE) #else #define NLMSG_GOODSIZE SKB_WITH_OVERHEAD(8192UL) #endif #define NLMSG_DEFAULT_SIZE (NLMSG_GOODSIZE - NLMSG_HDRLEN) struct netlink_callback { struct sk_buff *skb; const struct nlmsghdr *nlh; int (*dump)(struct sk_buff * skb, struct netlink_callback *cb); int (*done)(struct netlink_callback *cb); void *data; /* the module that dump function belong to */ struct module *module; struct netlink_ext_ack *extack; u16 family; u16 answer_flags; u32 min_dump_alloc; unsigned int prev_seq, seq; bool strict_check; union { u8 ctx[48]; /* args is deprecated. Cast a struct over ctx instead * for proper type safety. */ long args[6]; }; }; struct netlink_notify { struct net *net; u32 portid; int protocol; }; struct nlmsghdr * __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags); struct netlink_dump_control { int (*start)(struct netlink_callback *); int (*dump)(struct sk_buff *skb, struct netlink_callback *); int (*done)(struct netlink_callback *); void *data; struct module *module; u32 min_dump_alloc; }; int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, const struct nlmsghdr *nlh, struct netlink_dump_control *control); static inline int netlink_dump_start(struct sock *ssk, struct sk_buff *skb, const struct nlmsghdr *nlh, struct netlink_dump_control *control) { if (!control->module) control->module = THIS_MODULE; return __netlink_dump_start(ssk, skb, nlh, control); } struct netlink_tap { struct net_device *dev; struct module *module; struct list_head list; }; int netlink_add_tap(struct netlink_tap *nt); int netlink_remove_tap(struct netlink_tap *nt); bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, struct user_namespace *ns, int cap); bool netlink_ns_capable(const struct sk_buff *skb, struct user_namespace *ns, int cap); bool netlink_capable(const struct sk_buff *skb, int cap); bool netlink_net_capable(const struct sk_buff *skb, int cap); #endif /* __LINUX_NETLINK_H */
2 2 2 2 2 2 2 2 2 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 // SPDX-License-Identifier: GPL-2.0-only #include <linux/export.h> #include <linux/nsproxy.h> #include <linux/slab.h> #include <linux/sched/signal.h> #include <linux/user_namespace.h> #include <linux/proc_ns.h> #include <linux/highuid.h> #include <linux/cred.h> #include <linux/securebits.h> #include <linux/keyctl.h> #include <linux/key-type.h> #include <keys/user-type.h> #include <linux/seq_file.h> #include <linux/fs.h> #include <linux/uaccess.h> #include <linux/ctype.h> #include <linux/projid.h> #include <linux/fs_struct.h> #include <linux/bsearch.h> #include <linux/sort.h> static struct kmem_cache *user_ns_cachep __read_mostly; static DEFINE_MUTEX(userns_state_mutex); static bool new_idmap_permitted(const struct file *file, struct user_namespace *ns, int cap_setid, struct uid_gid_map *map); static void free_user_ns(struct work_struct *work); static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid) { return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES); } static void dec_user_namespaces(struct ucounts *ucounts) { return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES); } static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns) { /* Start with the same capabilities as init but useless for doing * anything as the capabilities are bound to the new user namespace. */ cred->securebits = SECUREBITS_DEFAULT; cred->cap_inheritable = CAP_EMPTY_SET; cred->cap_permitted = CAP_FULL_SET; cred->cap_effective = CAP_FULL_SET; cred->cap_ambient = CAP_EMPTY_SET; cred->cap_bset = CAP_FULL_SET; #ifdef CONFIG_KEYS key_put(cred->request_key_auth); cred->request_key_auth = NULL; #endif /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */ cred->user_ns = user_ns; } /* * Create a new user namespace, deriving the creator from the user in the * passed credentials, and replacing that user with the new root user for the * new namespace. * * This is called by copy_creds(), which will finish setting the target task's * credentials. */ int create_user_ns(struct cred *new) { struct user_namespace *ns, *parent_ns = new->user_ns; kuid_t owner = new->euid; kgid_t group = new->egid; struct ucounts *ucounts; int ret, i; ret = -ENOSPC; if (parent_ns->level > 32) goto fail; ucounts = inc_user_namespaces(parent_ns, owner); if (!ucounts) goto fail; /* * Verify that we can not violate the policy of which files * may be accessed that is specified by the root directory, * by verifing that the root directory is at the root of the * mount namespace which allows all files to be accessed. */ ret = -EPERM; if (current_chrooted()) goto fail_dec; /* The creator needs a mapping in the parent user namespace * or else we won't be able to reasonably tell userspace who * created a user_namespace. */ ret = -EPERM; if (!kuid_has_mapping(parent_ns, owner) || !kgid_has_mapping(parent_ns, group)) goto fail_dec; ret = -ENOMEM; ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL); if (!ns) goto fail_dec; ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP); ret = ns_alloc_inum(&ns->ns); if (ret) goto fail_free; ns->ns.ops = &userns_operations; atomic_set(&ns->count, 1); /* Leave the new->user_ns reference with the new user namespace. */ ns->parent = parent_ns; ns->level = parent_ns->level + 1; ns->owner = owner; ns->group = group; INIT_WORK(&ns->work, free_user_ns); for (i = 0; i < UCOUNT_COUNTS; i++) { ns->ucount_max[i] = INT_MAX; } ns->ucounts = ucounts; /* Inherit USERNS_SETGROUPS_ALLOWED from our parent */ mutex_lock(&userns_state_mutex); ns->flags = parent_ns->flags; mutex_unlock(&userns_state_mutex); #ifdef CONFIG_KEYS INIT_LIST_HEAD(&ns->keyring_name_list); init_rwsem(&ns->keyring_sem); #endif ret = -ENOMEM; if (!setup_userns_sysctls(ns)) goto fail_keyring; set_cred_user_ns(new, ns); return 0; fail_keyring: #ifdef CONFIG_PERSISTENT_KEYRINGS key_put(ns->persistent_keyring_register); #endif ns_free_inum(&ns->ns); fail_free: kmem_cache_free(user_ns_cachep, ns); fail_dec: dec_user_namespaces(ucounts); fail: return ret; } int unshare_userns(unsigned long unshare_flags, struct cred **new_cred) { struct cred *cred; int err = -ENOMEM; if (!