1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SMP_H #define _ASM_X86_SMP_H #ifndef __ASSEMBLY__ #include <linux/cpumask.h> #include <asm/percpu.h> #include <asm/thread_info.h> #include <asm/cpumask.h> extern int smp_num_siblings; extern unsigned int num_processors; DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); /* cpus sharing the last level cache: */ DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); DECLARE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id); DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number); static inline struct cpumask *cpu_llc_shared_mask(int cpu) { return per_cpu(cpu_llc_shared_map, cpu); } DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid); #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_X86_32) DECLARE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid); #endif struct task_struct; struct smp_ops { void (*smp_prepare_boot_cpu)(void); void (*smp_prepare_cpus)(unsigned max_cpus); void (*smp_cpus_done)(unsigned max_cpus); void (*stop_other_cpus)(int wait); void (*crash_stop_other_cpus)(void); void (*smp_send_reschedule)(int cpu); int (*cpu_up)(unsigned cpu, struct task_struct *tidle); int (*cpu_disable)(void); void (*cpu_die)(unsigned int cpu); void (*play_dead)(void); void (*send_call_func_ipi)(const struct cpumask *mask); void (*send_call_func_single_ipi)(int cpu); }; /* Globals due to paravirt */ extern void set_cpu_sibling_map(int cpu); #ifdef CONFIG_SMP extern struct smp_ops smp_ops; static inline void smp_send_stop(void) { smp_ops.stop_other_cpus(0); } static inline void stop_other_cpus(void) { smp_ops.stop_other_cpus(1); } static inline void smp_prepare_boot_cpu(void) { smp_ops.smp_prepare_boot_cpu(); } static inline void smp_prepare_cpus(unsigned int max_cpus) { smp_ops.smp_prepare_cpus(max_cpus); } static inline void smp_cpus_done(unsigned int max_cpus) { smp_ops.smp_cpus_done(max_cpus); } static inline int __cpu_up(unsigned int cpu, struct task_struct *tidle) { return smp_ops.cpu_up(cpu, tidle); } static inline int __cpu_disable(void) { return smp_ops.cpu_disable(); } static inline void __cpu_die(unsigned int cpu) { smp_ops.cpu_die(cpu); } static inline void play_dead(void) { smp_ops.play_dead(); } static inline void smp_send_reschedule(int cpu) { smp_ops.smp_send_reschedule(cpu); } static inline void arch_send_call_function_single_ipi(int cpu) { smp_ops.send_call_func_single_ipi(cpu); } static inline void arch_send_call_function_ipi_mask(const struct cpumask *mask) { smp_ops.send_call_func_ipi(mask); } void cpu_disable_common(void); void native_smp_prepare_boot_cpu(void); void native_smp_prepare_cpus(unsigned int max_cpus); void calculate_max_logical_packages(void); void native_smp_cpus_done(unsigned int max_cpus); int common_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_disable(void); int common_cpu_die(unsigned int cpu); void native_cpu_die(unsigned int cpu); void hlt_play_dead(void); void native_play_dead(void); void play_dead_common(void); void wbinvd_on_cpu(int cpu); int wbinvd_on_all_cpus(void); void cond_wakeup_cpu0(void); void native_smp_send_reschedule(int cpu); void native_send_call_func_ipi(const struct cpumask *mask); void native_send_call_func_single_ipi(int cpu); void x86_idle_thread_init(unsigned int cpu, struct task_struct *idle); void smp_store_boot_cpu_info(void); void smp_store_cpu_info(int id); asmlinkage __visible void smp_reboot_interrupt(void); __visible void smp_reschedule_interrupt(struct pt_regs *regs); __visible void smp_call_function_interrupt(struct pt_regs *regs); __visible void smp_call_function_single_interrupt(struct pt_regs *r); #define cpu_physical_id(cpu) per_cpu(x86_cpu_to_apicid, cpu) #define cpu_acpi_id(cpu) per_cpu(x86_cpu_to_acpiid, cpu) /* * This function is needed by all SMP systems. It must _always_ be valid * from the initial startup. We map APIC_BASE very early in page_setup(), * so this is correct in the x86 case. */ #define raw_smp_processor_id() this_cpu_read(cpu_number) #define __smp_processor_id() __this_cpu_read(cpu_number) #ifdef CONFIG_X86_32 extern int safe_smp_processor_id(void); #else # define safe_smp_processor_id() smp_processor_id() #endif #else /* !CONFIG_SMP */ #define wbinvd_on_cpu(cpu) wbinvd() static inline int wbinvd_on_all_cpus(void) { wbinvd(); return 0; } #endif /* CONFIG_SMP */ extern unsigned disabled_cpus; #ifdef CONFIG_X86_LOCAL_APIC extern int hard_smp_processor_id(void); #else /* CONFIG_X86_LOCAL_APIC */ #define hard_smp_processor_id() 0 #endif /* CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_DEBUG_NMI_SELFTEST extern void nmi_selftest(void); #else #define nmi_selftest() do { } while (0) #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_SMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_COOKIE_H #define __LINUX_COOKIE_H #include <linux/atomic.h> #include <linux/percpu.h> #include <asm/local.h> struct pcpu_gen_cookie { local_t nesting; u64 last; } __aligned(16); struct gen_cookie { struct pcpu_gen_cookie __percpu *local; atomic64_t forward_last ____cacheline_aligned_in_smp; atomic64_t reverse_last; }; #define COOKIE_LOCAL_BATCH 4096 #define DEFINE_COOKIE(name) \ static DEFINE_PER_CPU(struct pcpu_gen_cookie, __##name); \ static struct gen_cookie name = { \ .local = &__##name, \ .forward_last = ATOMIC64_INIT(0), \ .reverse_last = ATOMIC64_INIT(0), \ } static __always_inline u64 gen_cookie_next(struct gen_cookie *gc) { struct pcpu_gen_cookie *local = this_cpu_ptr(gc->local); u64 val; if (likely(local_inc_return(&local->nesting) == 1)) { val = local->last; if (__is_defined(CONFIG_SMP) && unlikely((val & (COOKIE_LOCAL_BATCH - 1)) == 0)) { s64 next = atomic64_add_return(COOKIE_LOCAL_BATCH, &gc->forward_last); val = next - COOKIE_LOCAL_BATCH; } local->last = ++val; } else { val = atomic64_dec_return(&gc->reverse_last); } local_dec(&local->nesting); return val; } #endif /* __LINUX_COOKIE_H */
6 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_JUMP_LABEL_H #define _ASM_X86_JUMP_LABEL_H #define HAVE_JUMP_LABEL_BATCH #define JUMP_LABEL_NOP_SIZE 5 #ifdef CONFIG_X86_64 # define STATIC_KEY_INIT_NOP P6_NOP5_ATOMIC #else # define STATIC_KEY_INIT_NOP GENERIC_NOP5_ATOMIC #endif #include <asm/asm.h> #include <asm/nops.h> #ifndef __ASSEMBLY__ #include <linux/stringify.h> #include <linux/types.h> static __always_inline bool arch_static_branch(struct static_key *key, bool branch) { asm_volatile_goto("1:" ".byte " __stringify(STATIC_KEY_INIT_NOP) "\n\t" ".pushsection __jump_table, \"aw\" \n\t" _ASM_ALIGN "\n\t" ".long 1b - ., %l[l_yes] - . \n\t" _ASM_PTR "%c0 + %c1 - .\n\t" ".popsection \n\t" : : "i" (key), "i" (branch) : : l_yes); return false; l_yes: return true; } static __always_inline bool arch_static_branch_jump(struct static_key *key, bool branch) { asm_volatile_goto("1:" ".byte 0xe9\n\t .long %l[l_yes] - 2f\n\t" "2:\n\t" ".pushsection __jump_table, \"aw\" \n\t" _ASM_ALIGN "\n\t" ".long 1b - ., %l[l_yes] - . \n\t" _ASM_PTR "%c0 + %c1 - .\n\t" ".popsection \n\t" : : "i" (key), "i" (branch) : : l_yes); return false; l_yes: return true; } #else /* __ASSEMBLY__ */ .macro STATIC_JUMP_IF_TRUE target, key, def .Lstatic_jump_\@: .if \def /* Equivalent to "jmp.d32 \target" */ .byte 0xe9 .long \target - .Lstatic_jump_after_\@ .Lstatic_jump_after_\@: .else .byte STATIC_KEY_INIT_NOP .endif .pushsection __jump_table, "aw" _ASM_ALIGN .long .Lstatic_jump_\@ - ., \target - . _ASM_PTR \key - . .popsection .endm .macro STATIC_JUMP_IF_FALSE target, key, def .Lstatic_jump_\@: .if \def .byte STATIC_KEY_INIT_NOP .else /* Equivalent to "jmp.d32 \target" */ .byte 0xe9 .long \target - .Lstatic_jump_after_\@ .Lstatic_jump_after_\@: .endif .pushsection __jump_table, "aw" _ASM_ALIGN .long .Lstatic_jump_\@ - ., \target - . _ASM_PTR \key + 1 - . .popsection .endm #endif /* __ASSEMBLY__ */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 /* SPDX-License-Identifier: GPL-2.0 */ /* * Events for filesystem locks * * Copyright 2013 Jeff Layton <jlayton@poochiereds.net> */ #undef TRACE_SYSTEM #define TRACE_SYSTEM filelock #if !defined(_TRACE_FILELOCK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FILELOCK_H #include <linux/tracepoint.h> #include <linux/fs.h> #include <linux/device.h> #include <linux/kdev_t.h> #define show_fl_flags(val) \ __print_flags(val, "|", \ { FL_POSIX, "FL_POSIX" }, \ { FL_FLOCK, "FL_FLOCK" }, \ { FL_DELEG, "FL_DELEG" }, \ { FL_ACCESS, "FL_ACCESS" }, \ { FL_EXISTS, "FL_EXISTS" }, \ { FL_LEASE, "FL_LEASE" }, \ { FL_CLOSE, "FL_CLOSE" }, \ { FL_SLEEP, "FL_SLEEP" }, \ { FL_DOWNGRADE_PENDING, "FL_DOWNGRADE_PENDING" }, \ { FL_UNLOCK_PENDING, "FL_UNLOCK_PENDING" }, \ { FL_OFDLCK, "FL_OFDLCK" }) #define show_fl_type(val) \ __print_symbolic(val, \ { F_RDLCK, "F_RDLCK" }, \ { F_WRLCK, "F_WRLCK" }, \ { F_UNLCK, "F_UNLCK" }) TRACE_EVENT(locks_get_lock_context, TP_PROTO(struct inode *inode, int type, struct file_lock_context *ctx), TP_ARGS(inode, type, ctx), TP_STRUCT__entry( __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(unsigned char, type) __field(struct file_lock_context *, ctx) ), TP_fast_assign( __entry->s_dev = inode->i_sb->s_dev; __entry->i_ino = inode->i_ino; __entry->type = type; __entry->ctx = ctx; ), TP_printk("dev=0x%x:0x%x ino=0x%lx type=%s ctx=%p", MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, show_fl_type(__entry->type), __entry->ctx) ); DECLARE_EVENT_CLASS(filelock_lock, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret), TP_STRUCT__entry( __field(struct file_lock *, fl) __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(struct file_lock *, fl_blocker) __field(fl_owner_t, fl_owner) __field(unsigned int, fl_pid) __field(unsigned int, fl_flags) __field(unsigned char, fl_type) __field(loff_t, fl_start) __field(loff_t, fl_end) __field(int, ret) ), TP_fast_assign( __entry->fl = fl ? fl : NULL; __entry->s_dev = inode->i_sb->s_dev; __entry->i_ino = inode->i_ino; __entry->fl_blocker = fl ? fl->fl_blocker : NULL; __entry->fl_owner = fl ? fl->fl_owner : NULL; __entry->fl_pid = fl ? fl->fl_pid : 0; __entry->fl_flags = fl ? fl->fl_flags : 0; __entry->fl_type = fl ? fl->fl_type : 0; __entry->fl_start = fl ? fl->fl_start : 0; __entry->fl_end = fl ? fl->fl_end : 0; __entry->ret = ret; ), TP_printk("fl=%p dev=0x%x:0x%x ino=0x%lx fl_blocker=%p fl_owner=%p fl_pid=%u fl_flags=%s fl_type=%s fl_start=%lld fl_end=%lld ret=%d", __entry->fl, MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->fl_blocker, __entry->fl_owner, __entry->fl_pid, show_fl_flags(__entry->fl_flags), show_fl_type(__entry->fl_type), __entry->fl_start, __entry->fl_end, __entry->ret) ); DEFINE_EVENT(filelock_lock, posix_lock_inode, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret)); DEFINE_EVENT(filelock_lock, fcntl_setlk, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret)); DEFINE_EVENT(filelock_lock, locks_remove_posix, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret)); DEFINE_EVENT(filelock_lock, flock_lock_inode, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret)); DECLARE_EVENT_CLASS(filelock_lease, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl), TP_STRUCT__entry( __field(struct file_lock *, fl) __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(struct file_lock *, fl_blocker) __field(fl_owner_t, fl_owner) __field(unsigned int, fl_flags) __field(unsigned char, fl_type) __field(unsigned long, fl_break_time) __field(unsigned long, fl_downgrade_time) ), TP_fast_assign( __entry->fl = fl ? fl : NULL; __entry->s_dev = inode->i_sb->s_dev; __entry->i_ino = inode->i_ino; __entry->fl_blocker = fl ? fl->fl_blocker : NULL; __entry->fl_owner = fl ? fl->fl_owner : NULL; __entry->fl_flags = fl ? fl->fl_flags : 0; __entry->fl_type = fl ? fl->fl_type : 0; __entry->fl_break_time = fl ? fl->fl_break_time : 0; __entry->fl_downgrade_time = fl ? fl->fl_downgrade_time : 0; ), TP_printk("fl=%p dev=0x%x:0x%x ino=0x%lx fl_blocker=%p fl_owner=%p fl_flags=%s fl_type=%s fl_break_time=%lu fl_downgrade_time=%lu", __entry->fl, MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->fl_blocker, __entry->fl_owner, show_fl_flags(__entry->fl_flags), show_fl_type(__entry->fl_type), __entry->fl_break_time, __entry->fl_downgrade_time) ); DEFINE_EVENT(filelock_lease, break_lease_noblock, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); DEFINE_EVENT(filelock_lease, break_lease_block, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); DEFINE_EVENT(filelock_lease, break_lease_unblock, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); DEFINE_EVENT(filelock_lease, generic_delete_lease, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); DEFINE_EVENT(filelock_lease, time_out_leases, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); TRACE_EVENT(generic_add_lease, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl), TP_STRUCT__entry( __field(unsigned long, i_ino) __field(int, wcount) __field(int, rcount) __field(int, icount) __field(dev_t, s_dev) __field(fl_owner_t, fl_owner) __field(unsigned int, fl_flags) __field(unsigned char, fl_type) ), TP_fast_assign( __entry->s_dev = inode->i_sb->s_dev; __entry->i_ino = inode->i_ino; __entry->wcount = atomic_read(&inode->i_writecount); __entry->rcount = atomic_read(&inode->i_readcount); __entry->icount = atomic_read(&inode->i_count); __entry->fl_owner = fl->fl_owner; __entry->fl_flags = fl->fl_flags; __entry->fl_type = fl->fl_type; ), TP_printk("dev=0x%x:0x%x ino=0x%lx wcount=%d rcount=%d icount=%d fl_owner=%p fl_flags=%s fl_type=%s", MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->wcount, __entry->rcount, __entry->icount, __entry->fl_owner, show_fl_flags(__entry->fl_flags), show_fl_type(__entry->fl_type)) ); TRACE_EVENT(leases_conflict, TP_PROTO(bool conflict, struct file_lock *lease, struct file_lock *breaker), TP_ARGS(conflict, lease, breaker), TP_STRUCT__entry( __field(void *, lease) __field(void *, breaker) __field(unsigned int, l_fl_flags) __field(unsigned int, b_fl_flags) __field(unsigned char, l_fl_type) __field(unsigned char, b_fl_type) __field(bool, conflict) ), TP_fast_assign( __entry->lease = lease; __entry->l_fl_flags = lease->fl_flags; __entry->l_fl_type = lease->fl_type; __entry->breaker = breaker; __entry->b_fl_flags = breaker->fl_flags; __entry->b_fl_type = breaker->fl_type; __entry->conflict = conflict; ), TP_printk("conflict %d: lease=%p fl_flags=%s fl_type=%s; breaker=%p fl_flags=%s fl_type=%s", __entry->conflict, __entry->lease, show_fl_flags(__entry->l_fl_flags), show_fl_type(__entry->l_fl_type), __entry->breaker, show_fl_flags(__entry->b_fl_flags), show_fl_type(__entry->b_fl_type)) ); #endif /* _TRACE_FILELOCK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 /* SPDX-License-Identifier: GPL-2.0 */ /* * Common values for AES algorithms */ #ifndef _CRYPTO_AES_H #define _CRYPTO_AES_H #include <linux/types.h> #include <linux/crypto.h> #define AES_MIN_KEY_SIZE 16 #define AES_MAX_KEY_SIZE 32 #define AES_KEYSIZE_128 16 #define AES_KEYSIZE_192 24 #define AES_KEYSIZE_256 32 #define AES_BLOCK_SIZE 16 #define AES_MAX_KEYLENGTH (15 * 16) #define AES_MAX_KEYLENGTH_U32 (AES_MAX_KEYLENGTH / sizeof(u32)) /* * Please ensure that the first two fields are 16-byte aligned * relative to the start of the structure, i.e., don't move them! */ struct crypto_aes_ctx { u32 key_enc[AES_MAX_KEYLENGTH_U32]; u32 key_dec[AES_MAX_KEYLENGTH_U32]; u32 key_length; }; extern const u32 crypto_ft_tab[4][256] ____cacheline_aligned; extern const u32 crypto_it_tab[4][256] ____cacheline_aligned; /* * validate key length for AES algorithms */ static inline int aes_check_keylen(unsigned int keylen) { switch (keylen) { case AES_KEYSIZE_128: case AES_KEYSIZE_192: case AES_KEYSIZE_256: break; default: return -EINVAL; } return 0; } int crypto_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len); /** * aes_expandkey - Expands the AES key as described in FIPS-197 * @ctx: The location where the computed key will be stored. * @in_key: The supplied key. * @key_len: The length of the supplied key. * * Returns 0 on success. The function fails only if an invalid key size (or * pointer) is supplied. * The expanded key size is 240 bytes (max of 14 rounds with a unique 16 bytes * key schedule plus a 16 bytes key which is used before the first round). * The decryption key is prepared for the "Equivalent Inverse Cipher" as * described in FIPS-197. The first slot (16 bytes) of each key (enc or dec) is * for the initial combination, the second slot for the first round and so on. */ int aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key, unsigned int key_len); /** * aes_encrypt - Encrypt a single AES block * @ctx: Context struct containing the key schedule * @out: Buffer to store the ciphertext * @in: Buffer containing the plaintext */ void aes_encrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in); /** * aes_decrypt - Decrypt a single AES block * @ctx: Context struct containing the key schedule * @out: Buffer to store the plaintext * @in: Buffer containing the ciphertext */ void aes_decrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in); extern const u8 crypto_aes_sbox[]; extern const u8 crypto_aes_inv_sbox[]; #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright 2003-2005 Red Hat, Inc. All rights reserved. * Copyright 2003-2005 Jeff Garzik * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/driver-api/libata.rst */ #ifndef __LINUX_LIBATA_H__ #define __LINUX_LIBATA_H__ #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/scatterlist.h> #include <linux/io.h> #include <linux/ata.h> #include <linux/workqueue.h> #include <scsi/scsi_host.h> #include <linux/acpi.h> #include <linux/cdrom.h> #include <linux/sched.h> #include <linux/async.h> /* * Define if arch has non-standard setup. This is a _PCI_ standard * not a legacy or ISA standard. */ #ifdef CONFIG_ATA_NONSTANDARD #include <asm/libata-portmap.h> #else #define ATA_PRIMARY_IRQ(dev) 14 #define ATA_SECONDARY_IRQ(dev) 15 #endif /* * compile-time options: to be removed as soon as all the drivers are * converted to the new debugging mechanism */ #undef ATA_DEBUG /* debugging output */ #undef ATA_VERBOSE_DEBUG /* yet more debugging output */ #undef ATA_IRQ_TRAP /* define to ack screaming irqs */ #undef ATA_NDEBUG /* define to disable quick runtime checks */ /* note: prints function name for you */ #ifdef ATA_DEBUG #define DPRINTK(fmt, args...) printk(KERN_ERR "%s: " fmt, __func__, ## args) #ifdef ATA_VERBOSE_DEBUG #define VPRINTK(fmt, args...) printk(KERN_ERR "%s: " fmt, __func__, ## args) #else #define VPRINTK(fmt, args...) #endif /* ATA_VERBOSE_DEBUG */ #else #define DPRINTK(fmt, args...) #define VPRINTK(fmt, args...) #endif /* ATA_DEBUG */ #define ata_print_version_once(dev, version) \ ({ \ static bool __print_once; \ \ if (!__print_once) { \ __print_once = true; \ ata_print_version(dev, version); \ } \ }) /* NEW: debug levels */ #define HAVE_LIBATA_MSG 1 enum { ATA_MSG_DRV = 0x0001, ATA_MSG_INFO = 0x0002, ATA_MSG_PROBE = 0x0004, ATA_MSG_WARN = 0x0008, ATA_MSG_MALLOC = 0x0010, ATA_MSG_CTL = 0x0020, ATA_MSG_INTR = 0x0040, ATA_MSG_ERR = 0x0080, }; #define ata_msg_drv(p) ((p)->msg_enable & ATA_MSG_DRV) #define ata_msg_info(p) ((p)->msg_enable & ATA_MSG_INFO) #define ata_msg_probe(p) ((p)->msg_enable & ATA_MSG_PROBE) #define ata_msg_warn(p) ((p)->msg_enable & ATA_MSG_WARN) #define ata_msg_malloc(p) ((p)->msg_enable & ATA_MSG_MALLOC) #define ata_msg_ctl(p) ((p)->msg_enable & ATA_MSG_CTL) #define ata_msg_intr(p) ((p)->msg_enable & ATA_MSG_INTR) #define ata_msg_err(p) ((p)->msg_enable & ATA_MSG_ERR) static inline u32 ata_msg_init(int dval, int default_msg_enable_bits) { if (dval < 0 || dval >= (sizeof(u32) * 8)) return default_msg_enable_bits; /* should be 0x1 - only driver info msgs */ if (!dval) return 0; return (1 << dval) - 1; } /* defines only for the constants which don't work well as enums */ #define ATA_TAG_POISON 0xfafbfcfdU enum { /* various global constants */ LIBATA_MAX_PRD = ATA_MAX_PRD / 2, LIBATA_DUMB_MAX_PRD = ATA_MAX_PRD / 4, /* Worst case */ ATA_DEF_QUEUE = 1, ATA_MAX_QUEUE = 32, ATA_TAG_INTERNAL = ATA_MAX_QUEUE, ATA_SHORT_PAUSE = 16, ATAPI_MAX_DRAIN = 16 << 10, ATA_ALL_DEVICES = (1 << ATA_MAX_DEVICES) - 1, ATA_SHT_EMULATED = 1, ATA_SHT_THIS_ID = -1, /* struct ata_taskfile flags */ ATA_TFLAG_LBA48 = (1 << 0), /* enable 48-bit LBA and "HOB" */ ATA_TFLAG_ISADDR = (1 << 1), /* enable r/w to nsect/lba regs */ ATA_TFLAG_DEVICE = (1 << 2), /* enable r/w to device reg */ ATA_TFLAG_WRITE = (1 << 3), /* data dir: host->dev==1 (write) */ ATA_TFLAG_LBA = (1 << 4), /* enable LBA */ ATA_TFLAG_FUA = (1 << 5), /* enable FUA */ ATA_TFLAG_POLLING = (1 << 6), /* set nIEN to 1 and use polling */ /* struct ata_device stuff */ ATA_DFLAG_LBA = (1 << 0), /* device supports LBA */ ATA_DFLAG_LBA48 = (1 << 1), /* device supports LBA48 */ ATA_DFLAG_CDB_INTR = (1 << 2), /* device asserts INTRQ when ready for CDB */ ATA_DFLAG_NCQ = (1 << 3), /* device supports NCQ */ ATA_DFLAG_FLUSH_EXT = (1 << 4), /* do FLUSH_EXT instead of FLUSH */ ATA_DFLAG_ACPI_PENDING = (1 << 5), /* ACPI resume action pending */ ATA_DFLAG_ACPI_FAILED = (1 << 6), /* ACPI on devcfg has failed */ ATA_DFLAG_AN = (1 << 7), /* AN configured */ ATA_DFLAG_TRUSTED = (1 << 8), /* device supports trusted send/recv */ ATA_DFLAG_DMADIR = (1 << 10), /* device requires DMADIR */ ATA_DFLAG_CFG_MASK = (1 << 12) - 1, ATA_DFLAG_PIO = (1 << 12), /* device limited to PIO mode */ ATA_DFLAG_NCQ_OFF = (1 << 13), /* device limited to non-NCQ mode */ ATA_DFLAG_SLEEPING = (1 << 15), /* device is sleeping */ ATA_DFLAG_DUBIOUS_XFER = (1 << 16), /* data transfer not verified */ ATA_DFLAG_NO_UNLOAD = (1 << 17), /* device doesn't support unload */ ATA_DFLAG_UNLOCK_HPA = (1 << 18), /* unlock HPA */ ATA_DFLAG_NCQ_SEND_RECV = (1 << 19), /* device supports NCQ SEND and RECV */ ATA_DFLAG_NCQ_PRIO = (1 << 20), /* device supports NCQ priority */ ATA_DFLAG_NCQ_PRIO_ENABLE = (1 << 21), /* Priority cmds sent to dev */ ATA_DFLAG_INIT_MASK = (1 << 24) - 1, ATA_DFLAG_DETACH = (1 << 24), ATA_DFLAG_DETACHED = (1 << 25), ATA_DFLAG_DA = (1 << 26), /* device supports Device Attention */ ATA_DFLAG_DEVSLP = (1 << 27), /* device supports Device Sleep */ ATA_DFLAG_ACPI_DISABLED = (1 << 28), /* ACPI for the device is disabled */ ATA_DFLAG_D_SENSE = (1 << 29), /* Descriptor sense requested */ ATA_DFLAG_ZAC = (1 << 30), /* ZAC device */ ATA_DEV_UNKNOWN = 0, /* unknown device */ ATA_DEV_ATA = 1, /* ATA device */ ATA_DEV_ATA_UNSUP = 2, /* ATA device (unsupported) */ ATA_DEV_ATAPI = 3, /* ATAPI device */ ATA_DEV_ATAPI_UNSUP = 4, /* ATAPI device (unsupported) */ ATA_DEV_PMP = 5, /* SATA port multiplier */ ATA_DEV_PMP_UNSUP = 6, /* SATA port multiplier (unsupported) */ ATA_DEV_SEMB = 7, /* SEMB */ ATA_DEV_SEMB_UNSUP = 8, /* SEMB (unsupported) */ ATA_DEV_ZAC = 9, /* ZAC device */ ATA_DEV_ZAC_UNSUP = 10, /* ZAC device (unsupported) */ ATA_DEV_NONE = 11, /* no device */ /* struct ata_link flags */ /* NOTE: struct ata_force_param currently stores lflags in u16 */ ATA_LFLAG_NO_HRST = (1 << 1), /* avoid hardreset */ ATA_LFLAG_NO_SRST = (1 << 2), /* avoid softreset */ ATA_LFLAG_ASSUME_ATA = (1 << 3), /* assume ATA class */ ATA_LFLAG_ASSUME_SEMB = (1 << 4), /* assume SEMB class */ ATA_LFLAG_ASSUME_CLASS = ATA_LFLAG_ASSUME_ATA | ATA_LFLAG_ASSUME_SEMB, ATA_LFLAG_NO_RETRY = (1 << 5), /* don't retry this link */ ATA_LFLAG_DISABLED = (1 << 6), /* link is disabled */ ATA_LFLAG_SW_ACTIVITY = (1 << 7), /* keep activity stats */ ATA_LFLAG_NO_LPM = (1 << 8), /* disable LPM on this link */ ATA_LFLAG_RST_ONCE = (1 << 9), /* limit recovery to one reset */ ATA_LFLAG_CHANGED = (1 << 10), /* LPM state changed on this link */ ATA_LFLAG_NO_DB_DELAY = (1 << 11), /* no debounce delay on link resume */ /* struct ata_port flags */ ATA_FLAG_SLAVE_POSS = (1 << 0), /* host supports slave dev */ /* (doesn't imply presence) */ ATA_FLAG_SATA = (1 << 1), ATA_FLAG_NO_LPM = (1 << 2), /* host not happy with LPM */ ATA_FLAG_NO_LOG_PAGE = (1 << 5), /* do not issue log page read */ ATA_FLAG_NO_ATAPI = (1 << 6), /* No ATAPI support */ ATA_FLAG_PIO_DMA = (1 << 7), /* PIO cmds via DMA */ ATA_FLAG_PIO_LBA48 = (1 << 8), /* Host DMA engine is LBA28 only */ ATA_FLAG_PIO_POLLING = (1 << 9), /* use polling PIO if LLD * doesn't handle PIO interrupts */ ATA_FLAG_NCQ = (1 << 10), /* host supports NCQ */ ATA_FLAG_NO_POWEROFF_SPINDOWN = (1 << 11), /* don't spindown before poweroff */ ATA_FLAG_NO_HIBERNATE_SPINDOWN = (1 << 12), /* don't spindown before hibernation */ ATA_FLAG_DEBUGMSG = (1 << 13), ATA_FLAG_FPDMA_AA = (1 << 14), /* driver supports Auto-Activate */ ATA_FLAG_IGN_SIMPLEX = (1 << 15), /* ignore SIMPLEX */ ATA_FLAG_NO_IORDY = (1 << 16), /* controller lacks iordy */ ATA_FLAG_ACPI_SATA = (1 << 17), /* need native SATA ACPI layout */ ATA_FLAG_AN = (1 << 18), /* controller supports AN */ ATA_FLAG_PMP = (1 << 19), /* controller supports PMP */ ATA_FLAG_FPDMA_AUX = (1 << 20), /* controller supports H2DFIS aux field */ ATA_FLAG_EM = (1 << 21), /* driver supports enclosure * management */ ATA_FLAG_SW_ACTIVITY = (1 << 22), /* driver supports sw activity * led */ ATA_FLAG_NO_DIPM = (1 << 23), /* host not happy with DIPM */ ATA_FLAG_SAS_HOST = (1 << 24), /* SAS host */ /* bits 24:31 of ap->flags are reserved for LLD specific flags */ /* struct ata_port pflags */ ATA_PFLAG_EH_PENDING = (1 << 0), /* EH pending */ ATA_PFLAG_EH_IN_PROGRESS = (1 << 1), /* EH in progress */ ATA_PFLAG_FROZEN = (1 << 2), /* port is frozen */ ATA_PFLAG_RECOVERED = (1 << 3), /* recovery action performed */ ATA_PFLAG_LOADING = (1 << 4), /* boot/loading probe */ ATA_PFLAG_SCSI_HOTPLUG = (1 << 6), /* SCSI hotplug scheduled */ ATA_PFLAG_INITIALIZING = (1 << 7), /* being initialized, don't touch */ ATA_PFLAG_RESETTING = (1 << 8), /* reset in progress */ ATA_PFLAG_UNLOADING = (1 << 9), /* driver is being unloaded */ ATA_PFLAG_UNLOADED = (1 << 10), /* driver is unloaded */ ATA_PFLAG_SUSPENDED = (1 << 17), /* port is suspended (power) */ ATA_PFLAG_PM_PENDING = (1 << 18), /* PM operation pending */ ATA_PFLAG_INIT_GTM_VALID = (1 << 19), /* initial gtm data valid */ ATA_PFLAG_PIO32 = (1 << 20), /* 32bit PIO */ ATA_PFLAG_PIO32CHANGE = (1 << 21), /* 32bit PIO can be turned on/off */ ATA_PFLAG_EXTERNAL = (1 << 22), /* eSATA/external port */ /* struct ata_queued_cmd flags */ ATA_QCFLAG_ACTIVE = (1 << 0), /* cmd not yet ack'd to scsi lyer */ ATA_QCFLAG_DMAMAP = (1 << 1), /* SG table is DMA mapped */ ATA_QCFLAG_IO = (1 << 3), /* standard IO command */ ATA_QCFLAG_RESULT_TF = (1 << 4), /* result TF requested */ ATA_QCFLAG_CLEAR_EXCL = (1 << 5), /* clear excl_link on completion */ ATA_QCFLAG_QUIET = (1 << 6), /* don't report device error */ ATA_QCFLAG_RETRY = (1 << 7), /* retry after failure */ ATA_QCFLAG_FAILED = (1 << 16), /* cmd failed and is owned by EH */ ATA_QCFLAG_SENSE_VALID = (1 << 17), /* sense data valid */ ATA_QCFLAG_EH_SCHEDULED = (1 << 18), /* EH scheduled (obsolete) */ /* host set flags */ ATA_HOST_SIMPLEX = (1 << 0), /* Host is simplex, one DMA channel per host only */ ATA_HOST_STARTED = (1 << 1), /* Host started */ ATA_HOST_PARALLEL_SCAN = (1 << 2), /* Ports on this host can be scanned in parallel */ ATA_HOST_IGNORE_ATA = (1 << 3), /* Ignore ATA devices on this host. */ /* bits 24:31 of host->flags are reserved for LLD specific flags */ /* various lengths of time */ ATA_TMOUT_BOOT = 30000, /* heuristic */ ATA_TMOUT_BOOT_QUICK = 7000, /* heuristic */ ATA_TMOUT_INTERNAL_QUICK = 5000, ATA_TMOUT_MAX_PARK = 30000, /* * GoVault needs 2s and iVDR disk HHD424020F7SV00 800ms. 2s * is too much without parallel probing. Use 2s if parallel * probing is available, 800ms otherwise. */ ATA_TMOUT_FF_WAIT_LONG = 2000, ATA_TMOUT_FF_WAIT = 800, /* Spec mandates to wait for ">= 2ms" before checking status * after reset. We wait 150ms, because that was the magic * delay used for ATAPI devices in Hale Landis's ATADRVR, for * the period of time between when the ATA command register is * written, and then status is checked. Because waiting for * "a while" before checking status is fine, post SRST, we * perform this magic delay here as well. * * Old drivers/ide uses the 2mS rule and then waits for ready. */ ATA_WAIT_AFTER_RESET = 150, /* If PMP is supported, we have to do follow-up SRST. As some * PMPs don't send D2H Reg FIS after hardreset, LLDs are * advised to wait only for the following duration before * doing SRST. */ ATA_TMOUT_PMP_SRST_WAIT = 5000, /* When the LPM policy is set to ATA_LPM_MAX_POWER, there might * be a spurious PHY event, so ignore the first PHY event that * occurs within 10s after the policy change. */ ATA_TMOUT_SPURIOUS_PHY = 10000, /* ATA bus states */ BUS_UNKNOWN = 0, BUS_DMA = 1, BUS_IDLE = 2, BUS_NOINTR = 3, BUS_NODATA = 4, BUS_TIMER = 5, BUS_PIO = 6, BUS_EDD = 7, BUS_IDENTIFY = 8, BUS_PACKET = 9, /* SATA port states */ PORT_UNKNOWN = 0, PORT_ENABLED = 1, PORT_DISABLED = 2, /* encoding various smaller bitmaps into a single * unsigned long bitmap */ ATA_NR_PIO_MODES = 7, ATA_NR_MWDMA_MODES = 5, ATA_NR_UDMA_MODES = 8, ATA_SHIFT_PIO = 0, ATA_SHIFT_MWDMA = ATA_SHIFT_PIO + ATA_NR_PIO_MODES, ATA_SHIFT_UDMA = ATA_SHIFT_MWDMA + ATA_NR_MWDMA_MODES, ATA_SHIFT_PRIO = 6, ATA_PRIO_HIGH = 2, /* size of buffer to pad xfers ending on unaligned