1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __IPC_NAMESPACE_H__ #define __IPC_NAMESPACE_H__ #include <linux/err.h> #include <linux/idr.h> #include <linux/rwsem.h> #include <linux/notifier.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/refcount.h> #include <linux/rhashtable-types.h> struct user_namespace; struct ipc_ids { int in_use; unsigned short seq; struct rw_semaphore rwsem; struct idr ipcs_idr; int max_idx; int last_idx; /* For wrap around detection */ #ifdef CONFIG_CHECKPOINT_RESTORE int next_id; #endif struct rhashtable key_ht; }; struct ipc_namespace { refcount_t count; struct ipc_ids ids[3]; int sem_ctls[4]; int used_sems; unsigned int msg_ctlmax; unsigned int msg_ctlmnb; unsigned int msg_ctlmni; atomic_t msg_bytes; atomic_t msg_hdrs; size_t shm_ctlmax; size_t shm_ctlall; unsigned long shm_tot; int shm_ctlmni; /* * Defines whether IPC_RMID is forced for _all_ shm segments regardless * of shmctl() */ int shm_rmid_forced; struct notifier_block ipcns_nb; /* The kern_mount of the mqueuefs sb. We take a ref on it */ struct vfsmount *mq_mnt; /* # queues in this ns, protected by mq_lock */ unsigned int mq_queues_count; /* next fields are set through sysctl */ unsigned int mq_queues_max; /* initialized to DFLT_QUEUESMAX */ unsigned int mq_msg_max; /* initialized to DFLT_MSGMAX */ unsigned int mq_msgsize_max; /* initialized to DFLT_MSGSIZEMAX */ unsigned int mq_msg_default; unsigned int mq_msgsize_default; /* user_ns which owns the ipc ns */ struct user_namespace *user_ns; struct ucounts *ucounts; struct llist_node mnt_llist; struct ns_common ns; } __randomize_layout; extern struct ipc_namespace init_ipc_ns; extern spinlock_t mq_lock; #ifdef CONFIG_SYSVIPC extern void shm_destroy_orphaned(struct ipc_namespace *ns); #else /* CONFIG_SYSVIPC */ static inline void shm_destroy_orphaned(struct ipc_namespace *ns) {} #endif /* CONFIG_SYSVIPC */ #ifdef CONFIG_POSIX_MQUEUE extern int mq_init_ns(struct ipc_namespace *ns); /* * POSIX Message Queue default values: * * MIN_*: Lowest value an admin can set the maximum unprivileged limit to * DFLT_*MAX: Default values for the maximum unprivileged limits * DFLT_{MSG,MSGSIZE}: Default values used when the user doesn't supply * an attribute to the open call and the queue must be created * HARD_*: Highest value the maximums can be set to. These are enforced * on CAP_SYS_RESOURCE apps as well making them inviolate (so make them * suitably high) * * POSIX Requirements: * Per app minimum openable message queues - 8. This does not map well * to the fact that we limit the number of queues on a per namespace * basis instead of a per app basis. So, make the default high enough * that no given app should have a hard time opening 8 queues. * Minimum maximum for HARD_MSGMAX - 32767. I bumped this to 65536. * Minimum maximum for HARD_MSGSIZEMAX - POSIX is silent on this. However, * we have run into a situation where running applications in the wild * require this to be at least 5MB, and preferably 10MB, so I set the * value to 16MB in hopes that this user is the worst of the bunch and * the new maximum will handle anyone else. I may have to revisit this * in the future. */ #define DFLT_QUEUESMAX 256 #define MIN_MSGMAX 1 #define DFLT_MSG 10U #define DFLT_MSGMAX 10 #define HARD_MSGMAX 65536 #define MIN_MSGSIZEMAX 128 #define DFLT_MSGSIZE 8192U #define DFLT_MSGSIZEMAX 8192 #define HARD_MSGSIZEMAX (16*1024*1024) #else static inline int mq_init_ns(struct ipc_namespace *ns) { return 0; } #endif #if defined(CONFIG_IPC_NS) extern struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns); static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { if (ns) refcount_inc(&ns->count); return ns; } extern void put_ipc_ns(struct ipc_namespace *ns); #else static inline struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns) { if (flags & CLONE_NEWIPC) return ERR_PTR(-EINVAL); return ns; } static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { return ns; } static inline void put_ipc_ns(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_POSIX_MQUEUE_SYSCTL struct ctl_table_header; extern struct ctl_table_header *mq_register_sysctl_table(void); #else /* CONFIG_POSIX_MQUEUE_SYSCTL */ static inline struct ctl_table_header *mq_register_sysctl_table(void) { return NULL; } #endif /* CONFIG_POSIX_MQUEUE_SYSCTL */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Forwarding Information Base. * * Authors: A.N.Kuznetsov, <kuznet@ms2.inr.ac.ru> */ #ifndef _NET_IP_FIB_H #define _NET_IP_FIB_H #include <net/flow.h> #include <linux/seq_file.h> #include <linux/rcupdate.h> #include <net/fib_notifier.h> #include <net/fib_rules.h> #include <net/inetpeer.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/refcount.h> struct fib_config { u8 fc_dst_len; u8 fc_tos; u8 fc_protocol; u8 fc_scope; u8 fc_type; u8 fc_gw_family; /* 2 bytes unused */ u32 fc_table; __be32 fc_dst; union { __be32 fc_gw4; struct in6_addr fc_gw6; }; int fc_oif; u32 fc_flags; u32 fc_priority; __be32 fc_prefsrc; u32 fc_nh_id; struct nlattr *fc_mx; struct rtnexthop *fc_mp; int fc_mx_len; int fc_mp_len; u32 fc_flow; u32 fc_nlflags; struct nl_info fc_nlinfo; struct nlattr *fc_encap; u16 fc_encap_type; }; struct fib_info; struct rtable; struct fib_nh_exception { struct fib_nh_exception __rcu *fnhe_next; int fnhe_genid; __be32 fnhe_daddr; u32 fnhe_pmtu; bool fnhe_mtu_locked; __be32 fnhe_gw; unsigned long fnhe_expires; struct rtable __rcu *fnhe_rth_input; struct rtable __rcu *fnhe_rth_output; unsigned long fnhe_stamp; struct rcu_head rcu; }; struct fnhe_hash_bucket { struct fib_nh_exception __rcu *chain; }; #define FNHE_HASH_SHIFT 11 #define FNHE_HASH_SIZE (1 << FNHE_HASH_SHIFT) #define FNHE_RECLAIM_DEPTH 5 struct fib_nh_common { struct net_device *nhc_dev; int nhc_oif; unsigned char nhc_scope; u8 nhc_family; u8 nhc_gw_family; unsigned char nhc_flags; struct lwtunnel_state *nhc_lwtstate; union { __be32 ipv4; struct in6_addr ipv6; } nhc_gw; int nhc_weight; atomic_t nhc_upper_bound; /* v4 specific, but allows fib6_nh with v4 routes */ struct rtable __rcu * __percpu *nhc_pcpu_rth_output; struct rtable __rcu *nhc_rth_input; struct fnhe_hash_bucket __rcu *nhc_exceptions; }; struct fib_nh { struct fib_nh_common nh_common; struct hlist_node nh_hash; struct fib_info *nh_parent; #ifdef CONFIG_IP_ROUTE_CLASSID __u32 nh_tclassid; #endif __be32 nh_saddr; int nh_saddr_genid; #define fib_nh_family nh_common.nhc_family #define fib_nh_dev nh_common.nhc_dev #define fib_nh_oif nh_common.nhc_oif #define fib_nh_flags nh_common.nhc_flags #define fib_nh_lws nh_common.nhc_lwtstate #define fib_nh_scope nh_common.nhc_scope #define fib_nh_gw_family nh_common.nhc_gw_family #define fib_nh_gw4 nh_common.nhc_gw.ipv4 #define fib_nh_gw6 nh_common.nhc_gw.ipv6 #define fib_nh_weight nh_common.nhc_weight #define fib_nh_upper_bound nh_common.nhc_upper_bound }; /* * This structure contains data shared by many of routes. */ struct nexthop; struct fib_info { struct hlist_node fib_hash; struct hlist_node fib_lhash; struct list_head nh_list; struct net *fib_net; int fib_treeref; refcount_t fib_clntref; unsigned int fib_flags; unsigned char fib_dead; unsigned char fib_protocol; unsigned char fib_scope; unsigned char fib_type; __be32 fib_prefsrc; u32 fib_tb_id; u32 fib_priority; struct dst_metrics *fib_metrics; #define fib_mtu fib_metrics->metrics[RTAX_MTU-1] #define fib_window fib_metrics->metrics[RTAX_WINDOW-1] #define fib_rtt fib_metrics->metrics[RTAX_RTT-1] #define fib_advmss fib_metrics->metrics[RTAX_ADVMSS-1] int fib_nhs; bool fib_nh_is_v6; bool nh_updated; struct nexthop *nh; struct rcu_head rcu; struct fib_nh fib_nh[]; }; #ifdef CONFIG_IP_MULTIPLE_TABLES struct fib_rule; #endif struct fib_table; struct fib_result { __be32 prefix; unsigned char prefixlen; unsigned char nh_sel; unsigned char type; unsigned char scope; u32 tclassid; struct fib_nh_common *nhc; struct fib_info *fi; struct fib_table *table; struct hlist_head *fa_head; }; struct fib_result_nl { __be32 fl_addr; /* To be looked up*/ u32 fl_mark; unsigned char fl_tos; unsigned char fl_scope; unsigned char tb_id_in; unsigned char tb_id; /* Results */ unsigned char prefixlen; unsigned char nh_sel; unsigned char type; unsigned char scope; int err; }; #ifdef CONFIG_IP_MULTIPLE_TABLES #define FIB_TABLE_HASHSZ 256 #else #define FIB_TABLE_HASHSZ 2 #endif __be32 fib_info_update_nhc_saddr(struct net *net, struct fib_nh_common *nhc, unsigned char scope); __be32 fib_result_prefsrc(struct net *net, struct fib_result *res); #define FIB_RES_NHC(res) ((res).nhc) #define FIB_RES_DEV(res) (FIB_RES_NHC(res)->nhc_dev) #define FIB_RES_OIF(res) (FIB_RES_NHC(res)->nhc_oif) struct fib_rt_info { struct fib_info *fi; u32 tb_id; __be32 dst; int dst_len; u8 tos; u8 type; u8 offload:1, trap:1, unused:6; }; struct fib_entry_notifier_info { struct fib_notifier_info info; /* must be first */ u32 dst; int dst_len; struct fib_info *fi; u8 tos; u8 type; u32 tb_id; }; struct fib_nh_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib_nh *fib_nh; }; int call_fib4_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info); int call_fib4_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info); int __net_init fib4_notifier_init(struct net *net); void __net_exit fib4_notifier_exit(struct net *net); void fib_info_notify_update(struct net *net, struct nl_info *info); int fib_notify(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); struct fib_table { struct hlist_node tb_hlist; u32 tb_id; int tb_num_default; struct rcu_head rcu; unsigned long *tb_data; unsigned long __data[]; }; struct fib_dump_filter { u32 table_id; /* filter_set is an optimization that an entry is set */ bool filter_set; bool dump_routes; bool dump_exceptions; unsigned char protocol; unsigned char rt_type; unsigned int flags; struct net_device *dev; }; int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, struct fib_result *res, int fib_flags); int fib_table_insert(struct net *, struct fib_table *, struct fib_config *, struct netlink_ext_ack *extack); int fib_table_delete(struct net *, struct fib_table *, struct fib_config *, struct netlink_ext_ack *extack); int fib_table_dump(struct fib_table *table, struct sk_buff *skb, struct netlink_callback *cb, struct fib_dump_filter *filter); int fib_table_flush(struct net *net, struct fib_table *table, bool flush_all); struct fib_table *fib_trie_unmerge(struct fib_table *main_tb); void fib_table_flush_external(struct fib_table *table); void fib_free_table(struct fib_table *tb); #ifndef CONFIG_IP_MULTIPLE_TABLES #define TABLE_LOCAL_INDEX (RT_TABLE_LOCAL & (FIB_TABLE_HASHSZ - 1)) #define TABLE_MAIN_INDEX (RT_TABLE_MAIN & (FIB_TABLE_HASHSZ - 1)) static inline struct fib_table *fib_get_table(struct net *net, u32 id) { struct hlist_node *tb_hlist; struct hlist_head *ptr; ptr = id == RT_TABLE_LOCAL ? &net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX] : &net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]; tb_hlist = rcu_dereference_rtnl(hlist_first_rcu(ptr)); return hlist_entry(tb_hlist, struct fib_table, tb_hlist); } static inline struct fib_table *fib_new_table(struct net *net, u32 id) { return fib_get_table(net, id); } static inline int fib_lookup(struct net *net, const struct flowi4 *flp, struct fib_result *res, unsigned int flags) { struct fib_table *tb; int err = -ENETUNREACH; rcu_read_lock(); tb = fib_get_table(net, RT_TABLE_MAIN); if (tb) err = fib_table_lookup(tb, flp, res, flags | FIB_LOOKUP_NOREF); if (err == -EAGAIN) err = -ENETUNREACH; rcu_read_unlock(); return err; } static inline bool fib4_has_custom_rules(const struct net *net) { return false; } static inline bool fib4_rule_default(const struct fib_rule *rule) { return true; } static inline int fib4_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static inline unsigned int fib4_rules_seq_read(struct net *net) { return 0; } static inline bool fib4_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi4 *fl4, struct flow_keys *flkeys) { return false; } #else /* CONFIG_IP_MULTIPLE_TABLES */ int __net_init fib4_rules_init(struct net *net); void __net_exit fib4_rules_exit(struct net *net); struct fib_table *fib_new_table(struct net *net, u32 id); struct fib_table *fib_get_table(struct net *net, u32 id); int __fib_lookup(struct net *net, struct flowi4 *flp, struct fib_result *res, unsigned int flags); static inline int fib_lookup(struct net *net, struct flowi4 *flp, struct fib_result *res, unsigned int flags) { struct fib_table *tb; int err = -ENETUNREACH; flags |= FIB_LOOKUP_NOREF; if (net->ipv4.fib_has_custom_rules) return __fib_lookup(net, flp, res, flags); rcu_read_lock(); res->tclassid = 0; tb = rcu_dereference_rtnl(net->ipv4.fib_main); if (tb) err = fib_table_lookup(tb, flp, res, flags); if (!err) goto out; tb = rcu_dereference_rtnl(net->ipv4.fib_default); if (tb) err = fib_table_lookup(tb, flp, res, flags); out: if (err == -EAGAIN) err = -ENETUNREACH; rcu_read_unlock(); return err; } static inline bool fib4_has_custom_rules(const struct net *net) { return net->ipv4.fib_has_custom_rules; } bool fib4_rule_default(const struct fib_rule *rule); int fib4_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); unsigned int fib4_rules_seq_read(struct net *net); static inline bool fib4_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi4 *fl4, struct flow_keys *flkeys) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; if (!net->ipv4.fib_rules_require_fldissect) return false; skb_flow_dissect_flow_keys(skb, flkeys, flag); fl4->fl4_sport = flkeys->ports.src; fl4->fl4_dport = flkeys->ports.dst; fl4->flowi4_proto = flkeys->basic.ip_proto; return true; } #endif /* CONFIG_IP_MULTIPLE_TABLES */ /* Exported by fib_frontend.c */ extern const struct nla_policy rtm_ipv4_policy[]; void ip_fib_init(void); int fib_gw_from_via(struct fib_config *cfg, struct nlattr *nla, struct netlink_ext_ack *extack); __be32 fib_compute_spec_dst(struct sk_buff *skb); bool fib_info_nh_uses_dev(struct fib_info *fi, const struct net_device *dev); int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst, u8 tos, int oif, struct net_device *dev, struct in_device *idev, u32 *itag); #ifdef CONFIG_IP_ROUTE_CLASSID static inline int fib_num_tclassid_users(struct net *net) { return net->ipv4.fib_num_tclassid_users; } #else static inline int fib_num_tclassid_users(struct net *net) { return 0; } #endif int fib_unmerge(struct net *net); static inline bool nhc_l3mdev_matches_dev(const struct fib_nh_common *nhc, const struct net_device *dev) { if (nhc->nhc_dev == dev || l3mdev_master_ifindex_rcu(nhc->nhc_dev) == dev->ifindex) return true; return false; } /* Exported by fib_semantics.c */ int ip_fib_check_default(__be32 gw, struct net_device *dev); int fib_sync_down_dev(struct net_device *dev, unsigned long event, bool force); int fib_sync_down_addr(struct net_device *dev, __be32 local); int fib_sync_up(struct net_device *dev, unsigned char nh_flags); void fib_sync_mtu(struct net_device *dev, u32 orig_mtu); void fib_nhc_update_mtu(struct fib_nh_common *nhc, u32 new, u32 orig); #ifdef CONFIG_IP_ROUTE_MULTIPATH int fib_multipath_hash(const struct net *net, const struct flowi4 *fl4, const struct sk_buff *skb, struct flow_keys *flkeys); #endif int fib_check_nh(struct net *net, struct fib_nh *nh, u32 table, u8 scope, struct netlink_ext_ack *extack); void fib_select_multipath(struct fib_result *res, int hash); void fib_select_path(struct net *net, struct fib_result *res, struct flowi4 *fl4, const struct sk_buff *skb); int fib_nh_init(struct net *net, struct fib_nh *fib_nh, struct fib_config *cfg, int nh_weight, struct netlink_ext_ack *extack); void fib_nh_release(struct net *net, struct fib_nh *fib_nh); int fib_nh_common_init(struct net *net, struct fib_nh_common *nhc, struct nlattr *fc_encap, u16 fc_encap_type, void *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); void fib_nh_common_release(struct fib_nh_common *nhc); /* Exported by fib_trie.c */ void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri); void fib_trie_init(void); struct fib_table *fib_trie_table(u32 id, struct fib_table *alias); bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, const struct flowi4 *flp); static inline void fib_combine_itag(u32 *itag, const struct fib_result *res) { #ifdef CONFIG_IP_ROUTE_CLASSID struct fib_nh_common *nhc = res->nhc; #ifdef CONFIG_IP_MULTIPLE_TABLES u32 rtag; #endif if (nhc->nhc_family == AF_INET) { struct fib_nh *nh; nh = container_of(nhc, struct fib_nh, nh_common); *itag = nh->nh_tclassid << 16; } else { *itag = 0; } #ifdef CONFIG_IP_MULTIPLE_TABLES rtag = res->tclassid; if (*itag == 0) *itag = (rtag<<16); *itag |= (rtag>>16); #endif #endif } void fib_flush(struct net *net); void free_fib_info(struct fib_info *fi); static inline void fib_info_hold(struct fib_info *fi) { refcount_inc(&fi->fib_clntref); } static inline void fib_info_put(struct fib_info *fi) { if (refcount_dec_and_test(&fi->fib_clntref)) free_fib_info(fi); } #ifdef CONFIG_PROC_FS int __net_init fib_proc_init(struct net *net); void __net_exit fib_proc_exit(struct net *net); #else static inline int fib_proc_init(struct net *net) { return 0; } static inline void fib_proc_exit(struct net *net) { } #endif u32 ip_mtu_from_fib_result(struct fib_result *res, __be32 daddr); int ip_valid_fib_dump_req(struct net *net, const struct nlmsghdr *nlh, struct fib_dump_filter *filter, struct netlink_callback *cb); int fib_nexthop_info(struct sk_buff *skb, const struct fib_nh_common *nh, u8 rt_family, unsigned char *flags, bool skip_oif); int fib_add_nexthop(struct sk_buff *skb, const struct fib_nh_common *nh, int nh_weight, u8 rt_family, u32 nh_tclassid); #endif /* _NET_FIB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 /* SPDX-License-Identifier: GPL-2.0 */ /* * Common values for SHA algorithms */ #ifndef _CRYPTO_SHA_H #define _CRYPTO_SHA_H #include <linux/types.h> #define SHA1_DIGEST_SIZE 20 #define SHA1_BLOCK_SIZE 64 #define SHA224_DIGEST_SIZE 28 #define SHA224_BLOCK_SIZE 64 #define SHA256_DIGEST_SIZE 32 #define SHA256_BLOCK_SIZE 64 #define SHA384_DIGEST_SIZE 48 #define SHA384_BLOCK_SIZE 128 #define SHA512_DIGEST_SIZE 64 #define SHA512_BLOCK_SIZE 128 #define SHA1_H0 0x67452301UL #define SHA1_H1 0xefcdab89UL #define SHA1_H2 0x98badcfeUL #define SHA1_H3 0x10325476UL #define SHA1_H4 0xc3d2e1f0UL #define SHA224_H0 0xc1059ed8UL #define SHA224_H1 0x367cd507UL #define SHA224_H2 0x3070dd17UL #define SHA224_H3 0xf70e5939UL #define SHA224_H4 0xffc00b31UL #define SHA224_H5 0x68581511UL #define SHA224_H6 0x64f98fa7UL #define SHA224_H7 0xbefa4fa4UL #define SHA256_H0 0x6a09e667UL #define SHA256_H1 0xbb67ae85UL #define SHA256_H2 0x3c6ef372UL #define SHA256_H3 0xa54ff53aUL #define SHA256_H4 0x510e527fUL #define SHA256_H5 0x9b05688cUL #define SHA256_H6 0x1f83d9abUL #define SHA256_H7 0x5be0cd19UL #define SHA384_H0 0xcbbb9d5dc1059ed8ULL #define SHA384_H1 0x629a292a367cd507ULL #define SHA384_H2 0x9159015a3070dd17ULL #define SHA384_H3 0x152fecd8f70e5939ULL #define SHA384_H4 0x67332667ffc00b31ULL #define SHA384_H5 0x8eb44a8768581511ULL #define SHA384_H6 0xdb0c2e0d64f98fa7ULL #define SHA384_H7 0x47b5481dbefa4fa4ULL #define SHA512_H0 0x6a09e667f3bcc908ULL #define SHA512_H1 0xbb67ae8584caa73bULL #define SHA512_H2 0x3c6ef372fe94f82bULL #define SHA512_H3 0xa54ff53a5f1d36f1ULL #define SHA512_H4 0x510e527fade682d1ULL #define SHA512_H5 0x9b05688c2b3e6c1fULL #define SHA512_H6 0x1f83d9abfb41bd6bULL #define SHA512_H7 0x5be0cd19137e2179ULL extern const u8 sha1_zero_message_hash[SHA1_DIGEST_SIZE]; extern const u8 sha224_zero_message_hash[SHA224_DIGEST_SIZE]; extern const u8 sha256_zero_message_hash[SHA256_DIGEST_SIZE]; extern const u8 sha384_zero_message_hash[SHA384_DIGEST_SIZE]; extern const u8 sha512_zero_message_hash[SHA512_DIGEST_SIZE]; struct sha1_state { u32 state[SHA1_DIGEST_SIZE / 4]; u64 count; u8 buffer[SHA1_BLOCK_SIZE]; }; struct sha256_state { u32 state[SHA256_DIGEST_SIZE / 4]; u64 count; u8 buf[SHA256_BLOCK_SIZE]; }; struct sha512_state { u64 state[SHA512_DIGEST_SIZE / 8]; u64 count[2]; u8 buf[SHA512_BLOCK_SIZE]; }; struct shash_desc; extern int crypto_sha1_update(struct shash_desc *desc, const u8 *data, unsigned int len); extern int crypto_sha1_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *hash); extern int crypto_sha256_update(struct shash_desc *desc, const u8 *data, unsigned int len); extern int crypto_sha256_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *hash); extern int crypto_sha512_update(struct shash_desc *desc, const u8 *data, unsigned int len); extern int crypto_sha512_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *hash); /* * An implementation of SHA-1's compression function. Don't use in new code! * You shouldn't be using SHA-1, and even if you *have* to use SHA-1, this isn't * the correct way to hash something with SHA-1 (use crypto_shash instead). */ #define SHA1_DIGEST_WORDS (SHA1_DIGEST_SIZE / 4) #define SHA1_WORKSPACE_WORDS 16 void sha1_init(__u32 *buf); void sha1_transform(__u32 *digest, const char *data, __u32 *W); /* * Stand-alone implementation of the SHA256 algorithm. It is designed to * have as little dependencies as possible so it can be used in the * kexec_file purgatory. In other cases you should generally use the * hash APIs from include/crypto/hash.h. Especially when hashing large * amounts of data as those APIs may be hw-accelerated. * * For details see lib/crypto/sha256.c */ static inline void sha256_init(struct sha256_state *sctx) { sctx->state[0] = SHA256_H0; sctx->state[1] = SHA256_H1; sctx->state[2] = SHA256_H2; sctx->state[3] = SHA256_H3; sctx->state[4] = SHA256_H4; sctx->state[5] = SHA256_H5; sctx->state[6] = SHA256_H6; sctx->state[7] = SHA256_H7; sctx->count = 0; } void sha256_update(struct sha256_state *sctx, const u8 *data, unsigned int len); void sha256_final(struct sha256_state *sctx, u8 *out); void sha256(const u8 *data, unsigned int len, u8 *out); static inline void sha224_init(struct sha256_state *sctx) { sctx->state[0] = SHA224_H0; sctx->state[1] = SHA224_H1; sctx->state[2] = SHA224_H2; sctx->state[3] = SHA224_H3; sctx->state[4] = SHA224_H4; sctx->state[5] = SHA224_H5; sctx->state[6] = SHA224_H6; sctx->state[7] = SHA224_H7; sctx->count = 0; } void sha224_update(struct sha256_state *sctx, const u8 *data, unsigned int len); void sha224_final(struct sha256_state *sctx, u8 *out); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_USER_NAMESPACE_H #define _LINUX_USER_NAMESPACE_H #include <linux/kref.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/sched.h> #include <linux/workqueue.h> #include <linux/rwsem.h> #include <linux/sysctl.h> #include <linux/err.h> #define UID_GID_MAP_MAX_BASE_EXTENTS 5 #define UID_GID_MAP_MAX_EXTENTS 340 struct uid_gid_extent { u32 first; u32 lower_first; u32 count; }; struct uid_gid_map { /* 64 bytes -- 1 cache line */ u32 nr_extents; union { struct uid_gid_extent extent[UID_GID_MAP_MAX_BASE_EXTENTS]; struct { struct uid_gid_extent *forward; struct uid_gid_extent *reverse; }; }; }; #define USERNS_SETGROUPS_ALLOWED 1UL #define USERNS_INIT_FLAGS USERNS_SETGROUPS_ALLOWED struct ucounts; enum ucount_type { UCOUNT_USER_NAMESPACES, UCOUNT_PID_NAMESPACES, UCOUNT_UTS_NAMESPACES, UCOUNT_IPC_NAMESPACES, UCOUNT_NET_NAMESPACES, UCOUNT_MNT_NAMESPACES, UCOUNT_CGROUP_NAMESPACES, UCOUNT_TIME_NAMESPACES, #ifdef CONFIG_INOTIFY_USER UCOUNT_INOTIFY_INSTANCES, UCOUNT_INOTIFY_WATCHES, #endif UCOUNT_COUNTS, }; struct user_namespace { struct uid_gid_map uid_map; struct uid_gid_map gid_map; struct uid_gid_map projid_map; atomic_t count; struct user_namespace *parent; int level; kuid_t owner; kgid_t group; struct ns_common ns; unsigned long flags; /* parent_could_setfcap: true if the creator if this ns had CAP_SETFCAP * in its effective capability set at the child ns creation time. */ bool parent_could_setfcap; #ifdef CONFIG_KEYS /* List of joinable keyrings in this namespace. Modification access of * these pointers is controlled by keyring_sem. Once * user_keyring_register is set, it won't be changed, so it can be * accessed directly with READ_ONCE(). */ struct list_head keyring_name_list; struct key *user_keyring_register; struct rw_semaphore keyring_sem; #endif /* Register of per-UID persistent keyrings for this namespace */ #ifdef CONFIG_PERSISTENT_KEYRINGS struct key *persistent_keyring_register; #endif struct work_struct work; #ifdef CONFIG_SYSCTL struct ctl_table_set set; struct ctl_table_header *sysctls; #endif struct ucounts *ucounts; int ucount_max[UCOUNT_COUNTS]; } __randomize_layout; struct ucounts { struct hlist_node node; struct user_namespace *ns; kuid_t uid; int count; atomic_t ucount[UCOUNT_COUNTS]; }; extern struct user_namespace init_user_ns; bool setup_userns_sysctls(struct user_namespace *ns); void retire_userns_sysctls(struct user_namespace *ns); struct ucounts *inc_ucount(struct user_namespace *ns, kuid_t uid, enum ucount_type type); void dec_ucount(struct ucounts *ucounts, enum ucount_type type); #ifdef CONFIG_USER_NS static inline struct user_namespace *get_user_ns(struct user_namespace *ns) { if (ns) atomic_inc(&ns->count); return ns; } extern int create_user_ns(struct cred *new); extern int unshare_userns(unsigned long unshare_flags, struct cred **new_cred); extern void __put_user_ns(struct user_namespace *ns); static inline void put_user_ns(struct user_namespace *ns) { if (ns && atomic_dec_and_test(&ns->count)) __put_user_ns(ns); } struct seq_operations; extern const struct seq_operations proc_uid_seq_operations; extern const struct seq_operations proc_gid_seq_operations; extern const struct seq_operations proc_projid_seq_operations; extern ssize_t proc_uid_map_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t proc_gid_map_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t proc_projid_map_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t proc_setgroups_write(struct file *, const char __user *, size_t, loff_t *); extern int proc_setgroups_show(struct seq_file *m, void *v); extern bool userns_may_setgroups(const struct user_namespace *ns); extern bool in_userns(const struct user_namespace *ancestor, const struct user_namespace *child); extern bool current_in_userns(const struct user_namespace *target_ns); struct ns_common *ns_get_owner(struct ns_common *ns); #else static inline struct user_namespace *get_user_ns(struct user_namespace *ns) { return &init_user_ns; } static inline int create_user_ns(struct cred *new) { return -EINVAL; } static inline int unshare_userns(unsigned long unshare_flags, struct cred **new_cred) { if (unshare_flags & CLONE_NEWUSER) return -EINVAL; return 0; } static inline void put_user_ns(struct user_namespace *ns) { } static inline bool userns_may_setgroups(const struct user_namespace *ns) { return true; } static inline bool in_userns(const struct user_namespace *ancestor, const struct user_namespace *child) { return true; } static inline bool current_in_userns(const struct user_namespace *target_ns) { return true; } static inline struct ns_common *ns_get_owner(struct ns_common *ns) { return ERR_PTR(-EPERM); } #endif #endif /* _LINUX_USER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RMAP_H #define _LINUX_RMAP_H /* * Declarations for Reverse Mapping functions in mm/rmap.c */ #include <linux/list.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/rwsem.h> #include <linux/memcontrol.h> #include <linux/highmem.h> /* * The anon_vma heads a list of private "related" vmas, to scan if * an anonymous page pointing to this anon_vma needs to be unmapped: * the vmas on the list will be related by forking, or by splitting. * * Since vmas come and go as they are split and merged (particularly * in mprotect), the mapping field of an anonymous page cannot point * directly to a vma: instead it points to an anon_vma, on whose list * the related vmas can be easily linked or unlinked. * * After unlinking the last vma on the list, we must garbage collect * the anon_vma object itself: we're guaranteed no page can be * pointing to this anon_vma once its vma list is empty. */ struct anon_vma { struct anon_vma *root; /* Root of this anon_vma tree */ struct rw_semaphore rwsem; /* W: modification, R: walking the list */ /* * The refcount is taken on an anon_vma when there is no * guarantee that the vma of page tables will exist for * the duration of the operation. A caller that takes * the reference is responsible for clearing up the * anon_vma if they are the last user on release */ atomic_t refcount; /* * Count of child anon_vmas and VMAs which points to this anon_vma. * * This counter is used for making decision about reusing anon_vma * instead of forking new one. See comments in function anon_vma_clone. */ unsigned degree; struct anon_vma *parent; /* Parent of this anon_vma */ /* * NOTE: the LSB of the rb_root.rb_node is set by * mm_take_all_locks() _after_ taking the above lock. So the * rb_root must only be read/written after taking the above lock * to be sure to see a valid next pointer. The LSB bit itself * is serialized by a system wide lock only visible to * mm_take_all_locks() (mm_all_locks_mutex). */ /* Interval tree of private "related" vmas */ struct rb_root_cached rb_root; }; /* * The copy-on-write semantics of fork mean that an anon_vma * can become associated with multiple processes. Furthermore, * each child process will have its own anon_vma, where new * pages for that process are instantiated. * * This structure allows us to find the anon_vmas associated * with a VMA, or the VMAs associated with an anon_vma. * The "same_vma" list contains the anon_vma_chains linking * all the anon_vmas associated with this VMA. * The "rb" field indexes on an interval tree the anon_vma_chains * which link all the VMAs associated with this anon_vma. */ struct anon_vma_chain { struct vm_area_struct *vma; struct anon_vma *anon_vma; struct list_head same_vma; /* locked by mmap_lock & page_table_lock */ struct rb_node rb; /* locked by anon_vma->rwsem */ unsigned long rb_subtree_last; #ifdef CONFIG_DEBUG_VM_RB unsigned long cached_vma_start, cached_vma_last; #endif }; enum ttu_flags { TTU_MIGRATION = 0x1, /* migration mode */ TTU_MUNLOCK = 0x2, /* munlock mode */ TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */ TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */ TTU_SYNC = 0x10, /* avoid racy checks with PVMW_SYNC */ TTU_IGNORE_HWPOISON = 0x20, /* corrupted page is recoverable */ TTU_BATCH_FLUSH = 0x40, /* Batch TLB flushes where possible * and caller guarantees they will * do a final flush if necessary */ TTU_RMAP_LOCKED = 0x80, /* do not grab rmap lock: * caller holds it */ TTU_SPLIT_FREEZE = 0x100, /* freeze pte under splitting thp */ }; #ifdef CONFIG_MMU static inline void get_anon_vma(struct anon_vma *anon_vma) { atomic_inc(&anon_vma->refcount); } void __put_anon_vma(struct anon_vma *anon_vma); static inline void put_anon_vma(struct anon_vma *anon_vma) { if (atomic_dec_and_test(&anon_vma->refcount)) __put_anon_vma(anon_vma); } static inline void anon_vma_lock_write(struct anon_vma *anon_vma) { down_write(&anon_vma->root->rwsem); } static inline void anon_vma_unlock_write(struct anon_vma *anon_vma) { up_write(&anon_vma->root->rwsem); } static inline void anon_vma_lock_read(struct anon_vma *anon_vma) { down_read(&anon_vma->root->rwsem); } static inline void anon_vma_unlock_read(struct anon_vma *anon_vma) { up_read(&anon_vma->root->rwsem); } /* * anon_vma helper functions. */ void anon_vma_init(void); /* create anon_vma_cachep */ int __anon_vma_prepare(struct vm_area_struct *); void unlink_anon_vmas(struct vm_area_struct *); int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *); int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *); static inline int anon_vma_prepare(struct vm_area_struct *vma) { if (likely(vma->anon_vma)) return 0; return __anon_vma_prepare(vma); } static inline void anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) { VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma); unlink_anon_vmas(next); } struct anon_vma *page_get_anon_vma(struct page *page); /* bitflags for do_page_add_anon_rmap() */ #define RMAP_EXCLUSIVE 0x01 #define RMAP_COMPOUND 0x02 /* * rmap interfaces called when adding or removing pte of page */ void page_move_anon_rmap(struct page *, struct vm_area_struct *); void page_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long, bool); void do_page_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long, int); void page_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long, bool); void page_add_file_rmap(struct page *, bool); void page_remove_rmap(struct page *, bool); void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long); void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long); static inline void page_dup_rmap(struct page *page, bool compound) { atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount); } /* * Called from mm/vmscan.c to handle paging out */ int page_referenced(struct page *, int is_locked, struct mem_cgroup *memcg, unsigned long *vm_flags); bool try_to_unmap(struct page *, enum ttu_flags flags); /* Avoid racy checks */ #define PVMW_SYNC (1 << 0) /* Look for migarion entries rather than present PTEs */ #define PVMW_MIGRATION (1 << 1) struct page_vma_mapped_walk { struct page *page; struct vm_area_struct *vma; unsigned long address; pmd_t *pmd; pte_t *pte; spinlock_t *ptl; unsigned int flags; }; static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw) { /* HugeTLB pte is set to the relevant page table entry without pte_mapped. */ if (pvmw->pte && !PageHuge(pvmw->page)) pte_unmap(pvmw->pte); if (pvmw->ptl) spin_unlock(pvmw->ptl); } bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw); /* * Used by swapoff to help locate where page is expected in vma. */ unsigned long page_address_in_vma(struct page *, struct vm_area_struct *); /* * Cleans the PTEs of shared mappings. * (and since clean PTEs should also be readonly, write protects them too) * * returns the number of cleaned PTEs. */ int page_mkclean(struct page *); /* * called in munlock()/munmap() path to check for other vmas holding * the page mlocked. */ void try_to_munlock(struct page *); void remove_migration_ptes(struct page *old, struct page *new, bool locked); /* * Called by memory-failure.c to kill processes. */ struct anon_vma *page_lock_anon_vma_read(struct page *page); void page_unlock_anon_vma_read(struct anon_vma *anon_vma); int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma); /* * rmap_walk_control: To control rmap traversing for specific needs * * arg: passed to rmap_one() and invalid_vma() * rmap_one: executed on each vma where page is mapped * done: for checking traversing termination condition * anon_lock: for getting anon_lock by optimized way rather than default * invalid_vma: for skipping uninterested vma */ struct rmap_walk_control { void *arg; /* * Return false if page table scanning in rmap_walk should be stopped. * Otherwise, return true. */ bool (*rmap_one)(struct page *page, struct vm_area_struct *vma, unsigned long addr, void *arg); int (*done)(struct page *page); struct anon_vma *(*anon_lock)(struct page *page); bool (*invalid_vma)(struct vm_area_struct *vma, void *arg); }; void rmap_walk(struct page *page, struct rmap_walk_control *rwc); void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc); #else /* !CONFIG_MMU */ #define anon_vma_init() do {} while (0) #define anon_vma_prepare(vma) (0) #define anon_vma_link(vma) do {} while (0) static inline int page_referenced(struct page *page, int is_locked, struct mem_cgroup *memcg, unsigned long *vm_flags) { *vm_flags = 0; return 0; } #define try_to_unmap(page, refs) false static inline int page_mkclean(struct page *page) { return 0; } #endif /* CONFIG_MMU */ #endif /* _LINUX_RMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 /* SPDX-License-Identifier: GPL-2.0 */ /* * Authors: ThiƩbaud Weksteen <tweek@google.com> * Peter Enderborg <Peter.Enderborg@sony.com> */ #undef TRACE_SYSTEM #define TRACE_SYSTEM avc #if !defined(_TRACE_SELINUX_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SELINUX_H #include <linux/tracepoint.h> TRACE_EVENT(selinux_audited, TP_PROTO(struct selinux_audit_data *sad, char *scontext, char *tcontext, const char *tclass ), TP_ARGS(sad, scontext, tcontext, tclass), TP_STRUCT__entry( __field(u32, requested) __field(u32, denied) __field(u32, audited) __field(int, result) __string(scontext, scontext) __string(tcontext, tcontext) __string(tclass, tclass) ), TP_fast_assign( __entry->requested = sad->requested; __entry->denied = sad->denied; __entry->audited = sad->audited; __entry->result = sad->result; __assign_str(tcontext, tcontext); __assign_str(scontext, scontext); __assign_str(tclass, tclass); ), TP_printk("requested=0x%x denied=0x%x audited=0x%x result=%d scontext=%s tcontext=%s tclass=%s", __entry->requested, __entry->denied, __entry->audited, __entry->result, __get_str(scontext), __get_str(tcontext), __get_str(tclass) ) ); #endif /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_H #define _ASM_X86_PGTABLE_H #include <linux/mem_encrypt.h> #include <asm/page.h> #include <asm/pgtable_types.h> /* * Macro to mark a page protection value as UC- */ #define pgprot_noncached(prot) \ ((boot_cpu_data.x86 > 3) \ ? (__pgprot(pgprot_val(prot) | \ cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ : (prot)) /* * Macros to add or remove encryption attribute */ #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot))) #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot))) #ifndef __ASSEMBLY__ #include <asm/x86_init.h> #include <asm/fpu/xstate.h> #include <asm/fpu/api.h> #include <asm-generic/pgtable_uffd.h> extern pgd_t early_top_pgt[PTRS_PER_PGD]; bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd); void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm); void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm, bool user); void ptdump_walk_pgd_level_checkwx(void); void ptdump_walk_user_pgd_level_checkwx(void); #ifdef CONFIG_DEBUG_WX #define debug_checkwx() ptdump_walk_pgd_level_checkwx() #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() #else #define debug_checkwx() do { } while (0) #define debug_checkwx_user() do { } while (0) #endif /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __visible; #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page)) extern spinlock_t pgd_lock; extern struct list_head pgd_list; extern struct mm_struct *pgd_page_get_mm(struct page *page); extern pmdval_t early_pmd_flags; #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else /* !CONFIG_PARAVIRT_XXL */ #define set_pte(ptep, pte) native_set_pte(ptep, pte) #define set_pte_atomic(ptep, pte) \ native_set_pte_atomic(ptep, pte) #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) #ifndef __PAGETABLE_P4D_FOLDED #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) #endif #ifndef set_p4d # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) #endif #ifndef __PAGETABLE_PUD_FOLDED #define p4d_clear(p4d) native_p4d_clear(p4d) #endif #ifndef set_pud # define set_pud(pudp, pud) native_set_pud(pudp, pud) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_clear(pud) native_pud_clear(pud) #endif #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) #define pmd_clear(pmd) native_pmd_clear(pmd) #define pgd_val(x) native_pgd_val(x) #define __pgd(x) native_make_pgd(x) #ifndef __PAGETABLE_P4D_FOLDED #define p4d_val(x) native_p4d_val(x) #define __p4d(x) native_make_p4d(x) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_val(x) native_pud_val(x) #define __pud(x) native_make_pud(x) #endif #ifndef __PAGETABLE_PMD_FOLDED #define pmd_val(x) native_pmd_val(x) #define __pmd(x) native_make_pmd(x) #endif #define pte_val(x) native_pte_val(x) #define __pte(x) native_make_pte(x) #define arch_end_context_switch(prev) do {} while(0) #endif /* CONFIG_PARAVIRT_XXL */ /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_DIRTY; } static inline u32 read_pkru(void) { if (boot_cpu_has(X86_FEATURE_OSPKE)) return rdpkru(); return 0; } static inline void write_pkru(u32 pkru) { struct pkru_state *pk; if (!boot_cpu_has(X86_FEATURE_OSPKE)) return; pk = get_xsave_addr(&current->thread.fpu.state.xsave, XFEATURE_PKRU); /* * The PKRU value in xstate needs to be in sync with the value that is * written to the CPU. The FPU restore on return to userland would * otherwise load the previous value again. */ fpregs_lock(); if (pk) pk->pkru = pkru; __write_pkru(pkru); fpregs_unlock(); } static inline int pte_young(pte_t pte) { return pte_flags(pte) & _PAGE_ACCESSED; } static inline int pmd_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_DIRTY; } static inline int pmd_young(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_ACCESSED; } static inline int pud_dirty(pud_t pud) { return pud_flags(pud) & _PAGE_DIRTY; } static inline int pud_young(pud_t pud) { return pud_flags(pud) & _PAGE_ACCESSED; } static inline int pte_write(pte_t pte) { return pte_flags(pte) & _PAGE_RW; } static inline int pte_huge(pte_t pte) { return pte_flags(pte) & _PAGE_PSE; } static inline int pte_global(pte_t pte) { return pte_flags(pte) & _PAGE_GLOBAL; } static inline int pte_exec(pte_t pte) { return !(pte_flags(pte) & _PAGE_NX); } static inline int pte_special(pte_t pte) { return pte_flags(pte) & _PAGE_SPECIAL; } /* Entries that were set to PROT_NONE are inverted */ static inline u64 protnone_mask(u64 val); static inline unsigned long pte_pfn(pte_t pte) { phys_addr_t pfn = pte_val(pte); pfn ^= protnone_mask(pfn); return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; } static inline unsigned long pmd_pfn(pmd_t pmd) { phys_addr_t pfn = pmd_val(pmd); pfn ^= protnone_mask(pfn); return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; } static inline unsigned long pud_pfn(pud_t pud) { phys_addr_t pfn = pud_val(pud); pfn ^= protnone_mask(pfn); return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; } static inline unsigned long p4d_pfn(p4d_t p4d) { return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; } static inline unsigned long pgd_pfn(pgd_t pgd) { return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; } #define p4d_leaf p4d_large static inline int p4d_large(p4d_t p4d) { /* No 512 GiB pages yet */ return 0; } #define pte_page(pte) pfn_to_page(pte_pfn(pte)) #define pmd_leaf pmd_large static inline int pmd_large(pmd_t pte) { return pmd_flags(pte) & _PAGE_PSE; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_large */ static inline int pmd_trans_huge(pmd_t pmd) { return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline int pud_trans_huge(pud_t pud) { return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; } #endif #define has_transparent_hugepage has_transparent_hugepage static inline int has_transparent_hugepage(void) { return boot_cpu_has(X86_FEATURE_PSE); } #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pmd_devmap(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_DEVMAP); } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline int pud_devmap(pud_t pud) { return !!