1 2 3 4 5 6 7 8 9 10 11 12 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MSDOS_FS_H #define _LINUX_MSDOS_FS_H #include <uapi/linux/msdos_fs.h> /* media of boot sector */ static inline int fat_valid_media(u8 media) { return 0xf8 <= media || media == 0xf0; } #endif /* !_LINUX_MSDOS_FS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_TASK_H #define _LINUX_SCHED_TASK_H /* * Interface between the scheduler and various task lifetime (fork()/exit()) * functionality: */ #include <linux/sched.h> #include <linux/uaccess.h> struct task_struct; struct rusage; union thread_union; struct css_set; /* All the bits taken by the old clone syscall. */ #define CLONE_LEGACY_FLAGS 0xffffffffULL struct kernel_clone_args { u64 flags; int __user *pidfd; int __user *child_tid; int __user *parent_tid; int exit_signal; unsigned long stack; unsigned long stack_size; unsigned long tls; pid_t *set_tid; /* Number of elements in *set_tid */ size_t set_tid_size; int cgroup; struct cgroup *cgrp; struct css_set *cset; }; /* * This serializes "schedule()" and also protects * the run-queue from deletions/modifications (but * _adding_ to the beginning of the run-queue has * a separate lock). */ extern rwlock_t tasklist_lock; extern spinlock_t mmlist_lock; extern union thread_union init_thread_union; extern struct task_struct init_task; #ifdef CONFIG_PROVE_RCU extern int lockdep_tasklist_lock_is_held(void); #endif /* #ifdef CONFIG_PROVE_RCU */ extern asmlinkage void schedule_tail(struct task_struct *prev); extern void init_idle(struct task_struct *idle, int cpu); extern int sched_fork(unsigned long clone_flags, struct task_struct *p); extern void sched_post_fork(struct task_struct *p); extern void sched_dead(struct task_struct *p); void __noreturn do_task_dead(void); extern void proc_caches_init(void); extern void fork_init(void); extern void release_task(struct task_struct * p); extern int copy_thread(unsigned long, unsigned long, unsigned long, struct task_struct *, unsigned long); extern void flush_thread(void); #ifdef CONFIG_HAVE_EXIT_THREAD extern void exit_thread(struct task_struct *tsk); #else static inline void exit_thread(struct task_struct *tsk) { } #endif extern void do_group_exit(int); extern void exit_files(struct task_struct *); extern void exit_itimers(struct signal_struct *); extern pid_t kernel_clone(struct kernel_clone_args *kargs); struct task_struct *fork_idle(int); struct mm_struct *copy_init_mm(void); extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); extern long kernel_wait4(pid_t, int __user *, int, struct rusage *); int kernel_wait(pid_t pid, int *stat); extern void free_task(struct task_struct *tsk); /* sched_exec is called by processes performing an exec */ #ifdef CONFIG_SMP extern void sched_exec(void); #else #define sched_exec() {} #endif static inline struct task_struct *get_task_struct(struct task_struct *t) { refcount_inc(&t->usage); return t; } extern void __put_task_struct(struct task_struct *t); static inline void put_task_struct(struct task_struct *t) { if (refcount_dec_and_test(&t->usage)) __put_task_struct(t); } static inline void put_task_struct_many(struct task_struct *t, int nr) { if (refcount_sub_and_test(nr, &t->usage)) __put_task_struct(t); } void put_task_struct_rcu_user(struct task_struct *task); #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT extern int arch_task_struct_size __read_mostly; #else # define arch_task_struct_size (sizeof(struct task_struct)) #endif #ifndef CONFIG_HAVE_ARCH_THREAD_STRUCT_WHITELIST /* * If an architecture has not declared a thread_struct whitelist we * must assume something there may need to be copied to userspace. */ static inline void arch_thread_struct_whitelist(unsigned long *offset, unsigned long *size) { *offset = 0; /* Handle dynamically sized thread_struct. */ *size = arch_task_struct_size - offsetof(struct task_struct, thread); } #endif #ifdef CONFIG_VMAP_STACK static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return t->stack_vm_area; } #else static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return NULL; } #endif /* * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring * subscriptions and synchronises with wait4(). Also used in procfs. Also * pins the final release of task.io_context. Also protects ->cpuset and * ->cgroup.subsys[]. And ->vfork_done. * * Nests both inside and outside of read_lock(&tasklist_lock). * It must not be nested with write_lock_irq(&tasklist_lock), * neither inside nor outside. */ static inline void task_lock(struct task_struct *p) { spin_lock(&p->alloc_lock); } static inline void task_unlock(struct task_struct *p) { spin_unlock(&p->alloc_lock); } #endif /* _LINUX_SCHED_TASK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_CHECKSUM_64_H #define _ASM_X86_CHECKSUM_64_H /* * Checksums for x86-64 * Copyright 2002 by Andi Kleen, SuSE Labs * with some code from asm-x86/checksum.h */ #include <linux/compiler.h> #include <linux/uaccess.h> #include <asm/byteorder.h> /** * csum_fold - Fold and invert a 32bit checksum. * sum: 32bit unfolded sum * * Fold a 32bit running checksum to 16bit and invert it. This is usually * the last step before putting a checksum into a packet. * Make sure not to mix with 64bit checksums. */ static inline __sum16 csum_fold(__wsum sum) { asm(" addl %1,%0\n" " adcl $0xffff,%0" : "=r" (sum) : "r" ((__force u32)sum << 16), "0" ((__force u32)sum & 0xffff0000)); return (__force __sum16)(~(__force u32)sum >> 16); } /* * This is a version of ip_compute_csum() optimized for IP headers, * which always checksum on 4 octet boundaries. * * By Jorge Cwik <jorge@laser.satlink.net>, adapted for linux by * Arnt Gulbrandsen. */ /** * ip_fast_csum - Compute the IPv4 header checksum efficiently. * iph: ipv4 header * ihl: length of header / 4 */ static inline __sum16 ip_fast_csum(const void *iph, unsigned int ihl) { unsigned int sum; asm(" movl (%1), %0\n" " subl $4, %2\n" " jbe 2f\n" " addl 4(%1), %0\n" " adcl 8(%1), %0\n" " adcl 12(%1), %0\n" "1: adcl 16(%1), %0\n" " lea 4(%1), %1\n" " decl %2\n" " jne 1b\n" " adcl $0, %0\n" " movl %0, %2\n" " shrl $16, %0\n" " addw %w2, %w0\n" " adcl $0, %0\n" " notl %0\n" "2:" /* Since the input registers which are loaded with iph and ihl are modified, we must also specify them as outputs, or gcc will assume they contain their original values. */ : "=r" (sum), "=r" (iph), "=r" (ihl) : "1" (iph), "2" (ihl) : "memory"); return (__force __sum16)sum; } /** * csum_tcpup_nofold - Compute an IPv4 pseudo header checksum. * @saddr: source address * @daddr: destination address * @len: length of packet * @proto: ip protocol of packet * @sum: initial sum to be added in (32bit unfolded) * * Returns the pseudo header checksum the input data. Result is * 32bit unfolded. */ static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __wsum sum) { asm(" addl %1, %0\n" " adcl %2, %0\n" " adcl %3, %0\n" " adcl $0, %0\n" : "=r" (sum) : "g" (daddr), "g" (saddr), "g" ((len + proto)<<8), "0" (sum)); return sum; } /** * csum_tcpup_magic - Compute an IPv4 pseudo header checksum. * @saddr: source address * @daddr: destination address * @len: length of packet * @proto: ip protocol of packet * @sum: initial sum to be added in (32bit unfolded) * * Returns the 16bit pseudo header checksum the input data already * complemented and ready to be filled in. */ static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __wsum sum) { return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum)); } /** * csum_partial - Compute an internet checksum. * @buff: buffer to be checksummed * @len: length of buffer. * @sum: initial sum to be added in (32bit unfolded) * * Returns the 32bit unfolded internet checksum of the buffer. * Before filling it in it needs to be csum_fold()'ed. * buff should be aligned to a 64bit boundary if possible. */ extern __wsum csum_partial(const void *buff, int len, __wsum sum); /* Do not call this directly. Use the wrappers below */ extern __visible __wsum csum_partial_copy_generic(const void *src, void *dst, int len); extern __wsum csum_and_copy_from_user(const void __user *src, void *dst, int len); extern __wsum csum_and_copy_to_user(const void *src, void __user *dst, int len); extern __wsum csum_partial_copy_nocheck(const void *src, void *dst, int len); /** * ip_compute_csum - Compute an 16bit IP checksum. * @buff: buffer address. * @len: length of buffer. * * Returns the 16bit folded/inverted checksum of the passed buffer. * Ready to fill in. */ extern __sum16 ip_compute_csum(const void *buff, int len); /** * csum_ipv6_magic - Compute checksum of an IPv6 pseudo header. * @saddr: source address * @daddr: destination address * @len: length of packet * @proto: protocol of packet * @sum: initial sum (32bit unfolded) to be added in * * Computes an IPv6 pseudo header checksum. This sum is added the checksum * into UDP/TCP packets and contains some link layer information. * Returns the unfolded 32bit checksum. */ struct in6_addr; #define _HAVE_ARCH_IPV6_CSUM 1 extern __sum16 csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __u32 len, __u8 proto, __wsum sum); static inline unsigned add32_with_carry(unsigned a, unsigned b) { asm("addl %2,%0\n\t" "adcl $0,%0" : "=r" (a) : "0" (a), "rm" (b)); return a; } #define HAVE_ARCH_CSUM_ADD static inline __wsum csum_add(__wsum csum, __wsum addend) { return (__force __wsum)add32_with_carry((__force unsigned)csum, (__force unsigned)addend); } #endif /* _ASM_X86_CHECKSUM_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM pagemap #if !defined(_TRACE_PAGEMAP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PAGEMAP_H #include <linux/tracepoint.h> #include <linux/mm.h> #define PAGEMAP_MAPPED 0x0001u #define PAGEMAP_ANONYMOUS 0x0002u #define PAGEMAP_FILE 0x0004u #define PAGEMAP_SWAPCACHE 0x0008u #define PAGEMAP_SWAPBACKED 0x0010u #define PAGEMAP_MAPPEDDISK 0x0020u #define PAGEMAP_BUFFERS 0x0040u #define trace_pagemap_flags(page) ( \ (PageAnon(page) ? PAGEMAP_ANONYMOUS : PAGEMAP_FILE) | \ (page_mapped(page) ? PAGEMAP_MAPPED : 0) | \ (PageSwapCache(page) ? PAGEMAP_SWAPCACHE : 0) | \ (PageSwapBacked(page) ? PAGEMAP_SWAPBACKED : 0) | \ (PageMappedToDisk(page) ? PAGEMAP_MAPPEDDISK : 0) | \ (page_has_private(page) ? PAGEMAP_BUFFERS : 0) \ ) TRACE_EVENT(mm_lru_insertion, TP_PROTO( struct page *page, int lru ), TP_ARGS(page, lru), TP_STRUCT__entry( __field(struct page *, page ) __field(unsigned long, pfn ) __field(int, lru ) __field(unsigned long, flags ) ), TP_fast_assign( __entry->page = page; __entry->pfn = page_to_pfn(page); __entry->lru = lru; __entry->flags = trace_pagemap_flags(page); ), /* Flag format is based on page-types.c formatting for pagemap */ TP_printk("page=%p pfn=%lu lru=%d flags=%s%s%s%s%s%s", __entry->page, __entry->pfn, __entry->lru, __entry->flags & PAGEMAP_MAPPED ? "M" : " ", __entry->flags & PAGEMAP_ANONYMOUS ? "a" : "f", __entry->flags & PAGEMAP_SWAPCACHE ? "s" : " ", __entry->flags & PAGEMAP_SWAPBACKED ? "b" : " ", __entry->flags & PAGEMAP_MAPPEDDISK ? "d" : " ", __entry->flags & PAGEMAP_BUFFERS ? "B" : " ") ); TRACE_EVENT(mm_lru_activate, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field(struct page *, page ) __field(unsigned long, pfn ) ), TP_fast_assign( __entry->page = page; __entry->pfn = page_to_pfn(page); ), /* Flag format is based on page-types.c formatting for pagemap */ TP_printk("page=%p pfn=%lu", __entry->page, __entry->pfn) ); #endif /* _TRACE_PAGEMAP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
4 3 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 // SPDX-License-Identifier: GPL-2.0-or-later /* * Kernel Probes (KProbes) * kernel/kprobes.c * * Copyright (C) IBM Corporation, 2002, 2004 * * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel * Probes initial implementation (includes suggestions from * Rusty Russell). * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with * hlists and exceptions notifier as suggested by Andi Kleen. * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes * interface to access function arguments. * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes * exceptions notifier to be first on the priority list. * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi * <prasanna@in.ibm.com> added function-return probes. */ #include <linux/kprobes.h> #include <linux/hash.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/stddef.h> #include <linux/export.h> #include <linux/moduleloader.h> #include <linux/kallsyms.h> #include <linux/freezer.h> #include <linux/seq_file.h> #include <linux/debugfs.h> #include <linux/sysctl.h> #include <linux/kdebug.h> #include <linux/memory.h> #include <linux/ftrace.h> #include <linux/cpu.h> #include <linux/jump_label.h> #include <linux/perf_event.h> #include <linux/static_call.h> #include <asm/sections.h> #include <asm/cacheflush.h> #include <asm/errno.h> #include <linux/uaccess.h> #define KPROBE_HASH_BITS 6 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) static int kprobes_initialized; /* kprobe_table can be accessed by * - Normal hlist traversal and RCU add/del under kprobe_mutex is held. * Or * - RCU hlist traversal under disabling preempt (breakpoint handlers) */ static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; /* NOTE: change this value only with kprobe_mutex held */ static bool kprobes_all_disarmed; /* This protects kprobe_table and optimizing_list */ static DEFINE_MUTEX(kprobe_mutex); static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; static struct { raw_spinlock_t lock ____cacheline_aligned_in_smp; } kretprobe_table_locks[KPROBE_TABLE_SIZE]; kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, unsigned int __unused) { return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); } static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) { return &(kretprobe_table_locks[hash].lock); } /* Blacklist -- list of struct kprobe_blacklist_entry */ static LIST_HEAD(kprobe_blacklist); #ifdef __ARCH_WANT_KPROBES_INSN_SLOT /* * kprobe->ainsn.insn points to the copy of the instruction to be * single-stepped. x86_64, POWER4 and above have no-exec support and * stepping on the instruction on a vmalloced/kmalloced/data page * is a recipe for disaster */ struct kprobe_insn_page { struct list_head list; kprobe_opcode_t *insns; /* Page of instruction slots */ struct kprobe_insn_cache *cache; int nused; int ngarbage; char slot_used[]; }; #define KPROBE_INSN_PAGE_SIZE(slots) \ (offsetof(struct kprobe_insn_page, slot_used) + \ (sizeof(char) * (slots))) static int slots_per_page(struct kprobe_insn_cache *c) { return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); } enum kprobe_slot_state { SLOT_CLEAN = 0, SLOT_DIRTY = 1, SLOT_USED = 2, }; void __weak *alloc_insn_page(void) { return module_alloc(PAGE_SIZE); } void __weak free_insn_page(void *page) { module_memfree(page); } struct kprobe_insn_cache kprobe_insn_slots = { .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), .alloc = alloc_insn_page, .free = free_insn_page, .sym = KPROBE_INSN_PAGE_SYM, .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), .insn_size = MAX_INSN_SIZE, .nr_garbage = 0, }; static int collect_garbage_slots(struct kprobe_insn_cache *c); /** * __get_insn_slot() - Find a slot on an executable page for an instruction. * We allocate an executable page if there's no room on existing ones. */ kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) { struct kprobe_insn_page *kip; kprobe_opcode_t *slot = NULL; /* Since the slot array is not protected by rcu, we need a mutex */ mutex_lock(&c->mutex); retry: rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { if (kip->nused < slots_per_page(c)) { int i; for (i = 0; i < slots_per_page(c); i++) { if (kip->slot_used[i] == SLOT_CLEAN) { kip->slot_used[i] = SLOT_USED; kip->nused++; slot = kip->insns + (i * c->insn_size); rcu_read_unlock(); goto out; } } /* kip->nused is broken. Fix it. */ kip->nused = slots_per_page(c); WARN_ON(1); } } rcu_read_unlock(); /* If there are any garbage slots, collect it and try again. */ if (c->nr_garbage && collect_garbage_slots(c) == 0) goto retry; /* All out of space. Need to allocate a new page. */ kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); if (!kip) goto out; /* * Use module_alloc so this page is within +/- 2GB of where the * kernel image and loaded module images reside. This is required * so x86_64 can correctly handle the %rip-relative fixups. */ kip->insns = c->alloc(); if (!kip->insns) { kfree(kip); goto out; } INIT_LIST_HEAD(&kip->list); memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); kip->slot_used[0] = SLOT_USED; kip->nused = 1; kip->ngarbage = 0; kip->cache = c; list_add_rcu(&kip->list, &c->pages); slot = kip->insns; /* Record the perf ksymbol register event after adding the page */ perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, PAGE_SIZE, false, c->sym); out: mutex_unlock(&c->mutex); return slot; } /* Return 1 if all garbages are collected, otherwise 0. */ static int collect_one_slot(struct kprobe_insn_page *kip, int idx) { kip->slot_used[idx] = SLOT_CLEAN; kip->nused--; if (kip->nused == 0) { /* * Page is no longer in use. Free it unless * it's the last one. We keep the last one * so as not to have to set it up again the * next time somebody inserts a probe. */ if (!list_is_singular(&kip->list)) { /* * Record perf ksymbol unregister event before removing * the page. */ perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, PAGE_SIZE, true, kip->cache->sym); list_del_rcu(&kip->list); synchronize_rcu(); kip->cache->free(kip->insns); kfree(kip); } return 1; } return 0; } static int collect_garbage_slots(struct kprobe_insn_cache *c) { struct kprobe_insn_page *kip, *next; /* Ensure no-one is interrupted on the garbages */ synchronize_rcu(); list_for_each_entry_safe(kip, next, &c->pages, list) { int i; if (kip->ngarbage == 0) continue; kip->ngarbage = 0; /* we will collect all garbages */ for (i = 0; i < slots_per_page(c); i++) { if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) break; } } c->nr_garbage = 0; return 0; } void __free_insn_slot(struct kprobe_insn_cache *c, kprobe_opcode_t *slot, int dirty) { struct kprobe_insn_page *kip; long idx; mutex_lock(&c->mutex); rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { idx = ((long)slot - (long)kip->insns) / (c->insn_size * sizeof(kprobe_opcode_t)); if (idx >= 0 && idx < slots_per_page(c)) goto out; } /* Could not find this slot. */ WARN_ON(1); kip = NULL; out: rcu_read_unlock(); /* Mark and sweep: this may sleep */ if (kip) { /* Check double free */ WARN_ON(kip->slot_used[idx] != SLOT_USED); if (dirty) { kip->slot_used[idx] = SLOT_DIRTY; kip->ngarbage++; if (++c->nr_garbage > slots_per_page(c)) collect_garbage_slots(c); } else { collect_one_slot(kip, idx); } } mutex_unlock(&c->mutex); } /* * Check given address is on the page of kprobe instruction slots. * This will be used for checking whether the address on a stack * is on a text area or not. */ bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) { struct kprobe_insn_page *kip; bool ret = false; rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { if (addr >= (unsigned long)kip->insns && addr < (unsigned long)kip->insns + PAGE_SIZE) { ret = true; break; } } rcu_read_unlock(); return ret; } int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, unsigned long *value, char *type, char *sym) { struct kprobe_insn_page *kip; int ret = -ERANGE; rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { if ((*symnum)--) continue; strlcpy(sym, c->sym, KSYM_NAME_LEN); *type = 't'; *value = (unsigned long)kip->insns; ret = 0; break; } rcu_read_unlock(); return ret; } #ifdef CONFIG_OPTPROBES /* For optimized_kprobe buffer */ struct kprobe_insn_cache kprobe_optinsn_slots = { .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), .alloc = alloc_insn_page, .free = free_insn_page, .sym = KPROBE_OPTINSN_PAGE_SYM, .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), /* .insn_size is initialized later */ .nr_garbage = 0, }; #endif #endif /* We have preemption disabled.. so it is safe to use __ versions */ static inline void set_kprobe_instance(struct kprobe *kp) { __this_cpu_write(kprobe_instance, kp); } static inline void reset_kprobe_instance(void) { __this_cpu_write(kprobe_instance, NULL); } /* * This routine is called either: * - under the kprobe_mutex - during kprobe_[un]register() * OR * - with preemption disabled - from arch/xxx/kernel/kprobes.c */ struct kprobe *get_kprobe(void *addr) { struct hlist_head *head; struct kprobe *p; head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; hlist_for_each_entry_rcu(p, head, hlist, lockdep_is_held(&kprobe_mutex)) { if (p->addr == addr) return p; } return NULL; } NOKPROBE_SYMBOL(get_kprobe); static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); /* Return true if the kprobe is an aggregator */ static inline int kprobe_aggrprobe(struct kprobe *p) { return p->pre_handler == aggr_pre_handler; } /* Return true(!0) if the kprobe is unused */ static inline int kprobe_unused(struct kprobe *p) { return kprobe_aggrprobe(p) && kprobe_disabled(p) && list_empty(&p->list); } /* * Keep all fields in the kprobe consistent */ static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) { memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); } #ifdef CONFIG_OPTPROBES /* NOTE: change this value only with kprobe_mutex held */ static bool kprobes_allow_optimization; /* * Call all pre_handler on the list, but ignores its return value. * This must be called from arch-dep optimized caller. */ void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->pre_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); kp->pre_handler(kp, regs); } reset_kprobe_instance(); } } NOKPROBE_SYMBOL(opt_pre_handler); /* Free optimized instructions and optimized_kprobe */ static void free_aggr_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); arch_remove_optimized_kprobe(op); arch_remove_kprobe(p); kfree(op); } /* Return true(!0) if the kprobe is ready for optimization. */ static inline int kprobe_optready(struct kprobe *p) { struct optimized_kprobe *op; if (kprobe_aggrprobe(p)) { op = container_of(p, struct optimized_kprobe, kp); return arch_prepared_optinsn(&op->optinsn); } return 0; } /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ static inline int kprobe_disarmed(struct kprobe *p) { struct optimized_kprobe *op; /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ if (!kprobe_aggrprobe(p)) return kprobe_disabled(p); op = container_of(p, struct optimized_kprobe, kp); return kprobe_disabled(p) && list_empty(&op->list); } /* Return true(!0) if the probe is queued on (un)optimizing lists */ static int kprobe_queued(struct kprobe *p) { struct optimized_kprobe *op; if (kprobe_aggrprobe(p)) { op = container_of(p, struct optimized_kprobe, kp); if (!list_empty(&op->list)) return 1; } return 0; } /* * Return an optimized kprobe whose optimizing code replaces * instructions including addr (exclude breakpoint). */ static struct kprobe *get_optimized_kprobe(unsigned long addr) { int i; struct kprobe *p = NULL; struct optimized_kprobe *op; /* Don't check i == 0, since that is a breakpoint case. */ for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) p = get_kprobe((void *)(addr - i)); if (p && kprobe_optready(p)) { op = container_of(p, struct optimized_kprobe, kp); if (arch_within_optimized_kprobe(op, addr)) return p; } return NULL; } /* Optimization staging list, protected by kprobe_mutex */ static LIST_HEAD(optimizing_list); static LIST_HEAD(unoptimizing_list); static LIST_HEAD(freeing_list); static void kprobe_optimizer(struct work_struct *work); static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); #define OPTIMIZE_DELAY 5 /* * Optimize (replace a breakpoint with a jump) kprobes listed on * optimizing_list. */ static void do_optimize_kprobes(void) { lockdep_assert_held(&text_mutex); /* * The optimization/unoptimization refers online_cpus via * stop_machine() and cpu-hotplug modifies online_cpus. * And same time, text_mutex will be held in cpu-hotplug and here. * This combination can cause a deadlock (cpu-hotplug try to lock * text_mutex but stop_machine can not be done because online_cpus * has been changed) * To avoid this deadlock, caller must have locked cpu hotplug * for preventing cpu-hotplug outside of text_mutex locking. */ lockdep_assert_cpus_held(); /* Optimization never be done when disarmed */ if (kprobes_all_disarmed || !kprobes_allow_optimization || list_empty(&optimizing_list)) return; arch_optimize_kprobes(&optimizing_list); } /* * Unoptimize (replace a jump with a breakpoint and remove the breakpoint * if need) kprobes listed on unoptimizing_list. */ static void do_unoptimize_kprobes(void) { struct optimized_kprobe *op, *tmp; lockdep_assert_held(&text_mutex); /* See comment in do_optimize_kprobes() */ lockdep_assert_cpus_held(); /* Unoptimization must be done anytime */ if (list_empty(&unoptimizing_list)) return; arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); /* Loop free_list for disarming */ list_for_each_entry_safe(op, tmp, &freeing_list, list) { /* Switching from detour code to origin */ op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; /* Disarm probes if marked disabled */ if (kprobe_disabled(&op->kp)) arch_disarm_kprobe(&op->kp); if (kprobe_unused(&op->kp)) { /* * Remove unused probes from hash list. After waiting * for synchronization, these probes are reclaimed. * (reclaiming is done by do_free_cleaned_kprobes.) */ hlist_del_rcu(&op->kp.hlist); } else list_del_init(&op->list); } } /* Reclaim all kprobes on the free_list */ static void do_free_cleaned_kprobes(void) { struct optimized_kprobe *op, *tmp; list_for_each_entry_safe(op, tmp, &freeing_list, list) { list_del_init(&op->list); if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { /* * This must not happen, but if there is a kprobe * still in use, keep it on kprobes hash list. */ continue; } free_aggr_kprobe(&op->kp); } } /* Start optimizer after OPTIMIZE_DELAY passed */ static void kick_kprobe_optimizer(void) { schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); } /* Kprobe jump optimizer */ static void kprobe_optimizer(struct work_struct *work) { mutex_lock(&kprobe_mutex); cpus_read_lock(); mutex_lock(&text_mutex); /* * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) * kprobes before waiting for quiesence period. */ do_unoptimize_kprobes(); /* * Step 2: Wait for quiesence period to ensure all potentially * preempted tasks to have normally scheduled. Because optprobe * may modify multiple instructions, there is a chance that Nth * instruction is preempted. In that case, such tasks can return * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. * Note that on non-preemptive kernel, this is transparently converted * to synchronoze_sched() to wait for all interrupts to have completed. */ synchronize_rcu_tasks(); /* Step 3: Optimize kprobes after quiesence period */ do_optimize_kprobes(); /* Step 4: Free cleaned kprobes after quiesence period */ do_free_cleaned_kprobes(); mutex_unlock(&text_mutex); cpus_read_unlock(); /* Step 5: Kick optimizer again if needed */ if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) kick_kprobe_optimizer(); mutex_unlock(&kprobe_mutex); } /* Wait for completing optimization and unoptimization */ void wait_for_kprobe_optimizer(void) { mutex_lock(&kprobe_mutex); while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { mutex_unlock(&kprobe_mutex); /* this will also make optimizing_work execute immmediately */ flush_delayed_work(&optimizing_work); /* @optimizing_work might not have been queued yet, relax */ cpu_relax(); mutex_lock(&kprobe_mutex); } mutex_unlock(&kprobe_mutex); } static bool optprobe_queued_unopt(struct optimized_kprobe *op) { struct optimized_kprobe *_op; list_for_each_entry(_op, &unoptimizing_list, list) { if (op == _op) return true; } return false; } /* Optimize kprobe if p is ready to be optimized */ static void optimize_kprobe(struct kprobe *p) { struct optimized_kprobe *op; /* Check if the kprobe is disabled or not ready for optimization. */ if (!kprobe_optready(p) || !kprobes_allow_optimization || (kprobe_disabled(p) || kprobes_all_disarmed)) return; /* kprobes with post_handler can not be optimized */ if (p->post_handler) return; op = container_of(p, struct optimized_kprobe, kp); /* Check there is no other kprobes at the optimized instructions */ if (arch_check_optimized_kprobe(op) < 0) return; /* Check if it is already optimized. */ if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { if (optprobe_queued_unopt(op)) { /* This is under unoptimizing. Just dequeue the probe */ list_del_init(&op->list); } return; } op->kp.flags |= KPROBE_FLAG_OPTIMIZED; /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */ if (WARN_ON_ONCE(!list_empty(&op->list))) return; list_add(&op->list, &optimizing_list); kick_kprobe_optimizer(); } /* Short cut to direct unoptimizing */ static void force_unoptimize_kprobe(struct optimized_kprobe *op) { lockdep_assert_cpus_held(); arch_unoptimize_kprobe(op); op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; } /* Unoptimize a kprobe if p is optimized */ static void unoptimize_kprobe(struct kprobe *p, bool force) { struct optimized_kprobe *op; if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) return; /* This is not an optprobe nor optimized */ op = container_of(p, struct optimized_kprobe, kp); if (!kprobe_optimized(p)) return; if (!list_empty(&op->list)) { if (optprobe_queued_unopt(op)) { /* Queued in unoptimizing queue */ if (force) { /* * Forcibly unoptimize the kprobe here, and queue it * in the freeing list for release afterwards. */ force_unoptimize_kprobe(op); list_move(&op->list, &freeing_list); } } else { /* Dequeue from the optimizing queue */ list_del_init(&op->list); op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; } return; } /* Optimized kprobe case */ if (force) { /* Forcibly update the code: this is a special case */ force_unoptimize_kprobe(op); } else { list_add(&op->list, &unoptimizing_list); kick_kprobe_optimizer(); } } /* Cancel unoptimizing for reusing */ static int reuse_unused_kprobe(struct kprobe *ap) { struct optimized_kprobe *op; /* * Unused kprobe MUST be on the way of delayed unoptimizing (means * there is still a relative jump) and disabled. */ op = container_of(ap, struct optimized_kprobe, kp); WARN_ON_ONCE(list_empty(&op->list)); /* Enable the probe again */ ap->flags &= ~KPROBE_FLAG_DISABLED; /* Optimize it again (remove from op->list) */ if (!kprobe_optready(ap)) return -EINVAL; optimize_kprobe(ap); return 0; } /* Remove optimized instructions */ static void kill_optimized_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); if (!list_empty(&op->list)) /* Dequeue from the (un)optimization queue */ list_del_init(&op->list); op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; if (kprobe_unused(p)) { /* Enqueue if it is unused */ list_add(&op->list, &freeing_list); /* * Remove unused probes from the hash list. After waiting * for synchronization, this probe is reclaimed. * (reclaiming is done by do_free_cleaned_kprobes().) */ hlist_del_rcu(&op->kp.hlist); } /* Don't touch the code, because it is already freed. */ arch_remove_optimized_kprobe(op); } static inline void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) { if (!kprobe_ftrace(p)) arch_prepare_optimized_kprobe(op, p); } /* Try to prepare optimized instructions */ static void prepare_optimized_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); __prepare_optimized_kprobe(op, p); } /* Allocate new optimized_kprobe and try to prepare optimized instructions */ static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); if (!op) return NULL; INIT_LIST_HEAD(&op->list); op->kp.addr = p->addr; __prepare_optimized_kprobe(op, p); return &op->kp; } static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); /* * Prepare an optimized_kprobe and optimize it * NOTE: p must be a normal registered kprobe */ static void try_to_optimize_kprobe(struct kprobe *p) { struct kprobe *ap; struct optimized_kprobe *op; /* Impossible to optimize ftrace-based kprobe */ if (kprobe_ftrace(p)) return; /* For preparing optimization, jump_label_text_reserved() is called */ cpus_read_lock(); jump_label_lock(); mutex_lock(&text_mutex); ap = alloc_aggr_kprobe(p); if (!ap) goto out; op = container_of(ap, struct optimized_kprobe, kp); if (!arch_prepared_optinsn(&op->optinsn)) { /* If failed to setup optimizing, fallback to kprobe */ arch_remove_optimized_kprobe(op); kfree(op); goto out; } init_aggr_kprobe(ap, p); optimize_kprobe(ap); /* This just kicks optimizer thread */ out: mutex_unlock(&text_mutex); jump_label_unlock(); cpus_read_unlock(); } static void optimize_all_kprobes(void) { struct hlist_head *head; struct kprobe *p; unsigned int i; mutex_lock(&kprobe_mutex); /* If optimization is already allowed, just return */ if (kprobes_allow_optimization) goto out; cpus_read_lock(); kprobes_allow_optimization = true; for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry(p, head, hlist) if (!kprobe_disabled(p)) optimize_kprobe(p); } cpus_read_unlock(); printk(KERN_INFO "Kprobes globally optimized\n"); out: mutex_unlock(&kprobe_mutex); } #ifdef CONFIG_SYSCTL static void unoptimize_all_kprobes(void) { struct hlist_head *head; struct kprobe *p; unsigned int i; mutex_lock(&kprobe_mutex); /* If optimization is already prohibited, just return */ if (!kprobes_allow_optimization) { mutex_unlock(&kprobe_mutex); return; } cpus_read_lock(); kprobes_allow_optimization = false; for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry(p, head, hlist) { if (!kprobe_disabled(p)) unoptimize_kprobe(p, false); } } cpus_read_unlock(); mutex_unlock(&kprobe_mutex); /* Wait for unoptimizing completion */ wait_for_kprobe_optimizer(); printk(KERN_INFO "Kprobes globally unoptimized\n"); } static DEFINE_MUTEX(kprobe_sysctl_mutex); int sysctl_kprobes_optimization; int proc_kprobes_optimization_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos) { int ret; mutex_lock(&kprobe_sysctl_mutex); sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; ret = proc_dointvec_minmax(table, write, buffer, length, ppos); if (sysctl_kprobes_optimization) optimize_all_kprobes(); else unoptimize_all_kprobes(); mutex_unlock(&kprobe_sysctl_mutex); return ret; } #endif /* CONFIG_SYSCTL */ /* Put a breakpoint for a probe. Must be called with text_mutex locked */ static void __arm_kprobe(struct kprobe *p) { struct kprobe *_p; /* Check collision with other optimized kprobes */ _p = get_optimized_kprobe((unsigned long)p->addr); if (unlikely(_p)) /* Fallback to unoptimized kprobe */ unoptimize_kprobe(_p, true); arch_arm_kprobe(p); optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ } /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ static void __disarm_kprobe(struct kprobe *p, bool reopt) { struct kprobe *_p; /* Try to unoptimize */ unoptimize_kprobe(p, kprobes_all_disarmed); if (!kprobe_queued(p)) { arch_disarm_kprobe(p); /* If another kprobe was blocked, optimize it. */ _p = get_optimized_kprobe((unsigned long)p->addr); if (unlikely(_p) && reopt) optimize_kprobe(_p); } /* TODO: reoptimize others after unoptimized this probe */ } #else /* !CONFIG_OPTPROBES */ #define optimize_kprobe(p) do {} while (0) #define unoptimize_kprobe(p, f) do {} while (0) #define kill_optimized_kprobe(p) do {} while (0) #define prepare_optimized_kprobe(p) do {} while (0) #define try_to_optimize_kprobe(p) do {} while (0) #define __arm_kprobe(p) arch_arm_kprobe(p) #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) #define kprobe_disarmed(p) kprobe_disabled(p) #define wait_for_kprobe_optimizer() do {} while (0) static int reuse_unused_kprobe(struct kprobe *ap) { /* * If the optimized kprobe is NOT supported, the aggr kprobe is * released at the same time that the last aggregated kprobe is * unregistered. * Thus there should be no chance to reuse unused kprobe. */ printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); return -EINVAL; } static void free_aggr_kprobe(struct kprobe *p) { arch_remove_kprobe(p); kfree(p); } static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) { return kzalloc(sizeof(struct kprobe), GFP_KERNEL); } #endif /* CONFIG_OPTPROBES */ #ifdef CONFIG_KPROBES_ON_FTRACE static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { .func = kprobe_ftrace_handler, .flags = FTRACE_OPS_FL_SAVE_REGS, }; static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { .func = kprobe_ftrace_handler, .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, }; static int kprobe_ipmodify_enabled; static int kprobe_ftrace_enabled; /* Must ensure p->addr is really on ftrace */ static int prepare_kprobe(struct kprobe *p) { if (!kprobe_ftrace(p)) return arch_prepare_kprobe(p); return arch_prepare_kprobe_ftrace(p); } /* Caller must lock kprobe_mutex */ static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, int *cnt) { int ret = 0; ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); if (ret) { pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", p->addr, ret); return ret; } if (*cnt == 0) { ret = register_ftrace_function(ops); if (ret) { pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); goto err_ftrace; } } (*cnt)++; return ret; err_ftrace: /* * At this point, sinec ops is not registered, we should be sefe from * registering empty filter. */ ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); return ret; } static int arm_kprobe_ftrace(struct kprobe *p) { bool ipmodify = (p->post_handler != NULL); return __arm_kprobe_ftrace(p, ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); } /* Caller must lock kprobe_mutex */ static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, int *cnt) { int ret = 0; if (*cnt == 1) { ret = unregister_ftrace_function(ops); if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) return ret; } (*cnt)--; ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", p->addr, ret); return ret; } static int disarm_kprobe_ftrace(struct kprobe *p) { bool ipmodify = (p->post_handler != NULL); return __disarm_kprobe_ftrace(p, ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); } #else /* !CONFIG_KPROBES_ON_FTRACE */ static inline int prepare_kprobe(struct kprobe *p) { return arch_prepare_kprobe(p); } static inline int arm_kprobe_ftrace(struct kprobe *p) { return -ENODEV; } static inline int disarm_kprobe_ftrace(struct kprobe *p) { return -ENODEV; } #endif /* Arm a kprobe with text_mutex */ static int arm_kprobe(struct kprobe *kp) { if (unlikely(kprobe_ftrace(kp))) return arm_kprobe_ftrace(kp); cpus_read_lock(); mutex_lock(&text_mutex); __arm_kprobe(kp); mutex_unlock(&text_mutex); cpus_read_unlock(); return 0; } /* Disarm a kprobe with text_mutex */ static int disarm_kprobe(struct kprobe *kp, bool reopt) { if (unlikely(kprobe_ftrace(kp))) return disarm_kprobe_ftrace(kp); cpus_read_lock(); mutex_lock(&text_mutex); __disarm_kprobe(kp, reopt); mutex_unlock(&text_mutex); cpus_read_unlock(); return 0; } /* * Aggregate handlers for multiple kprobes support - these handlers * take care of invoking the individual kprobe handlers on p->list */ static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->pre_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); if (kp->pre_handler(kp, regs)) return 1; } reset_kprobe_instance(); } return 0; } NOKPROBE_SYMBOL(aggr_pre_handler); static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, unsigned long flags) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->post_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); kp->post_handler(kp, regs, flags); reset_kprobe_instance(); } } } NOKPROBE_SYMBOL(aggr_post_handler); static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, int trapnr) { struct kprobe *cur = __this_cpu_read(kprobe_instance); /* * if we faulted "during" the execution of a user specified * probe handler, invoke just that probe's fault handler */ if (cur && cur->fault_handler) { if (cur->fault_handler(cur, regs, trapnr)) return 1; } return 0; } NOKPROBE_SYMBOL(aggr_fault_handler); /* Walks the list and increments nmissed count for multiprobe case */ void kprobes_inc_nmissed_count(struct kprobe *p) { struct kprobe *kp; if (!kprobe_aggrprobe(p)) { p->nmissed++; } else { list_for_each_entry_rcu(kp, &p->list, list) kp->nmissed++; } return; } NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); static void recycle_rp_inst(struct kretprobe_instance *ri) { struct kretprobe *rp = ri->rp; /* remove rp inst off the rprobe_inst_table */ hlist_del(&ri->hlist); INIT_HLIST_NODE(&ri->hlist); if (likely(rp)) { raw_spin_lock(&rp->lock); hlist_add_head(&ri->hlist, &rp->free_instances); raw_spin_unlock(&rp->lock); } else kfree_rcu(ri, rcu); } NOKPROBE_SYMBOL(recycle_rp_inst); static void kretprobe_hash_lock(struct task_struct *tsk, struct hlist_head **head, unsigned long *flags) __acquires(hlist_lock) { unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); raw_spinlock_t *hlist_lock; *head = &kretprobe_inst_table[hash]; hlist_lock = kretprobe_table_lock_ptr(hash); /* * Nested is a workaround that will soon not be needed. * There's other protections that make sure the same lock * is not taken on the same CPU that lockdep is unaware of. * Differentiate when it is taken in NMI context. */ raw_spin_lock_irqsave_nested(hlist_lock, *flags, !!in_nmi()); } NOKPROBE_SYMBOL(kretprobe_hash_lock); static void kretprobe_table_lock(unsigned long hash, unsigned long *flags) __acquires(hlist_lock) { raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); /* * Nested is a workaround that will soon not be needed. * There's other protections that make sure the same lock * is not taken on the same CPU that lockdep is unaware of. * Differentiate when it is taken in NMI context. */ raw_spin_lock_irqsave_nested(hlist_lock, *flags, !!in_nmi()); } NOKPROBE_SYMBOL(kretprobe_table_lock); static void kretprobe_hash_unlock(struct task_struct *tsk, unsigned long *flags) __releases(hlist_lock) { unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); raw_spinlock_t *hlist_lock; hlist_lock = kretprobe_table_lock_ptr(hash); raw_spin_unlock_irqrestore(hlist_lock, *flags); } NOKPROBE_SYMBOL(kretprobe_hash_unlock); static void kretprobe_table_unlock(unsigned long hash, unsigned long *flags) __releases(hlist_lock) { raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); raw_spin_unlock_irqrestore(hlist_lock, *flags); } NOKPROBE_SYMBOL(kretprobe_table_unlock); static struct kprobe kprobe_busy = { .addr = (void *) get_kprobe, }; void kprobe_busy_begin(void) { struct kprobe_ctlblk *kcb; preempt_disable(); __this_cpu_write(current_kprobe, &kprobe_busy); kcb = get_kprobe_ctlblk(); kcb->kprobe_status = KPROBE_HIT_ACTIVE; } void kprobe_busy_end(void) { __this_cpu_write(current_kprobe, NULL); preempt_enable(); } /* * This function is called from finish_task_switch when task tk becomes dead, * so that we can recycle any function-return probe instances associated * with this task. These left over instances represent probed functions * that have been called but will never return. */ void kprobe_flush_task(struct task_struct *tk) { struct kretprobe_instance *ri; struct hlist_head *head; struct hlist_node *tmp; unsigned long hash, flags = 0; if (unlikely(!kprobes_initialized)) /* Early boot. kretprobe_table_locks not yet initialized. */ return; kprobe_busy_begin(); hash = hash_ptr(tk, KPROBE_HASH_BITS); head = &kretprobe_inst_table[hash]; kretprobe_table_lock(hash, &flags); hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task == tk) recycle_rp_inst(ri); } kretprobe_table_unlock(hash, &flags); kprobe_busy_end(); } NOKPROBE_SYMBOL(kprobe_flush_task); static inline void free_rp_inst(struct kretprobe *rp) { struct kretprobe_instance *ri; struct hlist_node *next; hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { hlist_del(&ri->hlist); kfree(ri); } } static void cleanup_rp_inst(struct kretprobe *rp) { unsigned long flags, hash; struct kretprobe_instance *ri; struct hlist_node *next; struct hlist_head *head; /* To avoid recursive kretprobe by NMI, set kprobe busy here */ kprobe_busy_begin(); for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { kretprobe_table_lock(hash, &flags); head = &kretprobe_inst_table[hash]; hlist_for_each_entry_safe(ri, next, head, hlist) { if (ri->rp == rp) ri->rp = NULL; } kretprobe_table_unlock(hash, &flags); } kprobe_busy_end(); free_rp_inst(rp); } NOKPROBE_SYMBOL(cleanup_rp_inst); /* Add the new probe to ap->list */ static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) { if (p->post_handler) unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ list_add_rcu(&p->list, &ap->list); if (p->post_handler && !ap->post_handler) ap->post_handler = aggr_post_handler; return 0; } /* * Fill in the required fields of the "manager kprobe". Replace the * earlier kprobe in the hlist with the manager kprobe */ static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) { /* Copy p's insn slot to ap */ copy_kprobe(p, ap); flush_insn_slot(ap); ap->addr = p->addr; ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; ap->pre_handler = aggr_pre_handler; ap->fault_handler = aggr_fault_handler; /* We don't care the kprobe which has gone. */ if (p->post_handler && !kprobe_gone(p)) ap->post_handler = aggr_post_handler; INIT_LIST_HEAD(&ap->list); INIT_HLIST_NODE(&ap->hlist); list_add_rcu(&p->list, &ap->list); hlist_replace_rcu(&p->hlist, &ap->hlist); } /* * This is the second or subsequent kprobe at the address - handle * the intricacies */ static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) { int ret = 0; struct kprobe *ap = orig_p; cpus_read_lock(); /* For preparing optimization, jump_label_text_reserved() is called */ jump_label_lock(); mutex_lock(&text_mutex); if (!kprobe_aggrprobe(orig_p)) { /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ ap = alloc_aggr_kprobe(orig_p); if (!ap) { ret = -ENOMEM; goto out; } init_aggr_kprobe(ap, orig_p); } else if (kprobe_unused(ap)) { /* This probe is going to die. Rescue it */ ret = reuse_unused_kprobe(ap); if (ret) goto out; } if (kprobe_gone(ap)) { /* * Attempting to insert new probe at the same location that * had a probe in the module vaddr area which already * freed. So, the instruction slot has already been * released. We need a new slot for the new probe. */ ret = arch_prepare_kprobe(ap); if (ret) /* * Even if fail to allocate new slot, don't need to * free aggr_probe. It will be used next time, or * freed by unregister_kprobe. */ goto out; /* Prepare optimized instructions if possible. */ prepare_optimized_kprobe(ap); /* * Clear gone flag to prevent allocating new slot again, and * set disabled flag because it is not armed yet. */ ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) | KPROBE_FLAG_DISABLED; } /* Copy ap's insn slot to p */ copy_kprobe(ap, p); ret = add_new_kprobe(ap, p); out: mutex_unlock(&text_mutex); jump_label_unlock(); cpus_read_unlock(); if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { ap->flags &= ~KPROBE_FLAG_DISABLED; if (!kprobes_all_disarmed) { /* Arm the breakpoint again. */ ret = arm_kprobe(ap); if (ret) { ap->flags |= KPROBE_FLAG_DISABLED; list_del_rcu(&p->list); synchronize_rcu(); } } } return ret; } bool __weak arch_within_kprobe_blacklist(unsigned long addr) { /* The __kprobes marked functions and entry code must not be probed */ return addr >= (unsigned long)__kprobes_text_start && addr < (unsigned long)__kprobes_text_end; } static bool __within_kprobe_blacklist(unsigned long addr) { struct kprobe_blacklist_entry *ent; if (arch_within_kprobe_blacklist(addr)) return true; /* * If there exists a kprobe_blacklist, verify and * fail any probe registration in the prohibited area */ list_for_each_entry(ent, &kprobe_blacklist, list) { if (addr >= ent->start_addr && addr < ent->end_addr) return true; } return false; } bool within_kprobe_blacklist(unsigned long addr) { char symname[KSYM_NAME_LEN], *p; if (__within_kprobe_blacklist(addr)) return true; /* Check if the address is on a suffixed-symbol */ if (!lookup_symbol_name(addr, symname)) { p = strchr(symname, '.'); if (!p) return false; *p = '\0'; addr = (unsigned long)kprobe_lookup_name(symname, 0); if (addr) return __within_kprobe_blacklist(addr); } return false; } /* * If we have a symbol_name argument, look it up and add the offset field * to it. This way, we can specify a relative address to a symbol. * This returns encoded errors if it fails to look up symbol or invalid * combination of parameters. */ static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name, unsigned int offset) { if ((symbol_name && addr) || (!symbol_name && !addr)) goto invalid; if (symbol_name) { addr = kprobe_lookup_name(symbol_name, offset); if (!addr) return ERR_PTR(-ENOENT); } addr = (kprobe_opcode_t *)(((char *)addr) + offset); if (addr) return addr; invalid: return ERR_PTR(-EINVAL); } static kprobe_opcode_t *kprobe_addr(struct kprobe *p) { return _kprobe_addr(p->addr, p->symbol_name, p->offset); } /* Check passed kprobe is valid and return kprobe in kprobe_table. */ static struct kprobe *__get_valid_kprobe(struct kprobe *p) { struct kprobe *ap, *list_p; lockdep_assert_held(&kprobe_mutex); ap = get_kprobe(p->addr); if (unlikely(!ap)) return NULL; if (p != ap) { list_for_each_entry(list_p, &ap->list, list) if (list_p == p) /* kprobe p is a valid probe */ goto valid; return NULL; } valid: return ap; } /* Return error if the kprobe is being re-registered */ static inline int check_kprobe_rereg(struct kprobe *p) { int ret = 0; mutex_lock(&kprobe_mutex); if (__get_valid_kprobe(p)) ret = -EINVAL; mutex_unlock(&kprobe_mutex); return ret; } int __weak arch_check_ftrace_location(struct kprobe *p) { unsigned long ftrace_addr; ftrace_addr = ftrace_location((unsigned long)p->addr); if (ftrace_addr) { #ifdef CONFIG_KPROBES_ON_FTRACE /* Given address is not on the instruction boundary */ if ((unsigned long)p->addr != ftrace_addr) return -EILSEQ; p->flags |= KPROBE_FLAG_FTRACE; #else /* !CONFIG_KPROBES_ON_FTRACE */ return -EINVAL; #endif } return 0; } static int check_kprobe_address_safe(struct kprobe *p, struct module **probed_mod) { int ret; ret = arch_check_ftrace_location(p); if (ret) return ret; jump_label_lock(); preempt_disable(); /* Ensure it is not in reserved area nor out of text */ if (!kernel_text_address((unsigned long) p->addr) || within_kprobe_blacklist((unsigned long) p->addr) || jump_label_text_reserved(p->addr, p->addr) || static_call_text_reserved(p->addr, p->addr) || find_bug((unsigned long)p->addr)) { ret = -EINVAL; goto out; } /* Check if are we probing a module */ *probed_mod = __module_text_address((unsigned long) p->addr); if (*probed_mod) { /* * We must hold a refcount of the probed module while updating * its code to prohibit unexpected unloading. */ if (unlikely(!try_module_get(*probed_mod))) { ret = -ENOENT; goto out; } /* * If the module freed .init.text, we couldn't insert * kprobes in there. */ if (within_module_init((unsigned long)p->addr, *probed_mod) && (*probed_mod)->state != MODULE_STATE_COMING) { module_put(*probed_mod); *probed_mod = NULL; ret = -ENOENT; } } out: preempt_enable(); jump_label_unlock(); return ret; } int register_kprobe(struct kprobe *p) { int ret; struct kprobe *old_p; struct module *probed_mod; kprobe_opcode_t *addr; /* Adjust probe address from symbol */ addr = kprobe_addr(p); if (IS_ERR(addr)) return PTR_ERR(addr); p->addr = addr; ret = check_kprobe_rereg(p); if (ret) return ret; /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ p->flags &= KPROBE_FLAG_DISABLED; p->nmissed = 0; INIT_LIST_HEAD(&p->list); ret = check_kprobe_address_safe(p, &probed_mod); if (ret) return ret; mutex_lock(&kprobe_mutex); old_p = get_kprobe(p->addr); if (old_p) { /* Since this may unoptimize old_p, locking text_mutex. */ ret = register_aggr_kprobe(old_p, p); goto out; } cpus_read_lock(); /* Prevent text modification */ mutex_lock(&text_mutex); ret = prepare_kprobe(p); mutex_unlock(&text_mutex); cpus_read_unlock(); if (ret) goto out; INIT_HLIST_NODE(&p->hlist); hlist_add_head_rcu(&p->hlist, &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); if (!kprobes_all_disarmed && !kprobe_disabled(p)) { ret = arm_kprobe(p); if (ret) { hlist_del_rcu(&p->hlist); synchronize_rcu(); goto out; } } /* Try to optimize kprobe */ try_to_optimize_kprobe(p); out: mutex_unlock(&kprobe_mutex); if (probed_mod) module_put(probed_mod); return ret; } EXPORT_SYMBOL_GPL(register_kprobe); /* Check if all probes on the aggrprobe are disabled */ static int aggr_kprobe_disabled(struct kprobe *ap) { struct kprobe *kp; lockdep_assert_held(&kprobe_mutex); list_for_each_entry(kp, &ap->list, list) if (!kprobe_disabled(kp)) /* * There is an active probe on the list. * We can't disable this ap. */ return 0; return 1; } /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ static struct kprobe *__disable_kprobe(struct kprobe *p) { struct kprobe *orig_p; int ret; /* Get an original kprobe for return */ orig_p = __get_valid_kprobe(p); if (unlikely(orig_p == NULL)) return ERR_PTR(-EINVAL); if (!kprobe_disabled(p)) { /* Disable probe if it is a child probe */ if (p != orig_p) p->flags |= KPROBE_FLAG_DISABLED; /* Try to disarm and disable this/parent probe */ if (p == orig_p || aggr_kprobe_disabled(orig_p)) { /* * If kprobes_all_disarmed is set, orig_p * should have already been disarmed, so * skip unneed disarming process. */ if (!kprobes_all_disarmed) { ret = disarm_kprobe(orig_p, true); if (ret) { p->flags &= ~KPROBE_FLAG_DISABLED; return ERR_PTR(ret); } } orig_p->flags |= KPROBE_FLAG_DISABLED; } } return orig_p; } /* * Unregister a kprobe without a scheduler synchronization. */ static int __unregister_kprobe_top(struct kprobe *p) { struct kprobe *ap, *list_p; /* Disable kprobe. This will disarm it if needed. */ ap = __disable_kprobe(p); if (IS_ERR(ap)) return PTR_ERR(ap); if (ap == p) /* * This probe is an independent(and non-optimized) kprobe * (not an aggrprobe). Remove from the hash list. */ goto disarmed; /* Following process expects this probe is an aggrprobe */ WARN_ON(!kprobe_aggrprobe(ap)); if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) /* * !disarmed could be happen if the probe is under delayed * unoptimizing. */ goto disarmed; else { /* If disabling probe has special handlers, update aggrprobe */ if (p->post_handler && !kprobe_gone(p)) { list_for_each_entry(list_p, &ap->list, list) { if ((list_p != p) && (list_p->post_handler)) goto noclean; } ap->post_handler = NULL; } noclean: /* * Remove from the aggrprobe: this path will do nothing in * __unregister_kprobe_bottom(). */ list_del_rcu(&p->list); if (!kprobe_disabled(ap) && !kprobes_all_disarmed) /* * Try to optimize this probe again, because post * handler may have been changed. */ optimize_kprobe(ap); } return 0; disarmed: hlist_del_rcu(&ap->hlist); return 0; } static void __unregister_kprobe_bottom(struct kprobe *p) { struct kprobe *ap; if (list_empty(&p->list)) /* This is an independent kprobe */ arch_remove_kprobe(p); else if (list_is_singular(&p->list)) { /* This is the last child of an aggrprobe */ ap = list_entry(p->list.next, struct kprobe, list); list_del(&p->list); free_aggr_kprobe(ap); } /* Otherwise, do nothing. */ } int register_kprobes(struct kprobe **kps, int num) { int i, ret = 0; if (num <= 0) return -EINVAL; for (i = 0; i < num; i++) { ret = register_kprobe(kps[i]); if (ret < 0) { if (i > 0) unregister_kprobes(kps, i); break; } } return ret; } EXPORT_SYMBOL_GPL(register_kprobes); void unregister_kprobe(struct kprobe *p) { unregister_kprobes(&p, 1); } EXPORT_SYMBOL_GPL(unregister_kprobe); void unregister_kprobes(struct kprobe **kps, int num) { int i; if (num <= 0) return; mutex_lock(&kprobe_mutex); for (i = 0; i < num; i++) if (__unregister_kprobe_top(kps[i]) < 0) kps[i]->addr = NULL; mutex_unlock(&kprobe_mutex); synchronize_rcu(); for (i = 0; i < num; i++) if (kps[i]->addr) __unregister_kprobe_bottom(kps[i]); } EXPORT_SYMBOL_GPL(unregister_kprobes); int __weak kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { return NOTIFY_DONE; } NOKPROBE_SYMBOL(kprobe_exceptions_notify); static struct notifier_block kprobe_exceptions_nb = { .notifier_call = kprobe_exceptions_notify, .priority = 0x7fffffff /* we need to be notified first */ }; unsigned long __weak arch_deref_entry_point(void *entry) { return (unsigned long)entry; } #ifdef CONFIG_KRETPROBES unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, void *trampoline_address, void *frame_pointer) { struct kretprobe_instance *ri = NULL, *last = NULL; struct hlist_head *head; struct hlist_node *tmp; unsigned long flags; kprobe_opcode_t *correct_ret_addr = NULL; bool skipped = false; kretprobe_hash_lock(current, &head, &flags); /* * It is possible to have multiple instances associated with a given * task either because multiple functions in the call path have * return probes installed on them, and/or more than one * return probe was registered for a target function. * * We can handle this because: * - instances are always pushed into the head of the list * - when multiple return probes are registered for the same * function, the (chronologically) first instance's ret_addr * will be the real return address, and all the rest will * point to kretprobe_trampoline. */ hlist_for_each_entry(ri, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; /* * Return probes must be pushed on this hash list correct * order (same as return order) so that it can be popped * correctly. However, if we find it is pushed it incorrect * order, this means we find a function which should not be * probed, because the wrong order entry is pushed on the * path of processing other kretprobe itself. */ if (ri->fp != frame_pointer) { if (!skipped) pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n"); skipped = true; continue; } correct_ret_addr = ri->ret_addr; if (skipped) pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n", ri->rp->kp.addr); if (correct_ret_addr != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } BUG_ON(!correct_ret_addr || (correct_ret_addr == trampoline_address)); last = ri; hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; if (ri->fp != frame_pointer) continue; if (ri->rp && ri->rp->handler) { struct kprobe *prev = kprobe_running(); __this_cpu_write(current_kprobe, &ri->rp->kp); ri->ret_addr = correct_ret_addr; ri->rp->handler(ri, regs); __this_cpu_write(current_kprobe, prev); } recycle_rp_inst(ri); if (ri == last) break; } kretprobe_hash_unlock(current, &flags); return (unsigned long)correct_ret_addr; } NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) /* * This kprobe pre_handler is registered with every kretprobe. When probe * hits it will set up the return probe. */ static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) { struct kretprobe *rp = container_of(p, struct kretprobe, kp); unsigned long hash, flags = 0; struct kretprobe_instance *ri; /* TODO: consider to only swap the RA after the last pre_handler fired */ hash = hash_ptr(current, KPROBE_HASH_BITS); /* * Nested is a workaround that will soon not be needed. * There's other protections that make sure the same lock * is not taken on the same CPU that lockdep is unaware of. */ raw_spin_lock_irqsave_nested(&rp->lock, flags, 1); if (!hlist_empty(&rp->free_instances)) { ri = hlist_entry(rp->free_instances.first, struct kretprobe_instance, hlist); hlist_del(&ri->hlist); raw_spin_unlock_irqrestore(&rp->lock, flags); ri->rp = rp; ri->task = current; if (rp->entry_handler && rp->entry_handler(ri, regs)) { raw_spin_lock_irqsave_nested(&rp->lock, flags, 1); hlist_add_head(&ri->hlist, &rp->free_instances); raw_spin_unlock_irqrestore(&rp->lock, flags); return 0; } arch_prepare_kretprobe(ri, regs); /* XXX(hch): why is there no hlist_move_head? */ INIT_HLIST_NODE(&ri->hlist); kretprobe_table_lock(hash, &flags); hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); kretprobe_table_unlock(hash, &flags); } else { rp->nmissed++; raw_spin_unlock_irqrestore(&rp->lock, flags); } return 0; } NOKPROBE_SYMBOL(pre_handler_kretprobe); bool __weak arch_kprobe_on_func_entry(unsigned long offset) { return !offset; } /** * kprobe_on_func_entry() -- check whether given address is function entry * @addr: Target address * @sym: Target symbol name * @offset: The offset from the symbol or the address * * This checks whether the given @addr+@offset or @sym+@offset is on the * function entry address or not. * This returns 0 if it is the function entry, or -EINVAL if it is not. * And also it returns -ENOENT if it fails the symbol or address lookup. * Caller must pass @addr or @sym (either one must be NULL), or this * returns -EINVAL. */ int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) { kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); if (IS_ERR(kp_addr)) return PTR_ERR(kp_addr); if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset)) return -ENOENT; if (!arch_kprobe_on_func_entry(offset)) return -EINVAL; return 0; } int register_kretprobe(struct kretprobe *rp) { int ret; struct kretprobe_instance *inst; int i; void *addr; ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); if (ret) return ret; /* If only rp->kp.addr is specified, check reregistering kprobes */ if (rp->kp.addr && check_kprobe_rereg(&rp->kp)) return -EINVAL; if (kretprobe_blacklist_size) { addr = kprobe_addr(&rp->kp); if (IS_ERR(addr)) return PTR_ERR(addr); for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { if (kretprobe_blacklist[i].addr == addr) return -EINVAL; } } rp->kp.pre_handler = pre_handler_kretprobe; rp->kp.post_handler = NULL; rp->kp.fault_handler = NULL; /* Pre-allocate memory for max kretprobe instances */ if (rp->maxactive <= 0) { #ifdef CONFIG_PREEMPTION rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); #else rp->maxactive = num_possible_cpus(); #endif } raw_spin_lock_init(&rp->lock); INIT_HLIST_HEAD(&rp->free_instances); for (i = 0; i < rp->maxactive; i++) { inst = kmalloc(sizeof(struct kretprobe_instance) + rp->data_size, GFP_KERNEL); if (inst == NULL) { free_rp_inst(rp); return -ENOMEM; } INIT_HLIST_NODE(&inst->hlist); hlist_add_head(&inst->hlist, &rp->free_instances); } rp->nmissed = 0; /* Establish function entry probe point */ ret = register_kprobe(&rp->kp); if (ret != 0) free_rp_inst(rp); return ret; } EXPORT_SYMBOL_GPL(register_kretprobe); int register_kretprobes(struct kretprobe **rps, int num) { int ret = 0, i; if (num <= 0) return -EINVAL; for (i = 0; i < num; i++) { ret = register_kretprobe(rps[i]); if (ret < 0) { if (i > 0) unregister_kretprobes(rps, i); break; } } return ret; } EXPORT_SYMBOL_GPL(register_kretprobes); void unregister_kretprobe(struct kretprobe *rp) { unregister_kretprobes(&rp, 1); } EXPORT_SYMBOL_GPL(unregister_kretprobe); void unregister_kretprobes(struct kretprobe **rps, int num) { int i; if (num <= 0) return; mutex_lock(&kprobe_mutex); for (i = 0; i < num; i++) if (__unregister_kprobe_top(&rps[i]->kp) < 0) rps[i]->kp.addr = NULL; mutex_unlock(&kprobe_mutex); synchronize_rcu(); for (i = 0; i < num; i++) { if (rps[i]->kp.addr) { __unregister_kprobe_bottom(&rps[i]->kp); cleanup_rp_inst(rps[i]); } } } EXPORT_SYMBOL_GPL(unregister_kretprobes); #else /* CONFIG_KRETPROBES */ int register_kretprobe(struct kretprobe *rp) { return -ENOSYS; } EXPORT_SYMBOL_GPL(register_kretprobe); int register_kretprobes(struct kretprobe **rps, int num) { return -ENOSYS; } EXPORT_SYMBOL_GPL(register_kretprobes); void unregister_kretprobe(struct kretprobe *rp) { } EXPORT_SYMBOL_GPL(unregister_kretprobe); void unregister_kretprobes(struct kretprobe **rps, int num) { } EXPORT_SYMBOL_GPL(unregister_kretprobes); static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) { return 0; } NOKPROBE_SYMBOL(pre_handler_kretprobe); #endif /* CONFIG_KRETPROBES */ /* Set the kprobe gone and remove its instruction buffer. */ static void kill_kprobe(struct kprobe *p) { struct kprobe *kp; lockdep_assert_held(&kprobe_mutex); if (WARN_ON_ONCE(kprobe_gone(p))) return; p->flags |= KPROBE_FLAG_GONE; if (kprobe_aggrprobe(p)) { /* * If this is an aggr_kprobe, we have to list all the * chained probes and mark them GONE. */ list_for_each_entry(kp, &p->list, list) kp->flags |= KPROBE_FLAG_GONE; p->post_handler = NULL; kill_optimized_kprobe(p); } /* * Here, we can remove insn_slot safely, because no thread calls * the original probed function (which will be freed soon) any more. */ arch_remove_kprobe(p); /* * The module is going away. We should disarm the kprobe which * is using ftrace, because ftrace framework is still available at * MODULE_STATE_GOING notification. */ if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) disarm_kprobe_ftrace(p); } /* Disable one kprobe */ int disable_kprobe(struct kprobe *kp) { int ret = 0; struct kprobe *p; mutex_lock(&kprobe_mutex); /* Disable this kprobe */ p = __disable_kprobe(kp); if (IS_ERR(p)) ret = PTR_ERR(p); mutex_unlock(&kprobe_mutex); return ret; } EXPORT_SYMBOL_GPL(disable_kprobe); /* Enable one kprobe */ int enable_kprobe(struct kprobe *kp) { int ret = 0; struct kprobe *p; mutex_lock(&kprobe_mutex); /* Check whether specified probe is valid. */ p = __get_valid_kprobe(kp); if (unlikely(p == NULL)) { ret = -EINVAL; goto out; } if (kprobe_gone(kp)) { /* This kprobe has gone, we couldn't enable it. */ ret = -EINVAL; goto out; } if (p != kp) kp->flags &= ~KPROBE_FLAG_DISABLED; if (!kprobes_all_disarmed && kprobe_disabled(p)) { p->flags &= ~KPROBE_FLAG_DISABLED; ret = arm_kprobe(p); if (ret) p->flags |= KPROBE_FLAG_DISABLED; } out: mutex_unlock(&kprobe_mutex); return ret; } EXPORT_SYMBOL_GPL(enable_kprobe); /* Caller must NOT call this in usual path. This is only for critical case */ void dump_kprobe(struct kprobe *kp) { pr_err("Dumping kprobe:\n"); pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", kp->symbol_name, kp->offset, kp->addr); } NOKPROBE_SYMBOL(dump_kprobe); int kprobe_add_ksym_blacklist(unsigned long entry) { struct kprobe_blacklist_entry *ent; unsigned long offset = 0, size = 0; if (!kernel_text_address(entry) || !kallsyms_lookup_size_offset(entry, &size, &offset)) return -EINVAL; ent = kmalloc(sizeof(*ent), GFP_KERNEL); if (!ent) return -ENOMEM; ent->start_addr = entry; ent->end_addr = entry + size; INIT_LIST_HEAD(&ent->list); list_add_tail(&ent->list, &kprobe_blacklist); return (int)size; } /* Add all symbols in given area into kprobe blacklist */ int kprobe_add_area_blacklist(unsigned long start, unsigned long end) { unsigned long entry; int ret = 0; for (entry = start; entry < end; entry += ret) { ret = kprobe_add_ksym_blacklist(entry); if (ret < 0) return ret; if (ret == 0) /* In case of alias symbol */ ret = 1; } return 0; } /* Remove all symbols in given area from kprobe blacklist */ static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) { struct kprobe_blacklist_entry *ent, *n; list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { if (ent->start_addr < start || ent->start_addr >= end) continue; list_del(&ent->list); kfree(ent); } } static void kprobe_remove_ksym_blacklist(unsigned long entry) { kprobe_remove_area_blacklist(entry, entry + 1); } int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, char *type, char *sym) { return -ERANGE; } int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym) { #ifdef __ARCH_WANT_KPROBES_INSN_SLOT if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) return 0; #ifdef CONFIG_OPTPROBES if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) return 0; #endif #endif if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) return 0; return -ERANGE; } int __init __weak arch_populate_kprobe_blacklist(void) { return 0; } /* * Lookup and populate the kprobe_blacklist. * * Unlike the kretprobe blacklist, we'll need to determine * the range of addresses that belong to the said functions, * since a kprobe need not necessarily be at the beginning * of a function. */ static int __init populate_kprobe_blacklist(unsigned long *start, unsigned long *end) { unsigned long entry; unsigned long *iter; int ret; for (iter = start; iter < end; iter++) { entry = arch_deref_entry_point((void *)*iter); ret = kprobe_add_ksym_blacklist(entry); if (ret == -EINVAL) continue; if (ret < 0) return ret; } /* Symbols in __kprobes_text are blacklisted */ ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, (unsigned long)__kprobes_text_end); if (ret) return ret; /* Symbols in noinstr section are blacklisted */ ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, (unsigned long)__noinstr_text_end); return ret ? : arch_populate_kprobe_blacklist(); } static void add_module_kprobe_blacklist(struct module *mod) { unsigned long start, end; int i; if (mod->kprobe_blacklist) { for (i = 0; i < mod->num_kprobe_blacklist; i++) kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); } start = (unsigned long)mod->kprobes_text_start; if (start) { end = start + mod->kprobes_text_size; kprobe_add_area_blacklist(start, end); } start = (unsigned long)mod->noinstr_text_start; if (start) { end = start + mod->noinstr_text_size; kprobe_add_area_blacklist(start, end); } } static void remove_module_kprobe_blacklist(struct module *mod) { unsigned long start, end; int i; if (mod->kprobe_blacklist) { for (i = 0; i < mod->num_kprobe_blacklist; i++) kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); } start = (unsigned long)mod->kprobes_text_start; if (start) { end = start + mod->kprobes_text_size; kprobe_remove_area_blacklist(start, end); } start = (unsigned long)mod->noinstr_text_start; if (start) { end = start + mod->noinstr_text_size; kprobe_remove_area_blacklist(start, end); } } /* Module notifier call back, checking kprobes on the module */ static int kprobes_module_callback(struct notifier_block *nb, unsigned long val, void *data) { struct module *mod = data; struct hlist_head *head; struct kprobe *p; unsigned int i; int checkcore = (val == MODULE_STATE_GOING); if (val == MODULE_STATE_COMING) { mutex_lock(&kprobe_mutex); add_module_kprobe_blacklist(mod); mutex_unlock(&kprobe_mutex); } if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) return NOTIFY_DONE; /* * When MODULE_STATE_GOING was notified, both of module .text and * .init.text sections would be freed. When MODULE_STATE_LIVE was * notified, only .init.text section would be freed. We need to * disable kprobes which have been inserted in the sections. */ mutex_lock(&kprobe_mutex); for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry(p, head, hlist) { if (kprobe_gone(p)) continue; if (within_module_init((unsigned long)p->addr, mod) || (checkcore && within_module_core((unsigned long)p->addr, mod))) { /* * The vaddr this probe is installed will soon * be vfreed buy not synced to disk. Hence, * disarming the breakpoint isn't needed. * * Note, this will also move any optimized probes * that are pending to be removed from their * corresponding lists to the freeing_list and * will not be touched by the delayed * kprobe_optimizer work handler. */ kill_kprobe(p); } } } if (val == MODULE_STATE_GOING) remove_module_kprobe_blacklist(mod); mutex_unlock(&kprobe_mutex); return NOTIFY_DONE; } static struct notifier_block kprobe_module_nb = { .notifier_call = kprobes_module_callback, .priority = 0 }; /* Markers of _kprobe_blacklist section */ extern unsigned long __start_kprobe_blacklist[]; extern unsigned long __stop_kprobe_blacklist[]; void kprobe_free_init_mem(void) { void *start = (void *)(&__init_begin); void *end = (void *)(&__init_end); struct hlist_head *head; struct kprobe *p; int i; mutex_lock(&kprobe_mutex); /* Kill all kprobes on initmem */ for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry(p, head, hlist) { if (start <= (void *)p->addr && (void *)p->addr < end) kill_kprobe(p); } } mutex_unlock(&kprobe_mutex); } static int __init init_kprobes(void) { int i, err = 0; /* FIXME allocate the probe table, currently defined statically */ /* initialize all list heads */ for (i = 0; i < KPROBE_TABLE_SIZE; i++) { INIT_HLIST_HEAD(&kprobe_table[i]); INIT_HLIST_HEAD(&kretprobe_inst_table[i]); raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); } err = populate_kprobe_blacklist(__start_kprobe_blacklist, __stop_kprobe_blacklist); if (err) { pr_err("kprobes: failed to populate blacklist: %d\n", err); pr_err("Please take care of using kprobes.\n"); } if (kretprobe_blacklist_size) { /* lookup the function address from its name */ for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { kretprobe_blacklist[i].addr = kprobe_lookup_name(kretprobe_blacklist[i].name, 0); if (!kretprobe_blacklist[i].addr) printk("kretprobe: lookup failed: %s\n", kretprobe_blacklist[i].name); } } /* By default, kprobes are armed */ kprobes_all_disarmed = false; #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) /* Init kprobe_optinsn_slots for allocation */ kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; #endif err = arch_init_kprobes(); if (!err) err = register_die_notifier(&kprobe_exceptions_nb); if (!err) err = register_module_notifier(&kprobe_module_nb); kprobes_initialized = (err == 0); if (!err) init_test_probes(); return err; } early_initcall(init_kprobes); #if defined(CONFIG_OPTPROBES) static int __init init_optprobes(void) { /* * Enable kprobe optimization - this kicks the optimizer which * depends on synchronize_rcu_tasks() and ksoftirqd, that is * not spawned in early initcall. So delay the optimization. */ optimize_all_kprobes(); return 0; } subsys_initcall(init_optprobes); #endif #ifdef CONFIG_DEBUG_FS static void report_probe(struct seq_file *pi, struct kprobe *p, const char *sym, int offset, char *modname, struct kprobe *pp) { char *kprobe_type; void *addr = p->addr; if (p->pre_handler == pre_handler_kretprobe) kprobe_type = "r"; else kprobe_type = "k"; if (!kallsyms_show_value(pi->file->f_cred)) addr = NULL; if (sym) seq_printf(pi, "%px %s %s+0x%x %s ", addr, kprobe_type, sym, offset, (modname ? modname : " ")); else /* try to use %pS */ seq_printf(pi, "%px %s %pS ", addr, kprobe_type, p->addr); if (!pp) pp = p; seq_printf(pi, "%s%s%s%s\n", (kprobe_gone(p) ? "[GONE]" : ""), ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), (kprobe_ftrace(pp) ? "[FTRACE]" : "")); } static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) { return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; } static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) { (*pos)++; if (*pos >= KPROBE_TABLE_SIZE) return NULL; return pos; } static void kprobe_seq_stop(struct seq_file *f, void *v) { /* Nothing to do */ } static int show_kprobe_addr(struct seq_file *pi, void *v) { struct hlist_head *head; struct kprobe *p, *kp; const char *sym = NULL; unsigned int i = *(loff_t *) v; unsigned long offset = 0; char *modname, namebuf[KSYM_NAME_LEN]; head = &kprobe_table[i]; preempt_disable(); hlist_for_each_entry_rcu(p, head, hlist) { sym = kallsyms_lookup((unsigned long)p->addr, NULL, &offset, &modname, namebuf); if (kprobe_aggrprobe(p)) { list_for_each_entry_rcu(kp, &p->list, list) report_probe(pi, kp, sym, offset, modname, p); } else report_probe(pi, p, sym, offset, modname, NULL); } preempt_enable(); return 0; } static const struct seq_operations kprobes_sops = { .start = kprobe_seq_start, .next = kprobe_seq_next, .stop = kprobe_seq_stop, .show = show_kprobe_addr }; DEFINE_SEQ_ATTRIBUTE(kprobes); /* kprobes/blacklist -- shows which functions can not be probed */ static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) { mutex_lock(&kprobe_mutex); return seq_list_start(&kprobe_blacklist, *pos); } static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) { return seq_list_next(v, &kprobe_blacklist, pos); } static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) { struct kprobe_blacklist_entry *ent = list_entry(v, struct kprobe_blacklist_entry, list); /* * If /proc/kallsyms is not showing kernel address, we won't * show them here either. */ if (!kallsyms_show_value(m->file->f_cred)) seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, (void *)ent->start_addr); else seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, (void *)ent->end_addr, (void *)ent->start_addr); return 0; } static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) { mutex_unlock(&kprobe_mutex); } static const struct seq_operations kprobe_blacklist_sops = { .start = kprobe_blacklist_seq_start, .next = kprobe_blacklist_seq_next, .stop = kprobe_blacklist_seq_stop, .show = kprobe_blacklist_seq_show, }; DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); static int arm_all_kprobes(void) { struct hlist_head *head; struct kprobe *p; unsigned int i, total = 0, errors = 0; int err, ret = 0; mutex_lock(&kprobe_mutex); /* If kprobes are armed, just return */ if (!kprobes_all_disarmed) goto already_enabled; /* * optimize_kprobe() called by arm_kprobe() checks * kprobes_all_disarmed, so set kprobes_all_disarmed before * arm_kprobe. */ kprobes_all_disarmed = false; /* Arming kprobes doesn't optimize kprobe itself */ for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; /* Arm all kprobes on a best-effort basis */ hlist_for_each_entry(p, head, hlist) { if (!kprobe_disabled(p)) { err = arm_kprobe(p); if (err) { errors++; ret = err; } total++; } } } if (errors) pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", errors, total); else pr_info("Kprobes globally enabled\n"); already_enabled: mutex_unlock(&kprobe_mutex); return ret; } static int disarm_all_kprobes(void) { struct hlist_head *head; struct kprobe *p; unsigned int i, total = 0, errors = 0; int err, ret = 0; mutex_lock(&kprobe_mutex); /* If kprobes are already disarmed, just return */ if (kprobes_all_disarmed) { mutex_unlock(&kprobe_mutex); return 0; } kprobes_all_disarmed = true; for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; /* Disarm all kprobes on a best-effort basis */ hlist_for_each_entry(p, head, hlist) { if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { err = disarm_kprobe(p, false); if (err) { errors++; ret = err; } total++; } } } if (errors) pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", errors, total); else pr_info("Kprobes globally disabled\n"); mutex_unlock(&kprobe_mutex); /* Wait for disarming all kprobes by optimizer */ wait_for_kprobe_optimizer(); return ret; } /* * XXX: The debugfs bool file interface doesn't allow for callbacks * when the bool state is switched. We can reuse that facility when * available */ static ssize_t read_enabled_file_bool(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char buf[3]; if (!kprobes_all_disarmed) buf[0] = '1'; else buf[0] = '0'; buf[1] = '\n'; buf[2] = 0x00; return simple_read_from_buffer(user_buf, count, ppos, buf, 2); } static ssize_t write_enabled_file_bool(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { char buf[32]; size_t buf_size; int ret = 0; buf_size = min(count, (sizeof(buf)-1)); if (copy_from_user(buf, user_buf, buf_size)) return -EFAULT; buf[buf_size] = '\0'; switch (buf[0]) { case 'y': case 'Y': case '1': ret = arm_all_kprobes(); break; case 'n': case 'N': case '0': ret = disarm_all_kprobes(); break; default: return -EINVAL; } if (ret) return ret; return count; } static const struct file_operations fops_kp = { .read = read_enabled_file_bool, .write = write_enabled_file_bool, .llseek = default_llseek, }; static int __init debugfs_kprobe_init(void) { struct dentry *dir; unsigned int value = 1; dir = debugfs_create_dir("kprobes", NULL); debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); debugfs_create_file("enabled", 0600, dir, &value, &fops_kp); debugfs_create_file("blacklist", 0400, dir, NULL, &kprobe_blacklist_fops); return 0; } late_initcall(debugfs_kprobe_init); #endif /* CONFIG_DEBUG_FS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_LWTUNNEL_H #define __NET_LWTUNNEL_H 1 #include <linux/lwtunnel.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/types.h> #include <net/route.h> #define LWTUNNEL_HASH_BITS 7 #define LWTUNNEL_HASH_SIZE (1 << LWTUNNEL_HASH_BITS) /* lw tunnel state flags */ #define LWTUNNEL_STATE_OUTPUT_REDIRECT BIT(0) #define LWTUNNEL_STATE_INPUT_REDIRECT BIT(1) #define LWTUNNEL_STATE_XMIT_REDIRECT BIT(2) enum { LWTUNNEL_XMIT_DONE, LWTUNNEL_XMIT_CONTINUE, }; struct lwtunnel_state { __u16 type; __u16 flags; __u16 headroom; atomic_t refcnt; int (*orig_output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*orig_input)(struct sk_buff *); struct rcu_head rcu; __u8 data[]; }; struct lwtunnel_encap_ops { int (*build_state)(struct net *net, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack); void (*destroy_state)(struct lwtunnel_state *lws); int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*input)(struct sk_buff *skb); int (*fill_encap)(struct sk_buff *skb, struct lwtunnel_state *lwtstate); int (*get_encap_size)(struct lwtunnel_state *lwtstate); int (*cmp_encap)(struct lwtunnel_state *a, struct lwtunnel_state *b); int (*xmit)(struct sk_buff *skb); struct module *owner; }; #ifdef CONFIG_LWTUNNEL void lwtstate_free(struct lwtunnel_state *lws); static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { if (lws) atomic_inc(&lws->refcnt); return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { if (!lws) return; if (atomic_dec_and_test(&lws->refcnt)) lwtstate_free(lws); } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_OUTPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_INPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_XMIT_REDIRECT)) return true; return false; } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { if ((lwtunnel_xmit_redirect(lwtstate) || lwtunnel_output_redirect(lwtstate)) && lwtstate->headroom < mtu) return lwtstate->headroom; return 0; } int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack); int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack); int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack); int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr); int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate); struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len); int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b); int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb); int lwtunnel_input(struct sk_buff *skb); int lwtunnel_xmit(struct sk_buff *skb); int bpf_lwt_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len, bool ingress); static inline void lwtunnel_set_redirect(struct dst_entry *dst) { if (lwtunnel_output_redirect(dst->lwtstate)) { dst->lwtstate->orig_output = dst->output; dst->output = lwtunnel_output; } if (lwtunnel_input_redirect(dst->lwtstate)) { dst->lwtstate->orig_input = dst->input; dst->input = lwtunnel_input; } } #else static inline void lwtstate_free(struct lwtunnel_state *lws) { } static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline void lwtunnel_set_redirect(struct dst_entry *dst) { } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { return 0; } static inline int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "CONFIG_LWTUNNEL is not enabled in this kernel"); return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack) { /* return 0 since we are not walking attr looking for * RTA_ENCAP_TYPE attribute on nexthops. */ return 0; } static inline int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr) { return 0; } static inline int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate) { return 0; } static inline struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len) { return NULL; } static inline int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b) { return 0; } static inline int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_input(struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_xmit(struct sk_buff *skb) { return -EOPNOTSUPP; } #endif /* CONFIG_LWTUNNEL */ #define MODULE_ALIAS_RTNL_LWT(encap_type) MODULE_ALIAS("rtnl-lwt-" __stringify(encap_type)) #endif /* __NET_LWTUNNEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Fast and scalable bitmaps. * * Copyright (C) 2016 Facebook * Copyright (C) 2013-2014 Jens Axboe */ #ifndef __LINUX_SCALE_BITMAP_H #define __LINUX_SCALE_BITMAP_H #include <linux/kernel.h> #include <linux/slab.h> struct seq_file; /** * struct sbitmap_word - Word in a &struct sbitmap. */ struct sbitmap_word { /** * @depth: Number of bits being used in @word/@cleared */ unsigned long depth; /** * @word: word holding free bits */ unsigned long word ____cacheline_aligned_in_smp; /** * @cleared: word holding cleared bits */ unsigned long cleared ____cacheline_aligned_in_smp; /** * @swap_lock: Held while swapping word <-> cleared */ spinlock_t swap_lock; } ____cacheline_aligned_in_smp; /** * struct sbitmap - Scalable bitmap. * * A &struct sbitmap is spread over multiple cachelines to avoid ping-pong. This * trades off higher memory usage for better scalability. */ struct sbitmap { /** * @depth: Number of bits used in the whole bitmap. */ unsigned int depth; /** * @shift: log2(number of bits used per word) */ unsigned int shift; /** * @map_nr: Number of words (cachelines) being used for the bitmap. */ unsigned int map_nr; /** * @map: Allocated bitmap. */ struct sbitmap_word *map; }; #define SBQ_WAIT_QUEUES 8 #define SBQ_WAKE_BATCH 8 /** * struct sbq_wait_state - Wait queue in a &struct sbitmap_queue. */ struct sbq_wait_state { /** * @wait_cnt: Number of frees remaining before we wake up. */ atomic_t wait_cnt; /** * @wait: Wait queue. */ wait_queue_head_t wait; } ____cacheline_aligned_in_smp; /** * struct sbitmap_queue - Scalable bitmap with the added ability to wait on free * bits. * * A &struct sbitmap_queue uses multiple wait queues and rolling wakeups to * avoid contention on the wait queue spinlock. This ensures that we don't hit a * scalability wall when we run out of free bits and have to start putting tasks * to sleep. */ struct sbitmap_queue { /** * @sb: Scalable bitmap. */ struct sbitmap sb; /* * @alloc_hint: Cache of last successfully allocated or freed bit. * * This is per-cpu, which allows multiple users to stick to different * cachelines until the map is exhausted. */ unsigned int __percpu *alloc_hint; /** * @wake_batch: Number of bits which must be freed before we wake up any * waiters. */ unsigned int wake_batch; /** * @wake_index: Next wait queue in @ws to wake up. */ atomic_t wake_index; /** * @ws: Wait queues. */ struct sbq_wait_state *ws; /* * @ws_active: count of currently active ws waitqueues */ atomic_t ws_active; /** * @round_robin: Allocate bits in strict round-robin order. */ bool round_robin; /** * @min_shallow_depth: The minimum shallow depth which may be passed to * sbitmap_queue_get_shallow() or __sbitmap_queue_get_shallow(). */ unsigned int min_shallow_depth; }; /** * sbitmap_init_node() - Initialize a &struct sbitmap on a specific memory node. * @sb: Bitmap to initialize. * @depth: Number of bits to allocate. * @shift: Use 2^@shift bits per word in the bitmap; if a negative number if * given, a good default is chosen. * @flags: Allocation flags. * @node: Memory node to allocate on. * * Return: Zero on success or negative errno on failure. */ int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, gfp_t flags, int node); /** * sbitmap_free() - Free memory used by a &struct sbitmap. * @sb: Bitmap to free. */ static inline void sbitmap_free(struct sbitmap *sb) { kfree(sb->map); sb->map = NULL; } /** * sbitmap_resize() - Resize a &struct sbitmap. * @sb: Bitmap to resize. * @depth: New number of bits to resize to. * * Doesn't reallocate anything. It's up to the caller to ensure that the new * depth doesn't exceed the depth that the sb was initialized with. */ void sbitmap_resize(struct sbitmap *sb, unsigned int depth); /** * sbitmap_get() - Try to allocate a free bit from a &struct sbitmap. * @sb: Bitmap to allocate from. * @alloc_hint: Hint for where to start searching for a free bit. * @round_robin: If true, be stricter about allocation order; always allocate * starting from the last allocated bit. This is less efficient * than the default behavior (false). * * This operation provides acquire barrier semantics if it succeeds. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin); /** * sbitmap_get_shallow() - Try to allocate a free bit from a &struct sbitmap, * limiting the depth used from each word. * @sb: Bitmap to allocate from. * @alloc_hint: Hint for where to start searching for a free bit. * @shallow_depth: The maximum number of bits to allocate from a single word. * * This rather specific operation allows for having multiple users with * different allocation limits. E.g., there can be a high-priority class that * uses sbitmap_get() and a low-priority class that uses sbitmap_get_shallow() * with a @shallow_depth of (1 << (@sb->shift - 1)). Then, the low-priority * class can only allocate half of the total bits in the bitmap, preventing it * from starving out the high-priority class. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint, unsigned long shallow_depth); /** * sbitmap_any_bit_set() - Check for a set bit in a &struct sbitmap. * @sb: Bitmap to check. * * Return: true if any bit in the bitmap is set, false otherwise. */ bool sbitmap_any_bit_set(const struct sbitmap *sb); #define SB_NR_TO_INDEX(sb, bitnr) ((bitnr) >> (sb)->shift) #define SB_NR_TO_BIT(sb, bitnr) ((bitnr) & ((1U << (sb)->shift) - 1U)) typedef bool (*sb_for_each_fn)(struct sbitmap *, unsigned int, void *); /** * __sbitmap_for_each_set() - Iterate over each set bit in a &struct sbitmap. * @start: Where to start the iteration. * @sb: Bitmap to iterate over. * @fn: Callback. Should return true to continue or false to break early. * @data: Pointer to pass to callback. * * This is inline even though it's non-trivial so that the function calls to the * callback will hopefully get optimized away. */ static inline void __sbitmap_for_each_set(struct sbitmap *sb, unsigned int start, sb_for_each_fn fn, void *data) { unsigned int index; unsigned int nr; unsigned int scanned = 0; if (start >= sb->depth) start = 0; index = SB_NR_TO_INDEX(sb, start); nr = SB_NR_TO_BIT(sb, start); while (scanned < sb->depth) { unsigned long word; unsigned int depth = min_t(unsigned int, sb->map[index].depth - nr, sb->depth - scanned); scanned += depth; word = sb->map[index].word & ~sb->map[index].cleared; if (!word) goto next; /* * On the first iteration of the outer loop, we need to add the * bit offset back to the size of the word for find_next_bit(). * On all other iterations, nr is zero, so this is a noop. */ depth += nr; while (1) { nr = find_next_bit(&word, depth, nr); if (nr >= depth) break; if (!fn(sb, (index << sb->shift) + nr, data)) return; nr++; } next: nr = 0; if (++index >= sb->map_nr) index = 0; } } /** * sbitmap_for_each_set() - Iterate over each set bit in a &struct sbitmap. * @sb: Bitmap to iterate over. * @fn: Callback. Should return true to continue or false to break early. * @data: Pointer to pass to callback. */ static inline void sbitmap_for_each_set(struct sbitmap *sb, sb_for_each_fn fn, void *data) { __sbitmap_for_each_set(sb, 0, fn, data); } static inline unsigned long *__sbitmap_word(struct sbitmap *sb, unsigned int bitnr) { return &sb->map[SB_NR_TO_INDEX(sb, bitnr)].word; } /* Helpers equivalent to the operations in asm/bitops.h and linux/bitmap.h */ static inline void sbitmap_set_bit(struct sbitmap *sb, unsigned int bitnr) { set_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } static inline void sbitmap_clear_bit(struct sbitmap *sb, unsigned int bitnr) { clear_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } /* * This one is special, since it doesn't actually clear the bit, rather it * sets the corresponding bit in the ->cleared mask instead. Paired with * the caller doing sbitmap_deferred_clear() if a given index is full, which * will clear the previously freed entries in the corresponding ->word. */ static inline void sbitmap_deferred_clear_bit(struct sbitmap *sb, unsigned int bitnr) { unsigned long *addr = &sb->map[SB_NR_TO_INDEX(sb, bitnr)].cleared; set_bit(SB_NR_TO_BIT(sb, bitnr), addr); } static inline void sbitmap_clear_bit_unlock(struct sbitmap *sb, unsigned int bitnr) { clear_bit_unlock(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } static inline int sbitmap_test_bit(struct sbitmap *sb, unsigned int bitnr) { return test_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } /** * sbitmap_show() - Dump &struct sbitmap information to a &struct seq_file. * @sb: Bitmap to show. * @m: struct seq_file to write to. * * This is intended for debugging. The format may change at any time. */ void sbitmap_show(struct sbitmap *sb, struct seq_file *m); /** * sbitmap_bitmap_show() - Write a hex dump of a &struct sbitmap to a &struct * seq_file. * @sb: Bitmap to show. * @m: struct seq_file to write to. * * This is intended for debugging. The output isn't guaranteed to be internally * consistent. */ void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m); /** * sbitmap_queue_init_node() - Initialize a &struct sbitmap_queue on a specific * memory node. * @sbq: Bitmap queue to initialize. * @depth: See sbitmap_init_node(). * @shift: See sbitmap_init_node(). * @round_robin: See sbitmap_get(). * @flags: Allocation flags. * @node: Memory node to allocate on. * * Return: Zero on success or negative errno on failure. */ int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, int shift, bool round_robin, gfp_t flags, int node); /** * sbitmap_queue_free() - Free memory used by a &struct sbitmap_queue. * * @sbq: Bitmap queue to free. */ static inline void sbitmap_queue_free(struct sbitmap_queue *sbq) { kfree(sbq->ws); free_percpu(sbq->alloc_hint); sbitmap_free(&sbq->sb); } /** * sbitmap_queue_resize() - Resize a &struct sbitmap_queue. * @sbq: Bitmap queue to resize. * @depth: New number of bits to resize to. * * Like sbitmap_resize(), this doesn't reallocate anything. It has to do * some extra work on the &struct sbitmap_queue, so it's not safe to just * resize the underlying &struct sbitmap. */ void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth); /** * __sbitmap_queue_get() - Try to allocate a free bit from a &struct * sbitmap_queue with preemption already disabled. * @sbq: Bitmap queue to allocate from. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int __sbitmap_queue_get(struct sbitmap_queue *sbq); /** * __sbitmap_queue_get_shallow() - Try to allocate a free bit from a &struct * sbitmap_queue, limiting the depth used from each word, with preemption * already disabled. * @sbq: Bitmap queue to allocate from. * @shallow_depth: The maximum number of bits to allocate from a single word. * See sbitmap_get_shallow(). * * If you call this, make sure to call sbitmap_queue_min_shallow_depth() after * initializing @sbq. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, unsigned int shallow_depth); /** * sbitmap_queue_get() - Try to allocate a free bit from a &struct * sbitmap_queue. * @sbq: Bitmap queue to allocate from. * @cpu: Output parameter; will contain the CPU we ran on (e.g., to be passed to * sbitmap_queue_clear()). * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ static inline int sbitmap_queue_get(struct sbitmap_queue *sbq, unsigned int *cpu) { int nr; *cpu = get_cpu(); nr = __sbitmap_queue_get(sbq); put_cpu(); return nr; } /** * sbitmap_queue_get_shallow() - Try to allocate a free bit from a &struct * sbitmap_queue, limiting the depth used from each word. * @sbq: Bitmap queue to allocate from. * @cpu: Output parameter; will contain the CPU we ran on (e.g., to be passed to * sbitmap_queue_clear()). * @shallow_depth: The maximum number of bits to allocate from a single word. * See sbitmap_get_shallow(). * * If you call this, make sure to call sbitmap_queue_min_shallow_depth() after * initializing @sbq. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ static inline int sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, unsigned int *cpu, unsigned int shallow_depth) { int nr; *cpu = get_cpu(); nr = __sbitmap_queue_get_shallow(sbq, shallow_depth); put_cpu(); return nr; } /** * sbitmap_queue_min_shallow_depth() - Inform a &struct sbitmap_queue of the * minimum shallow depth that will be used. * @sbq: Bitmap queue in question. * @min_shallow_depth: The minimum shallow depth that will be passed to * sbitmap_queue_get_shallow() or __sbitmap_queue_get_shallow(). * * sbitmap_queue_clear() batches wakeups as an optimization. The batch size * depends on the depth of the bitmap. Since the shallow allocation functions * effectively operate with a different depth, the shallow depth must be taken * into account when calculating the batch size. This function must be called * with the minimum shallow depth that will be used. Failure to do so can result * in missed wakeups. */ void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, unsigned int min_shallow_depth); /** * sbitmap_queue_clear() - Free an allocated bit and wake up waiters on a * &struct sbitmap_queue. * @sbq: Bitmap to free from. * @nr: Bit number to free. * @cpu: CPU the bit was allocated on. */ void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, unsigned int cpu); static inline int sbq_index_inc(int index) { return (index + 1) & (SBQ_WAIT_QUEUES - 1); } static inline void sbq_index_atomic_inc(atomic_t *index) { int old = atomic_read(index); int new = sbq_index_inc(old); atomic_cmpxchg(index, old, new); } /** * sbq_wait_ptr() - Get the next wait queue to use for a &struct * sbitmap_queue. * @sbq: Bitmap queue to wait on. * @wait_index: A counter per "user" of @sbq. */ static inline struct sbq_wait_state *sbq_wait_ptr(struct sbitmap_queue *sbq, atomic_t *wait_index) { struct sbq_wait_state *ws; ws = &sbq->ws[atomic_read(wait_index)]; sbq_index_atomic_inc(wait_index); return ws; } /** * sbitmap_queue_wake_all() - Wake up everything waiting on a &struct * sbitmap_queue. * @sbq: Bitmap queue to wake up. */ void sbitmap_queue_wake_all(struct sbitmap_queue *sbq); /** * sbitmap_queue_wake_up() - Wake up some of waiters in one waitqueue * on a &struct sbitmap_queue. * @sbq: Bitmap queue to wake up. */ void sbitmap_queue_wake_up(struct sbitmap_queue *sbq); /** * sbitmap_queue_show() - Dump &struct sbitmap_queue information to a &struct * seq_file. * @sbq: Bitmap queue to show. * @m: struct seq_file to write to. * * This is intended for debugging. The format may change at any time. */ void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m); struct sbq_wait { struct sbitmap_queue *sbq; /* if set, sbq_wait is accounted */ struct wait_queue_entry wait; }; #define DEFINE_SBQ_WAIT(name) \ struct sbq_wait name = { \ .sbq = NULL, \ .wait = { \ .private = current, \ .func = autoremove_wake_function, \ .entry = LIST_HEAD_INIT((name).wait.entry), \ } \ } /* * Wrapper around prepare_to_wait_exclusive(), which maintains some extra * internal state. */ void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait, int state); /* * Must be paired with sbitmap_prepare_to_wait(). */ void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait); /* * Wrapper around add_wait_queue(), which maintains some extra internal state */ void sbitmap_add_wait_queue(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait); /* * Must be paired with sbitmap_add_wait_queue() */ void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait); #endif /* __LINUX_SCALE_BITMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CFG80211_RDEV_OPS #define __CFG80211_RDEV_OPS #include <linux/rtnetlink.h> #include <net/cfg80211.h> #include "core.h" #include "trace.h" static inline int rdev_suspend(struct cfg80211_registered_device *rdev, struct cfg80211_wowlan *wowlan) { int ret; trace_rdev_suspend(&rdev->wiphy, wowlan); ret = rdev->ops->suspend(&rdev->wiphy, wowlan); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_resume(struct cfg80211_registered_device *rdev) { int ret; trace_rdev_resume(&rdev->wiphy); ret = rdev->ops->resume(&rdev->wiphy); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_set_wakeup(struct cfg80211_registered_device *rdev, bool enabled) { trace_rdev_set_wakeup(&rdev->wiphy, enabled); rdev->ops->set_wakeup(&rdev->wiphy, enabled); trace_rdev_return_void(&rdev->wiphy); } static inline struct wireless_dev *rdev_add_virtual_intf(struct cfg80211_registered_device *rdev, char *name, unsigned char name_assign_type, enum nl80211_iftype type, struct vif_params *params) { struct wireless_dev *ret; trace_rdev_add_virtual_intf(&rdev->wiphy, name, type); ret = rdev->ops->add_virtual_intf(&rdev->wiphy, name, name_assign_type, type, params); trace_rdev_return_wdev(&rdev->wiphy, ret); return ret; } static inline int rdev_del_virtual_intf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { int ret; trace_rdev_del_virtual_intf(&rdev->wiphy, wdev); ret = rdev->ops->del_virtual_intf(&rdev->wiphy, wdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_virtual_intf(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype type, struct vif_params *params) { int ret; trace_rdev_change_virtual_intf(&rdev->wiphy, dev, type); ret = rdev->ops->change_virtual_intf(&rdev->wiphy, dev, type, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, struct key_params *params) { int ret; trace_rdev_add_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, params->mode); ret = rdev->ops->add_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback)(void *cookie, struct key_params*)) { int ret; trace_rdev_get_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); ret = rdev->ops->get_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, cookie, callback); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr) { int ret; trace_rdev_del_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); ret = rdev->ops->del_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool unicast, bool multicast) { int ret; trace_rdev_set_default_key(&rdev->wiphy, netdev, key_index, unicast, multicast); ret = rdev->ops->set_default_key(&rdev->wiphy, netdev, key_index, unicast, multicast); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_mgmt_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index) { int ret; trace_rdev_set_default_mgmt_key(&rdev->wiphy, netdev, key_index); ret = rdev->ops->set_default_mgmt_key(&rdev->wiphy, netdev, key_index); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_beacon_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index) { int ret; trace_rdev_set_default_beacon_key(&rdev->wiphy, netdev, key_index); ret = rdev->ops->set_default_beacon_key(&rdev->wiphy, netdev, key_index); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_start_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ap_settings *settings) { int ret; trace_rdev_start_ap(&rdev->wiphy, dev, settings); ret = rdev->ops->start_ap(&rdev->wiphy, dev, settings); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_beacon(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_beacon_data *info) { int ret; trace_rdev_change_beacon(&rdev->wiphy, dev, info); ret = rdev->ops->change_beacon(&rdev->wiphy, dev, info); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_stop_ap(&rdev->wiphy, dev); ret = rdev->ops->stop_ap(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_station(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *mac, struct station_parameters *params) { int ret; trace_rdev_add_station(&rdev->wiphy, dev, mac, params); ret = rdev->ops->add_station(&rdev->wiphy, dev, mac, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_station(struct cfg80211_registered_device *rdev, struct net_device *dev, struct station_del_parameters *params) { int ret; trace_rdev_del_station(&rdev->wiphy, dev, params); ret = rdev->ops->del_station(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_station(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *mac, struct station_parameters *params) { int ret; trace_rdev_change_station(&rdev->wiphy, dev, mac, params); ret = rdev->ops->change_station(&rdev->wiphy, dev, mac, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_station(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *mac, struct station_info *sinfo) { int ret; trace_rdev_get_station(&rdev->wiphy, dev, mac); ret = rdev->ops->get_station(&rdev->wiphy, dev, mac, sinfo); trace_rdev_return_int_station_info(&rdev->wiphy, ret, sinfo); return ret; } static inline int rdev_dump_station(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *mac, struct station_info *sinfo) { int ret; trace_rdev_dump_station(&rdev->wiphy, dev, idx, mac); ret = rdev->ops->dump_station(&rdev->wiphy, dev, idx, mac, sinfo); trace_rdev_return_int_station_info(&rdev->wiphy, ret, sinfo); return ret; } static inline int rdev_add_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop) { int ret; trace_rdev_add_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->add_mpath(&rdev->wiphy, dev, dst, next_hop); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst) { int ret; trace_rdev_del_mpath(&rdev->wiphy, dev, dst); ret = rdev->ops->del_mpath(&rdev->wiphy, dev, dst); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop) { int ret; trace_rdev_change_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->change_mpath(&rdev->wiphy, dev, dst, next_hop); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { int ret; trace_rdev_get_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->get_mpath(&rdev->wiphy, dev, dst, next_hop, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_get_mpp(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *mpp, struct mpath_info *pinfo) { int ret; trace_rdev_get_mpp(&rdev->wiphy, dev, dst, mpp); ret = rdev->ops->get_mpp(&rdev->wiphy, dev, dst, mpp, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_dump_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { int ret; trace_rdev_dump_mpath(&rdev->wiphy, dev, idx, dst, next_hop); ret = rdev->ops->dump_mpath(&rdev->wiphy, dev, idx, dst, next_hop, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_dump_mpp(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *dst, u8 *mpp, struct mpath_info *pinfo) { int ret; trace_rdev_dump_mpp(&rdev->wiphy, dev, idx, dst, mpp); ret = rdev->ops->dump_mpp(&rdev->wiphy, dev, idx, dst, mpp, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_get_mesh_config(struct cfg80211_registered_device *rdev, struct net_device *dev, struct mesh_config *conf) { int ret; trace_rdev_get_mesh_config(&rdev->wiphy, dev); ret = rdev->ops->get_mesh_config(&rdev->wiphy, dev, conf); trace_rdev_return_int_mesh_config(&rdev->wiphy, ret, conf); return ret; } static inline int rdev_update_mesh_config(struct cfg80211_registered_device *rdev, struct net_device *dev, u32 mask, const struct mesh_config *nconf) { int ret; trace_rdev_update_mesh_config(&rdev->wiphy, dev, mask, nconf); ret = rdev->ops->update_mesh_config(&rdev->wiphy, dev, mask, nconf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev, const struct mesh_config *conf, const struct mesh_setup *setup) { int ret; trace_rdev_join_mesh(&rdev->wiphy, dev, conf, setup); ret = rdev->ops->join_mesh(&rdev->wiphy, dev, conf, setup); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_mesh(&rdev->wiphy, dev); ret = rdev->ops->leave_mesh(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup) { int ret; trace_rdev_join_ocb(&rdev->wiphy, dev, setup); ret = rdev->ops->join_ocb(&rdev->wiphy, dev, setup); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_ocb(&rdev->wiphy, dev); ret = rdev->ops->leave_ocb(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_bss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct bss_parameters *params) { int ret; trace_rdev_change_bss(&rdev->wiphy, dev, params); ret = rdev->ops->change_bss(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_txq_params(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_txq_params *params) { int ret; trace_rdev_set_txq_params(&rdev->wiphy, dev, params); ret = rdev->ops->set_txq_params(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_libertas_set_mesh_channel(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan) { int ret; trace_rdev_libertas_set_mesh_channel(&rdev->wiphy, dev, chan); ret = rdev->ops->libertas_set_mesh_channel(&rdev->wiphy, dev, chan); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_monitor_channel(struct cfg80211_registered_device *rdev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_set_monitor_channel(&rdev->wiphy, chandef); ret = rdev->ops->set_monitor_channel(&rdev->wiphy, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_scan(struct cfg80211_registered_device *rdev, struct cfg80211_scan_request *request) { int ret; trace_rdev_scan(&rdev->wiphy, request); ret = rdev->ops->scan(&rdev->wiphy, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_abort_scan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_abort_scan(&rdev->wiphy, wdev); rdev->ops->abort_scan(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_auth_request *req) { int ret; trace_rdev_auth(&rdev->wiphy, dev, req); ret = rdev->ops->auth(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_assoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_assoc_request *req) { int ret; trace_rdev_assoc(&rdev->wiphy, dev, req); ret = rdev->ops->assoc(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_deauth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_deauth_request *req) { int ret; trace_rdev_deauth(&rdev->wiphy, dev, req); ret = rdev->ops->deauth(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_disassoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_disassoc_request *req) { int ret; trace_rdev_disassoc(&rdev->wiphy, dev, req); ret = rdev->ops->disassoc(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_connect(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *sme) { int ret; trace_rdev_connect(&rdev->wiphy, dev, sme); ret = rdev->ops->connect(&rdev->wiphy, dev, sme); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_update_connect_params(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *sme, u32 changed) { int ret; trace_rdev_update_connect_params(&rdev->wiphy, dev, sme, changed); ret = rdev->ops->update_connect_params(&rdev->wiphy, dev, sme, changed); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_disconnect(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 reason_code) { int ret; trace_rdev_disconnect(&rdev->wiphy, dev, reason_code); ret = rdev->ops->disconnect(&rdev->wiphy, dev, reason_code); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ibss_params *params) { int ret; trace_rdev_join_ibss(&rdev->wiphy, dev, params); ret = rdev->ops->join_ibss(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_ibss(&rdev->wiphy, dev); ret = rdev->ops->leave_ibss(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_wiphy_params(struct cfg80211_registered_device *rdev, u32 changed) { int ret; if (!rdev->ops->set_wiphy_params) return -EOPNOTSUPP; trace_rdev_set_wiphy_params(&rdev->wiphy, changed); ret = rdev->ops->set_wiphy_params(&rdev->wiphy, changed); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_tx_power(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, int mbm) { int ret; trace_rdev_set_tx_power(&rdev->wiphy, wdev, type, mbm); ret = rdev->ops->set_tx_power(&rdev->wiphy, wdev, type, mbm); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_tx_power(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, int *dbm) { int ret; trace_rdev_get_tx_power(&rdev->wiphy, wdev); ret = rdev->ops->get_tx_power(&rdev->wiphy, wdev, dbm); trace_rdev_return_int_int(&rdev->wiphy, ret, *dbm); return ret; } static inline int rdev_set_wds_peer(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr) { int ret; trace_rdev_set_wds_peer(&rdev->wiphy, dev, addr); ret = rdev->ops->set_wds_peer(&rdev->wiphy, dev, addr); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_multicast_to_unicast(struct cfg80211_registered_device *rdev, struct net_device *dev, const bool enabled) { int ret; trace_rdev_set_multicast_to_unicast(&rdev->wiphy, dev, enabled); ret = rdev->ops->set_multicast_to_unicast(&rdev->wiphy, dev, enabled); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_txq_stats(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_txq_stats *txqstats) { int ret; trace_rdev_get_txq_stats(&rdev->wiphy, wdev); ret = rdev->ops->get_txq_stats(&rdev->wiphy, wdev, txqstats); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_rfkill_poll(struct cfg80211_registered_device *rdev) { trace_rdev_rfkill_poll(&rdev->wiphy); rdev->ops->rfkill_poll(&rdev->wiphy); trace_rdev_return_void(&rdev->wiphy); } #ifdef CONFIG_NL80211_TESTMODE static inline int rdev_testmode_cmd(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, void *data, int len) { int ret; trace_rdev_testmode_cmd(&rdev->wiphy, wdev); ret = rdev->ops->testmode_cmd(&rdev->wiphy, wdev, data, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_testmode_dump(struct cfg80211_registered_device *rdev, struct sk_buff *skb, struct netlink_callback *cb, void *data, int len) { int ret; trace_rdev_testmode_dump(&rdev->wiphy); ret = rdev->ops->testmode_dump(&rdev->wiphy, skb, cb, data, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } #endif static inline int rdev_set_bitrate_mask(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, const struct cfg80211_bitrate_mask *mask) { int ret; trace_rdev_set_bitrate_mask(&rdev->wiphy, dev, peer, mask); ret = rdev->ops->set_bitrate_mask(&rdev->wiphy, dev, peer, mask); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_dump_survey(struct cfg80211_registered_device *rdev, struct net_device *netdev, int idx, struct survey_info *info) { int ret; trace_rdev_dump_survey(&rdev->wiphy, netdev, idx); ret = rdev->ops->dump_survey(&rdev->wiphy, netdev, idx, info); if (ret < 0) trace_rdev_return_int(&rdev->wiphy, ret); else trace_rdev_return_int_survey_info(&rdev->wiphy, ret, info); return ret; } static inline int rdev_set_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { int ret; trace_rdev_set_pmksa(&rdev->wiphy, netdev, pmksa); ret = rdev->ops->set_pmksa(&rdev->wiphy, netdev, pmksa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { int ret; trace_rdev_del_pmksa(&rdev->wiphy, netdev, pmksa); ret = rdev->ops->del_pmksa(&rdev->wiphy, netdev, pmksa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_flush_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev) { int ret; trace_rdev_flush_pmksa(&rdev->wiphy, netdev); ret = rdev->ops->flush_pmksa(&rdev->wiphy, netdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_remain_on_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration, u64 *cookie) { int ret; trace_rdev_remain_on_channel(&rdev->wiphy, wdev, chan, duration); ret = rdev->ops->remain_on_channel(&rdev->wiphy, wdev, chan, duration, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_cancel_remain_on_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { int ret; trace_rdev_cancel_remain_on_channel(&rdev->wiphy, wdev, cookie); ret = rdev->ops->cancel_remain_on_channel(&rdev->wiphy, wdev, cookie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_mgmt_tx(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie) { int ret; trace_rdev_mgmt_tx(&rdev->wiphy, wdev, params); ret = rdev->ops->mgmt_tx(&rdev->wiphy, wdev, params, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_tx_control_port(struct cfg80211_registered_device *rdev, struct net_device *dev, const void *buf, size_t len, const u8 *dest, __be16 proto, const bool noencrypt, u64 *cookie) { int ret; trace_rdev_tx_control_port(&rdev->wiphy, dev, buf, len, dest, proto, noencrypt); ret = rdev->ops->tx_control_port(&rdev->wiphy, dev, buf, len, dest, proto, noencrypt, cookie); if (cookie) trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); else trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_mgmt_tx_cancel_wait(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { int ret; trace_rdev_mgmt_tx_cancel_wait(&rdev->wiphy, wdev, cookie); ret = rdev->ops->mgmt_tx_cancel_wait(&rdev->wiphy, wdev, cookie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_power_mgmt(struct cfg80211_registered_device *rdev, struct net_device *dev, bool enabled, int timeout) { int ret; trace_rdev_set_power_mgmt(&rdev->wiphy, dev, enabled, timeout); ret = rdev->ops->set_power_mgmt(&rdev->wiphy, dev, enabled, timeout); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_rssi_config(struct cfg80211_registered_device *rdev, struct net_device *dev, s32 rssi_thold, u32 rssi_hyst) { int ret; trace_rdev_set_cqm_rssi_config(&rdev->wiphy, dev, rssi_thold, rssi_hyst); ret = rdev->ops->set_cqm_rssi_config(&rdev->wiphy, dev, rssi_thold, rssi_hyst); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_rssi_range_config(struct cfg80211_registered_device *rdev, struct net_device *dev, s32 low, s32 high) { int ret; trace_rdev_set_cqm_rssi_range_config(&rdev->wiphy, dev, low, high); ret = rdev->ops->set_cqm_rssi_range_config(&rdev->wiphy, dev, low, high); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_txe_config(struct cfg80211_registered_device *rdev, struct net_device *dev, u32 rate, u32 pkts, u32 intvl) { int ret; trace_rdev_set_cqm_txe_config(&rdev->wiphy, dev, rate, pkts, intvl); ret = rdev->ops->set_cqm_txe_config(&rdev->wiphy, dev, rate, pkts, intvl); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_update_mgmt_frame_registrations(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct mgmt_frame_regs *upd) { might_sleep(); trace_rdev_update_mgmt_frame_registrations(&rdev->wiphy, wdev, upd); if (rdev->ops->update_mgmt_frame_registrations) rdev->ops->update_mgmt_frame_registrations(&rdev->wiphy, wdev, upd); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_set_antenna(struct cfg80211_registered_device *rdev, u32 tx_ant, u32 rx_ant) { int ret; trace_rdev_set_antenna(&rdev->wiphy, tx_ant, rx_ant); ret = rdev->ops->set_antenna(&rdev->wiphy, tx_ant, rx_ant); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_antenna(struct cfg80211_registered_device *rdev, u32 *tx_ant, u32 *rx_ant) { int ret; trace_rdev_get_antenna(&rdev->wiphy); ret = rdev->ops->get_antenna(&rdev->wiphy, tx_ant, rx_ant); if (ret) trace_rdev_return_int(&rdev->wiphy, ret); else trace_rdev_return_int_tx_rx(&rdev->wiphy, ret, *tx_ant, *rx_ant); return ret; } static inline int rdev_sched_scan_start(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_sched_scan_request *request) { int ret; trace_rdev_sched_scan_start(&rdev->wiphy, dev, request->reqid); ret = rdev->ops->sched_scan_start(&rdev->wiphy, dev, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_sched_scan_stop(struct cfg80211_registered_device *rdev, struct net_device *dev, u64 reqid) { int ret; trace_rdev_sched_scan_stop(&rdev->wiphy, dev, reqid); ret = rdev->ops->sched_scan_stop(&rdev->wiphy, dev, reqid); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_rekey_data(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_gtk_rekey_data *data) { int ret; trace_rdev_set_rekey_data(&rdev->wiphy, dev); ret = rdev->ops->set_rekey_data(&rdev->wiphy, dev, data); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_mgmt(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *peer, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, bool initiator, const u8 *buf, size_t len) { int ret; trace_rdev_tdls_mgmt(&rdev->wiphy, dev, peer, action_code, dialog_token, status_code, peer_capability, initiator, buf, len); ret = rdev->ops->tdls_mgmt(&rdev->wiphy, dev, peer, action_code, dialog_token, status_code, peer_capability, initiator, buf, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_oper(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *peer, enum nl80211_tdls_operation oper) { int ret; trace_rdev_tdls_oper(&rdev->wiphy, dev, peer, oper); ret = rdev->ops->tdls_oper(&rdev->wiphy, dev, peer, oper); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_probe_client(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, u64 *cookie) { int ret; trace_rdev_probe_client(&rdev->wiphy, dev, peer); ret = rdev->ops->probe_client(&rdev->wiphy, dev, peer, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_set_noack_map(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 noack_map) { int ret; trace_rdev_set_noack_map(&rdev->wiphy, dev, noack_map); ret = rdev->ops->set_noack_map(&rdev->wiphy, dev, noack_map); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_get_channel(&rdev->wiphy, wdev); ret = rdev->ops->get_channel(&rdev->wiphy, wdev, chandef); trace_rdev_return_chandef(&rdev->wiphy, ret, chandef); return ret; } static inline int rdev_start_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { int ret; trace_rdev_start_p2p_device(&rdev->wiphy, wdev); ret = rdev->ops->start_p2p_device(&rdev->wiphy, wdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_stop_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_stop_p2p_device(&rdev->wiphy, wdev); rdev->ops->stop_p2p_device(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_start_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf) { int ret; trace_rdev_start_nan(&rdev->wiphy, wdev, conf); ret = rdev->ops->start_nan(&rdev->wiphy, wdev, conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_stop_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_stop_nan(&rdev->wiphy, wdev); rdev->ops->stop_nan(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_add_nan_func(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_func *nan_func) { int ret; trace_rdev_add_nan_func(&rdev->wiphy, wdev, nan_func); ret = rdev->ops->add_nan_func(&rdev->wiphy, wdev, nan_func); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_del_nan_func(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { trace_rdev_del_nan_func(&rdev->wiphy, wdev, cookie); rdev->ops->del_nan_func(&rdev->wiphy, wdev, cookie); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_nan_change_conf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf, u32 changes) { int ret; trace_rdev_nan_change_conf(&rdev->wiphy, wdev, conf, changes); if (rdev->ops->nan_change_conf) ret = rdev->ops->nan_change_conf(&rdev->wiphy, wdev, conf, changes); else ret = -ENOTSUPP; trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_mac_acl(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_acl_data *params) { int ret; trace_rdev_set_mac_acl(&rdev->wiphy, dev, params); ret = rdev->ops->set_mac_acl(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_update_ft_ies(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_update_ft_ies_params *ftie) { int ret; trace_rdev_update_ft_ies(&rdev->wiphy, dev, ftie); ret = rdev->ops->update_ft_ies(&rdev->wiphy, dev, ftie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_crit_proto_start(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_crit_proto_id protocol, u16 duration) { int ret; trace_rdev_crit_proto_start(&rdev->wiphy, wdev, protocol, duration); ret = rdev->ops->crit_proto_start(&rdev->wiphy, wdev, protocol, duration); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_crit_proto_stop(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_crit_proto_stop(&rdev->wiphy, wdev); rdev->ops->crit_proto_stop(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_csa_settings *params) { int ret; trace_rdev_channel_switch(&rdev->wiphy, dev, params); ret = rdev->ops->channel_switch(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_qos_map(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_qos_map *qos_map) { int ret = -EOPNOTSUPP; if (rdev->ops->set_qos_map) { trace_rdev_set_qos_map(&rdev->wiphy, dev, qos_map); ret = rdev->ops->set_qos_map(&rdev->wiphy, dev, qos_map); trace_rdev_return_int(&rdev->wiphy, ret); } return ret; } static inline int rdev_set_ap_chanwidth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_set_ap_chanwidth(&rdev->wiphy, dev, chandef); ret = rdev->ops->set_ap_chanwidth(&rdev->wiphy, dev, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_tx_ts(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 tsid, const u8 *peer, u8 user_prio, u16 admitted_time) { int ret = -EOPNOTSUPP; trace_rdev_add_tx_ts(&rdev->wiphy, dev, tsid, peer, user_prio, admitted_time); if (rdev->ops->add_tx_ts) ret = rdev->ops->add_tx_ts(&rdev->wiphy, dev, tsid, peer, user_prio, admitted_time); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_tx_ts(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 tsid, const u8 *peer) { int ret = -EOPNOTSUPP; trace_rdev_del_tx_ts(&rdev->wiphy, dev, tsid, peer); if (rdev->ops->del_tx_ts) ret = rdev->ops->del_tx_ts(&rdev->wiphy, dev, tsid, peer); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr, u8 oper_class, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_tdls_channel_switch(&rdev->wiphy, dev, addr, oper_class, chandef); ret = rdev->ops->tdls_channel_switch(&rdev->wiphy, dev, addr, oper_class, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_tdls_cancel_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr) { trace_rdev_tdls_cancel_channel_switch(&rdev->wiphy, dev, addr); rdev->ops->tdls_cancel_channel_switch(&rdev->wiphy, dev, addr); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_start_radar_detection(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_chan_def *chandef, u32 cac_time_ms) { int ret = -ENOTSUPP; trace_rdev_start_radar_detection(&rdev->wiphy, dev, chandef, cac_time_ms); if (rdev->ops->start_radar_detection) ret = rdev->ops->start_radar_detection(&rdev->wiphy, dev, chandef, cac_time_ms); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_end_cac(struct cfg80211_registered_device *rdev, struct net_device *dev) { trace_rdev_end_cac(&rdev->wiphy, dev); if (rdev->ops->end_cac) rdev->ops->end_cac(&rdev->wiphy, dev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_set_mcast_rate(struct cfg80211_registered_device *rdev, struct net_device *dev, int mcast_rate[NUM_NL80211_BANDS]) { int ret = -ENOTSUPP; trace_rdev_set_mcast_rate(&rdev->wiphy, dev, mcast_rate); if (rdev->ops->set_mcast_rate) ret = rdev->ops->set_mcast_rate(&rdev->wiphy, dev, mcast_rate); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_coalesce(struct cfg80211_registered_device *rdev, struct cfg80211_coalesce *coalesce) { int ret = -ENOTSUPP; trace_rdev_set_coalesce(&rdev->wiphy, coalesce); if (rdev->ops->set_coalesce) ret = rdev->ops->set_coalesce(&rdev->wiphy, coalesce); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_pmk(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_pmk_conf *pmk_conf) { int ret = -EOPNOTSUPP; trace_rdev_set_pmk(&rdev->wiphy, dev, pmk_conf); if (rdev->ops->set_pmk) ret = rdev->ops->set_pmk(&rdev->wiphy, dev, pmk_conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_pmk(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *aa) { int ret = -EOPNOTSUPP; trace_rdev_del_pmk(&rdev->wiphy, dev, aa); if (rdev->ops->del_pmk) ret = rdev->ops->del_pmk(&rdev->wiphy, dev, aa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_external_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_external_auth_params *params) { int ret = -EOPNOTSUPP; trace_rdev_external_auth(&rdev->wiphy, dev, params); if (rdev->ops->external_auth) ret = rdev->ops->external_auth(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_ftm_responder_stats(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ftm_responder_stats *ftm_stats) { int ret = -EOPNOTSUPP; trace_rdev_get_ftm_responder_stats(&rdev->wiphy, dev, ftm_stats); if (rdev->ops->get_ftm_responder_stats) ret = rdev->ops->get_ftm_responder_stats(&rdev->wiphy, dev, ftm_stats); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_start_pmsr(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_pmsr_request *request) { int ret = -EOPNOTSUPP; trace_rdev_start_pmsr(&rdev->wiphy, wdev, request->cookie); if (rdev->ops->start_pmsr) ret = rdev->ops->start_pmsr(&rdev->wiphy, wdev, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_abort_pmsr(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_pmsr_request *request) { trace_rdev_abort_pmsr(&rdev->wiphy, wdev, request->cookie); if (rdev->ops->abort_pmsr) rdev->ops->abort_pmsr(&rdev->wiphy, wdev, request); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_update_owe_info(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_update_owe_info *oweinfo) { int ret = -EOPNOTSUPP; trace_rdev_update_owe_info(&rdev->wiphy, dev, oweinfo); if (rdev->ops->update_owe_info) ret = rdev->ops->update_owe_info(&rdev->wiphy, dev, oweinfo); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_probe_mesh_link(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *dest, const void *buf, size_t len) { int ret; trace_rdev_probe_mesh_link(&rdev->wiphy, dev, dest, buf, len); ret = rdev->ops->probe_mesh_link(&rdev->wiphy, dev, buf, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_tid_config(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_tid_config *tid_conf) { int ret; trace_rdev_set_tid_config(&rdev->wiphy, dev, tid_conf); ret = rdev->ops->set_tid_config(&rdev->wiphy, dev, tid_conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_reset_tid_config(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, u8 tids) { int ret; trace_rdev_reset_tid_config(&rdev->wiphy, dev, peer, tids); ret = rdev->ops->reset_tid_config(&rdev->wiphy, dev, peer, tids); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } #endif /* __CFG80211_RDEV_OPS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_UACCESS_64_H #define _ASM_X86_UACCESS_64_H /* * User space memory access functions */ #include <linux/compiler.h> #include <linux/lockdep.h> #include <linux/kasan-checks.h> #include <asm/alternative.h> #include <asm/cpufeatures.h> #include <asm/page.h> /* * Copy To/From Userspace */ /* Handles exceptions in both to and from, but doesn't do access_ok */ __must_check unsigned long copy_user_enhanced_fast_string(void *to, const void *from, unsigned len); __must_check unsigned long copy_user_generic_string(void *to, const void *from, unsigned len); __must_check unsigned long copy_user_generic_unrolled(void *to, const void *from, unsigned len); static __always_inline __must_check unsigned long copy_user_generic(void *to, const void *from, unsigned len) { unsigned ret; /* * If CPU has ERMS feature, use copy_user_enhanced_fast_string. * Otherwise, if CPU has rep_good feature, use copy_user_generic_string. * Otherwise, use copy_user_generic_unrolled. */ alternative_call_2(copy_user_generic_unrolled, copy_user_generic_string, X86_FEATURE_REP_GOOD, copy_user_enhanced_fast_string, X86_FEATURE_ERMS, ASM_OUTPUT2("=a" (ret), "=D" (to), "=S" (from), "=d" (len)), "1" (to), "2" (from), "3" (len) : "memory", "rcx", "r8", "r9", "r10", "r11"); return ret; } static __always_inline __must_check unsigned long raw_copy_from_user(void *dst, const void __user *src, unsigned long size) { return copy_user_generic(dst, (__force void *)src, size); } static __always_inline __must_check unsigned long raw_copy_to_user(void __user *dst, const void *src, unsigned long size) { return copy_user_generic((__force void *)dst, src, size); } static __always_inline __must_check unsigned long raw_copy_in_user(void __user *dst, const void __user *src, unsigned long size) { return copy_user_generic((__force void *)dst, (__force void *)src, size); } extern long __copy_user_nocache(void *dst, const void __user *src, unsigned size, int zerorest); extern long __copy_user_flushcache(void *dst, const void __user *src, unsigned size); extern void memcpy_page_flushcache(char *to, struct page *page, size_t offset, size_t len); static inline int __copy_from_user_inatomic_nocache(void *dst, const void __user *src, unsigned size) { kasan_check_write(dst, size); return __copy_user_nocache(dst, src, size, 0); } static inline int __copy_from_user_flushcache(void *dst, const void __user *src, unsigned size) { kasan_check_write(dst, size); return __copy_user_flushcache(dst, src, size); } #endif /* _ASM_X86_UACCESS_64_H */
