1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM cgroup #if !defined(_TRACE_CGROUP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_CGROUP_H #include <linux/cgroup.h> #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(cgroup_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root), TP_STRUCT__entry( __field( int, root ) __field( u16, ss_mask ) __string( name, root->name ) ), TP_fast_assign( __entry->root = root->hierarchy_id; __entry->ss_mask = root->subsys_mask; __assign_str(name, root->name); ), TP_printk("root=%d ss_mask=%#x name=%s", __entry->root, __entry->ss_mask, __get_str(name)) ); DEFINE_EVENT(cgroup_root, cgroup_setup_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DEFINE_EVENT(cgroup_root, cgroup_destroy_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DEFINE_EVENT(cgroup_root, cgroup_remount, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DECLARE_EVENT_CLASS(cgroup, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path), TP_STRUCT__entry( __field( int, root ) __field( int, id ) __field( int, level ) __string( path, path ) ), TP_fast_assign( __entry->root = cgrp->root->hierarchy_id; __entry->id = cgroup_id(cgrp); __entry->level = cgrp->level; __assign_str(path, path); ), TP_printk("root=%d id=%d level=%d path=%s", __entry->root, __entry->id, __entry->level, __get_str(path)) ); DEFINE_EVENT(cgroup, cgroup_mkdir, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_rmdir, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_release, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_rename, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_freeze, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_unfreeze, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DECLARE_EVENT_CLASS(cgroup_migrate, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup), TP_STRUCT__entry( __field( int, dst_root ) __field( int, dst_id ) __field( int, dst_level ) __field( int, pid ) __string( dst_path, path ) __string( comm, task->comm ) ), TP_fast_assign( __entry->dst_root = dst_cgrp->root->hierarchy_id; __entry->dst_id = cgroup_id(dst_cgrp); __entry->dst_level = dst_cgrp->level; __assign_str(dst_path, path); __entry->pid = task->pid; __assign_str(comm, task->comm); ), TP_printk("dst_root=%d dst_id=%d dst_level=%d dst_path=%s pid=%d comm=%s", __entry->dst_root, __entry->dst_id, __entry->dst_level, __get_str(dst_path), __entry->pid, __get_str(comm)) ); DEFINE_EVENT(cgroup_migrate, cgroup_attach_task, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup) ); DEFINE_EVENT(cgroup_migrate, cgroup_transfer_tasks, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup) ); DECLARE_EVENT_CLASS(cgroup_event, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val), TP_STRUCT__entry( __field( int, root ) __field( int, id ) __field( int, level ) __string( path, path ) __field( int, val ) ), TP_fast_assign( __entry->root = cgrp->root->hierarchy_id; __entry->id = cgroup_id(cgrp); __entry->level = cgrp->level; __assign_str(path, path); __entry->val = val; ), TP_printk("root=%d id=%d level=%d path=%s val=%d", __entry->root, __entry->id, __entry->level, __get_str(path), __entry->val) ); DEFINE_EVENT(cgroup_event, cgroup_notify_populated, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val) ); DEFINE_EVENT(cgroup_event, cgroup_notify_frozen, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val) ); #endif /* _TRACE_CGROUP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_CPUTIME_H #define _LINUX_SCHED_CPUTIME_H #include <linux/sched/signal.h> /* * cputime accounting APIs: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE #include <asm/cputime.h> #ifndef cputime_to_nsecs # define cputime_to_nsecs(__ct) \ (cputime_to_usecs(__ct) * NSEC_PER_USEC) #endif #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN extern void task_cputime(struct task_struct *t, u64 *utime, u64 *stime); extern u64 task_gtime(struct task_struct *t); #else static inline void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) { *utime = t->utime; *stime = t->stime; } static inline u64 task_gtime(struct task_struct *t) { return t->gtime; } #endif #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { *utimescaled = t->utimescaled; *stimescaled = t->stimescaled; } #else static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { task_cputime(t, utimescaled, stimescaled); } #endif extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, u64 *ut, u64 *st); /* * Thread group CPU time accounting. */ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples); /* * The following are functions that support scheduler-internal time accounting. * These functions are generally called at the timer tick. None of this depends * on CONFIG_SCHEDSTATS. */ /** * get_running_cputimer - return &tsk->signal->cputimer if cputimers are active * * @tsk: Pointer to target task. */ #ifdef CONFIG_POSIX_TIMERS static inline struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; /* * Check whether posix CPU timers are active. If not the thread * group accounting is not active either. Lockless check. */ if (!READ_ONCE(tsk->signal->posix_cputimers.timers_active)) return NULL; /* * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime * in __exit_signal(), we won't account to the signal struct further * cputime consumed by that task, even though the task can still be * ticking after __exit_signal(). * * In order to keep a consistent behaviour between thread group cputime * and thread group cputimer accounting, lets also ignore the cputime * elapsing after __exit_signal() in any thread group timer running. * * This makes sure that POSIX CPU clocks and timers are synchronized, so * that a POSIX CPU timer won't expire while the corresponding POSIX CPU * clock delta is behind the expiring timer value. */ if (unlikely(!tsk->sighand)) return NULL; return cputimer; } #else static inline struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk) { return NULL; } #endif /** * account_group_user_time - Maintain utime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the utime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the utime field there. */ static inline void account_group_user_time(struct task_struct *tsk, u64 cputime) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(cputime, &cputimer->cputime_atomic.utime); } /** * account_group_system_time - Maintain stime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the stime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the stime field there. */ static inline void account_group_system_time(struct task_struct *tsk, u64 cputime) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(cputime, &cputimer->cputime_atomic.stime); } /** * account_group_exec_runtime - Maintain exec runtime for a thread group. * * @tsk: Pointer to task structure. * @ns: Time value by which to increment the sum_exec_runtime field * of the thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the sum_exec_runtime field there. */ static inline void account_group_exec_runtime(struct task_struct *tsk, unsigned long long ns) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime); } static inline void prev_cputime_init(struct prev_cputime *prev) { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE prev->utime = prev->stime = 0; raw_spin_lock_init(&prev->lock); #endif } extern unsigned long long task_sched_runtime(struct task_struct *task); #endif /* _LINUX_SCHED_CPUTIME_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NetLabel System * * The NetLabel system manages static and dynamic label mappings for network * protocols such as CIPSO and RIPSO. * * Author: Paul Moore <paul@paul-moore.com> */ /* * (c) Copyright Hewlett-Packard Development Company, L.P., 2006, 2008 */ #ifndef _NETLABEL_H #define _NETLABEL_H #include <linux/types.h> #include <linux/slab.h> #include <linux/net.h> #include <linux/skbuff.h> #include <linux/in.h> #include <linux/in6.h> #include <net/netlink.h> #include <net/request_sock.h> #include <linux/refcount.h> struct cipso_v4_doi; struct calipso_doi; /* * NetLabel - A management interface for maintaining network packet label * mapping tables for explicit packet labling protocols. * * Network protocols such as CIPSO and RIPSO require a label translation layer * to convert the label on the packet into something meaningful on the host * machine. In the current Linux implementation these mapping tables live * inside the kernel; NetLabel provides a mechanism for user space applications * to manage these mapping tables. * * NetLabel makes use of the Generic NETLINK mechanism as a transport layer to * send messages between kernel and user space. The general format of a * NetLabel message is shown below: * * +-----------------+-------------------+--------- --- -- - * | struct nlmsghdr | struct genlmsghdr | payload * +-----------------+-------------------+--------- --- -- - * * The 'nlmsghdr' and 'genlmsghdr' structs should be dealt with like normal. * The payload is dependent on the subsystem specified in the * 'nlmsghdr->nlmsg_type' and should be defined below, supporting functions * should be defined in the corresponding net/netlabel/netlabel_<subsys>.h|c * file. All of the fields in the NetLabel payload are NETLINK attributes, see * the include/net/netlink.h file for more information on NETLINK attributes. * */ /* * NetLabel NETLINK protocol */ /* NetLabel NETLINK protocol version * 1: initial version * 2: added static labels for unlabeled connections * 3: network selectors added to the NetLabel/LSM domain mapping and the * CIPSO_V4_MAP_LOCAL CIPSO mapping was added */ #define NETLBL_PROTO_VERSION 3 /* NetLabel NETLINK types/families */ #define NETLBL_NLTYPE_NONE 0 #define NETLBL_NLTYPE_MGMT 1 #define NETLBL_NLTYPE_MGMT_NAME "NLBL_MGMT" #define NETLBL_NLTYPE_RIPSO 2 #define NETLBL_NLTYPE_RIPSO_NAME "NLBL_RIPSO" #define NETLBL_NLTYPE_CIPSOV4 3 #define NETLBL_NLTYPE_CIPSOV4_NAME "NLBL_CIPSOv4" #define NETLBL_NLTYPE_CIPSOV6 4 #define NETLBL_NLTYPE_CIPSOV6_NAME "NLBL_CIPSOv6" #define NETLBL_NLTYPE_UNLABELED 5 #define NETLBL_NLTYPE_UNLABELED_NAME "NLBL_UNLBL" #define NETLBL_NLTYPE_ADDRSELECT 6 #define NETLBL_NLTYPE_ADDRSELECT_NAME "NLBL_ADRSEL" #define NETLBL_NLTYPE_CALIPSO 7 #define NETLBL_NLTYPE_CALIPSO_NAME "NLBL_CALIPSO" /* * NetLabel - Kernel API for accessing the network packet label mappings. * * The following functions are provided for use by other kernel modules, * specifically kernel LSM modules, to provide a consistent, transparent API * for dealing with explicit packet labeling protocols such as CIPSO and * RIPSO. The functions defined here are implemented in the * net/netlabel/netlabel_kapi.c file. * */ /* NetLabel audit information */ struct netlbl_audit { u32 secid; kuid_t loginuid; unsigned int sessionid; }; /* * LSM security attributes */ /** * struct netlbl_lsm_cache - NetLabel LSM security attribute cache * @refcount: atomic reference counter * @free: LSM supplied function to free the cache data * @data: LSM supplied cache data * * Description: * This structure is provided for LSMs which wish to make use of the NetLabel * caching mechanism to store LSM specific data/attributes in the NetLabel * cache. If the LSM has to perform a lot of translation from the NetLabel * security attributes into it's own internal representation then the cache * mechanism can provide a way to eliminate some or all of that translation * overhead on a cache hit. * */ struct netlbl_lsm_cache { refcount_t refcount; void (*free) (const void *data); void *data; }; /** * struct netlbl_lsm_catmap - NetLabel LSM secattr category bitmap * @startbit: the value of the lowest order bit in the bitmap * @bitmap: the category bitmap * @next: pointer to the next bitmap "node" or NULL * * Description: * This structure is used to represent category bitmaps. Due to the large * number of categories supported by most labeling protocols it is not * practical to transfer a full bitmap internally so NetLabel adopts a sparse * bitmap structure modeled after SELinux's ebitmap structure. * The catmap bitmap field MUST be a power of two in length and large * enough to hold at least 240 bits. Special care (i.e. check the code!) * should be used when changing these values as the LSM implementation * probably has functions which rely on the sizes of these types to speed * processing. * */ #define NETLBL_CATMAP_MAPTYPE u64 #define NETLBL_CATMAP_MAPCNT 4 #define NETLBL_CATMAP_MAPSIZE (sizeof(NETLBL_CATMAP_MAPTYPE) * 8) #define NETLBL_CATMAP_SIZE (NETLBL_CATMAP_MAPSIZE * \ NETLBL_CATMAP_MAPCNT) #define NETLBL_CATMAP_BIT (NETLBL_CATMAP_MAPTYPE)0x01 struct netlbl_lsm_catmap { u32 startbit; NETLBL_CATMAP_MAPTYPE bitmap[NETLBL_CATMAP_MAPCNT]; struct netlbl_lsm_catmap *next; }; /** * struct netlbl_lsm_secattr - NetLabel LSM security attributes * @flags: indicate structure attributes, see NETLBL_SECATTR_* * @type: indicate the NLTYPE of the attributes * @domain: the NetLabel LSM domain * @cache: NetLabel LSM specific cache * @attr.mls: MLS sensitivity label * @attr.mls.cat: MLS category bitmap * @attr.mls.lvl: MLS sensitivity level * @attr.secid: LSM specific secid token * * Description: * This structure is used to pass security attributes between NetLabel and the * LSM modules. The flags field is used to specify which fields within the * struct are valid and valid values can be created by bitwise OR'ing the * NETLBL_SECATTR_* defines. The domain field is typically set by the LSM to * specify domain specific configuration settings and is not usually used by * NetLabel itself when returning security attributes to the LSM. * */ struct netlbl_lsm_secattr { u32 flags; /* bitmap values for 'flags' */ #define NETLBL_SECATTR_NONE 0x00000000 #define NETLBL_SECATTR_DOMAIN 0x00000001 #define NETLBL_SECATTR_DOMAIN_CPY (NETLBL_SECATTR_DOMAIN | \ NETLBL_SECATTR_FREE_DOMAIN) #define NETLBL_SECATTR_CACHE 0x00000002 #define NETLBL_SECATTR_MLS_LVL 0x00000004 #define NETLBL_SECATTR_MLS_CAT 0x00000008 #define NETLBL_SECATTR_SECID 0x00000010 /* bitmap meta-values for 'flags' */ #define NETLBL_SECATTR_FREE_DOMAIN 0x01000000 #define NETLBL_SECATTR_CACHEABLE (NETLBL_SECATTR_MLS_LVL | \ NETLBL_SECATTR_MLS_CAT | \ NETLBL_SECATTR_SECID) u32 type; char *domain; struct netlbl_lsm_cache *cache; struct { struct { struct netlbl_lsm_catmap *cat; u32 lvl; } mls; u32 secid; } attr; }; /** * struct netlbl_calipso_ops - NetLabel CALIPSO operations * @doi_add: add a CALIPSO DOI * @doi_free: free a CALIPSO DOI * @doi_getdef: returns a reference to a DOI * @doi_putdef: releases a reference of a DOI * @doi_walk: enumerate the DOI list * @sock_getattr: retrieve the socket's attr * @sock_setattr: set the socket's attr * @sock_delattr: remove the socket's attr * @req_setattr: set the req socket's attr * @req_delattr: remove the req socket's attr * @opt_getattr: retrieve attr from memory block * @skbuff_optptr: find option in packet * @skbuff_setattr: set the skbuff's attr * @skbuff_delattr: remove the skbuff's attr * @cache_invalidate: invalidate cache * @cache_add: add cache entry * * Description: * This structure is filled out by the CALIPSO engine and passed * to the NetLabel core via a call to netlbl_calipso_ops_register(). * It enables the CALIPSO engine (and hence IPv6) to be compiled * as a module. */ struct netlbl_calipso_ops { int (*doi_add)(struct calipso_doi *doi_def, struct netlbl_audit *audit_info); void (*doi_free)(struct calipso_doi *doi_def); int (*doi_remove)(u32 doi, struct netlbl_audit *audit_info); struct calipso_doi *(*doi_getdef)(u32 doi); void (*doi_putdef)(struct calipso_doi *doi_def); int (*doi_walk)(u32 *skip_cnt, int (*callback)(struct calipso_doi *doi_def, void *arg), void *cb_arg); int (*sock_getattr)(struct sock *sk, struct netlbl_lsm_secattr *secattr); int (*sock_setattr)(struct sock *sk, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); void (*sock_delattr)(struct sock *sk); int (*req_setattr)(struct request_sock *req, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); void (*req_delattr)(struct request_sock *req); int (*opt_getattr)(const unsigned char *calipso, struct netlbl_lsm_secattr *secattr); unsigned char *(*skbuff_optptr)(const struct sk_buff *skb); int (*skbuff_setattr)(struct sk_buff *skb, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); int (*skbuff_delattr)(struct sk_buff *skb); void (*cache_invalidate)(void); int (*cache_add)(const unsigned char *calipso_ptr, const struct netlbl_lsm_secattr *secattr); }; /* * LSM security attribute operations (inline) */ /** * netlbl_secattr_cache_alloc - Allocate and initialize a secattr cache * @flags: the memory allocation flags * * Description: * Allocate and initialize a netlbl_lsm_cache structure. Returns a pointer * on success, NULL on failure. * */ static inline struct netlbl_lsm_cache *netlbl_secattr_cache_alloc(gfp_t flags) { struct netlbl_lsm_cache *cache; cache = kzalloc(sizeof(*cache), flags); if (cache) refcount_set(&cache->refcount, 1); return cache; } /** * netlbl_secattr_cache_free - Frees a netlbl_lsm_cache struct * @cache: the struct to free * * Description: * Frees @secattr including all of the internal buffers. * */ static inline void netlbl_secattr_cache_free(struct netlbl_lsm_cache *cache) { if (!refcount_dec_and_test(&cache->refcount)) return; if (cache->free) cache->free(cache->data); kfree(cache); } /** * netlbl_catmap_alloc - Allocate a LSM secattr catmap * @flags: memory allocation flags * * Description: * Allocate memory for a LSM secattr catmap, returns a pointer on success, NULL * on failure. * */ static inline struct netlbl_lsm_catmap *netlbl_catmap_alloc(gfp_t flags) { return kzalloc(sizeof(struct netlbl_lsm_catmap), flags); } /** * netlbl_catmap_free - Free a LSM secattr catmap * @catmap: the category bitmap * * Description: * Free a LSM secattr catmap. * */ static inline void netlbl_catmap_free(struct netlbl_lsm_catmap *catmap) { struct netlbl_lsm_catmap *iter; while (catmap) { iter = catmap; catmap = catmap->next; kfree(iter); } } /** * netlbl_secattr_init - Initialize a netlbl_lsm_secattr struct * @secattr: the struct to initialize * * Description: * Initialize an already allocated netlbl_lsm_secattr struct. * */ static inline void netlbl_secattr_init(struct netlbl_lsm_secattr *secattr) { memset(secattr, 0, sizeof(*secattr)); } /** * netlbl_secattr_destroy - Clears a netlbl_lsm_secattr struct * @secattr: the struct to clear * * Description: * Destroys the @secattr struct, including freeing all of the internal buffers. * The struct must be reset with a call to netlbl_secattr_init() before reuse. * */ static inline void netlbl_secattr_destroy(struct netlbl_lsm_secattr *secattr) { if (secattr->flags & NETLBL_SECATTR_FREE_DOMAIN) kfree(secattr->domain); if (secattr->flags & NETLBL_SECATTR_CACHE) netlbl_secattr_cache_free(secattr->cache); if (secattr->flags & NETLBL_SECATTR_MLS_CAT) netlbl_catmap_free(secattr->attr.mls.cat); } /** * netlbl_secattr_alloc - Allocate and initialize a netlbl_lsm_secattr struct * @flags: the memory allocation flags * * Description: * Allocate and initialize a netlbl_lsm_secattr struct. Returns a valid * pointer on success, or NULL on failure. * */ static inline struct netlbl_lsm_secattr *netlbl_secattr_alloc(gfp_t flags) { return kzalloc(sizeof(struct netlbl_lsm_secattr), flags); } /** * netlbl_secattr_free - Frees a netlbl_lsm_secattr struct * @secattr: the struct to free * * Description: * Frees @secattr including all of the internal buffers. * */ static inline void netlbl_secattr_free(struct netlbl_lsm_secattr *secattr) { netlbl_secattr_destroy(secattr); kfree(secattr); } #ifdef CONFIG_NETLABEL /* * LSM configuration operations */ int netlbl_cfg_map_del(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_map_add(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_static_add(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, u32 secid, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_static_del(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, struct netlbl_audit *audit_info); int netlbl_cfg_cipsov4_add(struct cipso_v4_doi *doi_def, struct netlbl_audit *audit_info); void netlbl_cfg_cipsov4_del(u32 doi, struct netlbl_audit *audit_info); int netlbl_cfg_cipsov4_map_add(u32 doi, const char *domain, const struct in_addr *addr, const struct in_addr *mask, struct netlbl_audit *audit_info); int netlbl_cfg_calipso_add(struct calipso_doi *doi_def, struct netlbl_audit *audit_info); void netlbl_cfg_calipso_del(u32 doi, struct netlbl_audit *audit_info); int netlbl_cfg_calipso_map_add(u32 doi, const char *domain, const struct in6_addr *addr, const struct in6_addr *mask, struct netlbl_audit *audit_info); /* * LSM security attribute operations */ int netlbl_catmap_walk(struct netlbl_lsm_catmap *catmap, u32 offset); int netlbl_catmap_walkrng(struct netlbl_lsm_catmap *catmap, u32 offset); int netlbl_catmap_getlong(struct netlbl_lsm_catmap *catmap, u32 *offset, unsigned long *bitmap); int netlbl_catmap_setbit(struct netlbl_lsm_catmap **catmap, u32 bit, gfp_t flags); int netlbl_catmap_setrng(struct netlbl_lsm_catmap **catmap, u32 start, u32 end, gfp_t flags); int netlbl_catmap_setlong(struct netlbl_lsm_catmap **catmap, u32 offset, unsigned long bitmap, gfp_t flags); /* Bitmap functions */ int netlbl_bitmap_walk(const unsigned char *bitmap, u32 bitmap_len, u32 offset, u8 state); void netlbl_bitmap_setbit(unsigned char *bitmap, u32 bit, u8 state); /* * LSM protocol operations (NetLabel LSM/kernel API) */ int netlbl_enabled(void); int netlbl_sock_setattr(struct sock *sk, u16 family, const struct netlbl_lsm_secattr *secattr); void netlbl_sock_delattr(struct sock *sk); int netlbl_sock_getattr(struct sock *sk, struct netlbl_lsm_secattr *secattr); int netlbl_conn_setattr(struct sock *sk, struct sockaddr *addr, const struct netlbl_lsm_secattr *secattr); int netlbl_req_setattr(struct request_sock *req, const struct netlbl_lsm_secattr *secattr); void netlbl_req_delattr(struct request_sock *req); int netlbl_skbuff_setattr(struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr); int netlbl_skbuff_getattr(const struct sk_buff *skb, u16 family, struct netlbl_lsm_secattr *secattr); void netlbl_skbuff_err(struct sk_buff *skb, u16 family, int error, int gateway); /* * LSM label mapping cache operations */ void netlbl_cache_invalidate(void); int netlbl_cache_add(const struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr); /* * Protocol engine operations */ struct audit_buffer *netlbl_audit_start(int type, struct netlbl_audit *audit_info); #else static inline int netlbl_cfg_map_del(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_map_add(const char *domain, u16 family, void *addr, void *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_static_add(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, u32 secid, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_static_del(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_cipsov4_add(struct cipso_v4_doi *doi_def, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline void netlbl_cfg_cipsov4_del(u32 doi, struct netlbl_audit *audit_info) { return; } static inline int netlbl_cfg_cipsov4_map_add(u32 doi, const char *domain, const struct in_addr *addr, const struct in_addr *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_calipso_add(struct calipso_doi *doi_def, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline void netlbl_cfg_calipso_del(u32 doi, struct netlbl_audit *audit_info) { return; } static inline int netlbl_cfg_calipso_map_add(u32 doi, const char *domain, const struct in6_addr *addr, const struct in6_addr *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_catmap_walk(struct netlbl_lsm_catmap *catmap, u32 offset) { return -ENOENT; } static inline int netlbl_catmap_walkrng(struct netlbl_lsm_catmap *catmap, u32 offset) { return -ENOENT; } static inline int netlbl_catmap_getlong(struct netlbl_lsm_catmap *catmap, u32 *offset, unsigned long *bitmap) { return 0; } static inline int netlbl_catmap_setbit(struct netlbl_lsm_catmap **catmap, u32 bit, gfp_t flags) { return 0; } static inline int netlbl_catmap_setrng(struct netlbl_lsm_catmap **catmap, u32 start, u32 end, gfp_t flags) { return 0; } static inline int netlbl_catmap_setlong(struct netlbl_lsm_catmap **catmap, u32 offset, unsigned long bitmap, gfp_t flags) { return 0; } static inline int netlbl_enabled(void) { return 0; } static inline int netlbl_sock_setattr(struct sock *sk, u16 family, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_sock_delattr(struct sock *sk) { } static inline int netlbl_sock_getattr(struct sock *sk, struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_conn_setattr(struct sock *sk, struct sockaddr *addr, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_req_setattr(struct request_sock *req, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_req_delattr(struct request_sock *req) { return; } static inline int netlbl_skbuff_setattr(struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_skbuff_getattr(const struct sk_buff *skb, u16 family, struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_skbuff_err(struct sk_buff *skb, int error, int gateway) { return; } static inline void netlbl_cache_invalidate(void) { return; } static inline int netlbl_cache_add(const struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr) { return 0; } static inline struct audit_buffer *netlbl_audit_start(int type, struct netlbl_audit *audit_info) { return NULL; } #endif /* CONFIG_NETLABEL */ const struct netlbl_calipso_ops * netlbl_calipso_ops_register(const struct netlbl_calipso_ops *ops); #endif /* _NETLABEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ #ifndef _UAPI_LINUX_BYTEORDER_LITTLE_ENDIAN_H #define _UAPI_LINUX_BYTEORDER_LITTLE_ENDIAN_H #ifndef __LITTLE_ENDIAN #define __LITTLE_ENDIAN 1234 #endif #ifndef __LITTLE_ENDIAN_BITFIELD #define __LITTLE_ENDIAN_BITFIELD #endif #include <linux/types.h> #include <linux/swab.h> #define __constant_htonl(x) ((__force __be32)___constant_swab32((x))) #define __constant_ntohl(x) ___constant_swab32((__force __be32)(x)) #define __constant_htons(x) ((__force __be16)___constant_swab16((x))) #define __constant_ntohs(x) ___constant_swab16((__force __be16)(x)) #define __constant_cpu_to_le64(x) ((__force __le64)(__u64)(x)) #define __constant_le64_to_cpu(x) ((__force __u64)(__le64)(x)) #define __constant_cpu_to_le32(x) ((__force __le32)(__u32)(x)) #define __constant_le32_to_cpu(x) ((__force __u32)(__le32)(x)) #define __constant_cpu_to_le16(x) ((__force __le16)(__u16)(x)) #define __constant_le16_to_cpu(x) ((__force __u16)(__le16)(x)) #define __constant_cpu_to_be64(x) ((__force __be64)___constant_swab64((x))) #define __constant_be64_to_cpu(x) ___constant_swab64((__force __u64)(__be64)(x)) #define __constant_cpu_to_be32(x) ((__force __be32)___constant_swab32((x))) #define __constant_be32_to_cpu(x) ___constant_swab32((__force __u32)(__be32)(x)) #define __constant_cpu_to_be16(x) ((__force __be16)___constant_swab16((x))) #define __constant_be16_to_cpu(x) ___constant_swab16((__force __u16)(__be16)(x)) #define __cpu_to_le64(x) ((__force __le64)(__u64)(x)) #define __le64_to_cpu(x) ((__force __u64)(__le64)(x)) #define __cpu_to_le32(x) ((__force __le32)(__u32)(x)) #define __le32_to_cpu(x) ((__force __u32)(__le32)(x)) #define __cpu_to_le16(x) ((__force __le16)(__u16)(x)) #define __le16_to_cpu(x) ((__force __u16)(__le16)(x)) #define __cpu_to_be64(x) ((__force __be64)__swab64((x))) #define __be64_to_cpu(x) __swab64((__force __u64)(__be64)(x)) #define __cpu_to_be32(x) ((__force __be32)__swab32((x))) #define __be32_to_cpu(x) __swab32((__force __u32)(__be32)(x)) #define __cpu_to_be16(x) ((__force __be16)__swab16((x))) #define __be16_to_cpu(x) __swab16((__force __u16)(__be16)(x)) static __always_inline __le64 __cpu_to_le64p(const __u64 *p) { return (__force __le64)*p; } static __always_inline __u64 __le64_to_cpup(const __le64 *p) { return (__force __u64)*p; } static __always_inline __le32 __cpu_to_le32p(const __u32 *p) { return (__force __le32)*p; } static __always_inline __u32 __le32_to_cpup(const __le32 *p) { return (__force __u32)*p; } static __always_inline __le16 __cpu_to_le16p(const __u16 *p) { return (__force __le16)*p; } static __always_inline __u16 __le16_to_cpup(const __le16 *p) { return (__force __u16)*p; } static __always_inline __be64 __cpu_to_be64p(const __u64 *p) { return (__force __be64)__swab64p(p); } static __always_inline __u64 __be64_to_cpup(const __be64 *p) { return __swab64p((__u64 *)p); } static __always_inline __be32 __cpu_to_be32p(const __u32 *p) { return (__force __be32)__swab32p(p); } static __always_inline __u32 __be32_to_cpup(const __be32 *p) { return __swab32p((__u32 *)p); } static __always_inline __be16 __cpu_to_be16p(const __u16 *p) { return (__force __be16)__swab16p(p); } static __always_inline __u16 __be16_to_cpup(const __be16 *p) { return __swab16p((__u16 *)p); } #define __cpu_to_le64s(x) do { (void)(x); } while (0) #define __le64_to_cpus(x) do { (void)(x); } while (0) #define __cpu_to_le32s(x) do { (void)(x); } while (0) #define __le32_to_cpus(x) do { (void)(x); } while (0) #define __cpu_to_le16s(x) do { (void)(x); } while (0) #define __le16_to_cpus(x) do { (void)(x); } while (0) #define __cpu_to_be64s(x) __swab64s((x)) #define __be64_to_cpus(x) __swab64s((x)) #define __cpu_to_be32s(x) __swab32s((x)) #define __be32_to_cpus(x) __swab32s((x)) #define __cpu_to_be16s(x) __swab16s((x)) #define __be16_to_cpus(x) __swab16s((x)) #endif /* _UAPI_LINUX_BYTEORDER_LITTLE_ENDIAN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Red Black Trees (C) 1999 Andrea Arcangeli <andrea@suse.de> linux/include/linux/rbtree.h To use rbtrees you'll have to implement your own insert and search cores. This will avoid us to use callbacks and to drop drammatically performances. I know it's not the cleaner way, but in C (not in C++) to get performances and genericity... See Documentation/core-api/rbtree.rst for documentation and samples. */ #ifndef _LINUX_RBTREE_H #define _LINUX_RBTREE_H #include <linux/kernel.h> #include <linux/stddef.h> #include <linux/rcupdate.h> struct rb_node { unsigned long __rb_parent_color; struct rb_node *rb_right; struct rb_node *rb_left; } __attribute__((aligned(sizeof(long)))); /* The alignment might seem pointless, but allegedly CRIS needs it */ struct rb_root { struct rb_node *rb_node; }; #define rb_parent(r) ((struct rb_node *)((r)->__rb_parent_color & ~3)) #define RB_ROOT (struct rb_root) { NULL, } #define rb_entry(ptr, type, member) container_of(ptr, type, member) #define RB_EMPTY_ROOT(root) (READ_ONCE((root)->rb_node) == NULL) /* 'empty' nodes are nodes that are known not to be inserted in an rbtree */ #define RB_EMPTY_NODE(node) \ ((node)->__rb_parent_color == (unsigned long)(node)) #define RB_CLEAR_NODE(node) \ ((node)->__rb_parent_color = (unsigned long)(node)) extern void rb_insert_color(struct rb_node *, struct rb_root *); extern void rb_erase(struct rb_node *, struct rb_root *); /* Find logical next and previous nodes in a tree */ extern struct rb_node *rb_next(const struct rb_node *); extern struct rb_node *rb_prev(const struct rb_node *); extern struct rb_node *rb_first(const struct rb_root *); extern struct rb_node *rb_last(const struct rb_root *); /* Postorder iteration - always visit the parent after its children */ extern struct rb_node *rb_first_postorder(const struct rb_root *); extern struct rb_node *rb_next_postorder(const struct rb_node *); /* Fast replacement of a single node without remove/rebalance/add/rebalance */ extern void rb_replace_node(struct rb_node *victim, struct rb_node *new, struct rb_root *root); extern void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new, struct rb_root *root); static inline void rb_link_node(struct rb_node *node, struct rb_node *parent, struct rb_node **rb_link) { node->__rb_parent_color = (unsigned long)parent; node->rb_left = node->rb_right = NULL; *rb_link = node; } static inline void rb_link_node_rcu(struct rb_node *node, struct rb_node *parent, struct rb_node **rb_link) { node->__rb_parent_color = (unsigned long)parent; node->rb_left = node->rb_right = NULL; rcu_assign_pointer(*rb_link, node); } #define rb_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ ____ptr ? rb_entry(____ptr, type, member) : NULL; \ }) /** * rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of * given type allowing the backing memory of @pos to be invalidated * * @pos: the 'type *' to use as a loop cursor. * @n: another 'type *' to use as temporary storage * @root: 'rb_root *' of the rbtree. * @field: the name of the rb_node field within 'type'. * * rbtree_postorder_for_each_entry_safe() provides a similar guarantee as * list_for_each_entry_safe() and allows the iteration to continue independent * of changes to @pos by the body of the loop. * * Note, however, that it cannot handle other modifications that re-order the * rbtree it is iterating over. This includes calling rb_erase() on @pos, as * rb_erase() may rebalance the tree, causing us to miss some nodes. */ #define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \ for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \ pos && ({ n = rb_entry_safe(rb_next_postorder(&pos->field), \ typeof(*pos), field); 1; }); \ pos = n) /* * Leftmost-cached rbtrees. * * We do not cache the rightmost node based on footprint * size vs number of potential users that could benefit * from O(1) rb_last(). Just not worth it, users that want * this feature can always implement the logic explicitly. * Furthermore, users that want to cache both pointers may * find it a bit asymmetric, but that's ok. */ struct rb_root_cached { struct rb_root rb_root; struct rb_node *rb_leftmost; }; #define RB_ROOT_CACHED (struct rb_root_cached) { {NULL, }, NULL } /* Same as rb_first(), but O(1) */ #define rb_first_cached(root) (root)->rb_leftmost static inline void rb_insert_color_cached(struct rb_node *node, struct rb_root_cached *root, bool leftmost) { if (leftmost) root->rb_leftmost = node; rb_insert_color(node, &root->rb_root); } static inline void rb_erase_cached(struct rb_node *node, struct rb_root_cached *root) { if (root->rb_leftmost == node) root->rb_leftmost = rb_next(node); rb_erase(node, &root->rb_root); } static inline void rb_replace_node_cached(struct rb_node *victim, struct rb_node *new, struct rb_root_cached *root) { if (root->rb_leftmost == victim) root->rb_leftmost = new; rb_replace_node(victim, new, &root->rb_root); } #endif /* _LINUX_RBTREE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_CMND_H #define _SCSI_SCSI_CMND_H #include <linux/dma-mapping.h> #include <linux/blkdev.h> #include <linux/t10-pi.h> #include <linux/list.h> #include <linux/types.h> #include <linux/timer.h> #include <linux/scatterlist.h> #include <scsi/scsi_device.h> #include <scsi/scsi_request.h> struct Scsi_Host; struct scsi_driver; /* * MAX_COMMAND_SIZE is: * The longest fixed-length SCSI CDB as per the SCSI standard. * fixed-length means: commands that their size can be determined * by their opcode and the CDB does not carry a length specifier, (unlike * the VARIABLE_LENGTH_CMD(0x7f) command). This is actually not exactly * true and the SCSI standard also defines extended commands and * vendor specific commands that can be bigger than 16 bytes. The kernel * will support these using the same infrastructure used for VARLEN CDB's. * So in effect MAX_COMMAND_SIZE means the maximum size command scsi-ml * supports without specifying a cmd_len by ULD's */ #define MAX_COMMAND_SIZE 16 #if (MAX_COMMAND_SIZE > BLK_MAX_CDB) # error MAX_COMMAND_SIZE can not be bigger than BLK_MAX_CDB #endif struct scsi_data_buffer { struct sg_table table; unsigned length; }; /* embedded in scsi_cmnd */ struct scsi_pointer { char *ptr; /* data pointer */ int this_residual; /* left in this buffer */ struct scatterlist *buffer; /* which buffer */ int buffers_residual; /* how many buffers left */ dma_addr_t dma_handle; volatile int Status; volatile int Message; volatile int have_data_in; volatile int sent_command; volatile int phase; }; /* for scmd->flags */ #define SCMD_TAGGED (1 << 0) #define SCMD_UNCHECKED_ISA_DMA (1 << 1) #define SCMD_INITIALIZED (1 << 2) #define SCMD_LAST (1 << 3) /* flags preserved across unprep / reprep */ #define SCMD_PRESERVED_FLAGS (SCMD_UNCHECKED_ISA_DMA | SCMD_INITIALIZED) /* for scmd->state */ #define SCMD_STATE_COMPLETE 0 #define SCMD_STATE_INFLIGHT 1 struct scsi_cmnd { struct scsi_request req; struct scsi_device *device; struct list_head eh_entry; /* entry for the host eh_cmd_q */ struct delayed_work abort_work; struct rcu_head rcu; int eh_eflags; /* Used by error handlr */ /* * This is set to jiffies as it was when the command was first * allocated. It is used to time how long the command has * been outstanding */ unsigned long jiffies_at_alloc; int retries; int allowed; unsigned char prot_op; unsigned char prot_type; unsigned char prot_flags; unsigned short cmd_len; enum dma_data_direction sc_data_direction; /* These elements define the operation we are about to perform */ unsigned char *cmnd; /* These elements define the operation we ultimately want to perform */ struct scsi_data_buffer sdb; struct scsi_data_buffer *prot_sdb; unsigned underflow; /* Return error if less than this amount is transferred */ unsigned transfersize; /* How much we are guaranteed to transfer with each SCSI transfer (ie, between disconnect / reconnects. Probably == sector size */ struct request *request; /* The command we are working on */ unsigned char *sense_buffer; /* obtained by REQUEST SENSE when * CHECK CONDITION is received on original * command (auto-sense). Length must be * SCSI_SENSE_BUFFERSIZE bytes. */ /* Low-level done function - can be used by low-level driver to point * to completion function. Not used by mid/upper level code. */ void (*scsi_done) (struct scsi_cmnd *); /* * The following fields can be written to by the host specific code. * Everything else should be left alone. */ struct scsi_pointer SCp; /* Scratchpad used by some host adapters */ unsigned char *host_scribble; /* The host adapter is allowed to * call scsi_malloc and get some memory * and hang it here. The host adapter * is also expected to call scsi_free * to release this memory. (The memory * obtained by scsi_malloc is guaranteed * to be at an address < 16Mb). */ int result; /* Status code from lower level driver */ int flags; /* Command flags */ unsigned long state; /* Command completion state */ unsigned char tag; /* SCSI-II queued command tag */ unsigned int extra_len; /* length of alignment and padding */ }; /* * Return the driver private allocation behind the command. * Only works if cmd_size is set in the host template. */ static inline void *scsi_cmd_priv(struct scsi_cmnd *cmd) { return cmd + 1; } /* make sure not to use it with passthrough commands */ static inline struct scsi_driver *scsi_cmd_to_driver(struct scsi_cmnd *cmd) { return *(struct scsi_driver **)cmd->request->rq_disk->private_data; } extern void scsi_finish_command(struct scsi_cmnd *cmd); extern void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count, size_t *offset, size_t *len); extern void scsi_kunmap_atomic_sg(void *virt); blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd); void scsi_free_sgtables(struct scsi_cmnd *cmd); #ifdef CONFIG_SCSI_DMA extern int scsi_dma_map(struct scsi_cmnd *cmd); extern void scsi_dma_unmap(struct scsi_cmnd *cmd); #else /* !CONFIG_SCSI_DMA */ static inline int scsi_dma_map(struct scsi_cmnd *cmd) { return -ENOSYS; } static inline void scsi_dma_unmap(struct scsi_cmnd *cmd) { } #endif /* !CONFIG_SCSI_DMA */ static inline unsigned scsi_sg_count(struct scsi_cmnd *cmd) { return cmd->sdb.table.nents; } static inline struct scatterlist *scsi_sglist(struct scsi_cmnd *cmd) { return cmd->sdb.table.sgl; } static inline unsigned scsi_bufflen(struct scsi_cmnd *cmd) { return cmd->sdb.length; } static inline void scsi_set_resid(struct scsi_cmnd *cmd, unsigned int resid) { cmd->req.resid_len = resid; } static inline unsigned int scsi_get_resid(struct scsi_cmnd *cmd) { return cmd->req.resid_len; } #define scsi_for_each_sg(cmd, sg, nseg, __i) \ for_each_sg(scsi_sglist(cmd), sg, nseg, __i) static inline int scsi_sg_copy_from_buffer(struct scsi_cmnd *cmd, void *buf, int buflen) { return sg_copy_from_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), buf, buflen); } static inline int scsi_sg_copy_to_buffer(struct scsi_cmnd *cmd, void *buf, int buflen) { return sg_copy_to_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), buf, buflen); } /* * The operations below are hints that tell the controller driver how * to handle I/Os with DIF or similar types of protection information. */ enum scsi_prot_operations { /* Normal I/O */ SCSI_PROT_NORMAL = 0, /* OS-HBA: Protected, HBA-Target: Unprotected */ SCSI_PROT_READ_INSERT, SCSI_PROT_WRITE_STRIP, /* OS-HBA: Unprotected, HBA-Target: Protected */ SCSI_PROT_READ_STRIP, SCSI_PROT_WRITE_INSERT, /* OS-HBA: Protected, HBA-Target: Protected */ SCSI_PROT_READ_PASS, SCSI_PROT_WRITE_PASS, }; static inline void scsi_set_prot_op(struct scsi_cmnd *scmd, unsigned char op) { scmd->prot_op = op; } static inline unsigned char scsi_get_prot_op(struct scsi_cmnd *scmd) { return scmd->prot_op; } enum scsi_prot_flags { SCSI_PROT_TRANSFER_PI = 1 << 0, SCSI_PROT_GUARD_CHECK = 1 << 1, SCSI_PROT_REF_CHECK = 1 << 2, SCSI_PROT_REF_INCREMENT = 1 << 3, SCSI_PROT_IP_CHECKSUM = 1 << 4, }; /* * The controller usually does not know anything about the target it * is communicating with. However, when DIX is enabled the controller * must be know target type so it can verify the protection * information passed along with the I/O. */ enum scsi_prot_target_type { SCSI_PROT_DIF_TYPE0 = 0, SCSI_PROT_DIF_TYPE1, SCSI_PROT_DIF_TYPE2, SCSI_PROT_DIF_TYPE3, }; static inline void scsi_set_prot_type(struct scsi_cmnd *scmd, unsigned char type) { scmd->prot_type = type; } static inline unsigned char scsi_get_prot_type(struct scsi_cmnd *scmd) { return scmd->prot_type; } static inline sector_t scsi_get_lba(struct scsi_cmnd *scmd) { return blk_rq_pos(scmd->request); } static inline unsigned int scsi_prot_interval(struct scsi_cmnd *scmd) { return scmd->device->sector_size; } static inline unsigned scsi_prot_sg_count(struct scsi_cmnd *cmd) { return cmd->prot_sdb ? cmd->prot_sdb->table.nents : 0; } static inline struct scatterlist *scsi_prot_sglist(struct scsi_cmnd *cmd) { return cmd->prot_sdb ? cmd->prot_sdb->table.sgl : NULL; } static inline struct scsi_data_buffer *scsi_prot(struct scsi_cmnd *cmd) { return cmd->prot_sdb; } #define scsi_for_each_prot_sg(cmd, sg, nseg, __i) \ for_each_sg(scsi_prot_sglist(cmd), sg, nseg, __i) static inline void set_msg_byte(struct scsi_cmnd *cmd, char status) { cmd->result = (cmd->result & 0xffff00ff) | (status << 8); } static inline void set_host_byte(struct scsi_cmnd *cmd, char status) { cmd->result = (cmd->result & 0xff00ffff) | (status << 16); } static inline void set_driver_byte(struct scsi_cmnd *cmd, char status) { cmd->result = (cmd->result & 0x00ffffff) | (status << 24); } static inline unsigned scsi_transfer_length(struct scsi_cmnd *scmd) { unsigned int xfer_len = scmd->sdb.length; unsigned int prot_interval = scsi_prot_interval(scmd); if (scmd->prot_flags & SCSI_PROT_TRANSFER_PI) xfer_len += (xfer_len >> ilog2(prot_interval)) * 8; return xfer_len; } #endif /* _SCSI_SCSI_CMND_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 /* SPDX-License-Identifier: GPL-2.0 */ /* * INETPEER - A storage for permanent information about peers * * Authors: Andrey V. Savochkin <saw@msu.ru> */ #ifndef _NET_INETPEER_H #define _NET_INETPEER_H #include <linux/types.