boundaries */ ATA_DMA_PAD_SZ = 4, /* ering size */ ATA_ERING_SIZE = 32, /* return values for ->qc_defer */ ATA_DEFER_LINK = 1, ATA_DEFER_PORT = 2, /* desc_len for ata_eh_info and context */ ATA_EH_DESC_LEN = 80, /* reset / recovery action types */ ATA_EH_REVALIDATE = (1 << 0), ATA_EH_SOFTRESET = (1 << 1), /* meaningful only in ->prereset */ ATA_EH_HARDRESET = (1 << 2), /* meaningful only in ->prereset */ ATA_EH_RESET = ATA_EH_SOFTRESET | ATA_EH_HARDRESET, ATA_EH_ENABLE_LINK = (1 << 3), ATA_EH_PARK = (1 << 5), /* unload heads and stop I/O */ ATA_EH_PERDEV_MASK = ATA_EH_REVALIDATE | ATA_EH_PARK, ATA_EH_ALL_ACTIONS = ATA_EH_REVALIDATE | ATA_EH_RESET | ATA_EH_ENABLE_LINK, /* ata_eh_info->flags */ ATA_EHI_HOTPLUGGED = (1 << 0), /* could have been hotplugged */ ATA_EHI_NO_AUTOPSY = (1 << 2), /* no autopsy */ ATA_EHI_QUIET = (1 << 3), /* be quiet */ ATA_EHI_NO_RECOVERY = (1 << 4), /* no recovery */ ATA_EHI_DID_SOFTRESET = (1 << 16), /* already soft-reset this port */ ATA_EHI_DID_HARDRESET = (1 << 17), /* already soft-reset this port */ ATA_EHI_PRINTINFO = (1 << 18), /* print configuration info */ ATA_EHI_SETMODE = (1 << 19), /* configure transfer mode */ ATA_EHI_POST_SETMODE = (1 << 20), /* revalidating after setmode */ ATA_EHI_DID_RESET = ATA_EHI_DID_SOFTRESET | ATA_EHI_DID_HARDRESET, /* mask of flags to transfer *to* the slave link */ ATA_EHI_TO_SLAVE_MASK = ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, /* max tries if error condition is still set after ->error_handler */ ATA_EH_MAX_TRIES = 5, /* sometimes resuming a link requires several retries */ ATA_LINK_RESUME_TRIES = 5, /* how hard are we gonna try to probe/recover devices */ ATA_PROBE_MAX_TRIES = 3, ATA_EH_DEV_TRIES = 3, ATA_EH_PMP_TRIES = 5, ATA_EH_PMP_LINK_TRIES = 3, SATA_PMP_RW_TIMEOUT = 3000, /* PMP read/write timeout */ /* This should match the actual table size of * ata_eh_cmd_timeout_table in libata-eh.c. */ ATA_EH_CMD_TIMEOUT_TABLE_SIZE = 6, /* Horkage types. May be set by libata or controller on drives (some horkage may be drive/controller pair dependent */ ATA_HORKAGE_DIAGNOSTIC = (1 << 0), /* Failed boot diag */ ATA_HORKAGE_NODMA = (1 << 1), /* DMA problems */ ATA_HORKAGE_NONCQ = (1 << 2), /* Don't use NCQ */ ATA_HORKAGE_MAX_SEC_128 = (1 << 3), /* Limit max sects to 128 */ ATA_HORKAGE_BROKEN_HPA = (1 << 4), /* Broken HPA */ ATA_HORKAGE_DISABLE = (1 << 5), /* Disable it */ ATA_HORKAGE_HPA_SIZE = (1 << 6), /* native size off by one */ ATA_HORKAGE_IVB = (1 << 8), /* cbl det validity bit bugs */ ATA_HORKAGE_STUCK_ERR = (1 << 9), /* stuck ERR on next PACKET */ ATA_HORKAGE_BRIDGE_OK = (1 << 10), /* no bridge limits */ ATA_HORKAGE_ATAPI_MOD16_DMA = (1 << 11), /* use ATAPI DMA for commands not multiple of 16 bytes */ ATA_HORKAGE_FIRMWARE_WARN = (1 << 12), /* firmware update warning */ ATA_HORKAGE_1_5_GBPS = (1 << 13), /* force 1.5 Gbps */ ATA_HORKAGE_NOSETXFER = (1 << 14), /* skip SETXFER, SATA only */ ATA_HORKAGE_BROKEN_FPDMA_AA = (1 << 15), /* skip AA */ ATA_HORKAGE_DUMP_ID = (1 << 16), /* dump IDENTIFY data */ ATA_HORKAGE_MAX_SEC_LBA48 = (1 << 17), /* Set max sects to 65535 */ ATA_HORKAGE_ATAPI_DMADIR = (1 << 18), /* device requires dmadir */ ATA_HORKAGE_NO_NCQ_TRIM = (1 << 19), /* don't use queued TRIM */ ATA_HORKAGE_NOLPM = (1 << 20), /* don't use LPM */ ATA_HORKAGE_WD_BROKEN_LPM = (1 << 21), /* some WDs have broken LPM */ ATA_HORKAGE_ZERO_AFTER_TRIM = (1 << 22),/* guarantees zero after trim */ ATA_HORKAGE_NO_DMA_LOG = (1 << 23), /* don't use DMA for log read */ ATA_HORKAGE_NOTRIM = (1 << 24), /* don't use TRIM */ ATA_HORKAGE_MAX_SEC_1024 = (1 << 25), /* Limit max sects to 1024 */ ATA_HORKAGE_MAX_TRIM_128M = (1 << 26), /* Limit max trim size to 128M */ ATA_HORKAGE_NO_NCQ_ON_ATI = (1 << 27), /* Disable NCQ on ATI chipset */ /* DMA mask for user DMA control: User visible values; DO NOT renumber */ ATA_DMA_MASK_ATA = (1 << 0), /* DMA on ATA Disk */ ATA_DMA_MASK_ATAPI = (1 << 1), /* DMA on ATAPI */ ATA_DMA_MASK_CFA = (1 << 2), /* DMA on CF Card */ /* ATAPI command types */ ATAPI_READ = 0, /* READs */ ATAPI_WRITE = 1, /* WRITEs */ ATAPI_READ_CD = 2, /* READ CD [MSF] */ ATAPI_PASS_THRU = 3, /* SAT pass-thru */ ATAPI_MISC = 4, /* the rest */ /* Timing constants */ ATA_TIMING_SETUP = (1 << 0), ATA_TIMING_ACT8B = (1 << 1), ATA_TIMING_REC8B = (1 << 2), ATA_TIMING_CYC8B = (1 << 3), ATA_TIMING_8BIT = ATA_TIMING_ACT8B | ATA_TIMING_REC8B | ATA_TIMING_CYC8B, ATA_TIMING_ACTIVE = (1 << 4), ATA_TIMING_RECOVER = (1 << 5), ATA_TIMING_DMACK_HOLD = (1 << 6), ATA_TIMING_CYCLE = (1 << 7), ATA_TIMING_UDMA = (1 << 8), ATA_TIMING_ALL = ATA_TIMING_SETUP | ATA_TIMING_ACT8B | ATA_TIMING_REC8B | ATA_TIMING_CYC8B | ATA_TIMING_ACTIVE | ATA_TIMING_RECOVER | ATA_TIMING_DMACK_HOLD | ATA_TIMING_CYCLE | ATA_TIMING_UDMA, /* ACPI constants */ ATA_ACPI_FILTER_SETXFER = 1 << 0, ATA_ACPI_FILTER_LOCK = 1 << 1, ATA_ACPI_FILTER_DIPM = 1 << 2, ATA_ACPI_FILTER_FPDMA_OFFSET = 1 << 3, /* FPDMA non-zero offset */ ATA_ACPI_FILTER_FPDMA_AA = 1 << 4, /* FPDMA auto activate */ ATA_ACPI_FILTER_DEFAULT = ATA_ACPI_FILTER_SETXFER | ATA_ACPI_FILTER_LOCK | ATA_ACPI_FILTER_DIPM, }; enum ata_xfer_mask { ATA_MASK_PIO = ((1LU << ATA_NR_PIO_MODES) - 1) << ATA_SHIFT_PIO, ATA_MASK_MWDMA = ((1LU << ATA_NR_MWDMA_MODES) - 1) << ATA_SHIFT_MWDMA, ATA_MASK_UDMA = ((1LU << ATA_NR_UDMA_MODES) - 1) << ATA_SHIFT_UDMA, }; enum hsm_task_states { HSM_ST_IDLE, /* no command on going */ HSM_ST_FIRST, /* (waiting the device to) write CDB or first data block */ HSM_ST, /* (waiting the device to) transfer data */ HSM_ST_LAST, /* (waiting the device to) complete command */ HSM_ST_ERR, /* error */ }; enum ata_completion_errors { AC_ERR_OK = 0, /* no error */ AC_ERR_DEV = (1 << 0), /* device reported error */ AC_ERR_HSM = (1 << 1), /* host state machine violation */ AC_ERR_TIMEOUT = (1 << 2), /* timeout */ AC_ERR_MEDIA = (1 << 3), /* media error */ AC_ERR_ATA_BUS = (1 << 4), /* ATA bus error */ AC_ERR_HOST_BUS = (1 << 5), /* host bus error */ AC_ERR_SYSTEM = (1 << 6), /* system error */ AC_ERR_INVALID = (1 << 7), /* invalid argument */ AC_ERR_OTHER = (1 << 8), /* unknown */ AC_ERR_NODEV_HINT = (1 << 9), /* polling device detection hint */ AC_ERR_NCQ = (1 << 10), /* marker for offending NCQ qc */ }; /* * Link power management policy: If you alter this, you also need to * alter libata-scsi.c (for the ascii descriptions) */ enum ata_lpm_policy { ATA_LPM_UNKNOWN, ATA_LPM_MAX_POWER, ATA_LPM_MED_POWER, ATA_LPM_MED_POWER_WITH_DIPM, /* Med power + DIPM as win IRST does */ ATA_LPM_MIN_POWER_WITH_PARTIAL, /* Min Power + partial and slumber */ ATA_LPM_MIN_POWER, /* Min power + no partial (slumber only) */ }; enum ata_lpm_hints { ATA_LPM_EMPTY = (1 << 0), /* port empty/probing */ ATA_LPM_HIPM = (1 << 1), /* may use HIPM */ ATA_LPM_WAKE_ONLY = (1 << 2), /* only wake up link */ }; /* forward declarations */ struct scsi_device; struct ata_port_operations; struct ata_port; struct ata_link; struct ata_queued_cmd; /* typedefs */ typedef void (*ata_qc_cb_t) (struct ata_queued_cmd *qc); typedef int (*ata_prereset_fn_t)(struct ata_link *link, unsigned long deadline); typedef int (*ata_reset_fn_t)(struct ata_link *link, unsigned int *classes, unsigned long deadline); typedef void (*ata_postreset_fn_t)(struct ata_link *link, unsigned int *classes); extern struct device_attribute dev_attr_unload_heads; #ifdef CONFIG_SATA_HOST extern struct device_attribute dev_attr_link_power_management_policy; extern struct device_attribute dev_attr_ncq_prio_enable; extern struct device_attribute dev_attr_em_message_type; extern struct device_attribute dev_attr_em_message; extern struct device_attribute dev_attr_sw_activity; #endif enum sw_activity { OFF, BLINK_ON, BLINK_OFF, }; struct ata_taskfile { unsigned long flags; /* ATA_TFLAG_xxx */ u8 protocol; /* ATA_PROT_xxx */ u8 ctl; /* control reg */ u8 hob_feature; /* additional data */ u8 hob_nsect; /* to support LBA48 */ u8 hob_lbal; u8 hob_lbam; u8 hob_lbah; u8 feature; u8 nsect; u8 lbal; u8 lbam; u8 lbah; u8 device; u8 command; /* IO operation */ u32 auxiliary; /* auxiliary field */ /* from SATA 3.1 and */ /* ATA-8 ACS-3 */ }; #ifdef CONFIG_ATA_SFF struct ata_ioports { void __iomem *cmd_addr; void __iomem *data_addr; void __iomem *error_addr; void __iomem *feature_addr; void __iomem *nsect_addr; void __iomem *lbal_addr; void __iomem *lbam_addr; void __iomem *lbah_addr; void __iomem *device_addr; void __iomem *status_addr; void __iomem *command_addr; void __iomem *altstatus_addr; void __iomem *ctl_addr; #ifdef CONFIG_ATA_BMDMA void __iomem *bmdma_addr; #endif /* CONFIG_ATA_BMDMA */ void __iomem *scr_addr; }; #endif /* CONFIG_ATA_SFF */ struct ata_host { spinlock_t lock; struct device *dev; void __iomem * const *iomap; unsigned int n_ports; unsigned int n_tags; /* nr of NCQ tags */ void *private_data; struct ata_port_operations *ops; unsigned long flags; struct kref kref; struct mutex eh_mutex; struct task_struct *eh_owner; struct ata_port *simplex_claimed; /* channel owning the DMA */ struct ata_port *ports[]; }; struct ata_queued_cmd { struct ata_port *ap; struct ata_device *dev; struct scsi_cmnd *scsicmd; void (*scsidone)(struct scsi_cmnd *); struct ata_taskfile tf; u8 cdb[ATAPI_CDB_LEN]; unsigned long flags; /* ATA_QCFLAG_xxx */ unsigned int tag; /* libata core tag */ unsigned int hw_tag; /* driver tag */ unsigned int n_elem; unsigned int orig_n_elem; int dma_dir; unsigned int sect_size; unsigned int nbytes; unsigned int extrabytes; unsigned int curbytes; struct scatterlist sgent; struct scatterlist *sg; struct scatterlist *cursg; unsigned int cursg_ofs; unsigned int err_mask; struct ata_taskfile result_tf; ata_qc_cb_t complete_fn; void *private_data; void *lldd_task; }; struct ata_port_stats { unsigned long unhandled_irq; unsigned long idle_irq; unsigned long rw_reqbuf; }; struct ata_ering_entry { unsigned int eflags; unsigned int err_mask; u64 timestamp; }; struct ata_ering { int cursor; struct ata_ering_entry ring[ATA_ERING_SIZE]; }; struct ata_device { struct ata_link *link; unsigned int devno; /* 0 or 1 */ unsigned int horkage; /* List of broken features */ unsigned long flags; /* ATA_DFLAG_xxx */ struct scsi_device *sdev; /* attached SCSI device */ void *private_data; #ifdef CONFIG_ATA_ACPI union acpi_object *gtf_cache; unsigned int gtf_filter; #endif #ifdef CONFIG_SATA_ZPODD void *zpodd; #endif struct device tdev; /* n_sector is CLEAR_BEGIN, read comment above CLEAR_BEGIN */ u64 n_sectors; /* size of device, if ATA */ u64 n_native_sectors; /* native size, if ATA */ unsigned int class; /* ATA_DEV_xxx */ unsigned long unpark_deadline; u8 pio_mode; u8 dma_mode; u8 xfer_mode; unsigned int xfer_shift; /* ATA_SHIFT_xxx */ unsigned int multi_count; /* sectors count for READ/WRITE MULTIPLE */ unsigned int max_sectors; /* per-device max sectors */ unsigned int cdb_len; /* per-dev xfer mask */ unsigned long pio_mask; unsigned long mwdma_mask; unsigned long udma_mask; /* for CHS addressing */ u16 cylinders; /* Number of cylinders */ u16 heads; /* Number of heads */ u16 sectors; /* Number of sectors per track */ union { u16 id[ATA_ID_WORDS]; /* IDENTIFY xxx DEVICE data */ u32 gscr[SATA_PMP_GSCR_DWORDS]; /* PMP GSCR block */ } ____cacheline_aligned; /* DEVSLP Timing Variables from Identify Device Data Log */ u8 devslp_timing[ATA_LOG_DEVSLP_SIZE]; /* NCQ send and receive log subcommand support */ u8 ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_SIZE]; u8 ncq_non_data_cmds[ATA_LOG_NCQ_NON_DATA_SIZE]; /* ZAC zone configuration */ u32 zac_zoned_cap; u32 zac_zones_optimal_open; u32 zac_zones_optimal_nonseq; u32 zac_zones_max_open; /* error history */ int spdn_cnt; /* ering is CLEAR_END, read comment above CLEAR_END */ struct ata_ering ering; }; /* Fields between ATA_DEVICE_CLEAR_BEGIN and ATA_DEVICE_CLEAR_END are * cleared to zero on ata_dev_init(). */ #define ATA_DEVICE_CLEAR_BEGIN offsetof(struct ata_device, n_sectors) #define ATA_DEVICE_CLEAR_END offsetof(struct ata_device, ering) struct ata_eh_info { struct ata_device *dev; /* offending device */ u32 serror; /* SError from LLDD */ unsigned int err_mask; /* port-wide err_mask */ unsigned int action; /* ATA_EH_* action mask */ unsigned int dev_action[ATA_MAX_DEVICES]; /* dev EH action */ unsigned int flags; /* ATA_EHI_* flags */ unsigned int probe_mask; char desc[ATA_EH_DESC_LEN]; int desc_len; }; struct ata_eh_context { struct ata_eh_info i; int tries[ATA_MAX_DEVICES]; int cmd_timeout_idx[ATA_MAX_DEVICES] [ATA_EH_CMD_TIMEOUT_TABLE_SIZE]; unsigned int classes[ATA_MAX_DEVICES]; unsigned int did_probe_mask; unsigned int unloaded_mask; unsigned int saved_ncq_enabled; u8 saved_xfer_mode[ATA_MAX_DEVICES]; /* timestamp for the last reset attempt or success */ unsigned long last_reset; }; struct ata_acpi_drive { u32 pio; u32 dma; } __packed; struct ata_acpi_gtm { struct ata_acpi_drive drive[2]; u32 flags; } __packed; struct ata_link { struct ata_port *ap; int pmp; /* port multiplier port # */ struct device tdev; unsigned int active_tag; /* active tag on this link */ u32 sactive; /* active NCQ commands */ unsigned int flags; /* ATA_LFLAG_xxx */ u32 saved_scontrol; /* SControl on probe */ unsigned int hw_sata_spd_limit; unsigned int sata_spd_limit; unsigned int sata_spd; /* current SATA PHY speed */ enum ata_lpm_policy lpm_policy; /* record runtime error info, protected by host_set lock */ struct ata_eh_info eh_info; /* EH context */ struct ata_eh_context eh_context; struct ata_device device[ATA_MAX_DEVICES]; unsigned long last_lpm_change; /* when last LPM change happened */ }; #define ATA_LINK_CLEAR_BEGIN offsetof(struct ata_link, active_tag) #define ATA_LINK_CLEAR_END offsetof(struct ata_link, device[0]) struct ata_port { struct Scsi_Host *scsi_host; /* our co-allocated scsi host */ struct ata_port_operations *ops; spinlock_t *lock; /* Flags owned by the EH context. Only EH should touch these once the port is active */ unsigned long flags; /* ATA_FLAG_xxx */ /* Flags that change dynamically, protected by ap->lock */ unsigned int pflags; /* ATA_PFLAG_xxx */ unsigned int print_id; /* user visible unique port ID */ unsigned int local_port_no; /* host local port num */ unsigned int port_no; /* 0 based port no. inside the host */ #ifdef CONFIG_ATA_SFF struct ata_ioports ioaddr; /* ATA cmd/ctl/dma register blocks */ u8 ctl; /* cache of ATA control register */ u8 last_ctl; /* Cache last written value */ struct ata_link* sff_pio_task_link; /* link currently used */ struct delayed_work sff_pio_task; #ifdef CONFIG_ATA_BMDMA struct ata_bmdma_prd *bmdma_prd; /* BMDMA SG list */ dma_addr_t bmdma_prd_dma; /* and its DMA mapping */ #endif /* CONFIG_ATA_BMDMA */ #endif /* CONFIG_ATA_SFF */ unsigned int pio_mask; unsigned int mwdma_mask; unsigned int udma_mask; unsigned int cbl; /* cable type; ATA_CBL_xxx */ struct ata_queued_cmd qcmd[ATA_MAX_QUEUE + 1]; unsigned long sas_tag_allocated; /* for sas tag allocation only */ u64 qc_active; int nr_active_links; /* #links with active qcs */ unsigned int sas_last_tag; /* track next tag hw expects */ struct ata_link link; /* host default link */ struct ata_link *slave_link; /* see ata_slave_link_init() */ int nr_pmp_links; /* nr of available PMP links */ struct ata_link *pmp_link; /* array of PMP links */ struct ata_link *excl_link; /* for PMP qc exclusion */ struct ata_port_stats stats; struct ata_host *host; struct device *dev; struct device tdev; struct mutex scsi_scan_mutex; struct delayed_work hotplug_task; struct work_struct scsi_rescan_task; unsigned int hsm_task_state; u32 msg_enable; struct list_head eh_done_q; wait_queue_head_t eh_wait_q; int eh_tries; struct completion park_req_pending; pm_message_t pm_mesg; enum ata_lpm_policy target_lpm_policy; struct timer_list fastdrain_timer; unsigned long fastdrain_cnt; async_cookie_t cookie; int em_message_type; void *private_data; #ifdef CONFIG_ATA_ACPI struct ata_acpi_gtm __acpi_init_gtm; /* use ata_acpi_init_gtm() */ #endif /* owned by EH */ u8 sector_buf[ATA_SECT_SIZE] ____cacheline_aligned; }; /* The following initializer overrides a method to NULL whether one of * its parent has the method defined or not. This is equivalent to * ERR_PTR(-ENOENT). Unfortunately, ERR_PTR doesn't render a constant * expression and thus can't be used as an initializer. */ #define ATA_OP_NULL (void *)(unsigned long)(-ENOENT) struct ata_port_operations { /* * Command execution */ int (*qc_defer)(struct ata_queued_cmd *qc); int (*check_atapi_dma)(struct ata_queued_cmd *qc); enum ata_completion_errors (*qc_prep)(struct ata_queued_cmd *qc); unsigned int (*qc_issue)(struct ata_queued_cmd *qc); bool (*qc_fill_rtf)(struct ata_queued_cmd *qc); /* * Configuration and exception handling */ int (*cable_detect)(struct ata_port *ap); unsigned long (*mode_filter)(struct ata_device *dev, unsigned long xfer_mask); void (*set_piomode)(struct ata_port *ap, struct ata_device *dev); void (*set_dmamode)(struct ata_port *ap, struct ata_device *dev); int (*set_mode)(struct ata_link *link, struct ata_device **r_failed_dev); unsigned int (*read_id)(struct ata_device *dev, struct ata_taskfile *tf, u16 *id); void (*dev_config)(struct ata_device *dev); void (*freeze)(struct ata_port *ap); void (*thaw)(struct ata_port *ap); ata_prereset_fn_t prereset; ata_reset_fn_t softreset; ata_reset_fn_t hardreset; ata_postreset_fn_t postreset; ata_prereset_fn_t pmp_prereset; ata_reset_fn_t pmp_softreset; ata_reset_fn_t pmp_hardreset; ata_postreset_fn_t pmp_postreset; void (*error_handler)(struct ata_port *ap); void (*lost_interrupt)(struct ata_port *ap); void (*post_internal_cmd)(struct ata_queued_cmd *qc); void (*sched_eh)(struct ata_port *ap); void (*end_eh)(struct ata_port *ap); /* * Optional features */ int (*scr_read)(struct ata_link *link, unsigned int sc_reg, u32 *val); int (*scr_write)(struct ata_link *link, unsigned int sc_reg, u32 val); void (*pmp_attach)(struct ata_port *ap); void (*pmp_detach)(struct ata_port *ap); int (*set_lpm)(struct ata_link *link, enum ata_lpm_policy policy, unsigned hints); /* * Start, stop, suspend and resume */ int (*port_suspend)(struct ata_port *ap, pm_message_t mesg); int (*port_resume)(struct ata_port *ap); int (*port_start)(struct ata_port *ap); void (*port_stop)(struct ata_port *ap); void (*host_stop)(struct ata_host *host); #ifdef CONFIG_ATA_SFF /* * SFF / taskfile oriented ops */ void (*sff_dev_select)(struct ata_port *ap, unsigned int device); void (*sff_set_devctl)(struct ata_port *ap, u8 ctl); u8 (*sff_check_status)(struct ata_port *ap); u8 (*sff_check_altstatus)(struct ata_port *ap); void (*sff_tf_load)(struct ata_port *ap, const struct ata_taskfile *tf); void (*sff_tf_read)(struct ata_port *ap, struct ata_taskfile *tf); void (*sff_exec_command)(struct ata_port *ap, const struct ata_taskfile *tf); unsigned int (*sff_data_xfer)(struct ata_queued_cmd *qc, unsigned char *buf, unsigned int buflen, int rw); void (*sff_irq_on)(struct ata_port *); bool (*sff_irq_check)(struct ata_port *); void (*sff_irq_clear)(struct ata_port *); void (*sff_drain_fifo)(struct ata_queued_cmd *qc); #ifdef CONFIG_ATA_BMDMA void (*bmdma_setup)(struct ata_queued_cmd *qc); void (*bmdma_start)(struct ata_queued_cmd *qc); void (*bmdma_stop)(struct ata_queued_cmd *qc); u8 (*bmdma_status)(struct ata_port *ap); #endif /* CONFIG_ATA_BMDMA */ #endif /* CONFIG_ATA_SFF */ ssize_t (*em_show)(struct ata_port *ap, char *buf); ssize_t (*em_store)(struct ata_port *ap, const char *message, size_t size); ssize_t (*sw_activity_show)(struct ata_device *dev, char *buf); ssize_t (*sw_activity_store)(struct ata_device *dev, enum sw_activity val); ssize_t (*transmit_led_message)(struct ata_port *ap, u32 state, ssize_t size); /* * Obsolete */ void (*phy_reset)(struct ata_port *ap); void (*eng_timeout)(struct ata_port *ap); /* * ->inherits must be the last field and all the preceding * fields must be pointers. */ const struct ata_port_operations *inherits; }; struct ata_port_info { unsigned long flags; unsigned long link_flags; unsigned long pio_mask; unsigned long mwdma_mask; unsigned long udma_mask; struct ata_port_operations *port_ops; void *private_data; }; struct ata_timing { unsigned short mode; /* ATA mode */ unsigned short setup; /* t1 */ unsigned short act8b; /* t2 for 8-bit I/O */ unsigned short rec8b; /* t2i for 8-bit I/O */ unsigned short cyc8b; /* t0 for 8-bit I/O */ unsigned short active; /* t2 or tD */ unsigned short recover; /* t2i or tK */ unsigned short dmack_hold; /* tj */ unsigned short cycle; /* t0 */ unsigned short udma; /* t2CYCTYP/2 */ }; /* * Core layer - drivers/ata/libata-core.c */ extern struct ata_port_operations ata_dummy_port_ops; extern const struct ata_port_info ata_dummy_port_info; static inline bool ata_is_atapi(u8 prot) { return prot & ATA_PROT_FLAG_ATAPI; } static inline bool ata_is_pio(u8 prot) { return prot & ATA_PROT_FLAG_PIO; } static inline bool ata_is_dma(u8 prot) { return prot & ATA_PROT_FLAG_DMA; } static inline bool ata_is_ncq(u8 prot) { return prot & ATA_PROT_FLAG_NCQ; } static inline bool ata_is_data(u8 prot) { return prot & (ATA_PROT_FLAG_PIO | ATA_PROT_FLAG_DMA); } static inline int is_multi_taskfile(struct ata_taskfile *tf) { return (tf->command == ATA_CMD_READ_MULTI) || (tf->command == ATA_CMD_WRITE_MULTI) || (tf->command == ATA_CMD_READ_MULTI_EXT) || (tf->command == ATA_CMD_WRITE_MULTI_EXT) || (tf->command == ATA_CMD_WRITE_MULTI_FUA_EXT); } static inline int ata_port_is_dummy(struct ata_port *ap) { return ap->ops == &ata_dummy_port_ops; } extern int ata_std_prereset(struct ata_link *link, unsigned long deadline); extern int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, int (*check_ready)(struct ata_link *link)); extern int sata_std_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline); extern void ata_std_postreset(struct ata_link *link, unsigned int *classes); extern struct ata_host *ata_host_alloc(struct device *dev, int max_ports); extern struct ata_host *ata_host_alloc_pinfo(struct device *dev, const struct ata_port_info * const * ppi, int n_ports); extern void ata_host_get(struct ata_host *host); extern void ata_host_put(struct ata_host *host); extern int ata_host_start(struct ata_host *host); extern int ata_host_register(struct ata_host *host, struct scsi_host_template *sht); extern int ata_host_activate(struct ata_host *host, int irq, irq_handler_t irq_handler, unsigned long irq_flags, struct scsi_host_template *sht); extern void ata_host_detach(struct ata_host *host); extern void ata_host_init(struct ata_host *, struct device *, struct ata_port_operations *); extern int ata_scsi_detect(struct scsi_host_template *sht); extern int ata_scsi_ioctl(struct scsi_device *dev, unsigned int cmd, void __user *arg); #ifdef CONFIG_COMPAT #define ATA_SCSI_COMPAT_IOCTL .compat_ioctl = ata_scsi_ioctl, #else #define ATA_SCSI_COMPAT_IOCTL /* empty */ #endif extern int ata_scsi_queuecmd(struct Scsi_Host *h, struct scsi_cmnd *cmd); #if IS_REACHABLE(CONFIG_ATA) bool ata_scsi_dma_need_drain(struct request *rq); #else #define ata_scsi_dma_need_drain NULL #endif extern int ata_sas_scsi_ioctl(struct ata_port *ap, struct scsi_device *dev, unsigned int cmd, void __user *arg); extern bool ata_link_online(struct ata_link *link); extern bool ata_link_offline(struct ata_link *link); #ifdef CONFIG_PM extern int ata_host_suspend(struct ata_host *host, pm_message_t mesg); extern void ata_host_resume(struct ata_host *host); extern void ata_sas_port_suspend(struct ata_port *ap); extern void ata_sas_port_resume(struct ata_port *ap); #else static inline void ata_sas_port_suspend(struct ata_port *ap) { } static inline void ata_sas_port_resume(struct ata_port *ap) { } #endif extern int ata_ratelimit(void); extern void ata_msleep(struct ata_port *ap, unsigned int msecs); extern u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, unsigned long interval, unsigned long timeout); extern int atapi_cmd_type(u8 opcode); extern unsigned long ata_pack_xfermask(unsigned long pio_mask, unsigned long mwdma_mask, unsigned long udma_mask); extern void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, unsigned long *mwdma_mask, unsigned long *udma_mask); extern u8 ata_xfer_mask2mode(unsigned long xfer_mask); extern unsigned long ata_xfer_mode2mask(u8 xfer_mode); extern int ata_xfer_mode2shift(unsigned long xfer_mode); extern const char *ata_mode_string(unsigned long xfer_mask); extern unsigned long ata_id_xfermask(const u16 *id); extern int ata_std_qc_defer(struct ata_queued_cmd *qc); extern enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc); extern void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, unsigned int n_elem); extern unsigned int ata_dev_classify(const struct ata_taskfile *tf); extern void ata_dev_disable(struct ata_device *adev); extern void ata_id_string(const u16 *id, unsigned char *s, unsigned int ofs, unsigned int len); extern void ata_id_c_string(const u16 *id, unsigned char *s, unsigned int ofs, unsigned int len); extern unsigned int ata_do_dev_read_id(struct ata_device *dev, struct ata_taskfile *tf, u16 *id); extern void ata_qc_complete(struct ata_queued_cmd *qc); extern u64 ata_qc_get_active(struct ata_port *ap); extern void ata_scsi_simulate(struct ata_device *dev, struct scsi_cmnd *cmd); extern int ata_std_bios_param(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]); extern void ata_scsi_unlock_native_capacity(struct scsi_device *sdev); extern int ata_scsi_slave_config(struct scsi_device *sdev); extern void ata_scsi_slave_destroy(struct scsi_device *sdev); extern int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth); extern int __ata_change_queue_depth(struct ata_port *ap, struct scsi_device *sdev, int queue_depth); extern struct ata_device *ata_dev_pair(struct ata_device *adev); extern int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev); extern void ata_scsi_port_error_handler(struct Scsi_Host *host, struct ata_port *ap); extern void ata_scsi_cmd_error_handler(struct Scsi_Host *host, struct ata_port *ap, struct list_head *eh_q); /* * SATA specific code - drivers/ata/libata-sata.c */ #ifdef CONFIG_SATA_HOST extern const unsigned long sata_deb_timing_normal[]; extern const unsigned long sata_deb_timing_hotplug[]; extern const unsigned long sata_deb_timing_long[]; static inline const unsigned long * sata_ehc_deb_timing(struct ata_eh_context *ehc) { if (ehc->i.flags & ATA_EHI_HOTPLUGGED) return sata_deb_timing_hotplug; else return sata_deb_timing_normal; } extern int sata_scr_valid(struct ata_link *link); extern int sata_scr_read(struct ata_link *link, int reg, u32 *val); extern int sata_scr_write(struct ata_link *link, int reg, u32 val); extern int sata_scr_write_flush(struct ata_link *link, int reg, u32 val); extern int sata_set_spd(struct ata_link *link); extern int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, unsigned long deadline, bool *online, int (*check_ready)(struct ata_link *)); extern int sata_link_resume(struct ata_link *link, const unsigned long *params, unsigned long deadline); extern void ata_eh_analyze_ncq_error(struct ata_link *link); #else static inline const unsigned long * sata_ehc_deb_timing(struct ata_eh_context *ehc) { return NULL; } static inline int sata_scr_valid(struct ata_link *link) { return 0; } static inline int sata_scr_read(struct ata_link *link, int reg, u32 *val) { return -EOPNOTSUPP; } static inline int sata_scr_write(struct ata_link *link, int reg, u32 val) { return -EOPNOTSUPP; } static inline int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) { return -EOPNOTSUPP; } static inline int sata_set_spd(struct ata_link *link) { return -EOPNOTSUPP; } static inline int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, unsigned long deadline, bool *online, int (*check_ready)(struct ata_link *)) { if (online) *online = false; return -EOPNOTSUPP; } static inline int sata_link_resume(struct ata_link *link, const unsigned long *params, unsigned long deadline) { return -EOPNOTSUPP; } static inline void ata_eh_analyze_ncq_error(struct ata_link *link) { } #endif extern int sata_link_debounce(struct ata_link *link, const unsigned long *params, unsigned long deadline); extern int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, bool spm_wakeup); extern int ata_slave_link_init(struct ata_port *ap); extern void ata_sas_port_destroy(struct ata_port *); extern struct ata_port *ata_sas_port_alloc(struct ata_host *, struct ata_port_info *, struct Scsi_Host *); extern void ata_sas_async_probe(struct ata_port *ap); extern int ata_sas_sync_probe(struct ata_port *ap); extern int ata_sas_port_init(struct ata_port *); extern int ata_sas_port_start(struct ata_port *ap); extern int ata_sas_tport_add(struct device *parent, struct ata_port *ap); extern void ata_sas_tport_delete(struct ata_port *ap); extern void ata_sas_port_stop(struct ata_port *ap); extern int ata_sas_slave_configure(struct scsi_device *, struct ata_port *); extern int ata_sas_queuecmd(struct scsi_cmnd *cmd, struct ata_port *ap); extern void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis); extern void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf); extern int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active); extern bool sata_lpm_ignore_phy_events(struct