1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_BARRIER_H #define _ASM_X86_BARRIER_H #include <asm/alternative.h> #include <asm/nops.h> /* * Force strict CPU ordering. * And yes, this might be required on UP too when we're talking * to devices. */ #ifdef CONFIG_X86_32 #define mb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "mfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #define rmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "lfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #define wmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "sfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #else #define mb() asm volatile("mfence":::"memory") #define rmb() asm volatile("lfence":::"memory") #define wmb() asm volatile("sfence" ::: "memory") #endif /** * array_index_mask_nospec() - generate a mask that is ~0UL when the * bounds check succeeds and 0 otherwise * @index: array element index * @size: number of elements in array * * Returns: * 0 - (index < size) */ static inline unsigned long array_index_mask_nospec(unsigned long index, unsigned long size) { unsigned long mask; asm volatile ("cmp %1,%2; sbb %0,%0;" :"=r" (mask) :"g"(size),"r" (index) :"cc"); return mask; } /* Override the default implementation from linux/nospec.h. */ #define array_index_mask_nospec array_index_mask_nospec /* Prevent speculative execution past this barrier. */ #define barrier_nospec() alternative("", "lfence", X86_FEATURE_LFENCE_RDTSC) #define dma_rmb() barrier() #define dma_wmb() barrier() #ifdef CONFIG_X86_32 #define __smp_mb() asm volatile("lock; addl $0,-4(%%esp)" ::: "memory", "cc") #else #define __smp_mb() asm volatile("lock; addl $0,-4(%%rsp)" ::: "memory", "cc") #endif #define __smp_rmb() dma_rmb() #define __smp_wmb() barrier() #define __smp_store_mb(var, value) do { (void)xchg(&var, value); } while (0) #define __smp_store_release(p, v) \ do { \ compiletime_assert_atomic_type(*p); \ barrier(); \ WRITE_ONCE(*p, v); \ } while (0) #define __smp_load_acquire(p) \ ({ \ typeof(*p) ___p1 = READ_ONCE(*p); \ compiletime_assert_atomic_type(*p); \ barrier(); \ ___p1; \ }) /* Atomic operations are already serializing on x86 */ #define __smp_mb__before_atomic() do { } while (0) #define __smp_mb__after_atomic() do { } while (0) #include <asm-generic/barrier.h> /* * Make previous memory operations globally visible before * a WRMSR. * * MFENCE makes writes visible, but only affects load/store * instructions. WRMSR is unfortunately not a load/store * instruction and is unaffected by MFENCE. The LFENCE ensures * that the WRMSR is not reordered. * * Most WRMSRs are full serializing instructions themselves and * do not require this barrier. This is only required for the * IA32_TSC_DEADLINE and X2APIC MSRs. */ static inline void weak_wrmsr_fence(void) { asm volatile("mfence; lfence" : : : "memory"); } #endif /* _ASM_X86_BARRIER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * linux/include/linux/jbd2.h * * Written by Stephen C. Tweedie <sct@redhat.com> * * Copyright 1998-2000 Red Hat, Inc --- All Rights Reserved * * Definitions for transaction data structures for the buffer cache * filesystem journaling support. */ #ifndef _LINUX_JBD2_H #define _LINUX_JBD2_H /* Allow this file to be included directly into e2fsprogs */ #ifndef __KERNEL__ #include "jfs_compat.h" #define JBD2_DEBUG #else #include <linux/types.h> #include <linux/buffer_head.h> #include <linux/journal-head.h> #include <linux/stddef.h> #include <linux/mutex.h> #include <linux/timer.h> #include <linux/slab.h> #include <linux/bit_spinlock.h> #include <linux/blkdev.h> #include <crypto/hash.h> #endif #define journal_oom_retry 1 /* * Define JBD2_PARANIOD_IOFAIL to cause a kernel BUG() if ext4 finds * certain classes of error which can occur due to failed IOs. Under * normal use we want ext4 to continue after such errors, because * hardware _can_ fail, but for debugging purposes when running tests on * known-good hardware we may want to trap these errors. */ #undef JBD2_PARANOID_IOFAIL /* * The default maximum commit age, in seconds. */ #define JBD2_DEFAULT_MAX_COMMIT_AGE 5 #ifdef CONFIG_JBD2_DEBUG /* * Define JBD2_EXPENSIVE_CHECKING to enable more expensive internal * consistency checks. By default we don't do this unless * CONFIG_JBD2_DEBUG is on. */ #define JBD2_EXPENSIVE_CHECKING extern ushort jbd2_journal_enable_debug; void __jbd2_debug(int level, const char *file, const char *func, unsigned int line, const char *fmt, ...); #define jbd_debug(n, fmt, a...) \ __jbd2_debug((n), __FILE__, __func__, __LINE__, (fmt), ##a) #else #define jbd_debug(n, fmt, a...) /**/ #endif extern void *jbd2_alloc(size_t size, gfp_t flags); extern void jbd2_free(void *ptr, size_t size); #define JBD2_MIN_JOURNAL_BLOCKS 1024 #define JBD2_MIN_FC_BLOCKS 256 #ifdef __KERNEL__ /** * typedef handle_t - The handle_t type represents a single atomic update being performed by some process. * * All filesystem modifications made by the process go * through this handle. Recursive operations (such as quota operations) * are gathered into a single update. * * The buffer credits field is used to account for journaled buffers * being modified by the running process. To ensure that there is * enough log space for all outstanding operations, we need to limit the * number of outstanding buffers possible at any time. When the * operation completes, any buffer credits not used are credited back to * the transaction, so that at all times we know how many buffers the * outstanding updates on a transaction might possibly touch. * * This is an opaque datatype. **/ typedef struct jbd2_journal_handle handle_t; /* Atomic operation type */ /** * typedef journal_t - The journal_t maintains all of the journaling state information for a single filesystem. * * journal_t is linked to from the fs superblock structure. * * We use the journal_t to keep track of all outstanding transaction * activity on the filesystem, and to manage the state of the log * writing process. * * This is an opaque datatype. **/ typedef struct journal_s journal_t; /* Journal control structure */ #endif /* * Internal structures used by the logging mechanism: */ #define JBD2_MAGIC_NUMBER 0xc03b3998U /* The first 4 bytes of /dev/random! */ /* * On-disk structures */ /* * Descriptor block types: */ #define JBD2_DESCRIPTOR_BLOCK 1 #define JBD2_COMMIT_BLOCK 2 #define JBD2_SUPERBLOCK_V1 3 #define JBD2_SUPERBLOCK_V2 4 #define JBD2_REVOKE_BLOCK 5 /* * Standard header for all descriptor blocks: */ typedef struct journal_header_s { __be32 h_magic; __be32 h_blocktype; __be32 h_sequence; } journal_header_t; /* * Checksum types. */ #define JBD2_CRC32_CHKSUM 1 #define JBD2_MD5_CHKSUM 2 #define JBD2_SHA1_CHKSUM 3 #define JBD2_CRC32C_CHKSUM 4 #define JBD2_CRC32_CHKSUM_SIZE 4 #define JBD2_CHECKSUM_BYTES (32 / sizeof(u32)) /* * Commit block header for storing transactional checksums: * * NOTE: If FEATURE_COMPAT_CHECKSUM (checksum v1) is set, the h_chksum* * fields are used to store a checksum of the descriptor and data blocks. * * If FEATURE_INCOMPAT_CSUM_V2 (checksum v2) is set, then the h_chksum * field is used to store crc32c(uuid+commit_block). Each journal metadata * block gets its own checksum, and data block checksums are stored in * journal_block_tag (in the descriptor). The other h_chksum* fields are * not used. * * If FEATURE_INCOMPAT_CSUM_V3 is set, the descriptor block uses * journal_block_tag3_t to store a full 32-bit checksum. Everything else * is the same as v2. * * Checksum v1, v2, and v3 are mutually exclusive features. */ struct commit_header { __be32 h_magic; __be32 h_blocktype; __be32 h_sequence; unsigned char h_chksum_type; unsigned char h_chksum_size; unsigned char h_padding[2]; __be32 h_chksum[JBD2_CHECKSUM_BYTES]; __be64 h_commit_sec; __be32 h_commit_nsec; }; /* * The block tag: used to describe a single buffer in the journal. * t_blocknr_high is only used if INCOMPAT_64BIT is set, so this * raw struct shouldn't be used for pointer math or sizeof() - use * journal_tag_bytes(journal) instead to compute this. */ typedef struct journal_block_tag3_s { __be32 t_blocknr; /* The on-disk block number */ __be32 t_flags; /* See below */ __be32 t_blocknr_high; /* most-significant high 32bits. */ __be32 t_checksum; /* crc32c(uuid+seq+block) */ } journal_block_tag3_t; typedef struct journal_block_tag_s { __be32 t_blocknr; /* The on-disk block number */ __be16 t_checksum; /* truncated crc32c(uuid+seq+block) */ __be16 t_flags; /* See below */ __be32 t_blocknr_high; /* most-significant high 32bits. */ } journal_block_tag_t; /* Tail of descriptor or revoke block, for checksumming */ struct jbd2_journal_block_tail { __be32 t_checksum; /* crc32c(uuid+descr_block) */ }; /* * The revoke descriptor: used on disk to describe a series of blocks to * be revoked from the log */ typedef struct jbd2_journal_revoke_header_s { journal_header_t r_header; __be32 r_count; /* Count of bytes used in the block */ } jbd2_journal_revoke_header_t; /* Definitions for the journal tag flags word: */ #define JBD2_FLAG_ESCAPE 1 /* on-disk block is escaped */ #define JBD2_FLAG_SAME_UUID 2 /* block has same uuid as previous */ #define JBD2_FLAG_DELETED 4 /* block deleted by this transaction */ #define JBD2_FLAG_LAST_TAG 8 /* last tag in this descriptor block */ /* * The journal superblock. All fields are in big-endian byte order. */ typedef struct journal_superblock_s { /* 0x0000 */ journal_header_t s_header; /* 0x000C */ /* Static information describing the journal */ __be32 s_blocksize; /* journal device blocksize */ __be32 s_maxlen; /* total blocks in journal file */ __be32 s_first; /* first block of log information */ /* 0x0018 */ /* Dynamic information describing the current state of the log */ __be32 s_sequence; /* first commit ID expected in log */ __be32 s_start; /* blocknr of start of log */ /* 0x0020 */ /* Error value, as set by jbd2_journal_abort(). */ __be32 s_errno; /* 0x0024 */ /* Remaining fields are only valid in a version-2 superblock */ __be32 s_feature_compat; /* compatible feature set */ __be32 s_feature_incompat; /* incompatible feature set */ __be32 s_feature_ro_compat; /* readonly-compatible feature set */ /* 0x0030 */ __u8 s_uuid[16]; /* 128-bit uuid for journal */ /* 0x0040 */ __be32 s_nr_users; /* Nr of filesystems sharing log */ __be32 s_dynsuper; /* Blocknr of dynamic superblock copy*/ /* 0x0048 */ __be32 s_max_transaction; /* Limit of journal blocks per trans.*/ __be32 s_max_trans_data; /* Limit of data blocks per trans. */ /* 0x0050 */ __u8 s_checksum_type; /* checksum type */ __u8 s_padding2[3]; /* 0x0054 */ __be32 s_num_fc_blks; /* Number of fast commit blocks */ /* 0x0058 */ __u32 s_padding[41]; __be32 s_checksum; /* crc32c(superblock) */ /* 0x0100 */ __u8 s_users[16*48]; /* ids of all fs'es sharing the log */ /* 0x0400 */ } journal_superblock_t; /* Use the jbd2_{has,set,clear}_feature_* helpers; these will be removed */ #define JBD2_HAS_COMPAT_FEATURE(j,mask) \ ((j)->j_format_version >= 2 && \ ((j)->j_superblock->s_feature_compat & cpu_to_be32((mask)))) #define JBD2_HAS_RO_COMPAT_FEATURE(j,mask) \ ((j)->j_format_version >= 2 && \ ((j)->j_superblock->s_feature_ro_compat & cpu_to_be32((mask)))) #define JBD2_HAS_INCOMPAT_FEATURE(j,mask) \ ((j)->j_format_version >= 2 && \ ((j)->j_superblock->s_feature_incompat & cpu_to_be32((mask)))) #define JBD2_FEATURE_COMPAT_CHECKSUM 0x00000001 #define JBD2_FEATURE_INCOMPAT_REVOKE 0x00000001 #define JBD2_FEATURE_INCOMPAT_64BIT 0x00000002 #define JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT 0x00000004 #define JBD2_FEATURE_INCOMPAT_CSUM_V2 0x00000008 #define JBD2_FEATURE_INCOMPAT_CSUM_V3 0x00000010 #define JBD2_FEATURE_INCOMPAT_FAST_COMMIT 0x00000020 /* See "journal feature predicate functions" below */ /* Features known to this kernel version: */ #define JBD2_KNOWN_COMPAT_FEATURES JBD2_FEATURE_COMPAT_CHECKSUM #define JBD2_KNOWN_ROCOMPAT_FEATURES 0 #define JBD2_KNOWN_INCOMPAT_FEATURES (JBD2_FEATURE_INCOMPAT_REVOKE | \ JBD2_FEATURE_INCOMPAT_64BIT | \ JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | \ JBD2_FEATURE_INCOMPAT_CSUM_V2 | \ JBD2_FEATURE_INCOMPAT_CSUM_V3 | \ JBD2_FEATURE_INCOMPAT_FAST_COMMIT) #ifdef __KERNEL__ #include <linux/fs.h> #include <linux/sched.h> enum jbd_state_bits { BH_JBD /* Has an attached ext3 journal_head */ = BH_PrivateStart, BH_JWrite, /* Being written to log (@@@ DEBUGGING) */ BH_Freed, /* Has been freed (truncated) */ BH_Revoked, /* Has been revoked from the log */ BH_RevokeValid, /* Revoked flag is valid */ BH_JBDDirty, /* Is dirty but journaled */ BH_JournalHead, /* Pins bh->b_private and jh->b_bh */ BH_Shadow, /* IO on shadow buffer is running */ BH_Verified, /* Metadata block has been verified ok */ BH_JBDPrivateStart, /* First bit available for private use by FS */ }; BUFFER_FNS(JBD, jbd) BUFFER_FNS(JWrite, jwrite) BUFFER_FNS(JBDDirty, jbddirty) TAS_BUFFER_FNS(JBDDirty, jbddirty) BUFFER_FNS(Revoked, revoked) TAS_BUFFER_FNS(Revoked, revoked) BUFFER_FNS(RevokeValid, revokevalid) TAS_BUFFER_FNS(RevokeValid, revokevalid) BUFFER_FNS(Freed, freed) BUFFER_FNS(Shadow, shadow) BUFFER_FNS(Verified, verified) static inline struct buffer_head *jh2bh(struct journal_head *jh) { return jh->b_bh; } static inline struct journal_head *bh2jh(struct buffer_head *bh) { return bh->b_private; } static inline void jbd_lock_bh_journal_head(struct buffer_head *bh) { bit_spin_lock(BH_JournalHead, &bh->b_state); } static inline void jbd_unlock_bh_journal_head(struct buffer_head *bh) { bit_spin_unlock(BH_JournalHead, &bh->b_state); } #define J_ASSERT(assert) BUG_ON(!(assert)) #define J_ASSERT_BH(bh, expr) J_ASSERT(expr) #define J_ASSERT_JH(jh, expr) J_ASSERT(expr) #if defined(JBD2_PARANOID_IOFAIL) #define J_EXPECT(expr, why...) J_ASSERT(expr) #define J_EXPECT_BH(bh, expr, why...) J_ASSERT_BH(bh, expr) #define J_EXPECT_JH(jh, expr, why...) J_ASSERT_JH(jh, expr) #else #define __journal_expect(expr, why...) \ ({ \ int val = (expr); \ if (!val) { \ printk(KERN_ERR \ "JBD2 unexpected failure: %s: %s;\n", \ __func__, #expr); \ printk(KERN_ERR why "\n"); \ } \ val; \ }) #define J_EXPECT(expr, why...) __journal_expect(expr, ## why) #define J_EXPECT_BH(bh, expr, why...) __journal_expect(expr, ## why) #define J_EXPECT_JH(jh, expr, why...) __journal_expect(expr, ## why) #endif /* Flags in jbd_inode->i_flags */ #define __JI_COMMIT_RUNNING 0 #define __JI_WRITE_DATA 1 #define __JI_WAIT_DATA 2 /* * Commit of the inode data in progress. We use this flag to protect us from * concurrent deletion of inode. We cannot use reference to inode for this * since we cannot afford doing last iput() on behalf of kjournald */ #define JI_COMMIT_RUNNING (1 << __JI_COMMIT_RUNNING) /* Write allocated dirty buffers in this inode before commit */ #define JI_WRITE_DATA (1 << __JI_WRITE_DATA) /* Wait for outstanding data writes for this inode before commit */ #define JI_WAIT_DATA (1 << __JI_WAIT_DATA) /** * struct jbd2_inode - The jbd_inode type is the structure linking inodes in * ordered mode present in a transaction so that we can sync them during commit. */ struct jbd2_inode { /** * @i_transaction: * * Which transaction does this inode belong to? Either the running * transaction or the committing one. [j_list_lock] */ transaction_t *i_transaction; /** * @i_next_transaction: * * Pointer to the running transaction modifying inode's data in case * there is already a committing transaction touching it. [j_list_lock] */ transaction_t *i_next_transaction; /** * @i_list: List of inodes in the i_transaction [j_list_lock] */ struct list_head i_list; /** * @i_vfs_inode: * * VFS inode this inode belongs to [constant for lifetime of structure] */ struct inode *i_vfs_inode; /** * @i_flags: Flags of inode [j_list_lock] */ unsigned long i_flags; /** * @i_dirty_start: * * Offset in bytes where the dirty range for this inode starts. * [j_list_lock] */ loff_t i_dirty_start; /** * @i_dirty_end: * * Inclusive offset in bytes where the dirty range for this inode * ends. [j_list_lock] */ loff_t i_dirty_end; }; struct jbd2_revoke_table_s; /** * struct jbd2_journal_handle - The jbd2_journal_handle type is the concrete * type associated with handle_t. * @h_transaction: Which compound transaction is this update a part of? * @h_journal: Which journal handle belongs to - used iff h_reserved set. * @h_rsv_handle: Handle reserved for finishing the logical operation. * @h_total_credits: Number of remaining buffers we are allowed to add to * journal. These are dirty buffers and revoke descriptor blocks. * @h_revoke_credits: Number of remaining revoke records available for handle * @h_ref: Reference count on this handle. * @h_err: Field for caller's use to track errors through large fs operations. * @h_sync: Flag for sync-on-close. * @h_jdata: Flag to force data journaling. * @h_reserved: Flag for handle for reserved credits. * @h_aborted: Flag indicating fatal error on handle. * @h_type: For handle statistics. * @h_line_no: For handle statistics. * @h_start_jiffies: Handle Start time. * @h_requested_credits: Holds @h_total_credits after handle is started. * @h_revoke_credits_requested: Holds @h_revoke_credits after handle is started. * @saved_alloc_context: Saved context while transaction is open. **/ /* Docbook can't yet cope with the bit fields, but will leave the documentation * in so it can be fixed later. */ struct jbd2_journal_handle { union { transaction_t *h_transaction; /* Which journal handle belongs to - used iff h_reserved set */ journal_t *h_journal; }; handle_t *h_rsv_handle; int h_total_credits; int h_revoke_credits; int h_revoke_credits_requested; int h_ref; int h_err; /* Flags [no locking] */ unsigned int h_sync: 1; unsigned int h_jdata: 1; unsigned int h_reserved: 1; unsigned int h_aborted: 1; unsigned int h_type: 8; unsigned int h_line_no: 16; unsigned long h_start_jiffies; unsigned int h_requested_credits; unsigned int saved_alloc_context; }; /* * Some stats for checkpoint phase */ struct transaction_chp_stats_s { unsigned long cs_chp_time; __u32 cs_forced_to_close; __u32 cs_written; __u32 cs_dropped; }; /* The transaction_t type is the guts of the journaling mechanism. It * tracks a compound transaction through its various states: * * RUNNING: accepting new updates * LOCKED: Updates still running but we don't accept new ones * RUNDOWN: Updates are tidying up but have finished requesting * new buffers to modify (state not used for now) * FLUSH: All updates complete, but we are still writing to disk * COMMIT: All data on disk, writing commit record * FINISHED: We still have to keep the transaction for checkpointing. * * The transaction keeps track of all of the buffers modified by a * running transaction, and all of the buffers committed but not yet * flushed to home for finished transactions. */ /* * Lock ranking: * * j_list_lock * ->jbd_lock_bh_journal_head() (This is "innermost") * * j_state_lock * ->b_state_lock * * b_state_lock * ->j_list_lock * * j_state_lock * ->t_handle_lock * * j_state_lock * ->j_list_lock (journal_unmap_buffer) * */ struct transaction_s { /* Pointer to the journal for this transaction. [no locking] */ journal_t *t_journal; /* Sequence number for this transaction [no locking] */ tid_t t_tid; /* * Transaction's current state * [no locking - only kjournald2 alters this] * [j_list_lock] guards transition of a transaction into T_FINISHED * state and subsequent call of __jbd2_journal_drop_transaction() * FIXME: needs barriers * KLUDGE: [use j_state_lock] */ enum { T_RUNNING, T_LOCKED, T_SWITCH, T_FLUSH, T_COMMIT, T_COMMIT_DFLUSH, T_COMMIT_JFLUSH, T_COMMIT_CALLBACK, T_FINISHED } t_state; /* * Where in the log does this transaction's commit start? [no locking] */ unsigned long t_log_start; /* Number of buffers on the t_buffers list [j_list_lock] */ int t_nr_buffers; /* * Doubly-linked circular list of all buffers reserved but not yet * modified by this transaction [j_list_lock] */ struct journal_head *t_reserved_list; /* * Doubly-linked circular list of all metadata buffers owned by this * transaction [j_list_lock] */ struct journal_head *t_buffers; /* * Doubly-linked circular list of all forget buffers (superseded * buffers which we can un-checkpoint once this transaction commits) * [j_list_lock] */ struct journal_head *t_forget; /* * Doubly-linked circular list of all buffers still to be flushed before * this transaction can be checkpointed. [j_list_lock] */ struct journal_head *t_checkpoint_list; /* * Doubly-linked circular list of all buffers submitted for IO while * checkpointing. [j_list_lock] */ struct journal_head *t_checkpoint_io_list; /* * Doubly-linked circular list of metadata buffers being shadowed by log * IO. The IO buffers on the iobuf list and the shadow buffers on this * list match each other one for one at all times. [j_list_lock] */ struct journal_head *t_shadow_list; /* * List of inodes associated with the transaction; e.g., ext4 uses * this to track inodes in data=ordered and data=journal mode that * need special handling on transaction commit; also used by ocfs2. * [j_list_lock] */ struct list_head t_inode_list; /* * Protects info related to handles */ spinlock_t t_handle_lock; /* * Longest time some handle had to wait for running transaction */ unsigned long t_max_wait; /* * When transaction started */ unsigned long t_start; /* * When commit was requested */ unsigned long t_requested; /* * Checkpointing stats [j_checkpoint_sem] */ struct transaction_chp_stats_s t_chp_stats; /* * Number of outstanding updates running on this transaction * [none] */ atomic_t t_updates; /* * Number of blocks reserved for this transaction in the journal. * This is including all credits reserved when starting transaction * handles as well as all journal descriptor blocks needed for this * transaction. [none] */ atomic_t t_outstanding_credits; /* * Number of revoke records for this transaction added by already * stopped handles. [none] */ atomic_t t_outstanding_revokes; /* * How many handles used this transaction? [none] */ atomic_t t_handle_count; /* * Forward and backward links for the circular list of all transactions * awaiting checkpoint. [j_list_lock] */ transaction_t *t_cpnext, *t_cpprev; /* * When will the transaction expire (become due for commit), in jiffies? * [no locking] */ unsigned long t_expires; /* * When this transaction started, in nanoseconds [no locking] */ ktime_t t_start_time; /* * This transaction is being forced and some process is * waiting for it to finish. */ unsigned int t_synchronous_commit:1; /* Disk flush needs to be sent to fs partition [no locking] */ int t_need_data_flush; /* * For use by the filesystem to store fs-specific data * structures associated with the transaction */ struct list_head t_private_list; }; struct transaction_run_stats_s { unsigned long rs_wait; unsigned long rs_request_delay; unsigned long rs_running; unsigned long rs_locked; unsigned long rs_flushing; unsigned long rs_logging; __u32 rs_handle_count; __u32 rs_blocks; __u32 rs_blocks_logged; }; struct transaction_stats_s { unsigned long ts_tid; unsigned long ts_requested; struct transaction_run_stats_s run; }; static inline unsigned long jbd2_time_diff(unsigned long start, unsigned long end) { if (end >= start) return end - start; return end + (MAX_JIFFY_OFFSET - start); } #define JBD2_NR_BATCH 64 enum passtype {PASS_SCAN, PASS_REVOKE, PASS_REPLAY}; #define JBD2_FC_REPLAY_STOP 0 #define JBD2_FC_REPLAY_CONTINUE 1 /** * struct journal_s - The journal_s type is the concrete type associated with * journal_t. */ struct journal_s { /** * @j_flags: General journaling state flags [j_state_lock] */ unsigned long j_flags; /** * @j_errno: * * Is there an outstanding uncleared error on the journal (from a prior * abort)? [j_state_lock] */ int j_errno; /** * @j_abort_mutex: Lock the whole aborting procedure. */ struct mutex j_abort_mutex; /** * @j_sb_buffer: The first part of the superblock buffer. */ struct buffer_head *j_sb_buffer; /** * @j_superblock: The second part of the superblock buffer. */ journal_superblock_t *j_superblock; /** * @j_format_version: Version of the superblock format. */ int j_format_version; /** * @j_state_lock: Protect the various scalars in the journal. */ rwlock_t j_state_lock; /** * @j_barrier_count: * * Number of processes waiting to create a barrier lock [j_state_lock] */ int j_barrier_count; /** * @j_barrier: The barrier lock itself. */ struct mutex j_barrier; /** * @j_running_transaction: * * Transactions: The current running transaction... * [j_state_lock] [caller holding open handle] */ transaction_t *j_running_transaction; /** * @j_committing_transaction: * * the transaction we are pushing to disk * [j_state_lock] [caller holding open handle] */ transaction_t *j_committing_transaction; /** * @j_checkpoint_transactions: * * ... and a linked circular list of all transactions waiting for * checkpointing. [j_list_lock] */ transaction_t *j_checkpoint_transactions; /** * @j_wait_transaction_locked: * * Wait queue for waiting for a locked transaction to start committing, * or for a barrier lock to be released. */ wait_queue_head_t j_wait_transaction_locked; /** * @j_wait_done_commit: Wait queue for waiting for commit to complete. */ wait_queue_head_t j_wait_done_commit; /** * @j_wait_commit: Wait queue to trigger commit. */ wait_queue_head_t j_wait_commit; /** * @j_wait_updates: Wait queue to wait for updates to complete. */ wait_queue_head_t j_wait_updates; /** * @j_wait_reserved: * * Wait queue to wait for reserved buffer credits to drop. */ wait_queue_head_t j_wait_reserved; /** * @j_fc_wait: * * Wait queue to wait for completion of async fast commits. */ wait_queue_head_t j_fc_wait; /** * @j_checkpoint_mutex: * * Semaphore for locking against concurrent checkpoints. */ struct mutex j_checkpoint_mutex; /** * @j_chkpt_bhs: * * List of buffer heads used by the checkpoint routine. This * was moved from jbd2_log_do_checkpoint() to reduce stack * usage. Access to this array is controlled by the * @j_checkpoint_mutex. [j_checkpoint_mutex] */ struct buffer_head *j_chkpt_bhs[JBD2_NR_BATCH]; /** * @j_head: * * Journal head: identifies the first unused block in the journal. * [j_state_lock] */ unsigned long j_head; /** * @j_tail: * * Journal tail: identifies the oldest still-used block in the journal. * [j_state_lock] */ unsigned long j_tail; /** * @j_free: * * Journal free: how many free blocks are there in the journal? * [j_state_lock] */ unsigned long j_free; /** * @j_first: * * The block number of the first usable block in the journal * [j_state_lock]. */ unsigned long j_first; /** * @j_last: * * The block number one beyond the last usable block in the journal * [j_state_lock]. */ unsigned long j_last; /** * @j_fc_first: * * The block number of the first fast commit block in the journal * [j_state_lock]. */ unsigned long j_fc_first; /** * @j_fc_off: * * Number of fast commit blocks currently allocated. Accessed only * during fast commit. Currently only process can do fast commit, so * this field is not protected by any lock. */ unsigned long j_fc_off; /** * @j_fc_last: * * The block number one beyond the last fast commit block in the journal * [j_state_lock]. */ unsigned long j_fc_last; /** * @j_dev: Device where we store the journal. */ struct block_device *j_dev; /** * @j_blocksize: Block size for the location where we store the journal. */ int j_blocksize; /** * @j_blk_offset: * * Starting block offset into the device where we store the journal. */ unsigned long long j_blk_offset; /** * @j_devname: Journal device name. */ char j_devname[BDEVNAME_SIZE+24]; /** * @j_fs_dev: * * Device which holds the client fs. For internal journal this will be * equal to j_dev. */ struct block_device *j_fs_dev; /** * @j_total_len: Total maximum capacity of the journal region on disk. */ unsigned int j_total_len; /** * @j_reserved_credits: * * Number of buffers reserved from the running transaction. */ atomic_t j_reserved_credits; /** * @j_list_lock: Protects the buffer lists and internal buffer state. */ spinlock_t j_list_lock; /** * @j_inode: * * Optional inode where we store the journal. If present, all * journal block numbers are mapped into this inode via bmap(). */ struct inode *j_inode; /** * @j_tail_sequence: * * Sequence number of the oldest transaction in the log [j_state_lock] */ tid_t j_tail_sequence; /** * @j_transaction_sequence: * * Sequence number of the next transaction to grant [j_state_lock] */ tid_t j_transaction_sequence; /** * @j_commit_sequence: * * Sequence number of the most recently committed transaction * [j_state_lock]. */ tid_t j_commit_sequence; /** * @j_commit_request: * * Sequence number of the most recent transaction wanting commit * [j_state_lock] */ tid_t j_commit_request; /** * @j_uuid: * * Journal uuid: identifies the object (filesystem, LVM volume etc) * backed by this journal. This will eventually be replaced by an array * of uuids, allowing us to index multiple devices within a single * journal and to perform atomic updates across them. */ __u8 j_uuid[16]; /** * @j_task: Pointer to the current commit thread for this journal. */ struct task_struct *j_task; /** * @j_max_transaction_buffers: * * Maximum number of metadata buffers to allow in a single compound * commit transaction. */ int j_max_transaction_buffers; /** * @j_revoke_records_per_block: * * Number of revoke records that fit in one descriptor block. */ int j_revoke_records_per_block; /** * @j_commit_interval: * * What is the maximum transaction lifetime before we begin a commit? */ unsigned long j_commit_interval; /** * @j_commit_timer: The timer used to wakeup the commit thread. */ struct timer_list j_commit_timer; /** * @j_revoke_lock: Protect the revoke table. */ spinlock_t j_revoke_lock; /** * @j_revoke: * * The revoke table - maintains the list of revoked blocks in the * current transaction. */ struct jbd2_revoke_table_s *j_revoke; /** * @j_revoke_table: Alternate revoke tables for j_revoke. */ struct jbd2_revoke_table_s *j_revoke_table[2]; /** * @j_wbuf: Array of bhs for jbd2_journal_commit_transaction. */ struct buffer_head **j_wbuf; /** * @j_fc_wbuf: Array of fast commit bhs for fast commit. Accessed only * during a fast commit. Currently only process can do fast commit, so * this field is not protected by any lock. */ struct buffer_head **j_fc_wbuf; /** * @j_wbufsize: * * Size of @j_wbuf array. */ int j_wbufsize; /** * @j_fc_wbufsize: * * Size of @j_fc_wbuf array. */ int j_fc_wbufsize; /** * @j_last_sync_writer: * * The pid of the last person to run a synchronous operation * through the journal. */ pid_t j_last_sync_writer; /** * @j_average_commit_time: * * The average amount of time in nanoseconds it takes to commit a * transaction to disk. [j_state_lock] */ u64 j_average_commit_time; /** * @j_min_batch_time: * * Minimum time that we should wait for additional filesystem operations * to get batched into a synchronous handle in microseconds. */ u32 j_min_batch_time; /** * @j_max_batch_time: * * Maximum time that we should wait for additional filesystem operations * to get batched into a synchronous handle in microseconds. */ u32 j_max_batch_time; /** * @j_commit_callback: * * This function is called when a transaction is closed. */ void (*j_commit_callback)(journal_t *, transaction_t *); /** * @j_submit_inode_data_buffers: * * This function is called for all inodes associated with the * committing transaction marked with JI_WRITE_DATA flag * before we start to write out the transaction to the journal. */ int (*j_submit_inode_data_buffers) (struct jbd2_inode *); /** * @j_finish_inode_data_buffers: * * This function is called for all inodes associated with the * committing transaction marked with JI_WAIT_DATA flag * after we have written the transaction to the journal * but before we write out the commit block. */ int (*j_finish_inode_data_buffers) (struct jbd2_inode *); /* * Journal statistics */ /** * @j_history_lock: Protect the transactions statistics history. */ spinlock_t j_history_lock; /** * @j_proc_entry: procfs entry for the jbd statistics directory. */ struct proc_dir_entry *j_proc_entry; /** * @j_stats: Overall statistics. */ struct transaction_stats_s j_stats; /** * @j_failed_commit: Failed journal commit ID. */ unsigned int j_failed_commit; /** * @j_private: * * An opaque pointer to fs-private information. ext3 puts its * superblock pointer here. */ void *j_private; /** * @j_chksum_driver: * * Reference to checksum algorithm driver via cryptoapi. */ struct crypto_shash *j_chksum_driver; /** * @j_csum_seed: * * Precomputed journal UUID checksum for seeding other checksums. */ __u32 j_csum_seed; #ifdef CONFIG_DEBUG_LOCK_ALLOC /** * @j_trans_commit_map: * * Lockdep entity to track transaction commit dependencies. Handles * hold this "lock" for read, when we wait for commit, we acquire the * "lock" for writing. This matches the properties of jbd2 journalling * where the running transaction has to wait for all handles to be * dropped to commit that transaction and also acquiring a handle may * require transaction commit to finish. */ struct lockdep_map j_trans_commit_map; #endif /** * @j_fc_cleanup_callback: * * Clean-up after fast commit or full commit. JBD2 calls this function * after every commit operation. */ void (*j_fc_cleanup_callback)(struct journal_s *journal, int); /** * @j_fc_replay_callback: * * File-system specific function that performs replay of a fast * commit. JBD2 calls this function for each fast commit block found in * the journal. This function should return JBD2_FC_REPLAY_CONTINUE * to indicate that the block was processed correctly and more fast * commit replay should continue. Return value of JBD2_FC_REPLAY_STOP * indicates the end of replay (no more blocks remaining). A negative * return value indicates error. */ int (*j_fc_replay_callback)(struct journal_s *journal, struct buffer_head *bh, enum passtype pass, int off, tid_t expected_commit_id); }; #define jbd2_might_wait_for_commit(j) \ do { \ rwsem_acquire(&j->j_trans_commit_map, 0, 0, _THIS_IP_); \ rwsem_release(&j->j_trans_commit_map, _THIS_IP_); \ } while (0) /* journal feature predicate functions */ #define JBD2_FEATURE_COMPAT_FUNCS(name, flagname) \ static inline bool jbd2_has_feature_##name(journal_t *j) \ { \ return ((j)->j_format_version >= 2 && \ ((j)->j_superblock->s_feature_compat & \ cpu_to_be32(JBD2_FEATURE_COMPAT_##flagname)) != 0); \ } \ static inline void jbd2_set_feature_##name(journal_t *j) \ { \ (j)->j_superblock->s_feature_compat |= \ cpu_to_be32(JBD2_FEATURE_COMPAT_##flagname); \ } \ static inline void jbd2_clear_feature_##name(journal_t *j) \ { \ (j)->j_superblock->s_feature_compat &= \ ~cpu_to_be32(JBD2_FEATURE_COMPAT_##flagname); \ } #define JBD2_FEATURE_RO_COMPAT_FUNCS(name, flagname) \ static inline bool jbd2_has_feature_##name(journal_t *j) \ { \ return ((j)->j_format_version >= 2 && \ ((j)->j_superblock->s_feature_ro_compat & \ cpu_to_be32(JBD2_FEATURE_RO_COMPAT_##flagname)) != 0); \ } \ static inline void jbd2_set_feature_##name(journal_t *j) \ { \ (j)->j_superblock->s_feature_ro_compat |= \ cpu_to_be32(JBD2_FEATURE_RO_COMPAT_##flagname); \ } \ static inline void jbd2_clear_feature_##name(journal_t *j) \ { \ (j)->j_superblock->s_feature_ro_compat &= \ ~cpu_to_be32(JBD2_FEATURE_RO_COMPAT_##flagname); \ } #define JBD2_FEATURE_INCOMPAT_FUNCS(name, flagname) \ static inline bool jbd2_has_feature_##name(journal_t *j) \ { \ return ((j)->j_format_version >= 2 && \ ((j)->j_superblock->s_feature_incompat & \ cpu_to_be32(JBD2_FEATURE_INCOMPAT_##flagname)) != 0); \ } \ static inline void jbd2_set_feature_##name(journal_t *j) \ { \ (j)->j_superblock->s_feature_incompat |= \ cpu_to_be32(JBD2_FEATURE_INCOMPAT_##flagname); \ } \ static inline void jbd2_clear_feature_##name(journal_t *j) \ { \ (j)->j_superblock->s_feature_incompat &= \ ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_##flagname); \ } JBD2_FEATURE_COMPAT_FUNCS(checksum, CHECKSUM) JBD2_FEATURE_INCOMPAT_FUNCS(revoke, REVOKE) JBD2_FEATURE_INCOMPAT_FUNCS(64bit, 64BIT) JBD2_FEATURE_INCOMPAT_FUNCS(async_commit, ASYNC_COMMIT) JBD2_FEATURE_INCOMPAT_FUNCS(csum2, CSUM_V2) JBD2_FEATURE_INCOMPAT_FUNCS(csum3, CSUM_V3) JBD2_FEATURE_INCOMPAT_FUNCS(fast_commit, FAST_COMMIT) /* * Journal flag definitions */ #define JBD2_UNMOUNT 0x001 /* Journal thread is being destroyed */ #define JBD2_ABORT 0x002 /* Journaling has been aborted for errors. */ #define JBD2_ACK_ERR 0x004 /* The errno in the sb has been acked */ #define JBD2_FLUSHED 0x008 /* The journal superblock has been flushed */ #define JBD2_LOADED 0x010 /* The journal superblock has been loaded */ #define JBD2_BARRIER 0x020 /* Use IDE barriers */ #define JBD2_ABORT_ON_SYNCDATA_ERR 0x040 /* Abort the journal on file * data write error in ordered * mode */ #define JBD2_FAST_COMMIT_ONGOING 0x100 /* Fast commit is ongoing */ #define JBD2_FULL_COMMIT_ONGOING 0x200 /* Full commit is ongoing */ /* * Function declarations for the journaling transaction and buffer * management */ /* Filing buffers */ extern void jbd2_journal_unfile_buffer(journal_t *, struct journal_head *); extern bool __jbd2_journal_refile_buffer(struct journal_head *); extern void jbd2_journal_refile_buffer(journal_t *, struct journal_head *); extern void __jbd2_journal_file_buffer(struct journal_head *, transaction_t *, int); extern void __journal_free_buffer(struct journal_head *bh); extern void jbd2_journal_file_buffer(struct journal_head *, transaction_t *, int); extern void __journal_clean_data_list(transaction_t *transaction); static inline void jbd2_file_log_bh(struct list_head *head, struct buffer_head *bh) { list_add_tail(&bh->b_assoc_buffers, head); } static inline void jbd2_unfile_log_bh(struct buffer_head *bh) { list_del_init(&bh->b_assoc_buffers); } /* Log buffer allocation */ struct buffer_head *jbd2_journal_get_descriptor_buffer(transaction_t *, int); void jbd2_descriptor_block_csum_set(journal_t *, struct buffer_head *); int jbd2_journal_next_log_block(journal_t *, unsigned long long *); int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, unsigned long *block); int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block); void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block); /* Commit management */ extern void jbd2_journal_commit_transaction(journal_t *); /* Checkpoint list management */ void __jbd2_journal_clean_checkpoint_list(journal_t *journal, bool destroy); int __jbd2_journal_remove_checkpoint(struct journal_head *); void jbd2_journal_destroy_checkpoint(journal_t *journal); void __jbd2_journal_insert_checkpoint(struct journal_head *, transaction_t *); /* * Triggers */ struct jbd2_buffer_trigger_type { /* * Fired a the moment data to write to the journal are known to be * stable - so either at the moment b_frozen_data is created or just * before a buffer is written to the journal. mapped_data is a mapped * buffer that is the frozen data for commit. */ void (*t_frozen)(struct jbd2_buffer_trigger_type *type, struct buffer_head *bh, void *mapped_data, size_t size); /* * Fired during journal abort for dirty buffers that will not be * committed. */ void (*t_abort)(struct jbd2_buffer_trigger_type *type, struct buffer_head *bh); }; extern void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, struct jbd2_buffer_trigger_type *triggers); extern void jbd2_buffer_abort_trigger(struct journal_head *jh, struct jbd2_buffer_trigger_type *triggers); /* Buffer IO */ extern int jbd2_journal_write_metadata_buffer(transaction_t *transaction, struct journal_head *jh_in, struct buffer_head **bh_out, sector_t blocknr); /* Transaction locking */ extern void __wait_on_journal (journal_t *); /* Transaction cache support */ extern void jbd2_journal_destroy_transaction_cache(void); extern int __init jbd2_journal_init_transaction_cache(void); extern void jbd2_journal_free_transaction(transaction_t *); /* * Journal locking. * * We need to lock the journal during transaction state changes so that nobody * ever tries to take a handle on the running transaction while we are in the * middle of moving it to the commit phase. j_state_lock does this. * * Note that the locking is completely interrupt unsafe. We never touch * journal structures from interrupts. */ static inline handle_t *journal_current_handle(void) { return current->journal_info; } /* The journaling code user interface: * * Create and destroy handles * Register buffer modifications against the current transaction. */ extern handle_t *jbd2_journal_start(journal_t *, int nblocks); extern handle_t *jbd2__journal_start(journal_t *, int blocks, int rsv_blocks, int revoke_records, gfp_t gfp_mask, unsigned int type, unsigned int line_no); extern int jbd2_journal_restart(handle_t *, int nblocks); extern int jbd2__journal_restart(handle_t *, int nblocks, int revoke_records, gfp_t gfp_mask); extern int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, unsigned int line_no); extern void jbd2_journal_free_reserved(handle_t *handle); extern int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records); extern int jbd2_journal_get_write_access(handle_t *, struct buffer_head *); extern int jbd2_journal_get_create_access (handle_t *, struct buffer_head *); extern int jbd2_journal_get_undo_access(handle_t *, struct buffer_head *); void jbd2_journal_set_triggers(struct buffer_head *, struct jbd2_buffer_trigger_type *type); extern int jbd2_journal_dirty_metadata (handle_t *, struct buffer_head *); extern int jbd2_journal_forget (handle_t *, struct buffer_head *); extern int jbd2_journal_invalidatepage(journal_t *, struct page *, unsigned int, unsigned int); extern int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page); extern int jbd2_journal_stop(handle_t *); extern int jbd2_journal_flush (journal_t *); extern void jbd2_journal_lock_updates (journal_t *); extern void jbd2_journal_unlock_updates (journal_t *); extern journal_t * jbd2_journal_init_dev(struct block_device *bdev, struct block_device *fs_dev, unsigned long long start, int len, int bsize); extern journal_t * jbd2_journal_init_inode (struct inode *); extern int jbd2_journal_update_format (journal_t *); extern int jbd2_journal_check_used_features (journal_t *, unsigned long, unsigned long, unsigned long); extern int jbd2_journal_check_available_features (journal_t *, unsigned long, unsigned long, unsigned long); extern int jbd2_journal_set_features (journal_t *, unsigned long, unsigned long, unsigned long); extern void jbd2_journal_clear_features (journal_t *, unsigned long, unsigned long, unsigned long); extern int jbd2_journal_load (journal_t *journal); extern int jbd2_journal_destroy (journal_t *); extern int jbd2_journal_recover (journal_t *journal); extern int jbd2_journal_wipe (journal_t *, int); extern int jbd2_journal_skip_recovery (journal_t *); extern void jbd2_journal_update_sb_errno(journal_t *); extern int jbd2_journal_update_sb_log_tail (journal_t *, tid_t, unsigned long, int); extern void jbd2_journal_abort (journal_t *, int); extern int jbd2_journal_errno (journal_t *); extern void jbd2_journal_ack_err (journal_t *); extern int jbd2_journal_clear_err (journal_t *); extern int jbd2_journal_bmap(journal_t *, unsigned long, unsigned long long *); extern int jbd2_journal_force_commit(journal_t *); extern int jbd2_journal_force_commit_nested(journal_t *); extern int jbd2_journal_inode_ranged_write(handle_t *handle, struct jbd2_inode *inode, loff_t start_byte, loff_t length); extern