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/spinlock.h> #include <linux/rtnetlink.h> #include <net/ipv6.h> #include <linux/atomic.h> /* IPv4 address key for cache lookups */ struct ipv4_addr_key { __be32 addr; int vif; }; #define INETPEER_MAXKEYSZ (sizeof(struct in6_addr) / sizeof(u32)) struct inetpeer_addr { union { struct ipv4_addr_key a4; struct in6_addr a6; u32 key[INETPEER_MAXKEYSZ]; }; __u16 family; }; struct inet_peer { struct rb_node rb_node; struct inetpeer_addr daddr; u32 metrics[RTAX_MAX]; u32 rate_tokens; /* rate limiting for ICMP */ u32 n_redirects; unsigned long rate_last; /* * Once inet_peer is queued for deletion (refcnt == 0), following field * is not available: rid * We can share memory with rcu_head to help keep inet_peer small. */ union { struct { atomic_t rid; /* Frag reception counter */ }; struct rcu_head rcu; }; /* following fields might be frequently dirtied */ __u32 dtime; /* the time of last use of not referenced entries */ refcount_t refcnt; }; struct inet_peer_base { struct rb_root rb_root; seqlock_t lock; int total; }; void inet_peer_base_init(struct inet_peer_base *); void inet_initpeers(void) __init; #define INETPEER_METRICS_NEW (~(u32) 0) static inline void inetpeer_set_addr_v4(struct inetpeer_addr *iaddr, __be32 ip) { iaddr->a4.addr = ip; iaddr->a4.vif = 0; iaddr->family = AF_INET; } static inline __be32 inetpeer_get_addr_v4(struct inetpeer_addr *iaddr) { return iaddr->a4.addr; } static inline void inetpeer_set_addr_v6(struct inetpeer_addr *iaddr, struct in6_addr *in6) { iaddr->a6 = *in6; iaddr->family = AF_INET6; } static inline struct in6_addr *inetpeer_get_addr_v6(struct inetpeer_addr *iaddr) { return &iaddr->a6; } /* can be called with or without local BH being disabled */ struct inet_peer *inet_getpeer(struct inet_peer_base *base, const struct inetpeer_addr *daddr, int create); static inline struct inet_peer *inet_getpeer_v4(struct inet_peer_base *base, __be32 v4daddr, int vif, int create) { struct inetpeer_addr daddr; daddr.a4.addr = v4daddr; daddr.a4.vif = vif; daddr.family = AF_INET; return inet_getpeer(base, &daddr, create); } static inline struct inet_peer *inet_getpeer_v6(struct inet_peer_base *base, const struct in6_addr *v6daddr, int create) { struct inetpeer_addr daddr; daddr.a6 = *v6daddr; daddr.family = AF_INET6; return inet_getpeer(base, &daddr, create); } static inline int inetpeer_addr_cmp(const struct inetpeer_addr *a, const struct inetpeer_addr *b) { int i, n; if (a->family == AF_INET) n = sizeof(a->a4) / sizeof(u32); else n = sizeof(a->a6) / sizeof(u32); for (i = 0; i < n; i++) { if (a->key[i] == b->key[i]) continue; if (a->key[i] < b->key[i]) return -1; return 1; } return 0; } /* can be called from BH context or outside */ void inet_putpeer(struct inet_peer *p); bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout); void inetpeer_invalidate_tree(struct inet_peer_base *); #endif /* _NET_INETPEER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef LINUX_MLD_H #define LINUX_MLD_H #include <linux/in6.h> #include <linux/icmpv6.h> /* MLDv1 Query/Report/Done */ struct mld_msg { struct icmp6hdr mld_hdr; struct in6_addr mld_mca; }; #define mld_type mld_hdr.icmp6_type #define mld_code mld_hdr.icmp6_code #define mld_cksum mld_hdr.icmp6_cksum #define mld_maxdelay mld_hdr.icmp6_maxdelay #define mld_reserved mld_hdr.icmp6_dataun.un_data16[1] /* Multicast Listener Discovery version 2 headers */ /* MLDv2 Report */ struct mld2_grec { __u8 grec_type; __u8 grec_auxwords; __be16 grec_nsrcs; struct in6_addr grec_mca; struct in6_addr grec_src[]; }; struct mld2_report { struct icmp6hdr mld2r_hdr; struct mld2_grec mld2r_grec[]; }; #define mld2r_type mld2r_hdr.icmp6_type #define mld2r_resv1 mld2r_hdr.icmp6_code #define mld2r_cksum mld2r_hdr.icmp6_cksum #define mld2r_resv2 mld2r_hdr.icmp6_dataun.un_data16[0] #define mld2r_ngrec mld2r_hdr.icmp6_dataun.un_data16[1] /* MLDv2 Query */ struct mld2_query { struct icmp6hdr mld2q_hdr; struct in6_addr mld2q_mca; #if defined(__LITTLE_ENDIAN_BITFIELD) __u8 mld2q_qrv:3, mld2q_suppress:1, mld2q_resv2:4; #elif defined(__BIG_ENDIAN_BITFIELD) __u8 mld2q_resv2:4, mld2q_suppress:1, mld2q_qrv:3; #else #error "Please fix <asm/byteorder.h>" #endif __u8 mld2q_qqic; __be16 mld2q_nsrcs; struct in6_addr mld2q_srcs[]; }; #define mld2q_type mld2q_hdr.icmp6_type #define mld2q_code mld2q_hdr.icmp6_code #define mld2q_cksum mld2q_hdr.icmp6_cksum #define mld2q_mrc mld2q_hdr.icmp6_maxdelay #define mld2q_resv1 mld2q_hdr.icmp6_dataun.un_data16[1] /* RFC3810, 5.1.3. Maximum Response Code: * * If Maximum Response Code >= 32768, Maximum Response Code represents a * floating-point value as follows: * * 0 1 2 3 4 5 6 7 8 9 A B C D E F * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |1| exp | mant | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ */ #define MLDV2_MRC_EXP(value) (((value) >> 12) & 0x0007) #define MLDV2_MRC_MAN(value) ((value) & 0x0fff) /* RFC3810, 5.1.9. QQIC (Querier's Query Interval Code): * * If QQIC >= 128, QQIC represents a floating-point value as follows: * * 0 1 2 3 4 5 6 7 * +-+-+-+-+-+-+-+-+ * |1| exp | mant | * +-+-+-+-+-+-+-+-+ */ #define MLDV2_QQIC_EXP(value) (((value) >> 4) & 0x07) #define MLDV2_QQIC_MAN(value) ((value) & 0x0f) #define MLD_EXP_MIN_LIMIT 32768UL #define MLDV1_MRD_MAX_COMPAT (MLD_EXP_MIN_LIMIT - 1) static inline unsigned long mldv2_mrc(const struct mld2_query *mlh2) { /* RFC3810, 5.1.3. Maximum Response Code */ unsigned long ret, mc_mrc = ntohs(mlh2->mld2q_mrc); if (mc_mrc < MLD_EXP_MIN_LIMIT) { ret = mc_mrc; } else { unsigned long mc_man, mc_exp; mc_exp = MLDV2_MRC_EXP(mc_mrc); mc_man = MLDV2_MRC_MAN(mc_mrc); ret = (mc_man | 0x1000) << (mc_exp + 3); } return ret; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 /* SPDX-License-Identifier: GPL-2.0 */ /* * Routines to manage notifier chains for passing status changes to any * interested routines. We need this instead of hard coded call lists so * that modules can poke their nose into the innards. The network devices * needed them so here they are for the rest of you. * * Alan Cox <Alan.Cox@linux.org> */ #ifndef _LINUX_NOTIFIER_H #define _LINUX_NOTIFIER_H #include <linux/errno.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/srcu.h> /* * Notifier chains are of four types: * * Atomic notifier chains: Chain callbacks run in interrupt/atomic * context. Callouts are not allowed to block. * Blocking notifier chains: Chain callbacks run in process context. * Callouts are allowed to block. * Raw notifier chains: There are no restrictions on callbacks, * registration, or unregistration. All locking and protection * must be provided by the caller. * SRCU notifier chains: A variant of blocking notifier chains, with * the same restrictions. * * atomic_notifier_chain_register() may be called from an atomic context, * but blocking_notifier_chain_register() and srcu_notifier_chain_register() * must be called from a process context. Ditto for the corresponding * _unregister() routines. * * atomic_notifier_chain_unregister(), blocking_notifier_chain_unregister(), * and srcu_notifier_chain_unregister() _must not_ be called from within * the call chain. * * SRCU notifier chains are an alternative form of blocking notifier chains. * They use SRCU (Sleepable Read-Copy Update) instead of rw-semaphores for * protection of the chain links. This means there is _very_ low overhead * in srcu_notifier_call_chain(): no cache bounces and no memory barriers. * As compensation, srcu_notifier_chain_unregister() is rather expensive. * SRCU notifier chains should be used when the chain will be called very * often but notifier_blocks will seldom be removed. */ struct notifier_block; typedef int (*notifier_fn_t)(struct notifier_block *nb, unsigned long action, void *data); struct notifier_block { notifier_fn_t notifier_call; struct notifier_block __rcu *next; int priority; }; struct atomic_notifier_head { spinlock_t lock; struct notifier_block __rcu *head; }; struct blocking_notifier_head { struct rw_semaphore rwsem; struct notifier_block __rcu *head; }; struct raw_notifier_head { struct notifier_block __rcu *head; }; struct srcu_notifier_head { struct mutex mutex; struct srcu_struct srcu; struct notifier_block __rcu *head; }; #define ATOMIC_INIT_NOTIFIER_HEAD(name) do { \ spin_lock_init(&(name)->lock); \ (name)->head = NULL; \ } while (0) #define BLOCKING_INIT_NOTIFIER_HEAD(name) do { \ init_rwsem(&(name)->rwsem); \ (name)->head = NULL; \ } while (0) #define RAW_INIT_NOTIFIER_HEAD(name) do { \ (name)->head = NULL; \ } while (0) /* srcu_notifier_heads must be cleaned up dynamically */ extern void srcu_init_notifier_head(struct srcu_notifier_head *nh); #define srcu_cleanup_notifier_head(name) \ cleanup_srcu_struct(&(name)->srcu); #define ATOMIC_NOTIFIER_INIT(name) { \ .lock = __SPIN_LOCK_UNLOCKED(name.lock), \ .head = NULL } #define BLOCKING_NOTIFIER_INIT(name) { \ .rwsem = __RWSEM_INITIALIZER((name).rwsem), \ .head = NULL } #define RAW_NOTIFIER_INIT(name) { \ .head = NULL } #define SRCU_NOTIFIER_INIT(name, pcpu) \ { \ .mutex = __MUTEX_INITIALIZER(name.mutex), \ .head = NULL, \ .srcu = __SRCU_STRUCT_INIT(name.srcu, pcpu), \ } #define ATOMIC_NOTIFIER_HEAD(name) \ struct atomic_notifier_head name = \ ATOMIC_NOTIFIER_INIT(name) #define BLOCKING_NOTIFIER_HEAD(name) \ struct blocking_notifier_head name = \ BLOCKING_NOTIFIER_INIT(name) #define RAW_NOTIFIER_HEAD(name) \ struct raw_notifier_head name = \ RAW_NOTIFIER_INIT(name) #ifdef CONFIG_TREE_SRCU #define _SRCU_NOTIFIER_HEAD(name, mod) \ static DEFINE_PER_CPU(struct srcu_data, name##_head_srcu_data); \ mod struct srcu_notifier_head name = \ SRCU_NOTIFIER_INIT(name, name##_head_srcu_data) #else #define _SRCU_NOTIFIER_HEAD(name, mod) \ mod struct srcu_notifier_head name = \ SRCU_NOTIFIER_INIT(name, name) #endif #define SRCU_NOTIFIER_HEAD(name) \ _SRCU_NOTIFIER_HEAD(name, /* not static */) #define SRCU_NOTIFIER_HEAD_STATIC(name) \ _SRCU_NOTIFIER_HEAD(name, static) #ifdef __KERNEL__ extern int atomic_notifier_chain_register(struct atomic_notifier_head *nh, struct notifier_block *nb); extern int blocking_notifier_chain_register(struct blocking_notifier_head *nh, struct notifier_block *nb); extern int raw_notifier_chain_register(struct raw_notifier_head *nh, struct notifier_block *nb); extern int srcu_notifier_chain_register(struct srcu_notifier_head *nh, struct notifier_block *nb); extern int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh, struct notifier_block *nb); extern int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh, struct notifier_block *nb); extern int raw_notifier_chain_unregister(struct raw_notifier_head *nh, struct notifier_block *nb); extern int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh, struct notifier_block *nb); extern int atomic_notifier_call_chain(struct atomic_notifier_head *nh, unsigned long val, void *v); extern int blocking_notifier_call_chain(struct blocking_notifier_head *nh, unsigned long val, void *v); extern int raw_notifier_call_chain(struct raw_notifier_head *nh, unsigned long val, void *v); extern int srcu_notifier_call_chain(struct srcu_notifier_head *nh, unsigned long val, void *v); extern int atomic_notifier_call_chain_robust(struct atomic_notifier_head *nh, unsigned long val_up, unsigned long val_down, void *v); extern int blocking_notifier_call_chain_robust(struct blocking_notifier_head *nh, unsigned long val_up, unsigned long val_down, void *v); extern int raw_notifier_call_chain_robust(struct raw_notifier_head *nh, unsigned long val_up, unsigned long val_down, void *v); #define NOTIFY_DONE 0x0000 /* Don't care */ #define NOTIFY_OK 0x0001 /* Suits me */ #define NOTIFY_STOP_MASK 0x8000 /* Don't call further */ #define NOTIFY_BAD (NOTIFY_STOP_MASK|0x0002) /* Bad/Veto action */ /* * Clean way to return from the notifier and stop further calls. */ #define NOTIFY_STOP (NOTIFY_OK|NOTIFY_STOP_MASK) /* Encapsulate (negative) errno value (in particular, NOTIFY_BAD <=> EPERM). */ static inline int notifier_from_errno(int err) { if (err) return NOTIFY_STOP_MASK | (NOTIFY_OK - err); return NOTIFY_OK; } /* Restore (negative) errno value from notify return value. */ static inline int notifier_to_errno(int ret) { ret &= ~NOTIFY_STOP_MASK; return ret > NOTIFY_OK ? NOTIFY_OK - ret : 0; } /* * Declared notifiers so far. I can imagine quite a few more chains * over time (eg laptop power reset chains, reboot chain (to clean * device units up), device [un]mount chain, module load/unload chain, * low memory chain, screenblank chain (for plug in modular screenblankers) * VC switch chains (for loadable kernel svgalib VC switch helpers) etc... */ /* CPU notfiers are defined in include/linux/cpu.h. */ /* netdevice notifiers are defined in include/linux/netdevice.h */ /* reboot notifiers are defined in include/linux/reboot.h. */ /* Hibernation and suspend events are defined in include/linux/suspend.h. */ /* Virtual Terminal events are defined in include/linux/vt.h. */ #define NETLINK_URELEASE 0x0001 /* Unicast netlink socket released */ /* Console keyboard events. * Note: KBD_KEYCODE is always sent before KBD_UNBOUND_KEYCODE, KBD_UNICODE and * KBD_KEYSYM. */ #define KBD_KEYCODE 0x0001 /* Keyboard keycode, called before any other */ #define KBD_UNBOUND_KEYCODE 0x0002 /* Keyboard keycode which is not bound to any other */ #define KBD_UNICODE 0x0003 /* Keyboard unicode */ #define KBD_KEYSYM 0x0004 /* Keyboard keysym */ #define KBD_POST_KEYSYM 0x0005 /* Called after keyboard keysym interpretation */ extern struct blocking_notifier_head reboot_notifier_list; #endif /* __KERNEL__ */ #endif /* _LINUX_NOTIFIER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_RT_H #define _LINUX_SCHED_RT_H #include <linux/sched.h> struct task_struct; static inline int rt_prio(int prio) { if (unlikely(prio < MAX_RT_PRIO)) return 1; return 0; } static inline int rt_task(struct task_struct *p) { return rt_prio(p->prio); } static inline bool task_is_realtime(struct task_struct *tsk) { int policy = tsk->policy; if (policy == SCHED_FIFO || policy == SCHED_RR) return true; if (policy == SCHED_DEADLINE) return true; return false; } #ifdef CONFIG_RT_MUTEXES /* * Must hold either p->pi_lock or task_rq(p)->lock. */ static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *p) { return p->pi_top_task; } extern void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task); extern void rt_mutex_adjust_pi(struct task_struct *p); static inline bool tsk_is_pi_blocked(struct task_struct *tsk) { return tsk->pi_blocked_on != NULL; } #else static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *task) { return NULL; } # define rt_mutex_adjust_pi(p) do { } while (0) static inline bool tsk_is_pi_blocked(struct task_struct *tsk) { return false; } #endif extern void normalize_rt_tasks(void); /* * default timeslice is 100 msecs (used only for SCHED_RR tasks). * Timeslices get refilled after they expire. */ #define RR_TIMESLICE (100 * HZ / 1000) #endif /* _LINUX_SCHED_RT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef IOPRIO_H #define IOPRIO_H #include <linux/sched.h> #include <linux/sched/rt.h> #include <linux/iocontext.h> /* * Gives us 8 prio classes with 13-bits of data for each class */ #define IOPRIO_CLASS_SHIFT (13) #define IOPRIO_PRIO_MASK ((1UL << IOPRIO_CLASS_SHIFT) - 1) #define IOPRIO_PRIO_CLASS(mask) ((mask) >> IOPRIO_CLASS_SHIFT) #define IOPRIO_PRIO_DATA(mask) ((mask) & IOPRIO_PRIO_MASK) #define IOPRIO_PRIO_VALUE(class, data) (((class) << IOPRIO_CLASS_SHIFT) | data) #define ioprio_valid(mask) (IOPRIO_PRIO_CLASS((mask)) != IOPRIO_CLASS_NONE) /* * These are the io priority groups as implemented by CFQ. RT is the realtime * class, it always gets premium service. BE is the best-effort scheduling * class, the default for any process. IDLE is the idle scheduling class, it * is only served when no one else is using the disk. */ enum { IOPRIO_CLASS_NONE, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE, }; /* * 8 best effort priority levels are supported */ #define IOPRIO_BE_NR (8) enum { IOPRIO_WHO_PROCESS = 1, IOPRIO_WHO_PGRP, IOPRIO_WHO_USER, }; /* * Fallback BE priority */ #define IOPRIO_NORM (4) /* * if process has set io priority explicitly, use that. if not, convert * the cpu scheduler nice value to an io priority */ static inline int task_nice_ioprio(struct task_struct *task) { return (task_nice(task) + 20) / 5; } /* * This is for the case where the task hasn't asked for a specific IO class. * Check for idle and rt task process, and return appropriate IO class. */ static inline int task_nice_ioclass(struct task_struct *task) { if (task->policy == SCHED_IDLE) return IOPRIO_CLASS_IDLE; else if (task_is_realtime(task)) return IOPRIO_CLASS_RT; else return IOPRIO_CLASS_BE; } /* * If the calling process has set an I/O priority, use that. Otherwise, return * the default I/O priority. */ static inline int get_current_ioprio(void) { struct io_context *ioc = current->io_context; if (ioc) return ioc->ioprio; return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); } /* * For inheritance, return the highest of the two given priorities */ extern int ioprio_best(unsigned short aprio, unsigned short bprio); extern int set_task_ioprio(struct task_struct *task, int ioprio); #ifdef CONFIG_BLOCK extern int ioprio_check_cap(int ioprio); #else static inline int ioprio_check_cap(int ioprio) { return -ENOTBLK; } #endif /* CONFIG_BLOCK */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_GENERIC_PGALLOC_H #define __ASM_GENERIC_PGALLOC_H #ifdef CONFIG_MMU #define GFP_PGTABLE_KERNEL (GFP_KERNEL | __GFP_ZERO) #define GFP_PGTABLE_USER (GFP_PGTABLE_KERNEL | __GFP_ACCOUNT) /** * __pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * This function is intended for architectures that need * anything beyond simple page allocation. * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *__pte_alloc_one_kernel(struct mm_struct *mm) { return (pte_t *)__get_free_page(GFP_PGTABLE_KERNEL); } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE_KERNEL /** * pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm) { return __pte_alloc_one_kernel(mm); } #endif /** * pte_free_kernel - free PTE-level kernel page table page * @mm: the mm_struct of the current context * @pte: pointer to the memory containing the page table */ static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) { free_page((unsigned long)pte); } /** * __pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * @gfp: GFP flags to use for the allocation * * Allocates a page and runs the pgtable_pte_page_ctor(). * * This function is intended for architectures that need * anything beyond simple page allocation or must have custom GFP flags. * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t __pte_alloc_one(struct mm_struct *mm, gfp_t gfp) { struct page *pte; pte = alloc_page(gfp); if (!pte) return NULL; if (!pgtable_pte_page_ctor(pte)) { __free_page(pte); return NULL; } return pte; } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE /** * pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pte_page_ctor(). * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t pte_alloc_one(struct mm_struct *mm) { return __pte_alloc_one(mm, GFP_PGTABLE_USER); } #endif /* * Should really implement gc for free page table pages. This could be * done with a reference count in struct page. */ /** * pte_free - free PTE-level user page table page * @mm: the mm_struct of the current context * @pte_page: the `struct page` representing the page table */ static inline void pte_free(struct mm_struct *mm, struct page *pte_page) { pgtable_pte_page_dtor(pte_page); __free_page(pte_page); } #if CONFIG_PGTABLE_LEVELS > 2 #ifndef __HAVE_ARCH_PMD_ALLOC_ONE /** * pmd_alloc_one - allocate a page for PMD-level page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pmd_page_ctor(). * Allocations use %GFP_PGTABLE_USER in user context and * %GFP_PGTABLE_KERNEL in kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) { struct page *page; gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; page = alloc_pages(gfp, 0); if (!page) return NULL; if (!pgtable_pmd_page_ctor(page)) { __free_pages(page, 0); return NULL; } return (pmd_t *)page_address(page); } #endif #ifndef __HAVE_ARCH_PMD_FREE static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) { BUG_ON((unsigned long)pmd & (PAGE_SIZE-1)); pgtable_pmd_page_dtor(virt_to_page(pmd)); free_page((unsigned long)pmd); } #endif #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 #ifndef __HAVE_ARCH_PUD_ALLOC_ONE /** * pud_alloc_one - allocate a page for PUD-level page table * @mm: the mm_struct of the current context * * Allocates a page using %GFP_PGTABLE_USER for user context and * %GFP_PGTABLE_KERNEL for kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) { gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; return (pud_t *)get_zeroed_page(gfp); } #endif static inline void pud_free(struct mm_struct *mm, pud_t *pud) { BUG_ON((unsigned long)pud & (PAGE_SIZE-1)); free_page((unsigned long)pud); } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ #ifndef __HAVE_ARCH_PGD_FREE static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) { free_page((unsigned long)pgd); } #endif #endif /* CONFIG_MMU */ #endif /* __ASM_GENERIC_PGALLOC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_FUTEX_H #define _ASM_X86_FUTEX_H #ifdef __KERNEL__ #include <linux/futex.h> #include <linux/uaccess.h> #include <asm/asm.h> #include <asm/errno.h> #include <asm/processor.h> #include <asm/smap.h> #define unsafe_atomic_op1(insn, oval, uaddr, oparg, label) \ do { \ int oldval = 0, ret; \ asm volatile("1:\t" insn "\n" \ "2:\n" \ "\t.section .fixup,\"ax\"\n" \ "3:\tmov\t%3, %1\n" \ "\tjmp\t2b\n" \ "\t.previous\n" \ _ASM_EXTABLE_UA(1b, 3b) \ : "=r" (oldval), "=r" (ret), "+m" (*uaddr) \ : "i" (-EFAULT), "0" (oparg), "1" (0)); \ if (ret) \ goto label; \ *oval = oldval; \ } while(0) #define unsafe_atomic_op2(insn, oval, uaddr, oparg, label) \ do { \ int oldval = 0, ret, tem; \ asm volatile("1:\tmovl %2, %0\n" \ "2:\tmovl\t%0, %3\n" \ "\t" insn "\n" \ "3:\t" LOCK_PREFIX "cmpxchgl %3, %2\n" \ "\tjnz\t2b\n" \ "4:\n" \ "\t.section .fixup,\"ax\"\n" \ "5:\tmov\t%5, %1\n" \ "\tjmp\t4b\n" \ "\t.previous\n" \ _ASM_EXTABLE_UA(1b, 5b) \ _ASM_EXTABLE_UA(3b, 5b) \ : "=&a" (oldval), "=&r" (ret), \ "+m" (*uaddr), "=&r" (tem) \ : "r" (oparg), "i" (-EFAULT), "1" (0)); \ if (ret) \ goto label; \ *oval = oldval; \ } while(0) static __always_inline int arch_futex_atomic_op_inuser(int op, int oparg, int *oval, u32 __user *uaddr) { if (!user_access_begin(uaddr, sizeof(u32))) return -EFAULT; switch (op) { case FUTEX_OP_SET: unsafe_atomic_op1("xchgl %0, %2", oval, uaddr, oparg, Efault); break; case FUTEX_OP_ADD: unsafe_atomic_op1(LOCK_PREFIX "xaddl %0, %2", oval, uaddr, oparg, Efault); break; case FUTEX_OP_OR: unsafe_atomic_op2("orl %4, %3", oval, uaddr, oparg, Efault); break; case FUTEX_OP_ANDN: unsafe_atomic_op2("andl %4, %3", oval, uaddr, ~oparg, Efault); break; case FUTEX_OP_XOR: unsafe_atomic_op2("xorl %4, %3", oval, uaddr, oparg, Efault); break; default: user_access_end(); return -ENOSYS; } user_access_end(); return 0; Efault: user_access_end(); return -EFAULT; } static inline int futex_atomic_cmpxchg_inatomic(u32 *uval, u32 __user *uaddr, u32 oldval, u32 newval) { int ret = 0; if (!user_access_begin(uaddr, sizeof(u32))) return -EFAULT; asm volatile("\n" "1:\t" LOCK_PREFIX "cmpxchgl %4, %2\n" "2:\n" "\t.section .fixup, \"ax\"\n" "3:\tmov %3, %0\n" "\tjmp 2b\n" "\t.previous\n" _ASM_EXTABLE_UA(1b, 3b) : "+r" (ret), "=a" (oldval), "+m" (*uaddr) : "i" (-EFAULT), "r" (newval), "1" (oldval) : "memory" ); user_access_end(); *uval = oldval; return ret; } #endif #endif /* _ASM_X86_FUTEX_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_UTSNAME_H #define _LINUX_UTSNAME_H #include <linux/sched.h> #include <linux/kref.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/err.h> #include <uapi/linux/utsname.h> enum uts_proc { UTS_PROC_OSTYPE, UTS_PROC_OSRELEASE, UTS_PROC_VERSION, UTS_PROC_HOSTNAME, UTS_PROC_DOMAINNAME, }; struct user_namespace; extern struct user_namespace init_user_ns; struct uts_namespace { struct kref kref; struct new_utsname name; struct user_namespace *user_ns; struct ucounts *ucounts; struct ns_common ns; } __randomize_layout; extern struct uts_namespace init_uts_ns; #ifdef CONFIG_UTS_NS static inline void get_uts_ns(struct uts_namespace *ns) { kref_get(&ns->kref); } extern struct uts_namespace *copy_utsname(unsigned long flags, struct user_namespace *user_ns, struct uts_namespace *old_ns); extern void free_uts_ns(struct kref *kref); static inline void put_uts_ns(struct uts_namespace *ns) { kref_put(&ns->kref, free_uts_ns); } void uts_ns_init(void); #else static inline void get_uts_ns(struct uts_namespace *ns) { } static inline void put_uts_ns(struct uts_namespace *ns) { } static inline struct uts_namespace *copy_utsname(unsigned long flags, struct user_namespace *user_ns, struct uts_namespace *old_ns) { if (flags & CLONE_NEWUTS) return ERR_PTR(-EINVAL); return old_ns; } static inline void uts_ns_init(void) { } #endif #ifdef CONFIG_PROC_SYSCTL extern void uts_proc_notify(enum uts_proc proc); #else static inline void uts_proc_notify(enum uts_proc proc) { } #endif static inline struct new_utsname *utsname(void) { return &current->nsproxy->uts_ns->name; } static inline struct new_utsname *init_utsname(void) { return &init_uts_ns.name; } extern struct rw_semaphore uts_sem; #endif /* _LINUX_UTSNAME_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 /* SPDX-License-Identifier: GPL-2.0-only */ /* * IEEE 802.11 defines * * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen * <jkmaline@cc.hut.fi> * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi> * Copyright (c) 2005, Devicescape Software, Inc. * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net> * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH * Copyright (c) 2016 - 2017 Intel Deutschland GmbH * Copyright (c) 2018 - 2020 Intel Corporation */ #ifndef LINUX_IEEE80211_H #define LINUX_IEEE80211_H #include <linux/types.h> #include <linux/if_ether.h> #include <linux/etherdevice.h> #include <asm/byteorder.h> #include <asm/unaligned.h> /* * DS bit usage * * TA = transmitter address * RA = receiver address * DA = destination address * SA = source address * * ToDS FromDS A1(RA) A2(TA) A3 A4 Use * ----------------------------------------------------------------- * 0 0 DA SA BSSID - IBSS/DLS * 0 1 DA BSSID SA - AP -> STA * 1 0 BSSID SA DA - AP <- STA * 1 1 RA TA DA SA unspecified (WDS) */ #define FCS_LEN 4 #define IEEE80211_FCTL_VERS 0x0003 #define IEEE80211_FCTL_FTYPE 0x000c #define IEEE80211_FCTL_STYPE 0x00f0 #define IEEE80211_FCTL_TODS 0x0100 #define IEEE80211_FCTL_FROMDS 0x0200 #define IEEE80211_FCTL_MOREFRAGS 0x0400 #define IEEE80211_FCTL_RETRY 0x0800 #define IEEE80211_FCTL_PM 0x1000 #define IEEE80211_FCTL_MOREDATA 0x2000 #define IEEE80211_FCTL_PROTECTED 0x4000 #define IEEE80211_FCTL_ORDER 0x8000 #define IEEE80211_FCTL_CTL_EXT 0x0f00 #define IEEE80211_SCTL_FRAG 0x000F #define IEEE80211_SCTL_SEQ 0xFFF0 #define IEEE80211_FTYPE_MGMT 0x0000 #define IEEE80211_FTYPE_CTL 0x0004 #define IEEE80211_FTYPE_DATA 0x0008 #define IEEE80211_FTYPE_EXT 0x000c /* management */ #define IEEE80211_STYPE_ASSOC_REQ 0x0000 #define IEEE80211_STYPE_ASSOC_RESP 0x0010 #define IEEE80211_STYPE_REASSOC_REQ 0x0020 #define IEEE80211_STYPE_REASSOC_RESP 0x0030 #define IEEE80211_STYPE_PROBE_REQ 0x0040 #define IEEE80211_STYPE_PROBE_RESP 0x0050 #define IEEE80211_STYPE_BEACON 0x0080 #define IEEE80211_STYPE_ATIM 0x0090 #define IEEE80211_STYPE_DISASSOC 0x00A0 #define IEEE80211_STYPE_AUTH 0x00B0 #define IEEE80211_STYPE_DEAUTH 0x00C0 #define IEEE80211_STYPE_ACTION 0x00D0 /* control */ #define IEEE80211_STYPE_CTL_EXT 0x0060 #define IEEE80211_STYPE_BACK_REQ 0x0080 #define IEEE80211_STYPE_BACK 0x0090 #define IEEE80211_STYPE_PSPOLL 0x00A0 #define IEEE80211_STYPE_RTS 0x00B0 #define IEEE80211_STYPE_CTS 0x00C0 #define IEEE80211_STYPE_ACK 0x00D0 #define IEEE80211_STYPE_CFEND 0x00E0 #define IEEE80211_STYPE_CFENDACK 0x00F0 /* data */ #define IEEE80211_STYPE_DATA 0x0000 #define IEEE80211_STYPE_DATA_CFACK 0x0010 #define IEEE80211_STYPE_DATA_CFPOLL 0x0020 #define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030 #define IEEE80211_STYPE_NULLFUNC 0x0040 #define IEEE80211_STYPE_CFACK 0x0050 #define IEEE80211_STYPE_CFPOLL 0x0060 #define IEEE80211_STYPE_CFACKPOLL 0x0070 #define IEEE80211_STYPE_QOS_DATA 0x0080 #define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090 #define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0 #define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0 #define IEEE80211_STYPE_QOS_CFACK 0x00D0 #define IEEE80211_STYPE_QOS_CFPOLL 0x00E0 #define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0 /* extension, added by 802.11ad */ #define IEEE80211_STYPE_DMG_BEACON 0x0000 #define IEEE80211_STYPE_S1G_BEACON 0x0010 /* bits unique to S1G beacon */ #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100 /* see 802.11ah-2016 9.9 NDP CMAC frames */ #define IEEE80211_S1G_1MHZ_NDP_BITS 25 #define IEEE80211_S1G_1MHZ_NDP_BYTES 4 #define IEEE80211_S1G_2MHZ_NDP_BITS 37 #define IEEE80211_S1G_2MHZ_NDP_BYTES 5 #define IEEE80211_NDP_FTYPE_CTS 0 #define IEEE80211_NDP_FTYPE_CF_END 0 #define IEEE80211_NDP_FTYPE_PS_POLL 1 #define IEEE80211_NDP_FTYPE_ACK 2 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK 3 #define IEEE80211_NDP_FTYPE_BA 4 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL 5 #define IEEE80211_NDP_FTYPE_PAGING 6 #define IEEE80211_NDP_FTYPE_PREQ 7 #define SM64(f, v) ((((u64)v) << f##_S) & f) /* NDP CMAC frame fields */ #define IEEE80211_NDP_FTYPE 0x0000000000000007 #define IEEE80211_NDP_FTYPE_S 0x0000000000000000 /* 1M Probe Request 11ah 9.9.3.1.1 */ #define IEEE80211_NDP_1M_PREQ_ANO 0x0000000000000008 #define IEEE80211_NDP_1M_PREQ_ANO_S 3 #define IEEE80211_NDP_1M_PREQ_CSSID 0x00000000000FFFF0 #define IEEE80211_NDP_1M_PREQ_CSSID_S 4 #define IEEE80211_NDP_1M_PREQ_RTYPE 0x0000000000100000 #define IEEE80211_NDP_1M_PREQ_RTYPE_S 20 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000 /* 2M Probe Request 11ah 9.9.3.1.2 */ #define IEEE80211_NDP_2M_PREQ_ANO 0x0000000000000008 #define IEEE80211_NDP_2M_PREQ_ANO_S 3 #define IEEE80211_NDP_2M_PREQ_CSSID 0x0000000FFFFFFFF0 #define IEEE80211_NDP_2M_PREQ_CSSID_S 4 #define IEEE80211_NDP_2M_PREQ_RTYPE 0x0000001000000000 #define IEEE80211_NDP_2M_PREQ_RTYPE_S 36 #define IEEE80211_ANO_NETTYPE_WILD 15 /* bits unique to S1G beacon */ #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */ #define IEEE80211_CTL_EXT_POLL 0x2000 #define IEEE80211_CTL_EXT_SPR 0x3000 #define IEEE80211_CTL_EXT_GRANT 0x4000 #define IEEE80211_CTL_EXT_DMG_CTS 0x5000 #define IEEE80211_CTL_EXT_DMG_DTS 0x6000 #define IEEE80211_CTL_EXT_SSW 0x8000 #define IEEE80211_CTL_EXT_SSW_FBACK 0x9000 #define IEEE80211_CTL_EXT_SSW_ACK 0xa000 #define IEEE80211_SN_MASK ((IEEE80211_SCTL_SEQ) >> 4) #define IEEE80211_MAX_SN IEEE80211_SN_MASK #define IEEE80211_SN_MODULO (IEEE80211_MAX_SN + 1) /* PV1 Layout 11ah 9.8.3.1 */ #define IEEE80211_PV1_FCTL_VERS 0x0003 #define IEEE80211_PV1_FCTL_FTYPE 0x001c #define IEEE80211_PV1_FCTL_STYPE 0x00e0 #define IEEE80211_PV1_FCTL_TODS 0x0100 #define IEEE80211_PV1_FCTL_MOREFRAGS 0x0200 #define IEEE80211_PV1_FCTL_PM 0x0400 #define IEEE80211_PV1_FCTL_MOREDATA 0x0800 #define IEEE80211_PV1_FCTL_PROTECTED 0x1000 #define IEEE80211_PV1_FCTL_END_SP 0x2000 #define IEEE80211_PV1_FCTL_RELAYED 0x4000 #define IEEE80211_PV1_FCTL_ACK_POLICY 0x8000 #define IEEE80211_PV1_FCTL_CTL_EXT 0x0f00 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2) { return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1); } static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2) { return (sn1 + sn2) & IEEE80211_SN_MASK; } static inline u16 ieee80211_sn_inc(u16 sn) { return ieee80211_sn_add(sn, 1); } static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2) { return (sn1 - sn2) & IEEE80211_SN_MASK; } #define IEEE80211_SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4) #define IEEE80211_SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ) /* miscellaneous IEEE 802.11 constants */ #define IEEE80211_MAX_FRAG_THRESHOLD 2352 #define IEEE80211_MAX_RTS_THRESHOLD 2353 #define IEEE80211_MAX_AID 2007 #define IEEE80211_MAX_AID_S1G 8191 #define IEEE80211_MAX_TIM_LEN 251 #define IEEE80211_MAX_MESH_PEERINGS 63 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section 6.2.1.1.2. 802.11e clarifies the figure in section 7.1.2. The frame body is up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */ #define IEEE80211_MAX_DATA_LEN 2304 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks * to 7920 bytes, see 8.2.3 General frame format */ #define IEEE80211_MAX_DATA_LEN_DMG 7920 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */ #define IEEE80211_MAX_FRAME_LEN 2352 /* Maximal size of an A-MSDU that can be transported in a HT BA session */ #define IEEE80211_MAX_MPDU_LEN_HT_BA 4095 /* Maximal size of an A-MSDU */ #define IEEE80211_MAX_MPDU_LEN_HT_3839 3839 #define IEEE80211_MAX_MPDU_LEN_HT_7935 7935 #define IEEE80211_MAX_MPDU_LEN_VHT_3895 3895 #define IEEE80211_MAX_MPDU_LEN_VHT_7991 7991 #define IEEE80211_MAX_MPDU_LEN_VHT_11454 11454 #define IEEE80211_MAX_SSID_LEN 32 #define IEEE80211_MAX_MESH_ID_LEN 32 #define IEEE80211_FIRST_TSPEC_TSID 8 #define IEEE80211_NUM_TIDS 16 /* number of user priorities 802.11 uses */ #define IEEE80211_NUM_UPS 8 /* number of ACs */ #define IEEE80211_NUM_ACS 4 #define IEEE80211_QOS_CTL_LEN 2 /* 1d tag mask */ #define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007 /* TID mask */ #define IEEE80211_QOS_CTL_TID_MASK 0x000f /* EOSP */ #define IEEE80211_QOS_CTL_EOSP 0x0010 /* ACK policy */ #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL 0x0000 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK 0x0020 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL 0x0040 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK 0x0060 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK 0x0060 /* A-MSDU 802.11n */ #define IEEE80211_QOS_CTL_A_MSDU_PRESENT 0x0080 /* Mesh Control 802.11s */ #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT 0x0100 /* Mesh Power Save Level */ #define IEEE80211_QOS_CTL_MESH_PS_LEVEL 0x0200 /* Mesh Receiver Service Period Initiated */ #define IEEE80211_QOS_CTL_RSPI 0x0400 /* U-APSD queue for WMM IEs sent by AP */ #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7) #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK 0x0f /* U-APSD queues for WMM IEs sent by STA */ #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0) #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1) #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2) #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3) #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f /* U-APSD max SP length for WMM IEs sent by STA */ #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5 #define IEEE80211_HT_CTL_LEN 4 struct ieee80211_hdr { __le16 frame_control; __le16 duration_id; u8 addr1[ETH_ALEN]; u8 addr2[ETH_ALEN]; u8 addr3[ETH_ALEN]; __le16 seq_ctrl; u8 addr4[ETH_ALEN]; } __packed __aligned(2); struct ieee80211_hdr_3addr { __le16 frame_control; __le16 duration_id; u8 addr1[ETH_ALEN]; u8 addr2[ETH_ALEN]; u8 addr3[ETH_ALEN]; __le16 seq_ctrl; } __packed __aligned(2); struct ieee80211_qos_hdr { __le16 frame_control; __le16 duration_id; u8 addr1[ETH_ALEN]; u8 addr2[ETH_ALEN]; u8 addr3[ETH_ALEN]; __le16 seq_ctrl; __le16 qos_ctrl; } __packed __aligned(2); /** * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_tods(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0; } /** * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_fromds(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0; } /** * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_a4(__le16 fc) { __le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS); return (fc & tmp) == tmp; } /** * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_morefrags(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0; } /** * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_retry(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0; } /** * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_pm(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0; } /** * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_moredata(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0; } /** * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_protected(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0; } /** * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_order(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0; } /** * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_mgmt(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT); } /** * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_ctl(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL); } /** * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_data(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == cpu_to_le16(IEEE80211_FTYPE_DATA); } /** * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_ext(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == cpu_to_le16(IEEE80211_FTYPE_EXT); } /** * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_data_qos(__le16 fc) { /* * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need * to check the one bit */ return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) == cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA); } /** * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_data_present(__le16 fc) { /* * mask with 0x40 and test that that bit is clear to only return true * for the data-containing substypes. */ return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) == cpu_to_le16(IEEE80211_FTYPE_DATA); } /** * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_assoc_req(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ); } /** * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_assoc_resp(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP); } /** * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_reassoc_req(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ); } /** * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_reassoc_resp(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP); } /** * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_probe_req(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ); } /** * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_probe_resp(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP); } /** * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_beacon(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); } /** * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT && * IEEE80211_STYPE_S1G_BEACON * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_s1g_beacon(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON); } /** * ieee80211_next_tbtt_present - check if IEEE80211_FTYPE_EXT && * IEEE80211_STYPE_S1G_BEACON && IEEE80211_S1G_BCN_NEXT_TBTT * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_next_tbtt_present(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON) && fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT); } /** * ieee80211_is_s1g_short_beacon - check if next tbtt present bit is set. Only * true for S1G beacons when they're short. * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_s1g_short_beacon(__le16 fc) { return ieee80211_is_s1g_beacon(fc) && ieee80211_next_tbtt_present(fc); } /** * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_atim(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM); } /** * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_disassoc(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC); } /** * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_auth(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH); } /** * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_deauth(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH); } /** * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_action(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); } /** * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_back_req(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ); } /** * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_back(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK); } /** * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_pspoll(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL); } /** * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_rts(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); } /** * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_cts(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); } /** * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_ack(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK); } /** * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_cfend(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND); } /** * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_cfendack(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK); } /** * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_nullfunc(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC); } /** * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_qos_nullfunc(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC); } /** * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_any_nullfunc(__le16 fc) { return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc)); } /** * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU * @fc: frame control field in little-endian byteorder */ static inline bool ieee80211_is_bufferable_mmpdu(__le16 fc) { /* IEEE 802.11-2012, definition of "bufferable management frame"; * note that this ignores the IBSS special case. */ return ieee80211_is_mgmt(fc) && (ieee80211_is_action(fc) || ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc)); } /** * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set * @seq_ctrl: frame sequence control bytes in little-endian byteorder */ static inline bool ieee80211_is_first_frag(__le16 seq_ctrl) { return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0; } /** * ieee80211_is_frag - check if a frame is a fragment * @hdr: 802.11 header of the frame */ static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr) { return ieee80211_has_morefrags(hdr->frame_control) || hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG); } struct ieee80211s_hdr { u8 flags; u8 ttl; __le32 seqnum; u8 eaddr1[ETH_ALEN]; u8 eaddr2[ETH_ALEN]; } __packed __aligned(2); /* Mesh flags */ #define MESH_FLAGS_AE_A4 0x1 #define MESH_FLAGS_AE_A5_A6 0x2 #define MESH_FLAGS_AE 0x3 #define MESH_FLAGS_PS_DEEP 0x4 /** * enum ieee80211_preq_flags - mesh PREQ element flags * * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield */ enum ieee80211_preq_flags { IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1<<2, }; /** * enum ieee80211_preq_target_flags - mesh PREQ element per target flags * * @IEEE80211_PREQ_TO_FLAG: target only subfield * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield */ enum ieee80211_preq_target_flags { IEEE80211_PREQ_TO_FLAG = 1<<0, IEEE80211_PREQ_USN_FLAG = 1<<2, }; /** * struct ieee80211_quiet_ie * * This structure refers to "Quiet information element" */ struct ieee80211_quiet_ie { u8 count; u8 period; __le16 duration; __le16 offset; } __packed; /** * struct ieee80211_msrment_ie * * This structure refers to "Measurement Request/Report information element" */ struct ieee80211_msrment_ie { u8 token; u8 mode; u8 type; u8 request[]; } __packed; /** * struct ieee80211_channel_sw_ie * * This structure refers to "Channel Switch Announcement information element" */ struct ieee80211_channel_sw_ie { u8 mode; u8 new_ch_num; u8 count; } __packed; /** * struct ieee80211_ext_chansw_ie * * This structure represents the "Extended Channel Switch Announcement element" */ struct ieee80211_ext_chansw_ie { u8 mode; u8 new_operating_class; u8 new_ch_num; u8 count; } __packed; /** * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_* * values here * This structure represents the "Secondary Channel Offset element" */ struct ieee80211_sec_chan_offs_ie { u8 sec_chan_offs; } __packed; /** * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE * * This structure represents the "Mesh Channel Switch Paramters element" */ struct ieee80211_mesh_chansw_params_ie { u8 mesh_ttl; u8 mesh_flags; __le16 mesh_reason; __le16 mesh_pre_value; } __packed; /** * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE */ struct ieee80211_wide_bw_chansw_ie { u8 new_channel_width; u8 new_center_freq_seg0, new_center_freq_seg1; } __packed; /** * struct ieee80211_tim * * This structure refers to "Traffic Indication Map information element" */ struct ieee80211_tim_ie { u8 dtim_count; u8 dtim_period; u8 bitmap_ctrl; /* variable size: 1 - 251 bytes */ u8 virtual_map[1]; } __packed; /** * struct ieee80211_meshconf_ie * * This structure refers to "Mesh Configuration information element" */ struct ieee80211_meshconf_ie { u8 meshconf_psel; u8 meshconf_pmetric; u8 meshconf_congest; u8 meshconf_synch; u8 meshconf_auth; u8 meshconf_form; u8 meshconf_cap; } __packed; /** * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags * * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish * additional mesh peerings with other mesh STAs * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure * is ongoing * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has * neighbors in deep sleep mode */ enum mesh_config_capab_flags { IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS = 0x01, IEEE80211_MESHCONF_CAPAB_FORWARDING = 0x08, IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING = 0x20, IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL = 0x40, }; #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1 /** * mesh channel switch parameters element's flag indicator * */ #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0) #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1) #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2) /** * struct ieee80211_rann_ie * * This structure refers to "Root Announcement information element" */ struct ieee80211_rann_ie { u8 rann_flags; u8 rann_hopcount; u8 rann_ttl; u8 rann_addr[ETH_ALEN]; __le32 rann_seq; __le32 rann_interval; __le32 rann_metric; } __packed; enum ieee80211_rann_flags { RANN_FLAG_IS_GATE = 1 << 0, }; enum ieee80211_ht_chanwidth_values { IEEE80211_HT_CHANWIDTH_20MHZ = 0, IEEE80211_HT_CHANWIDTH_ANY = 1, }; /** * enum ieee80211_opmode_bits - VHT operating mode field bits * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask * (the NSS value is the value of this field + 1) * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU * using a beamforming steering matrix */ enum ieee80211_vht_opmode_bits { IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK = 0x03, IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ = 0, IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ = 1, IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ = 2, IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ = 3, IEEE80211_OPMODE_NOTIF_BW_160_80P80 = 0x04, IEEE80211_OPMODE_NOTIF_RX_NSS_MASK = 0x70, IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT = 4, IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF = 0x80, }; /** * enum ieee80211_s1g_chanwidth * These are defined in IEEE802.11-2016ah Table 10-20 * as BSS Channel Width * * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel */ enum ieee80211_s1g_chanwidth { IEEE80211_S1G_CHANWIDTH_1MHZ = 0, IEEE80211_S1G_CHANWIDTH_2MHZ = 1, IEEE80211_S1G_CHANWIDTH_4MHZ = 3, IEEE80211_S1G_CHANWIDTH_8MHZ = 7, IEEE80211_S1G_CHANWIDTH_16MHZ = 15, }; #define WLAN_SA_QUERY_TR_ID_LEN 2 #define WLAN_MEMBERSHIP_LEN 8 #define WLAN_USER_POSITION_LEN 16 /** * struct ieee80211_tpc_report_ie * * This structure refers to "TPC Report element" */ struct ieee80211_tpc_report_ie { u8 tx_power; u8 link_margin; } __packed; #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK GENMASK(2, 1) #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT 1 #define IEEE80211_ADDBA_EXT_NO_FRAG BIT(0) struct ieee80211_addba_ext_ie { u8 data; } __packed; /** * struct ieee80211_s1g_bcn_compat_ie * * S1G Beacon Compatibility element */ struct ieee80211_s1g_bcn_compat_ie { __le16 compat_info; __le16 beacon_int; __le32 tsf_completion; } __packed; /** * struct ieee80211_s1g_oper_ie * * S1G Operation element */ struct ieee80211_s1g_oper_ie { u8 ch_width; u8 oper_class; u8 primary_ch; u8 oper_ch; __le16 basic_mcs_nss; } __packed; /** * struct ieee80211_aid_response_ie * * AID Response element */ struct ieee80211_aid_response_ie { __le16 aid; u8 switch_count; __le16 response_int; } __packed; struct ieee80211_s1g_cap { u8 capab_info[10]; u8 supp_mcs_nss[5]; } __packed; struct ieee80211_ext { __le16 frame_control; __le16 duration; union { struct { u8 sa[ETH_ALEN]; __le32 timestamp; u8 change_seq; u8 variable[0]; } __packed s1g_beacon; struct { u8 sa[ETH_ALEN]; __le32 timestamp; u8 change_seq; u8 next_tbtt[3]; u8 variable[0]; } __packed s1g_short_beacon; } u; } __packed __aligned(2); struct ieee80211_mgmt { __le16 frame_control; __le16 duration; u8 da[ETH_ALEN]; u8 sa[ETH_ALEN]; u8 bssid[ETH_ALEN]; __le16 seq_ctrl; union { struct { __le16 auth_alg; __le16 auth_transaction; __le16 status_code; /* possibly followed by Challenge text */ u8 variable[0]; } __packed auth; struct { __le16 reason_code; } __packed deauth; struct { __le16 capab_info; __le16 listen_interval; /* followed by SSID and Supported rates */ u8 variable[0]; } __packed assoc_req; struct { __le16 capab_info; __le16 