ata_link *link); extern int sata_async_notification(struct ata_port *ap); extern int ata_cable_40wire(struct ata_port *ap); extern int ata_cable_80wire(struct ata_port *ap); extern int ata_cable_sata(struct ata_port *ap); extern int ata_cable_ignore(struct ata_port *ap); extern int ata_cable_unknown(struct ata_port *ap); /* Timing helpers */ extern unsigned int ata_pio_need_iordy(const struct ata_device *); extern u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle); /* PCI */ #ifdef CONFIG_PCI struct pci_dev; struct pci_bits { unsigned int reg; /* PCI config register to read */ unsigned int width; /* 1 (8 bit), 2 (16 bit), 4 (32 bit) */ unsigned long mask; unsigned long val; }; extern int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits); extern void ata_pci_shutdown_one(struct pci_dev *pdev); extern void ata_pci_remove_one(struct pci_dev *pdev); #ifdef CONFIG_PM extern void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg); extern int __must_check ata_pci_device_do_resume(struct pci_dev *pdev); extern int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg); extern int ata_pci_device_resume(struct pci_dev *pdev); #endif /* CONFIG_PM */ #endif /* CONFIG_PCI */ struct platform_device; extern int ata_platform_remove_one(struct platform_device *pdev); /* * ACPI - drivers/ata/libata-acpi.c */ #ifdef CONFIG_ATA_ACPI static inline const struct ata_acpi_gtm *ata_acpi_init_gtm(struct ata_port *ap) { if (ap->pflags & ATA_PFLAG_INIT_GTM_VALID) return &ap->__acpi_init_gtm; return NULL; } int ata_acpi_stm(struct ata_port *ap, const struct ata_acpi_gtm *stm); int ata_acpi_gtm(struct ata_port *ap, struct ata_acpi_gtm *stm); unsigned long ata_acpi_gtm_xfermask(struct ata_device *dev, const struct ata_acpi_gtm *gtm); int ata_acpi_cbl_80wire(struct ata_port *ap, const struct ata_acpi_gtm *gtm); #else static inline const struct ata_acpi_gtm *ata_acpi_init_gtm(struct ata_port *ap) { return NULL; } static inline int ata_acpi_stm(const struct ata_port *ap, struct ata_acpi_gtm *stm) { return -ENOSYS; } static inline int ata_acpi_gtm(const struct ata_port *ap, struct ata_acpi_gtm *stm) { return -ENOSYS; } static inline unsigned int ata_acpi_gtm_xfermask(struct ata_device *dev, const struct ata_acpi_gtm *gtm) { return 0; } static inline int ata_acpi_cbl_80wire(struct ata_port *ap, const struct ata_acpi_gtm *gtm) { return 0; } #endif /* * EH - drivers/ata/libata-eh.c */ extern void ata_port_schedule_eh(struct ata_port *ap); extern void ata_port_wait_eh(struct ata_port *ap); extern int ata_link_abort(struct ata_link *link); extern int ata_port_abort(struct ata_port *ap); extern int ata_port_freeze(struct ata_port *ap); extern void ata_eh_freeze_port(struct ata_port *ap); extern void ata_eh_thaw_port(struct ata_port *ap); extern void ata_eh_qc_complete(struct ata_queued_cmd *qc); extern void ata_eh_qc_retry(struct ata_queued_cmd *qc); extern void ata_do_eh(struct ata_port *ap, ata_prereset_fn_t prereset, ata_reset_fn_t softreset, ata_reset_fn_t hardreset, ata_postreset_fn_t postreset); extern void ata_std_error_handler(struct ata_port *ap); extern void ata_std_sched_eh(struct ata_port *ap); extern void ata_std_end_eh(struct ata_port *ap); extern int ata_link_nr_enabled(struct ata_link *link); /* * Base operations to inherit from and initializers for sht * * Operations * * base : Common to all libata drivers. * sata : SATA controllers w/ native interface. * pmp : SATA controllers w/ PMP support. * sff : SFF ATA controllers w/o BMDMA support. * bmdma : SFF ATA controllers w/ BMDMA support. * * sht initializers * * BASE : Common to all libata drivers. The user must set * sg_tablesize and dma_boundary. * PIO : SFF ATA controllers w/ only PIO support. * BMDMA : SFF ATA controllers w/ BMDMA support. sg_tablesize and * dma_boundary are set to BMDMA limits. * NCQ : SATA controllers supporting NCQ. The user must set * sg_tablesize, dma_boundary and can_queue. */ extern const struct ata_port_operations ata_base_port_ops; extern const struct ata_port_operations sata_port_ops; extern struct device_attribute *ata_common_sdev_attrs[]; /* * All sht initializers (BASE, PIO, BMDMA, NCQ) must be instantiated * by the edge drivers. Because the 'module' field of sht must be the * edge driver's module reference, otherwise the driver can be unloaded * even if the scsi_device is being accessed. */ #define __ATA_BASE_SHT(drv_name) \ .module = THIS_MODULE, \ .name = drv_name, \ .ioctl = ata_scsi_ioctl, \ ATA_SCSI_COMPAT_IOCTL \ .queuecommand = ata_scsi_queuecmd, \ .dma_need_drain = ata_scsi_dma_need_drain, \ .can_queue = ATA_DEF_QUEUE, \ .tag_alloc_policy = BLK_TAG_ALLOC_RR, \ .this_id = ATA_SHT_THIS_ID, \ .emulated = ATA_SHT_EMULATED, \ .proc_name = drv_name, \ .slave_configure = ata_scsi_slave_config, \ .slave_destroy = ata_scsi_slave_destroy, \ .bios_param = ata_std_bios_param, \ .unlock_native_capacity = ata_scsi_unlock_native_capacity #define ATA_BASE_SHT(drv_name) \ __ATA_BASE_SHT(drv_name), \ .sdev_attrs = ata_common_sdev_attrs #ifdef CONFIG_SATA_HOST extern struct device_attribute *ata_ncq_sdev_attrs[]; #define ATA_NCQ_SHT(drv_name) \ __ATA_BASE_SHT(drv_name), \ .sdev_attrs = ata_ncq_sdev_attrs, \ .change_queue_depth = ata_scsi_change_queue_depth #endif /* * PMP helpers */ #ifdef CONFIG_SATA_PMP static inline bool sata_pmp_supported(struct ata_port *ap) { return ap->flags & ATA_FLAG_PMP; } static inline bool sata_pmp_attached(struct ata_port *ap) { return ap->nr_pmp_links != 0; } static inline bool ata_is_host_link(const struct ata_link *link) { return link == &link->ap->link || link == link->ap->slave_link; } #else /* CONFIG_SATA_PMP */ static inline bool sata_pmp_supported(struct ata_port *ap) { return false; } static inline bool sata_pmp_attached(struct ata_port *ap) { return false; } static inline bool ata_is_host_link(const struct ata_link *link) { return 1; } #endif /* CONFIG_SATA_PMP */ static inline int sata_srst_pmp(struct ata_link *link) { if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) return SATA_PMP_CTRL_PORT; return link->pmp; } /* * printk helpers */ __printf(3, 4) void ata_port_printk(const struct ata_port *ap, const char *level, const char *fmt, ...); __printf(3, 4) void ata_link_printk(const struct ata_link *link, const char *level, const char *fmt, ...); __printf(3, 4) void ata_dev_printk(const struct ata_device *dev, const char *level, const char *fmt, ...); #define ata_port_err(ap, fmt, ...) \ ata_port_printk(ap, KERN_ERR, fmt, ##__VA_ARGS__) #define ata_port_warn(ap, fmt, ...) \ ata_port_printk(ap, KERN_WARNING, fmt, ##__VA_ARGS__) #define ata_port_notice(ap, fmt, ...) \ ata_port_printk(ap, KERN_NOTICE, fmt, ##__VA_ARGS__) #define ata_port_info(ap, fmt, ...) \ ata_port_printk(ap, KERN_INFO, fmt, ##__VA_ARGS__) #define ata_port_dbg(ap, fmt, ...) \ ata_port_printk(ap, KERN_DEBUG, fmt, ##__VA_ARGS__) #define ata_link_err(link, fmt, ...) \ ata_link_printk(link, KERN_ERR, fmt, ##__VA_ARGS__) #define ata_link_warn(link, fmt, ...) \ ata_link_printk(link, KERN_WARNING, fmt, ##__VA_ARGS__) #define ata_link_notice(link, fmt, ...) \ ata_link_printk(link, KERN_NOTICE, fmt, ##__VA_ARGS__) #define ata_link_info(link, fmt, ...) \ ata_link_printk(link, KERN_INFO, fmt, ##__VA_ARGS__) #define ata_link_dbg(link, fmt, ...) \ ata_link_printk(link, KERN_DEBUG, fmt, ##__VA_ARGS__) #define ata_dev_err(dev, fmt, ...) \ ata_dev_printk(dev, KERN_ERR, fmt, ##__VA_ARGS__) #define ata_dev_warn(dev, fmt, ...) \ ata_dev_printk(dev, KERN_WARNING, fmt, ##__VA_ARGS__) #define ata_dev_notice(dev, fmt, ...) \ ata_dev_printk(dev, KERN_NOTICE, fmt, ##__VA_ARGS__) #define ata_dev_info(dev, fmt, ...) \ ata_dev_printk(dev, KERN_INFO, fmt, ##__VA_ARGS__) #define ata_dev_dbg(dev, fmt, ...) \ ata_dev_printk(dev, KERN_DEBUG, fmt, ##__VA_ARGS__) void ata_print_version(const struct device *dev, const char *version); /* * ata_eh_info helpers */ extern __printf(2, 3) void __ata_ehi_push_desc(struct ata_eh_info *ehi, const char *fmt, ...); extern __printf(2, 3) void ata_ehi_push_desc(struct ata_eh_info *ehi, const char *fmt, ...); extern void ata_ehi_clear_desc(struct ata_eh_info *ehi); static inline void ata_ehi_hotplugged(struct ata_eh_info *ehi) { ehi->probe_mask |= (1 << ATA_MAX_DEVICES) - 1; ehi->flags |= ATA_EHI_HOTPLUGGED; ehi->action |= ATA_EH_RESET | ATA_EH_ENABLE_LINK; ehi->err_mask |= AC_ERR_ATA_BUS; } /* * port description helpers */ extern __printf(2, 3) void ata_port_desc(struct ata_port *ap, const char *fmt, ...); #ifdef CONFIG_PCI extern void ata_port_pbar_desc(struct ata_port *ap, int bar, ssize_t offset, const char *name); #endif static inline bool ata_tag_internal(unsigned int tag) { return tag == ATA_TAG_INTERNAL; } static inline bool ata_tag_valid(unsigned int tag) { return tag < ATA_MAX_QUEUE || ata_tag_internal(tag); } #define __ata_qc_for_each(ap, qc, tag, max_tag, fn) \ for ((tag) = 0; (tag) < (max_tag) && \ ({ qc = fn((ap), (tag)); 1; }); (tag)++) \ /* * Internal use only, iterate commands ignoring error handling and * status of 'qc'. */ #define ata_qc_for_each_raw(ap, qc, tag) \ __ata_qc_for_each(ap, qc, tag, ATA_MAX_QUEUE, __ata_qc_from_tag) /* * Iterate all potential commands that can be queued */ #define ata_qc_for_each(ap, qc, tag) \ __ata_qc_for_each(ap, qc, tag, ATA_MAX_QUEUE, ata_qc_from_tag) /* * Like ata_qc_for_each, but with the internal tag included */ #define ata_qc_for_each_with_internal(ap, qc, tag) \ __ata_qc_for_each(ap, qc, tag, ATA_MAX_QUEUE + 1, ata_qc_from_tag) /* * device helpers */ static inline unsigned int ata_class_enabled(unsigned int class) { return class == ATA_DEV_ATA || class == ATA_DEV_ATAPI || class == ATA_DEV_PMP || class == ATA_DEV_SEMB || class == ATA_DEV_ZAC; } static inline unsigned int ata_class_disabled(unsigned int class) { return class == ATA_DEV_ATA_UNSUP || class == ATA_DEV_ATAPI_UNSUP || class == ATA_DEV_PMP_UNSUP || class == ATA_DEV_SEMB_UNSUP || class == ATA_DEV_ZAC_UNSUP; } static inline unsigned int ata_class_absent(unsigned int class) { return !ata_class_enabled(class) && !ata_class_disabled(class); } static inline unsigned int ata_dev_enabled(const struct ata_device *dev) { return ata_class_enabled(dev->class); } static inline unsigned int ata_dev_disabled(const struct ata_device *dev) { return ata_class_disabled(dev->class); } static inline unsigned int ata_dev_absent(const struct ata_device *dev) { return ata_class_absent(dev->class); } /* * link helpers */ static inline int ata_link_max_devices(const struct ata_link *link) { if (ata_is_host_link(link) && link->ap->flags & ATA_FLAG_SLAVE_POSS) return 2; return 1; } static inline int ata_link_active(struct ata_link *link) { return ata_tag_valid(link->active_tag) || link->sactive; } /* * Iterators * * ATA_LITER_* constants are used to select link iteration mode and * ATA_DITER_* device iteration mode. * * For a custom iteration directly using ata_{link|dev}_next(), if * @link or @dev, respectively, is NULL, the first element is * returned. @dev and @link can be any valid device or link and the * next element according to the iteration mode will be returned. * After the last element, NULL is returned. */ enum ata_link_iter_mode { ATA_LITER_EDGE, /* if present, PMP links only; otherwise, * host link. no slave link */ ATA_LITER_HOST_FIRST, /* host link followed by PMP or slave links */ ATA_LITER_PMP_FIRST, /* PMP links followed by host link, * slave link still comes after host link */ }; enum ata_dev_iter_mode { ATA_DITER_ENABLED, ATA_DITER_ENABLED_REVERSE, ATA_DITER_ALL, ATA_DITER_ALL_REVERSE, }; extern struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, enum ata_link_iter_mode mode); extern struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, enum ata_dev_iter_mode mode); /* * Shortcut notation for iterations * * ata_for_each_link() iterates over each link of @ap according to * @mode. @link points to the current link in the loop. @link is * NULL after loop termination. ata_for_each_dev() works the same way * except that it iterates over each device of @link. * * Note that the mode prefixes ATA_{L|D}ITER_ shouldn't need to be * specified when using the following shorthand notations. Only the * mode itself (EDGE, HOST_FIRST, ENABLED, etc...) should be * specified. This not only increases brevity but also makes it * impossible to use ATA_LITER_* for device iteration or vice-versa. */ #define ata_for_each_link(link, ap, mode) \ for ((link) = ata_link_next(NULL, (ap), ATA_LITER_##mode); (link); \ (link) = ata_link_next((link), (ap), ATA_LITER_##mode)) #define ata_for_each_dev(dev, link, mode) \ for ((dev) = ata_dev_next(NULL, (link), ATA_DITER_##mode); (dev); \ (dev) = ata_dev_next((dev), (link), ATA_DITER_##mode)) /** * ata_ncq_enabled - Test whether NCQ is enabled * @dev: ATA device to test for * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * 1 if NCQ is enabled for @dev, 0 otherwise. */ static inline int ata_ncq_enabled(struct ata_device *dev) { if (!IS_ENABLED(CONFIG_SATA_HOST)) return 0; return (dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF | ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ; } static inline bool ata_fpdma_dsm_supported(struct ata_device *dev) { return (dev->flags & ATA_DFLAG_NCQ_SEND_RECV) && (dev->ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] & ATA_LOG_NCQ_SEND_RECV_DSM_TRIM); } static inline bool ata_fpdma_read_log_supported(struct ata_device *dev) { return (dev->flags & ATA_DFLAG_NCQ_SEND_RECV) && (dev->ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_RD_LOG_OFFSET] & ATA_LOG_NCQ_SEND_RECV_RD_LOG_SUPPORTED); } static inline bool ata_fpdma_zac_mgmt_in_supported(struct ata_device *dev) { return (dev->flags & ATA_DFLAG_NCQ_SEND_RECV) && (dev->ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_ZAC_MGMT_OFFSET] & ATA_LOG_NCQ_SEND_RECV_ZAC_MGMT_IN_SUPPORTED); } static inline bool ata_fpdma_zac_mgmt_out_supported(struct ata_device *dev) { return (dev->ncq_non_data_cmds[ATA_LOG_NCQ_NON_DATA_ZAC_MGMT_OFFSET] & ATA_LOG_NCQ_NON_DATA_ZAC_MGMT_OUT); } static inline void ata_qc_set_polling(struct ata_queued_cmd *qc) { qc->tf.ctl |= ATA_NIEN; } static inline struct ata_queued_cmd *__ata_qc_from_tag(struct ata_port *ap, unsigned int tag) { if (ata_tag_valid(tag)) return &ap->qcmd[tag]; return NULL; } static inline struct ata_queued_cmd *ata_qc_from_tag(struct ata_port *ap, unsigned int tag) { struct ata_queued_cmd *qc = __ata_qc_from_tag(ap, tag); if (unlikely(!qc) || !ap->ops->error_handler) return qc; if ((qc->flags & (ATA_QCFLAG_ACTIVE | ATA_QCFLAG_FAILED)) == ATA_QCFLAG_ACTIVE) return qc; return NULL; } static inline unsigned int ata_qc_raw_nbytes(struct ata_queued_cmd *qc) { return qc->nbytes - min(qc->extrabytes, qc->nbytes); } static inline void ata_tf_init(struct ata_device *dev, struct ata_taskfile *tf) { memset(tf, 0, sizeof(*tf)); #ifdef CONFIG_ATA_SFF tf->ctl = dev->link->ap->ctl; #else tf->ctl = ATA_DEVCTL_OBS; #endif if (dev->devno == 0) tf->device = ATA_DEVICE_OBS; else tf->device = ATA_DEVICE_OBS | ATA_DEV1; } static inline void ata_qc_reinit(struct ata_queued_cmd *qc) { qc->dma_dir = DMA_NONE; qc->sg = NULL; qc->flags = 0; qc->cursg = NULL; qc->cursg_ofs = 0; qc->nbytes = qc->extrabytes = qc->curbytes = 0; qc->n_elem = 0; qc->err_mask = 0; qc->sect_size = ATA_SECT_SIZE; ata_tf_init(qc->dev, &qc->tf); /* init result_tf such that it indicates normal completion */ qc->result_tf.command = ATA_DRDY; qc->result_tf.feature = 0; } static inline int ata_try_flush_cache(const struct ata_device *dev) { return ata_id_wcache_enabled(dev->id) || ata_id_has_flush(dev->id) || ata_id_has_flush_ext(dev->id); } static inline unsigned int ac_err_mask(u8 status) { if (status & (ATA_BUSY | ATA_DRQ)) return AC_ERR_HSM; if (status & (ATA_ERR | ATA_DF)) return AC_ERR_DEV; return 0; } static inline unsigned int __ac_err_mask(u8 status) { unsigned int mask = ac_err_mask(status); if (mask == 0) return AC_ERR_OTHER; return mask; } static inline struct ata_port *ata_shost_to_port(struct Scsi_Host *host) { return *(struct ata_port **)&host->hostdata[0]; } static inline int ata_check_ready(u8 status) { if (!(status & ATA_BUSY)) return 1; /* 0xff indicates either no device or device not ready */ if (status == 0xff) return -ENODEV; return 0; } static inline unsigned long ata_deadline(unsigned long from_jiffies, unsigned long timeout_msecs) { return from_jiffies + msecs_to_jiffies(timeout_msecs); } /* Don't open code these in drivers as there are traps. Firstly the range may change in future hardware and specs, secondly 0xFF means 'no DMA' but is > UDMA_0. Dyma ddreigiau */ static inline int ata_using_mwdma(struct ata_device *adev) { if (adev->dma_mode >= XFER_MW_DMA_0 && adev->dma_mode <= XFER_MW_DMA_4) return 1; return 0; } static inline int ata_using_udma(struct ata_device *adev) { if (adev->dma_mode >= XFER_UDMA_0 && adev->dma_mode <= XFER_UDMA_7) return 1; return 0; } static inline int ata_dma_enabled(struct ata_device *adev) { return (adev->dma_mode == 0xFF ? 0 : 1); } /************************************************************************** * PATA timings - drivers/ata/libata-pata-timings.c */ extern const struct ata_timing *ata_timing_find_mode(u8 xfer_mode); extern int ata_timing_compute(struct ata_device *, unsigned short, struct ata_timing *, int, int); extern void ata_timing_merge(const struct ata_timing *, const struct ata_timing *, struct ata_timing *, unsigned int); /************************************************************************** * PMP - drivers/ata/libata-pmp.c */ #ifdef CONFIG_SATA_PMP extern const struct ata_port_operations sata_pmp_port_ops; extern int sata_pmp_qc_defer_cmd_switch(struct ata_queued_cmd *qc); extern void sata_pmp_error_handler(struct ata_port *ap); #else /* CONFIG_SATA_PMP */ #define sata_pmp_port_ops sata_port_ops #define sata_pmp_qc_defer_cmd_switch ata_std_qc_defer #define sata_pmp_error_handler ata_std_error_handler #endif /* CONFIG_SATA_PMP */ /************************************************************************** * SFF - drivers/ata/libata-sff.c */ #ifdef CONFIG_ATA_SFF extern const struct ata_port_operations ata_sff_port_ops; extern const struct ata_port_operations ata_bmdma32_port_ops; /* PIO only, sg_tablesize and dma_boundary limits can be removed */ #define ATA_PIO_SHT(drv_name) \ ATA_BASE_SHT(drv_name), \ .sg_tablesize = LIBATA_MAX_PRD, \ .dma_boundary = ATA_DMA_BOUNDARY extern void ata_sff_dev_select(struct ata_port *ap, unsigned int device); extern u8 ata_sff_check_status(struct ata_port *ap); extern void ata_sff_pause(struct ata_port *ap); extern void ata_sff_dma_pause(struct ata_port *ap); extern int ata_sff_busy_sleep(struct ata_port *ap, unsigned long timeout_pat, unsigned long timeout); extern int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline); extern void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf); extern void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf); extern void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf); extern unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, unsigned int buflen, int rw); extern unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, unsigned int buflen, int rw); extern void ata_sff_irq_on(struct ata_port *ap); extern void ata_sff_irq_clear(struct ata_port *ap); extern int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, u8 status, int in_wq); extern void ata_sff_queue_work(struct work_struct *work); extern void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay); extern void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay); extern unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc); extern bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc); extern unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc); extern irqreturn_t ata_sff_interrupt(int irq, void *dev_instance); extern void ata_sff_lost_interrupt(struct ata_port *ap); extern void ata_sff_freeze(struct ata_port *ap); extern void ata_sff_thaw(struct ata_port *ap); extern int ata_sff_prereset(struct ata_link *link, unsigned long deadline); extern unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, u8 *r_err); extern int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, unsigned long deadline); extern int ata_sff_softreset(struct ata_link *link, unsigned int *classes, unsigned long deadline); extern int sata_sff_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline); extern void ata_sff_postreset(struct ata_link *link, unsigned int *classes); extern void ata_sff_drain_fifo(struct ata_queued_cmd *qc); extern void ata_sff_error_handler(struct ata_port *ap); extern void ata_sff_std_ports(struct ata_ioports *ioaddr); #ifdef CONFIG_PCI extern int ata_pci_sff_init_host(struct ata_host *host); extern int ata_pci_sff_prepare_host(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct ata_host **r_host); extern int ata_pci_sff_activate_host(struct ata_host *host, irq_handler_t irq_handler, struct scsi_host_template *sht); extern int ata_pci_sff_init_one(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct scsi_host_template *sht, void *host_priv, int hflags); #endif /* CONFIG_PCI */ #ifdef CONFIG_ATA_BMDMA extern const struct ata_port_operations ata_bmdma_port_ops; #define ATA_BMDMA_SHT(drv_name) \ ATA_BASE_SHT(drv_name), \ .sg_tablesize = LIBATA_MAX_PRD, \ .dma_boundary = ATA_DMA_BOUNDARY extern enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc); extern unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc); extern enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc); extern unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc); extern irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance); extern void ata_bmdma_error_handler(struct ata_port *ap); extern void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc); extern void ata_bmdma_irq_clear(struct ata_port *ap); extern void ata_bmdma_setup(struct ata_queued_cmd *qc); extern void ata_bmdma_start(struct ata_queued_cmd *qc); extern void ata_bmdma_stop(struct ata_queued_cmd *qc); extern u8 ata_bmdma_status(struct ata_port *ap); extern int ata_bmdma_port_start(struct ata_port *ap); extern int ata_bmdma_port_start32(struct ata_port *ap); #ifdef CONFIG_PCI extern int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev); extern void ata_pci_bmdma_init(struct ata_host *host); extern int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct ata_host **r_host); extern int ata_pci_bmdma_init_one(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct scsi_host_template *sht, void *host_priv, int hflags); #endif /* CONFIG_PCI */ #endif /* CONFIG_ATA_BMDMA */ /** * ata_sff_busy_wait - Wait for a port status register * @ap: Port to wait for. * @bits: bits that must be clear * @max: number of 10uS waits to perform * * Waits up to max*10 microseconds for the selected bits in the port's * status register to be cleared. * Returns final value of status register. * * LOCKING: * Inherited from caller. */ static inline u8 ata_sff_busy_wait(struct ata_port *ap, unsigned int bits, unsigned int max) { u8 status; do { udelay(10); status = ap->ops->sff_check_status(ap); max--; } while (status != 0xff && (status & bits) && (max > 0)); return status; } /** * ata_wait_idle - Wait for a port to be idle. * @ap: Port to wait for. * * Waits up to 10ms for port's BUSY and DRQ signals to clear. * Returns final value of status register. * * LOCKING: * Inherited from caller. */ static inline u8 ata_wait_idle(struct ata_port *ap) { u8 status = ata_sff_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000); #ifdef ATA_DEBUG if (status != 0xff && (status & (ATA_BUSY | ATA_DRQ))) ata_port_printk(ap, KERN_DEBUG, "abnormal Status 0x%X\n", status); #endif return status; } #endif /* CONFIG_ATA_SFF */ #endif /* __LINUX_LIBATA_H__ */
4 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_BITOPS_H #define _ASM_X86_BITOPS_H /* * Copyright 1992, Linus Torvalds. * * Note: inlines with more than a single statement should be marked * __always_inline to avoid problems with older gcc's inlining heuristics. */ #ifndef _LINUX_BITOPS_H #error only <linux/bitops.h> can be included directly #endif #include <linux/compiler.h> #include <asm/alternative.h> #include <asm/rmwcc.h> #include <asm/barrier.h> #if BITS_PER_LONG == 32 # define _BITOPS_LONG_SHIFT 5 #elif BITS_PER_LONG == 64 # define _BITOPS_LONG_SHIFT 6 #else # error "Unexpected BITS_PER_LONG" #endif #define BIT_64(n) (U64_C(1) << (n)) /* * These have to be done with inline assembly: that way the bit-setting * is guaranteed to be atomic. All bit operations return 0 if the bit * was cleared before the operation and != 0 if it was not. * * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). */ #define RLONG_ADDR(x) "m" (*(volatile long *) (x)) #define WBYTE_ADDR(x) "+m" (*(volatile char *) (x)) #define ADDR RLONG_ADDR(addr) /* * We do the locked ops that don't return the old value as * a mask operation on a byte. */ #define CONST_MASK_ADDR(nr, addr) WBYTE_ADDR((void *)(addr) + ((nr)>>3)) #define CONST_MASK(nr) (1 << ((nr) & 7)) static __always_inline void arch_set_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "orb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (CONST_MASK(nr)) : "memory"); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline void arch___set_bit(long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline void arch_clear_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "andb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (~CONST_MASK(nr))); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline void arch_clear_bit_unlock(long nr, volatile unsigned long *addr) { barrier(); arch_clear_bit(nr, addr); } static __always_inline void arch___clear_bit(long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline bool arch_clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr) { bool negative; asm volatile(LOCK_PREFIX "andb %2,%1" CC_SET(s) : CC_OUT(s) (negative), WBYTE_ADDR(addr) : "ir" ((char) ~(1 << nr)) : "memory"); return negative; } #define arch_clear_bit_unlock_is_negative_byte \ arch_clear_bit_unlock_is_negative_byte static __always_inline void arch___clear_bit_unlock(long nr, volatile unsigned long *addr) { arch___clear_bit(nr, addr); } static __always_inline void arch___change_bit(long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline void arch_change_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "xorb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (CONST_MASK(nr))); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline bool arch_test_and_set_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr); } static __always_inline bool arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr) { return arch_test_and_set_bit(nr, addr); } static __always_inline bool arch___test_and_set_bit(long nr, volatile unsigned long *addr) { bool oldbit; asm(__ASM_SIZE(bts) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch_test_and_clear_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr); } /* * Note: the operation is performed atomically with respect to * the local CPU, but not other CPUs. Portable code should not * rely on this behaviour. * KVM relies on this behaviour on x86 for modifying memory that is also * accessed from a hypervisor on the same CPU if running in a VM: don't change * this without also updating arch/x86/kernel/kvm.c */ static __always_inline bool arch___test_and_clear_bit(long nr, volatile unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(btr) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch___test_and_change_bit(long nr, volatile unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(btc) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch_test_and_change_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr); } static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr) { return ((1UL << (nr & (BITS_PER_LONG-1))) & (addr[nr >> _BITOPS_LONG_SHIFT])) != 0; } static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(bt) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : "m" (*(unsigned long *)addr), "Ir" (nr) : "memory"); return oldbit; } #define arch_test_bit(nr, addr) \ (__builtin_constant_p((nr)) \ ? constant_test_bit((nr), (addr)) \ : variable_test_bit((nr), (addr))) /** * __ffs - find first set bit in word * @word: The word to search * * Undefined if no bit exists, so code should check against 0 first. */ static __always_inline unsigned long __ffs(unsigned long word) { asm("rep; bsf %1,%0" : "=r" (word) : "rm" (word)); return word; } /** * ffz - find first zero bit in word * @word: The word to search * * Undefined if no zero exists, so code should check against ~0UL first. */ static __always_inline unsigned long ffz(unsigned long word) { asm("rep; bsf %1,%0" : "=r" (word) : "r" (~word)); return word; } /* * __fls: find last set bit in word * @word: The word to search * * Undefined if no set bit exists, so code should check against 0 first. */ static __always_inline unsigned long __fls(unsigned long word) { asm("bsr %1,%0" : "=r" (word) : "rm" (word)); return word; } #undef ADDR #ifdef __KERNEL__ /** * ffs - find first set bit in word * @x: the word to search * * This