(pud_val(pud) & _PAGE_DEVMAP); } #else static inline int pud_devmap(pud_t pud) { return 0; } #endif static inline int pgd_devmap(pgd_t pgd) { return 0; } #endif #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline pte_t pte_set_flags(pte_t pte, pteval_t set) { pteval_t v = native_pte_val(pte); return native_make_pte(v | set); } static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) { pteval_t v = native_pte_val(pte); return native_make_pte(v & ~clear); } #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline int pte_uffd_wp(pte_t pte) { return pte_flags(pte) & _PAGE_UFFD_WP; } static inline pte_t pte_mkuffd_wp(pte_t pte) { return pte_set_flags(pte, _PAGE_UFFD_WP); } static inline pte_t pte_clear_uffd_wp(pte_t pte) { return pte_clear_flags(pte, _PAGE_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline pte_t pte_mkclean(pte_t pte) { return pte_clear_flags(pte, _PAGE_DIRTY); } static inline pte_t pte_mkold(pte_t pte) { return pte_clear_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_wrprotect(pte_t pte) { return pte_clear_flags(pte, _PAGE_RW); } static inline pte_t pte_mkexec(pte_t pte) { return pte_clear_flags(pte, _PAGE_NX); } static inline pte_t pte_mkdirty(pte_t pte) { return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return pte_set_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_mkwrite(pte_t pte) { return pte_set_flags(pte, _PAGE_RW); } static inline pte_t pte_mkhuge(pte_t pte) { return pte_set_flags(pte, _PAGE_PSE); } static inline pte_t pte_clrhuge(pte_t pte) { return pte_clear_flags(pte, _PAGE_PSE); } static inline pte_t pte_mkglobal(pte_t pte) { return pte_set_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_clrglobal(pte_t pte) { return pte_clear_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_mkspecial(pte_t pte) { return pte_set_flags(pte, _PAGE_SPECIAL); } static inline pte_t pte_mkdevmap(pte_t pte) { return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); } static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) { pmdval_t v = native_pmd_val(pmd); return native_make_pmd(v | set); } static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) { pmdval_t v = native_pmd_val(pmd); return native_make_pmd(v & ~clear); } #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline int pmd_uffd_wp(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_UFFD_WP; } static inline pmd_t pmd_mkuffd_wp(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_UFFD_WP); } static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline pmd_t pmd_mkold(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkclean(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_DIRTY); } static inline pmd_t pmd_wrprotect(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_RW); } static inline pmd_t pmd_mkdirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_mkdevmap(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_DEVMAP); } static inline pmd_t pmd_mkhuge(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_PSE); } static inline pmd_t pmd_mkyoung(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkwrite(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_RW); } static inline pud_t pud_set_flags(pud_t pud, pudval_t set) { pudval_t v = native_pud_val(pud); return native_make_pud(v | set); } static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) { pudval_t v = native_pud_val(pud); return native_make_pud(v & ~clear); } static inline pud_t pud_mkold(pud_t pud) { return pud_clear_flags(pud, _PAGE_ACCESSED); } static inline pud_t pud_mkclean(pud_t pud) { return pud_clear_flags(pud, _PAGE_DIRTY); } static inline pud_t pud_wrprotect(pud_t pud) { return pud_clear_flags(pud, _PAGE_RW); } static inline pud_t pud_mkdirty(pud_t pud) { return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pud_t pud_mkdevmap(pud_t pud) { return pud_set_flags(pud, _PAGE_DEVMAP); } static inline pud_t pud_mkhuge(pud_t pud) { return pud_set_flags(pud, _PAGE_PSE); } static inline pud_t pud_mkyoung(pud_t pud) { return pud_set_flags(pud, _PAGE_ACCESSED); } static inline pud_t pud_mkwrite(pud_t pud) { return pud_set_flags(pud, _PAGE_RW); } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline int pte_soft_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_SOFT_DIRTY; } static inline int pmd_soft_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; } static inline int pud_soft_dirty(pud_t pud) { return pud_flags(pud) & _PAGE_SOFT_DIRTY; } static inline pte_t pte_mksoft_dirty(pte_t pte) { return pte_set_flags(pte, _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); } static inline pud_t pud_mksoft_dirty(pud_t pud) { return pud_set_flags(pud, _PAGE_SOFT_DIRTY); } static inline pte_t pte_clear_soft_dirty(pte_t pte) { return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); } static inline pud_t pud_clear_soft_dirty(pud_t pud) { return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); } #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ /* * Mask out unsupported bits in a present pgprot. Non-present pgprots * can use those bits for other purposes, so leave them be. */ static inline pgprotval_t massage_pgprot(pgprot_t pgprot) { pgprotval_t protval = pgprot_val(pgprot); if (protval & _PAGE_PRESENT) protval &= __supported_pte_mask; return protval; } static inline pgprotval_t check_pgprot(pgprot_t pgprot) { pgprotval_t massaged_val = massage_pgprot(pgprot); /* mmdebug.h can not be included here because of dependencies */ #ifdef CONFIG_DEBUG_VM WARN_ONCE(pgprot_val(pgprot) != massaged_val, "attempted to set unsupported pgprot: %016llx " "bits: %016llx supported: %016llx\n", (u64)pgprot_val(pgprot), (u64)pgprot_val(pgprot) ^ massaged_val, (u64)__supported_pte_mask); #endif return massaged_val; } static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PTE_PFN_MASK; return __pte(pfn | check_pgprot(pgprot)); } static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PHYSICAL_PMD_PAGE_MASK; return __pmd(pfn | check_pgprot(pgprot)); } static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PHYSICAL_PUD_PAGE_MASK; return __pud(pfn | check_pgprot(pgprot)); } static inline pmd_t pmd_mkinvalid(pmd_t pmd) { return pfn_pmd(pmd_pfn(pmd), __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); } static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pteval_t val = pte_val(pte), oldval = val; /* * Chop off the NX bit (if present), and add the NX portion of * the newprot (if present): */ val &= _PAGE_CHG_MASK; val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); return __pte(val); } static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { pmdval_t val = pmd_val(pmd), oldval = val; val &= _HPAGE_CHG_MASK; val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); return __pmd(val); } /* * mprotect needs to preserve PAT and encryption bits when updating * vm_page_prot */ #define pgprot_modify pgprot_modify static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) { pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK; return __pgprot(preservebits | addbits); } #define pte_pgprot(x) __pgprot(pte_flags(x)) #define pmd_pgprot(x) __pgprot(pmd_flags(x)) #define pud_pgprot(x) __pgprot(pud_flags(x)) #define p4d_pgprot(x) __pgprot(p4d_flags(x)) #define canon_pgprot(p) __pgprot(massage_pgprot(p)) static inline pgprot_t arch_filter_pgprot(pgprot_t prot) { return canon_pgprot(prot); } static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, enum page_cache_mode pcm, enum page_cache_mode new_pcm) { /* * PAT type is always WB for untracked ranges, so no need to check. */ if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) return 1; /* * Certain new memtypes are not allowed with certain * requested memtype: * - request is uncached, return cannot be write-back * - request is write-combine, return cannot be write-back * - request is write-through, return cannot be write-back * - request is write-through, return cannot be write-combine */ if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WC && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WT && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WT && new_pcm == _PAGE_CACHE_MODE_WC)) { return 0; } return 1; } pmd_t *populate_extra_pmd(unsigned long vaddr); pte_t *populate_extra_pte(unsigned long vaddr); #ifdef CONFIG_PAGE_TABLE_ISOLATION pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); /* * Take a PGD location (pgdp) and a pgd value that needs to be set there. * Populates the user and returns the resulting PGD that must be set in * the kernel copy of the page tables. */ static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) { if (!static_cpu_has(X86_FEATURE_PTI)) return pgd; return __pti_set_user_pgtbl(pgdp, pgd); } #else /* CONFIG_PAGE_TABLE_ISOLATION */ static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) { return pgd; } #endif /* CONFIG_PAGE_TABLE_ISOLATION */ #endif /* __ASSEMBLY__ */ #ifdef CONFIG_X86_32 # include <asm/pgtable_32.h> #else # include <asm/pgtable_64.h> #endif #ifndef __ASSEMBLY__ #include <linux/mm_types.h> #include <linux/mmdebug.h> #include <linux/log2.h> #include <asm/fixmap.h> static inline int pte_none(pte_t pte) { return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t a, pte_t b) { return a.pte == b.pte; } static inline int pte_present(pte_t a) { return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); } #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pte_devmap(pte_t a) { return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; } #endif #define pte_accessible pte_accessible static inline bool pte_accessible(struct mm_struct *mm, pte_t a) { if (pte_flags(a) & _PAGE_PRESENT) return true; if ((pte_flags(a) & _PAGE_PROTNONE) && mm_tlb_flush_pending(mm)) return true; return false; } static inline int pmd_present(pmd_t pmd) { /* * Checking for _PAGE_PSE is needed too because * split_huge_page will temporarily clear the present bit (but * the _PAGE_PSE flag will remain set at all times while the * _PAGE_PRESENT bit is clear). */ return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); } #ifdef CONFIG_NUMA_BALANCING /* * These work without NUMA balancing but the kernel does not care. See the * comment in include/linux/pgtable.h */ static inline int pte_protnone(pte_t pte) { return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) == _PAGE_PROTNONE; } static inline int pmd_protnone(pmd_t pmd) { return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) == _PAGE_PROTNONE; } #endif /* CONFIG_NUMA_BALANCING */ static inline int pmd_none(pmd_t pmd) { /* Only check low word on 32-bit platforms, since it might be out of sync with upper half. */ unsigned long val = native_pmd_val(pmd); return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; } static inline unsigned long pmd_page_vaddr(pmd_t pmd) { return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * (Currently stuck as a macro because of indirect forward reference * to linux/mm.h:page_to_nid()) */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) static inline int pmd_bad(pmd_t pmd) { return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; } static inline unsigned long pages_to_mb(unsigned long npg) { return npg >> (20 - PAGE_SHIFT); } #if CONFIG_PGTABLE_LEVELS > 2 static inline int pud_none(pud_t pud) { return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; } static inline int pud_present(pud_t pud) { return pud_flags(pud) & _PAGE_PRESENT; } static inline unsigned long pud_page_vaddr(pud_t pud) { return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pud_page(pud) pfn_to_page(pud_pfn(pud)) #define pud_leaf pud_large static inline int pud_large(pud_t pud) { return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == (_PAGE_PSE | _PAGE_PRESENT); } static inline int pud_bad(pud_t pud) { return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; } #else #define pud_leaf pud_large static inline int pud_large(pud_t pud) { return 0; } #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 static inline int p4d_none(p4d_t p4d) { return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; } static inline int p4d_present(p4d_t p4d) { return p4d_flags(p4d) & _PAGE_PRESENT; } static inline unsigned long p4d_page_vaddr(p4d_t p4d) { return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) static inline int p4d_bad(p4d_t p4d) { unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) ignore_flags |= _PAGE_NX; return (p4d_flags(p4d) & ~ignore_flags) != 0; } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ static inline unsigned long p4d_index(unsigned long address) { return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); } #if CONFIG_PGTABLE_LEVELS > 4 static inline int pgd_present(pgd_t pgd) { if (!pgtable_l5_enabled()) return 1; return pgd_flags(pgd) & _PAGE_PRESENT; } static inline unsigned long pgd_page_vaddr(pgd_t pgd) { return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) /* to find an entry in a page-table-directory. */ static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) { if (!pgtable_l5_enabled()) return (p4d_t *)pgd; return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); } static inline int pgd_bad(pgd_t pgd) { unsigned long ignore_flags = _PAGE_USER; if (!pgtable_l5_enabled()) return 0; if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) ignore_flags |= _PAGE_NX; return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; } static inline int pgd_none(pgd_t pgd) { if (!pgtable_l5_enabled()) return 0; /* * There is no need to do a workaround for the KNL stray * A/D bit erratum here. PGDs only point to page tables * except on 32-bit non-PAE which is not supported on * KNL. */ return !native_pgd_val(pgd); } #endif /* CONFIG_PGTABLE_LEVELS > 4 */ #endif /* __ASSEMBLY__ */ #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) #ifndef __ASSEMBLY__ extern int direct_gbpages; void init_mem_mapping(void); void early_alloc_pgt_buf(void); extern void memblock_find_dma_reserve(void); void __init poking_init(void); unsigned long init_memory_mapping(unsigned long start, unsigned long end, pgprot_t prot); #ifdef CONFIG_X86_64 extern pgd_t trampoline_pgd_entry; #endif /* local pte updates need not use xchg for locking */ static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) { pte_t res = *ptep; /* Pure native function needs no input for mm, addr */ native_pte_clear(NULL, 0, ptep); return res; } static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) { pmd_t res = *pmdp; native_pmd_clear(pmdp); return res; } static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) { pud_t res = *pudp; native_pud_clear(pudp); return res; } static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { set_pte(ptep, pte); } static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd) { set_pmd(pmdp, pmd); } static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, pud_t *pudp, pud_t pud) { native_set_pud(pudp, pud); } /* * We only update the dirty/accessed state if we set * the dirty bit by hand in the kernel, since the hardware * will do the accessed bit for us, and we don't want to * race with other CPU's that might be updating the dirty * bit at the same time. */ struct vm_area_struct; #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep); #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH extern int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = native_ptep_get_and_clear(ptep); return pte; } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { pte_t pte; if (full) { /* * Full address destruction in progress; paravirt does not * care about updates and native needs no locking */ pte = native_local_ptep_get_and_clear(ptep); } else { pte = ptep_get_and_clear(mm, addr, ptep); } return pte; } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); } #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); extern int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty); #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp); extern int pudp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pud_t *pudp); #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define pmd_write pmd_write static inline int pmd_write(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_RW; } #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { return native_pmdp_get_and_clear(pmdp); } #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pud_t *pudp) { return native_pudp_get_and_clear(pudp); } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); } #define pud_write pud_write static inline int pud_write(pud_t pud) { return pud_flags(pud) & _PAGE_RW; } #ifndef pmdp_establish #define pmdp_establish pmdp_establish static inline pmd_t pmdp_establish(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t pmd) { if (IS_ENABLED(CONFIG_SMP)) { return xchg(pmdp, pmd); } else { pmd_t old = *pmdp; WRITE_ONCE(*pmdp, pmd); return old; } } #endif /* * Page table pages are page-aligned. The lower half of the top * level is used for userspace and the top half for the kernel. * * Returns true for parts of the PGD that map userspace and * false for the parts that map the kernel. */ static inline bool pgdp_maps_userspace(void *__ptr) { unsigned long ptr = (unsigned long)__ptr; return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); } #define pgd_leaf pgd_large static inline int pgd_large(pgd_t pgd) { return 0; } #ifdef CONFIG_PAGE_TABLE_ISOLATION /* * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and * the user one is in the last 4k. To switch between them, you * just need to flip the 12th bit in their addresses. */ #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT /* * This generates better code than the inline assembly in * __set_bit(). */ static inline void *ptr_set_bit(void *ptr, int bit) { unsigned long __ptr = (unsigned long)ptr; __ptr |= BIT(bit); return (void *)__ptr; } static inline void *ptr_clear_bit(void *ptr, int bit) { unsigned long __ptr = (unsigned long)ptr; __ptr &= ~BIT(bit); return (void *)__ptr; } static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) { return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); } static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) { return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); } static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) { return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); } static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) { return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); } #endif /* CONFIG_PAGE_TABLE_ISOLATION */ /* * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); * * dst - pointer to pgd range anwhere on a pgd page * src - "" * count - the number of pgds to copy. * * dst and src can be on the same page, but the range must not overlap, * and must not cross a page boundary. */ static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) { memcpy(dst, src, count * sizeof(pgd_t)); #ifdef CONFIG_PAGE_TABLE_ISOLATION if (!static_cpu_has(X86_FEATURE_PTI)) return; /* Clone the user space pgd as well */ memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), count * sizeof(pgd_t)); #endif } #define PTE_SHIFT ilog2(PTRS_PER_PTE) static inline int page_level_shift(enum pg_level level) { return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; } static inline unsigned long page_level_size(enum pg_level level) { return 1UL << page_level_shift(level); } static inline unsigned long page_level_mask(enum pg_level level) { return ~(page_level_size(level) - 1); } /* * The x86 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { } static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd) { } static inline void update_mmu_cache_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud) { } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline pte_t pte_swp_mksoft_dirty(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); } static inline int pte_swp_soft_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; } static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); } #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); } #endif #endif #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline pte_t pte_swp_mkuffd_wp(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_UFFD_WP); } static inline int pte_swp_uffd_wp(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_UFFD_WP; } static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP); } static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP); } static inline int pmd_swp_uffd_wp(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP; } static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ #define PKRU_AD_BIT 0x1 #define PKRU_WD_BIT 0x2 #define PKRU_BITS_PER_PKEY 2 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS extern u32 init_pkru_value; #else #define init_pkru_value 0 #endif static inline bool __pkru_allows_read(u32 pkru, u16 pkey) { int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits)); } static inline bool __pkru_allows_write(u32 pkru, u16 pkey) { int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; /* * Access-disable disables writes too so we need to check * both bits here. */ return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits)); } static inline u16 pte_flags_pkey(unsigned long pte_flags) { #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS /* ifdef to avoid doing 59-bit shift on 32-bit values */ return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; #else return 0; #endif } static inline bool __pkru_allows_pkey(u16 pkey, bool write) { u32 pkru = read_pkru(); if (!__pkru_allows_read(pkru, pkey)) return false; if (write && !__pkru_allows_write(pkru, pkey)) return false; return true; } /* * 'pteval' can come from a PTE, PMD or PUD. We only check * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the * same value on all 3 types. */ static inline bool __pte_access_permitted(unsigned long pteval, bool write) { unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; if (write) need_pte_bits |= _PAGE_RW; if ((pteval & need_pte_bits) != need_pte_bits) return 0; return __pkru_allows_pkey(pte_flags_pkey(pteval), write); } #define pte_access_permitted pte_access_permitted static inline bool pte_access_permitted(pte_t pte, bool write) { return __pte_access_permitted(pte_val(pte), write); } #define pmd_access_permitted pmd_access_permitted static inline bool pmd_access_permitted(pmd_t pmd, bool write) { return __pte_access_permitted(pmd_val(pmd), write); } #define pud_access_permitted pud_access_permitted static inline bool pud_access_permitted(pud_t pud, bool write) { return __pte_access_permitted(pud_val(pud), write); } #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); static inline bool arch_has_pfn_modify_check(void) { return boot_cpu_has_bug(X86_BUG_L1TF); } #define arch_faults_on_old_pte arch_faults_on_old_pte static inline bool arch_faults_on_old_pte(void) { return false; } #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 /* SPDX-License-Identifier: GPL-2.0 */ /* Rewritten and vastly simplified by Rusty Russell for in-kernel * module loader: * Copyright 2002 Rusty Russell <rusty@rustcorp.com.au> IBM Corporation */ #ifndef _LINUX_KALLSYMS_H #define _LINUX_KALLSYMS_H #include <linux/errno.h> #include <linux/kernel.h> #include <linux/stddef.h> #include <linux/mm.h> #include <linux/module.h> #include <asm/sections.h> #define KSYM_NAME_LEN 128 #define KSYM_SYMBOL_LEN (sizeof("%s+%#lx/%#lx [%s]") + (KSYM_NAME_LEN - 1) + \ 2*(BITS_PER_LONG*3/10) + (MODULE_NAME_LEN - 1) + 1) struct cred; struct module; static inline int is_kernel_inittext(unsigned long addr) { if (addr >= (unsigned long)_sinittext && addr <= (unsigned long)_einittext) return 1; return 0; } static inline int is_kernel_text(unsigned long addr) { if ((addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) || arch_is_kernel_text(addr)) return 1; return in_gate_area_no_mm(addr); } static inline int is_kernel(unsigned long addr) { if (addr >= (unsigned long)_stext && addr <= (unsigned long)_end) return 1; return in_gate_area_no_mm(addr); } static inline int is_ksym_addr(unsigned long addr) { if (IS_ENABLED(CONFIG_KALLSYMS_ALL)) return is_kernel(addr); return is_kernel_text(addr) || is_kernel_inittext(addr); } static inline void *dereference_symbol_descriptor(void *ptr) { #ifdef HAVE_DEREFERENCE_FUNCTION_DESCRIPTOR struct module *mod; ptr = dereference_kernel_function_descriptor(ptr); if (is_ksym_addr((unsigned long)ptr)) return ptr; preempt_disable(); mod = __module_address((unsigned long)ptr); preempt_enable(); if (mod) ptr = dereference_module_function_descriptor(mod, ptr); #endif return ptr; } #ifdef CONFIG_KALLSYMS /* Lookup the address for a symbol. Returns 0 if not found. */ unsigned long kallsyms_lookup_name(const char *name); /* Call a function on each kallsyms symbol in the core kernel */ int kallsyms_on_each_symbol(int (*fn)(void *, const char *, struct module *, unsigned long), void *data); extern int kallsyms_lookup_size_offset(unsigned long addr, unsigned long *symbolsize, unsigned long *offset); /* Lookup an address. modname is set to NULL if it's in the kernel. */ const char *kallsyms_lookup(unsigned long addr, unsigned long *symbolsize, unsigned long *offset, char **modname, char *namebuf); /* Look up a kernel symbol and return it in a text buffer. */ extern int sprint_symbol(char *buffer, unsigned long address); extern int sprint_symbol_no_offset(char *buffer, unsigned long address); extern int sprint_backtrace(char *buffer, unsigned long address); int lookup_symbol_name(unsigned long addr, char *symname); int lookup_symbol_attrs(unsigned long addr, unsigned long *size, unsigned long *offset, char *modname, char *name); /* How and when do we show kallsyms values? */ extern bool kallsyms_show_value(const struct cred *cred); #else /* !CONFIG_KALLSYMS */ static inline unsigned long kallsyms_lookup_name(const char *name) { return 0; } static inline int kallsyms_on_each_symbol(int (*fn)(void *, const char *, struct module *, unsigned long), void *data) { return 0; } static inline int kallsyms_lookup_size_offset(unsigned long addr, unsigned long *symbolsize, unsigned long *offset) { return 0; } static inline const char *kallsyms_lookup(unsigned long addr, unsigned long *symbolsize, unsigned long *offset, char **modname, char *namebuf) { return NULL; } static inline int sprint_symbol(char *buffer, unsigned long addr) { *buffer = '\0'; return 0; } static inline int sprint_symbol_no_offset(char *buffer, unsigned long addr) { *buffer = '\0'; return 0; } static inline int sprint_backtrace(char *buffer, unsigned long addr) { *buffer = '\0'; return 0; } static inline int lookup_symbol_name(unsigned long addr, char *symname) { return -ERANGE; } static inline int lookup_symbol_attrs(unsigned long addr, unsigned long *size, unsigned long *offset, char *modname, char *name) { return -ERANGE; } static inline bool kallsyms_show_value(const struct cred *cred) { return false; } #endif /*CONFIG_KALLSYMS*/ static inline void print_ip_sym(const char *loglvl, unsigned long ip) { printk("%s[<%px>] %pS\n", loglvl, (void *) ip, (void *) ip); } #endif /*_LINUX_KALLSYMS_H*/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _DELAYED_CALL_H #define _DELAYED_CALL_H /* * Poor man's closures; I wish we could've done them sanely polymorphic, * but... */ struct delayed_call { void (*fn)(void *); void *arg; }; #define DEFINE_DELAYED_CALL(name) struct delayed_call name = {NULL, NULL} /* I really wish we had closures with sane typechecking... */ static inline void set_delayed_call(struct delayed_call *call, void (*fn)(void *), void *arg) { call->fn = fn; call->arg = arg; } static inline void do_delayed_call(struct delayed_call *call) { if (call->fn) call->fn(call->arg); } static inline void clear_delayed_call(struct delayed_call *call) { call->fn = NULL; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NF_CONNTRACK_COMMON_H #define _NF_CONNTRACK_COMMON_H #include <linux/atomic.h> #include <uapi/linux/netfilter/nf_conntrack_common.h> struct ip_conntrack_stat { unsigned int found; unsigned int invalid; unsigned int insert; unsigned int insert_failed; unsigned int clash_resolve; unsigned int drop; unsigned int early_drop; unsigned int error; unsigned int expect_new; unsigned int expect_create; unsigned int expect_delete; unsigned int search_restart; }; #define NFCT_INFOMASK 7UL #define NFCT_PTRMASK ~(NFCT_INFOMASK) struct nf_conntrack { atomic_t use; }; void nf_conntrack_destroy(struct nf_conntrack *nfct); static inline void nf_conntrack_put(struct nf_conntrack *nfct) { if (nfct && atomic_dec_and_test(&nfct->use)) nf_conntrack_destroy(nfct); } static inline void nf_conntrack_get(struct nf_conntrack *nfct) { if (nfct) atomic_inc(&nfct->use); } #endif /* _NF_CONNTRACK_COMMON_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RATELIMIT_H #define _LINUX_RATELIMIT_H #include <linux/ratelimit_types.h> #include <linux/sched.h> #include <linux/spinlock.h> static inline void ratelimit_state_init(struct ratelimit_state *rs, int interval, int burst) { memset(rs, 0, sizeof(*rs)); raw_spin_lock_init(&rs->lock); rs->interval = interval; rs->burst = burst; } static inline void ratelimit_default_init(struct ratelimit_state *rs) { return ratelimit_state_init(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); } static inline void ratelimit_state_exit(struct ratelimit_state *rs) { if (!(rs->flags & RATELIMIT_MSG_ON_RELEASE)) return; if (rs->missed) { pr_warn("%s: %d output lines suppressed due to ratelimiting\n", current->comm, rs->missed); rs->missed = 0; } } static inline void ratelimit_set_flags(struct ratelimit_state *rs, unsigned long flags) { rs->flags = flags; } extern struct ratelimit_state printk_ratelimit_state; #ifdef CONFIG_PRINTK #define WARN_ON_RATELIMIT(condition, state) ({ \ bool __rtn_cond = !!(condition); \ WARN_ON(__rtn_cond && __ratelimit(state)); \ __rtn_cond; \ }) #define WARN_RATELIMIT(condition, format, ...) \ ({ \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ int rtn = !!(condition); \ \ if (unlikely(rtn && __ratelimit(&_rs))) \ WARN(rtn, format, ##__VA_ARGS__); \ \ rtn; \ }) #else #define WARN_ON_RATELIMIT(condition, state) \ WARN_ON(condition) #define WARN_RATELIMIT(condition, format, ...) \ ({ \ int rtn = WARN(condition, format, ##__VA_ARGS__); \ rtn; \ }) #endif #endif /* _LINUX_RATELIMIT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 /* SPDX-License-Identifier: GPL-2.0 */ /* Based on net/wireless/trace.h */ #undef TRACE_SYSTEM #define TRACE_SYSTEM cfg802154 #if !defined(__RDEV_CFG802154_OPS_TRACE) || defined(TRACE_HEADER_MULTI_READ) #define __RDEV_CFG802154_OPS_TRACE #include <linux/tracepoint.h> #include <net/cfg802154.h> #define MAXNAME 32 #define WPAN_PHY_ENTRY __array(char, wpan_phy_name, MAXNAME) #define WPAN_PHY_ASSIGN strlcpy(__entry->wpan_phy_name, \ wpan_phy_name(wpan_phy), \ MAXNAME) #define WPAN_PHY_PR_FMT "%s" #define WPAN_PHY_PR_ARG __entry->wpan_phy_name #define WPAN_DEV_ENTRY __field(u32, identifier) #define WPAN_DEV_ASSIGN (__entry->identifier) = (!IS_ERR_OR_NULL(wpan_dev) \ ? wpan_dev->identifier : 0) #define WPAN_DEV_PR_FMT "wpan_dev(%u)" #define WPAN_DEV_PR_ARG (__entry->identifier) #define WPAN_CCA_ENTRY __field(enum nl802154_cca_modes, cca_mode) \ __field(enum nl802154_cca_opts, cca_opt) #define WPAN_CCA_ASSIGN \ do { \ (__entry->cca_mode) = cca->mode; \ (__entry->cca_opt) = cca->opt; \ } while (0) #define WPAN_CCA_PR_FMT "cca_mode: %d, cca_opt: %d" #define WPAN_CCA_PR_ARG __entry->cca_mode, __entry->cca_opt #define BOOL_TO_STR(bo) (bo) ? "true" : "false" /************************************************************* * rdev->ops traces * *************************************************************/ DECLARE_EVENT_CLASS(wpan_phy_only_evt, TP_PROTO(struct wpan_phy *wpan_phy), TP_ARGS(wpan_phy), TP_STRUCT__entry( WPAN_PHY_ENTRY ), TP_fast_assign( WPAN_PHY_ASSIGN; ), TP_printk(WPAN_PHY_PR_FMT, WPAN_PHY_PR_ARG) ); DEFINE_EVENT(wpan_phy_only_evt, 802154_rdev_suspend, TP_PROTO(struct wpan_phy *wpan_phy), TP_ARGS(wpan_phy) ); DEFINE_EVENT(wpan_phy_only_evt, 802154_rdev_resume, TP_PROTO(struct wpan_phy *wpan_phy), TP_ARGS(wpan_phy) ); TRACE_EVENT(802154_rdev_add_virtual_intf, TP_PROTO(struct wpan_phy *wpan_phy, char *name, enum nl802154_iftype type, __le64 extended_addr), TP_ARGS(wpan_phy, name, type, extended_addr), TP_STRUCT__entry( WPAN_PHY_ENTRY __string(vir_intf_name, name ? name : "<noname>") __field(enum nl802154_iftype, type) __field(__le64, extended_addr) ), TP_fast_assign( WPAN_PHY_ASSIGN; __assign_str(vir_intf_name, name ? name : "<noname>"); __entry->type = type; __entry->extended_addr = extended_addr; ), TP_printk(WPAN_PHY_PR_FMT ", virtual intf name: %s, type: %d, extended addr: 0x%llx", WPAN_PHY_PR_ARG, __get_str(vir_intf_name), __entry->type, __le64_to_cpu(__entry->extended_addr)) ); TRACE_EVENT(802154_rdev_del_virtual_intf, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev), TP_ARGS(wpan_phy, wpan_dev), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_DEV_ENTRY ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_DEV_ASSIGN; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT, WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG) ); TRACE_EVENT(802154_rdev_set_channel, TP_PROTO(struct wpan_phy *wpan_phy, u8 page, u8 channel), TP_ARGS(wpan_phy, page, channel), TP_STRUCT__entry( WPAN_PHY_ENTRY __field(u8, page) __field(u8, channel) ), TP_fast_assign( WPAN_PHY_ASSIGN; __entry->page = page; __entry->channel = channel; ), TP_printk(WPAN_PHY_PR_FMT ", page: %d, channel: %d", WPAN_PHY_PR_ARG, __entry->page, __entry->channel) ); TRACE_EVENT(802154_rdev_set_tx_power, TP_PROTO(struct wpan_phy *wpan_phy, s32 power), TP_ARGS(wpan_phy, power), TP_STRUCT__entry( WPAN_PHY_ENTRY __field(s32, power) ), TP_fast_assign( WPAN_PHY_ASSIGN; __entry->power = power; ), TP_printk(WPAN_PHY_PR_FMT ", mbm: %d", WPAN_PHY_PR_ARG, __entry->power) ); TRACE_EVENT(802154_rdev_set_cca_mode, TP_PROTO(struct wpan_phy *wpan_phy, const struct wpan_phy_cca *cca), TP_ARGS(wpan_phy, cca), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_CCA_ENTRY ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_CCA_ASSIGN; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_CCA_PR_FMT, WPAN_PHY_PR_ARG, WPAN_CCA_PR_ARG) ); TRACE_EVENT(802154_rdev_set_cca_ed_level, TP_PROTO(struct wpan_phy *wpan_phy, s32 ed_level), TP_ARGS(wpan_phy, ed_level), TP_STRUCT__entry( WPAN_PHY_ENTRY __field(s32, ed_level) ), TP_fast_assign( WPAN_PHY_ASSIGN; __entry->ed_level = ed_level; ), TP_printk(WPAN_PHY_PR_FMT ", ed level: %d", WPAN_PHY_PR_ARG, __entry->ed_level) ); DECLARE_EVENT_CLASS(802154_le16_template, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le16 le16arg), TP_ARGS(wpan_phy, wpan_dev, le16arg), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_DEV_ENTRY __field(__le16, le16arg) ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_DEV_ASSIGN; __entry->le16arg = le16arg; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT ", pan id: 0x%04x", WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG, __le16_to_cpu(__entry->le16arg)) ); DEFINE_EVENT(802154_le16_template, 802154_rdev_set_pan_id, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le16 le16arg), TP_ARGS(wpan_phy, wpan_dev, le16arg) ); DEFINE_EVENT_PRINT(802154_le16_template, 802154_rdev_set_short_addr, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le16 le16arg), TP_ARGS(wpan_phy, wpan_dev, le16arg), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT ", short addr: 0x%04x", WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG, __le16_to_cpu(__entry->le16arg)) ); TRACE_EVENT(802154_rdev_set_backoff_exponent, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, u8 min_be, u8 max_be), TP_ARGS(wpan_phy, wpan_dev, min_be, max_be), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_DEV_ENTRY __field(u8, min_be) __field(u8, max_be) ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_DEV_ASSIGN; __entry->min_be = min_be; __entry->max_be = max_be; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT ", min be: %d, max be: %d", WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG, __entry->min_be, __entry->max_be) ); TRACE_EVENT(802154_rdev_set_csma_backoffs, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, u8 max_csma_backoffs), TP_ARGS(wpan_phy, wpan_dev, max_csma_backoffs), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_DEV_ENTRY __field(u8, max_csma_backoffs) ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_DEV_ASSIGN; __entry->max_csma_backoffs = max_csma_backoffs; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT ", max csma backoffs: %d", WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG, __entry->max_csma_backoffs) ); TRACE_EVENT(802154_rdev_set_max_frame_retries, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, s8 max_frame_retries), TP_ARGS(wpan_phy, wpan_dev, max_frame_retries), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_DEV_ENTRY __field(s8, max_frame_retries) ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_DEV_ASSIGN; __entry->max_frame_retries = max_frame_retries; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT ", max frame retries: %d", WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG, __entry->max_frame_retries) ); TRACE_EVENT(802154_rdev_set_lbt_mode, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, bool mode), TP_ARGS(wpan_phy, wpan_dev, mode), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_DEV_ENTRY __field(bool, mode) ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_DEV_ASSIGN; __entry->mode = mode; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT ", lbt mode: %s", WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG, BOOL_TO_STR(__entry->mode)) ); TRACE_EVENT(802154_rdev_set_ackreq_default, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, bool ackreq), TP_ARGS(wpan_phy, wpan_dev, ackreq), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_DEV_ENTRY __field(bool, ackreq) ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_DEV_ASSIGN; __entry->ackreq = ackreq; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT ", ackreq default: %s", WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG, BOOL_TO_STR(__entry->ackreq)) ); TRACE_EVENT(802154_rdev_return_int, TP_PROTO(struct wpan_phy *wpan_phy, int ret), TP_ARGS(wpan_phy, ret), TP_STRUCT__entry( WPAN_PHY_ENTRY __field(int, ret) ), TP_fast_assign( WPAN_PHY_ASSIGN; __entry->ret = ret; ), TP_printk(WPAN_PHY_PR_FMT ", returned: %d", WPAN_PHY_PR_ARG, __entry->ret) ); #endif /* !__RDEV_CFG802154_OPS_TRACE || TRACE_HEADER_MULTI_READ */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE trace #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/fsnotify_backend.h> #include <linux/inotify.h> #include <linux/slab.h> /* struct kmem_cache */ struct inotify_event_info { struct fsnotify_event fse; u32 mask; int wd; u32 sync_cookie; int name_len; char name[]; }; struct inotify_inode_mark { struct fsnotify_mark fsn_mark; int wd; }; static inline struct inotify_event_info *INOTIFY_E(struct fsnotify_event *fse) { return container_of(fse, struct inotify_event_info, fse); } extern void inotify_ignored_and_remove_idr(struct fsnotify_mark *fsn_mark, struct fsnotify_group *group); extern int inotify_handle_inode_event(struct fsnotify_mark *inode_mark, u32 mask, struct inode *inode, struct inode *dir, const struct qstr *name, u32 cookie); extern const struct fsnotify_ops inotify_fsnotify_ops; extern struct kmem_cache *inotify_inode_mark_cachep; #ifdef CONFIG_INOTIFY_USER static inline void dec_inotify_instances(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_INOTIFY_INSTANCES); } static inline struct ucounts *inc_inotify_watches(struct ucounts *ucounts) { return inc_ucount(ucounts->ns, ucounts->uid, UCOUNT_INOTIFY_WATCHES); } static inline void dec_inotify_watches(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_INOTIFY_WATCHES); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* memcontrol.h - Memory Controller * * Copyright IBM Corporation, 2007 * Author Balbir Singh <balbir@linux.vnet.ibm.com> * * Copyright 2007 OpenVZ SWsoft Inc * Author: Pavel Emelianov <xemul@openvz.org> */ #ifndef _LINUX_MEMCONTROL_H #define _LINUX_MEMCONTROL_H #include <linux/cgroup.h> #include <linux/vm_event_item.h> #include <linux/hardirq.h> #include <linux/jump_label.h> #include <linux/page_counter.h> #include <linux/vmpressure.h> #include <linux/eventfd.h> #include <linux/mm.h> #include <linux/vmstat.h> #include <linux/writeback.h> #include <linux/page-flags.h> struct mem_cgroup; struct obj_cgroup; struct page; struct mm_struct; struct kmem_cache; /* Cgroup-specific page state, on top of universal node page state */ enum memcg_stat_item { MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, MEMCG_SOCK, MEMCG_PERCPU_B, MEMCG_NR_STAT, }; enum memcg_memory_event { MEMCG_LOW, MEMCG_HIGH, MEMCG_MAX, MEMCG_OOM, MEMCG_OOM_KILL, MEMCG_SWAP_HIGH, MEMCG_SWAP_MAX, MEMCG_SWAP_FAIL, MEMCG_NR_MEMORY_EVENTS, }; struct mem_cgroup_reclaim_cookie { pg_data_t *pgdat; unsigned int generation; }; #ifdef CONFIG_MEMCG #define MEM_CGROUP_ID_SHIFT 16 #define MEM_CGROUP_ID_MAX USHRT_MAX struct mem_cgroup_id { int id; refcount_t ref; }; /* * Per memcg event counter is incremented at every pagein/pageout. With THP, * it will be incremented by the number of pages. This counter is used * to trigger some periodic events. This is straightforward and better * than using jiffies etc. to handle periodic memcg event. */ enum mem_cgroup_events_target { MEM_CGROUP_TARGET_THRESH, MEM_CGROUP_TARGET_SOFTLIMIT, MEM_CGROUP_NTARGETS, }; struct memcg_vmstats_percpu { long stat[MEMCG_NR_STAT]; unsigned long events[NR_VM_EVENT_ITEMS]; unsigned long nr_page_events; unsigned long targets[MEM_CGROUP_NTARGETS]; }; struct mem_cgroup_reclaim_iter { struct mem_cgroup *position; /* scan generation, increased every round-trip */ unsigned int generation; }; struct lruvec_stat { long count[NR_VM_NODE_STAT_ITEMS]; }; /* * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, * which have elements charged to this memcg. */ struct memcg_shrinker_map { struct rcu_head rcu; unsigned long map[]; }; /* * per-node information in memory controller. */ struct mem_cgroup_per_node { struct lruvec lruvec; /* Legacy local VM stats */ struct lruvec_stat __percpu *lruvec_stat_local; /* Subtree VM stats (batched updates) */ struct lruvec_stat __percpu *lruvec_stat_cpu; atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; struct mem_cgroup_reclaim_iter iter; struct memcg_shrinker_map __rcu *shrinker_map; struct rb_node tree_node; /* RB tree node */ unsigned long usage_in_excess;/* Set to the value by which */ /* the soft limit is exceeded*/ bool on_tree; struct mem_cgroup *memcg; /* Back pointer, we cannot */ /* use container_of */ }; struct mem_cgroup_threshold { struct eventfd_ctx *eventfd; unsigned long threshold; }; /* For threshold */ struct mem_cgroup_threshold_ary { /* An array index points to threshold just below or equal to usage. */ int current_threshold; /* Size of entries[] */ unsigned int size; /* Array of thresholds */ struct mem_cgroup_threshold entries[]; }; struct mem_cgroup_thresholds { /* Primary thresholds array */ struct mem_cgroup_threshold_ary *primary; /* * Spare threshold array. * This is needed to make mem_cgroup_unregister_event() "never fail". * It must be able to store at least primary->size - 1 entries. */ struct mem_cgroup_threshold_ary *spare; }; enum memcg_kmem_state { KMEM_NONE, KMEM_ALLOCATED, KMEM_ONLINE, }; #if defined(CONFIG_SMP) struct memcg_padding { char x[0]; } ____cacheline_internodealigned_in_smp; #define MEMCG_PADDING(name) struct memcg_padding name; #else #define MEMCG_PADDING(name) #endif /* * Remember four most recent foreign writebacks with dirty pages in this * cgroup. Inode sharing is expected to be uncommon and, even if we miss * one in a given round, we're likely to catch it later if it keeps * foreign-dirtying, so a fairly low count should be enough. * * See mem_cgroup_track_foreign_dirty_slowpath() for details. */ #define MEMCG_CGWB_FRN_CNT 4 struct memcg_cgwb_frn { u64 bdi_id; /* bdi->id of the foreign inode */ int memcg_id; /* memcg->css.id of foreign inode */ u64 at; /* jiffies_64 at the time of dirtying */ struct wb_completion done; /* tracks in-flight foreign writebacks */ }; /* * Bucket for arbitrarily byte-sized objects charged to a memory * cgroup. The bucket can be reparented in one piece when the cgroup * is destroyed, without having to round up the individual references * of all live memory objects in the wild. */ struct obj_cgroup { struct percpu_ref refcnt; struct mem_cgroup *memcg; atomic_t nr_charged_bytes; union { struct list_head list; struct rcu_head rcu; }; }; /* * The memory controller data structure. The memory controller controls both * page cache and RSS per cgroup. We would eventually like to provide * statistics based on the statistics developed by Rik Van Riel for clock-pro, * to help the administrator determine what knobs to tune. */ struct mem_cgroup { struct cgroup_subsys_state css; /* Private memcg ID. Used to ID objects that outlive the cgroup */ struct mem_cgroup_id id; /* Accounted resources */ struct page_counter memory; /* Both v1 & v2 */ union { struct page_counter swap; /* v2 only */ struct page_counter memsw; /* v1 only */ }; /* Legacy consumer-oriented counters */ struct page_counter kmem; /* v1 only */ struct page_counter tcpmem; /* v1 only */ /* Range enforcement for interrupt charges */ struct work_struct high_work; unsigned long soft_limit; /* vmpressure notifications */ struct vmpressure vmpressure; /* * Should the accounting and control be hierarchical, per subtree? */ bool use_hierarchy; /* * Should the OOM killer kill all belonging tasks, had it kill one? */ bool oom_group; /* protected by memcg_oom_lock */ bool oom_lock; int under_oom; int swappiness; /* OOM-Killer disable */ int oom_kill_disable; /* memory.events and memory.events.local */ struct cgroup_file events_file; struct cgroup_file events_local_file; /* handle for "memory.swap.events" */ struct cgroup_file swap_events_file; /* protect arrays of thresholds */ struct mutex thresholds_lock; /* thresholds for memory usage. RCU-protected */ struct mem_cgroup_thresholds thresholds; /* thresholds for mem+swap usage. RCU-protected */ struct mem_cgroup_thresholds memsw_thresholds; /* For oom notifier event fd */ struct list_head oom_notify; /* * Should we move charges of a task when a task is moved into this * mem_cgroup ? And what type of charges should we move ? */ unsigned long move_charge_at_immigrate; /* taken only while moving_account > 0 */ spinlock_t move_lock; unsigned long move_lock_flags; MEMCG_PADDING(_pad1_); atomic_long_t