int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *inode, loff_t start_byte, loff_t length); extern int jbd2_journal_submit_inode_data_buffers( struct jbd2_inode *jinode); extern int jbd2_journal_finish_inode_data_buffers( struct jbd2_inode *jinode); extern int jbd2_journal_begin_ordered_truncate(journal_t *journal, struct jbd2_inode *inode, loff_t new_size); extern void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode); extern void jbd2_journal_release_jbd_inode(journal_t *journal, struct jbd2_inode *jinode); /* * journal_head management */ struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh); struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh); void jbd2_journal_put_journal_head(struct journal_head *jh); /* * handle management */ extern struct kmem_cache *jbd2_handle_cache; static inline handle_t *jbd2_alloc_handle(gfp_t gfp_flags) { return kmem_cache_zalloc(jbd2_handle_cache, gfp_flags); } static inline void jbd2_free_handle(handle_t *handle) { kmem_cache_free(jbd2_handle_cache, handle); } /* * jbd2_inode management (optional, for those file systems that want to use * dynamically allocated jbd2_inode structures) */ extern struct kmem_cache *jbd2_inode_cache; static inline struct jbd2_inode *jbd2_alloc_inode(gfp_t gfp_flags) { return kmem_cache_alloc(jbd2_inode_cache, gfp_flags); } static inline void jbd2_free_inode(struct jbd2_inode *jinode) { kmem_cache_free(jbd2_inode_cache, jinode); } /* Primary revoke support */ #define JOURNAL_REVOKE_DEFAULT_HASH 256 extern int jbd2_journal_init_revoke(journal_t *, int); extern void jbd2_journal_destroy_revoke_record_cache(void); extern void jbd2_journal_destroy_revoke_table_cache(void); extern int __init jbd2_journal_init_revoke_record_cache(void); extern int __init jbd2_journal_init_revoke_table_cache(void); extern void jbd2_journal_destroy_revoke(journal_t *); extern int jbd2_journal_revoke (handle_t *, unsigned long long, struct buffer_head *); extern int jbd2_journal_cancel_revoke(handle_t *, struct journal_head *); extern void jbd2_journal_write_revoke_records(transaction_t *transaction, struct list_head *log_bufs); /* Recovery revoke support */ extern int jbd2_journal_set_revoke(journal_t *, unsigned long long, tid_t); extern int jbd2_journal_test_revoke(journal_t *, unsigned long long, tid_t); extern void jbd2_journal_clear_revoke(journal_t *); extern void jbd2_journal_switch_revoke_table(journal_t *journal); extern void jbd2_clear_buffer_revoked_flags(journal_t *journal); /* * The log thread user interface: * * Request space in the current transaction, and force transaction commit * transitions on demand. */ int jbd2_log_start_commit(journal_t *journal, tid_t tid); int __jbd2_log_start_commit(journal_t *journal, tid_t tid); int jbd2_journal_start_commit(journal_t *journal, tid_t *tid); int jbd2_log_wait_commit(journal_t *journal, tid_t tid); int jbd2_transaction_committed(journal_t *journal, tid_t tid); int jbd2_complete_transaction(journal_t *journal, tid_t tid); int jbd2_log_do_checkpoint(journal_t *journal); int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid); void __jbd2_log_wait_for_space(journal_t *journal); extern void __jbd2_journal_drop_transaction(journal_t *, transaction_t *); extern int jbd2_cleanup_journal_tail(journal_t *); /* Fast commit related APIs */ int jbd2_fc_begin_commit(journal_t *journal, tid_t tid); int jbd2_fc_end_commit(journal_t *journal); int jbd2_fc_end_commit_fallback(journal_t *journal); int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out); int jbd2_submit_inode_data(struct jbd2_inode *jinode); int jbd2_wait_inode_data(journal_t *journal, struct jbd2_inode *jinode); int jbd2_fc_wait_bufs(journal_t *journal, int num_blks); int jbd2_fc_release_bufs(journal_t *journal); static inline int jbd2_journal_get_max_txn_bufs(journal_t *journal) { return (journal->j_total_len - journal->j_fc_wbufsize) / 4; } /* * is_journal_abort * * Simple test wrapper function to test the JBD2_ABORT state flag. This * bit, when set, indicates that we have had a fatal error somewhere, * either inside the journaling layer or indicated to us by the client * (eg. ext3), and that we and should not commit any further * transactions. */ static inline int is_journal_aborted(journal_t *journal) { return journal->j_flags & JBD2_ABORT; } static inline int is_handle_aborted(handle_t *handle) { if (handle->h_aborted || !handle->h_transaction) return 1; return is_journal_aborted(handle->h_transaction->t_journal); } static inline void jbd2_journal_abort_handle(handle_t *handle) { handle->h_aborted = 1; } #endif /* __KERNEL__ */ /* Comparison functions for transaction IDs: perform comparisons using * modulo arithmetic so that they work over sequence number wraps. */ static inline int tid_gt(tid_t x, tid_t y) { int difference = (x - y); return (difference > 0); } static inline int tid_geq(tid_t x, tid_t y) { int difference = (x - y); return (difference >= 0); } extern int jbd2_journal_blocks_per_page(struct inode *inode); extern size_t journal_tag_bytes(journal_t *journal); static inline bool jbd2_journal_has_csum_v2or3_feature(journal_t *j) { return jbd2_has_feature_csum2(j) || jbd2_has_feature_csum3(j); } static inline int jbd2_journal_has_csum_v2or3(journal_t *journal) { WARN_ON_ONCE(jbd2_journal_has_csum_v2or3_feature(journal) && journal->j_chksum_driver == NULL); return journal->j_chksum_driver != NULL; } /* * Return number of free blocks in the log. Must be called under j_state_lock. */ static inline unsigned long jbd2_log_space_left(journal_t *journal) { /* Allow for rounding errors */ long free = journal->j_free - 32; if (journal->j_committing_transaction) { free -= atomic_read(&journal-> j_committing_transaction->t_outstanding_credits); } return max_t(long, free, 0); } /* * Definitions which augment the buffer_head layer */ /* journaling buffer types */ #define BJ_None 0 /* Not journaled */ #define BJ_Metadata 1 /* Normal journaled metadata */ #define BJ_Forget 2 /* Buffer superseded by this transaction */ #define BJ_Shadow 3 /* Buffer contents being shadowed to the log */ #define BJ_Reserved 4 /* Buffer is reserved for access by journal */ #define BJ_Types 5 extern int jbd_blocks_per_page(struct inode *inode); /* JBD uses a CRC32 checksum */ #define JBD_MAX_CHECKSUM_SIZE 4 static inline u32 jbd2_chksum(journal_t *journal, u32 crc, const void *address, unsigned int length) { struct { struct shash_desc shash; char ctx[JBD_MAX_CHECKSUM_SIZE]; } desc; int err; BUG_ON(crypto_shash_descsize(journal->j_chksum_driver) > JBD_MAX_CHECKSUM_SIZE); desc.shash.tfm = journal->j_chksum_driver; *(u32 *)desc.ctx = crc; err = crypto_shash_update(&desc.shash, address, length); BUG_ON(err); return *(u32 *)desc.ctx; } /* Return most recent uncommitted transaction */ static inline tid_t jbd2_get_latest_transaction(journal_t *journal) { tid_t tid; read_lock(&journal->j_state_lock); tid = journal->j_commit_request; if (journal->j_running_transaction) tid = journal->j_running_transaction->t_tid; read_unlock(&journal->j_state_lock); return tid; } static inline int jbd2_handle_buffer_credits(handle_t *handle) { journal_t *journal; if (!handle->h_reserved) journal = handle->h_transaction->t_journal; else journal = handle->h_journal; return handle->h_total_credits - DIV_ROUND_UP(handle->h_revoke_credits_requested, journal->j_revoke_records_per_block); } #ifdef __KERNEL__ #define buffer_trace_init(bh) do {} while (0) #define print_buffer_fields(bh) do {} while (0) #define print_buffer_trace(bh) do {} while (0) #define BUFFER_TRACE(bh, info) do {} while (0) #define BUFFER_TRACE2(bh, bh2, info) do {} while (0) #define JBUFFER_TRACE(jh, info) do {} while (0) #endif /* __KERNEL__ */ #define EFSBADCRC EBADMSG /* Bad CRC detected */ #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ #endif /* _LINUX_JBD2_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM alarmtimer #if !defined(_TRACE_ALARMTIMER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_ALARMTIMER_H #include <linux/alarmtimer.h> #include <linux/rtc.h> #include <linux/tracepoint.h> TRACE_DEFINE_ENUM(ALARM_REALTIME); TRACE_DEFINE_ENUM(ALARM_BOOTTIME); TRACE_DEFINE_ENUM(ALARM_REALTIME_FREEZER); TRACE_DEFINE_ENUM(ALARM_BOOTTIME_FREEZER); #define show_alarm_type(type) __print_flags(type, " | ", \ { 1 << ALARM_REALTIME, "REALTIME" }, \ { 1 << ALARM_BOOTTIME, "BOOTTIME" }, \ { 1 << ALARM_REALTIME_FREEZER, "REALTIME Freezer" }, \ { 1 << ALARM_BOOTTIME_FREEZER, "BOOTTIME Freezer" }) TRACE_EVENT(alarmtimer_suspend, TP_PROTO(ktime_t expires, int flag), TP_ARGS(expires, flag), TP_STRUCT__entry( __field(s64, expires) __field(unsigned char, alarm_type) ), TP_fast_assign( __entry->expires = expires; __entry->alarm_type = flag; ), TP_printk("alarmtimer type:%s expires:%llu", show_alarm_type((1 << __entry->alarm_type)), __entry->expires ) ); DECLARE_EVENT_CLASS(alarm_class, TP_PROTO(struct alarm *alarm, ktime_t now), TP_ARGS(alarm, now), TP_STRUCT__entry( __field(void *, alarm) __field(unsigned char, alarm_type) __field(s64, expires) __field(s64, now) ), TP_fast_assign( __entry->alarm = alarm; __entry->alarm_type = alarm->type; __entry->expires = alarm->node.expires; __entry->now = now; ), TP_printk("alarmtimer:%p type:%s expires:%llu now:%llu", __entry->alarm, show_alarm_type((1 << __entry->alarm_type)), __entry->expires, __entry->now ) ); DEFINE_EVENT(alarm_class, alarmtimer_fired, TP_PROTO(struct alarm *alarm, ktime_t now), TP_ARGS(alarm, now) ); DEFINE_EVENT(alarm_class, alarmtimer_start, TP_PROTO(struct alarm *alarm, ktime_t now), TP_ARGS(alarm, now) ); DEFINE_EVENT(alarm_class, alarmtimer_cancel, TP_PROTO(struct alarm *alarm, ktime_t now), TP_ARGS(alarm, now) ); #endif /* _TRACE_ALARMTIMER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_CURRENT_H #define _ASM_X86_CURRENT_H #include <linux/compiler.h> #include <asm/percpu.h> #ifndef __ASSEMBLY__ struct task_struct; DECLARE_PER_CPU(struct task_struct *, current_task); static __always_inline struct task_struct *get_current(void) { return this_cpu_read_stable(current_task); } #define current get_current() #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_CURRENT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_XFRM_H #define _NET_XFRM_H #include <linux/compiler.h> #include <linux/xfrm.h> #include <linux/spinlock.h> #include <linux/list.h> #include <linux/skbuff.h> #include <linux/socket.h> #include <linux/pfkeyv2.h> #include <linux/ipsec.h> #include <linux/in6.h> #include <linux/mutex.h> #include <linux/audit.h> #include <linux/slab.h> #include <linux/refcount.h> #include <linux/sockptr.h> #include <net/sock.h> #include <net/dst.h> #include <net/ip.h> #include <net/route.h> #include <net/ipv6.h> #include <net/ip6_fib.h> #include <net/flow.h> #include <net/gro_cells.h> #include <linux/interrupt.h> #ifdef CONFIG_XFRM_STATISTICS #include <net/snmp.h> #endif #define XFRM_PROTO_ESP 50 #define XFRM_PROTO_AH 51 #define XFRM_PROTO_COMP 108 #define XFRM_PROTO_IPIP 4 #define XFRM_PROTO_IPV6 41 #define XFRM_PROTO_ROUTING IPPROTO_ROUTING #define XFRM_PROTO_DSTOPTS IPPROTO_DSTOPTS #define XFRM_ALIGN4(len) (((len) + 3) & ~3) #define XFRM_ALIGN8(len) (((len) + 7) & ~7) #define MODULE_ALIAS_XFRM_MODE(family, encap) \ MODULE_ALIAS("xfrm-mode-" __stringify(family) "-" __stringify(encap)) #define MODULE_ALIAS_XFRM_TYPE(family, proto) \ MODULE_ALIAS("xfrm-type-" __stringify(family) "-" __stringify(proto)) #define MODULE_ALIAS_XFRM_OFFLOAD_TYPE(family, proto) \ MODULE_ALIAS("xfrm-offload-" __stringify(family) "-" __stringify(proto)) #ifdef CONFIG_XFRM_STATISTICS #define XFRM_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.xfrm_statistics, field) #else #define XFRM_INC_STATS(net, field) ((void)(net)) #endif /* Organization of SPD aka "XFRM rules" ------------------------------------ Basic objects: - policy rule, struct xfrm_policy (=SPD entry) - bundle of transformations, struct dst_entry == struct xfrm_dst (=SA bundle) - instance of a transformer, struct xfrm_state (=SA) - template to clone xfrm_state, struct xfrm_tmpl SPD is plain linear list of xfrm_policy rules, ordered by priority. (To be compatible with existing pfkeyv2 implementations, many rules with priority of 0x7fffffff are allowed to exist and such rules are ordered in an unpredictable way, thanks to bsd folks.) Lookup is plain linear search until the first match with selector. If "action" is "block", then we prohibit the flow, otherwise: if "xfrms_nr" is zero, the flow passes untransformed. Otherwise, policy entry has list of up to XFRM_MAX_DEPTH transformations, described by templates xfrm_tmpl. Each template is resolved to a complete xfrm_state (see below) and we pack bundle of transformations to a dst_entry returned to requestor. dst -. xfrm .-> xfrm_state #1 |---. child .-> dst -. xfrm .-> xfrm_state #2 |---. child .-> dst -. xfrm .-> xfrm_state #3 |---. child .-> NULL Bundles are cached at xrfm_policy struct (field ->bundles). Resolution of xrfm_tmpl ----------------------- Template contains: 1. ->mode Mode: transport or tunnel 2. ->id.proto Protocol: AH/ESP/IPCOMP 3. ->id.daddr Remote tunnel endpoint, ignored for transport mode. Q: allow to resolve security gateway? 4. ->id.spi If not zero, static SPI. 5. ->saddr Local tunnel endpoint, ignored for transport mode. 6. ->algos List of allowed algos. Plain bitmask now. Q: ealgos, aalgos, calgos. What a mess... 7. ->share Sharing mode. Q: how to implement private sharing mode? To add struct sock* to flow id? Having this template we search through SAD searching for entries with appropriate mode/proto/algo, permitted by selector. If no appropriate entry found, it is requested from key manager. PROBLEMS: Q: How to find all the bundles referring to a physical path for PMTU discovery? Seems, dst should contain list of all parents... and enter to infinite locking hierarchy disaster. No! It is easier, we will not search for them, let them find us. We add genid to each dst plus pointer to genid of raw IP route, pmtu disc will update pmtu on raw IP route and increase its genid. dst_check() will see this for top level and trigger resyncing metrics. Plus, it will be made via sk->sk_dst_cache. Solved. */ struct xfrm_state_walk { struct list_head all; u8 state; u8 dying; u8 proto; u32 seq; struct xfrm_address_filter *filter; }; struct xfrm_state_offload { struct net_device *dev; struct net_device *real_dev; unsigned long offload_handle; unsigned int num_exthdrs; u8 flags; }; struct xfrm_mode { u8 encap; u8 family; u8 flags; }; /* Flags for xfrm_mode. */ enum { XFRM_MODE_FLAG_TUNNEL = 1, }; /* Full description of state of transformer. */ struct xfrm_state { possible_net_t xs_net; union { struct hlist_node gclist; struct hlist_node bydst; }; struct hlist_node bysrc; struct hlist_node byspi; refcount_t refcnt; spinlock_t lock; struct xfrm_id id; struct xfrm_selector sel; struct xfrm_mark mark; u32 if_id; u32 tfcpad; u32 genid; /* Key manager bits */ struct xfrm_state_walk km; /* Parameters of this state. */ struct { u32 reqid; u8 mode; u8 replay_window; u8 aalgo, ealgo, calgo; u8 flags; u16 family; xfrm_address_t saddr; int header_len; int trailer_len; u32 extra_flags; struct xfrm_mark smark; } props; struct xfrm_lifetime_cfg lft; /* Data for transformer */ struct xfrm_algo_auth *aalg; struct xfrm_algo *ealg; struct xfrm_algo *calg; struct xfrm_algo_aead *aead; const char *geniv; /* Data for encapsulator */ struct xfrm_encap_tmpl *encap; struct sock __rcu *encap_sk; /* Data for care-of address */ xfrm_address_t *coaddr; /* IPComp needs an IPIP tunnel for handling uncompressed packets */ struct xfrm_state *tunnel; /* If a tunnel, number of users + 1 */ atomic_t tunnel_users; /* State for replay detection */ struct xfrm_replay_state replay; struct xfrm_replay_state_esn *replay_esn; /* Replay detection state at the time we sent the last notification */ struct xfrm_replay_state preplay; struct xfrm_replay_state_esn *preplay_esn; /* The functions for replay detection. */ const struct xfrm_replay *repl; /* internal flag that only holds state for delayed aevent at the * moment */ u32 xflags; /* Replay detection notification settings */ u32 replay_maxage; u32 replay_maxdiff; /* Replay detection notification timer */ struct timer_list rtimer; /* Statistics */ struct xfrm_stats stats; struct xfrm_lifetime_cur curlft; struct hrtimer mtimer; struct xfrm_state_offload xso; /* used to fix curlft->add_time when changing date */ long saved_tmo; /* Last used time */ time64_t lastused; struct page_frag xfrag; /* Reference to data common to all the instances of this * transformer. */ const struct xfrm_type *type; struct xfrm_mode inner_mode; struct xfrm_mode inner_mode_iaf; struct xfrm_mode outer_mode; const struct xfrm_type_offload *type_offload; /* Security context */ struct xfrm_sec_ctx *security; /* Private data of this transformer, format is opaque, * interpreted by xfrm_type methods. */ void *data; }; static inline struct net *xs_net(struct xfrm_state *x) { return read_pnet(&x->xs_net); } /* xflags - make enum if more show up */ #define XFRM_TIME_DEFER 1 #define XFRM_SOFT_EXPIRE 2 enum { XFRM_STATE_VOID, XFRM_STATE_ACQ, XFRM_STATE_VALID, XFRM_STATE_ERROR, XFRM_STATE_EXPIRED, XFRM_STATE_DEAD }; /* callback structure passed from either netlink or pfkey */ struct km_event { union { u32 hard; u32 proto; u32 byid; u32 aevent; u32 type; } data; u32 seq; u32 portid; u32 event; struct net *net; }; struct xfrm_replay { void (*advance)(struct xfrm_state *x, __be32 net_seq); int (*check)(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq); int (*recheck)(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq); void (*notify)(struct xfrm_state *x, int event); int (*overflow)(struct xfrm_state *x, struct sk_buff *skb); }; struct xfrm_if_cb { struct xfrm_if *(*decode_session)(struct sk_buff *skb, unsigned short family); }; void xfrm_if_register_cb(const struct xfrm_if_cb *ifcb); void xfrm_if_unregister_cb(void); struct net_device; struct xfrm_type; struct xfrm_dst; struct xfrm_policy_afinfo { struct dst_ops *dst_ops; struct dst_entry *(*dst_lookup)(struct net *net, int tos, int oif, const xfrm_address_t *saddr, const xfrm_address_t *daddr, u32 mark); int (*get_saddr)(struct net *net, int oif, xfrm_address_t *saddr, xfrm_address_t *daddr, u32 mark); int (*fill_dst)(struct xfrm_dst *xdst, struct net_device *dev, const struct flowi *fl); struct dst_entry *(*blackhole_route)(struct net *net, struct dst_entry *orig); }; int xfrm_policy_register_afinfo(const struct xfrm_policy_afinfo *afinfo, int family); void xfrm_policy_unregister_afinfo(const struct xfrm_policy_afinfo *afinfo); void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c); void km_state_notify(struct xfrm_state *x, const struct km_event *c); struct xfrm_tmpl; int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol); void km_state_expired(struct xfrm_state *x, int hard, u32 portid); int __xfrm_state_delete(struct xfrm_state *x); struct xfrm_state_afinfo { u8 family; u8 proto; const struct xfrm_type_offload *type_offload_esp; const struct xfrm_type *type_esp; const struct xfrm_type *type_ipip; const struct xfrm_type *type_ipip6; const struct xfrm_type *type_comp; const struct xfrm_type *type_ah; const struct xfrm_type *type_routing; const struct xfrm_type *type_dstopts; int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*transport_finish)(struct sk_buff *skb, int async); void (*local_error)(struct sk_buff *skb, u32 mtu); }; int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo); int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo); struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family); struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family); struct xfrm_input_afinfo { u8 family; bool is_ipip; int (*callback)(struct sk_buff *skb, u8 protocol, int err); }; int xfrm_input_register_afinfo(const struct xfrm_input_afinfo *afinfo); int xfrm_input_unregister_afinfo(const struct xfrm_input_afinfo *afinfo); void xfrm_flush_gc(void); void xfrm_state_delete_tunnel(struct xfrm_state *x); struct xfrm_type { char *description; struct module *owner; u8 proto; u8 flags; #define XFRM_TYPE_NON_FRAGMENT 1 #define XFRM_TYPE_REPLAY_PROT 2 #define XFRM_TYPE_LOCAL_COADDR 4 #define XFRM_TYPE_REMOTE_COADDR 8 int (*init_state)(struct xfrm_state *x); void (*destructor)(struct xfrm_state *); int (*input)(struct xfrm_state *, struct sk_buff *skb); int (*output)(struct xfrm_state *, struct sk_buff *pskb); int (*reject)(struct xfrm_state *, struct sk_buff *, const struct flowi *); int (*hdr_offset)(struct xfrm_state *, struct sk_buff *, u8 **); }; int xfrm_register_type(const struct xfrm_type *type, unsigned short family); void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family); struct xfrm_type_offload { char *description; struct module *owner; u8 proto; void (*encap)(struct xfrm_state *, struct sk_buff *pskb); int (*input_tail)(struct xfrm_state *x, struct sk_buff *skb); int (*xmit)(struct xfrm_state *, struct sk_buff *pskb, netdev_features_t features); }; int xfrm_register_type_offload(const struct xfrm_type_offload *type, unsigned short family); void xfrm_unregister_type_offload(const struct xfrm_type_offload *type, unsigned short family); static inline int xfrm_af2proto(unsigned int family) { switch(family) { case AF_INET: return IPPROTO_IPIP; case AF_INET6: return IPPROTO_IPV6; default: return 0; } } static inline const struct xfrm_mode *xfrm_ip2inner_mode(struct xfrm_state *x, int ipproto) { if ((ipproto == IPPROTO_IPIP && x->props.family == AF_INET) || (ipproto == IPPROTO_IPV6 && x->props.family == AF_INET6)) return &x->inner_mode; else return &x->inner_mode_iaf; } struct xfrm_tmpl { /* id in template is interpreted as: * daddr - destination of tunnel, may be zero for transport mode. * spi - zero to acquire spi. Not zero if spi is static, then * daddr must be fixed too. * proto - AH/ESP/IPCOMP */ struct xfrm_id id; /* Source address of tunnel. Ignored, if it is not a tunnel. */ xfrm_address_t saddr; unsigned short encap_family; u32 reqid; /* Mode: transport, tunnel etc. */ u8 mode; /* Sharing mode: unique, this session only, this user only etc. */ u8 share; /* May skip this transfomration if no SA is found */ u8 optional; /* Skip aalgos/ealgos/calgos checks. */ u8 allalgs; /* Bit mask of algos allowed for acquisition */ u32 aalgos; u32 ealgos; u32 calgos; }; #define XFRM_MAX_DEPTH 6 #define XFRM_MAX_OFFLOAD_DEPTH 1 struct xfrm_policy_walk_entry { struct list_head all; u8 dead; }; struct xfrm_policy_walk { struct xfrm_policy_walk_entry walk; u8 type; u32 seq; }; struct xfrm_policy_queue { struct sk_buff_head hold_queue; struct timer_list hold_timer; unsigned long timeout; }; struct xfrm_policy { possible_net_t xp_net; struct hlist_node bydst; struct hlist_node byidx; /* This lock only affects elements except for entry. */ rwlock_t lock; refcount_t refcnt; u32 pos; struct timer_list timer; atomic_t genid; u32 priority; u32 index; u32 if_id; struct xfrm_mark mark; struct xfrm_selector selector; struct xfrm_lifetime_cfg lft; struct xfrm_lifetime_cur curlft; struct xfrm_policy_walk_entry walk; struct xfrm_policy_queue polq; bool bydst_reinsert; u8 type; u8 action; u8 flags; u8 xfrm_nr; u16 family; struct xfrm_sec_ctx *security; struct xfrm_tmpl xfrm_vec[XFRM_MAX_DEPTH]; struct hlist_node bydst_inexact_list; struct rcu_head rcu; }; static inline struct net *xp_net(const struct xfrm_policy *xp) { return read_pnet(&xp->xp_net); } struct xfrm_kmaddress { xfrm_address_t local; xfrm_address_t remote; u32 reserved; u16 family; }; struct xfrm_migrate { xfrm_address_t old_daddr; xfrm_address_t old_saddr; xfrm_address_t new_daddr; xfrm_address_t new_saddr; u8 proto; u8 mode; u16 reserved; u32 reqid; u16 old_family; u16 new_family; }; #define XFRM_KM_TIMEOUT 30 /* what happened */ #define XFRM_REPLAY_UPDATE XFRM_AE_CR #define XFRM_REPLAY_TIMEOUT XFRM_AE_CE /* default aevent timeout in units of 100ms */ #define XFRM_AE_ETIME 10 /* Async Event timer multiplier */ #define XFRM_AE_ETH_M 10 /* default seq threshold size */ #define XFRM_AE_SEQT_SIZE 2 struct xfrm_mgr { struct list_head list; int (*notify)(struct xfrm_state *x, const struct km_event *c); int (*acquire)(struct xfrm_state *x, struct xfrm_tmpl *, struct xfrm_policy *xp); struct xfrm_policy *(*compile_policy)(struct sock *sk, int opt, u8 *data, int len, int *dir); int (*new_mapping)(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport); int (*notify_policy)(struct xfrm_policy *x, int dir, const struct km_event *c); int (*report)(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr); int (*migrate)(const struct xfrm_selector *sel, u8 dir, u8 type, const struct xfrm_migrate *m, int num_bundles, const struct xfrm_kmaddress *k, const struct xfrm_encap_tmpl *encap); bool (*is_alive)(const struct km_event *c); }; int xfrm_register_km(struct xfrm_mgr *km); int xfrm_unregister_km(struct xfrm_mgr *km); struct xfrm_tunnel_skb_cb { union { struct inet_skb_parm h4; struct inet6_skb_parm h6; } header; union { struct ip_tunnel *ip4; struct ip6_tnl *ip6; } tunnel; }; #define XFRM_TUNNEL_SKB_CB(__skb) ((struct xfrm_tunnel_skb_cb *)&((__skb)->cb[0])) /* * This structure is used for the duration where packets are being * transformed by IPsec. As soon as the packet leaves IPsec the * area beyond the generic IP part may be overwritten. */ struct xfrm_skb_cb { struct xfrm_tunnel_skb_cb header; /* Sequence number for replay protection. */ union { struct { __u32 low; __u32 hi; } output; struct { __be32 low; __be32 hi; } input; } seq; }; #define XFRM_SKB_CB(__skb) ((struct xfrm_skb_cb *)&((__skb)->cb[0])) /* * This structure is used by the afinfo prepare_input/prepare_output functions * to transmit header information to the mode input/output functions. */ struct xfrm_mode_skb_cb { struct xfrm_tunnel_skb_cb header; /* Copied from header for IPv4, always set to zero and DF for IPv6. */ __be16 id; __be16 frag_off; /* IP header length (excluding options or extension headers). */ u8 ihl; /* TOS for IPv4, class for IPv6. */ u8 tos; /* TTL for IPv4, hop limitfor IPv6. */ u8 ttl; /* Protocol for IPv4, NH for IPv6. */ u8 protocol; /* Option length for IPv4, zero for IPv6. */ u8 optlen; /* Used by IPv6 only, zero for IPv4. */ u8 flow_lbl[3]; }; #define XFRM_MODE_SKB_CB(__skb) ((struct xfrm_mode_skb_cb *)&((__skb)->cb[0])) /* * This structure is used by the input processing to locate the SPI and * related information. */ struct xfrm_spi_skb_cb { struct xfrm_tunnel_skb_cb header; unsigned int daddroff; unsigned int family; __be32 seq; }; #define XFRM_SPI_SKB_CB(__skb) ((struct xfrm_spi_skb_cb *)&((__skb)->cb[0])) #ifdef CONFIG_AUDITSYSCALL static inline struct audit_buffer *xfrm_audit_start(const char *op) { struct audit_buffer *audit_buf = NULL; if (audit_enabled == AUDIT_OFF) return NULL; audit_buf = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_MAC_IPSEC_EVENT); if (audit_buf == NULL) return NULL; audit_log_format(audit_buf, "op=%s", op); return audit_buf; } static inline void xfrm_audit_helper_usrinfo(bool task_valid, struct audit_buffer *audit_buf) { const unsigned int auid = from_kuid(&init_user_ns, task_valid ? audit_get_loginuid(current) : INVALID_UID); const unsigned int ses = task_valid ? audit_get_sessionid(current) : AUDIT_SID_UNSET; audit_log_format(audit_buf, " auid=%u ses=%u", auid, ses); audit_log_task_context(audit_buf); } void xfrm_audit_policy_add(struct xfrm_policy *xp, int result, bool task_valid); void xfrm_audit_policy_delete(struct xfrm_policy *xp, int result, bool task_valid); void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid); void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid); void xfrm_audit_state_replay_overflow(struct xfrm_state *x, struct sk_buff *skb); void xfrm_audit_state_replay(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq); void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family); void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, __be32 net_spi, __be32 net_seq); void xfrm_audit_state_icvfail(struct xfrm_state *x, struct sk_buff *skb, u8 proto); #else static inline void xfrm_audit_policy_add(struct xfrm_policy *xp, int result, bool task_valid) { } static inline void xfrm_audit_policy_delete(struct xfrm_policy *xp, int result, bool task_valid) { } static inline void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid) { } static inline void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid) { } static inline void xfrm_audit_state_replay_overflow(struct xfrm_state *x, struct sk_buff *skb) { } static inline void xfrm_audit_state_replay(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq) { } static inline void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family) { } static inline void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, __be32 net_spi, __be32 net_seq) { } static inline void xfrm_audit_state_icvfail(struct xfrm_state *x, struct sk_buff *skb, u8 proto) { } #endif /* CONFIG_AUDITSYSCALL */ static inline void xfrm_pol_hold(struct xfrm_policy *policy) { if (likely(policy != NULL)) refcount_inc(&policy->refcnt); } void xfrm_policy_destroy(struct xfrm_policy *policy); static inline void xfrm_pol_put(struct xfrm_policy *policy) { if (refcount_dec_and_test(&policy->refcnt)) xfrm_policy_destroy(policy); } static inline void xfrm_pols_put(struct xfrm_policy **pols, int npols) { int i; for (i = npols - 1; i >= 0; --i) xfrm_pol_put(pols[i]); } void __xfrm_state_destroy(struct xfrm_state *, bool); static inline void __xfrm_state_put(struct xfrm_state *x) { refcount_dec(&x->refcnt); } static inline void xfrm_state_put(struct xfrm_state *x) { if (refcount_dec_and_test(&x->refcnt)) __xfrm_state_destroy(x, false); } static inline void xfrm_state_put_sync(struct xfrm_state *x) { if (refcount_dec_and_test(&x->refcnt)) __xfrm_state_destroy(x, true); } static inline void xfrm_state_hold(struct xfrm_state *x) { refcount_inc(&x->refcnt); } static inline bool addr_match(const void *token1, const void *token2, unsigned int prefixlen) { const __be32 *a1 = token1; const __be32 *a2 = token2; unsigned int pdw; unsigned int pbi; pdw = prefixlen >> 5; /* num of whole u32 in prefix */ pbi = prefixlen & 0x1f; /* num of bits in incomplete u32 in prefix */ if (pdw) if (memcmp(a1, a2, pdw << 2)) return false; if (pbi) { __be32 mask; mask = htonl((0xffffffff) << (32 - pbi)); if ((a1[pdw] ^ a2[pdw]) & mask) return false; } return true; } static inline bool addr4_match(__be32 a1, __be32 a2, u8 prefixlen) { /* C99 6.5.7 (3): u32 << 32 is undefined behaviour */ if (sizeof(long) == 4 && prefixlen == 0) return true; return !((a1 ^ a2) & htonl(~0UL << (32 - prefixlen))); } static __inline__ __be16 xfrm_flowi_sport(const struct flowi *fl, const union flowi_uli *uli) { __be16 port; switch(fl->flowi_proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_UDPLITE: case IPPROTO_SCTP: port = uli->ports.sport; break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: port = htons(uli->icmpt.type); break; case IPPROTO_MH: port = htons(uli->mht.type); break; case IPPROTO_GRE: port = htons(ntohl(uli->gre_key) >> 16); break; default: port = 0; /*XXX*/ } return port; } static __inline__ __be16 xfrm_flowi_dport(const struct flowi *fl, const union flowi_uli *uli) { __be16 port; switch(fl->flowi_proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_UDPLITE: case IPPROTO_SCTP: port = uli->ports.dport; break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: port = htons(uli->icmpt.code); break; case IPPROTO_GRE: port = htons(ntohl(uli->gre_key) & 0xffff); break; default: port = 0; /*XXX*/ } return port; } bool xfrm_selector_match(const struct xfrm_selector *sel, const struct flowi *fl, unsigned short family); #ifdef CONFIG_SECURITY_NETWORK_XFRM /* If neither has a context --> match * Otherwise, both must have a context and the sids, doi, alg must match */ static inline bool xfrm_sec_ctx_match(struct xfrm_sec_ctx *s1, struct xfrm_sec_ctx *s2) { return ((!s1 && !s2) || (s1 && s2 && (s1->ctx_sid == s2->ctx_sid) && (s1->ctx_doi == s2->ctx_doi) && (s1->ctx_alg == s2->ctx_alg))); } #else static inline bool xfrm_sec_ctx_match(struct xfrm_sec_ctx *s1, struct xfrm_sec_ctx *s2) { return true; } #endif /* A struct encoding bundle of transformations to apply to some set of flow. * * xdst->child points to the next element of bundle. * dst->xfrm points to an instanse of transformer. * * Due to unfortunate limitations of current routing cache, which we * have no time to fix, it mirrors struct rtable and bound to the same * routing key, including saddr,daddr. However, we can have many of * bundles differing by session id. All the bundles grow from a parent * policy rule. */ struct xfrm_dst { union { struct dst_entry dst; struct rtable rt; struct rt6_info rt6; } u; struct dst_entry *route; struct dst_entry *child; struct dst_entry *path; struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX]; int num_pols, num_xfrms; u32 xfrm_genid; u32 policy_genid; u32 route_mtu_cached; u32 child_mtu_cached; u32 route_cookie; u32 path_cookie; }; static inline struct dst_entry *xfrm_dst_path(const struct dst_entry *dst) { #ifdef CONFIG_XFRM if (dst->xfrm || (dst->flags & DST_XFRM_QUEUE)) { const struct xfrm_dst *xdst = (const struct xfrm_dst *) dst; return xdst->path; } #endif return (struct dst_entry *) dst; } static inline struct dst_entry *xfrm_dst_child(const struct dst_entry *dst) { #ifdef CONFIG_XFRM if (dst->xfrm || (dst->flags & DST_XFRM_QUEUE)) { struct xfrm_dst *xdst = (struct xfrm_dst *) dst; return xdst->child; } #endif return NULL; } #ifdef CONFIG_XFRM static inline void xfrm_dst_set_child(struct xfrm_dst *xdst, struct dst_entry *child) { xdst->child = child; } static inline void xfrm_dst_destroy(struct xfrm_dst *xdst) { xfrm_pols_put(xdst->pols, xdst->num_pols); dst_release(xdst->route); if (likely(xdst->u.dst.xfrm)) xfrm_state_put(xdst->u.dst.xfrm); } #endif void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev); struct xfrm_if_parms { int link; /* ifindex of underlying L2 interface */ u32 if_id; /* interface identifyer */ }; struct xfrm_if { struct xfrm_if __rcu *next; /* next interface in list */ struct net_device *dev; /* virtual device associated with interface */ struct net *net; /* netns for packet i/o */ struct xfrm_if_parms p; /* interface parms */ struct gro_cells gro_cells; }; struct xfrm_offload { /* Output sequence number for replay protection on offloading. */ struct { __u32 low; __u32 hi; } seq; __u32 flags; #define SA_DELETE_REQ 1 #define CRYPTO_DONE 2 #define CRYPTO_NEXT_DONE 4 #define CRYPTO_FALLBACK 8 #define XFRM_GSO_SEGMENT 16 #define XFRM_GRO 32 #define XFRM_ESP_NO_TRAILER 64 #define XFRM_DEV_RESUME 128 #define XFRM_XMIT 256 __u32 status; #define CRYPTO_SUCCESS 1 #define CRYPTO_GENERIC_ERROR 2 #define CRYPTO_TRANSPORT_AH_AUTH_FAILED 4 #define CRYPTO_TRANSPORT_ESP_AUTH_FAILED 8 #define CRYPTO_TUNNEL_AH_AUTH_FAILED 16 #define CRYPTO_TUNNEL_ESP_AUTH_FAILED 32 #define CRYPTO_INVALID_PACKET_SYNTAX 64 #define CRYPTO_INVALID_PROTOCOL 128 __u8 proto; }; struct sec_path { int len; int olen; struct xfrm_state *xvec[XFRM_MAX_DEPTH]; struct xfrm_offload ovec[XFRM_MAX_OFFLOAD_DEPTH]; }; struct sec_path *secpath_set(struct sk_buff *skb); static inline void secpath_reset(struct sk_buff *skb) { #ifdef CONFIG_XFRM skb_ext_del(skb, SKB_EXT_SEC_PATH); #endif } static inline int xfrm_addr_any(const xfrm_address_t *addr, unsigned short family) { switch (family) { case AF_INET: return addr->a4 == 0; case AF_INET6: return ipv6_addr_any(&addr->in6); } return 0; } static inline int __xfrm4_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x) { return (tmpl->saddr.a4 && tmpl->saddr.a4 != x->props.saddr.a4); } static inline int __xfrm6_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x) { return (!ipv6_addr_any((struct in6_addr*)&tmpl->saddr) && !ipv6_addr_equal((struct in6_addr *)&tmpl->saddr, (struct in6_addr*)&x->props.saddr)); } static inline int xfrm_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x, unsigned short family) { switch (family) { case AF_INET: return __xfrm4_state_addr_cmp(tmpl, x); case AF_INET6: return __xfrm6_state_addr_cmp(tmpl, x); } return !0; } #ifdef CONFIG_XFRM int __xfrm_policy_check(struct sock *, int dir, struct sk_buff *skb, unsigned short family); static inline int __xfrm_policy_check2(struct sock *sk, int dir, struct sk_buff *skb, unsigned int family, int reverse) { struct net *net = dev_net(skb->dev); int ndir = dir | (reverse ? XFRM_POLICY_MASK + 1 : 0); if (sk && sk->sk_policy[XFRM_POLICY_IN]) return __xfrm_policy_check(sk, ndir, skb, family); return (!net->xfrm.policy_count[dir] && !secpath_exists(skb)) || (skb_dst(skb) && (skb_dst(skb)->flags & DST_NOPOLICY)) || __xfrm_policy_check(sk, ndir, skb, family); } static inline int xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family) { return __xfrm_policy_check2(sk, dir, skb, family, 0); } static inline int xfrm4_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return xfrm_policy_check(sk, dir, skb, AF_INET); } static inline int xfrm6_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return xfrm_policy_check(sk, dir, skb, AF_INET6); } static inline int xfrm4_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return __xfrm_policy_check2(sk, dir, skb, AF_INET, 1); } static inline int xfrm6_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return __xfrm_policy_check2(sk, dir, skb, AF_INET6, 1); } int __xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned int family, int reverse); static inline int xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned int family) { return __xfrm_decode_session(skb, fl, family, 0); } static inline int xfrm_decode_session_reverse(struct sk_buff *skb, struct flowi *fl, unsigned int family) { return __xfrm_decode_session(skb, fl, family, 1); } int __xfrm_route_forward(struct sk_buff *skb, unsigned short family); static inline int xfrm_route_forward(struct sk_buff *skb, unsigned short family) { struct net *net = dev_net(skb->dev); return !net->xfrm.policy_count[XFRM_POLICY_OUT] || (skb_dst(skb)->flags & DST_NOXFRM) || __xfrm_route_forward(skb, family); } static inline int xfrm4_route_forward(struct sk_buff *skb) { return xfrm_route_forward(skb, AF_INET); } static inline int xfrm6_route_forward(struct sk_buff *skb) { return xfrm_route_forward(skb, AF_INET6); } int __xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk); static inline int xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk) { sk->sk_policy[0] = NULL; sk->sk_policy[1] = NULL; if (unlikely(osk->sk_policy[0] || osk->sk_policy[1])) return __xfrm_sk_clone_policy(sk, osk); return 0; } int xfrm_policy_delete(struct xfrm_policy *pol, int dir); static inline void xfrm_sk_free_policy(struct sock *sk) { struct xfrm_policy *pol; pol = rcu_dereference_protected(sk->sk_policy[0], 1); if (unlikely(pol != NULL)) { xfrm_policy_delete(pol, XFRM_POLICY_MAX); sk->sk_policy[0] = NULL; } pol = rcu_dereference_protected(sk->sk_policy[1], 1); if (unlikely(pol != NULL)) { xfrm_policy_delete(pol, XFRM_POLICY_MAX+1); sk->sk_policy[1] = NULL; } } #else static inline void xfrm_sk_free_policy(struct sock *sk) {} static inline int xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk) { return 0; } static inline int xfrm6_route_forward(struct sk_buff *skb) { return 1; } static inline int xfrm4_route_forward(struct sk_buff *skb) { return 1; } static inline int xfrm6_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } static inline int xfrm4_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } static inline int xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family) { return 1; } static inline int xfrm_decode_session_reverse(struct sk_buff *skb, struct flowi *fl, unsigned int family) { return -ENOSYS; } static inline int xfrm4_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } static inline int xfrm6_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } #endif static __inline__ xfrm_address_t *xfrm_flowi_daddr(const struct flowi *fl, unsigned short family) { switch (family){ case AF_INET: return (xfrm_address_t *)&fl->u.ip4.daddr; case AF_INET6: return (xfrm_address_t *)&fl->u.ip6.daddr; } return NULL; } static __inline__ xfrm_address_t *xfrm_flowi_saddr(const struct flowi *fl, unsigned short family) { switch (family){ case AF_INET: return (xfrm_address_t *)&fl->u.ip4.saddr; case AF_INET6: return (xfrm_address_t *)&fl->u.ip6.saddr; } return NULL; } static __inline__ void xfrm_flowi_addr_get(const struct flowi *fl, xfrm_address_t *saddr, xfrm_address_t *daddr, unsigned short family) { switch(family) { case AF_INET: memcpy(&saddr->a4, &fl->u.ip4.saddr, sizeof(saddr->a4)); memcpy(&daddr->a4, &fl->u.ip4.daddr, sizeof(daddr->a4)); break; case AF_INET6: saddr->in6 = fl->u.ip6.saddr; daddr->in6 = fl->u.ip6.daddr; break; } } static __inline__ int __xfrm4_state_addr_check(const struct xfrm_state *x, const xfrm_address_t *daddr, const xfrm_address_t *saddr) { if (daddr->a4 == x->id.daddr.a4 && (saddr->a4 == x->props.saddr.a4 || !saddr->a4 || !x->props.saddr.a4)) return 1; return 0; } static __inline__ int __xfrm6_state_addr_check(const struct xfrm_state *x, const xfrm_address_t *daddr, const xfrm_address_t *saddr) { if (ipv6_addr_equal((struct in6_addr *)daddr, (struct in6_addr *)&x->id.daddr) && (ipv6_addr_equal((struct in6_addr *)saddr, (struct in6_addr *)&x->props.saddr) || ipv6_addr_any((struct in6_addr *)saddr) || ipv6_addr_any((struct in6_addr *)&x->props.saddr))) return 1; return 0; } static __inline__ int xfrm_state_addr_check(const struct xfrm_state *x, const xfrm_address_t *daddr, const xfrm_address_t *saddr, unsigned short family) { switch (family) { case AF_INET: return __xfrm4_state_addr_check(x, daddr, saddr); case AF_INET6: return __xfrm6_state_addr_check(x, daddr, saddr); } return 0; } static __inline__ int xfrm_state_addr_flow_check(const struct xfrm_state *x, const struct flowi *fl, unsigned short family) { switch (family) { case AF_INET: return __xfrm4_state_addr_check(x, (const xfrm_address_t *)&fl->u.ip4.daddr, (const xfrm_address_t *)&fl->u.ip4.saddr); case AF_INET6: return __xfrm6_state_addr_check(x, (const xfrm_address_t *)&fl->u.ip6.daddr, (const xfrm_address_t *)&fl->u.ip6.saddr); } return 0; } static inline int xfrm_state_kern(const struct xfrm_state *x) { return atomic_read(&x->tunnel_users); } static inline bool xfrm_id_proto_valid(u8 proto) { switch (proto) { case IPPROTO_AH: case IPPROTO_ESP: case IPPROTO_COMP: #if IS_ENABLED(CONFIG_IPV6) case IPPROTO_ROUTING: case IPPROTO_DSTOPTS: #endif return true; default: return false; } } /* IPSEC_PROTO_ANY only matches 3 IPsec protocols, 0 could match all. */ static inline int xfrm_id_proto_match(u8 proto, u8 userproto) { return (!userproto || proto == userproto || (userproto == IPSEC_PROTO_ANY && (proto == IPPROTO_AH || proto == IPPROTO_ESP || proto == IPPROTO_COMP))); } /* * xfrm algorithm information */ struct xfrm_algo_aead_info { char *geniv; u16 icv_truncbits; }; struct xfrm_algo_auth_info { u16 icv_truncbits; u16 icv_fullbits; }; struct xfrm_algo_encr_info { char *geniv; u16 blockbits; u16 defkeybits; }; struct xfrm_algo_comp_info { u16 threshold; }; struct xfrm_algo_desc { char *name; char *compat; u8 available:1; u8 pfkey_supported:1; union { struct xfrm_algo_aead_info aead; struct xfrm_algo_auth_info auth; struct xfrm_algo_encr_info encr; struct xfrm_algo_comp_info comp; } uinfo; struct sadb_alg desc; }; /* XFRM protocol handlers. */ struct xfrm4_protocol { int (*handler)(struct sk_buff *skb); int (*input_handler)(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, u32 info); struct xfrm4_protocol __rcu *next; int priority; }; struct xfrm6_protocol { int (*handler)(struct sk_buff *skb); int (*input_handler)(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info); struct xfrm6_protocol __rcu *next; int priority; }; /* XFRM tunnel handlers. */ struct xfrm_tunnel { int (*handler)(struct sk_buff *skb); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, u32 info); struct xfrm_tunnel __rcu *next; int priority; }; struct xfrm6_tunnel { int (*handler)(struct sk_buff *skb); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info); struct xfrm6_tunnel __rcu *next; int priority; }; void xfrm_init(void); void xfrm4_init(void); int xfrm_state_init(struct net *net); void xfrm_state_fini(struct net *net); void xfrm4_state_init(void); void xfrm4_protocol_init(void); #ifdef CONFIG_XFRM int xfrm6_init(void); void xfrm6_fini(void); int xfrm6_state_init(void); void xfrm6_state_fini(void); int xfrm6_protocol_init(void); void xfrm6_protocol_fini(void); #else static inline int xfrm6_init(void) { return 0; } static inline void xfrm6_fini(void) { ; } #endif #ifdef CONFIG_XFRM_STATISTICS int xfrm_proc_init(struct net *net); void xfrm_proc_fini(struct net *net); #endif int xfrm_sysctl_init(struct net *net); #ifdef CONFIG_SYSCTL void xfrm_sysctl_fini(struct net *net); #else static inline void xfrm_sysctl_fini(struct net *net) { } #endif void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto, struct xfrm_address_filter *filter); int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, int (*func)(struct xfrm_state *, int, void*), void *); void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net); struct xfrm_state *xfrm_state_alloc(struct net *net); void xfrm_state_free(struct xfrm_state *x); struct xfrm_state *xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr, const struct flowi *fl, struct xfrm_tmpl *tmpl, struct xfrm_policy *pol, int *err, unsigned short family, u32 if_id); struct xfrm_state *xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id, xfrm_address_t *daddr, xfrm_address_t *saddr, unsigned short family, u8 mode, u8 proto, u32 reqid); struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi, unsigned short family); int xfrm_state_check_expire(struct xfrm_state *x); void xfrm_state_insert(struct xfrm_state *x); int xfrm_state_add(struct xfrm_state *x); int xfrm_state_update(struct xfrm_state *x); struct xfrm_state *xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family); struct xfrm_state *xfrm_state_lookup_byaddr(struct net *net, u32 mark, const xfrm_address_t *daddr, const xfrm_address_t *saddr, u8 proto, unsigned short family); #ifdef CONFIG_XFRM_SUB_POLICY void xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, unsigned short family); void xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, unsigned short family); #else static inline void xfrm_tmpl_sort(struct xfrm_tmpl **d, struct xfrm_tmpl **s, int n, unsigned short family) { } static inline void xfrm_state_sort(struct xfrm_state **d, struct xfrm_state **s, int n, unsigned short family) { } #endif struct xfrmk_sadinfo { u32 sadhcnt; /* current hash bkts */ u32 sadhmcnt; /* max allowed hash bkts */ u32 sadcnt; /* current running count */ }; struct xfrmk_spdinfo { u32 incnt; u32 outcnt; u32 fwdcnt; u32 inscnt; u32 outscnt; u32 fwdscnt; u32 spdhcnt; u32 spdhmcnt; }; struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq); int xfrm_state_delete(struct xfrm_state *x); int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync); int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid); void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si); void xfrm_spd_getinfo(struct net *net, struct xfrmk_spdinfo *si); u32 xfrm_replay_seqhi(struct xfrm_state *x, __be32 net_seq); int xfrm_init_replay(struct xfrm_state *x); u32 __xfrm_state_mtu(struct xfrm_state *x, int mtu); u32 xfrm_state_mtu(struct xfrm_state *x, int mtu); int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload); int xfrm_init_state(struct xfrm_state *x); int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int xfrm_input_resume(struct sk_buff *skb, int nexthdr); int xfrm_trans_queue_net(struct net *net, struct sk_buff *skb, int (*finish)(struct net *, struct sock *, struct sk_buff *)); int xfrm_trans_queue(struct sk_buff *skb, int (*finish)(struct net *, struct sock *, struct sk_buff *)); int xfrm_output_resume(struct sock *sk, struct sk_buff *skb, int err); int xfrm_output(struct sock *sk, struct sk_buff *skb); #if IS_ENABLED(CONFIG_NET_PKTGEN) int pktgen_xfrm_outer_mode_output(struct xfrm_state *x, struct sk_buff *skb); #endif void xfrm_local_error(struct sk_buff *skb, int mtu); int xfrm4_extract_input(struct xfrm_state *x, struct sk_buff *skb); int xfrm4_rcv_encap(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int xfrm4_transport_finish(struct sk_buff *skb, int async); int xfrm4_rcv(struct sk_buff *skb); int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq); static inline int xfrm4_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi) { XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4 = NULL; XFRM_SPI_SKB_CB(skb)->family = AF_INET; XFRM_SPI_SKB_CB(skb)->daddroff = offsetof(struct iphdr, daddr); return xfrm_input(skb, nexthdr, spi, 0); } int xfrm4_output(struct net *net, struct sock *sk, struct sk_buff *skb); int xfrm4_output_finish(struct sock *sk, struct sk_buff *skb); int xfrm4_protocol_register(struct xfrm4_protocol *handler, unsigned char protocol); int xfrm4_protocol_deregister(struct xfrm4_protocol *handler, unsigned char protocol); int xfrm4_tunnel_register(struct xfrm_tunnel *handler, unsigned short family); int xfrm4_tunnel_deregister(struct xfrm_tunnel *handler, unsigned short family); void xfrm4_local_error(struct sk_buff *skb, u32 mtu); int xfrm6_extract_input(struct xfrm_state *x, struct sk_buff *skb); int xfrm6_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi, struct ip6_tnl *t); int xfrm6_rcv_encap(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int xfrm6_transport_finish(struct sk_buff *skb, int async); int xfrm6_rcv_tnl(struct sk_buff *skb, struct ip6_tnl *t); int xfrm6_rcv(struct sk_buff *skb); int xfrm6_input_addr(struct sk_buff *skb, xfrm_address_t *daddr, xfrm_address_t *saddr, u8 proto); void xfrm6_local_error(struct sk_buff *skb, u32 mtu); int xfrm6_protocol_register(struct xfrm6_protocol *handler, unsigned char protocol); int xfrm6_protocol_deregister(struct xfrm6_protocol *handler, unsigned char protocol); int xfrm6_tunnel_register(struct xfrm6_tunnel *handler, unsigned short family); int xfrm6_tunnel_deregister(struct xfrm6_tunnel *handler, unsigned short family); __be32 xfrm6_tunnel_alloc_spi(struct net *net, xfrm_address_t *saddr); __be32 xfrm6_tunnel_spi_lookup(struct net *net, const xfrm_address_t *saddr); int xfrm6_output(struct net *net, struct sock *sk, struct sk_buff *skb); int xfrm6_output_finish(struct sock *sk, struct sk_buff *skb); int xfrm6_find_1stfragopt(struct xfrm_state *x, struct sk_buff *skb, u8 **prevhdr); #ifdef CONFIG_XFRM void xfrm6_local_rxpmtu(struct sk_buff *skb, u32 mtu); int xfrm4_udp_encap_rcv(struct sock *sk, struct sk_buff *skb); int xfrm6_udp_encap_rcv(struct sock *sk, struct sk_buff *skb); int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen); #else static inline int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen) { return -ENOPROTOOPT; } #endif struct dst_entry *__xfrm_dst_lookup(struct net *net, int tos, int oif, const xfrm_address_t *saddr, const xfrm_address_t *daddr, int family, u32 mark); struct xfrm_policy *xfrm_policy_alloc(struct net *net, gfp_t gfp); void xfrm_policy_walk_init(struct xfrm_policy_walk *walk, u8 type); int xfrm_policy_walk(struct net *net, struct xfrm_policy_walk *walk, int (*func)(struct xfrm_policy *, int, int, void*), void *); void xfrm_policy_walk_done(struct xfrm_policy_walk *walk, struct net *net); int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl); struct xfrm_policy *xfrm_policy_bysel_ctx(struct net *net, const struct xfrm_mark *mark, u32 if_id, u8 type, int dir, struct xfrm_selector *sel, struct xfrm_sec_ctx *ctx, int delete, int *err); struct xfrm_policy *xfrm_policy_byid(struct net *net, const struct xfrm_mark *mark, u32 if_id, u8 type, int dir, u32 id, int delete, int *err); int xfrm_policy_flush(struct net *net, u8 type, bool task_valid); void xfrm_policy_hash_rebuild(struct net *net); u32 xfrm_get_acqseq(void); int verify_spi_info(u8 proto, u32 min, u32 max); int xfrm_alloc_spi(struct xfrm_state *x, u32 minspi, u32 maxspi); struct xfrm_state *xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid, u32 if_id, u8 proto, const xfrm_address_t *daddr, const xfrm_address_t *saddr, int create, unsigned short family); int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol); #ifdef CONFIG_XFRM_MIGRATE int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, const struct xfrm_migrate *m, int num_bundles, const struct xfrm_kmaddress *k, const struct xfrm_encap_tmpl *encap); struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net); struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x, struct xfrm_migrate *m, struct xfrm_encap_tmpl *encap); int xfrm_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, struct xfrm_migrate *m, int num_bundles, struct xfrm_kmaddress *k, struct net *net, struct xfrm_encap_tmpl *encap); #endif int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport); void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid); int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr); void xfrm_input_init(void); int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq); void xfrm_probe_algs(void); int xfrm_count_pfkey_auth_supported(void); int xfrm_count_pfkey_enc_supported(void); struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx); struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx); struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id); struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id); struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id); struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe); struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe); struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe); struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe); static inline bool xfrm6_addr_equal(const xfrm_address_t *a, const xfrm_address_t *b) { return ipv6_addr_equal((const struct in6_addr *)a, (const struct in6_addr *)b); } static inline bool xfrm_addr_equal(const xfrm_address_t *a, const xfrm_address_t *b, sa_family_t family) { switch (family) { default: case AF_INET: return ((__force u32)a->a4 ^ (__force u32)b->a4) == 0; case AF_INET6: return xfrm6_addr_equal(a, b); } } static inline int xfrm_policy_id2dir(u32 index) { return index & 7; } #ifdef CONFIG_XFRM static inline int xfrm_aevent_is_on(struct net *net) { struct sock *nlsk; int ret = 0; rcu_read_lock(); nlsk = rcu_dereference(net->xfrm.nlsk); if (nlsk) ret = netlink_has_listeners(nlsk, XFRMNLGRP_AEVENTS); rcu_read_unlock(); return ret; } static inline int xfrm_acquire_is_on(struct net *net) { struct sock *nlsk; int ret = 0; rcu_read_lock(); nlsk = rcu_dereference(net->xfrm.nlsk); if (nlsk) ret = netlink_has_listeners(nlsk, XFRMNLGRP_ACQUIRE); rcu_read_unlock(); return ret; } #endif static inline unsigned int aead_len(struct xfrm_algo_aead *alg) { return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); } static inline unsigned int xfrm_alg_len(const struct xfrm_algo *alg) { return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); } static inline unsigned int xfrm_alg_auth_len(const struct xfrm_algo_auth *alg) { return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); } static inline unsigned int xfrm_replay_state_esn_len(struct xfrm_replay_state_esn *replay_esn) { return sizeof(*replay_esn) + replay_esn->bmp_len * sizeof(__u32); } #ifdef CONFIG_XFRM_MIGRATE static inline int xfrm_replay_clone(struct xfrm_state *x, struct xfrm_state *orig) { x->replay_esn = kmemdup(orig->replay_esn, xfrm_replay_state_esn_len(orig->replay_esn), GFP_KERNEL); if (!x->replay_esn) return -ENOMEM; x->preplay_esn = kmemdup(orig->preplay_esn, xfrm_replay_state_esn_len(orig->preplay_esn), GFP_KERNEL); if (!x->preplay_esn) return -ENOMEM; return 0; } static inline struct xfrm_algo_aead *xfrm_algo_aead_clone(struct xfrm_algo_aead *orig) { return kmemdup(orig, aead_len(orig), GFP_KERNEL); } static inline struct xfrm_algo *xfrm_algo_clone(struct xfrm_algo *orig) { return kmemdup(orig, xfrm_alg_len(orig), GFP_KERNEL); } static inline struct xfrm_algo_auth *xfrm_algo_auth_clone(struct xfrm_algo_auth *orig) { return kmemdup(orig, xfrm_alg_auth_len(orig), GFP_KERNEL); } static inline void xfrm_states_put(struct xfrm_state **states, int n) { int i; for (i = 0; i < n; i++) xfrm_state_put(*(states + i)); } static inline void xfrm_states_delete(struct xfrm_state **states, int n) { int i; for (i = 0; i < n; i++) xfrm_state_delete(*(states + i)); } #endif #ifdef CONFIG_XFRM static inline struct xfrm_state *xfrm_input_state(struct sk_buff *skb) { struct sec_path *sp = skb_sec_path(skb); return sp->xvec[sp->len - 1]; } #endif static inline struct xfrm_offload *xfrm_offload(struct sk_buff *skb) { #ifdef CONFIG_XFRM struct sec_path *sp = skb_sec_path(skb); if (!sp || !sp->olen || sp->len != sp->olen) return NULL; return &sp->ovec[sp->olen - 1]; #else return NULL; #endif } void __init xfrm_dev_init(void); #ifdef CONFIG_XFRM_OFFLOAD void xfrm_dev_resume(struct sk_buff *skb); void xfrm_dev_backlog(struct softnet_data *sd); struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again); int xfrm_dev_state_add(struct net *net, struct xfrm_state *x, struct xfrm_user_offload *xuo); bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x); static inline void xfrm_dev_state_advance_esn(struct xfrm_state *x) { struct xfrm_state_offload *xso = &x->xso; if (xso->dev && xso->dev->xfrmdev_ops->xdo_dev_state_advance_esn) xso->dev->xfrmdev_ops->xdo_dev_state_advance_esn(x); } static inline bool xfrm_dst_offload_ok(struct dst_entry *dst) { struct xfrm_state *x = dst->xfrm; struct xfrm_dst *xdst; if (!x || !x->type_offload) return false; xdst = (struct xfrm_dst *) dst; if (!x->xso.offload_handle && !xdst->child->xfrm) return true; if (x->xso.offload_handle && (x->xso.dev == xfrm_dst_path(dst)->dev) && !xdst->child->xfrm) return true; return false; } static inline void xfrm_dev_state_delete(struct xfrm_state *x) { struct xfrm_state_offload *xso = &x->xso; if (xso->dev) xso->dev->xfrmdev_ops->xdo_dev_state_delete(x); } static inline void xfrm_dev_state_free(struct xfrm_state *x) { struct xfrm_state_offload *xso = &x->xso; struct net_device *dev = xso->dev; if (dev && dev->xfrmdev_ops) { if (dev->xfrmdev_ops->xdo_dev_state_free) dev->xfrmdev_ops->xdo_dev_state_free(x); xso->dev = NULL; dev_put(dev); } } #else static inline void xfrm_dev_resume(struct sk_buff *skb) { } static inline void xfrm_dev_backlog(struct softnet_data *sd) { } static inline struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again) { return skb; } static inline int xfrm_dev_state_add(struct net *net, struct xfrm_state *x, struct xfrm_user_offload *xuo) { return 0; } static inline void xfrm_dev_state_delete(struct xfrm_state *x) { } static inline void xfrm_dev_state_free(struct xfrm_state *x) { } static inline bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x) { return false; } static inline void xfrm_dev_state_advance_esn(struct xfrm_state *x) { } static inline bool xfrm_dst_offload_ok(struct dst_entry *dst) { return false; } #endif static inline int xfrm_mark_get(struct nlattr **attrs, struct xfrm_mark *m) { if (attrs[XFRMA_MARK]) memcpy(m, nla_data(attrs[XFRMA_MARK]), sizeof(struct xfrm_mark)); else m->v = m->m = 0; return m->v & m->m; } static inline int xfrm_mark_put(struct sk_buff *skb, const struct xfrm_mark *m) { int ret = 0; if (m->m | m->v) ret = nla_put(skb, XFRMA_MARK, sizeof(struct xfrm_mark), m); return ret; } static inline __u32 xfrm_smark_get(__u32 mark, struct xfrm_state *x) { struct xfrm_mark *m = &x->props.smark; return (m->v & m->m) | (mark & ~m->m); } static inline int xfrm_if_id_put(struct sk_buff *skb, __u32 if_id) { int ret = 0; if (if_id) ret = nla_put_u32(skb, XFRMA_IF_ID, if_id); return ret; } static inline int xfrm_tunnel_check(struct sk_buff *skb, struct xfrm_state *x, unsigned int family) { bool tunnel = false; switch(family) { case AF_INET: if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4) tunnel = true; break; case AF_INET6: if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6) tunnel = true; break; } if (tunnel && !(x->outer_mode.flags & XFRM_MODE_FLAG_TUNNEL)) return -EINVAL; return 0; } extern const int xfrm_msg_min[XFRM_NR_MSGTYPES]; extern const struct nla_policy xfrma_policy[XFRMA_MAX+1]; struct xfrm_translator { /* Allocate frag_list and put compat translation there */ int (*alloc_compat)(struct sk_buff *skb, const struct nlmsghdr *src); /* Allocate nlmsg with 64-bit translaton of received 32-bit message */ struct nlmsghdr *(*rcv_msg_compat)(const struct nlmsghdr *nlh, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack); /* Translate 32-bit user_policy from sockptr */ int (*xlate_user_policy_sockptr)(u8 **pdata32, int optlen); struct module *owner; }; #if IS_ENABLED(CONFIG_XFRM_USER_COMPAT) extern int xfrm_register_translator(struct xfrm_translator *xtr); extern int xfrm_unregister_translator(struct xfrm_translator *xtr); extern struct xfrm_translator *xfrm_get_translator(void); extern void xfrm_put_translator(struct xfrm_translator *xtr); #else static inline struct xfrm_translator *xfrm_get_translator(void) { return NULL; } static inline void xfrm_put_translator(struct xfrm_translator *xtr) { } #endif #if IS_ENABLED(CONFIG_IPV6) static inline bool xfrm6_local_dontfrag(const struct sock *sk) { int proto; if (!sk || sk->sk_family != AF_INET6) return false; proto = sk->sk_protocol; if (proto == IPPROTO_UDP || proto == IPPROTO_RAW) return inet6_sk(sk)->dontfrag; return false; } #endif #endif /* _NET_XFRM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _IPV6_FRAG_H #define _IPV6_FRAG_H #include <linux/kernel.h> #include <net/addrconf.h> #include <net/ipv6.h> #include <net/inet_frag.h> enum ip6_defrag_users { IP6_DEFRAG_LOCAL_DELIVER, IP6_DEFRAG_CONNTRACK_IN, __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX, IP6_DEFRAG_CONNTRACK_OUT, __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX, IP6_DEFRAG_CONNTRACK_BRIDGE_IN, __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX, }; /* * Equivalent of ipv4 struct ip */ struct frag_queue { struct inet_frag_queue q; int iif; __u16 nhoffset; u8 ecn; }; #if IS_ENABLED(CONFIG_IPV6) static inline void ip6frag_init(struct inet_frag_queue *q, const void *a) { struct frag_queue *fq = container_of(q, struct frag_queue, q); const struct frag_v6_compare_key *key = a; q->key.v6 = *key; fq->ecn = 0; } static inline u32 ip6frag_key_hashfn(const void *data, u32 len, u32 seed) { return jhash2(data, sizeof(struct frag_v6_compare_key) / sizeof(u32), seed); } static inline u32 ip6frag_obj_hashfn(const void *data, u32 len, u32 seed) { const struct inet_frag_queue *fq = data; return jhash2((const u32 *)&fq->key.v6, sizeof(struct frag_v6_compare_key) / sizeof(u32), seed); } static inline int ip6frag_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr) { const struct frag_v6_compare_key *key = arg->key; const struct inet_frag_queue *fq = ptr; return !!memcmp(&fq->key, key, sizeof(*key)); } static inline void ip6frag_expire_frag_queue(struct net *net, struct frag_queue *fq) { struct net_device *dev = NULL; struct sk_buff *head; rcu_read_lock(); if (fq->q.fqdir->dead) goto out_rcu_unlock; spin_lock(&fq->q.lock); if (fq->q.flags & INET_FRAG_COMPLETE) goto out; inet_frag_kill(&fq->q); dev = dev_get_by_index_rcu(net, fq->iif); if (!dev) goto out; __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMFAILS); __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMTIMEOUT); /* Don't send error if the first segment did not arrive. */ if (!(fq->q.flags & INET_FRAG_FIRST_IN)) goto out; /* sk_buff::dev and sk_buff::rbnode are unionized. So we * pull the head out of the tree in order to be able to * deal with head->dev. */ head = inet_frag_pull_head(&fq->q); if (!head) goto out; head->dev = dev; spin_unlock(&fq->q.lock); icmpv6_send(head, ICMPV6_TIME_EXCEED, ICMPV6_EXC_FRAGTIME, 0); kfree_skb(head); goto out_rcu_unlock; out: spin_unlock(&fq->q.lock); out_rcu_unlock: rcu_read_unlock(); inet_frag_put(&fq->q); } /* Check if the upper layer header is truncated in the first fragment. */ static inline bool ipv6frag_thdr_truncated(struct sk_buff *skb, int start, u8 *nexthdrp) { u8 nexthdr = *nexthdrp; __be16 frag_off; int offset; offset = ipv6_skip_exthdr(skb, start, &nexthdr, &frag_off); if (offset < 0 || (frag_off & htons(IP6_OFFSET))) return false; switch (nexthdr) { case NEXTHDR_TCP: offset += sizeof(struct tcphdr); break; case NEXTHDR_UDP: offset += sizeof(struct udphdr); break; case NEXTHDR_ICMP: offset += sizeof(struct icmp6hdr); break; default: offset += 1; } if (offset > skb->len) return true; return false; } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SPECIAL_INSNS_H #define _ASM_X86_SPECIAL_INSNS_H #ifdef __KERNEL__ #include <asm/nops.h> #include <asm/processor-flags.h> #include <linux/irqflags.h> #include <linux/jump_label.h> /* * The compiler should not reorder volatile asm statements with respect to each * other: they should execute in program order. However GCC 4.9.x and 5.x have * a bug (which was fixed in 8.1, 7.3 and 6.5) where they might reorder * volatile asm. The write functions are not affected since they have memory * clobbers preventing reordering. To prevent reads from being reordered with * respect to writes, use a dummy memory operand. */ #define __FORCE_ORDER "m"(*(unsigned int *)0x1000UL) void native_write_cr0(unsigned long val); static inline unsigned long native_read_cr0(void) { unsigned long val; asm volatile("mov %%cr0,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static __always_inline unsigned long native_read_cr2(void) { unsigned long val; asm volatile("mov %%cr2,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static __always_inline void native_write_cr2(unsigned long val) { asm volatile("mov %0,%%cr2": : "r" (val) : "memory"); } static inline unsigned long __native_read_cr3(void) { unsigned long val; asm volatile("mov %%cr3,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static inline void native_write_cr3(unsigned long val) { asm volatile("mov %0,%%cr3": : "r" (val) : "memory"); } static inline unsigned long native_read_cr4(void) { unsigned long val; #ifdef CONFIG_X86_32 /* * This could fault if CR4 does not exist. Non-existent CR4 * is functionally equivalent to CR4 == 0. Keep it simple and pretend * that CR4 == 0 on CPUs that don't have CR4. */ asm volatile("1: mov %%cr4, %0\n" "2:\n" _ASM_EXTABLE(1b, 2b) : "=r" (val) : "0" (0), __FORCE_ORDER); #else /* CR4 always exists on x86_64. */ asm volatile("mov %%cr4,%0\n\t" : "=r" (val) : __FORCE_ORDER); #endif return val; } void native_write_cr4(unsigned long val); #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS static inline u32 rdpkru(void) { u32 ecx = 0; u32 edx, pkru; /* * "rdpkru" instruction. Places PKRU contents in to EAX, * clears EDX and requires that ecx=0. */ asm volatile(".byte 0x0f,0x01,0xee\n\t" : "=a" (pkru), "=d" (edx) : "c" (ecx)); return pkru; } static inline void wrpkru(u32 pkru) { u32 ecx = 0, edx = 0; /* * "wrpkru" instruction. Loads contents in EAX to PKRU, * requires that ecx = edx = 0. */ asm volatile(".byte 0x0f,0x01,0xef\n\t" : : "a" (pkru), "c"(ecx), "d"(edx)); } static inline void __write_pkru(u32 pkru) { /* * WRPKRU is relatively expensive compared to RDPKRU. * Avoid WRPKRU when it would not change the value. */ if (pkru == rdpkru()) return; wrpkru(pkru); } #else static inline u32 rdpkru(void) { return 0; } static inline void __write_pkru(u32 pkru) { } #endif static inline void native_wbinvd(void) { asm volatile("wbinvd": : :"memory"); } extern asmlinkage void asm_load_gs_index(unsigned int selector); static inline void native_load_gs_index(unsigned int selector) { unsigned long flags; local_irq_save(flags); asm_load_gs_index(selector); local_irq_restore(flags); } static inline unsigned long __read_cr4(void) { return native_read_cr4(); } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else static inline unsigned long read_cr0(void) { return native_read_cr0(); } static inline void write_cr0(unsigned long x) { native_write_cr0(x); } static __always_inline unsigned long read_cr2(void) { return native_read_cr2(); } static __always_inline void write_cr2(unsigned long x) { native_write_cr2(x); } /* * Careful! CR3 contains more than just an address. You probably want * read_cr3_pa() instead. */ static inline unsigned long __read_cr3(void) { return __native_read_cr3(); } static inline void write_cr3(unsigned long x) { native_write_cr3(x); } static inline void __write_cr4(unsigned long x) { native_write_cr4(x); } static inline void wbinvd(void) { native_wbinvd(); } #ifdef CONFIG_X86_64 static inline void load_gs_index(unsigned int selector) { native_load_gs_index(selector); } #endif #endif /* CONFIG_PARAVIRT_XXL */ static inline void clflush(volatile void *__p) { asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p)); } static inline void clflushopt(volatile void *__p) { alternative_io(".byte " __stringify(NOP_DS_PREFIX) "; clflush %P0", ".byte 0x66; clflush %P0", X86_FEATURE_CLFLUSHOPT, "+m" (*(volatile char __force *)__p)); } static inline void clwb(volatile void *__p) { volatile struct { char x[64]; } *p = __p; asm volatile(ALTERNATIVE_2( ".byte " __stringify(NOP_DS_PREFIX) "; clflush (%[pax])", ".byte 0x66; clflush (%[pax])", /* clflushopt (%%rax) */ X86_FEATURE_CLFLUSHOPT, ".byte 0x66, 0x0f, 0xae, 0x30", /* clwb (%%rax) */ X86_FEATURE_CLWB) : [p] "+m" (*p) : [pax] "a" (p)); } #define nop() asm volatile ("nop") static inline void serialize(void) { /* Instruction opcode for SERIALIZE; supported in binutils >= 2.35. */ asm volatile(".byte 0xf, 0x1, 0xe8" ::: "memory"); } /* The dst parameter must be 64-bytes aligned */ static inline void movdir64b(void *dst, const void *src) { const struct { char _[64]; } *__src = src; struct { char _[64]; } *__dst = dst; /* * MOVDIR64B %(rdx), rax. * * Both __src and __dst must be memory constraints in order to tell the * compiler that no other memory accesses should be reordered around * this one. * * Also, both must be supplied as lvalues because this tells * the compiler what the object is (its size) the instruction accesses. * I.e., not the pointers but what they point to, thus the deref'ing '*'. */ asm volatile(".byte 0x66, 0x0f, 0x38, 0xf8, 0x02" : "+m" (*__dst) : "m" (*__src), "a" (__dst), "d" (__src)); } /** * enqcmds - Enqueue a command in supervisor (CPL0) mode * @dst: destination, in MMIO space (must be 512-bit aligned) * @src: 512 bits memory operand * * The ENQCMDS instruction allows software to write a 512-bit command to * a 512-bit-aligned special MMIO region that supports the instruction. * A return status is loaded into the ZF flag in the RFLAGS register. * ZF = 0 equates to success, and ZF = 1 indicates retry or error. * * This function issues the ENQCMDS instruction to submit data from * kernel space to MMIO space, in a unit of 512 bits. Order of data access * is not guaranteed, nor is a memory barrier performed afterwards. It * returns 0 on success and -EAGAIN on failure. * * Warning: Do not use this helper unless your driver has checked that the * ENQCMDS instruction is supported on the platform and the device accepts * ENQCMDS. */ static inline int enqcmds(void __iomem *dst, const void *src) { const struct { char _[64]; } *__src = src; struct { char _[64]; } __iomem *__dst = dst; bool zf; /* * ENQCMDS %(rdx), rax * * See movdir64b()'s comment on operand specification. */ asm volatile(".byte 0xf3, 0x0f, 0x38, 0xf8, 0x02, 0x66, 0x90" CC_SET(z) : CC_OUT(z) (zf), "+m" (*__dst) : "m" (*__src), "a" (__dst), "d" (__src)); /* Submission failure is indicated via EFLAGS.ZF=1 */ if (zf) return -EAGAIN; return 0; } #endif /* __KERNEL__ */ #endif /* _ASM_X86_SPECIAL_INSNS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef _INPUT_MT_H #define _INPUT_MT_H /* * Input Multitouch Library * * Copyright (c) 2010 Henrik Rydberg */ #include <linux/input.h> #define TRKID_MAX 0xffff #define INPUT_MT_POINTER 0x0001 /* pointer device, e.g. trackpad */ #define INPUT_MT_DIRECT 0x0002 /* direct device, e.g. touchscreen */ #define INPUT_MT_DROP_UNUSED 0x0004 /* drop contacts not seen in frame */ #define INPUT_MT_TRACK 0x0008 /* use in-kernel tracking */ #define INPUT_MT_SEMI_MT 0x0010 /* semi-mt device, finger count handled manually */ /** * struct input_mt_slot - represents the state of an input MT slot * @abs: holds current values of ABS_MT axes for this slot * @frame: last frame at which input_mt_report_slot_state() was called * @key: optional driver designation of this slot */ struct input_mt_slot { int abs[ABS_MT_LAST - ABS_MT_FIRST + 1]; unsigned int frame; unsigned int key; }; /** * struct input_mt - state of tracked contacts * @trkid: stores MT tracking ID for the next contact * @num_slots: number of MT slots the device uses * @slot: MT slot currently being transmitted * @flags: input_mt operation flags * @frame: increases every time input_mt_sync_frame() is called * @red: reduced cost matrix for in-kernel tracking * @slots: array of slots holding current values of tracked contacts */ struct input_mt { int trkid; int num_slots; int slot; unsigned int flags; unsigned int frame; int *red; struct input_mt_slot slots[]; }; static inline void input_mt_set_value(struct input_mt_slot *slot, unsigned code, int value) { slot->abs[code - ABS_MT_FIRST] = value; } static inline int input_mt_get_value(const struct input_mt_slot *slot, unsigned code) { return slot->abs[code - ABS_MT_FIRST]; } static inline bool input_mt_is_active(const struct input_mt_slot *slot) { return input_mt_get_value(slot, ABS_MT_TRACKING_ID) >= 0; } static inline bool input_mt_is_used(const struct input_mt *mt, const struct input_mt_slot *slot) { return slot->frame == mt->frame; } int input_mt_init_slots(struct input_dev *dev, unsigned int num_slots, unsigned int flags); void input_mt_destroy_slots(struct input_dev *dev); static inline int input_mt_new_trkid(struct input_mt *mt) { return mt->trkid++ & TRKID_MAX; } static inline void input_mt_slot(struct input_dev *dev, int slot) { input_event(dev, EV_ABS, ABS_MT_SLOT, slot); } static inline bool input_is_mt_value(int axis) { return axis >= ABS_MT_FIRST && axis <= ABS_MT_LAST; } static inline bool input_is_mt_axis(int axis) { return axis == ABS_MT_SLOT || input_is_mt_value(axis); } bool input_mt_report_slot_state(struct input_dev *dev, unsigned int tool_type, bool active); static inline void input_mt_report_slot_inactive(struct input_dev *dev) { input_mt_report_slot_state(dev, 0, false); } void input_mt_report_finger_count(struct input_dev *dev, int count); void input_mt_report_pointer_emulation(struct input_dev *dev, bool use_count); void input_mt_drop_unused(struct input_dev *dev); void input_mt_sync_frame(struct input_dev *dev); /** * struct input_mt_pos - contact position * @x: horizontal coordinate * @y: vertical coordinate */ struct input_mt_pos { s16 x, y; }; int input_mt_assign_slots(struct input_dev *dev, int *slots, const struct input_mt_pos *pos, int num_pos, int dmax); int input_mt_get_slot_by_key(struct input_dev *dev, int key); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 /* * include/linux/ktime.h * * ktime_t - nanosecond-resolution time format. * * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar * * data type definitions, declarations, prototypes and macros. * * Started by: Thomas Gleixner and Ingo Molnar * * Credits: * * Roman Zippel provided the ideas and primary code snippets of * the ktime_t union and further simplifications of the original * code. * * For licencing details see kernel-base/COPYING */ #ifndef _LINUX_KTIME_H #define _LINUX_KTIME_H #include <linux/time.h> #include <linux/jiffies.h> #include <asm/bug.h> /* Nanosecond scalar representation for kernel time values */ typedef s64 ktime_t; /** * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value * @secs: seconds to set * @nsecs: nanoseconds to set * * Return: The ktime_t representation of the value. */ static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs) { if (unlikely(secs >= KTIME_SEC_MAX)) return KTIME_MAX; return secs * NSEC_PER_SEC + (s64)nsecs; } /* Subtract two ktime_t variables. rem = lhs -rhs: */ #define ktime_sub(lhs, rhs) ((lhs) - (rhs)) /* Add two ktime_t variables. res = lhs + rhs: */ #define ktime_add(lhs, rhs) ((lhs) + (rhs)) /* * Same as ktime_add(), but avoids undefined behaviour on overflow; however, * this means that you must check the result for overflow yourself. */ #define ktime_add_unsafe(lhs, rhs) ((u64) (lhs) + (rhs)) /* * Add a ktime_t variable and a scalar nanosecond value. * res = kt + nsval: */ #define ktime_add_ns(kt, nsval) ((kt) + (nsval)) /* * Subtract a scalar nanosecod from a ktime_t variable * res = kt - nsval: */ #define ktime_sub_ns(kt, nsval) ((kt) - (nsval)) /* convert a timespec64 to ktime_t format: */ static inline ktime_t timespec64_to_ktime(struct timespec64 ts) { return ktime_set(ts.tv_sec, ts.tv_nsec); } /* Map the ktime_t to timespec conversion to ns_to_timespec function */ #define ktime_to_timespec64(kt) ns_to_timespec64((kt)) /* Convert ktime_t to nanoseconds */ static inline s64 ktime_to_ns(const ktime_t kt) { return kt; } /** * ktime_compare - Compares two ktime_t variables for less, greater or equal * @cmp1: comparable1 * @cmp2: comparable2 * * Return: ... * cmp1 < cmp2: return <0 * cmp1 == cmp2: return 0 * cmp1 > cmp2: return >0 */ static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2) { if (cmp1 < cmp2) return -1; if (cmp1 > cmp2) return 1; return 0; } /** * ktime_after - Compare if a ktime_t value is bigger than another one. * @cmp1: comparable1 * @cmp2: comparable2 * * Return: true if cmp1 happened after cmp2. */ static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2) { return ktime_compare(cmp1, cmp2) > 0; } /** * ktime_before - Compare if a ktime_t value is smaller than another one. * @cmp1: comparable1 * @cmp2: comparable2 * * Return: true if cmp1 happened before cmp2. */ static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2) { return ktime_compare(cmp1, cmp2) < 0; } #if BITS_PER_LONG < 64 extern s64 __ktime_divns(const ktime_t kt, s64 div); static inline s64 ktime_divns(const ktime_t kt, s64 div) { /* * Negative divisors could cause an inf loop, * so bug out here. */ BUG_ON(div < 0); if (__builtin_constant_p(div) && !(div >> 32)) { s64 ns = kt; u64 tmp = ns < 0 ? -ns : ns; do_div(tmp, div); return ns < 0 ? -tmp : tmp; } else { return __ktime_divns(kt, div); } } #else /* BITS_PER_LONG < 64 */ static inline s64 ktime_divns(const ktime_t kt, s64 div) { /* * 32-bit implementation cannot handle negative divisors, * so catch them on 64bit as well. */ WARN_ON(div < 0); return kt / div; } #endif static inline s64 ktime_to_us(const ktime_t kt) { return ktime_divns(kt, NSEC_PER_USEC); } static inline s64 ktime_to_ms(const ktime_t kt) { return ktime_divns(kt, NSEC_PER_MSEC); } static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier) { return ktime_to_us(ktime_sub(later, earlier)); } static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier) { return ktime_to_ms(ktime_sub(later, earlier)); } static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec) { return ktime_add_ns(kt, usec * NSEC_PER_USEC); } static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec) { return ktime_add_ns(kt, msec * NSEC_PER_MSEC); } static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec) { return ktime_sub_ns(kt, usec * NSEC_PER_USEC); } static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec) { return ktime_sub_ns(kt, msec * NSEC_PER_MSEC); } extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs); /** * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64 * format only if the variable contains data * @kt: the ktime_t variable to convert * @ts: the timespec variable to store the result in * * Return: %true if there was a successful conversion, %false if kt was 0. */ static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt, struct timespec64 *ts) { if (kt) { *ts = ktime_to_timespec64(kt); return true; } else { return false; } } #include <vdso/ktime.h> static inline ktime_t ns_to_ktime(u64 ns) { return ns; } static inline ktime_t ms_to_ktime(u64 ms) { return ms * NSEC_PER_MSEC; } # include <linux/timekeeping.h> # include <linux/timekeeping32.h> #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_GENHD_H #define _LINUX_GENHD_H /* * genhd.h Copyright (C) 1992 Drew Eckhardt * Generic hard disk header file by * Drew Eckhardt * * <drew@colorado.edu> */ #include <linux/types.h> #include <linux/kdev_t.h> #include <linux/rcupdate.h> #include <linux/slab.h> #include <linux/percpu-refcount.h> #include <linux/uuid.h> #include <linux/blk_types.h> #include <asm/local.h> #define dev_to_disk(device) container_of((device), struct gendisk, part0.__dev) #define dev_to_part(device) container_of((device), struct hd_struct, __dev) #define disk_to_dev(disk) (&(disk)->part0.__dev) #define part_to_dev(part) (&((part)->__dev)) extern const struct device_type disk_type; extern struct device_type part_type; extern struct class block_class; #define DISK_MAX_PARTS 256 #define DISK_NAME_LEN 32 #include <linux/major.h> #include <linux/device.h> #include <linux/smp.h> #include <linux/string.h> #include <linux/fs.h> #include <linux/workqueue.h> #define PARTITION_META_INFO_VOLNAMELTH 64 /* * Enough for the string representation of any kind of UUID plus NULL. * EFI UUID is 36 characters. MSDOS UUID is 11 characters. */ #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) struct partition_meta_info { char uuid[PARTITION_META_INFO_UUIDLTH]; u8 volname[PARTITION_META_INFO_VOLNAMELTH]; }; struct hd_struct { sector_t start_sect; /* * nr_sects is protected by sequence counter. One might extend a * partition while IO is happening to it and update of nr_sects * can be non-atomic on 32bit machines with 64bit sector_t. */ sector_t nr_sects; #if BITS_PER_LONG==32 && defined(CONFIG_SMP) seqcount_t nr_sects_seq; #endif unsigned long stamp; struct disk_stats __percpu *dkstats; struct percpu_ref ref; struct device __dev; struct kobject *holder_dir; int policy, partno; struct partition_meta_info *info; #ifdef CONFIG_FAIL_MAKE_REQUEST int make_it_fail; #endif struct rcu_work rcu_work; }; /** * DOC: genhd capability flags * * ``GENHD_FL_REMOVABLE`` (0x0001): indicates that the block device * gives access to removable media. * When set, the device remains present even when media is not * inserted. * Must not be set for devices which are removed entirely when the * media is removed. * * ``GENHD_FL_CD`` (0x0008): the block device is a CD-ROM-style * device. * Affects responses to the ``CDROM_GET_CAPABILITY`` ioctl. * * ``GENHD_FL_UP`` (0x0010): indicates that the block device is "up", * with a similar meaning to network interfaces. * * ``GENHD_FL_SUPPRESS_PARTITION_INFO`` (0x0020): don't include * partition information in ``/proc/partitions`` or in the output of * printk_all_partitions(). * Used for the null block device and some MMC devices. * * ``GENHD_FL_EXT_DEVT`` (0x0040): the driver supports extended * dynamic ``dev_t``, i.e. it wants extended device numbers * (``BLOCK_EXT_MAJOR``). * This affects the maximum number of partitions. * * ``GENHD_FL_NATIVE_CAPACITY`` (0x0080): based on information in the * partition table, the device's capacity has been extended to its * native capacity; i.e. the device has hidden capacity used by one * of the partitions (this is a flag used so that native capacity is * only ever unlocked once). * * ``GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE`` (0x0100): event polling is * blocked whenever a writer holds an exclusive lock. * * ``GENHD_FL_NO_PART_SCAN`` (0x0200): partition scanning is disabled. * Used for loop devices in their default settings and some MMC * devices. * * ``GENHD_FL_HIDDEN`` (0x0400): the block device is hidden; it * doesn't produce events, doesn't appear in sysfs, and doesn't have * an associated ``bdev``. * Implies ``GENHD_FL_SUPPRESS_PARTITION_INFO`` and * ``GENHD_FL_NO_PART_SCAN``. * Used for multipath devices. */ #define GENHD_FL_REMOVABLE 0x0001 /* 2 is unused (used to be GENHD_FL_DRIVERFS) */ /* 4 is unused (used to be GENHD_FL_MEDIA_CHANGE_NOTIFY) */ #define GENHD_FL_CD 0x0008 #define GENHD_FL_UP 0x0010 #define GENHD_FL_SUPPRESS_PARTITION_INFO 0x0020 #define GENHD_FL_EXT_DEVT 0x0040 #define GENHD_FL_NATIVE_CAPACITY 0x0080 #define GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE 0x0100 #define GENHD_FL_NO_PART_SCAN 0x0200 #define GENHD_FL_HIDDEN 0x0400 enum { DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ }; enum { /* Poll even if events_poll_msecs is unset */ DISK_EVENT_FLAG_POLL = 1 << 0, /* Forward events to udev */ DISK_EVENT_FLAG_UEVENT = 1 << 1, }; struct disk_part_tbl { struct rcu_head rcu_head; int len; struct hd_struct __rcu *last_lookup; struct hd_struct __rcu *part[]; }; struct disk_events; struct badblocks; struct blk_integrity { const struct blk_integrity_profile *profile; unsigned char flags; unsigned char tuple_size; unsigned char interval_exp; unsigned char tag_size; }; struct gendisk { /* major, first_minor and minors are input parameters only, * don't use directly. Use disk_devt() and disk_max_parts(). */ int major; /* major number of driver */ int first_minor; int minors; /* maximum number of minors, =1 for * disks that can't be partitioned. */ char disk_name[DISK_NAME_LEN]; /* name of major driver */ unsigned short events; /* supported events */ unsigned short event_flags; /* flags related to event processing */ /* Array of pointers to partitions indexed by partno. * Protected with matching bdev lock but stat and other * non-critical accesses use RCU. Always access through * helpers. */ struct disk_part_tbl __rcu *part_tbl; struct hd_struct part0; const struct block_device_operations *fops; struct request_queue *queue; void *private_data; int flags; unsigned long state; #define GD_NEED_PART_SCAN 0 struct rw_semaphore lookup_sem; struct kobject *slave_dir; struct timer_rand_state *random; atomic_t sync_io; /* RAID */ struct disk_events *ev; #ifdef CONFIG_BLK_DEV_INTEGRITY struct kobject integrity_kobj; #endif /* CONFIG_BLK_DEV_INTEGRITY */ #if IS_ENABLED(CONFIG_CDROM) struct cdrom_device_info *cdi; #endif int node_id; struct badblocks *bb; struct lockdep_map lockdep_map; }; #if IS_REACHABLE(CONFIG_CDROM) #define disk_to_cdi(disk) ((disk)->cdi) #else #define disk_to_cdi(disk) NULL #endif static inline struct gendisk *part_to_disk(struct hd_struct *part) { if (likely(part)) { if (part->partno) return dev_to_disk(part_to_dev(part)->parent); else return dev_to_disk(part_to_dev(part)); } return NULL; } static inline int disk_max_parts(struct gendisk *disk) { if (disk->flags & GENHD_FL_EXT_DEVT) return DISK_MAX_PARTS; return disk->minors; } static inline bool disk_part_scan_enabled(struct gendisk *disk) { return disk_max_parts(disk) > 1 && !