is defined the same way as the libc and compiler builtin ffs * routines, therefore differs in spirit from the other bitops. * * ffs(value) returns 0 if value is 0 or the position of the first * set bit if value is nonzero. The first (least significant) bit * is at position 1. */ static __always_inline int ffs(int x) { int r; #ifdef CONFIG_X86_64 /* * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before, except that the * top 32 bits will be cleared. * * We cannot do this on 32 bits because at the very least some * 486 CPUs did not behave this way. */ asm("bsfl %1,%0" : "=r" (r) : "rm" (x), "0" (-1)); #elif defined(CONFIG_X86_CMOV) asm("bsfl %1,%0\n\t" "cmovzl %2,%0" : "=&r" (r) : "rm" (x), "r" (-1)); #else asm("bsfl %1,%0\n\t" "jnz 1f\n\t" "movl $-1,%0\n" "1:" : "=r" (r) : "rm" (x)); #endif return r + 1; } /** * fls - find last set bit in word * @x: the word to search * * This is defined in a similar way as the libc and compiler builtin * ffs, but returns the position of the most significant set bit. * * fls(value) returns 0 if value is 0 or the position of the last * set bit if value is nonzero. The last (most significant) bit is * at position 32. */ static __always_inline int fls(unsigned int x) { int r; #ifdef CONFIG_X86_64 /* * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before, except that the * top 32 bits will be cleared. * * We cannot do this on 32 bits because at the very least some * 486 CPUs did not behave this way. */ asm("bsrl %1,%0" : "=r" (r) : "rm" (x), "0" (-1)); #elif defined(CONFIG_X86_CMOV) asm("bsrl %1,%0\n\t" "cmovzl %2,%0" : "=&r" (r) : "rm" (x), "rm" (-1)); #else asm("bsrl %1,%0\n\t" "jnz 1f\n\t" "movl $-1,%0\n" "1:" : "=r" (r) : "rm" (x)); #endif return r + 1; } /** * fls64 - find last set bit in a 64-bit word * @x: the word to search * * This is defined in a similar way as the libc and compiler builtin * ffsll, but returns the position of the most significant set bit. * * fls64(value) returns 0 if value is 0 or the position of the last * set bit if value is nonzero. The last (most significant) bit is * at position 64. */ #ifdef CONFIG_X86_64 static __always_inline int fls64(__u64 x) { int bitpos = -1; /* * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before. */ asm("bsrq %1,%q0" : "+r" (bitpos) : "rm" (x)); return bitpos + 1; } #else #include <asm-generic/bitops/fls64.h> #endif #include <asm-generic/bitops/find.h> #include <asm-generic/bitops/sched.h> #include <asm/arch_hweight.h> #include <asm-generic/bitops/const_hweight.h> #include <asm-generic/bitops/instrumented-atomic.h> #include <asm-generic/bitops/instrumented-non-atomic.h> #include <asm-generic/bitops/instrumented-lock.h> #include <asm-generic/bitops/le.h> #include <asm-generic/bitops/ext2-atomic-setbit.h> #endif /* __KERNEL__ */ #endif /* _ASM_X86_BITOPS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_STRINGHASH_H #define __LINUX_STRINGHASH_H #include <linux/compiler.h> /* For __pure */ #include <linux/types.h> /* For u32, u64 */ #include <linux/hash.h> /* * Routines for hashing strings of bytes to a 32-bit hash value. * * These hash functions are NOT GUARANTEED STABLE between kernel * versions, architectures, or even repeated boots of the same kernel. * (E.g. they may depend on boot-time hardware detection or be * deliberately randomized.) * * They are also not intended to be secure against collisions caused by * malicious inputs; much slower hash functions are required for that. * * They are optimized for pathname components, meaning short strings. * Even if a majority of files have longer names, the dynamic profile of * pathname components skews short due to short directory names. * (E.g. /usr/lib/libsesquipedalianism.so.3.141.) */ /* * Version 1: one byte at a time. Example of use: * * unsigned long hash = init_name_hash; * while (*p) * hash = partial_name_hash(tolower(*p++), hash); * hash = end_name_hash(hash); * * Although this is designed for bytes, fs/hfsplus/unicode.c * abuses it to hash 16-bit values. */ /* Hash courtesy of the R5 hash in reiserfs modulo sign bits */ #define init_name_hash(salt) (unsigned long)(salt) /* partial hash update function. Assume roughly 4 bits per character */ static inline unsigned long partial_name_hash(unsigned long c, unsigned long prevhash) { return (prevhash + (c << 4) + (c >> 4)) * 11; } /* * Finally: cut down the number of bits to a int value (and try to avoid * losing bits). This also has the property (wanted by the dcache) * that the msbits make a good hash table index. */ static inline unsigned int end_name_hash(unsigned long hash) { return hash_long(hash, 32); } /* * Version 2: One word (32 or 64 bits) at a time. * If CONFIG_DCACHE_WORD_ACCESS is defined (meaning <asm/word-at-a-time.h> * exists, which describes major Linux platforms like x86 and ARM), then * this computes a different hash function much faster. * * If not set, this falls back to a wrapper around the preceding. */ extern unsigned int __pure full_name_hash(const void *salt, const char *, unsigned int); /* * A hash_len is a u64 with the hash of a string in the low * half and the length in the high half. */ #define hashlen_hash(hashlen) ((u32)(hashlen)) #define hashlen_len(hashlen) ((u32)((hashlen) >> 32)) #define hashlen_create(hash, len) ((u64)(len)<<32 | (u32)(hash)) /* Return the "hash_len" (hash and length) of a null-terminated string */ extern u64 __pure hashlen_string(const void *salt, const char *name); #endif /* __LINUX_STRINGHASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/ipc/util.h * Copyright (C) 1999 Christoph Rohland * * ipc helper functions (c) 1999 Manfred Spraul <manfred@colorfullife.com> * namespaces support. 2006 OpenVZ, SWsoft Inc. * Pavel Emelianov <xemul@openvz.org> */ #ifndef _IPC_UTIL_H #define _IPC_UTIL_H #include <linux/unistd.h> #include <linux/err.h> #include <linux/ipc_namespace.h> /* * The IPC ID contains 2 separate numbers - index and sequence number. * By default, * bits 0-14: index (32k, 15 bits) * bits 15-30: sequence number (64k, 16 bits) * * When IPCMNI extension mode is turned on, the composition changes: * bits 0-23: index (16M, 24 bits) * bits 24-30: sequence number (128, 7 bits) */ #define IPCMNI_SHIFT 15 #define IPCMNI_EXTEND_SHIFT 24 #define IPCMNI_EXTEND_MIN_CYCLE (RADIX_TREE_MAP_SIZE * RADIX_TREE_MAP_SIZE) #define IPCMNI (1 << IPCMNI_SHIFT) #define IPCMNI_EXTEND (1 << IPCMNI_EXTEND_SHIFT) #ifdef CONFIG_SYSVIPC_SYSCTL extern int ipc_mni; extern int ipc_mni_shift; extern int ipc_min_cycle; #define ipcmni_seq_shift() ipc_mni_shift #define IPCMNI_IDX_MASK ((1 << ipc_mni_shift) - 1) #else /* CONFIG_SYSVIPC_SYSCTL */ #define ipc_mni IPCMNI #define ipc_min_cycle ((int)RADIX_TREE_MAP_SIZE) #define ipcmni_seq_shift() IPCMNI_SHIFT #define IPCMNI_IDX_MASK ((1 << IPCMNI_SHIFT) - 1) #endif /* CONFIG_SYSVIPC_SYSCTL */ void sem_init(void); void msg_init(void); void shm_init(void); struct ipc_namespace; struct pid_namespace; #ifdef CONFIG_POSIX_MQUEUE extern void mq_clear_sbinfo(struct ipc_namespace *ns); extern void mq_put_mnt(struct ipc_namespace *ns); #else static inline void mq_clear_sbinfo(struct ipc_namespace *ns) { } static inline void mq_put_mnt(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_SYSVIPC void sem_init_ns(struct ipc_namespace *ns); void msg_init_ns(struct ipc_namespace *ns); void shm_init_ns(struct ipc_namespace *ns); void sem_exit_ns(struct ipc_namespace *ns); void msg_exit_ns(struct ipc_namespace *ns); void shm_exit_ns(struct ipc_namespace *ns); #else static inline void sem_init_ns(struct ipc_namespace *ns) { } static inline void msg_init_ns(struct ipc_namespace *ns) { } static inline void shm_init_ns(struct ipc_namespace *ns) { } static inline void sem_exit_ns(struct ipc_namespace *ns) { } static inline void msg_exit_ns(struct ipc_namespace *ns) { } static inline void shm_exit_ns(struct ipc_namespace *ns) { } #endif /* * Structure that holds the parameters needed by the ipc operations * (see after) */ struct ipc_params { key_t key; int flg; union { size_t size; /* for shared memories */ int nsems; /* for semaphores */ } u; /* holds the getnew() specific param */ }; /* * Structure that holds some ipc operations. This structure is used to unify * the calls to sys_msgget(), sys_semget(), sys_shmget() * . routine to call to create a new ipc object. Can be one of newque, * newary, newseg * . routine to call to check permissions for a new ipc object. * Can be one of security_msg_associate, security_sem_associate, * security_shm_associate * . routine to call for an extra check if needed */ struct ipc_ops { int (*getnew)(struct ipc_namespace *, struct ipc_params *); int (*associate)(struct kern_ipc_perm *, int); int (*more_checks)(struct kern_ipc_perm *, struct ipc_params *); }; struct seq_file; struct ipc_ids; void ipc_init_ids(struct ipc_ids *ids); #ifdef CONFIG_PROC_FS void __init ipc_init_proc_interface(const char *path, const char *header, int ids, int (*show)(struct seq_file *, void *)); struct pid_namespace *ipc_seq_pid_ns(struct seq_file *); #else #define ipc_init_proc_interface(path, header, ids, show) do {} while (0) #endif #define IPC_SEM_IDS 0 #define IPC_MSG_IDS 1 #define IPC_SHM_IDS 2 #define ipcid_to_idx(id) ((id) & IPCMNI_IDX_MASK) #define ipcid_to_seqx(id) ((id) >> ipcmni_seq_shift()) #define ipcid_seq_max() (INT_MAX >> ipcmni_seq_shift()) /* must be called with ids->rwsem acquired for writing */ int ipc_addid(struct ipc_ids *, struct kern_ipc_perm *, int); /* must be called with both locks acquired. */ void ipc_rmid(struct ipc_ids *, struct kern_ipc_perm *); /* must be called with both locks acquired. */ void ipc_set_key_private(struct ipc_ids *, struct kern_ipc_perm *); /* must be called with ipcp locked */ int ipcperms(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp, short flg); /** * ipc_get_maxidx - get the highest assigned index * @ids: ipc identifier set * * Called with ipc_ids.rwsem held for reading. */ static inline int ipc_get_maxidx(struct ipc_ids *ids) { if (ids->in_use == 0) return -1; if (ids->in_use == ipc_mni) return ipc_mni - 1; return ids->max_idx; } /* * For allocation that need to be freed by RCU. * Objects are reference counted, they start with reference count 1. * getref increases the refcount, the putref call that reduces the recount * to 0 schedules the rcu destruction. Caller must guarantee locking. * * refcount is initialized by ipc_addid(), before that point call_rcu() * must be used. */ bool ipc_rcu_getref(struct kern_ipc_perm *ptr); void ipc_rcu_putref(struct kern_ipc_perm *ptr, void (*func)(struct rcu_head *head)); struct kern_ipc_perm *ipc_obtain_object_idr(struct ipc_ids *ids, int id); void kernel_to_ipc64_perm(struct kern_ipc_perm *in, struct ipc64_perm *out); void ipc64_perm_to_ipc_perm(struct ipc64_perm *in, struct ipc_perm *out); int ipc_update_perm(struct ipc64_perm *in, struct kern_ipc_perm *out); struct kern_ipc_perm *ipcctl_obtain_check(struct ipc_namespace *ns, struct ipc_ids *ids, int id, int cmd, struct ipc64_perm *perm, int extra_perm); static inline void ipc_update_pid(struct pid **pos, struct pid *pid) { struct pid *old = *pos; if (old != pid) { *pos = get_pid(pid); put_pid(old); } } #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION int ipc_parse_version(int *cmd); #endif extern void free_msg(struct msg_msg *msg); extern struct msg_msg *load_msg(const void __user *src, size_t len); extern struct msg_msg *copy_msg(struct msg_msg *src, struct msg_msg *dst); extern int store_msg(void __user *dest, struct msg_msg *msg, size_t len); static inline int ipc_checkid(struct kern_ipc_perm *ipcp, int id) { return ipcid_to_seqx(id) != ipcp->seq; } static inline void ipc_lock_object(struct kern_ipc_perm *perm) { spin_lock(&perm->lock); } static inline void ipc_unlock_object(struct kern_ipc_perm *perm) { spin_unlock(&perm->lock); } static inline void ipc_assert_locked_object(struct kern_ipc_perm *perm) { assert_spin_locked(&perm->lock); } static inline void ipc_unlock(struct kern_ipc_perm *perm) { ipc_unlock_object(perm); rcu_read_unlock(); } /* * ipc_valid_object() - helper to sort out IPC_RMID races for codepaths * where the respective ipc_ids.rwsem is not being held down. * Checks whether the ipc object is still around or if it's gone already, as * ipc_rmid() may have already freed the ID while the ipc lock was spinning. * Needs to be called with kern_ipc_perm.lock held -- exception made for one * checkpoint case at sys_semtimedop() as noted in code commentary. */ static inline bool ipc_valid_object(struct kern_ipc_perm *perm) { return !perm->deleted; } struct kern_ipc_perm *ipc_obtain_object_check(struct ipc_ids *ids, int id); int ipcget(struct ipc_namespace *ns, struct ipc_ids *ids, const struct ipc_ops *ops, struct ipc_params *params); void free_ipcs(struct ipc_namespace *ns, struct ipc_ids *ids, void (*free)(struct ipc_namespace *, struct kern_ipc_perm *)); static inline int sem_check_semmni(struct ipc_namespace *ns) { /* * Check semmni range [0, ipc_mni] * semmni is the last element of sem_ctls[4] array */ return ((ns->sem_ctls[3] < 0) || (ns->sem_ctls[3] > ipc_mni)) ? -ERANGE : 0; } #ifdef CONFIG_COMPAT #include <linux/compat.h> struct compat_ipc_perm { key_t key; __compat_uid_t uid; __compat_gid_t gid; __compat_uid_t cuid; __compat_gid_t cgid; compat_mode_t mode; unsigned short seq; }; void to_compat_ipc_perm(struct compat_ipc_perm *, struct ipc64_perm *); void to_compat_ipc64_perm(struct compat_ipc64_perm *, struct ipc64_perm *); int get_compat_ipc_perm(struct ipc64_perm *, struct compat_ipc_perm __user *); int get_compat_ipc64_perm(struct ipc64_perm *, struct compat_ipc64_perm __user *); static inline int compat_ipc_parse_version(int *cmd) { int version = *cmd & IPC_64; *cmd &= ~IPC_64; return version; } long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg); long compat_ksys_old_msgctl(int msqid, int cmd, void __user *uptr); long compat_ksys_msgrcv(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, compat_long_t msgtyp, int msgflg); long compat_ksys_msgsnd(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, int msgflg); long compat_ksys_old_shmctl(int shmid, int cmd, void __user *uptr); #endif #endif
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 /* SPDX-License-Identifier: GPL-2.0+ */ #ifndef _LINUX_XARRAY_H #define _LINUX_XARRAY_H /* * eXtensible Arrays * Copyright (c) 2017 Microsoft Corporation * Author: Matthew Wilcox <willy@infradead.org> * * See Documentation/core-api/xarray.rst for how to use the XArray. */ #include <linux/bug.h> #include <linux/compiler.h> #include <linux/gfp.h> #include <linux/kconfig.h> #include <linux/kernel.h> #include <linux/rcupdate.h> #include <linux/spinlock.h> #include <linux/types.h> /* * The bottom two bits of the entry determine how the XArray interprets * the contents: * * 00: Pointer entry * 10: Internal entry * x1: Value entry or tagged pointer * * Attempting to store internal entries in the XArray is a bug. * * Most internal entries are pointers to the next node in the tree. * The following internal entries have a special meaning: * * 0-62: Sibling entries * 256: Retry entry * 257: Zero entry * * Errors are also represented as internal entries, but use the negative * space (-4094 to -2). They're never stored in the slots array; only * returned by the normal API. */ #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1) /** * xa_mk_value() - Create an XArray entry from an integer. * @v: Value to store in XArray. * * Context: Any context. * Return: An entry suitable for storing in the XArray. */ static inline void *xa_mk_value(unsigned long v) { WARN_ON((long)v < 0); return (void *)((v << 1) | 1); } /** * xa_to_value() - Get value stored in an XArray entry. * @entry: XArray entry. * * Context: Any context. * Return: The value stored in the XArray entry. */ static inline unsigned long xa_to_value(const void *entry) { return (unsigned long)entry >> 1; } /** * xa_is_value() - Determine if an entry is a value. * @entry: XArray entry. * * Context: Any context. * Return: True if the entry is a value, false if it is a pointer. */ static inline bool xa_is_value(const void *entry) { return (unsigned long)entry & 1; } /** * xa_tag_pointer() - Create an XArray entry for a tagged pointer. * @p: Plain pointer. * @tag: Tag value (0, 1 or 3). * * If the user of the XArray prefers, they can tag their pointers instead * of storing value entries. Three tags are available (0, 1 and 3). * These are distinct from the xa_mark_t as they are not replicated up * through the array and cannot be searched for. * * Context: Any context. * Return: An XArray entry. */ static inline void *xa_tag_pointer(void *p, unsigned long tag) { return (void *)((unsigned long)p | tag); } /** * xa_untag_pointer() - Turn an XArray entry into a plain pointer. * @entry: XArray entry. * * If you have stored a tagged pointer in the XArray, call this function * to get the untagged version of the pointer. * * Context: Any context. * Return: A pointer. */ static inline void *xa_untag_pointer(void *entry) { return (void *)((unsigned long)entry & ~3UL); } /** * xa_pointer_tag() - Get the tag stored in an XArray entry. * @entry: XArray entry. * * If you have stored a tagged pointer in the XArray, call this function * to get the tag of that pointer. * * Context: Any context. * Return: A tag. */ static inline unsigned int xa_pointer_tag(void *entry) { return (unsigned long)entry & 3UL; } /* * xa_mk_internal() - Create an internal entry. * @v: Value to turn into an internal entry. * * Internal entries are used for a number of purposes. Entries 0-255 are * used for sibling entries (only 0-62 are used by the current code). 256 * is used for the retry entry. 257 is used for the reserved / zero entry. * Negative internal entries are used to represent errnos. Node pointers * are also tagged as internal entries in some situations. * * Context: Any context. * Return: An XArray internal entry corresponding to this value. */ static inline void *xa_mk_internal(unsigned long v) { return (void *)((v << 2) | 2); } /* * xa_to_internal() - Extract the value from an internal entry. * @entry: XArray entry. * * Context: Any context. * Return: The value which was stored in the internal entry. */ static inline unsigned long xa_to_internal(const void *entry) { return (unsigned long)entry >> 2; } /* * xa_is_internal() - Is the entry an internal entry? * @entry: XArray entry. * * Context: Any context. * Return: %true if the entry is an internal entry. */ static inline bool xa_is_internal(const void *entry) { return ((unsigned long)entry & 3) == 2; } #define XA_ZERO_ENTRY xa_mk_internal(257) /** * xa_is_zero() - Is the entry a zero entry? * @entry: Entry retrieved from the XArray * * The normal API will return NULL as the contents of a slot containing * a zero entry. You can only see zero entries by using the advanced API. * * Return: %true if the entry is a zero entry. */ static inline bool xa_is_zero(const void *entry) { return unlikely(entry == XA_ZERO_ENTRY); } /** * xa_is_err() - Report whether an XArray operation returned an error * @entry: Result from calling an XArray function * * If an XArray operation cannot complete an operation, it will return * a special value indicating an error. This function tells you * whether an error occurred; xa_err() tells you which error occurred. * * Context: Any context. * Return: %true if the entry indicates an error. */ static inline bool xa_is_err(const void *entry) { return unlikely(xa_is_internal(entry) && entry >= xa_mk_internal(-MAX_ERRNO)); } /** * xa_err() - Turn an XArray result into an errno. * @entry: Result from calling an XArray function. * * If an XArray operation cannot complete an operation, it will return * a special pointer value which encodes an errno. This function extracts * the errno from the pointer value, or returns 0 if the pointer does not * represent an errno. * * Context: Any context. * Return: A negative errno or 0. */ static inline int xa_err(void *entry) { /* xa_to_internal() would not do sign extension. */ if (xa_is_err(entry)) return (long)entry >> 2; return 0; } /** * struct xa_limit - Represents a range of IDs. * @min: The lowest ID to allocate (inclusive). * @max: The maximum ID to allocate (inclusive). * * This structure is used either directly or via the XA_LIMIT() macro * to communicate the range of IDs that are valid for allocation. * Two common ranges are predefined for you: * * xa_limit_32b - [0 - UINT_MAX] * * xa_limit_31b - [0 - INT_MAX] */ struct xa_limit { u32 max; u32 min; }; #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max } #define xa_limit_32b XA_LIMIT(0, UINT_MAX) #define xa_limit_31b XA_LIMIT(0, INT_MAX) typedef unsigned __bitwise xa_mark_t; #define XA_MARK_0 ((__force xa_mark_t)0U) #define XA_MARK_1 ((__force xa_mark_t)1U) #define XA_MARK_2 ((__force xa_mark_t)2U) #define XA_PRESENT ((__force xa_mark_t)8U) #define XA_MARK_MAX XA_MARK_2 #define XA_FREE_MARK XA_MARK_0 enum xa_lock_type { XA_LOCK_IRQ = 1, XA_LOCK_BH = 2, }; /* * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags, * and we remain compatible with that. */ #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ) #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH) #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U) #define XA_FLAGS_ZERO_BUSY ((__force gfp_t)8U) #define XA_FLAGS_ALLOC_WRAPPED ((__force gfp_t)16U) #define XA_FLAGS_ACCOUNT ((__force gfp_t)32U) #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \ (__force unsigned)(mark))) /* ALLOC is for a normal 0-based alloc. ALLOC1 is for an 1-based alloc */ #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK)) #define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY) /** * struct xarray - The anchor of the XArray. * @xa_lock: Lock that protects the contents of the XArray. * * To use the xarray, define it statically or embed it in your data structure. * It is a very small data structure, so it does not usually make sense to * allocate it separately and keep a pointer to it in your data structure. * * You may use the xa_lock to protect your own data structures as well. */ /* * If all of the entries in the array are NULL, @xa_head is a NULL pointer. * If the only non-NULL entry in the array is at index 0, @xa_head is that * entry. If any other entry in the array is non-NULL, @xa_head points * to an @xa_node. */ struct xarray { spinlock_t xa_lock; /* private: The rest of the data structure is not to be used directly. */ gfp_t xa_flags; void __rcu * xa_head; }; #define XARRAY_INIT(name, flags) { \ .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \ .xa_flags = flags, \ .xa_head = NULL, \ } /** * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags. * @name: A string that names your XArray. * @flags: XA_FLAG values. * * This is intended for file scope definitions of XArrays. It declares * and initialises an empty XArray with the chosen name and flags. It is * equivalent to calling xa_init_flags() on the array, but it does the * initialisation at compiletime instead of runtime. */ #define DEFINE_XARRAY_FLAGS(name, flags) \ struct xarray name = XARRAY_INIT(name, flags) /** * DEFINE_XARRAY() - Define an XArray. * @name: A string that names your XArray. * * This is intended for file scope definitions of XArrays. It declares * and initialises an empty XArray with the chosen name. It is equivalent * to calling xa_init() on the array, but it does the initialisation at * compiletime instead of runtime. */ #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0) /** * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0. * @name: A string that names your XArray. * * This is intended for file scope definitions of allocating XArrays. * See also DEFINE_XARRAY(). */ #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC) /** * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1. * @name: A string that names your XArray. * * This is intended for file scope definitions of allocating XArrays. * See also DEFINE_XARRAY(). */ #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1) void *xa_load(struct xarray *, unsigned long index); void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); void *xa_erase(struct xarray *, unsigned long index); void *xa_store_range(struct xarray *, unsigned long first, unsigned long last, void *entry, gfp_t); bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t); void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); void *xa_find(struct xarray *xa, unsigned long *index, unsigned long max, xa_mark_t) __attribute__((nonnull(2))); void *xa_find_after(struct xarray *xa, unsigned long *index, unsigned long max, xa_mark_t) __attribute__((nonnull(2))); unsigned int xa_extract(struct xarray *, void **dst, unsigned long start, unsigned long max, unsigned int n, xa_mark_t); void xa_destroy(struct xarray *); /** * xa_init_flags() - Initialise an empty XArray with flags. * @xa: XArray. * @flags: XA_FLAG values. * * If you need to initialise an XArray with special flags (eg you need * to take the lock from interrupt context), use this function instead * of xa_init(). * * Context: Any context. */ static inline void xa_init_flags(struct xarray *xa, gfp_t flags) { spin_lock_init(&xa->xa_lock); xa->xa_flags = flags; xa->xa_head = NULL; } /** * xa_init() - Initialise an empty XArray. * @xa: XArray. * * An empty XArray is full of NULL entries. * * Context: Any context. */ static inline void xa_init(struct xarray *xa) { xa_init_flags(xa, 0); } /** * xa_empty() - Determine if an array has any present entries. * @xa: XArray. * * Context: Any context. * Return: %true if the array contains only NULL pointers. */ static inline bool xa_empty(const struct xarray *xa) { return xa->xa_head == NULL; } /** * xa_marked() - Inquire whether any entry in this array has a mark set * @xa: Array * @mark: Mark value * * Context: Any context. * Return: %true if any entry has this mark set. */ static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark) { return xa->xa_flags & XA_FLAGS_MARK(mark); } /** * xa_for_each_range() - Iterate over a portion of an XArray. * @xa: XArray. * @index: Index of @entry. * @entry: Entry retrieved from array. * @start: First index to retrieve from array. * @last: Last index to retrieve from array. * * During the iteration, @entry will have the value of the entry stored * in @xa at @index. You may modify @index during the iteration if you * want to skip or reprocess indices. It is safe to modify the array * during the iteration. At the end of the iteration, @entry will be set * to NULL and @index will have a value less than or equal to max. * * xa_for_each_range() is O(n.log(n)) while xas_for_each() is O(n). You have * to handle your own locking with xas_for_each(), and if you have to unlock * after each iteration, it will also end up being O(n.log(n)). * xa_for_each_range() will spin if it hits a retry entry; if you intend to * see retry entries, you should use the xas_for_each() iterator instead. * The xas_for_each() iterator will expand into more inline code than * xa_for_each_range(). * * Context: Any context. Takes and releases the RCU lock. */ #define xa_for_each_range(xa, index, entry, start, last) \ for (index = start, \ entry = xa_find(xa, &index, last, XA_PRESENT); \ entry; \ entry = xa_find_after(xa, &index, last, XA_PRESENT)) /** * xa_for_each_start() - Iterate over a portion of an XArray. * @xa: XArray. * @index: Index of @entry. * @entry: Entry retrieved from array. * @start: First index to retrieve from array. * * During the iteration, @entry will have the value of the entry stored * in @xa at @index. You may modify @index during the iteration if you * want to skip or reprocess indices. It is safe to modify the array * during the iteration. At the end of the iteration, @entry will be set * to NULL and @index will have a value less than or equal to max. * * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have * to handle your own locking with xas_for_each(), and if you have to unlock * after each iteration, it will also end up being O(n.log(n)). * xa_for_each_start() will spin if it hits a retry entry; if you intend to * see retry entries, you should use the xas_for_each() iterator instead. * The xas_for_each() iterator will expand into more inline code than * xa_for_each_start(). * * Context: Any context. Takes and releases the RCU lock. */ #define xa_for_each_start(xa, index, entry, start) \ xa_for_each_range(xa, index, entry, start, ULONG_MAX) /** * xa_for_each() - Iterate over present entries in an XArray. * @xa: XArray. * @index: Index of @entry. * @entry: Entry retrieved from array. * * During the iteration, @entry will have the value of the entry stored * in @xa at @index. You may modify @index during the iteration if you want * to skip or reprocess indices. It is safe to modify the array during the * iteration. At the end of the iteration, @entry will be set to NULL and * @index will have a value less than or equal to max. * * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have * to handle your own locking with xas_for_each(), and if you have to unlock * after each iteration, it will also end up being O(n.log(n)). xa_for_each() * will spin if it hits a retry entry; if you intend to see retry entries, * you should use the xas_for_each() iterator instead. The xas_for_each() * iterator will expand into more inline code than xa_for_each(). * * Context: Any context. Takes and releases the RCU lock. */ #define xa_for_each(xa, index, entry) \ xa_for_each_start(xa, index, entry, 0) /** * xa_for_each_marked() - Iterate over marked entries in an XArray. * @xa: XArray. * @index: Index of @entry. * @entry: Entry retrieved from array. * @filter: Selection criterion. * * During the iteration, @entry will have the value of the entry stored * in @xa at @index. The iteration will skip all entries in the array * which do not match @filter. You may modify @index during the iteration * if you want to skip or reprocess indices. It is safe to modify the array * during the iteration. At the end of the iteration, @entry will be set to * NULL and @index will have a value less than or equal to max. * * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n). * You have to handle your own locking with xas_for_each(), and if you have * to unlock after each iteration, it will also end up being O(n.log(n)). * xa_for_each_marked() will spin if it hits a retry entry; if you intend to * see retry entries, you should use the xas_for_each_marked() iterator * instead. The xas_for_each_marked() iterator will expand into more inline * code than xa_for_each_marked(). * * Context: Any context. Takes and releases the RCU lock. */ #define xa_for_each_marked(xa, index, entry, filter) \ for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \ entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter)) #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock) #define xa_lock(xa) spin_lock(&(xa)->xa_lock) #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock) #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock) #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock) #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock) #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock) #define xa_lock_irqsave(xa, flags) \ spin_lock_irqsave(&(xa)->xa_lock, flags) #define xa_unlock_irqrestore(xa, flags) \ spin_unlock_irqrestore(&(xa)->xa_lock, flags) #define xa_lock_nested(xa, subclass) \ spin_lock_nested(&(xa)->xa_lock, subclass) #define xa_lock_bh_nested(xa, subclass) \ spin_lock_bh_nested(&(xa)->xa_lock, subclass) #define xa_lock_irq_nested(xa, subclass) \ spin_lock_irq_nested(&(xa)->xa_lock, subclass) #define xa_lock_irqsave_nested(xa, flags, subclass) \ spin_lock_irqsave_nested(&(xa)->xa_lock, flags, subclass) /* * Versions of the normal API which require the caller to hold the * xa_lock. If the GFP flags allow it, they will drop the lock to * allocate memory, then reacquire it afterwards. These functions * may also re-enable interrupts if the XArray flags indicate the * locking should be interrupt safe. */ void *__xa_erase(struct xarray *, unsigned long index); void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old, void *entry, gfp_t); int __must_check __xa_insert(struct xarray *, unsigned long index, void *entry, gfp_t); int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry, struct xa_limit, gfp_t); int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry, struct xa_limit, u32 *next, gfp_t); void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); /** * xa_store_bh() - Store this entry in the XArray. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * This function is like calling xa_store() except it disables softirqs * while holding the array lock. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. * Return: The old entry at this index or xa_err() if an error happened. */ static inline void *xa_store_bh(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { void *curr; xa_lock_bh(xa); curr = __xa_store(xa, index, entry, gfp); xa_unlock_bh(xa); return curr; } /** * xa_store_irq() - Store this entry in the XArray. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * This function is like calling xa_store() except it disables interrupts * while holding the array lock. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. * Return: The old entry at this index or xa_err() if an error happened. */ static inline void *xa_store_irq(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { void *curr; xa_lock_irq(xa); curr = __xa_store(xa, index, entry, gfp); xa_unlock_irq(xa); return curr; } /** * xa_erase_bh() - Erase this entry from the XArray. * @xa: XArray. * @index: Index of entry. * * After this function returns, loading from @index will return %NULL. * If the index is part of a multi-index entry, all indices will be erased * and none of the entries will be part of a multi-index entry. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. * Return: The entry which used to be at this index. */ static inline void *xa_erase_bh(struct xarray *xa, unsigned long index) { void *entry; xa_lock_bh(xa); entry = __xa_erase(xa, index); xa_unlock_bh(xa); return entry; } /** * xa_erase_irq() - Erase this entry from the XArray. * @xa: XArray. * @index: Index of entry. * * After this function returns, loading from @index will return %NULL. * If the index is part of a multi-index entry, all indices will be erased * and none of the entries will be part of a multi-index entry. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. * Return: The entry which used to be at this index. */ static inline void *xa_erase_irq(struct xarray *xa, unsigned long index) { void *entry; xa_lock_irq(xa); entry = __xa_erase(xa, index); xa_unlock_irq(xa); return entry; } /** * xa_cmpxchg() - Conditionally replace an entry in the XArray. * @xa: XArray. * @index: Index into array. * @old: Old value to test against. * @entry: New value to place in array. * @gfp: Memory allocation flags. * * If the entry at @index is the same as @old, replace it with @entry. * If the return value is equal to @old, then the exchange was successful. * * Context: Any context. Takes and releases the xa_lock. May sleep * if the @gfp flags permit. * Return: The old value at this index or xa_err() if an error happened. */ static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index, void *old, void *entry, gfp_t gfp) { void *curr; xa_lock(xa); curr = __xa_cmpxchg(xa, index, old, entry, gfp); xa_unlock(xa); return curr; } /** * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray. * @xa: XArray. * @index: Index into array. * @old: Old value to test against. * @entry: New value to place in array. * @gfp: Memory allocation flags. * * This function is like calling xa_cmpxchg() except it disables softirqs * while holding the array lock. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. May sleep if the @gfp flags permit. * Return: The old value at this index or xa_err() if an error happened. */ static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index, void *old, void *entry, gfp_t gfp) { void *curr; xa_lock_bh(xa); curr = __xa_cmpxchg(xa, index, old, entry, gfp); xa_unlock_bh(xa); return curr; } /** * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray. * @xa: XArray. * @index: Index into array. * @old: Old value to test against. * @entry: New value to place in array. * @gfp: Memory allocation flags. * * This function is like calling xa_cmpxchg() except it disables interrupts * while holding the array lock. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. May sleep if the @gfp flags permit. * Return: The old value at this index or xa_err() if an error happened. */ static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index, void *old, void *entry, gfp_t gfp) { void *curr; xa_lock_irq(xa); curr = __xa_cmpxchg(xa, index, old, entry, gfp); xa_unlock_irq(xa); return curr; } /** * xa_insert() - Store this entry in the XArray unless another entry is * already present. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * Inserting a NULL entry will store a reserved entry (like xa_reserve()) * if no entry is present. Inserting will fail if a reserved entry is * present, even though loading from this index will return NULL. * * Context: Any context. Takes and releases the xa_lock. May sleep if * the @gfp flags permit. * Return: 0 if the store succeeded. -EBUSY if another entry was present. * -ENOMEM if memory could not be allocated. */ static inline int __must_check xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { int err; xa_lock(xa); err = __xa_insert(xa, index, entry, gfp); xa_unlock(xa); return err; } /** * xa_insert_bh() - Store this entry in the XArray unless another entry is * already present. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * Inserting a NULL entry will store a reserved entry (like xa_reserve()) * if no entry is present. Inserting will fail if a reserved entry is * present, even though loading from this index will return NULL. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. May sleep if the @gfp flags permit. * Return: 0 if the store succeeded. -EBUSY if another entry was present. * -ENOMEM if memory could not be allocated. */ static inline int __must_check xa_insert_bh(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { int err; xa_lock_bh(xa); err = __xa_insert(xa, index, entry, gfp); xa_unlock_bh(xa); return err; } /** * xa_insert_irq() - Store this entry in the XArray unless another entry is * already present. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * Inserting a NULL entry will store a reserved entry (like xa_reserve()) * if no entry is present. Inserting will fail if a reserved entry is * present, even though loading from this index will return NULL. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. May sleep if the @gfp flags permit. * Return: 0 if the store succeeded. -EBUSY if another entry was present. * -ENOMEM if memory could not be allocated. */ static inline int __must_check xa_insert_irq(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { int err; xa_lock_irq(xa); err = __xa_insert(xa, index, entry, gfp); xa_unlock_irq(xa); return err; } /** * xa_alloc() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * * Context: Any context. Takes and releases the xa_lock. May sleep if * the @gfp flags permit. * Return: 0 on success, -ENOMEM if memory could not be allocated or * -EBUSY if there are no free entries in @limit. */ static inline __must_check int xa_alloc(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, gfp_t gfp) { int err; xa_lock(xa); err = __xa_alloc(xa, id, entry, limit, gfp); xa_unlock(xa); return err; } /** * xa_alloc_bh() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. May sleep if the @gfp flags permit. * Return: 0 on success, -ENOMEM if memory could not be allocated or * -EBUSY if there are no free entries in @limit. */ static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, gfp_t gfp) { int err; xa_lock_bh(xa); err = __xa_alloc(xa, id, entry, limit, gfp); xa_unlock_bh(xa); return err; } /** * xa_alloc_irq() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. May sleep if the @gfp flags permit. * Return: 0 on success, -ENOMEM if memory could not be allocated or * -EBUSY if there are no free entries in @limit. */ static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, gfp_t gfp) { int err; xa_lock_irq(xa); err = __xa_alloc(xa, id, entry, limit, gfp); xa_unlock_irq(xa); return err; } /** * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of allocated ID. * @next: Pointer to next ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * The search for an empty entry will start at @next and will wrap * around if necessary. * * Context: Any context. Takes and releases the xa_lock. May sleep if * the @gfp flags permit. * Return: 0 if the allocation succeeded without wrapping. 1 if the * allocation succeeded after wrapping, -ENOMEM if memory could not be * allocated or -EBUSY if there are no free entries in @limit. */ static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, u32 *next, gfp_t gfp) { int err; xa_lock(xa); err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); xa_unlock(xa); return err; } /** * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of allocated ID. * @next: Pointer to next ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * The search for an empty entry will start at @next and will wrap * around if necessary. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. May sleep if the @gfp flags permit. * Return: 0 if the allocation succeeded without wrapping. 1 if the * allocation succeeded after wrapping, -ENOMEM if memory could not be * allocated or -EBUSY if there are no free entries in @limit. */ static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, u32 *next, gfp_t gfp) { int err; xa_lock_bh(xa); err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); xa_unlock_bh(xa); return err; } /** * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of allocated ID. * @next: Pointer to next ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * The search for an empty entry will start at @next and will wrap * around if necessary. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. May sleep if the @gfp flags permit. * Return: 0 if the allocation succeeded without wrapping. 1 if the * allocation succeeded after wrapping, -ENOMEM if memory could not be * allocated or -EBUSY if there are no free entries in @limit. */ static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, u32 *next, gfp_t gfp) { int err; xa_lock_irq(xa); err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); xa_unlock_irq(xa); return err; } /** * xa_reserve() - Reserve this index in the XArray. * @xa: XArray. * @index: Index into array. * @gfp: Memory allocation flags. * * Ensures there is somewhere to store an entry at @index in the array. * If there is already something stored at @index, this function does * nothing. If there was nothing there, the entry is marked as reserved. * Loading from a reserved entry returns a %NULL pointer. * * If you do not use the entry that you have reserved, call xa_release() * or xa_erase() to free any unnecessary memory. * * Context: Any context. Takes and releases the xa_lock. * May sleep if the @gfp flags permit. * Return: 0 if the reservation succeeded or -ENOMEM if it failed. */ static inline __must_check int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp) { return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp)); } /** * xa_reserve_bh() - Reserve this index in the XArray. * @xa: XArray. * @index: Index into array. * @gfp: Memory allocation flags. * * A softirq-disabling version of xa_reserve(). * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. * Return: 0 if the reservation succeeded or -ENOMEM if it failed. */ static inline __must_check int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp) { return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp)); } /** * xa_reserve_irq() - Reserve this index in the XArray. * @xa: XArray. * @index: Index into array. * @gfp: Memory allocation flags. * * An interrupt-disabling version of xa_reserve(). * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. * Return: 0 if the reservation succeeded or -ENOMEM if it failed. */ static inline __must_check int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp) { return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp)); } /** * xa_release() - Release a reserved entry. * @xa: XArray. * @index: Index of entry. * * After calling xa_reserve(), you can call this function to release the * reservation. If the entry at @index has been stored to, this function * will do nothing. */ static inline void xa_release(struct xarray *xa, unsigned long index) { xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0); } /* Everything below here is the Advanced API. Proceed with caution. */ /* * The xarray is constructed out of a set of 'chunks' of pointers. Choosing * the best chunk size requires some tradeoffs. A power of two recommends * itself so that we can walk the tree based purely on shifts and masks. * Generally, the larger the better; as the number of slots per level of the * tree increases, the less tall the tree needs to be. But that needs to be * balanced against the memory consumption of each node. On a 64-bit system, * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we * doubled the number of slots per node, we'd get only 3 nodes per 4kB page. */ #ifndef XA_CHUNK_SHIFT #define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) #endif #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT) #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1) #define XA_MAX_MARKS 3 #define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG) /* * @count is the count of every non-NULL element in the ->slots array * whether that is a value entry, a retry entry, a user pointer, * a sibling entry or a pointer to the next level of the tree. * @nr_values is the count of every element in ->slots which is * either a value entry or a sibling of a value entry. */ struct xa_node { unsigned char shift; /* Bits remaining in each slot */ unsigned char offset; /* Slot offset in parent */ unsigned char count; /* Total entry count */ unsigned char nr_values; /* Value entry count */ struct xa_node __rcu *parent; /* NULL at top of tree */ struct xarray *array; /* The array we belong to */ union { struct list_head private_list; /* For tree user */ struct rcu_head rcu_head; /* Used when freeing node */ }; void __rcu *slots[XA_CHUNK_SIZE]; union { unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS]; unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS]; }; }; void xa_dump(const struct xarray *); void xa_dump_node(const struct xa_node *); #ifdef XA_DEBUG #define XA_BUG_ON(xa, x) do { \ if (x) { \ xa_dump(xa); \ BUG(); \ } \ } while (0) #define XA_NODE_BUG_ON(node, x) do { \ if (x) { \ if (node) xa_dump_node(node); \ BUG(); \ } \ } while (0) #else #define XA_BUG_ON(xa, x) do { } while (0) #define XA_NODE_BUG_ON(node, x) do { } while (0) #endif /* Private */ static inline void *xa_head(const struct xarray *xa) { return rcu_dereference_check(xa->xa_head, lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline void *xa_head_locked(const struct xarray *xa) { return rcu_dereference_protected(xa->xa_head, lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline void *xa_entry(const struct xarray *xa, const struct xa_node *node, unsigned int offset) { XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); return rcu_dereference_check(node->slots[offset], lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline void *xa_entry_locked(const struct xarray *xa, const struct xa_node *node, unsigned int offset) { XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); return rcu_dereference_protected(node->slots[offset], lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline struct xa_node *xa_parent(const struct xarray *xa, const struct xa_node *node) { return rcu_dereference_check(node->parent, lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline struct xa_node *xa_parent_locked(const struct xarray *xa, const struct xa_node *node) { return rcu_dereference_protected(node->parent, lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline void *xa_mk_node(const struct xa_node *node) { return (void *)((unsigned long)node | 2); } /* Private */ static inline struct xa_node *xa_to_node(const void *entry) { return (struct xa_node *)((unsigned long)entry - 2); } /* Private */ static inline bool xa_is_node(const void *entry) { return xa_is_internal(entry) && (unsigned long)entry > 4096; } /* Private */ static inline void *xa_mk_sibling(unsigned int offset) { return xa_mk_internal(offset); } /* Private */ static inline unsigned long xa_to_sibling(const void *entry) { return xa_to_internal(entry); } /** * xa_is_sibling() - Is the entry a sibling entry? * @entry: Entry retrieved from the XArray * * Return: %true if the entry is a sibling entry. */ static inline bool xa_is_sibling(const void *entry) { return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) && (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1)); } #define XA_RETRY_ENTRY xa_mk_internal(256) /** * xa_is_retry() - Is the entry a retry entry? * @entry: Entry retrieved from the XArray * * Return: %true if the entry is a retry entry. */ static inline bool xa_is_retry(const void *entry) { return unlikely(entry == XA_RETRY_ENTRY); } /** * xa_is_advanced() - Is the entry only permitted for the advanced API? * @entry: Entry to be stored in the XArray. * * Return: %true if the entry cannot be stored by the normal API. */ static inline bool xa_is_advanced(const void *entry) { return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY); } /** * typedef xa_update_node_t - A callback function from the XArray. * @node: The node which is being processed * * This function is called every time the XArray updates the count of * present and value entries in a node. It allows advanced users to * maintain the private_list in the node. * * Context: The xa_lock is held and interrupts may be disabled. * Implementations should not drop the xa_lock, nor re-enable * interrupts. */ typedef void (*xa_update_node_t)(struct xa_node *node); void xa_delete_node(struct xa_node *, xa_update_node_t); /* * The xa_state is opaque to its users. It contains various different pieces * of state involved in the current operation on the XArray. It should be * declared on the stack and passed between the various internal routines. * The various elements in it should not be accessed directly, but only * through the provided accessor functions. The below documentation is for * the benefit of those working on the code, not for users of the XArray. * * @xa_node usually points to the xa_node containing the slot we're operating * on (and @xa_offset is the offset in the slots array). If there is a * single entry in the array at index 0, there are no allocated xa_nodes to * point to, and so we store %NULL in @xa_node. @xa_node is set to * the value %XAS_RESTART if the xa_state is not walked to the correct * position in the tree of nodes for this operation. If an error occurs * during an operation, it is set to an %XAS_ERROR value. If we run off the * end of the allocated nodes, it is set to %XAS_BOUNDS. */ struct xa_state { struct xarray *xa; unsigned long xa_index; unsigned char xa_shift; unsigned char xa_sibs; unsigned char xa_offset; unsigned char xa_pad; /* Helps gcc generate better code */ struct xa_node *xa_node; struct xa_node *xa_alloc; xa_update_node_t xa_update; }; /* * We encode errnos in the xas->xa_node. If an error has happened, we need to * drop the lock to fix it, and once we've done so the xa_state is invalid. */ #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL)) #define XAS_BOUNDS ((struct xa_node *)1UL) #define XAS_RESTART ((struct xa_node *)3UL) #define __XA_STATE(array, index, shift, sibs) { \ .xa = array, \ .xa_index = index, \ .xa_shift = shift, \ .xa_sibs = sibs, \ .xa_offset = 0, \ .xa_pad = 0, \ .xa_node = XAS_RESTART, \ .xa_alloc = NULL, \ .xa_update = NULL \ } /** * XA_STATE() - Declare an XArray operation state. * @name: Name of this operation state (usually xas). * @array: Array to operate on. * @index: Initial index of interest. * * Declare and initialise an xa_state on the stack. */ #define XA_STATE(name, array, index) \ struct xa_state name = __XA_STATE(array, index, 0, 0) /** * XA_STATE_ORDER() - Declare an XArray operation state. * @name: Name of this operation state (usually xas). * @array: Array to operate on. * @index: Initial index of interest. * @order: Order of entry. * * Declare and initialise an xa_state on the stack. This variant of * XA_STATE() allows you to specify the 'order' of the element you * want to operate on.` */ #define XA_STATE_ORDER(name, array, index, order) \ struct xa_state name = __XA_STATE(array, \ (index >> order) << order, \ order - (order % XA_CHUNK_SHIFT), \ (1U << (order % XA_CHUNK_SHIFT)) - 1) #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark)) #define xas_trylock(xas) xa_trylock((xas)->xa) #define xas_lock(xas) xa_lock((xas)->xa) #define xas_unlock(xas) xa_unlock((xas)->xa) #define xas_lock_bh(xas) xa_lock_bh((xas)->xa) #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa) #define xas_lock_irq(xas) xa_lock_irq((xas)->xa) #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa) #define xas_lock_irqsave(xas, flags) \ xa_lock_irqsave((xas)->xa, flags) #define xas_unlock_irqrestore(xas, flags) \ xa_unlock_irqrestore((xas)->xa, flags) /** * xas_error() - Return an errno stored in the xa_state. * @xas: XArray operation state. * * Return: 0 if no error has been noted. A negative errno if one has. */ static inline int xas_error(const struct xa_state *xas) { return xa_err(xas->xa_node); } /** * xas_set_err() - Note an error in the xa_state. * @xas: XArray operation state. * @err: Negative error number. * * Only call this function with a negative @err; zero or positive errors * will probably not behave the way you think they should. If you want * to clear the error from an xa_state, use xas_reset(). */ static inline void xas_set_err(struct xa_state *xas, long err) { xas->xa_node = XA_ERROR(err); } /** * xas_invalid() - Is the xas in a retry or error state? * @xas: XArray operation state. * * Return: %true if the xas cannot be used for operations. */ static inline bool xas_invalid(const struct xa_state *xas) { return (unsigned long)xas->xa_node & 3; } /** * xas_valid() - Is the xas a valid cursor into the array? * @xas: XArray operation state. * * Return: %true if the xas can be used for operations. */ static inline bool xas_valid(const struct xa_state *xas) { return !xas_invalid(xas); } /** * xas_is_node() - Does the xas point to a node? * @xas: XArray operation state. * * Return: %true if the xas currently references a node. */ static inline bool xas_is_node(const struct xa_state *xas) { return xas_valid(xas) && xas->xa_node; } /* True if the pointer is something other than a node */ static inline bool xas_not_node(struct xa_node *node) { return ((unsigned long)node & 3) || !node; } /* True if the node represents RESTART or an error */ static inline bool xas_frozen(struct xa_node *node) { return (unsigned long)node & 2; } /* True if the node represents head-of-tree, RESTART or BOUNDS */ static inline bool xas_top(struct xa_node *node) { return node <= XAS_RESTART; } /** * xas_reset() - Reset an XArray operation state. * @xas: XArray operation state. * * Resets the error or walk state of the @xas so future walks of the * array will start from the root. Use this if you have dropped the * xarray lock and want to reuse the xa_state. * * Context: Any context. */ static inline void xas_reset(struct xa_state *xas) { xas->xa_node = XAS_RESTART; } /** * xas_retry() - Retry the operation if appropriate. * @xas: XArray operation state. * @entry: Entry from xarray. * * The advanced functions may sometimes return an internal entry, such as * a retry entry or a zero entry. This function sets up the @xas to restart * the walk from the head of the array if needed. * * Context: Any context. * Return: true if the operation needs to be retried. */ static inline bool xas_retry(struct xa_state *xas, const void *entry) { if (xa_is_zero(entry)) return true; if (!xa_is_retry(entry)) return false; xas_reset(xas); return true; } void *xas_load(struct xa_state *); void *xas_store(struct xa_state *, void *entry); void *xas_find(struct xa_state *, unsigned long max); void *xas_find_conflict(struct xa_state *); bool xas_get_mark(const struct xa_state *, xa_mark_t); void xas_set_mark(const struct xa_state *, xa_mark_t); void xas_clear_mark(const struct xa_state *, xa_mark_t); void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t); void xas_init_marks(const struct xa_state *); bool xas_nomem(struct xa_state *, gfp_t); void xas_pause(struct xa_state *); void xas_create_range(struct xa_state *); #ifdef CONFIG_XARRAY_MULTI int xa_get_order(struct xarray *, unsigned long index); void xas_split(struct xa_state *, void *entry, unsigned int order); void xas_split_alloc(struct xa_state *, void *entry, unsigned int order, gfp_t); #else static inline int xa_get_order(struct xarray *xa, unsigned long index) { return 0; } static inline void xas_split(struct xa_state *xas, void *entry, unsigned int order) { xas_store(xas, entry); } static inline void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, gfp_t gfp) { } #endif /** * xas_reload() - Refetch an entry from the xarray. * @xas: XArray operation state. * * Use this function to check that a previously loaded entry still has * the same value. This is useful for the lockless pagecache lookup where * we walk the array with only the RCU lock to protect us, lock the page, * then check that the page hasn't moved since we looked it up. * * The caller guarantees that @xas is still valid. If it may be in an * error or restart state, call xas_load() instead. * * Return: The entry at this location in the xarray. */ static inline void *xas_reload(struct xa_state *xas) { struct xa_node *node = xas->xa_node; void *entry; char offset; if (!node) return xa_head(xas->xa); if (IS_ENABLED(CONFIG_XARRAY_MULTI)) { offset = (xas->xa_index >> node->shift) & XA_CHUNK_MASK; entry = xa_entry(xas->xa, node, offset); if (!xa_is_sibling(entry)) return entry; offset = xa_to_sibling(entry); } else { offset = xas->xa_offset; } return xa_entry(xas->xa, node, offset); } /** * xas_set() - Set up XArray operation state for a different index. * @xas: XArray operation state. * @index: New index into the XArray. * * Move the operation state to refer to a different index. This will * have the effect of starting a walk from the top; see xas_next() * to move to an adjacent index. */ static inline void xas_set(struct xa_state *xas, unsigned long index) { xas->xa_index = index; xas->xa_node = XAS_RESTART; } /** * xas_set_order() - Set up XArray operation state for a multislot entry. * @xas: XArray operation state. * @index: Target of the operation. * @order: Entry occupies 2^@order indices. */ static inline void xas_set_order(struct xa_state *xas, unsigned long index, unsigned int order) { #ifdef CONFIG_XARRAY_MULTI xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0; xas->xa_shift = order - (order % XA_CHUNK_SHIFT); xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; xas->xa_node = XAS_RESTART; #else BUG_ON(order > 0); xas_set(xas, index); #endif } /** * xas_set_update() - Set up XArray operation state for a callback. * @xas: XArray operation state. * @update: Function to call when updating a node. * * The XArray can notify a caller after it has updated an xa_node. * This is advanced functionality and is only needed by the page cache. */ static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update) { xas->xa_update = update; } /** * xas_next_entry() - Advance iterator to next present entry. * @xas: XArray operation state. * @max: Highest index to return. * * xas_next_entry() is an inline function to optimise xarray traversal for * speed. It is equivalent to calling xas_find(), and will call xas_find() * for all the hard cases. * * Return: The next present entry after the one currently referred to by @xas. */ static inline void *xas_next_entry(struct xa_state *xas, unsigned long max) { struct xa_node *node = xas->xa_node; void *entry; if (unlikely(xas_not_node(node) || node->shift || xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK))) return xas_find(xas, max); do { if (unlikely(xas->xa_index >= max)) return xas_find(xas, max); if (unlikely(xas->xa_offset == XA_CHUNK_MASK)) return xas_find(xas, max); entry = xa_entry(xas->xa, node, xas->xa_offset + 1); if (unlikely(xa_is_internal(entry))) return xas_find(xas, max); xas->xa_offset++; xas->xa_index++; } while (!entry); return entry; } /* Private */ static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance, xa_mark_t mark) { unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark]; unsigned int offset = xas->xa_offset; if (advance) offset++; if (XA_CHUNK_SIZE == BITS_PER_LONG) { if (offset < XA_CHUNK_SIZE) { unsigned long data = *addr & (~0UL << offset); if (data) return __ffs(data); } return XA_CHUNK_SIZE; } return find_next_bit(addr, XA_CHUNK_SIZE, offset); } /** * xas_next_marked() - Advance iterator to next marked entry. * @xas: XArray operation state. * @max: Highest index to return. * @mark: Mark to search for. * * xas_next_marked() is an inline function to optimise xarray traversal for * speed. It is equivalent to calling xas_find_marked(), and will call * xas_find_marked() for all the hard cases. * * Return: The next marked entry after the one currently referred to by @xas. */ static inline void *xas_next_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) { struct xa_node *node = xas->xa_node; void *entry; unsigned int offset; if (unlikely(xas_not_node(node) || node->shift)) return xas_find_marked(xas, max, mark); offset = xas_find_chunk(xas, true, mark); xas->xa_offset = offset; xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset; if (xas->xa_index > max) return NULL; if (offset == XA_CHUNK_SIZE) return xas_find_marked(xas, max, mark); entry = xa_entry(xas->xa, node, offset); if (!entry) return xas_find_marked(xas, max, mark); return entry; } /* * If iterating while holding a lock, drop the lock and reschedule * every %XA_CHECK_SCHED loops. */ enum { XA_CHECK_SCHED = 4096, }; /** * xas_for_each() - Iterate over a range of an XArray. * @xas: XArray operation state. * @entry: Entry retrieved from the array. * @max: Maximum index to retrieve from array. * * The loop body will be executed for each entry present in the xarray * between the current xas position and @max. @entry will be set to * the entry retrieved from the xarray. It is safe to delete entries * from the array in the loop body. You should hold either the RCU lock * or the xa_lock while iterating. If you need to drop the lock, call * xas_pause() first. */ #define xas_for_each(xas, entry, max) \ for (entry = xas_find(xas, max); entry; \ entry = xas_next_entry(xas, max)) /** * xas_for_each_marked() - Iterate over a range of an XArray. * @xas: XArray operation state. * @entry: Entry retrieved from the array. * @max: Maximum index to retrieve from array. * @mark: Mark to search for. * * The loop body will be executed for each marked entry in the xarray * between the current xas position and @max. @entry will be set to * the entry retrieved from the xarray. It is safe to delete entries * from the array in the loop body. You should hold either the RCU lock * or the xa_lock while iterating. If you need to drop the lock, call * xas_pause() first. */ #define xas_for_each_marked(xas, entry, max, mark) \ for (entry = xas_find_marked(xas, max, mark); entry; \ entry = xas_next_marked(xas, max, mark)) /** * xas_for_each_conflict() - Iterate over a range of an XArray. * @xas: XArray operation state. * @entry: Entry retrieved from the array. * * The loop body will be executed for each entry in the XArray that * lies within the range specified by @xas. If the loop terminates * normally, @entry will be %NULL. The user may break out of the loop, * which will leave @entry set to the conflicting entry. The caller * may also call xa_set_err() to exit the loop while setting an error * to record the reason. */ #define xas_for_each_conflict(xas, entry) \ while ((entry = xas_find_conflict(xas))) void *__xas_next(struct xa_state *); void *__xas_prev(struct xa_state *); /** * xas_prev() - Move iterator to previous index. * @xas: XArray operation state. * * If the @xas was in an error state, it will remain in an error state * and this function will return %NULL. If the @xas has never been walked, * it will have the effect of calling xas_load(). Otherwise one will be * subtracted from the index and the state will be walked to the correct * location in the array for the next operation. * * If the iterator was referencing index 0, this function wraps * around to %ULONG_MAX. * * Return: The entry at the new index. This may be %NULL or an internal * entry. */ static inline void *xas_prev(struct xa_state *xas) { struct xa_node *node = xas->xa_node; if (unlikely(xas_not_node(node) || node->shift || xas->xa_offset == 0)) return __xas_prev(xas); xas->xa_index--; xas->xa_offset--; return xa_entry(xas->xa, node, xas->xa_offset); } /** * xas_next() - Move state to next index. * @xas: XArray operation state. * * If the @xas was in an error state, it will remain in an error state * and this function will return %NULL. If the @xas has never been walked, * it will have the effect of calling xas_load(). Otherwise one will be * added to the index and the state will be walked to the correct * location in the array for the next operation. * * If the iterator was referencing index %ULONG_MAX, this function wraps * around to 0. * * Return: The entry at the new index. This may be %NULL or an internal * entry. */ static inline void *xas_next(struct xa_state *xas) { struct xa_node *node = xas->xa_node; if (unlikely(xas_not_node(node) || node->shift || xas->xa_offset == XA_CHUNK_MASK)) return __xas_next(xas); xas->xa_index++; xas->xa_offset++; return xa_entry(xas->xa, node, xas->xa_offset); } #endif /* _LINUX_XARRAY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_RTNH_H #define __NET_RTNH_H #include <linux/rtnetlink.h> #include <net/netlink.h> static inline int rtnh_ok(const struct rtnexthop *rtnh, int remaining) { return remaining >= (int)sizeof(*rtnh) && rtnh->rtnh_len >= sizeof(*rtnh) && rtnh->rtnh_len <= remaining; } static inline struct rtnexthop *rtnh_next(const struct rtnexthop *rtnh, int *remaining) { int totlen = NLA_ALIGN(rtnh->rtnh_len); *remaining -= totlen; return (struct rtnexthop *) ((char *) rtnh + totlen); } static inline struct nlattr *rtnh_attrs(const struct rtnexthop *rtnh) { return (struct nlattr *) ((char *) rtnh + NLA_ALIGN(sizeof(*rtnh))); } static inline int rtnh_attrlen(const struct rtnexthop *rtnh) { return rtnh->rtnh_len - NLA_ALIGN(sizeof(*rtnh)); } #endif
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1995 Linus Torvalds * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar */ #include <linux/sched.h> /* test_thread_flag(), ... */ #include <linux/sched/task_stack.h> /* task_stack_*(), ... */ #include <linux/kdebug.h> /* oops_begin/end, ... */ #include <linux/extable.h> /* search_exception_tables */ #include <linux/memblock.h> /* max_low_pfn */ #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ #include <linux/mmiotrace.h> /* kmmio_handler, ... */ #include <linux/perf_event.h> /* perf_sw_event */ #include <linux/hugetlb.h> /* hstate_index_to_shift */ #include <linux/prefetch.h> /* prefetchw */ #include <linux/context_tracking.h> /* exception_enter(), ... */ #include <linux/uaccess.h> /* faulthandler_disabled() */ #include <linux/efi.h> /* efi_recover_from_page_fault()*/ #include <linux/mm_types.h> #include <asm/cpufeature.h> /* boot_cpu_has, ... */ #include <asm/traps.h> /* dotraplinkage, ... */ #include <asm/fixmap.h> /* VSYSCALL_ADDR */ #include <asm/vsyscall.h> /* emulate_vsyscall */ #include <asm/vm86.h> /* struct vm86 */ #include <asm/mmu_context.h> /* vma_pkey() */ #include <asm/efi.h> /* efi_recover_from_page_fault()*/ #include <asm/desc.h> /* store_idt(), ... */ #include <asm/cpu_entry_area.h> /* exception stack */ #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */ #include <asm/kvm_para.h> /* kvm_handle_async_pf */ #define CREATE_TRACE_POINTS #include <asm/trace/exceptions.h> /* * Returns 0 if mmiotrace is disabled, or if the fault is not * handled by mmiotrace: */ static nokprobe_inline int kmmio_fault(struct pt_regs *regs, unsigned long addr) { if (unlikely(is_kmmio_active())) if (kmmio_handler(regs, addr) == 1) return -1; return 0; } /* * Prefetch quirks: * * 32-bit mode: * * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. * Check that here and ignore it. This is AMD erratum #91. * * 64-bit mode: * * Sometimes the CPU reports invalid exceptions on prefetch. * Check that here and ignore it. * * Opcode checker based on code by Richard Brunner. */ static inline int check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, unsigned char opcode, int *prefetch) { unsigned char instr_hi = opcode & 0xf0; unsigned char instr_lo = opcode & 0x0f; switch (instr_hi) { case 0x20: case 0x30: /* * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. * In X86_64 long mode, the CPU will signal invalid * opcode if some of these prefixes are present so * X86_64 will never get here anyway */ return ((instr_lo & 7) == 0x6); #ifdef CONFIG_X86_64 case 0x40: /* * In 64-bit mode 0x40..0x4F are valid REX prefixes */ return (!user_mode(regs) || user_64bit_mode(regs)); #endif case 0x60: /* 0x64 thru 0x67 are valid prefixes in all modes. */ return (instr_lo & 0xC) == 0x4; case 0xF0: /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ return !instr_lo || (instr_lo>>1) == 1; case 0x00: /* Prefetch instruction is 0x0F0D or 0x0F18 */ if (get_kernel_nofault(opcode, instr)) return 0; *prefetch = (instr_lo == 0xF) && (opcode == 0x0D || opcode == 0x18); return 0; default: return 0; } } static int is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) { unsigned char *max_instr; unsigned char *instr; int prefetch = 0; /* * If it was a exec (instruction fetch) fault on NX page, then * do not ignore the fault: */ if (error_code & X86_PF_INSTR) return 0; instr = (void *)convert_ip_to_linear(current, regs); max_instr = instr + 15; /* * This code has historically always bailed out if IP points to a * not-present page (e.g. due to a race). No one has ever * complained about this. */ pagefault_disable(); while (instr < max_instr) { unsigned char opcode; if (user_mode(regs)) { if (get_user(opcode, instr)) break; } else { if (get_kernel_nofault(opcode, instr)) break; } instr++; if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) break; } pagefault_enable(); return prefetch; } DEFINE_SPINLOCK(pgd_lock); LIST_HEAD(pgd_list); #ifdef CONFIG_X86_32 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) { unsigned index = pgd_index(address); pgd_t *pgd_k; p4d_t *p4d, *p4d_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; pgd += index; pgd_k = init_mm.pgd + index; if (!pgd_present(*pgd_k)) return NULL; /* * set_pgd(pgd, *pgd_k); here would be useless on PAE * and redundant with the set_pmd() on non-PAE. As would * set_p4d/set_pud. */ p4d = p4d_offset(pgd, address); p4d_k = p4d_offset(pgd_k, address); if (!p4d_present(*p4d_k)) return NULL; pud = pud_offset(p4d, address); pud_k = pud_offset(p4d_k, address); if (!pud_present(*pud_k)) return NULL; pmd = pmd_offset(pud, address); pmd_k = pmd_offset(pud_k, address); if (pmd_present(*pmd) != pmd_present(*pmd_k)) set_pmd(pmd, *pmd_k); if (!pmd_present(*pmd_k)) return NULL; else BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k)); return pmd_k; } /* * Handle a fault on the vmalloc or module mapping area * * This is needed because there is a race condition between the time * when the vmalloc mapping code updates the PMD to the point in time * where it synchronizes this update with the other page-tables in the * system. * * In this race window another thread/CPU can map an area on the same * PMD, finds it already present and does not synchronize it with the * rest of the system yet. As a result v[mz]alloc might return areas * which are not mapped in every page-table in the system, causing an * unhandled page-fault when they are accessed. */ static noinline int vmalloc_fault(unsigned long address) { unsigned long pgd_paddr; pmd_t *pmd_k; pte_t *pte_k; /* Make sure we are in vmalloc area: */ if (!(address >= VMALLOC_START && address < VMALLOC_END)) return -1; /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Do _not_ use "current" here. We might be inside * an interrupt in the middle of a task switch.. */ pgd_paddr = read_cr3_pa(); pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); if (!pmd_k) return -1; if (pmd_large(*pmd_k)) return 0; pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) return -1; return 0; } NOKPROBE_SYMBOL(vmalloc_fault); void arch_sync_kernel_mappings(unsigned long start, unsigned long end) { unsigned long addr; for (addr = start & PMD_MASK; addr >= TASK_SIZE_MAX && addr < VMALLOC_END; addr += PMD_SIZE) { struct page *page; spin_lock(&pgd_lock); list_for_each_entry(page, &pgd_list, lru) { spinlock_t *pgt_lock; /* the pgt_lock only for Xen */ pgt_lock = &pgd_page_get_mm(page)->page_table_lock; spin_lock(pgt_lock); vmalloc_sync_one(page_address(page), addr); spin_unlock(pgt_lock); } spin_unlock(&pgd_lock); } } /* * Did it hit the DOS screen memory VA from vm86 mode? */ static inline void check_v8086_mode(struct pt_regs *regs, unsigned long address, struct task_struct *tsk) { #ifdef CONFIG_VM86 unsigned long bit; if (!v8086_mode(regs) || !tsk->thread.vm86) return; bit = (address - 0xA0000) >> PAGE_SHIFT; if (bit < 32) tsk->thread.vm86->screen_bitmap |= 1 << bit; #endif } static bool low_pfn(unsigned long pfn) { return pfn < max_low_pfn; } static void dump_pagetable(unsigned long address) { pgd_t *base = __va(read_cr3_pa()); pgd_t *pgd = &base[pgd_index(address)]; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; #ifdef CONFIG_X86_PAE pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) goto out; #define pr_pde pr_cont #else #define pr_pde pr_info #endif p4d = p4d_offset(pgd, address); pud = pud_offset(p4d, address); pmd = pmd_offset(pud, address); pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); #undef pr_pde /* * We must not directly access the pte in the highpte * case if the page table is located in highmem. * And let's rather not kmap-atomic the pte, just in case * it's allocated already: */ if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) goto out; pte = pte_offset_kernel(pmd, address); pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); out: pr_cont("\n"); } #else /* CONFIG_X86_64: */ #ifdef CONFIG_CPU_SUP_AMD static const char errata93_warning[] = KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" "******* Working around it, but it may cause SEGVs or burn power.\n" "******* Please consider a BIOS update.\n" "******* Disabling USB legacy in the BIOS may also help.\n"; #endif /* * No vm86 mode in 64-bit mode: */ static inline void check_v8086_mode(struct pt_regs *regs, unsigned long address, struct task_struct *tsk) { } static int bad_address(void *p) { unsigned long dummy; return get_kernel_nofault(dummy, (unsigned long *)p); } static void dump_pagetable(unsigned long address) { pgd_t *base = __va(read_cr3_pa()); pgd_t *pgd = base + pgd_index(address); p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; if (bad_address(pgd)) goto bad; pr_info("PGD %lx ", pgd_val(*pgd)); if (!pgd_present(*pgd)) goto out; p4d = p4d_offset(pgd, address); if (bad_address(p4d)) goto bad; pr_cont("P4D %lx ", p4d_val(*p4d)); if (!p4d_present(*p4d) || p4d_large(*p4d)) goto out; pud = pud_offset(p4d, address); if (bad_address(pud)) goto bad; pr_cont("PUD %lx ", pud_val(*pud)); if (!pud_present(*pud) || pud_large(*pud)) goto out; pmd = pmd_offset(pud, address); if (bad_address(pmd)) goto bad; pr_cont("PMD %lx ", pmd_val(*pmd)); if (!pmd_present(*pmd) || pmd_large(*pmd)) goto out; pte = pte_offset_kernel(pmd, address); if (bad_address(pte)) goto bad; pr_cont("PTE %lx", pte_val(*pte)); out: pr_cont("\n"); return; bad: pr_info("BAD\n"); } #endif /* CONFIG_X86_64 */ /* * Workaround for K8 erratum #93 & buggy BIOS. * * BIOS SMM functions are required to use a specific workaround * to avoid corruption of the 64bit RIP register on C stepping K8. * * A lot of BIOS that didn't get tested properly miss this. * * The OS sees this as a page fault with the upper 32bits of RIP cleared. * Try to work around it here. * * Note we only handle faults in kernel here. * Does nothing on 32-bit. */ static int is_errata93(struct pt_regs *regs, unsigned long address) { #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD || boot_cpu_data.x86 != 0xf) return 0; if (address != regs->ip) return 0; if ((address >> 32) != 0) return 0; address |= 0xffffffffUL << 32; if ((address >= (u64)_stext && address <= (u64)_etext) || (address >= MODULES_VADDR && address <= MODULES_END)) { printk_once(errata93_warning); regs->ip = address; return 1; } #endif return 0; } /* * Work around K8 erratum #100 K8 in compat mode occasionally jumps * to illegal addresses >4GB. * * We catch this in the page fault handler because these addresses * are not reachable. Just detect this case and return. Any code * segment in LDT is compatibility mode. */ static int is_errata100(struct pt_regs *regs, unsigned long address) { #ifdef CONFIG_X86_64 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) return 1; #endif return 0; } /* Pentium F0 0F C7 C8 bug workaround: */ static int is_f00f_bug(struct pt_regs *regs, unsigned long address) { #ifdef CONFIG_X86_F00F_BUG if (boot_cpu_has_bug(X86_BUG_F00F) && idt_is_f00f_address(address)) { handle_invalid_op(regs); return 1; } #endif return 0; } static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) { u32 offset = (index >> 3) * sizeof(struct desc_struct); unsigned long addr; struct ldttss_desc desc; if (index == 0) { pr_alert("%s: NULL\n", name); return; } if (offset + sizeof(struct ldttss_desc) >= gdt->size) { pr_alert("%s: 0x%hx -- out of bounds\n", name, index); return; } if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset), sizeof(struct ldttss_desc))) { pr_alert("%s: 0x%hx -- GDT entry is not readable\n", name, index); return; } addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24); #ifdef CONFIG_X86_64 addr |= ((u64)desc.base3 << 32); #endif pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n", name, index, addr, (desc.limit0 | (desc.limit1 << 16))); } static void show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) { if (!oops_may_print()) return; if (error_code & X86_PF_INSTR) { unsigned int level; pgd_t *pgd; pte_t *pte; pgd = __va(read_cr3_pa()); pgd += pgd_index(address); pte = lookup_address_in_pgd(pgd, address, &level); if (pte && pte_present(*pte) && !pte_exec(*pte)) pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", from_kuid(&init_user_ns, current_uid())); if (pte && pte_present(*pte) && pte_exec(*pte) && (pgd_flags(*pgd) & _PAGE_USER) && (__read_cr4() & X86_CR4_SMEP)) pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n", from_kuid(&init_user_ns, current_uid())); } if (address < PAGE_SIZE && !user_mode(regs)) pr_alert("BUG: kernel NULL pointer dereference, address: %px\n", (void *)address); else pr_alert("BUG: unable to handle page fault for address: %px\n", (void *)address); pr_alert("#PF: %s %s in %s mode\n", (error_code & X86_PF_USER) ? "user" : "supervisor", (error_code & X86_PF_INSTR) ? "instruction fetch" : (error_code & X86_PF_WRITE) ? "write access" : "read access", user_mode(regs) ? "user" : "kernel"); pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code, !(error_code & X86_PF_PROT) ? "not-present page" : (error_code & X86_PF_RSVD) ? "reserved bit violation" : (error_code & X86_PF_PK) ? "protection keys violation" : "permissions violation"); if (!(error_code & X86_PF_USER) && user_mode(regs)) { struct desc_ptr idt, gdt; u16 ldtr, tr; /* * This can happen for quite a few reasons. The more obvious * ones are faults accessing the GDT, or LDT. Perhaps * surprisingly, if the CPU tries to deliver a benign or * contributory exception from user code and gets a page fault * during delivery, the page fault can be delivered as though * it originated directly from user code. This could happen * due to wrong permissions on the IDT, GDT, LDT, TSS, or * kernel or IST stack. */ store_idt(&idt); /* Usable even on Xen PV -- it's just slow. */ native_store_gdt(&gdt); pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", idt.address, idt.size, gdt.address, gdt.size); store_ldt(ldtr); show_ldttss(&gdt, "LDTR", ldtr); store_tr(tr); show_ldttss(&gdt, "TR", tr); } dump_pagetable(address); } static noinline void pgtable_bad(struct pt_regs *regs, unsigned long error_code, unsigned long address) { struct task_struct *tsk; unsigned long flags; int sig; flags = oops_begin(); tsk = current; sig = SIGKILL; printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", tsk->comm, address); dump_pagetable(address); if (__die("Bad pagetable", regs, error_code)) sig = 0; oops_end(flags, regs, sig); } static void set_signal_archinfo(unsigned long address, unsigned long error_code) { struct task_struct *tsk = current; /* * To avoid leaking information about the kernel page * table layout, pretend that user-mode accesses to * kernel addresses are always protection faults. * * NB: This means that failed vsyscalls with vsyscall=none * will have the PROT bit. This doesn't leak any * information and does not appear to cause any problems. */ if (address >= TASK_SIZE_MAX) error_code |= X86_PF_PROT; tsk->thread.trap_nr = X86_TRAP_PF; tsk->thread.error_code = error_code | X86_PF_USER; tsk->thread.cr2 = address; } static noinline void no_context(struct pt_regs *regs, unsigned long error_code, unsigned long address, int signal, int si_code) { struct task_struct *tsk = current; unsigned long flags; int sig; if (user_mode(regs)) { /* * This is an implicit supervisor-mode access from user * mode. Bypass all the kernel-mode recovery code and just * OOPS. */ goto oops; } /* Are we prepared to handle this kernel fault? */ if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) { /* * Any interrupt that takes a fault gets the fixup. This makes * the below recursive fault logic only apply to a faults from * task context. */ if (in_interrupt()) return; /* * Per the above we're !in_interrupt(), aka. task context. * * In this case we need to make sure we're not recursively * faulting through the emulate_vsyscall() logic. */ if (current->thread.sig_on_uaccess_err && signal) { set_signal_archinfo(address, error_code); /* XXX: hwpoison faults will set the wrong code. */ force_sig_fault(signal, si_code, (void __user *)address); } /* * Barring that, we can do the fixup and be happy. */ return; } #ifdef CONFIG_VMAP_STACK /* * Stack overflow? During boot, we can fault near the initial * stack in the direct map, but that's not an overflow -- check * that we're in vmalloc space to avoid this. */ if (is_vmalloc_addr((void *)address) && (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) || address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) { unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *); /* * We're likely to be running with very little stack space * left. It's plausible that we'd hit this condition but * double-fault even before we get this far, in which case * we're fine: the double-fault handler will deal with it. * * We don't want to make it all the way into the oops code * and then double-fault, though, because we're likely to * break the console driver and lose most of the stack dump. */ asm volatile ("movq %[stack], %%rsp\n\t" "call handle_stack_overflow\n\t" "1: jmp 1b" : ASM_CALL_CONSTRAINT : "D" ("kernel stack overflow (page fault)"), "S" (regs), "d" (address), [stack] "rm" (stack)); unreachable(); } #endif /* * 32-bit: * * Valid to do another page fault here, because if this fault * had been triggered by is_prefetch fixup_exception would have * handled it. * * 64-bit: * * Hall of shame of CPU/BIOS bugs. */ if (is_prefetch(regs, error_code, address)) return; if (is_errata93(regs, address)) return; /* * Buggy firmware could access regions which might page fault, try to * recover from such faults. */ if (IS_ENABLED(CONFIG_EFI)) efi_recover_from_page_fault(address); oops: /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice: */ flags = oops_begin(); show_fault_oops(regs, error_code, address); if (task_stack_end_corrupted(tsk)) printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); sig = SIGKILL; if (__die("Oops", regs, error_code)) sig = 0; /* Executive summary in case the body of the oops scrolled away */ printk(KERN_DEFAULT "CR2: %016lx\n", address); oops_end(flags, regs, sig); } /* * Print out info about fatal segfaults, if the show_unhandled_signals * sysctl is set: */ static inline void show_signal_msg(struct pt_regs *regs, unsigned long error_code, unsigned long address, struct task_struct *tsk) { const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; if (!unhandled_signal(tsk, SIGSEGV)) return; if (!printk_ratelimit()) return; printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", loglvl, tsk->comm, task_pid_nr(tsk), address, (void *)regs->ip, (void *)regs->sp, error_code); print_vma_addr(KERN_CONT " in ", regs->ip); printk(KERN_CONT "\n"); show_opcodes(regs, loglvl); } /* * The (legacy) vsyscall page is the long page in the kernel portion * of the address space that has user-accessible permissions. */ static bool is_vsyscall_vaddr(unsigned long vaddr) { return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR); } static void __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, unsigned long address, u32 pkey, int si_code) { struct task_struct *tsk = current; /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs) && (error_code & X86_PF_USER)) { /* * It's possible to have interrupts off here: */ local_irq_enable(); /* * Valid to do another page fault here because this one came * from user space: */ if (is_prefetch(regs, error_code, address)) return; if (is_errata100(regs, address)) return; /* * To avoid leaking information about the kernel page table * layout, pretend that user-mode accesses to kernel addresses * are always protection faults. */ if (address >= TASK_SIZE_MAX) error_code |= X86_PF_PROT; if (likely(show_unhandled_signals)) show_signal_msg(regs, error_code, address, tsk); set_signal_archinfo(address, error_code); if (si_code == SEGV_PKUERR) force_sig_pkuerr((void __user *)address, pkey); force_sig_fault(SIGSEGV, si_code, (void __user *)address); local_irq_disable(); return; } if (is_f00f_bug(regs, address)) return; no_context(regs, error_code, address, SIGSEGV, si_code); } static noinline void bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, unsigned long address) { __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR); } static void __bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address, u32 pkey, int si_code) { struct mm_struct *mm = current->mm; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ mmap_read_unlock(mm); __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); } static noinline void bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) { __bad_area(regs, error_code, address, 0, SEGV_MAPERR); } static inline bool bad_area_access_from_pkeys(unsigned long error_code, struct vm_area_struct *vma) { /* This code is always called on the current mm */ bool foreign = false; if (!boot_cpu_has(X86_FEATURE_OSPKE)) return false; if (error_code & X86_PF_PK) return true; /* this checks permission keys on the VMA: */ if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), (error_code & X86_PF_INSTR), foreign)) return true; return false; } static noinline void bad_area_access_error(struct pt_regs *regs, unsigned long error_code, unsigned long address, struct vm_area_struct *vma) { /* * This OSPKE check is not strictly necessary at runtime. * But, doing it this way allows compiler optimizations * if pkeys are compiled out. */ if (bad_area_access_from_pkeys(error_code, vma)) { /* * A protection key fault means that the PKRU value did not allow * access to some PTE. Userspace can figure out what PKRU was * from the XSAVE state. This function captures the pkey from * the vma and passes it to userspace so userspace can discover * which protection key was set on the PTE. * * If we get here, we know that the hardware signaled a X86_PF_PK * fault and that there was a VMA once we got in the fault * handler. It does *not* guarantee that the VMA we find here * was the one that we faulted on. * * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); * 2. T1 : set PKRU to deny access to pkey=4, touches page * 3. T1 : faults... * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); * 5. T1 : enters fault handler, takes mmap_lock, etc... * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really * faulted on a pte with its pkey=4. */ u32 pkey = vma_pkey(vma); __bad_area(regs, error_code, address, pkey, SEGV_PKUERR); } else { __bad_area(regs, error_code, address, 0, SEGV_ACCERR); } } static void do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, vm_fault_t fault) { /* Kernel mode? Handle exceptions or die: */ if (!