vmstats[MEMCG_NR_STAT]; atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; /* memory.events */ atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; unsigned long socket_pressure; /* Legacy tcp memory accounting */ bool tcpmem_active; int tcpmem_pressure; #ifdef CONFIG_MEMCG_KMEM /* Index in the kmem_cache->memcg_params.memcg_caches array */ int kmemcg_id; enum memcg_kmem_state kmem_state; struct obj_cgroup __rcu *objcg; struct list_head objcg_list; /* list of inherited objcgs */ #endif MEMCG_PADDING(_pad2_); /* * set > 0 if pages under this cgroup are moving to other cgroup. */ atomic_t moving_account; struct task_struct *move_lock_task; /* Legacy local VM stats and events */ struct memcg_vmstats_percpu __percpu *vmstats_local; /* Subtree VM stats and events (batched updates) */ struct memcg_vmstats_percpu __percpu *vmstats_percpu; #ifdef CONFIG_CGROUP_WRITEBACK struct list_head cgwb_list; struct wb_domain cgwb_domain; struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; #endif /* List of events which userspace want to receive */ struct list_head event_list; spinlock_t event_list_lock; #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct deferred_split deferred_split_queue; #endif struct mem_cgroup_per_node *nodeinfo[0]; /* WARNING: nodeinfo must be the last member here */ }; /* * size of first charge trial. "32" comes from vmscan.c's magic value. * TODO: maybe necessary to use big numbers in big irons. */ #define MEMCG_CHARGE_BATCH 32U extern struct mem_cgroup *root_mem_cgroup; static __always_inline bool memcg_stat_item_in_bytes(int idx) { if (idx == MEMCG_PERCPU_B) return true; return vmstat_item_in_bytes(idx); } static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return (memcg == root_mem_cgroup); } static inline bool mem_cgroup_disabled(void) { return !cgroup_subsys_enabled(memory_cgrp_subsys); } static inline void mem_cgroup_protection(struct mem_cgroup *root, struct mem_cgroup *memcg, unsigned long *min, unsigned long *low) { *min = *low = 0; if (mem_cgroup_disabled()) return; /* * There is no reclaim protection applied to a targeted reclaim. * We are special casing this specific case here because * mem_cgroup_protected calculation is not robust enough to keep * the protection invariant for calculated effective values for * parallel reclaimers with different reclaim target. This is * especially a problem for tail memcgs (as they have pages on LRU) * which would want to have effective values 0 for targeted reclaim * but a different value for external reclaim. * * Example * Let's have global and A's reclaim in parallel: * | * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) * |\ * | C (low = 1G, usage = 2.5G) * B (low = 1G, usage = 0.5G) * * For the global reclaim * A.elow = A.low * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow * C.elow = min(C.usage, C.low) * * With the effective values resetting we have A reclaim * A.elow = 0 * B.elow = B.low * C.elow = C.low * * If the global reclaim races with A's reclaim then * B.elow = C.elow = 0 because children_low_usage > A.elow) * is possible and reclaiming B would be violating the protection. * */ if (root == memcg) return; *min = READ_ONCE(memcg->memory.emin); *low = READ_ONCE(memcg->memory.elow); } void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg); static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) { /* * The root memcg doesn't account charges, and doesn't support * protection. */ return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); } static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) { if (!mem_cgroup_supports_protection(memcg)) return false; return READ_ONCE(memcg->memory.elow) >= page_counter_read(&memcg->memory); } static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) { if (!mem_cgroup_supports_protection(memcg)) return false; return READ_ONCE(memcg->memory.emin) >= page_counter_read(&memcg->memory); } int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); void mem_cgroup_uncharge(struct page *page); void mem_cgroup_uncharge_list(struct list_head *page_list); void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); static struct mem_cgroup_per_node * mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) { return memcg->nodeinfo[nid]; } /** * mem_cgroup_lruvec - get the lru list vector for a memcg & node * @memcg: memcg of the wanted lruvec * * Returns the lru list vector holding pages for a given @memcg & * @node combination. This can be the node lruvec, if the memory * controller is disabled. */ static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, struct pglist_data *pgdat) { struct mem_cgroup_per_node *mz; struct lruvec *lruvec; if (mem_cgroup_disabled()) { lruvec = &pgdat->__lruvec; goto out; } if (!memcg) memcg = root_mem_cgroup; mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); lruvec = &mz->lruvec; out: /* * Since a node can be onlined after the mem_cgroup was created, * we have to be prepared to initialize lruvec->pgdat here; * and if offlined then reonlined, we need to reinitialize it. */ if (unlikely(lruvec->pgdat != pgdat)) lruvec->pgdat = pgdat; return lruvec; } struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); static inline struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ return css ? container_of(css, struct mem_cgroup, css) : NULL; } static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) { return percpu_ref_tryget(&objcg->refcnt); } static inline void obj_cgroup_get(struct obj_cgroup *objcg) { percpu_ref_get(&objcg->refcnt); } static inline void obj_cgroup_put(struct obj_cgroup *objcg) { percpu_ref_put(&objcg->refcnt); } /* * After the initialization objcg->memcg is always pointing at * a valid memcg, but can be atomically swapped to the parent memcg. * * The caller must ensure that the returned memcg won't be released: * e.g. acquire the rcu_read_lock or css_set_lock. */ static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) { return READ_ONCE(objcg->memcg); } static inline void mem_cgroup_put(struct mem_cgroup *memcg) { if (memcg) css_put(&memcg->css); } #define mem_cgroup_from_counter(counter, member) \ container_of(counter, struct mem_cgroup, member) struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, struct mem_cgroup *, struct mem_cgroup_reclaim_cookie *); void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); int mem_cgroup_scan_tasks(struct mem_cgroup *, int (*)(struct task_struct *, void *), void *); static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return 0; return memcg->id.id; } struct mem_cgroup *mem_cgroup_from_id(unsigned short id); static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) { return mem_cgroup_from_css(seq_css(m)); } static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) { struct mem_cgroup_per_node *mz; if (mem_cgroup_disabled()) return NULL; mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return mz->memcg; } /** * parent_mem_cgroup - find the accounting parent of a memcg * @memcg: memcg whose parent to find * * Returns the parent memcg, or NULL if this is the root or the memory * controller is in legacy no-hierarchy mode. */ static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { if (!memcg->memory.parent) return NULL; return mem_cgroup_from_counter(memcg->memory.parent, memory); } static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root) { if (root == memcg) return true; if (!root->use_hierarchy) return false; return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { struct mem_cgroup *task_memcg; bool match = false; rcu_read_lock(); task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (task_memcg) match = mem_cgroup_is_descendant(task_memcg, memcg); rcu_read_unlock(); return match; } struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); ino_t page_cgroup_ino(struct page *page); static inline bool mem_cgroup_online(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return true; return !!(memcg->css.flags & CSS_ONLINE); } /* * For memory reclaim. */ int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, int zid, int nr_pages); static inline unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { struct mem_cgroup_per_node *mz; mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); } void mem_cgroup_handle_over_high(void); unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); unsigned long mem_cgroup_size(struct mem_cgroup *memcg); void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p); void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); static inline void mem_cgroup_enter_user_fault(void) { WARN_ON(current->in_user_fault); current->in_user_fault = 1; } static inline void mem_cgroup_exit_user_fault(void) { WARN_ON(!current->in_user_fault); current->in_user_fault = 0; } static inline bool task_in_memcg_oom(struct task_struct *p) { return p->memcg_in_oom; } bool mem_cgroup_oom_synchronize(bool wait); struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, struct mem_cgroup *oom_domain); void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); #ifdef CONFIG_MEMCG_SWAP extern bool cgroup_memory_noswap; #endif struct mem_cgroup *lock_page_memcg(struct page *page); void __unlock_page_memcg(struct mem_cgroup *memcg); void unlock_page_memcg(struct page *page); /* * idx can be of type enum memcg_stat_item or node_stat_item. * Keep in sync with memcg_exact_page_state(). */ static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) { long x = atomic_long_read(&memcg->vmstats[idx]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } /* * idx can be of type enum memcg_stat_item or node_stat_item. * Keep in sync with memcg_exact_page_state(). */ static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) { long x = 0; int cpu; for_each_possible_cpu(cpu) x += per_cpu(memcg->vmstats_local->stat[idx], cpu); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) { unsigned long flags; local_irq_save(flags); __mod_memcg_state(memcg, idx, val); local_irq_restore(flags); } /** * mod_memcg_page_state - update page state statistics * @page: the page * @idx: page state item to account * @val: number of pages (positive or negative) * * The @page must be locked or the caller must use lock_page_memcg() * to prevent double accounting when the page is concurrently being * moved to another memcg: * * lock_page(page) or lock_page_memcg(page) * if (TestClearPageState(page)) * mod_memcg_page_state(page, state, -1); * unlock_page(page) or unlock_page_memcg(page) * * Kernel pages are an exception to this, since they'll never move. */ static inline void __mod_memcg_page_state(struct page *page, int idx, int val) { if (page->mem_cgroup) __mod_memcg_state(page->mem_cgroup, idx, val); } static inline void mod_memcg_page_state(struct page *page, int idx, int val) { if (page->mem_cgroup) mod_memcg_state(page->mem_cgroup, idx, val); } static inline unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) { struct mem_cgroup_per_node *pn; long x; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); x = atomic_long_read(&pn->lruvec_stat[idx]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, enum node_stat_item idx) { struct mem_cgroup_per_node *pn; long x = 0; int cpu; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); for_each_possible_cpu(cpu) x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val); void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val); void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); void mod_memcg_obj_state(void *p, int idx, int val); static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_slab_state(p, idx, val); local_irq_restore(flags); } static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_memcg_lruvec_state(lruvec, idx, val); local_irq_restore(flags); } static inline void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_state(lruvec, idx, val); local_irq_restore(flags); } static inline void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { struct page *head = compound_head(page); /* rmap on tail pages */ pg_data_t *pgdat = page_pgdat(page); struct lruvec *lruvec; /* Untracked pages have no memcg, no lruvec. Update only the node */ if (!head->mem_cgroup) { __mod_node_page_state(pgdat, idx, val); return; } lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat); __mod_lruvec_state(lruvec, idx, val); } static inline void mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_page_state(page, idx, val); local_irq_restore(flags); } unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned); void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count); static inline void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { unsigned long flags; local_irq_save(flags); __count_memcg_events(memcg, idx, count); local_irq_restore(flags); } static inline void count_memcg_page_event(struct page *page, enum vm_event_item idx) { if (page->mem_cgroup) count_memcg_events(page->mem_cgroup, idx, 1); } static inline void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) { struct mem_cgroup *memcg; if (mem_cgroup_disabled()) return; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (likely(memcg)) count_memcg_events(memcg, idx, 1); rcu_read_unlock(); } static inline void memcg_memory_event(struct mem_cgroup *memcg, enum memcg_memory_event event) { bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || event == MEMCG_SWAP_FAIL; atomic_long_inc(&memcg->memory_events_local[event]); if (!swap_event) cgroup_file_notify(&memcg->events_local_file); do { atomic_long_inc(&memcg->memory_events[event]); if (swap_event) cgroup_file_notify(&memcg->swap_events_file); else cgroup_file_notify(&memcg->events_file); if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) break; if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) break; } while ((memcg = parent_mem_cgroup(memcg)) && !mem_cgroup_is_root(memcg)); } static inline void memcg_memory_event_mm(struct mm_struct *mm, enum memcg_memory_event event) { struct mem_cgroup *memcg; if (mem_cgroup_disabled()) return; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (likely(memcg)) memcg_memory_event(memcg, event); rcu_read_unlock(); } void split_page_memcg(struct page *head, unsigned int nr); #else /* CONFIG_MEMCG */ #define MEM_CGROUP_ID_SHIFT 0 #define MEM_CGROUP_ID_MAX 0 struct mem_cgroup; static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return true; } static inline bool mem_cgroup_disabled(void) { return true; } static inline void memcg_memory_event(struct mem_cgroup *memcg, enum memcg_memory_event event) { } static inline void memcg_memory_event_mm(struct mm_struct *mm, enum memcg_memory_event event) { } static inline void mem_cgroup_protection(struct mem_cgroup *root, struct mem_cgroup *memcg, unsigned long *min, unsigned long *low) { *min = *low = 0; } static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg) { } static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) { return false; } static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) { return false; } static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { return 0; } static inline void mem_cgroup_uncharge(struct page *page) { } static inline void mem_cgroup_uncharge_list(struct list_head *page_list) { } static inline void mem_cgroup_migrate(struct page *old, struct page *new) { } static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, struct pglist_data *pgdat) { return &pgdat->__lruvec; } static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) { return &pgdat->__lruvec; } static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { return NULL; } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { return true; } static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) { return NULL; } static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) { return NULL; } static inline void mem_cgroup_put(struct mem_cgroup *memcg) { } static inline struct mem_cgroup * mem_cgroup_iter(struct mem_cgroup *root, struct mem_cgroup *prev, struct mem_cgroup_reclaim_cookie *reclaim) { return NULL; } static inline void mem_cgroup_iter_break(struct mem_cgroup *root, struct mem_cgroup *prev) { } static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, int (*fn)(struct task_struct *, void *), void *arg) { return 0; } static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) { return 0; } static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) { WARN_ON_ONCE(id); /* XXX: This should always return root_mem_cgroup */ return NULL; } static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) { return NULL; } static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) { return NULL; } static inline bool mem_cgroup_online(struct mem_cgroup *memcg) { return true; } static inline unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { return 0; } static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) { return 0; } static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) { return 0; } static inline void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) { } static inline void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) { } static inline struct mem_cgroup *lock_page_memcg(struct page *page) { return NULL; } static inline void __unlock_page_memcg(struct mem_cgroup *memcg) { } static inline void unlock_page_memcg(struct page *page) { } static inline void mem_cgroup_handle_over_high(void) { } static inline void mem_cgroup_enter_user_fault(void) { } static inline void mem_cgroup_exit_user_fault(void) { } static inline bool task_in_memcg_oom(struct task_struct *p) { return false; } static inline bool mem_cgroup_oom_synchronize(bool wait) { return false; } static inline struct mem_cgroup *mem_cgroup_get_oom_group( struct task_struct *victim, struct mem_cgroup *oom_domain) { return NULL; } static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) { } static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) { return 0; } static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) { return 0; } static inline void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int nr) { } static inline void mod_memcg_state(struct mem_cgroup *memcg, int idx, int nr) { } static inline void __mod_memcg_page_state(struct page *page, int idx, int nr) { } static inline void mod_memcg_page_state(struct page *page, int idx, int nr) { } static inline unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) { return node_page_state(lruvec_pgdat(lruvec), idx); } static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, enum node_stat_item idx) { return node_page_state(lruvec_pgdat(lruvec), idx); } static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { } static inline void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); } static inline void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { mod_node_page_state(lruvec_pgdat(lruvec), idx, val); } static inline void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { __mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { mod_node_page_state(page_pgdat(page), idx, val); } static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) { struct page *page = virt_to_head_page(p); __mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) { struct page *page = virt_to_head_page(p); mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_memcg_obj_state(void *p, int idx, int val) { } static inline unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned) { return 0; } static inline void split_page_memcg(struct page *head, unsigned int nr) { } static inline void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { } static inline void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { } static inline void count_memcg_page_event(struct page *page, int idx) { } static inline void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) { } #endif /* CONFIG_MEMCG */ /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __inc_memcg_state(struct mem_cgroup *memcg, int idx) { __mod_memcg_state(memcg, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __dec_memcg_state(struct mem_cgroup *memcg, int idx) { __mod_memcg_state(memcg, idx, -1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __inc_memcg_page_state(struct page *page, int idx) { __mod_memcg_page_state(page, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __dec_memcg_page_state(struct page *page, int idx) { __mod_memcg_page_state(page, idx, -1); } static inline void __inc_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { __mod_lruvec_state(lruvec, idx, 1); } static inline void __dec_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { __mod_lruvec_state(lruvec, idx, -1); } static inline void __inc_lruvec_page_state(struct page *page, enum node_stat_item idx) { __mod_lruvec_page_state(page, idx, 1); } static inline void __dec_lruvec_page_state(struct page *page, enum node_stat_item idx) { __mod_lruvec_page_state(page, idx, -1); } static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx) { __mod_lruvec_slab_state(p, idx, 1); } static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx) { __mod_lruvec_slab_state(p, idx, -1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void inc_memcg_state(struct mem_cgroup *memcg, int idx) { mod_memcg_state(memcg, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void dec_memcg_state(struct mem_cgroup *memcg, int idx) { mod_memcg_state(memcg, idx, -1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void inc_memcg_page_state(struct page *page, int idx) { mod_memcg_page_state(page, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void dec_memcg_page_state(struct page *page, int idx) { mod_memcg_page_state(page, idx, -1); } static inline void inc_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { mod_lruvec_state(lruvec, idx, 1); } static inline void dec_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { mod_lruvec_state(lruvec, idx, -1); } static inline void inc_lruvec_page_state(struct page *page, enum node_stat_item idx) { mod_lruvec_page_state(page, idx, 1); } static inline void dec_lruvec_page_state(struct page *page, enum node_stat_item idx) { mod_lruvec_page_state(page, idx, -1); } static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) { struct mem_cgroup *memcg; memcg = lruvec_memcg(lruvec); if (!memcg) return NULL; memcg = parent_mem_cgroup(memcg); if (!memcg) return NULL; return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); } #ifdef CONFIG_CGROUP_WRITEBACK struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, unsigned long *pheadroom, unsigned long *pdirty, unsigned long *pwriteback); void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, struct bdi_writeback *wb); static inline void mem_cgroup_track_foreign_dirty(struct page *page, struct bdi_writeback *wb) { if (mem_cgroup_disabled()) return; if (unlikely(&page->mem_cgroup->css != wb->memcg_css)) mem_cgroup_track_foreign_dirty_slowpath(page, wb); } void mem_cgroup_flush_foreign(struct bdi_writeback *wb); #else /* CONFIG_CGROUP_WRITEBACK */ static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) { return NULL; } static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, unsigned long *pheadroom, unsigned long *pdirty, unsigned long *pwriteback) { } static inline void mem_cgroup_track_foreign_dirty(struct page *page, struct bdi_writeback *wb) { } static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) { } #endif /* CONFIG_CGROUP_WRITEBACK */ struct sock; bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); #ifdef CONFIG_MEMCG extern struct static_key_false memcg_sockets_enabled_key; #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) void mem_cgroup_sk_alloc(struct sock *sk); void mem_cgroup_sk_free(struct sock *sk); static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) { if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) return true; do { if (time_before(jiffies, memcg->socket_pressure)) return true; } while ((memcg = parent_mem_cgroup(memcg))); return false; } extern int memcg_expand_shrinker_maps(int new_id); extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); #else #define mem_cgroup_sockets_enabled 0 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; static inline void mem_cgroup_sk_free(struct sock *sk) { }; static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) { return false; } static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) { } #endif #ifdef CONFIG_MEMCG_KMEM int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, unsigned int nr_pages); void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); void __memcg_kmem_uncharge_page(struct page *page, int order); struct obj_cgroup *get_obj_cgroup_from_current(void); int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); extern struct static_key_false memcg_kmem_enabled_key; extern int memcg_nr_cache_ids; void memcg_get_cache_ids(void); void memcg_put_cache_ids(void); /* * Helper macro to loop through all memcg-specific caches. Callers must still * check if the cache is valid (it is either valid or NULL). * the slab_mutex must be held when looping through those caches */ #define for_each_memcg_cache_index(_idx) \ for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) static inline bool memcg_kmem_enabled(void) { return static_branch_likely(&memcg_kmem_enabled_key); } static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { if (memcg_kmem_enabled()) return __memcg_kmem_charge_page(page, gfp, order); return 0; } static inline void memcg_kmem_uncharge_page(struct page *page, int order) { if (memcg_kmem_enabled()) __memcg_kmem_uncharge_page(page, order); } static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, unsigned int nr_pages) { if (memcg_kmem_enabled()) return __memcg_kmem_charge(memcg, gfp, nr_pages); return 0; } static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) { if (memcg_kmem_enabled()) __memcg_kmem_uncharge(memcg, nr_pages); } /* * helper for accessing a memcg's index. It will be used as an index in the * child cache array in kmem_cache, and also to derive its name. This function * will return -1 when this is not a kmem-limited memcg. */ static inline int memcg_cache_id(struct mem_cgroup *memcg) { return memcg ? memcg->kmemcg_id : -1; } struct mem_cgroup *mem_cgroup_from_obj(void *p); #else static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { return 0; } static inline void memcg_kmem_uncharge_page(struct page *page, int order) { } static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { return 0; } static inline void __memcg_kmem_uncharge_page(struct page *page, int order) { } #define for_each_memcg_cache_index(_idx) \ for (; NULL; ) static inline bool memcg_kmem_enabled(void) { return false; } static inline int memcg_cache_id(struct mem_cgroup *memcg) { return -1; } static inline void memcg_get_cache_ids(void) { } static inline void memcg_put_cache_ids(void) { } static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) { return NULL; } #endif /* CONFIG_MEMCG_KMEM */ #endif /* _LINUX_MEMCONTROL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NET_SCM_H #define __LINUX_NET_SCM_H #include <linux/limits.h> #include <linux/net.h> #include <linux/cred.h> #include <linux/security.h> #include <linux/pid.h> #include <linux/nsproxy.h> #include <linux/sched/signal.h> /* Well, we should have at least one descriptor open * to accept passed FDs 8) */ #define SCM_MAX_FD 253 struct scm_creds { u32 pid; kuid_t uid; kgid_t gid; }; struct scm_fp_list { short count; short max; struct user_struct *user; struct file *fp[SCM_MAX_FD]; }; struct scm_cookie { struct pid *pid; /* Skb credentials */ struct scm_fp_list *fp; /* Passed files */ struct scm_creds creds; /* Skb credentials */ #ifdef CONFIG_SECURITY_NETWORK u32 secid; /* Passed security ID */ #endif }; void scm_detach_fds(struct msghdr *msg, struct scm_cookie *scm); void scm_detach_fds_compat(struct msghdr *msg, struct scm_cookie *scm); int __scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm); void __scm_destroy(struct scm_cookie *scm); struct scm_fp_list *scm_fp_dup(struct scm_fp_list *fpl); #ifdef CONFIG_SECURITY_NETWORK static __inline__ void unix_get_peersec_dgram(struct socket *sock, struct scm_cookie *scm) { security_socket_getpeersec_dgram(sock, NULL, &scm->secid); } #else static __inline__ void unix_get_peersec_dgram(struct socket *sock, struct scm_cookie *scm) { } #endif /* CONFIG_SECURITY_NETWORK */ static __inline__ void scm_set_cred(struct scm_cookie *scm, struct pid *pid, kuid_t uid, kgid_t gid) { scm->pid = get_pid(pid); scm->creds.pid = pid_vnr(pid); scm->creds.uid = uid; scm->creds.gid = gid; } static __inline__ void scm_destroy_cred(struct scm_cookie *scm) { put_pid(scm->pid); scm->pid = NULL; } static __inline__ void scm_destroy(struct scm_cookie *scm) { scm_destroy_cred(scm); if (scm->fp) __scm_destroy(scm); } static __inline__ int scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm, bool forcecreds) { memset(scm, 0, sizeof(*scm)); scm->creds.uid = INVALID_UID; scm->creds.gid = INVALID_GID; if (forcecreds) scm_set_cred(scm, task_tgid(current), current_uid(), current_gid()); unix_get_peersec_dgram(sock, scm); if (msg->msg_controllen <= 0) return 0; return __scm_send(sock, msg, scm); } #ifdef CONFIG_SECURITY_NETWORK static inline void scm_passec(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm) { char *secdata; u32 seclen; int err; if (test_bit(SOCK_PASSSEC, &sock->flags)) { err = security_secid_to_secctx(scm->secid, &secdata, &seclen); if (!err) { put_cmsg(msg, SOL_SOCKET, SCM_SECURITY, seclen, secdata); security_release_secctx(secdata, seclen); } } } #else static inline void scm_passec(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm) { } #endif /* CONFIG_SECURITY_NETWORK */ static __inline__ void scm_recv(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm, int flags) { if (!msg->msg_control) { if (test_bit(SOCK_PASSCRED, &sock->flags) || scm->fp) msg->msg_flags |= MSG_CTRUNC; scm_destroy(scm); return; } if (test_bit(SOCK_PASSCRED, &sock->flags)) { struct user_namespace *current_ns = current_user_ns(); struct ucred ucreds = { .pid = scm->creds.pid, .uid = from_kuid_munged(current_ns, scm->creds.uid), .gid = from_kgid_munged(current_ns, scm->creds.gid), }; put_cmsg(msg, SOL_SOCKET, SCM_CREDENTIALS, sizeof(ucreds), &ucreds); } scm_destroy_cred(scm); scm_passec(sock, msg, scm); if (!scm->fp) return; scm_detach_fds(msg, scm); } #endif /* __LINUX_NET_SCM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux NET3: Internet Group Management Protocol [IGMP] * * Authors: * Alan Cox <alan@lxorguk.ukuu.org.uk> * * Extended to talk the BSD extended IGMP protocol of mrouted 3.6 */ #ifndef _LINUX_IGMP_H #define _LINUX_IGMP_H #include <linux/skbuff.h> #include <linux/timer.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/refcount.h> #include <uapi/linux/igmp.h> static inline struct igmphdr *igmp_hdr(const struct sk_buff *skb) { return (struct igmphdr *)skb_transport_header(skb); } static inline struct igmpv3_report * igmpv3_report_hdr(const struct sk_buff *skb) { return (struct igmpv3_report *)skb_transport_header(skb); } static inline struct igmpv3_query * igmpv3_query_hdr(const struct sk_buff *skb) { return (struct igmpv3_query *)skb_transport_header(skb); } struct ip_sf_socklist { unsigned int sl_max; unsigned int sl_count; struct rcu_head rcu; __be32 sl_addr[]; }; #define IP_SFLSIZE(count) (sizeof(struct ip_sf_socklist) + \ (count) * sizeof(__be32)) #define IP_SFBLOCK 10 /* allocate this many at once */ /* ip_mc_socklist is real list now. Speed is not argument; this list never used in fast path code */ struct ip_mc_socklist { struct ip_mc_socklist __rcu *next_rcu; struct ip_mreqn multi; unsigned int sfmode; /* MCAST_{INCLUDE,EXCLUDE} */ struct ip_sf_socklist __rcu *sflist; struct rcu_head rcu; }; struct ip_sf_list { struct ip_sf_list *sf_next; unsigned long sf_count[2]; /* include/exclude counts */ __be32 sf_inaddr; unsigned char sf_gsresp; /* include in g & s response? */ unsigned char sf_oldin; /* change state */ unsigned char sf_crcount; /* retrans. left to send */ }; struct ip_mc_list { struct in_device *interface; __be32 multiaddr; unsigned int sfmode; struct ip_sf_list *sources; struct ip_sf_list *tomb; unsigned long sfcount[2]; union { struct ip_mc_list *next; struct ip_mc_list __rcu *next_rcu; }; struct ip_mc_list __rcu *next_hash; struct timer_list timer; int users; refcount_t refcnt; spinlock_t lock; char tm_running; char reporter; char unsolicit_count; char loaded; unsigned char gsquery; /* check source marks? */ unsigned char crcount; struct rcu_head rcu; }; /* V3 exponential field decoding */ #define IGMPV3_MASK(value, nb) ((nb)>=32 ? (value) : ((1<<(nb))-1) & (value)) #define IGMPV3_EXP(thresh, nbmant, nbexp, value) \ ((value) < (thresh) ? (value) : \ ((IGMPV3_MASK(value, nbmant) | (1<<(nbmant))) << \ (IGMPV3_MASK((value) >> (nbmant), nbexp) + (nbexp)))) #define IGMPV3_QQIC(value) IGMPV3_EXP(0x80, 4, 3, value) #define IGMPV3_MRC(value) IGMPV3_EXP(0x80, 4, 3, value) static inline int ip_mc_may_pull(struct sk_buff *skb, unsigned int len) { if (skb_transport_offset(skb) + ip_transport_len(skb) < len) return 0; return pskb_may_pull(skb, len); } extern int ip_check_mc_rcu(struct in_device *dev, __be32 mc_addr, __be32 src_addr, u8 proto); extern int igmp_rcv(struct sk_buff *); extern int ip_mc_join_group(struct sock *sk, struct ip_mreqn *imr); extern int ip_mc_join_group_ssm(struct sock *sk, struct ip_mreqn *imr, unsigned int mode); extern int ip_mc_leave_group(struct sock *sk, struct ip_mreqn *imr); extern void ip_mc_drop_socket(struct sock *sk); extern int ip_mc_source(int add, int omode, struct sock *sk, struct ip_mreq_source *mreqs, int ifindex); extern int ip_mc_msfilter(struct sock *sk, struct ip_msfilter *msf,int ifindex); extern int ip_mc_msfget(struct sock *sk, struct ip_msfilter *msf, struct ip_msfilter __user *optval, int __user *optlen); extern int ip_mc_gsfget(struct sock *sk, struct group_filter *gsf, struct sockaddr_storage __user *p); extern int ip_mc_sf_allow(struct sock *sk, __be32 local, __be32 rmt, int dif, int sdif); extern void ip_mc_init_dev(struct in_device *); extern void ip_mc_destroy_dev(struct in_device *); extern void ip_mc_up(struct in_device *); extern void ip_mc_down(struct in_device *); extern void ip_mc_unmap(struct in_device *); extern void ip_mc_remap(struct in_device *); extern void __ip_mc_dec_group(struct in_device *in_dev, __be32 addr, gfp_t gfp); static inline void ip_mc_dec_group(struct in_device *in_dev, __be32 addr) { return __ip_mc_dec_group(in_dev, addr, GFP_KERNEL); } extern void __ip_mc_inc_group(struct in_device *in_dev, __be32 addr, gfp_t gfp); extern void ip_mc_inc_group(struct in_device *in_dev, __be32 addr); int ip_mc_check_igmp(struct sk_buff *skb); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_XFRM_H #define _NET_XFRM_H #include <linux/compiler.h> #include <linux/xfrm.h> #include <linux/spinlock.h> #include <linux/list.h> #include <linux/skbuff.h> #include <linux/socket.h> #include <linux/pfkeyv2.h> #include <linux/ipsec.h> #include <linux/in6.h> #include <linux/mutex.h> #include <linux/audit.h> #include <linux/slab.h> #include <linux/refcount.h> #include <linux/sockptr.h> #include <net/sock.h> #include <net/dst.h> #include <net/ip.h> #include <net/route.h> #include <net/ipv6.h> #include <net/ip6_fib.h> #include <net/flow.h> #include <net/gro_cells.h> #include <linux/interrupt.h> #ifdef CONFIG_XFRM_STATISTICS #include <net/snmp.h> #endif #define XFRM_PROTO_ESP 50 #define XFRM_PROTO_AH 51 #define XFRM_PROTO_COMP 108 #define XFRM_PROTO_IPIP 4 #define XFRM_PROTO_IPV6 41 #define XFRM_PROTO_ROUTING IPPROTO_ROUTING #define XFRM_PROTO_DSTOPTS IPPROTO_DSTOPTS #define XFRM_ALIGN4(len) (((len) + 3) & ~3) #define XFRM_ALIGN8(len) (((len) + 7) & ~7) #define MODULE_ALIAS_XFRM_MODE(family, encap) \ MODULE_ALIAS("xfrm-mode-" __stringify(family) "-" __stringify(encap)) #define MODULE_ALIAS_XFRM_TYPE(family, proto) \ MODULE_ALIAS("xfrm-type-" __stringify(family) "-" __stringify(proto)) #define MODULE_ALIAS_XFRM_OFFLOAD_TYPE(family, proto) \ MODULE_ALIAS("xfrm-offload-" __stringify(family) "-" __stringify(proto)) #ifdef CONFIG_XFRM_STATISTICS #define XFRM_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.xfrm_statistics, field) #else #define XFRM_INC_STATS(net, field) ((void)(net)) #endif /* Organization of SPD aka "XFRM rules" ------------------------------------ Basic objects: - policy rule, struct xfrm_policy (=SPD entry) - bundle of transformations, struct dst_entry == struct xfrm_dst (=SA bundle) - instance of a transformer, struct xfrm_state (=SA) - template to clone xfrm_state, struct xfrm_tmpl SPD is plain linear list of xfrm_policy rules, ordered by priority. (To be compatible with existing pfkeyv2 implementations, many rules with priority of 0x7fffffff are allowed to exist and such rules are ordered in an unpredictable way, thanks to bsd folks.) Lookup is plain linear search until the first match with selector. If "action" is "block", then we prohibit the flow, otherwise: if "xfrms_nr" is zero, the flow passes untransformed. Otherwise, policy entry has list of up to XFRM_MAX_DEPTH transformations, described by templates xfrm_tmpl. Each template is resolved to a complete xfrm_state (see below) and we pack bundle of transformations to a dst_entry returned to requestor. dst -. xfrm .-> xfrm_state #1 |---. child .-> dst -. xfrm .-> xfrm_state #2 |---. child .-> dst -. xfrm .-> xfrm_state #3 |---. child .-> NULL Bundles are cached at xrfm_policy struct (field ->bundles). Resolution of xrfm_tmpl ----------------------- Template contains: 1. ->mode Mode: transport or tunnel 2. ->id.proto Protocol: AH/ESP/IPCOMP 3. ->id.daddr Remote tunnel endpoint, ignored for transport mode. Q: allow to resolve security gateway? 4. ->id.spi If not zero, static SPI. 5. ->saddr Local tunnel endpoint, ignored for transport mode. 6. ->algos List of allowed algos. Plain bitmask now. Q: ealgos, aalgos, calgos. What a mess... 7. ->share Sharing mode. Q: how to implement private sharing mode? To add struct sock* to flow id? Having this template we search through SAD searching for entries with appropriate mode/proto/algo, permitted by selector. If no appropriate entry found, it is requested from key manager. PROBLEMS: Q: How to find all the bundles referring to a physical path for PMTU discovery? Seems, dst should contain list of all parents... and enter to infinite locking hierarchy disaster. No! It is easier, we will not search for them, let them find us. We add genid to each dst plus pointer to genid of raw IP route, pmtu disc will update pmtu on raw IP route and increase its genid. dst_check() will see this for top level and trigger resyncing metrics. Plus, it will be made via sk->sk_dst_cache. Solved. */ struct xfrm_state_walk { struct list_head all; u8 state; u8 dying; u8 proto; u32 seq; struct xfrm_address_filter *filter; }; struct xfrm_state_offload { struct net_device *dev; struct net_device *real_dev; unsigned long offload_handle; unsigned int num_exthdrs; u8 flags; }; struct xfrm_mode { u8 encap; u8 family; u8 flags; }; /* Flags for xfrm_mode. */ enum { XFRM_MODE_FLAG_TUNNEL = 1, }; /* Full description of state of transformer. */ struct xfrm_state { possible_net_t xs_net; union { struct hlist_node gclist; struct hlist_node bydst; }; struct hlist_node bysrc; struct hlist_node byspi; refcount_t refcnt; spinlock_t lock; struct xfrm_id id; struct xfrm_selector sel; struct xfrm_mark mark; u32 if_id; u32 tfcpad; u32 genid; /* Key manager bits */ struct xfrm_state_walk km; /* Parameters of this state. */ struct { u32 reqid; u8 mode; u8 replay_window; u8 aalgo, ealgo, calgo; u8 flags; u16 family; xfrm_address_t saddr; int header_len; int trailer_len; u32 extra_flags; struct xfrm_mark smark; } props; struct xfrm_lifetime_cfg lft; /* Data for transformer */ struct xfrm_algo_auth *aalg; struct xfrm_algo *ealg; struct xfrm_algo *calg; struct xfrm_algo_aead *aead; const char *geniv; /* Data for encapsulator */ struct xfrm_encap_tmpl *encap; struct sock __rcu *encap_sk; /* Data for care-of address */ xfrm_address_t *coaddr; /* IPComp needs an IPIP tunnel for handling uncompressed packets */ struct xfrm_state *tunnel; /* If a tunnel, number of users + 1 */ atomic_t tunnel_users; /* State for replay detection */ struct xfrm_replay_state replay; struct xfrm_replay_state_esn *replay_esn; /* Replay detection state at the time we sent the last notification */ struct xfrm_replay_state preplay; struct xfrm_replay_state_esn *preplay_esn; /* The functions for replay detection. */ const struct xfrm_replay *repl; /* internal flag that only holds state for delayed aevent at the * moment */ u32 xflags; /* Replay detection notification settings */ u32 replay_maxage; u32 replay_maxdiff; /* Replay detection notification timer */ struct timer_list rtimer; /* Statistics */ struct xfrm_stats stats; struct xfrm_lifetime_cur curlft; struct hrtimer mtimer; struct xfrm_state_offload xso; /* used to fix curlft->add_time when changing date */ long saved_tmo; /* Last used time */ time64_t lastused; struct page_frag xfrag; /* Reference to data common to all the instances of this * transformer. */ const struct xfrm_type *type; struct xfrm_mode inner_mode; struct xfrm_mode inner_mode_iaf; struct xfrm_mode outer_mode; const struct xfrm_type_offload *type_offload; /* Security context */ struct xfrm_sec_ctx *security; /* Private data of this transformer, format is opaque, * interpreted by xfrm_type methods. */ void *data; }; static inline struct net *xs_net(struct xfrm_state *x) { return read_pnet(&x->xs_net); } /* xflags - make enum if more show up */ #define XFRM_TIME_DEFER 1 #define XFRM_SOFT_EXPIRE 2 enum { XFRM_STATE_VOID, XFRM_STATE_ACQ, XFRM_STATE_VALID, XFRM_STATE_ERROR, XFRM_STATE_EXPIRED, XFRM_STATE_DEAD }; /* callback structure passed from either netlink or pfkey */ struct km_event { union { u32 hard; u32 proto; u32 byid; u32 aevent; u32 type; } data; u32 seq; u32 portid; u32 event; struct net *net; }; struct xfrm_replay { void (*advance)(struct xfrm_state *x, __be32 net_seq); int (*check)(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq); int (*recheck)(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq); void (*notify)(struct xfrm_state *x, int event); int (*overflow)(struct xfrm_state *x, struct sk_buff *skb); }; struct xfrm_if_cb { struct xfrm_if *(*decode_session)(struct sk_buff *skb, unsigned short family); }; void xfrm_if_register_cb(const struct xfrm_if_cb *ifcb); void xfrm_if_unregister_cb(void); struct net_device; struct xfrm_type; struct xfrm_dst; struct xfrm_policy_afinfo { struct dst_ops *dst_ops; struct dst_entry *(*dst_lookup)(struct net *net, int tos, int oif, const xfrm_address_t *saddr, const xfrm_address_t *daddr, u32 mark); int (*get_saddr)(struct net *net, int oif, xfrm_address_t *saddr, xfrm_address_t *daddr, u32 mark); int (*fill_dst)(struct xfrm_dst *xdst, struct net_device *dev, const struct flowi *fl); struct dst_entry *(*blackhole_route)(struct net *net, struct dst_entry *orig); }; int xfrm_policy_register_afinfo(const struct xfrm_policy_afinfo *afinfo, int family); void xfrm_policy_unregister_afinfo(const struct xfrm_policy_afinfo *afinfo); void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c); void km_state_notify(struct xfrm_state *x, const struct km_event *c); struct xfrm_tmpl; int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol); void km_state_expired(struct xfrm_state *x, int hard, u32 portid); int __xfrm_state_delete(struct xfrm_state *x); struct xfrm_state_afinfo { u8 family; u8 proto; const struct xfrm_type_offload *type_offload_esp; const struct xfrm_type *type_esp; const struct xfrm_type *type_ipip; const struct xfrm_type *type_ipip6; const struct xfrm_type *type_comp; const struct xfrm_type *type_ah; const struct xfrm_type *type_routing; const struct xfrm_type *type_dstopts; int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*transport_finish)(struct sk_buff *skb, int async); void (*local_error)(struct sk_buff *skb, u32 mtu); }; int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo); int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo); struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family); struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family); struct xfrm_input_afinfo { u8 family; bool is_ipip; int (*callback)(struct sk_buff *skb, u8 protocol, int err); }; int xfrm_input_register_afinfo(const struct xfrm_input_afinfo *afinfo); int xfrm_input_unregister_afinfo(const struct xfrm_input_afinfo *afinfo); void xfrm_flush_gc(void); void xfrm_state_delete_tunnel(struct xfrm_state *x); struct xfrm_type { char *description; struct module *owner; u8 proto; u8 flags; #define XFRM_TYPE_NON_FRAGMENT 1 #define XFRM_TYPE_REPLAY_PROT 2 #define XFRM_TYPE_LOCAL_COADDR 4 #define XFRM_TYPE_REMOTE_COADDR 8 int (*init_state)(struct