(disk->flags & GENHD_FL_NO_PART_SCAN); } static inline dev_t disk_devt(struct gendisk *disk) { return MKDEV(disk->major, disk->first_minor); } static inline dev_t part_devt(struct hd_struct *part) { return part_to_dev(part)->devt; } extern struct hd_struct *__disk_get_part(struct gendisk *disk, int partno); extern struct hd_struct *disk_get_part(struct gendisk *disk, int partno); static inline void disk_put_part(struct hd_struct *part) { if (likely(part)) put_device(part_to_dev(part)); } static inline void hd_sects_seq_init(struct hd_struct *p) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) seqcount_init(&p->nr_sects_seq); #endif } /* * Smarter partition iterator without context limits. */ #define DISK_PITER_REVERSE (1 << 0) /* iterate in the reverse direction */ #define DISK_PITER_INCL_EMPTY (1 << 1) /* include 0-sized parts */ #define DISK_PITER_INCL_PART0 (1 << 2) /* include partition 0 */ #define DISK_PITER_INCL_EMPTY_PART0 (1 << 3) /* include empty partition 0 */ struct disk_part_iter { struct gendisk *disk; struct hd_struct *part; int idx; unsigned int flags; }; extern void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, unsigned int flags); extern struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter); extern void disk_part_iter_exit(struct disk_part_iter *piter); extern bool disk_has_partitions(struct gendisk *disk); /* block/genhd.c */ extern void device_add_disk(struct device *parent, struct gendisk *disk, const struct attribute_group **groups); static inline void add_disk(struct gendisk *disk) { device_add_disk(NULL, disk, NULL); } extern void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk); static inline void add_disk_no_queue_reg(struct gendisk *disk) { device_add_disk_no_queue_reg(NULL, disk); } extern void del_gendisk(struct gendisk *gp); extern struct gendisk *get_gendisk(dev_t dev, int *partno); extern struct block_device *bdget_disk(struct gendisk *disk, int partno); extern void set_device_ro(struct block_device *bdev, int flag); extern void set_disk_ro(struct gendisk *disk, int flag); static inline int get_disk_ro(struct gendisk *disk) { return disk->part0.policy; } extern void disk_block_events(struct gendisk *disk); extern void disk_unblock_events(struct gendisk *disk); extern void disk_flush_events(struct gendisk *disk, unsigned int mask); bool set_capacity_revalidate_and_notify(struct gendisk *disk, sector_t size, bool update_bdev); /* drivers/char/random.c */ extern void add_disk_randomness(struct gendisk *disk) __latent_entropy; extern void rand_initialize_disk(struct gendisk *disk); static inline sector_t get_start_sect(struct block_device *bdev) { return bdev->bd_part->start_sect; } static inline sector_t get_capacity(struct gendisk *disk) { return disk->part0.nr_sects; } static inline void set_capacity(struct gendisk *disk, sector_t size) { disk->part0.nr_sects = size; } int bdev_disk_changed(struct block_device *bdev, bool invalidate); int blk_add_partitions(struct gendisk *disk, struct block_device *bdev); int blk_drop_partitions(struct block_device *bdev); extern struct gendisk *__alloc_disk_node(int minors, int node_id); extern struct kobject *get_disk_and_module(struct gendisk *disk); extern void put_disk(struct gendisk *disk); extern void put_disk_and_module(struct gendisk *disk); extern void blk_register_region(dev_t devt, unsigned long range, struct module *module, struct kobject *(*probe)(dev_t, int *, void *), int (*lock)(dev_t, void *), void *data); extern void blk_unregister_region(dev_t devt, unsigned long range); #define alloc_disk_node(minors, node_id) \ ({ \ static struct lock_class_key __key; \ const char *__name; \ struct gendisk *__disk; \ \ __name = "(gendisk_completion)"#minors"("#node_id")"; \ \ __disk = __alloc_disk_node(minors, node_id); \ \ if (__disk) \ lockdep_init_map(&__disk->lockdep_map, __name, &__key, 0); \ \ __disk; \ }) #define alloc_disk(minors) alloc_disk_node(minors, NUMA_NO_NODE) int register_blkdev(unsigned int major, const char *name); void unregister_blkdev(unsigned int major, const char *name); void revalidate_disk_size(struct gendisk *disk, bool verbose); bool bdev_check_media_change(struct block_device *bdev); int __invalidate_device(struct block_device *bdev, bool kill_dirty); void bd_set_nr_sectors(struct block_device *bdev, sector_t sectors); /* for drivers/char/raw.c: */ int blkdev_ioctl(struct block_device *, fmode_t, unsigned, unsigned long); long compat_blkdev_ioctl(struct file *, unsigned, unsigned long); #ifdef CONFIG_SYSFS int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); #else static inline int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) { return 0; } static inline void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) { } #endif /* CONFIG_SYSFS */ #ifdef CONFIG_BLOCK void printk_all_partitions(void); dev_t blk_lookup_devt(const char *name, int partno); #else /* CONFIG_BLOCK */ static inline void printk_all_partitions(void) { } static inline dev_t blk_lookup_devt(const char *name, int partno) { dev_t devt = MKDEV(0, 0); return devt; } #endif /* CONFIG_BLOCK */ #endif /* _LINUX_GENHD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_CHECKSUM_64_H #define _ASM_X86_CHECKSUM_64_H /* * Checksums for x86-64 * Copyright 2002 by Andi Kleen, SuSE Labs * with some code from asm-x86/checksum.h */ #include <linux/compiler.h> #include <linux/uaccess.h> #include <asm/byteorder.h> /** * csum_fold - Fold and invert a 32bit checksum. * sum: 32bit unfolded sum * * Fold a 32bit running checksum to 16bit and invert it. This is usually * the last step before putting a checksum into a packet. * Make sure not to mix with 64bit checksums. */ static inline __sum16 csum_fold(__wsum sum) { asm(" addl %1,%0\n" " adcl $0xffff,%0" : "=r" (sum) : "r" ((__force u32)sum << 16), "0" ((__force u32)sum & 0xffff0000)); return (__force __sum16)(~(__force u32)sum >> 16); } /* * This is a version of ip_compute_csum() optimized for IP headers, * which always checksum on 4 octet boundaries. * * By Jorge Cwik <jorge@laser.satlink.net>, adapted for linux by * Arnt Gulbrandsen. */ /** * ip_fast_csum - Compute the IPv4 header checksum efficiently. * iph: ipv4 header * ihl: length of header / 4 */ static inline __sum16 ip_fast_csum(const void *iph, unsigned int ihl) { unsigned int sum; asm(" movl (%1), %0\n" " subl $4, %2\n" " jbe 2f\n" " addl 4(%1), %0\n" " adcl 8(%1), %0\n" " adcl 12(%1), %0\n" "1: adcl 16(%1), %0\n" " lea 4(%1), %1\n" " decl %2\n" " jne 1b\n" " adcl $0, %0\n" " movl %0, %2\n" " shrl $16, %0\n" " addw %w2, %w0\n" " adcl $0, %0\n" " notl %0\n" "2:" /* Since the input registers which are loaded with iph and ihl are modified, we must also specify them as outputs, or gcc will assume they contain their original values. */ : "=r" (sum), "=r" (iph), "=r" (ihl) : "1" (iph), "2" (ihl) : "memory"); return (__force __sum16)sum; } /** * csum_tcpup_nofold - Compute an IPv4 pseudo header checksum. * @saddr: source address * @daddr: destination address * @len: length of packet * @proto: ip protocol of packet * @sum: initial sum to be added in (32bit unfolded) * * Returns the pseudo header checksum the input data. Result is * 32bit unfolded. */ static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __wsum sum) { asm(" addl %1, %0\n" " adcl %2, %0\n" " adcl %3, %0\n" " adcl $0, %0\n" : "=r" (sum) : "g" (daddr), "g" (saddr), "g" ((len + proto)<<8), "0" (sum)); return sum; } /** * csum_tcpup_magic - Compute an IPv4 pseudo header checksum. * @saddr: source address * @daddr: destination address * @len: length of packet * @proto: ip protocol of packet * @sum: initial sum to be added in (32bit unfolded) * * Returns the 16bit pseudo header checksum the input data already * complemented and ready to be filled in. */ static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __wsum sum) { return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum)); } /** * csum_partial - Compute an internet checksum. * @buff: buffer to be checksummed * @len: length of buffer. * @sum: initial sum to be added in (32bit unfolded) * * Returns the 32bit unfolded internet checksum of the buffer. * Before filling it in it needs to be csum_fold()'ed. * buff should be aligned to a 64bit boundary if possible. */ extern __wsum csum_partial(const void *buff, int len, __wsum sum); /* Do not call this directly. Use the wrappers below */ extern __visible __wsum csum_partial_copy_generic(const void *src, void *dst, int len); extern __wsum csum_and_copy_from_user(const void __user *src, void *dst, int len); extern __wsum csum_and_copy_to_user(const void *src, void __user *dst, int len); extern __wsum csum_partial_copy_nocheck(const void *src, void *dst, int len); /** * ip_compute_csum - Compute an 16bit IP checksum. * @buff: buffer address. * @len: length of buffer. * * Returns the 16bit folded/inverted checksum of the passed buffer. * Ready to fill in. */ extern __sum16 ip_compute_csum(const void *buff, int len); /** * csum_ipv6_magic - Compute checksum of an IPv6 pseudo header. * @saddr: source address * @daddr: destination address * @len: length of packet * @proto: protocol of packet * @sum: initial sum (32bit unfolded) to be added in * * Computes an IPv6 pseudo header checksum. This sum is added the checksum * into UDP/TCP packets and contains some link layer information. * Returns the unfolded 32bit checksum. */ struct in6_addr; #define _HAVE_ARCH_IPV6_CSUM 1 extern __sum16 csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __u32 len, __u8 proto, __wsum sum); static inline unsigned add32_with_carry(unsigned a, unsigned b) { asm("addl %2,%0\n\t" "adcl $0,%0" : "=r" (a) : "0" (a), "rm" (b)); return a; } #define HAVE_ARCH_CSUM_ADD static inline __wsum csum_add(__wsum csum, __wsum addend) { return (__force __wsum)add32_with_carry((__force unsigned)csum, (__force unsigned)addend); } #endif /* _ASM_X86_CHECKSUM_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 /* SPDX-License-Identifier: GPL-2.0 */ /* * Traceprobe fetch helper inlines */ static nokprobe_inline void fetch_store_raw(unsigned long val, struct fetch_insn *code, void *buf) { switch (code->size) { case 1: *(u8 *)buf = (u8)val; break; case 2: *(u16 *)buf = (u16)val; break; case 4: *(u32 *)buf = (u32)val; break; case 8: //TBD: 32bit signed *(u64 *)buf = (u64)val; break; default: *(unsigned long *)buf = val; } } static nokprobe_inline void fetch_apply_bitfield(struct fetch_insn *code, void *buf) { switch (code->basesize) { case 1: *(u8 *)buf <<= code->lshift; *(u8 *)buf >>= code->rshift; break; case 2: *(u16 *)buf <<= code->lshift; *(u16 *)buf >>= code->rshift; break; case 4: *(u32 *)buf <<= code->lshift; *(u32 *)buf >>= code->rshift; break; case 8: *(u64 *)buf <<= code->lshift; *(u64 *)buf >>= code->rshift; break; } } /* * These functions must be defined for each callsite. * Return consumed dynamic data size (>= 0), or error (< 0). * If dest is NULL, don't store result and return required dynamic data size. */ static int process_fetch_insn(struct fetch_insn *code, struct pt_regs *regs, void *dest, void *base); static nokprobe_inline int fetch_store_strlen(unsigned long addr); static nokprobe_inline int fetch_store_string(unsigned long addr, void *dest, void *base); static nokprobe_inline int fetch_store_strlen_user(unsigned long addr); static nokprobe_inline int fetch_store_string_user(unsigned long addr, void *dest, void *base); static nokprobe_inline int probe_mem_read(void *dest, void *src, size_t size); static nokprobe_inline int probe_mem_read_user(void *dest, void *src, size_t size); /* From the 2nd stage, routine is same */ static nokprobe_inline int process_fetch_insn_bottom(struct fetch_insn *code, unsigned long val, void *dest, void *base) { struct fetch_insn *s3 = NULL; int total = 0, ret = 0, i = 0; u32 loc = 0; unsigned long lval = val; stage2: /* 2nd stage: dereference memory if needed */ do { if (code->op == FETCH_OP_DEREF) { lval = val; ret = probe_mem_read(&val, (void *)val + code->offset, sizeof(val)); } else if (code->op == FETCH_OP_UDEREF) { lval = val; ret = probe_mem_read_user(&val, (void *)val + code->offset, sizeof(val)); } else break; if (ret) return ret; code++; } while (1); s3 = code; stage3: /* 3rd stage: store value to buffer */ if (unlikely(!dest)) { if (code->op == FETCH_OP_ST_STRING) { ret = fetch_store_strlen(val + code->offset); code++; goto array; } else if (code->op == FETCH_OP_ST_USTRING) { ret += fetch_store_strlen_user(val + code->offset); code++; goto array; } else return -EILSEQ; } switch (code->op) { case FETCH_OP_ST_RAW: fetch_store_raw(val, code, dest); break; case FETCH_OP_ST_MEM: probe_mem_read(dest, (void *)val + code->offset, code->size); break; case FETCH_OP_ST_UMEM: probe_mem_read_user(dest, (void *)val + code->offset, code->size); break; case FETCH_OP_ST_STRING: loc = *(u32 *)dest; ret = fetch_store_string(val + code->offset, dest, base); break; case FETCH_OP_ST_USTRING: loc = *(u32 *)dest; ret = fetch_store_string_user(val + code->offset, dest, base); break; default: return -EILSEQ; } code++; /* 4th stage: modify stored value if needed */ if (code->op == FETCH_OP_MOD_BF) { fetch_apply_bitfield(code, dest); code++; } array: /* the last stage: Loop on array */ if (code->op == FETCH_OP_LP_ARRAY) { total += ret; if (++i < code->param) { code = s3; if (s3->op != FETCH_OP_ST_STRING && s3->op != FETCH_OP_ST_USTRING) { dest += s3->size; val += s3->size; goto stage3; } code--; val = lval + sizeof(char *); if (dest) { dest += sizeof(u32); *(u32 *)dest = update_data_loc(loc, ret); } goto stage2; } code++; ret = total; } return code->op == FETCH_OP_END ? ret : -EILSEQ; } /* Sum up total data length for dynamic arraies (strings) */ static nokprobe_inline int __get_data_size(struct trace_probe *tp, struct pt_regs *regs) { struct probe_arg *arg; int i, len, ret = 0; for (i = 0; i < tp->nr_args; i++) { arg = tp->args + i; if (unlikely(arg->dynamic)) { len = process_fetch_insn(arg->code, regs, NULL, NULL); if (len > 0) ret += len; } } return ret; } /* Store the value of each argument */ static nokprobe_inline void store_trace_args(void *data, struct trace_probe *tp, struct pt_regs *regs, int header_size, int maxlen) { struct probe_arg *arg; void *base = data - header_size; void *dyndata = data + tp->size; u32 *dl; /* Data location */ int ret, i; for (i = 0; i < tp->nr_args; i++) { arg = tp->args + i; dl = data + arg->offset; /* Point the dynamic data area if needed */ if (unlikely(arg->dynamic)) *dl = make_data_loc(maxlen, dyndata - base); ret = process_fetch_insn(arg->code, regs, dl, base); if (unlikely(ret < 0 && arg->dynamic)) { *dl = make_data_loc(0, dyndata - base); } else { dyndata += ret; maxlen -= ret; } } } static inline int print_probe_args(struct trace_seq *s, struct probe_arg *args, int nr_args, u8 *data, void *field) { void *p; int i, j; for (i = 0; i < nr_args; i++) { struct probe_arg *a = args + i; trace_seq_printf(s, " %s=", a->name); if (likely(!a->count)) { if (!a->type->print(s, data + a->offset, field)) return -ENOMEM; continue; } trace_seq_putc(s, '{'); p = data + a->offset; for (j = 0; j < a->count; j++) { if (!a->type->print(s, p, field)) return -ENOMEM; trace_seq_putc(s, j == a->count - 1 ? '}' : ','); p += a->type->size; } } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * RNG: Random Number Generator algorithms under the crypto API * * Copyright (c) 2008 Neil Horman <nhorman@tuxdriver.com> * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_RNG_H #define _CRYPTO_RNG_H #include <linux/crypto.h> struct crypto_rng; /** * struct rng_alg - random number generator definition * * @generate: The function defined by this variable obtains a * random number. The random number generator transform * must generate the random number out of the context * provided with this call, plus any additional data * if provided to the call. * @seed: Seed or reseed the random number generator. With the * invocation of this function call, the random number * generator shall become ready for generation. If the * random number generator requires a seed for setting * up a new state, the seed must be provided by the * consumer while invoking this function. The required * size of the seed is defined with @seedsize . * @set_ent: Set entropy that would otherwise be obtained from * entropy source. Internal use only. * @seedsize: The seed size required for a random number generator * initialization defined with this variable. Some * random number generators does not require a seed * as the seeding is implemented internally without * the need of support by the consumer. In this case, * the seed size is set to zero. * @base: Common crypto API algorithm data structure. */ struct rng_alg { int (*generate)(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int dlen); int (*seed)(struct crypto_rng *tfm, const u8 *seed, unsigned int slen); void (*set_ent)(struct crypto_rng *tfm, const u8 *data, unsigned int len); unsigned int seedsize; struct crypto_alg base; }; struct crypto_rng { struct crypto_tfm base; }; extern struct crypto_rng *crypto_default_rng; int crypto_get_default_rng(void); void crypto_put_default_rng(void); /** * DOC: Random number generator API * * The random number generator API is used with the ciphers of type * CRYPTO_ALG_TYPE_RNG (listed as type "rng" in /proc/crypto) */ /** * crypto_alloc_rng() -- allocate RNG handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * message digest cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a random number generator. The returned struct * crypto_rng is the cipher handle that is required for any subsequent * API invocation for that random number generator. * * For all random number generators, this call creates a new private copy of * the random number generator that does not share a state with other * instances. The only exception is the "krng" random number generator which * is a kernel crypto API use case for the get_random_bytes() function of the * /dev/random driver. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_rng *crypto_alloc_rng(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_rng_tfm(struct crypto_rng *tfm) { return &tfm->base; } /** * crypto_rng_alg - obtain name of RNG * @tfm: cipher handle * * Return the generic name (cra_name) of the initialized random number generator * * Return: generic name string */ static inline struct rng_alg *crypto_rng_alg(struct crypto_rng *tfm) { return container_of(crypto_rng_tfm(tfm)->__crt_alg, struct rng_alg, base); } /** * crypto_free_rng() - zeroize and free RNG handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_rng(struct crypto_rng *tfm) { crypto_destroy_tfm(tfm, crypto_rng_tfm(tfm)); } /** * crypto_rng_generate() - get random number * @tfm: cipher handle * @src: Input buffer holding additional data, may be NULL * @slen: Length of additional data * @dst: output buffer holding the random numbers * @dlen: length of the output buffer * * This function fills the caller-allocated buffer with random * numbers using the random number generator referenced by the * cipher handle. * * Return: 0 function was successful; < 0 if an error occurred */ static inline int crypto_rng_generate(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int dlen) { struct crypto_alg *alg = tfm->base.__crt_alg; int ret; crypto_stats_get(alg); ret = crypto_rng_alg(tfm)->generate(tfm, src, slen, dst, dlen); crypto_stats_rng_generate(alg, dlen, ret); return ret; } /** * crypto_rng_get_bytes() - get random number * @tfm: cipher handle * @rdata: output buffer holding the random numbers * @dlen: length of the output buffer * * This function fills the caller-allocated buffer with random numbers using the * random number generator referenced by the cipher handle. * * Return: 0 function was successful; < 0 if an error occurred */ static inline int crypto_rng_get_bytes(struct crypto_rng *tfm, u8 *rdata, unsigned int dlen) { return crypto_rng_generate(tfm, NULL, 0, rdata, dlen); } /** * crypto_rng_reset() - re-initialize the RNG * @tfm: cipher handle * @seed: seed input data * @slen: length of the seed input data * * The reset function completely re-initializes the random number generator * referenced by the cipher handle by clearing the current state. The new state * is initialized with the caller provided seed or automatically, depending * on the random number generator type (the ANSI X9.31 RNG requires * caller-provided seed, the SP800-90A DRBGs perform an automatic seeding). * The seed is provided as a parameter to this function call. The provided seed * should have the length of the seed size defined for the random number * generator as defined by crypto_rng_seedsize. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_rng_reset(struct crypto_rng *tfm, const u8 *seed, unsigned int slen); /** * crypto_rng_seedsize() - obtain seed size of RNG * @tfm: cipher handle * * The function returns the seed size for the random number generator * referenced by the cipher handle. This value may be zero if the random * number generator does not implement or require a reseeding. For example, * the SP800-90A DRBGs implement an automated reseeding after reaching a * pre-defined threshold. * * Return: seed size for the random number generator */ static inline int crypto_rng_seedsize(struct crypto_rng *tfm) { return crypto_rng_alg(tfm)->seedsize; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_H #define _ASM_X86_PGTABLE_H #include <linux/mem_encrypt.h> #include <asm/page.h> #include <asm/pgtable_types.h> /* * Macro to mark a page protection value as UC- */ #define pgprot_noncached(prot) \ ((boot_cpu_data.x86 > 3) \ ? (__pgprot(pgprot_val(prot) | \ cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ : (prot)) /* * Macros to add or remove encryption attribute */ #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot))) #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot))) #ifndef __ASSEMBLY__ #include <asm/x86_init.h> #include <asm/fpu/xstate.h> #include <asm/fpu/api.h> #include <asm-generic/pgtable_uffd.h> extern pgd_t early_top_pgt[PTRS_PER_PGD]; bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd); void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm); void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm, bool user); void ptdump_walk_pgd_level_checkwx(void); void ptdump_walk_user_pgd_level_checkwx(void); #ifdef CONFIG_DEBUG_WX #define debug_checkwx() ptdump_walk_pgd_level_checkwx() #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() #else #define debug_checkwx() do { } while (0) #define debug_checkwx_user() do { } while (0) #endif /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __visible; #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page)) extern spinlock_t pgd_lock; extern struct list_head pgd_list; extern struct mm_struct *pgd_page_get_mm(struct page *page); extern pmdval_t early_pmd_flags; #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else /* !CONFIG_PARAVIRT_XXL */ #define set_pte(ptep, pte) native_set_pte(ptep, pte) #define set_pte_atomic(ptep, pte) \ native_set_pte_atomic(ptep, pte) #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) #ifndef __PAGETABLE_P4D_FOLDED #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) #endif #ifndef set_p4d # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) #endif #ifndef __PAGETABLE_PUD_FOLDED #define p4d_clear(p4d) native_p4d_clear(p4d) #endif #ifndef set_pud # define set_pud(pudp, pud) native_set_pud(pudp, pud) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_clear(pud) native_pud_clear(pud) #endif #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) #define pmd_clear(pmd) native_pmd_clear(pmd) #define pgd_val(x) native_pgd_val(x) #define __pgd(x) native_make_pgd(x) #ifndef __PAGETABLE_P4D_FOLDED #define p4d_val(x) native_p4d_val(x) #define __p4d(x) native_make_p4d(x) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_val(x) native_pud_val(x) #define __pud(x) native_make_pud(x) #endif #ifndef __PAGETABLE_PMD_FOLDED #define pmd_val(x) native_pmd_val(x) #define __pmd(x) native_make_pmd(x) #endif #define pte_val(x) native_pte_val(x) #define __pte(x) native_make_pte(x) #define arch_end_context_switch(prev) do {} while(0) #endif /* CONFIG_PARAVIRT_XXL */ /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_DIRTY; } static inline u32 read_pkru(void) { if (boot_cpu_has(X86_FEATURE_OSPKE)) return rdpkru(); return 0; } static inline void write_pkru(u32 pkru) { struct pkru_state *pk; if (!boot_cpu_has(X86_FEATURE_OSPKE)) return; pk = get_xsave_addr(&current->thread.fpu.state.xsave, XFEATURE_PKRU); /* * The PKRU value in xstate needs to be in sync with the value that is * written to the CPU. The FPU restore on return to userland would * otherwise load the previous value again. */ fpregs_lock(); if (pk) pk->pkru = pkru; __write_pkru(pkru); fpregs_unlock(); } static inline int pte_young(pte_t pte) { return pte_flags(pte) & _PAGE_ACCESSED; } static inline int pmd_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_DIRTY; } static inline int pmd_young(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_ACCESSED; } static inline int pud_dirty(pud_t pud) { return pud_flags(pud) & _PAGE_DIRTY; } static inline int pud_young(pud_t pud) { return pud_flags(pud) & _PAGE_ACCESSED; } static inline int pte_write(pte_t pte) { return pte_flags(pte) & _PAGE_RW; } static inline int pte_huge(pte_t pte) { return pte_flags(pte) & _PAGE_PSE; } static inline int pte_global(pte_t pte) { return pte_flags(pte) & _PAGE_GLOBAL; } static inline int pte_exec(pte_t pte) { return !(pte_flags(pte) & _PAGE_NX); } static inline int pte_special(pte_t pte) { return pte_flags(pte) & _PAGE_SPECIAL; } /* Entries that were set to PROT_NONE are inverted */ static inline u64 protnone_mask(u64 val); static inline unsigned long pte_pfn(pte_t pte) { phys_addr_t pfn = pte_val(pte); pfn ^= protnone_mask(pfn); return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; } static inline unsigned long pmd_pfn(pmd_t pmd) { phys_addr_t pfn = pmd_val(pmd); pfn ^= protnone_mask(pfn); return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; } static inline unsigned long pud_pfn(pud_t pud) { phys_addr_t pfn = pud_val(pud); pfn ^= protnone_mask(pfn); return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; } static inline unsigned long p4d_pfn(p4d_t p4d) { return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; } static inline unsigned long pgd_pfn(pgd_t pgd) { return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; } #define p4d_leaf p4d_large static inline int p4d_large(p4d_t p4d) { /* No 512 GiB pages yet */ return 0; } #define pte_page(pte) pfn_to_page(pte_pfn(pte)) #define pmd_leaf pmd_large static inline int pmd_large(pmd_t pte) { return pmd_flags(pte) & _PAGE_PSE; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_large */ static inline int pmd_trans_huge(pmd_t pmd) { return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline int pud_trans_huge(pud_t pud) { return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; } #endif #define has_transparent_hugepage has_transparent_hugepage static inline int has_transparent_hugepage(void) { return boot_cpu_has(X86_FEATURE_PSE); } #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pmd_devmap(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_DEVMAP); } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline int pud_devmap(pud_t pud) { return !!(pud_val(pud) & _PAGE_DEVMAP); } #else static inline int pud_devmap(pud_t pud) { return 0; } #endif static inline int pgd_devmap(pgd_t pgd) { return 0; } #endif #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline pte_t pte_set_flags(pte_t pte, pteval_t set) { pteval_t v = native_pte_val(pte); return native_make_pte(v | set); } static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) { pteval_t v = native_pte_val(pte); return native_make_pte(v & ~clear); } #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline int pte_uffd_wp(pte_t pte) { return pte_flags(pte) & _PAGE_UFFD_WP; } static inline pte_t pte_mkuffd_wp(pte_t pte) { return pte_set_flags(pte, _PAGE_UFFD_WP); } static inline pte_t pte_clear_uffd_wp(pte_t pte) { return pte_clear_flags(pte, _PAGE_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline pte_t pte_mkclean(pte_t pte) { return pte_clear_flags(pte, _PAGE_DIRTY); } static inline pte_t pte_mkold(pte_t pte) { return pte_clear_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_wrprotect(pte_t pte) { return pte_clear_flags(pte, _PAGE_RW); } static inline pte_t pte_mkexec(pte_t pte) { return pte_clear_flags(pte, _PAGE_NX); } static inline pte_t pte_mkdirty(pte_t pte) { return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return pte_set_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_mkwrite(pte_t pte) { return pte_set_flags(pte, _PAGE_RW); } static inline pte_t pte_mkhuge(pte_t pte) { return pte_set_flags(pte, _PAGE_PSE); } static inline pte_t pte_clrhuge(pte_t pte) { return pte_clear_flags(pte, _PAGE_PSE); } static inline pte_t pte_mkglobal(pte_t pte) { return pte_set_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_clrglobal(pte_t pte) { return pte_clear_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_mkspecial(pte_t pte) { return pte_set_flags(pte, _PAGE_SPECIAL); } static inline pte_t pte_mkdevmap(pte_t pte) { return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); } static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) { pmdval_t v = native_pmd_val(pmd); return native_make_pmd(v | set); } static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) { pmdval_t v = native_pmd_val(pmd); return native_make_pmd(v & ~clear); } #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline int pmd_uffd_wp(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_UFFD_WP; } static inline pmd_t pmd_mkuffd_wp(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_UFFD_WP); } static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline pmd_t pmd_mkold(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkclean(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_DIRTY); } static inline pmd_t pmd_wrprotect(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_RW); } static inline pmd_t pmd_mkdirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_mkdevmap(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_DEVMAP); } static inline pmd_t pmd_mkhuge(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_PSE); } static inline pmd_t pmd_mkyoung(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkwrite(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_RW); } static inline pud_t pud_set_flags(pud_t pud, pudval_t set) { pudval_t v = native_pud_val(pud); return native_make_pud(v | set); } static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) { pudval_t v = native_pud_val(pud); return native_make_pud(v & ~clear); } static inline pud_t pud_mkold(pud_t pud) { return pud_clear_flags(pud, _PAGE_ACCESSED); } static inline pud_t pud_mkclean(pud_t pud) { return pud_clear_flags(pud, _PAGE_DIRTY); } static inline pud_t pud_wrprotect(pud_t pud) { return pud_clear_flags(pud, _PAGE_RW); } static inline pud_t pud_mkdirty(pud_t pud) { return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pud_t pud_mkdevmap(pud_t pud) { return pud_set_flags(pud, _PAGE_DEVMAP); } static inline pud_t pud_mkhuge(pud_t pud) { return pud_set_flags(pud, _PAGE_PSE); } static inline pud_t pud_mkyoung(pud_t pud) { return pud_set_flags(pud, _PAGE_ACCESSED); } static inline pud_t pud_mkwrite(pud_t pud) { return pud_set_flags(pud, _PAGE_RW); } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline int pte_soft_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_SOFT_DIRTY; } static inline int pmd_soft_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; } static inline int pud_soft_dirty(pud_t pud) { return pud_flags(pud) & _PAGE_SOFT_DIRTY; } static inline pte_t pte_mksoft_dirty(pte_t pte) { return pte_set_flags(pte, _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); } static inline pud_t pud_mksoft_dirty(pud_t pud) { return pud_set_flags(pud, _PAGE_SOFT_DIRTY); } static inline pte_t pte_clear_soft_dirty(pte_t pte) { return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); } static inline pud_t pud_clear_soft_dirty(pud_t pud) { return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); } #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ /* * Mask out unsupported bits in a present pgprot. Non-present pgprots * can use those bits for other purposes, so leave them be. */ static inline pgprotval_t massage_pgprot(pgprot_t pgprot) { pgprotval_t protval = pgprot_val(pgprot); if (protval & _PAGE_PRESENT) protval &= __supported_pte_mask; return protval; } static inline pgprotval_t check_pgprot(pgprot_t pgprot) { pgprotval_t massaged_val = massage_pgprot(pgprot); /* mmdebug.h can not be included here because of dependencies */ #ifdef CONFIG_DEBUG_VM WARN_ONCE(pgprot_val(pgprot) != massaged_val, "attempted to set unsupported pgprot: %016llx " "bits: %016llx supported: %016llx\n", (u64)pgprot_val(pgprot), (u64)pgprot_val(pgprot) ^ massaged_val, (u64)__supported_pte_mask); #endif return massaged_val; } static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PTE_PFN_MASK; return __pte(pfn | check_pgprot(pgprot)); } static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PHYSICAL_PMD_PAGE_MASK; return __pmd(pfn | check_pgprot(pgprot)); } static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PHYSICAL_PUD_PAGE_MASK; return __pud(pfn | check_pgprot(pgprot)); } static inline pmd_t pmd_mkinvalid(pmd_t pmd) { return pfn_pmd(pmd_pfn(pmd), __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); } static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pteval_t val = pte_val(pte), oldval = val; /* * Chop off the NX bit (if present), and add the NX portion of * the newprot (if present): */ val &= _PAGE_CHG_MASK; val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); return __pte(val); } static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { pmdval_t val = pmd_val(pmd), oldval = val; val &= _HPAGE_CHG_MASK; val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); return __pmd(val); } /* * mprotect needs to preserve PAT and encryption bits when updating * vm_page_prot */ #define pgprot_modify pgprot_modify static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) { pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK; return __pgprot(preservebits | addbits); } #define pte_pgprot(x) __pgprot(pte_flags(x)) #define pmd_pgprot(x) __pgprot(pmd_flags(x)) #define pud_pgprot(x) __pgprot(pud_flags(x)) #define p4d_pgprot(x) __pgprot(p4d_flags(x)) #define canon_pgprot(p) __pgprot(massage_pgprot(p)) static inline pgprot_t arch_filter_pgprot(pgprot_t prot) { return canon_pgprot(prot); } static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, enum page_cache_mode pcm, enum page_cache_mode new_pcm) { /* * PAT type is always WB for untracked ranges, so no need to check. */ if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) return 1; /* * Certain new memtypes are not allowed with certain * requested memtype: * - request is uncached, return cannot be write-back * - request is write-combine, return cannot be write-back * - request is write-through, return cannot be write-back * - request is write-through, return cannot be write-combine */ if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WC && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WT && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WT && new_pcm == _PAGE_CACHE_MODE_WC)) { return 0; } return 1; } pmd_t *populate_extra_pmd(unsigned long vaddr); pte_t *populate_extra_pte(unsigned long vaddr); #ifdef CONFIG_PAGE_TABLE_ISOLATION pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); /* * Take a PGD location (pgdp) and a pgd value that needs to be set there. * Populates the user and returns the resulting PGD that must be set in * the kernel copy of the page tables. */ static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) { if (!static_cpu_has(X86_FEATURE_PTI)) return pgd; return __pti_set_user_pgtbl(pgdp, pgd); } #else /* CONFIG_PAGE_TABLE_ISOLATION */ static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) { return pgd; } #endif /* CONFIG_PAGE_TABLE_ISOLATION */ #endif /* __ASSEMBLY__ */ #ifdef CONFIG_X86_32 # include <asm/pgtable_32.h> #else # include <asm/pgtable_64.h> #endif #ifndef __ASSEMBLY__ #include <linux/mm_types.h> #include <linux/mmdebug.h> #include <linux/log2.h> #include <asm/fixmap.h> static inline int pte_none(pte_t pte) { return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t a, pte_t b) { return a.pte == b.pte; } static inline int pte_present(pte_t a) { return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); } #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pte_devmap(pte_t a) { return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; } #endif #define pte_accessible pte_accessible static inline bool pte_accessible(struct mm_struct *mm, pte_t a) { if (pte_flags(a) & _PAGE_PRESENT) return true; if ((pte_flags(a) & _PAGE_PROTNONE) && mm_tlb_flush_pending(mm)) return true; return false; } static inline int pmd_present(pmd_t pmd) { /* * Checking for _PAGE_PSE is needed too because * split_huge_page will temporarily clear the present bit (but * the _PAGE_PSE flag will remain set at all times while the * _PAGE_PRESENT bit is clear). */ return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); } #ifdef CONFIG_NUMA_BALANCING /* * These work without NUMA balancing but the kernel does not care. See the * comment in include/linux/pgtable.h */ static inline int pte_protnone(pte_t pte) { return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) == _PAGE_PROTNONE; } static inline int pmd_protnone(pmd_t pmd) { return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) == _PAGE_PROTNONE; } #endif /* CONFIG_NUMA_BALANCING */ static inline int pmd_none(pmd_t pmd) { /* Only check low word on 32-bit platforms, since it might be out of sync with upper half. */ unsigned long val = native_pmd_val(pmd); return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; } static inline unsigned long pmd_page_vaddr(pmd_t pmd) { return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * (Currently stuck as a macro because of indirect forward reference * to linux/mm.h:page_to_nid()) */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) static inline int pmd_bad(pmd_t pmd) { return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; } static inline unsigned long pages_to_mb(unsigned long npg) { return npg >> (20 - PAGE_SHIFT); } #if CONFIG_PGTABLE_LEVELS > 2 static inline int pud_none(pud_t pud) { return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; } static inline int pud_present(pud_t pud) { return pud_flags(pud) & _PAGE_PRESENT; } static inline unsigned long pud_page_vaddr(pud_t pud) { return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pud_page(pud) pfn_to_page(pud_pfn(pud)) #define pud_leaf pud_large static inline int pud_large(pud_t pud) { return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == (_PAGE_PSE | _PAGE_PRESENT); } static inline int pud_bad(pud_t pud) { return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; } #else #define pud_leaf pud_large static inline int pud_large(pud_t pud) { return 0; } #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 static inline int p4d_none(p4d_t p4d) { return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; } static inline int p4d_present(p4d_t p4d) { return p4d_flags(p4d) & _PAGE_PRESENT; } static inline unsigned long p4d_page_vaddr(p4d_t p4d) { return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) static inline int p4d_bad(p4d_t p4d) { unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) ignore_flags |= _PAGE_NX; return (p4d_flags(p4d) & ~ignore_flags) != 0; } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ static inline unsigned long p4d_index(unsigned long address) { return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); } #if CONFIG_PGTABLE_LEVELS > 4 static inline int pgd_present(pgd_t pgd) { if (!pgtable_l5_enabled()) return 1; return pgd_flags(pgd) & _PAGE_PRESENT; } static inline unsigned long pgd_page_vaddr(pgd_t pgd) { return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) /* to find an entry in a page-table-directory. */ static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) { if (!pgtable_l5_enabled()) return (p4d_t *)pgd; return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); } static inline int pgd_bad(pgd_t pgd) { unsigned long ignore_flags = _PAGE_USER; if (!pgtable_l5_enabled()) return 0; if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) ignore_flags |= _PAGE_NX; return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; } static inline int pgd_none(pgd_t pgd) { if (!pgtable_l5_enabled()) return 0; /* * There is no need to do a workaround for the KNL stray * A/D bit erratum here. PGDs only point to page tables * except on 32-bit non-PAE which is not supported on * KNL. */ return !native_pgd_val(pgd); } #endif /* CONFIG_PGTABLE_LEVELS > 4 */ #endif /* __ASSEMBLY__ */ #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) #ifndef __ASSEMBLY__ extern int direct_gbpages; void init_mem_mapping(void); void early_alloc_pgt_buf(void); extern void memblock_find_dma_reserve(void); void __init poking_init(void); unsigned long init_memory_mapping(unsigned long start, unsigned long end, pgprot_t prot); #ifdef CONFIG_X86_64 extern pgd_t trampoline_pgd_entry; #endif /* local pte updates need not use xchg for locking */ static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) { pte_t res = *ptep; /* Pure native function needs no input for mm, addr */ native_pte_clear(NULL, 0, ptep); return res; } static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) { pmd_t res = *pmdp; native_pmd_clear(pmdp); return res; } static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) { pud_t res = *pudp; native_pud_clear(pudp); return res; } static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { set_pte(ptep, pte); } static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd) { set_pmd(pmdp, pmd); } static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, pud_t *pudp, pud_t pud) { native_set_pud(pudp, pud); } /* * We only update the dirty/accessed state if we set * the dirty bit by hand in the kernel, since the hardware * will do the accessed bit for us, and we don't want to * race with other CPU's that might be updating the dirty * bit at the same time. */ struct vm_area_struct; #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep); #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH extern int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = native_ptep_get_and_clear(ptep); return pte; } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { pte_t pte; if (full) { /* * Full address destruction in progress; paravirt does not * care about updates and native needs no locking */ pte = native_local_ptep_get_and_clear(ptep); } else { pte = ptep_get_and_clear(mm, addr, ptep); } return pte; } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); } #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); extern int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty); #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp); extern int pudp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pud_t *pudp); #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define pmd_write pmd_write static inline int pmd_write(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_RW; } #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { return native_pmdp_get_and_clear(pmdp); } #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pud_t *pudp) { return native_pudp_get_and_clear(pudp); } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); } #define pud_write pud_write static inline int pud_write(pud_t pud) { return pud_flags(pud) & _PAGE_RW; } #ifndef pmdp_establish #define pmdp_establish pmdp_establish static inline pmd_t pmdp_establish(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t pmd) { if (IS_ENABLED(CONFIG_SMP)) { return xchg(pmdp, pmd); } else { pmd_t old = *pmdp; WRITE_ONCE(*pmdp, pmd); return old; } } #endif /* * Page table pages are page-aligned. The lower half of the top * level is used for userspace and the top half for the kernel. * * Returns true for parts of the PGD that map userspace and * false for the parts that map the kernel. */ static inline bool pgdp_maps_userspace(void *__ptr) { unsigned long ptr = (unsigned long)__ptr; return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); } #define pgd_leaf pgd_large static inline int pgd_large(pgd_t pgd) { return 0; } #ifdef CONFIG_PAGE_TABLE_ISOLATION /* * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and * the user one is in the last 4k. To switch between them, you * just need to flip the 12th bit in their addresses. */ #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT /* * This generates better code than the inline assembly in * __set_bit(). */ static inline void *ptr_set_bit(void *ptr, int bit) { unsigned long __ptr = (unsigned long)ptr; __ptr |= BIT(bit); return (void *)__ptr; } static inline void *ptr_clear_bit(void *ptr, int bit) { unsigned long __ptr = (unsigned long)ptr; __ptr &= ~BIT(bit); return (void *)__ptr; } static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) { return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); } static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) { return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); } static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) { return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); } static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) { return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); } #endif /* CONFIG_PAGE_TABLE_ISOLATION */ /* * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); * * dst - pointer to pgd range anwhere on a pgd page * src - "" * count - the number of pgds to copy. * * dst and src can be on the same page, but the range must not overlap, * and must not cross a page boundary. */ static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) { memcpy(dst, src, count * sizeof(pgd_t)); #ifdef CONFIG_PAGE_TABLE_ISOLATION if (!static_cpu_has(X86_FEATURE_PTI)) return; /* Clone the user space pgd as well */ memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), count * sizeof(pgd_t)); #endif } #define PTE_SHIFT ilog2(PTRS_PER_PTE) static inline int page_level_shift(enum pg_level level) { return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; } static inline unsigned long page_level_size(enum pg_level level) { return 1UL << page_level_shift(level); } static inline unsigned long page_level_mask(enum pg_level level) { return ~(page_level_size(level) - 1); } /* * The x86 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { } static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd) { } static inline void update_mmu_cache_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud) { } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline pte_t pte_swp_mksoft_dirty(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); } static inline int pte_swp_soft_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; } static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); } #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); } #endif #endif #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline pte_t pte_swp_mkuffd_wp(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_UFFD_WP); } static inline int pte_swp_uffd_wp(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_UFFD_WP; } static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP); } static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP); } static inline int pmd_swp_uffd_wp(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP; } static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ #define PKRU_AD_BIT 0x1 #define PKRU_WD_BIT 0x2 #define PKRU_BITS_PER_PKEY 2 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS extern u32 init_pkru_value; #else #define init_pkru_value 0 #endif static inline bool __pkru_allows_read(u32 pkru, u16 pkey) { int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits)); } static inline bool __pkru_allows_write(u32 pkru, u16 pkey) { int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; /* * Access-disable disables writes too so we need to check * both bits here. */ return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits)); } static inline u16 pte_flags_pkey(unsigned long pte_flags) { #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS /* ifdef to avoid doing 59-bit shift on 32-bit values */ return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; #else return 0; #endif } static inline bool __pkru_allows_pkey(u16 pkey, bool write) { u32 pkru = read_pkru(); if (!