status_code; __le16 aid; /* followed by Supported rates */ u8 variable[0]; } __packed assoc_resp, reassoc_resp; struct { __le16 capab_info; __le16 status_code; u8 variable[0]; } __packed s1g_assoc_resp, s1g_reassoc_resp; struct { __le16 capab_info; __le16 listen_interval; u8 current_ap[ETH_ALEN]; /* followed by SSID and Supported rates */ u8 variable[0]; } __packed reassoc_req; struct { __le16 reason_code; } __packed disassoc; struct { __le64 timestamp; __le16 beacon_int; __le16 capab_info; /* followed by some of SSID, Supported rates, * FH Params, DS Params, CF Params, IBSS Params, TIM */ u8 variable[0]; } __packed beacon; struct { /* only variable items: SSID, Supported rates */ u8 variable[0]; } __packed probe_req; struct { __le64 timestamp; __le16 beacon_int; __le16 capab_info; /* followed by some of SSID, Supported rates, * FH Params, DS Params, CF Params, IBSS Params */ u8 variable[0]; } __packed probe_resp; struct { u8 category; union { struct { u8 action_code; u8 dialog_token; u8 status_code; u8 variable[0]; } __packed wme_action; struct{ u8 action_code; u8 variable[0]; } __packed chan_switch; struct{ u8 action_code; struct ieee80211_ext_chansw_ie data; u8 variable[0]; } __packed ext_chan_switch; struct{ u8 action_code; u8 dialog_token; u8 element_id; u8 length; struct ieee80211_msrment_ie msr_elem; } __packed measurement; struct{ u8 action_code; u8 dialog_token; __le16 capab; __le16 timeout; __le16 start_seq_num; /* followed by BA Extension */ u8 variable[0]; } __packed addba_req; struct{ u8 action_code; u8 dialog_token; __le16 status; __le16 capab; __le16 timeout; } __packed addba_resp; struct{ u8 action_code; __le16 params; __le16 reason_code; } __packed delba; struct { u8 action_code; u8 variable[0]; } __packed self_prot; struct{ u8 action_code; u8 variable[0]; } __packed mesh_action; struct { u8 action; u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN]; } __packed sa_query; struct { u8 action; u8 smps_control; } __packed ht_smps; struct { u8 action_code; u8 chanwidth; } __packed ht_notify_cw; struct { u8 action_code; u8 dialog_token; __le16 capability; u8 variable[0]; } __packed tdls_discover_resp; struct { u8 action_code; u8 operating_mode; } __packed vht_opmode_notif; struct { u8 action_code; u8 membership[WLAN_MEMBERSHIP_LEN]; u8 position[WLAN_USER_POSITION_LEN]; } __packed vht_group_notif; struct { u8 action_code; u8 dialog_token; u8 tpc_elem_id; u8 tpc_elem_length; struct ieee80211_tpc_report_ie tpc; } __packed tpc_report; struct { u8 action_code; u8 dialog_token; u8 follow_up; u8 tod[6]; u8 toa[6]; __le16 tod_error; __le16 toa_error; u8 variable[0]; } __packed ftm; } u; } __packed action; } u; } __packed __aligned(2); /* Supported rates membership selectors */ #define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY 122 /* mgmt header + 1 byte category code */ #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u) /* Management MIC information element (IEEE 802.11w) */ struct ieee80211_mmie { u8 element_id; u8 length; __le16 key_id; u8 sequence_number[6]; u8 mic[8]; } __packed; /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */ struct ieee80211_mmie_16 { u8 element_id; u8 length; __le16 key_id; u8 sequence_number[6]; u8 mic[16]; } __packed; struct ieee80211_vendor_ie { u8 element_id; u8 len; u8 oui[3]; u8 oui_type; } __packed; struct ieee80211_wmm_ac_param { u8 aci_aifsn; /* AIFSN, ACM, ACI */ u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */ __le16 txop_limit; } __packed; struct ieee80211_wmm_param_ie { u8 element_id; /* Element ID: 221 (0xdd); */ u8 len; /* Length: 24 */ /* required fields for WMM version 1 */ u8 oui[3]; /* 00:50:f2 */ u8 oui_type; /* 2 */ u8 oui_subtype; /* 1 */ u8 version; /* 1 for WMM version 1.0 */ u8 qos_info; /* AP/STA specific QoS info */ u8 reserved; /* 0 */ /* AC_BE, AC_BK, AC_VI, AC_VO */ struct ieee80211_wmm_ac_param ac[4]; } __packed; /* Control frames */ struct ieee80211_rts { __le16 frame_control; __le16 duration; u8 ra[ETH_ALEN]; u8 ta[ETH_ALEN]; } __packed __aligned(2); struct ieee80211_cts { __le16 frame_control; __le16 duration; u8 ra[ETH_ALEN]; } __packed __aligned(2); struct ieee80211_pspoll { __le16 frame_control; __le16 aid; u8 bssid[ETH_ALEN]; u8 ta[ETH_ALEN]; } __packed __aligned(2); /* TDLS */ /* Channel switch timing */ struct ieee80211_ch_switch_timing { __le16 switch_time; __le16 switch_timeout; } __packed; /* Link-id information element */ struct ieee80211_tdls_lnkie { u8 ie_type; /* Link Identifier IE */ u8 ie_len; u8 bssid[ETH_ALEN]; u8 init_sta[ETH_ALEN]; u8 resp_sta[ETH_ALEN]; } __packed; struct ieee80211_tdls_data { u8 da[ETH_ALEN]; u8 sa[ETH_ALEN]; __be16 ether_type; u8 payload_type; u8 category; u8 action_code; union { struct { u8 dialog_token; __le16 capability; u8 variable[0]; } __packed setup_req; struct { __le16 status_code; u8 dialog_token; __le16 capability; u8 variable[0]; } __packed setup_resp; struct { __le16 status_code; u8 dialog_token; u8 variable[0]; } __packed setup_cfm; struct { __le16 reason_code; u8 variable[0]; } __packed teardown; struct { u8 dialog_token; u8 variable[0]; } __packed discover_req; struct { u8 target_channel; u8 oper_class; u8 variable[0]; } __packed chan_switch_req; struct { __le16 status_code; u8 variable[0]; } __packed chan_switch_resp; } u; } __packed; /* * Peer-to-Peer IE attribute related definitions. */ /** * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute. */ enum ieee80211_p2p_attr_id { IEEE80211_P2P_ATTR_STATUS = 0, IEEE80211_P2P_ATTR_MINOR_REASON, IEEE80211_P2P_ATTR_CAPABILITY, IEEE80211_P2P_ATTR_DEVICE_ID, IEEE80211_P2P_ATTR_GO_INTENT, IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT, IEEE80211_P2P_ATTR_LISTEN_CHANNEL, IEEE80211_P2P_ATTR_GROUP_BSSID, IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING, IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR, IEEE80211_P2P_ATTR_MANAGABILITY, IEEE80211_P2P_ATTR_CHANNEL_LIST, IEEE80211_P2P_ATTR_ABSENCE_NOTICE, IEEE80211_P2P_ATTR_DEVICE_INFO, IEEE80211_P2P_ATTR_GROUP_INFO, IEEE80211_P2P_ATTR_GROUP_ID, IEEE80211_P2P_ATTR_INTERFACE, IEEE80211_P2P_ATTR_OPER_CHANNEL, IEEE80211_P2P_ATTR_INVITE_FLAGS, /* 19 - 220: Reserved */ IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221, IEEE80211_P2P_ATTR_MAX }; /* Notice of Absence attribute - described in P2P spec 4.1.14 */ /* Typical max value used here */ #define IEEE80211_P2P_NOA_DESC_MAX 4 struct ieee80211_p2p_noa_desc { u8 count; __le32 duration; __le32 interval; __le32 start_time; } __packed; struct ieee80211_p2p_noa_attr { u8 index; u8 oppps_ctwindow; struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX]; } __packed; #define IEEE80211_P2P_OPPPS_ENABLE_BIT BIT(7) #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK 0x7F /** * struct ieee80211_bar - HT Block Ack Request * * This structure refers to "HT BlockAckReq" as * described in 802.11n draft section 7.2.1.7.1 */ struct ieee80211_bar { __le16 frame_control; __le16 duration; __u8 ra[ETH_ALEN]; __u8 ta[ETH_ALEN]; __le16 control; __le16 start_seq_num; } __packed; /* 802.11 BAR control masks */ #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000 #define IEEE80211_BAR_CTRL_MULTI_TID 0x0002 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004 #define IEEE80211_BAR_CTRL_TID_INFO_MASK 0xf000 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT 12 #define IEEE80211_HT_MCS_MASK_LEN 10 /** * struct ieee80211_mcs_info - MCS information * @rx_mask: RX mask * @rx_highest: highest supported RX rate. If set represents * the highest supported RX data rate in units of 1 Mbps. * If this field is 0 this value should not be used to * consider the highest RX data rate supported. * @tx_params: TX parameters */ struct ieee80211_mcs_info { u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN]; __le16 rx_highest; u8 tx_params; u8 reserved[3]; } __packed; /* 802.11n HT capability MSC set */ #define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff #define IEEE80211_HT_MCS_TX_DEFINED 0x01 #define IEEE80211_HT_MCS_TX_RX_DIFF 0x02 /* value 0 == 1 stream etc */ #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2 #define IEEE80211_HT_MCS_TX_MAX_STREAMS 4 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10 /* * 802.11n D5.0 20.3.5 / 20.6 says: * - indices 0 to 7 and 32 are single spatial stream * - 8 to 31 are multiple spatial streams using equal modulation * [8..15 for two streams, 16..23 for three and 24..31 for four] * - remainder are multiple spatial streams using unequal modulation */ #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \ (IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8) /** * struct ieee80211_ht_cap - HT capabilities * * This structure is the "HT capabilities element" as * described in 802.11n D5.0 7.3.2.57 */ struct ieee80211_ht_cap { __le16 cap_info; u8 ampdu_params_info; /* 16 bytes MCS information */ struct ieee80211_mcs_info mcs; __le16 extended_ht_cap_info; __le32 tx_BF_cap_info; u8 antenna_selection_info; } __packed; /* 802.11n HT capabilities masks (for cap_info) */ #define IEEE80211_HT_CAP_LDPC_CODING 0x0001 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002 #define IEEE80211_HT_CAP_SM_PS 0x000C #define IEEE80211_HT_CAP_SM_PS_SHIFT 2 #define IEEE80211_HT_CAP_GRN_FLD 0x0010 #define IEEE80211_HT_CAP_SGI_20 0x0020 #define IEEE80211_HT_CAP_SGI_40 0x0040 #define IEEE80211_HT_CAP_TX_STBC 0x0080 #define IEEE80211_HT_CAP_RX_STBC 0x0300 #define IEEE80211_HT_CAP_RX_STBC_SHIFT 8 #define IEEE80211_HT_CAP_DELAY_BA 0x0400 #define IEEE80211_HT_CAP_MAX_AMSDU 0x0800 #define IEEE80211_HT_CAP_DSSSCCK40 0x1000 #define IEEE80211_HT_CAP_RESERVED 0x2000 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */ #define IEEE80211_HT_EXT_CAP_PCO 0x0001 #define IEEE80211_HT_EXT_CAP_PCO_TIME 0x0006 #define IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT 1 #define IEEE80211_HT_EXT_CAP_MCS_FB 0x0300 #define IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT 8 #define IEEE80211_HT_EXT_CAP_HTC_SUP 0x0400 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER 0x0800 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */ #define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03 #define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C #define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2 /* * Maximum length of AMPDU that the STA can receive in high-throughput (HT). * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) */ enum ieee80211_max_ampdu_length_exp { IEEE80211_HT_MAX_AMPDU_8K = 0, IEEE80211_HT_MAX_AMPDU_16K = 1, IEEE80211_HT_MAX_AMPDU_32K = 2, IEEE80211_HT_MAX_AMPDU_64K = 3 }; /* * Maximum length of AMPDU that the STA can receive in VHT. * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) */ enum ieee80211_vht_max_ampdu_length_exp { IEEE80211_VHT_MAX_AMPDU_8K = 0, IEEE80211_VHT_MAX_AMPDU_16K = 1, IEEE80211_VHT_MAX_AMPDU_32K = 2, IEEE80211_VHT_MAX_AMPDU_64K = 3, IEEE80211_VHT_MAX_AMPDU_128K = 4, IEEE80211_VHT_MAX_AMPDU_256K = 5, IEEE80211_VHT_MAX_AMPDU_512K = 6, IEEE80211_VHT_MAX_AMPDU_1024K = 7 }; #define IEEE80211_HT_MAX_AMPDU_FACTOR 13 /* Minimum MPDU start spacing */ enum ieee80211_min_mpdu_spacing { IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */ IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */ IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */ IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */ IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */ IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */ IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */ IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */ }; /** * struct ieee80211_ht_operation - HT operation IE * * This structure is the "HT operation element" as * described in 802.11n-2009 7.3.2.57 */ struct ieee80211_ht_operation { u8 primary_chan; u8 ht_param; __le16 operation_mode; __le16 stbc_param; u8 basic_set[16]; } __packed; /* for ht_param */ #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03 #define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00 #define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01 #define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04 #define IEEE80211_HT_PARAM_RIFS_MODE 0x08 /* for operation_mode */ #define IEEE80211_HT_OP_MODE_PROTECTION 0x0003 #define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0 #define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1 #define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2 #define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT 5 #define IEEE80211_HT_OP_MODE_CCFS2_MASK 0x1fe0 /* for stbc_param */ #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800 /* block-ack parameters */ #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800 /* * A-MPDU buffer sizes * According to HT size varies from 8 to 64 frames * HE adds the ability to have up to 256 frames. */ #define IEEE80211_MIN_AMPDU_BUF 0x8 #define IEEE80211_MAX_AMPDU_BUF_HT 0x40 #define IEEE80211_MAX_AMPDU_BUF 0x100 /* Spatial Multiplexing Power Save Modes (for capability) */ #define WLAN_HT_CAP_SM_PS_STATIC 0 #define WLAN_HT_CAP_SM_PS_DYNAMIC 1 #define WLAN_HT_CAP_SM_PS_INVALID 2 #define WLAN_HT_CAP_SM_PS_DISABLED 3 /* for SM power control field lower two bits */ #define WLAN_HT_SMPS_CONTROL_DISABLED 0 #define WLAN_HT_SMPS_CONTROL_STATIC 1 #define WLAN_HT_SMPS_CONTROL_DYNAMIC 3 /** * struct ieee80211_vht_mcs_info - VHT MCS information * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams * @rx_highest: Indicates highest long GI VHT PPDU data rate * STA can receive. Rate expressed in units of 1 Mbps. * If this field is 0 this value should not be used to * consider the highest RX data rate supported. * The top 3 bits of this field indicate the Maximum NSTS,total * (a beamformee capability.) * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams * @tx_highest: Indicates highest long GI VHT PPDU data rate * STA can transmit. Rate expressed in units of 1 Mbps. * If this field is 0 this value should not be used to * consider the highest TX data rate supported. * The top 2 bits of this field are reserved, the * 3rd bit from the top indiciates VHT Extended NSS BW * Capability. */ struct ieee80211_vht_mcs_info { __le16 rx_mcs_map; __le16 rx_highest; __le16 tx_mcs_map; __le16 tx_highest; } __packed; /* for rx_highest */ #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT 13 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK (7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT) /* for tx_highest */ #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE (1 << 13) /** * enum ieee80211_vht_mcs_support - VHT MCS support definitions * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the * number of streams * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported * * These definitions are used in each 2-bit subfield of the @rx_mcs_map * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are * both split into 8 subfields by number of streams. These values indicate * which MCSes are supported for the number of streams the value appears * for. */ enum ieee80211_vht_mcs_support { IEEE80211_VHT_MCS_SUPPORT_0_7 = 0, IEEE80211_VHT_MCS_SUPPORT_0_8 = 1, IEEE80211_VHT_MCS_SUPPORT_0_9 = 2, IEEE80211_VHT_MCS_NOT_SUPPORTED = 3, }; /** * struct ieee80211_vht_cap - VHT capabilities * * This structure is the "VHT capabilities element" as * described in 802.11ac D3.0 8.4.2.160 * @vht_cap_info: VHT capability info * @supp_mcs: VHT MCS supported rates */ struct ieee80211_vht_cap { __le32 vht_cap_info; struct ieee80211_vht_mcs_info supp_mcs; } __packed; /** * enum ieee80211_vht_chanwidth - VHT channel width * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to * determine the channel width (20 or 40 MHz) * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth */ enum ieee80211_vht_chanwidth { IEEE80211_VHT_CHANWIDTH_USE_HT = 0, IEEE80211_VHT_CHANWIDTH_80MHZ = 1, IEEE80211_VHT_CHANWIDTH_160MHZ = 2, IEEE80211_VHT_CHANWIDTH_80P80MHZ = 3, }; /** * struct ieee80211_vht_operation - VHT operation IE * * This structure is the "VHT operation element" as * described in 802.11ac D3.0 8.4.2.161 * @chan_width: Operating channel width * @center_freq_seg0_idx: center freq segment 0 index * @center_freq_seg1_idx: center freq segment 1 index * @basic_mcs_set: VHT Basic MCS rate set */ struct ieee80211_vht_operation { u8 chan_width; u8 center_freq_seg0_idx; u8 center_freq_seg1_idx; __le16 basic_mcs_set; } __packed; /** * struct ieee80211_he_cap_elem - HE capabilities element * * This structure is the "HE capabilities element" fixed fields as * described in P802.11ax_D4.0 section 9.4.2.242.2 and 9.4.2.242.3 */ struct ieee80211_he_cap_elem { u8 mac_cap_info[6]; u8 phy_cap_info[11]; } __packed; #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN 5 /** * enum ieee80211_he_mcs_support - HE MCS support definitions * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the * number of streams * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported * * These definitions are used in each 2-bit subfield of the rx_mcs_* * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are * both split into 8 subfields by number of streams. These values indicate * which MCSes are supported for the number of streams the value appears * for. */ enum ieee80211_he_mcs_support { IEEE80211_HE_MCS_SUPPORT_0_7 = 0, IEEE80211_HE_MCS_SUPPORT_0_9 = 1, IEEE80211_HE_MCS_SUPPORT_0_11 = 2, IEEE80211_HE_MCS_NOT_SUPPORTED = 3, }; /** * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field * * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field * described in P802.11ax_D2.0 section 9.4.2.237.4 * * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel * widths less than 80MHz. * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel * widths less than 80MHz. * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel * width 160MHz. * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel * width 160MHz. * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for * channel width 80p80MHz. * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for * channel width 80p80MHz. */ struct ieee80211_he_mcs_nss_supp { __le16 rx_mcs_80; __le16 tx_mcs_80; __le16 rx_mcs_160; __le16 tx_mcs_160; __le16 rx_mcs_80p80; __le16 tx_mcs_80p80; } __packed; /** * struct ieee80211_he_operation - HE capabilities element * * This structure is the "HE operation element" fields as * described in P802.11ax_D4.0 section 9.4.2.243 */ struct ieee80211_he_operation { __le32 he_oper_params; __le16 he_mcs_nss_set; /* Optional 0,1,3,4,5,7 or 8 bytes: depends on @he_oper_params */ u8 optional[]; } __packed; /** * struct ieee80211_he_spr - HE spatial reuse element * * This structure is the "HE spatial reuse element" element as * described in P802.11ax_D4.0 section 9.4.2.241 */ struct ieee80211_he_spr { u8 he_sr_control; /* Optional 0 to 19 bytes: depends on @he_sr_control */ u8 optional[]; } __packed; /** * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field * * This structure is the "MU AC Parameter Record" fields as * described in P802.11ax_D4.0 section 9.4.2.245 */ struct ieee80211_he_mu_edca_param_ac_rec { u8 aifsn; u8 ecw_min_max; u8 mu_edca_timer; } __packed; /** * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element * * This structure is the "MU EDCA Parameter Set element" fields as * described in P802.11ax_D4.0 section 9.4.2.245 */ struct ieee80211_mu_edca_param_set { u8 mu_qos_info; struct ieee80211_he_mu_edca_param_ac_rec ac_be; struct ieee80211_he_mu_edca_param_ac_rec ac_bk; struct ieee80211_he_mu_edca_param_ac_rec ac_vi; struct ieee80211_he_mu_edca_param_ac_rec ac_vo; } __packed; /* 802.11ac VHT Capabilities */ #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 0x00000000 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 0x00000001 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 0x00000002 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK 0x00000003 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ 0x00000004 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ 0x00000008 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK 0x0000000C #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT 2 #define IEEE80211_VHT_CAP_RXLDPC 0x00000010 #define IEEE80211_VHT_CAP_SHORT_GI_80 0x00000020 #define IEEE80211_VHT_CAP_SHORT_GI_160 0x00000040 #define IEEE80211_VHT_CAP_TXSTBC 0x00000080 #define IEEE80211_VHT_CAP_RXSTBC_1 0x00000100 #define IEEE80211_VHT_CAP_RXSTBC_2 0x00000200 #define IEEE80211_VHT_CAP_RXSTBC_3 0x00000300 #define IEEE80211_VHT_CAP_RXSTBC_4 0x00000400 #define IEEE80211_VHT_CAP_RXSTBC_MASK 0x00000700 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT 8 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE 0x00000800 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE 0x00001000 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT 13 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK \ (7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT) #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT 16 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK \ (7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT) #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE 0x00080000 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE 0x00100000 #define IEEE80211_VHT_CAP_VHT_TXOP_PS 0x00200000 #define IEEE80211_VHT_CAP_HTC_VHT 0x00400000 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT 23 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK \ (7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT) #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB 0x08000000 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB 0x0c000000 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN 0x10000000 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN 0x20000000 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT 30 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK 0xc0000000 /** * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS * @cap: VHT capabilities of the peer * @bw: bandwidth to use * @mcs: MCS index to use * @ext_nss_bw_capable: indicates whether or not the local transmitter * (rate scaling algorithm) can deal with the new logic * (dot11VHTExtendedNSSBWCapable) * @max_vht_nss: current maximum NSS as advertised by the STA in * operating mode notification, can be 0 in which case the * capability data will be used to derive this (from MCS support) * * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can * vary for a given BW/MCS. This function parses the data. * * Note: This function is exported by cfg80211. */ int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, enum ieee80211_vht_chanwidth bw, int mcs, bool ext_nss_bw_capable, unsigned int max_vht_nss); /* 802.11ax HE MAC capabilities */ #define IEEE80211_HE_MAC_CAP0_HTC_HE 0x01 #define IEEE80211_HE_MAC_CAP0_TWT_REQ 0x02 #define IEEE80211_HE_MAC_CAP0_TWT_RES 0x04 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP 0x00 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1 0x08 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2 0x10 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3 0x18 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK 0x18 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1 0x00 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2 0x20 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4 0x40 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8 0x60 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16 0x80 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32 0xa0 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64 0xc0 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED 0xe0 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK 0xe0 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED 0x00 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128 0x01 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256 0x02 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512 0x03 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK 0x03 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US 0x00 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US 0x04 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US 0x08 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK 0x0c #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1 0x00 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2 0x10 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3 0x20 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4 0x30 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5 0x40 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6 0x50 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7 0x60 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8 0x70 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK 0x70 /* Link adaptation is split between byte HE_MAC_CAP1 and * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE * in which case the following values apply: * 0 = No feedback. * 1 = reserved. * 2 = Unsolicited feedback. * 3 = both */ #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION 0x80 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION 0x01 #define IEEE80211_HE_MAC_CAP2_ALL_ACK 0x02 #define IEEE80211_HE_MAC_CAP2_TRS 0x04 #define IEEE80211_HE_MAC_CAP2_BSR 0x08 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT 0x10 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP 0x20 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING 0x40 #define IEEE80211_HE_MAC_CAP2_ACK_EN 0x80 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL 0x02 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA 0x04 /* The maximum length of an A-MDPU is defined by the combination of the Maximum * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the * same field in the HE capabilities. */ #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_USE_VHT 0x00 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_1 0x08 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2 0x10 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_RESERVED 0x18 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK 0x18 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG 0x20 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED 0x40 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS 0x80 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_SHIFT 3 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG 0x01 #define IEEE80211_HE_MAC_CAP4_QTP 0x02 #define IEEE80211_HE_MAC_CAP4_BQR 0x04 #define IEEE80211_HE_MAC_CAP4_SRP_RESP 0x08 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP 0x10 #define IEEE80211_HE_MAC_CAP4_OPS 0x20 #define IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU 0x40 /* Multi TID agg TX is split between byte #4 and #5 * The value is a combination of B39,B40,B41 */ #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39 0x80 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 0x01 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 0x02 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECVITE_TRANSMISSION 0x04 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU 0x08 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX 0x10 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS 0x20 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING 0x40 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX 0x80 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR 20 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR 16 /* 802.11ax HE PHY capabilities */ #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G 0x02 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G 0x04 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G 0x08 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G 0x10 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G 0x20 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G 0x40 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK 0xfe #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ 0x01 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ 0x02 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ 0x04 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ 0x08 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK 0x0f #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A 0x10 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD 0x20 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US 0x40 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */ #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS 0x80 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS 0x01 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US 0x02 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ 0x04 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ 0x08 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX 0x10 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX 0x20 /* Note that the meaning of UL MU below is different between an AP and a non-AP * sta, where in the AP case it indicates support for Rx and in the non-AP sta * case it indicates support for Tx. */ #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO 0x40 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO 0x80 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM 0x00 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK 0x01 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK 0x02 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM 0x03 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK 0x03 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 0x00 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2 0x04 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM 0x00 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK 0x08 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK 0x10 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM 0x18 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK 0x18 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1 0x00 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2 0x20 #define IEEE80211_HE_PHY_CAP3_RX_HE_MU_PPDU_FROM_NON_AP_STA 0x40 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER 0x80 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE 0x01 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER 0x02 /* Minimal allowed value of Max STS under 80MHz is 3 */ #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 0x0c #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 0x10 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6 0x14 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7 0x18 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8 0x1c #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK 0x1c /* Minimal allowed value of Max STS above 80MHz is 3 */ #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 0x60 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 0x80 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6 0xa0 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7 0xc0 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 0xe0 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK 0xe0 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1 0x00 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 0x01 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3 0x02 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4 0x03 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5 0x04 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6 0x05 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7 0x06 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8 0x07 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK 0x07 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1 0x00 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 0x08 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3 0x10 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4 0x18 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5 0x20 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6 0x28 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7 0x30 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8 0x38 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK 0x38 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK 0x40 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK 0x80 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU 0x01 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU 0x02 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMER_FB 0x04 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMER_FB 0x08 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB 0x10 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE 0x20 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO 0x40 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT 0x80 #define IEEE80211_HE_PHY_CAP7_SRP_BASED_SR 0x01 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR 0x02 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI 0x04 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1 0x08 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2 0x10 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3 0x18 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4 0x20 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5 0x28 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6 0x30 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7 0x38 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK 0x38 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ 0x40 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ 0x80 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI 0x01 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G 0x02 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU 0x04 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU 0x08 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI 0x10 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF 0x20 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 0x00 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 0x40 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 0x80 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 0xc0 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK 0xc0 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM 0x01 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK 0x02 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU 0x04 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU 0x08 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB 0x10 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB 0x20 #define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_0US 0x00 #define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_8US 0x40 #define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_16US 0x80 #define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED 0xc0 #define IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_MASK 0xc0 /* 802.11ax HE TX/RX MCS NSS Support */ #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS (3) #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS (6) #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS (11) #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK 0x07c0 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK 0xf800 /* TX/RX HE MCS Support field Highest MCS subfield encoding */ enum ieee80211_he_highest_mcs_supported_subfield_enc { HIGHEST_MCS_SUPPORTED_MCS7 = 0, HIGHEST_MCS_SUPPORTED_MCS8, HIGHEST_MCS_SUPPORTED_MCS9, HIGHEST_MCS_SUPPORTED_MCS10, HIGHEST_MCS_SUPPORTED_MCS11, }; /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */ static inline u8 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap) { u8 count = 4; if (he_cap->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) count += 4; if (he_cap->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) count += 4; return count; } /* 802.11ax HE PPE Thresholds */ #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS (1) #define IEEE80211_PPE_THRES_NSS_POS (0) #define IEEE80211_PPE_THRES_NSS_MASK (7) #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU \ (BIT(5) | BIT(6)) #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK 0x78 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS (3) #define IEEE80211_PPE_THRES_INFO_PPET_SIZE (3) /* * Calculate 802.11ax HE capabilities IE PPE field size * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8* */ static inline u8 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info) { u8 n; if ((phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) return 0; n = hweight8(ppe_thres_hdr & IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >> IEEE80211_PPE_THRES_NSS_POS)); /* * Each pair is 6 bits, and we need to add the 7 "header" bits to the * total size. */ n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; n = DIV_ROUND_UP(n, 8); return n; } /* HE Operation defines */ #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK 0x00000007 #define IEEE80211_HE_OPERATION_TWT_REQUIRED 0x00000008 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK 0x00003ff0 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET 4 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO 0x00004000 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS 0x00008000 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE 0x00010000 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO 0x00020000 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK 0x3f000000 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET 24 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR 0x40000000 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED 0x80000000 /** * ieee80211_he_6ghz_oper - HE 6 GHz operation Information field * @primary: primary channel * @control: control flags * @ccfs0: channel center frequency segment 0 * @ccfs1: channel center frequency segment 1 * @minrate: minimum rate (in 1 Mbps units) */ struct ieee80211_he_6ghz_oper { u8 primary; #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH 0x3 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ 0 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ 1 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ 2 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ 3 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON 0x4 u8 control; u8 ccfs0; u8 ccfs1; u8 minrate; } __packed; /* * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size * @he_oper_ie: byte data of the He Operations IE, stating from the byte * after the ext ID byte. It is assumed that he_oper_ie has at least * sizeof(struct ieee80211_he_operation) bytes, the caller must have * validated this. * @return the actual size of the IE data (not including header), or 0 on error */ static inline u8 ieee80211_he_oper_size(const u8 *he_oper_ie) { struct ieee80211_he_operation *he_oper = (void *)he_oper_ie; u8 oper_len = sizeof(struct ieee80211_he_operation); u32 he_oper_params; /* Make sure the input is not NULL */ if (!he_oper_ie) return 0; /* Calc required length */ he_oper_params = le32_to_cpu(he_oper->he_oper_params); if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO) oper_len += 3; if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS) oper_len++; if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO) oper_len += sizeof(struct ieee80211_he_6ghz_oper); /* Add the first byte (extension ID) to the total length */ oper_len++; return oper_len; } /** * ieee80211_he_6ghz_oper - obtain 6 GHz operation field * @he_oper: HE operation element (must be pre-validated for size) * but may be %NULL * * Return: a pointer to the 6 GHz operation field, or %NULL */ static inline const struct ieee80211_he_6ghz_oper * ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper) { const u8 *ret = (void *)&he_oper->optional; u32 he_oper_params; if (!he_oper) return NULL; he_oper_params = le32_to_cpu(he_oper->he_oper_params); if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)) return NULL; if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO) ret += 3; if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS) ret++; return (void *)ret; } /* HE Spatial Reuse defines */ #define IEEE80211_HE_SPR_PSR_DISALLOWED BIT(0) #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED BIT(1) #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT BIT(2) #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT BIT(3) #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED BIT(4) /* * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte * after the ext ID byte. It is assumed that he_spr_ie has at least * sizeof(struct ieee80211_he_spr) bytes, the caller must have validated * this * @return the actual size of the IE data (not including header), or 0 on error */ static inline u8 ieee80211_he_spr_size(const u8 *he_spr_ie) { struct ieee80211_he_spr *he_spr = (void *)he_spr_ie; u8 spr_len = sizeof(struct ieee80211_he_spr); u8 he_spr_params; /* Make sure the input is not NULL */ if (!he_spr_ie) return 0; /* Calc required length */ he_spr_params = he_spr->he_sr_control; if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT) spr_len++; if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT) spr_len += 18; /* Add the first byte (extension ID) to the total length */ spr_len++; return spr_len; } /* S1G Capabilities Information field */ #define IEEE80211_S1G_CAPABILITY_LEN 15 #define S1G_CAP0_S1G_LONG BIT(0) #define S1G_CAP0_SGI_1MHZ BIT(1) #define S1G_CAP0_SGI_2MHZ BIT(2) #define S1G_CAP0_SGI_4MHZ BIT(3) #define S1G_CAP0_SGI_8MHZ BIT(4) #define S1G_CAP0_SGI_16MHZ BIT(5) #define S1G_CAP0_SUPP_CH_WIDTH GENMASK(7, 6) #define S1G_SUPP_CH_WIDTH_2 0 #define S1G_SUPP_CH_WIDTH_4 1 #define S1G_SUPP_CH_WIDTH_8 2 #define S1G_SUPP_CH_WIDTH_16 3 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \ cap[0])) << 1) #define S1G_CAP1_RX_LDPC BIT(0) #define S1G_CAP1_TX_STBC BIT(1) #define S1G_CAP1_RX_STBC BIT(2) #define S1G_CAP1_SU_BFER BIT(3) #define S1G_CAP1_SU_BFEE BIT(4) #define S1G_CAP1_BFEE_STS GENMASK(7, 5) #define S1G_CAP2_SOUNDING_DIMENSIONS GENMASK(2, 0) #define S1G_CAP2_MU_BFER BIT(3) #define S1G_CAP2_MU_BFEE BIT(4) #define S1G_CAP2_PLUS_HTC_VHT BIT(5) #define S1G_CAP2_TRAVELING_PILOT GENMASK(7, 6) #define S1G_CAP3_RD_RESPONDER BIT(0) #define S1G_CAP3_HT_DELAYED_BA BIT(1) #define S1G_CAP3_MAX_MPDU_LEN BIT(2) #define S1G_CAP3_MAX_AMPDU_LEN_EXP GENMASK(4, 3) #define S1G_CAP3_MIN_MPDU_START GENMASK(7, 5) #define S1G_CAP4_UPLINK_SYNC BIT(0) #define S1G_CAP4_DYNAMIC_AID BIT(1) #define S1G_CAP4_BAT BIT(2) #define S1G_CAP4_TIME_ADE BIT(3) #define S1G_CAP4_NON_TIM BIT(4) #define S1G_CAP4_GROUP_AID BIT(5) #define S1G_CAP4_STA_TYPE GENMASK(7, 6) #define S1G_CAP5_CENT_AUTH_CONTROL BIT(0) #define S1G_CAP5_DIST_AUTH_CONTROL BIT(1) #define S1G_CAP5_AMSDU BIT(2) #define S1G_CAP5_AMPDU BIT(3) #define S1G_CAP5_ASYMMETRIC_BA BIT(4) #define S1G_CAP5_FLOW_CONTROL BIT(5) #define S1G_CAP5_SECTORIZED_BEAM GENMASK(7, 6) #define S1G_CAP6_OBSS_MITIGATION BIT(0) #define S1G_CAP6_FRAGMENT_BA BIT(1) #define S1G_CAP6_NDP_PS_POLL BIT(2) #define S1G_CAP6_RAW_OPERATION BIT(3) #define S1G_CAP6_PAGE_SLICING BIT(4) #define S1G_CAP6_TXOP_SHARING_IMP_ACK BIT(5) #define S1G_CAP6_VHT_LINK_ADAPT GENMASK(7, 6) #define S1G_CAP7_TACK_AS_PS_POLL BIT(0) #define S1G_CAP7_DUP_1MHZ BIT(1) #define S1G_CAP7_MCS_NEGOTIATION BIT(2) #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE BIT(3) #define S1G_CAP7_NDP_BFING_REPORT_POLL BIT(4) #define S1G_CAP7_UNSOLICITED_DYN_AID BIT(5) #define S1G_CAP7_SECTOR_TRAINING_OPERATION BIT(6) #define S1G_CAP7_TEMP_PS_MODE_SWITCH BIT(7) #define S1G_CAP8_TWT_GROUPING BIT(0) #define S1G_CAP8_BDT BIT(1) #define S1G_CAP8_COLOR GENMASK(4, 2) #define S1G_CAP8_TWT_REQUEST BIT(5) #define S1G_CAP8_TWT_RESPOND BIT(6) #define S1G_CAP8_PV1_FRAME BIT(7) #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0) #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ BIT(0) #define S1G_OPER_CH_WIDTH_OPER GENMASK(4, 1) #define LISTEN_INT_USF GENMASK(15, 14) #define LISTEN_INT_UI GENMASK(13, 0) #define IEEE80211_MAX_USF FIELD_MAX(LISTEN_INT_USF) #define IEEE80211_MAX_UI FIELD_MAX(LISTEN_INT_UI) /* Authentication algorithms */ #define WLAN_AUTH_OPEN 0 #define WLAN_AUTH_SHARED_KEY 1 #define WLAN_AUTH_FT 2 #define WLAN_AUTH_SAE 3 #define WLAN_AUTH_FILS_SK 4 #define WLAN_AUTH_FILS_SK_PFS 5 #define WLAN_AUTH_FILS_PK 6 #define WLAN_AUTH_LEAP 128 #define WLAN_AUTH_CHALLENGE_LEN 128 #define WLAN_CAPABILITY_ESS (1<<0) #define WLAN_CAPABILITY_IBSS (1<<1) /* * A mesh STA sets the ESS and IBSS capability bits to zero. * however, this holds true for p2p probe responses (in the p2p_find * phase) as well. */ #define WLAN_CAPABILITY_IS_STA_BSS(cap) \ (!