xfrm_state *x); void (*destructor)(struct xfrm_state *); int (*input)(struct xfrm_state *, struct sk_buff *skb); int (*output)(struct xfrm_state *, struct sk_buff *pskb); int (*reject)(struct xfrm_state *, struct sk_buff *, const struct flowi *); int (*hdr_offset)(struct xfrm_state *, struct sk_buff *, u8 **); }; int xfrm_register_type(const struct xfrm_type *type, unsigned short family); void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family); struct xfrm_type_offload { char *description; struct module *owner; u8 proto; void (*encap)(struct xfrm_state *, struct sk_buff *pskb); int (*input_tail)(struct xfrm_state *x, struct sk_buff *skb); int (*xmit)(struct xfrm_state *, struct sk_buff *pskb, netdev_features_t features); }; int xfrm_register_type_offload(const struct xfrm_type_offload *type, unsigned short family); void xfrm_unregister_type_offload(const struct xfrm_type_offload *type, unsigned short family); static inline int xfrm_af2proto(unsigned int family) { switch(family) { case AF_INET: return IPPROTO_IPIP; case AF_INET6: return IPPROTO_IPV6; default: return 0; } } static inline const struct xfrm_mode *xfrm_ip2inner_mode(struct xfrm_state *x, int ipproto) { if ((ipproto == IPPROTO_IPIP && x->props.family == AF_INET) || (ipproto == IPPROTO_IPV6 && x->props.family == AF_INET6)) return &x->inner_mode; else return &x->inner_mode_iaf; } struct xfrm_tmpl { /* id in template is interpreted as: * daddr - destination of tunnel, may be zero for transport mode. * spi - zero to acquire spi. Not zero if spi is static, then * daddr must be fixed too. * proto - AH/ESP/IPCOMP */ struct xfrm_id id; /* Source address of tunnel. Ignored, if it is not a tunnel. */ xfrm_address_t saddr; unsigned short encap_family; u32 reqid; /* Mode: transport, tunnel etc. */ u8 mode; /* Sharing mode: unique, this session only, this user only etc. */ u8 share; /* May skip this transfomration if no SA is found */ u8 optional; /* Skip aalgos/ealgos/calgos checks. */ u8 allalgs; /* Bit mask of algos allowed for acquisition */ u32 aalgos; u32 ealgos; u32 calgos; }; #define XFRM_MAX_DEPTH 6 #define XFRM_MAX_OFFLOAD_DEPTH 1 struct xfrm_policy_walk_entry { struct list_head all; u8 dead; }; struct xfrm_policy_walk { struct xfrm_policy_walk_entry walk; u8 type; u32 seq; }; struct xfrm_policy_queue { struct sk_buff_head hold_queue; struct timer_list hold_timer; unsigned long timeout; }; struct xfrm_policy { possible_net_t xp_net; struct hlist_node bydst; struct hlist_node byidx; /* This lock only affects elements except for entry. */ rwlock_t lock; refcount_t refcnt; u32 pos; struct timer_list timer; atomic_t genid; u32 priority; u32 index; u32 if_id; struct xfrm_mark mark; struct xfrm_selector selector; struct xfrm_lifetime_cfg lft; struct xfrm_lifetime_cur curlft; struct xfrm_policy_walk_entry walk; struct xfrm_policy_queue polq; bool bydst_reinsert; u8 type; u8 action; u8 flags; u8 xfrm_nr; u16 family; struct xfrm_sec_ctx *security; struct xfrm_tmpl xfrm_vec[XFRM_MAX_DEPTH]; struct hlist_node bydst_inexact_list; struct rcu_head rcu; }; static inline struct net *xp_net(const struct xfrm_policy *xp) { return read_pnet(&xp->xp_net); } struct xfrm_kmaddress { xfrm_address_t local; xfrm_address_t remote; u32 reserved; u16 family; }; struct xfrm_migrate { xfrm_address_t old_daddr; xfrm_address_t old_saddr; xfrm_address_t new_daddr; xfrm_address_t new_saddr; u8 proto; u8 mode; u16 reserved; u32 reqid; u16 old_family; u16 new_family; }; #define XFRM_KM_TIMEOUT 30 /* what happened */ #define XFRM_REPLAY_UPDATE XFRM_AE_CR #define XFRM_REPLAY_TIMEOUT XFRM_AE_CE /* default aevent timeout in units of 100ms */ #define XFRM_AE_ETIME 10 /* Async Event timer multiplier */ #define XFRM_AE_ETH_M 10 /* default seq threshold size */ #define XFRM_AE_SEQT_SIZE 2 struct xfrm_mgr { struct list_head list; int (*notify)(struct xfrm_state *x, const struct km_event *c); int (*acquire)(struct xfrm_state *x, struct xfrm_tmpl *, struct xfrm_policy *xp); struct xfrm_policy *(*compile_policy)(struct sock *sk, int opt, u8 *data, int len, int *dir); int (*new_mapping)(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport); int (*notify_policy)(struct xfrm_policy *x, int dir, const struct km_event *c); int (*report)(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr); int (*migrate)(const struct xfrm_selector *sel, u8 dir, u8 type, const struct xfrm_migrate *m, int num_bundles, const struct xfrm_kmaddress *k, const struct xfrm_encap_tmpl *encap); bool (*is_alive)(const struct km_event *c); }; int xfrm_register_km(struct xfrm_mgr *km); int xfrm_unregister_km(struct xfrm_mgr *km); struct xfrm_tunnel_skb_cb { union { struct inet_skb_parm h4; struct inet6_skb_parm h6; } header; union { struct ip_tunnel *ip4; struct ip6_tnl *ip6; } tunnel; }; #define XFRM_TUNNEL_SKB_CB(__skb) ((struct xfrm_tunnel_skb_cb *)&((__skb)->cb[0])) /* * This structure is used for the duration where packets are being * transformed by IPsec. As soon as the packet leaves IPsec the * area beyond the generic IP part may be overwritten. */ struct xfrm_skb_cb { struct xfrm_tunnel_skb_cb header; /* Sequence number for replay protection. */ union { struct { __u32 low; __u32 hi; } output; struct { __be32 low; __be32 hi; } input; } seq; }; #define XFRM_SKB_CB(__skb) ((struct xfrm_skb_cb *)&((__skb)->cb[0])) /* * This structure is used by the afinfo prepare_input/prepare_output functions * to transmit header information to the mode input/output functions. */ struct xfrm_mode_skb_cb { struct xfrm_tunnel_skb_cb header; /* Copied from header for IPv4, always set to zero and DF for IPv6. */ __be16 id; __be16 frag_off; /* IP header length (excluding options or extension headers). */ u8 ihl; /* TOS for IPv4, class for IPv6. */ u8 tos; /* TTL for IPv4, hop limitfor IPv6. */ u8 ttl; /* Protocol for IPv4, NH for IPv6. */ u8 protocol; /* Option length for IPv4, zero for IPv6. */ u8 optlen; /* Used by IPv6 only, zero for IPv4. */ u8 flow_lbl[3]; }; #define XFRM_MODE_SKB_CB(__skb) ((struct xfrm_mode_skb_cb *)&((__skb)->cb[0])) /* * This structure is used by the input processing to locate the SPI and * related information. */ struct xfrm_spi_skb_cb { struct xfrm_tunnel_skb_cb header; unsigned int daddroff; unsigned int family; __be32 seq; }; #define XFRM_SPI_SKB_CB(__skb) ((struct xfrm_spi_skb_cb *)&((__skb)->cb[0])) #ifdef CONFIG_AUDITSYSCALL static inline struct audit_buffer *xfrm_audit_start(const char *op) { struct audit_buffer *audit_buf = NULL; if (audit_enabled == AUDIT_OFF) return NULL; audit_buf = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_MAC_IPSEC_EVENT); if (audit_buf == NULL) return NULL; audit_log_format(audit_buf, "op=%s", op); return audit_buf; } static inline void xfrm_audit_helper_usrinfo(bool task_valid, struct audit_buffer *audit_buf) { const unsigned int auid = from_kuid(&init_user_ns, task_valid ? audit_get_loginuid(current) : INVALID_UID); const unsigned int ses = task_valid ? audit_get_sessionid(current) : AUDIT_SID_UNSET; audit_log_format(audit_buf, " auid=%u ses=%u", auid, ses); audit_log_task_context(audit_buf); } void xfrm_audit_policy_add(struct xfrm_policy *xp, int result, bool task_valid); void xfrm_audit_policy_delete(struct xfrm_policy *xp, int result, bool task_valid); void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid); void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid); void xfrm_audit_state_replay_overflow(struct xfrm_state *x, struct sk_buff *skb); void xfrm_audit_state_replay(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq); void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family); void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, __be32 net_spi, __be32 net_seq); void xfrm_audit_state_icvfail(struct xfrm_state *x, struct sk_buff *skb, u8 proto); #else static inline void xfrm_audit_policy_add(struct xfrm_policy *xp, int result, bool task_valid) { } static inline void xfrm_audit_policy_delete(struct xfrm_policy *xp, int result, bool task_valid) { } static inline void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid) { } static inline void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid) { } static inline void xfrm_audit_state_replay_overflow(struct xfrm_state *x, struct sk_buff *skb) { } static inline void xfrm_audit_state_replay(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq) { } static inline void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family) { } static inline void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, __be32 net_spi, __be32 net_seq) { } static inline void xfrm_audit_state_icvfail(struct xfrm_state *x, struct sk_buff *skb, u8 proto) { } #endif /* CONFIG_AUDITSYSCALL */ static inline void xfrm_pol_hold(struct xfrm_policy *policy) { if (likely(policy != NULL)) refcount_inc(&policy->refcnt); } void xfrm_policy_destroy(struct xfrm_policy *policy); static inline void xfrm_pol_put(struct xfrm_policy *policy) { if (refcount_dec_and_test(&policy->refcnt)) xfrm_policy_destroy(policy); } static inline void xfrm_pols_put(struct xfrm_policy **pols, int npols) { int i; for (i = npols - 1; i >= 0; --i) xfrm_pol_put(pols[i]); } void __xfrm_state_destroy(struct xfrm_state *, bool); static inline void __xfrm_state_put(struct xfrm_state *x) { refcount_dec(&x->refcnt); } static inline void xfrm_state_put(struct xfrm_state *x) { if (refcount_dec_and_test(&x->refcnt)) __xfrm_state_destroy(x, false); } static inline void xfrm_state_put_sync(struct xfrm_state *x) { if (refcount_dec_and_test(&x->refcnt)) __xfrm_state_destroy(x, true); } static inline void xfrm_state_hold(struct xfrm_state *x) { refcount_inc(&x->refcnt); } static inline bool addr_match(const void *token1, const void *token2, unsigned int prefixlen) { const __be32 *a1 = token1; const __be32 *a2 = token2; unsigned int pdw; unsigned int pbi; pdw = prefixlen >> 5; /* num of whole u32 in prefix */ pbi = prefixlen & 0x1f; /* num of bits in incomplete u32 in prefix */ if (pdw) if (memcmp(a1, a2, pdw << 2)) return false; if (pbi) { __be32 mask; mask = htonl((0xffffffff) << (32 - pbi)); if ((a1[pdw] ^ a2[pdw]) & mask) return false; } return true; } static inline bool addr4_match(__be32 a1, __be32 a2, u8 prefixlen) { /* C99 6.5.7 (3): u32 << 32 is undefined behaviour */ if (sizeof(long) == 4 && prefixlen == 0) return true; return !((a1 ^ a2) & htonl(~0UL << (32 - prefixlen))); } static __inline__ __be16 xfrm_flowi_sport(const struct flowi *fl, const union flowi_uli *uli) { __be16 port; switch(fl->flowi_proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_UDPLITE: case IPPROTO_SCTP: port = uli->ports.sport; break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: port = htons(uli->icmpt.type); break; case IPPROTO_MH: port = htons(uli->mht.type); break; case IPPROTO_GRE: port = htons(ntohl(uli->gre_key) >> 16); break; default: port = 0; /*XXX*/ } return port; } static __inline__ __be16 xfrm_flowi_dport(const struct flowi *fl, const union flowi_uli *uli) { __be16 port; switch(fl->flowi_proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_UDPLITE: case IPPROTO_SCTP: port = uli->ports.dport; break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: port = htons(uli->icmpt.code); break; case IPPROTO_GRE: port = htons(ntohl(uli->gre_key) & 0xffff); break; default: port = 0; /*XXX*/ } return port; } bool xfrm_selector_match(const struct xfrm_selector *sel, const struct flowi *fl, unsigned short family); #ifdef CONFIG_SECURITY_NETWORK_XFRM /* If neither has a context --> match * Otherwise, both must have a context and the sids, doi, alg must match */ static inline bool xfrm_sec_ctx_match(struct xfrm_sec_ctx *s1, struct xfrm_sec_ctx *s2) { return ((!s1 && !s2) || (s1 && s2 && (s1->ctx_sid == s2->ctx_sid) && (s1->ctx_doi == s2->ctx_doi) && (s1->ctx_alg == s2->ctx_alg))); } #else static inline bool xfrm_sec_ctx_match(struct xfrm_sec_ctx *s1, struct xfrm_sec_ctx *s2) { return true; } #endif /* A struct encoding bundle of transformations to apply to some set of flow. * * xdst->child points to the next element of bundle. * dst->xfrm points to an instanse of transformer. * * Due to unfortunate limitations of current routing cache, which we * have no time to fix, it mirrors struct rtable and bound to the same * routing key, including saddr,daddr. However, we can have many of * bundles differing by session id. All the bundles grow from a parent * policy rule. */ struct xfrm_dst { union { struct dst_entry dst; struct rtable rt; struct rt6_info rt6; } u; struct dst_entry *route; struct dst_entry *child; struct dst_entry *path; struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX]; int num_pols, num_xfrms; u32 xfrm_genid; u32 policy_genid; u32 route_mtu_cached; u32 child_mtu_cached; u32 route_cookie; u32 path_cookie; }; static inline struct dst_entry *xfrm_dst_path(const struct dst_entry *dst) { #ifdef CONFIG_XFRM if (dst->xfrm || (dst->flags & DST_XFRM_QUEUE)) { const struct xfrm_dst *xdst = (const struct xfrm_dst *) dst; return xdst->path; } #endif return (struct dst_entry *) dst; } static inline struct dst_entry *xfrm_dst_child(const struct dst_entry *dst) { #ifdef CONFIG_XFRM if (dst->xfrm || (dst->flags & DST_XFRM_QUEUE)) { struct xfrm_dst *xdst = (struct xfrm_dst *) dst; return xdst->child; } #endif return NULL; } #ifdef CONFIG_XFRM static inline void xfrm_dst_set_child(struct xfrm_dst *xdst, struct dst_entry *child) { xdst->child = child; } static inline void xfrm_dst_destroy(struct xfrm_dst *xdst) { xfrm_pols_put(xdst->pols, xdst->num_pols); dst_release(xdst->route); if (likely(xdst->u.dst.xfrm)) xfrm_state_put(xdst->u.dst.xfrm); } #endif void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev); struct xfrm_if_parms { int link; /* ifindex of underlying L2 interface */ u32 if_id; /* interface identifyer */ }; struct xfrm_if { struct xfrm_if __rcu *next; /* next interface in list */ struct net_device *dev; /* virtual device associated with interface */ struct net *net; /* netns for packet i/o */ struct xfrm_if_parms p; /* interface parms */ struct gro_cells gro_cells; }; struct xfrm_offload { /* Output sequence number for replay protection on offloading. */ struct { __u32 low; __u32 hi; } seq; __u32 flags; #define SA_DELETE_REQ 1 #define CRYPTO_DONE 2 #define CRYPTO_NEXT_DONE 4 #define CRYPTO_FALLBACK 8 #define XFRM_GSO_SEGMENT 16 #define XFRM_GRO 32 #define XFRM_ESP_NO_TRAILER 64 #define XFRM_DEV_RESUME 128 #define XFRM_XMIT 256 __u32 status; #define CRYPTO_SUCCESS 1 #define CRYPTO_GENERIC_ERROR 2 #define CRYPTO_TRANSPORT_AH_AUTH_FAILED 4 #define CRYPTO_TRANSPORT_ESP_AUTH_FAILED 8 #define CRYPTO_TUNNEL_AH_AUTH_FAILED 16 #define CRYPTO_TUNNEL_ESP_AUTH_FAILED 32 #define CRYPTO_INVALID_PACKET_SYNTAX 64 #define CRYPTO_INVALID_PROTOCOL 128 __u8 proto; }; struct sec_path { int len; int olen; struct xfrm_state *xvec[XFRM_MAX_DEPTH]; struct xfrm_offload ovec[XFRM_MAX_OFFLOAD_DEPTH]; }; struct sec_path *secpath_set(struct sk_buff *skb); static inline void secpath_reset(struct sk_buff *skb) { #ifdef CONFIG_XFRM skb_ext_del(skb, SKB_EXT_SEC_PATH); #endif } static inline int xfrm_addr_any(const xfrm_address_t *addr, unsigned short family) { switch (family) { case AF_INET: return addr->a4 == 0; case AF_INET6: return ipv6_addr_any(&addr->in6); } return 0; } static inline int __xfrm4_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x) { return (tmpl->saddr.a4 && tmpl->saddr.a4 != x->props.saddr.a4); } static inline int __xfrm6_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x) { return (!ipv6_addr_any((struct in6_addr*)&tmpl->saddr) && !ipv6_addr_equal((struct in6_addr *)&tmpl->saddr, (struct in6_addr*)&x->props.saddr)); } static inline int xfrm_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x, unsigned short family) { switch (family) { case AF_INET: return __xfrm4_state_addr_cmp(tmpl, x); case AF_INET6: return __xfrm6_state_addr_cmp(tmpl, x); } return !0; } #ifdef CONFIG_XFRM int __xfrm_policy_check(struct sock *, int dir, struct sk_buff *skb, unsigned short family); static inline int __xfrm_policy_check2(struct sock *sk, int dir, struct sk_buff *skb, unsigned int family, int reverse) { struct net *net = dev_net(skb->dev); int ndir = dir | (reverse ? XFRM_POLICY_MASK + 1 : 0); if (sk && sk->sk_policy[XFRM_POLICY_IN]) return __xfrm_policy_check(sk, ndir, skb, family); return (!net->xfrm.policy_count[dir] && !secpath_exists(skb)) || (skb_dst(skb) && (skb_dst(skb)->flags & DST_NOPOLICY)) || __xfrm_policy_check(sk, ndir, skb, family); } static inline int xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family) { return __xfrm_policy_check2(sk, dir, skb, family, 0); } static inline int xfrm4_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return xfrm_policy_check(sk, dir, skb, AF_INET); } static inline int xfrm6_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return xfrm_policy_check(sk, dir, skb, AF_INET6); } static inline int xfrm4_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return __xfrm_policy_check2(sk, dir, skb, AF_INET, 1); } static inline int xfrm6_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return __xfrm_policy_check2(sk, dir, skb, AF_INET6, 1); } int __xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned int family, int reverse); static inline int xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned int family) { return __xfrm_decode_session(skb, fl, family, 0); } static inline int xfrm_decode_session_reverse(struct sk_buff *skb, struct flowi *fl, unsigned int family) { return __xfrm_decode_session(skb, fl, family, 1); } int __xfrm_route_forward(struct sk_buff *skb, unsigned short family); static inline int xfrm_route_forward(struct sk_buff *skb, unsigned short family) { struct net *net = dev_net(skb->dev); return !net->xfrm.policy_count[XFRM_POLICY_OUT] || (skb_dst(skb)->flags & DST_NOXFRM) || __xfrm_route_forward(skb, family); } static inline int xfrm4_route_forward(struct sk_buff *skb) { return xfrm_route_forward(skb, AF_INET); } static inline int xfrm6_route_forward(struct sk_buff *skb) { return xfrm_route_forward(skb, AF_INET6); } int __xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk); static inline int xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk) { sk->sk_policy[0] = NULL; sk->sk_policy[1] = NULL; if (unlikely(osk->sk_policy[0] || osk->sk_policy[1])) return __xfrm_sk_clone_policy(sk, osk); return 0; } int xfrm_policy_delete(struct xfrm_policy *pol, int dir); static inline void xfrm_sk_free_policy(struct sock *sk) { struct xfrm_policy *pol; pol = rcu_dereference_protected(sk->sk_policy[0], 1); if (unlikely(pol != NULL)) { xfrm_policy_delete(pol, XFRM_POLICY_MAX); sk->sk_policy[0] = NULL; } pol = rcu_dereference_protected(sk->sk_policy[1], 1); if (unlikely(pol != NULL)) { xfrm_policy_delete(pol, XFRM_POLICY_MAX+1); sk->sk_policy[1] = NULL; } } #else static inline void xfrm_sk_free_policy(struct sock *sk) {} static inline int xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk) { return 0; } static inline int xfrm6_route_forward(struct sk_buff *skb) { return 1; } static inline int xfrm4_route_forward(struct sk_buff *skb) { return 1; } static inline int xfrm6_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } static inline int xfrm4_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } static inline int xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family) { return 1; } static inline int xfrm_decode_session_reverse(struct sk_buff *skb, struct flowi *fl, unsigned int family) { return -ENOSYS; } static inline int xfrm4_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } static inline int xfrm6_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } #endif static __inline__ xfrm_address_t *xfrm_flowi_daddr(const struct flowi *fl, unsigned short family) { switch (family){ case AF_INET: return (xfrm_address_t *)&fl->u.ip4.daddr; case AF_INET6: return (xfrm_address_t *)&fl->u.ip6.daddr; } return NULL; } static __inline__ xfrm_address_t *xfrm_flowi_saddr(const struct flowi *fl, unsigned short family) { switch (family){ case AF_INET: return (xfrm_address_t *)&fl->u.ip4.saddr; case AF_INET6: return (xfrm_address_t *)&fl->u.ip6.saddr; } return NULL; } static __inline__ void xfrm_flowi_addr_get(const struct flowi *fl, xfrm_address_t *saddr, xfrm_address_t *daddr, unsigned short family) { switch(family) { case AF_INET: memcpy(&saddr->a4, &fl->u.ip4.saddr, sizeof(saddr->a4)); memcpy(&daddr->a4, &fl->u.ip4.daddr, sizeof(daddr->a4)); break; case AF_INET6: saddr->in6 = fl->u.ip6.saddr; daddr->in6 = fl->u.ip6.daddr; break; } } static __inline__ int __xfrm4_state_addr_check(const struct xfrm_state *x, const xfrm_address_t *daddr, const xfrm_address_t *saddr) { if (daddr->a4 == x->id.daddr.a4 && (saddr->a4 == x->props.saddr.a4 || !saddr->a4 || !x->props.saddr.a4)) return 1; return 0; } static __inline__ int __xfrm6_state_addr_check(const struct xfrm_state *x, const xfrm_address_t *daddr, const xfrm_address_t *saddr) { if (ipv6_addr_equal((struct in6_addr *)daddr, (struct in6_addr *)&x->id.daddr) && (ipv6_addr_equal((struct in6_addr *)saddr, (struct in6_addr *)&x->props.saddr) || ipv6_addr_any((struct in6_addr *)saddr) || ipv6_addr_any((struct in6_addr *)&x->props.saddr))) return 1; return 0; } static __inline__ int xfrm_state_addr_check(const struct xfrm_state *x, const xfrm_address_t *daddr, const xfrm_address_t *saddr, unsigned short family) { switch (family) { case AF_INET: return __xfrm4_state_addr_check(x, daddr, saddr); case AF_INET6: return __xfrm6_state_addr_check(x, daddr, saddr); } return 0; } static __inline__ int xfrm_state_addr_flow_check(const struct xfrm_state *x, const struct flowi *fl, unsigned short family) { switch (family) { case AF_INET: return __xfrm4_state_addr_check(x, (const xfrm_address_t *)&fl->u.ip4.daddr, (const xfrm_address_t *)&fl->u.ip4.saddr); case AF_INET6: return __xfrm6_state_addr_check(x, (const xfrm_address_t *)&fl->u.ip6.daddr, (const xfrm_address_t *)&fl->u.ip6.saddr); } return 0; } static inline int xfrm_state_kern(const struct xfrm_state *x) { return atomic_read(&x->tunnel_users); } static inline bool xfrm_id_proto_valid(u8 proto) { switch (proto) { case IPPROTO_AH: case IPPROTO_ESP: case IPPROTO_COMP: #if IS_ENABLED(CONFIG_IPV6) case IPPROTO_ROUTING: case IPPROTO_DSTOPTS: #endif return true; default: return false; } } /* IPSEC_PROTO_ANY only matches 3 IPsec protocols, 0 could match all. */ static inline int xfrm_id_proto_match(u8 proto, u8 userproto) { return (!userproto || proto == userproto || (userproto == IPSEC_PROTO_ANY && (proto == IPPROTO_AH || proto == IPPROTO_ESP || proto == IPPROTO_COMP))); } /* * xfrm algorithm information */ struct xfrm_algo_aead_info { char *geniv; u16 icv_truncbits; }; struct xfrm_algo_auth_info { u16 icv_truncbits; u16 icv_fullbits; }; struct xfrm_algo_encr_info { char *geniv; u16 blockbits; u16 defkeybits; }; struct xfrm_algo_comp_info { u16 threshold; }; struct xfrm_algo_desc { char *name; char *compat; u8 available:1; u8 pfkey_supported:1; union { struct xfrm_algo_aead_info aead; struct xfrm_algo_auth_info auth; struct xfrm_algo_encr_info encr; struct xfrm_algo_comp_info comp; } uinfo; struct sadb_alg desc; }; /* XFRM protocol handlers. */ struct xfrm4_protocol { int (*handler)(struct sk_buff *skb); int (*input_handler)(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, u32 info); struct xfrm4_protocol __rcu *next; int priority; }; struct xfrm6_protocol { int (*handler)(struct sk_buff *skb); int (*input_handler)(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info); struct xfrm6_protocol __rcu *next; int priority; }; /* XFRM tunnel handlers. */ struct xfrm_tunnel { int (*handler)(struct sk_buff *skb); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, u32 info); struct xfrm_tunnel __rcu *next; int priority; }; struct xfrm6_tunnel { int (*handler)(struct sk_buff *skb); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info); struct xfrm6_tunnel __rcu *next; int priority; }; void xfrm_init(void); void xfrm4_init(void); int xfrm_state_init(struct net *net); void xfrm_state_fini(struct net *net); void xfrm4_state_init(void); void xfrm4_protocol_init(void); #ifdef CONFIG_XFRM int xfrm6_init(void); void xfrm6_fini(void); int xfrm6_state_init(void); void xfrm6_state_fini(void); int xfrm6_protocol_init(void); void xfrm6_protocol_fini(void); #else static inline int xfrm6_init(void) { return 0; } static inline void xfrm6_fini(void) { ; } #endif #ifdef CONFIG_XFRM_STATISTICS int xfrm_proc_init(struct net *net); void xfrm_proc_fini(struct net *net); #endif int xfrm_sysctl_init(struct net *net); #ifdef CONFIG_SYSCTL void xfrm_sysctl_fini(struct net *net); #else static inline void xfrm_sysctl_fini(struct net *net) { } #endif void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto, struct xfrm_address_filter *filter); int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, int (*func)(struct xfrm_state *, int, void*), void *); void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net); struct xfrm_state *xfrm_state_alloc(struct net *net); void xfrm_state_free(struct xfrm_state *x); struct xfrm_state *xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr, const struct flowi *fl, struct xfrm_tmpl *tmpl, struct xfrm_policy *pol, int *err, unsigned short family, u32 if_id); struct xfrm_state *xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id, xfrm_address_t *daddr, xfrm_address_t *saddr, unsigned short family, u8 mode, u8 proto, u32 reqid); struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi, unsigned short family); int xfrm_state_check_expire(struct xfrm_state *x); void xfrm_state_insert(struct xfrm_state *x); int xfrm_state_add(struct xfrm_state *x); int xfrm_state_update(struct xfrm_state *x); struct xfrm_state *xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family); struct xfrm_state *xfrm_state_lookup_byaddr(struct net *net, u32 mark, const xfrm_address_t *daddr, const xfrm_address_t *saddr, u8 proto, unsigned short family); #ifdef CONFIG_XFRM_SUB_POLICY void xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, unsigned short family); void xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, unsigned short family); #else static inline void xfrm_tmpl_sort(struct xfrm_tmpl **d, struct xfrm_tmpl **s, int n, unsigned short family) { } static inline void xfrm_state_sort(struct xfrm_state **d, struct xfrm_state **s, int n, unsigned short family) { } #endif struct xfrmk_sadinfo { u32 sadhcnt; /* current hash bkts */ u32 sadhmcnt; /* max allowed hash bkts */ u32 sadcnt; /* current running count */ }; struct xfrmk_spdinfo { u32 incnt; u32 outcnt; u32 fwdcnt; u32 inscnt; u32 outscnt; u32 fwdscnt; u32 spdhcnt; u32 spdhmcnt; }; struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq); int xfrm_state_delete(struct xfrm_state *x); int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync); int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid); void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si); void xfrm_spd_getinfo(struct net *net, struct xfrmk_spdinfo *si); u32 xfrm_replay_seqhi(struct xfrm_state *x, __be32 net_seq); int xfrm_init_replay(struct xfrm_state *x); u32 __xfrm_state_mtu(struct xfrm_state *x, int mtu); u32 xfrm_state_mtu(struct xfrm_state *x, int mtu); int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload); int xfrm_init_state(struct xfrm_state *x); int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int xfrm_input_resume(struct sk_buff *skb, int nexthdr); int xfrm_trans_queue_net(struct net *net, struct sk_buff *skb, int (*finish)(struct net *, struct sock *, struct sk_buff *)); int xfrm_trans_queue(struct sk_buff *skb, int (*finish)(struct net *, struct sock *, struct sk_buff *)); int xfrm_output_resume(struct sock *sk, struct sk_buff *skb, int err); int xfrm_output(struct sock *sk, struct sk_buff *skb); #if IS_ENABLED(CONFIG_NET_PKTGEN) int pktgen_xfrm_outer_mode_output(struct xfrm_state *x, struct sk_buff *skb); #endif void xfrm_local_error(struct sk_buff *skb, int mtu); int xfrm4_extract_input(struct xfrm_state *x, struct sk_buff *skb); int xfrm4_rcv_encap(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int xfrm4_transport_finish(struct sk_buff *skb, int async); int xfrm4_rcv(struct sk_buff *skb); int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq); static inline int xfrm4_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi) { XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4 = NULL; XFRM_SPI_SKB_CB(skb)->family = AF_INET; XFRM_SPI_SKB_CB(skb)->daddroff = offsetof(struct iphdr, daddr); return xfrm_input(skb, nexthdr, spi, 0); } int xfrm4_output(struct net *net, struct sock *sk, struct sk_buff *skb); int xfrm4_output_finish(struct sock *sk, struct sk_buff *skb); int xfrm4_protocol_register(struct xfrm4_protocol *handler, unsigned char protocol); int xfrm4_protocol_deregister(struct xfrm4_protocol *handler, unsigned char protocol); int xfrm4_tunnel_register(struct xfrm_tunnel *handler, unsigned short family); int xfrm4_tunnel_deregister(struct xfrm_tunnel *handler, unsigned short family); void xfrm4_local_error(struct sk_buff *skb, u32 mtu); int xfrm6_extract_input(struct xfrm_state *x, struct sk_buff *skb); int xfrm6_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi, struct ip6_tnl *t); int xfrm6_rcv_encap(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int xfrm6_transport_finish(struct sk_buff *skb, int async); int xfrm6_rcv_tnl(struct sk_buff *skb, struct ip6_tnl *t); int xfrm6_rcv(struct sk_buff *skb); int xfrm6_input_addr(struct sk_buff *skb, xfrm_address_t *daddr, xfrm_address_t *saddr, u8 proto); void xfrm6_local_error(struct sk_buff *skb, u32 mtu); int xfrm6_protocol_register(struct xfrm6_protocol *handler, unsigned char protocol); int xfrm6_protocol_deregister(struct xfrm6_protocol *handler, unsigned char protocol); int xfrm6_tunnel_register(struct xfrm6_tunnel *handler, unsigned short family); int xfrm6_tunnel_deregister(struct xfrm6_tunnel *handler, unsigned short family); __be32 xfrm6_tunnel_alloc_spi(struct net *net, xfrm_address_t *saddr); __be32 xfrm6_tunnel_spi_lookup(struct net *net, const xfrm_address_t *saddr); int xfrm6_output(struct net *net, struct sock *sk, struct sk_buff *skb); int xfrm6_output_finish(struct sock *sk, struct sk_buff *skb); int xfrm6_find_1stfragopt(struct xfrm_state *x, struct sk_buff *skb, u8 **prevhdr); #ifdef CONFIG_XFRM void xfrm6_local_rxpmtu(struct sk_buff *skb, u32 mtu); int xfrm4_udp_encap_rcv(struct sock *sk, struct sk_buff *skb); int xfrm6_udp_encap_rcv(struct sock *sk, struct sk_buff *skb); int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen); #else static inline int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen) { return -ENOPROTOOPT; } #endif struct dst_entry *__xfrm_dst_lookup(struct net *net, int tos, int oif, const xfrm_address_t *saddr, const xfrm_address_t *daddr, int family, u32 mark); struct xfrm_policy *xfrm_policy_alloc(struct net *net, gfp_t gfp); void xfrm_policy_walk_init(struct xfrm_policy_walk *walk, u8 type); int xfrm_policy_walk(struct net *net, struct xfrm_policy_walk *walk, int (*func)(struct xfrm_policy *, int, int, void*), void *); void xfrm_policy_walk_done(struct xfrm_policy_walk *walk, struct net *net); int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl); struct xfrm_policy *xfrm_policy_bysel_ctx(struct net *net, const struct xfrm_mark *mark, u32 if_id, u8 type, int dir, struct xfrm_selector *sel, struct xfrm_sec_ctx *ctx, int delete, int *err); struct xfrm_policy *xfrm_policy_byid(struct net *net, const struct xfrm_mark *mark, u32 if_id, u8 type, int dir, u32 id, int delete, int *err); int xfrm_policy_flush(struct net *net, u8 type, bool task_valid); void xfrm_policy_hash_rebuild(struct net *net); u32 xfrm_get_acqseq(void); int verify_spi_info(u8 proto, u32 min, u32 max); int xfrm_alloc_spi(struct xfrm_state *x, u32 minspi, u32 maxspi); struct xfrm_state *xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid, u32 if_id, u8 proto, const xfrm_address_t *daddr, const xfrm_address_t *saddr, int create, unsigned short family); int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol); #ifdef CONFIG_XFRM_MIGRATE int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, const struct xfrm_migrate *m, int num_bundles, const struct xfrm_kmaddress *k, const struct xfrm_encap_tmpl *encap); struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net); struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x, struct xfrm_migrate *m, struct xfrm_encap_tmpl *encap); int xfrm_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, struct xfrm_migrate *m, int num_bundles, struct xfrm_kmaddress *k, struct net *net, struct xfrm_encap_tmpl *encap); #endif int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport); void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid); int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr); void xfrm_input_init(void); int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq); void xfrm_probe_algs(void); int xfrm_count_pfkey_auth_supported(void); int xfrm_count_pfkey_enc_supported(void); struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx); struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx); struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id); struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id); struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id); struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe); struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe); struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe); struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe); static inline bool xfrm6_addr_equal(const xfrm_address_t *a, const xfrm_address_t *b) { return ipv6_addr_equal((const struct in6_addr *)a, (const struct in6_addr *)b); } static inline bool xfrm_addr_equal(const xfrm_address_t *a, const xfrm_address_t *b, sa_family_t family) { switch (family) { default: case AF_INET: return ((__force u32)a->a4 ^ (__force u32)b->a4) == 0; case AF_INET6: return xfrm6_addr_equal(a, b); } } static inline int xfrm_policy_id2dir(u32 index) { return index & 7; } #ifdef CONFIG_XFRM static inline int xfrm_aevent_is_on(struct net *net) { struct sock *nlsk; int ret = 0; rcu_read_lock(); nlsk = rcu_dereference(net->xfrm.nlsk); if (nlsk) ret = netlink_has_listeners(nlsk, XFRMNLGRP_AEVENTS); rcu_read_unlock(); return ret; } static inline int xfrm_acquire_is_on(struct net *net) { struct sock *nlsk; int ret = 0; rcu_read_lock(); nlsk = rcu_dereference(net->xfrm.nlsk); if (nlsk) ret = netlink_has_listeners(nlsk, XFRMNLGRP_ACQUIRE); rcu_read_unlock(); return ret; } #endif static inline unsigned int aead_len(struct xfrm_algo_aead *alg) { return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); } static inline unsigned int xfrm_alg_len(const struct xfrm_algo *alg) { return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); } static inline unsigned int xfrm_alg_auth_len(const struct xfrm_algo_auth *alg) { return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); } static inline unsigned int xfrm_replay_state_esn_len(struct xfrm_replay_state_esn *replay_esn) { return sizeof(*replay_esn) + replay_esn->bmp_len * sizeof(__u32); } #ifdef CONFIG_XFRM_MIGRATE static inline int xfrm_replay_clone(struct xfrm_state *x, struct xfrm_state *orig) { x->replay_esn = kmemdup(orig->replay_esn, xfrm_replay_state_esn_len(orig->replay_esn), GFP_KERNEL); if (!x->replay_esn) return -ENOMEM; x->preplay_esn = kmemdup(orig->preplay_esn, xfrm_replay_state_esn_len(orig->preplay_esn), GFP_KERNEL); if (!x->preplay_esn) return -ENOMEM; return 0; } static inline struct xfrm_algo_aead *xfrm_algo_aead_clone(struct xfrm_algo_aead *orig) { return kmemdup(orig, aead_len(orig), GFP_KERNEL); } static inline struct xfrm_algo *xfrm_algo_clone(struct xfrm_algo *orig) { return kmemdup(orig, xfrm_alg_len(orig), GFP_KERNEL); } static inline struct xfrm_algo_auth *xfrm_algo_auth_clone(struct xfrm_algo_auth *orig) { return kmemdup(orig, xfrm_alg_auth_len(orig), GFP_KERNEL); } static inline void xfrm_states_put(struct xfrm_state **states, int n) { int i; for (i = 0; i < n; i++) xfrm_state_put(*(states + i)); } static inline void xfrm_states_delete(struct xfrm_state **states, int n) { int i; for (i = 0; i < n; i++) xfrm_state_delete(*(states + i)); } #endif #ifdef CONFIG_XFRM static inline struct xfrm_state *xfrm_input_state(struct sk_buff *skb) { struct sec_path *sp = skb_sec_path(skb); return sp->xvec[sp->len - 1]; } #endif static inline struct xfrm_offload *xfrm_offload(struct sk_buff *skb) { #ifdef CONFIG_XFRM struct sec_path *sp = skb_sec_path(skb); if (!sp || !sp->olen || sp->len != sp->olen) return NULL; return &sp->ovec[sp->olen - 1]; #else return NULL; #endif } void __init xfrm_dev_init(void); #ifdef CONFIG_XFRM_OFFLOAD void xfrm_dev_resume(struct sk_buff *skb); void xfrm_dev_backlog(struct softnet_data *sd); struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again); int xfrm_dev_state_add(struct net *net, struct xfrm_state *x, struct xfrm_user_offload *xuo); bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x); static inline void xfrm_dev_state_advance_esn(struct xfrm_state *x) { struct xfrm_state_offload *xso = &x->xso; if (xso->dev && xso->dev->xfrmdev_ops->xdo_dev_state_advance_esn) xso->dev->xfrmdev_ops->xdo_dev_state_advance_esn(x); } static inline bool xfrm_dst_offload_ok(struct dst_entry *dst) { struct xfrm_state *x = dst->xfrm; struct xfrm_dst *xdst; if (!x || !x->type_offload) return false; xdst = (struct xfrm_dst *) dst; if (!x->xso.offload_handle && !xdst->child->xfrm) return true; if (x->xso.offload_handle && (x->xso.dev == xfrm_dst_path(dst)->dev) && !xdst->child->xfrm) return true; return false; } static inline void xfrm_dev_state_delete(struct xfrm_state *x) { struct xfrm_state_offload *xso = &x->xso; if (xso->dev) xso->dev->xfrmdev_ops->xdo_dev_state_delete(x); } static inline void xfrm_dev_state_free(struct xfrm_state *x) { struct xfrm_state_offload *xso = &x->xso; struct net_device *dev = xso->dev; if (dev && dev->xfrmdev_ops) { if (dev->xfrmdev_ops->xdo_dev_state_free) dev->xfrmdev_ops->xdo_dev_state_free(x); xso->dev = NULL; dev_put(dev); } } #else static inline void xfrm_dev_resume(struct sk_buff *skb) { } static inline void xfrm_dev_backlog(struct softnet_data *sd) { } static inline struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again) { return skb; } static inline int xfrm_dev_state_add(struct net *net, struct xfrm_state *x, struct xfrm_user_offload *xuo) { return 0; } static inline void xfrm_dev_state_delete(struct xfrm_state *x) { } static inline void xfrm_dev_state_free(struct xfrm_state *x) { } static inline bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x) { return false; } static inline void xfrm_dev_state_advance_esn(struct xfrm_state *x) { } static inline bool xfrm_dst_offload_ok(struct dst_entry *dst) { return false; } #endif static inline int xfrm_mark_get(struct nlattr **attrs, struct xfrm_mark *m) { if (attrs[XFRMA_MARK]) memcpy(m, nla_data(attrs[XFRMA_MARK]), sizeof(struct xfrm_mark)); else m->v = m->m = 0; return m->v & m->m; } static inline int xfrm_mark_put(struct sk_buff *skb, const struct xfrm_mark *m) { int ret = 0; if (m->m | m->v) ret = nla_put(skb, XFRMA_MARK, sizeof(struct xfrm_mark), m); return ret; } static inline __u32 xfrm_smark_get(__u32 mark, struct xfrm_state *x) { struct xfrm_mark *m = &x->props.smark; return (m->v & m->m) | (mark & ~m->m); } static inline int xfrm_if_id_put(struct sk_buff *skb, __u32 if_id) { int ret = 0; if (if_id) ret = nla_put_u32(skb, XFRMA_IF_ID, if_id); return ret; } static inline int xfrm_tunnel_check(struct sk_buff *skb, struct xfrm_state *x, unsigned int family) { bool tunnel = false; switch(family) { case AF_INET: if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4) tunnel = true; break; case AF_INET6: if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6) tunnel = true; break; } if (tunnel && !(x->outer_mode.flags & XFRM_MODE_FLAG_TUNNEL)) return -EINVAL; return 0; } extern const int xfrm_msg_min[XFRM_NR_MSGTYPES]; extern const struct nla_policy xfrma_policy[XFRMA_MAX+1]; struct xfrm_translator { /* Allocate frag_list and put compat translation there */ int (*alloc_compat)(struct sk_buff *skb, const struct nlmsghdr *src); /* Allocate nlmsg with 64-bit translaton of received 32-bit message */ struct nlmsghdr *(*rcv_msg_compat)(const struct nlmsghdr *nlh, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack); /* Translate 32-bit user_policy from sockptr */ int (*xlate_user_policy_sockptr)(u8 **pdata32, int optlen); struct module *owner; }; #if IS_ENABLED(CONFIG_XFRM_USER_COMPAT) extern int xfrm_register_translator(struct xfrm_translator *xtr); extern int xfrm_unregister_translator(struct xfrm_translator *xtr); extern struct xfrm_translator *xfrm_get_translator(void); extern void xfrm_put_translator(struct xfrm_translator *xtr); #else static inline struct xfrm_translator *xfrm_get_translator(void) { return NULL; } static inline void xfrm_put_translator(struct xfrm_translator *xtr) { } #endif #if IS_ENABLED(CONFIG_IPV6) static inline bool xfrm6_local_dontfrag(const struct sock *sk) { int proto; if (!sk || sk->sk_family != AF_INET6) return false; proto = sk->sk_protocol; if (proto == IPPROTO_UDP || proto == IPPROTO_RAW) return inet6_sk(sk)->dontfrag; return false; } #endif #endif /* _NET_XFRM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/writeback.h */ #ifndef WRITEBACK_H #define WRITEBACK_H #include <linux/sched.h> #include <linux/workqueue.h> #include <linux/fs.h> #include <linux/flex_proportions.h> #include <linux/backing-dev-defs.h> #include <linux/blk_types.h> #include <linux/blk-cgroup.h> struct bio; DECLARE_PER_CPU(int, dirty_throttle_leaks); /* * The 1/4 region under the global dirty thresh is for smooth dirty throttling: * * (thresh - thresh/DIRTY_FULL_SCOPE, thresh) * * Further beyond, all dirtier tasks will enter a loop waiting (possibly long * time) for the dirty pages to drop, unless written enough pages. * * The global dirty threshold is normally equal to the global dirty limit, * except when the system suddenly allocates a lot of anonymous memory and * knocks down the global dirty threshold quickly, in which case the global * dirty limit will follow down slowly to prevent livelocking all dirtier tasks. */ #define DIRTY_SCOPE 8 #define DIRTY_FULL_SCOPE (DIRTY_SCOPE / 2) struct backing_dev_info; /* * fs/fs-writeback.c */ enum writeback_sync_modes { WB_SYNC_NONE, /* Don't wait on anything */ WB_SYNC_ALL, /* Wait on every mapping */ }; /* * A control structure which tells the writeback code what to do. These are * always on the stack, and hence need no locking. They are always initialised * in a manner such that unspecified fields are set to zero. */ struct writeback_control { long nr_to_write; /* Write this many pages, and decrement this for each page written */ long pages_skipped; /* Pages which were not written */ /* * For a_ops->writepages(): if start or end are non-zero then this is * a hint that the filesystem need only write out the pages inside that * byterange. The byte at `end' is included in the writeout request. */ loff_t range_start; loff_t range_end; enum writeback_sync_modes sync_mode; unsigned for_kupdate:1; /* A kupdate writeback */ unsigned for_background:1; /* A background writeback */ unsigned tagged_writepages:1; /* tag-and-write to avoid livelock */ unsigned for_reclaim:1; /* Invoked from the page allocator */ unsigned range_cyclic:1; /* range_start is cyclic */ unsigned for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ /* * When writeback IOs are bounced through async layers, only the * initial synchronous phase should be accounted towards inode * cgroup ownership arbitration to avoid confusion. Later stages * can set the following flag to disable the accounting. */ unsigned no_cgroup_owner:1; unsigned punt_to_cgroup:1; /* cgrp punting, see __REQ_CGROUP_PUNT */ #ifdef CONFIG_CGROUP_WRITEBACK struct bdi_writeback *wb; /* wb this writeback is issued under */ struct inode *inode; /* inode being written out */ /* foreign inode detection, see wbc_detach_inode() */ int wb_id; /* current wb id */ int wb_lcand_id; /* last foreign candidate wb id */ int wb_tcand_id; /* this foreign candidate wb id */ size_t wb_bytes; /* bytes written by current wb */ size_t wb_lcand_bytes; /* bytes written by last candidate */ size_t wb_tcand_bytes; /* bytes written by this candidate */ #endif }; static inline int wbc_to_write_flags(struct writeback_control *wbc) { int flags = 0; if (wbc->punt_to_cgroup) flags = REQ_CGROUP_PUNT; if (wbc->sync_mode == WB_SYNC_ALL) flags |= REQ_SYNC; else if (wbc->for_kupdate || wbc->for_background) flags |= REQ_BACKGROUND; return flags; } static inline struct cgroup_subsys_state * wbc_blkcg_css(struct writeback_control *wbc) { #ifdef CONFIG_CGROUP_WRITEBACK if (wbc->wb) return wbc->wb->blkcg_css; #endif return blkcg_root_css; } /* * A wb_domain represents a domain that wb's (bdi_writeback's) belong to * and are measured against each other in. There always is one global * domain, global_wb_domain, that every wb in the system is a member of. * This allows measuring the relative bandwidth of each wb to distribute * dirtyable memory accordingly. */ struct wb_domain { spinlock_t lock; /* * Scale the writeback cache size proportional to the relative * writeout speed. * * We do this by keeping a floating proportion between BDIs, based * on page writeback completions [end_page_writeback()]. Those * devices that write out pages fastest will get the larger share, * while the slower will get a smaller share. * * We use page writeout completions because we are interested in * getting rid of dirty pages. Having them written out is the * primary goal. * * We introduce a concept of time, a period over which we measure * these events, because demand can/will vary over time. The length * of this period itself is measured in page writeback completions. */ struct fprop_global completions; struct timer_list period_timer; /* timer for aging of completions */ unsigned long period_time; /* * The dirtyable memory and dirty threshold could be suddenly * knocked down by a large amount (eg. on the startup of KVM in a * swapless system). This may throw the system into deep dirty * exceeded state and throttle heavy/light dirtiers alike. To * retain good responsiveness, maintain global_dirty_limit for * tracking slowly down to the knocked down dirty threshold. * * Both fields are protected by ->lock. */ unsigned long dirty_limit_tstamp; unsigned long dirty_limit; }; /** * wb_domain_size_changed - memory available to a wb_domain has changed * @dom: wb_domain of interest * * This function should be called when the amount of memory available to * @dom has changed. It resets @dom's dirty limit parameters to prevent * the past values which don't match the current configuration from skewing * dirty throttling. Without this, when memory size of a wb_domain is * greatly reduced, the dirty throttling logic may allow too many pages to * be dirtied leading to consecutive unnecessary OOMs and may get stuck in * that situation. */ static inline void wb_domain_size_changed(struct wb_domain *dom) { spin_lock(&dom->lock); dom->dirty_limit_tstamp = jiffies; dom->dirty_limit = 0; spin_unlock(&dom->lock); } /* * fs/fs-writeback.c */ struct bdi_writeback; void writeback_inodes_sb(struct super_block *, enum wb_reason reason); void writeback_inodes_sb_nr(struct super_block *, unsigned long nr, enum wb_reason reason); void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason); void sync_inodes_sb(struct super_block *); void wakeup_flusher_threads(enum wb_reason reason); void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, enum wb_reason reason); void inode_wait_for_writeback(struct inode *inode); void inode_io_list_del(struct inode *inode); /* writeback.h requires fs.h; it, too, is not included from here. */ static inline void wait_on_inode(struct inode *inode) { might_sleep(); wait_on_bit(&inode->i_state, __I_NEW, TASK_UNINTERRUPTIBLE); } #ifdef CONFIG_CGROUP_WRITEBACK #include <linux/cgroup.h> #include <linux/bio.h> void __inode_attach_wb(struct inode *inode, struct page *page); void wbc_attach_and_unlock_inode(struct writeback_control *wbc, struct inode *inode) __releases(&inode->i_lock); void wbc_detach_inode(struct writeback_control *wbc); void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, size_t bytes); int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr_pages, enum wb_reason reason, struct wb_completion *done); void cgroup_writeback_umount(void); /** * inode_attach_wb - associate an inode with its wb * @inode: inode of interest * @page: page being dirtied (may be NULL) * * If @inode doesn't have its wb, associate it with the wb matching the * memcg of @page or, if @page is NULL, %current. May be called w/ or w/o * @inode->i_lock. */ static inline void inode_attach_wb(struct inode *inode, struct page *page) { if (!inode->i_wb) __inode_attach_wb(inode, page); } /** * inode_detach_wb - disassociate an inode from its wb * @inode: inode of interest * * @inode is being freed. Detach from its wb. */ static inline void inode_detach_wb(struct inode *inode) { if (inode->i_wb) { WARN_ON_ONCE(!