(unshare_flags & CLONE_NEWUSER)) return 0; cred = prepare_creds(); if (cred) { err = create_user_ns(cred); if (err) put_cred(cred); else *new_cred = cred; } return err; } static void free_user_ns(struct work_struct *work) { struct user_namespace *parent, *ns = container_of(work, struct user_namespace, work); do { struct ucounts *ucounts = ns->ucounts; parent = ns->parent; if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { kfree(ns->gid_map.forward); kfree(ns->gid_map.reverse); } if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { kfree(ns->uid_map.forward); kfree(ns->uid_map.reverse); } if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { kfree(ns->projid_map.forward); kfree(ns->projid_map.reverse); } retire_userns_sysctls(ns); key_free_user_ns(ns); ns_free_inum(&ns->ns); kmem_cache_free(user_ns_cachep, ns); dec_user_namespaces(ucounts); ns = parent; } while (atomic_dec_and_test(&parent->count)); } void __put_user_ns(struct user_namespace *ns) { schedule_work(&ns->work); } EXPORT_SYMBOL(__put_user_ns); /** * idmap_key struct holds the information necessary to find an idmapping in a * sorted idmap array. It is passed to cmp_map_id() as first argument. */ struct idmap_key { bool map_up; /* true -> id from kid; false -> kid from id */ u32 id; /* id to find */ u32 count; /* == 0 unless used with map_id_range_down() */ }; /** * cmp_map_id - Function to be passed to bsearch() to find the requested * idmapping. Expects struct idmap_key to be passed via @k. */ static int cmp_map_id(const void *k, const void *e) { u32 first, last, id2; const struct idmap_key *key = k; const struct uid_gid_extent *el = e; id2 = key->id + key->count - 1; /* handle map_id_{down,up}() */ if (key->map_up) first = el->lower_first; else first = el->first; last = first + el->count - 1; if (key->id >= first && key->id <= last && (id2 >= first && id2 <= last)) return 0; if (key->id < first || id2 < first) return -1; return 1; } /** * map_id_range_down_max - Find idmap via binary search in ordered idmap array. * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. */ static struct uid_gid_extent * map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) { struct idmap_key key; key.map_up = false; key.count = count; key.id = id; return bsearch(&key, map->forward, extents, sizeof(struct uid_gid_extent), cmp_map_id); } /** * map_id_range_down_base - Find idmap via binary search in static extent array. * Can only be called if number of mappings is equal or less than * UID_GID_MAP_MAX_BASE_EXTENTS. */ static struct uid_gid_extent * map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) { unsigned idx; u32 first, last, id2; id2 = id + count - 1; /* Find the matching extent */ for (idx = 0; idx < extents; idx++) { first = map->extent[idx].first; last = first + map->extent[idx].count - 1; if (id >= first && id <= last && (id2 >= first && id2 <= last)) return &map->extent[idx]; } return NULL; } static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count) { struct uid_gid_extent *extent; unsigned extents = map->nr_extents; smp_rmb(); if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) extent = map_id_range_down_base(extents, map, id, count); else extent = map_id_range_down_max(extents, map, id, count); /* Map the id or note failure */ if (extent) id = (id - extent->first) + extent->lower_first; else id = (u32) -1; return id; } static u32 map_id_down(struct uid_gid_map *map, u32 id) { return map_id_range_down(map, id, 1); } /** * map_id_up_base - Find idmap via binary search in static extent array. * Can only be called if number of mappings is equal or less than * UID_GID_MAP_MAX_BASE_EXTENTS. */ static struct uid_gid_extent * map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id) { unsigned idx; u32 first, last; /* Find the matching extent */ for (idx = 0; idx < extents; idx++) { first = map->extent[idx].lower_first; last = first + map->extent[idx].count - 1; if (id >= first && id <= last) return &map->extent[idx]; } return NULL; } /** * map_id_up_max - Find idmap via binary search in ordered idmap array. * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. */ static struct uid_gid_extent * map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id) { struct idmap_key key; key.map_up = true; key.count = 1; key.id = id; return bsearch(&key, map->reverse, extents, sizeof(struct uid_gid_extent), cmp_map_id); } static u32 map_id_up(struct uid_gid_map *map, u32 id) { struct uid_gid_extent *extent; unsigned extents = map->nr_extents; smp_rmb(); if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) extent = map_id_up_base(extents, map, id); else extent = map_id_up_max(extents, map, id); /* Map the id or note failure */ if (extent) id = (id - extent->lower_first) + extent->first; else id = (u32) -1; return id; } /** * make_kuid - Map a user-namespace uid pair into a kuid. * @ns: User namespace that the uid is