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS))) #define WLAN_CAPABILITY_CF_POLLABLE (1<<2) #define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3) #define WLAN_CAPABILITY_PRIVACY (1<<4) #define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5) #define WLAN_CAPABILITY_PBCC (1<<6) #define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7) /* 802.11h */ #define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8) #define WLAN_CAPABILITY_QOS (1<<9) #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10) #define WLAN_CAPABILITY_APSD (1<<11) #define WLAN_CAPABILITY_RADIO_MEASURE (1<<12) #define WLAN_CAPABILITY_DSSS_OFDM (1<<13) #define WLAN_CAPABILITY_DEL_BACK (1<<14) #define WLAN_CAPABILITY_IMM_BACK (1<<15) /* DMG (60gHz) 802.11ad */ /* type - bits 0..1 */ #define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0) #define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */ #define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */ #define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */ #define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2) #define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3) #define WLAN_CAPABILITY_DMG_PRIVACY (1<<4) #define WLAN_CAPABILITY_DMG_ECPAC (1<<5) #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8) #define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12) /* measurement */ #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0) #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1) #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2) #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI 8 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC 11 /* 802.11g ERP information element */ #define WLAN_ERP_NON_ERP_PRESENT (1<<0) #define WLAN_ERP_USE_PROTECTION (1<<1) #define WLAN_ERP_BARKER_PREAMBLE (1<<2) /* WLAN_ERP_BARKER_PREAMBLE values */ enum { WLAN_ERP_PREAMBLE_SHORT = 0, WLAN_ERP_PREAMBLE_LONG = 1, }; /* Band ID, 802.11ad #8.4.1.45 */ enum { IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */ IEEE80211_BANDID_SUB1 = 1, /* Sub-1 GHz (excluding TV white spaces) */ IEEE80211_BANDID_2G = 2, /* 2.4 GHz */ IEEE80211_BANDID_3G = 3, /* 3.6 GHz */ IEEE80211_BANDID_5G = 4, /* 4.9 and 5 GHz */ IEEE80211_BANDID_60G = 5, /* 60 GHz */ }; /* Status codes */ enum ieee80211_statuscode { WLAN_STATUS_SUCCESS = 0, WLAN_STATUS_UNSPECIFIED_FAILURE = 1, WLAN_STATUS_CAPS_UNSUPPORTED = 10, WLAN_STATUS_REASSOC_NO_ASSOC = 11, WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12, WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13, WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14, WLAN_STATUS_CHALLENGE_FAIL = 15, WLAN_STATUS_AUTH_TIMEOUT = 16, WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17, WLAN_STATUS_ASSOC_DENIED_RATES = 18, /* 802.11b */ WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19, WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20, WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21, /* 802.11h */ WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22, WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23, WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24, /* 802.11g */ WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25, WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26, /* 802.11w */ WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30, WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31, /* 802.11i */ WLAN_STATUS_INVALID_IE = 40, WLAN_STATUS_INVALID_GROUP_CIPHER = 41, WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42, WLAN_STATUS_INVALID_AKMP = 43, WLAN_STATUS_UNSUPP_RSN_VERSION = 44, WLAN_STATUS_INVALID_RSN_IE_CAP = 45, WLAN_STATUS_CIPHER_SUITE_REJECTED = 46, /* 802.11e */ WLAN_STATUS_UNSPECIFIED_QOS = 32, WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33, WLAN_STATUS_ASSOC_DENIED_LOWACK = 34, WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35, WLAN_STATUS_REQUEST_DECLINED = 37, WLAN_STATUS_INVALID_QOS_PARAM = 38, WLAN_STATUS_CHANGE_TSPEC = 39, WLAN_STATUS_WAIT_TS_DELAY = 47, WLAN_STATUS_NO_DIRECT_LINK = 48, WLAN_STATUS_STA_NOT_PRESENT = 49, WLAN_STATUS_STA_NOT_QSTA = 50, /* 802.11s */ WLAN_STATUS_ANTI_CLOG_REQUIRED = 76, WLAN_STATUS_FCG_NOT_SUPP = 78, WLAN_STATUS_STA_NO_TBTT = 78, /* 802.11ad */ WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39, WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47, WLAN_STATUS_REJECT_WITH_SCHEDULE = 83, WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86, WLAN_STATUS_PERFORMING_FST_NOW = 87, WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88, WLAN_STATUS_REJECT_U_PID_SETTING = 89, WLAN_STATUS_REJECT_DSE_BAND = 96, WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99, WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103, /* 802.11ai */ WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108, WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109, WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126, WLAN_STATUS_SAE_PK = 127, }; /* Reason codes */ enum ieee80211_reasoncode { WLAN_REASON_UNSPECIFIED = 1, WLAN_REASON_PREV_AUTH_NOT_VALID = 2, WLAN_REASON_DEAUTH_LEAVING = 3, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4, WLAN_REASON_DISASSOC_AP_BUSY = 5, WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6, WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7, WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8, WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9, /* 802.11h */ WLAN_REASON_DISASSOC_BAD_POWER = 10, WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11, /* 802.11i */ WLAN_REASON_INVALID_IE = 13, WLAN_REASON_MIC_FAILURE = 14, WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15, WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16, WLAN_REASON_IE_DIFFERENT = 17, WLAN_REASON_INVALID_GROUP_CIPHER = 18, WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19, WLAN_REASON_INVALID_AKMP = 20, WLAN_REASON_UNSUPP_RSN_VERSION = 21, WLAN_REASON_INVALID_RSN_IE_CAP = 22, WLAN_REASON_IEEE8021X_FAILED = 23, WLAN_REASON_CIPHER_SUITE_REJECTED = 24, /* TDLS (802.11z) */ WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25, WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26, /* 802.11e */ WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32, WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33, WLAN_REASON_DISASSOC_LOW_ACK = 34, WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35, WLAN_REASON_QSTA_LEAVE_QBSS = 36, WLAN_REASON_QSTA_NOT_USE = 37, WLAN_REASON_QSTA_REQUIRE_SETUP = 38, WLAN_REASON_QSTA_TIMEOUT = 39, WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45, /* 802.11s */ WLAN_REASON_MESH_PEER_CANCELED = 52, WLAN_REASON_MESH_MAX_PEERS = 53, WLAN_REASON_MESH_CONFIG = 54, WLAN_REASON_MESH_CLOSE = 55, WLAN_REASON_MESH_MAX_RETRIES = 56, WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57, WLAN_REASON_MESH_INVALID_GTK = 58, WLAN_REASON_MESH_INCONSISTENT_PARAM = 59, WLAN_REASON_MESH_INVALID_SECURITY = 60, WLAN_REASON_MESH_PATH_ERROR = 61, WLAN_REASON_MESH_PATH_NOFORWARD = 62, WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63, WLAN_REASON_MAC_EXISTS_IN_MBSS = 64, WLAN_REASON_MESH_CHAN_REGULATORY = 65, WLAN_REASON_MESH_CHAN = 66, }; /* Information Element IDs */ enum ieee80211_eid { WLAN_EID_SSID = 0, WLAN_EID_SUPP_RATES = 1, WLAN_EID_FH_PARAMS = 2, /* reserved now */ WLAN_EID_DS_PARAMS = 3, WLAN_EID_CF_PARAMS = 4, WLAN_EID_TIM = 5, WLAN_EID_IBSS_PARAMS = 6, WLAN_EID_COUNTRY = 7, /* 8, 9 reserved */ WLAN_EID_REQUEST = 10, WLAN_EID_QBSS_LOAD = 11, WLAN_EID_EDCA_PARAM_SET = 12, WLAN_EID_TSPEC = 13, WLAN_EID_TCLAS = 14, WLAN_EID_SCHEDULE = 15, WLAN_EID_CHALLENGE = 16, /* 17-31 reserved for challenge text extension */ WLAN_EID_PWR_CONSTRAINT = 32, WLAN_EID_PWR_CAPABILITY = 33, WLAN_EID_TPC_REQUEST = 34, WLAN_EID_TPC_REPORT = 35, WLAN_EID_SUPPORTED_CHANNELS = 36, WLAN_EID_CHANNEL_SWITCH = 37, WLAN_EID_MEASURE_REQUEST = 38, WLAN_EID_MEASURE_REPORT = 39, WLAN_EID_QUIET = 40, WLAN_EID_IBSS_DFS = 41, WLAN_EID_ERP_INFO = 42, WLAN_EID_TS_DELAY = 43, WLAN_EID_TCLAS_PROCESSING = 44, WLAN_EID_HT_CAPABILITY = 45, WLAN_EID_QOS_CAPA = 46, /* 47 reserved for Broadcom */ WLAN_EID_RSN = 48, WLAN_EID_802_15_COEX = 49, WLAN_EID_EXT_SUPP_RATES = 50, WLAN_EID_AP_CHAN_REPORT = 51, WLAN_EID_NEIGHBOR_REPORT = 52, WLAN_EID_RCPI = 53, WLAN_EID_MOBILITY_DOMAIN = 54, WLAN_EID_FAST_BSS_TRANSITION = 55, WLAN_EID_TIMEOUT_INTERVAL = 56, WLAN_EID_RIC_DATA = 57, WLAN_EID_DSE_REGISTERED_LOCATION = 58, WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59, WLAN_EID_EXT_CHANSWITCH_ANN = 60, WLAN_EID_HT_OPERATION = 61, WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62, WLAN_EID_BSS_AVG_ACCESS_DELAY = 63, WLAN_EID_ANTENNA_INFO = 64, WLAN_EID_RSNI = 65, WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66, WLAN_EID_BSS_AVAILABLE_CAPACITY = 67, WLAN_EID_BSS_AC_ACCESS_DELAY = 68, WLAN_EID_TIME_ADVERTISEMENT = 69, WLAN_EID_RRM_ENABLED_CAPABILITIES = 70, WLAN_EID_MULTIPLE_BSSID = 71, WLAN_EID_BSS_COEX_2040 = 72, WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73, WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74, WLAN_EID_RIC_DESCRIPTOR = 75, WLAN_EID_MMIE = 76, WLAN_EID_ASSOC_COMEBACK_TIME = 77, WLAN_EID_EVENT_REQUEST = 78, WLAN_EID_EVENT_REPORT = 79, WLAN_EID_DIAGNOSTIC_REQUEST = 80, WLAN_EID_DIAGNOSTIC_REPORT = 81, WLAN_EID_LOCATION_PARAMS = 82, WLAN_EID_NON_TX_BSSID_CAP = 83, WLAN_EID_SSID_LIST = 84, WLAN_EID_MULTI_BSSID_IDX = 85, WLAN_EID_FMS_DESCRIPTOR = 86, WLAN_EID_FMS_REQUEST = 87, WLAN_EID_FMS_RESPONSE = 88, WLAN_EID_QOS_TRAFFIC_CAPA = 89, WLAN_EID_BSS_MAX_IDLE_PERIOD = 90, WLAN_EID_TSF_REQUEST = 91, WLAN_EID_TSF_RESPOSNE = 92, WLAN_EID_WNM_SLEEP_MODE = 93, WLAN_EID_TIM_BCAST_REQ = 94, WLAN_EID_TIM_BCAST_RESP = 95, WLAN_EID_COLL_IF_REPORT = 96, WLAN_EID_CHANNEL_USAGE = 97, WLAN_EID_TIME_ZONE = 98, WLAN_EID_DMS_REQUEST = 99, WLAN_EID_DMS_RESPONSE = 100, WLAN_EID_LINK_ID = 101, WLAN_EID_WAKEUP_SCHEDUL = 102, /* 103 reserved */ WLAN_EID_CHAN_SWITCH_TIMING = 104, WLAN_EID_PTI_CONTROL = 105, WLAN_EID_PU_BUFFER_STATUS = 106, WLAN_EID_INTERWORKING = 107, WLAN_EID_ADVERTISEMENT_PROTOCOL = 108, WLAN_EID_EXPEDITED_BW_REQ = 109, WLAN_EID_QOS_MAP_SET = 110, WLAN_EID_ROAMING_CONSORTIUM = 111, WLAN_EID_EMERGENCY_ALERT = 112, WLAN_EID_MESH_CONFIG = 113, WLAN_EID_MESH_ID = 114, WLAN_EID_LINK_METRIC_REPORT = 115, WLAN_EID_CONGESTION_NOTIFICATION = 116, WLAN_EID_PEER_MGMT = 117, WLAN_EID_CHAN_SWITCH_PARAM = 118, WLAN_EID_MESH_AWAKE_WINDOW = 119, WLAN_EID_BEACON_TIMING = 120, WLAN_EID_MCCAOP_SETUP_REQ = 121, WLAN_EID_MCCAOP_SETUP_RESP = 122, WLAN_EID_MCCAOP_ADVERT = 123, WLAN_EID_MCCAOP_TEARDOWN = 124, WLAN_EID_GANN = 125, WLAN_EID_RANN = 126, WLAN_EID_EXT_CAPABILITY = 127, /* 128, 129 reserved for Agere */ WLAN_EID_PREQ = 130, WLAN_EID_PREP = 131, WLAN_EID_PERR = 132, /* 133-136 reserved for Cisco */ WLAN_EID_PXU = 137, WLAN_EID_PXUC = 138, WLAN_EID_AUTH_MESH_PEER_EXCH = 139, WLAN_EID_MIC = 140, WLAN_EID_DESTINATION_URI = 141, WLAN_EID_UAPSD_COEX = 142, WLAN_EID_WAKEUP_SCHEDULE = 143, WLAN_EID_EXT_SCHEDULE = 144, WLAN_EID_STA_AVAILABILITY = 145, WLAN_EID_DMG_TSPEC = 146, WLAN_EID_DMG_AT = 147, WLAN_EID_DMG_CAP = 148, /* 149 reserved for Cisco */ WLAN_EID_CISCO_VENDOR_SPECIFIC = 150, WLAN_EID_DMG_OPERATION = 151, WLAN_EID_DMG_BSS_PARAM_CHANGE = 152, WLAN_EID_DMG_BEAM_REFINEMENT = 153, WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154, /* 155-156 reserved for Cisco */ WLAN_EID_AWAKE_WINDOW = 157, WLAN_EID_MULTI_BAND = 158, WLAN_EID_ADDBA_EXT = 159, WLAN_EID_NEXT_PCP_LIST = 160, WLAN_EID_PCP_HANDOVER = 161, WLAN_EID_DMG_LINK_MARGIN = 162, WLAN_EID_SWITCHING_STREAM = 163, WLAN_EID_SESSION_TRANSITION = 164, WLAN_EID_DYN_TONE_PAIRING_REPORT = 165, WLAN_EID_CLUSTER_REPORT = 166, WLAN_EID_RELAY_CAP = 167, WLAN_EID_RELAY_XFER_PARAM_SET = 168, WLAN_EID_BEAM_LINK_MAINT = 169, WLAN_EID_MULTIPLE_MAC_ADDR = 170, WLAN_EID_U_PID = 171, WLAN_EID_DMG_LINK_ADAPT_ACK = 172, /* 173 reserved for Symbol */ WLAN_EID_MCCAOP_ADV_OVERVIEW = 174, WLAN_EID_QUIET_PERIOD_REQ = 175, /* 176 reserved for Symbol */ WLAN_EID_QUIET_PERIOD_RESP = 177, /* 178-179 reserved for Symbol */ /* 180 reserved for ISO/IEC 20011 */ WLAN_EID_EPAC_POLICY = 182, WLAN_EID_CLISTER_TIME_OFF = 183, WLAN_EID_INTER_AC_PRIO = 184, WLAN_EID_SCS_DESCRIPTOR = 185, WLAN_EID_QLOAD_REPORT = 186, WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187, WLAN_EID_HL_STREAM_ID = 188, WLAN_EID_GCR_GROUP_ADDR = 189, WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190, WLAN_EID_VHT_CAPABILITY = 191, WLAN_EID_VHT_OPERATION = 192, WLAN_EID_EXTENDED_BSS_LOAD = 193, WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194, WLAN_EID_VHT_TX_POWER_ENVELOPE = 195, WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196, WLAN_EID_AID = 197, WLAN_EID_QUIET_CHANNEL = 198, WLAN_EID_OPMODE_NOTIF = 199, WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201, WLAN_EID_AID_REQUEST = 210, WLAN_EID_AID_RESPONSE = 211, WLAN_EID_S1G_BCN_COMPAT = 213, WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214, WLAN_EID_S1G_CAPABILITIES = 217, WLAN_EID_VENDOR_SPECIFIC = 221, WLAN_EID_QOS_PARAMETER = 222, WLAN_EID_S1G_OPERATION = 232, WLAN_EID_CAG_NUMBER = 237, WLAN_EID_AP_CSN = 239, WLAN_EID_FILS_INDICATION = 240, WLAN_EID_DILS = 241, WLAN_EID_FRAGMENT = 242, WLAN_EID_RSNX = 244, WLAN_EID_EXTENSION = 255 }; /* Element ID Extensions for Element ID 255 */ enum ieee80211_eid_ext { WLAN_EID_EXT_ASSOC_DELAY_INFO = 1, WLAN_EID_EXT_FILS_REQ_PARAMS = 2, WLAN_EID_EXT_FILS_KEY_CONFIRM = 3, WLAN_EID_EXT_FILS_SESSION = 4, WLAN_EID_EXT_FILS_HLP_CONTAINER = 5, WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6, WLAN_EID_EXT_KEY_DELIVERY = 7, WLAN_EID_EXT_FILS_WRAPPED_DATA = 8, WLAN_EID_EXT_FILS_PUBLIC_KEY = 12, WLAN_EID_EXT_FILS_NONCE = 13, WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14, WLAN_EID_EXT_HE_CAPABILITY = 35, WLAN_EID_EXT_HE_OPERATION = 36, WLAN_EID_EXT_UORA = 37, WLAN_EID_EXT_HE_MU_EDCA = 38, WLAN_EID_EXT_HE_SPR = 39, WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41, WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42, WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43, WLAN_EID_EXT_ESS_REPORT = 45, WLAN_EID_EXT_OPS = 46, WLAN_EID_EXT_HE_BSS_LOAD = 47, WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52, WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55, WLAN_EID_EXT_NON_INHERITANCE = 56, WLAN_EID_EXT_KNOWN_BSSID = 57, WLAN_EID_EXT_SHORT_SSID_LIST = 58, WLAN_EID_EXT_HE_6GHZ_CAPA = 59, WLAN_EID_EXT_UL_MU_POWER_CAPA = 60, }; /* Action category code */ enum ieee80211_category { WLAN_CATEGORY_SPECTRUM_MGMT = 0, WLAN_CATEGORY_QOS = 1, WLAN_CATEGORY_DLS = 2, WLAN_CATEGORY_BACK = 3, WLAN_CATEGORY_PUBLIC = 4, WLAN_CATEGORY_RADIO_MEASUREMENT = 5, WLAN_CATEGORY_HT = 7, WLAN_CATEGORY_SA_QUERY = 8, WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9, WLAN_CATEGORY_WNM = 10, WLAN_CATEGORY_WNM_UNPROTECTED = 11, WLAN_CATEGORY_TDLS = 12, WLAN_CATEGORY_MESH_ACTION = 13, WLAN_CATEGORY_MULTIHOP_ACTION = 14, WLAN_CATEGORY_SELF_PROTECTED = 15, WLAN_CATEGORY_DMG = 16, WLAN_CATEGORY_WMM = 17, WLAN_CATEGORY_FST = 18, WLAN_CATEGORY_UNPROT_DMG = 20, WLAN_CATEGORY_VHT = 21, WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126, WLAN_CATEGORY_VENDOR_SPECIFIC = 127, }; /* SPECTRUM_MGMT action code */ enum ieee80211_spectrum_mgmt_actioncode { WLAN_ACTION_SPCT_MSR_REQ = 0, WLAN_ACTION_SPCT_MSR_RPRT = 1, WLAN_ACTION_SPCT_TPC_REQ = 2, WLAN_ACTION_SPCT_TPC_RPRT = 3, WLAN_ACTION_SPCT_CHL_SWITCH = 4, }; /* HT action codes */ enum ieee80211_ht_actioncode { WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0, WLAN_HT_ACTION_SMPS = 1, WLAN_HT_ACTION_PSMP = 2, WLAN_HT_ACTION_PCO_PHASE = 3, WLAN_HT_ACTION_CSI = 4, WLAN_HT_ACTION_NONCOMPRESSED_BF = 5, WLAN_HT_ACTION_COMPRESSED_BF = 6, WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7, }; /* VHT action codes */ enum ieee80211_vht_actioncode { WLAN_VHT_ACTION_COMPRESSED_BF = 0, WLAN_VHT_ACTION_GROUPID_MGMT = 1, WLAN_VHT_ACTION_OPMODE_NOTIF = 2, }; /* Self Protected Action codes */ enum ieee80211_self_protected_actioncode { WLAN_SP_RESERVED = 0, WLAN_SP_MESH_PEERING_OPEN = 1, WLAN_SP_MESH_PEERING_CONFIRM = 2, WLAN_SP_MESH_PEERING_CLOSE = 3, WLAN_SP_MGK_INFORM = 4, WLAN_SP_MGK_ACK = 5, }; /* Mesh action codes */ enum ieee80211_mesh_actioncode { WLAN_MESH_ACTION_LINK_METRIC_REPORT, WLAN_MESH_ACTION_HWMP_PATH_SELECTION, WLAN_MESH_ACTION_GATE_ANNOUNCEMENT, WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION, WLAN_MESH_ACTION_MCCA_SETUP_REQUEST, WLAN_MESH_ACTION_MCCA_SETUP_REPLY, WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST, WLAN_MESH_ACTION_MCCA_ADVERTISEMENT, WLAN_MESH_ACTION_MCCA_TEARDOWN, WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST, WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE, }; /* Security key length */ enum ieee80211_key_len { WLAN_KEY_LEN_WEP40 = 5, WLAN_KEY_LEN_WEP104 = 13, WLAN_KEY_LEN_CCMP = 16, WLAN_KEY_LEN_CCMP_256 = 32, WLAN_KEY_LEN_TKIP = 32, WLAN_KEY_LEN_AES_CMAC = 16, WLAN_KEY_LEN_SMS4 = 32, WLAN_KEY_LEN_GCMP = 16, WLAN_KEY_LEN_GCMP_256 = 32, WLAN_KEY_LEN_BIP_CMAC_256 = 32, WLAN_KEY_LEN_BIP_GMAC_128 = 16, WLAN_KEY_LEN_BIP_GMAC_256 = 32, }; #define IEEE80211_WEP_IV_LEN 4 #define IEEE80211_WEP_ICV_LEN 4 #define IEEE80211_CCMP_HDR_LEN 8 #define IEEE80211_CCMP_MIC_LEN 8 #define IEEE80211_CCMP_PN_LEN 6 #define IEEE80211_CCMP_256_HDR_LEN 8 #define IEEE80211_CCMP_256_MIC_LEN 16 #define IEEE80211_CCMP_256_PN_LEN 6 #define IEEE80211_TKIP_IV_LEN 8 #define IEEE80211_TKIP_ICV_LEN 4 #define IEEE80211_CMAC_PN_LEN 6 #define IEEE80211_GMAC_PN_LEN 6 #define IEEE80211_GCMP_HDR_LEN 8 #define IEEE80211_GCMP_MIC_LEN 16 #define IEEE80211_GCMP_PN_LEN 6 #define FILS_NONCE_LEN 16 #define FILS_MAX_KEK_LEN 64 #define FILS_ERP_MAX_USERNAME_LEN 16 #define FILS_ERP_MAX_REALM_LEN 253 #define FILS_ERP_MAX_RRK_LEN 64 #define PMK_MAX_LEN 64 #define SAE_PASSWORD_MAX_LEN 128 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */ enum ieee80211_pub_actioncode { WLAN_PUB_ACTION_20_40_BSS_COEX = 0, WLAN_PUB_ACTION_DSE_ENABLEMENT = 1, WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2, WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3, WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4, WLAN_PUB_ACTION_DSE_MSMT_REQ = 5, WLAN_PUB_ACTION_DSE_MSMT_RESP = 6, WLAN_PUB_ACTION_MSMT_PILOT = 7, WLAN_PUB_ACTION_DSE_PC = 8, WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9, WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10, WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11, WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12, WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13, WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14, WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15, WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16, WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17, WLAN_PUB_ACTION_QMF_POLICY = 18, WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19, WLAN_PUB_ACTION_QLOAD_REQUEST = 20, WLAN_PUB_ACTION_QLOAD_REPORT = 21, WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22, WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23, WLAN_PUB_ACTION_PUBLIC_KEY = 24, WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25, WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26, WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27, WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28, WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29, WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30, WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31, WLAN_PUB_ACTION_FTM_REQUEST = 32, WLAN_PUB_ACTION_FTM = 33, WLAN_PUB_ACTION_FILS_DISCOVERY = 34, }; /* TDLS action codes */ enum ieee80211_tdls_actioncode { WLAN_TDLS_SETUP_REQUEST = 0, WLAN_TDLS_SETUP_RESPONSE = 1, WLAN_TDLS_SETUP_CONFIRM = 2, WLAN_TDLS_TEARDOWN = 3, WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4, WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5, WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6, WLAN_TDLS_PEER_PSM_REQUEST = 7, WLAN_TDLS_PEER_PSM_RESPONSE = 8, WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9, WLAN_TDLS_DISCOVERY_REQUEST = 10, }; /* Extended Channel Switching capability to be set in the 1st byte of * the @WLAN_EID_EXT_CAPABILITY information element */ #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING BIT(2) /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the * @WLAN_EID_EXT_CAPABILITY information element */ #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT BIT(6) /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */ #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA BIT(4) #define WLAN_EXT_CAPA4_TDLS_PEER_PSM BIT(5) #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH BIT(6) /* Interworking capabilities are set in 7th bit of 4th byte of the * @WLAN_EID_EXT_CAPABILITY information element */ #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED BIT(7) /* * TDLS capabililites to be enabled in the 5th byte of the * @WLAN_EID_EXT_CAPABILITY information element */ #define WLAN_EXT_CAPA5_TDLS_ENABLED BIT(5) #define WLAN_EXT_CAPA5_TDLS_PROHIBITED BIT(6) #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED BIT(7) #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED BIT(5) #define WLAN_EXT_CAPA8_OPMODE_NOTIF BIT(6) /* Defines the maximal number of MSDUs in an A-MSDU. */ #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB BIT(7) #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB BIT(0) /* * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY * information element */ #define WLAN_EXT_CAPA9_FTM_INITIATOR BIT(7) /* Defines support for TWT Requester and TWT Responder */ #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT BIT(5) #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT BIT(6) /* * When set, indicates that the AP is able to tolerate 26-tone RU UL * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the * 26-tone RU UL OFDMA transmissions as radar pulses). */ #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7) /* Defines support for enhanced multi-bssid advertisement*/ #define WLAN_EXT_CAPA11_EMA_SUPPORT BIT(3) /* TDLS specific payload type in the LLC/SNAP header */ #define WLAN_TDLS_SNAP_RFTYPE 0x2 /* BSS Coex IE information field bits */ #define WLAN_BSS_COEX_INFORMATION_REQUEST BIT(0) /** * enum ieee80211_mesh_sync_method - mesh synchronization method identifier * * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method * that will be specified in a vendor specific information element */ enum ieee80211_mesh_sync_method { IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1, IEEE80211_SYNC_METHOD_VENDOR = 255, }; /** * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier * * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will * be specified in a vendor specific information element */ enum ieee80211_mesh_path_protocol { IEEE80211_PATH_PROTOCOL_HWMP = 1, IEEE80211_PATH_PROTOCOL_VENDOR = 255, }; /** * enum ieee80211_mesh_path_metric - mesh path selection metric identifier * * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be * specified in a vendor specific information element */ enum ieee80211_mesh_path_metric { IEEE80211_PATH_METRIC_AIRTIME = 1, IEEE80211_PATH_METRIC_VENDOR = 255, }; /** * enum ieee80211_root_mode_identifier - root mesh STA mode identifier * * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode * * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default) * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than * this value * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports * the proactive PREQ with proactive PREP subfield set to 0 * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA * supports the proactive PREQ with proactive PREP subfield set to 1 * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports * the proactive RANN */ enum ieee80211_root_mode_identifier { IEEE80211_ROOTMODE_NO_ROOT = 0, IEEE80211_ROOTMODE_ROOT = 1, IEEE80211_PROACTIVE_PREQ_NO_PREP = 2, IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3, IEEE80211_PROACTIVE_RANN = 4, }; /* * IEEE 802.11-2007 7.3.2.9 Country information element * * Minimum length is 8 octets, ie len must be evenly * divisible by 2 */ /* Although the spec says 8 I'm seeing 6 in practice */ #define IEEE80211_COUNTRY_IE_MIN_LEN 6 /* The Country String field of the element shall be 3 octets in length */ #define IEEE80211_COUNTRY_STRING_LEN 3 /* * For regulatory extension stuff see IEEE 802.11-2007 * Annex I (page 1141) and Annex J (page 1147). Also * review 7.3.2.9. * * When dot11RegulatoryClassesRequired is true and the * first_channel/reg_extension_id is >= 201 then the IE * compromises of the 'ext' struct represented below: * * - Regulatory extension ID - when generating IE this just needs * to be monotonically increasing for each triplet passed in * the IE * - Regulatory class - index into set of rules * - Coverage class - index into air propagation time (Table 7-27), * in microseconds, you can compute the air propagation time from * the index by multiplying by 3, so index 10 yields a propagation * of 10 us. Valid values are 0-31, values 32-255 are not defined * yet. A value of 0 inicates air propagation of <= 1 us. * * See also Table I.2 for Emission limit sets and table * I.3 for Behavior limit sets. Table J.1 indicates how to map * a reg_class to an emission limit set and behavior limit set. */ #define IEEE80211_COUNTRY_EXTENSION_ID 201 /* * Channels numbers in the IE must be monotonically increasing * if dot11RegulatoryClassesRequired is not true. * * If dot11RegulatoryClassesRequired is true consecutive * subband triplets following a regulatory triplet shall * have monotonically increasing first_channel number fields. * * Channel numbers shall not overlap. * * Note that max_power is signed. */ struct ieee80211_country_ie_triplet { union { struct { u8 first_channel; u8 num_channels; s8 max_power; } __packed chans; struct { u8 reg_extension_id; u8 reg_class; u8 coverage_class; } __packed ext; }; } __packed; enum ieee80211_timeout_interval_type { WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */, WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */, WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */, }; /** * struct ieee80211_timeout_interval_ie - Timeout Interval element * @type: type, see &enum ieee80211_timeout_interval_type * @value: timeout interval value */ struct ieee80211_timeout_interval_ie { u8 type; __le32 value; } __packed; /** * enum ieee80211_idle_options - BSS idle options * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN * protected frame to the AP to reset the idle timer at the AP for * the station. */ enum ieee80211_idle_options { WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0), }; /** * struct ieee80211_bss_max_idle_period_ie * * This structure refers to "BSS Max idle period element" * * @max_idle_period: indicates the time period during which a station can * refrain from transmitting frames to its associated AP without being * disassociated. In units of 1000 TUs. * @idle_options: indicates the options associated with the BSS idle capability * as specified in &enum ieee80211_idle_options. */ struct ieee80211_bss_max_idle_period_ie { __le16 max_idle_period; u8 idle_options; } __packed; /* BACK action code */ enum ieee80211_back_actioncode { WLAN_ACTION_ADDBA_REQ = 0, WLAN_ACTION_ADDBA_RESP = 1, WLAN_ACTION_DELBA = 2, }; /* BACK (block-ack) parties */ enum ieee80211_back_parties { WLAN_BACK_RECIPIENT = 0, WLAN_BACK_INITIATOR = 1, }; /* SA Query action */ enum ieee80211_sa_query_action { WLAN_ACTION_SA_QUERY_REQUEST = 0, WLAN_ACTION_SA_QUERY_RESPONSE = 1, }; /** * struct ieee80211_bssid_index * * This structure refers to "Multiple BSSID-index element" * * @bssid_index: BSSID index * @dtim_period: optional, overrides transmitted BSS dtim period * @dtim_count: optional, overrides transmitted BSS dtim count */ struct ieee80211_bssid_index { u8 bssid_index; u8 dtim_period; u8 dtim_count; }; /** * struct ieee80211_multiple_bssid_configuration * * This structure refers to "Multiple BSSID Configuration element" * * @bssid_count: total number of active BSSIDs in the set * @profile_periodicity: the least number of beacon frames need to be received * in order to discover all the nontransmitted BSSIDs in the set. */ struct ieee80211_multiple_bssid_configuration { u8 bssid_count; u8 profile_periodicity; }; #define SUITE(oui, id) (((oui) << 8) | (id)) /* cipher suite selectors */ #define WLAN_CIPHER_SUITE_USE_GROUP SUITE(0x000FAC, 0) #define WLAN_CIPHER_SUITE_WEP40 SUITE(0x000FAC, 1) #define WLAN_CIPHER_SUITE_TKIP SUITE(0x000FAC, 2) /* reserved: SUITE(0x000FAC, 3) */ #define WLAN_CIPHER_SUITE_CCMP SUITE(0x000FAC, 4) #define WLAN_CIPHER_SUITE_WEP104 SUITE(0x000FAC, 5) #define WLAN_CIPHER_SUITE_AES_CMAC SUITE(0x000FAC, 6) #define WLAN_CIPHER_SUITE_GCMP SUITE(0x000FAC, 8) #define WLAN_CIPHER_SUITE_GCMP_256 SUITE(0x000FAC, 9) #define WLAN_CIPHER_SUITE_CCMP_256 SUITE(0x000FAC, 10) #define WLAN_CIPHER_SUITE_BIP_GMAC_128 SUITE(0x000FAC, 11) #define WLAN_CIPHER_SUITE_BIP_GMAC_256 SUITE(0x000FAC, 12) #define WLAN_CIPHER_SUITE_BIP_CMAC_256 SUITE(0x000FAC, 13) #define WLAN_CIPHER_SUITE_SMS4 SUITE(0x001472, 1) /* AKM suite selectors */ #define WLAN_AKM_SUITE_8021X SUITE(0x000FAC, 1) #define WLAN_AKM_SUITE_PSK SUITE(0x000FAC, 2) #define WLAN_AKM_SUITE_FT_8021X SUITE(0x000FAC, 3) #define WLAN_AKM_SUITE_FT_PSK SUITE(0x000FAC, 4) #define WLAN_AKM_SUITE_8021X_SHA256 SUITE(0x000FAC, 5) #define WLAN_AKM_SUITE_PSK_SHA256 SUITE(0x000FAC, 6) #define WLAN_AKM_SUITE_TDLS SUITE(0x000FAC, 7) #define WLAN_AKM_SUITE_SAE SUITE(0x000FAC, 8) #define WLAN_AKM_SUITE_FT_OVER_SAE SUITE(0x000FAC, 9) #define WLAN_AKM_SUITE_AP_PEER_KEY SUITE(0x000FAC, 10) #define WLAN_AKM_SUITE_8021X_SUITE_B SUITE(0x000FAC, 11) #define WLAN_AKM_SUITE_8021X_SUITE_B_192 SUITE(0x000FAC, 12) #define WLAN_AKM_SUITE_FT_8021X_SHA384 SUITE(0x000FAC, 13) #define WLAN_AKM_SUITE_FILS_SHA256 SUITE(0x000FAC, 14) #define WLAN_AKM_SUITE_FILS_SHA384 SUITE(0x000FAC, 15) #define WLAN_AKM_SUITE_FT_FILS_SHA256 SUITE(0x000FAC, 16) #define WLAN_AKM_SUITE_FT_FILS_SHA384 SUITE(0x000FAC, 17) #define WLAN_AKM_SUITE_OWE SUITE(0x000FAC, 18) #define WLAN_AKM_SUITE_FT_PSK_SHA384 SUITE(0x000FAC, 19) #define WLAN_AKM_SUITE_PSK_SHA384 SUITE(0x000FAC, 20) #define WLAN_MAX_KEY_LEN 32 #define WLAN_PMK_NAME_LEN 16 #define WLAN_PMKID_LEN 16 #define WLAN_PMK_LEN_EAP_LEAP 16 #define WLAN_PMK_LEN 32 #define WLAN_PMK_LEN_SUITE_B_192 48 #define WLAN_OUI_WFA 0x506f9a #define WLAN_OUI_TYPE_WFA_P2P 9 #define WLAN_OUI_MICROSOFT 0x0050f2 #define WLAN_OUI_TYPE_MICROSOFT_WPA 1 #define WLAN_OUI_TYPE_MICROSOFT_WMM 2 #define WLAN_OUI_TYPE_MICROSOFT_WPS 4 #define WLAN_OUI_TYPE_MICROSOFT_TPC 8 /* * WMM/802.11e Tspec Element */ #define IEEE80211_WMM_IE_TSPEC_TID_MASK 0x0F #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT 1 enum ieee80211_tspec_status_code { IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0, IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1, }; struct ieee80211_tspec_ie { u8 element_id; u8 len; u8 oui[3]; u8 oui_type; u8 oui_subtype; u8 version; __le16 tsinfo; u8 tsinfo_resvd; __le16 nominal_msdu; __le16 max_msdu; __le32 min_service_int; __le32 max_service_int; __le32 inactivity_int; __le32 suspension_int; __le32 service_start_time; __le32 min_data_rate; __le32 mean_data_rate; __le32 peak_data_rate; __le32 max_burst_size; __le32 delay_bound; __le32 min_phy_rate; __le16 sba; __le16 medium_time; } __packed; struct ieee80211_he_6ghz_capa { /* uses IEEE80211_HE_6GHZ_CAP_* below */ __le16 capa; } __packed; /* HE 6 GHz band capabilities */ /* uses enum ieee80211_min_mpdu_spacing values */ #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START 0x0007 /* uses enum ieee80211_vht_max_ampdu_length_exp values */ #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP 0x0038 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */ #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN 0x00c0 /* WLAN_HT_CAP_SM_PS_* values */ #define IEEE80211_HE_6GHZ_CAP_SM_PS 0x0600 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER 0x0800 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS 0x1000 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS 0x2000 /** * ieee80211_get_qos_ctl - get pointer to qos control bytes * @hdr: the frame * * The qos ctrl bytes come after the frame_control, duration, seq_num * and 3 or 4 addresses of length ETH_ALEN. * 3 addr: 2 + 2 + 2 + 3*6 = 24 * 4 addr: 2 + 2 + 2 + 4*6 = 30 */ static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr) { if (ieee80211_has_a4(hdr->frame_control)) return (u8 *)hdr + 30; else return (u8 *)hdr + 24; } /** * ieee80211_get_tid - get qos TID * @hdr: the frame */ static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr) { u8 *qc = ieee80211_get_qos_ctl(hdr); return qc[0] & IEEE80211_QOS_CTL_TID_MASK; } /** * ieee80211_get_SA - get pointer to SA * @hdr: the frame * * Given an 802.11 frame, this function returns the offset * to the source address (SA). It does not verify that the * header is long enough to contain the address, and the * header must be long enough to contain the frame control * field. */ static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr) { if (ieee80211_has_a4(hdr->frame_control)) return hdr->addr4; if (ieee80211_has_fromds(hdr->frame_control)) return hdr->addr3; return hdr->addr2; } /** * ieee80211_get_DA - get pointer to DA * @hdr: the frame * * Given an 802.11 frame, this function returns the offset * to the destination address (DA). It does not verify that * the header is long enough to contain the address, and the * header must be long enough to contain the frame control * field. */ static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr) { if (ieee80211_has_tods(hdr->frame_control)) return hdr->addr3; else return hdr->addr1; } /** * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame * @hdr: the frame (buffer must include at least the first octet of payload) */ static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr) { if (ieee80211_is_disassoc(hdr->frame_control) || ieee80211_is_deauth(hdr->frame_control)) return true; if (ieee80211_is_action(hdr->frame_control)) { u8 *category; /* * Action frames, excluding Public Action frames, are Robust * Management Frames. However, if we are looking at a Protected * frame, skip the check since the data may be encrypted and * the frame has already been found to be a Robust Management * Frame (by the other end). */ if (ieee80211_has_protected(hdr->frame_control)) return true; category = ((u8 *) hdr) + 24; return *category != WLAN_CATEGORY_PUBLIC && *category != WLAN_CATEGORY_HT && *category != WLAN_CATEGORY_WNM_UNPROTECTED && *category != WLAN_CATEGORY_SELF_PROTECTED && *category != WLAN_CATEGORY_UNPROT_DMG && *category != WLAN_CATEGORY_VHT && *category != WLAN_CATEGORY_VENDOR_SPECIFIC; } return false; } /** * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame * @skb: the skb containing the frame, length will be checked */ static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb) { if (skb->len < IEEE80211_MIN_ACTION_SIZE) return false; return _ieee80211_is_robust_mgmt_frame((void *)skb->data); } /** * ieee80211_is_public_action - check if frame is a public action frame * @hdr: the frame * @len: length of the frame */ static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr, size_t len) { struct ieee80211_mgmt *mgmt = (void *)hdr; if (len < IEEE80211_MIN_ACTION_SIZE) return false; if (!ieee80211_is_action(hdr->frame_control)) return false; return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC; } /** * _ieee80211_is_group_privacy_action - check if frame is a group addressed * privacy action frame * @hdr: the frame */ static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr) { struct ieee80211_mgmt *mgmt = (void *)hdr; if (!ieee80211_is_action(hdr->frame_control) || !is_multicast_ether_addr(hdr->addr1)) return false; return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION || mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION; } /** * ieee80211_is_group_privacy_action - check if frame is a group addressed * privacy action frame * @skb: the skb containing the frame, length will be checked */ static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb) { if (skb->len < IEEE80211_MIN_ACTION_SIZE) return false; return _ieee80211_is_group_privacy_action((void *)skb->data); } /** * ieee80211_tu_to_usec - convert time units (TU) to microseconds * @tu: the TUs */ static inline unsigned long ieee80211_tu_to_usec(unsigned long tu) { return 1024 * tu; } /** * ieee80211_check_tim - check if AID bit is set in TIM * @tim: the TIM IE * @tim_len: length of the TIM IE * @aid: the AID to look for */ static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim, u8 tim_len, u16 aid) { u8 mask; u8 index, indexn1, indexn2; if (unlikely(!tim || tim_len < sizeof(*tim))) return false; aid &= 0x3fff; index = aid / 8; mask = 1 << (aid & 7); indexn1 = tim->bitmap_ctrl & 0xfe; indexn2 = tim_len + indexn1 - 4; if (index < indexn1 || index > indexn2) return false; index -= indexn1; return !!(tim->virtual_map[index] & mask); } /** * ieee80211_get_tdls_action - get tdls packet action (or -1, if not tdls packet) * @skb: the skb containing the frame, length will not be checked * @hdr_size: the size of the ieee80211_hdr that starts at skb->data * * This function assumes the frame is a data frame, and that the network header * is in the correct place. */ static inline int ieee80211_get_tdls_action(struct sk_buff *skb, u32 hdr_size) { if (!skb_is_nonlinear(skb) && skb->len > (skb_network_offset(skb) + 2)) { /* Point to where the indication of TDLS should start */ const u8 *tdls_data = skb_network_header(skb) - 2; if (get_unaligned_be16(tdls_data) == ETH_P_TDLS && tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE && tdls_data[3] == WLAN_CATEGORY_TDLS) return tdls_data[4]; } return -1; } /* convert time units */ #define TU_TO_JIFFIES(x) (usecs_to_jiffies((x) * 1024)) #define TU_TO_EXP_TIME(x) (jiffies + TU_TO_JIFFIES(x)) /* convert frequencies */ #define MHZ_TO_KHZ(freq) ((freq) * 1000) #define KHZ_TO_MHZ(freq) ((freq) / 1000) #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000 #define KHZ_F "%d.%03d" /* convert powers */ #define DBI_TO_MBI(gain) ((gain) * 100) #define MBI_TO_DBI(gain) ((gain) / 100) #define DBM_TO_MBM(gain) ((gain) * 100) #define MBM_TO_DBM(gain) ((gain) / 100) /** * ieee80211_action_contains_tpc - checks if the frame contains TPC element * @skb: the skb containing the frame, length will be checked * * This function checks if it's either TPC report action frame or Link * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5 * and 8.5.7.5 accordingly. */ static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (void *)skb->data; if (!ieee80211_is_action(mgmt->frame_control)) return false; if (skb->len < IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.tpc_report)) return false; /* * TPC report - check that: * category = 0 (Spectrum Management) or 5 (Radio Measurement) * spectrum management action = 3 (TPC/Link Measurement report) * TPC report EID = 35 * TPC report element length = 2 * * The spectrum management's tpc_report struct is used here both for * parsing tpc_report and radio measurement's link measurement report * frame, since the relevant part is identical in both frames. */ if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT && mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT) return false; /* both spectrum mgmt and link measurement have same action code */ if (mgmt->u.action.u.tpc_report.action_code != WLAN_ACTION_SPCT_TPC_RPRT) return false; if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT || mgmt->u.action.u.tpc_report.tpc_elem_length != sizeof(struct ieee80211_tpc_report_ie)) return false; return true; } struct element { u8 id; u8 datalen; u8 data[]; } __packed; /* element iteration helpers */ #define for_each_element(_elem, _data, _datalen) \ for (_elem = (const struct element *)(_data); \ (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \ (int)sizeof(*_elem) && \ (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \ (int)sizeof(*_elem) + _elem->datalen; \ _elem = (const struct element *)(_elem->data + _elem->datalen)) #define for_each_element_id(element, _id, data, datalen) \ for_each_element(element, data, datalen) \ if (element->id == (_id)) #define for_each_element_extid(element, extid, _data, _datalen) \ for_each_element(element, _data, _datalen) \ if (element->id == WLAN_EID_EXTENSION && \ element->datalen > 0 && \ element->data[0] == (extid)) #define for_each_subelement(sub, element) \ for_each_element(sub, (element)->data, (element)->datalen) #define for_each_subelement_id(sub, id, element) \ for_each_element_id(sub, id, (element)->data, (element)->datalen) #define for_each_subelement_extid(sub, extid, element) \ for_each_element_extid(sub, extid, (element)->data, (element)->datalen) /** * for_each_element_completed - determine if element parsing consumed all data * @element: element pointer after for_each_element() or friends * @data: same data pointer as passed to for_each_element() or friends * @datalen: same data length as passed to for_each_element() or friends * * This function returns %true if all the data was parsed or considered * while walking the elements. Only use this if your for_each_element() * loop cannot be broken out of, otherwise it always returns %false. * * If some data was malformed, this returns %false since the last parsed * element will not fill the whole remaining data. */ static inline bool for_each_element_completed(const struct element *element, const void *data, size_t datalen) { return (const u8 *)element == (const u8 *)data + datalen; } /** * RSNX Capabilities: * bits 0-3: Field length (n-1) */ #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4) #define WLAN_RSNX_CAPA_SAE_H2E BIT(5) /* * reduced neighbor report, based on Draft P802.11ax_D5.0, * section 9.4.2.170 */ #define IEEE80211_AP_INFO_TBTT_HDR_TYPE 0x03 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED 0x04 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC 0x08 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT 0xF0 #define IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM 8 #define IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM 12 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED 0x01 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID 0x02 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID 0x04 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID 0x08 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS 0x10 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE 0x20 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP 0x40 struct ieee80211_neighbor_ap_info { u8 tbtt_info_hdr; u8 tbtt_info_len; u8 op_class; u8 channel; } __packed; #endif /* LINUX_IEEE80211_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_IO_H #define _ASM_X86_IO_H /* * This file contains the definitions for the x86 IO instructions * inb/inw/inl/outb/outw/outl and the "string versions" of the same * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing" * versions of the single-IO instructions (inb_p/inw_p/..). * * This file is not meant to be obfuscating: it's just complicated * to (a) handle it all in a way that makes gcc able to optimize it * as well as possible and (b) trying to avoid writing the same thing * over and over again with slight variations and possibly making a * mistake somewhere. */ /* * Thanks to James van Artsdalen for a better timing-fix than * the two short jumps: using outb's to a nonexistent port seems * to guarantee better timings even on fast machines. * * On the other hand, I'd like to be sure of a non-existent port: * I feel a bit unsafe about using 0x80 (should be safe, though) * * Linus */ /* * Bit simplified and optimized by Jan Hubicka * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999. * * isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added, * isa_read[wl] and isa_write[wl] fixed * - Arnaldo Carvalho de Melo <acme@conectiva.com.br> */ #define ARCH_HAS_IOREMAP_WC #define ARCH_HAS_IOREMAP_WT #include <linux/string.h> #include <linux/compiler.h> #include <asm/page.h> #include <asm/early_ioremap.h> #include <asm/pgtable_types.h> #define build_mmio_read(name, size, type, reg, barrier) \ static inline type name(const volatile void __iomem *addr) \ { type ret; asm volatile("mov" size " %1,%0":reg (ret) \ :"m" (*(volatile type __force *)addr) barrier); return ret; } #define build_mmio_write(name, size, type, reg, barrier) \ static inline void name(type val, volatile void __iomem *addr) \ { asm volatile("mov" size " %0,%1": :reg (val), \ "m" (*(volatile type __force *)addr) barrier); } build_mmio_read(readb, "b", unsigned char, "=q", :"memory") build_mmio_read(readw, "w", unsigned short, "=r", :"memory") build_mmio_read(readl, "l", unsigned int, "=r", :"memory") build_mmio_read(__readb, "b", unsigned char, "=q", ) build_mmio_read(__readw, "w", unsigned short, "=r", ) build_mmio_read(__readl, "l", unsigned int, "=r", ) build_mmio_write(writeb, "b", unsigned char, "q", :"memory") build_mmio_write(writew, "w", unsigned short, "r", :"memory") build_mmio_write(writel, "l", unsigned int, "r", :"memory") build_mmio_write(__writeb, "b", unsigned char, "q", ) build_mmio_write(__writew, "w", unsigned short, "r", ) build_mmio_write(__writel, "l", unsigned int, "r", ) #define readb readb #define readw readw #define readl readl #define readb_relaxed(a) __readb(a) #define readw_relaxed(a) __readw(a) #define readl_relaxed(a) __readl(a) #define __raw_readb __readb #define __raw_readw __readw #define __raw_readl __readl #define writeb writeb #define writew writew #define writel writel #define writeb_relaxed(v, a) __writeb(v, a) #define writew_relaxed(v, a) __writew(v, a) #define writel_relaxed(v, a) __writel(v, a) #define __raw_writeb __writeb #define __raw_writew __writew #define __raw_writel __writel #ifdef CONFIG_X86_64 build_mmio_read(readq, "q", u64, "=r", :"memory") build_mmio_read(__readq, "q", u64, "=r", ) build_mmio_write(writeq, "q", u64, "r", :"memory") build_mmio_write(__writeq, "q", u64, "r", ) #define readq_relaxed(a) __readq(a) #define writeq_relaxed(v, a) __writeq(v, a) #define __raw_readq __readq #define __raw_writeq __writeq /* Let people know that we have them */ #define readq readq #define writeq writeq #endif #define ARCH_HAS_VALID_PHYS_ADDR_RANGE extern int valid_phys_addr_range(phys_addr_t addr, size_t size); extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); /** * virt_to_phys - map virtual addresses to physical * @address: address to remap * * The returned physical address is the physical (CPU) mapping for * the memory address given. It is only valid to use this function on * addresses directly mapped or allocated via kmalloc. * * This function does not give bus mappings for DMA transfers. In * almost all conceivable cases a device driver should not be using * this function */ static inline phys_addr_t virt_to_phys(volatile void *address) { return __pa(address); } #define virt_to_phys virt_to_phys /** * phys_to_virt - map physical address to virtual * @address: address to remap * * The returned virtual address is a current CPU mapping for * the memory address given. It is only valid to use this function on * addresses that have a kernel mapping * * This function does not handle bus mappings for DMA transfers. In * almost all conceivable cases a device driver should not be using * this function */ static inline void *phys_to_virt(phys_addr_t address) { return __va(address); } #define phys_to_virt phys_to_virt /* * Change "struct page" to physical address. */ #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) /* * ISA I/O bus memory addresses are 1:1 with the physical address. * However, we truncate the address to unsigned int to avoid undesirable * promitions in legacy drivers. */ static inline unsigned int isa_virt_to_bus(volatile void *address) { return (unsigned int)virt_to_phys(address); } #define isa_bus_to_virt phys_to_virt /* * However PCI ones are not necessarily 1:1 and therefore these interfaces * are forbidden in portable PCI drivers. * * Allow them on x86 for legacy drivers, though. */ #define virt_to_bus virt_to_phys #define bus_to_virt phys_to_virt /* * The default ioremap() behavior is non-cached; if you need something * else, you probably want one of the following. */ extern void __iomem *ioremap_uc(resource_size_t offset, unsigned long size); #define ioremap_uc ioremap_uc extern void __iomem *ioremap_cache(resource_size_t offset, unsigned long size); #define ioremap_cache ioremap_cache extern void __iomem *ioremap_prot(resource_size_t offset, unsigned long size, unsigned long prot_val); #define ioremap_prot ioremap_prot extern void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size); #define ioremap_encrypted ioremap_encrypted /** * ioremap - map bus memory into CPU space * @offset: bus address of the memory * @size: size of the resource to map * * ioremap performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. * * If the area you are trying to map is a PCI BAR you should have a * look at pci_iomap(). */ void __iomem *ioremap(resource_size_t offset, unsigned long size); #define ioremap ioremap extern void iounmap(volatile void __iomem *addr); #define iounmap iounmap extern void set_iounmap_nonlazy(void); #ifdef __KERNEL__ void memcpy_fromio(void *, const volatile void __iomem *, size_t); void memcpy_toio(volatile void __iomem *, const void *, size_t); void memset_io(volatile void __iomem *, int, size_t); #define memcpy_fromio memcpy_fromio #define memcpy_toio memcpy_toio #define memset_io memset_io #include <asm-generic/iomap.h> /* * ISA space is 'always mapped' on a typical x86 system, no need to * explicitly ioremap() it. The fact that the ISA IO space is mapped * to PAGE_OFFSET is pure coincidence - it does not mean ISA values * are physical addresses. The following constant pointer can be * used as the IO-area pointer (it can be iounmapped as well, so the * analogy with PCI is quite large): */ #define __ISA_IO_base ((char __iomem *)(PAGE_OFFSET)) #endif /* __KERNEL__ */ extern void native_io_delay(void); extern int io_delay_type; extern void io_delay_init(void); #if defined(CONFIG_PARAVIRT) #include <asm/paravirt.h> #else static inline void slow_down_io(void) { native_io_delay(); #ifdef REALLY_SLOW_IO native_io_delay(); native_io_delay(); native_io_delay(); #endif } #endif #ifdef CONFIG_AMD_MEM_ENCRYPT #include <linux/jump_label.h> extern struct static_key_false sev_enable_key; static inline bool sev_key_active(void) { return static_branch_unlikely(&sev_enable_key); } #else /* !CONFIG_AMD_MEM_ENCRYPT */ static inline bool sev_key_active(void) { return false; } #endif /* CONFIG_AMD_MEM_ENCRYPT */ #define BUILDIO(bwl, bw, type) \ static inline void out##bwl(unsigned type value, int port) \ { \ asm volatile("out" #bwl " %" #bw "0, %w1" \ : : "a"(value), "Nd"(port)); \ } \ \ static inline unsigned type in##bwl(int port) \ { \ unsigned type value; \ asm volatile("in" #bwl " %w1, %" #bw "0" \ : "=a"(value) : "Nd"(port)); \ return value; \ } \ \ static inline void out##bwl##_p(unsigned type value, int port) \ { \ out##bwl(value, port); \ slow_down_io(); \ } \ \ static inline unsigned type in##bwl##_p(int port) \ { \ unsigned type value = in##bwl(port); \ slow_down_io(); \ return value; \ } \ \ static inline void outs##bwl(int port, const void *addr, unsigned long count) \ { \ if (sev_key_active()) { \ unsigned type *value = (unsigned type *)addr; \ while (count) { \ out##bwl(*value, port); \ value++; \ count--; \ } \ } else { \ asm volatile("rep; outs" #bwl \ : "+S"(addr), "+c"(count) \ : "d"(port) : "memory"); \ } \ } \ \ static inline void ins##bwl(int port, void *addr, unsigned long count) \ { \ if (sev_key_active()) { \ unsigned type *value = (unsigned type *)addr; \ while (count) { \ *value = in##bwl(port); \ value++; \ count--; \ } \ } else { \ asm volatile("rep; ins" #bwl \ : "+D"(addr), "+c"(count) \ : "d"(port) : "memory"); \ } \ } BUILDIO(b, b, char) BUILDIO(w, w, short) BUILDIO(l, , int) #define inb inb #define inw inw #define inl inl #define inb_p inb_p #define inw_p inw_p #define inl_p inl_p #define insb insb #define insw insw #define insl insl #define outb outb #define outw outw #define outl outl #define outb_p outb_p #define outw_p outw_p #define outl_p outl_p #define outsb outsb #define outsw outsw #define outsl outsl extern void *xlate_dev_mem_ptr(phys_addr_t phys); extern void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr); #define xlate_dev_mem_ptr xlate_dev_mem_ptr #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr extern int ioremap_change_attr(unsigned long vaddr, unsigned long size, enum page_cache_mode pcm); extern void __iomem *ioremap_wc(resource_size_t offset, unsigned long size); #define ioremap_wc ioremap_wc extern void __iomem *ioremap_wt(resource_size_t offset, unsigned long size); #define ioremap_wt ioremap_wt extern bool is_early_ioremap_ptep(pte_t *ptep); #define IO_SPACE_LIMIT 0xffff #include <asm-generic/io.h> #undef PCI_IOBASE #ifdef CONFIG_MTRR extern int __must_check arch_phys_wc_index(int handle); #define arch_phys_wc_index arch_phys_wc_index extern int __must_check arch_phys_wc_add(unsigned long base, unsigned long size); extern void arch_phys_wc_del(int handle); #define arch_phys_wc_add arch_phys_wc_add #endif #ifdef CONFIG_X86_PAT extern int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size); extern void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size); #define arch_io_reserve_memtype_wc arch_io_reserve_memtype_wc #endif extern bool arch_memremap_can_ram_remap(resource_size_t offset, unsigned long size, unsigned long flags); #define arch_memremap_can_ram_remap arch_memremap_can_ram_remap extern bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size); /** * iosubmit_cmds512 - copy data to single MMIO location, in 512-bit units * @dst: destination, in MMIO space (must be 512-bit aligned) * @src: source * @count: number of 512 bits quantities to submit * * Submit data from kernel space to MMIO space, in units of 512 bits at a * time. Order of access is not guaranteed, nor is a memory barrier * performed afterwards. * * Warning: Do not use this helper unless your driver has checked that the CPU * instruction is supported on the platform. */ static inline void iosubmit_cmds512(void __iomem *dst, const void *src, size_t count) { const u8 *from = src; const u8 *end = from + count * 64; while (from < end) { movdir64b(dst, from); from += 64; } } #endif /* _ASM_X86_IO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 /* SPDX-License-Identifier: GPL-2.0 */ /* * generic net pointers */ #ifndef __NET_GENERIC_H__ #define __NET_GENERIC_H__ #include <linux/bug.h> #include <linux/rcupdate.h> /* * Generic net pointers are to be used by modules to put some private * stuff on the struct net without explicit struct net modification * * The rules are simple: * 1. set pernet_operations->id. After register_pernet_device you * will have the id of your private pointer. * 2. set pernet_operations->size to have the code allocate and free * a private structure pointed to from struct net. * 3. do not change this pointer while the net is alive; * 4. do not try to have any private reference on the net_generic object. * * After accomplishing all of the above, the private pointer can be * accessed with the net_generic() call. */ struct net_generic { union { struct { unsigned int len; struct rcu_head rcu; } s; void *ptr[0]; }; }; static inline void *net_generic(const struct net *net, unsigned int id) { struct net_generic *ng; void *ptr; rcu_read_lock(); ng = rcu_dereference(net->gen); ptr = ng->ptr[id]; rcu_read_unlock(); return ptr; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _XFRM_HASH_H #define _XFRM_HASH_H #include <linux/xfrm.h> #include <linux/socket.h> #include <linux/jhash.h> static inline unsigned int __xfrm4_addr_hash(const xfrm_address_t *addr) { return ntohl(addr->a4); } static inline unsigned int __xfrm6_addr_hash(const xfrm_address_t *addr) { return jhash2((__force u32 *)addr->a6, 4, 0); } static inline unsigned int __xfrm4_daddr_saddr_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr) { u32 sum = (__force u32)daddr->a4 + (__force u32)saddr->a4; return ntohl((__force __be32)sum); } static inline unsigned int __xfrm6_daddr_saddr_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr) { return __xfrm6_addr_hash(daddr) ^ __xfrm6_addr_hash(saddr); } static inline u32 __bits2mask32(__u8 bits) { u32 mask32 = 0xffffffff; if (bits == 0) mask32 = 0; else if (bits < 32) mask32 <<= (32 - bits); return mask32; } static inline unsigned int __xfrm4_dpref_spref_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, __u8 dbits, __u8 sbits) { return jhash_2words(ntohl(daddr->a4) & __bits2mask32(dbits), ntohl(saddr->a4) & __bits2mask32(sbits), 0); } static inline unsigned int __xfrm6_pref_hash(const xfrm_address_t *addr, __u8 prefixlen) { unsigned int pdw; unsigned int pbi; u32 initval = 0; pdw = prefixlen >> 5; /* num of whole u32 in prefix */ pbi = prefixlen & 0x1f; /* num of bits in incomplete u32 in prefix */ if (pbi) { __be32 mask; mask = htonl((0xffffffff) << (32 - pbi)); initval = (__force u32)(addr->a6[pdw] & mask); } return jhash2((__force u32 *)addr->a6, pdw, initval); } static inline unsigned int __xfrm6_dpref_spref_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, __u8 dbits, __u8 sbits) { return __xfrm6_pref_hash(daddr, dbits) ^ __xfrm6_pref_hash(saddr, sbits); } static inline unsigned int __xfrm_dst_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, u32 reqid, unsigned short family, unsigned int hmask) { unsigned int h = family ^ reqid; switch (family) { case AF_INET: h ^= __xfrm4_daddr_saddr_hash(daddr, saddr); break; case AF_INET6: h ^= __xfrm6_daddr_saddr_hash(daddr, saddr); break; } return (h ^ (h >> 16)) & hmask; } static inline unsigned int __xfrm_src_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, unsigned short family, unsigned int hmask) { unsigned int h = family; switch (family) { case AF_INET: h ^= __xfrm4_daddr_saddr_hash(daddr, saddr); break; case AF_INET6: h ^= __xfrm6_daddr_saddr_hash(daddr, saddr); break; } return (h ^ (h >> 16)) & hmask; } static inline unsigned int __xfrm_spi_hash(const xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family, unsigned int hmask) { unsigned int h = (__force u32)spi ^ proto; switch (family) { case AF_INET: h ^= __xfrm4_addr_hash(daddr); break; case AF_INET6: h ^= __xfrm6_addr_hash(daddr); break; } return (h ^ (h >> 10) ^ (h >> 20)) & hmask; } static inline unsigned int __idx_hash(u32 index, unsigned int hmask) { return (index ^ (index >> 8)) & hmask; } static inline unsigned int __sel_hash(const struct xfrm_selector *sel, unsigned short family, unsigned int hmask, u8 dbits, u8 sbits) { const xfrm_address_t *daddr = &sel->daddr; const xfrm_address_t *saddr = &sel->saddr; unsigned int h = 0; switch (family) { case AF_INET: if (sel->prefixlen_d < dbits || sel->prefixlen_s < sbits) return hmask + 1; h = __xfrm4_dpref_spref_hash(daddr, saddr, dbits, sbits); break; case AF_INET6: if (sel->prefixlen_d < dbits || sel->prefixlen_s < sbits) return hmask + 1; h = __xfrm6_dpref_spref_hash(daddr, saddr, dbits, sbits); break; } h ^= (h >> 16); return h & hmask; } static inline unsigned int __addr_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, unsigned short family, unsigned int hmask, u8 dbits, u8 sbits) { unsigned int h = 0; switch (family) { case AF_INET: h = __xfrm4_dpref_spref_hash(daddr, saddr, dbits, sbits); break; case AF_INET6: h = __xfrm6_dpref_spref_hash(daddr, saddr, dbits, sbits); break; } h ^= (h >> 16); return h & hmask; } struct hlist_head *xfrm_hash_alloc(unsigned int sz); void xfrm_hash_free(struct hlist_head *n, unsigned int sz); #endif /* _XFRM_HASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 /* SPDX-License-Identifier: GPL-2.0 */ /** * lib/minmax.c: windowed min/max tracker by Kathleen Nichols. * */ #ifndef MINMAX_H #define MINMAX_H #include <linux/types.h> /* A single data point for our parameterized min-max tracker */ struct minmax_sample { u32 t; /* time measurement was taken */ u32 v; /* value measured */ }; /* State for the parameterized min-max tracker */ struct minmax { struct minmax_sample s[3]; }; static inline u32 minmax_get(const struct minmax *m) { return m->s[0].v; } static inline u32 minmax_reset(struct minmax *m, u32 t, u32 meas) { struct minmax_sample val = { .t = t, .v = meas }; m->s[2] = m->s[1] = m->s[0] = val; return m->s[0].v; } u32 minmax_running_max(struct minmax *m, u32 win, u32 t, u32 meas); u32 minmax_running_min(struct minmax *m, u32 win, u32 t, u32 meas); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 /* SPDX-License-Identifier: GPL-2.0 */ /* * This header is for implementations of dma_map_ops and related code. * It should not be included in drivers just using the DMA API. */ #ifndef _LINUX_DMA_MAP_OPS_H #define _LINUX_DMA_MAP_OPS_H #include <linux/dma-mapping.h> #include <linux/pgtable.h> struct cma; struct dma_map_ops { void *(*alloc)(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs); void (*free)(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, unsigned long attrs); struct page *(*alloc_pages)(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); void (*free_pages)(struct device *dev, size_t size, struct page *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir); void *(*alloc_noncoherent)(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); void (*free_noncoherent)(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir); int (*mmap)(struct device *, struct vm_area_struct *, void *, dma_addr_t, size_t, unsigned long attrs); int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); dma_addr_t (*map_page)(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs); void (*unmap_page)(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir, unsigned long attrs); /* * map_sg returns 0 on error and a value > 0 on success. * It should never return a value < 0. */ int (*map_sg)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs); void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs); dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr, size_t size, enum dma_data_direction dir, unsigned long attrs); void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir, unsigned long attrs); void (*sync_single_for_cpu)(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir); void (*sync_single_for_device)(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir); void (*sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir); void (*sync_sg_for_device)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir); void (*cache_sync)(struct device *dev, void *vaddr, size_t size, enum dma_data_direction direction); int (*dma_supported)(struct device *dev, u64 mask); u64 (*get_required_mask)(struct device *dev); size_t (*max_mapping_size)(struct device *dev); unsigned long (*get_merge_boundary)(struct device *dev); }; #ifdef CONFIG_DMA_OPS #include <asm/dma-mapping.h> static inline const struct dma_map_ops *get_dma_ops(struct device *dev) { if (dev->dma_ops) return dev->dma_ops; return get_arch_dma_ops(dev->bus); } static inline void set_dma_ops(struct device *dev, const struct dma_map_ops *dma_ops) { dev->dma_ops = dma_ops; } #else /* CONFIG_DMA_OPS */ static inline const struct dma_map_ops *get_dma_ops(struct device *dev) { return NULL; } static inline void set_dma_ops(struct device *dev, const struct dma_map_ops *dma_ops) { } #endif /* CONFIG_DMA_OPS */ #ifdef CONFIG_DMA_CMA extern struct cma *dma_contiguous_default_area; static inline struct cma *dev_get_cma_area(struct device *dev) { if (dev && dev->cma_area) return dev->cma_area; return dma_contiguous_default_area; } void dma_contiguous_reserve(phys_addr_t addr_limit); int __init dma_contiguous_reserve_area(phys_addr_t size, phys_addr_t base, phys_addr_t limit, struct cma **res_cma, bool fixed); struct page *dma_alloc_from_contiguous(struct device *dev, size_t count, unsigned int order, bool no_warn); bool dma_release_from_contiguous(struct device *dev, struct page *pages, int count); struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp); void dma_free_contiguous(struct device *dev, struct page *page, size_t size); void dma_contiguous_early_fixup(phys_addr_t base, unsigned long size); #else /* CONFIG_DMA_CMA */ static inline struct cma *dev_get_cma_area(struct device *dev) { return NULL; } static inline void dma_contiguous_reserve(phys_addr_t limit) { } static inline int dma_contiguous_reserve_area(phys_addr_t size, phys_addr_t base, phys_addr_t limit, struct cma **res_cma, bool fixed) { return -ENOSYS; } static inline struct page *dma_alloc_from_contiguous(struct device *dev, size_t count, unsigned int order, bool no_warn) { return NULL; } static inline bool dma_release_from_contiguous(struct device *dev, struct page *pages, int count) { return false; } /* Use fallback alloc() and free() when CONFIG_DMA_CMA=n */ static inline struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp) { return NULL; } static inline void dma_free_contiguous(struct device *dev, struct page *page, size_t size) { __free_pages(page, get_order(size)); } #endif /* CONFIG_DMA_CMA*/ #ifdef CONFIG_DMA_PERNUMA_CMA void dma_pernuma_cma_reserve(void); #else static inline void dma_pernuma_cma_reserve(void) { } #endif /* CONFIG_DMA_PERNUMA_CMA */ #ifdef CONFIG_DMA_DECLARE_COHERENT int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, dma_addr_t device_addr, size_t size); int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size, dma_addr_t *dma_handle, void **ret); int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr); int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, size_t size, int *ret); void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size, dma_addr_t *dma_handle); int dma_release_from_global_coherent(int order, void *vaddr); int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr, size_t size, int *ret); #else static inline int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, dma_addr_t device_addr, size_t size) { return -ENOSYS; } #define dma_alloc_from_dev_coherent(dev, size, handle, ret) (0) #define dma_release_from_dev_coherent(dev, order, vaddr) (0) #define dma_mmap_from_dev_coherent(dev, vma, vaddr, order, ret) (0) static inline void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size, dma_addr_t *dma_handle) { return NULL; } static inline int dma_release_from_global_coherent(int order, void *vaddr) { return 0; } static inline int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr, size_t size, int *ret) { return 0; } #endif /* CONFIG_DMA_DECLARE_COHERENT */ int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); struct page *dma_common_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); void dma_common_free_pages(struct device *dev, size_t size, struct page *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir); struct page **dma_common_find_pages(void *cpu_addr); void *dma_common_contiguous_remap(struct page *page, size_t size, pgprot_t prot, const void *caller); void *dma_common_pages_remap(struct page **pages, size_t size, pgprot_t prot, const void *caller); void dma_common_free_remap(void *cpu_addr, size_t size); struct page *dma_alloc_from_pool(struct device *dev, size_t size, void **cpu_addr, gfp_t flags, bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t)); bool dma_free_from_pool(struct device *dev, void *start, size_t size); #ifdef CONFIG_ARCH_HAS_DMA_COHERENCE_H #include <asm/dma-coherence.h> #elif defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) static inline bool dev_is_dma_coherent(struct device *dev) { return dev->dma_coherent; } #else static inline bool dev_is_dma_coherent(struct device *dev) { return true; } #endif /* CONFIG_ARCH_HAS_DMA_COHERENCE_H */ void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs); void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs); #ifdef CONFIG_MMU /* * Page protection so that devices that can't snoop CPU caches can use the * memory coherently. We default to pgprot_noncached which is usually used * for ioremap as a safe bet, but architectures can override this with less * strict semantics if possible. */ #ifndef pgprot_dmacoherent #define pgprot_dmacoherent(prot) pgprot_noncached(prot) #endif pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs); #else static inline pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) { return prot; /* no protection bits supported without page tables */ } #endif /* CONFIG_MMU */ #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE void arch_sync_dma_for_device(phys_addr_t paddr, size_t size, enum dma_data_direction dir); #else static inline void arch_sync_dma_for_device(phys_addr_t paddr, size_t size, enum dma_data_direction dir) { } #endif /* ARCH_HAS_SYNC_DMA_FOR_DEVICE */ #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size, enum dma_data_direction dir); #else static inline void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size, enum dma_data_direction dir) { } #endif /* ARCH_HAS_SYNC_DMA_FOR_CPU */ #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL void arch_sync_dma_for_cpu_all(void); #else static inline void arch_sync_dma_for_cpu_all(void) { } #endif /* CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL */ #ifdef CONFIG_ARCH_HAS_DMA_PREP_COHERENT void arch_dma_prep_coherent(struct page *page, size_t size); #else static inline void arch_dma_prep_coherent(struct page *page, size_t size) { } #endif /* CONFIG_ARCH_HAS_DMA_PREP_COHERENT */ #ifdef CONFIG_ARCH_HAS_DMA_MARK_CLEAN void arch_dma_mark_clean(phys_addr_t paddr, size_t size); #else static inline void arch_dma_mark_clean(phys_addr_t paddr, size_t size) { } #endif /* ARCH_HAS_DMA_MARK_CLEAN */ void *arch_dma_set_uncached(void *addr, size_t size); void arch_dma_clear_uncached(void *addr, size_t size); #ifdef CONFIG_ARCH_HAS_SETUP_DMA_OPS void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, const struct iommu_ops *iommu, bool coherent); #else static inline void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, const struct iommu_ops *iommu, bool coherent) { } #endif /* CONFIG_ARCH_HAS_SETUP_DMA_OPS */ #ifdef CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS void arch_teardown_dma_ops(struct device *dev); #else static inline void arch_teardown_dma_ops(struct device *dev) { } #endif /* CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS */ #ifdef CONFIG_DMA_API_DEBUG void dma_debug_add_bus(struct bus_type *bus); void debug_dma_dump_mappings(struct device *dev); #else static inline void dma_debug_add_bus(struct bus_type *bus) { } static inline void debug_dma_dump_mappings(struct device *dev) { } #endif /* CONFIG_DMA_API_DEBUG */ extern const struct dma_map_ops dma_dummy_ops; #endif /* _LINUX_DMA_MAP_OPS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PARAVIRT_H #define _ASM_X86_PARAVIRT_H /* Various instructions on x86 need to be replaced for * para-virtualization: those hooks are defined here. */ #ifdef CONFIG_PARAVIRT #include <asm/pgtable_types.h> #include <asm/asm.h> #include <asm/nospec-branch.h> #include <asm/paravirt_types.h> #ifndef __ASSEMBLY__ #include <linux/bug.h> #include <linux/types.h> #include <linux/cpumask.h> #include <asm/frame.h> static inline unsigned long long paravirt_sched_clock(void) { return PVOP_CALL0(unsigned long long, time.sched_clock); } struct static_key; extern struct static_key paravirt_steal_enabled; extern struct static_key paravirt_steal_rq_enabled; __visible void __native_queued_spin_unlock(struct qspinlock *lock); bool pv_is_native_spin_unlock(void); __visible bool __native_vcpu_is_preempted(long cpu); bool pv_is_native_vcpu_is_preempted(void); static inline u64 paravirt_steal_clock(int cpu) { return PVOP_CALL1(u64, time.steal_clock, cpu); } /* The paravirtualized I/O functions */ static inline void slow_down_io(void) { pv_ops.cpu.io_delay(); #ifdef REALLY_SLOW_IO pv_ops.cpu.io_delay(); pv_ops.cpu.io_delay(); pv_ops.cpu.io_delay(); #endif } void native_flush_tlb_local(void); void native_flush_tlb_global(void); void native_flush_tlb_one_user(unsigned long addr); void native_flush_tlb_others(const struct cpumask *cpumask, const struct flush_tlb_info *info); static inline void __flush_tlb_local(void) { PVOP_VCALL0(mmu.flush_tlb_user); } static inline void __flush_tlb_global(void) { PVOP_VCALL0(mmu.flush_tlb_kernel); } static inline void __flush_tlb_one_user(unsigned long addr) { PVOP_VCALL1(mmu.flush_tlb_one_user, addr); } static inline void __flush_tlb_others(const struct cpumask *cpumask, const struct flush_tlb_info *info) { PVOP_VCALL2(mmu.flush_tlb_others, cpumask, info); } static inline void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table) { PVOP_VCALL2(mmu.tlb_remove_table, tlb, table); } static inline void paravirt_arch_exit_mmap(struct mm_struct *mm) { PVOP_VCALL1(mmu.exit_mmap, mm); } #ifdef CONFIG_PARAVIRT_XXL static inline void load_sp0(unsigned long sp0) { PVOP_VCALL1(cpu.load_sp0, sp0); } /* The paravirtualized CPUID instruction. */ static inline void __cpuid(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { PVOP_VCALL4(cpu.cpuid, eax, ebx, ecx, edx); } /* * These special macros can be used to get or set a debugging register */ static inline unsigned long paravirt_get_debugreg(int reg) { return PVOP_CALL1(unsigned long, cpu.get_debugreg, reg); } #define get_debugreg(var, reg) var = paravirt_get_debugreg(reg) static inline void set_debugreg(unsigned long val, int reg) { PVOP_VCALL2(cpu.set_debugreg, reg, val); } static inline unsigned long read_cr0(void) { return PVOP_CALL0(unsigned long, cpu.read_cr0); } static inline void write_cr0(unsigned long x) { PVOP_VCALL1(cpu.write_cr0, x); } static inline unsigned long read_cr2(void) { return PVOP_CALLEE0(unsigned long, mmu.read_cr2); } static inline void write_cr2(unsigned long x) { PVOP_VCALL1(mmu.write_cr2, x); } static inline unsigned long __read_cr3(void) { return PVOP_CALL0(unsigned long, mmu.read_cr3); } static inline void write_cr3(unsigned long x) { PVOP_VCALL1(mmu.write_cr3, x); } static inline void __write_cr4(unsigned long x) { PVOP_VCALL1(cpu.write_cr4, x); } static inline void arch_safe_halt(void) { PVOP_VCALL0(irq.safe_halt); } static inline void halt(void) { PVOP_VCALL0(irq.halt); } static inline void wbinvd(void) { PVOP_VCALL0(cpu.wbinvd); } static inline u64 paravirt_read_msr(unsigned msr) { return PVOP_CALL1(u64, cpu.read_msr, msr); } static inline void paravirt_write_msr(unsigned msr, unsigned low, unsigned high) { PVOP_VCALL3(cpu.write_msr, msr, low, high); } static inline u64 paravirt_read_msr_safe(unsigned msr, int *err) { return PVOP_CALL2(u64, cpu.read_msr_safe, msr, err); } static inline int paravirt_write_msr_safe(unsigned msr, unsigned low, unsigned high) { return PVOP_CALL3(int, cpu.write_msr_safe, msr, low, high); } #define rdmsr(msr, val1, val2) \ do { \ u64 _l = paravirt_read_msr(msr); \ val1 = (u32)_l; \ val2 = _l >> 32; \ } while (0) #define wrmsr(msr, val1, val2) \ do { \ paravirt_write_msr(msr, val1, val2); \ } while (0) #define rdmsrl(msr, val) \ do { \ val = paravirt_read_msr(msr); \ } while (0) static inline void wrmsrl(unsigned msr, u64 val) { wrmsr(msr, (u32)val, (u32)(val>>32)); } #define wrmsr_safe(msr, a, b) paravirt_write_msr_safe(msr, a, b) /* rdmsr with exception handling */ #define rdmsr_safe(msr, a, b) \ ({ \ int _err; \ u64 _l = paravirt_read_msr_safe(msr, &_err); \ (*a) = (u32)_l; \ (*b) = _l >> 32; \ _err; \ }) static inline int rdmsrl_safe(unsigned msr, unsigned long long *p) { int err; *p = paravirt_read_msr_safe(msr, &err); return err; } static inline unsigned long long paravirt_read_pmc(int counter) { return PVOP_CALL1(u64, cpu.read_pmc, counter); } #define rdpmc(counter, low, high) \ do { \ u64 _l = paravirt_read_pmc(counter); \ low = (u32)_l; \ high = _l >> 32; \ } while (0) #define rdpmcl(counter, val) ((val) = paravirt_read_pmc(counter)) static inline void paravirt_alloc_ldt(struct desc_struct *ldt, unsigned entries) { PVOP_VCALL2(cpu.alloc_ldt, ldt, entries); } static inline void paravirt_free_ldt(struct desc_struct *ldt, unsigned entries) { PVOP_VCALL2(cpu.free_ldt, ldt, entries); } static inline void load_TR_desc(void) { PVOP_VCALL0(cpu.load_tr_desc); } static inline void load_gdt(const struct desc_ptr *dtr) { PVOP_VCALL1(cpu.load_gdt, dtr); } static inline void load_idt(const struct desc_ptr *dtr) { PVOP_VCALL1(cpu.load_idt, dtr); } static inline void set_ldt(const void *addr, unsigned entries) { PVOP_VCALL2(cpu.set_ldt, addr, entries); } static inline unsigned long paravirt_store_tr(void) { return PVOP_CALL0(unsigned long, cpu.store_tr); } #define store_tr(tr) ((tr) = paravirt_store_tr()) static inline void load_TLS(struct thread_struct *t, unsigned cpu) { PVOP_VCALL2(cpu.load_tls, t, cpu); } static inline void load_gs_index(unsigned int gs) { PVOP_VCALL1(cpu.load_gs_index, gs); } static inline void write_ldt_entry(struct desc_struct *dt, int entry, const void *desc) { PVOP_VCALL3(cpu.write_ldt_entry, dt, entry, desc); } static inline void write_gdt_entry(struct desc_struct *dt, int entry, void *desc, int type) { PVOP_VCALL4(cpu.write_gdt_entry, dt, entry, desc, type); } static inline void write_idt_entry(gate_desc *dt, int entry, const gate_desc *g) { PVOP_VCALL3(cpu.write_idt_entry, dt, entry, g); } #ifdef CONFIG_X86_IOPL_IOPERM static inline void tss_invalidate_io_bitmap(void) { PVOP_VCALL0(cpu.invalidate_io_bitmap); } static inline void tss_update_io_bitmap(void) { PVOP_VCALL0(cpu.update_io_bitmap); } #endif static inline void paravirt_activate_mm(struct mm_struct *prev, struct mm_struct *next) { PVOP_VCALL2(mmu.activate_mm, prev, next); } static inline void paravirt_arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) { PVOP_VCALL2(mmu.dup_mmap, oldmm, mm); } static inline int paravirt_pgd_alloc(struct mm_struct *mm) { return PVOP_CALL1(int, mmu.pgd_alloc, mm); } static inline void paravirt_pgd_free(struct mm_struct *mm, pgd_t *pgd) { PVOP_VCALL2(mmu.pgd_free, mm, pgd); } static inline void paravirt_alloc_pte(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_pte, mm, pfn); } static inline void paravirt_release_pte(unsigned long pfn) { PVOP_VCALL1(mmu.release_pte, pfn); } static inline void paravirt_alloc_pmd(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_pmd, mm, pfn); } static inline void paravirt_release_pmd(unsigned long pfn) { PVOP_VCALL1(mmu.release_pmd, pfn); } static inline void paravirt_alloc_pud(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_pud, mm, pfn); } static inline void paravirt_release_pud(unsigned long pfn) { PVOP_VCALL1(mmu.release_pud, pfn); } static inline void paravirt_alloc_p4d(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_p4d, mm, pfn); } static inline void paravirt_release_p4d(unsigned long pfn) { PVOP_VCALL1(mmu.release_p4d, pfn); } static inline pte_t __pte(pteval_t val) { return (pte_t) { PVOP_CALLEE1(pteval_t, mmu.make_pte, val) }; } static inline pteval_t pte_val(pte_t pte) { return PVOP_CALLEE1(pteval_t, mmu.pte_val, pte.pte); } static inline pgd_t __pgd(pgdval_t val) { return (pgd_t) { PVOP_CALLEE1(pgdval_t, mmu.make_pgd, val) }; } static inline pgdval_t pgd_val(pgd_t pgd) { return PVOP_CALLEE1(pgdval_t, mmu.pgd_val, pgd.pgd); } #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { pteval_t ret; ret = PVOP_CALL3(pteval_t, mmu.ptep_modify_prot_start, vma, addr, ptep); return (pte_t) { .pte = ret }; } static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t old_pte, pte_t pte) { PVOP_VCALL4(mmu.ptep_modify_prot_commit, vma, addr, ptep, pte.pte); } static inline void set_pte(pte_t *ptep, pte_t pte) { PVOP_VCALL2(mmu.set_pte, ptep, pte.pte); } static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) { PVOP_VCALL2(mmu.set_pmd, pmdp, native_pmd_val(pmd)); } static inline pmd_t __pmd(pmdval_t val) { return (pmd_t) { PVOP_CALLEE1(pmdval_t, mmu.make_pmd, val) }; } static inline pmdval_t pmd_val(pmd_t pmd) { return PVOP_CALLEE1(pmdval_t, mmu.pmd_val, pmd.pmd); } static inline void set_pud(pud_t *pudp, pud_t pud) { PVOP_VCALL2(mmu.set_pud, pudp, native_pud_val(pud)); } static inline pud_t __pud(pudval_t val) { pudval_t ret; ret = PVOP_CALLEE1(pudval_t, mmu.make_pud, val); return (pud_t) { ret }; } static inline pudval_t pud_val(pud_t pud) { return PVOP_CALLEE1(pudval_t, mmu.pud_val, pud.pud); } static inline void pud_clear(pud_t *pudp) { set_pud(pudp, native_make_pud(0)); } static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) { p4dval_t val = native_p4d_val(p4d); PVOP_VCALL2(mmu.set_p4d, p4dp, val); } #if CONFIG_PGTABLE_LEVELS >= 5 static inline p4d_t __p4d(p4dval_t val) { p4dval_t ret = PVOP_CALLEE1(p4dval_t, mmu.make_p4d, val); return (p4d_t) { ret }; } static inline p4dval_t p4d_val(p4d_t p4d) { return PVOP_CALLEE1(p4dval_t, mmu.p4d_val, p4d.p4d); } static inline void __set_pgd(pgd_t *pgdp, pgd_t pgd) { PVOP_VCALL2(mmu.set_pgd, pgdp, native_pgd_val(pgd)); } #define set_pgd(pgdp, pgdval) do { \ if (pgtable_l5_enabled()) \ __set_pgd(pgdp, pgdval); \ else \ set_p4d((p4d_t *)(pgdp), (p4d_t) { (pgdval).pgd }); \ } while (0) #define pgd_clear(pgdp) do { \ if (pgtable_l5_enabled()) \ set_pgd(pgdp, native_make_pgd(0)); \ } while (0) #endif /* CONFIG_PGTABLE_LEVELS == 5 */ static inline void p4d_clear(p4d_t *p4dp) { set_p4d(p4dp, native_make_p4d(0)); } static inline void set_pte_atomic(pte_t *ptep, pte_t pte) { set_pte(ptep, pte); } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { set_pte(ptep, native_make_pte(0)); } static inline void pmd_clear(pmd_t *pmdp) { set_pmd(pmdp, native_make_pmd(0)); } #define __HAVE_ARCH_START_CONTEXT_SWITCH static inline void arch_start_context_switch(struct task_struct *prev) { PVOP_VCALL1(cpu.start_context_switch, prev); } static inline void arch_end_context_switch(struct task_struct *next) { PVOP_VCALL1(cpu.end_context_switch, next); } #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE static inline void arch_enter_lazy_mmu_mode(void) { PVOP_VCALL0(mmu.lazy_mode.enter); } static inline void arch_leave_lazy_mmu_mode(void) { PVOP_VCALL0(mmu.lazy_mode.leave); } static inline void arch_flush_lazy_mmu_mode(void) { PVOP_VCALL0(mmu.lazy_mode.flush); } static inline void __set_fixmap(unsigned /* enum fixed_addresses */ idx, phys_addr_t phys, pgprot_t flags) { pv_ops.mmu.set_fixmap(idx, phys, flags); } #endif #if defined(CONFIG_SMP) && defined(CONFIG_PARAVIRT_SPINLOCKS) static __always_inline void pv_queued_spin_lock_slowpath(struct qspinlock *lock, u32 val) { PVOP_VCALL2(lock.queued_spin_lock_slowpath, lock, val); } static __always_inline void pv_queued_spin_unlock(struct qspinlock *lock) { PVOP_VCALLEE1(lock.queued_spin_unlock, lock); } static __always_inline void pv_wait(u8 *ptr, u8 val) { PVOP_VCALL2(lock.wait, ptr, val); } static __always_inline void pv_kick(int cpu) { PVOP_VCALL1(lock.kick, cpu); } static __always_inline bool pv_vcpu_is_preempted(long cpu) { return PVOP_CALLEE1(bool, lock.vcpu_is_preempted, cpu); } void __raw_callee_save___native_queued_spin_unlock(struct qspinlock *lock); bool __raw_callee_save___native_vcpu_is_preempted(long cpu); #endif /* SMP && PARAVIRT_SPINLOCKS */ #ifdef CONFIG_X86_32 /* save and restore all caller-save registers, except return value */ #define PV_SAVE_ALL_CALLER_REGS "pushl %ecx;" #define PV_RESTORE_ALL_CALLER_REGS "popl %ecx;" #else /* save and restore all caller-save registers, except return value */ #define PV_SAVE_ALL_CALLER_REGS \ "push %rcx;" \ "push %rdx;" \ "push %rsi;" \ "push %rdi;" \ "push %r8;" \ "push %r9;" \ "push %r10;" \ "push %r11;" #define PV_RESTORE_ALL_CALLER_REGS \ "pop %r11;" \ "pop %r10;" \ "pop %r9;" \ "pop %r8;" \ "pop %rdi;" \ "pop %rsi;" \ "pop %rdx;" \ "pop %rcx;" #endif /* * Generate a thunk around a function which saves all caller-save * registers except for the return value. This allows C functions to * be called from assembler code where fewer than normal registers are * available. It may also help code generation around calls from C * code if the common case doesn't use many registers. * * When a callee is wrapped in a thunk, the caller can assume that all * arg regs and all scratch registers are preserved across the * call. The return value in rax/eax will not be saved, even for void * functions. */ #define PV_THUNK_NAME(func) "__raw_callee_save_" #func #define PV_CALLEE_SAVE_REGS_THUNK(func) \ extern typeof(func) __raw_callee_save_##func; \ \ asm(".pushsection .text;" \ ".globl " PV_THUNK_NAME(func) ";" \ ".type " PV_THUNK_NAME(func) ", @function;" \ PV_THUNK_NAME(func) ":" \ FRAME_BEGIN \ PV_SAVE_ALL_CALLER_REGS \ "call " #func ";" \ PV_RESTORE_ALL_CALLER_REGS \ FRAME_END \ "ret;" \ ".size " PV_THUNK_NAME(func) ", .-" PV_THUNK_NAME(func) ";" \ ".popsection") /* Get a reference to a callee-save function */ #define PV_CALLEE_SAVE(func) \ ((struct paravirt_callee_save) { __raw_callee_save_##func }) /* Promise that "func" already uses the right calling convention */ #define __PV_IS_CALLEE_SAVE(func) \ ((struct paravirt_callee_save) { func }) #ifdef CONFIG_PARAVIRT_XXL static inline notrace unsigned long arch_local_save_flags(void) { return PVOP_CALLEE0(unsigned long, irq.save_fl); } static inline notrace void arch_local_irq_restore(unsigned long f) { PVOP_VCALLEE1(irq.restore_fl, f); } static inline notrace void arch_local_irq_disable(void) { PVOP_VCALLEE0(irq.irq_disable); } static inline notrace void arch_local_irq_enable(void) { PVOP_VCALLEE0(irq.irq_enable); } static inline notrace unsigned long arch_local_irq_save(void) { unsigned long f; f = arch_local_save_flags(); arch_local_irq_disable(); return f; } #endif /* Make sure as little as possible of this mess escapes. */ #undef PARAVIRT_CALL #undef __PVOP_CALL #undef __PVOP_VCALL #undef PVOP_VCALL0 #undef PVOP_CALL0 #undef PVOP_VCALL1 #undef PVOP_CALL1 #undef PVOP_VCALL2 #undef PVOP_CALL2 #undef PVOP_VCALL3 #undef PVOP_CALL3 #undef PVOP_VCALL4 #undef PVOP_CALL4 extern void default_banner(void); #else /* __ASSEMBLY__ */ #define _PVSITE(ptype, ops, word, algn) \ 771:; \ ops; \ 772:; \ .pushsection .parainstructions,"a"; \ .align algn; \ word 771b; \ .byte ptype; \ .byte 772b-771b; \ .popsection #define COND_PUSH(set, mask, reg) \ .if ((~(set)) & mask); push %reg; .endif #define COND_POP(set, mask, reg) \ .if ((~(set)) & mask); pop %reg; .endif #ifdef CONFIG_X86_64 #define PV_SAVE_REGS(set) \ COND_PUSH(set, CLBR_RAX, rax); \ COND_PUSH(set, CLBR_RCX, rcx); \ COND_PUSH(set, CLBR_RDX, rdx); \ COND_PUSH(set, CLBR_RSI, rsi); \ COND_PUSH(set, CLBR_RDI, rdi); \ COND_PUSH(set, CLBR_R8, r8); \ COND_PUSH(set, CLBR_R9, r9); \ COND_PUSH(set, CLBR_R10, r10); \ COND_PUSH(set, CLBR_R11, r11) #define PV_RESTORE_REGS(set) \ COND_POP(set, CLBR_R11, r11); \ COND_POP(set, CLBR_R10, r10); \ COND_POP(set, CLBR_R9, r9); \ COND_POP(set, CLBR_R8, r8); \ COND_POP(set, CLBR_RDI, rdi); \ COND_POP(set, CLBR_RSI, rsi); \ COND_POP(set, CLBR_RDX, rdx); \ COND_POP(set, CLBR_RCX, rcx); \ COND_POP(set, CLBR_RAX, rax) #define PARA_PATCH(off) ((off) / 8) #define PARA_SITE(ptype, ops) _PVSITE(ptype, ops, .quad, 8) #define PARA_INDIRECT(addr) *addr(%rip) #else #define PV_SAVE_REGS(set) \ COND_PUSH(set, CLBR_EAX, eax); \ COND_PUSH(set, CLBR_EDI, edi); \ COND_PUSH(set, CLBR_ECX, ecx); \ COND_PUSH(set, CLBR_EDX, edx) #define PV_RESTORE_REGS(set) \ COND_POP(set, CLBR_EDX, edx); \ COND_POP(set, CLBR_ECX, ecx); \ COND_POP(set, CLBR_EDI, edi); \ COND_POP(set, CLBR_EAX, eax) #define PARA_PATCH(off) ((off) / 4) #define PARA_SITE(ptype, ops) _PVSITE(ptype, ops, .long, 4) #define PARA_INDIRECT(addr) *%cs:addr #endif #ifdef CONFIG_PARAVIRT_XXL #define INTERRUPT_RETURN \ PARA_SITE(PARA_PATCH(PV_CPU_iret), \ ANNOTATE_RETPOLINE_SAFE; \ jmp PARA_INDIRECT(pv_ops+PV_CPU_iret);) #define DISABLE_INTERRUPTS(clobbers) \ PARA_SITE(PARA_PATCH(PV_IRQ_irq_disable), \ PV_SAVE_REGS(clobbers | CLBR_CALLEE_SAVE); \ ANNOTATE_RETPOLINE_SAFE; \ call PARA_INDIRECT(pv_ops+PV_IRQ_irq_disable); \ PV_RESTORE_REGS(clobbers | CLBR_CALLEE_SAVE);) #define ENABLE_INTERRUPTS(clobbers) \ PARA_SITE(PARA_PATCH(PV_IRQ_irq_enable), \ PV_SAVE_REGS(clobbers | CLBR_CALLEE_SAVE); \ ANNOTATE_RETPOLINE_SAFE; \ call PARA_INDIRECT(pv_ops+PV_IRQ_irq_enable); \ PV_RESTORE_REGS(clobbers | CLBR_CALLEE_SAVE);) #endif #ifdef CONFIG_X86_64 #ifdef CONFIG_PARAVIRT_XXL /* * If swapgs is used while the userspace stack is still current, * there's no way to call a pvop. The PV replacement *must* be * inlined, or the swapgs instruction must be trapped and emulated. */ #define SWAPGS_UNSAFE_STACK \ PARA_SITE(PARA_PATCH(PV_CPU_swapgs), swapgs) /* * Note: swapgs is very special, and in practise is either going to be * implemented with a single "swapgs" instruction or something very * special. Either way, we don't need to save any registers for * it. */ #define SWAPGS \ PARA_SITE(PARA_PATCH(PV_CPU_swapgs), \ ANNOTATE_RETPOLINE_SAFE; \ call PARA_INDIRECT(pv_ops+PV_CPU_swapgs); \ ) #define USERGS_SYSRET64 \ PARA_SITE(PARA_PATCH(PV_CPU_usergs_sysret64), \ ANNOTATE_RETPOLINE_SAFE; \ jmp PARA_INDIRECT(pv_ops+PV_CPU_usergs_sysret64);) #ifdef CONFIG_DEBUG_ENTRY #define SAVE_FLAGS(clobbers) \ PARA_SITE(PARA_PATCH(PV_IRQ_save_fl), \ PV_SAVE_REGS(clobbers | CLBR_CALLEE_SAVE); \ ANNOTATE_RETPOLINE_SAFE; \ call PARA_INDIRECT(pv_ops+PV_IRQ_save_fl); \ PV_RESTORE_REGS(clobbers | CLBR_CALLEE_SAVE);) #endif #endif /* CONFIG_PARAVIRT_XXL */ #endif /* CONFIG_X86_64 */ #ifdef CONFIG_PARAVIRT_XXL #define GET_CR2_INTO_AX \ PARA_SITE(PARA_PATCH(PV_MMU_read_cr2), \ ANNOTATE_RETPOLINE_SAFE; \ call PARA_INDIRECT(pv_ops+PV_MMU_read_cr2); \ ) #endif /* CONFIG_PARAVIRT_XXL */ #endif /* __ASSEMBLY__ */ #else /* CONFIG_PARAVIRT */ # define default_banner x86_init_noop #endif /* !CONFIG_PARAVIRT */ #ifndef __ASSEMBLY__ #ifndef CONFIG_PARAVIRT_XXL static inline void paravirt_arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) { } #endif #ifndef CONFIG_PARAVIRT static inline void paravirt_arch_exit_mmap(struct mm_struct *mm) { } #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_PARAVIRT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 #undef TRACE_SYSTEM #define TRACE_SYSTEM rtc #if !defined(_TRACE_RTC_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RTC_H #include <linux/rtc.h> #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(rtc_time_alarm_class, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err), TP_STRUCT__entry( __field(time64_t, secs) __field(int, err) ), TP_fast_assign( __entry->secs = secs; __entry->err = err; ), TP_printk("UTC (%lld) (%d)", __entry->secs, __entry->err ) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_set_time, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_read_time, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_set_alarm, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_read_alarm, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); TRACE_EVENT(rtc_irq_set_freq, TP_PROTO(int freq, int err), TP_ARGS(freq, err), TP_STRUCT__entry( __field(int, freq) __field(int, err) ), TP_fast_assign( __entry->freq = freq; __entry->err = err; ), TP_printk("set RTC periodic IRQ frequency:%u (%d)", __entry->freq, __entry->err ) ); TRACE_EVENT(rtc_irq_set_state, TP_PROTO(int enabled, int err), TP_ARGS(enabled, err), TP_STRUCT__entry( __field(int, enabled) __field(int, err) ), TP_fast_assign( __entry->enabled = enabled; __entry->err = err; ), TP_printk("%s RTC 2^N Hz periodic IRQs (%d)", __entry->enabled ? "enable" : "disable", __entry->err ) ); TRACE_EVENT(rtc_alarm_irq_enable, TP_PROTO(unsigned int enabled, int err), TP_ARGS(enabled, err), TP_STRUCT__entry( __field(unsigned int, enabled) __field(int, err) ), TP_fast_assign( __entry->enabled = enabled; __entry->err = err; ), TP_printk("%s RTC alarm IRQ (%d)", __entry->enabled ? "enable" : "disable", __entry->err ) ); DECLARE_EVENT_CLASS(rtc_offset_class, TP_PROTO(long offset, int err), TP_ARGS(offset, err), TP_STRUCT__entry( __field(long, offset) __field(int, err) ), TP_fast_assign( __entry->offset = offset; __entry->err = err; ), TP_printk("RTC offset: %ld (%d)", __entry->offset, __entry->err ) ); DEFINE_EVENT(rtc_offset_class, rtc_set_offset, TP_PROTO(long offset, int err), TP_ARGS(offset, err) ); DEFINE_EVENT(rtc_offset_class, rtc_read_offset, TP_PROTO(long offset, int err), TP_ARGS(offset, err) ); DECLARE_EVENT_CLASS(rtc_timer_class, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer), TP_STRUCT__entry( __field(struct rtc_timer *, timer) __field(ktime_t, expires) __field(ktime_t, period) ), TP_fast_assign( __entry->timer = timer; __entry->expires = timer->node.expires; __entry->period = timer->period; ), TP_printk("RTC timer:(%p) expires:%lld period:%lld", __entry->timer, __entry->expires, __entry->period ) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_enqueue, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_dequeue, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_fired, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); #endif /* _TRACE_RTC_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1994 Linus Torvalds * * Pentium III FXSR, SSE support * General FPU state handling cleanups * Gareth Hughes <gareth@valinux.com>, May 2000 * x86-64 work by Andi Kleen 2002 */ #ifndef _ASM_X86_FPU_INTERNAL_H #define _ASM_X86_FPU_INTERNAL_H #include <linux/compat.