(error_code & X86_PF_USER)) { no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); return; } /* User-space => ok to do another page fault: */ if (is_prefetch(regs, error_code, address)) return; set_signal_archinfo(address, error_code); #ifdef CONFIG_MEMORY_FAILURE if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { struct task_struct *tsk = current; unsigned lsb = 0; pr_err( "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", tsk->comm, tsk->pid, address); if (fault & VM_FAULT_HWPOISON_LARGE) lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); if (fault & VM_FAULT_HWPOISON) lsb = PAGE_SHIFT; force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); return; } #endif force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); } static noinline void mm_fault_error(struct pt_regs *regs, unsigned long error_code, unsigned long address, vm_fault_t fault) { if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) { no_context(regs, error_code, address, 0, 0); return; } if (fault & VM_FAULT_OOM) { /* Kernel mode? Handle exceptions or die: */ if (!(error_code & X86_PF_USER)) { no_context(regs, error_code, address, SIGSEGV, SEGV_MAPERR); return; } /* * We ran out of memory, call the OOM killer, and return the * userspace (which will retry the fault, or kill us if we got * oom-killed): */ pagefault_out_of_memory(); } else { if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| VM_FAULT_HWPOISON_LARGE)) do_sigbus(regs, error_code, address, fault); else if (fault & VM_FAULT_SIGSEGV) bad_area_nosemaphore(regs, error_code, address); else BUG(); } } static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte) { if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) return 0; if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) return 0; return 1; } /* * Handle a spurious fault caused by a stale TLB entry. * * This allows us to lazily refresh the TLB when increasing the * permissions of a kernel page (RO -> RW or NX -> X). Doing it * eagerly is very expensive since that implies doing a full * cross-processor TLB flush, even if no stale TLB entries exist * on other processors. * * Spurious faults may only occur if the TLB contains an entry with * fewer permission than the page table entry. Non-present (P = 0) * and reserved bit (R = 1) faults are never spurious. * * There are no security implications to leaving a stale TLB when * increasing the permissions on a page. * * Returns non-zero if a spurious fault was handled, zero otherwise. * * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 * (Optional Invalidation). */ static noinline int spurious_kernel_fault(unsigned long error_code, unsigned long address) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; int ret; /* * Only writes to RO or instruction fetches from NX may cause * spurious faults. * * These could be from user or supervisor accesses but the TLB * is only lazily flushed after a kernel mapping protection * change, so user accesses are not expected to cause spurious * faults. */ if (error_code != (X86_PF_WRITE | X86_PF_PROT) && error_code != (X86_PF_INSTR | X86_PF_PROT)) return 0; pgd = init_mm.pgd + pgd_index(address); if (!pgd_present(*pgd)) return 0; p4d = p4d_offset(pgd, address); if (!p4d_present(*p4d)) return 0; if (p4d_large(*p4d)) return spurious_kernel_fault_check(error_code, (pte_t *) p4d); pud = pud_offset(p4d, address); if (!pud_present(*pud)) return 0; if (pud_large(*pud)) return spurious_kernel_fault_check(error_code, (pte_t *) pud); pmd = pmd_offset(pud, address); if (!pmd_present(*pmd)) return 0; if (pmd_large(*pmd)) return spurious_kernel_fault_check(error_code, (pte_t *) pmd); pte = pte_offset_kernel(pmd, address); if (!pte_present(*pte)) return 0; ret = spurious_kernel_fault_check(error_code, pte); if (!ret) return 0; /* * Make sure we have permissions in PMD. * If not, then there's a bug in the page tables: */ ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd); WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); return ret; } NOKPROBE_SYMBOL(spurious_kernel_fault); int show_unhandled_signals = 1; static inline int access_error(unsigned long error_code, struct vm_area_struct *vma) { /* This is only called for the current mm, so: */ bool foreign = false; /* * Read or write was blocked by protection keys. This is * always an unconditional error and can never result in * a follow-up action to resolve the fault, like a COW. */ if (error_code & X86_PF_PK) return 1; /* * Make sure to check the VMA so that we do not perform * faults just to hit a X86_PF_PK as soon as we fill in a * page. */ if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), (error_code & X86_PF_INSTR), foreign)) return 1; if (error_code & X86_PF_WRITE) { /* write, present and write, not present: */ if (unlikely(!(vma->vm_flags & VM_WRITE))) return 1; return 0; } /* read, present: */ if (unlikely(error_code & X86_PF_PROT)) return 1; /* read, not present: */ if (unlikely(!vma_is_accessible(vma))) return 1; return 0; } bool fault_in_kernel_space(unsigned long address) { /* * On 64-bit systems, the vsyscall page is at an address above * TASK_SIZE_MAX, but is not considered part of the kernel * address space. */ if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address)) return false; return address >= TASK_SIZE_MAX; } /* * Called for all faults where 'address' is part of the kernel address * space. Might get called for faults that originate from *code* that * ran in userspace or the kernel. */ static void do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, unsigned long address) { /* * Protection keys exceptions only happen on user pages. We * have no user pages in the kernel portion of the address * space, so do not expect them here. */ WARN_ON_ONCE(hw_error_code & X86_PF_PK); #ifdef CONFIG_X86_32 /* * We can fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. * * Before doing this on-demand faulting, ensure that the * fault is not any of the following: * 1. A fault on a PTE with a reserved bit set. * 2. A fault caused by a user-mode access. (Do not demand- * fault kernel memory due to user-mode accesses). * 3. A fault caused by a page-level protection violation. * (A demand fault would be on a non-present page which * would have X86_PF_PROT==0). * * This is only needed to close a race condition on x86-32 in * the vmalloc mapping/unmapping code. See the comment above * vmalloc_fault() for details. On x86-64 the race does not * exist as the vmalloc mappings don't need to be synchronized * there. */ if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { if (vmalloc_fault(address) >= 0) return; } #endif /* Was the fault spurious, caused by lazy TLB invalidation? */ if (spurious_kernel_fault(hw_error_code, address)) return; /* kprobes don't want to hook the spurious faults: */ if (kprobe_page_fault(regs, X86_TRAP_PF)) return; /* * Note, despite being a "bad area", there are quite a few * acceptable reasons to get here, such as erratum fixups * and handling kernel code that can fault, like get_user(). * * Don't take the mm semaphore here. If we fixup a prefetch * fault we could otherwise deadlock: */ bad_area_nosemaphore(regs, hw_error_code, address); } NOKPROBE_SYMBOL(do_kern_addr_fault); /* Handle faults in the user portion of the address space */ static inline void do_user_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, unsigned long address) { struct vm_area_struct *vma; struct task_struct *tsk; struct mm_struct *mm; vm_fault_t fault; unsigned int flags = FAULT_FLAG_DEFAULT; tsk = current; mm = tsk->mm; /* kprobes don't want to hook the spurious faults: */ if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF))) return; /* * Reserved bits are never expected to be set on * entries in the user portion of the page tables. */ if (unlikely(hw_error_code & X86_PF_RSVD)) pgtable_bad(regs, hw_error_code, address); /* * If SMAP is on, check for invalid kernel (supervisor) access to user * pages in the user address space. The odd case here is WRUSS, * which, according to the preliminary documentation, does not respect * SMAP and will have the USER bit set so, in all cases, SMAP * enforcement appears to be consistent with the USER bit. */ if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && !(hw_error_code & X86_PF_USER) && !(regs->flags & X86_EFLAGS_AC))) { bad_area_nosemaphore(regs, hw_error_code, address); return; } /* * If we're in an interrupt, have no user context or are running * in a region with pagefaults disabled then we must not take the fault */ if (unlikely(faulthandler_disabled() || !mm)) { bad_area_nosemaphore(regs, hw_error_code, address); return; } /* * It's safe to allow irq's after cr2 has been saved and the * vmalloc fault has been handled. * * User-mode registers count as a user access even for any * potential system fault or CPU buglet: */ if (user_mode(regs)) { local_irq_enable(); flags |= FAULT_FLAG_USER; } else { if (regs->flags & X86_EFLAGS_IF) local_irq_enable(); } perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); if (hw_error_code & X86_PF_WRITE) flags |= FAULT_FLAG_WRITE; if (hw_error_code & X86_PF_INSTR) flags |= FAULT_FLAG_INSTRUCTION; #ifdef CONFIG_X86_64 /* * Faults in the vsyscall page might need emulation. The * vsyscall page is at a high address (>PAGE_OFFSET), but is * considered to be part of the user address space. * * The vsyscall page does not have a "real" VMA, so do this * emulation before we go searching for VMAs. * * PKRU never rejects instruction fetches, so we don't need * to consider the PF_PK bit. */ if (is_vsyscall_vaddr(address)) { if (emulate_vsyscall(hw_error_code, regs, address)) return; } #endif /* * Kernel-mode access to the user address space should only occur * on well-defined single instructions listed in the exception * tables. But, an erroneous kernel fault occurring outside one of * those areas which also holds mmap_lock might deadlock attempting * to validate the fault against the address space. * * Only do the expensive exception table search when we might be at * risk of a deadlock. This happens if we * 1. Failed to acquire mmap_lock, and * 2. The access did not originate in userspace. */ if (unlikely(!mmap_read_trylock(mm))) { if (!user_mode(regs) && !search_exception_tables(regs->ip)) { /* * Fault from code in kernel from * which we do not expect faults. */ bad_area_nosemaphore(regs, hw_error_code, address); return; } retry: mmap_read_lock(mm); } else { /* * The above down_read_trylock() might have succeeded in * which case we'll have missed the might_sleep() from * down_read(): */ might_sleep(); } vma = find_vma(mm, address); if (unlikely(!vma)) { bad_area(regs, hw_error_code, address); return; } if (likely(vma->vm_start <= address)) goto good_area; if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { bad_area(regs, hw_error_code, address); return; } if (unlikely(expand_stack(vma, address))) { bad_area(regs, hw_error_code, address); return; } /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: if (unlikely(access_error(hw_error_code, vma))) { bad_area_access_error(regs, hw_error_code, address, vma); return; } /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked. * * Note that handle_userfault() may also release and reacquire mmap_lock * (and not return with VM_FAULT_RETRY), when returning to userland to * repeat the page fault later with a VM_FAULT_NOPAGE retval * (potentially after handling any pending signal during the return to * userland). The return to userland is identified whenever * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. */ fault = handle_mm_fault(vma, address, flags, regs); /* Quick path to respond to signals */ if (fault_signal_pending(fault, regs)) { if (!user_mode(regs)) no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR); return; } /* * If we need to retry the mmap_lock has already been released, * and if there is a fatal signal pending there is no guarantee * that we made any progress. Handle this case first. */ if (unlikely((fault & VM_FAULT_RETRY) && (flags & FAULT_FLAG_ALLOW_RETRY))) { flags |= FAULT_FLAG_TRIED; goto retry; } mmap_read_unlock(mm); if (unlikely(fault & VM_FAULT_ERROR)) { mm_fault_error(regs, hw_error_code, address, fault); return; } check_v8086_mode(regs, address, tsk); } NOKPROBE_SYMBOL(do_user_addr_fault); static __always_inline void trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code, unsigned long address) { if (!trace_pagefault_enabled()) return; if (user_mode(regs)) trace_page_fault_user(address, regs, error_code); else trace_page_fault_kernel(address, regs, error_code); } static __always_inline void handle_page_fault(struct pt_regs *regs, unsigned long error_code, unsigned long address) { trace_page_fault_entries(regs, error_code, address); if (unlikely(kmmio_fault(regs, address))) return; /* Was the fault on kernel-controlled part of the address space? */ if (unlikely(fault_in_kernel_space(address))) { do_kern_addr_fault(regs, error_code, address); } else { do_user_addr_fault(regs, error_code, address); /* * User address page fault handling might have reenabled * interrupts. Fixing up all potential exit points of * do_user_addr_fault() and its leaf functions is just not * doable w/o creating an unholy mess or turning the code * upside down. */ local_irq_disable(); } } DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault) { unsigned long address = read_cr2(); irqentry_state_t state; prefetchw(&current->mm->mmap_lock); /* * KVM uses #PF vector to deliver 'page not present' events to guests * (asynchronous page fault mechanism). The event happens when a * userspace task is trying to access some valid (from guest's point of * view) memory which is not currently mapped by the host (e.g. the * memory is swapped out). Note, the corresponding "page ready" event * which is injected when the memory becomes available, is delived via * an interrupt mechanism and not a #PF exception * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()). * * We are relying on the interrupted context being sane (valid RSP, * relevant locks not held, etc.), which is fine as long as the * interrupted context had IF=1. We are also relying on the KVM * async pf type field and CR2 being read consistently instead of * getting values from real and async page faults mixed up. * * Fingers crossed. * * The async #PF handling code takes care of idtentry handling * itself. */ if (kvm_handle_async_pf(regs, (u32)address)) return; /* * Entry handling for valid #PF from kernel mode is slightly * different: RCU is already watching and rcu_irq_enter() must not * be invoked because a kernel fault on a user space address might * sleep. * * In case the fault hit a RCU idle region the conditional entry * code reenabled RCU to avoid subsequent wreckage which helps * debugability. */ state = irqentry_enter(regs); instrumentation_begin(); handle_page_fault(regs, error_code, address); instrumentation_end(); irqentry_exit(regs, state); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KDEV_T_H #define _LINUX_KDEV_T_H #include <uapi/linux/kdev_t.h> #define MINORBITS 20 #define MINORMASK ((1U << MINORBITS) - 1) #define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS)) #define MINOR(dev) ((unsigned int) ((dev) & MINORMASK)) #define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi)) #define print_dev_t(buffer, dev) \ sprintf((buffer), "%u:%u\n", MAJOR(dev), MINOR(dev)) #define format_dev_t(buffer, dev) \ ({ \ sprintf(buffer, "%u:%u", MAJOR(dev), MINOR(dev)); \ buffer; \ }) /* acceptable for old filesystems */ static __always_inline bool old_valid_dev(dev_t dev) { return MAJOR(dev) < 256 && MINOR(dev) < 256; } static __always_inline u16 old_encode_dev(dev_t dev) { return (MAJOR(dev) << 8) | MINOR(dev); } static __always_inline dev_t old_decode_dev(u16 val) { return MKDEV((val >> 8) & 255, val & 255); } static __always_inline u32 new_encode_dev(dev_t dev) { unsigned major = MAJOR(dev); unsigned minor = MINOR(dev); return (minor & 0xff) | (major << 8) | ((minor & ~0xff) << 12); } static __always_inline dev_t new_decode_dev(u32 dev) { unsigned major = (dev & 0xfff00) >> 8; unsigned minor = (dev & 0xff) | ((dev >> 12) & 0xfff00); return MKDEV(major, minor); } static __always_inline u64 huge_encode_dev(dev_t dev) { return new_encode_dev(dev); } static __always_inline dev_t huge_decode_dev(u64 dev) { return new_decode_dev(dev); } static __always_inline int sysv_valid_dev(dev_t dev) { return MAJOR(dev) < (1<<14) && MINOR(dev) < (1<<18); } static __always_inline u32 sysv_encode_dev(dev_t dev) { return MINOR(dev) | (MAJOR(dev) << 18); } static __always_inline unsigned sysv_major(u32 dev) { return (dev >> 18) & 0x3fff; } static __always_inline unsigned sysv_minor(u32 dev) { return dev & 0x3ffff; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _ASM_X86_KPROBES_H #define _ASM_X86_KPROBES_H /* * Kernel Probes (KProbes) * * Copyright (C) IBM Corporation, 2002, 2004 * * See arch/x86/kernel/kprobes.c for x86 kprobes history. */ #include <asm-generic/kprobes.h> #ifdef CONFIG_KPROBES #include <linux/types.h> #include <linux/ptrace.h> #include <linux/percpu.h> #include <asm/text-patching.h> #include <asm/insn.h> #define __ARCH_WANT_KPROBES_INSN_SLOT struct pt_regs; struct kprobe; typedef u8 kprobe_opcode_t; #define MAX_STACK_SIZE 64 #define CUR_STACK_SIZE(ADDR) \ (current_top_of_stack() - (unsigned long)(ADDR)) #define MIN_STACK_SIZE(ADDR) \ (MAX_STACK_SIZE < CUR_STACK_SIZE(ADDR) ? \ MAX_STACK_SIZE : CUR_STACK_SIZE(ADDR)) #define flush_insn_slot(p) do { } while (0) /* optinsn template addresses */ extern __visible kprobe_opcode_t optprobe_template_entry[]; extern __visible kprobe_opcode_t optprobe_template_clac[]; extern __visible kprobe_opcode_t optprobe_template_val[]; extern __visible kprobe_opcode_t optprobe_template_call[]; extern __visible kprobe_opcode_t optprobe_template_end[]; #define MAX_OPTIMIZED_LENGTH (MAX_INSN_SIZE + DISP32_SIZE) #define MAX_OPTINSN_SIZE \ (((unsigned long)optprobe_template_end - \ (unsigned long)optprobe_template_entry) + \ MAX_OPTIMIZED_LENGTH + JMP32_INSN_SIZE) extern const int kretprobe_blacklist_size; void arch_remove_kprobe(struct kprobe *p); asmlinkage void kretprobe_trampoline(void); extern void arch_kprobe_override_function(struct pt_regs *regs); /* Architecture specific copy of original instruction*/ struct arch_specific_insn { /* copy of the original instruction */ kprobe_opcode_t *insn; /* * boostable = false: This instruction type is not boostable. * boostable = true: This instruction has been boosted: we have * added a relative jump after the instruction copy in insn, * so no single-step and fixup are needed (unless there's * a post_handler). */ bool boostable; bool if_modifier; /* Number of bytes of text poked */ int tp_len; }; struct arch_optimized_insn { /* copy of the original instructions */ kprobe_opcode_t copied_insn[DISP32_SIZE]; /* detour code buffer */ kprobe_opcode_t *insn; /* the size of instructions copied to detour code buffer */ size_t size; }; /* Return true (!0) if optinsn is prepared for optimization. */ static inline int arch_prepared_optinsn(struct arch_optimized_insn *optinsn) { return optinsn->size; } struct prev_kprobe { struct kprobe *kp; unsigned long status; unsigned long old_flags; unsigned long saved_flags; }; /* per-cpu kprobe control block */ struct kprobe_ctlblk { unsigned long kprobe_status; unsigned long kprobe_old_flags; unsigned long kprobe_saved_flags; struct prev_kprobe prev_kprobe; }; extern int kprobe_fault_handler(struct pt_regs *regs, int trapnr); extern int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data); extern int kprobe_int3_handler(struct pt_regs *regs); extern int kprobe_debug_handler(struct pt_regs *regs); #else static inline int kprobe_debug_handler(struct pt_regs *regs) { return 0; } #endif /* CONFIG_KPROBES */ #endif /* _ASM_X86_KPROBES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_CLEANCACHE_H #define _LINUX_CLEANCACHE_H #include <linux/fs.h> #include <linux/exportfs.h> #include <linux/mm.h> #define CLEANCACHE_NO_POOL -1 #define CLEANCACHE_NO_BACKEND -2 #define CLEANCACHE_NO_BACKEND_SHARED -3 #define CLEANCACHE_KEY_MAX 6 /* * cleancache requires every file with a page in cleancache to have a * unique key unless/until the file is removed/truncated. For some * filesystems, the inode number is unique, but for "modern" filesystems * an exportable filehandle is required (see exportfs.h) */ struct cleancache_filekey { union { ino_t ino; __u32 fh[CLEANCACHE_KEY_MAX]; u32 key[CLEANCACHE_KEY_MAX]; } u; }; struct cleancache_ops { int (*init_fs)(size_t); int (*init_shared_fs)(uuid_t *uuid, size_t); int (*get_page)(int, struct cleancache_filekey, pgoff_t, struct page *); void (*put_page)(int, struct cleancache_filekey, pgoff_t, struct page *); void (*invalidate_page)(int, struct cleancache_filekey, pgoff_t); void (*invalidate_inode)(int, struct cleancache_filekey); void (*invalidate_fs)(int); }; extern int cleancache_register_ops(const struct cleancache_ops *ops); extern void __cleancache_init_fs(struct super_block *); extern void __cleancache_init_shared_fs(struct super_block *); extern int __cleancache_get_page(struct page *); extern void __cleancache_put_page(struct page *); extern void __cleancache_invalidate_page(struct address_space *, struct page *); extern void __cleancache_invalidate_inode(struct address_space *); extern void __cleancache_invalidate_fs(struct super_block *); #ifdef CONFIG_CLEANCACHE #define cleancache_enabled (1) static inline bool cleancache_fs_enabled_mapping(struct address_space *mapping) { return mapping->host->i_sb->cleancache_poolid >= 0; } static inline bool cleancache_fs_enabled(struct page *page) { return cleancache_fs_enabled_mapping(page->mapping); } #else #define cleancache_enabled (0) #define cleancache_fs_enabled(_page) (0) #define cleancache_fs_enabled_mapping(_page) (0) #endif /* * The shim layer provided by these inline functions allows the compiler * to reduce all cleancache hooks to nothingness if CONFIG_CLEANCACHE * is disabled, to a single global variable check if CONFIG_CLEANCACHE * is enabled but no cleancache "backend" has dynamically enabled it, * and, for the most frequent cleancache ops, to a single global variable * check plus a superblock element comparison if CONFIG_CLEANCACHE is enabled * and a cleancache backend has dynamically enabled cleancache, but the * filesystem referenced by that cleancache op has not enabled cleancache. * As a result, CONFIG_CLEANCACHE can be enabled by default with essentially * no measurable performance impact. */ static inline void cleancache_init_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_init_fs(sb); } static inline void cleancache_init_shared_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_init_shared_fs(sb); } static inline int cleancache_get_page(struct page *page) { if (cleancache_enabled && cleancache_fs_enabled(page)) return __cleancache_get_page(page); return -1; } static inline void cleancache_put_page(struct page *page) { if (cleancache_enabled && cleancache_fs_enabled(page)) __cleancache_put_page(page); } static inline void cleancache_invalidate_page(struct address_space *mapping, struct page *page) { /* careful... page->mapping is NULL sometimes when this is called */ if (cleancache_enabled && cleancache_fs_enabled_mapping(mapping)) __cleancache_invalidate_page(mapping, page); } static inline void cleancache_invalidate_inode(struct address_space *mapping) { if (cleancache_enabled && cleancache_fs_enabled_mapping(mapping)) __cleancache_invalidate_inode(mapping); } static inline void cleancache_invalidate_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_invalidate_fs(sb); } #endif /* _LINUX_CLEANCACHE_H */