(inode->i_state & I_CLEAR)); wb_put(inode->i_wb); inode->i_wb = NULL; } } /** * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite * @wbc: writeback_control of interest * @inode: target inode * * This function is to be used by __filemap_fdatawrite_range(), which is an * alternative entry point into writeback code, and first ensures @inode is * associated with a bdi_writeback and attaches it to @wbc. */ static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, struct inode *inode) { spin_lock(&inode->i_lock); inode_attach_wb(inode, NULL); wbc_attach_and_unlock_inode(wbc, inode); } /** * wbc_init_bio - writeback specific initializtion of bio * @wbc: writeback_control for the writeback in progress * @bio: bio to be initialized * * @bio is a part of the writeback in progress controlled by @wbc. Perform * writeback specific initialization. This is used to apply the cgroup * writeback context. Must be called after the bio has been associated with * a device. */ static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio) { /* * pageout() path doesn't attach @wbc to the inode being written * out. This is intentional as we don't want the function to block * behind a slow cgroup. Ultimately, we want pageout() to kick off * regular writeback instead of writing things out itself. */ if (wbc->wb) bio_associate_blkg_from_css(bio, wbc->wb->blkcg_css); } #else /* CONFIG_CGROUP_WRITEBACK */ static inline void inode_attach_wb(struct inode *inode, struct page *page) { } static inline void inode_detach_wb(struct inode *inode) { } static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc, struct inode *inode) __releases(&inode->i_lock) { spin_unlock(&inode->i_lock); } static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, struct inode *inode) { } static inline void wbc_detach_inode(struct writeback_control *wbc) { } static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio) { } static inline void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, size_t bytes) { } static inline void cgroup_writeback_umount(void) { } #endif /* CONFIG_CGROUP_WRITEBACK */ /* * mm/page-writeback.c */ #ifdef CONFIG_BLOCK void laptop_io_completion(struct backing_dev_info *info); void laptop_sync_completion(void); void laptop_mode_sync(struct work_struct *work); void laptop_mode_timer_fn(struct timer_list *t); #else static inline void laptop_sync_completion(void) { } #endif bool node_dirty_ok(struct pglist_data *pgdat); int wb_domain_init(struct wb_domain *dom, gfp_t gfp); #ifdef CONFIG_CGROUP_WRITEBACK void wb_domain_exit(struct wb_domain *dom); #endif extern struct wb_domain global_wb_domain; /* These are exported to sysctl. */ extern int dirty_background_ratio; extern unsigned long dirty_background_bytes; extern int vm_dirty_ratio; extern unsigned long vm_dirty_bytes; extern unsigned int dirty_writeback_interval; extern unsigned int dirty_expire_interval; extern unsigned int dirtytime_expire_interval; extern int vm_highmem_is_dirtyable; extern int block_dump; extern int laptop_mode; int dirty_background_ratio_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int dirty_background_bytes_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int dirty_bytes_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int dirtytime_interval_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty); unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh); void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time); void balance_dirty_pages_ratelimited(struct address_space *mapping); bool wb_over_bg_thresh(struct bdi_writeback *wb); typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc, void *data); int generic_writepages(struct address_space *mapping, struct writeback_control *wbc); void tag_pages_for_writeback(struct address_space *mapping, pgoff_t start, pgoff_t end); int write_cache_pages(struct address_space *mapping, struct writeback_control *wbc, writepage_t writepage, void *data); int do_writepages(struct address_space *mapping, struct writeback_control *wbc); void writeback_set_ratelimit(void); void tag_pages_for_writeback(struct address_space *mapping, pgoff_t start, pgoff_t end); void account_page_redirty(struct page *page); void sb_mark_inode_writeback(struct inode *inode); void sb_clear_inode_writeback(struct inode *inode); #endif /* WRITEBACK_H */
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Authentication token and access key management * * Copyright (C) 2004, 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * See Documentation/security/keys/core.rst for information on keys/keyrings. */ #ifndef _LINUX_KEY_H #define _LINUX_KEY_H #include <linux/types.h> #include <linux/list.h> #include <linux/rbtree.h> #include <linux/rcupdate.h> #include <linux/sysctl.h> #include <linux/rwsem.h> #include <linux/atomic.h> #include <linux/assoc_array.h> #include <linux/refcount.h> #include <linux/time64.h> #ifdef __KERNEL__ #include <linux/uidgid.h> /* key handle serial number */ typedef int32_t key_serial_t; /* key handle permissions mask */ typedef uint32_t key_perm_t; struct key; struct net; #ifdef CONFIG_KEYS #undef KEY_DEBUGGING #define KEY_POS_VIEW 0x01000000 /* possessor can view a key's attributes */ #define KEY_POS_READ 0x02000000 /* possessor can read key payload / view keyring */ #define KEY_POS_WRITE 0x04000000 /* possessor can update key payload / add link to keyring */ #define KEY_POS_SEARCH 0x08000000 /* possessor can find a key in search / search a keyring */ #define KEY_POS_LINK 0x10000000 /* possessor can create a link to a key/keyring */ #define KEY_POS_SETATTR 0x20000000 /* possessor can set key attributes */ #define KEY_POS_ALL 0x3f000000 #define KEY_USR_VIEW 0x00010000 /* user permissions... */ #define KEY_USR_READ 0x00020000 #define KEY_USR_WRITE 0x00040000 #define KEY_USR_SEARCH 0x00080000 #define KEY_USR_LINK 0x00100000 #define KEY_USR_SETATTR 0x00200000 #define KEY_USR_ALL 0x003f0000 #define KEY_GRP_VIEW 0x00000100 /* group permissions... */ #define KEY_GRP_READ 0x00000200 #define KEY_GRP_WRITE 0x00000400 #define KEY_GRP_SEARCH 0x00000800 #define KEY_GRP_LINK 0x00001000 #define KEY_GRP_SETATTR 0x00002000 #define KEY_GRP_ALL 0x00003f00 #define KEY_OTH_VIEW 0x00000001 /* third party permissions... */ #define KEY_OTH_READ 0x00000002 #define KEY_OTH_WRITE 0x00000004 #define KEY_OTH_SEARCH 0x00000008 #define KEY_OTH_LINK 0x00000010 #define KEY_OTH_SETATTR 0x00000020 #define KEY_OTH_ALL 0x0000003f #define KEY_PERM_UNDEF 0xffffffff /* * The permissions required on a key that we're looking up. */ enum key_need_perm { KEY_NEED_UNSPECIFIED, /* Needed permission unspecified */ KEY_NEED_VIEW, /* Require permission to view attributes */ KEY_NEED_READ, /* Require permission to read content */ KEY_NEED_WRITE, /* Require permission to update / modify */ KEY_NEED_SEARCH, /* Require permission to search (keyring) or find (key) */ KEY_NEED_LINK, /* Require permission to link */ KEY_NEED_SETATTR, /* Require permission to change attributes */ KEY_NEED_UNLINK, /* Require permission to unlink key */ KEY_SYSADMIN_OVERRIDE, /* Special: override by CAP_SYS_ADMIN */ KEY_AUTHTOKEN_OVERRIDE, /* Special: override by possession of auth token */ KEY_DEFER_PERM_CHECK, /* Special: permission check is deferred */ }; struct seq_file; struct user_struct; struct signal_struct; struct cred; struct key_type; struct key_owner; struct key_tag; struct keyring_list; struct keyring_name; struct key_tag { struct rcu_head rcu; refcount_t usage; bool removed; /* T when subject removed */ }; struct keyring_index_key { /* [!] If this structure is altered, the union in struct key must change too! */ unsigned long hash; /* Hash value */ union { struct { #ifdef __LITTLE_ENDIAN /* Put desc_len at the LSB of x */ u16 desc_len; char desc[sizeof(long) - 2]; /* First few chars of description */ #else char desc[sizeof(long) - 2]; /* First few chars of description */ u16 desc_len; #endif }; unsigned long x; }; struct key_type *type; struct key_tag *domain_tag; /* Domain of operation */ const char *description; }; union key_payload { void __rcu *rcu_data0; void *data[4]; }; /*****************************************************************************/ /* * key reference with possession attribute handling * * NOTE! key_ref_t is a typedef'd pointer to a type that is not actually * defined. This is because we abuse the bottom bit of the reference to carry a * flag to indicate whether the calling process possesses that key in one of * its keyrings. * * the key_ref_t has been made a separate type so that the compiler can reject * attempts to dereference it without proper conversion. * * the three functions are used to assemble and disassemble references */ typedef struct __key_reference_with_attributes *key_ref_t; static inline key_ref_t make_key_ref(const struct key *key, bool possession) { return (key_ref_t) ((unsigned long) key | possession); } static inline struct key *key_ref_to_ptr(const key_ref_t key_ref) { return (struct key *) ((unsigned long) key_ref & ~1UL); } static inline bool is_key_possessed(const key_ref_t key_ref) { return (unsigned long) key_ref & 1UL; } typedef int (*key_restrict_link_func_t)(struct key *dest_keyring, const struct key_type *type, const union key_payload *payload, struct key *restriction_key); struct key_restriction { key_restrict_link_func_t check; struct key *key; struct key_type *keytype; }; enum key_state { KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE, /* Positively instantiated */ }; /*****************************************************************************/ /* * authentication token / access credential / keyring * - types of key include: * - keyrings * - disk encryption IDs * - Kerberos TGTs and tickets */ struct key { refcount_t usage; /* number of references */ key_serial_t serial; /* key serial number */ union { struct list_head graveyard_link; struct rb_node serial_node; }; #ifdef CONFIG_KEY_NOTIFICATIONS struct watch_list *watchers; /* Entities watching this key for changes */ #endif struct rw_semaphore sem; /* change vs change sem */ struct key_user *user; /* owner of this key */ void *security; /* security data for this key */ union { time64_t expiry; /* time at which key expires (or 0) */ time64_t revoked_at; /* time at which key was revoked */ }; time64_t last_used_at; /* last time used for LRU keyring discard */ kuid_t uid; kgid_t gid; key_perm_t perm; /* access permissions */ unsigned short quotalen; /* length added to quota */ unsigned short datalen; /* payload data length * - may not match RCU dereferenced payload * - payload should contain own length */ short state; /* Key state (+) or rejection error (-) */ #ifdef KEY_DEBUGGING unsigned magic; #define KEY_DEBUG_MAGIC 0x18273645u #endif unsigned long flags; /* status flags (change with bitops) */ #define KEY_FLAG_DEAD 0 /* set if key type has been deleted */ #define KEY_FLAG_REVOKED 1 /* set if key had been revoked */ #define KEY_FLAG_IN_QUOTA 2 /* set if key consumes quota */ #define KEY_FLAG_USER_CONSTRUCT 3 /* set if key is being constructed in userspace */ #define KEY_FLAG_ROOT_CAN_CLEAR 4 /* set if key can be cleared by root without permission */ #define KEY_FLAG_INVALIDATED 5 /* set if key has been invalidated */ #define KEY_FLAG_BUILTIN 6 /* set if key is built in to the kernel */ #define KEY_FLAG_ROOT_CAN_INVAL 7 /* set if key can be invalidated by root without permission */ #define KEY_FLAG_KEEP 8 /* set if key should not be removed */ #define KEY_FLAG_UID_KEYRING 9 /* set if key is a user or user session keyring */ /* the key type and key description string * - the desc is used to match a key against search criteria * - it should be a printable string * - eg: for krb5 AFS, this might be "afs@REDHAT.COM" */ union { struct keyring_index_key index_key; struct { unsigned long hash; unsigned long len_desc; struct key_type *type; /* type of key */ struct key_tag *domain_tag; /* Domain of operation */ char *description; }; }; /* key data * - this is used to hold the data actually used in cryptography or * whatever */ union { union key_payload payload; struct { /* Keyring bits */ struct list_head name_link; struct assoc_array keys; }; }; /* This is set on a keyring to restrict the addition of a link to a key * to it. If this structure isn't provided then it is assumed that the * keyring is open to any addition. It is ignored for non-keyring * keys. Only set this value using keyring_restrict(), keyring_alloc(), * or key_alloc(). * * This is intended for use with rings of trusted keys whereby addition * to the keyring needs to be controlled. KEY_ALLOC_BYPASS_RESTRICTION * overrides this, allowing the kernel to add extra keys without * restriction. */ struct key_restriction *restrict_link; }; extern struct key *key_alloc(struct key_type *type, const char *desc, kuid_t uid, kgid_t gid, const struct cred *cred, key_perm_t perm, unsigned long flags, struct key_restriction *restrict_link); #define KEY_ALLOC_IN_QUOTA 0x0000 /* add to quota, reject if would overrun */ #define KEY_ALLOC_QUOTA_OVERRUN 0x0001 /* add to quota, permit even if overrun */ #define KEY_ALLOC_NOT_IN_QUOTA 0x0002 /* not in quota */ #define KEY_ALLOC_BUILT_IN 0x0004 /* Key is built into kernel */ #define KEY_ALLOC_BYPASS_RESTRICTION 0x0008 /* Override the check on restricted keyrings */ #define KEY_ALLOC_UID_KEYRING 0x0010 /* allocating a user or user session keyring */ #define KEY_ALLOC_SET_KEEP 0x0020 /* Set the KEEP flag on the key/keyring */ extern void key_revoke(struct key *key); extern void key_invalidate(struct key *key); extern void key_put(struct key *key); extern bool key_put_tag(struct key_tag *tag); extern void key_remove_domain(struct key_tag *domain_tag); static inline struct key *__key_get(struct key *key) { refcount_inc(&key->usage); return key; } static inline struct key *key_get(struct key *key) { return key ? __key_get(key) : key; } static inline void key_ref_put(key_ref_t key_ref) { key_put(key_ref_to_ptr(key_ref)); } extern struct key *request_key_tag(struct key_type *type, const char *description, struct key_tag *domain_tag, const char *callout_info); extern struct key *request_key_rcu(struct key_type *type, const char *description, struct key_tag *domain_tag); extern struct key *request_key_with_auxdata(struct key_type *type, const char *description, struct key_tag *domain_tag, const void *callout_info, size_t callout_len, void *aux); /** * request_key - Request a key and wait for construction * @type: Type of key. * @description: The searchable description of the key. * @callout_info: The data to pass to the instantiation upcall (or NULL). * * As for request_key_tag(), but with the default global domain tag. */ static inline struct key *request_key(struct key_type *type, const char *description, const char *callout_info) { return request_key_tag(type, description, NULL, callout_info); } #ifdef CONFIG_NET /** * request_key_net - Request a key for a net namespace and wait for construction * @type: Type of key. * @description: The searchable description of the key. * @net: The network namespace that is the key's domain of operation. * @callout_info: The data to pass to the instantiation upcall (or NULL). * * As for request_key() except that it does not add the returned key to a * keyring if found, new keys are always allocated in the user's quota, the * callout_info must be a NUL-terminated string and no auxiliary data can be * passed. Only keys that operate the specified network namespace are used. * * Furthermore, it then works as wait_for_key_construction() to wait for the * completion of keys undergoing construction with a non-interruptible wait. */ #define request_key_net(type, description, net, callout_info) \ request_key_tag(type, description, net->key_domain, callout_info); /** * request_key_net_rcu - Request a key for a net namespace under RCU conditions * @type: Type of key. * @description: The searchable description of the key. * @net: The network namespace that is the key's domain of operation. * * As for request_key_rcu() except that only keys that operate the specified * network namespace are used. */ #define request_key_net_rcu(type, description, net) \ request_key_rcu(type, description, net->key_domain); #endif /* CONFIG_NET */ extern int wait_for_key_construction(struct key *key, bool intr); extern int key_validate(const struct key *key); extern key_ref_t key_create_or_update(key_ref_t keyring, const char *type, const char *description, const void *payload, size_t plen, key_perm_t perm, unsigned long flags); extern int key_update(key_ref_t key, const void *payload, size_t plen); extern int key_link(struct key *keyring, struct key *key); extern int key_move(struct key *key, struct key *from_keyring, struct key *to_keyring, unsigned int flags); extern int key_unlink(struct key *keyring, struct key *key); extern struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, const struct cred *cred, key_perm_t perm, unsigned long flags, struct key_restriction *restrict_link, struct key *dest); extern int restrict_link_reject(struct key *keyring, const struct key_type *type, const union key_payload *payload, struct key *restriction_key); extern int keyring_clear(struct key *keyring); extern key_ref_t keyring_search(key_ref_t keyring, struct key_type *type, const char *description, bool recurse); extern int keyring_add_key(struct key *keyring, struct key *key); extern int keyring_restrict(key_ref_t keyring, const char *type, const char *restriction); extern struct key *key_lookup(key_serial_t id); static inline key_serial_t key_serial(const struct key *key) { return key ? key->serial : 0; } extern void key_set_timeout(struct key *, unsigned); extern key_ref_t lookup_user_key(key_serial_t id, unsigned long flags, enum key_need_perm need_perm); extern void key_free_user_ns(struct user_namespace *); static inline short key_read_state(const struct key *key) { /* Barrier versus mark_key_instantiated(). */ return smp_load_acquire(&key->state); } /** * key_is_positive - Determine if a key has been positively instantiated * @key: The key to check. * * Return true if the specified key has been positively instantiated, false * otherwise. */ static inline bool key_is_positive(const struct key *key) { return key_read_state(key) == KEY_IS_POSITIVE; } static inline bool key_is_negative(const struct key *key) { return key_read_state(key) < 0; } #define dereference_key_rcu(KEY) \ (rcu_dereference((KEY)->payload.rcu_data0)) #define dereference_key_locked(KEY) \ (rcu_dereference_protected((KEY)->payload.rcu_data0, \ rwsem_is_locked(&((struct key *)(KEY))->sem))) #define rcu_assign_keypointer(KEY, PAYLOAD) \ do { \ rcu_assign_pointer((KEY)->payload.rcu_data0, (PAYLOAD)); \ } while (0) #ifdef CONFIG_SYSCTL extern struct ctl_table key_sysctls[]; #endif /* * the userspace interface */ extern int install_thread_keyring_to_cred(struct cred *cred); extern void key_fsuid_changed(struct cred *new_cred); extern void key_fsgid_changed(struct cred *new_cred); extern void key_init(void); #else /* CONFIG_KEYS */ #define key_validate(k) 0 #define key_serial(k) 0 #define key_get(k) ({ NULL; }) #define key_revoke(k) do { } while(0) #define key_invalidate(k) do { } while(0) #define key_put(k) do { } while(0) #define key_ref_put(k) do { } while(0) #define make_key_ref(k, p) NULL #define key_ref_to_ptr(k) NULL #define is_key_possessed(k) 0 #define key_fsuid_changed(c) do { } while(0) #define key_fsgid_changed(c) do { } while(0) #define key_init() do { } while(0) #define key_free_user_ns(ns) do { } while(0) #define key_remove_domain(d) do { } while(0) #endif /* CONFIG_KEYS */ #endif /* __KERNEL__ */ #endif /* _LINUX_KEY_H */
1 2 3 4 5 6 7 8 9 10 11 /* SPDX-License-Identifier: GPL-2.0 */ #include <asm/processor.h> static inline int phys_addr_valid(resource_size_t addr) { #ifdef CONFIG_PHYS_ADDR_T_64BIT return !(addr >> boot_cpu_data.x86_phys_bits); #else return 1; #endif }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Internal procfs definitions * * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include <linux/proc_fs.h> #include <linux/proc_ns.h> #include <linux/refcount.h> #include <linux/spinlock.h> #include <linux/atomic.h> #include <linux/binfmts.h> #include <linux/sched/coredump.h> #include <linux/sched/task.h> struct ctl_table_header; struct mempolicy; /* * This is not completely implemented yet. The idea is to * create an in-memory tree (like the actual /proc filesystem * tree) of these proc_dir_entries, so that we can dynamically * add new files to /proc. * * parent/subdir are used for the directory structure (every /proc file has a * parent, but "subdir" is empty for all non-directory entries). * subdir_node is used to build the rb tree "subdir" of the parent. */ struct proc_dir_entry { /* * number of callers into module in progress; * negative -> it's going away RSN */ atomic_t in_use; refcount_t refcnt; struct list_head pde_openers; /* who did ->open, but not ->release */ /* protects ->pde_openers and all struct pde_opener instances */ spinlock_t pde_unload_lock; struct completion *pde_unload_completion; const struct inode_operations *proc_iops; union { const struct proc_ops *proc_ops; const struct file_operations *proc_dir_ops; }; const struct dentry_operations *proc_dops; union { const struct seq_operations *seq_ops; int (*single_show)(struct seq_file *, void *); }; proc_write_t write; void *data; unsigned int state_size; unsigned int low_ino; nlink_t nlink; kuid_t uid; kgid_t gid; loff_t size; struct proc_dir_entry *parent; struct rb_root subdir; struct rb_node subdir_node; char *name; umode_t mode; u8 flags; u8 namelen; char inline_name[]; } __randomize_layout; #define SIZEOF_PDE ( \ sizeof(struct proc_dir_entry) < 128 ? 128 : \ sizeof(struct proc_dir_entry) < 192 ? 192 : \ sizeof(struct proc_dir_entry) < 256 ? 256 : \ sizeof(struct proc_dir_entry) < 512 ? 512 : \ 0) #define SIZEOF_PDE_INLINE_NAME (SIZEOF_PDE - sizeof(struct proc_dir_entry)) static inline bool pde_is_permanent(const struct proc_dir_entry *pde) { return pde->flags & PROC_ENTRY_PERMANENT; } extern struct kmem_cache *proc_dir_entry_cache; void pde_free(struct proc_dir_entry *pde); union proc_op { int (*proc_get_link)(struct dentry *, struct path *); int (*proc_show)(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task); const char *lsm; }; struct proc_inode { struct pid *pid; unsigned int fd; union proc_op op; struct proc_dir_entry *pde; struct ctl_table_header *sysctl; struct ctl_table *sysctl_entry; struct hlist_node sibling_inodes; const struct proc_ns_operations *ns_ops; struct inode vfs_inode; } __randomize_layout; /* * General functions */ static inline struct proc_inode *PROC_I(const struct inode *inode) { return container_of(inode, struct proc_inode, vfs_inode); } static inline struct proc_dir_entry *PDE(const struct inode *inode) { return PROC_I(inode)->pde; } static inline void *__PDE_DATA(const struct inode *inode) { return PDE(inode)->data; } static inline struct pid *proc_pid(const struct inode *inode) { return PROC_I(inode)->pid; } static inline struct task_struct *get_proc_task(const struct inode *inode) { return get_pid_task(proc_pid(inode), PIDTYPE_PID); } void task_dump_owner(struct task_struct *task, umode_t mode, kuid_t *ruid, kgid_t *rgid); unsigned name_to_int(const struct qstr *qstr); /* * Offset of the first process in the /proc root directory.. */ #define FIRST_PROCESS_ENTRY 256 /* Worst case buffer size needed for holding an integer. */ #define PROC_NUMBUF 13 /* * array.c */ extern const struct file_operations proc_tid_children_operations; extern void proc_task_name(struct seq_file *m, struct task_struct *p, bool escape); extern int proc_tid_stat(struct seq_file *, struct pid_namespace *, struct pid *, struct task_struct *); extern int proc_tgid_stat(struct seq_file *, struct pid_namespace *, struct pid *, struct task_struct *); extern int proc_pid_status(struct seq_file *, struct pid_namespace *, struct pid *, struct task_struct *); extern int proc_pid_statm(struct seq_file *, struct pid_namespace *, struct pid *, struct task_struct *); /* * base.c */ extern const struct dentry_operations pid_dentry_operations; extern int pid_getattr(const struct path *, struct kstat *, u32, unsigned int); extern int proc_setattr(struct dentry *, struct iattr *); extern void proc_pid_evict_inode(struct proc_inode *); extern struct inode *proc_pid_make_inode(struct super_block *, struct task_struct *, umode_t); extern void pid_update_inode(struct task_struct *, struct inode *); extern int pid_delete_dentry(const struct dentry *); extern int proc_pid_readdir(struct file *, struct dir_context *); struct dentry *proc_pid_lookup(struct dentry *, unsigned int); extern loff_t mem_lseek(struct file *, loff_t, int); /* Lookups */ typedef struct dentry *instantiate_t(struct dentry *, struct task_struct *, const void *); bool proc_fill_cache(struct file *, struct dir_context *, const char *, unsigned int, instantiate_t, struct task_struct *, const void *); /* * generic.c */ struct proc_dir_entry *proc_create_reg(const char *name, umode_t mode, struct proc_dir_entry **parent, void *data); struct proc_dir_entry *proc_register(struct proc_dir_entry *dir, struct proc_dir_entry *dp); extern struct dentry *proc_lookup(struct inode *, struct dentry *, unsigned int); struct dentry *proc_lookup_de(struct inode *, struct dentry *, struct proc_dir_entry *); extern int proc_readdir(struct file *, struct dir_context *); int proc_readdir_de(struct file *, struct dir_context *, struct proc_dir_entry *); static inline struct proc_dir_entry *pde_get(struct proc_dir_entry *pde) { refcount_inc(&pde->refcnt); return pde; } extern void pde_put(struct proc_dir_entry *); static inline bool is_empty_pde(const struct proc_dir_entry *pde) { return S_ISDIR(pde->mode) && !pde->proc_iops; } extern ssize_t proc_simple_write(struct file *, const char __user *, size_t, loff_t *); /* * inode.c */ struct pde_opener { struct list_head lh; struct file *file; bool closing; struct completion *c; } __randomize_layout; extern const struct inode_operations proc_link_inode_operations; extern const struct inode_operations proc_pid_link_inode_operations; extern const struct super_operations proc_sops; void proc_init_kmemcache(void); void proc_invalidate_siblings_dcache(struct hlist_head *inodes, spinlock_t *lock); void set_proc_pid_nlink(void); extern struct inode *proc_get_inode(struct super_block *, struct proc_dir_entry *); extern void proc_entry_rundown(struct proc_dir_entry *); /* * proc_namespaces.c */ extern const struct inode_operations proc_ns_dir_inode_operations; extern const struct file_operations proc_ns_dir_operations; /* * proc_net.c */ extern const struct file_operations proc_net_operations; extern const struct inode_operations proc_net_inode_operations; #ifdef CONFIG_NET extern int proc_net_init(void); #else static inline int proc_net_init(void) { return 0; } #endif /* * proc_self.c */ extern int proc_setup_self(struct super_block *); /* * proc_thread_self.c */ extern int proc_setup_thread_self(struct super_block *); extern void proc_thread_self_init(void); /* * proc_sysctl.c */ #ifdef CONFIG_PROC_SYSCTL extern int proc_sys_init(void); extern void proc_sys_evict_inode(struct inode *inode, struct ctl_table_header *head); #else static inline void proc_sys_init(void) { } static inline void proc_sys_evict_inode(struct inode *inode, struct ctl_table_header *head) { } #endif /* * proc_tty.c */ #ifdef CONFIG_TTY extern void proc_tty_init(void); #else static inline void proc_tty_init(void) {} #endif /* * root.c */ extern struct proc_dir_entry proc_root; extern void proc_self_init(void); /* * task_[no]mmu.c */ struct mem_size_stats; struct proc_maps_private { struct inode *inode; struct task_struct *task; struct mm_struct *mm; #ifdef CONFIG_MMU struct vm_area_struct *tail_vma; #endif #ifdef CONFIG_NUMA struct mempolicy *task_mempolicy; #endif } __randomize_layout; struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode); extern const struct file_operations proc_pid_maps_operations; extern const struct file_operations proc_pid_numa_maps_operations; extern const struct file_operations proc_pid_smaps_operations; extern const struct file_operations proc_pid_smaps_rollup_operations; extern const struct file_operations proc_clear_refs_operations; extern const struct file_operations proc_pagemap_operations; extern unsigned long task_vsize(struct mm_struct *); extern unsigned long task_statm(struct mm_struct *, unsigned long *, unsigned long *, unsigned long *, unsigned long *); extern void task_mem(struct seq_file *, struct mm_struct *); extern const struct dentry_operations proc_net_dentry_ops; static inline void pde_force_lookup(struct proc_dir_entry *pde) { /* /proc/net/ entries can be changed under us by setns(CLONE_NEWNET) */ pde->proc_dops = &proc_net_dentry_ops; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 /* * include/linux/ktime.h * * ktime_t - nanosecond-resolution time format. * * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar * * data type definitions, declarations, prototypes and macros. * * Started by: Thomas Gleixner and Ingo Molnar * * Credits: * * Roman Zippel provided the ideas and primary code snippets of * the ktime_t union and further simplifications of the original * code. * * For licencing details see kernel-base/COPYING */ #ifndef _LINUX_KTIME_H #define _LINUX_KTIME_H #include <linux/time.h> #include <linux/jiffies.h> #include <asm/bug.h> /* Nanosecond scalar representation for kernel time values */ typedef s64 ktime_t; /** * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value * @secs: seconds to set * @nsecs: nanoseconds to set * * Return: The ktime_t representation of the value. */ static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs) { if (unlikely(secs >= KTIME_SEC_MAX)) return KTIME_MAX; return secs * NSEC_PER_SEC + (s64)nsecs; } /* Subtract two ktime_t variables. rem = lhs -rhs: */ #define ktime_sub(lhs, rhs) ((lhs) - (rhs)) /* Add two ktime_t variables. res = lhs + rhs: */ #define ktime_add(lhs, rhs) ((lhs) + (rhs)) /* * Same as ktime_add(), but avoids undefined behaviour on overflow; however, * this means that you must check the result for overflow yourself. */ #define ktime_add_unsafe(lhs, rhs) ((u64) (lhs) + (rhs)) /* * Add a ktime_t variable and a scalar nanosecond value. * res = kt + nsval: */ #define ktime_add_ns(kt, nsval) ((kt) + (nsval)) /* * Subtract a scalar nanosecod from a ktime_t variable * res = kt - nsval: */ #define ktime_sub_ns(kt, nsval) ((kt) - (nsval)) /* convert a timespec64 to ktime_t format: */ static inline ktime_t timespec64_to_ktime(struct timespec64 ts) { return ktime_set(ts.tv_sec, ts.tv_nsec); } /* Map the ktime_t to timespec conversion to ns_to_timespec function */ #define ktime_to_timespec64(kt) ns_to_timespec64((kt)) /* Convert ktime_t to nanoseconds */ static inline s64 ktime_to_ns(const ktime_t kt) { return kt; } /** * ktime_compare - Compares two ktime_t variables for less, greater or equal * @cmp1: comparable1 * @cmp2: comparable2 * * Return: ... * cmp1 < cmp2: return <0 * cmp1 == cmp2: return 0 * cmp1 > cmp2: return >0 */ static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2) { if (cmp1 < cmp2) return -1; if (cmp1 > cmp2) return 1; return 0; } /** * ktime_after - Compare if a ktime_t value is bigger than another one. * @cmp1: comparable1 * @cmp2: comparable2 * * Return: true if cmp1 happened after cmp2. */ static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2) { return ktime_compare(cmp1, cmp2) > 0; } /** * ktime_before - Compare if a ktime_t value is smaller than another one. * @cmp1: comparable1 * @cmp2: comparable2 * * Return: true if cmp1 happened before cmp2. */ static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2) { return ktime_compare(cmp1, cmp2) < 0; } #if BITS_PER_LONG < 64 extern s64 __ktime_divns(const ktime_t kt, s64 div); static inline s64 ktime_divns(const ktime_t kt, s64 div) { /* * Negative divisors could cause an inf loop, * so bug out here. */ BUG_ON(div < 0); if (__builtin_constant_p(div) && !(div >> 32)) { s64 ns = kt; u64 tmp = ns < 0 ? -ns : ns; do_div(tmp, div); return ns < 0 ? -tmp : tmp; } else { return __ktime_divns(kt, div); } } #else /* BITS_PER_LONG < 64 */ static inline s64 ktime_divns(const ktime_t kt, s64 div) { /* * 32-bit implementation cannot handle negative divisors, * so catch them on 64bit as well. */ WARN_ON(div < 0); return kt / div; } #endif static inline s64 ktime_to_us(const ktime_t kt) { return ktime_divns(kt, NSEC_PER_USEC); } static inline s64 ktime_to_ms(const ktime_t kt) { return ktime_divns(kt, NSEC_PER_MSEC); } static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier) { return ktime_to_us(ktime_sub(later, earlier)); } static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier) { return ktime_to_ms(ktime_sub(later, earlier)); } static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec) { return ktime_add_ns(kt, usec * NSEC_PER_USEC); } static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec) { return ktime_add_ns(kt, msec * NSEC_PER_MSEC); } static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec) { return ktime_sub_ns(kt, usec * NSEC_PER_USEC); } static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec) { return ktime_sub_ns(kt, msec * NSEC_PER_MSEC); } extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs); /** * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64 * format only if the variable contains data * @kt: the ktime_t variable to convert * @ts: the timespec variable to store the result in * * Return: %true if there was a successful conversion, %false if kt was 0. */ static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt, struct timespec64 *ts) { if (kt) { *ts = ktime_to_timespec64(kt); return true; } else { return false; } } #include <vdso/ktime.h> static inline ktime_t ns_to_ktime(u64 ns) { return ns; } static inline ktime_t ms_to_ktime(u64 ms) { return ms * NSEC_PER_MSEC; } # include <linux/timekeeping.h> # include <linux/timekeeping32.h> #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_FLOW_DISSECTOR_H #define _NET_FLOW_DISSECTOR_H #include <linux/types.h> #include <linux/in6.h> #include <linux/siphash.h> #include <linux/string.h> #include <uapi/linux/if_ether.h> struct bpf_prog; struct net; struct sk_buff; /** * struct flow_dissector_key_control: * @thoff: Transport header offset */ struct flow_dissector_key_control { u16 thoff; u16 addr_type; u32 flags; }; #define FLOW_DIS_IS_FRAGMENT BIT(0) #define FLOW_DIS_FIRST_FRAG BIT(1) #define FLOW_DIS_ENCAPSULATION BIT(2) enum flow_dissect_ret { FLOW_DISSECT_RET_OUT_GOOD, FLOW_DISSECT_RET_OUT_BAD, FLOW_DISSECT_RET_PROTO_AGAIN, FLOW_DISSECT_RET_IPPROTO_AGAIN, FLOW_DISSECT_RET_CONTINUE, }; /** * struct flow_dissector_key_basic: * @n_proto: Network header protocol (eg. IPv4/IPv6) * @ip_proto: Transport header protocol (eg. TCP/UDP) */ struct flow_dissector_key_basic { __be16 n_proto; u8 ip_proto; u8 padding; }; struct flow_dissector_key_tags { u32 flow_label; }; struct flow_dissector_key_vlan { union { struct { u16 vlan_id:12, vlan_dei:1, vlan_priority:3; }; __be16 vlan_tci; }; __be16 vlan_tpid; }; struct flow_dissector_mpls_lse { u32 mpls_ttl:8, mpls_bos:1, mpls_tc:3, mpls_label:20; }; #define FLOW_DIS_MPLS_MAX 7 struct flow_dissector_key_mpls { struct flow_dissector_mpls_lse ls[FLOW_DIS_MPLS_MAX]; /* Label Stack */ u8 used_lses; /* One bit set for each Label Stack Entry in use */ }; static inline void dissector_set_mpls_lse(struct flow_dissector_key_mpls *mpls, int lse_index) { mpls->used_lses |= 1 << lse_index; } #define FLOW_DIS_TUN_OPTS_MAX 255 /** * struct flow_dissector_key_enc_opts: * @data: tunnel option data * @len: length of tunnel option data * @dst_opt_type: tunnel option type */ struct flow_dissector_key_enc_opts { u8 data[FLOW_DIS_TUN_OPTS_MAX]; /* Using IP_TUNNEL_OPTS_MAX is desired * here but seems difficult to #include */ u8 len; __be16 dst_opt_type; }; struct flow_dissector_key_keyid { __be32 keyid; }; /** * struct flow_dissector_key_ipv4_addrs: * @src: source ip address * @dst: destination ip address */ struct flow_dissector_key_ipv4_addrs { /* (src,dst) must be grouped, in the same way than in IP header */ __be32 src; __be32 dst; }; /** * struct flow_dissector_key_ipv6_addrs: * @src: source ip address * @dst: destination ip address */ struct flow_dissector_key_ipv6_addrs { /* (src,dst) must be grouped, in the same way than in IP header */ struct in6_addr src; struct in6_addr dst; }; /** * struct flow_dissector_key_tipc: * @key: source node address combined with selector */ struct flow_dissector_key_tipc { __be32 key; }; /** * struct flow_dissector_key_addrs: * @v4addrs: IPv4 addresses * @v6addrs: IPv6 addresses */ struct flow_dissector_key_addrs { union { struct flow_dissector_key_ipv4_addrs v4addrs; struct flow_dissector_key_ipv6_addrs v6addrs; struct flow_dissector_key_tipc tipckey; }; }; /** * flow_dissector_key_arp: * @ports: Operation, source and target addresses for an ARP header * for Ethernet hardware addresses and IPv4 protocol addresses * sip: Sender IP address * tip: Target IP address * op: Operation * sha: Sender hardware address * tpa: Target hardware address */ struct flow_dissector_key_arp { __u32 sip; __u32 tip; __u8 op; unsigned char sha[ETH_ALEN]; unsigned char tha[ETH_ALEN]; }; /** * flow_dissector_key_tp_ports: * @ports: port numbers of Transport header * src: source port number * dst: destination port number */ struct flow_dissector_key_ports { union { __be32 ports; struct { __be16 src; __be16 dst; }; }; }; /** * flow_dissector_key_icmp: * type: ICMP type * code: ICMP code * id: session identifier */ struct flow_dissector_key_icmp { struct { u8 type; u8 code; }; u16 id; }; /** * struct flow_dissector_key_eth_addrs: * @src: source Ethernet address * @dst: destination Ethernet address */ struct flow_dissector_key_eth_addrs { /* (dst,src) must be grouped, in the same way than in ETH header */ unsigned char dst[ETH_ALEN]; unsigned char src[ETH_ALEN]; }; /** * struct flow_dissector_key_tcp: * @flags: flags */ struct flow_dissector_key_tcp { __be16 flags; }; /** * struct flow_dissector_key_ip: * @tos: tos * @ttl: ttl */ struct flow_dissector_key_ip { __u8 tos; __u8 ttl; }; /** * struct flow_dissector_key_meta: * @ingress_ifindex: ingress ifindex * @ingress_iftype: ingress interface type */ struct flow_dissector_key_meta { int ingress_ifindex; u16 ingress_iftype; }; /** * struct flow_dissector_key_ct: * @ct_state: conntrack state after converting with map * @ct_mark: conttrack mark * @ct_zone: conntrack zone * @ct_labels: conntrack labels */ struct flow_dissector_key_ct { u16 ct_state; u16 ct_zone; u32 ct_mark; u32 ct_labels[4]; }; /** * struct flow_dissector_key_hash: * @hash: hash value */ struct flow_dissector_key_hash { u32 hash; }; enum flow_dissector_key_id { FLOW_DISSECTOR_KEY_CONTROL, /* struct flow_dissector_key_control */ FLOW_DISSECTOR_KEY_BASIC, /* struct flow_dissector_key_basic */ FLOW_DISSECTOR_KEY_IPV4_ADDRS, /* struct flow_dissector_key_ipv4_addrs */ FLOW_DISSECTOR_KEY_IPV6_ADDRS, /* struct flow_dissector_key_ipv6_addrs */ FLOW_DISSECTOR_KEY_PORTS, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_PORTS_RANGE, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_ICMP, /* struct flow_dissector_key_icmp */ FLOW_DISSECTOR_KEY_ETH_ADDRS, /* struct flow_dissector_key_eth_addrs */ FLOW_DISSECTOR_KEY_TIPC, /* struct flow_dissector_key_tipc */ FLOW_DISSECTOR_KEY_ARP, /* struct flow_dissector_key_arp */ FLOW_DISSECTOR_KEY_VLAN, /* struct flow_dissector_key_vlan */ FLOW_DISSECTOR_KEY_FLOW_LABEL, /* struct flow_dissector_key_tags */ FLOW_DISSECTOR_KEY_GRE_KEYID, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_MPLS_ENTROPY, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_ENC_KEYID, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, /* struct flow_dissector_key_ipv4_addrs */ FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, /* struct flow_dissector_key_ipv6_addrs */ FLOW_DISSECTOR_KEY_ENC_CONTROL, /* struct flow_dissector_key_control */ FLOW_DISSECTOR_KEY_ENC_PORTS, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_MPLS, /* struct flow_dissector_key_mpls */ FLOW_DISSECTOR_KEY_TCP, /* struct flow_dissector_key_tcp */ FLOW_DISSECTOR_KEY_IP, /* struct flow_dissector_key_ip */ FLOW_DISSECTOR_KEY_CVLAN, /* struct flow_dissector_key_vlan */ FLOW_DISSECTOR_KEY_ENC_IP, /* struct flow_dissector_key_ip */ FLOW_DISSECTOR_KEY_ENC_OPTS, /* struct flow_dissector_key_enc_opts */ FLOW_DISSECTOR_KEY_META, /* struct flow_dissector_key_meta */ FLOW_DISSECTOR_KEY_CT, /* struct flow_dissector_key_ct */ FLOW_DISSECTOR_KEY_HASH, /* struct flow_dissector_key_hash */ FLOW_DISSECTOR_KEY_MAX, }; #define FLOW_DISSECTOR_F_PARSE_1ST_FRAG BIT(0) #define FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL BIT(1) #define FLOW_DISSECTOR_F_STOP_AT_ENCAP BIT(2) struct flow_dissector_key { enum flow_dissector_key_id key_id; size_t offset; /* offset of struct flow_dissector_key_* in target the struct */ }; struct flow_dissector { unsigned int used_keys; /* each bit repesents presence of one key id */ unsigned short int offset[FLOW_DISSECTOR_KEY_MAX]; }; struct flow_keys_basic { struct flow_dissector_key_control control; struct flow_dissector_key_basic basic; }; struct flow_keys { struct flow_dissector_key_control control; #define FLOW_KEYS_HASH_START_FIELD basic struct flow_dissector_key_basic basic __aligned(SIPHASH_ALIGNMENT); struct flow_dissector_key_tags tags; struct flow_dissector_key_vlan vlan; struct flow_dissector_key_vlan cvlan; struct flow_dissector_key_keyid keyid; struct flow_dissector_key_ports ports; struct flow_dissector_key_icmp icmp; /* 'addrs' must be the last member */ struct flow_dissector_key_addrs addrs; }; #define FLOW_KEYS_HASH_OFFSET \ offsetof(struct flow_keys, FLOW_KEYS_HASH_START_FIELD) __be32 flow_get_u32_src(const struct flow_keys *flow); __be32 flow_get_u32_dst(const struct flow_keys *flow); extern struct flow_dissector flow_keys_dissector; extern struct flow_dissector flow_keys_basic_dissector; /* struct flow_keys_digest: * * This structure is used to hold a digest of the full flow keys. This is a * larger "hash" of a flow to allow definitively matching specific flows where * the 32 bit skb->hash is not large enough. The size is limited to 16 bytes so * that it can be used in CB of skb (see sch_choke for an example). */ #define FLOW_KEYS_DIGEST_LEN 16 struct flow_keys_digest { u8 data[FLOW_KEYS_DIGEST_LEN]; }; void make_flow_keys_digest(struct flow_keys_digest *digest, const struct flow_keys *flow); static inline bool flow_keys_have_l4(const struct flow_keys *keys) { return (keys->ports.ports || keys->tags.flow_label); } u32 flow_hash_from_keys(struct flow_keys *keys); void skb_flow_get_icmp_tci(const struct sk_buff *skb, struct flow_dissector_key_icmp *key_icmp, void *data, int thoff, int hlen); static inline bool dissector_uses_key(const struct flow_dissector *flow_dissector, enum flow_dissector_key_id key_id) { return flow_dissector->used_keys & (1 << key_id); } static inline void *skb_flow_dissector_target(struct flow_dissector *flow_dissector, enum flow_dissector_key_id key_id, void *target_container) { return ((char *)target_container) + flow_dissector->offset[key_id]; } struct bpf_flow_dissector { struct bpf_flow_keys *flow_keys; const struct sk_buff *skb; void *data; void *data_end; }; static inline void flow_dissector_init_keys(struct flow_dissector_key_control *key_control, struct flow_dissector_key_basic *key_basic) { memset(key_control, 0, sizeof(*key_control)); memset(key_basic, 0, sizeof(*key_basic)); } #ifdef CONFIG_BPF_SYSCALL int flow_dissector_bpf_prog_attach_check(struct net *net, struct bpf_prog *prog); #endif /* CONFIG_BPF_SYSCALL */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_NULLS_H #define _LINUX_LIST_NULLS_H #include <linux/poison.h> #include <linux/const.h> /* * Special version of lists, where end of list is not a NULL pointer, * but a 'nulls' marker, which can have many different values. * (up to 2^31 different values guaranteed on all platforms) * * In the standard hlist, termination of a list is the NULL pointer. * In this special 'nulls' variant, we use the fact that objects stored in * a list are aligned on a word (4 or 8 bytes alignment). * We therefore use the last significant bit of 'ptr' : * Set to 1 : This is a 'nulls' end-of-list marker (ptr >> 1) * Set to 0 : This is a pointer to some object (ptr) */ struct hlist_nulls_head { struct hlist_nulls_node *first; }; struct hlist_nulls_node { struct hlist_nulls_node *next, **pprev; }; #define NULLS_MARKER(value) (1UL | (((long)value) << 1)) #define INIT_HLIST_NULLS_HEAD(ptr, nulls) \ ((ptr)->first = (struct hlist_nulls_node *) NULLS_MARKER(nulls)) #define hlist_nulls_entry(ptr, type, member) container_of(ptr,type,member) #define hlist_nulls_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ !is_a_nulls(____ptr) ? hlist_nulls_entry(____ptr, type, member) : NULL; \ }) /** * ptr_is_a_nulls - Test if a ptr is a nulls * @ptr: ptr to be tested * */ static inline int is_a_nulls(const struct hlist_nulls_node *ptr) { return ((unsigned long)ptr & 1); } /** * get_nulls_value - Get the 'nulls' value of the end of chain * @ptr: end of chain * * Should be called only if is_a_nulls(ptr); */ static inline unsigned long get_nulls_value(const struct hlist_nulls_node *ptr) { return ((unsigned long)ptr) >> 1; } /** * hlist_nulls_unhashed - Has node been removed and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed state. * For example, hlist_del_init_rcu() leaves the node in unhashed state, * but hlist_nulls_del() does not. */ static inline int hlist_nulls_unhashed(const struct hlist_nulls_node *h) { return !h->pprev; } /** * hlist_nulls_unhashed_lockless - Has node been removed and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed state. * For example, hlist_del_init_rcu() leaves the node in unhashed state, * but hlist_nulls_del() does not. Unlike hlist_nulls_unhashed(), this * function may be used locklessly. */ static inline int hlist_nulls_unhashed_lockless(const struct hlist_nulls_node *h) { return !READ_ONCE(h->pprev); } static inline int hlist_nulls_empty(const struct hlist_nulls_head *h) { return is_a_nulls(READ_ONCE(h->first)); } static inline void hlist_nulls_add_head(struct hlist_nulls_node *n, struct hlist_nulls_head *h) { struct hlist_nulls_node *first = h->first; n->next = first; WRITE_ONCE(n->pprev, &h->first); h->first = n; if (!is_a_nulls(first)) WRITE_ONCE(first->pprev, &n->next); } static inline void __hlist_nulls_del(struct hlist_nulls_node *n) { struct hlist_nulls_node *next = n->next; struct hlist_nulls_node **pprev = n->pprev; WRITE_ONCE(*pprev, next); if (!is_a_nulls(next)) WRITE_ONCE(next->pprev, pprev); } static inline void hlist_nulls_del(struct hlist_nulls_node *n) { __hlist_nulls_del(n); WRITE_ONCE(n->pprev, LIST_POISON2); } /** * hlist_nulls_for_each_entry - iterate over list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * */ #define hlist_nulls_for_each_entry(tpos, pos, head, member) \ for (pos = (head)->first; \ (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) /** * hlist_nulls_for_each_entry_from - iterate over a hlist continuing from current point * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @member: the name of the hlist_node within the struct. * */ #define hlist_nulls_for_each_entry_from(tpos, pos, member) \ for (; (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 /* SPDX-License-Identifier: GPL-2.0 */ /* * bvec iterator * * Copyright (C) 2001 Ming Lei <ming.lei@canonical.com> */ #ifndef __LINUX_BVEC_ITER_H #define __LINUX_BVEC_ITER_H #include <linux/bug.h> #include <linux/errno.h> #include <linux/limits.h> #include <linux/minmax.h> #include <linux/mm.h> #include <linux/types.h> struct page; /** * struct bio_vec - a contiguous range of physical memory addresses * @bv_page: First page associated with the address range. * @bv_len: Number of bytes in the address range. * @bv_offset: Start of the address range relative to the start of @bv_page. * * The following holds for a bvec if n * PAGE_SIZE < bv_offset + bv_len: * * nth_page(@bv_page, n) == @bv_page + n * * This holds because page_is_mergeable() checks the above property. */ struct bio_vec { struct page *bv_page; unsigned int bv_len; unsigned int bv_offset; }; struct bvec_iter { sector_t bi_sector; /* device address in 512 byte sectors */ unsigned int bi_size; /* residual I/O count */ unsigned int bi_idx; /* current index into bvl_vec */ unsigned int bi_bvec_done; /* number of bytes completed in current bvec */ }; struct bvec_iter_all { struct bio_vec bv; int idx; unsigned done; }; /* * various member access, note that bio_data should of course not be used * on highmem page vectors */ #define __bvec_iter_bvec(bvec, iter) (&(bvec)[(iter).bi_idx]) /* multi-page (mp_bvec) helpers */ #define mp_bvec_iter_page(bvec, iter) \ (__bvec_iter_bvec((bvec), (iter))->bv_page) #define mp_bvec_iter_len(bvec, iter) \ min((iter).bi_size, \ __bvec_iter_bvec((bvec), (iter))->bv_len - (iter).bi_bvec_done) #define mp_bvec_iter_offset(bvec, iter) \ (__bvec_iter_bvec((bvec), (iter))->bv_offset + (iter).bi_bvec_done) #define mp_bvec_iter_page_idx(bvec, iter) \ (mp_bvec_iter_offset((bvec), (iter)) / PAGE_SIZE) #define mp_bvec_iter_bvec(bvec, iter) \ ((struct bio_vec) { \ .bv_page = mp_bvec_iter_page((bvec), (iter)), \ .bv_len = mp_bvec_iter_len((bvec), (iter)), \ .bv_offset = mp_bvec_iter_offset((bvec), (iter)), \ }) /* For building single-page bvec in flight */ #define bvec_iter_offset(bvec, iter) \ (mp_bvec_iter_offset((bvec), (iter)) % PAGE_SIZE) #define bvec_iter_len(bvec, iter) \ min_t(unsigned, mp_bvec_iter_len((bvec), (iter)), \ PAGE_SIZE - bvec_iter_offset((bvec), (iter))) #define bvec_iter_page(bvec, iter) \ (mp_bvec_iter_page((bvec), (iter)) + \ mp_bvec_iter_page_idx((bvec), (iter))) #define bvec_iter_bvec(bvec, iter) \ ((struct bio_vec) { \ .bv_page = bvec_iter_page((bvec), (iter)), \ .bv_len = bvec_iter_len((bvec), (iter)), \ .bv_offset = bvec_iter_offset((bvec), (iter)), \ }) static inline bool bvec_iter_advance(const struct bio_vec *bv, struct bvec_iter *iter, unsigned bytes) { unsigned int idx = iter->bi_idx; if (WARN_ONCE(bytes > iter->bi_size, "Attempted to advance past end of bvec iter\n")) { iter->bi_size = 0; return false; } iter->bi_size -= bytes; bytes += iter->bi_bvec_done; while (bytes && bytes >= bv[idx].bv_len) { bytes -= bv[idx].bv_len; idx++; } iter->bi_idx = idx; iter->bi_bvec_done = bytes; return true; } static inline void bvec_iter_skip_zero_bvec(struct bvec_iter *iter) { iter->bi_bvec_done = 0; iter->bi_idx++; } #define for_each_bvec(bvl, bio_vec, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = bvec_iter_bvec((bio_vec), (iter))), 1); \ (bvl).bv_len ? (void)bvec_iter_advance((bio_vec), &(iter), \ (bvl).bv_len) : bvec_iter_skip_zero_bvec(&(iter))) /* for iterating one bio from start to end */ #define BVEC_ITER_ALL_INIT (struct bvec_iter) \ { \ .bi_sector = 0, \ .bi_size = UINT_MAX, \ .bi_idx = 0, \ .bi_bvec_done = 0, \ } static inline struct bio_vec *bvec_init_iter_all(struct bvec_iter_all *iter_all) { iter_all->done = 0; iter_all->idx = 0; return &iter_all->bv; } static inline void bvec_advance(const struct bio_vec *bvec, struct bvec_iter_all *iter_all) { struct bio_vec *bv = &iter_all->bv; if (iter_all->done) { bv->bv_page++; bv->bv_offset = 0; } else { bv->bv_page = bvec->bv_page + (bvec->bv_offset >> PAGE_SHIFT); bv->bv_offset = bvec->bv_offset & ~PAGE_MASK; } bv->bv_len = min_t(unsigned int, PAGE_SIZE - bv->bv_offset, bvec->bv_len - iter_all->done); iter_all->done += bv->bv_len; if (iter_all->done == bvec->bv_len) { iter_all->idx++; iter_all->done = 0; } } #endif /* __LINUX_BVEC_ITER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_FS_NOTIFY_H #define _LINUX_FS_NOTIFY_H /* * include/linux/fsnotify.h - generic hooks for filesystem notification, to * reduce in-source duplication from both dnotify and inotify. * * We don't compile any of this away in some complicated menagerie of ifdefs. * Instead, we rely on the code inside to optimize away as needed. * * (C) Copyright 2005 Robert Love */ #include <linux/fsnotify_backend.h> #include <linux/audit.h> #include <linux/slab.h> #include <linux/bug.h> /* * Notify this @dir inode about a change in a child directory entry. * The directory entry may have turned positive or negative or its inode may * have changed (i.e. renamed over). * * Unlike fsnotify_parent(), the event will be reported regardless of the * FS_EVENT_ON_CHILD mask on the parent inode and will not be reported if only * the child is interested and not the parent. */ static inline void fsnotify_name(struct inode *dir, __u32 mask, struct inode *child, const struct qstr *name, u32 cookie) { fsnotify(mask, child, FSNOTIFY_EVENT_INODE, dir, name, NULL, cookie); } static inline void fsnotify_dirent(struct inode *dir, struct dentry *dentry, __u32 mask) { fsnotify_name(dir, mask, d_inode(dentry), &dentry->d_name, 0); } static inline void fsnotify_inode(struct inode *inode, __u32 mask) { if (S_ISDIR(inode->i_mode)) mask |= FS_ISDIR; fsnotify(mask, inode, FSNOTIFY_EVENT_INODE, NULL, NULL, inode, 0); } /* Notify this dentry's parent about a child's events. */ static inline int fsnotify_parent(struct dentry *dentry, __u32 mask, const void *data, int data_type) { struct inode *inode = d_inode(dentry); if (S_ISDIR(inode->i_mode)) { mask |= FS_ISDIR; /* sb/mount marks are not interested in name of directory */ if (!(dentry->d_flags & DCACHE_FSNOTIFY_PARENT_WATCHED)) goto notify_child; } /* disconnected dentry cannot notify parent */ if (IS_ROOT(dentry)) goto notify_child; return __fsnotify_parent(dentry, mask, data, data_type); notify_child: return fsnotify(mask, data, data_type, NULL, NULL, inode, 0); } /* * Simple wrappers to consolidate calls to fsnotify_parent() when an event * is on a file/dentry. */ static inline void fsnotify_dentry(struct dentry *dentry, __u32 mask) { fsnotify_parent(dentry, mask, d_inode(dentry), FSNOTIFY_EVENT_INODE); } static inline int fsnotify_file(struct file *file, __u32 mask) { const struct path *path = &file->f_path; if (file->f_mode & FMODE_NONOTIFY) return 0; return fsnotify_parent(path->dentry, mask, path, FSNOTIFY_EVENT_PATH); } /* Simple call site for access decisions */ static inline int fsnotify_perm(struct file *file, int mask) { int ret; __u32 fsnotify_mask = 0; if (!(mask & (MAY_READ | MAY_OPEN))) return 0; if (mask & MAY_OPEN) { fsnotify_mask = FS_OPEN_PERM; if (file->f_flags & __FMODE_EXEC) { ret = fsnotify_file(file, FS_OPEN_EXEC_PERM); if (ret) return ret; } } else if (mask & MAY_READ) { fsnotify_mask = FS_ACCESS_PERM; } return fsnotify_file(file, fsnotify_mask); } /* * fsnotify_link_count - inode's link count changed */ static inline void fsnotify_link_count(struct inode *inode) { fsnotify_inode(inode, FS_ATTRIB); } /* * fsnotify_move - file old_name at old_dir was moved to new_name at new_dir */ static inline void fsnotify_move(struct inode *old_dir, struct inode *new_dir, const struct qstr *old_name, int isdir, struct inode *target, struct dentry *moved) { struct inode *source = moved->d_inode; u32 fs_cookie = fsnotify_get_cookie(); __u32 old_dir_mask = FS_MOVED_FROM; __u32 new_dir_mask = FS_MOVED_TO; const struct qstr *new_name = &moved->d_name; if (old_dir == new_dir) old_dir_mask |= FS_DN_RENAME; if (isdir) { old_dir_mask |= FS_ISDIR; new_dir_mask |= FS_ISDIR; } fsnotify_name(old_dir, old_dir_mask, source, old_name, fs_cookie); fsnotify_name(new_dir, new_dir_mask, source, new_name, fs_cookie); if (target) fsnotify_link_count(target); fsnotify_inode(source, FS_MOVE_SELF); audit_inode_child(new_dir, moved, AUDIT_TYPE_CHILD_CREATE); } /* * fsnotify_inode_delete - and inode is being evicted from cache, clean up is needed */ static inline void fsnotify_inode_delete(struct inode *inode) { __fsnotify_inode_delete(inode); } /* * fsnotify_vfsmount_delete - a vfsmount is being destroyed, clean up is needed */ static inline void fsnotify_vfsmount_delete(struct vfsmount *mnt) { __fsnotify_vfsmount_delete(mnt); } /* * fsnotify_inoderemove - an inode is going away */ static inline void fsnotify_inoderemove(struct inode *inode) { fsnotify_inode(inode, FS_DELETE_SELF); __fsnotify_inode_delete(inode); } /* * fsnotify_create - 'name' was linked in */ static inline void fsnotify_create(struct inode *inode, struct dentry *dentry) { audit_inode_child(inode, dentry, AUDIT_TYPE_CHILD_CREATE); fsnotify_dirent(inode, dentry, FS_CREATE); } /* * fsnotify_link - new hardlink in 'inode' directory * Note: We have to pass also the linked inode ptr as some filesystems leave * new_dentry->d_inode NULL and instantiate inode pointer later */ static inline void fsnotify_link(struct inode *dir, struct inode *inode, struct dentry *new_dentry) { fsnotify_link_count(inode); audit_inode_child(dir, new_dentry, AUDIT_TYPE_CHILD_CREATE); fsnotify_name(dir, FS_CREATE, inode, &new_dentry->d_name, 0); } /* * fsnotify_unlink - 'name' was unlinked * * Caller must make sure that dentry->d_name is stable. */ static inline void fsnotify_unlink(struct inode *dir, struct dentry *dentry) { /* Expected to be called before d_delete() */ WARN_ON_ONCE(d_is_negative(dentry)); fsnotify_dirent(dir, dentry, FS_DELETE); } /* * fsnotify_mkdir - directory 'name' was created */ static inline void fsnotify_mkdir(struct inode *inode, struct dentry *dentry) { audit_inode_child(inode, dentry, AUDIT_TYPE_CHILD_CREATE); fsnotify_dirent(inode, dentry, FS_CREATE | FS_ISDIR); } /* * fsnotify_rmdir - directory 'name' was removed * * Caller must make sure that dentry->d_name is stable. */ static inline void fsnotify_rmdir(struct inode *dir, struct dentry *dentry) { /* Expected to be called before d_delete() */ WARN_ON_ONCE(d_is_negative(dentry)); fsnotify_dirent(dir, dentry, FS_DELETE | FS_ISDIR); } /* * fsnotify_access - file was read */ static inline void fsnotify_access(struct file *file) { fsnotify_file(file, FS_ACCESS); } /* * fsnotify_modify - file was modified */ static inline void fsnotify_modify(struct file *file) { fsnotify_file(file, FS_MODIFY); } /* * fsnotify_open - file was opened */ static inline void fsnotify_open(struct file *file) { __u32 mask = FS_OPEN; if (file->f_flags & __FMODE_EXEC) mask |= FS_OPEN_EXEC; fsnotify_file(file, mask); } /* * fsnotify_close - file was closed */ static inline void fsnotify_close(struct file *file) { __u32 mask = (file->f_mode & FMODE_WRITE) ? FS_CLOSE_WRITE : FS_CLOSE_NOWRITE; fsnotify_file(file, mask); } /* * fsnotify_xattr - extended attributes were changed */ static inline void fsnotify_xattr(struct dentry *dentry) { fsnotify_dentry(dentry, FS_ATTRIB); } /* * fsnotify_change - notify_change event. file was modified and/or metadata * was changed. */ static inline void fsnotify_change(struct dentry *dentry, unsigned int ia_valid) { __u32 mask = 0; if (ia_valid & ATTR_UID) mask |= FS_ATTRIB; if (ia_valid & ATTR_GID) mask |= FS_ATTRIB; if (ia_valid & ATTR_SIZE) mask |= FS_MODIFY; /* both times implies a utime(s) call */ if ((ia_valid & (ATTR_ATIME | ATTR_MTIME)) == (ATTR_ATIME | ATTR_MTIME)) mask |= FS_ATTRIB; else if (ia_valid & ATTR_ATIME) mask |= FS_ACCESS; else if (ia_valid & ATTR_MTIME) mask |= FS_MODIFY; if (ia_valid & ATTR_MODE) mask |= FS_ATTRIB; if (mask) fsnotify_dentry(dentry, mask); } #endif /* _LINUX_FS_NOTIFY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Descending-priority-sorted double-linked list * * (C) 2002-2003 Intel Corp * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>. * * 2001-2005 (c) MontaVista Software, Inc. * Daniel Walker <dwalker@mvista.com> * * (C) 2005 Thomas Gleixner <tglx@linutronix.de> * * Simplifications of the original code by * Oleg Nesterov <oleg@tv-sign.ru> * * Based on simple lists (include/linux/list.h). * * This is a priority-sorted list of nodes; each node has a * priority from INT_MIN (highest) to INT_MAX (lowest). * * Addition is O(K), removal is O(1), change of priority of a node is * O(K) and K is the number of RT priority levels used in the system. * (1 <= K <= 99) * * This list is really a list of lists: * * - The tier 1 list is the prio_list, different priority nodes. * * - The tier 2 list is the node_list, serialized nodes. * * Simple ASCII art explanation: * * pl:prio_list (only for plist_node) * nl:node_list * HEAD| NODE(S) * | * ||------------------------------------| * ||->|pl|<->|pl|<--------------->|pl|<-| * | |10| |21| |21| |21| |40| (prio) * | | | | | | | | | | | * | | | | | | | | | | | * |->|nl|<->|nl|<->|nl|<->|nl|<->|nl|<->|nl|<-| * |-------------------------------------------| * * The nodes on the prio_list list are sorted by priority to simplify * the insertion of new nodes. There are no nodes with duplicate * priorites on the list. * * The nodes on the node_list are ordered by priority and can contain * entries which have the same priority. Those entries are ordered * FIFO * * Addition means: look for the prio_list node in the prio_list * for the priority of the node and insert it before the node_list * entry of the next prio_list node. If it is the first node of * that priority, add it to the prio_list in the right position and * insert it into the serialized node_list list * * Removal means remove it from the node_list and remove it from * the prio_list if the node_list list_head is non empty. In case * of removal from the prio_list it must be checked whether other * entries of the same priority are on the list or not. If there * is another entry of the same priority then this entry has to * replace the removed entry on the prio_list. If the entry which * is removed is the only entry of this priority then a simple * remove from both list is sufficient. * * INT_MIN is the highest priority, 0 is the medium highest, INT_MAX * is lowest priority. * * No locking is done, up to the caller. */ #ifndef _LINUX_PLIST_H_ #define _LINUX_PLIST_H_ #include <linux/kernel.h> #include <linux/list.h> struct plist_head { struct list_head node_list; }; struct plist_node { int prio; struct list_head prio_list; struct list_head node_list; }; /** * PLIST_HEAD_INIT - static struct plist_head initializer * @head: struct plist_head variable name */ #define PLIST_HEAD_INIT(head) \ { \ .node_list = LIST_HEAD_INIT((head).node_list) \ } /** * PLIST_HEAD - declare and init plist_head * @head: name for struct plist_head variable */ #define PLIST_HEAD(head) \ struct plist_head head = PLIST_HEAD_INIT(head) /** * PLIST_NODE_INIT - static struct plist_node initializer * @node: struct plist_node variable name * @__prio: initial node priority */ #define PLIST_NODE_INIT(node, __prio) \ { \ .prio = (__prio), \ .prio_list = LIST_HEAD_INIT((node).prio_list), \ .node_list = LIST_HEAD_INIT((node).node_list), \ } /** * plist_head_init - dynamic struct plist_head initializer * @head: &struct plist_head pointer */ static inline void plist_head_init(struct plist_head *head) { INIT_LIST_HEAD(&head->node_list); } /** * plist_node_init - Dynamic struct plist_node initializer * @node: &struct plist_node pointer * @prio: initial node priority */ static inline void plist_node_init(struct plist_node *node, int prio) { node->prio = prio; INIT_LIST_HEAD(&node->prio_list); INIT_LIST_HEAD(&node->node_list); } extern void plist_add(struct plist_node *node, struct plist_head *head); extern void plist_del(struct plist_node *node, struct plist_head *head); extern void plist_requeue(struct plist_node *node, struct plist_head *head); /** * plist_for_each - iterate over the plist * @pos: the type * to use as a loop counter * @head: the head for your list */ #define plist_for_each(pos, head) \ list_for_each_entry(pos, &(head)->node_list, node_list) /** * plist_for_each_continue - continue iteration over the plist * @pos: the type * to use as a loop cursor * @head: the head for your list * * Continue to iterate over plist, continuing after the current position. */ #define plist_for_each_continue(pos, head) \ list_for_each_entry_continue(pos, &(head)->node_list, node_list) /** * plist_for_each_safe - iterate safely over a plist of given type * @pos: the type * to use as a loop counter * @n: another type * to use as temporary storage * @head: the head for your list * * Iterate over a plist of given type, safe against removal of list entry. */ #define plist_for_each_safe(pos, n, head) \ list_for_each_entry_safe(pos, n, &(head)->node_list, node_list) /** * plist_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop counter * @head: the head for your list * @mem: the name of the list_head within the struct */ #define plist_for_each_entry(pos, head, mem) \ list_for_each_entry(pos, &(head)->node_list, mem.node_list) /** * plist_for_each_entry_continue - continue iteration over list of given type * @pos: the type * to use as a loop cursor * @head: the head for your list * @m: the name of the list_head within the struct * * Continue to iterate over list of given type, continuing after * the current position. */ #define plist_for_each_entry_continue(pos, head, m) \ list_for_each_entry_continue(pos, &(head)->node_list, m.node_list) /** * plist_for_each_entry_safe - iterate safely over list of given type * @pos: the type * to use as a loop counter * @n: another type * to use as temporary storage * @head: the head for your list * @m: the name of the list_head within the struct * * Iterate over list of given type, safe against removal of list entry. */ #define plist_for_each_entry_safe(pos, n, head, m) \ list_for_each_entry_safe(pos, n, &(head)->node_list, m.node_list) /** * plist_head_empty - return !0 if a plist_head is empty * @head: &struct plist_head pointer */ static inline int plist_head_empty(const struct plist_head *head) { return list_empty(&head->node_list); } /** * plist_node_empty - return !0 if plist_node is not on a list * @node: &struct plist_node pointer */ static inline int plist_node_empty(const struct plist_node *node) { return list_empty(&node->node_list); } /* All functions below assume the plist_head is not empty. */ /** * plist_first_entry - get the struct for the first entry * @head: the &struct plist_head pointer * @type: the type of the struct this is embedded in * @member: the name of the list_head within the struct */ #ifdef CONFIG_DEBUG_PLIST # define plist_first_entry(head, type, member) \ ({ \ WARN_ON(plist_head_empty(head)); \ container_of(plist_first(head), type, member); \ }) #else # define plist_first_entry(head, type, member) \ container_of(plist_first(head), type, member) #endif /** * plist_last_entry - get the struct for the last entry * @head: the &struct plist_head pointer * @type: the type of the struct this is embedded in * @member: the name of the list_head within the struct */ #ifdef CONFIG_DEBUG_PLIST # define plist_last_entry(head, type, member) \ ({ \ WARN_ON(plist_head_empty(head)); \ container_of(plist_last(head), type, member); \ }) #else # define plist_last_entry(head, type, member) \ container_of(plist_last(head), type, member) #endif /** * plist_next - get the next entry in list * @pos: the type * to cursor */ #define plist_next(pos) \ list_next_entry(pos, node_list) /** * plist_prev - get the prev entry in list * @pos: the type * to cursor */ #define plist_prev(pos) \ list_prev_entry(pos, node_list) /** * plist_first - return the first node (and thus, highest priority) * @head: the &struct plist_head pointer * * Assumes the plist is _not_ empty. */ static inline struct plist_node *plist_first(const struct plist_head *head) { return list_entry(head->node_list.next, struct plist_node, node_list); } /** * plist_last - return the last node (and thus, lowest priority) * @head: the &struct plist_head pointer * * Assumes the plist is _not_ empty. */ static inline struct plist_node *plist_last(const struct plist_head *head) { return list_entry(head->node_list.prev, struct plist_node, node_list); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_WAIT_BIT_H #define _LINUX_WAIT_BIT_H /* * Linux wait-bit related types and methods: */ #include <linux/wait.h> struct wait_bit_key { void *flags; int bit_nr; unsigned long timeout; }; struct wait_bit_queue_entry { struct wait_bit_key key; struct wait_queue_entry wq_entry; }; #define __WAIT_BIT_KEY_INITIALIZER(word, bit) \ { .flags = word, .bit_nr = bit, } typedef int wait_bit_action_f(struct wait_bit_key *key, int mode); void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit); int __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode); int __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode); void wake_up_bit(void *word, int bit); int out_of_line_wait_on_bit(void *word, int, wait_bit_action_f *action, unsigned int mode); int out_of_line_wait_on_bit_timeout(void *word, int, wait_bit_action_f *action, unsigned int mode, unsigned long timeout); int out_of_line_wait_on_bit_lock(void *word, int, wait_bit_action_f *action, unsigned int mode); struct wait_queue_head *bit_waitqueue(void *word, int bit); extern void __init wait_bit_init(void); int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key); #define DEFINE_WAIT_BIT(name, word, bit) \ struct wait_bit_queue_entry name = { \ .key = __WAIT_BIT_KEY_INITIALIZER(word, bit), \ .wq_entry = { \ .private = current, \ .func = wake_bit_function, \ .entry = \ LIST_HEAD_INIT((name).wq_entry.entry), \ }, \ } extern int bit_wait(struct wait_bit_key *key, int mode); extern int bit_wait_io(struct wait_bit_key *key, int mode); extern int bit_wait_timeout(struct wait_bit_key *key, int mode); extern int bit_wait_io_timeout(struct wait_bit_key *key, int mode); /** * wait_on_bit - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * There is a standard hashed waitqueue table for generic use. This * is the part of the hashtable's accessor API that waits on a bit. * For instance, if one were to have waiters on a bitflag, one would * call wait_on_bit() in threads waiting for the bit to clear. * One uses wait_on_bit() where one is waiting for the bit to clear, * but has no intention of setting it. * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, bit_wait, mode); } /** * wait_on_bit_io - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared. This is similar to wait_on_bit(), but calls * io_schedule() instead of schedule() for the actual waiting. * * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit_io(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, bit_wait_io, mode); } /** * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * @timeout: timeout, in jiffies * * Use the standard hashed waitqueue table to wait for a bit * to be cleared. This is similar to wait_on_bit(), except also takes a * timeout parameter. * * Returned value will be zero if the bit was cleared before the * @timeout elapsed, or non-zero if the @timeout elapsed or process * received a signal and the mode permitted wakeup on that signal. */ static inline int wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode, unsigned long timeout) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit_timeout(word, bit, bit_wait_timeout, mode, timeout); } /** * wait_on_bit_action - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @action: the function used to sleep, which may take special actions * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared, and allow the waiting action to be specified. * This is like wait_on_bit() but allows fine control of how the waiting * is done. * * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action, unsigned mode) { might_sleep(); if (!test_bit(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, action, mode); } /** * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * There is a standard hashed waitqueue table for generic use. This * is the part of the hashtable's accessor API that waits on a bit * when one intends to set it, for instance, trying to lock bitflags. * For instance, if one were to have waiters trying to set bitflag * and waiting for it to clear before setting it, one would call * wait_on_bit() in threads waiting to be able to set the bit. * One uses wait_on_bit_lock() where one is waiting for the bit to * clear with the intention of setting it, and when done, clearing it. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode); } /** * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared and then to atomically set it. This is similar * to wait_on_bit(), but calls io_schedule() instead of schedule() * for the actual waiting. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode); } /** * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @action: the function used to sleep, which may take special actions * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared and then to set it, and allow the waiting action * to be specified. * This is like wait_on_bit() but allows fine control of how the waiting * is done. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, action, mode); } extern void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int flags); extern void wake_up_var(void *var); extern wait_queue_head_t *__var_waitqueue(void *p); #define ___wait_var_event(var, condition, state, exclusive, ret, cmd) \ ({ \ __label__ __out; \ struct wait_queue_head *__wq_head = __var_waitqueue(var); \ struct wait_bit_queue_entry __wbq_entry; \ long __ret = ret; /* explicit shadow */ \ \ init_wait_var_entry(&__wbq_entry, var, \ exclusive ? WQ_FLAG_EXCLUSIVE : 0); \ for (;;) { \ long __int = prepare_to_wait_event(__wq_head, \ &__wbq_entry.wq_entry, \ state); \ if (condition) \ break; \ \ if (___wait_is_interruptible(state) && __int) { \ __ret = __int; \ goto __out; \ } \ \ cmd; \ } \ finish_wait(__wq_head, &__wbq_entry.wq_entry); \ __out: __ret; \ }) #define __wait_var_event(var, condition) \ ___wait_var_event(var, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ schedule()) #define wait_var_event(var, condition) \ do { \ might_sleep(); \ if (condition) \ break; \ __wait_var_event(var, condition); \ } while (0) #define __wait_var_event_killable(var, condition) \ ___wait_var_event(var, condition, TASK_KILLABLE, 0, 0, \ schedule()) #define wait_var_event_killable(var, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_var_event_killable(var, condition); \ __ret; \ }) #define __wait_var_event_timeout(var, condition, timeout) \ ___wait_var_event(var, ___wait_cond_timeout(condition), \ TASK_UNINTERRUPTIBLE, 0, timeout, \ __ret = schedule_timeout(__ret)) #define wait_var_event_timeout(var, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_var_event_timeout(var, condition, timeout); \ __ret; \ }) #define __wait_var_event_interruptible(var, condition) \ ___wait_var_event(var, condition, TASK_INTERRUPTIBLE, 0, 0, \ schedule()) #define wait_var_event_interruptible(var, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_var_event_interruptible(var, condition); \ __ret; \ }) /** * clear_and_wake_up_bit - clear a bit and wake up anyone waiting on that bit * * @bit: the bit of the word being waited on * @word: the word being waited on, a kernel virtual address * * You can use this helper if bitflags are manipulated atomically rather than * non-atomically under a lock. */ static inline void clear_and_wake_up_bit(int bit, void *word) { clear_bit_unlock(bit, word); /* See wake_up_bit() for which memory barrier you need to use. */ smp_mb__after_atomic(); wake_up_bit(word, bit); } #endif /* _LINUX_WAIT_BIT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> */ #ifndef _IP6_FIB_H #define _IP6_FIB_H #include <linux/ipv6_route.h> #include <linux/rtnetlink.h> #include <linux/spinlock.h> #include <linux/notifier.h> #include <net/dst.h> #include <net/flow.h> #include <net/ip_fib.h> #include <net/netlink.h> #include <net/inetpeer.h> #include <net/fib_notifier.h> #include <linux/indirect_call_wrapper.h> #ifdef CONFIG_IPV6_MULTIPLE_TABLES #define FIB6_TABLE_HASHSZ 256 #else #define FIB6_TABLE_HASHSZ 1 #endif #define RT6_DEBUG 2 #if RT6_DEBUG >= 3 #define RT6_TRACE(x...) pr_debug(x) #else #define RT6_TRACE(x...) do { ; } while (0) #endif struct rt6_info; struct fib6_info; struct fib6_config { u32 fc_table; u32 fc_metric; int fc_dst_len; int fc_src_len; int fc_ifindex; u32 fc_flags; u32 fc_protocol; u16 fc_type; /* only 8 bits are used */ u16 fc_delete_all_nh : 1, fc_ignore_dev_down:1, __unused : 14; u32 fc_nh_id; struct in6_addr fc_dst; struct in6_addr fc_src; struct in6_addr fc_prefsrc; struct in6_addr fc_gateway; unsigned long fc_expires; struct nlattr *fc_mx; int fc_mx_len; int fc_mp_len; struct nlattr *fc_mp; struct nl_info fc_nlinfo; struct nlattr *fc_encap; u16 fc_encap_type; bool fc_is_fdb; }; struct fib6_node { struct fib6_node __rcu *parent; struct fib6_node __rcu *left; struct fib6_node __rcu *right; #ifdef CONFIG_IPV6_SUBTREES struct fib6_node __rcu *subtree; #endif struct fib6_info __rcu *leaf; __u16 fn_bit; /* bit key */ __u16 fn_flags; int fn_sernum; struct fib6_info __rcu *rr_ptr; struct rcu_head rcu; }; struct fib6_gc_args { int timeout; int more; }; #ifndef CONFIG_IPV6_SUBTREES #define FIB6_SUBTREE(fn) NULL static inline bool fib6_routes_require_src(const struct net *net) { return false; } static inline void fib6_routes_require_src_inc(struct net *net) {} static inline void fib6_routes_require_src_dec(struct net *net) {} #else static inline bool fib6_routes_require_src(const struct net *net) { return net->ipv6.fib6_routes_require_src > 0; } static inline void fib6_routes_require_src_inc(struct net *net) { net->ipv6.fib6_routes_require_src++; } static inline void fib6_routes_require_src_dec(struct net *net) { net->ipv6.fib6_routes_require_src--; } #define FIB6_SUBTREE(fn) (rcu_dereference_protected((fn)->subtree, 1)) #endif /* * routing information * */ struct rt6key { struct in6_addr addr; int plen; }; struct fib6_table; struct rt6_exception_bucket { struct hlist_head chain; int depth; }; struct rt6_exception { struct hlist_node hlist; struct rt6_info *rt6i; unsigned long stamp; struct rcu_head rcu; }; #define FIB6_EXCEPTION_BUCKET_SIZE_SHIFT 10 #define FIB6_EXCEPTION_BUCKET_SIZE (1 << FIB6_EXCEPTION_BUCKET_SIZE_SHIFT) #define FIB6_MAX_DEPTH 5 struct fib6_nh { struct fib_nh_common nh_common; #ifdef CONFIG_IPV6_ROUTER_PREF unsigned long last_probe; #endif struct rt6_info * __percpu *rt6i_pcpu; struct rt6_exception_bucket __rcu *rt6i_exception_bucket; }; struct fib6_info { struct fib6_table *fib6_table; struct fib6_info __rcu *fib6_next; struct fib6_node __rcu *fib6_node; /* Multipath routes: * siblings is a list of fib6_info that have the same metric/weight, * destination, but not the same gateway. nsiblings is just a cache * to speed up lookup. */ union { struct list_head fib6_siblings; struct list_head nh_list; }; unsigned int fib6_nsiblings; refcount_t fib6_ref; unsigned long expires; struct dst_metrics *fib6_metrics; #define fib6_pmtu fib6_metrics->metrics[RTAX_MTU-1] struct rt6key fib6_dst; u32 fib6_flags; struct rt6key fib6_src; struct rt6key fib6_prefsrc; u32 fib6_metric; u8 fib6_protocol; u8 fib6_type; u8 should_flush:1, dst_nocount:1, dst_nopolicy:1, fib6_destroying:1, offload:1, trap:1, unused:2; struct rcu_head rcu; struct nexthop *nh; struct fib6_nh fib6_nh[]; }; struct rt6_info { struct dst_entry dst; struct fib6_info __rcu *from; int sernum; struct rt6key rt6i_dst; struct rt6key rt6i_src; struct in6_addr rt6i_gateway; struct inet6_dev *rt6i_idev; u32 rt6i_flags; struct list_head rt6i_uncached; struct uncached_list *rt6i_uncached_list; /* more non-fragment space at head required */ unsigned short rt6i_nfheader_len; }; struct fib6_result { struct fib6_nh *nh; struct fib6_info *f6i; u32 fib6_flags; u8 fib6_type; struct rt6_info *rt6; }; #define for_each_fib6_node_rt_rcu(fn) \ for (rt = rcu_dereference((fn)->leaf); rt; \ rt = rcu_dereference(rt->fib6_next)) #define for_each_fib6_walker_rt(w) \ for (rt = (w)->leaf; rt; \ rt = rcu_dereference_protected(rt->fib6_next, 1)) static inline struct inet6_dev *ip6_dst_idev(struct dst_entry *dst) { return ((struct rt6_info *)dst)->rt6i_idev; } static inline bool fib6_requires_src(const struct fib6_info *rt) { return rt->fib6_src.plen > 0; } static inline void fib6_clean_expires(struct fib6_info *f6i) { f6i->fib6_flags &= ~RTF_EXPIRES; f6i->expires = 0; } static inline void fib6_set_expires(struct fib6_info *f6i, unsigned long expires) { f6i->expires = expires; f6i->fib6_flags |= RTF_EXPIRES; } static inline bool fib6_check_expired(const struct fib6_info *f6i) { if (f6i->fib6_flags & RTF_EXPIRES) return time_after(jiffies, f6i->expires); return false; } /* Function to safely get fn->sernum for passed in rt * and store result in passed in cookie. * Return true if we can get cookie safely * Return false if not */ static inline bool fib6_get_cookie_safe(const struct fib6_info *f6i, u32 *cookie) { struct fib6_node *fn; bool status = false; fn = rcu_dereference(f6i->fib6_node); if (fn) { *cookie = fn->fn_sernum; /* pairs with smp_wmb() in fib6_update_sernum_upto_root() */ smp_rmb(); status = true; } return status; } static inline u32 rt6_get_cookie(const struct rt6_info *rt) { struct fib6_info *from; u32 cookie = 0; if (rt->sernum) return rt->sernum; rcu_read_lock(); from = rcu_dereference(rt->from); if (from) fib6_get_cookie_safe(from, &cookie); rcu_read_unlock(); return cookie; } static inline void ip6_rt_put(struct rt6_info *rt) { /* dst_release() accepts a NULL parameter. * We rely on dst being first structure in struct rt6_info */ BUILD_BUG_ON(offsetof(struct rt6_info, dst) != 0); dst_release(&rt->dst); } struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh); void fib6_info_destroy_rcu(struct rcu_head *head); static inline void fib6_info_hold(struct fib6_info *f6i) { refcount_inc(&f6i->fib6_ref); } static inline bool fib6_info_hold_safe(struct fib6_info *f6i) { return refcount_inc_not_zero(&f6i->fib6_ref); } static inline void fib6_info_release(struct fib6_info *f6i) { if (f6i && refcount_dec_and_test(&f6i->fib6_ref)) call_rcu(&f6i->rcu, fib6_info_destroy_rcu); } static inline void fib6_info_hw_flags_set(struct fib6_info *f6i, bool offload, bool trap) { f6i->offload = offload; f6i->trap = trap; } enum fib6_walk_state { #ifdef CONFIG_IPV6_SUBTREES FWS_S, #endif FWS_L, FWS_R, FWS_C, FWS_U }; struct fib6_walker { struct list_head lh; struct fib6_node *root, *node; struct fib6_info *leaf; enum fib6_walk_state state; unsigned int skip; unsigned int count; unsigned int skip_in_node; int (*func)(struct fib6_walker *); void *args; }; struct rt6_statistics { __u32 fib_nodes; /* all fib6 nodes */ __u32 fib_route_nodes; /* intermediate nodes */ __u32 fib_rt_entries; /* rt entries in fib table */ __u32 fib_rt_cache; /* cached rt entries in exception table */ __u32 fib_discarded_routes; /* total number of routes delete */ /* The following stats are not protected by any lock */ atomic_t fib_rt_alloc; /* total number of routes alloced */ atomic_t fib_rt_uncache; /* rt entries in uncached list */ }; #define RTN_TL_ROOT 0x0001 #define RTN_ROOT 0x0002 /* tree root node */ #define RTN_RTINFO 0x0004 /* node with valid routing info */ /* * priority levels (or metrics) * */ struct fib6_table { struct hlist_node tb6_hlist; u32 tb6_id; spinlock_t tb6_lock; struct fib6_node tb6_root; struct inet_peer_base tb6_peers; unsigned int flags; unsigned int fib_seq; #define RT6_TABLE_HAS_DFLT_ROUTER BIT(0) }; #define RT6_TABLE_UNSPEC RT_TABLE_UNSPEC #define RT6_TABLE_MAIN RT_TABLE_MAIN #define RT6_TABLE_DFLT RT6_TABLE_MAIN #define RT6_TABLE_INFO RT6_TABLE_MAIN #define RT6_TABLE_PREFIX RT6_TABLE_MAIN #ifdef CONFIG_IPV6_MULTIPLE_TABLES #define FIB6_TABLE_MIN 1 #define FIB6_TABLE_MAX RT_TABLE_MAX #define RT6_TABLE_LOCAL RT_TABLE_LOCAL #else #define FIB6_TABLE_MIN RT_TABLE_MAIN #define FIB6_TABLE_MAX FIB6_TABLE_MIN #define RT6_TABLE_LOCAL RT6_TABLE_MAIN #endif typedef struct rt6_info *(*pol_lookup_t)(struct net *, struct fib6_table *, struct flowi6 *, const struct sk_buff *, int); struct fib6_entry_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib6_info *rt; unsigned int nsiblings; }; /* * exported functions */ struct fib6_table *fib6_get_table(struct net *net, u32 id); struct fib6_table *fib6_new_table(struct net *net, u32 id); struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, const struct sk_buff *skb, int flags, pol_lookup_t lookup); /* called with rcu lock held; can return error pointer * caller needs to select path */ int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, struct fib6_result *res, int flags); /* called with rcu lock held; caller needs to select path */ int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, struct flowi6 *fl6, struct fib6_result *res, int strict); void fib6_select_path(const struct net *net, struct fib6_result *res, struct flowi6 *fl6, int oif, bool have_oif_match, const struct sk_buff *skb, int strict); struct fib6_node *fib6_node_lookup(struct fib6_node *root, const struct in6_addr *daddr, const struct in6_addr *saddr); struct fib6_node *fib6_locate(struct fib6_node *root, const struct in6_addr *daddr, int dst_len, const struct in6_addr *saddr, int src_len, bool exact_match); void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *arg), void *arg); void fib6_clean_all_skip_notify(struct net *net, int (*func)(struct fib6_info *, void *arg), void *arg); int fib6_add(struct fib6_node *root, struct fib6_info *rt, struct nl_info *info, struct netlink_ext_ack *extack); int fib6_del(struct fib6_info *rt, struct nl_info *info); static inline void rt6_get_prefsrc(const struct rt6_info *rt, struct in6_addr *addr) { const struct fib6_info *from; rcu_read_lock(); from = rcu_dereference(rt->from); if (from) { *addr = from->fib6_prefsrc.addr; } else { struct in6_addr in6_zero = {}; *addr = in6_zero; } rcu_read_unlock(); } int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); void fib6_nh_release(struct fib6_nh *fib6_nh); int call_fib6_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, struct netlink_ext_ack *extack); int call_fib6_multipath_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, unsigned int nsiblings, struct netlink_ext_ack *extack); int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt); void fib6_rt_update(struct net *net, struct fib6_info *rt, struct nl_info *info); void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, unsigned int flags); void fib6_run_gc(unsigned long expires, struct net *net, bool force); void fib6_gc_cleanup(void); int fib6_init(void); struct ipv6_route_iter { struct seq_net_private p; struct fib6_walker w; loff_t skip; struct fib6_table *tbl; int sernum; }; extern const struct seq_operations ipv6_route_seq_ops; int call_fib6_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info); int call_fib6_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info); int __net_init fib6_notifier_init(struct net *net); void __net_exit fib6_notifier_exit(struct net *net); unsigned int fib6_tables_seq_read(struct net *net); int fib6_tables_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); void fib6_update_sernum(struct net *net, struct fib6_info *rt); void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt); void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i); void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val); static inline bool fib6_metric_locked(struct fib6_info *f6i, int metric) { return !!