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/mm.h> #include <asm/user.h> #include <asm/fpu/api.h> #include <asm/fpu/xstate.h> #include <asm/fpu/xcr.h> #include <asm/cpufeature.h> #include <asm/trace/fpu.h> /* * High level FPU state handling functions: */ extern void fpu__prepare_read(struct fpu *fpu); extern void fpu__prepare_write(struct fpu *fpu); extern void fpu__save(struct fpu *fpu); extern int fpu__restore_sig(void __user *buf, int ia32_frame); extern void fpu__drop(struct fpu *fpu); extern int fpu__copy(struct task_struct *dst, struct task_struct *src); extern void fpu__clear_user_states(struct fpu *fpu); extern void fpu__clear_all(struct fpu *fpu); extern int fpu__exception_code(struct fpu *fpu, int trap_nr); /* * Boot time FPU initialization functions: */ extern void fpu__init_cpu(void); extern void fpu__init_system_xstate(void); extern void fpu__init_cpu_xstate(void); extern void fpu__init_system(struct cpuinfo_x86 *c); extern void fpu__init_check_bugs(void); extern void fpu__resume_cpu(void); extern u64 fpu__get_supported_xfeatures_mask(void); /* * Debugging facility: */ #ifdef CONFIG_X86_DEBUG_FPU # define WARN_ON_FPU(x) WARN_ON_ONCE(x) #else # define WARN_ON_FPU(x) ({ (void)(x); 0; }) #endif /* * FPU related CPU feature flag helper routines: */ static __always_inline __pure bool use_xsaveopt(void) { return static_cpu_has(X86_FEATURE_XSAVEOPT); } static __always_inline __pure bool use_xsave(void) { return static_cpu_has(X86_FEATURE_XSAVE); } static __always_inline __pure bool use_fxsr(void) { return static_cpu_has(X86_FEATURE_FXSR); } /* * fpstate handling functions: */ extern union fpregs_state init_fpstate; extern void fpstate_init(union fpregs_state *state); #ifdef CONFIG_MATH_EMULATION extern void fpstate_init_soft(struct swregs_state *soft); #else static inline void fpstate_init_soft(struct swregs_state *soft) {} #endif static inline void fpstate_init_xstate(struct xregs_state *xsave) { /* * XRSTORS requires these bits set in xcomp_bv, or it will * trigger #GP: */ xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask_all; } static inline void fpstate_init_fxstate(struct fxregs_state *fx) { fx->cwd = 0x37f; fx->mxcsr = MXCSR_DEFAULT; } extern void fpstate_sanitize_xstate(struct fpu *fpu); /* Returns 0 or the negated trap number, which results in -EFAULT for #PF */ #define user_insn(insn, output, input...) \ ({ \ int err; \ \ might_fault(); \ \ asm volatile(ASM_STAC "\n" \ "1: " #insn "\n" \ "2: " ASM_CLAC "\n" \ ".section .fixup,\"ax\"\n" \ "3: negl %%eax\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE_FAULT(1b, 3b) \ : [err] "=a" (err), output \ : "0"(0), input); \ err; \ }) #define kernel_insn_err(insn, output, input...) \ ({ \ int err; \ asm volatile("1:" #insn "\n\t" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: movl $-1,%[err]\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 3b) \ : [err] "=r" (err), output \ : "0"(0), input); \ err; \ }) #define kernel_insn(insn, output, input...) \ asm volatile("1:" #insn "\n\t" \ "2:\n" \ _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_fprestore) \ : output : input) static inline int copy_fregs_to_user(struct fregs_state __user *fx) { return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx)); } static inline int copy_fxregs_to_user(struct fxregs_state __user *fx) { if (IS_ENABLED(CONFIG_X86_32)) return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); else return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); } static inline void copy_kernel_to_fxregs(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_kernel_to_fxregs_err(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) return kernel_insn_err(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else return kernel_insn_err(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_user_to_fxregs(struct fxregs_state __user *fx) { if (IS_ENABLED(CONFIG_X86_32)) return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline void copy_kernel_to_fregs(struct fregs_state *fx) { kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_kernel_to_fregs_err(struct fregs_state *fx) { return kernel_insn_err(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_user_to_fregs(struct fregs_state __user *fx) { return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline void copy_fxregs_to_kernel(struct fpu *fpu) { if (IS_ENABLED(CONFIG_X86_32)) asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave)); else asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave)); } static inline void fxsave(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) asm volatile( "fxsave %[fx]" : [fx] "=m" (*fx)); else asm volatile("fxsaveq %[fx]" : [fx] "=m" (*fx)); } /* These macros all use (%edi)/(%rdi) as the single memory argument. */ #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27" #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37" #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f" #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f" #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f" /* * After this @err contains 0 on success or the negated trap number when * the operation raises an exception. For faults this results in -EFAULT. */ #define XSTATE_OP(op, st, lmask, hmask, err) \ asm volatile("1:" op "\n\t" \ "xor %[err], %[err]\n" \ "2:\n\t" \ ".pushsection .fixup,\"ax\"\n\t" \ "3: negl %%eax\n\t" \ "jmp 2b\n\t" \ ".popsection\n\t" \ _ASM_EXTABLE_FAULT(1b, 3b) \ : [err] "=a" (err) \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact * format and supervisor states in addition to modified optimization in * XSAVEOPT. * * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT * supports modified optimization which is not supported by XSAVE. * * We use XSAVE as a fallback. * * The 661 label is defined in the ALTERNATIVE* macros as the address of the * original instruction which gets replaced. We need to use it here as the * address of the instruction where we might get an exception at. */ #define XSTATE_XSAVE(st, lmask, hmask, err) \ asm volatile(ALTERNATIVE_2(XSAVE, \ XSAVEOPT, X86_FEATURE_XSAVEOPT, \ XSAVES, X86_FEATURE_XSAVES) \ "\n" \ "xor %[err], %[err]\n" \ "3:\n" \ ".pushsection .fixup,\"ax\"\n" \ "4: movl $-2, %[err]\n" \ "jmp 3b\n" \ ".popsection\n" \ _ASM_EXTABLE(661b, 4b) \ : [err] "=r" (err) \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact * XSAVE area format. */ #define XSTATE_XRESTORE(st, lmask, hmask) \ asm volatile(ALTERNATIVE(XRSTOR, \ XRSTORS, X86_FEATURE_XSAVES) \ "\n" \ "3:\n" \ _ASM_EXTABLE_HANDLE(661b, 3b, ex_handler_fprestore)\ : \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * This function is called only during boot time when x86 caps are not set * up and alternative can not be used yet. */ static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate) { u64 mask = -1; u32 lmask = mask; u32 hmask = mask >> 32; int err; WARN_ON(system_state != SYSTEM_BOOTING); if (boot_cpu_has(X86_FEATURE_XSAVES)) XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); else XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); /* * We should never fault when copying from a kernel buffer, and the FPU * state we set at boot time should be valid. */ WARN_ON_FPU(err); } /* * Save processor xstate to xsave area. */ static inline void copy_xregs_to_kernel(struct xregs_state *xstate) { u64 mask = xfeatures_mask_all; u32 lmask = mask; u32 hmask = mask >> 32; int err; WARN_ON_FPU(!alternatives_patched); XSTATE_XSAVE(xstate, lmask, hmask, err); /* We should never fault when copying to a kernel buffer: */ WARN_ON_FPU(err); } /* * Restore processor xstate from xsave area. */ static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask) { u32 lmask = mask; u32 hmask = mask >> 32; XSTATE_XRESTORE(xstate, lmask, hmask); } /* * Save xstate to user space xsave area. * * We don't use modified optimization because xrstor/xrstors might track * a different application. * * We don't use compacted format xsave area for * backward compatibility for old applications which don't understand * compacted format of xsave area. */ static inline int copy_xregs_to_user(struct xregs_state __user *buf) { u64 mask = xfeatures_mask_user(); u32 lmask = mask; u32 hmask = mask >> 32; int err; /* * Clear the xsave header first, so that reserved fields are * initialized to zero. */ err = __clear_user(&buf->header, sizeof(buf->header)); if (unlikely(err)) return -EFAULT; stac(); XSTATE_OP(XSAVE, buf, lmask, hmask, err); clac(); return err; } /* * Restore xstate from user space xsave area. */ static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask) { struct xregs_state *xstate = ((__force struct xregs_state *)buf); u32 lmask = mask; u32 hmask = mask >> 32; int err; stac(); XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); clac(); return err; } /* * Restore xstate from kernel space xsave area, return an error code instead of * an exception. */ static inline int copy_kernel_to_xregs_err(struct xregs_state *xstate, u64 mask) { u32 lmask = mask; u32 hmask = mask >> 32; int err; if (static_cpu_has(X86_FEATURE_XSAVES)) XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); else XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); return err; } extern int copy_fpregs_to_fpstate(struct fpu *fpu); static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask) { if (use_xsave()) { copy_kernel_to_xregs(&fpstate->xsave, mask); } else { if (use_fxsr()) copy_kernel_to_fxregs(&fpstate->fxsave); else copy_kernel_to_fregs(&fpstate->fsave); } } static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate) { /* * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is * pending. Clear the x87 state here by setting it to fixed values. * "m" is a random variable that should be in L1. */ if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { asm volatile( "fnclex\n\t" "emms\n\t" "fildl %P[addr]" /* set F?P to defined value */ : : [addr] "m" (fpstate)); } __copy_kernel_to_fpregs(fpstate, -1); } extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size); /* * FPU context switch related helper methods: */ DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); /* * The in-register FPU state for an FPU context on a CPU is assumed to be * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx * matches the FPU. * * If the FPU register state is valid, the kernel can skip restoring the * FPU state from memory. * * Any code that clobbers the FPU registers or updates the in-memory * FPU state for a task MUST let the rest of the kernel know that the * FPU registers are no longer valid for this task. * * Either one of these invalidation functions is enough. Invalidate * a resource you control: CPU if using the CPU for something else * (with preemption disabled), FPU for the current task, or a task that * is prevented from running by the current task. */ static inline void __cpu_invalidate_fpregs_state(void) { __this_cpu_write(fpu_fpregs_owner_ctx, NULL); } static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu) { fpu->last_cpu = -1; } static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu) { return fpu == this_cpu_read(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu; } /* * These generally need preemption protection to work, * do try to avoid using these on their own: */ static inline void fpregs_deactivate(struct fpu *fpu) { this_cpu_write(fpu_fpregs_owner_ctx, NULL); trace_x86_fpu_regs_deactivated(fpu); } static inline void fpregs_activate(struct fpu *fpu) { this_cpu_write(fpu_fpregs_owner_ctx, fpu); trace_x86_fpu_regs_activated(fpu); } /* * Internal helper, do not use directly. Use switch_fpu_return() instead. */ static inline void __fpregs_load_activate(void) { struct fpu *fpu = &current->thread.fpu; int cpu = smp_processor_id(); if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) return; if (!fpregs_state_valid(fpu, cpu)) { copy_kernel_to_fpregs(&fpu->state); fpregs_activate(fpu); fpu->last_cpu = cpu; } clear_thread_flag(TIF_NEED_FPU_LOAD); } /* * FPU state switching for scheduling. * * This is a two-stage process: * * - switch_fpu_prepare() saves the old state. * This is done within the context of the old process. * * - switch_fpu_finish() sets TIF_NEED_FPU_LOAD; the floating point state * will get loaded on return to userspace, or when the kernel needs it. * * If TIF_NEED_FPU_LOAD is cleared then the CPU's FPU registers * are saved in the current thread's FPU register state. * * If TIF_NEED_FPU_LOAD is set then CPU's FPU registers may not * hold current()'s FPU registers. It is required to load the * registers before returning to userland or using the content * otherwise. * * The FPU context is only stored/restored for a user task and * PF_KTHREAD is used to distinguish between kernel and user threads. */ static inline void switch_fpu_prepare(struct fpu *old_fpu, int cpu) { if (static_cpu_has(X86_FEATURE_FPU) && !(current->flags & PF_KTHREAD)) { if (!copy_fpregs_to_fpstate(old_fpu)) old_fpu->last_cpu = -1; else old_fpu->last_cpu = cpu; /* But leave fpu_fpregs_owner_ctx! */ trace_x86_fpu_regs_deactivated(old_fpu); } } /* * Misc helper functions: */ /* * Load PKRU from the FPU context if available. Delay loading of the * complete FPU state until the return to userland. */ static inline void switch_fpu_finish(struct fpu *new_fpu) { u32 pkru_val = init_pkru_value; struct pkru_state *pk; if (!static_cpu_has(X86_FEATURE_FPU)) return; set_thread_flag(TIF_NEED_FPU_LOAD); if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return; /* * PKRU state is switched eagerly because it needs to be valid before we * return to userland e.g. for a copy_to_user() operation. */ if (!(current->flags & PF_KTHREAD)) { /* * If the PKRU bit in xsave.header.xfeatures is not set, * then the PKRU component was in init state, which means * XRSTOR will set PKRU to 0. If the bit is not set then * get_xsave_addr() will return NULL because the PKRU value * in memory is not valid. This means pkru_val has to be * set to 0 and not to init_pkru_value. */ pk = get_xsave_addr(&new_fpu->state.xsave, XFEATURE_PKRU); pkru_val = pk ? pk->pkru : 0; } __write_pkru(pkru_val); } #endif /* _ASM_X86_FPU_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __VDSO_MATH64_H #define __VDSO_MATH64_H static __always_inline u32 __iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) { u32 ret = 0; while (dividend >= divisor) { /* The following asm() prevents the compiler from optimising this loop into a modulo operation. */ asm("" : "+rm"(dividend)); dividend -= divisor; ret++; } *remainder = dividend; return ret; } #endif /* __VDSO_MATH64_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* internal.h: mm/ internal definitions * * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef __MM_INTERNAL_H #define __MM_INTERNAL_H #include <linux/fs.h> #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/tracepoint-defs.h> /* * The set of flags that only affect watermark checking and reclaim * behaviour. This is used by the MM to obey the caller constraints * about IO, FS and watermark checking while ignoring placement * hints such as HIGHMEM usage. */ #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ __GFP_ATOMIC) /* The GFP flags allowed during early boot */ #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) /* Control allocation cpuset and node placement constraints */ #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) /* Do not use these with a slab allocator */ #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) void page_writeback_init(void); vm_fault_t do_swap_page(struct vm_fault *vmf); void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, unsigned long floor, unsigned long ceiling); static inline bool can_madv_lru_vma(struct vm_area_struct *vma) { return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); } void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, struct zap_details *details); void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read, unsigned long lookahead_size); void force_page_cache_ra(struct readahead_control *, struct file_ra_state *, unsigned long nr); static inline void force_page_cache_readahead(struct address_space *mapping, struct file *file, pgoff_t index, unsigned long nr_to_read) { DEFINE_READAHEAD(ractl, file, mapping, index); force_page_cache_ra(&ractl, &file->f_ra, nr_to_read); } struct page *find_get_entry(struct address_space *mapping, pgoff_t index); struct page *find_lock_entry(struct address_space *mapping, pgoff_t index); /** * page_evictable - test whether a page is evictable * @page: the page to test * * Test whether page is evictable--i.e., should be placed on active/inactive * lists vs unevictable list. * * Reasons page might not be evictable: * (1) page's mapping marked unevictable * (2) page is part of an mlocked VMA * */ static inline bool page_evictable(struct page *page) { bool ret; /* Prevent address_space of inode and swap cache from being freed */ rcu_read_lock(); ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); rcu_read_unlock(); return ret; } /* * Turn a non-refcounted page (->_refcount == 0) into refcounted with * a count of one. */ static inline void set_page_refcounted(struct page *page) { VM_BUG_ON_PAGE(PageTail(page), page); VM_BUG_ON_PAGE(page_ref_count(page), page); set_page_count(page, 1); } extern unsigned long highest_memmap_pfn; /* * Maximum number of reclaim retries without progress before the OOM * killer is consider the only way forward. */ #define MAX_RECLAIM_RETRIES 16 /* * in mm/vmscan.c: */ extern int isolate_lru_page(struct page *page); extern void putback_lru_page(struct page *page); /* * in mm/rmap.c: */ extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); /* * in mm/page_alloc.c */ /* * Structure for holding the mostly immutable allocation parameters passed * between functions involved in allocations, including the alloc_pages* * family of functions. * * nodemask, migratetype and highest_zoneidx are initialized only once in * __alloc_pages_nodemask() and then never change. * * zonelist, preferred_zone and highest_zoneidx are set first in * __alloc_pages_nodemask() for the fast path, and might be later changed * in __alloc_pages_slowpath(). All other functions pass the whole structure * by a const pointer. */ struct alloc_context { struct zonelist *zonelist; nodemask_t *nodemask; struct zoneref *preferred_zoneref; int migratetype; /* * highest_zoneidx represents highest usable zone index of * the allocation request. Due to the nature of the zone, * memory on lower zone than the highest_zoneidx will be * protected by lowmem_reserve[highest_zoneidx]. * * highest_zoneidx is also used by reclaim/compaction to limit * the target zone since higher zone than this index cannot be * usable for this allocation request. */ enum zone_type highest_zoneidx; bool spread_dirty_pages; }; /* * Locate the struct page for both the matching buddy in our * pair (buddy1) and the combined O(n+1) page they form (page). * * 1) Any buddy B1 will have an order O twin B2 which satisfies * the following equation: * B2 = B1 ^ (1 << O) * For example, if the starting buddy (buddy2) is #8 its order * 1 buddy is #10: * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 * * 2) Any buddy B will have an order O+1 parent P which * satisfies the following equation: * P = B & ~(1 << O) * * Assumption: *_mem_map is contiguous at least up to MAX_ORDER */ static inline unsigned long __find_buddy_pfn(unsigned long page_pfn, unsigned int order) { return page_pfn ^ (1 << order); } extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, unsigned long end_pfn, struct zone *zone); static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, unsigned long end_pfn, struct zone *zone) { if (zone->contiguous) return pfn_to_page(start_pfn); return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); } extern int __isolate_free_page(struct page *page, unsigned int order); extern void __putback_isolated_page(struct page *page, unsigned int order, int mt); extern void memblock_free_pages(struct page *page, unsigned long pfn, unsigned int order); extern void __free_pages_core(struct page *page, unsigned int order); extern void prep_compound_page(struct page *page, unsigned int order); extern void post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags); extern int user_min_free_kbytes; extern void zone_pcp_update(struct zone *zone); extern void zone_pcp_reset(struct zone *zone); #if defined CONFIG_COMPACTION || defined CONFIG_CMA /* * in mm/compaction.c */ /* * compact_control is used to track pages being migrated and the free pages * they are being migrated to during memory compaction. The free_pfn starts * at the end of a zone and migrate_pfn begins at the start. Movable pages * are moved to the end of a zone during a compaction run and the run * completes when free_pfn <= migrate_pfn */ struct compact_control { struct list_head freepages; /* List of free pages to migrate to */ struct list_head migratepages; /* List of pages being migrated */ unsigned int nr_freepages; /* Number of isolated free pages */ unsigned int nr_migratepages; /* Number of pages to migrate */ unsigned long free_pfn; /* isolate_freepages search base */ unsigned long migrate_pfn; /* isolate_migratepages search base */ unsigned long fast_start_pfn; /* a pfn to start linear scan from */ struct zone *zone; unsigned long total_migrate_scanned; unsigned long total_free_scanned; unsigned short fast_search_fail;/* failures to use free list searches */ short search_order; /* order to start a fast search at */ const gfp_t gfp_mask; /* gfp mask of a direct compactor */ int order; /* order a direct compactor needs */ int migratetype; /* migratetype of direct compactor */ const unsigned int alloc_flags; /* alloc flags of a direct compactor */ const int highest_zoneidx; /* zone index of a direct compactor */ enum migrate_mode mode; /* Async or sync migration mode */ bool ignore_skip_hint; /* Scan blocks even if marked skip */ bool no_set_skip_hint; /* Don't mark blocks for skipping */ bool ignore_block_suitable; /* Scan blocks considered unsuitable */ bool direct_compaction; /* False from kcompactd or /proc/... */ bool proactive_compaction; /* kcompactd proactive compaction */ bool whole_zone; /* Whole zone should/has been scanned */ bool contended; /* Signal lock or sched contention */ bool rescan; /* Rescanning the same pageblock */ bool alloc_contig; /* alloc_contig_range allocation */ }; /* * Used in direct compaction when a page should be taken from the freelists * immediately when one is created during the free path. */ struct capture_control { struct compact_control *cc; struct page *page; }; unsigned long isolate_freepages_range(struct compact_control *cc, unsigned long start_pfn, unsigned long end_pfn); unsigned long isolate_migratepages_range(struct compact_control *cc, unsigned long low_pfn, unsigned long end_pfn); int find_suitable_fallback(struct free_area *area, unsigned int order, int migratetype, bool only_stealable, bool *can_steal); #endif /* * This function returns the order of a free page in the buddy system. In * general, page_zone(page)->lock must be held by the caller to prevent the * page from being allocated in parallel and returning garbage as the order. * If a caller does not hold page_zone(page)->lock, it must guarantee that the * page cannot be allocated or merged in parallel. Alternatively, it must * handle invalid values gracefully, and use buddy_order_unsafe() below. */ static inline unsigned int buddy_order(struct page *page) { /* PageBuddy() must be checked by the caller */ return page_private(page); } /* * Like buddy_order(), but for callers who cannot afford to hold the zone lock. * PageBuddy() should be checked first by the caller to minimize race window, * and invalid values must be handled gracefully. * * READ_ONCE is used so that if the caller assigns the result into a local * variable and e.g. tests it for valid range before using, the compiler cannot * decide to remove the variable and inline the page_private(page) multiple * times, potentially observing different values in the tests and the actual * use of the result. */ #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) static inline bool is_cow_mapping(vm_flags_t flags) { return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; } /* * These three helpers classifies VMAs for virtual memory accounting. */ /* * Executable code area - executable, not writable, not stack */ static inline bool is_exec_mapping(vm_flags_t flags) { return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; } /* * Stack area - atomatically grows in one direction * * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: * do_mmap() forbids all other combinations. */ static inline bool is_stack_mapping(vm_flags_t flags) { return (flags & VM_STACK) == VM_STACK; } /* * Data area - private, writable, not stack */ static inline bool is_data_mapping(vm_flags_t flags) { return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; } /* mm/util.c */ void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev); void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); #ifdef CONFIG_MMU extern long populate_vma_page_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, int *nonblocking); extern void munlock_vma_pages_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); static inline void munlock_vma_pages_all(struct vm_area_struct *vma) { munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); } /* * must be called with vma's mmap_lock held for read or write, and page locked. */ extern void mlock_vma_page(struct page *page); extern unsigned int munlock_vma_page(struct page *page); /* * Clear the page's PageMlocked(). This can be useful in a situation where * we want to unconditionally remove a page from the pagecache -- e.g., * on truncation or freeing. * * It is legal to call this function for any page, mlocked or not. * If called for a page that is still mapped by mlocked vmas, all we do * is revert to lazy LRU behaviour -- semantics are not broken. */ extern void clear_page_mlock(struct page *page); /* * mlock_migrate_page - called only from migrate_misplaced_transhuge_page() * (because that does not go through the full procedure of migration ptes): * to migrate the Mlocked page flag; update statistics. */ static inline void mlock_migrate_page(struct page *newpage, struct page *page) { if (TestClearPageMlocked(page)) { int nr_pages = thp_nr_pages(page); /* Holding pmd lock, no change in irq context: __mod is safe */ __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); SetPageMlocked(newpage); __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages); } } extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); /* * At what user virtual address is page expected in vma? * Returns -EFAULT if all of the page is outside the range of vma. * If page is a compound head, the entire compound page is considered. */ static inline unsigned long vma_address(struct page *page, struct vm_area_struct *vma) { pgoff_t pgoff; unsigned long address; VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ pgoff = page_to_pgoff(page); if (pgoff >= vma->vm_pgoff) { address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); /* Check for address beyond vma (or wrapped through 0?) */ if (address < vma->vm_start || address >= vma->vm_end) address = -EFAULT; } else if (PageHead(page) && pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) { /* Test above avoids possibility of wrap to 0 on 32-bit */ address = vma->vm_start; } else { address = -EFAULT; } return address; } /* * Then at what user virtual address will none of the page be found in vma? * Assumes that vma_address() already returned a good starting address. * If page is a compound head, the entire compound page is considered. */ static inline unsigned long vma_address_end(struct page *page, struct vm_area_struct *vma) { pgoff_t pgoff; unsigned long address; VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ pgoff = page_to_pgoff(page) + compound_nr(page); address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); /* Check for address beyond vma (or wrapped through 0?) */ if (address < vma->vm_start || address > vma->vm_end) address = vma->vm_end; return address; } static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, struct file *fpin) { int flags = vmf->flags; if (fpin) return fpin; /* * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or * anything, so we only pin the file and drop the mmap_lock if only * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. */ if (fault_flag_allow_retry_first(flags) && !(flags & FAULT_FLAG_RETRY_NOWAIT)) { fpin = get_file(vmf->vma->vm_file); mmap_read_unlock(vmf->vma->vm_mm); } return fpin; } #else /* !CONFIG_MMU */ static inline void clear_page_mlock(struct page *page) { } static inline void mlock_vma_page(struct page *page) { } static inline void mlock_migrate_page(struct page *new, struct page *old) { } #endif /* !CONFIG_MMU */ /* * Return the mem_map entry representing the 'offset' subpage within * the maximally aligned gigantic page 'base'. Handle any discontiguity * in the mem_map at MAX_ORDER_NR_PAGES boundaries. */ static inline struct page *mem_map_offset(struct page *base, int offset) { if (unlikely(offset >= MAX_ORDER_NR_PAGES)) return nth_page(base, offset); return base + offset; } /* * Iterator over all subpages within the maximally aligned gigantic * page 'base'. Handle any discontiguity in the mem_map. */ static inline struct page *mem_map_next(struct page *iter, struct page *base, int offset) { if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { unsigned long pfn = page_to_pfn(base) + offset; if (!pfn_valid(pfn)) return NULL; return pfn_to_page(pfn); } return iter + 1; } /* Memory initialisation debug and verification */ enum mminit_level { MMINIT_WARNING, MMINIT_VERIFY, MMINIT_TRACE }; #ifdef CONFIG_DEBUG_MEMORY_INIT extern int mminit_loglevel; #define mminit_dprintk(level, prefix, fmt, arg...) \ do { \ if (level < mminit_loglevel) { \ if (level <= MMINIT_WARNING) \ pr_warn("mminit::" prefix " " fmt, ##arg); \ else \ printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ } \ } while (0) extern void mminit_verify_pageflags_layout(void); extern void mminit_verify_zonelist(void); #else static inline void mminit_dprintk(enum mminit_level level, const char *prefix, const char *fmt, ...) { } static inline void mminit_verify_pageflags_layout(void) { } static inline void mminit_verify_zonelist(void) { } #endif /* CONFIG_DEBUG_MEMORY_INIT */ /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ #if defined(CONFIG_SPARSEMEM) extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, unsigned long *end_pfn); #else static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, unsigned long *end_pfn) { } #endif /* CONFIG_SPARSEMEM */ #define NODE_RECLAIM_NOSCAN -2 #define NODE_RECLAIM_FULL -1 #define NODE_RECLAIM_SOME 0 #define NODE_RECLAIM_SUCCESS 1 #ifdef CONFIG_NUMA extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); #else static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, unsigned int order) { return NODE_RECLAIM_NOSCAN; } #endif extern int hwpoison_filter(struct page *p); extern u32 hwpoison_filter_dev_major; extern u32 hwpoison_filter_dev_minor; extern u64 hwpoison_filter_flags_mask; extern u64 hwpoison_filter_flags_value; extern u64 hwpoison_filter_memcg; extern u32 hwpoison_filter_enable; extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long); extern void set_pageblock_order(void); unsigned int reclaim_clean_pages_from_list(struct zone *zone, struct list_head *page_list); /* The ALLOC_WMARK bits are used as an index to zone->watermark */ #define ALLOC_WMARK_MIN WMARK_MIN #define ALLOC_WMARK_LOW WMARK_LOW #define ALLOC_WMARK_HIGH WMARK_HIGH #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ /* Mask to get the watermark bits */ #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) /* * Only MMU archs have async oom victim reclaim - aka oom_reaper so we * cannot assume a reduced access to memory reserves is sufficient for * !MMU */ #ifdef CONFIG_MMU #define ALLOC_OOM 0x08 #else #define ALLOC_OOM ALLOC_NO_WATERMARKS #endif #define ALLOC_HARDER 0x10 /* try to alloc harder */ #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ #ifdef CONFIG_ZONE_DMA32 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ #else #define ALLOC_NOFRAGMENT 0x0 #endif #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ enum ttu_flags; struct tlbflush_unmap_batch; /* * only for MM internal work items which do not depend on * any allocations or locks which might depend on allocations */ extern struct workqueue_struct *mm_percpu_wq; #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH void try_to_unmap_flush(void); void try_to_unmap_flush_dirty(void); void flush_tlb_batched_pending(struct mm_struct *mm); #else static inline void try_to_unmap_flush(void) { } static inline void try_to_unmap_flush_dirty(void) { } static inline void flush_tlb_batched_pending(struct mm_struct *mm) { } #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ extern const struct trace_print_flags pageflag_names[]; extern const struct trace_print_flags vmaflag_names[]; extern const struct trace_print_flags gfpflag_names[]; static inline bool is_migrate_highatomic(enum migratetype migratetype) { return migratetype == MIGRATE_HIGHATOMIC; } static inline bool is_migrate_highatomic_page(struct page *page) { return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; } void setup_zone_pageset(struct zone *zone); struct migration_target_control { int nid; /* preferred node id */ nodemask_t *nmask; gfp_t gfp_mask; }; #endif /* __MM_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NET Generic infrastructure for INET connection oriented protocols. * * Definitions for inet_connection_sock * * Authors: Many people, see the TCP sources * * From code originally in TCP */ #ifndef _INET_CONNECTION_SOCK_H #define _INET_CONNECTION_SOCK_H #include <linux/compiler.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/poll.h> #include <linux/kernel.h> #include <linux/sockptr.h> #include <net/inet_sock.h> #include <net/request_sock.h> /* Cancel timers, when they are not required. */ #undef INET_CSK_CLEAR_TIMERS struct inet_bind_bucket; struct tcp_congestion_ops; /* * Pointers to address related TCP functions * (i.e. things that depend on the address family) */ struct inet_connection_sock_af_ops { int (*queue_xmit)(struct sock *sk, struct sk_buff *skb, struct flowi *fl); void (*send_check)(struct sock *sk, struct sk_buff *skb); int (*rebuild_header)(struct sock *sk); void (*sk_rx_dst_set)(struct sock *sk, const struct sk_buff *skb); int (*conn_request)(struct sock *sk, struct sk_buff *skb); struct sock *(*syn_recv_sock)(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req); u16 net_header_len; u16 net_frag_header_len; u16 sockaddr_len; int (*setsockopt)(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int (*getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); void (*addr2sockaddr)(struct sock *sk, struct sockaddr *); void (*mtu_reduced)(struct sock *sk); }; /** inet_connection_sock - INET connection oriented sock * * @icsk_accept_queue: FIFO of established children * @icsk_bind_hash: Bind node * @icsk_timeout: Timeout * @icsk_retransmit_timer: Resend (no ack) * @icsk_rto: Retransmit timeout * @icsk_pmtu_cookie Last pmtu seen by socket * @icsk_ca_ops Pluggable congestion control hook * @icsk_af_ops Operations which are AF_INET{4,6} specific * @icsk_ulp_ops Pluggable ULP control hook * @icsk_ulp_data ULP private data * @icsk_clean_acked Clean acked data hook * @icsk_listen_portaddr_node hash to the portaddr listener hashtable * @icsk_ca_state: Congestion control state * @icsk_retransmits: Number of unrecovered [RTO] timeouts * @icsk_pending: Scheduled timer event * @icsk_backoff: Backoff * @icsk_syn_retries: Number of allowed SYN (or equivalent) retries * @icsk_probes_out: unanswered 0 window probes * @icsk_ext_hdr_len: Network protocol overhead (IP/IPv6 options) * @icsk_ack: Delayed ACK control data * @icsk_mtup; MTU probing control data * @icsk_probes_tstamp: Probe timestamp (cleared by non-zero window ack) * @icsk_user_timeout: TCP_USER_TIMEOUT value */ struct inet_connection_sock { /* inet_sock has to be the first member! */ struct inet_sock icsk_inet; struct request_sock_queue icsk_accept_queue; struct inet_bind_bucket *icsk_bind_hash; unsigned long icsk_timeout; struct timer_list icsk_retransmit_timer; struct timer_list icsk_delack_timer; __u32 icsk_rto; __u32 icsk_rto_min; __u32 icsk_delack_max; __u32 icsk_pmtu_cookie; const struct tcp_congestion_ops *icsk_ca_ops; const struct inet_connection_sock_af_ops *icsk_af_ops; const struct tcp_ulp_ops *icsk_ulp_ops; void __rcu *icsk_ulp_data; void (*icsk_clean_acked)(struct sock *sk, u32 acked_seq); struct hlist_node icsk_listen_portaddr_node; unsigned int (*icsk_sync_mss)(struct sock *sk, u32 pmtu); __u8 icsk_ca_state:5, icsk_ca_initialized:1, icsk_ca_setsockopt:1, icsk_ca_dst_locked:1; __u8 icsk_retransmits; __u8 icsk_pending; __u8 icsk_backoff; __u8 icsk_syn_retries; __u8 icsk_probes_out; __u16 icsk_ext_hdr_len; struct { __u8 pending; /* ACK is pending */ __u8 quick; /* Scheduled number of quick acks */ __u8 pingpong; /* The session is interactive */ __u8 retry; /* Number of attempts */ __u32 ato; /* Predicted tick of soft clock */ unsigned long timeout; /* Currently scheduled timeout */ __u32 lrcvtime; /* timestamp of last received data packet */ __u16 last_seg_size; /* Size of last incoming segment */ __u16 rcv_mss; /* MSS used for delayed ACK decisions */ } icsk_ack; struct { int enabled; /* Range of MTUs to search */ int search_high; int search_low; /* Information on the current probe. */ int probe_size; u32 probe_timestamp; } icsk_mtup; u32 icsk_probes_tstamp; u32 icsk_user_timeout; u64 icsk_ca_priv[104 / sizeof(u64)]; #define ICSK_CA_PRIV_SIZE (13 * sizeof(u64)) }; #define ICSK_TIME_RETRANS 1 /* Retransmit timer */ #define ICSK_TIME_DACK 2 /* Delayed ack timer */ #define ICSK_TIME_PROBE0 3 /* Zero window probe timer */ #define ICSK_TIME_EARLY_RETRANS 4 /* Early retransmit timer */ #define ICSK_TIME_LOSS_PROBE 5 /* Tail loss probe timer */ #define ICSK_TIME_REO_TIMEOUT 6 /* Reordering timer */ static inline struct inet_connection_sock *inet_csk(const struct sock *sk) { return (struct inet_connection_sock *)sk; } static inline void *inet_csk_ca(const struct sock *sk) { return (void *)inet_csk(sk)->icsk_ca_priv; } struct sock *inet_csk_clone_lock(const struct sock *sk, const struct request_sock *req, const gfp_t priority); enum inet_csk_ack_state_t { ICSK_ACK_SCHED = 1, ICSK_ACK_TIMER = 2, ICSK_ACK_PUSHED = 4, ICSK_ACK_PUSHED2 = 8, ICSK_ACK_NOW = 16 /* Send the next ACK immediately (once) */ }; void inet_csk_init_xmit_timers(struct sock *sk, void (*retransmit_handler)(struct timer_list *), void (*delack_handler)(struct timer_list *), void (*keepalive_handler)(struct timer_list *)); void inet_csk_clear_xmit_timers(struct sock *sk); static inline void inet_csk_schedule_ack(struct sock *sk) { inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_SCHED; } static inline int inet_csk_ack_scheduled(const struct sock *sk) { return inet_csk(sk)->icsk_ack.pending & ICSK_ACK_SCHED; } static inline void inet_csk_delack_init(struct sock *sk) { memset(&inet_csk(sk)->icsk_ack, 0, sizeof(inet_csk(sk)->icsk_ack)); } void inet_csk_delete_keepalive_timer(struct sock *sk); void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long timeout); static inline void inet_csk_clear_xmit_timer(struct sock *sk, const int what) { struct inet_connection_sock *icsk = inet_csk(sk); if (what == ICSK_TIME_RETRANS || what == ICSK_TIME_PROBE0) { icsk->icsk_pending = 0; #ifdef INET_CSK_CLEAR_TIMERS sk_stop_timer(sk, &icsk->icsk_retransmit_timer); #endif } else if (what == ICSK_TIME_DACK) { icsk->icsk_ack.pending = 0; icsk->icsk_ack.retry = 0; #ifdef INET_CSK_CLEAR_TIMERS sk_stop_timer(sk, &icsk->icsk_delack_timer); #endif } else { pr_debug("inet_csk BUG: unknown timer value\n"); } } /* * Reset the retransmission timer */ static inline void inet_csk_reset_xmit_timer(struct sock *sk, const int what, unsigned long when, const unsigned long max_when) { struct inet_connection_sock *icsk = inet_csk(sk); if (when > max_when) { pr_debug("reset_xmit_timer: sk=%p %d when=0x%lx, caller=%p\n", sk, what, when, (void *)_THIS_IP_); when = max_when; } if (what == ICSK_TIME_RETRANS || what == ICSK_TIME_PROBE0 || what == ICSK_TIME_EARLY_RETRANS || what == ICSK_TIME_LOSS_PROBE || what == ICSK_TIME_REO_TIMEOUT) { icsk->icsk_pending = what; icsk->icsk_timeout = jiffies + when; sk_reset_timer(sk, &icsk->icsk_retransmit_timer, icsk->icsk_timeout); } else if (what == ICSK_TIME_DACK) { icsk->icsk_ack.pending |= ICSK_ACK_TIMER; icsk->icsk_ack.timeout = jiffies + when; sk_reset_timer(sk, &icsk->icsk_delack_timer, icsk->icsk_ack.timeout); } else { pr_debug("inet_csk BUG: unknown timer value\n"); } } static inline unsigned long inet_csk_rto_backoff(const struct inet_connection_sock *icsk, unsigned long max_when) { u64 when = (u64)icsk->icsk_rto << icsk->icsk_backoff; return (unsigned long)min_t(u64, when, max_when); } struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern); int inet_csk_get_port(struct sock *sk, unsigned short snum); struct dst_entry *inet_csk_route_req(const struct sock *sk, struct flowi4 *fl4, const struct request_sock *req); struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, struct sock *newsk, const struct request_sock *req); struct sock *inet_csk_reqsk_queue_add(struct sock *sk, struct request_sock *req, struct sock *child); void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, unsigned long timeout); struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, struct request_sock *req, bool own_req); static inline void inet_csk_reqsk_queue_added(struct sock *sk) { reqsk_queue_added(&inet_csk(sk)->icsk_accept_queue); } static inline int inet_csk_reqsk_queue_len(const struct sock *sk) { return reqsk_queue_len(&inet_csk(sk)->icsk_accept_queue); } static inline int inet_csk_reqsk_queue_is_full(const struct sock *sk) { return inet_csk_reqsk_queue_len(sk) >= sk->sk_max_ack_backlog; } bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req); void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req); static inline void inet_csk_prepare_for_destroy_sock(struct sock *sk) { /* The below has to be done to allow calling inet_csk_destroy_sock */ sock_set_flag(sk, SOCK_DEAD); percpu_counter_inc(sk->sk_prot->orphan_count); } void inet_csk_destroy_sock(struct sock *sk); void inet_csk_prepare_forced_close(struct sock *sk); /* * LISTEN is a special case for poll.. */ static inline __poll_t inet_csk_listen_poll(const struct sock *sk) { return !reqsk_queue_empty(&inet_csk(sk)->icsk_accept_queue) ? (EPOLLIN | EPOLLRDNORM) : 0; } int inet_csk_listen_start(struct sock *sk, int backlog); void inet_csk_listen_stop(struct sock *sk); void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr); /* update the fast reuse flag when adding a socket */ void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, struct sock *sk); struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu); #define TCP_PINGPONG_THRESH 3 static inline void inet_csk_enter_pingpong_mode(struct sock *sk) { inet_csk(sk)->icsk_ack.pingpong = TCP_PINGPONG_THRESH; } static inline void inet_csk_exit_pingpong_mode(struct sock *sk) { inet_csk(sk)->icsk_ack.pingpong = 0; } static inline bool inet_csk_in_pingpong_mode(struct sock *sk) { return inet_csk(sk)->icsk_ack.pingpong >= TCP_PINGPONG_THRESH; } static inline void inet_csk_inc_pingpong_cnt(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ack.pingpong < U8_MAX) icsk->icsk_ack.pingpong++; } static inline bool inet_csk_has_ulp(struct sock *sk) { return inet_sk(sk)->is_icsk && !!inet_csk(sk)->icsk_ulp_ops; } #endif /* _INET_CONNECTION_SOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 /* SPDX-License-Identifier: GPL-2.0 */ /* * This is <linux/capability.h> * * Andrew G. Morgan <morgan@kernel.org> * Alexander Kjeldaas <astor@guardian.no> * with help from Aleph1, Roland Buresund and Andrew Main. * * See here for the libcap library ("POSIX draft" compliance): * * ftp://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.6/ */ #ifndef _LINUX_CAPABILITY_H #define _LINUX_CAPABILITY_H #include <uapi/linux/capability.h> #include <linux/uidgid.h> #define _KERNEL_CAPABILITY_VERSION _LINUX_CAPABILITY_VERSION_3 #define _KERNEL_CAPABILITY_U32S _LINUX_CAPABILITY_U32S_3 extern int file_caps_enabled; typedef struct kernel_cap_struct { __u32 cap[_KERNEL_CAPABILITY_U32S]; } kernel_cap_t; /* same as vfs_ns_cap_data but in cpu endian and always filled completely */ struct cpu_vfs_cap_data { __u32 magic_etc; kernel_cap_t permitted; kernel_cap_t inheritable; kuid_t rootid; }; #define _USER_CAP_HEADER_SIZE (sizeof(struct __user_cap_header_struct)) #define _KERNEL_CAP_T_SIZE (sizeof(kernel_cap_t)) struct file; struct inode; struct dentry; struct task_struct; struct user_namespace; extern const kernel_cap_t __cap_empty_set; extern const kernel_cap_t __cap_init_eff_set; /* * Internal kernel functions only */ #define CAP_FOR_EACH_U32(__capi) \ for (__capi = 0; __capi < _KERNEL_CAPABILITY_U32S; ++__capi) /* * CAP_FS_MASK and CAP_NFSD_MASKS: * * The fs mask is all the privileges that fsuid==0 historically meant. * At one time in the past, that included CAP_MKNOD and CAP_LINUX_IMMUTABLE. * * It has never meant setting security.* and trusted.* xattrs. * * We could also define fsmask as follows: * 1. CAP_FS_MASK is the privilege to bypass all fs-related DAC permissions * 2. The security.* and trusted.