in * @uid: User identifier * * Maps a user-namespace uid pair into a kernel internal kuid, * and returns that kuid. * * When there is no mapping defined for the user-namespace uid * pair INVALID_UID is returned. Callers are expected to test * for and handle INVALID_UID being returned. INVALID_UID * may be tested for using uid_valid(). */ kuid_t make_kuid(struct user_namespace *ns, uid_t uid) { /* Map the uid to a global kernel uid */ return KUIDT_INIT(map_id_down(&ns->uid_map, uid)); } EXPORT_SYMBOL(make_kuid); /** * from_kuid - Create a uid from a kuid user-namespace pair. * @targ: The user namespace we want a uid in. * @kuid: The kernel internal uid to start with. * * Map @kuid into the user-namespace specified by @targ and * return the resulting uid. * * There is always a mapping into the initial user_namespace. * * If @kuid has no mapping in @targ (uid_t)-1 is returned. */ uid_t from_kuid(struct user_namespace *targ, kuid_t kuid) { /* Map the uid from a global kernel uid */ return map_id_up(&targ->uid_map, __kuid_val(kuid)); } EXPORT_SYMBOL(from_kuid); /** * from_kuid_munged - Create a uid from a kuid user-namespace pair. * @targ: The user namespace we want a uid in. * @kuid: The kernel internal uid to start with. * * Map @kuid into the user-namespace specified by @targ and * return the resulting uid. * * There is always a mapping into the initial user_namespace. * * Unlike from_kuid from_kuid_munged never fails and always * returns a valid uid. This makes from_kuid_munged appropriate * for use in syscalls like stat and getuid where failing the * system call and failing to provide a valid uid are not an * options. * * If @kuid has no mapping in @targ overflowuid is returned. */ uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid) { uid_t uid; uid = from_kuid(targ, kuid); if (uid == (uid_t) -1) uid = overflowuid; return uid; } EXPORT_SYMBOL(from_kuid_munged); /** * make_kgid - Map a user-namespace gid pair into a kgid. * @ns: User namespace that the gid is in * @gid: group identifier * * Maps a user-namespace gid pair into a kernel internal kgid, * and returns that kgid. * * When there is no mapping defined for the user-namespace gid * pair INVALID_GID is returned. Callers are expected to test * for and handle INVALID_GID being returned. INVALID_GID may be * tested for using gid_valid(). */ kgid_t make_kgid(struct user_namespace *ns, gid_t gid) { /* Map the gid to a global kernel gid */ return KGIDT_INIT(map_id_down(&ns->gid_map, gid)); } EXPORT_SYMBOL(make_kgid); /** * from_kgid - Create a gid from a kgid user-namespace pair. * @targ: The user namespace we want a gid in. * @kgid: The kernel internal gid to start with. * * Map @kgid into the user-namespace specified by @targ and * return the resulting gid. * * There is always a mapping into the initial user_namespace. * * If @kgid has no mapping in @targ (gid_t)-1 is returned. */ gid_t from_kgid(struct user_namespace *targ, kgid_t kgid) { /* Map the gid from a global kernel gid */ return map_id_up(&targ->gid_map, __kgid_val(kgid)); } EXPORT_SYMBOL(from_kgid); /** * from_kgid_munged - Create a gid from a kgid user-namespace pair. * @targ: The user namespace we want a gid in. * @kgid: The kernel internal gid to start with. * * Map @kgid into the user-namespace specified by @targ and * return the resulting gid. * * There is always a mapping into the initial user_namespace. * * Unlike from_kgid from_kgid_munged never fails and always * returns a valid gid. This makes from_kgid_munged appropriate * for use in syscalls like stat and getgid where failing the * system call and failing to provide a valid gid are not options. * * If @kgid has no mapping in @targ overflowgid is returned. */ gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid) { gid_t gid; gid = from_kgid(targ, kgid); if (gid == (gid_t) -1) gid = overflowgid; return gid; } EXPORT_SYMBOL(from_kgid_munged); /** * make_kprojid - Map a user-namespace projid pair into a kprojid. * @ns: User namespace that the projid is in * @projid: Project identifier * * Maps a user-namespace uid pair into a kernel internal kuid, * and returns that kuid. * * When there is no mapping defined for the user-namespace projid * pair INVALID_PROJID is returned. Callers are expected to test * for and handle INVALID_PROJID being returned. INVALID_PROJID * may be tested for using projid_valid(). */ kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid) { /* Map the uid to a global kernel uid */ return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid)); } EXPORT_SYMBOL(make_kprojid); /** * from_kprojid - Create a projid from a kprojid user-namespace pair. * @targ: The user namespace we want a projid in. * @kprojid: The kernel internal project identifier to start with. * * Map @kprojid into the user-namespace specified by @targ and * return the resulting projid. * * There is always a mapping into the initial user_namespace. * * If @kprojid has no mapping in @targ (projid_t)-1 is returned. */ projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid) { /* Map the uid from a global kernel uid */ return map_id_up(&targ->projid_map, __kprojid_val(kprojid)); } EXPORT_SYMBOL(from_kprojid); /** * from_kprojid_munged - Create a projiid from a kprojid user-namespace pair. * @targ: The user namespace we want a projid in. * @kprojid: The kernel internal projid to start with. * * Map @kprojid into the user-namespace specified by @targ and * return the resulting projid. * * There is always a mapping