(f6i->fib6_metrics->metrics[RTAX_LOCK - 1] & (1 << metric)); } #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) struct bpf_iter__ipv6_route { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct fib6_info *, rt); }; #endif INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_output(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_input(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *__ip6_route_redirect(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_lookup(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); static inline struct rt6_info *pol_lookup_func(pol_lookup_t lookup, struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { return INDIRECT_CALL_4(lookup, ip6_pol_route_output, ip6_pol_route_input, ip6_pol_route_lookup, __ip6_route_redirect, net, table, fl6, skb, flags); } #ifdef CONFIG_IPV6_MULTIPLE_TABLES static inline bool fib6_has_custom_rules(const struct net *net) { return net->ipv6.fib6_has_custom_rules; } int fib6_rules_init(void); void fib6_rules_cleanup(void); bool fib6_rule_default(const struct fib_rule *rule); int fib6_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); unsigned int fib6_rules_seq_read(struct net *net); static inline bool fib6_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi6 *fl6, struct flow_keys *flkeys) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; if (!net->ipv6.fib6_rules_require_fldissect) return false; skb_flow_dissect_flow_keys(skb, flkeys, flag); fl6->fl6_sport = flkeys->ports.src; fl6->fl6_dport = flkeys->ports.dst; fl6->flowi6_proto = flkeys->basic.ip_proto; return true; } #else static inline bool fib6_has_custom_rules(const struct net *net) { return false; } static inline int fib6_rules_init(void) { return 0; } static inline void fib6_rules_cleanup(void) { return ; } static inline bool fib6_rule_default(const struct fib_rule *rule) { return true; } static inline int fib6_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static inline unsigned int fib6_rules_seq_read(struct net *net) { return 0; } static inline bool fib6_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi6 *fl6, struct flow_keys *flkeys) { return false; } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 // SPDX-License-Identifier: GPL-2.0 /* * The class-specific portions of the driver model * * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org> * Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de> * Copyright (c) 2008-2009 Novell Inc. * Copyright (c) 2012-2019 Greg Kroah-Hartman <gregkh@linuxfoundation.org> * Copyright (c) 2012-2019 Linux Foundation * * See Documentation/driver-api/driver-model/ for more information. */ #ifndef _DEVICE_CLASS_H_ #define _DEVICE_CLASS_H_ #include <linux/kobject.h> #include <linux/klist.h> #include <linux/pm.h> #include <linux/device/bus.h> struct device; struct fwnode_handle; /** * struct class - device classes * @name: Name of the class. * @owner: The module owner. * @class_groups: Default attributes of this class. * @dev_groups: Default attributes of the devices that belong to the class. * @dev_kobj: The kobject that represents this class and links it into the hierarchy. * @dev_uevent: Called when a device is added, removed from this class, or a * few other things that generate uevents to add the environment * variables. * @devnode: Callback to provide the devtmpfs. * @class_release: Called to release this class. * @dev_release: Called to release the device. * @shutdown_pre: Called at shut-down time before driver shutdown. * @ns_type: Callbacks so sysfs can detemine namespaces. * @namespace: Namespace of the device belongs to this class. * @get_ownership: Allows class to specify uid/gid of the sysfs directories * for the devices belonging to the class. Usually tied to * device's namespace. * @pm: The default device power management operations of this class. * @p: The private data of the driver core, no one other than the * driver core can touch this. * * A class is a higher-level view of a device that abstracts out low-level * implementation details. Drivers may see a SCSI disk or an ATA disk, but, * at the class level, they are all simply disks. Classes allow user space * to work with devices based on what they do, rather than how they are * connected or how they work. */ struct class { const char *name; struct module *owner; const struct attribute_group **class_groups; const struct attribute_group **dev_groups; struct kobject *dev_kobj; int (*dev_uevent)(struct device *dev, struct kobj_uevent_env *env); char *(*devnode)(struct device *dev, umode_t *mode); void (*class_release)(struct class *class); void (*dev_release)(struct device *dev); int (*shutdown_pre)(struct device *dev); const struct kobj_ns_type_operations *ns_type; const void *(*namespace)(struct device *dev); void (*get_ownership)(struct device *dev, kuid_t *uid, kgid_t *gid); const struct dev_pm_ops *pm; struct subsys_private *p; }; struct class_dev_iter { struct klist_iter ki; const struct device_type *type; }; extern struct kobject *sysfs_dev_block_kobj; extern struct kobject *sysfs_dev_char_kobj; extern int __must_check __class_register(struct class *class, struct lock_class_key *key); extern void class_unregister(struct class *class); /* This is a #define to keep the compiler from merging different * instances of the __key variable */ #define class_register(class) \ ({ \ static struct lock_class_key __key; \ __class_register(class, &__key); \ }) struct class_compat; struct class_compat *class_compat_register(const char *name); void class_compat_unregister(struct class_compat *cls); int class_compat_create_link(struct class_compat *cls, struct device *dev, struct device *device_link); void class_compat_remove_link(struct class_compat *cls, struct device *dev, struct device *device_link); extern void class_dev_iter_init(struct class_dev_iter *iter, struct class *class, struct device *start, const struct device_type *type); extern struct device *class_dev_iter_next(struct class_dev_iter *iter); extern void class_dev_iter_exit(struct class_dev_iter *iter); extern int class_for_each_device(struct class *class, struct device *start, void *data, int (*fn)(struct device *dev, void *data)); extern struct device *class_find_device(struct class *class, struct device *start, const void *data, int (*match)(struct device *, const void *)); /** * class_find_device_by_name - device iterator for locating a particular device * of a specific name. * @class: class type * @name: name of the device to match */ static inline struct device *class_find_device_by_name(struct class *class, const char *name) { return class_find_device(class, NULL, name, device_match_name); } /** * class_find_device_by_of_node : device iterator for locating a particular device * matching the of_node. * @class: class type * @np: of_node of the device to match. */ static inline struct device * class_find_device_by_of_node(struct class *class, const struct device_node *np) { return class_find_device(class, NULL, np, device_match_of_node); } /** * class_find_device_by_fwnode : device iterator for locating a particular device * matching the fwnode. * @class: class type * @fwnode: fwnode of the device to match. */ static inline struct device * class_find_device_by_fwnode(struct class *class, const struct fwnode_handle *fwnode) { return class_find_device(class, NULL, fwnode, device_match_fwnode); } /** * class_find_device_by_devt : device iterator for locating a particular device * matching the device type. * @class: class type * @devt: device type of the device to match. */ static inline struct device *class_find_device_by_devt(struct class *class, dev_t devt) { return class_find_device(class, NULL, &devt, device_match_devt); } #ifdef CONFIG_ACPI struct acpi_device; /** * class_find_device_by_acpi_dev : device iterator for locating a particular * device matching the ACPI_COMPANION device. * @class: class type * @adev: ACPI_COMPANION device to match. */ static inline struct device * class_find_device_by_acpi_dev(struct class *class, const struct acpi_device *adev) { return class_find_device(class, NULL, adev, device_match_acpi_dev); } #else static inline struct device * class_find_device_by_acpi_dev(struct class *class, const void *adev) { return NULL; } #endif struct class_attribute { struct attribute attr; ssize_t (*show)(struct class *class, struct class_attribute *attr, char *buf); ssize_t (*store)(struct class *class, struct class_attribute *attr, const char *buf, size_t count); }; #define CLASS_ATTR_RW(_name) \ struct class_attribute class_attr_##_name = __ATTR_RW(_name) #define CLASS_ATTR_RO(_name) \ struct class_attribute class_attr_##_name = __ATTR_RO(_name) #define CLASS_ATTR_WO(_name) \ struct class_attribute class_attr_##_name = __ATTR_WO(_name) extern int __must_check class_create_file_ns(struct class *class, const struct class_attribute *attr, const void *ns); extern void class_remove_file_ns(struct class *class, const struct class_attribute *attr, const void *ns); static inline int __must_check class_create_file(struct class *class, const struct class_attribute *attr) { return class_create_file_ns(class, attr, NULL); } static inline void class_remove_file(struct class *class, const struct class_attribute *attr) { return class_remove_file_ns(class, attr, NULL); } /* Simple class attribute that is just a static string */ struct class_attribute_string { struct class_attribute attr; char *str; }; /* Currently read-only only */ #define _CLASS_ATTR_STRING(_name, _mode, _str) \ { __ATTR(_name, _mode, show_class_attr_string, NULL), _str } #define CLASS_ATTR_STRING(_name, _mode, _str) \ struct class_attribute_string class_attr_##_name = \ _CLASS_ATTR_STRING(_name, _mode, _str) extern ssize_t show_class_attr_string(struct class *class, struct class_attribute *attr, char *buf); struct class_interface { struct list_head node; struct class *class; int (*add_dev) (struct device *, struct class_interface *); void (*remove_dev) (struct device *, struct class_interface *); }; extern int __must_check class_interface_register(struct class_interface *); extern void class_interface_unregister(struct class_interface *); extern struct class * __must_check __class_create(struct module *owner, const char *name, struct lock_class_key *key); extern void class_destroy(struct class *cls); /* This is a #define to keep the compiler from merging different * instances of the __key variable */ #define class_create(owner, name) \ ({ \ static struct lock_class_key __key; \ __class_create(owner, name, &__key); \ }) #endif /* _DEVICE_CLASS_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _IPV6_H #define _IPV6_H #include <uapi/linux/ipv6.h> #define ipv6_optlen(p) (((p)->hdrlen+1) << 3) #define ipv6_authlen(p) (((p)->hdrlen+2) << 2) /* * This structure contains configuration options per IPv6 link. */ struct ipv6_devconf { __s32 forwarding; __s32 hop_limit; __s32 mtu6; __s32 accept_ra; __s32 accept_redirects; __s32 autoconf; __s32 dad_transmits; __s32 rtr_solicits; __s32 rtr_solicit_interval; __s32 rtr_solicit_max_interval; __s32 rtr_solicit_delay; __s32 force_mld_version; __s32 mldv1_unsolicited_report_interval; __s32 mldv2_unsolicited_report_interval; __s32 use_tempaddr; __s32 temp_valid_lft; __s32 temp_prefered_lft; __s32 regen_max_retry; __s32 max_desync_factor; __s32 max_addresses; __s32 accept_ra_defrtr; __s32 accept_ra_min_hop_limit; __s32 accept_ra_pinfo; __s32 ignore_routes_with_linkdown; #ifdef CONFIG_IPV6_ROUTER_PREF __s32 accept_ra_rtr_pref; __s32 rtr_probe_interval; #ifdef CONFIG_IPV6_ROUTE_INFO __s32 accept_ra_rt_info_min_plen; __s32 accept_ra_rt_info_max_plen; #endif #endif __s32 proxy_ndp; __s32 accept_source_route; __s32 accept_ra_from_local; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD __s32 optimistic_dad; __s32 use_optimistic; #endif #ifdef CONFIG_IPV6_MROUTE __s32 mc_forwarding; #endif __s32 disable_ipv6; __s32 drop_unicast_in_l2_multicast; __s32 accept_dad; __s32 force_tllao; __s32 ndisc_notify; __s32 suppress_frag_ndisc; __s32 accept_ra_mtu; __s32 drop_unsolicited_na; struct ipv6_stable_secret { bool initialized; struct in6_addr secret; } stable_secret; __s32 use_oif_addrs_only; __s32 keep_addr_on_down; __s32 seg6_enabled; #ifdef CONFIG_IPV6_SEG6_HMAC __s32 seg6_require_hmac; #endif __u32 enhanced_dad; __u32 addr_gen_mode; __s32 disable_policy; __s32 ndisc_tclass; __s32 rpl_seg_enabled; struct ctl_table_header *sysctl_header; }; struct ipv6_params { __s32 disable_ipv6; __s32 autoconf; }; extern struct ipv6_params ipv6_defaults; #include <linux/tcp.h> #include <linux/udp.h> #include <net/inet_sock.h> static inline struct ipv6hdr *ipv6_hdr(const struct sk_buff *skb) { return (struct ipv6hdr *)skb_network_header(skb); } static inline struct ipv6hdr *inner_ipv6_hdr(const struct sk_buff *skb) { return (struct ipv6hdr *)skb_inner_network_header(skb); } static inline struct ipv6hdr *ipipv6_hdr(const struct sk_buff *skb) { return (struct ipv6hdr *)skb_transport_header(skb); } static inline unsigned int ipv6_transport_len(const struct sk_buff *skb) { return ntohs(ipv6_hdr(skb)->payload_len) + sizeof(struct ipv6hdr) - skb_network_header_len(skb); } /* This structure contains results of exthdrs parsing as offsets from skb->nh. */ struct inet6_skb_parm { int iif; __be16 ra; __u16 dst0; __u16 srcrt; __u16 dst1; __u16 lastopt; __u16 nhoff; __u16 flags; #if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE) __u16 dsthao; #endif __u16 frag_max_size; #define IP6SKB_XFRM_TRANSFORMED 1 #define IP6SKB_FORWARDED 2 #define IP6SKB_REROUTED 4 #define IP6SKB_ROUTERALERT 8 #define IP6SKB_FRAGMENTED 16 #define IP6SKB_HOPBYHOP 32 #define IP6SKB_L3SLAVE 64 #define IP6SKB_JUMBOGRAM 128 }; #if defined(CONFIG_NET_L3_MASTER_DEV) static inline bool ipv6_l3mdev_skb(__u16 flags) { return flags & IP6SKB_L3SLAVE; } #else static inline bool ipv6_l3mdev_skb(__u16 flags) { return false; } #endif #define IP6CB(skb) ((struct inet6_skb_parm*)((skb)->cb)) #define IP6CBMTU(skb) ((struct ip6_mtuinfo *)((skb)->cb)) static inline int inet6_iif(const struct sk_buff *skb) { bool l3_slave = ipv6_l3mdev_skb(IP6CB(skb)->flags); return l3_slave ? skb->skb_iif : IP6CB(skb)->iif; } static inline bool inet6_is_jumbogram(const struct sk_buff *skb) { return !!(IP6CB(skb)->flags & IP6SKB_JUMBOGRAM); } /* can not be used in TCP layer after tcp_v6_fill_cb */ static inline int inet6_sdif(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) if (skb && ipv6_l3mdev_skb(IP6CB(skb)->flags)) return IP6CB(skb)->iif; #endif return 0; } struct tcp6_request_sock { struct tcp_request_sock tcp6rsk_tcp; }; struct ipv6_mc_socklist; struct ipv6_ac_socklist; struct ipv6_fl_socklist; struct inet6_cork { struct ipv6_txoptions *opt; u8 hop_limit; u8 tclass; }; /** * struct ipv6_pinfo - ipv6 private area * * In the struct sock hierarchy (tcp6_sock, upd6_sock, etc) * this _must_ be the last member, so that inet6_sk_generic * is able to calculate its offset from the base struct sock * by using the struct proto->slab_obj_size member. -acme */ struct ipv6_pinfo { struct in6_addr saddr; struct in6_pktinfo sticky_pktinfo; const struct in6_addr *daddr_cache; #ifdef CONFIG_IPV6_SUBTREES const struct in6_addr *saddr_cache; #endif __be32 flow_label; __u32 frag_size; /* * Packed in 16bits. * Omit one shift by putting the signed field at MSB. */ #if defined(__BIG_ENDIAN_BITFIELD) __s16 hop_limit:9; __u16 __unused_1:7; #else __u16 __unused_1:7; __s16 hop_limit:9; #endif #if defined(__BIG_ENDIAN_BITFIELD) /* Packed in 16bits. */ __s16 mcast_hops:9; __u16 __unused_2:6, mc_loop:1; #else __u16 mc_loop:1, __unused_2:6; __s16 mcast_hops:9; #endif int ucast_oif; int mcast_oif; /* pktoption flags */ union { struct { __u16 srcrt:1, osrcrt:1, rxinfo:1, rxoinfo:1, rxhlim:1, rxohlim:1, hopopts:1, ohopopts:1, dstopts:1, odstopts:1, rxflow:1, rxtclass:1, rxpmtu:1, rxorigdstaddr:1, recvfragsize:1; /* 1 bits hole */ } bits; __u16 all; } rxopt; /* sockopt flags */ __u16 recverr:1, sndflow:1, repflow:1, pmtudisc:3, padding:1, /* 1 bit hole */ srcprefs:3, /* 001: prefer temporary address * 010: prefer public address * 100: prefer care-of address */ dontfrag:1, autoflowlabel:1, autoflowlabel_set:1, mc_all:1, recverr_rfc4884:1, rtalert_isolate:1; __u8 min_hopcount; __u8 tclass; __be32 rcv_flowinfo; __u32 dst_cookie; __u32 rx_dst_cookie; struct ipv6_mc_socklist __rcu *ipv6_mc_list; struct ipv6_ac_socklist *ipv6_ac_list; struct ipv6_fl_socklist __rcu *ipv6_fl_list; struct ipv6_txoptions __rcu *opt; struct sk_buff *pktoptions; struct sk_buff *rxpmtu; struct inet6_cork cork; }; /* WARNING: don't change the layout of the members in {raw,udp,tcp}6_sock! */ struct raw6_sock { /* inet_sock has to be the first member of raw6_sock */ struct inet_sock inet; __u32 checksum; /* perform checksum */ __u32 offset; /* checksum offset */ struct icmp6_filter filter; __u32 ip6mr_table; /* ipv6_pinfo has to be the last member of raw6_sock, see inet6_sk_generic */ struct ipv6_pinfo inet6; }; struct udp6_sock { struct udp_sock udp; /* ipv6_pinfo has to be the last member of udp6_sock, see inet6_sk_generic */ struct ipv6_pinfo inet6; }; struct tcp6_sock { struct tcp_sock tcp; /* ipv6_pinfo has to be the last member of tcp6_sock, see inet6_sk_generic */ struct ipv6_pinfo inet6; }; extern int inet6_sk_rebuild_header(struct sock *sk); struct tcp6_timewait_sock { struct tcp_timewait_sock tcp6tw_tcp; }; #if IS_ENABLED(CONFIG_IPV6) bool ipv6_mod_enabled(void); static inline struct ipv6_pinfo *inet6_sk(const struct sock *__sk) { return sk_fullsock(__sk) ? inet_sk(__sk)->pinet6 : NULL; } static inline struct raw6_sock *raw6_sk(const struct sock *sk) { return (struct raw6_sock *)sk; } #define __ipv6_only_sock(sk) (sk->sk_ipv6only) #define ipv6_only_sock(sk) (__ipv6_only_sock(sk)) #define ipv6_sk_rxinfo(sk) ((sk)->sk_family == PF_INET6 && \ inet6_sk(sk)->rxopt.bits.rxinfo) static inline const struct in6_addr *inet6_rcv_saddr(const struct sock *sk) { if (sk->sk_family == AF_INET6) return &sk->sk_v6_rcv_saddr; return NULL; } static inline int inet_v6_ipv6only(const struct sock *sk) { /* ipv6only field is at same position for timewait and other sockets */ return ipv6_only_sock(sk); } #else #define __ipv6_only_sock(sk) 0 #define ipv6_only_sock(sk) 0 #define ipv6_sk_rxinfo(sk) 0 static inline bool ipv6_mod_enabled(void) { return false; } static inline struct ipv6_pinfo * inet6_sk(const struct sock *__sk) { return NULL; } static inline struct inet6_request_sock * inet6_rsk(const struct request_sock *rsk) { return NULL; } static inline struct raw6_sock *raw6_sk(const struct sock *sk) { return NULL; } #define inet6_rcv_saddr(__sk) NULL #define tcp_twsk_ipv6only(__sk) 0 #define inet_v6_ipv6only(__sk) 0 #endif /* IS_ENABLED(CONFIG_IPV6) */ #endif /* _IPV6_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 /* SPDX-License-Identifier: GPL-2.0 */ /* * Routines to manage notifier chains for passing status changes to any * interested routines. We need this instead of hard coded call lists so * that modules can poke their nose into the innards. The network devices * needed them so here they are for the rest of you. * * Alan Cox <Alan.Cox@linux.org> */ #ifndef _LINUX_NOTIFIER_H #define _LINUX_NOTIFIER_H #include <linux/errno.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/srcu.h> /* * Notifier chains are of four types: * * Atomic notifier chains: Chain callbacks run in interrupt/atomic * context. Callouts are not allowed to block. * Blocking notifier chains: Chain callbacks run in process context. * Callouts are allowed to block. * Raw notifier chains: There are no restrictions on callbacks, * registration, or unregistration. All locking and protection * must be provided by the caller. * SRCU notifier chains: A variant of blocking notifier chains, with * the same restrictions. * * atomic_notifier_chain_register() may be called from an atomic context, * but blocking_notifier_chain_register() and srcu_notifier_chain_register() * must be called from a process context. Ditto for the corresponding * _unregister() routines. * * atomic_notifier_chain_unregister(), blocking_notifier_chain_unregister(), * and srcu_notifier_chain_unregister() _must not_ be called from within * the call chain. * * SRCU notifier chains are an alternative form of blocking notifier chains. * They use SRCU (Sleepable Read-Copy Update) instead of rw-semaphores for * protection of the chain links. This means there is _very_ low overhead * in srcu_notifier_call_chain(): no cache bounces and no memory barriers. * As compensation, srcu_notifier_chain_unregister() is rather expensive. * SRCU notifier chains should be used when the chain will be called very * often but notifier_blocks will seldom be removed. */ struct notifier_block; typedef int (*notifier_fn_t)(struct notifier_block *nb, unsigned long action, void *data); struct notifier_block { notifier_fn_t notifier_call; struct notifier_block __rcu *next; int priority; }; struct atomic_notifier_head { spinlock_t lock; struct notifier_block __rcu *head; }; struct blocking_notifier_head { struct rw_semaphore rwsem; struct notifier_block __rcu *head; }; struct raw_notifier_head { struct notifier_block __rcu *head; }; struct srcu_notifier_head { struct mutex mutex; struct srcu_struct srcu; struct notifier_block __rcu *head; }; #define ATOMIC_INIT_NOTIFIER_HEAD(name) do { \ spin_lock_init(&(name)->lock); \ (name)->head = NULL; \ } while (0) #define BLOCKING_INIT_NOTIFIER_HEAD(name) do { \ init_rwsem(&(name)->rwsem); \ (name)->head = NULL; \ } while (0) #define RAW_INIT_NOTIFIER_HEAD(name) do { \ (name)->head = NULL; \ } while (0) /* srcu_notifier_heads must be cleaned up dynamically */ extern void srcu_init_notifier_head(struct srcu_notifier_head *nh); #define srcu_cleanup_notifier_head(name) \ cleanup_srcu_struct(&(name)->srcu); #define ATOMIC_NOTIFIER_INIT(name) { \ .lock = __SPIN_LOCK_UNLOCKED(name.lock), \ .head = NULL } #define BLOCKING_NOTIFIER_INIT(name) { \ .rwsem = __RWSEM_INITIALIZER((name).rwsem), \ .head = NULL } #define RAW_NOTIFIER_INIT(name) { \ .head = NULL } #define SRCU_NOTIFIER_INIT(name, pcpu) \ { \ .mutex = __MUTEX_INITIALIZER(name.mutex), \ .head = NULL, \ .srcu = __SRCU_STRUCT_INIT(name.srcu, pcpu), \ } #define ATOMIC_NOTIFIER_HEAD(name) \ struct atomic_notifier_head name = \ ATOMIC_NOTIFIER_INIT(name) #define BLOCKING_NOTIFIER_HEAD(name) \ struct blocking_notifier_head name = \ BLOCKING_NOTIFIER_INIT(name) #define RAW_NOTIFIER_HEAD(name) \ struct raw_notifier_head name = \ RAW_NOTIFIER_INIT(name) #ifdef CONFIG_TREE_SRCU #define _SRCU_NOTIFIER_HEAD(name, mod) \ static DEFINE_PER_CPU(struct srcu_data, name##_head_srcu_data); \ mod struct srcu_notifier_head name = \ SRCU_NOTIFIER_INIT(name, name##_head_srcu_data) #else #define _SRCU_NOTIFIER_HEAD(name, mod) \ mod struct srcu_notifier_head name = \ SRCU_NOTIFIER_INIT(name, name) #endif #define SRCU_NOTIFIER_HEAD(name) \ _SRCU_NOTIFIER_HEAD(name, /* not static */) #define SRCU_NOTIFIER_HEAD_STATIC(name) \ _SRCU_NOTIFIER_HEAD(name, static) #ifdef __KERNEL__ extern int atomic_notifier_chain_register(struct atomic_notifier_head *nh, struct notifier_block *nb); extern int blocking_notifier_chain_register(struct blocking_notifier_head *nh, struct notifier_block *nb); extern int raw_notifier_chain_register(struct raw_notifier_head *nh, struct notifier_block *nb); extern int srcu_notifier_chain_register(struct srcu_notifier_head *nh, struct notifier_block *nb); extern int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh, struct notifier_block *nb); extern int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh, struct notifier_block *nb); extern int raw_notifier_chain_unregister(struct raw_notifier_head *nh, struct notifier_block *nb); extern int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh, struct notifier_block *nb); extern int atomic_notifier_call_chain(struct atomic_notifier_head *nh, unsigned long val, void *v); extern int blocking_notifier_call_chain(struct blocking_notifier_head *nh, unsigned long val, void *v); extern int raw_notifier_call_chain(struct raw_notifier_head *nh, unsigned long val, void *v); extern int srcu_notifier_call_chain(struct srcu_notifier_head *nh, unsigned long val, void *v); extern int atomic_notifier_call_chain_robust(struct atomic_notifier_head *nh, unsigned long val_up, unsigned long val_down, void *v); extern int blocking_notifier_call_chain_robust(struct blocking_notifier_head *nh, unsigned long val_up, unsigned long val_down, void *v); extern int raw_notifier_call_chain_robust(struct raw_notifier_head *nh, unsigned long val_up, unsigned long val_down, void *v); #define NOTIFY_DONE 0x0000 /* Don't care */ #define NOTIFY_OK 0x0001 /* Suits me */ #define NOTIFY_STOP_MASK 0x8000 /* Don't call further */ #define NOTIFY_BAD (NOTIFY_STOP_MASK|0x0002) /* Bad/Veto action */ /* * Clean way to return from the notifier and stop further calls. */ #define NOTIFY_STOP (NOTIFY_OK|NOTIFY_STOP_MASK) /* Encapsulate (negative) errno value (in particular, NOTIFY_BAD <=> EPERM). */ static inline int notifier_from_errno(int err) { if (err) return NOTIFY_STOP_MASK | (NOTIFY_OK - err); return NOTIFY_OK; } /* Restore (negative) errno value from notify return value. */ static inline int notifier_to_errno(int ret) { ret &= ~NOTIFY_STOP_MASK; return ret > NOTIFY_OK ? NOTIFY_OK - ret : 0; } /* * Declared notifiers so far. I can imagine quite a few more chains * over time (eg laptop power reset chains, reboot chain (to clean * device units up), device [un]mount chain, module load/unload chain, * low memory chain, screenblank chain (for plug in modular screenblankers) * VC switch chains (for loadable kernel svgalib VC switch helpers) etc... */ /* CPU notfiers are defined in include/linux/cpu.h. */ /* netdevice notifiers are defined in include/linux/netdevice.h */ /* reboot notifiers are defined in include/linux/reboot.h. */ /* Hibernation and suspend events are defined in include/linux/suspend.h. */ /* Virtual Terminal events are defined in include/linux/vt.h. */ #define NETLINK_URELEASE 0x0001 /* Unicast netlink socket released */ /* Console keyboard events. * Note: KBD_KEYCODE is always sent before KBD_UNBOUND_KEYCODE, KBD_UNICODE and * KBD_KEYSYM. */ #define KBD_KEYCODE 0x0001 /* Keyboard keycode, called before any other */ #define KBD_UNBOUND_KEYCODE 0x0002 /* Keyboard keycode which is not bound to any other */ #define KBD_UNICODE 0x0003 /* Keyboard unicode */ #define KBD_KEYSYM 0x0004 /* Keyboard keysym */ #define KBD_POST_KEYSYM 0x0005 /* Called after keyboard keysym interpretation */ extern struct blocking_notifier_head reboot_notifier_list; #endif /* __KERNEL__ */ #endif /* _LINUX_NOTIFIER_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_CURRENT_H #define _ASM_X86_CURRENT_H #include <linux/compiler.h> #include <asm/percpu.h> #ifndef __ASSEMBLY__ struct task_struct; DECLARE_PER_CPU(struct task_struct *, current_task); static __always_inline struct task_struct *get_current(void) { return this_cpu_read_stable(current_task); } #define current get_current() #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_CURRENT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM task #if !defined(_TRACE_TASK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_TASK_H #include <linux/tracepoint.h> TRACE_EVENT(task_newtask, TP_PROTO(struct task_struct *task, unsigned long clone_flags), TP_ARGS(task, clone_flags), TP_STRUCT__entry( __field( pid_t, pid) __array( char, comm, TASK_COMM_LEN) __field( unsigned long, clone_flags) __field( short, oom_score_adj) ), TP_fast_assign( __entry->pid = task->pid; memcpy(__entry->comm, task->comm, TASK_COMM_LEN); __entry->clone_flags = clone_flags; __entry->oom_score_adj = task->signal->oom_score_adj; ), TP_printk("pid=%d comm=%s clone_flags=%lx oom_score_adj=%hd", __entry->pid, __entry->comm, __entry->clone_flags, __entry->oom_score_adj) ); TRACE_EVENT(task_rename, TP_PROTO(struct task_struct *task, const char *comm), TP_ARGS(task, comm), TP_STRUCT__entry( __field( pid_t, pid) __array( char, oldcomm, TASK_COMM_LEN) __array( char, newcomm, TASK_COMM_LEN) __field( short, oom_score_adj) ), TP_fast_assign( __entry->pid = task->pid; memcpy(entry->oldcomm, task->comm, TASK_COMM_LEN); strlcpy(entry->newcomm, comm, TASK_COMM_LEN); __entry->oom_score_adj = task->signal->oom_score_adj; ), TP_printk("pid=%d oldcomm=%s newcomm=%s oom_score_adj=%hd", __entry->pid, __entry->oldcomm, __entry->newcomm, __entry->oom_score_adj) ); #endif /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1994 Linus Torvalds * * Pentium III FXSR, SSE support * General FPU state handling cleanups * Gareth Hughes <gareth@valinux.com>, May 2000 * x86-64 work by Andi Kleen 2002 */ #ifndef _ASM_X86_FPU_INTERNAL_H #define _ASM_X86_FPU_INTERNAL_H #include <linux/compat.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/mm.h> #include <asm/user.h> #include <asm/fpu/api.h> #include <asm/fpu/xstate.h> #include <asm/fpu/xcr.h> #include <asm/cpufeature.h> #include <asm/trace/fpu.h> /* * High level FPU state handling functions: */ extern void fpu__prepare_read(struct fpu *fpu); extern void fpu__prepare_write(struct fpu *fpu); extern void fpu__save(struct fpu *fpu); extern int fpu__restore_sig(void __user *buf, int ia32_frame); extern void fpu__drop(struct fpu *fpu); extern int fpu__copy(struct task_struct *dst, struct task_struct *src); extern void fpu__clear_user_states(struct fpu *fpu); extern void fpu__clear_all(struct fpu *fpu); extern int fpu__exception_code(struct fpu *fpu, int trap_nr); /* * Boot time FPU initialization functions: */ extern void fpu__init_cpu(void); extern void fpu__init_system_xstate(void); extern void fpu__init_cpu_xstate(void); extern void fpu__init_system(struct cpuinfo_x86 *c); extern void fpu__init_check_bugs(void); extern void fpu__resume_cpu(void); extern u64 fpu__get_supported_xfeatures_mask(void); /* * Debugging facility: */ #ifdef CONFIG_X86_DEBUG_FPU # define WARN_ON_FPU(x) WARN_ON_ONCE(x) #else # define WARN_ON_FPU(x) ({ (void)(x); 0; }) #endif /* * FPU related CPU feature flag helper routines: */ static __always_inline __pure bool use_xsaveopt(void) { return static_cpu_has(X86_FEATURE_XSAVEOPT); } static __always_inline __pure bool use_xsave(void) { return static_cpu_has(X86_FEATURE_XSAVE); } static __always_inline __pure bool use_fxsr(void) { return static_cpu_has(X86_FEATURE_FXSR); } /* * fpstate handling functions: */ extern union fpregs_state init_fpstate; extern void fpstate_init(union fpregs_state *state); #ifdef CONFIG_MATH_EMULATION extern void fpstate_init_soft(struct swregs_state *soft); #else static inline void fpstate_init_soft(struct swregs_state *soft) {} #endif static inline void fpstate_init_xstate(struct xregs_state *xsave) { /* * XRSTORS requires these bits set in xcomp_bv, or it will * trigger #GP: */ xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask_all; } static inline void fpstate_init_fxstate(struct fxregs_state *fx) { fx->cwd = 0x37f; fx->mxcsr = MXCSR_DEFAULT; } extern void fpstate_sanitize_xstate(struct fpu *fpu); /* Returns 0 or the negated trap number, which results in -EFAULT for #PF */ #define user_insn(insn, output, input...) \ ({ \ int err; \ \ might_fault(); \ \ asm volatile(ASM_STAC "\n" \ "1: " #insn "\n" \ "2: " ASM_CLAC "\n" \ ".section .fixup,\"ax\"\n" \ "3: negl %%eax\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE_FAULT(1b, 3b) \ : [err] "=a" (err), output \ : "0"(0), input); \ err; \ }) #define kernel_insn_err(insn, output, input...) \ ({ \ int err; \ asm volatile("1:" #insn "\n\t" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: movl $-1,%[err]\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 3b) \ : [err] "=r" (err), output \ : "0"(0), input); \ err; \ }) #define kernel_insn(insn, output, input...) \ asm volatile("1:" #insn "\n\t" \ "2:\n" \ _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_fprestore) \ : output : input) static inline int copy_fregs_to_user(struct fregs_state __user *fx) { return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx)); } static inline int copy_fxregs_to_user(struct fxregs_state __user *fx) { if (IS_ENABLED(CONFIG_X86_32)) return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); else return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); } static inline void copy_kernel_to_fxregs(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_kernel_to_fxregs_err(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) return kernel_insn_err(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else return kernel_insn_err(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_user_to_fxregs(struct fxregs_state __user *fx) { if (IS_ENABLED(CONFIG_X86_32)) return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline void copy_kernel_to_fregs(struct fregs_state *fx) { kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_kernel_to_fregs_err(struct fregs_state *fx) { return kernel_insn_err(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_user_to_fregs(struct fregs_state __user *fx) { return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline void copy_fxregs_to_kernel(struct fpu *fpu) { if (IS_ENABLED(CONFIG_X86_32)) asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave)); else asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave)); } static inline void fxsave(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) asm volatile( "fxsave %[fx]" : [fx] "=m" (*fx)); else asm volatile("fxsaveq %[fx]" : [fx] "=m" (*fx)); } /* These macros all use (%edi)/(%rdi) as the single memory argument. */ #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27" #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37" #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f" #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f" #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f" /* * After this @err contains 0 on success or the negated trap number when * the operation raises an exception. For faults this results in -EFAULT. */ #define XSTATE_OP(op, st, lmask, hmask, err) \ asm volatile("1:" op "\n\t" \ "xor %[err], %[err]\n" \ "2:\n\t" \ ".pushsection .fixup,\"ax\"\n\t" \ "3: negl %%eax\n\t" \ "jmp 2b\n\t" \ ".popsection\n\t" \ _ASM_EXTABLE_FAULT(1b, 3b) \ : [err] "=a" (err) \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact * format and supervisor states in addition to modified optimization in * XSAVEOPT. * * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT * supports modified optimization which is not supported by XSAVE. * * We use XSAVE as a fallback. * * The 661 label is defined in the ALTERNATIVE* macros as the address of the * original instruction which gets replaced. We need to use it here as the * address of the instruction where we might get an exception at. */ #define XSTATE_XSAVE(st, lmask, hmask, err) \ asm volatile(ALTERNATIVE_2(XSAVE, \ XSAVEOPT, X86_FEATURE_XSAVEOPT, \ XSAVES, X86_FEATURE_XSAVES) \ "\n" \ "xor %[err], %[err]\n" \ "3:\n" \ ".pushsection .fixup,\"ax\"\n" \ "4: movl $-2, %[err]\n" \ "jmp 3b\n" \ ".popsection\n" \ _ASM_EXTABLE(661b, 4b) \ : [err] "=r" (err) \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact * XSAVE area format. */ #define XSTATE_XRESTORE(st, lmask, hmask) \ asm volatile(ALTERNATIVE(XRSTOR, \ XRSTORS, X86_FEATURE_XSAVES) \ "\n" \ "3:\n" \ _ASM_EXTABLE_HANDLE(661b, 3b, ex_handler_fprestore)\ : \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * This function is called only during boot time when x86 caps are not set * up and alternative can not be used yet. */ static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate) { u64 mask = -1; u32 lmask = mask; u32 hmask = mask >> 32; int err; WARN_ON(system_state != SYSTEM_BOOTING); if (boot_cpu_has(X86_FEATURE_XSAVES)) XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); else XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); /* * We should never fault when copying from a kernel buffer, and the FPU * state we set at boot time should be valid. */ WARN_ON_FPU(err); } /* * Save processor xstate to xsave area. */ static inline void copy_xregs_to_kernel(struct xregs_state *xstate) { u64 mask = xfeatures_mask_all; u32 lmask = mask; u32 hmask = mask >> 32; int err; WARN_ON_FPU(!alternatives_patched); XSTATE_XSAVE(xstate, lmask, hmask, err); /* We should never fault when copying to a kernel buffer: */ WARN_ON_FPU(err); } /* * Restore processor xstate from xsave area. */ static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask) { u32 lmask = mask; u32 hmask = mask >> 32; XSTATE_XRESTORE(xstate, lmask, hmask); } /* * Save xstate to user space xsave area. * * We don't use modified optimization because xrstor/xrstors might track * a different application. * * We don't use compacted format xsave area for * backward compatibility for old applications which don't understand * compacted format of xsave area. */ static inline int copy_xregs_to_user(struct xregs_state __user *buf) { u64 mask = xfeatures_mask_user(); u32 lmask = mask; u32 hmask = mask >> 32; int err; /* * Clear the xsave header first, so that reserved fields are * initialized to zero. */ err = __clear_user(&buf->header, sizeof(buf->header)); if (unlikely(err)) return -EFAULT; stac(); XSTATE_OP(XSAVE, buf, lmask, hmask, err); clac(); return err; } /* * Restore xstate from user space xsave area. */ static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask) { struct xregs_state *xstate = ((__force struct xregs_state *)buf); u32 lmask = mask; u32 hmask = mask >> 32; int err; stac(); XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); clac(); return err; } /* * Restore xstate from kernel space xsave area, return an error code instead of * an exception. */ static inline int copy_kernel_to_xregs_err(struct xregs_state *xstate, u64 mask) { u32 lmask = mask; u32 hmask = mask >> 32; int err; if (static_cpu_has(X86_FEATURE_XSAVES)) XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); else XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); return err; } extern int copy_fpregs_to_fpstate(struct fpu *fpu); static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask) { if (use_xsave()) { copy_kernel_to_xregs(&fpstate->xsave, mask); } else { if (use_fxsr()) copy_kernel_to_fxregs(&fpstate->fxsave); else copy_kernel_to_fregs(&fpstate->fsave); } } static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate) { /* * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is * pending. Clear the x87 state here by setting it to fixed values. * "m" is a random variable that should be in L1. */ if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { asm volatile( "fnclex\n\t" "emms\n\t" "fildl %P[addr]" /* set F?P to defined value */ : : [addr] "m" (fpstate)); } __copy_kernel_to_fpregs(fpstate, -1); } extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size); /* * FPU context switch related helper methods: */ DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); /* * The in-register FPU state for an FPU context on a CPU is assumed to be * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx * matches the FPU. * * If the FPU register state is valid, the kernel can skip restoring the * FPU state from memory. * * Any code that clobbers the FPU registers or updates the in-memory * FPU state for a task MUST let the rest of the kernel know that the * FPU registers are no longer valid for this task. * * Either one of these invalidation functions is enough. Invalidate * a resource you control: CPU if using the CPU for something else * (with preemption disabled), FPU for the current task, or a task that * is prevented from running by the current task. */ static inline void __cpu_invalidate_fpregs_state(void) { __this_cpu_write(fpu_fpregs_owner_ctx, NULL); } static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu) { fpu->last_cpu = -1; } static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu) { return fpu == this_cpu_read(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu; } /* * These generally need preemption protection to work, * do try to avoid using these on their own: */ static inline void fpregs_deactivate(struct fpu *fpu) { this_cpu_write(fpu_fpregs_owner_ctx, NULL); trace_x86_fpu_regs_deactivated(fpu); } static inline void fpregs_activate(struct fpu *fpu) { this_cpu_write(fpu_fpregs_owner_ctx, fpu); trace_x86_fpu_regs_activated(fpu); } /* * Internal helper, do not use directly. Use switch_fpu_return() instead. */ static inline void __fpregs_load_activate(void) { struct fpu *fpu = &current->thread.fpu; int cpu = smp_processor_id(); if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) return; if (!fpregs_state_valid(fpu, cpu)) { copy_kernel_to_fpregs(&fpu->state); fpregs_activate(fpu); fpu->last_cpu = cpu; } clear_thread_flag(TIF_NEED_FPU_LOAD); } /* * FPU state switching for scheduling. * * This is a two-stage process: * * - switch_fpu_prepare() saves the old state. * This is done within the context of the old process. * * - switch_fpu_finish() sets TIF_NEED_FPU_LOAD; the floating point state * will get loaded on return to userspace, or when the kernel needs it. * * If TIF_NEED_FPU_LOAD is cleared then the CPU's FPU registers * are saved in the current thread's FPU register state. * * If TIF_NEED_FPU_LOAD is set then CPU's FPU registers may not * hold current()'s FPU registers. It is required to load the * registers before returning to userland or using the content * otherwise. * * The FPU context is only stored/restored for a user task and * PF_KTHREAD is used to distinguish between kernel and user threads. */ static inline void switch_fpu_prepare(struct fpu *old_fpu, int cpu) { if (static_cpu_has(X86_FEATURE_FPU) && !(current->flags & PF_KTHREAD)) { if (!copy_fpregs_to_fpstate(old_fpu)) old_fpu->last_cpu = -1; else old_fpu->last_cpu = cpu; /* But leave fpu_fpregs_owner_ctx! */ trace_x86_fpu_regs_deactivated(old_fpu); } } /* * Misc helper functions: */ /* * Load PKRU from the FPU context if available. Delay loading of the * complete FPU state until the return to userland. */ static inline void switch_fpu_finish(struct fpu *new_fpu) { u32 pkru_val = init_pkru_value; struct pkru_state *pk; if (!static_cpu_has(X86_FEATURE_FPU)) return; set_thread_flag(TIF_NEED_FPU_LOAD); if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return; /* * PKRU state is switched eagerly because it needs to be valid before we * return to userland e.g. for a copy_to_user() operation. */ if (!