4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 /* * Performance events: * * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra * * Data type definitions, declarations, prototypes. * * Started by: Thomas Gleixner and Ingo Molnar * * For licencing details see kernel-base/COPYING */ #ifndef _LINUX_PERF_EVENT_H #define _LINUX_PERF_EVENT_H #include <uapi/linux/perf_event.h> #include <uapi/linux/bpf_perf_event.h> /* * Kernel-internal data types and definitions: */ #ifdef CONFIG_PERF_EVENTS # include <asm/perf_event.h> # include <asm/local64.h> #endif struct perf_guest_info_callbacks { int (*is_in_guest)(void); int (*is_user_mode)(void); unsigned long (*get_guest_ip)(void); void (*handle_intel_pt_intr)(void); }; #ifdef CONFIG_HAVE_HW_BREAKPOINT #include <asm/hw_breakpoint.h> #endif #include <linux/list.h> #include <linux/mutex.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/spinlock.h> #include <linux/hrtimer.h> #include <linux/fs.h> #include <linux/pid_namespace.h> #include <linux/workqueue.h> #include <linux/ftrace.h> #include <linux/cpu.h> #include <linux/irq_work.h> #include <linux/static_key.h> #include <linux/jump_label_ratelimit.h> #include <linux/atomic.h> #include <linux/sysfs.h> #include <linux/perf_regs.h> #include <linux/cgroup.h> #include <linux/refcount.h> #include <linux/security.h> #include <asm/local.h> struct perf_callchain_entry { __u64 nr; __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ }; struct perf_callchain_entry_ctx { struct perf_callchain_entry *entry; u32 max_stack; u32 nr; short contexts; bool contexts_maxed; }; typedef unsigned long (*perf_copy_f)(void *dst, const void *src, unsigned long off, unsigned long len); struct perf_raw_frag { union { struct perf_raw_frag *next; unsigned long pad; }; perf_copy_f copy; void *data; u32 size; } __packed; struct perf_raw_record { struct perf_raw_frag frag; u32 size; }; /* * branch stack layout: * nr: number of taken branches stored in entries[] * hw_idx: The low level index of raw branch records * for the most recent branch. * -1ULL means invalid/unknown. * * Note that nr can vary from sample to sample * branches (to, from) are stored from most recent * to least recent, i.e., entries[0] contains the most * recent branch. * The entries[] is an abstraction of raw branch records, * which may not be stored in age order in HW, e.g. Intel LBR. * The hw_idx is to expose the low level index of raw * branch record for the most recent branch aka entries[0]. * The hw_idx index is between -1 (unknown) and max depth, * which can be retrieved in /sys/devices/cpu/caps/branches. * For the architectures whose raw branch records are * already stored in age order, the hw_idx should be 0. */ struct perf_branch_stack { __u64 nr; __u64 hw_idx; struct perf_branch_entry entries[]; }; struct task_struct; /* * extra PMU register associated with an event */ struct hw_perf_event_extra { u64 config; /* register value */ unsigned int reg; /* register address or index */ int alloc; /* extra register already allocated */ int idx; /* index in shared_regs->regs[] */ }; /** * struct hw_perf_event - performance event hardware details: */ struct hw_perf_event { #ifdef CONFIG_PERF_EVENTS union { struct { /* hardware */ u64 config; u64 last_tag; unsigned long config_base; unsigned long event_base; int event_base_rdpmc; int idx; int last_cpu; int flags; struct hw_perf_event_extra extra_reg; struct hw_perf_event_extra branch_reg; }; struct { /* software */ struct hrtimer hrtimer; }; struct { /* tracepoint */ /* for tp_event->class */ struct list_head tp_list; }; struct { /* amd_power */ u64 pwr_acc; u64 ptsc; }; #ifdef CONFIG_HAVE_HW_BREAKPOINT struct { /* breakpoint */ /* * Crufty hack to avoid the chicken and egg * problem hw_breakpoint has with context * creation and event initalization. */ struct arch_hw_breakpoint info; struct list_head bp_list; }; #endif struct { /* amd_iommu */ u8 iommu_bank; u8 iommu_cntr; u16 padding; u64 conf; u64 conf1; }; }; /* * If the event is a per task event, this will point to the task in * question. See the comment in perf_event_alloc(). */ struct task_struct *target; /* * PMU would store hardware filter configuration * here. */ void *addr_filters; /* Last sync'ed generation of filters */ unsigned long addr_filters_gen; /* * hw_perf_event::state flags; used to track the PERF_EF_* state. */ #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ #define PERF_HES_ARCH 0x04 int state; /* * The last observed hardware counter value, updated with a * local64_cmpxchg() such that pmu::read() can be called nested. */ local64_t prev_count; /* * The period to start the next sample with. */ u64 sample_period; union { struct { /* Sampling */ /* * The period we started this sample with. */ u64 last_period; /* * However much is left of the current period; * note that this is a full 64bit value and * allows for generation of periods longer * than hardware might allow. */ local64_t period_left; }; struct { /* Topdown events counting for context switch */ u64 saved_metric; u64 saved_slots; }; }; /* * State for throttling the event, see __perf_event_overflow() and * perf_adjust_freq_unthr_context(). */ u64 interrupts_seq; u64 interrupts; /* * State for freq target events, see __perf_event_overflow() and * perf_adjust_freq_unthr_context(). */ u64 freq_time_stamp; u64 freq_count_stamp; #endif }; struct perf_event; /* * Common implementation detail of pmu::{start,commit,cancel}_txn */ #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ /** * pmu::capabilities flags */ #define PERF_PMU_CAP_NO_INTERRUPT 0x01 #define PERF_PMU_CAP_NO_NMI 0x02 #define PERF_PMU_CAP_AUX_NO_SG 0x04 #define PERF_PMU_CAP_EXTENDED_REGS 0x08 #define PERF_PMU_CAP_EXCLUSIVE 0x10 #define PERF_PMU_CAP_ITRACE 0x20 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 #define PERF_PMU_CAP_NO_EXCLUDE 0x80 #define PERF_PMU_CAP_AUX_OUTPUT 0x100 struct perf_output_handle; /** * struct pmu - generic performance monitoring unit */ struct pmu { struct list_head entry; struct module *module; struct device *dev; const struct attribute_group **attr_groups; const struct attribute_group **attr_update; const char *name; int type; /* * various common per-pmu feature flags */ int capabilities; int __percpu *pmu_disable_count; struct perf_cpu_context __percpu *pmu_cpu_context; atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ int task_ctx_nr; int hrtimer_interval_ms; /* number of address filters this PMU can do */ unsigned int nr_addr_filters; /* * Fully disable/enable this PMU, can be used to protect from the PMI * as well as for lazy/batch writing of the MSRs. */ void (*pmu_enable) (struct pmu *pmu); /* optional */ void (*pmu_disable) (struct pmu *pmu); /* optional */ /* * Try and initialize the event for this PMU. * * Returns: * -ENOENT -- @event is not for this PMU * * -ENODEV -- @event is for this PMU but PMU not present * -EBUSY -- @event is for this PMU but PMU temporarily unavailable * -EINVAL -- @event is for this PMU but @event is not valid * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported * -EACCES -- @event is for this PMU, @event is valid, but no privileges * * 0 -- @event is for this PMU and valid * * Other error return values are allowed. */ int (*event_init) (struct perf_event *event); /* * Notification that the event was mapped or unmapped. Called * in the context of the mapping task. */ void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ /* * Flags for ->add()/->del()/ ->start()/->stop(). There are * matching hw_perf_event::state flags. */ #define PERF_EF_START 0x01 /* start the counter when adding */ #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ /* * Adds/Removes a counter to/from the PMU, can be done inside a * transaction, see the ->*_txn() methods. * * The add/del callbacks will reserve all hardware resources required * to service the event, this includes any counter constraint * scheduling etc. * * Called with IRQs disabled and the PMU disabled on the CPU the event * is on. * * ->add() called without PERF_EF_START should result in the same state * as ->add() followed by ->stop(). * * ->del() must always PERF_EF_UPDATE stop an event. If it calls * ->stop() that must deal with already being stopped without * PERF_EF_UPDATE. */ int (*add) (struct perf_event *event, int flags); void (*del) (struct perf_event *event, int flags); /* * Starts/Stops a counter present on the PMU. * * The PMI handler should stop the counter when perf_event_overflow() * returns !0. ->start() will be used to continue. * * Also used to change the sample period. * * Called with IRQs disabled and the PMU disabled on the CPU the event * is on -- will be called from NMI context with the PMU generates * NMIs. * * ->stop() with PERF_EF_UPDATE will read the counter and update * period/count values like ->read() would. * * ->start() with PERF_EF_RELOAD will reprogram the counter * value, must be preceded by a ->stop() with PERF_EF_UPDATE. */ void (*start) (struct perf_event *event, int flags); void (*stop) (struct perf_event *event, int flags); /* * Updates the counter value of the event. * * For sampling capable PMUs this will also update the software period * hw_perf_event::period_left field. */ void (*read) (struct perf_event *event); /* * Group events scheduling is treated as a transaction, add * group events as a whole and perform one schedulability test. * If the test fails, roll back the whole group * * Start the transaction, after this ->add() doesn't need to * do schedulability tests. * * Optional. */ void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); /* * If ->start_txn() disabled the ->add() schedulability test * then ->commit_txn() is required to perform one. On success * the transaction is closed. On error the transaction is kept * open until ->cancel_txn() is called. * * Optional. */ int (*commit_txn) (struct pmu *pmu); /* * Will cancel the transaction, assumes ->del() is called * for each successful ->add() during the transaction. * * Optional. */ void (*cancel_txn) (struct pmu *pmu); /* * Will return the value for perf_event_mmap_page::index for this event, * if no implementation is provided it will default to: event->hw.idx + 1. */ int (*event_idx) (struct perf_event *event); /*optional */ /* * context-switches callback */ void (*sched_task) (struct perf_event_context *ctx, bool sched_in); /* * Kmem cache of PMU specific data */ struct kmem_cache *task_ctx_cache; /* * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) * can be synchronized using this function. See Intel LBR callstack support * implementation and Perf core context switch handling callbacks for usage * examples. */ void (*swap_task_ctx) (struct perf_event_context *prev, struct perf_event_context *next); /* optional */ /* * Set up pmu-private data structures for an AUX area */ void *(*setup_aux) (struct perf_event *event, void **pages, int nr_pages, bool overwrite); /* optional */ /* * Free pmu-private AUX data structures */ void (*free_aux) (void *aux); /* optional */ /* * Take a snapshot of the AUX buffer without touching the event * state, so that preempting ->start()/->stop() callbacks does * not interfere with their logic. Called in PMI context. * * Returns the size of AUX data copied to the output handle. * * Optional. */ long (*snapshot_aux) (struct perf_event *event, struct perf_output_handle *handle, unsigned long size); /* * Validate address range filters: make sure the HW supports the * requested configuration and number of filters; return 0 if the * supplied filters are valid, -errno otherwise. * * Runs in the context of the ioctl()ing process and is not serialized * with the rest of the PMU callbacks. */ int (*addr_filters_validate) (struct list_head *filters); /* optional */ /* * Synchronize address range filter configuration: * translate hw-agnostic filters into hardware configuration in * event::hw::addr_filters. * * Runs as a part of filter sync sequence that is done in ->start() * callback by calling perf_event_addr_filters_sync(). * * May (and should) traverse event::addr_filters::list, for which its * caller provides necessary serialization. */ void (*addr_filters_sync) (struct perf_event *event); /* optional */ /* * Check if event can be used for aux_output purposes for * events of this PMU. * * Runs from perf_event_open(). Should return 0 for "no match" * or non-zero for "match". */ int (*aux_output_match) (struct perf_event *event); /* optional */ /* * Filter events for PMU-specific reasons. */ int (*filter_match) (struct perf_event *event); /* optional */ /* * Check period value for PERF_EVENT_IOC_PERIOD ioctl. */ int (*check_period) (struct perf_event *event, u64 value); /* optional */ }; enum perf_addr_filter_action_t { PERF_ADDR_FILTER_ACTION_STOP = 0, PERF_ADDR_FILTER_ACTION_START, PERF_ADDR_FILTER_ACTION_FILTER, }; /** * struct perf_addr_filter - address range filter definition * @entry: event's filter list linkage * @path: object file's path for file-based filters * @offset: filter range offset * @size: filter range size (size==0 means single address trigger) * @action: filter/start/stop * * This is a hardware-agnostic filter configuration as specified by the user. */ struct perf_addr_filter { struct list_head entry; struct path path; unsigned long offset; unsigned long size; enum perf_addr_filter_action_t action; }; /** * struct perf_addr_filters_head - container for address range filters * @list: list of filters for this event * @lock: spinlock that serializes accesses to the @list and event's * (and its children's) filter generations. * @nr_file_filters: number of file-based filters * * A child event will use parent's @list (and therefore @lock), so they are * bundled together; see perf_event_addr_filters(). */ struct perf_addr_filters_head { struct list_head list; raw_spinlock_t lock; unsigned int nr_file_filters; }; struct perf_addr_filter_range { unsigned long start; unsigned long size; }; /** * enum perf_event_state - the states of an event: */ enum perf_event_state { PERF_EVENT_STATE_DEAD = -4, PERF_EVENT_STATE_EXIT = -3, PERF_EVENT_STATE_ERROR = -2, PERF_EVENT_STATE_OFF = -1, PERF_EVENT_STATE_INACTIVE = 0, PERF_EVENT_STATE_ACTIVE = 1, }; struct file; struct perf_sample_data; typedef void (*perf_overflow_handler_t)(struct perf_event *, struct perf_sample_data *, struct pt_regs *regs); /* * Event capabilities. For event_caps and groups caps. * * PERF_EV_CAP_SOFTWARE: Is a software event. * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read * from any CPU in the package where it is active. * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and * cannot be a group leader. If an event with this flag is detached from the * group it is scheduled out and moved into an unrecoverable ERROR state. */ #define PERF_EV_CAP_SOFTWARE BIT(0) #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) #define PERF_EV_CAP_SIBLING BIT(2) #define SWEVENT_HLIST_BITS 8 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) struct swevent_hlist { struct hlist_head heads[SWEVENT_HLIST_SIZE]; struct rcu_head rcu_head; }; #define PERF_ATTACH_CONTEXT 0x01 #define PERF_ATTACH_GROUP 0x02 #define PERF_ATTACH_TASK 0x04 #define PERF_ATTACH_TASK_DATA 0x08 #define PERF_ATTACH_ITRACE 0x10 #define PERF_ATTACH_SCHED_CB 0x20 #define PERF_ATTACH_CHILD 0x40 struct perf_cgroup; struct perf_buffer; struct pmu_event_list { raw_spinlock_t lock; struct list_head list; }; #define for_each_sibling_event(sibling, event) \ if ((event)->group_leader == (event)) \ list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) /** * struct perf_event - performance event kernel representation: */ struct perf_event { #ifdef CONFIG_PERF_EVENTS /* * entry onto perf_event_context::event_list; * modifications require ctx->lock * RCU safe iterations. */ struct list_head event_entry; /* * Locked for modification by both ctx->mutex and ctx->lock; holding * either sufficies for read. */ struct list_head sibling_list; struct list_head active_list; /* * Node on the pinned or flexible tree located at the event context; */ struct rb_node group_node; u64 group_index; /* * We need storage to track the entries in perf_pmu_migrate_context; we * cannot use the event_entry because of RCU and we want to keep the * group in tact which avoids us using the other two entries. */ struct list_head migrate_entry; struct hlist_node hlist_entry; struct list_head active_entry; int nr_siblings; /* Not serialized. Only written during event initialization. */ int event_caps; /* The cumulative AND of all event_caps for events in this group. */ int group_caps; struct perf_event *group_leader; struct pmu *pmu; void *pmu_private; enum perf_event_state state; unsigned int attach_state; local64_t count; atomic64_t child_count; /* * These are the total time in nanoseconds that the event * has been enabled (i.e. eligible to run, and the task has * been scheduled in, if this is a per-task event) * and running (scheduled onto the CPU), respectively. */ u64 total_time_enabled; u64 total_time_running; u64 tstamp; /* * timestamp shadows the actual context timing but it can * be safely used in NMI interrupt context. It reflects the * context time as it was when the event was last scheduled in, * or when ctx_sched_in failed to schedule the event because we * run out of PMC. * * ctx_time already accounts for ctx->timestamp. Therefore to * compute ctx_time for a sample, simply add perf_clock(). */ u64 shadow_ctx_time; struct perf_event_attr attr; u16 header_size; u16 id_header_size; u16 read_size; struct hw_perf_event hw; struct perf_event_context *ctx; atomic_long_t refcount; /* * These accumulate total time (in nanoseconds) that children * events have been enabled and running, respectively. */ atomic64_t child_total_time_enabled; atomic64_t child_total_time_running; /* * Protect attach/detach and child_list: */ struct mutex child_mutex; struct list_head child_list; struct perf_event *parent; int oncpu; int cpu; struct list_head owner_entry; struct task_struct *owner; /* mmap bits */ struct mutex mmap_mutex; atomic_t mmap_count; struct perf_buffer *rb; struct list_head rb_entry; unsigned long rcu_batches; int rcu_pending; /* poll related */ wait_queue_head_t waitq; struct fasync_struct *fasync; /* delayed work for NMIs and such */ int pending_wakeup; int pending_kill; int pending_disable; struct irq_work pending; atomic_t event_limit; /* address range filters */ struct perf_addr_filters_head addr_filters; /* vma address array for file-based filders */ struct perf_addr_filter_range *addr_filter_ranges; unsigned long addr_filters_gen; /* for aux_output events */ struct perf_event *aux_event; void (*destroy)(struct perf_event *); struct rcu_head rcu_head; struct pid_namespace *ns; u64 id; u64 (*clock)(void); perf_overflow_handler_t overflow_handler; void *overflow_handler_context; #ifdef CONFIG_BPF_SYSCALL perf_overflow_handler_t orig_overflow_handler; struct bpf_prog *prog; #endif #ifdef CONFIG_EVENT_TRACING struct trace_event_call *tp_event; struct event_filter *filter; #ifdef CONFIG_FUNCTION_TRACER struct ftrace_ops ftrace_ops; #endif #endif #ifdef CONFIG_CGROUP_PERF struct perf_cgroup *cgrp; /* cgroup event is attach to */ #endif #ifdef CONFIG_SECURITY void *security; #endif struct list_head sb_list; #endif /* CONFIG_PERF_EVENTS */ }; struct perf_event_groups { struct rb_root tree; u64 index; }; /** * struct perf_event_context - event context structure * * Used as a container for task events and CPU events as well: */ struct perf_event_context { struct pmu *pmu; /* * Protect the states of the events in the list, * nr_active, and the list: */ raw_spinlock_t lock; /* * Protect the list of events. Locking either mutex or lock * is sufficient to ensure the list doesn't change; to change * the list you need to lock both the mutex and the spinlock. */ struct mutex mutex; struct list_head active_ctx_list; struct perf_event_groups pinned_groups; struct perf_event_groups flexible_groups; struct list_head event_list; struct list_head pinned_active; struct list_head flexible_active; int nr_events; int nr_active; int is_active; int nr_stat; int nr_freq; int rotate_disable; /* * Set when nr_events != nr_active, except tolerant to events not * necessary to be active due to scheduling constraints, such as cgroups. */ int rotate_necessary; refcount_t refcount; struct task_struct *task; /* * Context clock, runs when context enabled. */ u64 time; u64 timestamp; /* * These fields let us detect when two contexts have both * been cloned (inherited) from a common ancestor. */ struct perf_event_context *parent_ctx; u64 parent_gen; u64 generation; int pin_count; #ifdef CONFIG_CGROUP_PERF int nr_cgroups; /* cgroup evts */ #endif void *task_ctx_data; /* pmu specific data */ struct rcu_head rcu_head; }; /* * Number of contexts where an event can trigger: * task, softirq, hardirq, nmi. */ #define PERF_NR_CONTEXTS 4 /** * struct perf_event_cpu_context - per cpu event context structure */ struct perf_cpu_context { struct perf_event_context ctx; struct perf_event_context *task_ctx; int active_oncpu; int exclusive; raw_spinlock_t hrtimer_lock; struct hrtimer hrtimer; ktime_t hrtimer_interval; unsigned int hrtimer_active; #ifdef CONFIG_CGROUP_PERF struct perf_cgroup *cgrp; struct list_head cgrp_cpuctx_entry; #endif struct list_head sched_cb_entry; int sched_cb_usage; int online; /* * Per-CPU storage for iterators used in visit_groups_merge. The default * storage is of size 2 to hold the CPU and any CPU event iterators. */ int heap_size; struct perf_event **heap; struct perf_event *heap_default[2]; }; struct perf_output_handle { struct perf_event *event; struct perf_buffer *rb; unsigned long wakeup; unsigned long size; u64 aux_flags; union { void *addr; unsigned long head; }; int page; }; struct bpf_perf_event_data_kern { bpf_user_pt_regs_t *regs; struct perf_sample_data *data; struct perf_event *event; }; #ifdef CONFIG_CGROUP_PERF /* * perf_cgroup_info keeps track of time_enabled for a cgroup. * This is a per-cpu dynamically allocated data structure. */ struct perf_cgroup_info { u64 time; u64 timestamp; }; struct perf_cgroup { struct cgroup_subsys_state css; struct perf_cgroup_info __percpu *info; }; /* * Must ensure cgroup is pinned (css_get) before calling * this function. In other words, we cannot call this function * if there is no cgroup event for the current CPU context. */ static inline struct perf_cgroup * perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) { return container_of(task_css_check(task, perf_event_cgrp_id, ctx ? lockdep_is_held(&ctx->lock) : true), struct perf_cgroup, css); } #endif /* CONFIG_CGROUP_PERF */ #ifdef CONFIG_PERF_EVENTS extern void *perf_aux_output_begin(struct perf_output_handle *handle, struct perf_event *event); extern void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size); extern int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size); extern void *perf_get_aux(struct perf_output_handle *handle); extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); extern void perf_event_itrace_started(struct perf_event *event); extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); extern void perf_pmu_unregister(struct pmu *pmu); extern int perf_num_counters(void); extern const char *perf_pmu_name(void); extern void __perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task); extern void __perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next); extern int perf_event_init_task(struct task_struct *child); extern void perf_event_exit_task(struct task_struct *child); extern void perf_event_free_task(struct task_struct *task); extern void perf_event_delayed_put(struct task_struct *task); extern struct file *perf_event_get(unsigned int fd); extern const struct perf_event *perf_get_event(struct file *file); extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); extern void perf_event_print_debug(void); extern void perf_pmu_disable(struct pmu *pmu); extern void perf_pmu_enable(struct pmu *pmu); extern void perf_sched_cb_dec(struct pmu *pmu); extern void perf_sched_cb_inc(struct pmu *pmu); extern int perf_event_task_disable(void); extern int perf_event_task_enable(void); extern void perf_pmu_resched(struct pmu *pmu); extern int perf_event_refresh(struct perf_event *event, int refresh); extern void perf_event_update_userpage(struct perf_event *event); extern int perf_event_release_kernel(struct perf_event *event); extern struct perf_event * perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, struct task_struct *task, perf_overflow_handler_t callback, void *context); extern void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu); int perf_event_read_local(struct perf_event *event, u64 *value, u64 *enabled, u64 *running); extern u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running); struct perf_sample_data { /* * Fields set by perf_sample_data_init(), group so as to * minimize the cachelines touched. */ u64 addr; struct perf_raw_record *raw; struct perf_branch_stack *br_stack; u64 period; u64 weight; u64 txn; union perf_mem_data_src data_src; /* * The other fields, optionally {set,used} by * perf_{prepare,output}_sample(). */ u64 type; u64 ip; struct { u32 pid; u32 tid; } tid_entry; u64 time; u64 id; u64 stream_id; struct { u32 cpu; u32 reserved; } cpu_entry; struct perf_callchain_entry *callchain; u64 aux_size; struct perf_regs regs_user; struct perf_regs regs_intr; u64 stack_user_size; u64 phys_addr; u64 cgroup; } ____cacheline_aligned; /* default value for data source */ #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ PERF_MEM_S(LVL, NA) |\ PERF_MEM_S(SNOOP, NA) |\ PERF_MEM_S(LOCK, NA) |\ PERF_MEM_S(TLB, NA)) static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr, u64 period) { /* remaining struct members initialized in perf_prepare_sample() */ data->addr = addr; data->raw = NULL; data->br_stack = NULL; data->period = period; data->weight = 0; data->data_src.val = PERF_MEM_NA; data->txn = 0; } extern void perf_output_sample(struct perf_output_handle *handle, struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event); extern void perf_prepare_sample(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event, struct pt_regs *regs); extern int perf_event_overflow(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern void perf_event_output_forward(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern void perf_event_output_backward(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern int perf_event_output(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); static inline bool is_default_overflow_handler(struct perf_event *event) { if (likely(event->overflow_handler == perf_event_output_forward)) return true; if (unlikely(event->overflow_handler == perf_event_output_backward)) return true; return false; } extern void perf_event_header__init_id(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event); extern void perf_event__output_id_sample(struct perf_event *event, struct perf_output_handle *handle, struct perf_sample_data *sample); extern void perf_log_lost_samples(struct perf_event *event, u64 lost); static inline bool event_has_any_exclude_flag(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; return attr->exclude_idle || attr->exclude_user || attr->exclude_kernel || attr->exclude_hv || attr->exclude_guest || attr->exclude_host; } static inline bool is_sampling_event(struct perf_event *event) { return event->attr.sample_period != 0; } /* * Return 1 for a software event, 0 for a hardware event */ static inline int is_software_event(struct perf_event *event) { return event->event_caps & PERF_EV_CAP_SOFTWARE; } /* * Return 1 for event in sw context, 0 for event in hw context */ static inline int in_software_context(struct perf_event *event) { return event->ctx->pmu->task_ctx_nr == perf_sw_context; } static inline int is_exclusive_pmu(struct pmu *pmu) { return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; } extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); #ifndef perf_arch_fetch_caller_regs static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } #endif /* * When generating a perf sample in-line, instead of from an interrupt / * exception, we lack a pt_regs. This is typically used from software events * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. * * We typically don't need a full set, but (for x86) do require: * - ip for PERF_SAMPLE_IP * - cs for user_mode() tests * - sp for PERF_SAMPLE_CALLCHAIN * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) * * NOTE: assumes @regs is otherwise already 0 filled; this is important for * things like PERF_SAMPLE_REGS_INTR. */ static inline void perf_fetch_caller_regs(struct pt_regs *regs) { perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); } static __always_inline void perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { if (static_key_false(&perf_swevent_enabled[event_id])) __perf_sw_event(event_id, nr, regs, addr); } DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); /* * 'Special' version for the scheduler, it hard assumes no recursion, * which is guaranteed by us not actually scheduling inside other swevents * because those disable preemption. */ static __always_inline void perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { if (static_key_false(&perf_swevent_enabled[event_id])) { struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); perf_fetch_caller_regs(regs); ___perf_sw_event(event_id, nr, regs, addr); } } extern struct static_key_false perf_sched_events; static __always_inline bool perf_sw_migrate_enabled(void) { if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) return true; return false; } static inline void perf_event_task_migrate(struct task_struct *task) { if (perf_sw_migrate_enabled()) task->sched_migrated = 1; } static inline void perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { if (static_branch_unlikely(&perf_sched_events)) __perf_event_task_sched_in(prev, task); if (perf_sw_migrate_enabled() && task->sched_migrated) { struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); perf_fetch_caller_regs(regs); ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); task->sched_migrated = 0; } } static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); if (static_branch_unlikely(&perf_sched_events)) __perf_event_task_sched_out(prev, next); } extern void perf_event_mmap(struct vm_area_struct *vma); extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, const char *sym); extern void perf_event_bpf_event(struct bpf_prog *prog, enum perf_bpf_event_type type, u16 flags); extern struct perf_guest_info_callbacks *perf_guest_cbs; extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); extern void perf_event_exec(void); extern void perf_event_comm(struct task_struct *tsk, bool exec); extern void perf_event_namespaces(struct task_struct *tsk); extern void perf_event_fork(struct task_struct *tsk); extern void perf_event_text_poke(const void *addr, const void *old_bytes, size_t old_len, const void *new_bytes, size_t new_len); /* Callchains */ DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); extern struct perf_callchain_entry * get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, u32 max_stack, bool crosstask, bool add_mark); extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); extern int get_callchain_buffers(int max_stack); extern void put_callchain_buffers(void); extern struct perf_callchain_entry *get_callchain_entry(int *rctx); extern void put_callchain_entry(int rctx); extern int sysctl_perf_event_max_stack; extern int sysctl_perf_event_max_contexts_per_stack; static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) { if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { struct perf_callchain_entry *entry = ctx->entry; entry->ip[entry->nr++] = ip; ++ctx->contexts; return 0; } else { ctx->contexts_maxed = true; return -1; /* no more room, stop walking the stack */ } } static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) { if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { struct perf_callchain_entry *entry = ctx->entry; entry->ip[entry->nr++] = ip; ++ctx->nr; return 0; } else { return -1; /* no more room, stop walking the stack */ } } extern int sysctl_perf_event_paranoid; extern int sysctl_perf_event_mlock; extern int sysctl_perf_event_sample_rate; extern int sysctl_perf_cpu_time_max_percent; extern void perf_sample_event_took(u64 sample_len_ns); int perf_proc_update_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int perf_event_max_stack_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); /* Access to perf_event_open(2) syscall. */ #define PERF_SECURITY_OPEN 0 /* Finer grained perf_event_open(2) access control. */ #define PERF_SECURITY_CPU 1 #define PERF_SECURITY_KERNEL 2 #define PERF_SECURITY_TRACEPOINT 3 static inline int perf_is_paranoid(void) { return sysctl_perf_event_paranoid > -1; } static inline int perf_allow_kernel(struct perf_event_attr *attr) { if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) return -EACCES; return security_perf_event_open(attr, PERF_SECURITY_KERNEL); } static inline int perf_allow_cpu(struct perf_event_attr *attr) { if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) return -EACCES; return security_perf_event_open(attr, PERF_SECURITY_CPU); } static inline int perf_allow_tracepoint(struct perf_event_attr *attr) { if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) return -EPERM; return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); } extern void perf_event_init(void); extern void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, struct pt_regs *regs, struct hlist_head *head, int rctx, struct task_struct *task); extern void perf_bp_event(struct perf_event *event, void *data); #ifndef perf_misc_flags # define perf_misc_flags(regs) \ (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) # define perf_instruction_pointer(regs) instruction_pointer(regs) #endif #ifndef perf_arch_bpf_user_pt_regs # define perf_arch_bpf_user_pt_regs(regs) regs #endif static inline bool has_branch_stack(struct perf_event *event) { return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; } static inline bool needs_branch_stack(struct perf_event *event) { return event->attr.branch_sample_type != 0; } static inline bool has_aux(struct perf_event *event) { return event->pmu->setup_aux; } static inline bool is_write_backward(struct perf_event *event) { return !!event->attr.write_backward; } static inline bool has_addr_filter(struct perf_event *event) { return event->pmu->nr_addr_filters; } /* * An inherited event uses parent's filters */ static inline struct perf_addr_filters_head * perf_event_addr_filters(struct perf_event *event) { struct perf_addr_filters_head *ifh = &event->addr_filters; if (event->parent) ifh = &event->parent->addr_filters; return ifh; } extern void perf_event_addr_filters_sync(struct perf_event *event); extern int perf_output_begin(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern int perf_output_begin_forward(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern int perf_output_begin_backward(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern void perf_output_end(struct perf_output_handle *handle); extern unsigned int perf_output_copy(struct perf_output_handle *handle, const void *buf, unsigned int len); extern unsigned int perf_output_skip(struct perf_output_handle *handle, unsigned int len); extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, struct perf_output_handle *handle, unsigned long from, unsigned long to); extern int perf_swevent_get_recursion_context(void); extern void perf_swevent_put_recursion_context(int rctx); extern u64 perf_swevent_set_period(struct perf_event *event); extern void perf_event_enable(struct perf_event *event); extern void perf_event_disable(struct perf_event *event); extern void perf_event_disable_local(struct perf_event *event); extern void perf_event_disable_inatomic(struct perf_event *event); extern void perf_event_task_tick(void); extern int perf_event_account_interrupt(struct perf_event *event); extern int perf_event_period(struct perf_event *event, u64 value); extern u64 perf_event_pause(struct perf_event *event, bool reset); #else /* !CONFIG_PERF_EVENTS: */ static inline void * perf_aux_output_begin(struct perf_output_handle *handle, struct perf_event *event) { return NULL; } static inline void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) { } static inline int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) { return -EINVAL; } static inline void * perf_get_aux(struct perf_output_handle *handle) { return NULL; } static inline void perf_event_task_migrate(struct task_struct *task) { } static inline void perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { } static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { } static inline int perf_event_init_task(struct task_struct *child) { return 0; } static inline void perf_event_exit_task(struct task_struct *child) { } static inline void perf_event_free_task(struct task_struct *task) { } static inline void perf_event_delayed_put(struct task_struct *task) { } static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } static inline const struct perf_event *perf_get_event(struct file *file) { return ERR_PTR(-EINVAL); } static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) { return ERR_PTR(-EINVAL); } static inline int perf_event_read_local(struct perf_event *event, u64 *value, u64 *enabled, u64 *running) { return -EINVAL; } static inline void perf_event_print_debug(void) { } static inline int perf_event_task_disable(void) { return -EINVAL; } static inline int perf_event_task_enable(void) { return -EINVAL; } static inline int perf_event_refresh(struct perf_event *event, int refresh) { return -EINVAL; } static inline void perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } static inline void perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } static inline void perf_bp_event(struct perf_event *event, void *data) { } static inline int perf_register_guest_info_callbacks (struct perf_guest_info_callbacks *callbacks) { return 0; } static inline int perf_unregister_guest_info_callbacks (struct perf_guest_info_callbacks *callbacks) { return 0; } static inline void perf_event_mmap(struct vm_area_struct *vma) { } typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, const char *sym) { } static inline void perf_event_bpf_event(struct bpf_prog *prog, enum perf_bpf_event_type type, u16 flags) { } static inline void perf_event_exec(void) { } static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } static inline void perf_event_namespaces(struct task_struct *tsk) { } static inline void perf_event_fork(struct task_struct *tsk) { } static inline void perf_event_text_poke(const void *addr, const void *old_bytes, size_t old_len, const void *new_bytes, size_t new_len) { } static inline void perf_event_init(void) { } static inline int perf_swevent_get_recursion_context(void) { return -1; } static inline void perf_swevent_put_recursion_context(int rctx) { } static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } static inline void perf_event_enable(struct perf_event *event) { } static inline void perf_event_disable(struct perf_event *event) { } static inline int __perf_event_disable(void *info) { return -1; } static inline void perf_event_task_tick(void) { } static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } static inline int perf_event_period(struct perf_event *event, u64 value) { return -EINVAL; } static inline u64 perf_event_pause(struct perf_event *event, bool reset) { return 0; } #endif #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) extern void perf_restore_debug_store(void); #else static inline void perf_restore_debug_store(void) { } #endif static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) { return frag->pad < sizeof(u64); } #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) struct perf_pmu_events_attr { struct device_attribute attr; u64 id; const char *event_str; }; struct perf_pmu_events_ht_attr { struct device_attribute attr; u64 id; const char *event_str_ht; const char *event_str_noht; }; ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, char *page); #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ static struct perf_pmu_events_attr _var = { \ .attr = __ATTR(_name, 0444, _show, NULL), \ .id = _id, \ }; #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ static struct perf_pmu_events_attr _var = { \ .