into the initial user_namespace. * * Unlike from_kprojid from_kprojid_munged never fails and always * returns a valid projid. This makes from_kprojid_munged * appropriate for use in syscalls like stat and where * failing the system call and failing to provide a valid projid are * not an options. * * If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned. */ projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid) { projid_t projid; projid = from_kprojid(targ, kprojid); if (projid == (projid_t) -1) projid = OVERFLOW_PROJID; return projid; } EXPORT_SYMBOL(from_kprojid_munged); static int uid_m_show(struct seq_file *seq, void *v) { struct user_namespace *ns = seq->private; struct uid_gid_extent *extent = v; struct user_namespace *lower_ns; uid_t lower; lower_ns = seq_user_ns(seq); if ((lower_ns == ns) && lower_ns->parent) lower_ns = lower_ns->parent; lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first)); seq_printf(seq, "%10u %10u %10u\n", extent->first, lower, extent->count); return 0; } static int gid_m_show(struct seq_file *seq, void *v) { struct user_namespace *ns = seq->private; struct uid_gid_extent *extent = v; struct user_namespace *lower_ns; gid_t lower; lower_ns = seq_user_ns(seq); if ((lower_ns == ns) && lower_ns->parent) lower_ns = lower_ns->parent; lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first)); seq_printf(seq, "%10u %10u %10u\n", extent->first, lower, extent->count); return 0; } static int projid_m_show(struct seq_file *seq, void *v) { struct user_namespace *ns = seq->private; struct uid_gid_extent *extent = v; struct user_namespace *lower_ns; projid_t lower; lower_ns = seq_user_ns(seq); if ((lower_ns == ns) && lower_ns->parent) lower_ns = lower_ns->parent; lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first)); seq_printf(seq, "%10u %10u %10u\n", extent->first, lower, extent->count); return 0; } static void *m_start(struct seq_file *seq, loff_t *ppos, struct uid_gid_map *map) { loff_t pos = *ppos; unsigned extents = map->nr_extents; smp_rmb(); if (pos >= extents) return NULL; if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) return &map->extent[pos]; return &map->forward[pos]; } static void *uid_m_start(struct seq_file *seq, loff_t *ppos) { struct user_namespace *ns = seq->private; return m_start(seq, ppos, &ns->uid_map); } static void *gid_m_start(struct seq_file *seq, loff_t *ppos) { struct user_namespace *ns = seq->private; return m_start(seq, ppos, &ns->gid_map); } static void *projid_m_start(struct seq_file *seq, loff_t *ppos) { struct user_namespace *ns = seq->private; return m_start(seq, ppos, &ns->projid_map); } static void *m_next(struct seq_file *seq, void *v, loff_t *pos) { (*pos)++; return seq->op->start(seq, pos); } static void m_stop(struct seq_file *seq, void *v) { return; } const struct seq_operations proc_uid_seq_operations = { .start = uid_m_start, .stop = m_stop, .next = m_next, .show = uid_m_show, }; const struct seq_operations proc_gid_seq_operations = { .start = gid_m_start, .stop = m_stop, .next = m_next, .show = gid_m_show, }; const struct seq_operations proc_projid_seq_operations = { .start = projid_m_start, .stop = m_stop, .next = m_next, .show = projid_m_show, }; static bool mappings_overlap(struct uid_gid_map *new_map, struct uid_gid_extent *extent) { u32 upper_first, lower_first, upper_last, lower_last; unsigned idx; upper_first = extent->first; lower_first = extent->lower_first; upper_last = upper_first + extent->count - 1; lower_last = lower_first + extent->count - 1; for (idx = 0; idx < new_map->nr_extents; idx++) { u32 prev_upper_first, prev_lower_first; u32 prev_upper_last, prev_lower_last; struct uid_gid_extent *prev; if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) prev = &new_map->extent[idx]; else prev = &new_map->forward[idx]; prev_upper_first = prev->first; prev_lower_first = prev->lower_first; prev_upper_last = prev_upper_first + prev->count - 1; prev_lower_last = prev_lower_first + prev->count - 1; /* Does the upper range intersect a previous extent? */ if ((prev_upper_first <= upper_last) && (prev_upper_last >= upper_first)) return true; /* Does the lower range intersect a previous extent? */ if ((prev_lower_first <= lower_last) && (prev_lower_last >= lower_first)) return true; } return false; } /** * insert_extent - Safely insert a new idmap extent into struct uid_gid_map. * Takes care to allocate a 4K block of memory if the number of mappings exceeds * UID_GID_MAP_MAX_BASE_EXTENTS. */ static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent) { struct uid_gid_extent *dest; if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) { struct uid_gid_extent *forward; /* Allocate memory for 340 mappings. */ forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS, sizeof(struct uid_gid_extent), GFP_KERNEL); if (!forward) return -ENOMEM; /* Copy over memory. Only set up memory for the forward pointer. * Defer the memory setup for the reverse pointer. */ memcpy(forward, map->extent, map->nr_extents * sizeof(map->extent[0])); map->forward = forward; map->reverse = NULL; } if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS) dest = &map->extent[map->nr_extents]; else dest = &map->forward[map->nr_extents]; *dest = *extent; map->nr_extents++; return 0; } /* cmp function to sort() forward mappings */ static int cmp_extents_forward(const void *a, const void *b) { const struct uid_gid_extent *e1 = a; const struct uid_gid_extent *e2 = b; if (e1->first < e2->first) return -1; if (e1->first > e2->first) return 1; return 0; } /* cmp function to sort() reverse mappings */ static int cmp_extents_reverse(const void *a, const void *b) { const struct uid_gid_extent *e1 = a; const struct uid_gid_extent *e2 = b; if (e1->lower_first < e2->lower_first) return -1; if (e1->lower_first > e2->lower_first) return 1; return 0; } /** * sort_idmaps - Sorts an array of idmap entries. * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. */ static int sort_idmaps(struct uid_gid_map *map) { if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) return 0; /* Sort forward array. */ sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent), cmp_extents_forward, NULL); /* Only copy the memory from forward we actually need. */ map->reverse = kmemdup(map->forward, map->nr_extents * sizeof(struct uid_gid_extent), GFP_KERNEL); if (!map->reverse) return -ENOMEM; /* Sort reverse array. */ sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent), cmp_extents_reverse, NULL); return 0; } /** * verify_root_map() - check the uid 0 mapping * @file: idmapping file * @map_ns: user namespace of the target process * @new_map: requested idmap * * If a process requests mapping parent uid 0 into the new ns, verify that the * process writing the map had the CAP_SETFCAP capability as the target process * will be able to write fscaps that are valid in ancestor user namespaces. * * Return: true if the mapping is allowed, false if not. */ static bool verify_root_map(const struct file *file, struct user_namespace *map_ns, struct uid_gid_map *new_map) { int idx; const struct user_namespace *file_ns = file->f_cred->user_ns; struct uid_gid_extent *extent0 = NULL; for (idx = 0; idx < new_map->nr_extents; idx++) { if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) extent0 = &new_map->extent[idx]; else extent0 = &new_map->forward[idx]; if (extent0->lower_first == 0) break; extent0 = NULL; } if (!extent0) return true; if (map_ns == file_ns) { /* The process unshared its ns and is writing to its own * /proc/self/uid_map. User already has full capabilites in * the new namespace. Verify that the parent had CAP_SETFCAP * when it unshared. * */ if (!file_ns->parent_could_setfcap) return false; } else { /* Process p1 is writing to uid_map of p2, who is in a child * user namespace to p1's. Verify that the opener of the map * file has CAP_SETFCAP against the parent of the new map * namespace */ if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP)) return false; } return true; } static ssize_t map_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos, int cap_setid, struct uid_gid_map *map, struct uid_gid_map *parent_map) { struct seq_file *seq = file->private_data; struct user_namespace *map_ns = seq->private; struct uid_gid_map new_map; unsigned idx; struct uid_gid_extent extent; char *kbuf = NULL, *pos, *next_line; ssize_t ret; /* Only allow < page size writes at the beginning of the file */ if ((*ppos != 0) || (count >= PAGE_SIZE)) return -EINVAL; /* Slurp in the user data */ kbuf = memdup_user_nul(buf, count); if (IS_ERR(kbuf)) return PTR_ERR(kbuf); /* * The userns_state_mutex serializes all writes to any given map. * * Any map is only ever written once. * * An id map fits within 1 cache line on most architectures. * * On read nothing needs to be done unless you are on an * architecture with a crazy cache coherency model like alpha. * * There is a one time data dependency between reading the * count of the extents and the values of the extents. The * desired behavior is to see the values of the extents that * were written before the count of the extents. * * To achieve this smp_wmb() is used on guarantee the write * order and smp_rmb() is guaranteed that we don't have crazy * architectures returning stale data. */ mutex_lock(&userns_state_mutex); memset(&new_map, 0, sizeof(struct uid_gid_map)); ret = -EPERM; /* Only allow one successful write to the map */ if (map->nr_extents != 0) goto out; /* * Adjusting namespace settings requires capabilities on the target. */ if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN)) goto out; /* Parse the user data */ ret = -EINVAL; pos = kbuf; for (; pos; pos = next_line) { /* Find the end of line and ensure I don't look past it */ next_line = strchr(pos, '\n'); if (next_line) { *next_line = '\0'; next_line++; if (*next_line == '\0') next_line = NULL; } pos = skip_spaces(pos); extent.first = simple_strtoul(pos, &pos, 10); if (!isspace(*pos)) goto out; pos = skip_spaces(pos); extent.lower_first = simple_strtoul(pos, &pos, 10); if (!isspace(*pos)) goto out; pos = skip_spaces(pos); extent.count = simple_strtoul(pos, &pos, 10); if (*pos && !isspace(*pos)) goto out; /* Verify there is not trailing junk on the line */ pos = skip_spaces(pos); if (*pos != '\0') goto out; /* Verify we have been given valid starting values */ if ((extent.first == (u32) -1) || (extent.lower_first == (u32) -1)) goto out; /* Verify count is not zero and does not cause the * extent to wrap */ if ((extent.first + extent.count) <= extent.first) goto out; if ((extent.lower_first + extent.count) <= extent.lower_first) goto out; /* Do the ranges in extent overlap any previous extents? */ if (mappings_overlap(&new_map, &extent)) goto out; if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS && (next_line != NULL)) goto out; ret = insert_extent(&new_map, &extent); if (ret < 0) goto out; ret = -EINVAL; } /* Be very certaint the new map actually exists */ if (new_map.nr_extents == 