__pkru_allows_read(pkru, pkey)) return false; if (write && !__pkru_allows_write(pkru, pkey)) return false; return true; } /* * 'pteval' can come from a PTE, PMD or PUD. We only check * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the * same value on all 3 types. */ static inline bool __pte_access_permitted(unsigned long pteval, bool write) { unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; if (write) need_pte_bits |= _PAGE_RW; if ((pteval & need_pte_bits) != need_pte_bits) return 0; return __pkru_allows_pkey(pte_flags_pkey(pteval), write); } #define pte_access_permitted pte_access_permitted static inline bool pte_access_permitted(pte_t pte, bool write) { return __pte_access_permitted(pte_val(pte), write); } #define pmd_access_permitted pmd_access_permitted static inline bool pmd_access_permitted(pmd_t pmd, bool write) { return __pte_access_permitted(pmd_val(pmd), write); } #define pud_access_permitted pud_access_permitted static inline bool pud_access_permitted(pud_t pud, bool write) { return __pte_access_permitted(pud_val(pud), write); } #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); static inline bool arch_has_pfn_modify_check(void) { return boot_cpu_has_bug(X86_BUG_L1TF); } #define arch_faults_on_old_pte arch_faults_on_old_pte static inline bool arch_faults_on_old_pte(void) { return false; } #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 // SPDX-License-Identifier: GPL-2.0 /* * fs/ext4/mballoc.h * * Written by: Alex Tomas <alex@clusterfs.com> * */ #ifndef _EXT4_MBALLOC_H #define _EXT4_MBALLOC_H #include <linux/time.h> #include <linux/fs.h> #include <linux/namei.h> #include <linux/quotaops.h> #include <linux/buffer_head.h> #include <linux/module.h> #include <linux/swap.h> #include <linux/proc_fs.h> #include <linux/pagemap.h> #include <linux/seq_file.h> #include <linux/blkdev.h> #include <linux/mutex.h> #include "ext4_jbd2.h" #include "ext4.h" /* * mb_debug() dynamic printk msgs could be used to debug mballoc code. */ #ifdef CONFIG_EXT4_DEBUG #define mb_debug(sb, fmt, ...) \ pr_debug("[%s/%d] EXT4-fs (%s): (%s, %d): %s: " fmt, \ current->comm, task_pid_nr(current), sb->s_id, \ __FILE__, __LINE__, __func__, ##__VA_ARGS__) #else #define mb_debug(sb, fmt, ...) no_printk(fmt, ##__VA_ARGS__) #endif #define EXT4_MB_HISTORY_ALLOC 1 /* allocation */ #define EXT4_MB_HISTORY_PREALLOC 2 /* preallocated blocks used */ /* * How long mballoc can look for a best extent (in found extents) */ #define MB_DEFAULT_MAX_TO_SCAN 200 /* * How long mballoc must look for a best extent */ #define MB_DEFAULT_MIN_TO_SCAN 10 /* * with 'ext4_mb_stats' allocator will collect stats that will be * shown at umount. The collecting costs though! */ #define MB_DEFAULT_STATS 0 /* * files smaller than MB_DEFAULT_STREAM_THRESHOLD are served * by the stream allocator, which purpose is to pack requests * as close each to other as possible to produce smooth I/O traffic * We use locality group prealloc space for stream request. * We can tune the same via /proc/fs/ext4/<parition>/stream_req */ #define MB_DEFAULT_STREAM_THRESHOLD 16 /* 64K */ /* * for which requests use 2^N search using buddies */ #define MB_DEFAULT_ORDER2_REQS 2 /* * default group prealloc size 512 blocks */ #define MB_DEFAULT_GROUP_PREALLOC 512 /* * maximum length of inode prealloc list */ #define MB_DEFAULT_MAX_INODE_PREALLOC 512 struct ext4_free_data { /* this links the free block information from sb_info */ struct list_head efd_list; /* this links the free block information from group_info */ struct rb_node efd_node; /* group which free block extent belongs */ ext4_group_t efd_group; /* free block extent */ ext4_grpblk_t efd_start_cluster; ext4_grpblk_t efd_count; /* transaction which freed this extent */ tid_t efd_tid; }; struct ext4_prealloc_space { struct list_head pa_inode_list; struct list_head pa_group_list; union { struct list_head pa_tmp_list; struct rcu_head pa_rcu; } u; spinlock_t pa_lock; atomic_t pa_count; unsigned pa_deleted; ext4_fsblk_t pa_pstart; /* phys. block */ ext4_lblk_t pa_lstart; /* log. block */ ext4_grpblk_t pa_len; /* len of preallocated chunk */ ext4_grpblk_t pa_free; /* how many blocks are free */ unsigned short pa_type; /* pa type. inode or group */ spinlock_t *pa_obj_lock; struct inode *pa_inode; /* hack, for history only */ }; enum { MB_INODE_PA = 0, MB_GROUP_PA = 1 }; struct ext4_free_extent { ext4_lblk_t fe_logical; ext4_grpblk_t fe_start; /* In cluster units */ ext4_group_t fe_group; ext4_grpblk_t fe_len; /* In cluster units */ }; /* * Locality group: * we try to group all related changes together * so that writeback can flush/allocate them together as well * Size of lg_prealloc_list hash is determined by MB_DEFAULT_GROUP_PREALLOC * (512). We store prealloc space into the hash based on the pa_free blocks * order value.ie, fls(pa_free)-1; */ #define PREALLOC_TB_SIZE 10 struct ext4_locality_group { /* for allocator */ /* to serialize allocates */ struct mutex lg_mutex; /* list of preallocations */ struct list_head lg_prealloc_list[PREALLOC_TB_SIZE]; spinlock_t lg_prealloc_lock; }; struct ext4_allocation_context { struct inode *ac_inode; struct super_block *ac_sb; /* original request */ struct ext4_free_extent ac_o_ex; /* goal request (normalized ac_o_ex) */ struct ext4_free_extent ac_g_ex; /* the best found extent */ struct ext4_free_extent ac_b_ex; /* copy of the best found extent taken before preallocation efforts */ struct ext4_free_extent ac_f_ex; __u16 ac_groups_scanned; __u16 ac_found; __u16 ac_tail; __u16 ac_buddy; __u16 ac_flags; /* allocation hints */ __u8 ac_status; __u8 ac_criteria; __u8 ac_2order; /* if request is to allocate 2^N blocks and * N > 0, the field stores N, otherwise 0 */ __u8 ac_op; /* operation, for history only */ struct page *ac_bitmap_page; struct page *ac_buddy_page; struct ext4_prealloc_space *ac_pa; struct ext4_locality_group *ac_lg; }; #define AC_STATUS_CONTINUE 1 #define AC_STATUS_FOUND 2 #define AC_STATUS_BREAK 3 struct ext4_buddy { struct page *bd_buddy_page; void *bd_buddy; struct page *bd_bitmap_page; void *bd_bitmap; struct ext4_group_info *bd_info; struct super_block *bd_sb; __u16 bd_blkbits; ext4_group_t bd_group; }; static inline ext4_fsblk_t ext4_grp_offs_to_block(struct super_block *sb, struct ext4_free_extent *fex) { return ext4_group_first_block_no(sb, fex->fe_group) + (fex->fe_start << EXT4_SB(sb)->s_cluster_bits); } typedef int (*ext4_mballoc_query_range_fn)( struct super_block *sb, ext4_group_t agno, ext4_grpblk_t start, ext4_grpblk_t len, void *priv); int ext4_mballoc_query_range( struct super_block *sb, ext4_group_t agno, ext4_grpblk_t start, ext4_grpblk_t end, ext4_mballoc_query_range_fn formatter, void *priv); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_WORD_AT_A_TIME_H #define _ASM_WORD_AT_A_TIME_H #include <linux/kernel.h> /* * This is largely generic for little-endian machines, but the * optimal byte mask counting is probably going to be something * that is architecture-specific. If you have a reliably fast * bit count instruction, that might be better than the multiply * and shift, for example. */ struct word_at_a_time { const unsigned long one_bits, high_bits; }; #define WORD_AT_A_TIME_CONSTANTS { REPEAT_BYTE(0x01), REPEAT_BYTE(0x80) } #ifdef CONFIG_64BIT /* * Jan Achrenius on G+: microoptimized version of * the simpler "(mask & ONEBYTES) * ONEBYTES >> 56" * that works for the bytemasks without having to * mask them first. */ static inline long count_masked_bytes(unsigned long mask) { return mask*0x0001020304050608ul >> 56; } #else /* 32-bit case */ /* Carl Chatfield / Jan Achrenius G+ version for 32-bit */ static inline long count_masked_bytes(long mask) { /* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */ long a = (0x0ff0001+mask) >> 23; /* Fix the 1 for 00 case */ return a & mask; } #endif /* Return nonzero if it has a zero */ static inline unsigned long has_zero(unsigned long a, unsigned long *bits, const struct word_at_a_time *c) { unsigned long mask = ((a - c->one_bits) & ~a) & c->high_bits; *bits = mask; return mask; } static inline unsigned long prep_zero_mask(unsigned long a, unsigned long bits, const struct word_at_a_time *c) { return bits; } static inline unsigned long create_zero_mask(unsigned long bits) { bits = (bits - 1) & ~bits; return bits >> 7; } /* The mask we created is directly usable as a bytemask */ #define zero_bytemask(mask) (mask) static inline unsigned long find_zero(unsigned long mask) { return count_masked_bytes(mask); } /* * Load an unaligned word from kernel space. * * In the (very unlikely) case of the word being a page-crosser * and the next page not being mapped, take the exception and * return zeroes in the non-existing part. */ static inline unsigned long load_unaligned_zeropad(const void *addr) { unsigned long ret, dummy; asm( "1:\tmov %2,%0\n" "2:\n" ".section .fixup,\"ax\"\n" "3:\t" "lea %2,%1\n\t" "and %3,%1\n\t" "mov (%1),%0\n\t" "leal %2,%%ecx\n\t" "andl %4,%%ecx\n\t" "shll $3,%%ecx\n\t" "shr %%cl,%0\n\t" "jmp 2b\n" ".previous\n" _ASM_EXTABLE(1b, 3b) :"=&r" (ret),"=&c" (dummy) :"m" (*(unsigned long *)addr), "i" (-sizeof(unsigned long)), "i" (sizeof(unsigned long)-1)); return ret; } #endif /* _ASM_WORD_AT_A_TIME_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 // SPDX-License-Identifier: GPL-2.0 /* File: fs/ext4/acl.h (C) 2001 Andreas Gruenbacher, <a.gruenbacher@computer.org> */ #include <linux/posix_acl_xattr.h> #define EXT4_ACL_VERSION 0x0001 typedef struct { __le16 e_tag; __le16 e_perm; __le32 e_id; } ext4_acl_entry; typedef struct { __le16 e_tag; __le16 e_perm; } ext4_acl_entry_short; typedef struct { __le32 a_version; } ext4_acl_header; static inline size_t ext4_acl_size(int count) { if (count <= 4) { return sizeof(ext4_acl_header) + count * sizeof(ext4_acl_entry_short); } else { return sizeof(ext4_acl_header) + 4 * sizeof(ext4_acl_entry_short) + (count - 4) * sizeof(ext4_acl_entry); } } static inline int ext4_acl_count(size_t size) { ssize_t s; size -= sizeof(ext4_acl_header); s = size - 4 * sizeof(ext4_acl_entry_short); if (s < 0) { if (size % sizeof(ext4_acl_entry_short)) return -1; return size / sizeof(ext4_acl_entry_short); } else { if (s % sizeof(ext4_acl_entry)) return -1; return s / sizeof(ext4_acl_entry) + 4; } } #ifdef CONFIG_EXT4_FS_POSIX_ACL /* acl.c */ struct posix_acl *ext4_get_acl(struct inode *inode, int type); int ext4_set_acl(struct inode *inode, struct posix_acl *acl, int type); extern int ext4_init_acl(handle_t *, struct inode *, struct inode *); #else /* CONFIG_EXT4_FS_POSIX_ACL */ #include <linux/sched.h> #define ext4_get_acl NULL #define ext4_set_acl NULL static inline int ext4_init_acl(handle_t *handle, struct inode *inode, struct inode *dir) { return 0; } #endif /* CONFIG_EXT4_FS_POSIX_ACL */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM percpu #if !defined(_TRACE_PERCPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PERCPU_H #include <linux/tracepoint.h> TRACE_EVENT(percpu_alloc_percpu, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align, void *base_addr, int off, void __percpu *ptr), TP_ARGS(reserved, is_atomic, size, align, base_addr, off, ptr), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu base_addr=%p off=%d ptr=%p", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align, __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_free_percpu, TP_PROTO(void *base_addr, int off, void __percpu *ptr), TP_ARGS(base_addr, off, ptr), TP_STRUCT__entry( __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("base_addr=%p off=%d ptr=%p", __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_alloc_percpu_fail, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align), TP_ARGS(reserved, is_atomic, size, align), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align) ); TRACE_EVENT(percpu_create_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); TRACE_EVENT(percpu_destroy_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); #endif /* _TRACE_PERCPU_H */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_X86_XSAVE_H #define __ASM_X86_XSAVE_H #include <linux/uaccess.h> #include <linux/types.h> #include <asm/processor.h> #include <asm/user.h> /* Bit 63 of XCR0 is reserved for future expansion */ #define XFEATURE_MASK_EXTEND (~(XFEATURE_MASK_FPSSE | (1ULL << 63))) #define XSTATE_CPUID 0x0000000d #define FXSAVE_SIZE 512 #define XSAVE_HDR_SIZE 64 #define XSAVE_HDR_OFFSET FXSAVE_SIZE #define XSAVE_YMM_SIZE 256 #define XSAVE_YMM_OFFSET (XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET) #define XSAVE_ALIGNMENT 64 /* All currently supported user features */ #define XFEATURE_MASK_USER_SUPPORTED (XFEATURE_MASK_FP | \ XFEATURE_MASK_SSE | \ XFEATURE_MASK_YMM | \ XFEATURE_MASK_OPMASK | \ XFEATURE_MASK_ZMM_Hi256 | \ XFEATURE_MASK_Hi16_ZMM | \ XFEATURE_MASK_PKRU | \ XFEATURE_MASK_BNDREGS | \ XFEATURE_MASK_BNDCSR) /* All currently supported supervisor features */ #define XFEATURE_MASK_SUPERVISOR_SUPPORTED (XFEATURE_MASK_PASID) /* * A supervisor state component may not always contain valuable information, * and its size may be huge. Saving/restoring such supervisor state components * at each context switch can cause high CPU and space overhead, which should * be avoided. Such supervisor state components should only be saved/restored * on demand. The on-demand dynamic supervisor features are set in this mask. * * Unlike the existing supported supervisor features, a dynamic supervisor * feature does not allocate a buffer in task->fpu, and the corresponding * supervisor state component cannot be saved/restored at each context switch. * * To support a dynamic supervisor feature, a developer should follow the * dos and don'ts as below: * - Do dynamically allocate a buffer for the supervisor state component. * - Do manually invoke the XSAVES/XRSTORS instruction to save/restore the * state component to/from the buffer. * - Don't set the bit corresponding to the dynamic supervisor feature in * IA32_XSS at run time, since it has been set at boot time. */ #define XFEATURE_MASK_DYNAMIC (XFEATURE_MASK_LBR) /* * Unsupported supervisor features. When a supervisor feature in this mask is * supported in the future, move it to the supported supervisor feature mask. */ #define XFEATURE_MASK_SUPERVISOR_UNSUPPORTED (XFEATURE_MASK_PT) /* All supervisor states including supported and unsupported states. */ #define XFEATURE_MASK_SUPERVISOR_ALL (XFEATURE_MASK_SUPERVISOR_SUPPORTED | \ XFEATURE_MASK_DYNAMIC | \ XFEATURE_MASK_SUPERVISOR_UNSUPPORTED) #ifdef CONFIG_X86_64 #define REX_PREFIX "0x48, " #else #define REX_PREFIX #endif extern u64 xfeatures_mask_all; static inline u64 xfeatures_mask_supervisor(void) { return xfeatures_mask_all & XFEATURE_MASK_SUPERVISOR_SUPPORTED; } static inline u64 xfeatures_mask_user(void) { return xfeatures_mask_all & XFEATURE_MASK_USER_SUPPORTED; } static inline u64 xfeatures_mask_dynamic(void) { if (!boot_cpu_has(X86_FEATURE_ARCH_LBR)) return XFEATURE_MASK_DYNAMIC & ~XFEATURE_MASK_LBR; return XFEATURE_MASK_DYNAMIC; } extern u64 xstate_fx_sw_bytes[USER_XSTATE_FX_SW_WORDS]; extern void __init update_regset_xstate_info(unsigned int size, u64 xstate_mask); void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr); const void *get_xsave_field_ptr(int xfeature_nr); int using_compacted_format(void); int xfeature_size(int xfeature_nr); struct membuf; void copy_xstate_to_kernel(struct membuf to, struct xregs_state *xsave); int copy_kernel_to_xstate(struct xregs_state *xsave, const void *kbuf); int copy_user_to_xstate(struct xregs_state *xsave, const void __user *ubuf); void copy_supervisor_to_kernel(struct xregs_state *xsave); void copy_dynamic_supervisor_to_kernel(struct xregs_state *xstate, u64 mask); void copy_kernel_to_dynamic_supervisor(struct xregs_state *xstate, u64 mask); /* Validate an xstate header supplied by userspace (ptrace or sigreturn) */ int validate_user_xstate_header(const struct xstate_header *hdr); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _FIB_LOOKUP_H #define _FIB_LOOKUP_H #include <linux/types.h> #include <linux/list.h> #include <net/ip_fib.h> #include <net/nexthop.h> struct fib_alias { struct hlist_node fa_list; struct fib_info *fa_info; u8 fa_tos; u8 fa_type; u8 fa_state; u8 fa_slen; u32 tb_id; s16 fa_default; u8 offload:1, trap:1, unused:6; struct rcu_head rcu; }; #define FA_S_ACCESSED 0x01 /* Dont write on fa_state unless needed, to keep it shared on all cpus */ static inline void fib_alias_accessed(struct fib_alias *fa) { if (!(fa->fa_state & FA_S_ACCESSED)) fa->fa_state |= FA_S_ACCESSED; } /* Exported by fib_semantics.c */ void fib_release_info(struct fib_info *); struct fib_info *fib_create_info(struct fib_config *cfg, struct netlink_ext_ack *extack); int fib_nh_match(struct net *net, struct fib_config *cfg, struct fib_info *fi, struct netlink_ext_ack *extack); bool fib_metrics_match(struct fib_config *cfg, struct fib_info *fi); int fib_dump_info(struct sk_buff *skb, u32 pid, u32 seq, int event, struct fib_rt_info *fri, unsigned int flags); void rtmsg_fib(int event, __be32 key, struct fib_alias *fa, int dst_len, u32 tb_id, const struct nl_info *info, unsigned int nlm_flags); static inline void fib_result_assign(struct fib_result *res, struct fib_info *fi) { /* we used to play games with refcounts, but we now use RCU */ res->fi = fi; res->nhc = fib_info_nhc(fi, 0); } struct fib_prop { int error; u8 scope; }; extern const struct fib_prop fib_props[RTN_MAX + 1]; #endif /* _FIB_LOOKUP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2001 Jens Axboe <axboe@suse.de> */ #ifndef __LINUX_BIO_H #define __LINUX_BIO_H #include <linux/highmem.h> #include <linux/mempool.h> #include <linux/ioprio.h> /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ #include <linux/blk_types.h> #define BIO_DEBUG #ifdef BIO_DEBUG #define BIO_BUG_ON BUG_ON #else #define BIO_BUG_ON #endif #define BIO_MAX_PAGES 256 #define bio_prio(bio) (bio)->bi_ioprio #define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio) #define bio_iter_iovec(bio, iter) \ bvec_iter_bvec((bio)->bi_io_vec, (iter)) #define bio_iter_page(bio, iter) \ bvec_iter_page((bio)->bi_io_vec, (iter)) #define bio_iter_len(bio, iter) \ bvec_iter_len((bio)->bi_io_vec, (iter)) #define bio_iter_offset(bio, iter) \ bvec_iter_offset((bio)->bi_io_vec, (iter)) #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) #define bvec_iter_sectors(iter) ((iter).bi_size >> 9) #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) /* * Return the data direction, READ or WRITE. */ #define bio_data_dir(bio) \ (op_is_write(bio_op(bio)) ? WRITE : READ) /* * Check whether this bio carries any data or not. A NULL bio is allowed. */ static inline bool bio_has_data(struct bio *bio) { if (bio && bio->bi_iter.bi_size && bio_op(bio) != REQ_OP_DISCARD && bio_op(bio) != REQ_OP_SECURE_ERASE && bio_op(bio) != REQ_OP_WRITE_ZEROES) return true; return false; } static inline bool bio_no_advance_iter(const struct bio *bio) { return bio_op(bio) == REQ_OP_DISCARD || bio_op(bio) == REQ_OP_SECURE_ERASE || bio_op(bio) == REQ_OP_WRITE_SAME || bio_op(bio) == REQ_OP_WRITE_ZEROES; } static inline bool bio_mergeable(struct bio *bio) { if (bio->bi_opf & REQ_NOMERGE_FLAGS) return false; return true; } static inline unsigned int bio_cur_bytes(struct bio *bio) { if (bio_has_data(bio)) return bio_iovec(bio).bv_len; else /* dataless requests such as discard */ return bio->bi_iter.bi_size; } static inline void *bio_data(struct bio *bio) { if (bio_has_data(bio)) return page_address(bio_page(bio)) + bio_offset(bio); return NULL; } /** * bio_full - check if the bio is full * @bio: bio to check * @len: length of one segment to be added * * Return true if @bio is full and one segment with @len bytes can't be * added to the bio, otherwise return false */ static inline bool bio_full(struct bio *bio, unsigned len) { if (bio->bi_vcnt >= bio->bi_max_vecs) return true; if (bio->bi_iter.bi_size > UINT_MAX - len) return true; return false; } static inline bool bio_next_segment(const struct bio *bio, struct bvec_iter_all *iter) { if (iter->idx >= bio->bi_vcnt) return false; bvec_advance(&bio->bi_io_vec[iter->idx], iter); return true; } /* * drivers should _never_ use the all version - the bio may have been split * before it got to the driver and the driver won't own all of it */ #define bio_for_each_segment_all(bvl, bio, iter) \ for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) static inline void bio_advance_iter(const struct bio *bio, struct bvec_iter *iter, unsigned int bytes) { iter->bi_sector += bytes >> 9; if (bio_no_advance_iter(bio)) iter->bi_size -= bytes; else bvec_iter_advance(bio->bi_io_vec, iter, bytes); /* TODO: It is reasonable to complete bio with error here. */ } #define __bio_for_each_segment(bvl, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = bio_iter_iovec((bio), (iter))), 1); \ bio_advance_iter((bio), &(iter), (bvl).bv_len)) #define bio_for_each_segment(bvl, bio, iter) \ __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) #define __bio_for_each_bvec(bvl, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ bio_advance_iter((bio), &(iter), (bvl).bv_len)) /* iterate over multi-page bvec */ #define bio_for_each_bvec(bvl, bio, iter) \ __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) /* * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the * same reasons as bio_for_each_segment_all(). */ #define bio_for_each_bvec_all(bvl, bio, i) \ for (i = 0, bvl = bio_first_bvec_all(bio); \ i < (bio)->bi_vcnt; i++, bvl++) \ #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) static inline unsigned bio_segments(struct bio *bio) { unsigned segs = 0; struct bio_vec bv; struct bvec_iter iter; /* * We special case discard/write same/write zeroes, because they * interpret bi_size differently: */ switch (bio_op(bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: case REQ_OP_WRITE_ZEROES: return 0; case REQ_OP_WRITE_SAME: return 1; default: break; } bio_for_each_segment(bv, bio, iter) segs++; return segs; } /* * get a reference to a bio, so it won't disappear. the intended use is * something like: * * bio_get(bio); * submit_bio(rw, bio); * if (bio->bi_flags ...) * do_something * bio_put(bio); * * without the bio_get(), it could potentially complete I/O before submit_bio * returns. and then bio would be freed memory when if (bio->bi_flags ...) * runs */ static inline void bio_get(struct bio *bio) { bio->bi_flags |= (1 << BIO_REFFED); smp_mb__before_atomic(); atomic_inc(&bio->__bi_cnt); } static inline void bio_cnt_set(struct bio *bio, unsigned int count) { if (count != 1) { bio->bi_flags |= (1 << BIO_REFFED); smp_mb(); } atomic_set(&bio->__bi_cnt, count); } static inline bool bio_flagged(struct bio *bio, unsigned int bit) { return (bio->bi_flags & (1U << bit)) != 0; } static inline void bio_set_flag(struct bio *bio, unsigned int bit) { bio->bi_flags |= (1U << bit); } static inline void bio_clear_flag(struct bio *bio, unsigned int bit) { bio->bi_flags &= ~(1U << bit); } static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) { *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); } static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) { struct bvec_iter iter = bio->bi_iter; int idx; bio_get_first_bvec(bio, bv); if (bv->bv_len == bio->bi_iter.bi_size) return; /* this bio only has a single bvec */ bio_advance_iter(bio, &iter, iter.bi_size); if (!iter.bi_bvec_done) idx = iter.bi_idx - 1; else /* in the middle of bvec */ idx = iter.bi_idx; *bv = bio->bi_io_vec[idx]; /* * iter.bi_bvec_done records actual length of the last bvec * if this bio ends in the middle of one io vector */ if (iter.bi_bvec_done) bv->bv_len = iter.bi_bvec_done; } static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) { WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); return bio->bi_io_vec; } static inline struct page *bio_first_page_all(struct bio *bio) { return bio_first_bvec_all(bio)->bv_page; } static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) { WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); return &bio->bi_io_vec[bio->bi_vcnt - 1]; } enum bip_flags { BIP_BLOCK_INTEGRITY = 1 << 0, /* block layer owns integrity data */ BIP_MAPPED_INTEGRITY = 1 << 1, /* ref tag has been remapped */ BIP_CTRL_NOCHECK = 1 << 2, /* disable HBA integrity checking */ BIP_DISK_NOCHECK = 1 << 3, /* disable disk integrity checking */ BIP_IP_CHECKSUM = 1 << 4, /* IP checksum */ }; /* * bio integrity payload */ struct bio_integrity_payload { struct bio *bip_bio; /* parent bio */ struct bvec_iter bip_iter; unsigned short bip_slab; /* slab the bip came from */ unsigned short bip_vcnt; /* # of integrity bio_vecs */ unsigned short bip_max_vcnt; /* integrity bio_vec slots */ unsigned short bip_flags; /* control flags */ struct bvec_iter bio_iter; /* for rewinding parent bio */ struct work_struct bip_work; /* I/O completion */ struct bio_vec *bip_vec; struct bio_vec bip_inline_vecs[];/* embedded bvec array */ }; #if defined(CONFIG_BLK_DEV_INTEGRITY) static inline struct bio_integrity_payload *bio_integrity(struct bio *bio) { if (bio->bi_opf & REQ_INTEGRITY) return bio->bi_integrity; return NULL; } static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) { struct bio_integrity_payload *bip = bio_integrity(bio); if (bip) return bip->bip_flags & flag; return false; } static inline sector_t bip_get_seed(struct bio_integrity_payload *bip) { return bip->bip_iter.bi_sector; } static inline void bip_set_seed(struct bio_integrity_payload *bip, sector_t seed) { bip->bip_iter.bi_sector = seed; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ extern void bio_trim(struct bio *bio, int offset, int size); extern struct bio *bio_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs); /** * bio_next_split - get next @sectors from a bio, splitting if necessary * @bio: bio to split * @sectors: number of sectors to split from the front of @bio * @gfp: gfp mask * @bs: bio set to allocate from * * Returns a bio representing the next @sectors of @bio - if the bio is smaller * than @sectors, returns the original bio unchanged. */ static inline struct bio *bio_next_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs) { if (sectors >= bio_sectors(bio)) return bio; return bio_split(bio, sectors, gfp, bs); } enum { BIOSET_NEED_BVECS = BIT(0), BIOSET_NEED_RESCUER = BIT(1), }; extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); extern void bioset_exit(struct bio_set *); extern int biovec_init_pool(mempool_t *pool, int pool_entries); extern int bioset_init_from_src(struct bio_set *bs, struct bio_set *src); extern struct bio *bio_alloc_bioset(gfp_t, unsigned int, struct bio_set *); extern void bio_put(struct bio *); extern void __bio_clone_fast(struct bio *, struct bio *); extern struct bio *bio_clone_fast(struct bio *, gfp_t, struct bio_set *); extern struct bio_set fs_bio_set; static inline struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) { return bio_alloc_bioset(gfp_mask, nr_iovecs, &fs_bio_set); } static inline struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs) { return bio_alloc_bioset(gfp_mask, nr_iovecs, NULL); } extern blk_qc_t submit_bio(struct bio *); extern void bio_endio(struct bio *); static inline void bio_io_error(struct bio *bio) { bio->bi_status = BLK_STS_IOERR; bio_endio(bio); } static inline void bio_wouldblock_error(struct bio *bio) { bio_set_flag(bio, BIO_QUIET); bio->bi_status = BLK_STS_AGAIN; bio_endio(bio); } struct request_queue; extern int submit_bio_wait(struct bio *bio); extern void bio_advance(struct bio *, unsigned); extern void bio_init(struct bio *bio, struct bio_vec *table, unsigned short max_vecs); extern void bio_uninit(struct bio *); extern void bio_reset(struct bio *); void bio_chain(struct bio *, struct bio *); extern int bio_add_page(struct bio *, struct page *, unsigned int,unsigned int); extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, unsigned int, unsigned int); bool __bio_try_merge_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off, bool *same_page); void __bio_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off); int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter); void bio_release_pages(struct bio *bio, bool mark_dirty); extern void bio_set_pages_dirty(struct bio *bio); extern void bio_check_pages_dirty(struct bio *bio); extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, struct bio *src, struct bvec_iter *src_iter); extern void bio_copy_data(struct bio *dst, struct bio *src); extern void bio_list_copy_data(struct bio *dst, struct bio *src); extern void bio_free_pages(struct bio *bio); void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter); void bio_truncate(struct bio *bio, unsigned new_size); void guard_bio_eod(struct bio *bio); static inline void zero_fill_bio(struct bio *bio) { zero_fill_bio_iter(bio, bio->bi_iter); } extern struct bio_vec *bvec_alloc(gfp_t, int, unsigned long *, mempool_t *); extern void bvec_free(mempool_t *, struct bio_vec *, unsigned int); extern unsigned int bvec_nr_vecs(unsigned short idx); extern const char *bio_devname(struct bio *bio, char *buffer); #define bio_set_dev(bio, bdev) \ do { \ if ((bio)->bi_disk != (bdev)->bd_disk) \ bio_clear_flag(bio, BIO_THROTTLED);\ (bio)->bi_disk = (bdev)->bd_disk; \ (bio)->bi_partno = (bdev)->bd_partno; \ bio_associate_blkg(bio); \ } while (0) #define bio_copy_dev(dst, src) \ do { \ (dst)->bi_disk = (src)->bi_disk; \ (dst)->bi_partno = (src)->bi_partno; \ bio_clone_blkg_association(dst, src); \ } while (0) #define bio_dev(bio) \ disk_devt((bio)->bi_disk) #ifdef CONFIG_BLK_CGROUP void bio_associate_blkg(struct bio *bio); void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css); void bio_clone_blkg_association(struct bio *dst, struct bio *src); #else /* CONFIG_BLK_CGROUP */ static inline void bio_associate_blkg(struct bio *bio) { } static inline void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css) { } static inline void bio_clone_blkg_association(struct bio *dst, struct bio *src) { } #endif /* CONFIG_BLK_CGROUP */ #ifdef CONFIG_HIGHMEM /* * remember never ever reenable interrupts between a bvec_kmap_irq and * bvec_kunmap_irq! */ static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) { unsigned long addr; /* * might not be a highmem page, but the preempt/irq count * balancing is a lot nicer this way */ local_irq_save(*flags); addr = (unsigned long) kmap_atomic(bvec->bv_page); BUG_ON(addr & ~PAGE_MASK); return (char *) addr + bvec->bv_offset; } static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) { unsigned long ptr = (unsigned long) buffer & PAGE_MASK; kunmap_atomic((void *) ptr); local_irq_restore(*flags); } #else static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) { return page_address(bvec->bv_page) + bvec->bv_offset; } static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) { *flags = 0; } #endif /* * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. * * A bio_list anchors a singly-linked list of bios chained through the bi_next * member of the bio. The bio_list also caches the last list member to allow * fast access to the tail. */ struct bio_list { struct bio *head; struct bio *tail; }; static inline int bio_list_empty(const struct bio_list *bl) { return bl->head == NULL; } static inline void bio_list_init(struct bio_list *bl) { bl->head = bl->tail = NULL; } #define BIO_EMPTY_LIST { NULL, NULL } #define bio_list_for_each(bio, bl) \ for (bio = (bl)->head; bio; bio = bio->bi_next) static inline unsigned bio_list_size(const struct bio_list *bl) { unsigned sz = 0; struct bio *bio; bio_list_for_each(bio, bl) sz++; return sz; } static inline void bio_list_add(struct bio_list *bl, struct bio *bio) { bio->bi_next = NULL; if (bl->tail) bl->tail->bi_next = bio; else bl->head = bio; bl->tail = bio; } static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) { bio->bi_next = bl->head; bl->head = bio; if (!bl->tail) bl->tail = bio; } static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) { if (!bl2->head) return; if (bl->tail) bl->tail->bi_next = bl2->head; else bl->head = bl2->head; bl->tail = bl2->tail; } static inline void bio_list_merge_head(struct bio_list *bl, struct bio_list *bl2) { if (!bl2->head) return; if (bl->head) bl2->tail->bi_next = bl->head; else bl->tail = bl2->tail; bl->head = bl2->head; } static inline struct bio *bio_list_peek(struct bio_list *bl) { return bl->head; } static inline struct bio *bio_list_pop(struct bio_list *bl) { struct bio *bio = bl->head; if (bio) { bl->head = bl->head->bi_next; if (!bl->head) bl->tail = NULL; bio->bi_next = NULL; } return bio; } static inline struct bio *bio_list_get(struct bio_list *bl) { struct bio *bio = bl->head; bl->head = bl->tail = NULL; return bio; } /* * Increment chain count for the bio. Make sure the CHAIN flag update * is visible before the raised count. */ static inline void bio_inc_remaining(struct bio *bio) { bio_set_flag(bio, BIO_CHAIN); smp_mb__before_atomic(); atomic_inc(&bio->__bi_remaining); } /* * bio_set is used to allow other portions of the IO system to * allocate their own private memory pools for bio and iovec structures. * These memory pools in turn all allocate from the bio_slab * and the bvec_slabs[]. */ #define BIO_POOL_SIZE 2 struct bio_set { struct kmem_cache *bio_slab; unsigned int front_pad; mempool_t bio_pool; mempool_t bvec_pool; #if defined(CONFIG_BLK_DEV_INTEGRITY) mempool_t bio_integrity_pool; mempool_t bvec_integrity_pool; #endif /* * Deadlock avoidance for stacking block drivers: see comments in * bio_alloc_bioset() for details */ spinlock_t rescue_lock; struct bio_list rescue_list; struct work_struct rescue_work; struct workqueue_struct *rescue_workqueue; }; struct biovec_slab { int nr_vecs; char *name; struct kmem_cache *slab; }; static inline bool bioset_initialized(struct bio_set *bs) { return bs->bio_slab != NULL; } /* * a small number of entries is fine, not going to be performance critical. * basically we just need to survive */ #define BIO_SPLIT_ENTRIES 2 #if defined(CONFIG_BLK_DEV_INTEGRITY) #define bip_for_each_vec(bvl, bip, iter) \ for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter) #define bio_for_each_integrity_vec(_bvl, _bio, _iter) \ for_each_bio(_bio) \ bip_for_each_vec(_bvl, _bio->bi_integrity, _iter) extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int); extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int); extern bool bio_integrity_prep(struct bio *); extern void bio_integrity_advance(struct bio *, unsigned int); extern void bio_integrity_trim(struct bio *); extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t); extern int bioset_integrity_create(struct bio_set *, int); extern void bioset_integrity_free(struct bio_set *); extern void bio_integrity_init(void); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline void *bio_integrity(struct bio *bio) { return NULL; } static inline int bioset_integrity_create(struct bio_set *bs, int pool_size) { return 0; } static inline void bioset_integrity_free (struct bio_set *bs) { return; } static inline bool bio_integrity_prep(struct bio *bio) { return true; } static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp_mask) { return 0; } static inline void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) { return; } static inline void bio_integrity_trim(struct bio *bio) { return; } static inline void bio_integrity_init(void) { return; } static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) { return false; } static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp, unsigned int nr) { return ERR_PTR(-EINVAL); } static inline int bio_integrity_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int offset) { return 0; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ /* * Mark a bio as polled. Note that for async polled IO, the caller must * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). * We cannot block waiting for requests on polled IO, as those completions * must be found by the caller. This is different than IRQ driven IO, where * it's safe to wait for IO to complete. */ static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) { bio->bi_opf |= REQ_HIPRI; if (!is_sync_kiocb(kiocb)) bio->bi_opf |= REQ_NOWAIT; } #endif /* __LINUX_BIO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CFG80211_RDEV_OPS #define __CFG80211_RDEV_OPS #include <linux/rtnetlink.h> #include <net/cfg80211.h> #include "core.h" #include "trace.h" static inline int rdev_suspend(struct cfg80211_registered_device *rdev, struct cfg80211_wowlan *wowlan) { int ret; trace_rdev_suspend(&rdev->wiphy, wowlan); ret = rdev->ops->suspend(&rdev->wiphy, wowlan); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_resume(struct cfg80211_registered_device *rdev) { int ret; trace_rdev_resume(&rdev->wiphy); ret = rdev->ops->resume(&rdev->wiphy); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_set_wakeup(struct cfg80211_registered_device *rdev, bool enabled) { trace_rdev_set_wakeup(&rdev->wiphy, enabled); rdev->ops->set_wakeup(&rdev->wiphy, enabled); trace_rdev_return_void(&rdev->wiphy); } static inline struct wireless_dev *rdev_add_virtual_intf(struct cfg80211_registered_device *rdev, char *name, unsigned char name_assign_type, enum nl80211_iftype type, struct vif_params *params) { struct wireless_dev *ret; trace_rdev_add_virtual_intf(&rdev->wiphy, name, type); ret = rdev->ops->add_virtual_intf(&rdev->wiphy, name, name_assign_type, type, params); trace_rdev_return_wdev(&rdev->wiphy, ret); return ret; } static inline int rdev_del_virtual_intf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { int ret; trace_rdev_del_virtual_intf(&rdev->wiphy, wdev); ret = rdev->ops->del_virtual_intf(&rdev->wiphy, wdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_virtual_intf(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype type, struct vif_params *params) { int ret; trace_rdev_change_virtual_intf(&rdev->wiphy, dev, type); ret = rdev->ops->change_virtual_intf(&rdev->wiphy, dev, type, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, struct key_params *params) { int ret; trace_rdev_add_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, params->mode); ret = rdev->ops->add_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback)(void *cookie, struct key_params*)) { int ret; trace_rdev_get_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); ret = rdev->ops->get_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, cookie, callback); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr) { int ret; trace_rdev_del_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); ret = rdev->ops->del_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool unicast, bool multicast) { int ret; trace_rdev_set_default_key(&rdev->wiphy, netdev, key_index, unicast, multicast); ret = rdev->ops->set_default_key(&rdev->wiphy, netdev, key_index, unicast, multicast); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_mgmt_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index) { int ret; trace_rdev_set_default_mgmt_key(&rdev->wiphy, netdev, key_index); ret = rdev->ops->set_default_mgmt_key(&rdev->wiphy, netdev, key_index); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_beacon_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index) { int ret; trace_rdev_set_default_beacon_key(&rdev->wiphy, netdev, key_index); ret = rdev->ops->set_default_beacon_key(&rdev->wiphy, netdev, key_index); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_start_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ap_settings *settings) { int ret; trace_rdev_start_ap(&rdev->wiphy, dev, settings); ret = rdev->ops->start_ap(&rdev->wiphy, dev, settings); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_beacon(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_beacon_data *info) { int ret; trace_rdev_change_beacon(&rdev->wiphy, dev, info); ret = rdev->ops->change_beacon(&rdev->wiphy, dev, info); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_stop_ap(&rdev->wiphy, dev); ret = rdev->ops->stop_ap(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_station(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *mac, struct station_parameters *params) { int ret; trace_rdev_add_station(&rdev->wiphy, dev, mac, params); ret = rdev->ops->add_station(&rdev->wiphy, dev, mac, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_station(struct cfg80211_registered_device *rdev, struct net_device *dev, struct station_del_parameters *params) { int ret; trace_rdev_del_station(&rdev->wiphy, dev, params); ret = rdev->ops->del_station(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_station(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *mac, struct station_parameters *params) { int ret; trace_rdev_change_station(&rdev->wiphy, dev, mac, params); ret = rdev->ops->change_station(&rdev->wiphy, dev, mac, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_station(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *mac, struct station_info *sinfo) { int ret; trace_rdev_get_station(&rdev->wiphy, dev, mac); ret = rdev->ops->get_station(&rdev->wiphy, dev, mac, sinfo); trace_rdev_return_int_station_info(&rdev->wiphy, ret, sinfo); return ret; } static inline int rdev_dump_station(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *mac, struct station_info *sinfo) { int ret; trace_rdev_dump_station(&rdev->wiphy, dev, idx, mac); ret = rdev->ops->dump_station(&rdev->wiphy, dev, idx, mac, sinfo); trace_rdev_return_int_station_info(&rdev->wiphy, ret, sinfo); return ret; } static inline int rdev_add_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop) { int ret; trace_rdev_add_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->add_mpath(&rdev->wiphy, dev, dst, next_hop); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst) { int ret; trace_rdev_del_mpath(&rdev->wiphy, dev, dst); ret = rdev->ops->del_mpath(&rdev->wiphy, dev, dst); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop) { int ret; trace_rdev_change_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->change_mpath(&rdev->wiphy, dev, dst, next_hop); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { int ret; trace_rdev_get_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->get_mpath(&rdev->wiphy, dev, dst, next_hop, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_get_mpp(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *mpp, struct mpath_info *pinfo) { int ret; trace_rdev_get_mpp(&rdev->wiphy, dev, dst, mpp); ret = rdev->ops->get_mpp(&rdev->wiphy, dev, dst, mpp, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_dump_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { int ret; trace_rdev_dump_mpath(&rdev->wiphy, dev, idx, dst, next_hop); ret = rdev->ops->dump_mpath(&rdev->wiphy, dev, idx, dst, next_hop, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_dump_mpp(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *dst, u8 *mpp, struct mpath_info *pinfo) { int ret; trace_rdev_dump_mpp(&rdev->wiphy, dev, idx, dst, mpp); ret = rdev->ops->dump_mpp(&rdev->wiphy, dev, idx, dst, mpp, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_get_mesh_config(struct cfg80211_registered_device *rdev, struct net_device *dev, struct mesh_config *conf) { int ret; trace_rdev_get_mesh_config(&rdev->wiphy, dev); ret = rdev->ops->get_mesh_config(&rdev->wiphy, dev, conf); trace_rdev_return_int_mesh_config(&rdev->wiphy, ret, conf); return ret; } static inline int rdev_update_mesh_config(struct cfg80211_registered_device *rdev, struct net_device *dev, u32 mask, const struct mesh_config *nconf) { int ret; trace_rdev_update_mesh_config(&rdev->wiphy, dev, mask, nconf); ret = rdev->ops->update_mesh_config(&rdev->wiphy, dev, mask, nconf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev, const struct mesh_config *conf, const struct mesh_setup *setup) { int ret; trace_rdev_join_mesh(&rdev->wiphy, dev, conf, setup); ret = rdev->ops->join_mesh(&rdev->wiphy, dev, conf, setup); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_mesh(&rdev->wiphy, dev); ret = rdev->ops->leave_mesh(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup) { int ret; trace_rdev_join_ocb(&rdev->wiphy, dev, setup); ret = rdev->ops->join_ocb(&rdev->wiphy, dev, setup); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_ocb(&rdev->wiphy, dev); ret = rdev->ops->leave_ocb(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_bss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct bss_parameters *params) { int ret; trace_rdev_change_bss(&rdev->wiphy, dev, params); ret = rdev->ops->change_bss(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_txq_params(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_txq_params *params) { int ret; trace_rdev_set_txq_params(&rdev->wiphy, dev, params); ret = rdev->ops->set_txq_params(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_libertas_set_mesh_channel(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan) { int ret; trace_rdev_libertas_set_mesh_channel(&rdev->wiphy, dev, chan); ret = rdev->ops->libertas_set_mesh_channel(&rdev->wiphy, dev, chan); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_monitor_channel(struct cfg80211_registered_device *rdev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_set_monitor_channel(&rdev->wiphy, chandef); ret = rdev->ops->set_monitor_channel(&rdev->wiphy, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_scan(struct cfg80211_registered_device *rdev, struct cfg80211_scan_request *request) { int ret; trace_rdev_scan(&rdev->wiphy, request); ret = rdev->ops->scan(&rdev->wiphy, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_abort_scan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_abort_scan(&rdev->wiphy, wdev); rdev->ops->abort_scan(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_auth_request *req) { int ret; trace_rdev_auth(&rdev->wiphy, dev, req); ret = rdev->ops->auth(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_assoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_assoc_request *req) { int ret; trace_rdev_assoc(&rdev->wiphy, dev, req); ret = rdev->ops->assoc(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_deauth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_deauth_request *req) { int ret; trace_rdev_deauth(&rdev->wiphy, dev, req); ret = rdev->ops->deauth(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_disassoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_disassoc_request *req) { int ret; trace_rdev_disassoc(&rdev->wiphy, dev, req); ret = rdev->ops->disassoc(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_connect(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *sme) { int ret; trace_rdev_connect(&rdev->wiphy, dev, sme); ret = rdev->ops->connect(&rdev->wiphy, dev, sme); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_update_connect_params(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *sme, u32 changed) { int ret; trace_rdev_update_connect_params(&rdev->wiphy, dev, sme, changed); ret = rdev->ops->update_connect_params(&rdev->wiphy, dev, sme, changed); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_disconnect(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 reason_code) { int ret; trace_rdev_disconnect(&rdev->wiphy, dev, reason_code); ret = rdev->ops->disconnect(&rdev->wiphy, dev, reason_code); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ibss_params *params) { int ret; trace_rdev_join_ibss(&rdev->wiphy, dev, params); ret = rdev->ops->join_ibss(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_ibss(&rdev->wiphy, dev); ret = rdev->ops->leave_ibss(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_wiphy_params(struct cfg80211_registered_device *rdev, u32 changed) { int ret; if (!rdev->ops->set_wiphy_params) return -EOPNOTSUPP; trace_rdev_set_wiphy_params(&rdev->wiphy, changed); ret = rdev->ops->set_wiphy_params(&rdev->wiphy, changed); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_tx_power(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, int mbm) { int ret; trace_rdev_set_tx_power(&rdev->wiphy, wdev, type, mbm); ret = rdev->ops->set_tx_power(&rdev->wiphy, wdev, type, mbm); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_tx_power(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, int *dbm) { int ret; trace_rdev_get_tx_power(&rdev->wiphy, wdev); ret = rdev->ops->get_tx_power(&rdev->wiphy, wdev, dbm); trace_rdev_return_int_int(&rdev->wiphy, ret, *dbm); return ret; } static inline int rdev_set_wds_peer(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr) { int ret; trace_rdev_set_wds_peer(&rdev->wiphy, dev, addr); ret = rdev->ops->set_wds_peer(&rdev->wiphy, dev, addr); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_multicast_to_unicast(struct cfg80211_registered_device *rdev, struct net_device *dev, const bool enabled) { int ret; trace_rdev_set_multicast_to_unicast(&rdev->wiphy, dev, enabled); ret = rdev->ops->set_multicast_to_unicast(&rdev->wiphy, dev, enabled); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_txq_stats(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_txq_stats *txqstats) { int ret; trace_rdev_get_txq_stats(&rdev->wiphy, wdev); ret = rdev->ops->get_txq_stats(&rdev->wiphy, wdev, txqstats); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_rfkill_poll(struct cfg80211_registered_device *rdev) { trace_rdev_rfkill_poll(&rdev->wiphy); rdev->ops->rfkill_poll(&rdev->wiphy); trace_rdev_return_void(&rdev->wiphy); } #ifdef CONFIG_NL80211_TESTMODE static inline int rdev_testmode_cmd(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, void *data, int len) { int ret; trace_rdev_testmode_cmd(&rdev->wiphy, wdev); ret = rdev->ops->testmode_cmd(&rdev->wiphy, wdev, data, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_testmode_dump(struct cfg80211_registered_device *rdev, struct sk_buff *skb, struct netlink_callback *cb, void *data, int len) { int ret; trace_rdev_testmode_dump(&rdev->wiphy); ret = rdev->ops->testmode_dump(&rdev->wiphy, skb, cb, data, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } #endif static inline int rdev_set_bitrate_mask(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, const struct cfg80211_bitrate_mask *mask) { int ret; trace_rdev_set_bitrate_mask(&rdev->wiphy, dev, peer, mask); ret = rdev->ops->set_bitrate_mask(&rdev->wiphy, dev, peer, mask); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_dump_survey(struct cfg80211_registered_device *rdev, struct net_device *netdev, int idx, struct survey_info *info) { int ret; trace_rdev_dump_survey(&rdev->wiphy, netdev, idx); ret = rdev->ops->dump_survey(&rdev->wiphy, netdev, idx, info); if (ret < 0) trace_rdev_return_int(&rdev->wiphy, ret); else trace_rdev_return_int_survey_info(&rdev->wiphy, ret, info); return ret; } static inline int rdev_set_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { int ret; trace_rdev_set_pmksa(&rdev->wiphy, netdev, pmksa); ret = rdev->ops->set_pmksa(&rdev->wiphy, netdev, pmksa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { int ret; trace_rdev_del_pmksa(&rdev->wiphy, netdev, pmksa); ret = rdev->ops->del_pmksa(&rdev->wiphy, netdev, pmksa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_flush_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev) { int ret; trace_rdev_flush_pmksa(&rdev->wiphy, netdev); ret = rdev->ops->flush_pmksa(&rdev->wiphy, netdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_remain_on_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration, u64 *cookie) { int ret; trace_rdev_remain_on_channel(&rdev->wiphy, wdev, chan, duration); ret = rdev->ops->remain_on_channel(&rdev->wiphy, wdev, chan, duration, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_cancel_remain_on_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { int ret; trace_rdev_cancel_remain_on_channel(&rdev->wiphy, wdev, cookie); ret = rdev->ops->cancel_remain_on_channel(&rdev->wiphy, wdev, cookie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_mgmt_tx(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie) { int ret; trace_rdev_mgmt_tx(&rdev->wiphy, wdev, params); ret = rdev->ops->mgmt_tx(&rdev->wiphy, wdev, params, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_tx_control_port(struct cfg80211_registered_device *rdev, struct net_device *dev, const void *buf, size_t len, const u8 *dest, __be16 proto, const bool noencrypt, u64 *cookie) { int ret; trace_rdev_tx_control_port(&rdev->wiphy, dev, buf, len, dest, proto, noencrypt); ret = rdev->ops->tx_control_port(&rdev->wiphy, dev, buf, len, dest, proto, noencrypt, cookie); if (cookie) trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); else trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_mgmt_tx_cancel_wait(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { int ret; trace_rdev_mgmt_tx_cancel_wait(&rdev->wiphy, wdev, cookie); ret = rdev->ops->mgmt_tx_cancel_wait(&rdev->wiphy, wdev, cookie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_power_mgmt(struct cfg80211_registered_device *rdev, struct net_device *dev, bool enabled, int timeout) { int ret; trace_rdev_set_power_mgmt(&rdev->wiphy, dev, enabled, timeout); ret = rdev->ops->set_power_mgmt(&rdev->wiphy, dev, enabled, timeout); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_rssi_config(struct cfg80211_registered_device *rdev, struct net_device *dev, s32 rssi_thold, u32 rssi_hyst) { int ret; trace_rdev_set_cqm_rssi_config(&rdev->wiphy, dev, rssi_thold, rssi_hyst); ret = rdev->ops->set_cqm_rssi_config(&rdev->wiphy, dev, rssi_thold, rssi_hyst); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_rssi_range_config(struct cfg80211_registered_device *rdev, struct net_device *dev, s32 low, s32 high) { int ret; trace_rdev_set_cqm_rssi_range_config(&rdev->wiphy, dev, low, high); ret = rdev->ops->set_cqm_rssi_range_config(&rdev->wiphy, dev, low, high); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_txe_config(struct cfg80211_registered_device *rdev, struct net_device *dev, u32 rate, u32 pkts, u32 intvl) { int ret; trace_rdev_set_cqm_txe_config(&rdev->wiphy, dev, rate, pkts, intvl); ret = rdev->ops->set_cqm_txe_config(&rdev->wiphy, dev, rate, pkts, intvl); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_update_mgmt_frame_registrations(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct mgmt_frame_regs *upd) { might_sleep(); trace_rdev_update_mgmt_frame_registrations(&rdev->wiphy, wdev, upd); if (rdev->ops->update_mgmt_frame_registrations) rdev->ops->update_mgmt_frame_registrations(&rdev->wiphy, wdev, upd); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_set_antenna(struct cfg80211_registered_device *rdev, u32 tx_ant, u32 rx_ant) { int ret; trace_rdev_set_antenna(&rdev->wiphy, tx_ant, rx_ant); ret = rdev->ops->set_antenna(&rdev->wiphy, tx_ant, rx_ant); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_antenna(struct cfg80211_registered_device *rdev, u32 *tx_ant, u32 *rx_ant) { int ret; trace_rdev_get_antenna(&rdev->wiphy); ret = rdev->ops->get_antenna(&rdev->wiphy, tx_ant, rx_ant); if (ret) trace_rdev_return_int(&rdev->wiphy, ret); else trace_rdev_return_int_tx_rx(&rdev->wiphy, ret, *tx_ant, *rx_ant); return ret; } static inline int rdev_sched_scan_start(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_sched_scan_request *request) { int ret; trace_rdev_sched_scan_start(&rdev->wiphy, dev, request->reqid); ret = rdev->ops->sched_scan_start(&rdev->wiphy, dev, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_sched_scan_stop(struct cfg80211_registered_device *rdev, struct net_device *dev, u64 reqid) { int ret; trace_rdev_sched_scan_stop(&rdev->wiphy, dev, reqid); ret = rdev->ops->sched_scan_stop(&rdev->wiphy, dev, reqid); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_rekey_data(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_gtk_rekey_data *data) { int ret; trace_rdev_set_rekey_data(&rdev->wiphy, dev); ret = rdev->ops->set_rekey_data(&rdev->wiphy, dev, data); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_mgmt(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *peer, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, bool initiator, const u8 *buf, size_t len) { int ret; trace_rdev_tdls_mgmt(&rdev->wiphy, dev, peer, action_code, dialog_token, status_code, peer_capability, initiator, buf, len); ret = rdev->ops->tdls_mgmt(&rdev->wiphy, dev, peer, action_code, dialog_token, status_code, peer_capability, initiator, buf, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_oper(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *peer, enum nl80211_tdls_operation oper) { int ret; trace_rdev_tdls_oper(&rdev->wiphy, dev, peer, oper); ret = rdev->ops->tdls_oper(&rdev->wiphy, dev, peer, oper); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_probe_client(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, u64 *cookie) { int ret; trace_rdev_probe_client(&rdev->wiphy, dev, peer); ret = rdev->ops->probe_client(&rdev->wiphy, dev, peer, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_set_noack_map(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 noack_map) { int ret; trace_rdev_set_noack_map(&rdev->wiphy, dev, noack_map); ret = rdev->ops->set_noack_map(&rdev->wiphy, dev, noack_map); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_get_channel(&rdev->wiphy, wdev); ret = rdev->ops->get_channel(&rdev->wiphy, wdev, chandef); trace_rdev_return_chandef(&rdev->wiphy, ret, chandef); return ret; } static inline int rdev_start_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { int ret; trace_rdev_start_p2p_device(&rdev->wiphy, wdev); ret = rdev->ops->start_p2p_device(&rdev->wiphy, wdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_stop_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_stop_p2p_device(&rdev->wiphy, wdev); rdev->ops->stop_p2p_device(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_start_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf) { int ret; trace_rdev_start_nan(&rdev->wiphy, wdev, conf); ret = rdev->ops->start_nan(&rdev->wiphy, wdev, conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_stop_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_stop_nan(&rdev->wiphy, wdev); rdev->ops->stop_nan(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_add_nan_func(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_func *nan_func) { int ret; trace_rdev_add_nan_func(&rdev->wiphy, wdev, nan_func); ret = rdev->ops->add_nan_func(&rdev->wiphy, wdev, nan_func); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_del_nan_func(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { trace_rdev_del_nan_func(&rdev->wiphy, wdev, cookie); rdev->ops->del_nan_func(&rdev->wiphy, wdev, cookie); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_nan_change_conf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf, u32 changes) { int ret; trace_rdev_nan_change_conf(&rdev->wiphy, wdev, conf, changes); if (rdev->ops->nan_change_conf) ret = rdev->ops->nan_change_conf(&rdev->wiphy, wdev, conf, changes); else ret = -ENOTSUPP; trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_mac_acl(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_acl_data *params) { int ret; trace_rdev_set_mac_acl(&rdev->wiphy, dev, params); ret = rdev->ops->set_mac_acl(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_update_ft_ies(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_update_ft_ies_params *ftie) { int ret; trace_rdev_update_ft_ies(&rdev->wiphy, dev, ftie); ret = rdev->ops->update_ft_ies(&rdev->wiphy, dev, ftie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_crit_proto_start(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_crit_proto_id protocol, u16 duration) { int ret; trace_rdev_crit_proto_start(&rdev->wiphy, wdev, protocol, duration); ret = rdev->ops->crit_proto_start(&rdev->wiphy, wdev, protocol, duration); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_crit_proto_stop(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_crit_proto_stop(&rdev->wiphy, wdev); rdev->ops->crit_proto_stop(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_csa_settings *params) { int ret; trace_rdev_channel_switch(&rdev->wiphy, dev, params); ret = rdev->ops->channel_switch(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_qos_map(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_qos_map *qos_map) { int ret = -EOPNOTSUPP; if (rdev->ops->set_qos_map) { trace_rdev_set_qos_map(&rdev->wiphy, dev, qos_map); ret = rdev->ops->set_qos_map(&rdev->wiphy, dev, qos_map); trace_rdev_return_int(&rdev->wiphy, ret); } return ret; } static inline int rdev_set_ap_chanwidth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_set_ap_chanwidth(&rdev->wiphy, dev, chandef); ret = rdev->ops->set_ap_chanwidth(&rdev->wiphy, dev, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_tx_ts(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 tsid, const u8 *peer, u8 user_prio, u16 admitted_time) { int ret = -EOPNOTSUPP; trace_rdev_add_tx_ts(&rdev->wiphy, dev, tsid, peer, user_prio, admitted_time); if (rdev->ops->add_tx_ts) ret = rdev->ops->add_tx_ts(&rdev->wiphy, dev, tsid, peer, user_prio, admitted_time); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_tx_ts(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 tsid, const u8 *peer) { int ret = -EOPNOTSUPP; trace_rdev_del_tx_ts(&rdev->wiphy, dev, tsid, peer); if (rdev->ops->del_tx_ts) ret = rdev->ops->del_tx_ts(&rdev->wiphy, dev, tsid, peer); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr, u8 oper_class, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_tdls_channel_switch(&rdev->wiphy, dev, addr, oper_class, chandef); ret = rdev->ops->tdls_channel_switch(&rdev->wiphy, dev, addr, oper_class, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_tdls_cancel_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr) { trace_rdev_tdls_cancel_channel_switch(&rdev->wiphy, dev, addr); rdev->ops->tdls_cancel_channel_switch(&rdev->wiphy, dev, addr); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_start_radar_detection(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_chan_def *chandef, u32 cac_time_ms) { int ret = -ENOTSUPP; trace_rdev_start_radar_detection(&rdev->wiphy, dev, chandef, cac_time_ms); if (rdev->ops->start_radar_detection) ret = rdev->ops->start_radar_detection(&rdev->wiphy, dev, chandef, cac_time_ms); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_end_cac(struct cfg80211_registered_device *rdev, struct net_device *dev) { trace_rdev_end_cac(&rdev->wiphy, dev); if (rdev->ops->end_cac) rdev->ops->end_cac(&rdev->wiphy, dev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_set_mcast_rate(struct cfg80211_registered_device *rdev, struct net_device *dev, int mcast_rate[NUM_NL80211_BANDS]) { int ret = -ENOTSUPP; trace_rdev_set_mcast_rate(&rdev->wiphy, dev, mcast_rate); if (rdev->ops->set_mcast_rate) ret = rdev->ops->set_mcast_rate(&rdev->wiphy, dev, mcast_rate); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_coalesce(struct cfg80211_registered_device *rdev, struct cfg80211_coalesce *coalesce) { int ret = -ENOTSUPP; trace_rdev_set_coalesce(&rdev->wiphy, coalesce); if (rdev->ops->set_coalesce) ret = rdev->ops->set_coalesce(&rdev->wiphy, coalesce); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_pmk(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_pmk_conf *pmk_conf) { int ret = -EOPNOTSUPP; trace_rdev_set_pmk(&rdev->wiphy, dev, pmk_conf); if (rdev->ops->set_pmk) ret = rdev->ops->set_pmk(&rdev->wiphy, dev, pmk_conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_pmk(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *aa) { int ret = -EOPNOTSUPP; trace_rdev_del_pmk(&rdev->wiphy, dev, aa); if (rdev->ops->del_pmk) ret = rdev->ops->del_pmk(&rdev->wiphy, dev, aa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_external_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_external_auth_params *params) { int ret = -EOPNOTSUPP; trace_rdev_external_auth(&rdev->wiphy, dev, params); if (rdev->ops->external_auth) ret = rdev->ops->external_auth(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_ftm_responder_stats(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ftm_responder_stats *ftm_stats) { int ret = -EOPNOTSUPP; trace_rdev_get_ftm_responder_stats(&rdev->wiphy, dev, ftm_stats); if (rdev->ops->get_ftm_responder_stats) ret = rdev->ops->get_ftm_responder_stats(&rdev->wiphy, dev, ftm_stats); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_start_pmsr(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_pmsr_request *request) { int ret = -EOPNOTSUPP; trace_rdev_start_pmsr(&rdev->wiphy, wdev, request->cookie); if (rdev->ops->start_pmsr) ret = rdev->ops->start_pmsr(&rdev->wiphy, wdev, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_abort_pmsr(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_pmsr_request *request) { trace_rdev_abort_pmsr(&rdev->wiphy, wdev, request->cookie); if (rdev->ops->abort_pmsr) rdev->ops->abort_pmsr(&rdev->wiphy, wdev, request); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_update_owe_info(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_update_owe_info *oweinfo) { int ret = -EOPNOTSUPP; trace_rdev_update_owe_info(&rdev->wiphy, dev, oweinfo); if (rdev->ops->update_owe_info) ret = rdev->ops->update_owe_info(&rdev->wiphy, dev, oweinfo); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_probe_mesh_link(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *dest, const void *buf, size_t len) { int ret; trace_rdev_probe_mesh_link(&rdev->wiphy, dev, dest, buf, len); ret = rdev->ops->probe_mesh_link(&rdev->wiphy, dev, buf, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_tid_config(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_tid_config *tid_conf) { int ret; trace_rdev_set_tid_config(&rdev->wiphy, dev, tid_conf); ret = rdev->ops->set_tid_config(&rdev->wiphy, dev, tid_conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_reset_tid_config(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, u8 tids) { int ret; trace_rdev_reset_tid_config(&rdev->wiphy, dev, peer, tids); ret = rdev->ops->reset_tid_config(&rdev->wiphy, dev, peer, tids); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } #endif /* __CFG80211_RDEV_OPS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __SOCK_DIAG_H__ #define __SOCK_DIAG_H__ #include <linux/netlink.h> #include <linux/user_namespace.h> #include <net/net_namespace.h> #include <net/sock.h> #include <uapi/linux/sock_diag.h> struct sk_buff; struct nlmsghdr; struct sock; struct sock_diag_handler { __u8 family; int (*dump)(struct sk_buff *skb, struct nlmsghdr *nlh); int (*get_info)(struct sk_buff *skb, struct sock *sk); int (*destroy)(struct sk_buff *skb, struct nlmsghdr *nlh); }; int sock_diag_register(const struct sock_diag_handler *h); void sock_diag_unregister(const struct sock_diag_handler *h); void sock_diag_register_inet_compat(int (*fn)(struct sk_buff *skb, struct nlmsghdr *nlh)); void sock_diag_unregister_inet_compat(int (*fn)(struct sk_buff *skb, struct nlmsghdr *nlh)); u64 __sock_gen_cookie(struct sock *sk); static inline u64 sock_gen_cookie(struct sock *sk) { u64 cookie; preempt_disable(); cookie = __sock_gen_cookie(sk); preempt_enable(); return cookie; } int sock_diag_check_cookie(struct sock *sk, const __u32 *cookie); void sock_diag_save_cookie(struct sock *sk, __u32 *cookie); int sock_diag_put_meminfo(struct sock *sk, struct sk_buff *skb, int attr); int sock_diag_put_filterinfo(bool may_report_filterinfo, struct sock *sk, struct sk_buff *skb, int attrtype); static inline enum sknetlink_groups sock_diag_destroy_group(const struct sock *sk) { switch (sk->sk_family) { case AF_INET: if (sk->sk_type == SOCK_RAW) return SKNLGRP_NONE; switch (sk->sk_protocol) { case IPPROTO_TCP: return SKNLGRP_INET_TCP_DESTROY; case IPPROTO_UDP: return SKNLGRP_INET_UDP_DESTROY; default: return SKNLGRP_NONE; } case AF_INET6: if (sk->sk_type == SOCK_RAW) return SKNLGRP_NONE; switch (sk->sk_protocol) { case IPPROTO_TCP: return SKNLGRP_INET6_TCP_DESTROY; case IPPROTO_UDP: return SKNLGRP_INET6_UDP_DESTROY; default: return SKNLGRP_NONE; } default: return SKNLGRP_NONE; } } static inline bool sock_diag_has_destroy_listeners(const struct sock *sk) { const struct net *n = sock_net(sk); const enum sknetlink_groups group = sock_diag_destroy_group(sk); return group != SKNLGRP_NONE && n->diag_nlsk && netlink_has_listeners(n->diag_nlsk, group); } void sock_diag_broadcast_destroy(struct sock *sk); int sock_diag_destroy(struct sock *sk, int err); #endif
7 1 6 1 1 1 1 7 1 1 7 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 // SPDX-License-Identifier: GPL-2.0-only /* * This implements the various checks for CONFIG_HARDENED_USERCOPY*, * which are designed to protect kernel memory from needless exposure * and overwrite under many unintended conditions. This code is based * on PAX_USERCOPY, which is: * * Copyright (C) 2001-2016 PaX Team, Bradley Spengler, Open Source * Security Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/mm.h> #include <linux/highmem.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/sched/task.h> #include <linux/sched/task_stack.h> #include <linux/thread_info.h> #include <linux/atomic.h> #include <linux/jump_label.h> #include <asm/sections.h> /* * Checks if a given pointer and length is contained by the current * stack frame (if possible). * * Returns: * NOT_STACK: not at all on the stack * GOOD_FRAME: fully within a valid stack frame * GOOD_STACK: fully on the stack (when can't do frame-checking) * BAD_STACK: error condition (invalid stack position or bad stack frame) */ static noinline int check_stack_object(const void *obj, unsigned long len) { const void * const stack = task_stack_page(current); const void * const stackend = stack + THREAD_SIZE; int ret; /* Object is not on the stack at all. */ if (obj + len <= stack || stackend <= obj) return NOT_STACK; /* * Reject: object partially overlaps the stack (passing the * check above means at least one end is within the stack, * so if this check fails, the other end is outside the stack). */ if (obj < stack || stackend < obj + len) return BAD_STACK; /* Check if object is safely within a valid frame. */ ret = arch_within_stack_frames(stack, stackend, obj, len); if (ret) return ret; return GOOD_STACK; } /* * If these functions are reached, then CONFIG_HARDENED_USERCOPY has found * an unexpected state during a copy_from_user() or copy_to_user() call. * There are several checks being performed on the buffer by the * __check_object_size() function. Normal stack buffer usage should never * trip the checks, and kernel text addressing will always trip the check. * For cache objects, it is checking that only the whitelisted range of * bytes for a given cache is being accessed (via the cache's usersize and * useroffset fields). To adjust a cache whitelist, use the usercopy-aware * kmem_cache_create_usercopy() function to create the cache (and * carefully audit the whitelist range). */ void usercopy_warn(const char *name, const char *detail, bool to_user, unsigned long offset, unsigned long len) { WARN_ONCE(1, "Bad or missing usercopy whitelist? Kernel memory %s attempt detected %s %s%s%s%s (offset %lu, size %lu)!\n", to_user ? "exposure" : "overwrite", to_user ? "from" : "to", name ? : "unknown?!", detail ? " '" : "", detail ? : "", detail ? "'" : "", offset, len); } void __noreturn usercopy_abort(const char *name, const char *detail, bool to_user, unsigned long offset, unsigned long len) { pr_emerg("Kernel memory %s attempt detected %s %s%s%s%s (offset %lu, size %lu)!\n", to_user ? "exposure" : "overwrite", to_user ? "from" : "to", name ? : "unknown?!", detail ? " '" : "", detail ? : "", detail ? "'" : "", offset, len); /* * For greater effect, it would be nice to do do_group_exit(), * but BUG() actually hooks all the lock-breaking and per-arch * Oops code, so that is used here instead. */ BUG(); } /* Returns true if any portion of [ptr,ptr+n) over laps with [low,high). */ static bool overlaps(const unsigned long ptr, unsigned long n, unsigned long low, unsigned long high) { const unsigned long check_low = ptr; unsigned long check_high = check_low + n; /* Does not overlap if entirely above or entirely below. */ if (check_low >= high || check_high <= low) return false; return true; } /* Is this address range in the kernel text area? */ static inline void check_kernel_text_object(const unsigned long ptr, unsigned long n, bool to_user) { unsigned long textlow = (unsigned long)_stext; unsigned long texthigh = (unsigned long)_etext; unsigned long textlow_linear, texthigh_linear; if (overlaps(ptr, n, textlow, texthigh)) usercopy_abort("kernel text", NULL, to_user, ptr - textlow, n); /* * Some architectures have virtual memory mappings with a secondary * mapping of the kernel text, i.e. there is more than one virtual * kernel address that points to the kernel image. It is usually * when there is a separate linear physical memory mapping, in that * __pa() is not just the reverse of __va(). This can be detected * and checked: */ textlow_linear = (unsigned long)lm_alias(textlow); /* No different mapping: we're done. */ if (textlow_linear == textlow) return; /* Check the secondary mapping... */ texthigh_linear = (unsigned long)lm_alias(texthigh); if (overlaps(ptr, n, textlow_linear, texthigh_linear)) usercopy_abort("linear kernel text", NULL, to_user, ptr - textlow_linear, n); } static inline void check_bogus_address(const unsigned long ptr, unsigned long n, bool to_user) { /* Reject if object wraps past end of memory. */ if (ptr + (n - 1) < ptr) usercopy_abort("wrapped address", NULL, to_user, 0, ptr + n); /* Reject if NULL or ZERO-allocation. */ if (ZERO_OR_NULL_PTR(ptr)) usercopy_abort("null address", NULL, to_user, ptr, n); } /* Checks for allocs that are marked in some way as spanning multiple pages. */ static inline void check_page_span(const void *ptr, unsigned long n, struct page *page, bool to_user) { #ifdef CONFIG_HARDENED_USERCOPY_PAGESPAN const void *end = ptr + n - 1; struct page *endpage; bool is_reserved, is_cma; /* * Sometimes the kernel data regions are not marked Reserved (see * check below). And sometimes [_sdata,_edata) does not cover * rodata and/or bss, so check each range explicitly. */ /* Allow reads of kernel rodata region (if not marked as Reserved). */ if (ptr >= (const void *)__start_rodata && end <= (const void *)__end_rodata) { if (!to_user) usercopy_abort("rodata", NULL, to_user, 0, n); return; } /* Allow kernel data region (if not marked as Reserved). */ if (ptr >= (const void *)_sdata && end <= (const void *)_edata) return; /* Allow kernel bss region (if not marked as Reserved). */ if (ptr >= (const void *)__bss_start && end <= (const void *)__bss_stop) return; /* Is the object wholly within one base page? */ if (likely(((unsigned long)ptr & (unsigned long)PAGE_MASK) == ((unsigned long)end & (unsigned long)PAGE_MASK))) return; /* Allow if fully inside the same compound (__GFP_COMP) page. */ endpage = virt_to_head_page(end); if (likely(endpage == page)) return; /* * Reject if range is entirely either Reserved (i.e. special or * device memory), or CMA. Otherwise, reject since the object spans * several independently allocated pages. */ is_reserved = PageReserved(page); is_cma = is_migrate_cma_page(page); if (!is_reserved && !is_cma) usercopy_abort("spans multiple pages", NULL, to_user, 0, n); for (ptr += PAGE_SIZE; ptr <= end; ptr += PAGE_SIZE) { page = virt_to_head_page(ptr); if (is_reserved && !PageReserved(page)) usercopy_abort("spans Reserved and non-Reserved pages", NULL, to_user, 0, n); if (is_cma && !is_migrate_cma_page(page)) usercopy_abort("spans CMA and non-CMA pages", NULL, to_user, 0, n); } #endif } static inline void check_heap_object(const void *ptr, unsigned long n, bool to_user) { struct page *page; if (!virt_addr_valid(ptr)) return; /* * When CONFIG_HIGHMEM=y, kmap_to_page() will give either the * highmem page or fallback to virt_to_page(). The following * is effectively a highmem-aware virt_to_head_page(). */ page = compound_head(kmap_to_page((void *)ptr)); if (PageSlab(page)) { /* Check slab allocator for flags and size. */ __check_heap_object(ptr, n, page, to_user); } else { /* Verify object does not incorrectly span multiple pages. */ check_page_span(ptr, n, page, to_user); } } static DEFINE_STATIC_KEY_FALSE_RO(bypass_usercopy_checks); /* * Validates that the given object is: * - not bogus address * - fully contained by stack (or stack frame, when available) * - fully within SLAB object (or object whitelist area, when available) * - not in kernel text */ void __check_object_size(const void *ptr, unsigned long n, bool to_user) { if (static_branch_unlikely(&bypass_usercopy_checks)) return; /* Skip all tests if size is zero. */ if (!n) return; /* Check for invalid addresses. */ check_bogus_address((const unsigned long)ptr, n, to_user); /* Check for bad stack object. */ switch (check_stack_object(ptr, n)) { case NOT_STACK: /* Object is not touching the current process stack. */ break; case GOOD_FRAME: case GOOD_STACK: /* * Object is either in the correct frame (when it * is possible to check) or just generally on the * process stack (when frame checking not available). */ return; default: usercopy_abort("process stack", NULL, to_user, 0, n); } /* Check for bad heap object. */ check_heap_object(ptr, n, to_user); /* Check for object in kernel to avoid text exposure. */ check_kernel_text_object((const unsigned long)ptr, n, to_user); } EXPORT_SYMBOL(__check_object_size); static bool enable_checks __initdata = true; static int __init parse_hardened_usercopy(char *str) { return strtobool(str, &enable_checks); } __setup("hardened_usercopy=", parse_hardened_usercopy); static int __init set_hardened_usercopy(void) { if (enable_checks == false) static_branch_enable(&bypass_usercopy_checks); return 1; } late_initcall(set_hardened_usercopy);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 /* SPDX-License-Identifier: GPL-2.0 */ /* Freezer declarations */ #ifndef FREEZER_H_INCLUDED #define FREEZER_H_INCLUDED #include <linux/debug_locks.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/atomic.h> #ifdef CONFIG_FREEZER extern atomic_t system_freezing_cnt; /* nr of freezing conds in effect */ extern bool pm_freezing; /* PM freezing in effect */ extern bool pm_nosig_freezing; /* PM nosig freezing in effect */ /* * Timeout for stopping processes */ extern unsigned int freeze_timeout_msecs; /* * Check if a process has been frozen */ static inline bool frozen(struct task_struct *p) { return p->flags & PF_FROZEN; } extern bool freezing_slow_path(struct task_struct *p); /* * Check if there is a request to freeze a process */ static inline bool freezing(struct task_struct *p) { if (likely(!atomic_read(&system_freezing_cnt))) return false; return freezing_slow_path(p); } /* Takes and releases task alloc lock using task_lock() */ extern void __thaw_task(struct task_struct *t); extern bool __refrigerator(bool check_kthr_stop); extern int freeze_processes(void); extern int freeze_kernel_threads(void); extern void thaw_processes(void); extern void thaw_kernel_threads(void); /* * DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION * If try_to_freeze causes a lockdep warning it means the caller may deadlock */ static inline bool try_to_freeze_unsafe(void) { might_sleep(); if (likely(!freezing(current))) return false; return __refrigerator(false); } static inline bool try_to_freeze(void) { if (!