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ .id = 0, \ .event_str = _str, \ }; #define PMU_FORMAT_ATTR(_name, _format) \ static ssize_t \ _name##_show(struct device *dev, \ struct device_attribute *attr, \ char *page) \ { \ BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ return sprintf(page, _format "\n"); \ } \ \ static struct device_attribute format_attr_##_name = __ATTR_RO(_name) /* Performance counter hotplug functions */ #ifdef CONFIG_PERF_EVENTS int perf_event_init_cpu(unsigned int cpu); int perf_event_exit_cpu(unsigned int cpu); #else #define perf_event_init_cpu NULL #define perf_event_exit_cpu NULL #endif extern void __weak arch_perf_update_userpage(struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now); #endif /* _LINUX_PERF_EVENT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SWAPOPS_H #define _LINUX_SWAPOPS_H #include <linux/radix-tree.h> #include <linux/bug.h> #include <linux/mm_types.h> #ifdef CONFIG_MMU /* * swapcache pages are stored in the swapper_space radix tree. We want to * get good packing density in that tree, so the index should be dense in * the low-order bits. * * We arrange the `type' and `offset' fields so that `type' is at the seven * high-order bits of the swp_entry_t and `offset' is right-aligned in the * remaining bits. Although `type' itself needs only five bits, we allow for * shmem/tmpfs to shift it all up a further two bits: see swp_to_radix_entry(). * * swp_entry_t's are *never* stored anywhere in their arch-dependent format. */ #define SWP_TYPE_SHIFT (BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT) #define SWP_OFFSET_MASK ((1UL << SWP_TYPE_SHIFT) - 1) /* Clear all flags but only keep swp_entry_t related information */ static inline pte_t pte_swp_clear_flags(pte_t pte) { if (pte_swp_soft_dirty(pte)) pte = pte_swp_clear_soft_dirty(pte); if (pte_swp_uffd_wp(pte)) pte = pte_swp_clear_uffd_wp(pte); return pte; } /* * Store a type+offset into a swp_entry_t in an arch-independent format */ static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset) { swp_entry_t ret; ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK); return ret; } /* * Extract the `type' field from a swp_entry_t. The swp_entry_t is in * arch-independent format */ static inline unsigned swp_type(swp_entry_t entry) { return (entry.val >> SWP_TYPE_SHIFT); } /* * Extract the `offset' field from a swp_entry_t. The swp_entry_t is in * arch-independent format */ static inline pgoff_t swp_offset(swp_entry_t entry) { return entry.val & SWP_OFFSET_MASK; } /* check whether a pte points to a swap entry */ static inline int is_swap_pte(pte_t pte) { return !pte_none(pte) && !pte_present(pte); } /* * Convert the arch-dependent pte representation of a swp_entry_t into an * arch-independent swp_entry_t. */ static inline swp_entry_t pte_to_swp_entry(pte_t pte) { swp_entry_t arch_entry; pte = pte_swp_clear_flags(pte); arch_entry = __pte_to_swp_entry(pte); return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); } /* * Convert the arch-independent representation of a swp_entry_t into the * arch-dependent pte representation. */ static inline pte_t swp_entry_to_pte(swp_entry_t entry) { swp_entry_t arch_entry; arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); return __swp_entry_to_pte(arch_entry); } static inline swp_entry_t radix_to_swp_entry(void *arg) { swp_entry_t entry; entry.val = xa_to_value(arg); return entry; } static inline void *swp_to_radix_entry(swp_entry_t entry) { return xa_mk_value(entry.val); } #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) static inline swp_entry_t make_device_private_entry(struct page *page, bool write) { return swp_entry(write ? SWP_DEVICE_WRITE : SWP_DEVICE_READ, page_to_pfn(page)); } static inline bool is_device_private_entry(swp_entry_t entry) { int type = swp_type(entry); return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE; } static inline void make_device_private_entry_read(swp_entry_t *entry) { *entry = swp_entry(SWP_DEVICE_READ, swp_offset(*entry)); } static inline bool is_write_device_private_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_DEVICE_WRITE); } static inline unsigned long device_private_entry_to_pfn(swp_entry_t entry) { return swp_offset(entry); } static inline struct page *device_private_entry_to_page(swp_entry_t entry) { return pfn_to_page(swp_offset(entry)); } #else /* CONFIG_DEVICE_PRIVATE */ static inline swp_entry_t make_device_private_entry(struct page *page, bool write) { return swp_entry(0, 0); } static inline void make_device_private_entry_read(swp_entry_t *entry) { } static inline bool is_device_private_entry(swp_entry_t entry) { return false; } static inline bool is_write_device_private_entry(swp_entry_t entry) { return false; } static inline unsigned long device_private_entry_to_pfn(swp_entry_t entry) { return 0; } static inline struct page *device_private_entry_to_page(swp_entry_t entry) { return NULL; } #endif /* CONFIG_DEVICE_PRIVATE */ #ifdef CONFIG_MIGRATION static inline swp_entry_t make_migration_entry(struct page *page, int write) { BUG_ON(!PageLocked(compound_head(page))); return swp_entry(write ? SWP_MIGRATION_WRITE : SWP_MIGRATION_READ, page_to_pfn(page)); } static inline int is_migration_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_MIGRATION_READ || swp_type(entry) == SWP_MIGRATION_WRITE); } static inline int is_write_migration_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE); } static inline unsigned long migration_entry_to_pfn(swp_entry_t entry) { return swp_offset(entry); } static inline struct page *migration_entry_to_page(swp_entry_t entry) { struct page *p = pfn_to_page(swp_offset(entry)); /* * Any use of migration entries may only occur while the * corresponding page is locked */ BUG_ON(!PageLocked(compound_head(p))); return p; } static inline void make_migration_entry_read(swp_entry_t *entry) { *entry = swp_entry(SWP_MIGRATION_READ, swp_offset(*entry)); } extern void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, spinlock_t *ptl); extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, unsigned long address); extern void migration_entry_wait_huge(struct vm_area_struct *vma, struct mm_struct *mm, pte_t *pte); #else #define make_migration_entry(page, write) swp_entry(0, 0) static inline int is_migration_entry(swp_entry_t swp) { return 0; } static inline unsigned long migration_entry_to_pfn(swp_entry_t entry) { return 0; } static inline struct page *migration_entry_to_page(swp_entry_t entry) { return NULL; } static inline void make_migration_entry_read(swp_entry_t *entryp) { } static inline void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, spinlock_t *ptl) { } static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, unsigned long address) { } static inline void migration_entry_wait_huge(struct vm_area_struct *vma, struct mm_struct *mm, pte_t *pte) { } static inline int is_write_migration_entry(swp_entry_t entry) { return 0; } #endif struct page_vma_mapped_walk; #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION extern void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, struct page *page); extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new); extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd); static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) { swp_entry_t arch_entry; if (pmd_swp_soft_dirty(pmd)) pmd = pmd_swp_clear_soft_dirty(pmd); if (pmd_swp_uffd_wp(pmd)) pmd = pmd_swp_clear_uffd_wp(pmd); arch_entry = __pmd_to_swp_entry(pmd); return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); } static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) { swp_entry_t arch_entry; arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); return __swp_entry_to_pmd(arch_entry); } static inline int is_pmd_migration_entry(pmd_t pmd) { return !pmd_present(pmd) && is_migration_entry(pmd_to_swp_entry(pmd)); } #else static inline void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, struct page *page) { BUILD_BUG(); } static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) { BUILD_BUG(); } static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { } static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) { return swp_entry(0, 0); } static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) { return __pmd(0); } static inline int is_pmd_migration_entry(pmd_t pmd) { return 0; } #endif #ifdef CONFIG_MEMORY_FAILURE extern atomic_long_t num_poisoned_pages __read_mostly; /* * Support for hardware poisoned pages */ static inline swp_entry_t make_hwpoison_entry(struct page *page) { BUG_ON(!PageLocked(page)); return swp_entry(SWP_HWPOISON, page_to_pfn(page)); } static inline int is_hwpoison_entry(swp_entry_t entry) { return swp_type(entry) == SWP_HWPOISON; } static inline void num_poisoned_pages_inc(void) { atomic_long_inc(&num_poisoned_pages); } static inline void num_poisoned_pages_dec(void) { atomic_long_dec(&num_poisoned_pages); } #else static inline swp_entry_t make_hwpoison_entry(struct page *page) { return swp_entry(0, 0); } static inline int is_hwpoison_entry(swp_entry_t swp) { return 0; } static inline void num_poisoned_pages_inc(void) { } #endif #if defined(CONFIG_MEMORY_FAILURE) || defined(CONFIG_MIGRATION) || \ defined(CONFIG_DEVICE_PRIVATE) static inline int non_swap_entry(swp_entry_t entry) { return swp_type(entry) >= MAX_SWAPFILES; } #else static inline int non_swap_entry(swp_entry_t entry) { return 0; } #endif #endif /* CONFIG_MMU */ #endif /* _LINUX_SWAPOPS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 /* SPDX-License-Identifier: GPL-2.0 */ /* * workqueue.h --- work queue handling for Linux. */ #ifndef _LINUX_WORKQUEUE_H #define _LINUX_WORKQUEUE_H #include <linux/timer.h> #include <linux/linkage.h> #include <linux/bitops.h> #include <linux/lockdep.h> #include <linux/threads.h> #include <linux/atomic.h> #include <linux/cpumask.h> #include <linux/rcupdate.h> struct workqueue_struct; struct work_struct; typedef void (*work_func_t)(struct work_struct *work); void delayed_work_timer_fn(struct timer_list *t); /* * The first word is the work queue pointer and the flags rolled into * one */ #define work_data_bits(work) ((unsigned long *)(&(work)->data)) enum { WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */ WORK_STRUCT_DELAYED_BIT = 1, /* work item is delayed */ WORK_STRUCT_PWQ_BIT = 2, /* data points to pwq */ WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */ #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC_BIT = 4, /* static initializer (debugobjects) */ WORK_STRUCT_COLOR_SHIFT = 5, /* color for workqueue flushing */ #else WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */ #endif WORK_STRUCT_COLOR_BITS = 4, WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT, WORK_STRUCT_DELAYED = 1 << WORK_STRUCT_DELAYED_BIT, WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT, WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT, #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT, #else WORK_STRUCT_STATIC = 0, #endif /* * The last color is no color used for works which don't * participate in workqueue flushing. */ WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS) - 1, WORK_NO_COLOR = WORK_NR_COLORS, /* not bound to any CPU, prefer the local CPU */ WORK_CPU_UNBOUND = NR_CPUS, /* * Reserve 8 bits off of pwq pointer w/ debugobjects turned off. * This makes pwqs aligned to 256 bytes and allows 15 workqueue * flush colors. */ WORK_STRUCT_FLAG_BITS = WORK_STRUCT_COLOR_SHIFT + WORK_STRUCT_COLOR_BITS, /* data contains off-queue information when !WORK_STRUCT_PWQ */ WORK_OFFQ_FLAG_BASE = WORK_STRUCT_COLOR_SHIFT, __WORK_OFFQ_CANCELING = WORK_OFFQ_FLAG_BASE, WORK_OFFQ_CANCELING = (1 << __WORK_OFFQ_CANCELING), /* * When a work item is off queue, its high bits point to the last * pool it was on. Cap at 31 bits and use the highest number to * indicate that no pool is associated. */ WORK_OFFQ_FLAG_BITS = 1, WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS, WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT, WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31, WORK_OFFQ_POOL_NONE = (1LU << WORK_OFFQ_POOL_BITS) - 1, /* convenience constants */ WORK_STRUCT_FLAG_MASK = (1UL << WORK_STRUCT_FLAG_BITS) - 1, WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK, WORK_STRUCT_NO_POOL = (unsigned long)WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT, /* bit mask for work_busy() return values */ WORK_BUSY_PENDING = 1 << 0, WORK_BUSY_RUNNING = 1 << 1, /* maximum string length for set_worker_desc() */ WORKER_DESC_LEN = 24, }; struct work_struct { atomic_long_t data; struct list_head entry; work_func_t func; #ifdef CONFIG_LOCKDEP struct lockdep_map lockdep_map; #endif }; #define WORK_DATA_INIT() ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL) #define WORK_DATA_STATIC_INIT() \ ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)) struct delayed_work { struct work_struct work; struct timer_list timer; /* target workqueue and CPU ->timer uses to queue ->work */ struct workqueue_struct *wq; int cpu; }; struct rcu_work { struct work_struct work; struct rcu_head rcu; /* target workqueue ->rcu uses to queue ->work */ struct workqueue_struct *wq; }; /** * struct workqueue_attrs - A struct for workqueue attributes. * * This can be used to change attributes of an unbound workqueue. */ struct workqueue_attrs { /** * @nice: nice level */ int nice; /** * @cpumask: allowed CPUs */ cpumask_var_t cpumask; /** * @no_numa: disable NUMA affinity * * Unlike other fields, ``no_numa`` isn't a property of a worker_pool. It * only modifies how :c:func:`apply_workqueue_attrs` select pools and thus * doesn't participate in pool hash calculations or equality comparisons. */ bool no_numa; }; static inline struct delayed_work *to_delayed_work(struct work_struct *work) { return container_of(work, struct delayed_work, work); } static inline struct rcu_work *to_rcu_work(struct work_struct *work) { return container_of(work, struct rcu_work, work); } struct execute_work { struct work_struct work; }; #ifdef CONFIG_LOCKDEP /* * NB: because we have to copy the lockdep_map, setting _key * here is required, otherwise it could get initialised to the * copy of the lockdep_map! */ #define __WORK_INIT_LOCKDEP_MAP(n, k) \ .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k), #else #define __WORK_INIT_LOCKDEP_MAP(n, k) #endif #define __WORK_INITIALIZER(n, f) { \ .data = WORK_DATA_STATIC_INIT(), \ .entry = { &(n).entry, &(n).entry }, \ .func = (f), \ __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ } #define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \ .work = __WORK_INITIALIZER((n).work, (f)), \ .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\ (tflags) | TIMER_IRQSAFE), \ } #define DECLARE_WORK(n, f) \ struct work_struct n = __WORK_INITIALIZER(n, f) #define DECLARE_DELAYED_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0) #define DECLARE_DEFERRABLE_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE) #ifdef CONFIG_DEBUG_OBJECTS_WORK extern void __init_work(struct work_struct *work, int onstack); extern void destroy_work_on_stack(struct work_struct *work); extern void destroy_delayed_work_on_stack(struct delayed_work *work); static inline unsigned int work_static(struct work_struct *work) { return *work_data_bits(work) & WORK_STRUCT_STATIC; } #else static inline void __init_work(struct work_struct *work, int onstack) { } static inline void destroy_work_on_stack(struct work_struct *work) { } static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { } static inline unsigned int work_static(struct work_struct *work) { return 0; } #endif /* * initialize all of a work item in one go * * NOTE! No point in using "atomic_long_set()": using a direct * assignment of the work data initializer allows the compiler * to generate better code. */ #ifdef CONFIG_LOCKDEP #define __INIT_WORK(_work, _func, _onstack) \ do { \ static struct lock_class_key __key; \ \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #else #define __INIT_WORK(_work, _func, _onstack) \ do { \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #endif #define INIT_WORK(_work, _func) \ __INIT_WORK((_work), (_func), 0) #define INIT_WORK_ONSTACK(_work, _func) \ __INIT_WORK((_work), (_func), 1) #define __INIT_DELAYED_WORK(_work, _func, _tflags) \ do { \ INIT_WORK(&(_work)->work, (_func)); \ __init_timer(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \ do { \ INIT_WORK_ONSTACK(&(_work)->work, (_func)); \ __init_timer_on_stack(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define INIT_DELAYED_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, 0) #define INIT_DELAYED_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0) #define INIT_DEFERRABLE_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE) #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE) #define INIT_RCU_WORK(_work, _func) \ INIT_WORK(&(_work)->work, (_func)) #define INIT_RCU_WORK_ONSTACK(_work, _func) \ INIT_WORK_ONSTACK(&(_work)->work, (_func)) /** * work_pending - Find out whether a work item is currently pending * @work: The work item in question */ #define work_pending(work) \ test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) /** * delayed_work_pending - Find out whether a delayable work item is currently * pending * @w: The work item in question */ #define delayed_work_pending(w) \ work_pending(&(w)->work) /* * Workqueue flags and constants. For details, please refer to * Documentation/core-api/workqueue.rst. */ enum { WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ WQ_FREEZABLE = 1 << 2, /* freeze during suspend */ WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */ WQ_HIGHPRI = 1 << 4, /* high priority */ WQ_CPU_INTENSIVE = 1 << 5, /* cpu intensive workqueue */ WQ_SYSFS = 1 << 6, /* visible in sysfs, see wq_sysfs_register() */ /* * Per-cpu workqueues are generally preferred because they tend to * show better performance thanks to cache locality. Per-cpu * workqueues exclude the scheduler from choosing the CPU to * execute the worker threads, which has an unfortunate side effect * of increasing power consumption. * * The scheduler considers a CPU idle if it doesn't have any task * to execute and tries to keep idle cores idle to conserve power; * however, for example, a per-cpu work item scheduled from an * interrupt handler on an idle CPU will force the scheduler to * excute the work item on that CPU breaking the idleness, which in * turn may lead to more scheduling choices which are sub-optimal * in terms of power consumption. * * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default * but become unbound if workqueue.power_efficient kernel param is * specified. Per-cpu workqueues which are identified to * contribute significantly to power-consumption are identified and * marked with this flag and enabling the power_efficient mode * leads to noticeable power saving at the cost of small * performance disadvantage. * * http://thread.gmane.org/gmane.linux.kernel/1480396 */ WQ_POWER_EFFICIENT = 1 << 7, __WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */ __WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */ __WQ_LEGACY = 1 << 18, /* internal: create*_workqueue() */ __WQ_ORDERED_EXPLICIT = 1 << 19, /* internal: alloc_ordered_workqueue() */ WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */ WQ_MAX_UNBOUND_PER_CPU = 4, /* 4 * #cpus for unbound wq */ WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2, }; /* unbound wq's aren't per-cpu, scale max_active according to #cpus */ #define WQ_UNBOUND_MAX_ACTIVE \ max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU) /* * System-wide workqueues which are always present. * * system_wq is the one used by schedule[_delayed]_work[_on](). * Multi-CPU multi-threaded. There are users which expect relatively * short queue flush time. Don't queue works which can run for too * long. * * system_highpri_wq is similar to system_wq but for work items which * require WQ_HIGHPRI. * * system_long_wq is similar to system_wq but may host long running * works. Queue flushing might take relatively long. * * system_unbound_wq is unbound workqueue. Workers are not bound to * any specific CPU, not concurrency managed, and all queued works are * executed immediately as long as max_active limit is not reached and * resources are available. * * system_freezable_wq is equivalent to system_wq except that it's * freezable. * * *_power_efficient_wq are inclined towards saving power and converted * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise, * they are same as their non-power-efficient counterparts - e.g. * system_power_efficient_wq is identical to system_wq if * 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info. */ extern struct workqueue_struct *system_wq; extern struct workqueue_struct *system_highpri_wq; extern struct workqueue_struct *system_long_wq; extern struct workqueue_struct *system_unbound_wq; extern struct workqueue_struct *system_freezable_wq; extern struct workqueue_struct *system_power_efficient_wq; extern struct workqueue_struct *system_freezable_power_efficient_wq; /** * alloc_workqueue - allocate a workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags * @max_active: max in-flight work items, 0 for default * remaining args: args for @fmt * * Allocate a workqueue with the specified parameters. For detailed * information on WQ_* flags, please refer to * Documentation/core-api/workqueue.rst. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ struct workqueue_struct *alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...); /** * alloc_ordered_workqueue - allocate an ordered workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful) * @args...: args for @fmt * * Allocate an ordered workqueue. An ordered workqueue executes at * most one work item at any given time in the queued order. They are * implemented as unbound workqueues with @max_active of one. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ #define alloc_ordered_workqueue(fmt, flags, args...) \ alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | \ __WQ_ORDERED_EXPLICIT | (flags), 1, ##args) #define create_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name)) #define create_freezable_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \ WQ_MEM_RECLAIM, 1, (name)) #define create_singlethread_workqueue(name) \ alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name) extern void destroy_workqueue(struct workqueue_struct *wq); struct workqueue_attrs *alloc_workqueue_attrs(void); void free_workqueue_attrs(struct workqueue_attrs *attrs); int apply_workqueue_attrs(struct workqueue_struct *wq, const struct workqueue_attrs *attrs); int workqueue_set_unbound_cpumask(cpumask_var_t cpumask); extern bool queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_work_node(int node, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *work, unsigned long delay); extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay); extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork); extern void flush_workqueue(struct workqueue_struct *wq); extern void drain_workqueue(struct workqueue_struct *wq); extern int schedule_on_each_cpu(work_func_t func); int execute_in_process_context(work_func_t fn, struct execute_work *); extern bool flush_work(struct work_struct *work); extern bool cancel_work_sync(struct work_struct *work); extern bool flush_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work_sync(struct delayed_work *dwork); extern bool flush_rcu_work(struct rcu_work *rwork); extern void workqueue_set_max_active(struct workqueue_struct *wq, int max_active); extern struct work_struct *current_work(void); extern bool current_is_workqueue_rescuer(void); extern bool workqueue_congested(int cpu, struct workqueue_struct *wq); extern unsigned int work_busy(struct work_struct *work); extern __printf(1, 2) void set_worker_desc(const char *fmt, ...); extern void print_worker_info(const char *log_lvl, struct task_struct *task); extern void show_workqueue_state(void); extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task); /** * queue_work - queue work on a workqueue * @wq: workqueue to use * @work: work to queue * * Returns %false if @work was already on a queue, %true otherwise. * * We queue the work to the CPU on which it was submitted, but if the CPU dies * it can be processed by another CPU. * * Memory-ordering properties: If it returns %true, guarantees that all stores * preceding the call to queue_work() in the program order will be visible from * the CPU which will execute @work by the time such work executes, e.g., * * { x is initially 0 } * * CPU0 CPU1 * * WRITE_ONCE(x, 1); [ @work is being executed ] * r0 = queue_work(wq, work); r1 = READ_ONCE(x); * * Forbids: r0 == true && r1 == 0 */ static inline bool queue_work(struct workqueue_struct *wq, struct work_struct *work) { return queue_work_on(WORK_CPU_UNBOUND, wq, work); } /** * queue_delayed_work - queue work on a workqueue after delay * @wq: workqueue to use * @dwork: delayable work to queue * @delay: number of jiffies to wait before queueing * * Equivalent to queue_delayed_work_on() but tries to use the local CPU. */ static inline bool queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * mod_delayed_work - modify delay of or queue a delayed work * @wq: workqueue to use * @dwork: work to queue * @delay: number of jiffies to wait before queueing * * mod_delayed_work_on() on local CPU. */ static inline bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * schedule_work_on - put work task on a specific cpu * @cpu: cpu to put the work task on * @work: job to be done * * This puts a job on a specific cpu */ static inline bool schedule_work_on(int cpu, struct work_struct *work) { return queue_work_on(cpu, system_wq, work); } /** * schedule_work - put work task in global workqueue * @work: job to be done * * Returns %false if @work was already on the kernel-global workqueue and * %true otherwise. * * This puts a job in the kernel-global workqueue if it was not already * queued and leaves it in the same position on the kernel-global * workqueue otherwise. * * Shares the same memory-ordering properties of queue_work(), cf. the * DocBook header of queue_work(). */ static inline bool schedule_work(struct work_struct *work) { return queue_work(system_wq, work); } /** * flush_scheduled_work - ensure that any scheduled work has run to completion. * * Forces execution of the kernel-global workqueue and blocks until its * completion. * * Think twice before calling this function! It's very easy to get into * trouble if you don't take great care. Either of the following situations * will lead to deadlock: * * One of the work items currently on the workqueue needs to acquire * a lock held by your code or its caller. * * Your code is running in the context of a work routine. * * They will be detected by lockdep when they occur, but the first might not * occur very often. It depends on what work items are on the workqueue and * what locks they need, which you have no control over. * * In most situations flushing the entire workqueue is overkill; you merely * need to know that a particular work item isn't queued and isn't running. * In such cases you should use cancel_delayed_work_sync() or * cancel_work_sync() instead. */ static inline void flush_scheduled_work(void) { flush_workqueue(system_wq); } /** * schedule_delayed_work_on - queue work in global workqueue on CPU after delay * @cpu: cpu to use * @dwork: job to be done * @delay: number of jiffies to wait * * After waiting for a given time this puts a job in the kernel-global * workqueue on the specified CPU. */ static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(cpu, system_wq, dwork, delay); } /** * schedule_delayed_work - put work task in global workqueue after delay * @dwork: job to be done * @delay: number of jiffies to wait or 0 for immediate execution * * After waiting for a given time this puts a job in the kernel-global * workqueue. */ static inline bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work(system_wq, dwork, delay); } #ifndef CONFIG_SMP static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } #else long work_on_cpu(int cpu, long (*fn)(void *), void *arg); long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg); #endif /* CONFIG_SMP */ #ifdef CONFIG_FREEZER extern void freeze_workqueues_begin(void); extern bool freeze_workqueues_busy(void); extern void thaw_workqueues(void); #endif /* CONFIG_FREEZER */ #ifdef CONFIG_SYSFS int workqueue_sysfs_register(struct workqueue_struct *wq); #else /* CONFIG_SYSFS */ static inline int workqueue_sysfs_register(struct workqueue_struct *wq) { return 0; } #endif /* CONFIG_SYSFS */ #ifdef CONFIG_WQ_WATCHDOG void wq_watchdog_touch(int cpu); #else /* CONFIG_WQ_WATCHDOG */ static inline void wq_watchdog_touch(int cpu) { } #endif /* CONFIG_WQ_WATCHDOG */ #ifdef CONFIG_SMP int workqueue_prepare_cpu(unsigned int cpu); int workqueue_online_cpu(unsigned int cpu); int workqueue_offline_cpu(unsigned int cpu); #endif void __init workqueue_init_early(void); void __init workqueue_init(void); #endif
4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 // SPDX-License-Identifier: GPL-2.0-only #include "cgroup-internal.h" #include <linux/sched/cputime.h> static DEFINE_SPINLOCK(cgroup_rstat_lock); static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock); static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu) { return per_cpu_ptr(cgrp->rstat_cpu, cpu); } /** * cgroup_rstat_updated - keep track of updated rstat_cpu * @cgrp: target cgroup * @cpu: cpu on which rstat_cpu was updated * * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching * rstat_cpu->updated_children list. See the comment on top of * cgroup_rstat_cpu definition for details. */ void cgroup_rstat_updated(struct cgroup *cgrp, int cpu) { raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); struct cgroup *parent; unsigned long flags; /* nothing to do for root */ if (!cgroup_parent(cgrp)) return; /* * Speculative already-on-list test. This may race leading to * temporary inaccuracies, which is fine. * * Because @parent's updated_children is terminated with @parent * instead of NULL, we can tell whether @cgrp is on the list by * testing the next pointer for NULL. */ if (cgroup_rstat_cpu(cgrp, cpu)->updated_next) return; raw_spin_lock_irqsave(cpu_lock, flags); /* put @cgrp and all ancestors on the corresponding updated lists */ for (parent = cgroup_parent(cgrp); parent; cgrp = parent, parent = cgroup_parent(cgrp)) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); struct cgroup_rstat_cpu *prstatc = cgroup_rstat_cpu(parent, cpu); /* * Both additions and removals are bottom-up. If a cgroup * is already in the tree, all ancestors are. */ if (rstatc->updated_next) break; rstatc->updated_next = prstatc->updated_children; prstatc->updated_children = cgrp; } raw_spin_unlock_irqrestore(cpu_lock, flags); } /** * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree * @pos: current position * @root: root of the tree to traversal * @cpu: target cpu * * Walks the udpated rstat_cpu tree on @cpu from @root. %NULL @pos starts * the traversal and %NULL return indicates the end. During traversal, * each returned cgroup is unlinked from the tree. Must be called with the * matching cgroup_rstat_cpu_lock held. * * The only ordering guarantee is that, for a parent and a child pair * covered by a given traversal, if a child is visited, its parent is * guaranteed to be visited afterwards. */ static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos, struct cgroup *root, int cpu) { struct cgroup_rstat_cpu *rstatc; if (pos == root) return NULL; /* * We're gonna walk down to the first leaf and visit/remove it. We * can pick whatever unvisited node as the starting point. */ if (!pos) pos = root; else pos = cgroup_parent(pos); /* walk down to the first leaf */ while (true) { rstatc = cgroup_rstat_cpu(pos, cpu); if (rstatc->updated_children == pos) break; pos = rstatc->updated_children; } /* * Unlink @pos from the tree. As the updated_children list is * singly linked, we have to walk it to find the removal point. * However, due to the way we traverse, @pos will be the first * child in most cases. The only exception is @root. */ if (rstatc->updated_next) { struct cgroup *parent = cgroup_parent(pos); struct cgroup_rstat_cpu *prstatc = cgroup_rstat_cpu(parent, cpu); struct cgroup_rstat_cpu *nrstatc; struct cgroup **nextp; nextp = &prstatc->updated_children; while (true) { nrstatc = cgroup_rstat_cpu(*nextp, cpu); if (*nextp == pos) break; WARN_ON_ONCE(*nextp == parent); nextp = &nrstatc->updated_next; } *nextp = rstatc->updated_next; rstatc->updated_next = NULL; return pos; } /* only happens for @root */ return NULL; } /* see cgroup_rstat_flush() */ static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep) __releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock) { int cpu; lockdep_assert_held(&cgroup_rstat_lock); for_each_possible_cpu(cpu) { raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); struct cgroup *pos = NULL; raw_spin_lock(cpu_lock); while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) { struct cgroup_subsys_state *css; cgroup_base_stat_flush(pos, cpu); rcu_read_lock(); list_for_each_entry_rcu(css, &pos->rstat_css_list, rstat_css_node) css->ss->css_rstat_flush(css, cpu); rcu_read_unlock(); } raw_spin_unlock(cpu_lock); /* if @may_sleep, play nice and yield if necessary */ if (may_sleep && (need_resched() || spin_needbreak(&cgroup_rstat_lock))) { spin_unlock_irq(&cgroup_rstat_lock); if (!cond_resched()) cpu_relax(); spin_lock_irq(&cgroup_rstat_lock); } } } /** * cgroup_rstat_flush - flush stats in @cgrp's subtree * @cgrp: target cgroup * * Collect all per-cpu stats in @cgrp's subtree into the global counters * and propagate them upwards. After this function returns, all cgroups in * the subtree have up-to-date ->stat. * * This also gets all cgroups in the subtree including @cgrp off the * ->updated_children lists. * * This function may block. */ void cgroup_rstat_flush(struct cgroup *cgrp) { might_sleep(); spin_lock_irq(&cgroup_rstat_lock); cgroup_rstat_flush_locked(cgrp, true); spin_unlock_irq(&cgroup_rstat_lock); } /** * cgroup_rstat_flush_irqsafe - irqsafe version of cgroup_rstat_flush() * @cgrp: target cgroup * * This function can be called from any context. */ void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp) { unsigned long flags; spin_lock_irqsave(&cgroup_rstat_lock, flags); cgroup_rstat_flush_locked(cgrp, false); spin_unlock_irqrestore(&cgroup_rstat_lock, flags); } /** * cgroup_rstat_flush_begin - flush stats in @cgrp's subtree and hold * @cgrp: target cgroup * * Flush stats in @cgrp's subtree and prevent further flushes. Must be * paired with cgroup_rstat_flush_release(). * * This function may block. */ void cgroup_rstat_flush_hold(struct cgroup *cgrp) __acquires(&cgroup_rstat_lock) { might_sleep(); spin_lock_irq(&cgroup_rstat_lock); cgroup_rstat_flush_locked(cgrp, true); } /** * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold() */ void cgroup_rstat_flush_release(void) __releases(&cgroup_rstat_lock) { spin_unlock_irq(&cgroup_rstat_lock); } int cgroup_rstat_init(struct cgroup *cgrp) { int cpu; /* the root cgrp has rstat_cpu preallocated */ if (!cgrp->rstat_cpu) { cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu); if (!cgrp->rstat_cpu) return -ENOMEM; } /* ->updated_children list is self terminated */ for_each_possible_cpu(cpu) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); rstatc->updated_children = cgrp; u64_stats_init(&rstatc->bsync); } return 0; } void cgroup_rstat_exit(struct cgroup *cgrp) { int cpu; cgroup_rstat_flush(cgrp); /* sanity check */ for_each_possible_cpu(cpu) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); if (WARN_ON_ONCE(rstatc->updated_children != cgrp) || WARN_ON_ONCE(rstatc->updated_next)) return; } free_percpu(cgrp->rstat_cpu); cgrp->rstat_cpu = NULL; } void __init cgroup_rstat_boot(void) { int cpu; for_each_possible_cpu(cpu) raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu)); BUG_ON(cgroup_rstat_init(&cgrp_dfl_root.cgrp)); } /* * Functions for cgroup basic resource statistics implemented on top of * rstat. */ static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, struct cgroup_base_stat *src_bstat) { dst_bstat->cputime.utime += src_bstat->cputime.utime; dst_bstat->cputime.stime += src_bstat->cputime.stime; dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; } static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, struct cgroup_base_stat *src_bstat) { dst_bstat->cputime.utime -= src_bstat->cputime.utime; dst_bstat->cputime.stime -= src_bstat->cputime.stime; dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; } static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) { struct cgroup *parent = cgroup_parent(cgrp); struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); struct cgroup_base_stat cur, delta; unsigned seq; /* fetch the current per-cpu values */ do { seq = __u64_stats_fetch_begin(&rstatc->bsync); cur.cputime = rstatc->bstat.cputime; } while (__u64_stats_fetch_retry(&rstatc->bsync, seq)); /* propagate percpu delta to global */ delta = cur; cgroup_base_stat_sub(&delta, &rstatc->last_bstat); cgroup_base_stat_add(&cgrp->bstat, &delta); cgroup_base_stat_add(&rstatc->last_bstat, &delta); /* propagate global delta to parent */ if (parent) { delta = cgrp->bstat; cgroup_base_stat_sub(&delta, &cgrp->last_bstat); cgroup_base_stat_add(&parent->bstat, &delta); cgroup_base_stat_add(&cgrp->last_bstat, &delta); } } static struct cgroup_rstat_cpu * cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp) { struct cgroup_rstat_cpu *rstatc; rstatc = get_cpu_ptr(cgrp->rstat_cpu); u64_stats_update_begin(&rstatc->bsync); return rstatc; } static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, struct cgroup_rstat_cpu *rstatc) { u64_stats_update_end(&rstatc->bsync); cgroup_rstat_updated(cgrp, smp_processor_id()); put_cpu_ptr(rstatc); } void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) { struct cgroup_rstat_cpu *rstatc; rstatc = cgroup_base_stat_cputime_account_begin(cgrp); rstatc->bstat.cputime.sum_exec_runtime += delta_exec; cgroup_base_stat_cputime_account_end(cgrp, rstatc); } void __cgroup_account_cputime_field(struct cgroup *cgrp, enum cpu_usage_stat index, u64 delta_exec) { struct cgroup_rstat_cpu *rstatc; rstatc = cgroup_base_stat_cputime_account_begin(cgrp); switch (index) { case CPUTIME_USER: case CPUTIME_NICE: rstatc->bstat.cputime.utime += delta_exec; break; case CPUTIME_SYSTEM: case CPUTIME_IRQ: case CPUTIME_SOFTIRQ: rstatc->bstat.cputime.stime += delta_exec; break; default: break; } cgroup_base_stat_cputime_account_end(cgrp, rstatc); } /* * compute the cputime for the root cgroup by getting the per cpu data * at a global level, then categorizing the fields in a manner consistent * with how it is done by __cgroup_account_cputime_field for each bit of * cpu time attributed to a cgroup. */ static void root_cgroup_cputime(struct task_cputime *cputime) { int i; cputime->stime = 0; cputime->utime = 0; cputime->sum_exec_runtime = 0; for_each_possible_cpu(i) { struct kernel_cpustat kcpustat; u64 *cpustat = kcpustat.cpustat; u64 user = 0; u64 sys = 0; kcpustat_cpu_fetch(&kcpustat, i); user += cpustat[CPUTIME_USER]; user += cpustat[CPUTIME_NICE]; cputime->utime += user; sys += cpustat[CPUTIME_SYSTEM]; sys += cpustat[CPUTIME_IRQ]; sys += cpustat[CPUTIME_SOFTIRQ]; cputime->stime += sys; cputime->sum_exec_runtime += user; cputime->sum_exec_runtime += sys; cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL]; cputime->sum_exec_runtime += cpustat[CPUTIME_GUEST]; cputime->sum_exec_runtime += cpustat[CPUTIME_GUEST_NICE]; } } void cgroup_base_stat_cputime_show(struct seq_file *seq) { struct cgroup *cgrp = seq_css(seq)->cgroup; u64 usage, utime, stime; struct task_cputime cputime; if (cgroup_parent(cgrp)) { cgroup_rstat_flush_hold(cgrp); usage = cgrp->bstat.cputime.sum_exec_runtime; cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, &utime, &stime); cgroup_rstat_flush_release(); } else { root_cgroup_cputime(&cputime); usage = cputime.sum_exec_runtime; utime = cputime.utime; stime = cputime.stime; } do_div(usage, NSEC_PER_USEC); do_div(utime, NSEC_PER_USEC); do_div(stime, NSEC_PER_USEC); seq_printf(seq, "usage_usec %llu\n" "user_usec %llu\n" "system_usec %llu\n", usage, utime, stime); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 /* SPDX-License-Identifier: GPL-2.0 */ /* * Security server interface. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> * */ #ifndef _SELINUX_SECURITY_H_ #define _SELINUX_SECURITY_H_ #include <linux/compiler.h> #include <linux/dcache.h> #include <linux/magic.h> #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/refcount.h> #include <linux/workqueue.h> #include "flask.h" #include "policycap.h" #define SECSID_NULL 0x00000000 /* unspecified SID */ #define SECSID_WILD 0xffffffff /* wildcard SID */ #define SECCLASS_NULL 0x0000 /* no class */ /* Identify specific policy version changes */ #define POLICYDB_VERSION_BASE 15 #define POLICYDB_VERSION_BOOL 16 #define POLICYDB_VERSION_IPV6 17 #define POLICYDB_VERSION_NLCLASS 18 #define POLICYDB_VERSION_VALIDATETRANS 19 #define POLICYDB_VERSION_MLS 19 #define POLICYDB_VERSION_AVTAB 20 #define POLICYDB_VERSION_RANGETRANS 21 #define POLICYDB_VERSION_POLCAP 22 #define POLICYDB_VERSION_PERMISSIVE 23 #define POLICYDB_VERSION_BOUNDARY 24 #define POLICYDB_VERSION_FILENAME_TRANS 25 #define POLICYDB_VERSION_ROLETRANS 26 #define POLICYDB_VERSION_NEW_OBJECT_DEFAULTS 27 #define POLICYDB_VERSION_DEFAULT_TYPE 28 #define POLICYDB_VERSION_CONSTRAINT_NAMES 29 #define POLICYDB_VERSION_XPERMS_IOCTL 30 #define POLICYDB_VERSION_INFINIBAND 31 #define POLICYDB_VERSION_GLBLUB 32 #define POLICYDB_VERSION_COMP_FTRANS 33 /* compressed filename transitions */ /* Range of policy versions we understand*/ #define POLICYDB_VERSION_MIN POLICYDB_VERSION_BASE #define POLICYDB_VERSION_MAX POLICYDB_VERSION_COMP_FTRANS /* Mask for just the mount related flags */ #define SE_MNTMASK 0x0f /* Super block security struct flags for mount options */ /* BE CAREFUL, these need to be the low order bits for selinux_get_mnt_opts */ #define CONTEXT_MNT 0x01 #define FSCONTEXT_MNT 0x02 #define ROOTCONTEXT_MNT 0x04 #define DEFCONTEXT_MNT 0x08 #define SBLABEL_MNT 0x10 /* Non-mount related flags */ #define SE_SBINITIALIZED 0x0100 #define SE_SBPROC 0x0200 #define SE_SBGENFS 0x0400 #define SE_SBGENFS_XATTR 0x0800 #define CONTEXT_STR "context" #define FSCONTEXT_STR "fscontext" #define ROOTCONTEXT_STR "rootcontext" #define DEFCONTEXT_STR "defcontext" #define SECLABEL_STR "seclabel" struct netlbl_lsm_secattr; extern int selinux_enabled_boot; /* * type_datum properties * available at the kernel policy version >= POLICYDB_VERSION_BOUNDARY */ #define TYPEDATUM_PROPERTY_PRIMARY 0x0001 #define TYPEDATUM_PROPERTY_ATTRIBUTE 0x0002 /* limitation of boundary depth */ #define POLICYDB_BOUNDS_MAXDEPTH 4 struct selinux_avc; struct selinux_policy; struct selinux_state { #ifdef CONFIG_SECURITY_SELINUX_DISABLE bool disabled; #endif #ifdef CONFIG_SECURITY_SELINUX_DEVELOP bool enforcing; #endif bool checkreqprot; bool initialized; bool policycap[__POLICYDB_CAPABILITY_MAX]; struct page *status_page; struct mutex status_lock; struct selinux_avc *avc; struct selinux_policy __rcu *policy; struct mutex policy_mutex; } __randomize_layout; void selinux_avc_init(struct selinux_avc **avc); extern struct selinux_state selinux_state; static inline bool selinux_initialized(const struct selinux_state *state) { /* do a synchronized load to avoid race conditions */ return smp_load_acquire(&state->initialized); } static inline void selinux_mark_initialized(struct selinux_state *state) { /* do a synchronized write to avoid race conditions */ smp_store_release(&state->initialized, true); } #ifdef CONFIG_SECURITY_SELINUX_DEVELOP static inline bool enforcing_enabled(struct selinux_state *state) { return READ_ONCE(state->enforcing); } static inline void enforcing_set(struct selinux_state *state, bool value) { WRITE_ONCE(state->enforcing, value); } #else static inline bool enforcing_enabled(struct selinux_state *state) { return true; } static inline void enforcing_set(struct selinux_state *state, bool value) { } #endif static inline bool checkreqprot_get(const struct selinux_state *state) { return READ_ONCE(state->checkreqprot); } static inline void checkreqprot_set(struct selinux_state *state, bool value) { WRITE_ONCE(state->checkreqprot, value); } #ifdef CONFIG_SECURITY_SELINUX_DISABLE static inline bool selinux_disabled(struct selinux_state *state) { return READ_ONCE(state->disabled); } static inline void selinux_mark_disabled(struct selinux_state *state) { WRITE_ONCE(state->disabled, true); } #else static inline bool selinux_disabled(struct selinux_state *state) { return false; } #endif static inline bool selinux_policycap_netpeer(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_NETPEER]); } static inline bool selinux_policycap_openperm(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_OPENPERM]); } static inline bool selinux_policycap_extsockclass(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_EXTSOCKCLASS]); } static inline bool selinux_policycap_alwaysnetwork(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_ALWAYSNETWORK]); } static inline bool selinux_policycap_cgroupseclabel(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_CGROUPSECLABEL]); } static inline bool selinux_policycap_nnp_nosuid_transition(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_NNP_NOSUID_TRANSITION]); } static inline bool selinux_policycap_genfs_seclabel_symlinks(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_GENFS_SECLABEL_SYMLINKS]); } struct selinux_policy_convert_data; struct selinux_load_state { struct selinux_policy *policy; struct selinux_policy_convert_data *convert_data; }; int security_mls_enabled(struct selinux_state *state); int security_load_policy(struct selinux_state *state, void *data, size_t len, struct selinux_load_state *load_state); void selinux_policy_commit(struct selinux_state *state, struct selinux_load_state *load_state); void selinux_policy_cancel(struct selinux_state *state, struct selinux_load_state *load_state); int security_read_policy(struct selinux_state *state, void **data, size_t *len); int security_policycap_supported(struct selinux_state *state, unsigned int req_cap); #define SEL_VEC_MAX 32 struct av_decision { u32 allowed; u32 auditallow; u32 auditdeny; u32 seqno; u32 flags; }; #define XPERMS_ALLOWED 1 #define XPERMS_AUDITALLOW 2 #define XPERMS_DONTAUDIT 4 #define security_xperm_set(perms, x) (perms[x >> 5] |= 1 << (x & 0x1f)) #define security_xperm_test(perms, x) (1 & (perms[x >> 5] >> (x & 0x1f))) struct extended_perms_data { u32 p[8]; }; struct extended_perms_decision { u8 used; u8 driver; struct extended_perms_data *allowed; struct extended_perms_data *auditallow; struct extended_perms_data *dontaudit; }; struct extended_perms { u16 len; /* length associated decision chain */ struct extended_perms_data drivers; /* flag drivers that are used */ }; /* definitions of av_decision.flags */ #define AVD_FLAGS_PERMISSIVE 0x0001 void security_compute_av(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd, struct extended_perms *xperms); void security_compute_xperms_decision(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u8 driver, struct extended_perms_decision *xpermd); void security_compute_av_user(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd); int security_transition_sid(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, const struct qstr *qstr, u32 *out_sid); int security_transition_sid_user(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, const char *objname, u32 *out_sid); int security_member_sid(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 *out_sid); int security_change_sid(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 *out_sid); int security_sid_to_context(struct selinux_state *state, u32 sid, char **scontext, u32 *scontext_len); int security_sid_to_context_force(struct selinux_state *state, u32 sid, char **scontext, u32 *scontext_len); int security_sid_to_context_inval(struct selinux_state *state, u32 sid, char **scontext, u32 *scontext_len); int security_context_to_sid(struct selinux_state *state, const char *scontext, u32 scontext_len, u32 *out_sid, gfp_t gfp); int security_context_str_to_sid(struct selinux_state *state, const char *scontext, u32 *out_sid, gfp_t gfp); int security_context_to_sid_default(struct selinux_state *state, const char *scontext, u32 scontext_len, u32 *out_sid, u32 def_sid, gfp_t gfp_flags); int security_context_to_sid_force(struct selinux_state *state, const char *scontext, u32 scontext_len, u32 *sid); int security_get_user_sids(struct selinux_state *state, u32 callsid, char *username, u32 **sids, u32 *nel); int security_port_sid(struct selinux_state *state, u8 protocol, u16 port, u32 *out_sid); int security_ib_pkey_sid(struct selinux_state *state, u64 subnet_prefix, u16 pkey_num, u32 *out_sid); int security_ib_endport_sid(struct selinux_state *state, const char *dev_name, u8 port_num, u32 *out_sid); int security_netif_sid(struct selinux_state *state, char *name, u32 *if_sid); int security_node_sid(struct selinux_state *state, u16 domain, void *addr, u32 addrlen, u32 *out_sid); int security_validate_transition(struct selinux_state *state, u32 oldsid, u32 newsid, u32 tasksid, u16 tclass); int security_validate_transition_user(struct selinux_state *state, u32 oldsid, u32 newsid, u32 tasksid, u16 tclass); int security_bounded_transition(struct selinux_state *state, u32 oldsid, u32 newsid); int security_sid_mls_copy(struct selinux_state *state, u32 sid, u32 mls_sid, u32 *new_sid); int security_net_peersid_resolve(struct selinux_state *state, u32 nlbl_sid, u32 nlbl_type, u32 xfrm_sid, u32 *peer_sid); int security_get_classes(struct selinux_policy *policy, char ***classes, int *nclasses); int security_get_permissions(struct selinux_policy *policy, char *class, char ***perms, int *nperms); int security_get_reject_unknown(struct selinux_state *state); int security_get_allow_unknown(struct selinux_state *state); #define SECURITY_FS_USE_XATTR 1 /* use xattr */ #define SECURITY_FS_USE_TRANS 2 /* use transition SIDs, e.g. devpts/tmpfs */ #define SECURITY_FS_USE_TASK 3 /* use task SIDs, e.g. pipefs/sockfs */ #define SECURITY_FS_USE_GENFS 4 /* use the genfs support */ #define SECURITY_FS_USE_NONE 5 /* no labeling support */ #define SECURITY_FS_USE_MNTPOINT 6 /* use mountpoint labeling */ #define SECURITY_FS_USE_NATIVE 7 /* use native label support */ #define SECURITY_FS_USE_MAX 7 /* Highest SECURITY_FS_USE_XXX */ int security_fs_use(struct selinux_state *state, struct super_block *sb); int security_genfs_sid(struct selinux_state *state, const char *fstype, char *name, u16 sclass, u32 *sid); int selinux_policy_genfs_sid(struct selinux_policy *policy, const char *fstype, char *name, u16 sclass, u32 *sid); #ifdef CONFIG_NETLABEL int security_netlbl_secattr_to_sid(struct selinux_state *state, struct netlbl_lsm_secattr *secattr, u32 *sid); int security_netlbl_sid_to_secattr(struct selinux_state *state, u32 sid, struct netlbl_lsm_secattr *secattr); #else static inline int security_netlbl_secattr_to_sid(struct selinux_state *state, struct netlbl_lsm_secattr *secattr, u32 *sid) { return -EIDRM; } static inline int security_netlbl_sid_to_secattr(struct selinux_state *state, u32 sid, struct netlbl_lsm_secattr *secattr) { return -ENOENT; } #endif /* CONFIG_NETLABEL */ const char *security_get_initial_sid_context(u32 sid); /* * status notifier using mmap interface */ extern struct page *selinux_kernel_status_page(struct selinux_state *state); #define SELINUX_KERNEL_STATUS_VERSION 1 struct selinux_kernel_status { u32 version; /* version number of thie structure */ u32 sequence; /* sequence number of seqlock logic */ u32 enforcing; /* current setting of enforcing mode */ u32 policyload; /* times of policy reloaded */ u32 deny_unknown; /* current setting of deny_unknown */ /* * The version > 0 supports above members. */ } __packed; extern void selinux_status_update_setenforce(struct selinux_state *state, int enforcing); extern void selinux_status_update_policyload(struct selinux_state *state, int seqno); extern void selinux_complete_init(void); extern int selinux_disable(struct selinux_state *state); extern void exit_sel_fs(void); extern struct path selinux_null; extern struct vfsmount *selinuxfs_mount; extern void selnl_notify_setenforce(int val); extern void selnl_notify_policyload(u32 seqno); extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); extern void avtab_cache_init(void); extern void ebitmap_cache_init(void); extern void hashtab_cache_init(void); extern int security_sidtab_hash_stats(struct selinux_state *state, char *page); #endif /* _SELINUX_SECURITY_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0 */ /* * Portions of this file * Copyright (C) 2018 Intel Corporation */ #ifndef __NET_WIRELESS_NL80211_H #define __NET_WIRELESS_NL80211_H #include "core.h" int nl80211_init(void); void nl80211_exit(void); void *nl80211hdr_put(struct sk_buff *skb, u32 portid, u32 seq, int flags, u8 cmd); bool nl80211_put_sta_rate(struct sk_buff *msg, struct rate_info *info, int attr); static inline u64 wdev_id(struct wireless_dev *wdev) { return (u64)wdev->identifier | ((u64)wiphy_to_rdev(wdev->wiphy)->wiphy_idx << 32); } int nl80211_prepare_wdev_dump(struct netlink_callback *cb, struct cfg80211_registered_device **rdev, struct wireless_dev **wdev); int nl80211_parse_chandef(struct cfg80211_registered_device *rdev, struct genl_info *info, struct cfg80211_chan_def *chandef); int nl80211_parse_random_mac(struct nlattr **attrs, u8 *mac_addr, u8 *mac_addr_mask); void nl80211_notify_wiphy(struct cfg80211_registered_device *rdev, enum nl80211_commands cmd); void nl80211_notify_iface(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_commands cmd); void nl80211_send_scan_start(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); struct sk_buff *nl80211_build_scan_msg(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, bool aborted); void nl80211_send_scan_msg(struct cfg80211_registered_device *rdev, struct sk_buff *msg); void nl80211_send_sched_scan(struct cfg80211_sched_scan_request *req, u32 cmd); void nl80211_common_reg_change_event(enum nl80211_commands cmd_id, struct regulatory_request *request); static inline void nl80211_send_reg_change_event(struct regulatory_request *request) { nl80211_common_reg_change_event(NL80211_CMD_REG_CHANGE, request); } static inline void nl80211_send_wiphy_reg_change_event(struct regulatory_request *request) { nl80211_common_reg_change_event(NL80211_CMD_WIPHY_REG_CHANGE, request); } void nl80211_send_rx_auth(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_rx_assoc(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp, int uapsd_queues, const u8 *req_ies, size_t req_ies_len); void nl80211_send_deauth(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_disassoc(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_auth_timeout(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, gfp_t gfp); void nl80211_send_assoc_timeout(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, gfp_t gfp); void nl80211_send_connect_result(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_connect_resp_params *params, gfp_t gfp); void nl80211_send_roamed(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_roam_info *info, gfp_t gfp); void nl80211_send_port_authorized(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *bssid); void nl80211_send_disconnected(struct cfg80211_registered_device *rdev, struct net_device *netdev, u16 reason, const u8 *ie, size_t ie_len, bool from_ap); void nl80211_michael_mic_failure(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, enum nl80211_key_type key_type, int key_id, const u8 *tsc, gfp_t gfp); void nl80211_send_beacon_hint_event(struct wiphy *wiphy, struct ieee80211_channel *channel_before, struct ieee80211_channel *channel_after); void nl80211_send_ibss_bssid(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *bssid, gfp_t gfp); int nl80211_send_mgmt(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u32 nlpid, int freq, int sig_dbm, const u8 *buf, size_t len, u32 flags, gfp_t gfp); void nl80211_radar_notify(struct cfg80211_registered_device *rdev, const struct cfg80211_chan_def *chandef, enum nl80211_radar_event event, struct net_device *netdev, gfp_t gfp); void nl80211_send_ap_stopped(struct wireless_dev *wdev); void cfg80211_rdev_free_coalesce(struct cfg80211_registered_device *rdev); /* peer measurement */ int nl80211_pmsr_start(struct sk_buff *skb, struct genl_info *info); int nl80211_pmsr_dump_results(struct sk_buff *skb, struct netlink_callback *cb); #endif /* __NET_WIRELESS_NL80211_H */
4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 // SPDX-License-Identifier: GPL-2.0 /* * This is a maximally equidistributed combined Tausworthe generator * based on code from GNU Scientific Library 1.5 (30 Jun 2004) * * lfsr113 version: * * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n) * * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n << 6) ^ s1_n) >> 13)) * s2_{n+1} = (((s2_n & 4294967288) << 2) ^ (((s2_n << 2) ^ s2_n) >> 27)) * s3_{n+1} = (((s3_n & 4294967280) << 7) ^ (((s3_n << 13) ^ s3_n) >> 21)) * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n << 3) ^ s4_n) >> 12)) * * The period of this generator is about 2^113 (see erratum paper). * * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe * Generators", Mathematics of Computation, 65, 213 (1996), 203--213: * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps * * There is an erratum in the paper "Tables of Maximally Equidistributed * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999), * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps * * ... the k_j most significant bits of z_j must be non-zero, * for each j. (Note: this restriction also applies to the * computer code given in [4], but was mistakenly not mentioned * in that paper.) * * This affects the seeding procedure by imposing the requirement * s1 > 1, s2 > 7, s3 > 15, s4 > 127. */ #include <linux/types.h> #include <linux/percpu.h> #include <linux/export.h> #include <linux/jiffies.h> #include <linux/random.h> #include <linux/sched.h> #include <linux/bitops.h> #include <asm/unaligned.h> #include <trace/events/random.h> /** * prandom_u32_state - seeded pseudo-random number generator. * @state: pointer to state structure holding seeded state. * * This is used for pseudo-randomness with no outside seeding. * For more random results, use prandom_u32(). */ u32 prandom_u32_state(struct rnd_state *state) { #define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b) state->s1 = TAUSWORTHE(state->s1, 6U, 13U, 4294967294U, 18U); state->s2 = TAUSWORTHE(state->s2, 2U, 27U, 4294967288U, 2U); state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U, 7U); state->s4 = TAUSWORTHE(state->s4, 3U, 12U, 4294967168U, 13U); return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4); } EXPORT_SYMBOL(prandom_u32_state); /** * prandom_bytes_state - get the requested number of pseudo-random bytes * * @state: pointer to state structure holding seeded state. * @buf: where to copy the pseudo-random bytes to * @bytes: the requested number of bytes * * This is used for pseudo-randomness with no outside seeding. * For more random results, use prandom_bytes(). */ void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes) { u8 *ptr = buf; while (bytes >= sizeof(u32)) { put_unaligned(prandom_u32_state(state), (u32 *) ptr); ptr += sizeof(u32); bytes -= sizeof(u32); } if (bytes > 0) { u32 rem = prandom_u32_state(state); do { *ptr++ = (u8) rem; bytes--; rem >>= BITS_PER_BYTE; } while (bytes > 0); } } EXPORT_SYMBOL(prandom_bytes_state); static void prandom_warmup(struct rnd_state *state) { /* Calling RNG ten times to satisfy recurrence condition */ prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); } void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state) { int i; for_each_possible_cpu(i) { struct rnd_state *state = per_cpu_ptr(pcpu_state, i); u32 seeds[4]; get_random_bytes(&seeds, sizeof(seeds)); state->s1 = __seed(seeds[0], 2U); state->s2 = __seed(seeds[1], 8U); state->s3 = __seed(seeds[2], 16U); state->s4 = __seed(seeds[3], 128U); prandom_warmup(state); } } EXPORT_SYMBOL(prandom_seed_full_state); #ifdef CONFIG_RANDOM32_SELFTEST static struct prandom_test1 { u32 seed; u32 result; } test1[] = { { 1U, 3484351685U }, { 2U, 2623130059U }, { 3U, 3125133893U }, { 4U, 984847254U }, }; static struct prandom_test2 { u32 seed; u32 iteration; u32 result; } test2[] = { /* Test cases against taus113 from GSL library. */ { 931557656U, 959U, 2975593782U }, { 1339693295U, 876U, 3887776532U }, { 1545556285U, 961U, 1615538833U }, { 601730776U, 723U, 1776162651U }, { 1027516047U, 687U, 511983079U }, { 416526298U, 700U, 916156552U }, { 1395522032U, 652U, 2222063676U }, { 366221443U, 617U, 2992857763U }, { 1539836965U, 714U, 3783265725U }, { 556206671U, 994U, 799626459U }, { 684907218U, 799U, 367789491U }, { 2121230701U, 931U, 2115467001U }, { 1668516451U, 644U, 3620590685U }, { 768046066U, 883U, 2034077390U }, { 1989159136U, 833U, 1195767305U }, { 536585145U, 996U, 3577259204U }, { 1008129373U, 642U, 1478080776U }, { 1740775604U, 939U, 1264980372U }, { 1967883163U, 508U, 10734624U }, { 1923019697U, 730U, 3821419629U }, { 442079932U, 560U, 3440032343U }, { 1961302714U, 845U, 841962572U }, { 2030205964U, 962U, 1325144227U }, { 1160407529U, 507U, 240940858U }, { 635482502U, 779U, 4200489746U }, { 1252788931U, 699U, 867195434U }, { 1961817131U, 719U, 668237657U }, { 1071468216U, 983U, 917876630U }, { 1281848367U, 932U, 1003100039U }, { 582537119U, 780U, 1127273778U }, { 1973672777U, 853U, 1071368872U }, { 1896756996U, 762U, 1127851055U }, { 847917054U, 500U, 1717499075U }, { 1240520510U, 951U, 2849576657U }, { 1685071682U, 567U, 1961810396U }, { 1516232129U, 557U, 3173877U }, { 1208118903U, 612U, 1613145022U }, { 1817269927U, 693U, 4279122573U }, { 1510091701U, 717U, 638191229U }, { 365916850U, 807U, 600424314U }, { 399324359U, 702U, 1803598116U }, { 1318480274U, 779U, 2074237022U }, { 697758115U, 840U, 1483639402U }, { 1696507773U, 840U, 577415447U }, { 2081979121U, 981U, 3041486449U }, { 955646687U, 742U, 3846494357U }, { 1250683506U, 749U, 836419859U }, { 595003102U, 534U, 366794109U }, { 47485338U, 558U, 3521120834U }, { 619433479U, 610U, 3991783875U }, { 704096520U, 518U, 4139493852U }, { 1712224984U, 606U, 2393312003U }, { 1318233152U, 922U, 3880361134U }, { 855572992U, 761U, 1472974787U }, { 64721421U, 703U, 683860550U }, { 678931758U, 840U, 380616043U }, { 692711973U, 778U, 1382361947U }, { 677703619U, 530U, 2826914161U }, { 92393223U, 586U, 1522128471U }, { 1222592920U, 743U, 3466726667U }, { 358288986U, 695U, 1091956998U }, { 1935056945U, 958U, 514864477U }, { 735675993U, 990U, 1294239989U }, { 1560089402U, 897U, 2238551287U }, { 70616361U, 829U, 22483098U }, { 368234700U, 731U, 2913875084U }, { 20221190U, 879U, 1564152970U }, { 539444654U, 682U, 1835141259U }, { 1314987297U, 840U, 1801114136U }, { 2019295544U, 645U, 3286438930U }, { 469023838U, 716U, 1637918202U }, { 1843754496U, 653U, 2562092152U }, { 400672036U, 809U, 4264212785U }, { 404722249U, 965U, 2704116999U }, { 600702209U, 758U, 584979986U }, { 519953954U, 667U, 2574436237U }, { 1658071126U, 694U, 2214569490U }, { 420480037U, 749U, 3430010866U }, { 690103647U, 969U, 3700758083U }, { 1029424799U, 937U, 3787746841U }, { 2012608669U, 506U, 3362628973U }, { 1535432887U, 998U, 42610943U }, { 1330635533U, 857U, 3040806504U }, { 1223800550U, 539U, 3954229517U }, { 1322411537U, 680U, 3223250324U }, { 1877847898U, 945U, 2915147143U }, { 1646356099U, 874U, 965988280U }, { 805687536U, 744U, 4032277920U }, { 1948093210U, 633U, 1346597684U }, { 392609744U, 783U, 1636083295U }, { 690241304U, 770U, 1201031298U }, { 1360302965U, 696U, 1665394461U }, { 1220090946U, 780U, 1316922812U }, { 447092251U, 500U, 3438743375U }, { 1613868791U, 592U, 828546883U }, { 523430951U, 548U, 2552392304U }, { 726692899U, 810U, 1656872867U }, { 1364340021U, 836U, 3710513486U }, { 1986257729U, 931U, 935013962U }, { 407983964U, 921U, 728767059U }, }; static u32 __extract_hwseed(void) { unsigned int val = 0; (void)(arch_get_random_seed_int(&val) || arch_get_random_int(&val)); return val; } static void prandom_seed_early(struct rnd_state *state, u32 seed, bool mix_with_hwseed) { #define LCG(x) ((x) * 69069U) /* super-duper LCG */ #define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0) state->s1 = __seed(HWSEED() ^ LCG(seed), 2U); state->s2 = __seed(HWSEED() ^ LCG(state->s1), 8U); state->s3 = __seed(HWSEED() ^ LCG(state->s2), 16U); state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U); } static int __init prandom_state_selftest(void) { int i, j, errors = 0, runs = 0; bool error = false; for (i = 0; i < ARRAY_SIZE(test1); i++) { struct rnd_state state; prandom_seed_early(&state, test1[i].seed, false); prandom_warmup(&state); if (test1[i].result != prandom_u32_state(&state)) error = true; } if (error) pr_warn("prandom: seed boundary self test failed\n"); else pr_info("prandom: seed boundary self test passed\n"); for (i = 0; i < ARRAY_SIZE(test2); i++) { struct rnd_state state; prandom_seed_early(&state, test2[i].seed, false); prandom_warmup(&state); for (j = 0; j < test2[i].iteration - 1; j++) prandom_u32_state(&state); if (test2[i].result != prandom_u32_state(&state)) errors++; runs++; cond_resched(); } if (errors) pr_warn("prandom: %d/%d self tests failed\n", errors, runs); else pr_info("prandom: %d self tests passed\n", runs); return 0; } core_initcall(prandom_state_selftest); #endif /* * The prandom_u32() implementation is now completely separate from the * prandom_state() functions, which are retained (for now) for compatibility. * * Because of (ab)use in the networking code for choosing random TCP/UDP port * numbers, which open DoS possibilities if guessable, we want something * stronger than a standard PRNG. But the performance requirements of * the network code do not allow robust crypto for this application. * * So this is a homebrew Junior Spaceman implementation, based on the * lowest-latency trustworthy crypto primitive available, SipHash. * (The authors of SipHash have not been consulted about this abuse of * their work.) * * Standard SipHash-2-4 uses 2n+4 rounds to hash n words of input to * one word of output. This abbreviated version uses 2 rounds per word * of output. */ struct siprand_state { unsigned long v0; unsigned long v1; unsigned long v2; unsigned long v3; }; static DEFINE_PER_CPU(struct siprand_state, net_rand_state) __latent_entropy; DEFINE_PER_CPU(unsigned long, net_rand_noise); EXPORT_PER_CPU_SYMBOL(net_rand_noise); /* * This is the core CPRNG function. As "pseudorandom", this is not used * for truly valuable things, just intended to be a PITA to guess. * For maximum speed, we do just two SipHash rounds per word. This is * the same rate as 4 rounds per 64 bits that SipHash normally uses, * so hopefully it's reasonably secure. * * There are two changes from the official SipHash finalization: * - We omit some constants XORed with v2 in the SipHash spec as irrelevant; * they are there only to make the output rounds distinct from the input * rounds, and this application has no input rounds. * - Rather than returning v0^v1^v2^v3, return v1+v3. * If you look at the SipHash round, the last operation on v3 is * "v3 ^= v0", so "v0 ^ v3" just undoes that, a waste of time. * Likewise "v1 ^= v2". (The rotate of v2 makes a difference, but * it still cancels out half of the bits in v2 for no benefit.) * Second, since the last combining operation was xor, continue the * pattern of alternating xor/add for a tiny bit of extra non-linearity. */ static inline u32 siprand_u32(struct siprand_state *s) { unsigned long v0 = s->v0, v1 = s->v1, v2 = s->v2, v3 = s->v3; unsigned long n = raw_cpu_read(net_rand_noise); v3 ^= n; PRND_SIPROUND(v0, v1, v2, v3); PRND_SIPROUND(v0, v1, v2, v3); v0 ^= n; s->v0 = v0; s->v1 = v1; s->v2 = v2; s->v3 = v3; return v1 + v3; } /** * prandom_u32 - pseudo random number generator * * A 32 bit pseudo-random number is generated using a fast * algorithm suitable for simulation. This algorithm is NOT * considered safe for cryptographic use. */ u32 prandom_u32(void) { struct siprand_state *state = get_cpu_ptr(&net_rand_state); u32 res = siprand_u32(state); trace_prandom_u32(res); put_cpu_ptr(&net_rand_state); return res; } EXPORT_SYMBOL(prandom_u32); /** * prandom_bytes - get the requested number of pseudo-random bytes * @buf: where to copy the pseudo-random bytes to * @bytes: the requested number of bytes */ void prandom_bytes(void *buf, size_t bytes) { struct siprand_state *state = get_cpu_ptr(&net_rand_state); u8 *ptr = buf; while (bytes >= sizeof(u32)) { put_unaligned(siprand_u32(state), (u32 *)ptr); ptr += sizeof(u32); bytes -= sizeof(u32); } if (bytes > 0) { u32 rem = siprand_u32(state); do { *ptr++ = (u8)rem; rem >>= BITS_PER_BYTE; } while (--bytes > 0); } put_cpu_ptr(&net_rand_state); } EXPORT_SYMBOL(prandom_bytes); /** * prandom_seed - add entropy to pseudo random number generator * @entropy: entropy value * * Add some additional seed material to the prandom pool. * The "entropy" is actually our IP address (the only caller is * the network code), not for unpredictability, but to ensure that * different machines are initialized differently. */ void prandom_seed(u32 entropy) { int i; add_device_randomness(&entropy, sizeof(entropy)); for_each_possible_cpu(i) { struct siprand_state *state = per_cpu_ptr(&net_rand_state, i); unsigned long v0 = state->v0, v1 = state->v1; unsigned long v2 = state->v2, v3 = state->v3; do { v3 ^= entropy; PRND_SIPROUND(v0, v1, v2, v3); PRND_SIPROUND(v0, v1, v2, v3); v0 ^= entropy; } while (unlikely(!v0 || !v1 || !v2 || !v3)); WRITE_ONCE(state->v0, v0); WRITE_ONCE(state->v1, v1); WRITE_ONCE(state->v2, v2); WRITE_ONCE(state->v3, v3); } } EXPORT_SYMBOL(prandom_seed); /* * Generate some initially weak seeding values to allow * the prandom_u32() engine to be started. */ static int __init prandom_init_early(void) { int i; unsigned long v0, v1, v2, v3; if (!arch_get_random_long(&v0)) v0 = jiffies; if (!arch_get_random_long(&v1)) v1 = random_get_entropy(); v2 = v0 ^ PRND_K0; v3 = v1 ^ PRND_K1; for_each_possible_cpu(i) { struct siprand_state *state; v3 ^= i; PRND_SIPROUND(v0, v1, v2, v3); PRND_SIPROUND(v0, v1, v2, v3); v0 ^= i; state = per_cpu_ptr(&net_rand_state, i); state->v0 = v0; state->v1 = v1; state->v2 = v2; state->v3 = v3; } return 0; } core_initcall(prandom_init_early); /* Stronger reseeding when available, and periodically thereafter. */ static void prandom_reseed(struct timer_list *unused); static DEFINE_TIMER(seed_timer, prandom_reseed); static void prandom_reseed(struct timer_list *unused) { unsigned long expires; int i; /* * Reinitialize each CPU's PRNG with 128 bits of key. * No locking on the CPUs, but then somewhat random results are, * well, expected. */ for_each_possible_cpu(i) { struct siprand_state *state; unsigned long v0 = get_random_long(), v2 = v0 ^ PRND_K0; unsigned long v1 = get_random_long(), v3 = v1 ^ PRND_K1; #if BITS_PER_LONG == 32 int j; /* * On 32-bit machines, hash in two extra words to * approximate 128-bit key length. Not that the hash * has that much security, but this prevents a trivial * 64-bit brute force. */ for (j = 0; j < 2; j++) { unsigned long m = get_random_long(); v3 ^= m; PRND_SIPROUND(v0, v1, v2, v3); PRND_SIPROUND(v0, v1, v2, v3); v0 ^= m; } #endif /* * Probably impossible in practice, but there is a * theoretical risk that a race between this reseeding * and the target CPU writing its state back could * create the all-zero SipHash fixed point. * * To ensure that never happens, ensure the state * we write contains no zero words. */ state = per_cpu_ptr(&net_rand_state, i); WRITE_ONCE(state->v0, v0 ? v0 : -1ul); WRITE_ONCE(state->v1, v1 ? v1 : -1ul); WRITE_ONCE(state->v2, v2 ? v2 : -1ul); WRITE_ONCE(state->v3, v3 ? v3 : -1ul); } /* reseed every ~60 seconds, in [40 .. 80) interval with slack */ expires = round_jiffies(jiffies + 40 * HZ + prandom_u32_max(40 * HZ)); mod_timer(&seed_timer, expires); } /* * The random ready callback can be called from almost any interrupt. * To avoid worrying about whether it's safe to delay that interrupt * long enough to seed all CPUs, just schedule an immediate timer event. */ static void prandom_timer_start(struct random_ready_callback *unused) { mod_timer(&seed_timer, jiffies); } #ifdef CONFIG_RANDOM32_SELFTEST /* Principle: True 32-bit random numbers will all have 16 differing bits on * average. For each 32-bit number, there are 601M numbers differing by 16 * bits, and 89% of the numbers differ by at least 12 bits. Note that more * than 16 differing bits also implies a correlation with inverted bits. Thus * we take 1024 random numbers and compare each of them to the other ones, * counting the deviation of correlated bits to 16. Constants report 32, * counters 32-log2(TEST_SIZE), and pure randoms, around 6 or lower. With the * u32 total, TEST_SIZE may be as large as 4096 samples. */ #define TEST_SIZE 1024 static int __init prandom32_state_selftest(void) { unsigned int x, y, bits, samples; u32 xor, flip; u32 total; u32 *data; data = kmalloc(sizeof(*data) * TEST_SIZE, GFP_KERNEL); if (!data) return 0; for (samples = 0; samples < TEST_SIZE; samples++) data[samples] = prandom_u32(); flip = total = 0; for (x = 0; x < samples; x++) { for (y = 0; y < samples; y++) { if (x == y) continue; xor = data[x] ^ data[y]; flip |= xor; bits = hweight32(xor); total += (bits - 16) * (bits - 16); } } /* We'll return the average deviation as 2*sqrt(corr/samples), which * is also sqrt(4*corr/samples) which provides a better resolution. */ bits = int_sqrt(total / (samples * (samples - 1)) * 4); if (bits > 6) pr_warn("prandom32: self test failed (at least %u bits" " correlated, fixed_mask=%#x fixed_value=%#x\n", bits, ~flip, data[0] & ~flip); else pr_info("prandom32: self test passed (less than %u bits" " correlated)\n", bits+1); kfree(data); return 0; } core_initcall(prandom32_state_selftest); #endif /* CONFIG_RANDOM32_SELFTEST */ /* * Start periodic full reseeding as soon as strong * random numbers are available. */ static int __init prandom_init_late(void) { static struct random_ready_callback random_ready = { .func = prandom_timer_start }; int ret = add_random_ready_callback(&random_ready); if (ret == -EALREADY) { prandom_timer_start(&random_ready); ret = 0; } return ret; } late_initcall(prandom_init_late);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef _INPUT_MT_H #define _INPUT_MT_H /* * Input Multitouch Library * * Copyright (c) 2010 Henrik Rydberg */ #include <linux/input.h> #define TRKID_MAX 0xffff #define INPUT_MT_POINTER 0x0001 /* pointer device, e.g. trackpad */ #define INPUT_MT_DIRECT 0x0002 /* direct device, e.g. touchscreen */ #define INPUT_MT_DROP_UNUSED 0x0004 /* drop contacts not seen in frame */ #define INPUT_MT_TRACK 0x0008 /* use in-kernel tracking */ #define INPUT_MT_SEMI_MT 0x0010 /* semi-mt device, finger count handled manually */ /** * struct input_mt_slot - represents the state of an input MT slot * @abs: holds current values of ABS_MT axes for this slot * @frame: last frame at which input_mt_report_slot_state() was called * @key: optional driver designation of this slot */ struct input_mt_slot { int abs[ABS_MT_LAST - ABS_MT_FIRST + 1]; unsigned int frame; unsigned int key; }; /** * struct input_mt - state of tracked contacts * @trkid: stores MT tracking ID for the next contact * @num_slots: number of MT slots the device uses * @slot: MT slot currently being transmitted * @flags: input_mt operation flags * @frame: increases every time input_mt_sync_frame() is called * @red: reduced cost matrix for in-kernel tracking * @slots: array of slots holding current values of tracked contacts */ struct input_mt { int trkid; int num_slots; int slot; unsigned int flags; unsigned int frame; int *red; struct input_mt_slot slots[]; }; static inline void input_mt_set_value(struct input_mt_slot *slot, unsigned code, int value) { slot->abs[code - ABS_MT_FIRST] = value; } static inline int input_mt_get_value(const struct input_mt_slot *slot, unsigned code) { return slot->abs[code - ABS_MT_FIRST]; } static inline bool input_mt_is_active(const struct input_mt_slot *slot) { return input_mt_get_value(slot, ABS_MT_TRACKING_ID) >= 0; } static inline bool input_mt_is_used(const struct input_mt *mt, const struct input_mt_slot *slot) { return slot->frame == mt->frame; } int input_mt_init_slots(struct input_dev *dev, unsigned int num_slots, unsigned int flags); void input_mt_destroy_slots(struct input_dev *dev); static inline int input_mt_new_trkid(struct input_mt *mt) { return mt->trkid++ & TRKID_MAX; } static inline void input_mt_slot(struct input_dev *dev, int slot) { input_event(dev, EV_ABS, ABS_MT_SLOT, slot); } static inline bool input_is_mt_value(int axis) { return axis >= ABS_MT_FIRST && axis <= ABS_MT_LAST; } static inline bool input_is_mt_axis(int axis) { return axis == ABS_MT_SLOT || input_is_mt_value(axis); } bool input_mt_report_slot_state(struct input_dev *dev, unsigned int tool_type, bool active); static inline void input_mt_report_slot_inactive(struct input_dev *dev) { input_mt_report_slot_state(dev, 0, false); } void input_mt_report_finger_count(struct input_dev *dev, int count); void input_mt_report_pointer_emulation(struct input_dev *dev, bool use_count); void input_mt_drop_unused(struct input_dev *dev); void input_mt_sync_frame(struct input_dev *dev); /** * struct input_mt_pos - contact position * @x: horizontal coordinate * @y: vertical coordinate */ struct input_mt_pos { s16 x, y; }; int input_mt_assign_slots(struct input_dev *dev, int *slots, const struct input_mt_pos *pos, int num_pos, int dmax); int input_mt_get_slot_by_key(struct input_dev *dev, int key); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 /* SPDX-License-Identifier: GPL-2.0-only */ /* * IEEE802.15.4-2003 specification * * Copyright (C) 2007, 2008 Siemens AG * * Written by: * Pavel Smolenskiy <pavel.smolenskiy@gmail.com> * Maxim Gorbachyov <maxim.gorbachev@siemens.com> * Maxim Osipov <maxim.osipov@siemens.com> * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> */ #ifndef LINUX_IEEE802154_H #define LINUX_IEEE802154_H #include <linux/types.h> #include <linux/random.h> #define IEEE802154_MTU 127 #define IEEE802154_ACK_PSDU_LEN 5 #define IEEE802154_MIN_PSDU_LEN 9 #define IEEE802154_FCS_LEN 2 #define IEEE802154_MAX_AUTH_TAG_LEN 16 #define IEEE802154_FC_LEN 2 #define IEEE802154_SEQ_LEN 1 /* General MAC frame format: * 2 bytes: Frame Control * 1 byte: Sequence Number * 20 bytes: Addressing fields * 14 bytes: Auxiliary Security Header */ #define IEEE802154_MAX_HEADER_LEN (2 + 1 + 20 + 14) #define IEEE802154_MIN_HEADER_LEN (IEEE802154_ACK_PSDU_LEN - \ IEEE802154_FCS_LEN) #define IEEE802154_PAN_ID_BROADCAST 0xffff #define IEEE802154_ADDR_SHORT_BROADCAST 0xffff #define IEEE802154_ADDR_SHORT_UNSPEC 0xfffe #define IEEE802154_EXTENDED_ADDR_LEN 8 #define IEEE802154_SHORT_ADDR_LEN 2 #define IEEE802154_PAN_ID_LEN 2 #define IEEE802154_LIFS_PERIOD 40 #define IEEE802154_SIFS_PERIOD 12 #define IEEE802154_MAX_SIFS_FRAME_SIZE 18 #define IEEE802154_MAX_CHANNEL 26 #define IEEE802154_MAX_PAGE 31 #define IEEE802154_FC_TYPE_BEACON 0x0 /* Frame is beacon */ #define IEEE802154_FC_TYPE_DATA 0x1 /* Frame is data */ #define IEEE802154_FC_TYPE_ACK 0x2 /* Frame is acknowledgment */ #define IEEE802154_FC_TYPE_MAC_CMD 0x3 /* Frame is MAC command */ #define IEEE802154_FC_TYPE_SHIFT 0 #define IEEE802154_FC_TYPE_MASK ((1 << 3) - 1) #define IEEE802154_FC_TYPE(x) ((x & IEEE802154_FC_TYPE_MASK) >> IEEE802154_FC_TYPE_SHIFT) #define IEEE802154_FC_SET_TYPE(v, x) do { \ v = (((v) & ~IEEE802154_FC_TYPE_MASK) | \ (((x) << IEEE802154_FC_TYPE_SHIFT) & IEEE802154_FC_TYPE_MASK)); \ } while (0) #define IEEE802154_FC_SECEN_SHIFT 3 #define IEEE802154_FC_SECEN (1 << IEEE802154_FC_SECEN_SHIFT) #define IEEE802154_FC_FRPEND_SHIFT 4 #define IEEE802154_FC_FRPEND (1 << IEEE802154_FC_FRPEND_SHIFT) #define IEEE802154_FC_ACK_REQ_SHIFT 5 #define IEEE802154_FC_ACK_REQ (1 << IEEE802154_FC_ACK_REQ_SHIFT) #define IEEE802154_FC_INTRA_PAN_SHIFT 6 #define IEEE802154_FC_INTRA_PAN (1 << IEEE802154_FC_INTRA_PAN_SHIFT) #define IEEE802154_FC_SAMODE_SHIFT 14 #define IEEE802154_FC_SAMODE_MASK (3 << IEEE802154_FC_SAMODE_SHIFT) #define IEEE802154_FC_DAMODE_SHIFT 10 #define IEEE802154_FC_DAMODE_MASK (3 << IEEE802154_FC_DAMODE_SHIFT) #define IEEE802154_FC_VERSION_SHIFT 12 #define IEEE802154_FC_VERSION_MASK (3 << IEEE802154_FC_VERSION_SHIFT) #define IEEE802154_FC_VERSION(x) ((x & IEEE802154_FC_VERSION_MASK) >> IEEE802154_FC_VERSION_SHIFT) #define IEEE802154_FC_SAMODE(x) \ (((x) & IEEE802154_FC_SAMODE_MASK) >> IEEE802154_FC_SAMODE_SHIFT) #define IEEE802154_FC_DAMODE(x) \ (((x) & IEEE802154_FC_DAMODE_MASK) >> IEEE802154_FC_DAMODE_SHIFT) #define IEEE802154_SCF_SECLEVEL_MASK 7 #define IEEE802154_SCF_SECLEVEL_SHIFT 0 #define IEEE802154_SCF_SECLEVEL(x) (x & IEEE802154_SCF_SECLEVEL_MASK) #define IEEE802154_SCF_KEY_ID_MODE_SHIFT 3 #define IEEE802154_SCF_KEY_ID_MODE_MASK (3 << IEEE802154_SCF_KEY_ID_MODE_SHIFT) #define IEEE802154_SCF_KEY_ID_MODE(x) \ ((x & IEEE802154_SCF_KEY_ID_MODE_MASK) >> IEEE802154_SCF_KEY_ID_MODE_SHIFT) #define IEEE802154_SCF_KEY_IMPLICIT 0 #define IEEE802154_SCF_KEY_INDEX 1 #define IEEE802154_SCF_KEY_SHORT_INDEX 2 #define IEEE802154_SCF_KEY_HW_INDEX 3 #define IEEE802154_SCF_SECLEVEL_NONE 0 #define IEEE802154_SCF_SECLEVEL_MIC32 1 #define IEEE802154_SCF_SECLEVEL_MIC64 2 #define IEEE802154_SCF_SECLEVEL_MIC128 3 #define IEEE802154_SCF_SECLEVEL_ENC 4 #define IEEE802154_SCF_SECLEVEL_ENC_MIC32 5 #define IEEE802154_SCF_SECLEVEL_ENC_MIC64 6 #define IEEE802154_SCF_SECLEVEL_ENC_MIC128 7 /* MAC footer size */ #define IEEE802154_MFR_SIZE 2 /* 2 octets */ /* MAC's Command Frames Identifiers */ #define IEEE802154_CMD_ASSOCIATION_REQ 0x01 #define IEEE802154_CMD_ASSOCIATION_RESP 0x02 #define IEEE802154_CMD_DISASSOCIATION_NOTIFY 0x03 #define IEEE802154_CMD_DATA_REQ 0x04 #define IEEE802154_CMD_PANID_CONFLICT_NOTIFY 0x05 #define IEEE802154_CMD_ORPHAN_NOTIFY 0x06 #define IEEE802154_CMD_BEACON_REQ 0x07 #define IEEE802154_CMD_COORD_REALIGN_NOTIFY 0x08 #define IEEE802154_CMD_GTS_REQ 0x09 /* * The return values of MAC operations */ enum { /* * The requested operation was completed successfully. * For a transmission request, this value indicates * a successful transmission. */ IEEE802154_SUCCESS = 0x0, /* The beacon was lost following a synchronization request. */ IEEE802154_BEACON_LOSS = 0xe0, /* * A transmission could not take place due to activity on the * channel, i.e., the CSMA-CA mechanism has failed. */ IEEE802154_CHNL_ACCESS_FAIL = 0xe1, /* The GTS request has been denied by the PAN coordinator. */ IEEE802154_DENINED = 0xe2, /* The attempt to disable the transceiver has failed. */ IEEE802154_DISABLE_TRX_FAIL = 0xe3, /* * The received frame induces a failed security check according to * the security suite. */ IEEE802154_FAILED_SECURITY_CHECK = 0xe4, /* * The frame resulting from secure processing has a length that is * greater than aMACMaxFrameSize. */ IEEE802154_FRAME_TOO_LONG = 0xe5, /* * The requested GTS transmission failed because the specified GTS * either did not have a transmit GTS direction or was not defined. */ IEEE802154_INVALID_GTS = 0xe6, /* * A request to purge an MSDU from the transaction queue was made using * an MSDU handle that was not found in the transaction table. */ IEEE802154_INVALID_HANDLE = 0xe7, /* A parameter in the primitive is out of the valid range.*/ IEEE802154_INVALID_PARAMETER = 0xe8, /* No acknowledgment was received after aMaxFrameRetries. */ IEEE802154_NO_ACK = 0xe9, /* A scan operation failed to find any network beacons.*/ IEEE802154_NO_BEACON = 0xea, /* No response data were available following a request. */ IEEE802154_NO_DATA = 0xeb, /* The operation failed because a short address was not allocated. */ IEEE802154_NO_SHORT_ADDRESS = 0xec, /* * A receiver enable request was unsuccessful because it could not be * completed within the CAP. */ IEEE802154_OUT_OF_CAP = 0xed, /* * A PAN identifier conflict has been detected and communicated to the * PAN coordinator. */ IEEE802154_PANID_CONFLICT = 0xee, /* A coordinator realignment command has been received. */ IEEE802154_REALIGMENT = 0xef, /* The transaction has expired and its information discarded. */ IEEE802154_TRANSACTION_EXPIRED = 0xf0, /* There is no capacity to store the transaction. */ IEEE802154_TRANSACTION_OVERFLOW = 0xf1, /* * The transceiver was in the transmitter enabled state when the * receiver was requested to be enabled. */ IEEE802154_TX_ACTIVE = 0xf2, /* The appropriate key is not available in the ACL. */ IEEE802154_UNAVAILABLE_KEY = 0xf3, /* * A SET/GET request was issued with the identifier of a PIB attribute * that is not supported. */ IEEE802154_UNSUPPORTED_ATTR = 0xf4, /* * A request to perform a scan operation failed because the MLME was * in the process of performing a previously initiated scan operation. */ IEEE802154_SCAN_IN_PROGRESS = 0xfc, }; /* frame control handling */ #define IEEE802154_FCTL_FTYPE 0x0003 #define IEEE802154_FCTL_ACKREQ 0x0020 #define IEEE802154_FCTL_SECEN 0x0004 #define IEEE802154_FCTL_INTRA_PAN 0x0040 #define IEEE802154_FCTL_DADDR 0x0c00 #define IEEE802154_FCTL_SADDR 0xc000 #define IEEE802154_FTYPE_DATA 0x0001 #define IEEE802154_FCTL_ADDR_NONE 0x0000 #define IEEE802154_FCTL_DADDR_SHORT 0x0800 #define IEEE802154_FCTL_DADDR_EXTENDED 0x0c00 #define IEEE802154_FCTL_SADDR_SHORT 0x8000 #define IEEE802154_FCTL_SADDR_EXTENDED 0xc000 /* * ieee802154_is_data - check if type is IEEE802154_FTYPE_DATA * @fc: frame control bytes in little-endian byteorder */ static inline int ieee802154_is_data(__le16 fc) { return (fc & cpu_to_le16(IEEE802154_FCTL_FTYPE)) == cpu_to_le16(IEEE802154_FTYPE_DATA); } /** * ieee802154_is_secen - check if Security bit is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee802154_is_secen(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_SECEN); } /** * ieee802154_is_ackreq - check if acknowledgment request bit is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee802154_is_ackreq(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_ACKREQ); } /** * ieee802154_is_intra_pan - check if intra pan id communication * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee802154_is_intra_pan(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_INTRA_PAN); } /* * ieee802154_daddr_mode - get daddr mode from fc * @fc: frame control bytes in little-endian byteorder */ static inline __le16 ieee802154_daddr_mode(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_DADDR); } /* * ieee802154_saddr_mode - get saddr mode from fc * @fc: frame control bytes in little-endian byteorder */ static inline __le16 ieee802154_saddr_mode(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_SADDR); } /** * ieee802154_is_valid_psdu_len - check if psdu len is valid * available lengths: * 0-4 Reserved * 5 MPDU (Acknowledgment) * 6-8 Reserved * 9-127 MPDU * * @len: psdu len with (MHR + payload + MFR) */ static inline bool ieee802154_is_valid_psdu_len(u8 len) { return (len == IEEE802154_ACK_PSDU_LEN || (len >= IEEE802154_MIN_PSDU_LEN && len <= IEEE802154_MTU)); } /** * ieee802154_is_valid_extended_unicast_addr - check if extended addr is valid * @addr: extended addr to check */ static inline bool ieee802154_is_valid_extended_unicast_addr(__le64 addr) { /* Bail out if the address is all zero, or if the group * address bit is set. */ return ((addr != cpu_to_le64(0x0000000000000000ULL)) && !(addr & cpu_to_le64(0x0100000000000000ULL))); } /** * ieee802154_is_broadcast_short_addr - check if short addr is broadcast * @addr: short addr to check */ static inline bool ieee802154_is_broadcast_short_addr(__le16 addr) { return (addr == cpu_to_le16(IEEE802154_ADDR_SHORT_BROADCAST)); } /** * ieee802154_is_unspec_short_addr - check if short addr is unspecified * @addr: short addr to check */ static inline bool ieee802154_is_unspec_short_addr(__le16 addr) { return (addr == cpu_to_le16(IEEE802154_ADDR_SHORT_UNSPEC)); } /** * ieee802154_is_valid_src_short_addr - check if source short address is valid * @addr: short addr to check */ static inline bool ieee802154_is_valid_src_short_addr(__le16 addr) { return !(ieee802154_is_broadcast_short_addr(addr) || ieee802154_is_unspec_short_addr(addr)); } /** * ieee802154_random_extended_addr - generates a random extended address * @addr: extended addr pointer to place the random address */ static inline void ieee802154_random_extended_addr(__le64 *addr) { get_random_bytes(addr, IEEE802154_EXTENDED_ADDR_LEN); /* clear the group bit, and set the locally administered bit */ ((u8 *)addr)[IEEE802154_EXTENDED_ADDR_LEN - 1] &= ~0x01; ((u8 *)addr)[IEEE802154_EXTENDED_ADDR_LEN - 1] |= 0x02; } #endif /* LINUX_IEEE802154_H */