0) goto out; ret = -EPERM; /* Validate the user is allowed to use user id's mapped to. */ if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map)) goto out; ret = -EPERM; /* Map the lower ids from the parent user namespace to the * kernel global id space. */ for (idx = 0; idx < new_map.nr_extents; idx++) { struct uid_gid_extent *e; u32 lower_first; if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) e = &new_map.extent[idx]; else e = &new_map.forward[idx]; lower_first = map_id_range_down(parent_map, e->lower_first, e->count); /* Fail if we can not map the specified extent to * the kernel global id space. */ if (lower_first == (u32) -1) goto out; e->lower_first = lower_first; } /* * If we want to use binary search for lookup, this clones the extent * array and sorts both copies. */ ret = sort_idmaps(&new_map); if (ret < 0) goto out; /* Install the map */ if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) { memcpy(map->extent, new_map.extent, new_map.nr_extents * sizeof(new_map.extent[0])); } else { map->forward = new_map.forward; map->reverse = new_map.reverse; } smp_wmb(); map->nr_extents = new_map.nr_extents; *ppos = count; ret = count; out: if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { kfree(new_map.forward); kfree(new_map.reverse); map->forward = NULL; map->reverse = NULL; map->nr_extents = 0; } mutex_unlock(&userns_state_mutex); kfree(kbuf); return ret; } ssize_t proc_uid_map_write(struct file *file, const char __user *buf, size_t size, loff_t *ppos) { struct seq_file *seq = file->private_data; struct user_namespace *ns = seq->private; struct user_namespace *seq_ns = seq_user_ns(seq); if (!ns->parent) return -EPERM; if ((seq_ns != ns) && (seq_ns != ns->parent)) return -EPERM; return map_write(file, buf, size, ppos, CAP_SETUID, &ns->uid_map, &ns->parent->uid_map); } ssize_t proc_gid_map_write(struct file *file, const char __user *buf, size_t size, loff_t *ppos) { struct seq_file *seq = file->private_data; struct user_namespace *ns = seq->private; struct user_namespace *seq_ns = seq_user_ns(seq); if (!ns->parent) return -EPERM; if ((seq_ns != ns) && (seq_ns != ns->parent)) return -EPERM; return map_write(file, buf, size, ppos, CAP_SETGID, &ns->gid_map, &ns->parent->gid_map); } ssize_t proc_projid_map_write(struct file *file, const char __user *buf, size_t size, loff_t *ppos) { struct seq_file *seq = file->private_data; struct user_namespace *ns = seq->private; struct user_namespace *seq_ns = seq_user_ns(seq); if (!ns->parent) return -EPERM; if ((seq_ns != ns) && (seq_ns != ns->parent)) return -EPERM; /* Anyone can set any valid project id no capability needed */ return map_write(file, buf, size, ppos, -1, &ns->projid_map, &ns->parent->projid_map); } static bool new_idmap_permitted(const struct file *file, struct user_namespace *ns, int cap_setid, struct uid_gid_map *new_map) { const struct cred *cred = file->f_cred; if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map)) return false; /* Don't allow mappings that would allow anything that wouldn't * be allowed without the establishment of unprivileged mappings. */ if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) && uid_eq(ns->owner, cred->euid)) { u32 id = new_map->extent[0].lower_first; if (cap_setid == CAP_SETUID) { kuid_t uid = make_kuid(ns->parent, id); if (uid_eq(uid, cred->euid)) return true; } else if (cap_setid == CAP_SETGID) { kgid_t gid = make_kgid(ns->parent, id); if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) && gid_eq(gid, cred->egid)) return true; } } /* Allow anyone to set a mapping that doesn't require privilege */ if (!cap_valid(cap_setid)) return true; /* Allow the specified ids if we have the appropriate capability * (CAP_SETUID or CAP_SETGID) over the parent user namespace. * And the opener of the id file also had the approprpiate capability. */ if (ns_capable(ns->parent, cap_setid) && file_ns_capable(file, ns->parent, cap_setid)) return true; return false; } int proc_setgroups_show(struct seq_file *seq, void *v) { struct user_namespace *ns = seq->private; unsigned long userns_flags = READ_ONCE(ns->flags); seq_printf(seq, "%s\n", (userns_flags & USERNS_SETGROUPS_ALLOWED) ? "allow" : "deny"); return 0; } ssize_t proc_setgroups_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct seq_file *seq = file->private_data; struct user_namespace *ns = seq->private; char kbuf[8], *pos; bool setgroups_allowed; ssize_t ret; /* Only allow a very narrow range of strings to be written */ ret = -EINVAL; if ((*ppos != 0) || (count >= sizeof(kbuf))) goto out; /* What was written? */ ret = -EFAULT; if (copy_from_user(kbuf, buf, count)) goto out; kbuf[count] = '\0'; pos = kbuf; /* What is being requested? */ ret = -EINVAL; if (strncmp(pos, "allow", 5) == 0) { pos += 5; setgroups_allowed = true; } else if (strncmp(pos, "deny", 4) == 0) { pos += 4; setgroups_allowed = false; } else goto out; /* Verify there is not trailing junk on the line */ pos = skip_spaces(pos); if (*pos != '\0') goto out; ret = -EPERM; mutex_lock(&userns_state_mutex); if (setgroups_allowed) { /* Enabling setgroups after setgroups has been disabled * is not allowed. */ if (!