(current->flags & PF_KTHREAD)) { /* * If the PKRU bit in xsave.header.xfeatures is not set, * then the PKRU component was in init state, which means * XRSTOR will set PKRU to 0. If the bit is not set then * get_xsave_addr() will return NULL because the PKRU value * in memory is not valid. This means pkru_val has to be * set to 0 and not to init_pkru_value. */ pk = get_xsave_addr(&new_fpu->state.xsave, XFEATURE_PKRU); pkru_val = pk ? pk->pkru : 0; } __write_pkru(pkru_val); } #endif /* _ASM_X86_FPU_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* include/asm-generic/tlb.h * * Generic TLB shootdown code * * Copyright 2001 Red Hat, Inc. * Based on code from mm/memory.c Copyright Linus Torvalds and others. * * Copyright 2011 Red Hat, Inc., Peter Zijlstra */ #ifndef _ASM_GENERIC__TLB_H #define _ASM_GENERIC__TLB_H #include <linux/mmu_notifier.h> #include <linux/swap.h> #include <linux/hugetlb_inline.h> #include <asm/tlbflush.h> #include <asm/cacheflush.h> /* * Blindly accessing user memory from NMI context can be dangerous * if we're in the middle of switching the current user task or switching * the loaded mm. */ #ifndef nmi_uaccess_okay # define nmi_uaccess_okay() true #endif #ifdef CONFIG_MMU /* * Generic MMU-gather implementation. * * The mmu_gather data structure is used by the mm code to implement the * correct and efficient ordering of freeing pages and TLB invalidations. * * This correct ordering is: * * 1) unhook page * 2) TLB invalidate page * 3) free page * * That is, we must never free a page before we have ensured there are no live * translations left to it. Otherwise it might be possible to observe (or * worse, change) the page content after it has been reused. * * The mmu_gather API consists of: * * - tlb_gather_mmu() / tlb_finish_mmu(); start and finish a mmu_gather * * Finish in particular will issue a (final) TLB invalidate and free * all (remaining) queued pages. * * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA * * Defaults to flushing at tlb_end_vma() to reset the range; helps when * there's large holes between the VMAs. * * - tlb_remove_table() * * tlb_remove_table() is the basic primitive to free page-table directories * (__p*_free_tlb()). In it's most primitive form it is an alias for * tlb_remove_page() below, for when page directories are pages and have no * additional constraints. * * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE. * * - tlb_remove_page() / __tlb_remove_page() * - tlb_remove_page_size() / __tlb_remove_page_size() * * __tlb_remove_page_size() is the basic primitive that queues a page for * freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a * boolean indicating if the queue is (now) full and a call to * tlb_flush_mmu() is required. * * tlb_remove_page() and tlb_remove_page_size() imply the call to * tlb_flush_mmu() when required and has no return value. * * - tlb_change_page_size() * * call before __tlb_remove_page*() to set the current page-size; implies a * possible tlb_flush_mmu() call. * * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly() * * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets * related state, like the range) * * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees * whatever pages are still batched. * * - mmu_gather::fullmm * * A flag set by tlb_gather_mmu() to indicate we're going to free * the entire mm; this allows a number of optimizations. * * - We can ignore tlb_{start,end}_vma(); because we don't * care about ranges. Everything will be shot down. * * - (RISC) architectures that use ASIDs can cycle to a new ASID * and delay the invalidation until ASID space runs out. * * - mmu_gather::need_flush_all * * A flag that can be set by the arch code if it wants to force * flush the entire TLB irrespective of the range. For instance * x86-PAE needs this when changing top-level entries. * * And allows the architecture to provide and implement tlb_flush(): * * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make * use of: * * - mmu_gather::start / mmu_gather::end * * which provides the range that needs to be flushed to cover the pages to * be freed. * * - mmu_gather::freed_tables * * set when we freed page table pages * * - tlb_get_unmap_shift() / tlb_get_unmap_size() * * returns the smallest TLB entry size unmapped in this range. * * If an architecture does not provide tlb_flush() a default implementation * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is * specified, in which case we'll default to flush_tlb_mm(). * * Additionally there are a few opt-in features: * * MMU_GATHER_PAGE_SIZE * * This ensures we call tlb_flush() every time tlb_change_page_size() actually * changes the size and provides mmu_gather::page_size to tlb_flush(). * * This might be useful if your architecture has size specific TLB * invalidation instructions. * * MMU_GATHER_TABLE_FREE * * This provides tlb_remove_table(), to be used instead of tlb_remove_page() * for page directores (__p*_free_tlb()). * * Useful if your architecture has non-page page directories. * * When used, an architecture is expected to provide __tlb_remove_table() * which does the actual freeing of these pages. * * MMU_GATHER_RCU_TABLE_FREE * * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see * comment below). * * Useful if your architecture doesn't use IPIs for remote TLB invalidates * and therefore doesn't naturally serialize with software page-table walkers. * * MMU_GATHER_NO_RANGE * * Use this if your architecture lacks an efficient flush_tlb_range(). * * MMU_GATHER_NO_GATHER * * If the option is set the mmu_gather will not track individual pages for * delayed page free anymore. A platform that enables the option needs to * provide its own implementation of the __tlb_remove_page_size() function to * free pages. * * This is useful if your architecture already flushes TLB entries in the * various ptep_get_and_clear() functions. */ #ifdef CONFIG_MMU_GATHER_TABLE_FREE struct mmu_table_batch { #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE struct rcu_head rcu; #endif unsigned int nr; void *tables[0]; }; #define MAX_TABLE_BATCH \ ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *)) extern void tlb_remove_table(struct mmu_gather *tlb, void *table); #else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */ /* * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based * page directories and we can use the normal page batching to free them. */ #define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page)) #endif /* CONFIG_MMU_GATHER_TABLE_FREE */ #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE /* * This allows an architecture that does not use the linux page-tables for * hardware to skip the TLBI when freeing page tables. */ #ifndef tlb_needs_table_invalidate #define tlb_needs_table_invalidate() (true) #endif #else #ifdef tlb_needs_table_invalidate #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE #endif #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */ #ifndef CONFIG_MMU_GATHER_NO_GATHER /* * If we can't allocate a page to make a big batch of page pointers * to work on, then just handle a few from the on-stack structure. */ #define MMU_GATHER_BUNDLE 8 struct mmu_gather_batch { struct mmu_gather_batch *next; unsigned int nr; unsigned int max; struct page *pages[0]; }; #define MAX_GATHER_BATCH \ ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *)) /* * Limit the maximum number of mmu_gather batches to reduce a risk of soft * lockups for non-preemptible kernels on huge machines when a lot of memory * is zapped during unmapping. * 10K pages freed at once should be safe even without a preemption point. */ #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH) extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size); #endif /* * struct mmu_gather is an opaque type used by the mm code for passing around * any data needed by arch specific code for tlb_remove_page. */ struct mmu_gather { struct mm_struct *mm; #ifdef CONFIG_MMU_GATHER_TABLE_FREE struct mmu_table_batch *batch; #endif unsigned long start; unsigned long end; /* * we are in the middle of an operation to clear * a full mm and can make some optimizations */ unsigned int fullmm : 1; /* * we have performed an operation which * requires a complete flush of the tlb */ unsigned int need_flush_all : 1; /* * we have removed page directories */ unsigned int freed_tables : 1; /* * at which levels have we cleared entries? */ unsigned int cleared_ptes : 1; unsigned int cleared_pmds : 1; unsigned int cleared_puds : 1; unsigned int cleared_p4ds : 1; /* * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma */ unsigned int vma_exec : 1; unsigned int vma_huge : 1; unsigned int batch_count; #ifndef CONFIG_MMU_GATHER_NO_GATHER struct mmu_gather_batch *active; struct mmu_gather_batch local; struct page *__pages[MMU_GATHER_BUNDLE]; #ifdef CONFIG_MMU_GATHER_PAGE_SIZE unsigned int page_size; #endif #endif }; void tlb_flush_mmu(struct mmu_gather *tlb); static inline void __tlb_adjust_range(struct mmu_gather *tlb, unsigned long address, unsigned int range_size) { tlb->start = min(tlb->start, address); tlb->end = max(tlb->end, address + range_size); } static inline void __tlb_reset_range(struct mmu_gather *tlb) { if (tlb->fullmm) { tlb->start = tlb->end = ~0; } else { tlb->start = TASK_SIZE; tlb->end = 0; } tlb->freed_tables = 0; tlb->cleared_ptes = 0; tlb->cleared_pmds = 0; tlb->cleared_puds = 0; tlb->cleared_p4ds = 0; /* * Do not reset mmu_gather::vma_* fields here, we do not * call into tlb_start_vma() again to set them if there is an * intermediate flush. */ } #ifdef CONFIG_MMU_GATHER_NO_RANGE #if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma) #error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma() #endif /* * When an architecture does not have efficient means of range flushing TLBs * there is no point in doing intermediate flushes on tlb_end_vma() to keep the * range small. We equally don't have to worry about page granularity or other * things. * * All we need to do is issue a full flush for any !0 range. */ static inline void tlb_flush(struct mmu_gather *tlb) { if (tlb->end) flush_tlb_mm(tlb->mm); } static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #define tlb_end_vma tlb_end_vma static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #else /* CONFIG_MMU_GATHER_NO_RANGE */ #ifndef tlb_flush #if defined(tlb_start_vma) || defined(tlb_end_vma) #error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma() #endif /* * When an architecture does not provide its own tlb_flush() implementation * but does have a reasonably efficient flush_vma_range() implementation * use that. */ static inline void tlb_flush(struct mmu_gather *tlb) { if (tlb->fullmm || tlb->need_flush_all) { flush_tlb_mm(tlb->mm); } else if (tlb->end) { struct vm_area_struct vma = { .vm_mm = tlb->mm, .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) | (tlb->vma_huge ? VM_HUGETLB : 0), }; flush_tlb_range(&vma, tlb->start, tlb->end); } } static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { /* * flush_tlb_range() implementations that look at VM_HUGETLB (tile, * mips-4k) flush only large pages. * * flush_tlb_range() implementations that flush I-TLB also flush D-TLB * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing * range. * * We rely on tlb_end_vma() to issue a flush, such that when we reset * these values the batch is empty. */ tlb->vma_huge = is_vm_hugetlb_page(vma); tlb->vma_exec = !!(vma->vm_flags & VM_EXEC); } #else static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #endif #endif /* CONFIG_MMU_GATHER_NO_RANGE */ static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) { /* * Anything calling __tlb_adjust_range() also sets at least one of * these bits. */ if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds || tlb->cleared_puds || tlb->cleared_p4ds)) return; tlb_flush(tlb); mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); __tlb_reset_range(tlb); } static inline void tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) { if (__tlb_remove_page_size(tlb, page, page_size)) tlb_flush_mmu(tlb); } static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page) { return __tlb_remove_page_size(tlb, page, PAGE_SIZE); } /* tlb_remove_page * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when * required. */ static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page) { return tlb_remove_page_size(tlb, page, PAGE_SIZE); } static inline void tlb_change_page_size(struct mmu_gather *tlb, unsigned int page_size) { #ifdef CONFIG_MMU_GATHER_PAGE_SIZE if (tlb->page_size && tlb->page_size != page_size) { if (!tlb->fullmm && !tlb->need_flush_all) tlb_flush_mmu(tlb); } tlb->page_size = page_size; #endif } static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb) { if (tlb->cleared_ptes) return PAGE_SHIFT; if (tlb->cleared_pmds) return PMD_SHIFT; if (tlb->cleared_puds) return PUD_SHIFT; if (tlb->cleared_p4ds) return P4D_SHIFT; return PAGE_SHIFT; } static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb) { return 1UL << tlb_get_unmap_shift(tlb); } /* * In the case of tlb vma handling, we can optimise these away in the * case where we're doing a full MM flush. When we're doing a munmap, * the vmas are adjusted to only cover the region to be torn down. */ #ifndef tlb_start_vma static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { if (tlb->fullmm) return; tlb_update_vma_flags(tlb, vma); flush_cache_range(vma, vma->vm_start, vma->vm_end); } #endif #ifndef tlb_end_vma static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { if (tlb->fullmm) return; /* * Do a TLB flush and reset the range at VMA boundaries; this avoids * the ranges growing with the unused space between consecutive VMAs, * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on * this. */ tlb_flush_mmu_tlbonly(tlb); } #endif /* * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end, * and set corresponding cleared_*. */ static inline void tlb_flush_pte_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_ptes = 1; } static inline void tlb_flush_pmd_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_pmds = 1; } static inline void tlb_flush_pud_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_puds = 1; } static inline void tlb_flush_p4d_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_p4ds = 1; } #ifndef __tlb_remove_tlb_entry #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0) #endif /** * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation. * * Record the fact that pte's were really unmapped by updating the range, * so we can later optimise away the tlb invalidate. This helps when * userspace is unmapping already-unmapped pages, which happens quite a lot. */ #define tlb_remove_tlb_entry(tlb, ptep, address) \ do { \ tlb_flush_pte_range(tlb, address, PAGE_SIZE); \ __tlb_remove_tlb_entry(tlb, ptep, address); \ } while (0) #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \ do { \ unsigned long _sz = huge_page_size(h); \ if (_sz == PMD_SIZE) \ tlb_flush_pmd_range(tlb, address, _sz); \ else if (_sz == PUD_SIZE) \ tlb_flush_pud_range(tlb, address, _sz); \ __tlb_remove_tlb_entry(tlb, ptep, address); \ } while (0) /** * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation * This is a nop so far, because only x86 needs it. */ #ifndef __tlb_remove_pmd_tlb_entry #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0) #endif #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \ do { \ tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \ __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \ } while (0) /** * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb * invalidation. This is a nop so far, because only x86 needs it. */ #ifndef __tlb_remove_pud_tlb_entry #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0) #endif #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \ do { \ tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \ __tlb_remove_pud_tlb_entry(tlb, pudp, address); \ } while (0) /* * For things like page tables caches (ie caching addresses "inside" the * page tables, like x86 does), for legacy reasons, flushing an * individual page had better flush the page table caches behind it. This * is definitely how x86 works, for example. And if you have an * architected non-legacy page table cache (which I'm not aware of * anybody actually doing), you're going to have some architecturally * explicit flushing for that, likely *separate* from a regular TLB entry * flush, and thus you'd need more than just some range expansion.. * * So if we ever find an architecture * that would want something that odd, I think it is up to that * architecture to do its own odd thing, not cause pain for others * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com * * For now w.r.t page table cache, mark the range_size as PAGE_SIZE */ #ifndef pte_free_tlb #define pte_free_tlb(tlb, ptep, address) \ do { \ tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pte_free_tlb(tlb, ptep, address); \ } while (0) #endif #ifndef pmd_free_tlb #define pmd_free_tlb(tlb, pmdp, address) \ do { \ tlb_flush_pud_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pmd_free_tlb(tlb, pmdp, address); \ } while (0) #endif #ifndef pud_free_tlb #define pud_free_tlb(tlb, pudp, address) \ do { \ tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pud_free_tlb(tlb, pudp, address); \ } while (0) #endif #ifndef p4d_free_tlb #define p4d_free_tlb(tlb, pudp, address) \ do { \ __tlb_adjust_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __p4d_free_tlb(tlb, pudp, address); \ } while (0) #endif #endif /* CONFIG_MMU */ #endif /* _ASM_GENERIC__TLB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_CGROUP_H #define _LINUX_CGROUP_H /* * cgroup interface * * Copyright (C) 2003 BULL SA * Copyright (C) 2004-2006 Silicon Graphics, Inc. * */ #include <linux/sched.h> #include <linux/cpumask.h> #include <linux/nodemask.h> #include <linux/rculist.h> #include <linux/cgroupstats.h> #include <linux/fs.h> #include <linux/seq_file.h> #include <linux/kernfs.h> #include <linux/jump_label.h> #include <linux/types.h> #include <linux/ns_common.h> #include <linux/nsproxy.h> #include <linux/user_namespace.h> #include <linux/refcount.h> #include <linux/kernel_stat.h> #include <linux/cgroup-defs.h> struct kernel_clone_args; #ifdef CONFIG_CGROUPS /* * All weight knobs on the default hierarhcy should use the following min, * default and max values. The default value is the logarithmic center of * MIN and MAX and allows 100x to be expressed in both directions. */ #define CGROUP_WEIGHT_MIN 1 #define CGROUP_WEIGHT_DFL 100 #define CGROUP_WEIGHT_MAX 10000 /* walk only threadgroup leaders */ #define CSS_TASK_ITER_PROCS (1U << 0) /* walk all threaded css_sets in the domain */ #define CSS_TASK_ITER_THREADED (1U << 1) /* internal flags */ #define CSS_TASK_ITER_SKIPPED (1U << 16) /* a css_task_iter should be treated as an opaque object */ struct css_task_iter { struct cgroup_subsys *ss; unsigned int flags; struct list_head *cset_pos; struct list_head *cset_head; struct list_head *tcset_pos; struct list_head *tcset_head; struct list_head *task_pos; struct list_head *cur_tasks_head; struct css_set *cur_cset; struct css_set *cur_dcset; struct task_struct *cur_task; struct list_head iters_node; /* css_set->task_iters */ }; extern struct cgroup_root cgrp_dfl_root; extern struct css_set init_css_set; #define SUBSYS(_x) extern struct cgroup_subsys _x ## _cgrp_subsys; #include <linux/cgroup_subsys.h> #undef SUBSYS #define SUBSYS(_x) \ extern struct static_key_true _x ## _cgrp_subsys_enabled_key; \ extern struct static_key_true _x ## _cgrp_subsys_on_dfl_key; #include <linux/cgroup_subsys.h> #undef SUBSYS /** * cgroup_subsys_enabled - fast test on whether a subsys is enabled * @ss: subsystem in question */ #define cgroup_subsys_enabled(ss) \ static_branch_likely(&ss ## _enabled_key) /** * cgroup_subsys_on_dfl - fast test on whether a subsys is on default hierarchy * @ss: subsystem in question */ #define cgroup_subsys_on_dfl(ss) \ static_branch_likely(&ss ## _on_dfl_key) bool css_has_online_children(struct cgroup_subsys_state *css); struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss); struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgroup, struct cgroup_subsys *ss); struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgroup, struct cgroup_subsys *ss); struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, struct cgroup_subsys *ss); struct cgroup *cgroup_get_from_path(const char *path); struct cgroup *cgroup_get_from_fd(int fd); int cgroup_attach_task_all(struct task_struct *from, struct task_struct *); int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from); int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts); int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts); int cgroup_rm_cftypes(struct cftype *cfts); void cgroup_file_notify(struct cgroup_file *cfile); int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen); int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry); int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *tsk); void cgroup_fork(struct task_struct *p); extern int cgroup_can_fork(struct task_struct *p, struct kernel_clone_args *kargs); extern void cgroup_cancel_fork(struct task_struct *p, struct kernel_clone_args *kargs); extern void cgroup_post_fork(struct task_struct *p, struct kernel_clone_args *kargs); void cgroup_exit(struct task_struct *p); void cgroup_release(struct task_struct *p); void cgroup_free(struct task_struct *p); int cgroup_init_early(void); int cgroup_init(void); int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v); /* * Iteration helpers and macros. */ struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *parent); struct cgroup_subsys_state *css_next_descendant_pre(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *css); struct cgroup_subsys_state *css_rightmost_descendant(struct cgroup_subsys_state *pos); struct cgroup_subsys_state *css_next_descendant_post(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *css); struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, struct cgroup_subsys_state **dst_cssp); struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, struct cgroup_subsys_state **dst_cssp); void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, struct css_task_iter *it); struct task_struct *css_task_iter_next(struct css_task_iter *it); void css_task_iter_end(struct css_task_iter *it); /** * css_for_each_child - iterate through children of a css * @pos: the css * to use as the loop cursor * @parent: css whose children to walk * * Walk @parent's children. Must be called under rcu_read_lock(). * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. * * It is allowed to temporarily drop RCU read lock during iteration. The * caller is responsible for ensuring that @pos remains accessible until * the start of the next iteration by, for example, bumping the css refcnt. */ #define css_for_each_child(pos, parent) \ for ((pos) = css_next_child(NULL, (parent)); (pos); \ (pos) = css_next_child((pos), (parent))) /** * css_for_each_descendant_pre - pre-order walk of a css's descendants * @pos: the css * to use as the loop cursor * @root: css whose descendants to walk * * Walk @root's descendants. @root is included in the iteration and the * first node to be visited. Must be called under rcu_read_lock(). * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. * * For example, the following guarantees that a descendant can't escape * state updates of its ancestors. * * my_online(@css) * { * Lock @css's parent and @css; * Inherit state from the parent; * Unlock both. * } * * my_update_state(@css) * { * css_for_each_descendant_pre(@pos, @css) { * Lock @pos; * if (@pos == @css) * Update @css's state; * else * Verify @pos is alive and inherit state from its parent; * Unlock @pos; * } * } * * As long as the inheriting step, including checking the parent state, is * enclosed inside @pos locking, double-locking the parent isn't necessary * while inheriting. The state update to the parent is guaranteed to be * visible by walking order and, as long as inheriting operations to the * same @pos are atomic to each other, multiple updates racing each other * still result in the correct state. It's guaranateed that at least one * inheritance happens for any css after the latest update to its parent. * * If checking parent's state requires locking the parent, each inheriting * iteration should lock and unlock both @pos->parent and @pos. * * Alternatively, a subsystem may choose to use a single global lock to * synchronize ->css_online() and ->css_offline() against tree-walking * operations. * * It is allowed to temporarily drop RCU read lock during iteration. The * caller is responsible for ensuring that @pos remains accessible until * the start of the next iteration by, for example, bumping the css refcnt. */ #define css_for_each_descendant_pre(pos, css) \ for ((pos) = css_next_descendant_pre(NULL, (css)); (pos); \ (pos) = css_next_descendant_pre((pos), (css))) /** * css_for_each_descendant_post - post-order walk of a css's descendants * @pos: the css * to use as the loop cursor * @css: css whose descendants to walk * * Similar to css_for_each_descendant_pre() but performs post-order * traversal instead. @root is included in the iteration and the last * node to be visited. * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. * * Note that the walk visibility guarantee example described in pre-order * walk doesn't apply the same to post-order walks. */ #define css_for_each_descendant_post(pos, css) \ for ((pos) = css_next_descendant_post(NULL, (css)); (pos); \ (pos) = css_next_descendant_post((pos), (css))) /** * cgroup_taskset_for_each - iterate cgroup_taskset * @task: the loop cursor * @dst_css: the destination css * @tset: taskset to iterate * * @tset may contain multiple tasks and they may belong to multiple * processes. * * On the v2 hierarchy, there may be tasks from multiple processes and they * may not share the source or destination csses. * * On traditional hierarchies, when there are multiple tasks in @tset, if a * task of a process is in @tset, all tasks of the process are in @tset. * Also, all are guaranteed to share the same source and destination csses. * * Iteration is not in any specific order. */ #define cgroup_taskset_for_each(task, dst_css, tset) \ for ((task) = cgroup_taskset_first((tset), &(dst_css)); \ (task); \ (task) = cgroup_taskset_next((tset), &(dst_css))) /** * cgroup_taskset_for_each_leader - iterate group leaders in a cgroup_taskset * @leader: the loop cursor * @dst_css: the destination css * @tset: taskset to iterate * * Iterate threadgroup leaders of @tset. For single-task migrations, @tset * may not contain any. */ #define cgroup_taskset_for_each_leader(leader, dst_css, tset) \ for ((leader) = cgroup_taskset_first((tset), &(dst_css)); \ (leader); \ (leader) = cgroup_taskset_next((tset), &(dst_css))) \ if ((leader) != (leader)->group_leader) \ ; \ else /* * Inline functions. */ static inline u64 cgroup_id(struct cgroup *cgrp) { return cgrp->kn->id; } /** * css_get - obtain a reference on the specified css * @css: target css * * The caller must already have a reference. */ static inline void css_get(struct cgroup_subsys_state *css) { if (!(css->flags & CSS_NO_REF)) percpu_ref_get(&css->refcnt); } /** * css_get_many - obtain references on the specified css * @css: target css * @n: number of references to get * * The caller must already have a reference. */ static inline void css_get_many(struct cgroup_subsys_state *css, unsigned int n) { if (!(css->flags & CSS_NO_REF)) percpu_ref_get_many(&css->refcnt, n); } /** * css_tryget - try to obtain a reference on the specified css * @css: target css * * Obtain a reference on @css unless it already has reached zero and is * being released. This function doesn't care whether @css is on or * offline. The caller naturally needs to ensure that @css is accessible * but doesn't have to be holding a reference on it - IOW, RCU protected * access is good enough for this function. Returns %true if a reference * count was successfully obtained; %false otherwise. */ static inline bool css_tryget(struct cgroup_subsys_state *css) { if (!(css->flags & CSS_NO_REF)) return percpu_ref_tryget(&css->refcnt); return true; } /** * css_tryget_online - try to obtain a reference on the specified css if online * @css: target css * * Obtain a reference on @css if it's online. The caller naturally needs * to ensure that @css is accessible but doesn't have to be holding a * reference on it - IOW, RCU protected access is good enough for this * function. Returns %true if a reference count was successfully obtained; * %false otherwise. */ static inline bool css_tryget_online(struct cgroup_subsys_state *css) { if (!(css->flags & CSS_NO_REF)) return percpu_ref_tryget_live(&css->refcnt); return true; } /** * css_is_dying - test whether the specified css is dying * @css: target css * * Test whether @css is in the process of offlining or already offline. In * most cases, ->css_online() and ->css_offline() callbacks should be * enough; however, the actual offline operations are RCU delayed and this * test returns %true also when @css is scheduled to be offlined. * * This is useful, for example, when the use case requires synchronous * behavior with respect to cgroup removal. cgroup removal schedules css * offlining but the css can seem alive while the operation is being * delayed. If the delay affects user visible semantics, this test can be * used to resolve the situation. */ static inline bool css_is_dying(struct cgroup_subsys_state *css) { return !(css->flags & CSS_NO_REF) && percpu_ref_is_dying(&css->refcnt); } /** * css_put - put a css reference * @css: target css * * Put a reference obtained via css_get() and css_tryget_online(). */ static inline void css_put(struct cgroup_subsys_state *css) { if (!(css->flags & CSS_NO_REF)) percpu_ref_put(&css->refcnt); } /** * css_put_many - put css references * @css: target css * @n: number of references to put * * Put references obtained via css_get() and css_tryget_online(). */ static inline void css_put_many(struct cgroup_subsys_state *css, unsigned int n) { if (!(css->flags & CSS_NO_REF)) percpu_ref_put_many(&css->refcnt, n); } static inline void cgroup_get(struct cgroup *cgrp) { css_get(&cgrp->self); } static inline bool cgroup_tryget(struct cgroup *cgrp) { return css_tryget(&cgrp->self); } static inline void cgroup_put(struct cgroup *cgrp) { css_put(&cgrp->self); } /** * task_css_set_check - obtain a task's css_set with extra access conditions * @task: the task to obtain css_set for * @__c: extra condition expression to be passed to rcu_dereference_check() * * A task's css_set is RCU protected, initialized and exited while holding * task_lock(), and can only be modified while holding both cgroup_mutex * and task_lock() while the task is alive. This macro verifies that the * caller is inside proper critical section and returns @task's css_set. * * The caller can also specify additional allowed conditions via @__c, such * as locks used during the cgroup_subsys::attach() methods. */ #ifdef CONFIG_PROVE_RCU extern struct mutex cgroup_mutex; extern spinlock_t css_set_lock; #define task_css_set_check(task, __c) \ rcu_dereference_check((task)->cgroups, \ lockdep_is_held(&cgroup_mutex) || \ lockdep_is_held(&css_set_lock) || \ ((task)->flags & PF_EXITING) || (__c)) #else #define task_css_set_check(task, __c) \ rcu_dereference((task)->cgroups) #endif /** * task_css_check - obtain css for (task, subsys) w/ extra access conds * @task: the target task * @subsys_id: the target subsystem ID * @__c: extra condition expression to be passed to rcu_dereference_check() * * Return the cgroup_subsys_state for the (@task, @subsys_id) pair. The * synchronization rules are the same as task_css_set_check(). */ #define task_css_check(task, subsys_id, __c) \ task_css_set_check((task), (__c))->subsys[(subsys_id)] /** * task_css_set - obtain a task's css_set * @task: the task to obtain css_set for * * See task_css_set_check(). */ static inline struct css_set *task_css_set(struct task_struct *task) { return task_css_set_check(task, false); } /** * task_css - obtain css for (task, subsys) * @task: the target task * @subsys_id: the target subsystem ID * * See task_css_check(). */ static inline struct cgroup_subsys_state *task_css(struct task_struct *task, int subsys_id) { return task_css_check(task, subsys_id, false); } /** * task_get_css - find and get the css for (task, subsys) * @task: the target task * @subsys_id: the target subsystem ID * * Find the css for the (@task, @subsys_id) combination, increment a * reference on and return it. This function is guaranteed to return a * valid css. The returned css may already have been offlined. */ static inline struct cgroup_subsys_state * task_get_css(struct task_struct *task, int subsys_id) { struct cgroup_subsys_state *css; rcu_read_lock(); while (true) { css = task_css(task, subsys_id); /* * Can't use css_tryget_online() here. A task which has * PF_EXITING set may stay associated with an offline css. * If such task calls this function, css_tryget_online() * will keep failing. */ if (likely(css_tryget(css))) break; cpu_relax(); } rcu_read_unlock(); return css; } /** * task_css_is_root - test whether a task belongs to the root css * @task: the target task * @subsys_id: the target subsystem ID * * Test whether @task belongs to the root css on the specified subsystem. * May be invoked in any context. */ static inline bool task_css_is_root(struct task_struct *task, int subsys_id) { return task_css_check(task, subsys_id, true) == init_css_set.subsys[subsys_id]; } static inline struct cgroup *task_cgroup(struct task_struct *task, int subsys_id) { return task_css(task, subsys_id)->cgroup; } static inline struct cgroup *task_dfl_cgroup(struct task_struct *task) { return task_css_set(task)->dfl_cgrp; } static inline struct cgroup *cgroup_parent(struct cgroup *cgrp) { struct cgroup_subsys_state *parent_css = cgrp->self.parent; if (parent_css) return container_of(parent_css, struct cgroup, self); return NULL; } /** * cgroup_is_descendant - test ancestry * @cgrp: the cgroup to be tested * @ancestor: possible ancestor of @cgrp * * Test whether @cgrp is a descendant of @ancestor. It also returns %true * if @cgrp == @ancestor. This function is safe to call as long as @cgrp * and @ancestor are accessible. */ static inline bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor) { if (cgrp->root != ancestor->root || cgrp->level < ancestor->level) return false; return cgrp->ancestor_ids[ancestor->level] == cgroup_id(ancestor); } /** * cgroup_ancestor - find ancestor of cgroup * @cgrp: cgroup to find ancestor of * @ancestor_level: level of ancestor to find starting from root * * Find ancestor of cgroup at specified level starting from root if it exists * and return pointer to it. Return NULL if @cgrp doesn't have ancestor at * @ancestor_level. * * This function is safe to call as long as @cgrp is accessible. */ static inline struct cgroup *cgroup_ancestor(struct cgroup *cgrp, int ancestor_level) { if (cgrp->level < ancestor_level) return NULL; while (cgrp && cgrp->level > ancestor_level) cgrp = cgroup_parent(cgrp); return cgrp; } /** * task_under_cgroup_hierarchy - test task's membership of cgroup ancestry * @task: the task to be tested * @ancestor: possible ancestor of @task's cgroup * * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. * It follows all the same rules as cgroup_is_descendant, and only applies * to the default hierarchy. */ static inline bool task_under_cgroup_hierarchy(struct task_struct *task, struct cgroup *ancestor) { struct css_set *cset = task_css_set(task); return cgroup_is_descendant(cset->dfl_cgrp, ancestor); } /* no synchronization, the result can only be used as a hint */ static inline bool cgroup_is_populated(struct cgroup *cgrp) { return cgrp->nr_populated_csets + cgrp->nr_populated_domain_children + cgrp->nr_populated_threaded_children; } /* returns ino associated with a cgroup */ static inline ino_t cgroup_ino(struct cgroup *cgrp) { return kernfs_ino(cgrp->kn); } /* cft/css accessors for cftype->write() operation */ static inline struct cftype *of_cft(struct kernfs_open_file *of) { return of->kn->priv; } struct cgroup_subsys_state *of_css(struct kernfs_open_file *of); /* cft/css accessors for cftype->seq_*() operations */ static inline struct cftype *seq_cft(struct seq_file *seq) { return of_cft(seq->private); } static inline struct cgroup_subsys_state *seq_css(struct seq_file *seq) { return of_css(seq->private); } /* * Name / path handling functions. All are thin wrappers around the kernfs * counterparts and can be called under any context. */ static inline int cgroup_name(struct cgroup *cgrp, char *buf, size_t buflen) { return kernfs_name(cgrp->kn, buf, buflen); } static inline int cgroup_path(struct cgroup *cgrp, char *buf, size_t buflen) { return kernfs_path(cgrp->kn, buf, buflen); } static inline void pr_cont_cgroup_name(struct cgroup *cgrp) { pr_cont_kernfs_name(cgrp->kn); } static inline void pr_cont_cgroup_path(struct cgroup *cgrp) { pr_cont_kernfs_path(cgrp->kn); } static inline struct psi_group *cgroup_psi(struct cgroup *cgrp) { return &cgrp->psi; } static inline void cgroup_init_kthreadd(void) { /* * kthreadd is inherited by all kthreads, keep it in the root so * that the new kthreads are guaranteed to stay in the root until * initialization is finished. */ current->no_cgroup_migration = 1; } static inline void cgroup_kthread_ready(void) { /* * This kthread finished initialization. The creator should have * set PF_NO_SETAFFINITY if this kthread should stay in the root. */ current->no_cgroup_migration = 0; } void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen); #else /* !CONFIG_CGROUPS */ struct cgroup_subsys_state; struct cgroup; static inline u64 cgroup_id(struct cgroup *cgrp) { return 1; } static inline void css_get(struct cgroup_subsys_state *css) {} static inline void css_put(struct cgroup_subsys_state *css) {} static inline int cgroup_attach_task_all(struct task_struct *from, struct task_struct *t) { return 0; } static inline int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) { return -EINVAL; } static inline void cgroup_fork(struct task_struct *p) {} static inline int cgroup_can_fork(struct task_struct *p, struct kernel_clone_args *kargs) { return 0; } static inline void cgroup_cancel_fork(struct task_struct *p, struct kernel_clone_args *kargs) {} static inline void cgroup_post_fork(struct task_struct *p, struct kernel_clone_args *kargs) {} static inline void cgroup_exit(struct task_struct *p) {} static inline void cgroup_release(struct task_struct *p) {} static inline void cgroup_free(struct task_struct *p) {} static inline int cgroup_init_early(void) { return 0; } static inline int cgroup_init(void) { return 0; } static inline void cgroup_init_kthreadd(void) {} static inline void cgroup_kthread_ready(void) {} static inline struct cgroup *cgroup_parent(struct cgroup *cgrp) { return NULL; } static inline struct psi_group *cgroup_psi(struct cgroup *cgrp) { return NULL; } static inline bool task_under_cgroup_hierarchy(struct task_struct *task, struct cgroup *ancestor) { return true; } static inline void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) {} #endif /* !CONFIG_CGROUPS */ #ifdef CONFIG_CGROUPS /* * cgroup scalable recursive statistics. */ void cgroup_rstat_updated(struct cgroup *cgrp, int cpu); void cgroup_rstat_flush(struct cgroup *cgrp); void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp); void cgroup_rstat_flush_hold(struct cgroup *cgrp); void cgroup_rstat_flush_release(void); /* * Basic resource stats. */ #ifdef CONFIG_CGROUP_CPUACCT void cpuacct_charge(struct task_struct *tsk, u64 cputime); void cpuacct_account_field(struct task_struct *tsk, int index, u64 val); #else static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} static inline void cpuacct_account_field(struct task_struct *tsk, int index, u64 val) {} #endif void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec); void __cgroup_account_cputime_field(struct cgroup *cgrp, enum cpu_usage_stat index, u64 delta_exec); static inline void cgroup_account_cputime(struct task_struct *task, u64 delta_exec) { struct cgroup *cgrp; cpuacct_charge(task, delta_exec); rcu_read_lock(); cgrp = task_dfl_cgroup(task); if (cgroup_parent(cgrp)) __cgroup_account_cputime(cgrp, delta_exec); rcu_read_unlock(); } static inline void cgroup_account_cputime_field(struct task_struct *task, enum cpu_usage_stat index, u64 delta_exec) { struct cgroup *cgrp; cpuacct_account_field(task, index, delta_exec); rcu_read_lock(); cgrp = task_dfl_cgroup(task); if (cgroup_parent(cgrp)) __cgroup_account_cputime_field(cgrp, index, delta_exec); rcu_read_unlock(); } #else /* CONFIG_CGROUPS */ static inline void cgroup_account_cputime(struct task_struct *task, u64 delta_exec) {} static inline void cgroup_account_cputime_field(struct task_struct *task, enum cpu_usage_stat index, u64 delta_exec) {} #endif /* CONFIG_CGROUPS */ /* * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data * definition in cgroup-defs.h. */ #ifdef CONFIG_SOCK_CGROUP_DATA #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) extern spinlock_t cgroup_sk_update_lock; #endif void cgroup_sk_alloc_disable(void); void cgroup_sk_alloc(struct sock_cgroup_data *skcd); void cgroup_sk_clone(struct sock_cgroup_data *skcd); void cgroup_sk_free(struct sock_cgroup_data *skcd); static inline struct cgroup *sock_cgroup_ptr(struct sock_cgroup_data *skcd) { #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) unsigned long v; /* * @skcd->val is 64bit but the following is safe on 32bit too as we * just need the lower ulong to be written and read atomically. */ v = READ_ONCE(skcd->val); if (v & 3) return &cgrp_dfl_root.cgrp; return (struct cgroup *)(unsigned long)v ?: &cgrp_dfl_root.cgrp; #else return (struct cgroup *)(unsigned long)skcd->val; #endif } #else /* CONFIG_CGROUP_DATA */ static inline void cgroup_sk_alloc(struct sock_cgroup_data *skcd) {} static inline void cgroup_sk_clone(struct sock_cgroup_data *skcd) {} static inline void cgroup_sk_free(struct sock_cgroup_data *skcd) {} #endif /* CONFIG_CGROUP_DATA */ struct cgroup_namespace { refcount_t count; struct ns_common ns; struct user_namespace *user_ns; struct ucounts *ucounts; struct css_set *root_cset; }; extern struct cgroup_namespace init_cgroup_ns; #ifdef CONFIG_CGROUPS void free_cgroup_ns(struct cgroup_namespace *ns); struct cgroup_namespace *copy_cgroup_ns(unsigned long flags, struct user_namespace *user_ns, struct cgroup_namespace *old_ns); int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, struct cgroup_namespace *ns); #else /* !CONFIG_CGROUPS */ static inline void free_cgroup_ns(struct cgroup_namespace *ns) { } static inline struct cgroup_namespace * copy_cgroup_ns(unsigned long flags, struct user_namespace *user_ns, struct cgroup_namespace *old_ns) { return old_ns; } #endif /* !CONFIG_CGROUPS */ static inline void get_cgroup_ns(struct cgroup_namespace *ns) { if (ns) refcount_inc(&ns->count); } static inline void put_cgroup_ns(struct cgroup_namespace *ns) { if (ns && refcount_dec_and_test(&ns->count)) free_cgroup_ns(ns); } #ifdef CONFIG_CGROUPS void cgroup_enter_frozen(void); void cgroup_leave_frozen(bool always_leave); void cgroup_update_frozen(struct cgroup *cgrp); void cgroup_freeze(struct cgroup *cgrp, bool freeze); void cgroup_freezer_migrate_task(struct task_struct *task, struct cgroup *src, struct cgroup *dst); static inline bool cgroup_task_freeze(struct task_struct *task) { bool ret; if (task->flags & PF_KTHREAD) return false; rcu_read_lock(); ret = test_bit(CGRP_FREEZE, &task_dfl_cgroup(task)->flags); rcu_read_unlock(); return ret; } static inline bool cgroup_task_frozen(struct task_struct *task) { return task->frozen; } #else /* !CONFIG_CGROUPS */ static inline void cgroup_enter_frozen(void) { } static inline void cgroup_leave_frozen(bool always_leave) { } static inline bool cgroup_task_freeze(struct task_struct *task) { return false; } static inline bool cgroup_task_frozen(struct task_struct *task) { return false; } #endif /* !CONFIG_CGROUPS */ #ifdef CONFIG_CGROUP_BPF static inline void cgroup_bpf_get(struct cgroup *cgrp) { percpu_ref_get(&cgrp->bpf.refcnt); } static inline void cgroup_bpf_put(struct cgroup *cgrp) { percpu_ref_put(&cgrp->bpf.refcnt); } #else /* CONFIG_CGROUP_BPF */ static inline void cgroup_bpf_get(struct cgroup *cgrp) {} static inline void cgroup_bpf_put(struct cgroup *cgrp) {} #endif /* CONFIG_CGROUP_BPF */ #endif /* _LINUX_CGROUP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HUGE_MM_H #define _LINUX_HUGE_MM_H #include <linux/sched/coredump.h> #include <linux/mm_types.h> #include <linux/fs.h> /* only for vma_is_dax() */ vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf); int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd); int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, pud_t *dst_pud, pud_t *src_pud, unsigned long addr, struct vm_area_struct *vma); #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud); #else static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t or