4 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_STRING_H_ #define _LINUX_STRING_H_ #include <linux/compiler.h> /* for inline */ #include <linux/types.h> /* for size_t */ #include <linux/stddef.h> /* for NULL */ #include <stdarg.h> #include <uapi/linux/string.h> extern char *strndup_user(const char __user *, long); extern void *memdup_user(const void __user *, size_t); extern void *vmemdup_user(const void __user *, size_t); extern void *memdup_user_nul(const void __user *, size_t); /* * Include machine specific inline routines */ #include <asm/string.h> #ifndef __HAVE_ARCH_STRCPY extern char * strcpy(char *,const char *); #endif #ifndef __HAVE_ARCH_STRNCPY extern char * strncpy(char *,const char *, __kernel_size_t); #endif #ifndef __HAVE_ARCH_STRLCPY size_t strlcpy(char *, const char *, size_t); #endif #ifndef __HAVE_ARCH_STRSCPY ssize_t strscpy(char *, const char *, size_t); #endif /* Wraps calls to strscpy()/memset(), no arch specific code required */ ssize_t strscpy_pad(char *dest, const char *src, size_t count); #ifndef __HAVE_ARCH_STRCAT extern char * strcat(char *, const char *); #endif #ifndef __HAVE_ARCH_STRNCAT extern char * strncat(char *, const char *, __kernel_size_t); #endif #ifndef __HAVE_ARCH_STRLCAT extern size_t strlcat(char *, const char *, __kernel_size_t); #endif #ifndef __HAVE_ARCH_STRCMP extern int strcmp(const char *,const char *); #endif #ifndef __HAVE_ARCH_STRNCMP extern int strncmp(const char *,const char *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_STRCASECMP extern int strcasecmp(const char *s1, const char *s2); #endif #ifndef __HAVE_ARCH_STRNCASECMP extern int strncasecmp(const char *s1, const char *s2, size_t n); #endif #ifndef __HAVE_ARCH_STRCHR extern char * strchr(const char *,int); #endif #ifndef __HAVE_ARCH_STRCHRNUL extern char * strchrnul(const char *,int); #endif extern char * strnchrnul(const char *, size_t, int); #ifndef __HAVE_ARCH_STRNCHR extern char * strnchr(const char *, size_t, int); #endif #ifndef __HAVE_ARCH_STRRCHR extern char * strrchr(const char *,int); #endif extern char * __must_check skip_spaces(const char *); extern char *strim(char *); static inline __must_check char *strstrip(char *str) { return strim(str); } #ifndef __HAVE_ARCH_STRSTR extern char * strstr(const char *, const char *); #endif #ifndef __HAVE_ARCH_STRNSTR extern char * strnstr(const char *, const char *, size_t); #endif #ifndef __HAVE_ARCH_STRLEN extern __kernel_size_t strlen(const char *); #endif #ifndef __HAVE_ARCH_STRNLEN extern __kernel_size_t strnlen(const char *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_STRPBRK extern char * strpbrk(const char *,const char *); #endif #ifndef __HAVE_ARCH_STRSEP extern char * strsep(char **,const char *); #endif #ifndef __HAVE_ARCH_STRSPN extern __kernel_size_t strspn(const char *,const char *); #endif #ifndef __HAVE_ARCH_STRCSPN extern __kernel_size_t strcspn(const char *,const char *); #endif #ifndef __HAVE_ARCH_MEMSET extern void * memset(void *,int,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMSET16 extern void *memset16(uint16_t *, uint16_t, __kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMSET32 extern void *memset32(uint32_t *, uint32_t, __kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMSET64 extern void *memset64(uint64_t *, uint64_t, __kernel_size_t); #endif static inline void *memset_l(unsigned long *p, unsigned long v, __kernel_size_t n) { if (BITS_PER_LONG == 32) return memset32((uint32_t *)p, v, n); else return memset64((uint64_t *)p, v, n); } static inline void *memset_p(void **p, void *v, __kernel_size_t n) { if (BITS_PER_LONG == 32) return memset32((uint32_t *)p, (uintptr_t)v, n); else return memset64((uint64_t *)p, (uintptr_t)v, n); } extern void **__memcat_p(void **a, void **b); #define memcat_p(a, b) ({ \ BUILD_BUG_ON_MSG(!__same_type(*(a), *(b)), \ "type mismatch in memcat_p()"); \ (typeof(*a) *)__memcat_p((void **)(a), (void **)(b)); \ }) #ifndef __HAVE_ARCH_MEMCPY extern void * memcpy(void *,const void *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMMOVE extern void * memmove(void *,const void *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMSCAN extern void * memscan(void *,int,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMCMP extern int memcmp(const void *,const void *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_BCMP extern int bcmp(const void *,const void *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMCHR extern void * memchr(const void *,int,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMCPY_FLUSHCACHE static inline void memcpy_flushcache(void *dst, const void *src, size_t cnt) { memcpy(dst, src, cnt); } #endif void *memchr_inv(const void *s, int c, size_t n); char *strreplace(char *s, char old, char new); extern void kfree_const(const void *x); extern char *kstrdup(const char *s, gfp_t gfp) __malloc; extern const char *kstrdup_const(const char *s, gfp_t gfp); extern char *kstrndup(const char *s, size_t len, gfp_t gfp); extern void *kmemdup(const void *src, size_t len, gfp_t gfp); extern char *kmemdup_nul(const char *s, size_t len, gfp_t gfp); extern char **argv_split(gfp_t gfp, const char *str, int *argcp); extern void argv_free(char **argv); extern bool sysfs_streq(const char *s1, const char *s2); extern int kstrtobool(const char *s, bool *res); static inline int strtobool(const char *s, bool *res) { return kstrtobool(s, res); } int match_string(const char * const *array, size_t n, const char *string); int __sysfs_match_string(const char * const *array, size_t n, const char *s); /** * sysfs_match_string - matches given string in an array * @_a: array of strings * @_s: string to match with * * Helper for __sysfs_match_string(). Calculates the size of @a automatically. */ #define sysfs_match_string(_a, _s) __sysfs_match_string(_a, ARRAY_SIZE(_a), _s) #ifdef CONFIG_BINARY_PRINTF int vbin_printf(u32 *bin_buf, size_t size, const char *fmt, va_list args); int bstr_printf(char *buf, size_t size, const char *fmt, const u32 *bin_buf); int bprintf(u32 *bin_buf, size_t size, const char *fmt, ...) __printf(3, 4); #endif extern ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, const void *from, size_t available); int ptr_to_hashval(const void *ptr, unsigned long *hashval_out); /** * strstarts - does @str start with @prefix? * @str: string to examine * @prefix: prefix to look for. */ static inline bool strstarts(const char *str, const char *prefix) { return strncmp(str, prefix, strlen(prefix)) == 0; } size_t memweight(const void *ptr, size_t bytes); /** * memzero_explicit - Fill a region of memory (e.g. sensitive * keying data) with 0s. * @s: Pointer to the start of the area. * @count: The size of the area. * * Note: usually using memset() is just fine (!), but in cases * where clearing out _local_ data at the end of a scope is * necessary, memzero_explicit() should be used instead in * order to prevent the compiler from optimising away zeroing. * * memzero_explicit() doesn't need an arch-specific version as * it just invokes the one of memset() implicitly. */ static inline void memzero_explicit(void *s, size_t count) { memset(s, 0, count); barrier_data(s); } /** * kbasename - return the last part of a pathname. * * @path: path to extract the filename from. */ static inline const char *kbasename(const char *path) { const char *tail = strrchr(path, '/'); return tail ? tail + 1 : path; } #define __FORTIFY_INLINE extern __always_inline __attribute__((gnu_inline)) #define __RENAME(x) __asm__(#x) void fortify_panic(const char *name) __noreturn __cold; void __read_overflow(void) __compiletime_error("detected read beyond size of object passed as 1st parameter"); void __read_overflow2(void) __compiletime_error("detected read beyond size of object passed as 2nd parameter"); void __read_overflow3(void) __compiletime_error("detected read beyond size of object passed as 3rd parameter"); void __write_overflow(void) __compiletime_error("detected write beyond size of object passed as 1st parameter"); #if !defined(__NO_FORTIFY) && defined(__OPTIMIZE__) && defined(CONFIG_FORTIFY_SOURCE) #ifdef CONFIG_KASAN extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr); extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp); extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy); extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove); extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset); extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat); extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy); extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen); extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat); extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy); #else #define __underlying_memchr __builtin_memchr #define __underlying_memcmp __builtin_memcmp #define __underlying_memcpy __builtin_memcpy #define __underlying_memmove __builtin_memmove #define __underlying_memset __builtin_memset #define __underlying_strcat __builtin_strcat #define __underlying_strcpy __builtin_strcpy #define __underlying_strlen __builtin_strlen #define __underlying_strncat __builtin_strncat #define __underlying_strncpy __builtin_strncpy #endif __FORTIFY_INLINE char *strncpy(char *p, const char *q, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __write_overflow(); if (p_size < size) fortify_panic(__func__); return __underlying_strncpy(p, q, size); } __FORTIFY_INLINE char *strcat(char *p, const char *q) { size_t p_size = __builtin_object_size(p, 0); if (p_size == (size_t)-1) return __underlying_strcat(p, q); if (strlcat(p, q, p_size) >= p_size) fortify_panic(__func__); return p; } __FORTIFY_INLINE __kernel_size_t strlen(const char *p) { __kernel_size_t ret; size_t p_size = __builtin_object_size(p, 0); /* Work around gcc excess stack consumption issue */ if (p_size == (size_t)-1 || (__builtin_constant_p(p[p_size - 1]) && p[p_size - 1] == '\0')) return __underlying_strlen(p); ret = strnlen(p, p_size); if (p_size <= ret) fortify_panic(__func__); return ret; } extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen); __FORTIFY_INLINE __kernel_size_t strnlen(const char *p, __kernel_size_t maxlen) { size_t p_size = __builtin_object_size(p, 0); __kernel_size_t ret = __real_strnlen(p, maxlen < p_size ? maxlen : p_size); if (p_size <= ret && maxlen != ret) fortify_panic(__func__); return ret; } /* defined after fortified strlen to reuse it */ extern size_t __real_strlcpy(char *, const char *, size_t) __RENAME(strlcpy); __FORTIFY_INLINE size_t strlcpy(char *p, const char *q, size_t size) { size_t ret; size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (p_size == (size_t)-1 && q_size == (size_t)-1) return __real_strlcpy(p, q, size); ret = strlen(q); if (size) { size_t len = (ret >= size) ? size - 1 : ret; if (__builtin_constant_p(len) && len >= p_size) __write_overflow(); if (len >= p_size) fortify_panic(__func__); __underlying_memcpy(p, q, len); p[len] = '\0'; } return ret; } /* defined after fortified strlen and strnlen to reuse them */ __FORTIFY_INLINE char *strncat(char *p, const char *q, __kernel_size_t count) { size_t p_len, copy_len; size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (p_size == (size_t)-1 && q_size == (size_t)-1) return __underlying_strncat(p, q, count); p_len = strlen(p); copy_len = strnlen(q, count); if (p_size < p_len + copy_len + 1) fortify_panic(__func__); __underlying_memcpy(p + p_len, q, copy_len); p[p_len + copy_len] = '\0'; return p; } __FORTIFY_INLINE void *memset(void *p, int c, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __write_overflow(); if (p_size < size) fortify_panic(__func__); return __underlying_memset(p, c, size); } __FORTIFY_INLINE void *memcpy(void *p, const void *q, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (__builtin_constant_p(size)) { if (p_size < size) __write_overflow(); if (q_size < size) __read_overflow2(); } if (p_size < size || q_size < size) fortify_panic(__func__); return __underlying_memcpy(p, q, size); } __FORTIFY_INLINE void *memmove(void *p, const void *q, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (__builtin_constant_p(size)) { if (p_size < size) __write_overflow(); if (q_size < size) __read_overflow2(); } if (p_size < size || q_size < size) fortify_panic(__func__); return __underlying_memmove(p, q, size); } extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan); __FORTIFY_INLINE void *memscan(void *p, int c, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __read_overflow(); if (p_size < size) fortify_panic(__func__); return __real_memscan(p, c, size); } __FORTIFY_INLINE int memcmp(const void *p, const void *q, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (__builtin_constant_p(size)) { if (p_size < size) __read_overflow(); if (q_size < size) __read_overflow2(); } if (p_size < size || q_size < size) fortify_panic(__func__); return __underlying_memcmp(p, q, size); } __FORTIFY_INLINE void *memchr(const void *p, int c, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __read_overflow(); if (p_size < size) fortify_panic(__func__); return __underlying_memchr(p, c, size); } void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv); __FORTIFY_INLINE void *memchr_inv(const void *p, int c, size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __read_overflow(); if (p_size < size) fortify_panic(__func__); return __real_memchr_inv(p, c, size); } extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup); __FORTIFY_INLINE void *kmemdup(const void *p, size_t size, gfp_t gfp) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __read_overflow(); if (p_size < size) fortify_panic(__func__); return __real_kmemdup(p, size, gfp); } /* defined after fortified strlen and memcpy to reuse them */ __FORTIFY_INLINE char *strcpy(char *p, const char *q) { size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (p_size == (size_t)-1 && q_size == (size_t)-1) return __underlying_strcpy(p, q); memcpy(p, q, strlen(q) + 1); return p; } /* Don't use these outside the FORITFY_SOURCE implementation */ #undef __underlying_memchr #undef __underlying_memcmp #undef __underlying_memcpy #undef __underlying_memmove #undef __underlying_memset #undef __underlying_strcat #undef __underlying_strcpy #undef __underlying_strlen #undef __underlying_strncat #undef __underlying_strncpy #endif /** * memcpy_and_pad - Copy one buffer to another with padding * @dest: Where to copy to * @dest_len: The destination buffer size * @src: Where to copy from * @count: The number of bytes to copy * @pad: Character to use for padding if space is left in destination. */ static inline void memcpy_and_pad(void *dest, size_t dest_len, const void *src, size_t count, int pad) { if (dest_len > count) { memcpy(dest, src, count); memset(dest + count, pad, dest_len - count); } else memcpy(dest, src, dest_len); } /** * str_has_prefix - Test if a string has a given prefix * @str: The string to test * @prefix: The string to see if @str starts with * * A common way to test a prefix of a string is to do: * strncmp(str, prefix, sizeof(prefix) - 1) * * But this can lead to bugs due to typos, or if prefix is a pointer * and not a constant. Instead use str_has_prefix(). * * Returns: * * strlen(@prefix) if @str starts with @prefix * * 0 if @str does not start with @prefix */ static __always_inline size_t str_has_prefix(const char *str, const char *prefix) { size_t len = strlen(prefix); return strncmp(str, prefix, len) == 0 ? len : 0; } #endif /* _LINUX_STRING_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef __SOUND_CORE_H #define __SOUND_CORE_H /* * Main header file for the ALSA driver * Copyright (c) 1994-2001 by Jaroslav Kysela <perex@perex.cz> */ #include <linux/device.h> #include <linux/sched.h> /* wake_up() */ #include <linux/mutex.h> /* struct mutex */ #include <linux/rwsem.h> /* struct rw_semaphore */ #include <linux/pm.h> /* pm_message_t */ #include <linux/stringify.h> #include <linux/printk.h> /* number of supported soundcards */ #ifdef CONFIG_SND_DYNAMIC_MINORS #define SNDRV_CARDS CONFIG_SND_MAX_CARDS #else #define SNDRV_CARDS 8 /* don't change - minor numbers */ #endif #define CONFIG_SND_MAJOR 116 /* standard configuration */ /* forward declarations */ struct pci_dev; struct module; struct completion; /* device allocation stuff */ /* type of the object used in snd_device_*() * this also defines the calling order */ enum snd_device_type { SNDRV_DEV_LOWLEVEL, SNDRV_DEV_INFO, SNDRV_DEV_BUS, SNDRV_DEV_CODEC, SNDRV_DEV_PCM, SNDRV_DEV_COMPRESS, SNDRV_DEV_RAWMIDI, SNDRV_DEV_TIMER, SNDRV_DEV_SEQUENCER, SNDRV_DEV_HWDEP, SNDRV_DEV_JACK, SNDRV_DEV_CONTROL, /* NOTE: this must be the last one */ }; enum snd_device_state { SNDRV_DEV_BUILD, SNDRV_DEV_REGISTERED, SNDRV_DEV_DISCONNECTED, }; struct snd_device; struct snd_device_ops { int (*dev_free)(struct snd_device *dev); int (*dev_register)(struct snd_device *dev); int (*dev_disconnect)(struct snd_device *dev); }; struct snd_device { struct list_head list; /* list of registered devices */ struct snd_card *card; /* card which holds this device */ enum snd_device_state state; /* state of the device */ enum snd_device_type type; /* device type */ void *device_data; /* device structure */ const struct snd_device_ops *ops; /* operations */ }; #define snd_device(n) list_entry(n, struct snd_device, list) /* main structure for soundcard */ struct snd_card { int number; /* number of soundcard (index to snd_cards) */ char id[16]; /* id string of this card */ char driver[16]; /* driver name */ char shortname[32]; /* short name of this soundcard */ char longname[80]; /* name of this soundcard */ char irq_descr[32]; /* Interrupt description */ char mixername[80]; /* mixer name */ char components[128]; /* card components delimited with space */ struct module *module; /* top-level module */ void *private_data; /* private data for soundcard */ void (*private_free) (struct snd_card *card); /* callback for freeing of private data */ struct list_head devices; /* devices */ struct device ctl_dev; /* control device */ unsigned int last_numid; /* last used numeric ID */ struct rw_semaphore controls_rwsem; /* controls list lock */ rwlock_t ctl_files_rwlock; /* ctl_files list lock */ int controls_count; /* count of all controls */ int user_ctl_count; /* count of all user controls */ struct list_head controls; /* all controls for this card */ struct list_head ctl_files; /* active control files */ struct snd_info_entry *proc_root; /* root for soundcard specific files */ struct proc_dir_entry *proc_root_link; /* number link to real id */ struct list_head files_list; /* all files associated to this card */ struct snd_shutdown_f_ops *s_f_ops; /* file operations in the shutdown state */ spinlock_t files_lock; /* lock the files for this card */ int shutdown; /* this card is going down */ struct completion *release_completion; struct device *dev; /* device assigned to this card */ struct device card_dev; /* cardX object for sysfs */ const struct attribute_group *dev_groups[4]; /* assigned sysfs attr */ bool registered; /* card_dev is registered? */ int sync_irq; /* assigned irq, used for PCM sync */ wait_queue_head_t remove_sleep; size_t total_pcm_alloc_bytes; /* total amount of allocated buffers */ struct mutex memory_mutex; /* protection for the above */ #ifdef CONFIG_PM unsigned int power_state; /* power state */ wait_queue_head_t power_sleep; #endif #if IS_ENABLED(CONFIG_SND_MIXER_OSS) struct snd_mixer_oss *mixer_oss; int mixer_oss_change_count; #endif }; #define dev_to_snd_card(p) container_of(p, struct snd_card, card_dev) #ifdef CONFIG_PM static inline unsigned int snd_power_get_state(struct snd_card *card) { return card->power_state; } static inline void snd_power_change_state(struct snd_card *card, unsigned int state) { card->power_state = state; wake_up(&card->power_sleep); } /* init.c */ int snd_power_wait(struct snd_card *card, unsigned int power_state); #else /* ! CONFIG_PM */ static inline int snd_power_wait(struct snd_card *card, unsigned int state) { return 0; } #define snd_power_get_state(card) ({ (void)(card); SNDRV_CTL_POWER_D0; }) #define snd_power_change_state(card, state) do { (void)(card); } while (0) #endif /* CONFIG_PM */ struct snd_minor { int type; /* SNDRV_DEVICE_TYPE_XXX */ int card; /* card number */ int device; /* device number */ const struct file_operations *f_ops; /* file operations */ void *private_data; /* private data for f_ops->open */ struct device *dev; /* device for sysfs */ struct snd_card *card_ptr; /* assigned card instance */ }; /* return a device pointer linked to each sound device as a parent */ static inline struct device *snd_card_get_device_link(struct snd_card *card) { return card ? &card->card_dev : NULL; } /* sound.c */ extern int snd_major; extern int snd_ecards_limit; extern struct class *sound_class; void snd_request_card(int card); void snd_device_initialize(struct device *dev, struct snd_card *card); int snd_register_device(int type, struct snd_card *card, int dev, const struct file_operations *f_ops, void *private_data, struct device *device); int snd_unregister_device(struct device *dev); void *snd_lookup_minor_data(unsigned int minor, int type); #ifdef CONFIG_SND_OSSEMUL int snd_register_oss_device(int type, struct snd_card *card, int dev, const struct file_operations *f_ops, void *private_data); int snd_unregister_oss_device(int type, struct snd_card *card, int dev); void *snd_lookup_oss_minor_data(unsigned int minor, int type); #endif int snd_minor_info_init(void); /* sound_oss.c */ #ifdef CONFIG_SND_OSSEMUL int snd_minor_info_oss_init(void); #else static inline int snd_minor_info_oss_init(void) { return 0; } #endif /* memory.c */ int copy_to_user_fromio(void __user *dst, const volatile void __iomem *src, size_t count); int copy_from_user_toio(volatile void __iomem *dst, const void __user *src, size_t count); /* init.c */ int snd_card_locked(int card); #if IS_ENABLED(CONFIG_SND_MIXER_OSS) #define SND_MIXER_OSS_NOTIFY_REGISTER 0 #define SND_MIXER_OSS_NOTIFY_DISCONNECT 1 #define SND_MIXER_OSS_NOTIFY_FREE 2 extern int (*snd_mixer_oss_notify_callback)(struct snd_card *card, int cmd); #endif int snd_card_new(struct device *parent, int idx, const char *xid, struct module *module, int extra_size, struct snd_card **card_ret); int snd_card_disconnect(struct snd_card *card); void snd_card_disconnect_sync(struct snd_card *card); int snd_card_free(struct snd_card *card); int snd_card_free_when_closed(struct snd_card *card); void snd_card_set_id(struct snd_card *card, const char *id); int snd_card_register(struct snd_card *card); int snd_card_info_init(void); int snd_card_add_dev_attr(struct snd_card *card, const struct attribute_group *group); int snd_component_add(struct snd_card *card, const char *component); int snd_card_file_add(struct snd_card *card, struct file *file); int snd_card_file_remove(struct snd_card *card, struct file *file); struct snd_card *snd_card_ref(int card); /** * snd_card_unref - Unreference the card object * @card: the card object to unreference * * Call this function for the card object that was obtained via snd_card_ref() * or snd_lookup_minor_data(). */ static inline void snd_card_unref(struct snd_card *card) { put_device(&card->card_dev); } #define snd_card_set_dev(card, devptr) ((card)->dev = (devptr)) /* device.c */ int snd_device_new(struct snd_card *card, enum snd_device_type type, void *device_data, const struct snd_device_ops *ops); int snd_device_register(struct snd_card *card, void *device_data); int snd_device_register_all(struct snd_card *card); void snd_device_disconnect(struct snd_card *card, void *device_data); void snd_device_disconnect_all(struct snd_card *card); void snd_device_free(struct snd_card *card, void *device_data); void snd_device_free_all(struct snd_card *card); int snd_device_get_state(struct snd_card *card, void *device_data); /* isadma.c */ #ifdef CONFIG_ISA_DMA_API #define DMA_MODE_NO_ENABLE 0x0100 void snd_dma_program(unsigned long dma, unsigned long addr, unsigned int size, unsigned short mode); void snd_dma_disable(unsigned long dma); unsigned int snd_dma_pointer(unsigned long dma, unsigned int size); #endif /* misc.c */ struct resource; void release_and_free_resource(struct resource *res); /* --- */ /* sound printk debug levels */ enum { SND_PR_ALWAYS, SND_PR_DEBUG, SND_PR_VERBOSE, }; #if defined(CONFIG_SND_DEBUG) || defined(CONFIG_SND_VERBOSE_PRINTK) __printf(4, 5) void __snd_printk(unsigned int level, const char *file, int line, const char *format, ...); #else #define __snd_printk(level, file, line, format, ...) \ printk(format, ##__VA_ARGS__) #endif /** * snd_printk - printk wrapper * @fmt: format string * * Works like printk() but prints the file and the line of the caller * when configured with CONFIG_SND_VERBOSE_PRINTK. */ #define snd_printk(fmt, ...) \ __snd_printk(0, __FILE__, __LINE__, fmt, ##__VA_ARGS__) #ifdef CONFIG_SND_DEBUG /** * snd_printd - debug printk * @fmt: format string * * Works like snd_printk() for debugging purposes. * Ignored when CONFIG_SND_DEBUG is not set. */ #define snd_printd(fmt, ...) \ __snd_printk(1, __FILE__, __LINE__, fmt, ##__VA_ARGS__) #define _snd_printd(level, fmt, ...) \ __snd_printk(level, __FILE__, __LINE__, fmt, ##__VA_ARGS__) /** * snd_BUG - give a BUG warning message and stack trace * * Calls WARN() if CONFIG_SND_DEBUG is set. * Ignored when CONFIG_SND_DEBUG is not set. */ #define snd_BUG() WARN(1, "BUG?\n") /** * snd_printd_ratelimit - Suppress high rates of output when * CONFIG_SND_DEBUG is enabled. */ #define snd_printd_ratelimit() printk_ratelimit() /** * snd_BUG_ON - debugging check macro * @cond: condition to evaluate * * Has the same behavior as WARN_ON when CONFIG_SND_DEBUG is set, * otherwise just evaluates the conditional and returns the value. */ #define snd_BUG_ON(cond) WARN_ON((cond)) #else /* !CONFIG_SND_DEBUG */ __printf(1, 2) static inline void snd_printd(const char *format, ...) {} __printf(2, 3) static inline void _snd_printd(int level, const char *format, ...) {} #define snd_BUG() do { } while (0) #define snd_BUG_ON(condition) ({ \ int __ret_warn_on = !!(condition); \ unlikely(__ret_warn_on); \ }) static inline bool snd_printd_ratelimit(void) { return false; } #endif /* CONFIG_SND_DEBUG */ #ifdef CONFIG_SND_DEBUG_VERBOSE /** * snd_printdd - debug printk * @format: format string * * Works like snd_printk() for debugging purposes. * Ignored when CONFIG_SND_DEBUG_VERBOSE is not set. */ #define snd_printdd(format, ...) \ __snd_printk(2, __FILE__, __LINE__, format, ##__VA_ARGS__) #else __printf(1, 2) static inline void snd_printdd(const char *format, ...) {} #endif #define SNDRV_OSS_VERSION ((3<<16)|(8<<8)|(1<<4)|(0)) /* 3.8.1a */ /* for easier backward-porting */ #if IS_ENABLED(CONFIG_GAMEPORT) #define gameport_set_dev_parent(gp,xdev) ((gp)->dev.parent = (xdev)) #define gameport_set_port_data(gp,r) ((gp)->port_data = (r)) #define gameport_get_port_data(gp) (gp)->port_data #endif /* PCI quirk list helper */ struct snd_pci_quirk { unsigned short subvendor; /* PCI subvendor ID */ unsigned short subdevice; /* PCI subdevice ID */ unsigned short subdevice_mask; /* bitmask to match */ int value; /* value */ #ifdef CONFIG_SND_DEBUG_VERBOSE const char *name; /* name of the device (optional) */ #endif }; #define _SND_PCI_QUIRK_ID_MASK(vend, mask, dev) \ .subvendor = (vend), .subdevice = (dev), .subdevice_mask = (mask) #define _SND_PCI_QUIRK_ID(vend, dev) \ _SND_PCI_QUIRK_ID_MASK(vend, 0xffff, dev) #define SND_PCI_QUIRK_ID(vend,dev) {_SND_PCI_QUIRK_ID(vend, dev)} #ifdef CONFIG_SND_DEBUG_VERBOSE #define SND_PCI_QUIRK(vend,dev,xname,val) \ {_SND_PCI_QUIRK_ID(vend, dev), .value = (val), .name = (xname)} #define SND_PCI_QUIRK_VENDOR(vend, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, 0, 0), .value = (val), .name = (xname)} #define SND_PCI_QUIRK_MASK(vend, mask, dev, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, mask, dev), \ .value = (val), .name = (xname)} #define snd_pci_quirk_name(q) ((q)->name) #else #define SND_PCI_QUIRK(vend,dev,xname,val) \ {_SND_PCI_QUIRK_ID(vend, dev), .value = (val)} #define SND_PCI_QUIRK_MASK(vend, mask, dev, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, mask, dev), .value = (val)} #define SND_PCI_QUIRK_VENDOR(vend, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, 0, 0), .value = (val)} #define snd_pci_quirk_name(q) "" #endif #ifdef CONFIG_PCI const struct snd_pci_quirk * snd_pci_quirk_lookup(struct pci_dev *pci, const struct snd_pci_quirk *list); const struct snd_pci_quirk * snd_pci_quirk_lookup_id(u16 vendor, u16 device, const struct snd_pci_quirk *list); #else static inline const struct snd_pci_quirk * snd_pci_quirk_lookup(struct pci_dev *pci, const struct snd_pci_quirk *list) { return NULL; } static inline const struct snd_pci_quirk * snd_pci_quirk_lookup_id(u16 vendor, u16 device, const struct snd_pci_quirk *list) { return NULL; } #endif #endif /* __SOUND_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM oom #if !defined(_TRACE_OOM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_OOM_H #include <linux/tracepoint.h> #include <trace/events/mmflags.h> TRACE_EVENT(oom_score_adj_update, TP_PROTO(struct task_struct *task), TP_ARGS(task), TP_STRUCT__entry( __field( pid_t, pid) __array( char, comm, TASK_COMM_LEN ) __field( short, oom_score_adj) ), TP_fast_assign( __entry->pid = task->pid; memcpy(__entry->comm, task->comm, TASK_COMM_LEN); __entry->oom_score_adj = task->signal->oom_score_adj; ), TP_printk("pid=%d comm=%s oom_score_adj=%hd", __entry->pid, __entry->comm, __entry->oom_score_adj) ); TRACE_EVENT(reclaim_retry_zone, TP_PROTO(struct zoneref *zoneref, int order, unsigned long reclaimable, unsigned long available, unsigned long min_wmark, int no_progress_loops, bool wmark_check), TP_ARGS(zoneref, order, reclaimable, available, min_wmark, no_progress_loops, wmark_check), TP_STRUCT__entry( __field( int, node) __field( int, zone_idx) __field( int, order) __field( unsigned long, reclaimable) __field( unsigned long, available) __field( unsigned long, min_wmark) __field( int, no_progress_loops) __field( bool, wmark_check) ), TP_fast_assign( __entry->node = zone_to_nid(zoneref->zone); __entry->zone_idx = zoneref->zone_idx; __entry->order = order; __entry->reclaimable = reclaimable; __entry->available = available; __entry->min_wmark = min_wmark; __entry->no_progress_loops = no_progress_loops; __entry->wmark_check = wmark_check; ), TP_printk("node=%d zone=%-8s order=%d reclaimable=%lu available=%lu min_wmark=%lu no_progress_loops=%d wmark_check=%d", __entry->node, __print_symbolic(__entry->zone_idx, ZONE_TYPE), __entry->order, __entry->reclaimable, __entry->available, __entry->min_wmark, __entry->no_progress_loops, __entry->wmark_check) ); TRACE_EVENT(mark_victim, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(wake_reaper, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(start_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(finish_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(skip_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); #ifdef CONFIG_COMPACTION TRACE_EVENT(compact_retry, TP_PROTO(int order, enum compact_priority priority, enum compact_result result, int retries, int max_retries, bool ret), TP_ARGS(order, priority, result, retries, max_retries, ret), TP_STRUCT__entry( __field( int, order) __field( int, priority) __field( int, result) __field( int, retries) __field( int, max_retries) __field( bool, ret) ), TP_fast_assign( __entry->order = order; __entry->priority = priority; __entry->result = compact_result_to_feedback(result); __entry->retries = retries; __entry->max_retries = max_retries; __entry->ret = ret; ), TP_printk("order=%d priority=%s compaction_result=%s retries=%d max_retries=%d should_retry=%d", __entry->order, __print_symbolic(__entry->priority, COMPACTION_PRIORITY), __print_symbolic(__entry->result, COMPACTION_FEEDBACK), __entry->retries, __entry->max_retries, __entry->ret) ); #endif /* CONFIG_COMPACTION */ #endif /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NetLabel Network Address Lists * * This file contains network address list functions used to manage ordered * lists of network addresses for use by the NetLabel subsystem. The NetLabel * system manages static and dynamic label mappings for network protocols such * as CIPSO and RIPSO. * * Author: Paul Moore <paul@paul-moore.com> */ /* * (c) Copyright Hewlett-Packard Development Company, L.P., 2008 */ #ifndef _NETLABEL_ADDRLIST_H #define _NETLABEL_ADDRLIST_H #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/list.h> #include <linux/in6.h> #include <linux/audit.h> /** * struct netlbl_af4list - NetLabel IPv4 address list * @addr: IPv4 address * @mask: IPv4 address mask * @valid: valid flag * @list: list structure, used internally */ struct netlbl_af4list { __be32 addr; __be32 mask; u32 valid; struct list_head list; }; /** * struct netlbl_af6list - NetLabel IPv6 address list * @addr: IPv6 address * @mask: IPv6 address mask * @valid: valid flag * @list: list structure, used internally */ struct netlbl_af6list { struct in6_addr addr; struct in6_addr mask; u32 valid; struct list_head list; }; #define __af4list_entry(ptr) container_of(ptr, struct netlbl_af4list, list) static inline struct netlbl_af4list *__af4list_valid(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af4list *n = __af4list_entry(s); while (i != h && !n->valid) { i = i->next; n = __af4list_entry(i); } return n; } static inline struct netlbl_af4list *__af4list_valid_rcu(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af4list *n = __af4list_entry(s); while (i != h && !n->valid) { i = rcu_dereference(list_next_rcu(i)); n = __af4list_entry(i); } return n; } #define netlbl_af4list_foreach(iter, head) \ for (iter = __af4list_valid((head)->next, head); \ &iter->list != (head); \ iter = __af4list_valid(iter->list.next, head)) #define netlbl_af4list_foreach_rcu(iter, head) \ for (iter = __af4list_valid_rcu((head)->next, head); \ &iter->list != (head); \ iter = __af4list_valid_rcu(iter->list.next, head)) #define netlbl_af4list_foreach_safe(iter, tmp, head) \ for (iter = __af4list_valid((head)->next, head), \ tmp = __af4list_valid(iter->list.next, head); \ &iter->list != (head); \ iter = tmp, tmp = __af4list_valid(iter->list.next, head)) int netlbl_af4list_add(struct netlbl_af4list *entry, struct list_head *head); struct netlbl_af4list *netlbl_af4list_remove(__be32 addr, __be32 mask, struct list_head *head); void netlbl_af4list_remove_entry(struct netlbl_af4list *entry); struct netlbl_af4list *netlbl_af4list_search(__be32 addr, struct list_head *head); struct netlbl_af4list *netlbl_af4list_search_exact(__be32 addr, __be32 mask, struct list_head *head); #ifdef CONFIG_AUDIT void netlbl_af4list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, __be32 addr, __be32 mask); #else static inline void netlbl_af4list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, __be32 addr, __be32 mask) { } #endif #if IS_ENABLED(CONFIG_IPV6) #define __af6list_entry(ptr) container_of(ptr, struct netlbl_af6list, list) static inline struct netlbl_af6list *__af6list_valid(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af6list *n = __af6list_entry(s); while (i != h && !n->valid) { i = i->next; n = __af6list_entry(i); } return n; } static inline struct netlbl_af6list *__af6list_valid_rcu(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af6list *n = __af6list_entry(s); while (i != h && !n->valid) { i = rcu_dereference(list_next_rcu(i)); n = __af6list_entry(i); } return n; } #define netlbl_af6list_foreach(iter, head) \ for (iter = __af6list_valid((head)->next, head); \ &iter->list != (head); \ iter = __af6list_valid(iter->list.next, head)) #define netlbl_af6list_foreach_rcu(iter, head) \ for (iter = __af6list_valid_rcu((head)->next, head); \ &iter->list != (head); \ iter = __af6list_valid_rcu(iter->list.next, head)) #define netlbl_af6list_foreach_safe(iter, tmp, head) \ for (iter = __af6list_valid((head)->next, head), \ tmp = __af6list_valid(iter->list.next, head); \ &iter->list != (head); \ iter = tmp, tmp = __af6list_valid(iter->list.next, head)) int netlbl_af6list_add(struct netlbl_af6list *entry, struct list_head *head); struct netlbl_af6list *netlbl_af6list_remove(const struct in6_addr *addr, const struct in6_addr *mask, struct list_head *head); void netlbl_af6list_remove_entry(struct netlbl_af6list *entry); struct netlbl_af6list *netlbl_af6list_search(const struct in6_addr *addr, struct list_head *head); struct netlbl_af6list *netlbl_af6list_search_exact(const struct in6_addr *addr, const struct in6_addr *mask, struct list_head *head); #ifdef CONFIG_AUDIT void netlbl_af6list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, const struct in6_addr *addr, const struct in6_addr *mask); #else static inline void netlbl_af6list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, const struct in6_addr *addr, const struct in6_addr *mask) { } #endif #endif /* IPV6 */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/mount.h> #include <linux/seq_file.h> #include <linux/poll.h> #include <linux/ns_common.h> #include <linux/fs_pin.h> struct mnt_namespace { atomic_t count; struct ns_common ns; struct mount * root; /* * Traversal and modification of .list is protected by either * - taking namespace_sem for write, OR * - taking namespace_sem for read AND taking .ns_lock. */ struct list_head list; spinlock_t ns_lock; struct user_namespace *user_ns; struct ucounts *ucounts; u64 seq; /* Sequence number to prevent loops */ wait_queue_head_t poll; u64 event; unsigned int mounts; /* # of mounts in the namespace */ unsigned int pending_mounts; } __randomize_layout; struct mnt_pcp { int mnt_count; int mnt_writers; }; struct mountpoint { struct hlist_node m_hash; struct dentry *m_dentry; struct hlist_head m_list; int m_count; }; struct mount { struct hlist_node mnt_hash; struct mount *mnt_parent; struct dentry *mnt_mountpoint; struct vfsmount mnt; union { struct rcu_head mnt_rcu; struct llist_node mnt_llist; }; #ifdef CONFIG_SMP struct mnt_pcp __percpu *mnt_pcp; #else int mnt_count; int mnt_writers; #endif struct list_head mnt_mounts; /* list of children, anchored here */ struct list_head mnt_child; /* and going through their mnt_child */ struct list_head mnt_instance; /* mount instance on sb->s_mounts */ const char *mnt_devname; /* Name of device e.g. /dev/dsk/hda1 */ struct list_head mnt_list; struct list_head mnt_expire; /* link in fs-specific expiry list */ struct list_head mnt_share; /* circular list of shared mounts */ struct list_head mnt_slave_list;/* list of slave mounts */ struct list_head mnt_slave; /* slave list entry */ struct mount *mnt_master; /* slave is on master->mnt_slave_list */ struct mnt_namespace *mnt_ns; /* containing namespace */ struct mountpoint *mnt_mp; /* where is it mounted */ union { struct hlist_node mnt_mp_list; /* list mounts with the same mountpoint */ struct hlist_node mnt_umount; }; struct list_head mnt_umounting; /* list entry for umount propagation */ #ifdef CONFIG_FSNOTIFY struct fsnotify_mark_connector __rcu *mnt_fsnotify_marks; __u32 mnt_fsnotify_mask; #endif int mnt_id; /* mount identifier */ int mnt_group_id; /* peer group identifier */ int mnt_expiry_mark; /* true if marked for expiry */ struct hlist_head mnt_pins; struct hlist_head mnt_stuck_children; } __randomize_layout; #define MNT_NS_INTERNAL ERR_PTR(-EINVAL) /* distinct from any mnt_namespace */ static inline struct mount *real_mount(struct vfsmount *mnt) { return container_of(mnt, struct mount, mnt); } static inline int mnt_has_parent(struct mount *mnt) { return mnt != mnt->mnt_parent; } static inline int is_mounted(struct vfsmount *mnt) { /* neither detached nor internal? */ return !IS_ERR_OR_NULL(real_mount(mnt)->mnt_ns); } extern struct mount *__lookup_mnt(struct vfsmount *, struct dentry *); extern int __legitimize_mnt(struct vfsmount *, unsigned); extern bool legitimize_mnt(struct vfsmount *, unsigned); static inline bool __path_is_mountpoint(const struct path *path) { struct mount *m = __lookup_mnt(path->mnt, path->dentry); return m && likely(!