(ns->flags & USERNS_SETGROUPS_ALLOWED)) goto out_unlock; } else { /* Permanently disabling setgroups after setgroups has * been enabled by writing the gid_map is not allowed. */ if (ns->gid_map.nr_extents != 0) goto out_unlock; ns->flags &= ~USERNS_SETGROUPS_ALLOWED; } mutex_unlock(&userns_state_mutex); /* Report a successful write */ *ppos = count; ret = count; out: return ret; out_unlock: mutex_unlock(&userns_state_mutex); goto out; } bool userns_may_setgroups(const struct user_namespace *ns) { bool allowed; mutex_lock(&userns_state_mutex); /* It is not safe to use setgroups until a gid mapping in * the user namespace has been established. */ allowed = ns->gid_map.nr_extents != 0; /* Is setgroups allowed? */ allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED); mutex_unlock(&userns_state_mutex); return allowed; } /* * Returns true if @child is the same namespace or a descendant of * @ancestor. */ bool in_userns(const struct user_namespace *ancestor, const struct user_namespace *child) { const struct user_namespace *ns; for (ns = child; ns->level > ancestor->level; ns = ns->parent) ; return (ns == ancestor); } bool current_in_userns(const struct user_namespace *target_ns) { return in_userns(target_ns, current_user_ns()); } EXPORT_SYMBOL(current_in_userns); static inline struct user_namespace *to_user_ns(struct ns_common *ns) { return container_of(ns, struct user_namespace, ns); } static struct ns_common *userns_get(struct task_struct *task) { struct user_namespace *user_ns; rcu_read_lock(); user_ns = get_user_ns(__task_cred(task)->user_ns); rcu_read_unlock(); return user_ns ? &user_ns->ns : NULL; } static void userns_put(struct ns_common *ns) { put_user_ns(to_user_ns(ns)); } static int userns_install(struct nsset *nsset, struct ns_common *ns) { struct user_namespace *user_ns = to_user_ns(ns); struct cred *cred; /* Don't allow gaining capabilities by reentering * the same user namespace. */ if (user_ns == current_user_ns()) return -EINVAL; /* Tasks that share a thread group must share a user namespace */ if (!thread_group_empty(current)) return -EINVAL; if (current->fs->users != 1) return -EINVAL; if (!ns_capable(user_ns, CAP_SYS_ADMIN)) return -EPERM; cred = nsset_cred(nsset); if (!cred) return -EINVAL; put_user_ns(cred->user_ns); set_cred_user_ns(cred, get_user_ns(user_ns)); return 0; } struct ns_common *ns_get_owner(struct ns_common *ns) { struct user_namespace *my_user_ns = current_user_ns(); struct user_namespace *owner, *p; /* See if the owner is in the current user namespace */ owner = p = ns->ops->owner(ns); for (;;) { if (!p) return ERR_PTR(-EPERM); if (p == my_user_ns) break; p = p->parent; } return &get_user_ns(owner)->ns; } static struct user_namespace *userns_owner(struct ns_common *ns) { return to_user_ns(ns)->parent; } const struct proc_ns_operations userns_operations = { .name = "user", .type = CLONE_NEWUSER, .get = userns_get, .put = userns_put, .install = userns_install, .owner = userns_owner, .get_parent = ns_get_owner, }; static __init int user_namespaces_init(void) { user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC); return 0; } subsys_initcall(user_namespaces_init);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions for the UDP-Lite (RFC 3828) code. */ #ifndef _UDPLITE_H #define _UDPLITE_H #include <net/ip6_checksum.h> /* UDP-Lite socket options */ #define UDPLITE_SEND_CSCOV 10 /* sender partial coverage (as sent) */ #define UDPLITE_RECV_CSCOV 11 /* receiver partial coverage (threshold ) */ extern struct proto udplite_prot; extern struct udp_table udplite_table; /* * Checksum computation is all in software, hence simpler getfrag. */ static __inline__ int udplite_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) { struct msghdr *msg = from; return copy_from_iter_full(to, len, &msg->msg_iter) ? 0 : -EFAULT; } /* Designate sk as UDP-Lite socket */ static inline int udplite_sk_init(struct sock *sk) { udp_init_sock(sk); udp_sk(sk)->pcflag = UDPLITE_BIT; return 0; } /* * Checksumming routines */ static inline int udplite_checksum_init(struct sk_buff *skb, struct udphdr *uh) { u16 cscov; /* In UDPv4 a zero checksum means that the transmitter generated no * checksum. UDP-Lite (like IPv6) mandates checksums, hence packets * with a zero checksum field are illegal. */ if (uh->check == 0) { net_dbg_ratelimited("UDPLite: zeroed checksum field\n"); return 1; } cscov = ntohs(uh->len); if (cscov == 0) /* Indicates that full coverage is required. */ ; else if (cscov < 8 || cscov > skb->len) { /* * Coverage length violates RFC 3828: log and discard silently. */ net_dbg_ratelimited("UDPLite: bad csum coverage %d/%d\n", cscov, skb->len); return 1; } else if (cscov < skb->len) { UDP_SKB_CB(skb)->partial_cov = 1; UDP_SKB_CB(skb)->cscov = cscov; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; skb->csum_valid = 0; } return 0; } /* Slow-path computation of checksum. Socket is locked. */ static inline __wsum udplite_csum_outgoing(struct sock *sk, struct sk_buff *skb) { const struct udp_sock *up = udp_sk(skb->sk); int cscov = up->len; __wsum csum = 0; if (up->pcflag & UDPLITE_SEND_CC) { /* * Sender has set `partial coverage' option on UDP-Lite socket. * The special case "up->pcslen == 0" signifies full coverage. */ if (up->pcslen < up->len) { if (0 < up->pcslen) cscov = up->pcslen; udp_hdr(skb)->len = htons(up->pcslen); } /* * NOTE: Causes for the error case `up->pcslen > up->len': * (i) Application error (will not be penalized). * (ii) Payload too big for send buffer: data is split * into several packets, each with its own header. * In this case (e.g. last segment), coverage may * exceed packet length. * Since packets with coverage length > packet length are * illegal, we fall back to the defaults here. */ } skb->ip_summed = CHECKSUM_NONE; /* no HW support for checksumming */ skb_queue_walk(&sk->sk_write_queue, skb) { const int off = skb_transport_offset(skb); const int len = skb->len - off; csum = skb_checksum(skb, off, (cscov > len)? len : cscov, csum); if ((cscov -= len) <= 0) break; } return csum; } /* Fast-path computation of checksum. Socket may not be locked. */ static inline __wsum udplite_csum(struct sk_buff *skb) { const struct udp_sock *up = udp_sk(skb->sk); const int off = skb_transport_offset(skb); int len = skb->len - off; if ((up->pcflag & UDPLITE_SEND_CC) && up->pcslen < len) { if (0 < up->pcslen) len = up->pcslen; udp_hdr(skb)->len = htons(up->pcslen); } skb->ip_summed = CHECKSUM_NONE; /* no HW support for checksumming */ return skb_checksum(skb, off, len, 0); } void udplite4_register(void); int udplite_get_port(struct sock *sk, unsigned short snum, int (*scmp)(const struct sock *, const struct sock *)); #endif /* _UDPLITE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2014 Felix Fietkau <nbd@nbd.name> * Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> */ #ifndef _LINUX_BITFIELD_H #define _LINUX_BITFIELD_H #include <linux/build_bug.h> #include <asm/byteorder.h> /* * Bitfield access macros * * FIELD_{GET,PREP} macros take as first parameter shifted mask * from which they extract the base mask and shift amount. * Mask must be a compilation time constant. * * Example: * * #define REG_FIELD_A GENMASK(6, 0) * #define REG_FIELD_B BIT(7) * #define REG_FIELD_C GENMASK(15, 8) * #define REG_FIELD_D GENMASK(31, 16) * * Get: * a = FIELD_GET(REG_FIELD_A, reg); * b = FIELD_GET(REG_FIELD_B, reg); * * Set: * reg = FIELD_PREP(REG_FIELD_A, 1) | * FIELD_PREP(REG_FIELD_B, 0) | * FIELD_PREP(REG_FIELD_C, c) | * FIELD_PREP(REG_FIELD_D, 0x40); * * Modify: * reg &= ~REG_FIELD_C; * reg |= FIELD_PREP(REG_FIELD_C, c); */ #define __bf_shf(x) (__builtin_ffsll(x) - 1) #define __BF_FIELD_CHECK(_mask, _reg, _val, _pfx) \ ({ \ BUILD_BUG_ON_MSG(!__builtin_constant_p(_mask), \ _pfx "mask is not constant"); \ BUILD_BUG_ON_MSG((_mask) == 0, _pfx "mask is zero"); \ BUILD_BUG_ON_MSG(__builtin_constant_p(_val) ? \ ~((_mask) >> __bf_shf(_mask)) & (_val) : 0, \ _pfx "value too large for the field"); \ BUILD_BUG_ON_MSG((_mask) > (typeof(_reg))~0ull, \ _pfx "type of reg too small for mask"); \ __BUILD_BUG_ON_NOT_POWER_OF_2((_mask) + \ (1ULL << __bf_shf(_mask))); \ }) /** * FIELD_MAX() - produce the maximum value representable by a field * @_mask: shifted mask defining the field's length and position * * FIELD_MAX() returns the maximum value that can be held in the field * specified by @_mask. */ #define FIELD_MAX(_mask) \ ({ \ __BF_FIELD_CHECK(_mask, 0ULL, 0ULL, "FIELD_MAX: "); \ (typeof(_mask))((_mask) >> __bf_shf(_mask)); \ }) /** * FIELD_FIT() - check if value fits in the field * @_mask: shifted mask defining the field's length and position * @_val: value to test against the field * * Return: true if @_val can fit inside @_mask, false if @_val is too big. */ #define FIELD_FIT(_mask, _val) \ ({ \ __BF_FIELD_CHECK(_mask, 0ULL, 0ULL, "FIELD_FIT: "); \ !((((typeof(_mask))_val) << __bf_shf(_mask)) & ~(_mask)); \ }) /** * FIELD_PREP() - prepare a bitfield element * @_mask: shifted mask defining the field's length and position * @_val: value to put in the field * * FIELD_PREP() masks and shifts up the value. The result should * be combined with other fields of the bitfield using logical OR. */ #define FIELD_PREP(_mask, _val) \ ({ \ __BF_FIELD_CHECK(_mask, 0ULL, _val, "FIELD_PREP: "); \ ((typeof(_mask))(_val) << __bf_shf(_mask)) & (_mask); \ }) /** * FIELD_GET() - extract a bitfield element * @_mask: shifted mask defining the field's length and position * @_reg: value of entire bitfield * * FIELD_GET() extracts the field specified by @_mask from the * bitfield passed in as @_reg by masking and shifting it down. */ #define FIELD_GET(_mask, _reg) \ ({ \ __BF_FIELD_CHECK(_mask, _reg, 0U, "FIELD_GET: "); \ (typeof(_mask))(((_reg) & (_mask)) >> __bf_shf(_mask)); \ }) extern void __compiletime_error("value doesn't fit into mask") __field_overflow(void); extern void __compiletime_error("bad bitfield mask") __bad_mask(void); static __always_inline u64 field_multiplier(u64 field) { if ((field | (field - 1)) & ((field | (field - 1)) + 1)) __bad_mask(); return field & -field; } static __always_inline u64 field_mask(u64 field) { return field / field_multiplier(field); } #define field_max(field) ((typeof(field))field_mask(field)) #define ____MAKE_OP(type,base,to,from) \ static __always_inline __##type type##_encode_bits(base v, base field) \ { \ if (__builtin_constant_p(v) && (v & ~field_mask(field))) \ __field_overflow(); \ return to((v & field_mask(field)) * field_multiplier(field)); \ } \ static __always_inline __##type type##_replace_bits(__##type old, \ base val, base field) \ { \ return (old & ~to(field)) | type##_encode_bits(val, field); \ } \ static __always_inline void type##p_replace_bits(__##type *p, \ base val, base field) \ { \ *p = (*p & ~to(field)) | type##_encode_bits(val, field); \ } \ static __always_inline base type##_get_bits(__##type v, base field) \ { \ return (from(v) & field)/field_multiplier(field); \ } #define __MAKE_OP(size) \ ____MAKE_OP(le##size,u##size,cpu_to_le##size,le##size##_to_cpu) \ ____MAKE_OP(be##size,u##size,cpu_to_be##size,be##size##_to_cpu) \ ____MAKE_OP(u##size,u##size,,) ____MAKE_OP(u8,u8,,) __MAKE_OP(16) __MAKE_OP(32) __MAKE_OP(64) #undef __MAKE_OP #undef ____MAKE_OP #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 /* SPDX-License-Identifier: GPL-2.0