(current->flags & PF_NOFREEZE)) debug_check_no_locks_held(); return try_to_freeze_unsafe(); } extern bool freeze_task(struct task_struct *p); extern bool set_freezable(void); #ifdef CONFIG_CGROUP_FREEZER extern bool cgroup_freezing(struct task_struct *task); #else /* !CONFIG_CGROUP_FREEZER */ static inline bool cgroup_freezing(struct task_struct *task) { return false; } #endif /* !CONFIG_CGROUP_FREEZER */ /* * The PF_FREEZER_SKIP flag should be set by a vfork parent right before it * calls wait_for_completion(&vfork) and reset right after it returns from this * function. Next, the parent should call try_to_freeze() to freeze itself * appropriately in case the child has exited before the freezing of tasks is * complete. However, we don't want kernel threads to be frozen in unexpected * places, so we allow them to block freeze_processes() instead or to set * PF_NOFREEZE if needed. Fortunately, in the ____call_usermodehelper() case the * parent won't really block freeze_processes(), since ____call_usermodehelper() * (the child) does a little before exec/exit and it can't be frozen before * waking up the parent. */ /** * freezer_do_not_count - tell freezer to ignore %current * * Tell freezers to ignore the current task when determining whether the * target frozen state is reached. IOW, the current task will be * considered frozen enough by freezers. * * The caller shouldn't do anything which isn't allowed for a frozen task * until freezer_cont() is called. Usually, freezer[_do_not]_count() pair * wrap a scheduling operation and nothing much else. */ static inline void freezer_do_not_count(void) { current->flags |= PF_FREEZER_SKIP; } /** * freezer_count - tell freezer to stop ignoring %current * * Undo freezer_do_not_count(). It tells freezers that %current should be * considered again and tries to freeze if freezing condition is already in * effect. */ static inline void freezer_count(void) { current->flags &= ~PF_FREEZER_SKIP; /* * If freezing is in progress, the following paired with smp_mb() * in freezer_should_skip() ensures that either we see %true * freezing() or freezer_should_skip() sees !PF_FREEZER_SKIP. */ smp_mb(); try_to_freeze(); } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline void freezer_count_unsafe(void) { current->flags &= ~PF_FREEZER_SKIP; smp_mb(); try_to_freeze_unsafe(); } /** * freezer_should_skip - whether to skip a task when determining frozen * state is reached * @p: task in quesion * * This function is used by freezers after establishing %true freezing() to * test whether a task should be skipped when determining the target frozen * state is reached. IOW, if this function returns %true, @p is considered * frozen enough. */ static inline bool freezer_should_skip(struct task_struct *p) { /* * The following smp_mb() paired with the one in freezer_count() * ensures that either freezer_count() sees %true freezing() or we * see cleared %PF_FREEZER_SKIP and return %false. This makes it * impossible for a task to slip frozen state testing after * clearing %PF_FREEZER_SKIP. */ smp_mb(); return p->flags & PF_FREEZER_SKIP; } /* * These functions are intended to be used whenever you want allow a sleeping * task to be frozen. Note that neither return any clear indication of * whether a freeze event happened while in this function. */ /* Like schedule(), but should not block the freezer. */ static inline void freezable_schedule(void) { freezer_do_not_count(); schedule(); freezer_count(); } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline void freezable_schedule_unsafe(void) { freezer_do_not_count(); schedule(); freezer_count_unsafe(); } /* * Like schedule_timeout(), but should not block the freezer. Do not * call this with locks held. */ static inline long freezable_schedule_timeout(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout(timeout); freezer_count(); return __retval; } /* * Like schedule_timeout_interruptible(), but should not block the freezer. Do not * call this with locks held. */ static inline long freezable_schedule_timeout_interruptible(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_interruptible(timeout); freezer_count(); return __retval; } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline long freezable_schedule_timeout_interruptible_unsafe(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_interruptible(timeout); freezer_count_unsafe(); return __retval; } /* Like schedule_timeout_killable(), but should not block the freezer. */ static inline long freezable_schedule_timeout_killable(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_killable(timeout); freezer_count(); return __retval; } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline long freezable_schedule_timeout_killable_unsafe(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_killable(timeout); freezer_count_unsafe(); return __retval; } /* * Like schedule_hrtimeout_range(), but should not block the freezer. Do not * call this with locks held. */ static inline int freezable_schedule_hrtimeout_range(ktime_t *expires, u64 delta, const enum hrtimer_mode mode) { int __retval; freezer_do_not_count(); __retval = schedule_hrtimeout_range(expires, delta, mode); freezer_count(); return __retval; } /* * Freezer-friendly wrappers around wait_event_interruptible(), * wait_event_killable() and wait_event_interruptible_timeout(), originally * defined in <linux/wait.h> */ /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ #define wait_event_freezekillable_unsafe(wq, condition) \ ({ \ int __retval; \ freezer_do_not_count(); \ __retval = wait_event_killable(wq, (condition)); \ freezer_count_unsafe(); \ __retval; \ }) #else /* !CONFIG_FREEZER */ static inline bool frozen(struct task_struct *p) { return false; } static inline bool freezing(struct task_struct *p) { return false; } static inline void __thaw_task(struct task_struct *t) {} static inline bool __refrigerator(bool check_kthr_stop) { return false; } static inline int freeze_processes(void) { return -ENOSYS; } static inline int freeze_kernel_threads(void) { return -ENOSYS; } static inline void thaw_processes(void) {} static inline void thaw_kernel_threads(void) {} static inline bool try_to_freeze_nowarn(void) { return false; } static inline bool try_to_freeze(void) { return false; } static inline void freezer_do_not_count(void) {} static inline void freezer_count(void) {} static inline int freezer_should_skip(struct task_struct *p) { return 0; } static inline void set_freezable(void) {} #define freezable_schedule() schedule() #define freezable_schedule_unsafe() schedule() #define freezable_schedule_timeout(timeout) schedule_timeout(timeout) #define freezable_schedule_timeout_interruptible(timeout) \ schedule_timeout_interruptible(timeout) #define freezable_schedule_timeout_interruptible_unsafe(timeout) \ schedule_timeout_interruptible(timeout) #define freezable_schedule_timeout_killable(timeout) \ schedule_timeout_killable(timeout) #define freezable_schedule_timeout_killable_unsafe(timeout) \ schedule_timeout_killable(timeout) #define freezable_schedule_hrtimeout_range(expires, delta, mode) \ schedule_hrtimeout_range(expires, delta, mode) #define wait_event_freezekillable_unsafe(wq, condition) \ wait_event_killable(wq, condition) #endif /* !CONFIG_FREEZER */ #endif /* FREEZER_H_INCLUDED */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1994 Linus Torvalds * * Pentium III FXSR, SSE support * General FPU state handling cleanups * Gareth Hughes <gareth@valinux.com>, May 2000 */ #include <asm/fpu/internal.h> #include <asm/fpu/regset.h> #include <asm/fpu/signal.h> #include <asm/fpu/types.h> #include <asm/traps.h> #include <asm/irq_regs.h> #include <linux/hardirq.h> #include <linux/pkeys.h> #define CREATE_TRACE_POINTS #include <asm/trace/fpu.h> /* * Represents the initial FPU state. It's mostly (but not completely) zeroes, * depending on the FPU hardware format: */ union fpregs_state init_fpstate __read_mostly; /* * Track whether the kernel is using the FPU state * currently. * * This flag is used: * * - by IRQ context code to potentially use the FPU * if it's unused. * * - to debug kernel_fpu_begin()/end() correctness */ static DEFINE_PER_CPU(bool, in_kernel_fpu); /* * Track which context is using the FPU on the CPU: */ DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); static bool kernel_fpu_disabled(void) { return this_cpu_read(in_kernel_fpu); } static bool interrupted_kernel_fpu_idle(void) { return !kernel_fpu_disabled(); } /* * Were we in user mode (or vm86 mode) when we were * interrupted? * * Doing kernel_fpu_begin/end() is ok if we are running * in an interrupt context from user mode - we'll just * save the FPU state as required. */ static bool interrupted_user_mode(void) { struct pt_regs *regs = get_irq_regs(); return regs && user_mode(regs); } /* * Can we use the FPU in kernel mode with the * whole "kernel_fpu_begin/end()" sequence? * * It's always ok in process context (ie "not interrupt") * but it is sometimes ok even from an irq. */ bool irq_fpu_usable(void) { return !in_interrupt() || interrupted_user_mode() || interrupted_kernel_fpu_idle(); } EXPORT_SYMBOL(irq_fpu_usable); /* * These must be called with preempt disabled. Returns * 'true' if the FPU state is still intact and we can * keep registers active. * * The legacy FNSAVE instruction cleared all FPU state * unconditionally, so registers are essentially destroyed. * Modern FPU state can be kept in registers, if there are * no pending FP exceptions. */ int copy_fpregs_to_fpstate(struct fpu *fpu) { if (likely(use_xsave())) { copy_xregs_to_kernel(&fpu->state.xsave); /* * AVX512 state is tracked here because its use is * known to slow the max clock speed of the core. */ if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512) fpu->avx512_timestamp = jiffies; return 1; } if (likely(use_fxsr())) { copy_fxregs_to_kernel(fpu); return 1; } /* * Legacy FPU register saving, FNSAVE always clears FPU registers, * so we have to mark them inactive: */ asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave)); return 0; } EXPORT_SYMBOL(copy_fpregs_to_fpstate); void kernel_fpu_begin_mask(unsigned int kfpu_mask) { preempt_disable(); WARN_ON_FPU(!irq_fpu_usable()); WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); this_cpu_write(in_kernel_fpu, true); if (!(current->flags & PF_KTHREAD) && !test_thread_flag(TIF_NEED_FPU_LOAD)) { set_thread_flag(TIF_NEED_FPU_LOAD); /* * Ignore return value -- we don't care if reg state * is clobbered. */ copy_fpregs_to_fpstate(&current->thread.fpu); } __cpu_invalidate_fpregs_state(); /* Put sane initial values into the control registers. */ if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM)) ldmxcsr(MXCSR_DEFAULT); if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU)) asm volatile ("fninit"); } EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask); void kernel_fpu_end(void) { WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); this_cpu_write(in_kernel_fpu, false); preempt_enable(); } EXPORT_SYMBOL_GPL(kernel_fpu_end); /* * Save the FPU state (mark it for reload if necessary): * * This only ever gets called for the current task. */ void fpu__save(struct fpu *fpu) { WARN_ON_FPU(fpu != &current->thread.fpu); fpregs_lock(); trace_x86_fpu_before_save(fpu); if (!test_thread_flag(TIF_NEED_FPU_LOAD)) { if (!copy_fpregs_to_fpstate(fpu)) { copy_kernel_to_fpregs(&fpu->state); } } trace_x86_fpu_after_save(fpu); fpregs_unlock(); } /* * Legacy x87 fpstate state init: */ static inline void fpstate_init_fstate(struct fregs_state *fp) { fp->cwd = 0xffff037fu; fp->swd = 0xffff0000u; fp->twd = 0xffffffffu; fp->fos = 0xffff0000u; } void fpstate_init(union fpregs_state *state) { if (!static_cpu_has(X86_FEATURE_FPU)) { fpstate_init_soft(&state->soft); return; } memset(state, 0, fpu_kernel_xstate_size); if (static_cpu_has(X86_FEATURE_XSAVES)) fpstate_init_xstate(&state->xsave); if (static_cpu_has(X86_FEATURE_FXSR)) fpstate_init_fxstate(&state->fxsave); else fpstate_init_fstate(&state->fsave); } EXPORT_SYMBOL_GPL(fpstate_init); int fpu__copy(struct task_struct *dst, struct task_struct *src) { struct fpu *dst_fpu = &dst->thread.fpu; struct fpu *src_fpu = &src->thread.fpu; dst_fpu->last_cpu = -1; if (!static_cpu_has(X86_FEATURE_FPU)) return 0; WARN_ON_FPU(src_fpu != &current->thread.fpu); /* * Don't let 'init optimized' areas of the XSAVE area * leak into the child task: */ memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size); /* * If the FPU registers are not current just memcpy() the state. * Otherwise save current FPU registers directly into the child's FPU * context, without any memory-to-memory copying. * * ( The function 'fails' in the FNSAVE case, which destroys * register contents so we have to load them back. ) */ fpregs_lock(); if (test_thread_flag(TIF_NEED_FPU_LOAD)) memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size); else if (!copy_fpregs_to_fpstate(dst_fpu)) copy_kernel_to_fpregs(&dst_fpu->state); fpregs_unlock(); set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); trace_x86_fpu_copy_src(src_fpu); trace_x86_fpu_copy_dst(dst_fpu); return 0; } /* * Activate the current task's in-memory FPU context, * if it has not been used before: */ static void fpu__initialize(struct fpu *fpu) { WARN_ON_FPU(fpu != &current->thread.fpu); set_thread_flag(TIF_NEED_FPU_LOAD); fpstate_init(&fpu->state); trace_x86_fpu_init_state(fpu); } /* * This function must be called before we read a task's fpstate. * * There's two cases where this gets called: * * - for the current task (when coredumping), in which case we have * to save the latest FPU registers into the fpstate, * * - or it's called for stopped tasks (ptrace), in which case the * registers were already saved by the context-switch code when * the task scheduled out. * * If the task has used the FPU before then save it. */ void fpu__prepare_read(struct fpu *fpu) { if (fpu == &current->thread.fpu) fpu__save(fpu); } /* * This function must be called before we write a task's fpstate. * * Invalidate any cached FPU registers. * * After this function call, after registers in the fpstate are * modified and the child task has woken up, the child task will * restore the modified FPU state from the modified context. If we * didn't clear its cached status here then the cached in-registers * state pending on its former CPU could be restored, corrupting * the modifications. */ void fpu__prepare_write(struct fpu *fpu) { /* * Only stopped child tasks can be used to modify the FPU * state in the fpstate buffer: */ WARN_ON_FPU(fpu == &current->thread.fpu); /* Invalidate any cached state: */ __fpu_invalidate_fpregs_state(fpu); } /* * Drops current FPU state: deactivates the fpregs and * the fpstate. NOTE: it still leaves previous contents * in the fpregs in the eager-FPU case. * * This function can be used in cases where we know that * a state-restore is coming: either an explicit one, * or a reschedule. */ void fpu__drop(struct fpu *fpu) { preempt_disable(); if (fpu == &current->thread.fpu) { /* Ignore delayed exceptions from user space */ asm volatile("1: fwait\n" "2:\n" _ASM_EXTABLE(1b, 2b)); fpregs_deactivate(fpu); } trace_x86_fpu_dropped(fpu); preempt_enable(); } /* * Clear FPU registers by setting them up from the init fpstate. * Caller must do fpregs_[un]lock() around it. */ static inline void copy_init_fpstate_to_fpregs(u64 features_mask) { if (use_xsave()) copy_kernel_to_xregs(&init_fpstate.xsave, features_mask); else if (static_cpu_has(X86_FEATURE_FXSR)) copy_kernel_to_fxregs(&init_fpstate.fxsave); else copy_kernel_to_fregs(&init_fpstate.fsave); if (boot_cpu_has(X86_FEATURE_OSPKE)) copy_init_pkru_to_fpregs(); } /* * Clear the FPU state back to init state. * * Called by sys_execve(), by the signal handler code and by various * error paths. */ static void fpu__clear(struct fpu *fpu, bool user_only) { WARN_ON_FPU(fpu != &current->thread.fpu); if (!static_cpu_has(X86_FEATURE_FPU)) { fpu__drop(fpu); fpu__initialize(fpu); return; } fpregs_lock(); if (user_only) { if (!fpregs_state_valid(fpu, smp_processor_id()) && xfeatures_mask_supervisor()) copy_kernel_to_xregs(&fpu->state.xsave, xfeatures_mask_supervisor()); copy_init_fpstate_to_fpregs(xfeatures_mask_user()); } else { copy_init_fpstate_to_fpregs(xfeatures_mask_all); } fpregs_mark_activate(); fpregs_unlock(); } void fpu__clear_user_states(struct fpu *fpu) { fpu__clear(fpu, true); } void fpu__clear_all(struct fpu *fpu) { fpu__clear(fpu, false); } /* * Load FPU context before returning to userspace. */ void switch_fpu_return(void) { if (!static_cpu_has(X86_FEATURE_FPU)) return; __fpregs_load_activate(); } EXPORT_SYMBOL_GPL(switch_fpu_return); #ifdef CONFIG_X86_DEBUG_FPU /* * If current FPU state according to its tracking (loaded FPU context on this * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is * loaded on return to userland. */ void fpregs_assert_state_consistent(void) { struct fpu *fpu = &current->thread.fpu; if (test_thread_flag(TIF_NEED_FPU_LOAD)) return; WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); } EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent); #endif void fpregs_mark_activate(void) { struct fpu *fpu = &current->thread.fpu; fpregs_activate(fpu); fpu->last_cpu = smp_processor_id(); clear_thread_flag(TIF_NEED_FPU_LOAD); } EXPORT_SYMBOL_GPL(fpregs_mark_activate); /* * x87 math exception handling: */ int fpu__exception_code(struct fpu *fpu, int trap_nr) { int err; if (trap_nr == X86_TRAP_MF) { unsigned short cwd, swd; /* * (~cwd & swd) will mask out exceptions that are not set to unmasked * status. 0x3f is the exception bits in these regs, 0x200 is the * C1 reg you need in case of a stack fault, 0x040 is the stack * fault bit. We should only be taking one exception at a time, * so if this combination doesn't produce any single exception, * then we have a bad program that isn't synchronizing its FPU usage * and it will suffer the consequences since we won't be able to * fully reproduce the context of the exception. */ if (boot_cpu_has(X86_FEATURE_FXSR)) { cwd = fpu->state.fxsave.cwd; swd = fpu->state.fxsave.swd; } else { cwd = (unsigned short)fpu->state.fsave.cwd; swd = (unsigned short)fpu->state.fsave.swd; } err = swd & ~cwd; } else { /* * The SIMD FPU exceptions are handled a little differently, as there * is only a single status/control register. Thus, to determine which * unmasked exception was caught we must mask the exception mask bits * at 0x1f80, and then use these to mask the exception bits at 0x3f. */ unsigned short mxcsr = MXCSR_DEFAULT; if (boot_cpu_has(X86_FEATURE_XMM)) mxcsr = fpu->state.fxsave.mxcsr; err = ~(mxcsr >> 7) & mxcsr; } if (err & 0x001) { /* Invalid op */ /* * swd & 0x240 == 0x040: Stack Underflow * swd & 0x240 == 0x240: Stack Overflow * User must clear the SF bit (0x40) if set */ return FPE_FLTINV; } else if (err & 0x004) { /* Divide by Zero */ return FPE_FLTDIV; } else if (err & 0x008) { /* Overflow */ return FPE_FLTOVF; } else if (err & 0x012) { /* Denormal, Underflow */ return FPE_FLTUND; } else if (err & 0x020) { /* Precision */ return FPE_FLTRES; } /* * If we're using IRQ 13, or supposedly even some trap * X86_TRAP_MF implementations, it's possible * we get a spurious trap, which is not an error. */ return 0; }
2 12 12 12 11 2 1 1 1 2 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 // SPDX-License-Identifier: GPL-2.0 /* * linux/mm/madvise.c * * Copyright (C) 1999 Linus Torvalds * Copyright (C) 2002 Christoph Hellwig */ #include <linux/mman.h> #include <linux/pagemap.h> #include <linux/syscalls.h> #include <linux/mempolicy.h> #include <linux/page-isolation.h> #include <linux/page_idle.h> #include <linux/userfaultfd_k.h> #include <linux/hugetlb.h> #include <linux/falloc.h> #include <linux/fadvise.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/uio.h> #include <linux/ksm.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <linux/pagewalk.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/shmem_fs.h> #include <linux/mmu_notifier.h> #include <asm/tlb.h> #include "internal.h" struct madvise_walk_private { struct mmu_gather *tlb; bool pageout; }; /* * Any behaviour which results in changes to the vma->vm_flags needs to * take mmap_lock for writing. Others, which simply traverse vmas, need * to only take it for reading. */ static int madvise_need_mmap_write(int behavior) { switch (behavior) { case MADV_REMOVE: case MADV_WILLNEED: case MADV_DONTNEED: case MADV_COLD: case MADV_PAGEOUT: case MADV_FREE: return 0; default: /* be safe, default to 1. list exceptions explicitly */ return 1; } } /* * We can potentially split a vm area into separate * areas, each area with its own behavior. */ static long madvise_behavior(struct vm_area_struct *vma, struct vm_area_struct **prev, unsigned long start, unsigned long end, int behavior) { struct mm_struct *mm = vma->vm_mm; int error = 0; pgoff_t pgoff; unsigned long new_flags = vma->vm_flags; switch (behavior) { case MADV_NORMAL: new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; break; case MADV_SEQUENTIAL: new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; break; case MADV_RANDOM: new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; break; case MADV_DONTFORK: new_flags |= VM_DONTCOPY; break; case MADV_DOFORK: if (vma->vm_flags & VM_IO) { error = -EINVAL; goto out; } new_flags &= ~VM_DONTCOPY; break; case MADV_WIPEONFORK: /* MADV_WIPEONFORK is only supported on anonymous memory. */ if (vma->vm_file || vma->vm_flags & VM_SHARED) { error = -EINVAL; goto out; } new_flags |= VM_WIPEONFORK; break; case MADV_KEEPONFORK: new_flags &= ~VM_WIPEONFORK; break; case MADV_DONTDUMP: new_flags |= VM_DONTDUMP; break; case MADV_DODUMP: if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) { error = -EINVAL; goto out; } new_flags &= ~VM_DONTDUMP; break; case MADV_MERGEABLE: case MADV_UNMERGEABLE: error = ksm_madvise(vma, start, end, behavior, &new_flags); if (error) goto out_convert_errno; break; case MADV_HUGEPAGE: case MADV_NOHUGEPAGE: error = hugepage_madvise(vma, &new_flags, behavior); if (error) goto out_convert_errno; break; } if (new_flags == vma->vm_flags) { *prev = vma; goto out; } pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), vma->vm_userfaultfd_ctx); if (*prev) { vma = *prev; goto success; } *prev = vma; if (start != vma->vm_start) { if (unlikely(mm->map_count >= sysctl_max_map_count)) { error = -ENOMEM; goto out; } error = __split_vma(mm, vma, start, 1); if (error) goto out_convert_errno; } if (end != vma->vm_end) { if (unlikely(mm->map_count >= sysctl_max_map_count)) { error = -ENOMEM; goto out; } error = __split_vma(mm, vma, end, 0); if (error) goto out_convert_errno; } success: /* * vm_flags is protected by the mmap_lock held in write mode. */ vma->vm_flags = new_flags; out_convert_errno: /* * madvise() returns EAGAIN if kernel resources, such as * slab, are temporarily unavailable. */ if (error == -ENOMEM) error = -EAGAIN; out: return error; } #ifdef CONFIG_SWAP static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start, unsigned long end, struct mm_walk *walk) { pte_t *orig_pte; struct vm_area_struct *vma = walk->private; unsigned long index; if (pmd_none_or_trans_huge_or_clear_bad(pmd)) return 0; for (index = start; index != end; index += PAGE_SIZE) { pte_t pte; swp_entry_t entry; struct page *page; spinlock_t *ptl; orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl); pte = *(orig_pte + ((index - start) / PAGE_SIZE)); pte_unmap_unlock(orig_pte, ptl); if (pte_present(pte) || pte_none(pte)) continue; entry = pte_to_swp_entry(pte); if (unlikely(non_swap_entry(entry))) continue; page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE, vma, index, false); if (page) put_page(page); } return 0; } static const struct mm_walk_ops swapin_walk_ops = { .pmd_entry = swapin_walk_pmd_entry, }; static void force_shm_swapin_readahead(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct address_space *mapping) { XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start)); pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1); struct page *page; rcu_read_lock(); xas_for_each(&xas, page, end_index) { swp_entry_t swap; if (!xa_is_value(page)) continue; xas_pause(&xas); rcu_read_unlock(); swap = radix_to_swp_entry(page); page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE, NULL, 0, false); if (page) put_page(page); rcu_read_lock(); } rcu_read_unlock(); lru_add_drain(); /* Push any new pages onto the LRU now */ } #endif /* CONFIG_SWAP */ /* * Schedule all required I/O operations. Do not wait for completion. */ static long madvise_willneed(struct vm_area_struct *vma, struct vm_area_struct **prev, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; struct file *file = vma->vm_file; loff_t offset; *prev = vma; #ifdef CONFIG_SWAP if (!file) { walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma); lru_add_drain(); /* Push any new pages onto the LRU now */ return 0; } if (shmem_mapping(file->f_mapping)) { force_shm_swapin_readahead(vma, start, end, file->f_mapping); return 0; } #else if (!file) return -EBADF; #endif if (IS_DAX(file_inode(file))) { /* no bad return value, but ignore advice */ return 0; } /* * Filesystem's fadvise may need to take various locks. We need to * explicitly grab a reference because the vma (and hence the * vma's reference to the file) can go away as soon as we drop * mmap_lock. */ *prev = NULL; /* tell sys_madvise we drop mmap_lock */ get_file(file); offset = (loff_t)(start - vma->vm_start) + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); mmap_read_unlock(mm); vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED); fput(file); mmap_read_lock(mm); return 0; } static int madvise_cold_or_pageout_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct madvise_walk_private *private = walk->private; struct mmu_gather *tlb = private->tlb; bool pageout = private->pageout; struct mm_struct *mm = tlb->mm; struct vm_area_struct *vma = walk->vma; pte_t *orig_pte, *pte, ptent; spinlock_t *ptl; struct page *page = NULL; LIST_HEAD(page_list); if (fatal_signal_pending(current)) return -EINTR; #ifdef CONFIG_TRANSPARENT_HUGEPAGE if (pmd_trans_huge(*pmd)) { pmd_t orig_pmd; unsigned long next = pmd_addr_end(addr, end); tlb_change_page_size(tlb, HPAGE_PMD_SIZE); ptl = pmd_trans_huge_lock(pmd, vma); if (!ptl) return 0; orig_pmd = *pmd; if (is_huge_zero_pmd(orig_pmd)) goto huge_unlock; if (unlikely(!pmd_present(orig_pmd))) { VM_BUG_ON(thp_migration_supported() && !is_pmd_migration_entry(orig_pmd)); goto huge_unlock; } page = pmd_page(orig_pmd); /* Do not interfere with other mappings of this page */ if (page_mapcount(page) != 1) goto huge_unlock; if (next - addr != HPAGE_PMD_SIZE) { int err; get_page(page); spin_unlock(ptl); lock_page(page); err = split_huge_page(page); unlock_page(page); put_page(page); if (!err) goto regular_page; return 0; } if (pmd_young(orig_pmd)) { pmdp_invalidate(vma, addr, pmd); orig_pmd = pmd_mkold(orig_pmd); set_pmd_at(mm, addr, pmd, orig_pmd); tlb_remove_pmd_tlb_entry(tlb, pmd, addr); } ClearPageReferenced(page); test_and_clear_page_young(page); if (pageout) { if (!isolate_lru_page(page)) { if (PageUnevictable(page)) putback_lru_page(page); else list_add(&page->lru, &page_list); } } else deactivate_page(page); huge_unlock: spin_unlock(ptl); if (pageout) reclaim_pages(&page_list); return 0; } regular_page: if (pmd_trans_unstable(pmd)) return 0; #endif tlb_change_page_size(tlb, PAGE_SIZE); orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); flush_tlb_batched_pending(mm); arch_enter_lazy_mmu_mode(); for (; addr < end; pte++, addr += PAGE_SIZE) { ptent = *pte; if (pte_none(ptent)) continue; if (!pte_present(ptent)) continue; page = vm_normal_page(vma, addr, ptent); if (!page) continue; /* * Creating a THP page is expensive so split it only if we * are sure it's worth. Split it if we are only owner. */ if (PageTransCompound(page)) { if (page_mapcount(page) != 1) break; get_page(page); if (!trylock_page(page)) { put_page(page); break; } pte_unmap_unlock(orig_pte, ptl); if (split_huge_page(page)) { unlock_page(page); put_page(page); pte_offset_map_lock(mm, pmd, addr, &ptl); break; } unlock_page(page); put_page(page); pte = pte_offset_map_lock(mm, pmd, addr, &ptl); pte--; addr -= PAGE_SIZE; continue; } /* Do not interfere with other mappings of this page */ if (page_mapcount(page) != 1) continue; VM_BUG_ON_PAGE(PageTransCompound(page), page); if (pte_young(ptent)) { ptent = ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); ptent = pte_mkold(ptent); set_pte_at(mm, addr, pte, ptent); tlb_remove_tlb_entry(tlb, pte, addr); } /* * We are deactivating a page for accelerating reclaiming. * VM couldn't reclaim the page unless we clear PG_young. * As a side effect, it makes confuse idle-page tracking * because they will miss recent referenced history. */ ClearPageReferenced(page); test_and_clear_page_young(page); if (pageout) { if (!isolate_lru_page(page)) { if (PageUnevictable(page)) putback_lru_page(page); else list_add(&page->lru, &page_list); } } else deactivate_page(page); } arch_leave_lazy_mmu_mode(); pte_unmap_unlock(orig_pte, ptl); if (pageout) reclaim_pages(&page_list); cond_resched(); return 0; } static const struct mm_walk_ops cold_walk_ops = { .pmd_entry = madvise_cold_or_pageout_pte_range, }; static void madvise_cold_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end) { struct madvise_walk_private walk_private = { .pageout = false, .tlb = tlb, }; tlb_start_vma(tlb, vma); walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); tlb_end_vma(tlb, vma); } static long madvise_cold(struct vm_area_struct *vma, struct vm_area_struct **prev, unsigned long start_addr, unsigned long end_addr) { struct mm_struct *mm = vma->vm_mm; struct mmu_gather tlb; *prev = vma; if (!can_madv_lru_vma(vma)) return -EINVAL; lru_add_drain(); tlb_gather_mmu(&tlb, mm, start_addr, end_addr); madvise_cold_page_range(&tlb, vma, start_addr, end_addr); tlb_finish_mmu(&tlb, start_addr, end_addr); return 0; } static void madvise_pageout_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end) { struct madvise_walk_private walk_private = { .pageout = true, .tlb = tlb, }; tlb_start_vma(tlb, vma); walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private); tlb_end_vma(tlb, vma); } static inline bool can_do_pageout(struct vm_area_struct *vma) { if (vma_is_anonymous(vma)) return true; if (!vma->vm_file) return false; /* * paging out pagecache only for non-anonymous mappings that correspond * to the files the calling process could (if tried) open for writing; * otherwise we'd be including shared non-exclusive mappings, which * opens a side channel. */ return inode_owner_or_capable(file_inode(vma->vm_file)) || inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0; } static long madvise_pageout(struct vm_area_struct *vma, struct vm_area_struct **prev, unsigned long start_addr, unsigned long end_addr) { struct mm_struct *mm = vma->vm_mm; struct mmu_gather tlb; *prev = vma; if (!can_madv_lru_vma(vma)) return -EINVAL; if (!can_do_pageout(vma)) return 0; lru_add_drain(); tlb_gather_mmu(&tlb, mm, start_addr, end_addr); madvise_pageout_page_range(&tlb, vma, start_addr, end_addr); tlb_finish_mmu(&tlb, start_addr, end_addr); return 0; } static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct mmu_gather *tlb = walk->private; struct mm_struct *mm = tlb->mm; struct vm_area_struct *vma = walk->vma; spinlock_t *ptl; pte_t *orig_pte, *pte, ptent; struct page *page; int nr_swap = 0; unsigned long next; next = pmd_addr_end(addr, end); if (pmd_trans_huge(*pmd)) if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next)) goto next; if (pmd_trans_unstable(pmd)) return 0; tlb_change_page_size(tlb, PAGE_SIZE); orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); flush_tlb_batched_pending(mm); arch_enter_lazy_mmu_mode(); for (; addr != end; pte++, addr += PAGE_SIZE) { ptent = *pte; if (pte_none(ptent)) continue; /* * If the pte has swp_entry, just clear page table to * prevent swap-in which is more expensive rather than * (page allocation + zeroing). */ if (!pte_present(ptent)) { swp_entry_t entry; entry = pte_to_swp_entry(ptent); if (non_swap_entry(entry)) continue; nr_swap--; free_swap_and_cache(entry); pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); continue; } page = vm_normal_page(vma, addr, ptent); if (!page) continue; /* * If pmd isn't transhuge but the page is THP and * is owned by only this process, split it and * deactivate all pages. */ if (PageTransCompound(page)) { if (page_mapcount(page) != 1) goto out; get_page(page); if (!trylock_page(page)) { put_page(page); goto out; } pte_unmap_unlock(orig_pte, ptl); if (split_huge_page(page)) { unlock_page(page); put_page(page); pte_offset_map_lock(mm, pmd, addr, &ptl); goto out; } unlock_page(page); put_page(page); pte = pte_offset_map_lock(mm, pmd, addr, &ptl); pte--; addr -= PAGE_SIZE; continue; } VM_BUG_ON_PAGE(PageTransCompound(page), page); if (PageSwapCache(page) || PageDirty(page)) { if (!trylock_page(page)) continue; /* * If page is shared with others, we couldn't clear * PG_dirty of the page. */ if (page_mapcount(page) != 1) { unlock_page(page); continue; } if (PageSwapCache(page) && !try_to_free_swap(page)) { unlock_page(page); continue; } ClearPageDirty(page); unlock_page(page); } if (pte_young(ptent) || pte_dirty(ptent)) { /* * Some of architecture(ex, PPC) don't update TLB * with set_pte_at and tlb_remove_tlb_entry so for * the portability, remap the pte with old|clean * after pte clearing. */ ptent = ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); ptent = pte_mkold(ptent); ptent = pte_mkclean(ptent); set_pte_at(mm, addr, pte, ptent); tlb_remove_tlb_entry(tlb, pte, addr); } mark_page_lazyfree(page); } out: if (nr_swap) { if (current->mm == mm) sync_mm_rss(mm); add_mm_counter(mm, MM_SWAPENTS, nr_swap); } arch_leave_lazy_mmu_mode(); pte_unmap_unlock(orig_pte, ptl); cond_resched(); next: return 0; } static const struct mm_walk_ops madvise_free_walk_ops = { .pmd_entry = madvise_free_pte_range, }; static int madvise_free_single_vma(struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr) { struct mm_struct *mm = vma->vm_mm; struct mmu_notifier_range range; struct mmu_gather tlb; /* MADV_FREE works for only anon vma at the moment */ if (!vma_is_anonymous(vma)) return -EINVAL; range.start = max(vma->vm_start, start_addr); if (range.start >= vma->vm_end) return -EINVAL; range.end = min(vma->vm_end, end_addr); if (range.end <= vma->vm_start) return -EINVAL; mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, range.start, range.end); lru_add_drain(); tlb_gather_mmu(&tlb, mm, range.start, range.end); update_hiwater_rss(mm); mmu_notifier_invalidate_range_start(&range); tlb_start_vma(&tlb, vma); walk_page_range(vma->vm_mm, range.start, range.end, &madvise_free_walk_ops, &tlb); tlb_end_vma(&tlb, vma); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb, range.start, range.end); return 0; } /* * Application no longer needs these pages. If the pages are dirty, * it's OK to just throw them away. The app will be more careful about * data it wants to keep. Be sure to free swap resources too. The * zap_page_range call sets things up for shrink_active_list to actually free * these pages later if no one else has touched them in the meantime, * although we could add these pages to a global reuse list for * shrink_active_list to pick up before reclaiming other pages. * * NB: This interface discards data rather than pushes it out to swap, * as some implementations do. This has performance implications for * applications like large transactional databases which want to discard * pages in anonymous maps after committing to backing store the data * that was kept in them. There is no reason to write this data out to * the swap area if the application is discarding it. * * An interface that causes the system to free clean pages and flush * dirty pages is already available as msync(MS_INVALIDATE). */ static long madvise_dontneed_single_vma(struct vm_area_struct *vma, unsigned long start, unsigned long end) { zap_page_range(vma, start, end - start); return 0; } static long madvise_dontneed_free(struct vm_area_struct *vma, struct vm_area_struct **prev, unsigned long start, unsigned long end, int behavior) { struct mm_struct *mm = vma->vm_mm; *prev = vma; if (!can_madv_lru_vma(vma)) return -EINVAL; if (!userfaultfd_remove(vma, start, end)) { *prev = NULL; /* mmap_lock has been dropped, prev is stale */ mmap_read_lock(mm); vma = find_vma(mm, start); if (!vma) return -ENOMEM; if (start < vma->vm_start) { /* * This "vma" under revalidation is the one * with the lowest vma->vm_start where start * is also < vma->vm_end. If start < * vma->vm_start it means an hole materialized * in the user address space within the * virtual range passed to MADV_DONTNEED * or MADV_FREE. */ return -ENOMEM; } if (!can_madv_lru_vma(vma)) return -EINVAL; if (end > vma->vm_end) { /* * Don't fail if end > vma->vm_end. If the old * vma was splitted while the mmap_lock was * released the effect of the concurrent * operation may not cause madvise() to * have an undefined result. There may be an * adjacent next vma that we'll walk * next. userfaultfd_remove() will generate an * UFFD_EVENT_REMOVE repetition on the * end-vma->vm_end range, but the manager can * handle a repetition fine. */ end = vma->vm_end; } VM_WARN_ON(start >= end); } if (behavior == MADV_DONTNEED) return madvise_dontneed_single_vma(vma, start, end); else if (behavior == MADV_FREE) return madvise_free_single_vma(vma, start, end); else return -EINVAL; } /* * Application wants to free up the pages and associated backing store. * This is effectively punching a hole into the middle of a file. */ static long madvise_remove(struct vm_area_struct *vma, struct vm_area_struct **prev, unsigned long start, unsigned long end) { loff_t offset; int error; struct file *f; struct mm_struct *mm = vma->vm_mm; *prev = NULL; /* tell sys_madvise we drop mmap_lock */ if (vma->vm_flags & VM_LOCKED) return -EINVAL; f = vma->vm_file; if (!f || !f->f_mapping || !f->f_mapping->host) { return -EINVAL; } if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE)) return -EACCES; offset = (loff_t)(start - vma->vm_start) + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); /* * Filesystem's fallocate may need to take i_mutex. We need to * explicitly grab a reference because the vma (and hence the * vma's reference to the file) can go away as soon as we drop * mmap_lock. */ get_file(f); if (userfaultfd_remove(vma, start, end)) { /* mmap_lock was not released by userfaultfd_remove() */ mmap_read_unlock(mm); } error = vfs_fallocate(f, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, offset, end - start); fput(f); mmap_read_lock(mm); return error; } #ifdef CONFIG_MEMORY_FAILURE /* * Error injection support for memory error handling. */ static int madvise_inject_error(int behavior, unsigned long start, unsigned long end) { struct zone *zone; unsigned long size; if (!capable(CAP_SYS_ADMIN)) return -EPERM; for (; start < end; start += size) { unsigned long pfn; struct page *page; int ret; ret = get_user_pages_fast(start, 1, 0, &page); if (ret != 1) return ret; pfn = page_to_pfn(page); /* * When soft offlining hugepages, after migrating the page * we dissolve it, therefore in the second loop "page" will * no longer be a compound page. */ size = page_size(compound_head(page)); if (behavior == MADV_SOFT_OFFLINE) { pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n", pfn, start); ret = soft_offline_page(pfn, MF_COUNT_INCREASED); } else { pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n", pfn, start); ret = memory_failure(pfn, MF_COUNT_INCREASED); } if (ret) return ret; } /* Ensure that all poisoned pages are removed from per-cpu lists */ for_each_populated_zone(zone) drain_all_pages(zone); return 0; } #endif static long madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev, unsigned long start, unsigned long end, int behavior) { switch (behavior) { case MADV_REMOVE: return madvise_remove(vma, prev, start, end); case MADV_WILLNEED: return madvise_willneed(vma, prev, start, end); case MADV_COLD: return madvise_cold(vma, prev, start, end); case MADV_PAGEOUT: return madvise_pageout(vma, prev, start, end); case MADV_FREE: case MADV_DONTNEED: return madvise_dontneed_free(vma, prev, start, end, behavior); default: return madvise_behavior(vma, prev, start, end, behavior); } } static bool madvise_behavior_valid(int behavior) { switch (behavior) { case MADV_DOFORK: case MADV_DONTFORK: case MADV_NORMAL: case MADV_SEQUENTIAL: case MADV_RANDOM: case MADV_REMOVE: case MADV_WILLNEED: case MADV_DONTNEED: case MADV_FREE: case MADV_COLD: case MADV_PAGEOUT: #ifdef CONFIG_KSM case MADV_MERGEABLE: case MADV_UNMERGEABLE: #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE case MADV_HUGEPAGE: case MADV_NOHUGEPAGE: #endif case MADV_DONTDUMP: case MADV_DODUMP: case MADV_WIPEONFORK: case MADV_KEEPONFORK: #ifdef CONFIG_MEMORY_FAILURE case MADV_SOFT_OFFLINE: case MADV_HWPOISON: #endif return true; default: return false; } } static bool process_madvise_behavior_valid(int behavior) { switch (behavior) { case MADV_COLD: case MADV_PAGEOUT: return true; default: return false; } } /* * The madvise(2) system call. * * Applications can use madvise() to advise the kernel how it should * handle paging I/O in this VM area. The idea is to help the kernel * use appropriate read-ahead and caching techniques. The information * provided is advisory only, and can be safely disregarded by the * kernel without affecting the correct operation of the application. * * behavior values: * MADV_NORMAL - the default behavior is to read clusters. This * results in some read-ahead and read-behind. * MADV_RANDOM - the system should read the minimum amount of data * on any access, since it is unlikely that the appli- * cation will need more than what it asks for. * MADV_SEQUENTIAL - pages in the given range will probably be accessed * once, so they can be aggressively read ahead, and * can be freed soon after they are accessed. * MADV_WILLNEED - the application is notifying the system to read * some pages ahead. * MADV_DONTNEED - the application is finished with the given range, * so the kernel can free resources associated with it. * MADV_FREE - the application marks pages in the given range as lazy free, * where actual purges are postponed until memory pressure happens. * MADV_REMOVE - the application wants to free up the given range of * pages and associated backing store. * MADV_DONTFORK - omit this area from child's address space when forking: * typically, to avoid COWing pages pinned by get_user_pages(). * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking. * MADV_WIPEONFORK - present the child process with zero-filled memory in this * range after a fork. * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK * MADV_HWPOISON - trigger memory error handler as if the given memory range * were corrupted by unrecoverable hardware memory failure. * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory. * MADV_MERGEABLE - the application recommends that KSM try to merge pages in * this area with pages of identical content from other such areas. * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others. * MADV_HUGEPAGE - the application wants to back the given range by transparent * huge pages in the future. Existing pages might be coalesced and * new pages might be allocated as THP. * MADV_NOHUGEPAGE - mark the given range as not worth being backed by * transparent huge pages so the existing pages will not be * coalesced into THP and new pages will not be allocated as THP. * MADV_DONTDUMP - the application wants to prevent pages in the given range * from being included in its core dump. * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump. * MADV_COLD - the application is not expected to use this memory soon, * deactivate pages in this range so that they can be reclaimed * easily if memory pressure hanppens. * MADV_PAGEOUT - the application is not expected to use this memory soon, * page out the pages in this range immediately. * * return values: * zero - success * -EINVAL - start + len < 0, start is not page-aligned, * "behavior" is not a valid value, or application * is attempting to release locked or shared pages, * or the specified address range includes file, Huge TLB, * MAP_SHARED or VMPFNMAP range. * -ENOMEM - addresses in the specified range are not currently * mapped, or are outside the AS of the process. * -EIO - an I/O error occurred while paging in data. * -EBADF - map exists, but area maps something that isn't a file. * -EAGAIN - a kernel resource was temporarily unavailable. */ int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior) { unsigned long end, tmp; struct vm_area_struct *vma, *prev; int unmapped_error = 0; int error = -EINVAL; int write; size_t len; struct blk_plug plug; start = untagged_addr(start); if (!madvise_behavior_valid(behavior)) return error; if (!PAGE_ALIGNED(start)) return error; len = PAGE_ALIGN(len_in); /* Check to see whether len was rounded up from small -ve to zero */ if (len_in && !len) return error; end = start + len; if (end < start) return error; error = 0; if (end == start) return error; #ifdef CONFIG_MEMORY_FAILURE if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE) return madvise_inject_error(behavior, start, start + len_in); #endif write = madvise_need_mmap_write(behavior); if (write) { if (mmap_write_lock_killable(mm)) return -EINTR; } else { mmap_read_lock(mm); } /* * If the interval [start,end) covers some unmapped address * ranges, just ignore them, but return -ENOMEM at the end. * - different from the way of handling in mlock etc. */ vma = find_vma_prev(mm, start, &prev); if (vma && start > vma->vm_start) prev = vma; blk_start_plug(&plug); for (;;) { /* Still start < end. */ error = -ENOMEM; if (!vma) goto out; /* Here start < (end|vma->vm_end). */ if (start < vma->vm_start) { unmapped_error = -ENOMEM; start = vma->vm_start; if (start >= end) goto out; } /* Here vma->vm_start <= start < (end|vma->vm_end) */ tmp = vma->vm_end; if (end < tmp) tmp = end; /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */ error = madvise_vma(vma, &prev, start, tmp, behavior); if (error) goto out; start = tmp; if (prev && start < prev->vm_end) start = prev->vm_end; error = unmapped_error; if (start >= end) goto out; if (prev) vma = prev->vm_next; else /* madvise_remove dropped mmap_lock */ vma = find_vma(mm, start); } out: blk_finish_plug(&plug); if (write) mmap_write_unlock(mm); else mmap_read_unlock(mm); return error; } SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) { return do_madvise(current->mm, start, len_in, behavior); } SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec, size_t, vlen, int, behavior, unsigned int, flags) { ssize_t ret; struct iovec iovstack[UIO_FASTIOV], iovec; struct iovec *iov = iovstack; struct iov_iter iter; struct pid *pid; struct task_struct *task; struct mm_struct *mm; size_t total_len; unsigned int f_flags; if (flags != 0) { ret = -EINVAL; goto out; } ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter); if (ret < 0) goto out; pid = pidfd_get_pid(pidfd, &f_flags); if (IS_ERR(pid)) { ret = PTR_ERR(pid); goto free_iov; } task = get_pid_task(pid, PIDTYPE_PID); if (!task) { ret = -ESRCH; goto put_pid; } if (!process_madvise_behavior_valid(behavior)) { ret = -EINVAL; goto release_task; } /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */ mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); if (IS_ERR_OR_NULL(mm)) { ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH; goto release_task; } /* * Require CAP_SYS_NICE for influencing process performance. Note that * only non-destructive hints are currently supported. */ if (!capable(CAP_SYS_NICE)) { ret = -EPERM; goto release_mm; } total_len = iov_iter_count(&iter); while (iov_iter_count(&iter)) { iovec = iov_iter_iovec(&iter); ret = do_madvise(mm, (unsigned long)iovec.iov_base, iovec.iov_len, behavior); if (ret < 0) break; iov_iter_advance(&iter, iovec.iov_len); } if (ret == 0) ret = total_len - iov_iter_count(&iter); release_mm: mmput(mm); release_task: put_task_struct(task); put_pid: put_pid(pid); free_iov: kfree(iov); out: return ret; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 /* SPDX-License-Identifier: GPL-2.0-only */ /* * async.h: Asynchronous function calls for boot performance * * (C) Copyright 2009 Intel Corporation * Author: Arjan van de Ven <arjan@linux.intel.com> */ #ifndef __ASYNC_H__ #define __ASYNC_H__ #include <linux/types.h> #include <linux/list.h> #include <linux/numa.h> #include <linux/device.h> typedef u64 async_cookie_t; typedef void (*async_func_t) (void *data, async_cookie_t cookie); struct async_domain { struct list_head pending; unsigned registered:1; }; /* * domain participates in global async_synchronize_full */ #define ASYNC_DOMAIN(_name) \ struct async_domain _name = { .pending = LIST_HEAD_INIT(_name.pending), \ .registered = 1 } /* * domain is free to go out of scope as soon as all pending work is * complete, this domain does not participate in async_synchronize_full */ #define ASYNC_DOMAIN_EXCLUSIVE(_name) \ struct async_domain _name = { .pending = LIST_HEAD_INIT(_name.pending), \ .registered = 0 } async_cookie_t async_schedule_node(async_func_t func, void *data, int node); async_cookie_t async_schedule_node_domain(async_func_t func, void *data, int node, struct async_domain *domain); /** * async_schedule - schedule a function for asynchronous execution * @func: function to execute asynchronously * @data: data pointer to pass to the function * * Returns an async_cookie_t that may be used for checkpointing later. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule(async_func_t func, void *data) { return async_schedule_node(func, data, NUMA_NO_NODE); } /** * async_schedule_domain - schedule a function for asynchronous execution within a certain domain * @func: function to execute asynchronously * @data: data pointer to pass to the function * @domain: the domain * * Returns an async_cookie_t that may be used for checkpointing later. * @domain may be used in the async_synchronize_*_domain() functions to * wait within a certain synchronization domain rather than globally. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_domain(async_func_t func, void *data, struct async_domain *domain) { return async_schedule_node_domain(func, data, NUMA_NO_NODE, domain); } /** * async_schedule_dev - A device specific version of async_schedule * @func: function to execute asynchronously * @dev: device argument to be passed to function * * Returns an async_cookie_t that may be used for checkpointing later. * @dev is used as both the argument for the function and to provide NUMA * context for where to run the function. By doing this we can try to * provide for the best possible outcome by operating on the device on the * CPUs closest to the device. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_dev(async_func_t func, struct device *dev) { return async_schedule_node(func, dev, dev_to_node(dev)); } /** * async_schedule_dev_domain - A device specific version of async_schedule_domain * @func: function to execute asynchronously * @dev: device argument to be passed to function * @domain: the domain * * Returns an async_cookie_t that may be used for checkpointing later. * @dev is used as both the argument for the function and to provide NUMA * context for where to run the function. By doing this we can try to * provide for the best possible outcome by operating on the device on the * CPUs closest to the device. * @domain may be used in the async_synchronize_*_domain() functions to * wait within a certain synchronization domain rather than globally. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_dev_domain(async_func_t func, struct device *dev, struct async_domain *domain) { return async_schedule_node_domain(func, dev, dev_to_node(dev), domain); } void async_unregister_domain(struct async_domain *domain); extern void async_synchronize_full(void); extern void async_synchronize_full_domain(struct async_domain *domain); extern void async_synchronize_cookie(async_cookie_t cookie); extern void async_synchronize_cookie_domain(async_cookie_t cookie, struct async_domain *domain); extern bool current_is_async(void); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_STRINGHASH_H #define __LINUX_STRINGHASH_H #include <linux/compiler.h> /* For __pure */ #include <linux/types.h> /* For u32, u64 */ #include <linux/hash.h> /* * Routines for hashing strings of bytes to a 32-bit hash value. * * These hash functions are NOT GUARANTEED STABLE between kernel * versions, architectures, or even repeated boots of the same kernel. * (E.g. they may depend on boot-time hardware detection or be * deliberately randomized.) * * They are also not intended to be secure against collisions caused by * malicious inputs; much slower hash functions are required for that. * * They are optimized for pathname components, meaning short strings. * Even if a majority of files have longer names, the dynamic profile of * pathname components skews short due to short directory names. * (E.g. /usr/lib/libsesquipedalianism.so.3.141.) */ /* * Version 1: one byte at a time. Example of use: * * unsigned long hash = init_name_hash; * while (*p) * hash = partial_name_hash(tolower(*p++), hash); * hash = end_name_hash(hash); * * Although this is designed for bytes, fs/hfsplus/unicode.c * abuses it to hash 16-bit values. */ /* Hash courtesy of the R5 hash in reiserfs modulo sign bits */ #define init_name_hash(salt) (unsigned long)(salt) /* partial hash update function. Assume roughly 4 bits per character */ static inline unsigned long partial_name_hash(unsigned long c, unsigned long prevhash) { return (prevhash + (c << 4) + (c >> 4)) * 11; } /* * Finally: cut down the number of bits to a int value (and try to avoid * losing bits). This also has the property (wanted by the dcache) * that the msbits make a good hash table index. */ static inline unsigned int end_name_hash(unsigned long hash) { return hash_long(hash, 32); } /* * Version 2: One word (32 or 64 bits) at a time. * If CONFIG_DCACHE_WORD_ACCESS is defined (meaning <asm/word-at-a-time.h> * exists, which describes major Linux platforms like x86 and ARM), then * this computes a different hash function much faster. * * If not set, this falls back to a wrapper around the preceding. */ extern unsigned int __pure full_name_hash(const void *salt, const char *, unsigned int); /* * A hash_len is a u64 with the hash of a string in the low * half and the length in the high half. */ #define hashlen_hash(hashlen) ((u32)(hashlen)) #define hashlen_len(hashlen) ((u32)((hashlen) >> 32)) #define hashlen_create(hash, len) ((u64)(len)<<32 | (u32)(hash)) /* Return the "hash_len" (hash and length) of a null-terminated string */ extern u64 __pure hashlen_string(const void *salt, const char *name); #endif /* __LINUX_STRINGHASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SIGNAL_H #define _LINUX_SIGNAL_H #include <linux/bug.h> #include <linux/signal_types.h> #include <linux/string.h> struct task_struct; /* for sysctl */ extern int print_fatal_signals; static inline void copy_siginfo(kernel_siginfo_t *to, const kernel_siginfo_t *from) { memcpy(to, from, sizeof(*to)); } static inline void clear_siginfo(kernel_siginfo_t *info) { memset(info, 0, sizeof(*info)); } #define SI_EXPANSION_SIZE (sizeof(struct siginfo) - sizeof(struct kernel_siginfo)) static inline void copy_siginfo_to_external(siginfo_t *to, const kernel_siginfo_t *from) { memcpy(to, from, sizeof(*from)); memset(((char *)to) + sizeof(struct kernel_siginfo), 0, SI_EXPANSION_SIZE); } int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from); int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from); enum siginfo_layout { SIL_KILL, SIL_TIMER, SIL_POLL, SIL_FAULT, SIL_FAULT_MCEERR, SIL_FAULT_BNDERR, SIL_FAULT_PKUERR, SIL_CHLD, SIL_RT, SIL_SYS, }; enum siginfo_layout siginfo_layout(unsigned sig, int si_code); /* * Define some primitives to manipulate sigset_t. */ #ifndef __HAVE_ARCH_SIG_BITOPS #include <linux/bitops.h> /* We don't use <linux/bitops.h> for these because there is no need to be atomic. */ static inline void sigaddset(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) set->sig[0] |= 1UL << sig; else set->sig[sig / _NSIG_BPW] |= 1UL << (sig % _NSIG_BPW); } static inline void sigdelset(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) set->sig[0] &= ~(1UL << sig); else set->sig[sig / _NSIG_BPW] &= ~(1UL << (sig % _NSIG_BPW)); } static inline int sigismember(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) return 1 & (set->sig[0] >> sig); else return 1 & (set->sig[sig / _NSIG_BPW] >> (sig % _NSIG_BPW)); } #endif /* __HAVE_ARCH_SIG_BITOPS */ static inline int sigisemptyset(sigset_t *set) { switch (_NSIG_WORDS) { case 4: return (set->sig[3] | set->sig[2] | set->sig[1] | set->sig[0]) == 0; case 2: return (set->sig[1] | set->sig[0]) == 0; case 1: return set->sig[0] == 0; default: BUILD_BUG(); return 0; } } static inline int sigequalsets(const sigset_t *set1, const sigset_t *set2) { switch (_NSIG_WORDS) { case 4: return (set1->sig[3] == set2->sig[3]) && (set1->sig[2] == set2->sig[2]) && (set1->sig[1] == set2->sig[1]) && (set1->sig[0] == set2->sig[0]); case 2: return (set1->sig[1] == set2->sig[1]) && (set1->sig[0] == set2->sig[0]); case 1: return set1->sig[0] == set2->sig[0]; } return 0; } #define sigmask(sig) (1UL << ((sig) - 1)) #ifndef __HAVE_ARCH_SIG_SETOPS #include <linux/string.h> #define _SIG_SET_BINOP(name, op) \ static inline void name(sigset_t *r, const sigset_t *a, const sigset_t *b) \ { \ unsigned long a0, a1, a2, a3, b0, b1, b2, b3; \ \ switch (_NSIG_WORDS) { \ case 4: \ a3 = a->sig[3]; a2 = a->sig[2]; \ b3 = b->sig[3]; b2 = b->sig[2]; \ r->sig[3] = op(a3, b3); \ r->sig[2] = op(a2, b2); \ fallthrough; \ case 2: \ a1 = a->sig[1]; b1 = b->sig[1]; \ r->sig[1] = op(a1, b1); \ fallthrough; \ case 1: \ a0 = a->sig[0]; b0 = b->sig[0]; \ r->sig[0] = op(a0, b0); \ break; \ default: \ BUILD_BUG(); \ } \ } #define _sig_or(x,y) ((x) | (y)) _SIG_SET_BINOP(sigorsets, _sig_or) #define _sig_and(x,y) ((x) & (y)) _SIG_SET_BINOP(sigandsets, _sig_and) #define _sig_andn(x,y) ((x) & ~(y)) _SIG_SET_BINOP(sigandnsets, _sig_andn) #undef _SIG_SET_BINOP #undef _sig_or #undef _sig_and #undef _sig_andn #define _SIG_SET_OP(name, op) \ static inline void name(sigset_t *set) \ { \ switch (_NSIG_WORDS) { \ case 4: set->sig[3] = op(set->sig[3]); \ set->sig[2] = op(set->sig[2]); \ fallthrough; \ case 2: set->sig[1] = op(set->sig[1]); \ fallthrough; \ case 1: set->sig[0] = op(set->sig[0]); \ break; \ default: \ BUILD_BUG(); \ } \ } #define _sig_not(x) (~(x)) _SIG_SET_OP(signotset, _sig_not) #undef _SIG_SET_OP #undef _sig_not static inline void sigemptyset(sigset_t *set) { switch (_NSIG_WORDS) { default: memset(set, 0, sizeof(sigset_t)); break; case 2: set->sig[1] = 0; fallthrough; case 1: set->sig[0] = 0; break; } } static inline void sigfillset(sigset_t *set) { switch (_NSIG_WORDS) { default: memset(set, -1, sizeof(sigset_t)); break; case 2: set->sig[1] = -1; fallthrough; case 1: set->sig[0] = -1; break; } } /* Some extensions for manipulating the low 32 signals in particular. */ static inline void sigaddsetmask(sigset_t *set, unsigned long mask) { set->sig[0] |= mask; } static inline void sigdelsetmask(sigset_t *set, unsigned long mask) { set->sig[0] &= ~mask; } static inline int sigtestsetmask(sigset_t *set, unsigned long mask) { return (set->sig[0] & mask) != 0; } static inline void siginitset(sigset_t *set, unsigned long mask) { set->sig[0] = mask; switch (_NSIG_WORDS) { default: memset(&set->sig[1], 0, sizeof(long)*(_NSIG_WORDS-1)); break; case 2: set->sig[1] = 0; break; case 1: ; } } static inline void siginitsetinv(sigset_t *set, unsigned long mask) { set->sig[0] = ~mask; switch (_NSIG_WORDS) { default: memset(&set->sig[1], -1, sizeof(long)*(_NSIG_WORDS-1)); break; case 2: set->sig[1] = -1; break; case 1: ; } } #endif /* __HAVE_ARCH_SIG_SETOPS */ static inline void init_sigpending(struct sigpending *sig) { sigemptyset(&sig->signal); INIT_LIST_HEAD(&sig->list); } extern void flush_sigqueue(struct sigpending *queue); /* Test if 'sig' is valid signal. Use this instead of testing _NSIG directly */ static inline int valid_signal(unsigned long sig) { return sig <= _NSIG ? 1 : 0; } struct timespec; struct pt_regs; enum pid_type; extern int next_signal(struct sigpending *pending, sigset_t *mask); extern int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, enum pid_type type); extern int group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, enum pid_type type); extern int __group_send_sig_info(int, struct kernel_siginfo *, struct task_struct *); extern int sigprocmask(int, sigset_t *, sigset_t *); extern void set_current_blocked(sigset_t *); extern void __set_current_blocked(const sigset_t *); extern int show_unhandled_signals; extern bool get_signal(struct ksignal *ksig); extern void signal_setup_done(int failed, struct ksignal *ksig, int stepping); extern void exit_signals(struct task_struct *tsk); extern void kernel_sigaction(int, __sighandler_t); #define SIG_KTHREAD ((__force __sighandler_t)2) #define SIG_KTHREAD_KERNEL ((__force __sighandler_t)3) static inline void allow_signal(int sig) { /* * Kernel threads handle their own signals. Let the signal code * know it'll be handled, so that they don't get converted to * SIGKILL or just silently dropped. */ kernel_sigaction(sig, SIG_KTHREAD); } static inline void allow_kernel_signal(int sig) { /* * Kernel threads handle their own signals. Let the signal code * know signals sent by the kernel will be handled, so that they * don't get silently dropped. */ kernel_sigaction(sig, SIG_KTHREAD_KERNEL); } static inline void disallow_signal(int sig) { kernel_sigaction(sig, SIG_IGN); } extern struct kmem_cache *sighand_cachep; extern bool unhandled_signal(struct task_struct *tsk, int sig); /* * In POSIX a signal is sent either to a specific thread (Linux task) * or to the process as a whole (Linux thread group). How the signal * is sent determines whether it's to one thread or the whole group, * which determines which signal mask(s) are involved in blocking it * from being delivered until later. When the signal is delivered, * either it's caught or ignored by a user handler or it has a default * effect that applies to the whole thread group (POSIX process). * * The possible effects an unblocked signal set to SIG_DFL can have are: * ignore - Nothing Happens * terminate - kill the process, i.e. all threads in the group, * similar to exit_group. The group leader (only) reports * WIFSIGNALED status to its parent. * coredump - write a core dump file describing all threads using * the same mm and then kill all those threads * stop - stop all the threads in the group, i.e. TASK_STOPPED state * * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. * Other signals when not blocked and set to SIG_DFL behaves as follows. * The job control signals also have other special effects. * * +--------------------+------------------+ * | POSIX signal | default action | * +--------------------+------------------+ * | SIGHUP | terminate | * | SIGINT | terminate | * | SIGQUIT | coredump | * | SIGILL | coredump | * | SIGTRAP | coredump | * | SIGABRT/SIGIOT | coredump | * | SIGBUS | coredump | * | SIGFPE | coredump | * | SIGKILL | terminate(+) | * | SIGUSR1 | terminate | * | SIGSEGV | coredump | * | SIGUSR2 | terminate | * | SIGPIPE | terminate | * | SIGALRM | terminate | * | SIGTERM | terminate | * | SIGCHLD | ignore | * | SIGCONT | ignore(*) | * | SIGSTOP | stop(*)(+) | * | SIGTSTP | stop(*) | * | SIGTTIN | stop(*) | * | SIGTTOU | stop(*) | * | SIGURG | ignore | * | SIGXCPU | coredump | * | SIGXFSZ | coredump | * | SIGVTALRM | terminate | * | SIGPROF | terminate | * | SIGPOLL/SIGIO | terminate | * | SIGSYS/SIGUNUSED | coredump | * | SIGSTKFLT | terminate | * | SIGWINCH | ignore | * | SIGPWR | terminate | * | SIGRTMIN-SIGRTMAX | terminate | * +--------------------+------------------+ * | non-POSIX signal | default action | * +--------------------+------------------+ * | SIGEMT | coredump | * +--------------------+------------------+ * * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". * (*) Special job control effects: * When SIGCONT is sent, it resumes the process (all threads in the group) * from TASK_STOPPED state and also clears any pending/queued stop signals * (any of those marked with "stop(*)"). This happens regardless of blocking, * catching, or ignoring SIGCONT. When any stop signal is sent, it clears * any pending/queued SIGCONT signals; this happens regardless of blocking, * catching, or ignored the stop signal, though (except for SIGSTOP) the * default action of stopping the process may happen later or never. */ #ifdef SIGEMT #define SIGEMT_MASK rt_sigmask(SIGEMT) #else #define SIGEMT_MASK 0 #endif #if SIGRTMIN > BITS_PER_LONG #define rt_sigmask(sig) (1ULL << ((sig)-1)) #else #define rt_sigmask(sig) sigmask(sig) #endif #define siginmask(sig, mask) \ ((sig) > 0 && (sig) < SIGRTMIN && (rt_sigmask(sig) & (mask))) #define SIG_KERNEL_ONLY_MASK (\ rt_sigmask(SIGKILL) | rt_sigmask(SIGSTOP)) #define SIG_KERNEL_STOP_MASK (\ rt_sigmask(SIGSTOP) | rt_sigmask(SIGTSTP) | \ rt_sigmask(SIGTTIN) | rt_sigmask(SIGTTOU) ) #define SIG_KERNEL_COREDUMP_MASK (\ rt_sigmask(SIGQUIT) | rt_sigmask(SIGILL) | \ rt_sigmask(SIGTRAP) | rt_sigmask(SIGABRT) | \ rt_sigmask(SIGFPE) | rt_sigmask(SIGSEGV) | \ rt_sigmask(SIGBUS) | rt_sigmask(SIGSYS) | \ rt_sigmask(SIGXCPU) | rt_sigmask(SIGXFSZ) | \ SIGEMT_MASK ) #define SIG_KERNEL_IGNORE_MASK (\ rt_sigmask(SIGCONT) | rt_sigmask(SIGCHLD) | \ rt_sigmask(SIGWINCH) | rt_sigmask(SIGURG) ) #define SIG_SPECIFIC_SICODES_MASK (\ rt_sigmask(SIGILL) | rt_sigmask(SIGFPE) | \ rt_sigmask(SIGSEGV) | rt_sigmask(SIGBUS) | \ rt_sigmask(SIGTRAP) | rt_sigmask(SIGCHLD) | \ rt_sigmask(SIGPOLL) | rt_sigmask(SIGSYS) | \ SIGEMT_MASK ) #define sig_kernel_only(sig) siginmask(sig, SIG_KERNEL_ONLY_MASK) #define sig_kernel_coredump(sig) siginmask(sig, SIG_KERNEL_COREDUMP_MASK) #define sig_kernel_ignore(sig) siginmask(sig, SIG_KERNEL_IGNORE_MASK) #define sig_kernel_stop(sig) siginmask(sig, SIG_KERNEL_STOP_MASK) #define sig_specific_sicodes(sig) siginmask(sig, SIG_SPECIFIC_SICODES_MASK) #define sig_fatal(t, signr) \ (!siginmask(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) void signals_init(void); int restore_altstack(const stack_t __user *); int __save_altstack(stack_t __user *, unsigned long); #define unsafe_save_altstack(uss, sp, label) do { \ stack_t __user *__uss = uss; \ struct task_struct *t = current; \ unsafe_put_user((void __user *)t->sas_ss_sp, &__uss->ss_sp, label); \ unsafe_put_user(t->sas_ss_flags, &__uss->ss_flags, label); \ unsafe_put_user(t->sas_ss_size, &__uss->ss_size, label); \ if (t->sas_ss_flags & SS_AUTODISARM) \ sas_ss_reset(t); \ } while (0); #ifdef CONFIG_PROC_FS struct seq_file; extern void render_sigset_t(struct seq_file *, const char *, sigset_t *); #endif #endif /* _LINUX_SIGNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 /* SPDX-License-Identifier: GPL-2.0 */ /* * Type definitions for the multi-level security (MLS) policy. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ /* * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> * * Support for enhanced MLS infrastructure. * * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. */ #ifndef _SS_MLS_TYPES_H_ #define _SS_MLS_TYPES_H_ #include "security.h" #include "ebitmap.h" struct mls_level { u32 sens; /* sensitivity */ struct ebitmap cat; /* category set */ }; struct mls_range { struct mls_level level[2]; /* low == level[0], high == level[1] */ }; static inline int mls_level_eq(struct mls_level *l1, struct mls_level *l2) { return ((l1->sens == l2->sens) && ebitmap_cmp(&l1->cat, &l2->cat)); } static inline int mls_level_dom(struct mls_level *l1, struct mls_level *l2) { return ((l1->sens >= l2->sens) && ebitmap_contains(&l1->cat, &l2->cat, 0)); } #define mls_level_incomp(l1, l2) \ (!mls_level_dom((l1), (l2)) && !mls_level_dom((l2), (l1))) #define mls_level_between(l1, l2, l3) \ (mls_level_dom((l1), (l2)) && mls_level_dom((l3), (l1))) #define mls_range_contains(r1, r2) \ (mls_level_dom(&(r2).level[0], &(r1).level[0]) && \ mls_level_dom(&(r1).level[1], &(r2).level[1])) #endif /* _SS_MLS_TYPES_H_ */
7 7 7 7 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 // SPDX-License-Identifier: GPL-2.0 #include <linux/bitops.h> #include <linux/fault-inject-usercopy.h> #include <linux/instrumented.h> #include <linux/uaccess.h> /* out-of-line parts */ #ifndef INLINE_COPY_FROM_USER unsigned long _copy_from_user(void *to, const void __user *from, unsigned long n) { unsigned long res = n; might_fault(); if (!should_fail_usercopy() && likely(access_ok(from, n))) { instrument_copy_from_user(to, from, n); res = raw_copy_from_user(to, from, n); } if (unlikely(res)) memset(to + (n - res), 0, res); return res; } EXPORT_SYMBOL(_copy_from_user); #endif #ifndef INLINE_COPY_TO_USER unsigned long _copy_to_user(void __user *to, const void *from, unsigned long n) { might_fault(); if (should_fail_usercopy()) return n; if (likely(access_ok(to, n))) { instrument_copy_to_user(to, from, n); n = raw_copy_to_user(to, from, n); } return n; } EXPORT_SYMBOL(_copy_to_user); #endif /** * check_zeroed_user: check if a userspace buffer only contains zero bytes * @from: Source address, in userspace. * @size: Size of buffer. * * This is effectively shorthand for "memchr_inv(from, 0, size) == NULL" for * userspace addresses (and is more efficient because we don't care where the * first non-zero byte is). * * Returns: * * 0: There were non-zero bytes present in the buffer. * * 1: The buffer was full of zero bytes. * * -EFAULT: access to userspace failed. */ int check_zeroed_user(const void __user *from, size_t size) { unsigned long val; uintptr_t align = (uintptr_t) from % sizeof(unsigned long); if (unlikely(size == 0)) return 1; from -= align; size += align; if (!user_read_access_begin(from, size)) return -EFAULT; unsafe_get_user(val, (unsigned long __user *) from, err_fault); if (align) val &= ~aligned_byte_mask(align); while (size > sizeof(unsigned long)) { if (unlikely(val)) goto done; from += sizeof(unsigned long); size -= sizeof(unsigned long); unsafe_get_user(val, (unsigned long __user *) from, err_fault); } if (size < sizeof(unsigned long)) val &= aligned_byte_mask(size); done: user_read_access_end(); return (val == 0); err_fault: user_read_access_end(); return -EFAULT; } EXPORT_SYMBOL(check_zeroed_user);
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 // SPDX-License-Identifier: GPL-2.0-only #include <linux/bitmap.h> #include <linux/bug.h> #include <linux/export.h> #include <linux/idr.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/xarray.h> /** * idr_alloc_u32() - Allocate an ID. * @idr: IDR handle. * @ptr: Pointer to be associated with the new ID. * @nextid: Pointer to an ID. * @max: The maximum ID to allocate (inclusive). * @gfp: Memory allocation flags. * * Allocates an unused ID in the range specified by @nextid and @max. * Note that @max is inclusive whereas the @end parameter to idr_alloc() * is exclusive. The new ID is assigned to @nextid before the pointer * is inserted into the IDR, so if @nextid points into the object pointed * to by @ptr, a concurrent lookup will not find an uninitialised ID. * * The caller should provide their own locking to ensure that two * concurrent modifications to the IDR are not possible. Read-only * accesses to the IDR may be done under the RCU read lock or may * exclude simultaneous writers. * * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed, * or -ENOSPC if no free IDs could be found. If an error occurred, * @nextid is unchanged. */ int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid, unsigned long max, gfp_t gfp) { struct radix_tree_iter iter; void __rcu **slot; unsigned int base = idr->idr_base; unsigned int id = *nextid; if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR))) idr->idr_rt.xa_flags |= IDR_RT_MARKER; id = (id < base) ? 0 : id - base; radix_tree_iter_init(&iter, id); slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base); if (IS_ERR(slot)) return PTR_ERR(slot); *nextid = iter.index + base; /* there is a memory barrier inside radix_tree_iter_replace() */ radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr); radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE); return 0; } EXPORT_SYMBOL_GPL(idr_alloc_u32); /** * idr_alloc() - Allocate an ID. * @idr: IDR handle. * @ptr: Pointer to be associated with the new ID. * @start: The minimum ID (inclusive). * @end: The maximum ID (exclusive). * @gfp: Memory allocation flags. * * Allocates an unused ID in the range specified by @start and @end. If * @end is <= 0, it is treated as one larger than %INT_MAX. This allows * callers to use @start + N as @end as long as N is within integer range. * * The caller should provide their own locking to ensure that two * concurrent modifications to the IDR are not possible. Read-only * accesses to the IDR may be done under the RCU read lock or may * exclude simultaneous writers. * * Return: The newly allocated ID, -ENOMEM if memory allocation failed, * or -ENOSPC if no free IDs could be found. */ int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) { u32 id = start; int ret; if (WARN_ON_ONCE(start < 0)) return -EINVAL; ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp); if (ret) return ret; return id; } EXPORT_SYMBOL_GPL(idr_alloc); /** * idr_alloc_cyclic() - Allocate an ID cyclically. * @idr: IDR handle. * @ptr: Pointer to be associated with the new ID. * @start: The minimum ID (inclusive). * @end: The maximum ID (exclusive). * @gfp: Memory allocation flags. * * Allocates an unused ID in the range specified by @nextid and @end. If * @end is <= 0, it is treated as one larger than %INT_MAX. This allows * callers to use @start + N as @end as long as N is within integer range. * The search for an unused ID will start at the last ID allocated and will * wrap around to @start if no free IDs are found before reaching @end. * * The caller should provide their own locking to ensure that two * concurrent modifications to the IDR are not possible. Read-only * accesses to the IDR may be done under the RCU read lock or may * exclude simultaneous writers. * * Return: The newly allocated ID, -ENOMEM if memory allocation failed, * or -ENOSPC if no free IDs could be found. */ int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) { u32 id = idr->idr_next; int err, max = end > 0 ? end - 1 : INT_MAX; if ((int)id < start) id = start; err = idr_alloc_u32(idr, ptr, &id, max, gfp); if ((err == -ENOSPC) && (id > start)) { id = start; err = idr_alloc_u32(idr, ptr, &id, max, gfp); } if (err) return err; idr->idr_next = id + 1; return id; } EXPORT_SYMBOL(idr_alloc_cyclic); /** * idr_remove() - Remove an ID from the IDR. * @idr: IDR handle. * @id: Pointer ID. * * Removes this ID from the IDR. If the ID was not previously in the IDR, * this function returns %NULL. * * Since this function modifies the IDR, the caller should provide their * own locking to ensure that concurrent modification of the same IDR is * not possible. * * Return: The pointer formerly associated with this ID. */ void *idr_remove(struct idr *idr, unsigned long id) { return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL); } EXPORT_SYMBOL_GPL(idr_remove); /** * idr_find() - Return pointer for given ID. * @idr: IDR handle. * @id: Pointer ID. * * Looks up the pointer associated with this ID. A %NULL pointer may * indicate that @id is not allocated or that the %NULL pointer was * associated with this ID. * * This function can be called under rcu_read_lock(), given that the leaf * pointers lifetimes are correctly managed. * * Return: The pointer associated with this ID. */ void *idr_find(const struct idr *idr, unsigned long id) { return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base); } EXPORT_SYMBOL_GPL(idr_find); /** * idr_for_each() - Iterate through all stored pointers. * @idr: IDR handle. * @fn: Function to be called for each pointer. * @data: Data passed to callback function. * * The callback function will be called for each entry in @idr, passing * the ID, the entry and @data. * * If @fn returns anything other than %0, the iteration stops and that * value is returned from this function. * * idr_for_each() can be called concurrently with idr_alloc() and * idr_remove() if protected by RCU. Newly added entries may not be * seen and deleted entries may be seen, but adding and removing entries * will not cause other entries to be skipped, nor spurious ones to be seen. */ int idr_for_each(const struct idr *idr, int (*fn)(int id, void *p, void *data), void *data) { struct radix_tree_iter iter; void __rcu **slot; int base = idr->idr_base; radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) { int ret; unsigned long id = iter.index + base; if (WARN_ON_ONCE(id > INT_MAX)) break; ret = fn(id, rcu_dereference_raw(*slot), data); if (ret) return ret; } return 0; } EXPORT_SYMBOL(idr_for_each); /** * idr_get_next_ul() - Find next populated entry. * @idr: IDR handle. * @nextid: Pointer to an ID. * * Returns the next populated entry in the tree with an ID greater than * or equal to the value pointed to by @nextid. On exit, @nextid is updated * to the ID of the found value. To use in a loop, the value pointed to by * nextid must be incremented by the user. */ void *idr_get_next_ul(struct idr *idr, unsigned long *nextid) { struct radix_tree_iter iter; void __rcu **slot; void *entry = NULL; unsigned long base = idr->idr_base; unsigned long id = *nextid; id = (id < base) ? 0 : id - base; radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) { entry = rcu_dereference_raw(*slot); if (!entry) continue; if (!xa_is_internal(entry)) break; if (slot != &idr->idr_rt.xa_head && !xa_is_retry(entry)) break; slot = radix_tree_iter_retry(&iter); } if (!slot) return NULL; *nextid = iter.index + base; return entry; } EXPORT_SYMBOL(idr_get_next_ul); /** * idr_get_next() - Find next populated entry. * @idr: IDR handle. * @nextid: Pointer to an ID. * * Returns the next populated entry in the tree with an ID greater than * or equal to the value pointed to by @nextid. On exit, @nextid is updated * to the ID of the found value. To use in a loop, the value pointed to by * nextid must be incremented by the user. */ void *idr_get_next(struct idr *idr, int *nextid) { unsigned long id = *nextid; void *entry = idr_get_next_ul(idr, &id); if (WARN_ON_ONCE(id > INT_MAX)) return NULL; *nextid = id; return entry; } EXPORT_SYMBOL(idr_get_next); /** * idr_replace() - replace pointer for given ID. * @idr: IDR handle. * @ptr: New pointer to associate with the ID. * @id: ID to change. * * Replace the pointer registered with an ID and return the old value. * This function can be called under the RCU read lock concurrently with * idr_alloc() and idr_remove() (as long as the ID being removed is not * the one being replaced!). * * Returns: the old value on success. %-ENOENT indicates that @id was not * found. %-EINVAL indicates that @ptr was not valid. */ void *idr_replace(struct idr *idr, void *ptr, unsigned long id) { struct radix_tree_node *node; void __rcu **slot = NULL; void *entry; id -= idr->idr_base; entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot); if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE)) return ERR_PTR(-ENOENT); __radix_tree_replace(&idr->idr_rt, node, slot, ptr); return entry; } EXPORT_SYMBOL(idr_replace); /** * DOC: IDA description * * The IDA is an ID allocator which does not provide the ability to * associate an ID with a pointer. As such, it only needs to store one * bit per ID, and so is more space efficient than an IDR. To use an IDA, * define it using DEFINE_IDA() (or embed a &struct ida in a data structure, * then initialise it using ida_init()). To allocate a new ID, call * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range(). * To free an ID, call ida_free(). * * ida_destroy() can be used to dispose of an IDA without needing to * free the individual IDs in it. You can use ida_is_empty() to find * out whether the IDA has any IDs currently allocated. * * The IDA handles its own locking. It is safe to call any of the IDA * functions without synchronisation in your code. * * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward * limitation, it should be quite straightforward to raise the maximum. */ /* * Developer's notes: * * The IDA uses the functionality provided by the XArray to store bitmaps in * each entry. The XA_FREE_MARK is only cleared when all bits in the bitmap * have been set. * * I considered telling the XArray that each slot is an order-10 node * and indexing by bit number, but the XArray can't allow a single multi-index * entry in the head, which would significantly increase memory consumption * for the IDA. So instead we divide the index by the number of bits in the * leaf bitmap before doing a radix tree lookup. * * As an optimisation, if there are only a few low bits set in any given * leaf, instead of allocating a 128-byte bitmap, we store the bits * as a value entry. Value entries never have the XA_FREE_MARK cleared * because we can always convert them into a bitmap entry. * * It would be possible to optimise further; once we've run out of a * single 128-byte bitmap, we currently switch to a 576-byte node, put * the 128-byte bitmap in the first entry and then start allocating extra * 128-byte entries. We could instead use the 512 bytes of the node's * data as a bitmap before moving to that scheme. I do not believe this * is a worthwhile optimisation; Rasmus Villemoes surveyed the current * users of the IDA and almost none of them use more than 1024 entries. * Those that do use more than the 8192 IDs that the 512 bytes would * provide. * * The IDA always uses a lock to alloc/free. If we add a 'test_bit' * equivalent, it will still need locking. Going to RCU lookup would require * using RCU to free bitmaps, and that's not trivial without embedding an * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte * bitmap, which is excessive. */ /** * ida_alloc_range() - Allocate an unused ID. * @ida: IDA handle. * @min: Lowest ID to allocate. * @max: Highest ID to allocate. * @gfp: Memory allocation flags. * * Allocate an ID between @min and @max, inclusive. The allocated ID will * not exceed %INT_MAX, even if @max is larger. * * Context: Any context. It is safe to call this function without * locking in your code. * Return: The allocated ID, or %-ENOMEM if memory could not be allocated, * or %-ENOSPC if there are no free IDs. */ int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max, gfp_t gfp) { XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS); unsigned bit = min % IDA_BITMAP_BITS; unsigned long flags; struct ida_bitmap *bitmap, *alloc = NULL; if ((int)min < 0) return -ENOSPC; if ((int)max < 0) max = INT_MAX; retry: xas_lock_irqsave(&xas, flags); next: bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK); if (xas.xa_index > min / IDA_BITMAP_BITS) bit = 0; if (xas.xa_index * IDA_BITMAP_BITS + bit > max) goto nospc; if (xa_is_value(bitmap)) { unsigned long tmp = xa_to_value(bitmap); if (bit < BITS_PER_XA_VALUE) { bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit); if (xas.xa_index * IDA_BITMAP_BITS + bit > max) goto nospc; if (bit < BITS_PER_XA_VALUE) { tmp |= 1UL << bit; xas_store(&xas, xa_mk_value(tmp)); goto out; } } bitmap = alloc; if (!bitmap) bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT); if (!bitmap) goto alloc; bitmap->bitmap[0] = tmp; xas_store(&xas, bitmap); if (xas_error(&xas)) { bitmap->bitmap[0] = 0; goto out; } } if (bitmap) { bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit); if (xas.xa_index * IDA_BITMAP_BITS + bit > max) goto nospc; if (bit == IDA_BITMAP_BITS) goto next; __set_bit(bit, bitmap->bitmap); if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS)) xas_clear_mark(&xas, XA_FREE_MARK); } else { if (bit < BITS_PER_XA_VALUE) { bitmap = xa_mk_value(1UL << bit); } else { bitmap = alloc; if (!bitmap) bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT); if (!bitmap) goto alloc; __set_bit(bit, bitmap->bitmap); } xas_store(&xas, bitmap); } out: xas_unlock_irqrestore(&xas, flags); if (xas_nomem(&xas, gfp)) { xas.xa_index = min / IDA_BITMAP_BITS; bit = min % IDA_BITMAP_BITS; goto retry; } if (bitmap != alloc) kfree(alloc); if (xas_error(&xas)) return xas_error(&xas); return xas.xa_index * IDA_BITMAP_BITS + bit; alloc: xas_unlock_irqrestore(&xas, flags); alloc = kzalloc(sizeof(*bitmap), gfp); if (!alloc) return -ENOMEM; xas_set(&xas, min / IDA_BITMAP_BITS); bit = min % IDA_BITMAP_BITS; goto retry; nospc: xas_unlock_irqrestore(&xas, flags); kfree(alloc); return -ENOSPC; } EXPORT_SYMBOL(ida_alloc_range); /** * ida_free() - Release an allocated ID. * @ida: IDA handle. * @id: Previously allocated ID. * * Context: Any context. It is safe to call this function without * locking in your code. */ void ida_free(struct ida *ida, unsigned int id) { XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS); unsigned bit = id % IDA_BITMAP_BITS; struct ida_bitmap *bitmap; unsigned long flags; BUG_ON((int)id < 0); xas_lock_irqsave(&xas, flags); bitmap = xas_load(&xas); if (xa_is_value(bitmap)) { unsigned long v = xa_to_value(bitmap); if (bit >= BITS_PER_XA_VALUE) goto err; if (!(v & (1UL << bit))) goto err; v &= ~(1UL << bit); if (!v) goto delete; xas_store(&xas, xa_mk_value(v)); } else { if (!test_bit(bit, bitmap->bitmap)) goto err; __clear_bit(bit, bitmap->bitmap); xas_set_mark(&xas, XA_FREE_MARK); if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) { kfree(bitmap); delete: xas_store(&xas, NULL); } } xas_unlock_irqrestore(&xas, flags); return; err: xas_unlock_irqrestore(&xas, flags); WARN(1, "ida_free called for id=%d which is not allocated.\n", id); } EXPORT_SYMBOL(ida_free); /** * ida_destroy() - Free all IDs. * @ida: IDA handle. * * Calling this function frees all IDs and releases all resources used * by an IDA. When this call returns, the IDA is empty and can be reused * or freed. If the IDA is already empty, there is no need to call this * function. * * Context: Any context. It is safe to call this function without * locking in your code. */ void ida_destroy(struct ida *ida) { XA_STATE(xas, &ida->xa, 0); struct ida_bitmap *bitmap; unsigned long flags; xas_lock_irqsave(&xas, flags); xas_for_each(&xas, bitmap, ULONG_MAX) { if (!xa_is_value(bitmap)) kfree(bitmap); xas_store(&xas, NULL); } xas_unlock_irqrestore(&xas, flags); } EXPORT_SYMBOL(ida_destroy); #ifndef __KERNEL__ extern void xa_dump_index(unsigned long index, unsigned int shift); #define IDA_CHUNK_SHIFT ilog2(IDA_BITMAP_BITS) static void ida_dump_entry(void *entry, unsigned long index) { unsigned long i; if (!entry) return; if (xa_is_node(entry)) { struct xa_node *node = xa_to_node(entry); unsigned int shift = node->shift + IDA_CHUNK_SHIFT + XA_CHUNK_SHIFT; xa_dump_index(index * IDA_BITMAP_BITS, shift); xa_dump_node(node); for (i = 0; i < XA_CHUNK_SIZE; i++) ida_dump_entry(node->slots[i], index | (i << node->shift)); } else if (xa_is_value(entry)) { xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG)); pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry); } else { struct ida_bitmap *bitmap = entry; xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT); pr_cont("bitmap: %p data", bitmap); for (i = 0; i < IDA_BITMAP_LONGS; i++) pr_cont(" %lx", bitmap->bitmap[i]); pr_cont("\n"); } } static void ida_dump(struct ida *ida) { struct xarray *xa = &ida->xa; pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head, xa->xa_flags >> ROOT_TAG_SHIFT); ida_dump_entry(xa->xa_head, 0); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM cgroup #if !defined(_TRACE_CGROUP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_CGROUP_H #include <linux/cgroup.h> #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(cgroup_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root), TP_STRUCT__entry( __field( int, root ) __field( u16, ss_mask ) __string( name, root->name ) ), TP_fast_assign( __entry->root = root->hierarchy_id; __entry->ss_mask = root->subsys_mask; __assign_str(name, root->name); ), TP_printk("root=%d ss_mask=%#x name=%s", __entry->root, __entry->ss_mask, __get_str(name)) ); DEFINE_EVENT(cgroup_root, cgroup_setup_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DEFINE_EVENT(cgroup_root, cgroup_destroy_root, TP_PROTO(struct cgroup_root *