* xattrs are fs-related MAC permissions */ # define CAP_FS_MASK_B0 (CAP_TO_MASK(CAP_CHOWN) \ | CAP_TO_MASK(CAP_MKNOD) \ | CAP_TO_MASK(CAP_DAC_OVERRIDE) \ | CAP_TO_MASK(CAP_DAC_READ_SEARCH) \ | CAP_TO_MASK(CAP_FOWNER) \ | CAP_TO_MASK(CAP_FSETID)) # define CAP_FS_MASK_B1 (CAP_TO_MASK(CAP_MAC_OVERRIDE)) #if _KERNEL_CAPABILITY_U32S != 2 # error Fix up hand-coded capability macro initializers #else /* HAND-CODED capability initializers */ #define CAP_LAST_U32 ((_KERNEL_CAPABILITY_U32S) - 1) #define CAP_LAST_U32_VALID_MASK (CAP_TO_MASK(CAP_LAST_CAP + 1) -1) # define CAP_EMPTY_SET ((kernel_cap_t){{ 0, 0 }}) # define CAP_FULL_SET ((kernel_cap_t){{ ~0, CAP_LAST_U32_VALID_MASK }}) # define CAP_FS_SET ((kernel_cap_t){{ CAP_FS_MASK_B0 \ | CAP_TO_MASK(CAP_LINUX_IMMUTABLE), \ CAP_FS_MASK_B1 } }) # define CAP_NFSD_SET ((kernel_cap_t){{ CAP_FS_MASK_B0 \ | CAP_TO_MASK(CAP_SYS_RESOURCE), \ CAP_FS_MASK_B1 } }) #endif /* _KERNEL_CAPABILITY_U32S != 2 */ # define cap_clear(c) do { (c) = __cap_empty_set; } while (0) #define cap_raise(c, flag) ((c).cap[CAP_TO_INDEX(flag)] |= CAP_TO_MASK(flag)) #define cap_lower(c, flag) ((c).cap[CAP_TO_INDEX(flag)] &= ~CAP_TO_MASK(flag)) #define cap_raised(c, flag) ((c).cap[CAP_TO_INDEX(flag)] & CAP_TO_MASK(flag)) #define CAP_BOP_ALL(c, a, b, OP) \ do { \ unsigned __capi; \ CAP_FOR_EACH_U32(__capi) { \ c.cap[__capi] = a.cap[__capi] OP b.cap[__capi]; \ } \ } while (0) #define CAP_UOP_ALL(c, a, OP) \ do { \ unsigned __capi; \ CAP_FOR_EACH_U32(__capi) { \ c.cap[__capi] = OP a.cap[__capi]; \ } \ } while (0) static inline kernel_cap_t cap_combine(const kernel_cap_t a, const kernel_cap_t b) { kernel_cap_t dest; CAP_BOP_ALL(dest, a, b, |); return dest; } static inline kernel_cap_t cap_intersect(const kernel_cap_t a, const kernel_cap_t b) { kernel_cap_t dest; CAP_BOP_ALL(dest, a, b, &); return dest; } static inline kernel_cap_t cap_drop(const kernel_cap_t a, const kernel_cap_t drop) { kernel_cap_t dest; CAP_BOP_ALL(dest, a, drop, &~); return dest; } static inline kernel_cap_t cap_invert(const kernel_cap_t c) { kernel_cap_t dest; CAP_UOP_ALL(dest, c, ~); return dest; } static inline bool cap_isclear(const kernel_cap_t a) { unsigned __capi; CAP_FOR_EACH_U32(__capi) { if (a.cap[__capi] != 0) return false; } return true; } /* * Check if "a" is a subset of "set". * return true if ALL of the capabilities in "a" are also in "set" * cap_issubset(0101, 1111) will return true * return false if ANY of the capabilities in "a" are not in "set" * cap_issubset(1111, 0101) will return false */ static inline bool cap_issubset(const kernel_cap_t a, const kernel_cap_t set) { kernel_cap_t dest; dest = cap_drop(a, set); return cap_isclear(dest); } /* Used to decide between falling back on the old suser() or fsuser(). */ static inline kernel_cap_t cap_drop_fs_set(const kernel_cap_t a) { const kernel_cap_t __cap_fs_set = CAP_FS_SET; return cap_drop(a, __cap_fs_set); } static inline kernel_cap_t cap_raise_fs_set(const kernel_cap_t a, const kernel_cap_t permitted) { const kernel_cap_t __cap_fs_set = CAP_FS_SET; return cap_combine(a, cap_intersect(permitted, __cap_fs_set)); } static inline kernel_cap_t cap_drop_nfsd_set(const kernel_cap_t a) { const kernel_cap_t __cap_fs_set = CAP_NFSD_SET; return cap_drop(a, __cap_fs_set); } static inline kernel_cap_t cap_raise_nfsd_set(const kernel_cap_t a, const kernel_cap_t permitted) { const kernel_cap_t __cap_nfsd_set = CAP_NFSD_SET; return cap_combine(a, cap_intersect(permitted, __cap_nfsd_set)); } #ifdef CONFIG_MULTIUSER extern bool has_capability(struct task_struct *t, int cap); extern bool has_ns_capability(struct task_struct *t, struct user_namespace *ns, int cap); extern bool has_capability_noaudit(struct task_struct *t, int cap); extern bool has_ns_capability_noaudit(struct task_struct *t, struct user_namespace *ns, int cap); extern bool capable(int cap); extern bool ns_capable(struct user_namespace *ns, int cap); extern bool ns_capable_noaudit(struct user_namespace *ns, int cap); extern bool ns_capable_setid(struct user_namespace *ns, int cap); #else static inline bool has_capability(struct task_struct *t, int cap) { return true; } static inline bool has_ns_capability(struct task_struct *t, struct user_namespace *ns, int cap) { return true; } static inline bool has_capability_noaudit(struct task_struct *t, int cap) { return true; } static inline bool has_ns_capability_noaudit(struct task_struct *t, struct user_namespace *ns, int cap) { return true; } static inline bool capable(int cap) { return true; } static inline bool ns_capable(struct user_namespace *ns, int cap) { return true; } static inline bool ns_capable_noaudit(struct user_namespace *ns, int cap) { return true; } static inline bool ns_capable_setid(struct user_namespace *ns, int cap) { return true; } #endif /* CONFIG_MULTIUSER */ extern bool privileged_wrt_inode_uidgid(struct user_namespace *ns, const struct inode *inode); extern bool capable_wrt_inode_uidgid(const struct inode *inode, int cap); extern bool file_ns_capable(const struct file *file, struct user_namespace *ns, int cap); extern bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns); static inline bool perfmon_capable(void) { return capable(CAP_PERFMON) || capable(CAP_SYS_ADMIN); } static inline bool bpf_capable(void) { return capable(CAP_BPF) || capable(CAP_SYS_ADMIN); } static inline bool checkpoint_restore_ns_capable(struct user_namespace *ns) { return ns_capable(ns, CAP_CHECKPOINT_RESTORE) || ns_capable(ns, CAP_SYS_ADMIN); } /* audit system wants to get cap info from files as well */ extern int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps); extern int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size); #endif /* !_LINUX_CAPABILITY_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PAGEMAP_H #define _LINUX_PAGEMAP_H /* * Copyright 1995 Linus Torvalds */ #include <linux/mm.h> #include <linux/fs.h> #include <linux/list.h> #include <linux/highmem.h> #include <linux/compiler.h> #include <linux/uaccess.h> #include <linux/gfp.h> #include <linux/bitops.h> #include <linux/hardirq.h> /* for in_interrupt() */ #include <linux/hugetlb_inline.h> struct pagevec; /* * Bits in mapping->flags. */ enum mapping_flags { AS_EIO = 0, /* IO error on async write */ AS_ENOSPC = 1, /* ENOSPC on async write */ AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ AS_EXITING = 4, /* final truncate in progress */ /* writeback related tags are not used */ AS_NO_WRITEBACK_TAGS = 5, AS_THP_SUPPORT = 6, /* THPs supported */ }; /** * mapping_set_error - record a writeback error in the address_space * @mapping: the mapping in which an error should be set * @error: the error to set in the mapping * * When writeback fails in some way, we must record that error so that * userspace can be informed when fsync and the like are called. We endeavor * to report errors on any file that was open at the time of the error. Some * internal callers also need to know when writeback errors have occurred. * * When a writeback error occurs, most filesystems will want to call * mapping_set_error to record the error in the mapping so that it can be * reported when the application calls fsync(2). */ static inline void mapping_set_error(struct address_space *mapping, int error) { if (likely(!error)) return; /* Record in wb_err for checkers using errseq_t based tracking */ __filemap_set_wb_err(mapping, error); /* Record it in superblock */ if (mapping->host) errseq_set(&mapping->host->i_sb->s_wb_err, error); /* Record it in flags for now, for legacy callers */ if (error == -ENOSPC) set_bit(AS_ENOSPC, &mapping->flags); else set_bit(AS_EIO, &mapping->flags); } static inline void mapping_set_unevictable(struct address_space *mapping) { set_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_clear_unevictable(struct address_space *mapping) { clear_bit(AS_UNEVICTABLE, &mapping->flags); } static inline bool mapping_unevictable(struct address_space *mapping) { return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_set_exiting(struct address_space *mapping) { set_bit(AS_EXITING, &mapping->flags); } static inline int mapping_exiting(struct address_space *mapping) { return test_bit(AS_EXITING, &mapping->flags); } static inline void mapping_set_no_writeback_tags(struct address_space *mapping) { set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline int mapping_use_writeback_tags(struct address_space *mapping) { return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline gfp_t mapping_gfp_mask(struct address_space * mapping) { return mapping->gfp_mask; } /* Restricts the given gfp_mask to what the mapping allows. */ static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, gfp_t gfp_mask) { return mapping_gfp_mask(mapping) & gfp_mask; } /* * This is non-atomic. Only to be used before the mapping is activated. * Probably needs a barrier... */ static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) { m->gfp_mask = mask; } static inline bool mapping_thp_support(struct address_space *mapping) { return test_bit(AS_THP_SUPPORT, &mapping->flags); } static inline int filemap_nr_thps(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS return atomic_read(&mapping->nr_thps); #else return 0; #endif } static inline void filemap_nr_thps_inc(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_thp_support(mapping)) atomic_inc(&mapping->nr_thps); #else WARN_ON_ONCE(1); #endif } static inline void filemap_nr_thps_dec(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_thp_support(mapping)) atomic_dec(&mapping->nr_thps); #else WARN_ON_ONCE(1); #endif } void release_pages(struct page **pages, int nr); /* * speculatively take a reference to a page. * If the page is free (_refcount == 0), then _refcount is untouched, and 0 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. * * This function must be called inside the same rcu_read_lock() section as has * been used to lookup the page in the pagecache radix-tree (or page table): * this allows allocators to use a synchronize_rcu() to stabilize _refcount. * * Unless an RCU grace period has passed, the count of all pages coming out * of the allocator must be considered unstable. page_count may return higher * than expected, and put_page must be able to do the right thing when the * page has been finished with, no matter what it is subsequently allocated * for (because put_page is what is used here to drop an invalid speculative * reference). * * This is the interesting part of the lockless pagecache (and lockless * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) * has the following pattern: * 1. find page in radix tree * 2. conditionally increment refcount * 3. check the page is still in pagecache (if no, goto 1) * * Remove-side that cares about stability of _refcount (eg. reclaim) has the * following (with the i_pages lock held): * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) * B. remove page from pagecache * C. free the page * * There are 2 critical interleavings that matter: * - 2 runs before A: in this case, A sees elevated refcount and bails out * - A runs before 2: in this case, 2 sees zero refcount and retries; * subsequently, B will complete and 1 will find no page, causing the * lookup to return NULL. * * It is possible that between 1 and 2, the page is removed then the exact same * page is inserted into the same position in pagecache. That's OK: the * old find_get_page using a lock could equally have run before or after * such a re-insertion, depending on order that locks are granted. * * Lookups racing against pagecache insertion isn't a big problem: either 1 * will find the page or it will not. Likewise, the old find_get_page could run * either before the insertion or afterwards, depending on timing. */ static inline int __page_cache_add_speculative(struct page *page, int count) { #ifdef CONFIG_TINY_RCU # ifdef CONFIG_PREEMPT_COUNT VM_BUG_ON(!in_atomic() && !irqs_disabled()); # endif /* * Preempt must be disabled here - we rely on rcu_read_lock doing * this for us. * * Pagecache won't be truncated from interrupt context, so if we have * found a page in the radix tree here, we have pinned its refcount by * disabling preempt, and hence no need for the "speculative get" that * SMP requires. */ VM_BUG_ON_PAGE(page_count(page) == 0, page); page_ref_add(page, count); #else if (unlikely(!page_ref_add_unless(page, count, 0))) { /* * Either the page has been freed, or will be freed. * In either case, retry here and the caller should * do the right thing (see comments above). */ return 0; } #endif VM_BUG_ON_PAGE(PageTail(page), page); return 1; } static inline int page_cache_get_speculative(struct page *page) { return __page_cache_add_speculative(page, 1); } static inline int page_cache_add_speculative(struct page *page, int count) { return __page_cache_add_speculative(page, count); } /** * attach_page_private - Attach private data to a page. * @page: Page to attach data to. * @data: Data to attach to page. * * Attaching private data to a page increments the page's reference count. * The data must be detached before the page will be freed. */ static inline void attach_page_private(struct page *page, void *data) { get_page(page); set_page_private(page, (unsigned long)data); SetPagePrivate(page); } /** * detach_page_private - Detach private data from a page. * @page: Page to detach data from. * * Removes the data that was previously attached to the page and decrements * the refcount on the page. * * Return: Data that was attached to the page. */ static inline void *detach_page_private(struct page *page) { void *data = (void *)page_private(page); if (!PagePrivate(page)) return NULL; ClearPagePrivate(page); set_page_private(page, 0); put_page(page); return data; } #ifdef CONFIG_NUMA extern struct page *__page_cache_alloc(gfp_t gfp); #else static inline struct page *__page_cache_alloc(gfp_t gfp) { return alloc_pages(gfp, 0); } #endif static inline struct page *page_cache_alloc(struct address_space *x) { return __page_cache_alloc(mapping_gfp_mask(x)); } static inline gfp_t readahead_gfp_mask(struct address_space *x) { return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; } typedef int filler_t(void *, struct page *); pgoff_t page_cache_next_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); pgoff_t page_cache_prev_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); #define FGP_ACCESSED 0x00000001 #define FGP_LOCK 0x00000002 #define FGP_CREAT 0x00000004 #define FGP_WRITE 0x00000008 #define FGP_NOFS 0x00000010 #define FGP_NOWAIT 0x00000020 #define FGP_FOR_MMAP 0x00000040 #define FGP_HEAD 0x00000080 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, int fgp_flags, gfp_t cache_gfp_mask); /** * find_get_page - find and get a page reference * @mapping: the address_space to search * @offset: the page index * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned with an increased refcount. * * Otherwise, %NULL is returned. */ static inline struct page *find_get_page(struct address_space *mapping, pgoff_t offset) { return pagecache_get_page(mapping, offset, 0, 0); } static inline struct page *find_get_page_flags(struct address_space *mapping, pgoff_t offset, int fgp_flags) { return pagecache_get_page(mapping, offset, fgp_flags, 0); } /** * find_lock_page - locate, pin and lock a pagecache page * @mapping: the address_space to search * @index: the page index * * Looks up the page cache entry at @mapping & @index. If there is a * page cache page, it is returned locked and with an increased * refcount. * * Context: May sleep. * Return: A struct page or %NULL if there is no page in the cache for this * index. */ static inline struct page *find_lock_page(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK, 0); } /** * find_lock_head - Locate, pin and lock a pagecache page. * @mapping: The address_space to search. * @index: The page index. * * Looks up the page cache entry at @mapping & @index. If there is a * page cache page, its head page is returned locked and with an increased * refcount. * * Context: May sleep. * Return: A struct page which is !PageTail, or %NULL if there is no page * in the cache for this index. */ static inline struct page *find_lock_head(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0); } /** * find_or_create_page - locate or add a pagecache page * @mapping: the page's address_space * @index: the page's index into the mapping * @gfp_mask: page allocation mode * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned locked and with an increased * refcount. * * If the page is not present, a new page is allocated using @gfp_mask * and added to the page cache and the VM's LRU list. The page is * returned locked and with an increased refcount. * * On memory exhaustion, %NULL is returned. * * find_or_create_page() may sleep, even if @gfp_flags specifies an * atomic allocation! */ static inline struct page *find_or_create_page(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask) { return pagecache_get_page(mapping, index, FGP_LOCK|FGP_ACCESSED|FGP_CREAT, gfp_mask); } /** * grab_cache_page_nowait - returns locked page at given index in given cache * @mapping: target address_space * @index: the page index * * Same as grab_cache_page(), but do not wait if the page is unavailable. * This is intended for speculative data generators, where the data can * be regenerated if the page couldn't be grabbed. This routine should * be safe to call while holding the lock for another page. * * Clear __GFP_FS when allocating the page to avoid recursion into the fs * and deadlock against the caller's locked page. */ static inline struct page *grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, mapping_gfp_mask(mapping)); } /* Does this page contain this index? */ static inline bool thp_contains(struct page *head, pgoff_t index) { /* HugeTLBfs indexes the page cache in units of hpage_size */ if (PageHuge(head)) return head->index == index; return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL)); } /* * Given the page we found in the page cache, return the page corresponding * to this index in the file */ static inline struct page *find_subpage(struct page *head, pgoff_t index) { /* HugeTLBfs wants the head page regardless */ if (PageHuge(head)) return head; return head + (index & (thp_nr_pages(head) - 1)); } unsigned find_get_entries(struct address_space *mapping, pgoff_t start, unsigned int nr_entries, struct page **entries, pgoff_t *indices); unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, pgoff_t end, unsigned int nr_pages, struct page **pages); static inline unsigned find_get_pages(struct address_space *mapping, pgoff_t *start, unsigned int nr_pages, struct page **pages) { return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, pages); } unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, unsigned int nr_pages, struct page **pages); unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag, unsigned int nr_pages, struct page **pages); static inline unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, struct page **pages) { return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, nr_pages, pages); } struct page *grab_cache_page_write_begin(struct address_space *mapping, pgoff_t index, unsigned flags); /* * Returns locked page at given index in given cache, creating it if needed. */ static inline struct page *grab_cache_page(struct address_space *mapping, pgoff_t index) { return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); } extern struct page * read_cache_page(struct address_space *mapping, pgoff_t index, filler_t *filler, void *data); extern struct page * read_cache_page_gfp(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); extern int read_cache_pages(struct address_space *mapping, struct list_head *pages, filler_t *filler, void *data); static inline struct page *read_mapping_page(struct address_space *mapping, pgoff_t index, void *data) { return read_cache_page(mapping, index, NULL, data); } /* * Get index of the page within radix-tree (but not for hugetlb pages). * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) */ static inline pgoff_t page_to_index(struct page *page) { pgoff_t pgoff; if (likely(!PageTransTail(page))) return page->index; /* * We don't initialize ->index for tail pages: calculate based on * head page */ pgoff = compound_head(page)->index; pgoff += page - compound_head(page); return pgoff; } extern pgoff_t hugetlb_basepage_index(struct page *page); /* * Get the offset in PAGE_SIZE (even for hugetlb pages). * (TODO: hugetlb pages should have ->index in PAGE_SIZE) */ static inline pgoff_t page_to_pgoff(struct page *page) { if (unlikely(PageHuge(page))) return hugetlb_basepage_index(page); return page_to_index(page); } /* * Return byte-offset into filesystem object for page. */ static inline loff_t page_offset(struct page *page) { return ((loff_t)page->index) << PAGE_SHIFT; } static inline loff_t page_file_offset(struct page *page) { return ((loff_t)page_index(page)) << PAGE_SHIFT; } extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, unsigned long address); static inline pgoff_t linear_page_index(struct vm_area_struct *vma, unsigned long address) { pgoff_t pgoff; if (unlikely(is_vm_hugetlb_page(vma))) return linear_hugepage_index(vma, address); pgoff = (address - vma->vm_start) >> PAGE_SHIFT; pgoff += vma->vm_pgoff; return pgoff; } struct wait_page_key { struct page *page; int bit_nr; int page_match; }; struct wait_page_queue { struct page *page; int bit_nr; wait_queue_entry_t wait; }; static inline bool wake_page_match(struct wait_page_queue *wait_page, struct wait_page_key *key) { if (wait_page->page != key->page) return false; key->page_match = 1; if (wait_page->bit_nr != key->bit_nr) return false; return true; } extern void __lock_page(struct page *page); extern int __lock_page_killable(struct page *page); extern int __lock_page_async(struct page *page, struct wait_page_queue *wait); extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, unsigned int flags); extern void unlock_page(struct page *page); /* * Return true if the page was successfully locked */ static inline int trylock_page(struct page *page) { page = compound_head(page); return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); } /* * lock_page may only be called if we have the page's inode pinned. */ static inline void lock_page(struct page *page) { might_sleep(); if (!trylock_page(page)) __lock_page(page); } /* * lock_page_killable is like lock_page but can be interrupted by fatal * signals. It returns 0 if it locked the page and -EINTR if it was * killed while waiting. */ static inline int lock_page_killable(struct page *page) { might_sleep(); if (!trylock_page(page)) return __lock_page_killable(page); return 0; } /* * lock_page_async - Lock the page, unless this would block. If the page * is already locked, then queue a callback when the page becomes unlocked. * This callback can then retry the operation. * * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page * was already locked and the callback defined in 'wait' was queued. */ static inline int lock_page_async(struct page *page, struct wait_page_queue *wait) { if (!trylock_page(page)) return __lock_page_async(page, wait); return 0; } /* * lock_page_or_retry - Lock the page, unless this would block and the * caller indicated that it can handle a retry. * * Return value and mmap_lock implications depend on flags; see * __lock_page_or_retry(). */ static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, unsigned int flags) { might_sleep(); return trylock_page(page) || __lock_page_or_retry(page, mm, flags); } /* * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., * and should not be used directly. */ extern void wait_on_page_bit(struct page *page, int bit_nr); extern int wait_on_page_bit_killable(struct page *page, int bit_nr); /* * Wait for a page to be unlocked. * * This must be called with the caller "holding" the page, * ie with increased "page->count" so that the page won't * go away during the wait.. */ static inline void wait_on_page_locked(struct page *page) { if (PageLocked(page)) wait_on_page_bit(compound_head(page), PG_locked); } static inline int wait_on_page_locked_killable(struct page *page) { if (!PageLocked(page)) return 0; return wait_on_page_bit_killable(compound_head(page), PG_locked); } extern void put_and_wait_on_page_locked(struct page *page); void wait_on_page_writeback(struct page *page); extern void end_page_writeback(struct page *page); void wait_for_stable_page(struct page *page); void page_endio(struct page *page, bool is_write, int err); /* * Add an arbitrary waiter to a page's wait queue */ extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); /* * Fault everything in given userspace address range in. */ static inline int fault_in_pages_writeable(char __user *uaddr, int size) { char __user *end = uaddr + size - 1; if (unlikely(size == 0)) return 0; if (unlikely(uaddr > end)) return -EFAULT; /* * Writing zeroes into userspace here is OK, because we know that if * the zero gets there, we'll be overwriting it. */ do { if (unlikely(__put_user(0, uaddr) != 0)) return -EFAULT; uaddr += PAGE_SIZE; } while (uaddr <= end); /* Check whether the range spilled into the next page. */ if (((unsigned long)uaddr & PAGE_MASK) == ((unsigned long)end & PAGE_MASK)) return __put_user(0, end); return 0; } static inline int fault_in_pages_readable(const char __user *uaddr, int size) { volatile char c; const char __user *end = uaddr + size - 1; if (unlikely(size == 0)) return 0; if (unlikely(uaddr > end)) return -EFAULT; do { if (unlikely(__get_user(c, uaddr) != 0)) return -EFAULT; uaddr += PAGE_SIZE; } while (uaddr <= end); /* Check whether the range spilled into the next page. */ if (((unsigned long)uaddr & PAGE_MASK) == ((unsigned long)end & PAGE_MASK)) { return __get_user(c, end); } (void)c; return 0; } int add_to_page_cache_locked(struct page *page, struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); int add_to_page_cache_lru(struct page *page, struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); extern void delete_from_page_cache(struct page *page); extern void __delete_from_page_cache(struct page *page, void *shadow); int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); void delete_from_page_cache_batch(struct address_space *mapping, struct pagevec *pvec); /* * Like add_to_page_cache_locked, but used to add newly allocated pages: * the page is new, so we can just run __SetPageLocked() against it. */ static inline int add_to_page_cache(struct page *page, struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) { int error; __SetPageLocked(page); error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); if (unlikely(error)) __ClearPageLocked(page); return error; } /** * struct readahead_control - Describes a readahead request. * * A readahead request is for consecutive pages. Filesystems which * implement the ->readahead method should call readahead_page() or * readahead_page_batch() in a loop and attempt to start I/O against * each page in the request. * * Most of the fields in this struct are private and should be accessed * by the functions below. * * @file: The file, used primarily by network filesystems for authentication. * May be NULL if invoked internally by the filesystem. * @mapping: Readahead this filesystem object. */ struct readahead_control { struct file *file; struct address_space *mapping; /* private: use the readahead_* accessors instead */ pgoff_t _index; unsigned int _nr_pages; unsigned int _batch_count; }; #define DEFINE_READAHEAD(rac, f, m, i) \ struct readahead_control rac = { \ .file = f, \ .mapping = m, \ ._index = i, \ } #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) void page_cache_ra_unbounded(struct readahead_control *, unsigned long nr_to_read, unsigned long lookahead_count); void page_cache_sync_ra(struct readahead_control *, struct file_ra_state *, unsigned long req_count); void page_cache_async_ra(struct readahead_control *, struct file_ra_state *, struct page *, unsigned long req_count); /** * page_cache_sync_readahead - generic file readahead * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @file: Used by the filesystem for authentication. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_sync_readahead() should be called when a cache miss happened: * it will submit the read. The readahead logic may decide to piggyback more * pages onto the read request if access patterns suggest it will improve * performance. */ static inline void page_cache_sync_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, pgoff_t index, unsigned long req_count) { DEFINE_READAHEAD(ractl, file, mapping, index); page_cache_sync_ra(&ractl, ra, req_count); } /** * page_cache_async_readahead - file readahead for marked pages * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @file: Used by the filesystem for authentication. * @page: The page at @index which triggered the readahead call. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_async_readahead() should be called when a page is used which * is marked as PageReadahead; this is a marker to suggest that the application * has used up enough of the readahead window that we should start pulling in * more pages. */ static inline void page_cache_async_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, struct page *page, pgoff_t index, unsigned long req_count) { DEFINE_READAHEAD(ractl, file, mapping, index); page_cache_async_ra(&ractl, ra, page, req_count); } /** * readahead_page - Get the next page to read. * @rac: The current readahead request. * * Context: The page is locked and has an elevated refcount. The caller * should decreases the refcount once the page has been submitted for I/O * and unlock the page once all I/O to that page has completed. * Return: A pointer to the next page, or %NULL if we are done. */ static inline struct page *readahead_page(struct readahead_control *rac) { struct page *page; BUG_ON(rac->_batch_count > rac->_nr_pages); rac->_nr_pages -= rac->_batch_count; rac->_index += rac->_batch_count; if (!rac->_nr_pages) { rac->_batch_count = 0; return NULL; } page = xa_load(&rac->mapping->i_pages, rac->_index); VM_BUG_ON_PAGE(!PageLocked(page), page); rac->_batch_count = thp_nr_pages(page); return page; } static inline unsigned int __readahead_batch(struct readahead_control *rac, struct page **array, unsigned int array_sz) { unsigned int i = 0; XA_STATE(xas, &rac->mapping->i_pages, 0); struct page *page; BUG_ON(rac->_batch_count > rac->_nr_pages); rac->_nr_pages -= rac->_batch_count; rac->_index += rac->_batch_count; rac->_batch_count = 0; xas_set(&xas, rac->_index); rcu_read_lock(); xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { if (xas_retry(&xas, page)) continue; VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(PageTail(page), page); array[i++] = page; rac->_batch_count += thp_nr_pages(page); /* * The page cache isn't using multi-index entries yet, * so the xas cursor needs to be manually moved to the * next index. This can be removed once the page cache * is converted. */ if (PageHead(page)) xas_set(&xas, rac->_index + rac->_batch_count); if (i == array_sz) break; } rcu_read_unlock(); return i; } /** * readahead_page_batch - Get a batch of pages to read. * @rac: The current readahead request. * @array: An array of pointers to struct page. * * Context: The pages are locked and have an elevated refcount. The caller * should decreases the refcount once the page has been submitted for I/O * and unlock the page once all I/O to that page has completed. * Return: The number of pages placed in the array. 0 indicates the request * is complete. */ #define readahead_page_batch(rac, array) \ __readahead_batch(rac, array, ARRAY_SIZE(array)) /** * readahead_pos - The byte offset into the file of this readahead request. * @rac: The readahead request. */ static inline loff_t readahead_pos(struct readahead_control *rac) { return (loff_t)rac->_index * PAGE_SIZE; } /** * readahead_length - The number of bytes in this readahead request. * @rac: The readahead request. */ static inline loff_t readahead_length(struct readahead_control *rac) { return (loff_t)rac->_nr_pages * PAGE_SIZE; } /** * readahead_index - The index of the first page in this readahead request. * @rac: The readahead request. */ static inline pgoff_t readahead_index(struct readahead_control *rac) { return rac->_index; } /** * readahead_count - The number of pages in this readahead request. * @rac: The readahead request. */ static inline unsigned int readahead_count(struct readahead_control *rac) { return rac->_nr_pages; } static inline unsigned long dir_pages(struct inode *inode) { return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; } /** * page_mkwrite_check_truncate - check if page was truncated * @page: the page to check * @inode: the inode to check the page against * * Returns the number of bytes in the page up to EOF, * or -EFAULT if the page was truncated. */ static inline int page_mkwrite_check_truncate(struct page *page, struct inode *inode) { loff_t size = i_size_read(inode); pgoff_t index = size >> PAGE_SHIFT; int offset = offset_in_page(size); if (page->mapping != inode->i_mapping) return -EFAULT; /* page is wholly inside EOF */ if (page->index < index) return PAGE_SIZE; /* page is wholly past EOF */ if (page->index > index || !offset) return -EFAULT; /* page is partially inside EOF */ return offset; } /** * i_blocks_per_page - How many blocks fit in this page. * @inode: The inode which contains the blocks. * @page: The page (head page if the page is a THP). * * If the block size is larger than the size of this page, return zero. * * Context: The caller should hold a refcount on the page to prevent it * from being split. * Return: The number of filesystem blocks covered by this page. */ static inline unsigned int i_blocks_per_page(struct inode *inode, struct page *page) { return thp_size(page) >> inode->i_blkbits; } #endif /* _LINUX_PAGEMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_FRAG_H__ #define __NET_FRAG_H__ #include <linux/rhashtable-types.h> #include <linux/completion.h> /* Per netns frag queues directory */ struct fqdir { /* sysctls */ long high_thresh; long low_thresh; int timeout; int max_dist; struct inet_frags *f; struct net *net; bool dead; struct rhashtable rhashtable ____cacheline_aligned_in_smp; /* Keep atomic mem on separate cachelines in structs that include it */ atomic_long_t mem ____cacheline_aligned_in_smp; struct work_struct destroy_work; }; /** * fragment queue flags * * @INET_FRAG_FIRST_IN: first fragment has arrived * @INET_FRAG_LAST_IN: final fragment has arrived * @INET_FRAG_COMPLETE: frag queue has been processed and is due for destruction * @INET_FRAG_HASH_DEAD: inet_frag_kill() has not removed fq from rhashtable */ enum { INET_FRAG_FIRST_IN = BIT(0), INET_FRAG_LAST_IN = BIT(1), INET_FRAG_COMPLETE = BIT(2), INET_FRAG_HASH_DEAD = BIT(3), }; struct frag_v4_compare_key { __be32 saddr; __be32 daddr; u32 user; u32 vif; __be16 id; u16 protocol; }; struct frag_v6_compare_key { struct in6_addr saddr; struct in6_addr daddr; u32 user; __be32 id; u32 iif; }; /** * struct inet_frag_queue - fragment queue * * @node: rhash node * @key: keys identifying this frag. * @timer: queue expiration timer * @lock: spinlock protecting this frag * @refcnt: reference count of the queue * @rb_fragments: received fragments rb-tree root * @fragments_tail: received fragments tail * @last_run_head: the head of the last "run". see ip_fragment.c * @stamp: timestamp of the last received fragment * @len: total length of the original datagram * @meat: length of received fragments so far * @flags: fragment queue flags * @max_size: maximum received fragment size * @fqdir: pointer to struct fqdir * @rcu: rcu head for freeing deferall */ struct inet_frag_queue { struct rhash_head node; union { struct frag_v4_compare_key v4; struct frag_v6_compare_key v6; } key; struct timer_list timer; spinlock_t lock; refcount_t refcnt; struct rb_root rb_fragments; struct sk_buff *fragments_tail; struct sk_buff *last_run_head; ktime_t stamp; int len; int meat; __u8 flags; u16 max_size; struct fqdir *fqdir; struct rcu_head rcu; }; struct inet_frags { unsigned int qsize; void (*constructor)(struct inet_frag_queue *q, const void *arg); void (*destructor)(struct inet_frag_queue *); void (*frag_expire)(struct timer_list *t); struct kmem_cache *frags_cachep; const char *frags_cache_name; struct rhashtable_params rhash_params; refcount_t refcnt; struct completion completion; }; int inet_frags_init(struct inet_frags *); void inet_frags_fini(struct inet_frags *); int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net); static inline void fqdir_pre_exit(struct fqdir *fqdir) { fqdir->high_thresh = 0; /* prevent creation of new frags */ fqdir->dead = true; } void fqdir_exit(struct fqdir *fqdir); void inet_frag_kill(struct inet_frag_queue *q); void inet_frag_destroy(struct inet_frag_queue *q); struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key); /* Free all skbs in the queue; return the sum of their truesizes. */ unsigned int inet_frag_rbtree_purge(struct rb_root *root); static inline void inet_frag_put(struct inet_frag_queue *q) { if (refcount_dec_and_test(&q->refcnt)) inet_frag_destroy(q); } /* Memory Tracking Functions. */ static inline long frag_mem_limit(const struct fqdir *fqdir) { return atomic_long_read(&fqdir->mem); } static inline void sub_frag_mem_limit(struct fqdir *fqdir, long val) { atomic_long_sub(val, &fqdir->mem); } static inline void add_frag_mem_limit(struct fqdir *fqdir, long val) { atomic_long_add(val, &fqdir->mem); } /* RFC 3168 support : * We want to check ECN values of all fragments, do detect invalid combinations. * In ipq->ecn, we store the OR value of each ip4_frag_ecn() fragment value. */ #define IPFRAG_ECN_NOT_ECT 0x01 /* one frag had ECN_NOT_ECT */ #define IPFRAG_ECN_ECT_1 0x02 /* one frag had ECN_ECT_1 */ #define IPFRAG_ECN_ECT_0 0x04 /* one frag had ECN_ECT_0 */ #define IPFRAG_ECN_CE 0x08 /* one frag had ECN_CE */ extern const u8 ip_frag_ecn_table[16]; /* Return values of inet_frag_queue_insert() */ #define IPFRAG_OK 0 #define IPFRAG_DUP 1 #define IPFRAG_OVERLAP 2 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb, int offset, int end); void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb, struct sk_buff *parent); void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head, void *reasm_data, bool try_coalesce); struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q); #endif
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 /* SPDX-License-Identifier: GPL-2.0 */ /* * Macros for manipulating and testing page->flags */ #ifndef PAGE_FLAGS_H #define PAGE_FLAGS_H #include <linux/types.h> #include <linux/bug.h> #include <linux/mmdebug.h> #ifndef __GENERATING_BOUNDS_H #include <linux/mm_types.h> #include <generated/bounds.h> #endif /* !__GENERATING_BOUNDS_H */ /* * Various page->flags bits: * * PG_reserved is set for special pages. The "struct page" of such a page * should in general not be touched (e.g. set dirty) except by its owner. * Pages marked as PG_reserved include: * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, * initrd, HW tables) * - Pages reserved or allocated early during boot (before the page allocator * was initialized). This includes (depending on the architecture) the * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much * much more. Once (if ever) freed, PG_reserved is cleared and they will * be given to the page allocator. * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying * to read/write these pages might end badly. Don't touch! * - The zero page(s) * - Pages not added to the page allocator when onlining a section because * they were excluded via the online_page_callback() or because they are * PG_hwpoison. * - Pages allocated in the context of kexec/kdump (loaded kernel image, * control pages, vmcoreinfo) * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are * not marked PG_reserved (as they might be in use by somebody else who does * not respect the caching strategy). * - Pages part of an offline section (struct pages of offline sections should * not be trusted as they will be initialized when first onlined). * - MCA pages on ia64 * - Pages holding CPU notes for POWER Firmware Assisted Dump * - Device memory (e.g. PMEM, DAX, HMM) * Some PG_reserved pages will be excluded from the hibernation image. * PG_reserved does in general not hinder anybody from dumping or swapping * and is no longer required for remap_pfn_range(). ioremap might require it. * Consequently, PG_reserved for a page mapped into user space can indicate * the zero page, the vDSO, MMIO pages or device memory. * * The PG_private bitflag is set on pagecache pages if they contain filesystem * specific data (which is normally at page->private). It can be used by * private allocations for its own usage. * * During initiation of disk I/O, PG_locked is set. This bit is set before I/O * and cleared when writeback _starts_ or when read _completes_. PG_writeback * is set before writeback starts and cleared when it finishes. * * PG_locked also pins a page in pagecache, and blocks truncation of the file * while it is held. * * page_waitqueue(page) is a wait queue of all tasks waiting for the page * to become unlocked. * * PG_swapbacked is set when a page uses swap as a backing storage. This are * usually PageAnon or shmem pages but please note that even anonymous pages * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as * a result of MADV_FREE). * * PG_uptodate tells whether the page's contents is valid. When a read * completes, the page becomes uptodate, unless a disk I/O error happened. * * PG_referenced, PG_reclaim are used for page reclaim for anonymous and * file-backed pagecache (see mm/vmscan.c). * * PG_error is set to indicate that an I/O error occurred on this page. * * PG_arch_1 is an architecture specific page state bit. The generic code * guarantees that this bit is cleared for a page when it first is entered into * the page cache. * * PG_hwpoison indicates that a page got corrupted in hardware and contains * data with incorrect ECC bits that triggered a machine check. Accessing is * not safe since it may cause another machine check. Don't touch! */ /* * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break * locked- and dirty-page accounting. * * The page flags field is split into two parts, the main flags area * which extends from the low bits upwards, and the fields area which * extends from the high bits downwards. * * | FIELD | ... | FLAGS | * N-1 ^ 0 * (NR_PAGEFLAGS) * * The fields area is reserved for fields mapping zone, node (for NUMA) and * SPARSEMEM section (for variants of SPARSEMEM that require section ids like * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). */ enum pageflags { PG_locked, /* Page is locked. Don't touch. */ PG_referenced, PG_uptodate, PG_dirty, PG_lru, PG_active, PG_workingset, PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ PG_error, PG_slab, PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ PG_arch_1, PG_reserved, PG_private, /* If pagecache, has fs-private data */ PG_private_2, /* If pagecache, has fs aux data */ PG_writeback, /* Page is under writeback */ PG_head, /* A head page */ PG_mappedtodisk, /* Has blocks allocated on-disk */ PG_reclaim, /* To be reclaimed asap */ PG_swapbacked, /* Page is backed by RAM/swap */ PG_unevictable, /* Page is "unevictable" */ #ifdef CONFIG_MMU PG_mlocked, /* Page is vma mlocked */ #endif #ifdef CONFIG_ARCH_USES_PG_UNCACHED PG_uncached, /* Page has been mapped as uncached */ #endif #ifdef CONFIG_MEMORY_FAILURE PG_hwpoison, /* hardware poisoned page. Don't touch */ #endif #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) PG_young, PG_idle, #endif #ifdef CONFIG_64BIT PG_arch_2, #endif __NR_PAGEFLAGS, /* Filesystems */ PG_checked = PG_owner_priv_1, /* SwapBacked */ PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ /* Two page bits are conscripted by FS-Cache to maintain local caching * state. These bits are set on pages belonging to the netfs's inodes * when those inodes are being locally cached. */ PG_fscache = PG_private_2, /* page backed by cache */ /* XEN */ /* Pinned in Xen as a read-only pagetable page. */ PG_pinned = PG_owner_priv_1, /* Pinned as part of domain save (see xen_mm_pin_all()). */ PG_savepinned = PG_dirty, /* Has a grant mapping of another (foreign) domain's page. */ PG_foreign = PG_owner_priv_1, /* Remapped by swiotlb-xen. */ PG_xen_remapped = PG_owner_priv_1, /* SLOB */ PG_slob_free = PG_private, /* Compound pages. Stored in first tail page's flags */ PG_double_map = PG_workingset, /* non-lru isolated movable page */ PG_isolated = PG_reclaim, /* Only valid for buddy pages. Used to track pages that are reported */ PG_reported = PG_uptodate, }; #ifndef __GENERATING_BOUNDS_H struct page; /* forward declaration */ static inline struct page *compound_head(struct page *page) { unsigned long head = READ_ONCE(page->compound_head); if (unlikely(head & 1)) return (struct page *) (head - 1); return page; } static __always_inline int PageTail(struct page *page) { return READ_ONCE(page->compound_head) & 1; } static __always_inline int PageCompound(struct page *page) { return test_bit(PG_head, &page->flags) || PageTail(page); } #define PAGE_POISON_PATTERN -1l static inline int PagePoisoned(const struct page *page) { return page->flags == PAGE_POISON_PATTERN; } #ifdef CONFIG_DEBUG_VM void page_init_poison(struct page *page, size_t size); #else static inline void page_init_poison(struct page *page, size_t size) { } #endif /* * Page flags policies wrt compound pages * * PF_POISONED_CHECK * check if this struct page poisoned/uninitialized * * PF_ANY: * the page flag is relevant for small, head and tail pages. * * PF_HEAD: * for compound page all operations related to the page flag applied to * head page. * * PF_ONLY_HEAD: * for compound page, callers only ever operate on the head page. * * PF_NO_TAIL: * modifications of the page flag must be done on small or head pages, * checks can be done on tail pages too. * * PF_NO_COMPOUND: * the page flag is not relevant for compound pages. * * PF_SECOND: * the page flag is stored in the first tail page. */ #define PF_POISONED_CHECK(page) ({ \ VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ page; }) #define PF_ANY(page, enforce) PF_POISONED_CHECK(page) #define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) #define PF_ONLY_HEAD(page, enforce) ({ \ VM_BUG_ON_PGFLAGS(PageTail(page), page); \ PF_POISONED_CHECK(page); }) #define PF_NO_TAIL(page, enforce) ({ \ VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ PF_POISONED_CHECK(compound_head(page)); }) #define PF_NO_COMPOUND(page, enforce) ({ \ VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ PF_POISONED_CHECK(page); }) #define PF_SECOND(page, enforce) ({ \ VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ PF_POISONED_CHECK(&page[1]); }) /* * Macros to create function definitions for page flags */ #define TESTPAGEFLAG(uname, lname, policy) \ static __always_inline int Page##uname(struct page *page) \ { return test_bit(PG_##lname, &policy(page, 0)->flags); } #define SETPAGEFLAG(uname, lname, policy) \ static __always_inline void SetPage##uname(struct page *page) \ { set_bit(PG_##lname, &policy(page, 1)->flags); } #define CLEARPAGEFLAG(uname, lname, policy) \ static __always_inline void ClearPage##uname(struct page *page) \ { clear_bit(PG_##lname, &policy(page, 1)->flags); } #define __SETPAGEFLAG(uname, lname, policy) \ static __always_inline void __SetPage##uname(struct page *page) \ { __set_bit(PG_##lname, &policy(page, 1)->flags); } #define __CLEARPAGEFLAG(uname, lname, policy) \ static __always_inline void __ClearPage##uname(struct page *page) \ { __clear_bit(PG_##lname, &policy(page, 1)->flags); } #define TESTSETFLAG(uname, lname, policy) \ static __always_inline int TestSetPage##uname(struct page *page) \ { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } #define TESTCLEARFLAG(uname, lname, policy) \ static __always_inline int TestClearPage##uname(struct page *page) \ { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } #define PAGEFLAG(uname, lname, policy) \ TESTPAGEFLAG(uname, lname, policy) \ SETPAGEFLAG(uname, lname, policy) \ CLEARPAGEFLAG(uname, lname, policy) #define __PAGEFLAG(uname, lname, policy) \ TESTPAGEFLAG(uname, lname, policy) \ __SETPAGEFLAG(uname, lname, policy) \ __CLEARPAGEFLAG(uname, lname, policy) #define TESTSCFLAG(uname, lname, policy) \ TESTSETFLAG(uname, lname, policy) \ TESTCLEARFLAG(uname, lname, policy) #define TESTPAGEFLAG_FALSE(uname) \ static inline int Page##uname(const struct page *page) { return 0; } #define SETPAGEFLAG_NOOP(uname) \ static inline void SetPage##uname(struct page *page) { } #define CLEARPAGEFLAG_NOOP(uname) \ static inline void ClearPage##uname(struct page *page) { } #define __CLEARPAGEFLAG_NOOP(uname) \ static inline void __ClearPage##uname(struct page *page) { } #define TESTSETFLAG_FALSE(uname) \ static inline int TestSetPage##uname(struct page *page) { return 0; } #define TESTCLEARFLAG_FALSE(uname) \ static inline int TestClearPage##uname(struct page *page) { return 0; } #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) #define TESTSCFLAG_FALSE(uname) \ TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) __PAGEFLAG(Locked, locked, PF_NO_TAIL) PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL) PAGEFLAG(Referenced, referenced, PF_HEAD) TESTCLEARFLAG(Referenced, referenced, PF_HEAD) __SETPAGEFLAG(Referenced, referenced, PF_HEAD) PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) TESTCLEARFLAG(Active, active, PF_HEAD) PAGEFLAG(Workingset, workingset, PF_HEAD) TESTCLEARFLAG(Workingset, workingset, PF_HEAD) __PAGEFLAG(Slab, slab, PF_NO_TAIL) __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ /* Xen */ PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) /* * Private page markings that may be used by the filesystem that owns the page * for its own purposes. * - PG_private and PG_private_2 cause releasepage() and co to be invoked */ PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) __CLEARPAGEFLAG(Private, private, PF_ANY) PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) /* * Only test-and-set exist for PG_writeback. The unconditional operators are * risky: they bypass page accounting. */ TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) /* PG_readahead is only used for reads; PG_reclaim is only for writes */ PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) #ifdef CONFIG_HIGHMEM /* * Must use a macro here due to header dependency issues. page_zone() is not * available at this point. */ #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) #else PAGEFLAG_FALSE(HighMem) #endif #ifdef CONFIG_SWAP static __always_inline int PageSwapCache(struct page *page) { #ifdef CONFIG_THP_SWAP page = compound_head(page); #endif return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags); } SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) #else PAGEFLAG_FALSE(SwapCache) #endif PAGEFLAG(Unevictable, unevictable, PF_HEAD) __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) #ifdef CONFIG_MMU PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) #else PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) TESTSCFLAG_FALSE(Mlocked) #endif #ifdef CONFIG_ARCH_USES_PG_UNCACHED PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) #else PAGEFLAG_FALSE(Uncached) #endif #ifdef CONFIG_MEMORY_FAILURE PAGEFLAG(HWPoison, hwpoison, PF_ANY) TESTSCFLAG(HWPoison, hwpoison, PF_ANY) #define __PG_HWPOISON (1UL << PG_hwpoison) extern bool take_page_off_buddy(struct page *page); #else PAGEFLAG_FALSE(HWPoison) #define __PG_HWPOISON 0 #endif #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) TESTPAGEFLAG(Young, young, PF_ANY) SETPAGEFLAG(Young, young, PF_ANY) TESTCLEARFLAG(Young, young, PF_ANY) PAGEFLAG(Idle, idle, PF_ANY) #endif /* * PageReported() is used to track reported free pages within the Buddy * allocator. We can use the non-atomic version of the test and set * operations as both should be shielded with the zone lock to prevent * any possible races on the setting or clearing of the bit. */ __PAGEFLAG(Reported, reported, PF_NO_COMPOUND) /* * On an anonymous page mapped into a user virtual memory area, * page->mapping points to its anon_vma, not to a struct address_space; * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. * * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON * bit; and then page->mapping points, not to an anon_vma, but to a private * structure which KSM associates with that merged page. See ksm.h. * * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable * page and then page->mapping points a struct address_space. * * Please note that, confusingly, "page_mapping" refers to the inode * address_space which maps the page from disk; whereas "page_mapped" * refers to user virtual address space into which the page is mapped. */ #define PAGE_MAPPING_ANON 0x1 #define PAGE_MAPPING_MOVABLE 0x2 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) static __always_inline int PageMappingFlags(struct page *page) { return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; } static __always_inline int PageAnon(struct page *page) { page = compound_head(page); return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; } static __always_inline int __PageMovable(struct page *page) { return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == PAGE_MAPPING_MOVABLE; } #ifdef CONFIG_KSM /* * A KSM page is one of those write-protected "shared pages" or "merged pages" * which KSM maps into multiple mms, wherever identical anonymous page content * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any * anon_vma, but to that page's node of the stable tree. */ static __always_inline int PageKsm(struct page *page) { page = compound_head(page); return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == PAGE_MAPPING_KSM; } #else TESTPAGEFLAG_FALSE(Ksm) #endif u64 stable_page_flags(struct page *page); static inline int PageUptodate(struct page *page) { int ret; page = compound_head(page); ret = test_bit(PG_uptodate, &(page)->flags); /* * Must ensure that the data we read out of the page is loaded * _after_ we've loaded page->flags to check for PageUptodate. * We can skip the barrier if the page is not uptodate, because * we wouldn't be reading anything from it. * * See SetPageUptodate() for the other side of the story. */ if (ret) smp_rmb(); return ret; } static __always_inline void __SetPageUptodate(struct page *page) { VM_BUG_ON_PAGE(PageTail(page), page); smp_wmb(); __set_bit(PG_uptodate, &page->flags); } static __always_inline void SetPageUptodate(struct page *page) { VM_BUG_ON_PAGE(PageTail(page), page); /* * Memory barrier must be issued before setting the PG_uptodate bit, * so that all previous stores issued in order to bring the page * uptodate are actually visible before PageUptodate becomes true. */ smp_wmb(); set_bit(PG_uptodate, &page->flags); } CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) int test_clear_page_writeback(struct page *page); int __test_set_page_writeback(struct page *page, bool keep_write); #define test_set_page_writeback(page) \ __test_set_page_writeback(page, false) #define test_set_page_writeback_keepwrite(page) \ __test_set_page_writeback(page, true) static inline void set_page_writeback(struct page *page) { test_set_page_writeback(page); } static inline void set_page_writeback_keepwrite(struct page *page) { test_set_page_writeback_keepwrite(page); } __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) static __always_inline void set_compound_head(struct page *page, struct page *head) { WRITE_ONCE(page->compound_head, (unsigned long)head + 1); } static __always_inline void clear_compound_head(struct page *page) { WRITE_ONCE(page->compound_head, 0); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void ClearPageCompound(struct page *page) { BUG_ON(!PageHead(page)); ClearPageHead(page); } #endif #define PG_head_mask ((1UL << PG_head)) #ifdef CONFIG_HUGETLB_PAGE int PageHuge(struct page *page); int PageHeadHuge(struct page *page); bool page_huge_active(struct page *page); #else TESTPAGEFLAG_FALSE(Huge) TESTPAGEFLAG_FALSE(HeadHuge) static inline bool page_huge_active(struct page *page) { return 0; } #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * PageHuge() only returns true for hugetlbfs pages, but not for * normal or transparent huge pages. * * PageTransHuge() returns true for both transparent huge and * hugetlbfs pages, but not normal pages. PageTransHuge() can only be * called only in the core VM paths where hugetlbfs pages can't exist. */ static inline int PageTransHuge(struct page *page) { VM_BUG_ON_PAGE(PageTail(page), page); return PageHead(page); } /* * PageTransCompound returns true for both transparent huge pages * and hugetlbfs pages, so it should only be called when it's known * that hugetlbfs pages aren't involved. */ static inline int PageTransCompound(struct page *page) { return PageCompound(page); } /* * PageTransCompoundMap is the same as PageTransCompound, but it also * guarantees the primary MMU has the entire compound page mapped * through pmd_trans_huge, which in turn guarantees the secondary MMUs * can also map the entire compound page. This allows the secondary * MMUs to call get_user_pages() only once for each compound page and * to immediately map the entire compound page with a single secondary * MMU fault. If there will be a pmd split later, the secondary MMUs * will get an update through the MMU notifier invalidation through * split_huge_pmd(). * * Unlike PageTransCompound, this is safe to be called only while * split_huge_pmd() cannot run from under us, like if protected by the * MMU notifier, otherwise it may result in page->_mapcount check false * positives. * * We have to treat page cache THP differently since every subpage of it * would get _mapcount inc'ed once it is PMD mapped. But, it may be PTE * mapped in the current process so comparing subpage's _mapcount to * compound_mapcount to filter out PTE mapped case. */ static inline int PageTransCompoundMap(struct page *page) { struct page *head; if (!PageTransCompound(page)) return 0; if (PageAnon(page)) return atomic_read(&page->_mapcount) < 0; head = compound_head(page); /* File THP is PMD mapped and not PTE mapped */ return atomic_read(&page->_mapcount) == atomic_read(compound_mapcount_ptr(head)); } /* * PageTransTail returns true for both transparent huge pages * and hugetlbfs pages, so it should only be called when it's known * that hugetlbfs pages aren't involved. */ static inline int PageTransTail(struct page *page) { return PageTail(page); } /* * PageDoubleMap indicates that the compound page is mapped with PTEs as well * as PMDs. * * This is required for optimization of rmap operations for THP: we can postpone * per small page mapcount accounting (and its overhead from atomic operations) * until the first PMD split. * * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up * by one. This reference will go away with last compound_mapcount. * * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). */ PAGEFLAG(DoubleMap, double_map, PF_SECOND) TESTSCFLAG(DoubleMap, double_map, PF_SECOND) #else TESTPAGEFLAG_FALSE(TransHuge) TESTPAGEFLAG_FALSE(TransCompound) TESTPAGEFLAG_FALSE(TransCompoundMap) TESTPAGEFLAG_FALSE(TransTail) PAGEFLAG_FALSE(DoubleMap) TESTSCFLAG_FALSE(DoubleMap) #endif /* * For pages that are never mapped to userspace (and aren't PageSlab), * page_type may be used. Because it is initialised to -1, we invert the * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and * low bits so that an underflow or overflow of page_mapcount() won't be * mistaken for a page type value. */ #define PAGE_TYPE_BASE 0xf0000000 /* Reserve 0x0000007f to catch underflows of page_mapcount */ #define PAGE_MAPCOUNT_RESERVE -128 #define PG_buddy 0x00000080 #define PG_offline 0x00000100 #define PG_kmemcg 0x00000200 #define PG_table 0x00000400 #define PG_guard 0x00000800 #define PageType(page, flag) \ ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) static inline int page_has_type(struct page *page) { return (int)page->page_type < PAGE_MAPCOUNT_RESERVE; } #define PAGE_TYPE_OPS(uname, lname) \ static __always_inline int Page##uname(struct page *page) \ { \ return PageType(page, PG_##lname); \ } \ static __always_inline void __SetPage##uname(struct page *page) \ { \ VM_BUG_ON_PAGE(!PageType(page, 0), page); \ page->page_type &= ~PG_##lname; \ } \ static __always_inline void __ClearPage##uname(struct page *page) \ { \ VM_BUG_ON_PAGE(!Page##uname(page), page); \ page->page_type |= PG_##lname; \ } /* * PageBuddy() indicates that the page is free and in the buddy system * (see mm/page_alloc.c). */ PAGE_TYPE_OPS(Buddy, buddy) /* * PageOffline() indicates that the page is logically offline although the * containing section is online. (e.g. inflated in a balloon driver or * not onlined when onlining the section). * The content of these pages is effectively stale. Such pages should not * be touched (read/write/dump/save) except by their owner. * * If a driver wants to allow to offline unmovable PageOffline() pages without * putting them back to the buddy, it can do so via the memory notifier by * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() * pages (now with a reference count of zero) are treated like free pages, * allowing the containing memory block to get offlined. A driver that * relies on this feature is aware that re-onlining the memory block will * require to re-set the pages PageOffline() and not giving them to the * buddy via online_page_callback_t. */ PAGE_TYPE_OPS(Offline, offline) /* * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. */ PAGE_TYPE_OPS(Kmemcg, kmemcg) /* * Marks pages in use as page tables. */ PAGE_TYPE_OPS(Table, table) /* * Marks guardpages used with debug_pagealloc. */ PAGE_TYPE_OPS(Guard, guard) extern bool is_free_buddy_page(struct page *page); __PAGEFLAG(Isolated, isolated, PF_ANY); /* * If network-based swap is enabled, sl*b must keep track of whether pages * were allocated from pfmemalloc reserves. */ static inline int PageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); return PageActive(page); } static inline void SetPageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); SetPageActive(page); } static inline void __ClearPageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); __ClearPageActive(page); } static inline void ClearPageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); ClearPageActive(page); } #ifdef CONFIG_MMU #define __PG_MLOCKED (1UL << PG_mlocked) #else #define __PG_MLOCKED 0 #endif /* * Flags checked when a page is freed. Pages being freed should not have * these flags set. It they are, there is a problem. */ #define PAGE_FLAGS_CHECK_AT_FREE \ (1UL << PG_lru | 1UL << PG_locked | \ 1UL << PG_private | 1UL << PG_private_2 | \ 1UL << PG_writeback | 1UL << PG_reserved | \ 1UL << PG_slab | 1UL << PG_active | \ 1UL << PG_unevictable | __PG_MLOCKED) /* * Flags checked when a page is prepped for return by the page allocator. * Pages being prepped should not have these flags set. It they are set, * there has been a kernel bug or struct page corruption. * * __PG_HWPOISON is exceptional because it needs to be kept beyond page's * alloc-free cycle to prevent from reusing the page. */ #define PAGE_FLAGS_CHECK_AT_PREP \ (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) #define PAGE_FLAGS_PRIVATE \ (1UL << PG_private | 1UL << PG_private_2) /** * page_has_private - Determine if page has private stuff * @page: The page to be checked * * Determine if a page has private stuff, indicating that release routines * should be invoked upon it. */ static inline int page_has_private(struct page *page) { return !!(page->flags & PAGE_FLAGS_PRIVATE); } #undef PF_ANY #undef PF_HEAD #undef PF_ONLY_HEAD #undef PF_NO_TAIL #undef PF_NO_COMPOUND #undef PF_SECOND #endif /* !__GENERATING_BOUNDS_H */ #endif /* PAGE_FLAGS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/buffer_head.h * * Everything to do with buffer_heads. */ #ifndef _LINUX_BUFFER_HEAD_H #define _LINUX_BUFFER_HEAD_H #include <linux/types.h> #include <linux/fs.h> #include <linux/linkage.h> #include <linux/pagemap.h> #include <linux/wait.h> #include <linux/atomic.h> #ifdef CONFIG_BLOCK enum bh_state_bits { BH_Uptodate, /* Contains valid data */ BH_Dirty, /* Is dirty */ BH_Lock, /* Is locked */ BH_Req, /* Has been submitted for I/O */ BH_Mapped, /* Has a disk mapping */ BH_New, /* Disk mapping was newly created by get_block */ BH_Async_Read, /* Is under end_buffer_async_read I/O */ BH_Async_Write, /* Is under end_buffer_async_write I/O */ BH_Delay, /* Buffer is not yet allocated on disk */ BH_Boundary, /* Block is followed by a discontiguity */ BH_Write_EIO, /* I/O error on write */ BH_Unwritten, /* Buffer is allocated on disk but not written */ BH_Quiet, /* Buffer Error Prinks to be quiet */ BH_Meta, /* Buffer contains metadata */ BH_Prio, /* Buffer should be submitted with REQ_PRIO */ BH_Defer_Completion, /* Defer AIO completion to workqueue */ BH_PrivateStart,/* not a state bit, but the first bit available * for private allocation by other entities */ }; #define MAX_BUF_PER_PAGE (PAGE_SIZE / 512) struct page; struct buffer_head; struct address_space; typedef void (bh_end_io_t)(struct buffer_head *bh, int uptodate); /* * Historically, a buffer_head was used to map a single block * within a page, and of course as the unit of I/O through the * filesystem and block layers. Nowadays the basic I/O unit * is the bio, and buffer_heads are used for extracting block * mappings (via a get_block_t call), for tracking state within * a page (via a page_mapping) and for wrapping bio submission * for backward compatibility reasons (e.g. submit_bh). */ struct buffer_head { unsigned long b_state; /* buffer state bitmap (see above) */ struct buffer_head *b_this_page;/* circular list of page's buffers */ struct page *b_page; /* the page this bh is mapped to */ sector_t b_blocknr; /* start block number */ size_t b_size; /* size of mapping */ char *b_data; /* pointer to data within the page */ struct block_device *b_bdev; bh_end_io_t *b_end_io; /* I/O completion */ void *b_private; /* reserved for b_end_io */ struct list_head b_assoc_buffers; /* associated with another mapping */ struct address_space *b_assoc_map; /* mapping this buffer is associated with */ atomic_t b_count; /* users using this buffer_head */ spinlock_t b_uptodate_lock; /* Used by the first bh in a page, to * serialise IO completion of other * buffers in the page */ }; /* * macro tricks to expand the set_buffer_foo(), clear_buffer_foo() * and buffer_foo() functions. * To avoid reset buffer flags that are already set, because that causes * a costly cache line transition, check the flag first. */ #define BUFFER_FNS(bit, name) \ static __always_inline void set_buffer_##name(struct buffer_head *bh) \ { \ if (!test_bit(BH_##bit, &(bh)->b_state)) \ set_bit(BH_##bit, &(bh)->b_state); \ } \ static __always_inline void clear_buffer_##name(struct buffer_head *bh) \ { \ clear_bit(BH_##bit, &(bh)->b_state); \ } \ static __always_inline int buffer_##name(const struct buffer_head *bh) \ { \ return test_bit(BH_##bit, &(bh)->b_state); \ } /* * test_set_buffer_foo() and test_clear_buffer_foo() */ #define TAS_BUFFER_FNS(bit, name) \ static __always_inline int test_set_buffer_##name(struct buffer_head *bh) \ { \ return test_and_set_bit(BH_##bit, &(bh)->b_state); \ } \ static __always_inline int test_clear_buffer_##name(struct buffer_head *bh) \ { \ return test_and_clear_bit(BH_##bit, &(bh)->b_state); \ } \ /* * Emit the buffer bitops functions. Note that there are also functions * of the form "mark_buffer_foo()". These are higher-level functions which * do something in addition to setting a b_state bit. */ BUFFER_FNS(Uptodate, uptodate) BUFFER_FNS(Dirty, dirty) TAS_BUFFER_FNS(Dirty, dirty) BUFFER_FNS(Lock, locked) BUFFER_FNS(Req, req) TAS_BUFFER_FNS(Req, req) BUFFER_FNS(Mapped, mapped) BUFFER_FNS(New, new) BUFFER_FNS(Async_Read, async_read) BUFFER_FNS(Async_Write, async_write) BUFFER_FNS(Delay, delay) BUFFER_FNS(Boundary, boundary) BUFFER_FNS(Write_EIO, write_io_error) BUFFER_FNS(Unwritten, unwritten) BUFFER_FNS(Meta, meta) BUFFER_FNS(Prio, prio) BUFFER_FNS(Defer_Completion, defer_completion) #define bh_offset(bh) ((unsigned long)(bh)->b_data & ~PAGE_MASK) /* If we *know* page->private refers to buffer_heads */ #define page_buffers(page) \ ({ \ BUG_ON(!PagePrivate(page)); \ ((struct buffer_head *)page_private(page)); \ }) #define page_has_buffers(page) PagePrivate(page) void buffer_check_dirty_writeback(struct page *page, bool *dirty, bool *writeback); /* * Declarations */ void mark_buffer_dirty(struct buffer_head *bh); void mark_buffer_write_io_error(struct buffer_head *bh); void touch_buffer(struct buffer_head *bh); void set_bh_page(struct buffer_head *bh, struct page *page, unsigned long offset); int try_to_free_buffers(struct page *); struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, bool retry); void create_empty_buffers(struct page *, unsigned long, unsigned long b_state); void end_buffer_read_sync(struct buffer_head *bh, int uptodate); void end_buffer_write_sync(struct buffer_head *bh, int uptodate); void end_buffer_async_write(struct buffer_head *bh, int uptodate); /* Things to do with buffers at mapping->private_list */ void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode); int inode_has_buffers(struct inode *); void invalidate_inode_buffers(struct inode *); int remove_inode_buffers(struct inode *inode); int sync_mapping_buffers(struct address_space *mapping); void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len); static inline void clean_bdev_bh_alias(struct buffer_head *bh) { clean_bdev_aliases(bh->b_bdev, bh->b_blocknr, 1); } void mark_buffer_async_write(struct buffer_head *bh); void __wait_on_buffer(struct buffer_head *); wait_queue_head_t *bh_waitq_head(struct buffer_head *bh); struct buffer_head *__find_get_block(struct block_device *bdev, sector_t block, unsigned size); struct buffer_head *__getblk_gfp(struct block_device *bdev, sector_t block, unsigned size, gfp_t gfp); void __brelse(struct buffer_head *); void __bforget(struct buffer_head *); void __breadahead(struct block_device *, sector_t block, unsigned int size); void __breadahead_gfp(struct block_device *, sector_t block, unsigned int size, gfp_t gfp); struct buffer_head *__bread_gfp(struct block_device *, sector_t block, unsigned size, gfp_t gfp); void invalidate_bh_lrus(void); struct buffer_head *alloc_buffer_head(gfp_t gfp_flags); void free_buffer_head(struct buffer_head * bh); void unlock_buffer(struct buffer_head *bh); void __lock_buffer(struct buffer_head *bh); void ll_rw_block(int, int, int, struct buffer_head * bh[]); int sync_dirty_buffer(struct buffer_head *bh); int __sync_dirty_buffer(struct buffer_head *bh, int op_flags); void write_dirty_buffer(struct buffer_head *bh, int op_flags); int submit_bh(int, int, struct buffer_head *); void write_boundary_block(struct block_device *bdev, sector_t bblock, unsigned blocksize); int bh_uptodate_or_lock(struct buffer_head *bh); int bh_submit_read(struct buffer_head *bh); extern int buffer_heads_over_limit; /* * Generic address_space_operations implementations for buffer_head-backed * address_spaces. */ void block_invalidatepage(struct page *page, unsigned int offset, unsigned int length); int block_write_full_page(struct page *page, get_block_t *get_block, struct writeback_control *wbc); int __block_write_full_page(struct inode *inode, struct page *page, get_block_t *get_block, struct writeback_control *wbc, bh_end_io_t *handler); int block_read_full_page(struct page*, get_block_t*); int block_is_partially_uptodate(struct page *page, unsigned long from, unsigned long count); int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, get_block_t *get_block); int __block_write_begin(struct page *page, loff_t pos, unsigned len, get_block_t *get_block); int block_write_end(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page *, void *); int generic_write_end(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page *, void *); void page_zero_new_buffers(struct page *page, unsigned from, unsigned to); void clean_page_buffers(struct page *page); int cont_write_begin(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page **, void **, get_block_t *, loff_t *); int generic_cont_expand_simple(struct inode *inode, loff_t size); int block_commit_write(struct page *page, unsigned from, unsigned to); int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, get_block_t get_block); /* Convert errno to return value from ->page_mkwrite() call */ static inline vm_fault_t block_page_mkwrite_return(int err) { if (err == 0) return VM_FAULT_LOCKED; if (err == -EFAULT || err == -EAGAIN) return VM_FAULT_NOPAGE; if (err == -ENOMEM) return VM_FAULT_OOM; /* -ENOSPC, -EDQUOT, -EIO ... */ return VM_FAULT_SIGBUS; } sector_t generic_block_bmap(struct address_space *, sector_t, get_block_t *); int block_truncate_page(struct address_space *, loff_t, get_block_t *); int nobh_write_begin(struct address_space *, loff_t, unsigned, unsigned, struct page **, void **, get_block_t*); int nobh_write_end(struct file *, struct address_space *, loff_t, unsigned, unsigned, struct page *, void *); int nobh_truncate_page(struct address_space *, loff_t, get_block_t *); int nobh_writepage(struct page *page, get_block_t *get_block, struct writeback_control *wbc); void buffer_init(void); /* * inline definitions */ static inline void get_bh(struct buffer_head *bh) { atomic_inc(&bh->b_count); } static inline void put_bh(struct buffer_head *bh) { smp_mb__before_atomic(); atomic_dec(&bh->b_count); } static inline void brelse(struct buffer_head *bh) { if (bh) __brelse(bh); } static inline void bforget(struct buffer_head *bh) { if (bh) __bforget(bh); } static inline struct buffer_head * sb_bread(struct super_block *sb, sector_t block) { return __bread_gfp(sb->s_bdev, block, sb->s_blocksize, __GFP_MOVABLE); } static inline struct buffer_head * sb_bread_unmovable(struct super_block *sb, sector_t block) { return __bread_gfp(sb->s_bdev, block, sb->s_blocksize, 0); } static inline void sb_breadahead(struct super_block *sb, sector_t block) { __breadahead(sb->s_bdev, block, sb->s_blocksize); } static inline void sb_breadahead_unmovable(struct super_block *sb, sector_t block) { __breadahead_gfp(sb->s_bdev, block, sb->s_blocksize, 0); } static inline struct buffer_head * sb_getblk(struct super_block *sb, sector_t block) { return __getblk_gfp(sb->s_bdev, block, sb->s_blocksize, __GFP_MOVABLE); } static inline struct buffer_head * sb_getblk_gfp(struct super_block *sb, sector_t block, gfp_t gfp) { return __getblk_gfp(sb->s_bdev, block, sb->s_blocksize, gfp); } static inline struct buffer_head * sb_find_get_block(struct super_block *sb, sector_t block) { return __find_get_block(sb->s_bdev, block, sb->s_blocksize); } static inline void map_bh(struct buffer_head *bh, struct super_block *sb, sector_t block) { set_buffer_mapped(bh); bh->b_bdev = sb->s_bdev; bh->b_blocknr = block; bh->b_size = sb->s_blocksize; } static inline void wait_on_buffer(struct buffer_head *bh) { might_sleep(); if (buffer_locked(bh)) __wait_on_buffer(bh); } static inline int trylock_buffer(struct buffer_head *bh) { return likely(!test_and_set_bit_lock(BH_Lock, &bh->b_state)); } static inline void lock_buffer(struct buffer_head *bh) { might_sleep(); if (!trylock_buffer(bh)) __lock_buffer(bh); } static inline struct buffer_head *getblk_unmovable(struct block_device *bdev, sector_t block, unsigned size) { return __getblk_gfp(bdev, block, size, 0); } static inline struct buffer_head *__getblk(struct block_device *bdev, sector_t block, unsigned size) { return __getblk_gfp(bdev, block, size, __GFP_MOVABLE); } /** * __bread() - reads a specified block and returns the bh * @bdev: the block_device to read from * @block: number of block * @size: size (in bytes) to read * * Reads a specified block, and returns buffer head that contains it. * The page cache is allocated from movable area so that it can be migrated. * It returns NULL if the block was unreadable. */ static inline struct buffer_head * __bread(struct block_device *bdev, sector_t block, unsigned size) { return __bread_gfp(bdev, block, size, __GFP_MOVABLE); } extern int __set_page_dirty_buffers(struct page *page); #else /* CONFIG_BLOCK */ static inline void buffer_init(void) {} static inline int try_to_free_buffers(struct page *page) { return 1; } static inline int inode_has_buffers(struct inode *inode) { return 0; } static inline void invalidate_inode_buffers(struct inode *inode) {} static inline int remove_inode_buffers(struct inode *inode) { return 1; } static inline int sync_mapping_buffers(struct address_space *mapping) { return 0; } #define buffer_heads_over_limit 0 #endif /* CONFIG_BLOCK */ #endif /* _LINUX_BUFFER_HEAD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_COOKIE_H #define __LINUX_COOKIE_H #include <linux/atomic.h> #include <linux/percpu.h> #include <asm/local.h> struct pcpu_gen_cookie { local_t nesting; u64 last; } __aligned(16); struct gen_cookie { struct pcpu_gen_cookie __percpu *local; atomic64_t forward_last ____cacheline_aligned_in_smp; atomic64_t reverse_last; }; #define COOKIE_LOCAL_BATCH 4096 #define DEFINE_COOKIE(name) \ static DEFINE_PER_CPU(struct pcpu_gen_cookie, __##name); \ static struct gen_cookie name = { \ .local = &__##name, \ .forward_last = ATOMIC64_INIT(0), \ .reverse_last = ATOMIC64_INIT(0), \ } static __always_inline u64 gen_cookie_next(struct gen_cookie *gc) { struct pcpu_gen_cookie *local = this_cpu_ptr(gc->local); u64 val; if (likely(local_inc_return(&local->nesting) == 1)) { val = local->last; if (__is_defined(CONFIG_SMP) && unlikely((val & (COOKIE_LOCAL_BATCH - 1)) == 0)) { s64 next = atomic64_add_return(COOKIE_LOCAL_BATCH, &gc->forward_last); val = next - COOKIE_LOCAL_BATCH; } local->last = ++val; } else { val = atomic64_dec_return(&gc->reverse_last); } local_dec(&local->nesting); return val; } #endif /* __LINUX_COOKIE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NVRAM_H #define _LINUX_NVRAM_H #include <linux/errno.h> #include <uapi/linux/nvram.h> #ifdef CONFIG_PPC #include <asm/machdep.h> #endif /** * struct nvram_ops - NVRAM functionality made available to drivers * @read: validate checksum (if any) then load a range of bytes from NVRAM * @write: store a range of bytes to NVRAM then update checksum (if any) * @read_byte: load a single byte from NVRAM * @write_byte: store a single byte to NVRAM * @get_size: return the fixed number of bytes in the NVRAM * * Architectures which provide an nvram ops struct need not implement all * of these methods. If the NVRAM hardware can be accessed only one byte * at a time then it may be sufficient to provide .read_byte and .write_byte. * If the NVRAM has a checksum (and it is to be checked) the .read and * .write methods can be used to implement that efficiently. * * Portable drivers may use the wrapper functions defined here. * The nvram_read() and nvram_write() functions call the .read and .write * methods when available and fall back on the .read_byte and .write_byte * methods otherwise. */ struct nvram_ops { ssize_t (*get_size)(void); unsigned char (*read_byte)(int); void (*write_byte)(unsigned char, int); ssize_t (*read)(char *, size_t, loff_t *); ssize_t (*write)(char *, size_t, loff_t *); #if defined(CONFIG_X86) || defined(CONFIG_M68K) long (*initialize)(void); long (*set_checksum)(void); #endif }; extern const struct nvram_ops arch_nvram_ops; static inline ssize_t nvram_get_size(void) { #ifdef CONFIG_PPC if (ppc_md.nvram_size) return ppc_md.nvram_size(); #else if (arch_nvram_ops.get_size) return arch_nvram_ops.get_size(); #endif return -ENODEV; } static inline unsigned char nvram_read_byte(int addr) { #ifdef CONFIG_PPC if (ppc_md.nvram_read_val) return ppc_md.nvram_read_val(addr); #else if (arch_nvram_ops.read_byte) return arch_nvram_ops.read_byte(addr); #endif return 0xFF; } static inline void nvram_write_byte(unsigned char val, int addr) { #ifdef CONFIG_PPC if (ppc_md.nvram_write_val) ppc_md.nvram_write_val(addr, val); #else if (arch_nvram_ops.write_byte) arch_nvram_ops.write_byte(val, addr); #endif } static inline ssize_t nvram_read_bytes(char *buf, size_t count, loff_t *ppos) { ssize_t nvram_size = nvram_get_size(); loff_t i; char *p = buf; if (nvram_size < 0) return nvram_size; for (i = *ppos; count > 0 && i < nvram_size; ++i, ++p, --count) *p = nvram_read_byte(i); *ppos = i; return p - buf; } static inline ssize_t nvram_write_bytes(char *buf, size_t count, loff_t *ppos) { ssize_t nvram_size = nvram_get_size(); loff_t i; char *p = buf; if (nvram_size < 0) return nvram_size; for (i = *ppos; count > 0 && i < nvram_size; ++i, ++p, --count) nvram_write_byte(*p, i); *ppos = i; return p - buf; } static inline ssize_t nvram_read(char *buf, size_t count, loff_t *ppos) { #ifdef CONFIG_PPC if (ppc_md.nvram_read) return ppc_md.nvram_read(buf, count, ppos); #else if (arch_nvram_ops.read) return arch_nvram_ops.read(buf, count, ppos); #endif return nvram_read_bytes(buf, count, ppos); } static inline ssize_t nvram_write(char *buf, size_t count, loff_t *ppos) { #ifdef CONFIG_PPC if (ppc_md.nvram_write) return ppc_md.nvram_write(buf, count, ppos); #else if (arch_nvram_ops.write) return arch_nvram_ops.write(buf, count, ppos); #endif return nvram_write_bytes(buf, count, ppos); } #endif /* _LINUX_NVRAM_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/pagevec.h * * In many places it is efficient to batch an operation up against multiple * pages. A pagevec is a multipage container which is used for that. */ #ifndef _LINUX_PAGEVEC_H #define _LINUX_PAGEVEC_H #include <linux/xarray.h> /* 15 pointers + header align the pagevec structure to a power of two */ #define PAGEVEC_SIZE 15 struct page; struct address_space; struct pagevec { unsigned char nr; bool percpu_pvec_drained; struct page *pages[PAGEVEC_SIZE]; }; void __pagevec_release(struct pagevec *pvec); void __pagevec_lru_add(struct pagevec *pvec); unsigned pagevec_lookup_entries(struct pagevec *pvec, struct address_space *mapping, pgoff_t start, unsigned nr_entries, pgoff_t *indices); void pagevec_remove_exceptionals(struct pagevec *pvec); unsigned pagevec_lookup_range(struct pagevec *pvec, struct address_space *mapping, pgoff_t *start, pgoff_t end); static inline unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, pgoff_t *start) { return pagevec_lookup_range(pvec, mapping, start, (pgoff_t)-1); } unsigned pagevec_lookup_range_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag); unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag, unsigned max_pages); static inline unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, xa_mark_t tag) { return pagevec_lookup_range_tag(pvec, mapping, index, (pgoff_t)-1, tag); } static inline void pagevec_init(struct pagevec *pvec) { pvec->nr = 0; pvec->percpu_pvec_drained = false; } static inline void pagevec_reinit(struct pagevec *pvec) { pvec->nr = 0; } static inline unsigned pagevec_count(struct pagevec *pvec) { return pvec->nr; } static inline unsigned pagevec_space(struct pagevec *pvec) { return PAGEVEC_SIZE - pvec->nr; } /* * Add a page to a pagevec. Returns the number of slots still available. */ static inline unsigned pagevec_add(struct pagevec *pvec, struct page *page) { pvec->pages[pvec->nr++] = page; return pagevec_space(pvec); } static inline void pagevec_release(struct pagevec *pvec) { if (pagevec_count(pvec)) __pagevec_release(pvec); } #endif /* _LINUX_PAGEVEC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM fib #if !defined(_TRACE_FIB_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FIB_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <net/ip_fib.h> #include <linux/tracepoint.h> TRACE_EVENT(fib_table_lookup, TP_PROTO(u32 tb_id, const struct flowi4 *flp, const struct fib_nh_common *nhc, int err), TP_ARGS(tb_id, flp, nhc, err), TP_STRUCT__entry( __field( u32, tb_id ) __field( int, err ) __field( int, oif ) __field( int, iif ) __field( u8, proto ) __field( __u8, tos ) __field( __u8, scope ) __field( __u8, flags ) __array( __u8, src, 4 ) __array( __u8, dst, 4 ) __array( __u8, gw4, 4 ) __array( __u8, gw6, 16 ) __field( u16, sport ) __field( u16, dport ) __dynamic_array(char, name, IFNAMSIZ ) ), TP_fast_assign( struct in6_addr in6_zero = {}; struct net_device *dev; struct in6_addr *in6; __be32 *p32; __entry->tb_id = tb_id; __entry->err = err; __entry->oif = flp->flowi4_oif; __entry->iif = flp->flowi4_iif; __entry->tos = flp->flowi4_tos; __entry->scope = flp->flowi4_scope; __entry->flags = flp->flowi4_flags; p32 = (__be32 *) __entry->src; *p32 = flp->saddr; p32 = (__be32 *) __entry->dst; *p32 = flp->daddr; __entry->proto = flp->flowi4_proto; if (__entry->proto == IPPROTO_TCP || __entry->proto == IPPROTO_UDP) { __entry->sport = ntohs(flp->fl4_sport); __entry->dport = ntohs(flp->fl4_dport); } else { __entry->sport = 0; __entry->dport = 0; } dev = nhc ? nhc->nhc_dev : NULL; __assign_str(name, dev ? dev->name : "-"); if (nhc) { if (nhc->nhc_gw_family == AF_INET) { p32 = (__be32 *) __entry->gw4; *p32 = nhc->nhc_gw.ipv4; in6 = (struct in6_addr *)__entry->gw6; *in6 = in6_zero; } else if (nhc->nhc_gw_family == AF_INET6) { p32 = (__be32 *) __entry->gw4; *p32 = 0; in6 = (struct in6_addr *)__entry->gw6; *in6 = nhc->nhc_gw.ipv6; } } else { p32 = (__be32 *) __entry->gw4; *p32 = 0; in6 = (struct in6_addr *)__entry->gw6; *in6 = in6_zero; } ), TP_printk("table %u oif %d iif %d proto %u %pI4/%u -> %pI4/%u tos %d scope %d flags %x ==> dev %s gw %pI4/%pI6c err %d", __entry->tb_id, __entry->oif, __entry->iif, __entry->proto, __entry->src, __entry->sport, __entry->dst, __entry->dport, __entry->tos, __entry->scope, __entry->flags, __get_str(name), __entry->gw4, __entry->gw6, __entry->err) ); #endif /* _TRACE_FIB_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Credentials management - see Documentation/security/credentials.rst * * Copyright (C) 2008 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_CRED_H #define _LINUX_CRED_H #include <linux/capability.h> #include <linux/init.h> #include <linux/key.h> #include <linux/atomic.h> #include <linux/uidgid.h> #include <linux/sched.h> #include <linux/sched/user.h> struct cred; struct inode; /* * COW Supplementary groups list */ struct group_info { atomic_t usage; int ngroups; kgid_t gid[0]; } __randomize_layout; /** * get_group_info - Get a reference to a group info structure * @group_info: The group info to reference * * This gets a reference to a set of supplementary groups. * * If the caller is accessing a task's credentials, they must hold the RCU read * lock when reading. */ static inline struct group_info *get_group_info(struct group_info *gi) { atomic_inc(&gi->usage); return gi; } /** * put_group_info - Release a reference to a group info structure * @group_info: The group info to release */ #define put_group_info(group_info) \ do { \ if (atomic_dec_and_test(&(group_info)->usage)) \ groups_free(group_info); \ } while (0) extern struct group_info init_groups; #ifdef CONFIG_MULTIUSER extern struct group_info *groups_alloc(int); extern void groups_free(struct group_info *); extern int in_group_p(kgid_t); extern int in_egroup_p(kgid_t); extern int groups_search(const struct group_info *, kgid_t); extern int set_current_groups(struct group_info *); extern void set_groups(struct cred *, struct group_info *); extern bool may_setgroups(void); extern void groups_sort(struct group_info *); #else static inline void groups_free(struct group_info *group_info) { } static inline int in_group_p(kgid_t grp) { return 1; } static inline int in_egroup_p(kgid_t grp) { return 1; } static inline int groups_search(const struct group_info *group_info, kgid_t grp) { return 1; } #endif /* * The security context of a task * * The parts of the context break down into two categories: * * (1) The objective context of a task. These parts are used when some other * task is attempting to affect this one. * * (2) The subjective context. These details are used when the task is acting * upon another object, be that a file, a task, a key or whatever. * * Note that some members of this structure belong to both categories - the * LSM security pointer for instance. * * A task has two security pointers. task->real_cred points to the objective * context that defines that task's actual details. The objective part of this * context is used whenever that task is acted upon. * * task->cred points to the subjective context that defines the details of how * that task is going to act upon another object. This may be overridden * temporarily to point to another security context, but normally points to the * same context as task->real_cred. */ struct cred { atomic_t usage; #ifdef CONFIG_DEBUG_CREDENTIALS atomic_t subscribers; /* number of processes subscribed */ void *put_addr; unsigned magic; #define CRED_MAGIC 0x43736564 #define CRED_MAGIC_DEAD 0x44656144 #endif kuid_t uid; /* real UID of the task */ kgid_t gid; /* real GID of the task */ kuid_t suid; /* saved UID of the task */ kgid_t sgid; /* saved GID of the task */ kuid_t euid; /* effective UID of the task */ kgid_t egid; /* effective GID of the task */ kuid_t fsuid; /* UID for VFS ops */ kgid_t fsgid; /* GID for VFS ops */ unsigned securebits; /* SUID-less security management */ kernel_cap_t cap_inheritable; /* caps our children can inherit */ kernel_cap_t cap_permitted; /* caps we're permitted */ kernel_cap_t cap_effective; /* caps we can actually use */ kernel_cap_t cap_bset; /* capability bounding set */ kernel_cap_t cap_ambient; /* Ambient capability set */ #ifdef CONFIG_KEYS unsigned char jit_keyring; /* default keyring to attach requested * keys to */ struct key *session_keyring; /* keyring inherited over fork */ struct key *process_keyring; /* keyring private to this process */ struct key *thread_keyring; /* keyring private to this thread */ struct key *request_key_auth; /* assumed request_key authority */ #endif #ifdef CONFIG_SECURITY void *security; /* subjective LSM security */ #endif struct user_struct *user; /* real user ID subscription */ struct user_namespace *user_ns; /* user_ns the caps and keyrings are relative to. */ struct group_info *group_info; /* supplementary groups for euid/fsgid */ /* RCU deletion */ union { int non_rcu; /* Can we skip RCU deletion? */ struct rcu_head rcu; /* RCU deletion hook */ }; } __randomize_layout; extern void __put_cred(struct cred *); extern void exit_creds(struct task_struct *); extern int copy_creds(struct task_struct *, unsigned long); extern const struct cred *get_task_cred(struct task_struct *); extern struct cred *cred_alloc_blank(void); extern struct cred *prepare_creds(void); extern struct cred *prepare_exec_creds(void); extern int commit_creds(struct cred *); extern void abort_creds(struct cred *); extern const struct cred *override_creds(const struct cred *); extern void revert_creds(const struct cred *); extern struct cred *prepare_kernel_cred(struct task_struct *); extern int change_create_files_as(struct cred *, struct inode *); extern int set_security_override(struct cred *, u32); extern int set_security_override_from_ctx(struct cred *, const char *); extern int set_create_files_as(struct cred *, struct inode *); extern int cred_fscmp(const struct cred *, const struct cred *); extern void __init cred_init(void); /* * check for validity of credentials */ #ifdef CONFIG_DEBUG_CREDENTIALS extern void __invalid_creds(const struct cred *, const char *, unsigned); extern void __validate_process_creds(struct task_struct *, const char *, unsigned); extern bool creds_are_invalid(const struct cred *cred); static inline void __validate_creds(const struct cred *cred, const char *file, unsigned line) { if (unlikely(creds_are_invalid(cred))) __invalid_creds(cred, file, line); } #define validate_creds(cred) \ do { \ __validate_creds((cred), __FILE__, __LINE__); \ } while(0) #define validate_process_creds() \ do { \ __validate_process_creds(current, __FILE__, __LINE__); \ } while(0) extern void validate_creds_for_do_exit(struct task_struct *); #else static inline void validate_creds(const struct cred *cred) { } static inline void validate_creds_for_do_exit(struct task_struct *tsk) { } static inline void validate_process_creds(void) { } #endif static inline bool cap_ambient_invariant_ok(const struct cred *cred) { return cap_issubset(cred->cap_ambient, cap_intersect(cred->cap_permitted, cred->cap_inheritable)); } /** * get_new_cred - Get a reference on a new set of credentials * @cred: The new credentials to reference * * Get a reference on the specified set of new credentials. The caller must * release the reference. */ static inline struct cred *get_new_cred(struct cred *cred) { atomic_inc(&cred->usage); return cred; } /** * get_cred - Get a reference on a set of credentials * @cred: The credentials to reference * * Get a reference on the specified set of credentials. The caller must * release the reference. If %NULL is passed, it is returned with no action. * * This is used to deal with a committed set of credentials. Although the * pointer is const, this will temporarily discard the const and increment the * usage count. The purpose of this is to attempt to catch at compile time the * accidental alteration of a set of credentials that should be considered * immutable. */ static inline const struct cred *get_cred(const struct cred *cred) { struct cred *nonconst_cred = (struct cred *) cred; if (!cred) return cred; validate_creds(cred); nonconst_cred->non_rcu = 0; return get_new_cred(nonconst_cred); } static inline const struct cred *get_cred_rcu(const struct cred *cred) { struct cred *nonconst_cred = (struct cred *) cred; if (!cred) return NULL; if (!atomic_inc_not_zero(&nonconst_cred->usage)) return NULL; validate_creds(cred); nonconst_cred->non_rcu = 0; return cred; } /** * put_cred - Release a reference to a set of credentials * @cred: The credentials to release * * Release a reference to a set of credentials, deleting them when the last ref * is released. If %NULL is passed, nothing is done. * * This takes a const pointer to a set of credentials because the credentials * on task_struct are attached by const pointers to prevent accidental * alteration of otherwise immutable credential sets. */ static inline void put_cred(const struct cred *_cred) { struct cred *cred = (struct cred *) _cred; if (cred) { validate_creds(cred); if (atomic_dec_and_test(&(cred)->usage)) __put_cred(cred); } } /** * current_cred - Access the current task's subjective credentials * * Access the subjective credentials of the current task. RCU-safe, * since nobody else can modify it. */ #define current_cred() \ rcu_dereference_protected(current->cred, 1) /** * current_real_cred - Access the current task's objective credentials * * Access the objective credentials of the current task. RCU-safe, * since nobody else can modify it. */ #define current_real_cred() \ rcu_dereference_protected(current->real_cred, 1) /** * __task_cred - Access a task's objective credentials * @task: The task to query * * Access the objective credentials of a task. The caller must hold the RCU * readlock. * * The result of this function should not be passed directly to get_cred(); * rather get_task_cred() should be used instead. */ #define __task_cred(task) \ rcu_dereference((task)->real_cred) /** * get_current_cred - Get the current task's subjective credentials * * Get the subjective credentials of the current task, pinning them so that * they can't go away. Accessing the current task's credentials directly is * not permitted. */ #define get_current_cred() \ (get_cred(current_cred())) /** * get_current_user - Get the current task's user_struct * * Get the user record of the current task, pinning it so that it can't go * away. */ #define get_current_user() \