(m->mnt.mnt_flags & MNT_SYNC_UMOUNT)); } extern void __detach_mounts(struct dentry *dentry); static inline void detach_mounts(struct dentry *dentry) { if (!d_mountpoint(dentry)) return; __detach_mounts(dentry); } static inline void get_mnt_ns(struct mnt_namespace *ns) { atomic_inc(&ns->count); } extern seqlock_t mount_lock; static inline void lock_mount_hash(void) { write_seqlock(&mount_lock); } static inline void unlock_mount_hash(void) { write_sequnlock(&mount_lock); } struct proc_mounts { struct mnt_namespace *ns; struct path root; int (*show)(struct seq_file *, struct vfsmount *); struct mount cursor; }; extern const struct seq_operations mounts_op; extern bool __is_local_mountpoint(struct dentry *dentry); static inline bool is_local_mountpoint(struct dentry *dentry) { if (!d_mountpoint(dentry)) return false; return __is_local_mountpoint(dentry); } static inline bool is_anon_ns(struct mnt_namespace *ns) { return ns->seq == 0; } extern void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM vsyscall #if !defined(__VSYSCALL_TRACE_H) || defined(TRACE_HEADER_MULTI_READ) #define __VSYSCALL_TRACE_H #include <linux/tracepoint.h> TRACE_EVENT(emulate_vsyscall, TP_PROTO(int nr), TP_ARGS(nr), TP_STRUCT__entry(__field(int, nr)), TP_fast_assign( __entry->nr = nr; ), TP_printk("nr = %d", __entry->nr) ); #endif #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH ../../arch/x86/entry/vsyscall/ #define TRACE_INCLUDE_FILE vsyscall_trace #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_GENERIC_PGALLOC_H #define __ASM_GENERIC_PGALLOC_H #ifdef CONFIG_MMU #define GFP_PGTABLE_KERNEL (GFP_KERNEL | __GFP_ZERO) #define GFP_PGTABLE_USER (GFP_PGTABLE_KERNEL | __GFP_ACCOUNT) /** * __pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * This function is intended for architectures that need * anything beyond simple page allocation. * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *__pte_alloc_one_kernel(struct mm_struct *mm) { return (pte_t *)__get_free_page(GFP_PGTABLE_KERNEL); } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE_KERNEL /** * pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm) { return __pte_alloc_one_kernel(mm); } #endif /** * pte_free_kernel - free PTE-level kernel page table page * @mm: the mm_struct of the current context * @pte: pointer to the memory containing the page table */ static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) { free_page((unsigned long)pte); } /** * __pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * @gfp: GFP flags to use for the allocation * * Allocates a page and runs the pgtable_pte_page_ctor(). * * This function is intended for architectures that need * anything beyond simple page allocation or must have custom GFP flags. * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t __pte_alloc_one(struct mm_struct *mm, gfp_t gfp) { struct page *pte; pte = alloc_page(gfp); if (!pte) return NULL; if (!pgtable_pte_page_ctor(pte)) { __free_page(pte); return NULL; } return pte; } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE /** * pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pte_page_ctor(). * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t pte_alloc_one(struct mm_struct *mm) { return __pte_alloc_one(mm, GFP_PGTABLE_USER); } #endif /* * Should really implement gc for free page table pages. This could be * done with a reference count in struct page. */ /** * pte_free - free PTE-level user page table page * @mm: the mm_struct of the current context * @pte_page: the `struct page` representing the page table */ static inline void pte_free(struct mm_struct *mm, struct page *pte_page) { pgtable_pte_page_dtor(pte_page); __free_page(pte_page); } #if CONFIG_PGTABLE_LEVELS > 2 #ifndef __HAVE_ARCH_PMD_ALLOC_ONE /** * pmd_alloc_one - allocate a page for PMD-level page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pmd_page_ctor(). * Allocations use %GFP_PGTABLE_USER in user context and * %GFP_PGTABLE_KERNEL in kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) { struct page *page; gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; page = alloc_pages(gfp, 0); if (!page) return NULL; if (!pgtable_pmd_page_ctor(page)) { __free_pages(page, 0); return NULL; } return (pmd_t *)page_address(page); } #endif #ifndef __HAVE_ARCH_PMD_FREE static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) { BUG_ON((unsigned long)pmd & (PAGE_SIZE-1)); pgtable_pmd_page_dtor(virt_to_page(pmd)); free_page((unsigned long)pmd); } #endif #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 #ifndef __HAVE_ARCH_PUD_ALLOC_ONE /** * pud_alloc_one - allocate a page for PUD-level page table * @mm: the mm_struct of the current context * * Allocates a page using %GFP_PGTABLE_USER for user context and * %GFP_PGTABLE_KERNEL for kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) { gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; return (pud_t *)get_zeroed_page(gfp); } #endif static inline void pud_free(struct mm_struct *mm, pud_t *pud) { BUG_ON((unsigned long)pud & (PAGE_SIZE-1)); free_page((unsigned long)pud); } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ #ifndef __HAVE_ARCH_PGD_FREE static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) { free_page((unsigned long)pgd); } #endif #endif /* CONFIG_MMU */ #endif /* __ASM_GENERIC_PGALLOC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_MMU_CONTEXT_H #define _ASM_X86_MMU_CONTEXT_H #include <asm/desc.h> #include <linux/atomic.h> #include <linux/mm_types.h> #include <linux/pkeys.h> #include <trace/events/tlb.h> #include <asm/tlbflush.h> #include <asm/paravirt.h> #include <asm/debugreg.h> extern atomic64_t last_mm_ctx_id; #ifndef CONFIG_PARAVIRT_XXL static inline void paravirt_activate_mm(struct mm_struct *prev, struct mm_struct *next) { } #endif /* !CONFIG_PARAVIRT_XXL */ #ifdef CONFIG_PERF_EVENTS DECLARE_STATIC_KEY_FALSE(rdpmc_never_available_key); DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key); void cr4_update_pce(void *ignored); #endif #ifdef CONFIG_MODIFY_LDT_SYSCALL /* * ldt_structs can be allocated, used, and freed, but they are never * modified while live. */ struct ldt_struct { /* * Xen requires page-aligned LDTs with special permissions. This is * needed to prevent us from installing evil descriptors such as * call gates. On native, we could merge the ldt_struct and LDT * allocations, but it's not worth trying to optimize. */ struct desc_struct *entries; unsigned int nr_entries; /* * If PTI is in use, then the entries array is not mapped while we're * in user mode. The whole array will be aliased at the addressed * given by ldt_slot_va(slot). We use two slots so that we can allocate * and map, and enable a new LDT without invalidating the mapping * of an older, still-in-use LDT. * * slot will be -1 if this LDT doesn't have an alias mapping. */ int slot; }; /* * Used for LDT copy/destruction. */ static inline void init_new_context_ldt(struct mm_struct *mm) { mm->context.ldt = NULL; init_rwsem(&mm->context.ldt_usr_sem); } int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm); void destroy_context_ldt(struct mm_struct *mm); void ldt_arch_exit_mmap(struct mm_struct *mm); #else /* CONFIG_MODIFY_LDT_SYSCALL */ static inline void init_new_context_ldt(struct mm_struct *mm) { } static inline int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm) { return 0; } static inline void destroy_context_ldt(struct mm_struct *mm) { } static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { } #endif #ifdef CONFIG_MODIFY_LDT_SYSCALL extern void load_mm_ldt(struct mm_struct *mm); extern void switch_ldt(struct mm_struct *prev, struct mm_struct *next); #else static inline void load_mm_ldt(struct mm_struct *mm) { clear_LDT(); } static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next) { DEBUG_LOCKS_WARN_ON(preemptible()); } #endif extern void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk); /* * Init a new mm. Used on mm copies, like at fork() * and on mm's that are brand-new, like at execve(). */ static inline int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { mutex_init(&mm->context.lock); mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id); atomic64_set(&mm->context.tlb_gen, 0); #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS if (cpu_feature_enabled(X86_FEATURE_OSPKE)) { /* pkey 0 is the default and allocated implicitly */ mm->context.pkey_allocation_map = 0x1; /* -1 means unallocated or invalid */ mm->context.execute_only_pkey = -1; } #endif init_new_context_ldt(mm); return 0; } static inline void destroy_context(struct mm_struct *mm) { destroy_context_ldt(mm); } extern void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk); extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk); #define switch_mm_irqs_off switch_mm_irqs_off #define activate_mm(prev, next) \ do { \ paravirt_activate_mm((prev), (next)); \ switch_mm((prev), (next), NULL); \ } while (0); #ifdef CONFIG_X86_32 #define deactivate_mm(tsk, mm) \ do { \ lazy_load_gs(0); \ } while (0) #else #define deactivate_mm(tsk, mm) \ do { \ load_gs_index(0); \ loadsegment(fs, 0); \ } while (0) #endif static inline void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm) { #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return; /* Duplicate the oldmm pkey state in mm: */ mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map; mm->context.execute_only_pkey = oldmm->context.execute_only_pkey; #endif } static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) { arch_dup_pkeys(oldmm, mm); paravirt_arch_dup_mmap(oldmm, mm); return ldt_dup_context(oldmm, mm); } static inline void arch_exit_mmap(struct mm_struct *mm) { paravirt_arch_exit_mmap(mm); ldt_arch_exit_mmap(mm); } #ifdef CONFIG_X86_64 static inline bool is_64bit_mm(struct mm_struct *mm) { return !IS_ENABLED(CONFIG_IA32_EMULATION) || !(mm->context.ia32_compat == TIF_IA32); } #else static inline bool is_64bit_mm(struct mm_struct *mm) { return false; } #endif static inline void arch_unmap(struct mm_struct *mm, unsigned long start, unsigned long end) { } /* * We only want to enforce protection keys on the current process * because we effectively have no access to PKRU for other * processes or any way to tell *which * PKRU in a threaded * process we could use. * * So do not enforce things if the VMA is not from the current * mm, or if we are in a kernel thread. */ static inline bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write, bool execute, bool foreign) { /* pkeys never affect instruction fetches */ if (execute) return true; /* allow access if the VMA is not one from this process */ if (foreign || vma_is_foreign(vma)) return true; return __pkru_allows_pkey(vma_pkey(vma), write); } unsigned long __get_current_cr3_fast(void); #endif /* _ASM_X86_MMU_CONTEXT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __VDSO_HELPERS_H #define __VDSO_HELPERS_H #ifndef __ASSEMBLY__ #include <vdso/datapage.h> static __always_inline u32 vdso_read_begin(const struct vdso_data *vd) { u32 seq; while (unlikely((seq = READ_ONCE(vd->seq)) & 1)) cpu_relax(); smp_rmb(); return seq; } static __always_inline u32 vdso_read_retry(const struct vdso_data *vd, u32 start) { u32 seq; smp_rmb(); seq = READ_ONCE(vd->seq); return seq != start; } static __always_inline void vdso_write_begin(struct vdso_data *vd) { /* * WRITE_ONCE it is required otherwise the compiler can validly tear * updates to vd[x].seq and it is possible that the value seen by the * reader it is inconsistent. */ WRITE_ONCE(vd[CS_HRES_COARSE].seq, vd[CS_HRES_COARSE].seq + 1); WRITE_ONCE(vd[CS_RAW].seq, vd[CS_RAW].seq + 1); smp_wmb(); } static __always_inline void vdso_write_end(struct vdso_data *vd) { smp_wmb(); /* * WRITE_ONCE it is required otherwise the compiler can validly tear * updates to vd[x].seq and it is possible that the value seen by the * reader it is inconsistent. */ WRITE_ONCE(vd[CS_HRES_COARSE].seq, vd[CS_HRES_COARSE].seq + 1); WRITE_ONCE(vd[CS_RAW].seq, vd[CS_RAW].seq + 1); } #endif /* !__ASSEMBLY__ */ #endif /* __VDSO_HELPERS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright 2003-2004 Red Hat, Inc. All rights reserved. * Copyright 2003-2004 Jeff Garzik * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/driver-api/libata.rst * * Hardware documentation available from http://www.t13.org/ */ #ifndef __LINUX_ATA_H__ #define __LINUX_ATA_H__ #include <linux/kernel.h> #include <linux/string.h> #include <linux/types.h> #include <asm/byteorder.h> /* defines only for the constants which don't work well as enums */ #define ATA_DMA_BOUNDARY 0xffffUL #define ATA_DMA_MASK 0xffffffffULL enum { /* various global constants */ ATA_MAX_DEVICES = 2, /* per bus/port */ ATA_MAX_PRD = 256, /* we could make these 256/256 */ ATA_SECT_SIZE = 512, ATA_MAX_SECTORS_128 = 128, ATA_MAX_SECTORS = 256, ATA_MAX_SECTORS_1024 = 1024, ATA_MAX_SECTORS_LBA48 = 65535,/* avoid count to be 0000h */ ATA_MAX_SECTORS_TAPE = 65535, ATA_MAX_TRIM_RNUM = 64, /* 512-byte payload / (6-byte LBA + 2-byte range per entry) */ ATA_ID_WORDS = 256, ATA_ID_CONFIG = 0, ATA_ID_CYLS = 1, ATA_ID_HEADS = 3, ATA_ID_SECTORS = 6, ATA_ID_SERNO = 10, ATA_ID_BUF_SIZE = 21, ATA_ID_FW_REV = 23, ATA_ID_PROD = 27, ATA_ID_MAX_MULTSECT = 47, ATA_ID_DWORD_IO = 48, /* before ATA-8 */ ATA_ID_TRUSTED = 48, /* ATA-8 and later */ ATA_ID_CAPABILITY = 49, ATA_ID_OLD_PIO_MODES = 51, ATA_ID_OLD_DMA_MODES = 52, ATA_ID_FIELD_VALID = 53, ATA_ID_CUR_CYLS = 54, ATA_ID_CUR_HEADS = 55, ATA_ID_CUR_SECTORS = 56, ATA_ID_MULTSECT = 59, ATA_ID_LBA_CAPACITY = 60, ATA_ID_SWDMA_MODES = 62, ATA_ID_MWDMA_MODES = 63, ATA_ID_PIO_MODES = 64, ATA_ID_EIDE_DMA_MIN = 65, ATA_ID_EIDE_DMA_TIME = 66, ATA_ID_EIDE_PIO = 67, ATA_ID_EIDE_PIO_IORDY = 68, ATA_ID_ADDITIONAL_SUPP = 69, ATA_ID_QUEUE_DEPTH = 75, ATA_ID_SATA_CAPABILITY = 76, ATA_ID_SATA_CAPABILITY_2 = 77, ATA_ID_FEATURE_SUPP = 78, ATA_ID_MAJOR_VER = 80, ATA_ID_COMMAND_SET_1 = 82, ATA_ID_COMMAND_SET_2 = 83, ATA_ID_CFSSE = 84, ATA_ID_CFS_ENABLE_1 = 85, ATA_ID_CFS_ENABLE_2 = 86, ATA_ID_CSF_DEFAULT = 87, ATA_ID_UDMA_MODES = 88, ATA_ID_HW_CONFIG = 93, ATA_ID_SPG = 98, ATA_ID_LBA_CAPACITY_2 = 100, ATA_ID_SECTOR_SIZE = 106, ATA_ID_WWN = 108, ATA_ID_LOGICAL_SECTOR_SIZE = 117, /* and 118 */ ATA_ID_COMMAND_SET_3 = 119, ATA_ID_COMMAND_SET_4 = 120, ATA_ID_LAST_LUN = 126, ATA_ID_DLF = 128, ATA_ID_CSFO = 129, ATA_ID_CFA_POWER = 160, ATA_ID_CFA_KEY_MGMT = 162, ATA_ID_CFA_MODES = 163, ATA_ID_DATA_SET_MGMT = 169, ATA_ID_SCT_CMD_XPORT = 206, ATA_ID_ROT_SPEED = 217, ATA_ID_PIO4 = (1 << 1), ATA_ID_SERNO_LEN = 20, ATA_ID_FW_REV_LEN = 8, ATA_ID_PROD_LEN = 40, ATA_ID_WWN_LEN = 8, ATA_PCI_CTL_OFS = 2, ATA_PIO0 = (1 << 0), ATA_PIO1 = ATA_PIO0 | (1 << 1), ATA_PIO2 = ATA_PIO1 | (1 << 2), ATA_PIO3 = ATA_PIO2 | (1 << 3), ATA_PIO4 = ATA_PIO3 | (1 << 4), ATA_PIO5 = ATA_PIO4 | (1 << 5), ATA_PIO6 = ATA_PIO5 | (1 << 6), ATA_PIO4_ONLY = (1 << 4), ATA_SWDMA0 = (1 << 0), ATA_SWDMA1 = ATA_SWDMA0 | (1 << 1), ATA_SWDMA2 = ATA_SWDMA1 | (1 << 2), ATA_SWDMA2_ONLY = (1 << 2), ATA_MWDMA0 = (1 << 0), ATA_MWDMA1 = ATA_MWDMA0 | (1 << 1), ATA_MWDMA2 = ATA_MWDMA1 | (1 << 2), ATA_MWDMA3 = ATA_MWDMA2 | (1 << 3), ATA_MWDMA4 = ATA_MWDMA3 | (1 << 4), ATA_MWDMA12_ONLY = (1 << 1) | (1 << 2), ATA_MWDMA2_ONLY = (1 << 2), ATA_UDMA0 = (1 << 0), ATA_UDMA1 = ATA_UDMA0 | (1 << 1), ATA_UDMA2 = ATA_UDMA1 | (1 << 2), ATA_UDMA3 = ATA_UDMA2 | (1 << 3), ATA_UDMA4 = ATA_UDMA3 | (1 << 4), ATA_UDMA5 = ATA_UDMA4 | (1 << 5), ATA_UDMA6 = ATA_UDMA5 | (1 << 6), ATA_UDMA7 = ATA_UDMA6 | (1 << 7), /* ATA_UDMA7 is just for completeness... doesn't exist (yet?). */ ATA_UDMA24_ONLY = (1 << 2) | (1 << 4), ATA_UDMA_MASK_40C = ATA_UDMA2, /* udma0-2 */ /* DMA-related */ ATA_PRD_SZ = 8, ATA_PRD_TBL_SZ = (ATA_MAX_PRD * ATA_PRD_SZ), ATA_PRD_EOT = (1 << 31), /* end-of-table flag */ ATA_DMA_TABLE_OFS = 4, ATA_DMA_STATUS = 2, ATA_DMA_CMD = 0, ATA_DMA_WR = (1 << 3), ATA_DMA_START = (1 << 0), ATA_DMA_INTR = (1 << 2), ATA_DMA_ERR = (1 << 1), ATA_DMA_ACTIVE = (1 << 0), /* bits in ATA command block registers */ ATA_HOB = (1 << 7), /* LBA48 selector */ ATA_NIEN = (1 << 1), /* disable-irq flag */ ATA_LBA = (1 << 6), /* LBA28 selector */ ATA_DEV1 = (1 << 4), /* Select Device 1 (slave) */ ATA_DEVICE_OBS = (1 << 7) | (1 << 5), /* obs bits in dev reg */ ATA_DEVCTL_OBS = (1 << 3), /* obsolete bit in devctl reg */ ATA_BUSY = (1 << 7), /* BSY status bit */ ATA_DRDY = (1 << 6), /* device ready */ ATA_DF = (1 << 5), /* device fault */ ATA_DSC = (1 << 4), /* drive seek complete */ ATA_DRQ = (1 << 3), /* data request i/o */ ATA_CORR = (1 << 2), /* corrected data error */ ATA_SENSE = (1 << 1), /* sense code available */ ATA_ERR = (1 << 0), /* have an error */ ATA_SRST = (1 << 2), /* software reset */ ATA_ICRC = (1 << 7), /* interface CRC error */ ATA_BBK = ATA_ICRC, /* pre-EIDE: block marked bad */ ATA_UNC = (1 << 6), /* uncorrectable media error */ ATA_MC = (1 << 5), /* media changed */ ATA_IDNF = (1 << 4), /* ID not found */ ATA_MCR = (1 << 3), /* media change requested */ ATA_ABORTED = (1 << 2), /* command aborted */ ATA_TRK0NF = (1 << 1), /* track 0 not found */ ATA_AMNF = (1 << 0), /* address mark not found */ ATAPI_LFS = 0xF0, /* last failed sense */ ATAPI_EOM = ATA_TRK0NF, /* end of media */ ATAPI_ILI = ATA_AMNF, /* illegal length indication */ ATAPI_IO = (1 << 1), ATAPI_COD = (1 << 0), /* ATA command block registers */ ATA_REG_DATA = 0x00, ATA_REG_ERR = 0x01, ATA_REG_NSECT = 0x02, ATA_REG_LBAL = 0x03, ATA_REG_LBAM = 0x04, ATA_REG_LBAH = 0x05, ATA_REG_DEVICE = 0x06, ATA_REG_STATUS = 0x07, ATA_REG_FEATURE = ATA_REG_ERR, /* and their aliases */ ATA_REG_CMD = ATA_REG_STATUS, ATA_REG_BYTEL = ATA_REG_LBAM, ATA_REG_BYTEH = ATA_REG_LBAH, ATA_REG_DEVSEL = ATA_REG_DEVICE, ATA_REG_IRQ = ATA_REG_NSECT, /* ATA device commands */ ATA_CMD_DEV_RESET = 0x08, /* ATAPI device reset */ ATA_CMD_CHK_POWER = 0xE5, /* check power mode */ ATA_CMD_STANDBY = 0xE2, /* place in standby power mode */ ATA_CMD_IDLE = 0xE3, /* place in idle power mode */ ATA_CMD_EDD = 0x90, /* execute device diagnostic */ ATA_CMD_DOWNLOAD_MICRO = 0x92, ATA_CMD_DOWNLOAD_MICRO_DMA = 0x93, ATA_CMD_NOP = 0x00, ATA_CMD_FLUSH = 0xE7, ATA_CMD_FLUSH_EXT = 0xEA, ATA_CMD_ID_ATA = 0xEC, ATA_CMD_ID_ATAPI = 0xA1, ATA_CMD_SERVICE = 0xA2, ATA_CMD_READ = 0xC8, ATA_CMD_READ_EXT = 0x25, ATA_CMD_READ_QUEUED = 0x26, ATA_CMD_READ_STREAM_EXT = 0x2B, ATA_CMD_READ_STREAM_DMA_EXT = 0x2A, ATA_CMD_WRITE = 0xCA, ATA_CMD_WRITE_EXT = 0x35, ATA_CMD_WRITE_QUEUED = 0x36, ATA_CMD_WRITE_STREAM_EXT = 0x3B, ATA_CMD_WRITE_STREAM_DMA_EXT = 0x3A, ATA_CMD_WRITE_FUA_EXT = 0x3D, ATA_CMD_WRITE_QUEUED_FUA_EXT = 0x3E, ATA_CMD_FPDMA_READ = 0x60, ATA_CMD_FPDMA_WRITE = 0x61, ATA_CMD_NCQ_NON_DATA = 0x63, ATA_CMD_FPDMA_SEND = 0x64, ATA_CMD_FPDMA_RECV = 0x65, ATA_CMD_PIO_READ = 0x20, ATA_CMD_PIO_READ_EXT = 0x24, ATA_CMD_PIO_WRITE = 0x30, ATA_CMD_PIO_WRITE_EXT = 0x34, ATA_CMD_READ_MULTI = 0xC4, ATA_CMD_READ_MULTI_EXT = 0x29, ATA_CMD_WRITE_MULTI = 0xC5, ATA_CMD_WRITE_MULTI_EXT = 0x39, ATA_CMD_WRITE_MULTI_FUA_EXT = 0xCE, ATA_CMD_SET_FEATURES = 0xEF, ATA_CMD_SET_MULTI = 0xC6, ATA_CMD_PACKET = 0xA0, ATA_CMD_VERIFY = 0x40, ATA_CMD_VERIFY_EXT = 0x42, ATA_CMD_WRITE_UNCORR_EXT = 0x45, ATA_CMD_STANDBYNOW1 = 0xE0, ATA_CMD_IDLEIMMEDIATE = 0xE1, ATA_CMD_SLEEP = 0xE6, ATA_CMD_INIT_DEV_PARAMS = 0x91, ATA_CMD_READ_NATIVE_MAX = 0xF8, ATA_CMD_READ_NATIVE_MAX_EXT = 0x27, ATA_CMD_SET_MAX = 0xF9, ATA_CMD_SET_MAX_EXT = 0x37, ATA_CMD_READ_LOG_EXT = 0x2F, ATA_CMD_WRITE_LOG_EXT = 0x3F, ATA_CMD_READ_LOG_DMA_EXT = 0x47, ATA_CMD_WRITE_LOG_DMA_EXT = 0x57, ATA_CMD_TRUSTED_NONDATA = 0x5B, ATA_CMD_TRUSTED_RCV = 0x5C, ATA_CMD_TRUSTED_RCV_DMA = 0x5D, ATA_CMD_TRUSTED_SND = 0x5E, ATA_CMD_TRUSTED_SND_DMA = 0x5F, ATA_CMD_PMP_READ = 0xE4, ATA_CMD_PMP_READ_DMA = 0xE9, ATA_CMD_PMP_WRITE = 0xE8, ATA_CMD_PMP_WRITE_DMA = 0xEB, ATA_CMD_CONF_OVERLAY = 0xB1, ATA_CMD_SEC_SET_PASS = 0xF1, ATA_CMD_SEC_UNLOCK = 0xF2, ATA_CMD_SEC_ERASE_PREP = 0xF3, ATA_CMD_SEC_ERASE_UNIT = 0xF4, ATA_CMD_SEC_FREEZE_LOCK = 0xF5, ATA_CMD_SEC_DISABLE_PASS = 0xF6, ATA_CMD_CONFIG_STREAM = 0x51, ATA_CMD_SMART = 0xB0, ATA_CMD_MEDIA_LOCK = 0xDE, ATA_CMD_MEDIA_UNLOCK = 0xDF, ATA_CMD_DSM = 0x06, ATA_CMD_CHK_MED_CRD_TYP = 0xD1, ATA_CMD_CFA_REQ_EXT_ERR = 0x03, ATA_CMD_CFA_WRITE_NE = 0x38, ATA_CMD_CFA_TRANS_SECT = 0x87, ATA_CMD_CFA_ERASE = 0xC0, ATA_CMD_CFA_WRITE_MULT_NE = 0xCD, ATA_CMD_REQ_SENSE_DATA = 0x0B, ATA_CMD_SANITIZE_DEVICE = 0xB4, ATA_CMD_ZAC_MGMT_IN = 0x4A, ATA_CMD_ZAC_MGMT_OUT = 0x9F, /* marked obsolete in the ATA/ATAPI-7 spec */ ATA_CMD_RESTORE = 0x10, /* Subcmds for ATA_CMD_FPDMA_RECV */ ATA_SUBCMD_FPDMA_RECV_RD_LOG_DMA_EXT = 0x01, ATA_SUBCMD_FPDMA_RECV_ZAC_MGMT_IN = 0x02, /* Subcmds for ATA_CMD_FPDMA_SEND */ ATA_SUBCMD_FPDMA_SEND_DSM = 0x00, ATA_SUBCMD_FPDMA_SEND_WR_LOG_DMA_EXT = 0x02, /* Subcmds for ATA_CMD_NCQ_NON_DATA */ ATA_SUBCMD_NCQ_NON_DATA_ABORT_QUEUE = 0x00, ATA_SUBCMD_NCQ_NON_DATA_SET_FEATURES = 0x05, ATA_SUBCMD_NCQ_NON_DATA_ZERO_EXT = 0x06, ATA_SUBCMD_NCQ_NON_DATA_ZAC_MGMT_OUT = 0x07, /* Subcmds for ATA_CMD_ZAC_MGMT_IN */ ATA_SUBCMD_ZAC_MGMT_IN_REPORT_ZONES = 0x00, /* Subcmds for ATA_CMD_ZAC_MGMT_OUT */ ATA_SUBCMD_ZAC_MGMT_OUT_CLOSE_ZONE = 0x01, ATA_SUBCMD_ZAC_MGMT_OUT_FINISH_ZONE = 0x02, ATA_SUBCMD_ZAC_MGMT_OUT_OPEN_ZONE = 0x03, ATA_SUBCMD_ZAC_MGMT_OUT_RESET_WRITE_POINTER = 0x04, /* READ_LOG_EXT pages */ ATA_LOG_DIRECTORY = 0x0, ATA_LOG_SATA_NCQ = 0x10, ATA_LOG_NCQ_NON_DATA = 0x12, ATA_LOG_NCQ_SEND_RECV = 0x13, ATA_LOG_IDENTIFY_DEVICE = 0x30, /* Identify device log pages: */ ATA_LOG_SECURITY = 0x06, ATA_LOG_SATA_SETTINGS = 0x08, ATA_LOG_ZONED_INFORMATION = 0x09, /* Identify device SATA settings log:*/ ATA_LOG_DEVSLP_OFFSET = 0x30, ATA_LOG_DEVSLP_SIZE = 0x08, ATA_LOG_DEVSLP_MDAT = 0x00, ATA_LOG_DEVSLP_MDAT_MASK = 0x1F, ATA_LOG_DEVSLP_DETO = 0x01, ATA_LOG_DEVSLP_VALID = 0x07, ATA_LOG_DEVSLP_VALID_MASK = 0x80, ATA_LOG_NCQ_PRIO_OFFSET = 0x09, /* NCQ send and receive log */ ATA_LOG_NCQ_SEND_RECV_SUBCMDS_OFFSET = 0x00, ATA_LOG_NCQ_SEND_RECV_SUBCMDS_DSM = (1 << 0), ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET = 0x04, ATA_LOG_NCQ_SEND_RECV_DSM_TRIM = (1 << 0), ATA_LOG_NCQ_SEND_RECV_RD_LOG_OFFSET = 0x08, ATA_LOG_NCQ_SEND_RECV_RD_LOG_SUPPORTED = (1 << 0), ATA_LOG_NCQ_SEND_RECV_WR_LOG_OFFSET = 0x0C, ATA_LOG_NCQ_SEND_RECV_WR_LOG_SUPPORTED = (1 << 0), ATA_LOG_NCQ_SEND_RECV_ZAC_MGMT_OFFSET = 0x10, ATA_LOG_NCQ_SEND_RECV_ZAC_MGMT_OUT_SUPPORTED = (1 << 0), ATA_LOG_NCQ_SEND_RECV_ZAC_MGMT_IN_SUPPORTED = (1 << 1), ATA_LOG_NCQ_SEND_RECV_SIZE = 0x14, /* NCQ Non-Data log */ ATA_LOG_NCQ_NON_DATA_SUBCMDS_OFFSET = 0x00, ATA_LOG_NCQ_NON_DATA_ABORT_OFFSET = 0x00, ATA_LOG_NCQ_NON_DATA_ABORT_NCQ = (1 << 0), ATA_LOG_NCQ_NON_DATA_ABORT_ALL = (1 << 1), ATA_LOG_NCQ_NON_DATA_ABORT_STREAMING = (1 << 2), ATA_LOG_NCQ_NON_DATA_ABORT_NON_STREAMING = (1 << 3), ATA_LOG_NCQ_NON_DATA_ABORT_SELECTED = (1 << 4), ATA_LOG_NCQ_NON_DATA_ZAC_MGMT_OFFSET = 0x1C, ATA_LOG_NCQ_NON_DATA_ZAC_MGMT_OUT = (1 << 0), ATA_LOG_NCQ_NON_DATA_SIZE = 0x40, /* READ/WRITE LONG (obsolete) */ ATA_CMD_READ_LONG = 0x22, ATA_CMD_READ_LONG_ONCE = 0x23, ATA_CMD_WRITE_LONG = 0x32, ATA_CMD_WRITE_LONG_ONCE = 0x33, /* SETFEATURES stuff */ SETFEATURES_XFER = 0x03, XFER_UDMA_7 = 0x47, XFER_UDMA_6 = 0x46, XFER_UDMA_5 = 0x45, XFER_UDMA_4 = 0x44, XFER_UDMA_3 = 0x43, XFER_UDMA_2 = 0x42, XFER_UDMA_1 = 0x41, XFER_UDMA_0 = 0x40, XFER_MW_DMA_4 = 0x24, /* CFA only */ XFER_MW_DMA_3 = 0x23, /* CFA only */ XFER_MW_DMA_2 = 0x22, XFER_MW_DMA_1 = 0x21, XFER_MW_DMA_0 = 0x20, XFER_SW_DMA_2 = 0x12, XFER_SW_DMA_1 = 0x11, XFER_SW_DMA_0 = 0x10, XFER_PIO_6 = 0x0E, /* CFA only */ XFER_PIO_5 = 0x0D, /* CFA only */ XFER_PIO_4 = 0x0C, XFER_PIO_3 = 0x0B, XFER_PIO_2 = 0x0A, XFER_PIO_1 = 0x09, XFER_PIO_0 = 0x08, XFER_PIO_SLOW = 0x00, SETFEATURES_WC_ON = 0x02, /* Enable write cache */ SETFEATURES_WC_OFF = 0x82, /* Disable write cache */ SETFEATURES_RA_ON = 0xaa, /* Enable read look-ahead */ SETFEATURES_RA_OFF = 0x55, /* Disable read look-ahead */ /* Enable/Disable Automatic Acoustic Management */ SETFEATURES_AAM_ON = 0x42, SETFEATURES_AAM_OFF = 0xC2, SETFEATURES_SPINUP = 0x07, /* Spin-up drive */ SETFEATURES_SPINUP_TIMEOUT = 30000, /* 30s timeout for drive spin-up from PUIS */ SETFEATURES_SATA_ENABLE = 0x10, /* Enable use of SATA feature */ SETFEATURES_SATA_DISABLE = 0x90, /* Disable use of SATA feature */ /* SETFEATURE Sector counts for SATA features */ SATA_FPDMA_OFFSET = 0x01, /* FPDMA non-zero buffer offsets */ SATA_FPDMA_AA = 0x02, /* FPDMA Setup FIS Auto-Activate */ SATA_DIPM = 0x03, /* Device Initiated Power Management */ SATA_FPDMA_IN_ORDER = 0x04, /* FPDMA in-order data delivery */ SATA_AN = 0x05, /* Asynchronous Notification */ SATA_SSP = 0x06, /* Software Settings Preservation */ SATA_DEVSLP = 0x09, /* Device Sleep */ SETFEATURE_SENSE_DATA = 0xC3, /* Sense Data Reporting feature */ /* feature values for SET_MAX */ ATA_SET_MAX_ADDR = 0x00, ATA_SET_MAX_PASSWD = 0x01, ATA_SET_MAX_LOCK = 0x02, ATA_SET_MAX_UNLOCK = 0x03, ATA_SET_MAX_FREEZE_LOCK = 0x04, ATA_SET_MAX_PASSWD_DMA = 0x05, ATA_SET_MAX_UNLOCK_DMA = 0x06, /* feature values for DEVICE CONFIGURATION OVERLAY */ ATA_DCO_RESTORE = 0xC0, ATA_DCO_FREEZE_LOCK = 0xC1, ATA_DCO_IDENTIFY = 0xC2, ATA_DCO_SET = 0xC3, /* feature values for SMART */ ATA_SMART_ENABLE = 0xD8, ATA_SMART_READ_VALUES = 0xD0, ATA_SMART_READ_THRESHOLDS = 0xD1, /* feature values for Data Set Management */ ATA_DSM_TRIM = 0x01, /* password used in LBA Mid / LBA High for executing SMART commands */ ATA_SMART_LBAM_PASS = 0x4F, ATA_SMART_LBAH_PASS = 0xC2, /* ATAPI stuff */ ATAPI_PKT_DMA = (1 << 0), ATAPI_DMADIR = (1 << 2), /* ATAPI data dir: 0=to device, 1=to host */ ATAPI_CDB_LEN = 16, /* PMP stuff */ SATA_PMP_MAX_PORTS = 15, SATA_PMP_CTRL_PORT = 15, SATA_PMP_GSCR_DWORDS = 128, SATA_PMP_GSCR_PROD_ID = 0, SATA_PMP_GSCR_REV = 1, SATA_PMP_GSCR_PORT_INFO = 2, SATA_PMP_GSCR_ERROR = 32, SATA_PMP_GSCR_ERROR_EN = 33, SATA_PMP_GSCR_FEAT = 64, SATA_PMP_GSCR_FEAT_EN = 96, SATA_PMP_PSCR_STATUS = 0, SATA_PMP_PSCR_ERROR = 1, SATA_PMP_PSCR_CONTROL = 2, SATA_PMP_FEAT_BIST = (1 << 0), SATA_PMP_FEAT_PMREQ = (1 << 1), SATA_PMP_FEAT_DYNSSC = (1 << 2), SATA_PMP_FEAT_NOTIFY = (1 << 3), /* cable types */ ATA_CBL_NONE = 0, ATA_CBL_PATA40 = 1, ATA_CBL_PATA80 = 2, ATA_CBL_PATA40_SHORT = 3, /* 40 wire cable to high UDMA spec */ ATA_CBL_PATA_UNK = 4, /* don't know, maybe 80c? */ ATA_CBL_PATA_IGN = 5, /* don't know, ignore cable handling */ ATA_CBL_SATA = 6, /* SATA Status and Control Registers */ SCR_STATUS = 0, SCR_ERROR = 1, SCR_CONTROL = 2, SCR_ACTIVE = 3, SCR_NOTIFICATION = 4, /* SError bits */ SERR_DATA_RECOVERED = (1 << 0), /* recovered data error */ SERR_COMM_RECOVERED = (1 << 1), /* recovered comm failure */ SERR_DATA = (1 << 8), /* unrecovered data error */ SERR_PERSISTENT = (1 << 9), /* persistent data/comm error */ SERR_PROTOCOL = (1 << 10), /* protocol violation */ SERR_INTERNAL = (1 << 11), /* host internal error */ SERR_PHYRDY_CHG = (1 << 16), /* PHY RDY changed */ SERR_PHY_INT_ERR = (1 << 17), /* PHY internal error */ SERR_COMM_WAKE = (1 << 18), /* Comm wake */ SERR_10B_8B_ERR = (1 << 19), /* 10b to 8b decode error */ SERR_DISPARITY = (1 << 20), /* Disparity */ SERR_CRC = (1 << 21), /* CRC error */ SERR_HANDSHAKE = (1 << 22), /* Handshake error */ SERR_LINK_SEQ_ERR = (1 << 23), /* Link sequence error */ SERR_TRANS_ST_ERROR = (1 << 24), /* Transport state trans. error */ SERR_UNRECOG_FIS = (1 << 25), /* Unrecognized FIS */ SERR_DEV_XCHG = (1 << 26), /* device exchanged */ }; enum ata_prot_flags { /* protocol flags */ ATA_PROT_FLAG_PIO = (1 << 0), /* is PIO */ ATA_PROT_FLAG_DMA = (1 << 1), /* is DMA */ ATA_PROT_FLAG_NCQ = (1 << 2), /* is NCQ */ ATA_PROT_FLAG_ATAPI = (1 << 3), /* is ATAPI */ /* taskfile protocols */ ATA_PROT_UNKNOWN = (u8)-1, ATA_PROT_NODATA = 0, ATA_PROT_PIO = ATA_PROT_FLAG_PIO, ATA_PROT_DMA = ATA_PROT_FLAG_DMA, ATA_PROT_NCQ_NODATA = ATA_PROT_FLAG_NCQ, ATA_PROT_NCQ = ATA_PROT_FLAG_DMA | ATA_PROT_FLAG_NCQ, ATAPI_PROT_NODATA = ATA_PROT_FLAG_ATAPI, ATAPI_PROT_PIO = ATA_PROT_FLAG_ATAPI | ATA_PROT_FLAG_PIO, ATAPI_PROT_DMA = ATA_PROT_FLAG_ATAPI | ATA_PROT_FLAG_DMA, }; enum ata_ioctls { ATA_IOC_GET_IO32 = 0x309, /* HDIO_GET_32BIT */ ATA_IOC_SET_IO32 = 0x324, /* HDIO_SET_32BIT */ }; /* core structures */ struct ata_bmdma_prd { __le32 addr; __le32 flags_len; }; /* * id tests */ #define ata_id_is_ata(id) (((id)[ATA_ID_CONFIG] & (1 << 15)) == 0) #define ata_id_has_lba(id) ((id)[ATA_ID_CAPABILITY] & (1 << 9)) #define ata_id_has_dma(id) ((id)[ATA_ID_CAPABILITY] & (1 << 8)) #define ata_id_has_ncq(id) ((id)[ATA_ID_SATA_CAPABILITY] & (1 << 8)) #define ata_id_queue_depth(id) (((id)[ATA_ID_QUEUE_DEPTH] & 0x1f) + 1) #define ata_id_removable(id) ((id)[ATA_ID_CONFIG] & (1 << 7)) #define ata_id_has_atapi_AN(id) \ ((((id)[ATA_ID_SATA_CAPABILITY] != 0x0000) && \ ((id)[ATA_ID_SATA_CAPABILITY] != 0xffff)) && \ ((id)[ATA_ID_FEATURE_SUPP] & (1 << 5))) #define ata_id_has_fpdma_aa(id) \ ((((id)[ATA_ID_SATA_CAPABILITY] != 0x0000) && \ ((id)[ATA_ID_SATA_CAPABILITY] != 0xffff)) && \ ((id)[ATA_ID_FEATURE_SUPP] & (1 << 2))) #define ata_id_iordy_disable(id) ((id)[ATA_ID_CAPABILITY] & (1 << 10)) #define ata_id_has_iordy(id) ((id)[ATA_ID_CAPABILITY] & (1 << 11)) #define ata_id_u32(id,n) \ (((u32) (id)[(n) + 1] << 16) | ((u32) (id)[(n)])) #define ata_id_u64(id,n) \ ( ((u64) (id)[(n) + 3] << 48) | \ ((u64) (id)[(n) + 2] << 32) | \ ((u64) (id)[(n) + 1] << 16) | \ ((u64) (id)[(n) + 0]) ) #define ata_id_cdb_intr(id) (((id)[ATA_ID_CONFIG] & 0x60) == 0x20) #define ata_id_has_da(id) ((id)[ATA_ID_SATA_CAPABILITY_2] & (1 << 4)) #define ata_id_has_devslp(id) ((id)[ATA_ID_FEATURE_SUPP] & (1 << 8)) #define ata_id_has_ncq_autosense(id) \ ((id)[ATA_ID_FEATURE_SUPP] & (1 << 7)) static inline bool ata_id_has_hipm(const u16 *id) { u16 val = id[ATA_ID_SATA_CAPABILITY]; if (val == 0 || val == 0xffff) return false; return val & (1 << 9); } static inline bool ata_id_has_dipm(const u16 *id) { u16 val = id[ATA_ID_FEATURE_SUPP]; if (val == 0 || val == 0xffff) return false; return val & (1 << 3); } static inline bool ata_id_has_fua(const u16 *id) { if ((id[ATA_ID_CFSSE] & 0xC000) != 0x4000) return false; return id[ATA_ID_CFSSE] & (1 << 6); } static inline bool ata_id_has_flush(const u16 *id) { if ((id[ATA_ID_COMMAND_SET_2] & 0xC000) != 0x4000) return false; return id[ATA_ID_COMMAND_SET_2] & (1 << 12); } static inline bool ata_id_flush_enabled(const u16 *id) { if (ata_id_has_flush(id) == 0) return false; if ((id[ATA_ID_CSF_DEFAULT] & 0xC000) != 0x4000) return false; return id[ATA_ID_CFS_ENABLE_2] & (1 << 12); } static inline bool ata_id_has_flush_ext(const u16 *id) { if ((id[ATA_ID_COMMAND_SET_2] & 0xC000) != 0x4000) return false; return id[ATA_ID_COMMAND_SET_2] & (1 << 13); } static inline bool ata_id_flush_ext_enabled(const u16 *id) { if (ata_id_has_flush_ext(id) == 0) return false; if ((id[ATA_ID_CSF_DEFAULT] & 0xC000) != 0x4000) return false; /* * some Maxtor disks have bit 13 defined incorrectly * so check bit 10 too */ return (id[ATA_ID_CFS_ENABLE_2] & 0x2400) == 0x2400; } static inline u32 ata_id_logical_sector_size(const u16 *id) { /* T13/1699-D Revision 6a, Sep 6, 2008. Page 128. * IDENTIFY DEVICE data, word 117-118. * 0xd000 ignores bit 13 (logical:physical > 1) */ if ((id[ATA_ID_SECTOR_SIZE] & 0xd000) == 0x5000) return (((id[ATA_ID_LOGICAL_SECTOR_SIZE+1] << 16) + id[ATA_ID_LOGICAL_SECTOR_SIZE]) * sizeof(u16)) ; return ATA_SECT_SIZE; } static inline u8 ata_id_log2_per_physical_sector(const u16 *id) { /* T13/1699-D Revision 6a, Sep 6, 2008. Page 128. * IDENTIFY DEVICE data, word 106. * 0xe000 ignores bit 12 (logical sector > 512 bytes) */ if ((id[ATA_ID_SECTOR_SIZE] & 0xe000) == 0x6000) return (id[ATA_ID_SECTOR_SIZE] & 0xf); return 0; } /* Offset of logical sectors relative to physical sectors. * * If device has more than one logical sector per physical sector * (aka 512 byte emulation), vendors might offset the "sector 0" address * so sector 63 is "naturally aligned" - e.g. FAT partition table. * This avoids Read/Mod/Write penalties when using FAT partition table * and updating "well aligned" (FS perspective) physical sectors on every * transaction. */ static inline u16 ata_id_logical_sector_offset(const u16 *id, u8 log2_per_phys) { u16 word_209 = id[209]; if ((log2_per_phys > 1) && (word_209 & 0xc000) == 0x4000) { u16 first = word_209 & 0x3fff; if (first > 0) return (1 << log2_per_phys) - first; } return 0; } static inline bool ata_id_has_lba48(const u16 *id) { if ((id[ATA_ID_COMMAND_SET_2] & 0xC000) != 0x4000) return false; if (!ata_id_u64(id, ATA_ID_LBA_CAPACITY_2)) return false; return id[ATA_ID_COMMAND_SET_2] & (1 << 10); } static inline bool ata_id_lba48_enabled(const u16 *id) { if (ata_id_has_lba48(id) == 0) return false; if ((id[ATA_ID_CSF_DEFAULT] & 0xC000) != 0x4000) return false; return id[ATA_ID_CFS_ENABLE_2] & (1 << 10); } static inline bool ata_id_hpa_enabled(const u16 *id) { /* Yes children, word 83 valid bits cover word 82 data */ if ((id[ATA_ID_COMMAND_SET_2] & 0xC000) != 0x4000) return false; /* And 87 covers 85-87 */ if ((id[ATA_ID_CSF_DEFAULT] & 0xC000) != 0x4000) return false; /* Check command sets enabled as well as supported */ if ((id[ATA_ID_CFS_ENABLE_1] & (1 << 10)) == 0) return false; return id[ATA_ID_COMMAND_SET_1] & (1 << 10); } static inline bool ata_id_has_wcache(const u16 *id) { /* Yes children, word 83 valid bits cover word 82 data */ if ((id[ATA_ID_COMMAND_SET_2] & 0xC000) != 0x4000) return false; return id[ATA_ID_COMMAND_SET_1] & (1 << 5); } static inline bool ata_id_has_pm(const u16 *id) { if ((id[ATA_ID_COMMAND_SET_2] & 0xC000) != 0x4000) return false; return id[ATA_ID_COMMAND_SET_1] & (1 << 3); } static inline bool ata_id_rahead_enabled(const u16 *id) { if ((id[ATA_ID_CSF_DEFAULT] & 0xC000) != 0x4000) return false; return id[ATA_ID_CFS_ENABLE_1] & (1 << 6); } static inline bool ata_id_wcache_enabled(const u16 *id) { if ((id[ATA_ID_CSF_DEFAULT] & 0xC000) != 0x4000) return false; return id[ATA_ID_CFS_ENABLE_1] & (1 << 5); } static inline bool ata_id_has_read_log_dma_ext(const u16 *id) { /* Word 86 must have bit 15 set */ if (!(id[ATA_ID_CFS_ENABLE_2] & (1 << 15))) return false; /* READ LOG DMA EXT support can be signaled either from word 119 * or from word 120. The format is the same for both words: Bit * 15 must be cleared, bit 14 set and bit 3 set. */ if ((id[ATA_ID_COMMAND_SET_3] & 0xC008) == 0x4008 || (id[ATA_ID_COMMAND_SET_4] & 0xC008) == 0x4008) return true; return false; } static inline bool ata_id_has_sense_reporting(const u16 *id) { if (!(id[ATA_ID_CFS_ENABLE_2] & (1 << 15))) return false; return id[ATA_ID_COMMAND_SET_3] & (1 << 6); } static inline bool ata_id_sense_reporting_enabled(const u16 *id) { if (!(id[ATA_ID_CFS_ENABLE_2] & (1 << 15))) return false; return id[ATA_ID_COMMAND_SET_4] & (1 << 6); } /** * * Word: 206 - SCT Command Transport * 15:12 - Vendor Specific * 11:6 - Reserved * 5 - SCT Command Transport Data Tables supported * 4 - SCT Command Transport Features Control supported * 3 - SCT Command Transport Error Recovery Control supported * 2 - SCT Command Transport Write Same supported * 1 - SCT Command Transport Long Sector Access supported * 0 - SCT Command Transport supported */ static inline bool ata_id_sct_data_tables(const u16 *id) { return id[ATA_ID_SCT_CMD_XPORT] & (1 << 5) ? true : false; } static inline bool ata_id_sct_features_ctrl(const u16 *id) { return id[ATA_ID_SCT_CMD_XPORT] & (1 << 4) ? true : false; } static inline bool ata_id_sct_error_recovery_ctrl(const u16 *id) { return id[ATA_ID_SCT_CMD_XPORT] & (1 << 3) ? true : false; } static inline bool ata_id_sct_long_sector_access(const u16 *id) { return id[ATA_ID_SCT_CMD_XPORT] & (1 << 1) ? true : false; } static inline bool ata_id_sct_supported(const u16 *id) { return id[ATA_ID_SCT_CMD_XPORT] & (1 << 0) ? true : false; } /** * ata_id_major_version - get ATA level of drive * @id: Identify data * * Caveats: * ATA-1 considers identify optional * ATA-2 introduces mandatory identify * ATA-3 introduces word 80 and accurate reporting * * The practical impact of this is that ata_id_major_version cannot * reliably report on drives below ATA3. */ static inline unsigned int ata_id_major_version(const u16 *id) { unsigned int mver; if (id[ATA_ID_MAJOR_VER] == 0xFFFF) return 0; for (mver = 14; mver >= 1; mver--) if (id[ATA_ID_MAJOR_VER] & (1 << mver)) break; return mver; } static inline bool ata_id_is_sata(const u16 *id) { /* * See if word 93 is 0 AND drive is at least ATA-5 compatible * verifying that word 80 by casting it to a signed type -- * this trick allows us to filter out the reserved values of * 0x0000 and 0xffff along with the earlier ATA revisions... */ if (id[ATA_ID_HW_CONFIG] == 0 && (short)id[ATA_ID_MAJOR_VER] >= 0x0020) return true; return false; } static inline bool ata_id_has_tpm(const u16 *id) { /* The TPM bits are only valid on ATA8 */ if (ata_id_major_version(id) < 8) return false; if ((id[48] & 0xC000) != 0x4000) return false; return id[48] & (1 << 0); } static inline bool ata_id_has_dword_io(const u16 *id) { /* ATA 8 reuses this flag for "trusted" computing */ if (ata_id_major_version(id) > 7) return false; return id[ATA_ID_DWORD_IO] & (1 << 0); } static inline bool ata_id_has_trusted(const u16 *id) { if (ata_id_major_version(id) <= 7) return false; return id[ATA_ID_TRUSTED] & (1 << 0); } static inline bool ata_id_has_unload(const u16 *id) { if (ata_id_major_version(id) >= 7 && (id[ATA_ID_CFSSE] & 0xC000) == 0x4000 && id[ATA_ID_CFSSE] & (1 << 13)) return true; return false; } static inline bool ata_id_has_wwn(const u16 *id) { return (id[ATA_ID_CSF_DEFAULT] & 0xC100) == 0x4100; } static inline int ata_id_form_factor(const u16 *id) { u16 val = id[168]; if (ata_id_major_version(id) < 7 || val == 0 || val == 0xffff) return 0; val &= 0xf; if (val > 5) return 0; return val; } static inline int ata_id_rotation_rate(const u16 *id) { u16 val = id[217]; if (ata_id_major_version(id) < 7 || val == 0 || val == 0xffff) return 0; if (val > 1 && val < 0x401) return 0; return val; } static inline bool ata_id_has_ncq_send_and_recv(const u16 *id) { return id[ATA_ID_SATA_CAPABILITY_2] & BIT(6); } static inline bool ata_id_has_ncq_non_data(const u16 *id) { return id[ATA_ID_SATA_CAPABILITY_2] & BIT(5); } static inline bool ata_id_has_ncq_prio(const u16 *id) { return id[ATA_ID_SATA_CAPABILITY] & BIT(12); } static inline bool ata_id_has_trim(const u16 *id) { if (ata_id_major_version(id) >= 7 && (id[ATA_ID_DATA_SET_MGMT] & 1)) return true; return false; } static inline bool ata_id_has_zero_after_trim(const u16 *id) { /* DSM supported, deterministic read, and read zero after trim set */ if (ata_id_has_trim(id) && (id[ATA_ID_ADDITIONAL_SUPP] & 0x4020) == 0x4020) return true; return false; } static inline bool ata_id_current_chs_valid(const u16 *id) { /* For ATA-1 devices, if the INITIALIZE DEVICE PARAMETERS command has not been issued to the device then the values of id[ATA_ID_CUR_CYLS] to id[ATA_ID_CUR_SECTORS] are vendor specific. */ return (id[ATA_ID_FIELD_VALID] & 1) && /* Current translation valid */ id[ATA_ID_CUR_CYLS] && /* cylinders in current translation */ id[ATA_ID_CUR_HEADS] && /* heads in current translation */ id[ATA_ID_CUR_HEADS] <= 16 && id[ATA_ID_CUR_SECTORS]; /* sectors in current translation */ } static inline bool ata_id_is_cfa(const u16 *id) { if ((id[ATA_ID_CONFIG] == 0x848A) || /* Traditional CF */ (id[ATA_ID_CONFIG] == 0x844A)) /* Delkin Devices CF */ return true; /* * CF specs don't require specific value in the word 0 anymore and yet * they forbid to report the ATA version in the word 80 and require the * CFA feature set support to be indicated in the word 83 in this case. * Unfortunately, some cards only follow either of this requirements, * and while those that don't indicate CFA feature support need some * sort of quirk list, it seems impractical for the ones that do... */ return (id[ATA_ID_COMMAND_SET_2] & 0xC004) == 0x4004; } static inline bool ata_id_is_ssd(const u16 *id) { return id[ATA_ID_ROT_SPEED] == 0x01; } static inline u8 ata_id_zoned_cap(const u16 *id) { return (id[ATA_ID_ADDITIONAL_SUPP] & 0x3); } static inline bool ata_id_pio_need_iordy(const u16 *id, const u8 pio) { /* CF spec. r4.1 Table 22 says no IORDY on PIO5 and PIO6. */ if (pio > 4 && ata_id_is_cfa(id)) return false; /* For PIO3 and higher it is mandatory. */ if (pio > 2) return true; /* Turn it on when possible. */ return ata_id_has_iordy(id); } static inline bool ata_drive_40wire(const u16 *dev_id) { if (ata_id_is_sata(dev_id)) return false; /* SATA */ if ((dev_id[ATA_ID_HW_CONFIG] & 0xE000) == 0x6000) return false; /* 80 wire */ return true; } static inline bool ata_drive_40wire_relaxed(const u16 *dev_id) { if ((dev_id[ATA_ID_HW_CONFIG] & 0x2000) == 0x2000) return false; /* 80 wire */ return true; } static inline int atapi_cdb_len(const u16 *dev_id) { u16 tmp = dev_id[ATA_ID_CONFIG] & 0x3; switch (tmp) { case 0: return 12; case 1: return 16; default: return -1; } } static inline int atapi_command_packet_set(const u16 *dev_id) { return (dev_id[ATA_ID_CONFIG] >> 8) & 0x1f; } static inline bool atapi_id_dmadir(const u16 *dev_id) { return ata_id_major_version(dev_id) >= 7 && (dev_id[62] & 0x8000); } /* * ata_id_is_lba_capacity_ok() performs a sanity check on * the claimed LBA capacity value for the device. * * Returns 1 if LBA capacity looks sensible, 0 otherwise. * * It is called only once for each device. */ static inline bool ata_id_is_lba_capacity_ok(u16 *id) { unsigned long lba_sects, chs_sects, head, tail; /* No non-LBA info .. so valid! */ if (id[ATA_ID_CYLS] == 0) return true; lba_sects = ata_id_u32(id, ATA_ID_LBA_CAPACITY); /* * The ATA spec tells large drives to return * C/H/S = 16383/16/63 independent of their size. * Some drives can be jumpered to use 15 heads instead of 16. * Some drives can be jumpered to use 4092 cyls instead of 16383. */ if ((id[ATA_ID_CYLS] == 16383 || (id[ATA_ID_CYLS] == 4092 && id[ATA_ID_CUR_CYLS] == 16383)) && id[ATA_ID_SECTORS] == 63 && (id[ATA_ID_HEADS] == 15 || id[ATA_ID_HEADS] == 16) && (lba_sects >= 16383 * 63 * id[ATA_ID_HEADS])) return true; chs_sects = id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * id[ATA_ID_SECTORS]; /* perform a rough sanity check on lba_sects: within 10% is OK */ if (lba_sects - chs_sects < chs_sects/10) return true; /* some drives have the word order reversed */ head = (lba_sects >> 16) & 0xffff; tail = lba_sects & 0xffff; lba_sects = head | (tail << 16); if (lba_sects - chs_sects < chs_sects/10) { *(__le32 *)&id[ATA_ID_LBA_CAPACITY] = __cpu_to_le32(lba_sects); return true; /* LBA capacity is (now) good */ } return false; /* LBA capacity value may be bad */ } static inline void ata_id_to_hd_driveid(u16 *id) { #ifdef __BIG_ENDIAN /* accessed in struct hd_driveid as 8-bit values */ id[ATA_ID_MAX_MULTSECT] = __cpu_to_le16(id[ATA_ID_MAX_MULTSECT]); id[ATA_ID_CAPABILITY] = __cpu_to_le16(id[ATA_ID_CAPABILITY]); id[ATA_ID_OLD_PIO_MODES] = __cpu_to_le16(id[ATA_ID_OLD_PIO_MODES]); id[ATA_ID_OLD_DMA_MODES] = __cpu_to_le16(id[ATA_ID_OLD_DMA_MODES]); id[ATA_ID_MULTSECT] = __cpu_to_le16(id[ATA_ID_MULTSECT]); /* as 32-bit values */ *(u32 *)&id[ATA_ID_LBA_CAPACITY] = ata_id_u32(id, ATA_ID_LBA_CAPACITY); *(u32 *)&id[ATA_ID_SPG] = ata_id_u32(id, ATA_ID_SPG); /* as 64-bit value */ *(u64 *)&id[ATA_ID_LBA_CAPACITY_2] = ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); #endif } static inline bool ata_ok(u8 status) { return ((status & (ATA_BUSY | ATA_DRDY | ATA_DF | ATA_DRQ | ATA_ERR)) == ATA_DRDY); } static inline bool lba_28_ok(u64 block, u32 n_block) { /* check the ending block number: must be LESS THAN 0x0fffffff */ return ((block + n_block) < ((1 << 28) - 1)) && (n_block <= ATA_MAX_SECTORS); } static inline bool lba_48_ok(u64 block, u32 n_block) { /* check the ending block number */ return ((block + n_block - 1) < ((u64)1 << 48)) && (n_block <= ATA_MAX_SECTORS_LBA48); } #define sata_pmp_gscr_vendor(gscr) ((gscr)[SATA_PMP_GSCR_PROD_ID] & 0xffff) #define sata_pmp_gscr_devid(gscr) ((gscr)[SATA_PMP_GSCR_PROD_ID] >> 16) #define sata_pmp_gscr_rev(gscr) (((gscr)[SATA_PMP_GSCR_REV] >> 8) & 0xff) #define sata_pmp_gscr_ports(gscr) ((gscr)[SATA_PMP_GSCR_PORT_INFO] & 0xf) #endif /* __LINUX_ATA_H__ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_PGTABLE_INVERT_H #define _ASM_PGTABLE_INVERT_H 1 #ifndef __ASSEMBLY__ /* * A clear pte value is special, and doesn't get inverted. * * Note that even users that only pass a pgprot_t (rather * than a full pte) won't trigger the special zero case, * because even PAGE_NONE has _PAGE_PROTNONE | _PAGE_ACCESSED * set. So the all zero case really is limited to just the * cleared page table entry case. */ static inline bool __pte_needs_invert(u64 val) { return val && !(val & _PAGE_PRESENT); } /* Get a mask to xor with the page table entry to get the correct pfn. */ static inline u64 protnone_mask(u64 val) { return __pte_needs_invert(val) ? ~0ull : 0; } static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask) { /* * When a PTE transitions from NONE to !NONE or vice-versa * invert the PFN part to stop speculation. * pte_pfn undoes this when needed. */ if (__pte_needs_invert(oldval) != __pte_needs_invert(val)) val = (val & ~mask) | (~val & mask); return val; } #endif /* __ASSEMBLY__ */ #endif