5 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PAGE_64_H #define _ASM_X86_PAGE_64_H #include <asm/page_64_types.h> #ifndef __ASSEMBLY__ #include <asm/alternative.h> /* duplicated to the one in bootmem.h */ extern unsigned long max_pfn; extern unsigned long phys_base; extern unsigned long page_offset_base; extern unsigned long vmalloc_base; extern unsigned long vmemmap_base; static inline unsigned long __phys_addr_nodebug(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* use the carry flag to determine if x was < __START_KERNEL_map */ x = y + ((x > y) ? phys_base : (__START_KERNEL_map - PAGE_OFFSET)); return x; } #ifdef CONFIG_DEBUG_VIRTUAL extern unsigned long __phys_addr(unsigned long); extern unsigned long __phys_addr_symbol(unsigned long); #else #define __phys_addr(x) __phys_addr_nodebug(x) #define __phys_addr_symbol(x) \ ((unsigned long)(x) - __START_KERNEL_map + phys_base) #endif #define __phys_reloc_hide(x) (x) #ifdef CONFIG_FLATMEM #define pfn_valid(pfn) ((pfn) < max_pfn) #endif void clear_page_orig(void *page); void clear_page_rep(void *page); void clear_page_erms(void *page); static inline void clear_page(void *page) { alternative_call_2(clear_page_orig, clear_page_rep, X86_FEATURE_REP_GOOD, clear_page_erms, X86_FEATURE_ERMS, "=D" (page), "0" (page) : "cc", "memory", "rax", "rcx"); } void copy_page(void *to, void *from); #endif /* !__ASSEMBLY__ */ #ifdef CONFIG_X86_VSYSCALL_EMULATION # define __HAVE_ARCH_GATE_AREA 1 #endif #endif /* _ASM_X86_PAGE_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM scsi #if !defined(_TRACE_SCSI_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SCSI_H #include <scsi/scsi_cmnd.h> #include <scsi/scsi_host.h> #include <linux/tracepoint.h> #include <linux/trace_seq.h> #define scsi_opcode_name(opcode) { opcode, #opcode } #define show_opcode_name(val) \ __print_symbolic(val, \ scsi_opcode_name(TEST_UNIT_READY), \ scsi_opcode_name(REZERO_UNIT), \ scsi_opcode_name(REQUEST_SENSE), \ scsi_opcode_name(FORMAT_UNIT), \ scsi_opcode_name(READ_BLOCK_LIMITS), \ scsi_opcode_name(REASSIGN_BLOCKS), \ scsi_opcode_name(INITIALIZE_ELEMENT_STATUS), \ scsi_opcode_name(READ_6), \ scsi_opcode_name(WRITE_6), \ scsi_opcode_name(SEEK_6), \ scsi_opcode_name(READ_REVERSE), \ scsi_opcode_name(WRITE_FILEMARKS), \ scsi_opcode_name(SPACE), \ scsi_opcode_name(INQUIRY), \ scsi_opcode_name(RECOVER_BUFFERED_DATA), \ scsi_opcode_name(MODE_SELECT), \ scsi_opcode_name(RESERVE), \ scsi_opcode_name(RELEASE), \ scsi_opcode_name(COPY), \ scsi_opcode_name(ERASE), \ scsi_opcode_name(MODE_SENSE), \ scsi_opcode_name(START_STOP), \ scsi_opcode_name(RECEIVE_DIAGNOSTIC), \ scsi_opcode_name(SEND_DIAGNOSTIC), \ scsi_opcode_name(ALLOW_MEDIUM_REMOVAL), \ scsi_opcode_name(SET_WINDOW), \ scsi_opcode_name(READ_CAPACITY), \ scsi_opcode_name(READ_10), \ scsi_opcode_name(WRITE_10), \ scsi_opcode_name(SEEK_10), \ scsi_opcode_name(POSITION_TO_ELEMENT), \ scsi_opcode_name(WRITE_VERIFY), \ scsi_opcode_name(VERIFY), \ scsi_opcode_name(SEARCH_HIGH), \ scsi_opcode_name(SEARCH_EQUAL), \ scsi_opcode_name(SEARCH_LOW), \ scsi_opcode_name(SET_LIMITS), \ scsi_opcode_name(PRE_FETCH), \ scsi_opcode_name(READ_POSITION), \ scsi_opcode_name(SYNCHRONIZE_CACHE), \ scsi_opcode_name(LOCK_UNLOCK_CACHE), \ scsi_opcode_name(READ_DEFECT_DATA), \ scsi_opcode_name(MEDIUM_SCAN), \ scsi_opcode_name(COMPARE), \ scsi_opcode_name(COPY_VERIFY), \ scsi_opcode_name(WRITE_BUFFER), \ scsi_opcode_name(READ_BUFFER), \ scsi_opcode_name(UPDATE_BLOCK), \ scsi_opcode_name(READ_LONG), \ scsi_opcode_name(WRITE_LONG), \ scsi_opcode_name(CHANGE_DEFINITION), \ scsi_opcode_name(WRITE_SAME), \ scsi_opcode_name(UNMAP), \ scsi_opcode_name(READ_TOC), \ scsi_opcode_name(LOG_SELECT), \ scsi_opcode_name(LOG_SENSE), \ scsi_opcode_name(XDWRITEREAD_10), \ scsi_opcode_name(MODE_SELECT_10), \ scsi_opcode_name(RESERVE_10), \ scsi_opcode_name(RELEASE_10), \ scsi_opcode_name(MODE_SENSE_10), \ scsi_opcode_name(PERSISTENT_RESERVE_IN), \ scsi_opcode_name(PERSISTENT_RESERVE_OUT), \ scsi_opcode_name(VARIABLE_LENGTH_CMD), \ scsi_opcode_name(REPORT_LUNS), \ scsi_opcode_name(MAINTENANCE_IN), \ scsi_opcode_name(MAINTENANCE_OUT), \ scsi_opcode_name(MOVE_MEDIUM), \ scsi_opcode_name(EXCHANGE_MEDIUM), \ scsi_opcode_name(READ_12), \ scsi_opcode_name(WRITE_12), \ scsi_opcode_name(WRITE_VERIFY_12), \ scsi_opcode_name(SEARCH_HIGH_12), \ scsi_opcode_name(SEARCH_EQUAL_12), \ scsi_opcode_name(SEARCH_LOW_12), \ scsi_opcode_name(READ_ELEMENT_STATUS), \ scsi_opcode_name(SEND_VOLUME_TAG), \ scsi_opcode_name(WRITE_LONG_2), \ scsi_opcode_name(READ_16), \ scsi_opcode_name(WRITE_16), \ scsi_opcode_name(VERIFY_16), \ scsi_opcode_name(WRITE_SAME_16), \ scsi_opcode_name(ZBC_OUT), \ scsi_opcode_name(ZBC_IN), \ scsi_opcode_name(SERVICE_ACTION_IN_16), \ scsi_opcode_name(READ_32), \ scsi_opcode_name(WRITE_32), \ scsi_opcode_name(WRITE_SAME_32), \ scsi_opcode_name(ATA_16), \ scsi_opcode_name(ATA_12)) #define scsi_hostbyte_name(result) { result, #result } #define show_hostbyte_name(val) \ __print_symbolic(val, \ scsi_hostbyte_name(DID_OK), \ scsi_hostbyte_name(DID_NO_CONNECT), \ scsi_hostbyte_name(DID_BUS_BUSY), \ scsi_hostbyte_name(DID_TIME_OUT), \ scsi_hostbyte_name(DID_BAD_TARGET), \ scsi_hostbyte_name(DID_ABORT), \ scsi_hostbyte_name(DID_PARITY), \ scsi_hostbyte_name(DID_ERROR), \ scsi_hostbyte_name(DID_RESET), \ scsi_hostbyte_name(DID_BAD_INTR), \ scsi_hostbyte_name(DID_PASSTHROUGH), \ scsi_hostbyte_name(DID_SOFT_ERROR), \ scsi_hostbyte_name(DID_IMM_RETRY), \ scsi_hostbyte_name(DID_REQUEUE), \ scsi_hostbyte_name(DID_TRANSPORT_DISRUPTED), \ scsi_hostbyte_name(DID_TRANSPORT_FAILFAST)) #define scsi_driverbyte_name(result) { result, #result } #define show_driverbyte_name(val) \ __print_symbolic(val, \ scsi_driverbyte_name(DRIVER_OK), \ scsi_driverbyte_name(DRIVER_BUSY), \ scsi_driverbyte_name(DRIVER_SOFT), \ scsi_driverbyte_name(DRIVER_MEDIA), \ scsi_driverbyte_name(DRIVER_ERROR), \ scsi_driverbyte_name(DRIVER_INVALID), \ scsi_driverbyte_name(DRIVER_TIMEOUT), \ scsi_driverbyte_name(DRIVER_HARD), \ scsi_driverbyte_name(DRIVER_SENSE)) #define scsi_msgbyte_name(result) { result, #result } #define show_msgbyte_name(val) \ __print_symbolic(val, \ scsi_msgbyte_name(COMMAND_COMPLETE), \ scsi_msgbyte_name(EXTENDED_MESSAGE), \ scsi_msgbyte_name(SAVE_POINTERS), \ scsi_msgbyte_name(RESTORE_POINTERS), \ scsi_msgbyte_name(DISCONNECT), \ scsi_msgbyte_name(INITIATOR_ERROR), \ scsi_msgbyte_name(ABORT_TASK_SET), \ scsi_msgbyte_name(MESSAGE_REJECT), \ scsi_msgbyte_name(NOP), \ scsi_msgbyte_name(MSG_PARITY_ERROR), \ scsi_msgbyte_name(LINKED_CMD_COMPLETE), \ scsi_msgbyte_name(LINKED_FLG_CMD_COMPLETE), \ scsi_msgbyte_name(TARGET_RESET), \ scsi_msgbyte_name(ABORT_TASK), \ scsi_msgbyte_name(CLEAR_TASK_SET), \ scsi_msgbyte_name(INITIATE_RECOVERY), \ scsi_msgbyte_name(RELEASE_RECOVERY), \ scsi_msgbyte_name(CLEAR_ACA), \ scsi_msgbyte_name(LOGICAL_UNIT_RESET), \ scsi_msgbyte_name(SIMPLE_QUEUE_TAG), \ scsi_msgbyte_name(HEAD_OF_QUEUE_TAG), \ scsi_msgbyte_name(ORDERED_QUEUE_TAG), \ scsi_msgbyte_name(IGNORE_WIDE_RESIDUE), \ scsi_msgbyte_name(ACA), \ scsi_msgbyte_name(QAS_REQUEST), \ scsi_msgbyte_name(BUS_DEVICE_RESET), \ scsi_msgbyte_name(ABORT)) #define scsi_statusbyte_name(result) { result, #result } #define show_statusbyte_name(val) \ __print_symbolic(val, \ scsi_statusbyte_name(SAM_STAT_GOOD), \ scsi_statusbyte_name(SAM_STAT_CHECK_CONDITION), \ scsi_statusbyte_name(SAM_STAT_CONDITION_MET), \ scsi_statusbyte_name(SAM_STAT_BUSY), \ scsi_statusbyte_name(SAM_STAT_INTERMEDIATE), \ scsi_statusbyte_name(SAM_STAT_INTERMEDIATE_CONDITION_MET), \ scsi_statusbyte_name(SAM_STAT_RESERVATION_CONFLICT), \ scsi_statusbyte_name(SAM_STAT_COMMAND_TERMINATED), \ scsi_statusbyte_name(SAM_STAT_TASK_SET_FULL), \ scsi_statusbyte_name(SAM_STAT_ACA_ACTIVE), \ scsi_statusbyte_name(SAM_STAT_TASK_ABORTED)) #define scsi_prot_op_name(result) { result, #result } #define show_prot_op_name(val) \ __print_symbolic(val, \ scsi_prot_op_name(SCSI_PROT_NORMAL), \ scsi_prot_op_name(SCSI_PROT_READ_INSERT), \ scsi_prot_op_name(SCSI_PROT_WRITE_STRIP), \ scsi_prot_op_name(SCSI_PROT_READ_STRIP), \ scsi_prot_op_name(SCSI_PROT_WRITE_INSERT), \ scsi_prot_op_name(SCSI_PROT_READ_PASS), \ scsi_prot_op_name(SCSI_PROT_WRITE_PASS)) const char *scsi_trace_parse_cdb(struct trace_seq*, unsigned char*, int); #define __parse_cdb(cdb, len) scsi_trace_parse_cdb(p, cdb, len) TRACE_EVENT(scsi_dispatch_cmd_start, TP_PROTO(struct scsi_cmnd *cmd), TP_ARGS(cmd), TP_STRUCT__entry( __field( unsigned int, host_no ) __field( unsigned int, channel ) __field( unsigned int, id ) __field( unsigned int, lun ) __field( unsigned int, opcode ) __field( unsigned int, cmd_len ) __field( unsigned int, data_sglen ) __field( unsigned int, prot_sglen ) __field( unsigned char, prot_op ) __dynamic_array(unsigned char, cmnd, cmd->cmd_len) ), TP_fast_assign( __entry->host_no = cmd->device->host->host_no; __entry->channel = cmd->device->channel; __entry->id = cmd->device->id; __entry->lun = cmd->device->lun; __entry->opcode = cmd->cmnd[0]; __entry->cmd_len = cmd->cmd_len; __entry->data_sglen = scsi_sg_count(cmd); __entry->prot_sglen = scsi_prot_sg_count(cmd); __entry->prot_op = scsi_get_prot_op(cmd); memcpy(__get_dynamic_array(cmnd), cmd->cmnd, cmd->cmd_len); ), TP_printk("host_no=%u channel=%u id=%u lun=%u data_sgl=%u prot_sgl=%u" \ " prot_op=%s cmnd=(%s %s raw=%s)", __entry->host_no, __entry->channel, __entry->id, __entry->lun, __entry->data_sglen, __entry->prot_sglen, show_prot_op_name(__entry->prot_op), show_opcode_name(__entry->opcode), __parse_cdb(__get_dynamic_array(cmnd), __entry->cmd_len), __print_hex(__get_dynamic_array(cmnd), __entry->cmd_len)) ); TRACE_EVENT(scsi_dispatch_cmd_error, TP_PROTO(struct scsi_cmnd *cmd, int rtn), TP_ARGS(cmd, rtn), TP_STRUCT__entry( __field( unsigned int, host_no ) __field( unsigned int, channel ) __field( unsigned int, id ) __field( unsigned int, lun ) __field( int, rtn ) __field( unsigned int, opcode ) __field( unsigned int, cmd_len ) __field( unsigned int, data_sglen ) __field( unsigned int, prot_sglen ) __field( unsigned char, prot_op ) __dynamic_array(unsigned char, cmnd, cmd->cmd_len) ), TP_fast_assign( __entry->host_no = cmd->device->host->host_no; __entry->channel = cmd->device->channel; __entry->id = cmd->device->id; __entry->lun = cmd->device->lun; __entry->rtn = rtn; __entry->opcode = cmd->cmnd[0]; __entry->cmd_len = cmd->cmd_len; __entry->data_sglen = scsi_sg_count(cmd); __entry->prot_sglen = scsi_prot_sg_count(cmd); __entry->prot_op = scsi_get_prot_op(cmd); memcpy(__get_dynamic_array(cmnd), cmd->cmnd, cmd->cmd_len); ), TP_printk("host_no=%u channel=%u id=%u lun=%u data_sgl=%u prot_sgl=%u" \ " prot_op=%s cmnd=(%s %s raw=%s) rtn=%d", __entry->host_no, __entry->channel, __entry->id, __entry->lun, __entry->data_sglen, __entry->prot_sglen, show_prot_op_name(__entry->prot_op), show_opcode_name(__entry->opcode), __parse_cdb(__get_dynamic_array(cmnd), __entry->cmd_len), __print_hex(__get_dynamic_array(cmnd), __entry->cmd_len), __entry->rtn) ); DECLARE_EVENT_CLASS(scsi_cmd_done_timeout_template, TP_PROTO(struct scsi_cmnd *cmd), TP_ARGS(cmd), TP_STRUCT__entry( __field( unsigned int, host_no ) __field( unsigned int, channel ) __field( unsigned int, id ) __field( unsigned int, lun ) __field( int, result ) __field( unsigned int, opcode ) __field( unsigned int, cmd_len ) __field( unsigned int, data_sglen ) __field( unsigned int, prot_sglen ) __field( unsigned char, prot_op ) __dynamic_array(unsigned char, cmnd, cmd->cmd_len) ), TP_fast_assign( __entry->host_no = cmd->device->host->host_no; __entry->channel = cmd->device->channel; __entry->id = cmd->device->id; __entry->lun = cmd->device->lun; __entry->result = cmd->result; __entry->opcode = cmd->cmnd[0]; __entry->cmd_len = cmd->cmd_len; __entry->data_sglen = scsi_sg_count(cmd); __entry->prot_sglen = scsi_prot_sg_count(cmd); __entry->prot_op = scsi_get_prot_op(cmd); memcpy(__get_dynamic_array(cmnd), cmd->cmnd, cmd->cmd_len); ), TP_printk("host_no=%u channel=%u id=%u lun=%u data_sgl=%u " \ "prot_sgl=%u prot_op=%s cmnd=(%s %s raw=%s) result=(driver=" \ "%s host=%s message=%s status=%s)", __entry->host_no, __entry->channel, __entry->id, __entry->lun, __entry->data_sglen, __entry->prot_sglen, show_prot_op_name(__entry->prot_op), show_opcode_name(__entry->opcode), __parse_cdb(__get_dynamic_array(cmnd), __entry->cmd_len), __print_hex(__get_dynamic_array(cmnd), __entry->cmd_len), show_driverbyte_name(((__entry->result) >> 24) & 0xff), show_hostbyte_name(((__entry->result) >> 16) & 0xff), show_msgbyte_name(((__entry->result) >> 8) & 0xff), show_statusbyte_name(__entry->result & 0xff)) ); DEFINE_EVENT(scsi_cmd_done_timeout_template, scsi_dispatch_cmd_done, TP_PROTO(struct scsi_cmnd *cmd), TP_ARGS(cmd)); DEFINE_EVENT(scsi_cmd_done_timeout_template, scsi_dispatch_cmd_timeout, TP_PROTO(struct scsi_cmnd *cmd), TP_ARGS(cmd)); TRACE_EVENT(scsi_eh_wakeup, TP_PROTO(struct Scsi_Host *shost), TP_ARGS(shost), TP_STRUCT__entry( __field( unsigned int, host_no ) ), TP_fast_assign( __entry->host_no = shost->host_no; ), TP_printk("host_no=%u", __entry->host_no) ); #endif /* _TRACE_SCSI_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Red Black Trees (C) 1999 Andrea Arcangeli <andrea@suse.de> linux/include/linux/rbtree.h To use rbtrees you'll have to implement your own insert and search cores. This will avoid us to use callbacks and to drop drammatically performances. I know it's not the cleaner way, but in C (not in C++) to get performances and genericity... See Documentation/core-api/rbtree.rst for documentation and samples. */ #ifndef _LINUX_RBTREE_H #define _LINUX_RBTREE_H #include <linux/kernel.h> #include <linux/stddef.h> #include <linux/rcupdate.h> struct rb_node { unsigned long __rb_parent_color; struct rb_node *rb_right; struct rb_node *rb_left; } __attribute__((aligned(sizeof(long)))); /* The alignment might seem pointless, but allegedly CRIS needs it */ struct rb_root { struct rb_node *rb_node; }; #define rb_parent(r) ((struct rb_node *)((r)->__rb_parent_color & ~3)) #define RB_ROOT (struct rb_root) { NULL, } #define rb_entry(ptr, type, member) container_of(ptr, type, member) #define RB_EMPTY_ROOT(root) (READ_ONCE((root)->rb_node) == NULL) /* 'empty' nodes are nodes that are known not to be inserted in an rbtree */ #define RB_EMPTY_NODE(node) \ ((node)->__rb_parent_color == (unsigned long)(node)) #define RB_CLEAR_NODE(node) \ ((node)->__rb_parent_color = (unsigned long)(node)) extern void rb_insert_color(struct rb_node *, struct rb_root *); extern void rb_erase(struct rb_node *, struct rb_root *); /* Find logical next and previous nodes in a tree */ extern struct rb_node *rb_next(const struct rb_node *); extern struct rb_node *rb_prev(const struct rb_node *); extern struct rb_node *rb_first(const struct rb_root *); extern struct rb_node *rb_last(const struct rb_root *); /* Postorder iteration - always visit the parent after its children */ extern struct rb_node *rb_first_postorder(const struct rb_root *); extern struct rb_node *rb_next_postorder(const struct rb_node *); /* Fast replacement of a single node without remove/rebalance/add/rebalance */ extern void rb_replace_node(struct rb_node *victim, struct rb_node *new, struct rb_root *root); extern void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new, struct rb_root *root); static inline void rb_link_node(struct rb_node *node, struct rb_node *parent, struct rb_node **rb_link) { node->__rb_parent_color = (unsigned long)parent; node->rb_left = node->rb_right = NULL; *rb_link = node; } static inline void rb_link_node_rcu(struct rb_node *node, struct rb_node *parent, struct rb_node **rb_link) { node->__rb_parent_color = (unsigned long)parent; node->rb_left = node->rb_right = NULL; rcu_assign_pointer(*rb_link, node); } #define rb_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ ____ptr ? rb_entry(____ptr, type, member) : NULL; \ }) /** * rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of * given type allowing the backing memory of @pos to be invalidated * * @pos: the 'type *' to use as a loop cursor. * @n: another 'type *' to use as temporary storage * @root: 'rb_root *' of the rbtree. * @field: the name of the rb_node field within 'type'. * * rbtree_postorder_for_each_entry_safe() provides a similar guarantee as * list_for_each_entry_safe() and allows the iteration to continue independent * of changes to @pos by the body of the loop. * * Note, however, that it cannot handle other modifications that re-order the * rbtree it is iterating over. This includes calling rb_erase() on @pos, as * rb_erase() may rebalance the tree, causing us to miss some nodes. */ #define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \ for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \ pos && ({ n = rb_entry_safe(rb_next_postorder(&pos->field), \ typeof(*pos), field); 1; }); \ pos = n) /* * Leftmost-cached rbtrees. * * We do not cache the rightmost node based on footprint * size vs number of potential users that could benefit * from O(1) rb_last(). Just not worth it, users that want * this feature can always implement the logic explicitly. * Furthermore, users that want to cache both pointers may * find it a bit asymmetric, but that's ok. */ struct rb_root_cached { struct rb_root rb_root; struct rb_node *rb_leftmost; }; #define RB_ROOT_CACHED (struct rb_root_cached) { {NULL, }, NULL } /* Same as rb_first(), but O(1) */ #define rb_first_cached(root) (root)->rb_leftmost static inline void rb_insert_color_cached(struct rb_node *node, struct rb_root_cached *root, bool leftmost) { if (leftmost) root->rb_leftmost = node; rb_insert_color(node, &root->rb_root); } static inline void rb_erase_cached(struct rb_node *node, struct rb_root_cached *root) { if (root->rb_leftmost == node) root->rb_leftmost = rb_next(node); rb_erase(node, &root->rb_root); } static inline void rb_replace_node_cached(struct rb_node *victim, struct rb_node *new, struct rb_root_cached *root) { if (root->rb_leftmost == victim) root->rb_leftmost = new; rb_replace_node(victim, new, &root->rb_root); } #endif /* _LINUX_RBTREE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ #ifndef _UAPI_LINUX_BYTEORDER_LITTLE_ENDIAN_H #define _UAPI_LINUX_BYTEORDER_LITTLE_ENDIAN_H #ifndef __LITTLE_ENDIAN #define __LITTLE_ENDIAN 1234 #endif #ifndef __LITTLE_ENDIAN_BITFIELD #define __LITTLE_ENDIAN_BITFIELD #endif #include <linux/types.h> #include <linux/swab.h> #define __constant_htonl(x) ((__force __be32)___constant_swab32((x))) #define __constant_ntohl(x) ___constant_swab32((__force __be32)(x)) #define __constant_htons(x) ((__force __be16)___constant_swab16((x))) #define __constant_ntohs(x) ___constant_swab16((__force __be16)(x)) #define __constant_cpu_to_le64(x) ((__force __le64)(__u64)(x)) #define __constant_le64_to_cpu(x) ((__force __u64)(__le64)(x)) #define __constant_cpu_to_le32(x) ((__force __le32)(__u32)(x)) #define __constant_le32_to_cpu(x) ((__force __u32)(__le32)(x)) #define __constant_cpu_to_le16(x) ((__force __le16)(__u16)(x)) #define __constant_le16_to_cpu(x) ((__force __u16)(__le16)(x)) #define __constant_cpu_to_be64(x) ((__force __be64)___constant_swab64((x))) #define __constant_be64_to_cpu(x) ___constant_swab64((__force __u64)(__be64)(x)) #define __constant_cpu_to_be32(x) ((__force __be32)___constant_swab32((x))) #define __constant_be32_to_cpu(x) ___constant_swab32((__force __u32)(__be32)(x)) #define __constant_cpu_to_be16(x) ((__force __be16)___constant_swab16((x))) #define __constant_be16_to_cpu(x) ___constant_swab16((__force __u16)(__be16)(x)) #define __cpu_to_le64(x) ((__force __le64)(__u64)(x)) #define __le64_to_cpu(x) ((__force __u64)(__le64)(x)) #define __cpu_to_le32(x) ((__force __le32)(__u32)(x)) #define __le32_to_cpu(x) ((__force __u32)(__le32)(x)) #define __cpu_to_le16(x) ((__force __le16)(__u16)(x)) #define __le16_to_cpu(x) ((__force __u16)(__le16)(x)) #define __cpu_to_be64(x) ((__force __be64)__swab64((x))) #define __be64_to_cpu(x) __swab64((__force __u64)(__be64)(x)) #define __cpu_to_be32(x) ((__force __be32)__swab32((x))) #define __be32_to_cpu(x) __swab32((__force __u32)(__be32)(x)) #define __cpu_to_be16(x) ((__force __be16)__swab16((x))) #define __be16_to_cpu(x) __swab16((__force __u16)(__be16)(x)) static __always_inline __le64 __cpu_to_le64p(const __u64 *p) { return (__force __le64)*p; } static __always_inline __u64 __le64_to_cpup(const __le64 *p) { return (__force __u64)*p; } static __always_inline __le32 __cpu_to_le32p(const __u32 *p) { return (__force __le32)*p; } static __always_inline __u32 __le32_to_cpup(const __le32 *p) { return (__force __u32)*p; } static __always_inline __le16 __cpu_to_le16p(const __u16 *p) { return (__force __le16)*p; } static __always_inline __u16 __le16_to_cpup(const __le16 *p) { return (__force __u16)*p; } static __always_inline __be64 __cpu_to_be64p(const __u64 *p) { return (__force __be64)__swab64p(p); } static __always_inline __u64 __be64_to_cpup(const __be64 *p) { return __swab64p((__u64 *)p); } static __always_inline __be32 __cpu_to_be32p(const __u32 *p) { return (__force __be32)__swab32p(p); } static __always_inline __u32 __be32_to_cpup(const __be32 *p) { return __swab32p((__u32 *)p); } static __always_inline __be16 __cpu_to_be16p(const __u16 *p) { return (__force __be16)__swab16p(p); } static __always_inline __u16 __be16_to_cpup(const __be16 *p) { return __swab16p((__u16 *)p); } #define __cpu_to_le64s(x) do { (void)(x); } while (0) #define __le64_to_cpus(x) do { (void)(x); } while (0) #define __cpu_to_le32s(x) do { (void)(x); } while (0) #define __le32_to_cpus(x) do { (void)(x); } while (0) #define __cpu_to_le16s(x) do { (void)(x); } while (0) #define __le16_to_cpus(x) do { (void)(x); } while (0) #define __cpu_to_be64s(x) __swab64s((x)) #define __be64_to_cpus(x) __swab64s((x)) #define __cpu_to_be32s(x) __swab32s((x)) #define __be32_to_cpus(x) __swab32s((x)) #define __cpu_to_be16s(x) __swab16s((x)) #define __be16_to_cpus(x) __swab16s((x)) #endif /* _UAPI_LINUX_BYTEORDER_LITTLE_ENDIAN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 /* * Performance events: * * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra * * Data type definitions, declarations, prototypes. * * Started by: Thomas Gleixner and Ingo Molnar * * For licencing details see kernel-base/COPYING */ #ifndef _LINUX_PERF_EVENT_H #define _LINUX_PERF_EVENT_H #include <uapi/linux/perf_event.h> #include <uapi/linux/bpf_perf_event.h> /* * Kernel-internal data types and definitions: */ #ifdef CONFIG_PERF_EVENTS # include <asm/perf_event.h> # include <asm/local64.h> #endif struct perf_guest_info_callbacks { int (*is_in_guest)(void); int (*is_user_mode)(void); unsigned long (*get_guest_ip)(void); void (*handle_intel_pt_intr)(void); }; #ifdef CONFIG_HAVE_HW_BREAKPOINT #include <asm/hw_breakpoint.h> #endif #include <linux/list.h> #include <linux/mutex.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/spinlock.h> #include <linux/hrtimer.h> #include <linux/fs.h> #include <linux/pid_namespace.h> #include <linux/workqueue.h> #include <linux/ftrace.h> #include <linux/cpu.h> #include <linux/irq_work.h> #include <linux/static_key.h> #include <linux/jump_label_ratelimit.h> #include <linux/atomic.h> #include <linux/sysfs.h> #include <linux/perf_regs.h> #include <linux/cgroup.h> #include <linux/refcount.h> #include <linux/security.h> #include <asm/local.h> struct perf_callchain_entry { __u64 nr; __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ }; struct perf_callchain_entry_ctx { struct perf_callchain_entry *entry; u32 max_stack; u32 nr; short contexts; bool contexts_maxed; }; typedef unsigned long (*perf_copy_f)(void *dst, const void *src, unsigned long off, unsigned long len); struct perf_raw_frag { union { struct perf_raw_frag *next; unsigned long pad; }; perf_copy_f copy; void *data; u32 size; } __packed; struct perf_raw_record { struct perf_raw_frag frag; u32 size; }; /* * branch stack layout: * nr: number of taken branches stored in entries[] * hw_idx: The low level index of raw branch records * for the most recent branch. * -1ULL means invalid/unknown. * * Note that nr can vary from sample to sample * branches (to, from) are stored from most recent * to least recent, i.e., entries[0] contains the most * recent branch. * The entries[] is an abstraction of raw branch records, * which may not be stored in age order in HW, e.g. Intel LBR. * The hw_idx is to expose the low level index of raw * branch record for the most recent branch aka entries[0]. * The hw_idx index is between -1 (unknown) and max depth, * which can be retrieved in /sys/devices/cpu/caps/branches. * For the architectures whose raw branch records are * already stored in age order, the hw_idx should be 0. */ struct perf_branch_stack { __u64 nr; __u64 hw_idx; struct perf_branch_entry entries[]; }; struct task_struct; /* * extra PMU register associated with an event */ struct hw_perf_event_extra { u64 config; /* register value */ unsigned int reg; /* register address or index */ int alloc; /* extra register already allocated */ int idx; /* index in shared_regs->regs[] */ }; /** * struct hw_perf_event - performance event hardware details: */ struct hw_perf_event { #ifdef CONFIG_PERF_EVENTS union { struct { /* hardware */ u64 config; u64 last_tag; unsigned long config_base; unsigned long event_base; int event_base_rdpmc; int idx; int last_cpu; int flags; struct hw_perf_event_extra extra_reg; struct hw_perf_event_extra branch_reg; }; struct { /* software */ struct hrtimer hrtimer; }; struct { /* tracepoint */ /* for tp_event->class */ struct list_head tp_list; }; struct { /* amd_power */ u64 pwr_acc; u64 ptsc; }; #ifdef CONFIG_HAVE_HW_BREAKPOINT struct { /* breakpoint */ /* * Crufty hack to avoid the chicken and egg * problem hw_breakpoint has with context * creation and event initalization. */ struct arch_hw_breakpoint info; struct list_head bp_list; }; #endif struct { /* amd_iommu */ u8 iommu_bank; u8 iommu_cntr; u16 padding; u64 conf; u64 conf1; }; }; /* * If the event is a per task event, this will point to the task in * question. See the comment in perf_event_alloc(). */ struct task_struct *target; /* * PMU would store hardware filter configuration * here. */ void *addr_filters; /* Last sync'ed generation of filters */ unsigned long addr_filters_gen; /* * hw_perf_event::state flags; used to track the PERF_EF_* state. */ #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ #define PERF_HES_ARCH 0x04 int state; /* * The last observed hardware counter value, updated with a * local64_cmpxchg() such that pmu::read() can be called nested. */ local64_t prev_count; /* * The period to start the next sample with. */ u64 sample_period; union { struct { /* Sampling */ /* * The period we started this sample with. */ u64 last_period; /* * However much is left of the current period; * note that this is a full 64bit value and * allows for generation of periods longer * than hardware might allow. */ local64_t period_left; }; struct { /* Topdown events counting for context switch */ u64 saved_metric; u64 saved_slots; }; }; /* * State for throttling the event, see __perf_event_overflow() and * perf_adjust_freq_unthr_context(). */ u64 interrupts_seq; u64 interrupts; /* * State for freq target events, see __perf_event_overflow() and * perf_adjust_freq_unthr_context(). */ u64 freq_time_stamp; u64 freq_count_stamp; #endif }; struct perf_event; /* * Common implementation detail of pmu::{start,commit,cancel}_txn */ #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ /** * pmu::capabilities flags */ #define PERF_PMU_CAP_NO_INTERRUPT 0x01 #define PERF_PMU_CAP_NO_NMI 0x02 #define PERF_PMU_CAP_AUX_NO_SG 0x04 #define PERF_PMU_CAP_EXTENDED_REGS 0x08 #define PERF_PMU_CAP_EXCLUSIVE 0x10 #define PERF_PMU_CAP_ITRACE 0x20 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 #define PERF_PMU_CAP_NO_EXCLUDE 0x80 #define PERF_PMU_CAP_AUX_OUTPUT 0x100 struct perf_output_handle; /** * struct pmu - generic performance monitoring unit */ struct pmu { struct list_head entry; struct module *module; struct device *dev; const struct attribute_group **attr_groups; const struct attribute_group **attr_update; const char *name; int type; /* * various common per-pmu feature flags */ int capabilities; int __percpu *pmu_disable_count; struct perf_cpu_context __percpu *pmu_cpu_context; atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ int task_ctx_nr; int hrtimer_interval_ms; /* number of address filters this PMU can do */ unsigned int nr_addr_filters; /* * Fully disable/enable this PMU, can be used to protect from the PMI * as well as for lazy/batch writing of the MSRs. */ void (*pmu_enable) (struct pmu *pmu); /* optional */ void (*pmu_disable) (struct pmu *pmu); /* optional */ /* * Try and initialize the event for this PMU. * * Returns: * -ENOENT -- @event is not for this PMU * * -ENODEV -- @event is for this PMU but PMU not present * -EBUSY -- @event is for this PMU but PMU temporarily unavailable * -EINVAL -- @event is for this PMU but @event is not valid * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported * -EACCES -- @event is for this PMU, @event is valid, but no privileges * * 0 -- @event is for this PMU and valid * * Other error return values are allowed. */ int (*event_init) (struct perf_event *event); /* * Notification that the event was mapped or unmapped. Called * in the context of the mapping task. */ void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ /* * Flags for ->add()/->del()/ ->start()/->stop(). There are * matching hw_perf_event::state flags. */ #define PERF_EF_START 0x01 /* start the counter when adding */ #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ /* * Adds/Removes a counter to/from the PMU, can be done inside a * transaction, see the ->*_txn() methods. * * The add/del callbacks will reserve all hardware resources required * to service the event, this includes any counter constraint * scheduling etc. * * Called with IRQs disabled and the PMU disabled on the CPU the event * is on. * * ->add() called without PERF_EF_START should result in the same state * as ->add() followed by ->stop(). * * ->del() must always PERF_EF_UPDATE stop an event. If it calls * ->stop() that must deal with already being stopped without * PERF_EF_UPDATE. */ int (*add) (struct perf_event *event, int flags); void (*del) (struct perf_event *event, int flags); /* * Starts/Stops a counter present on the PMU. * * The PMI handler should stop the counter when perf_event_overflow() * returns !0. ->start() will be used to continue. * * Also used to change the sample period. * * Called with IRQs disabled and the PMU disabled on the CPU the event * is on -- will be called from NMI context with the PMU generates * NMIs. * * ->stop() with PERF_EF_UPDATE will read the counter and update * period/count values like ->read() would. * * ->start() with PERF_EF_RELOAD will reprogram the counter * value, must be preceded by a ->stop() with PERF_EF_UPDATE. */ void (*start) (struct perf_event *event, int flags); void (*stop) (struct perf_event *event, int flags); /* * Updates the counter value of the event. * * For sampling capable PMUs this will also update the software period * hw_perf_event::period_left field. */ void (*read) (struct perf_event *event); /* * Group events scheduling is treated as a transaction, add * group events as a whole and perform one schedulability test. * If the test fails, roll back the whole group * * Start the transaction, after this ->add() doesn't need to * do schedulability tests. * * Optional. */ void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); /* * If ->start_txn() disabled the ->add() schedulability test * then ->commit_txn() is required to perform one. On success * the transaction is closed. On error the transaction is kept * open until ->cancel_txn() is called. * * Optional. */ int (*commit_txn) (struct pmu *pmu); /* * Will cancel the transaction, assumes ->del() is called * for each successful ->add() during the transaction. * * Optional. */ void (*cancel_txn) (struct pmu *pmu); /* * Will return the value for perf_event_mmap_page::index for this event, * if no implementation is provided it will default to: event->hw.idx + 1. */ int (*event_idx) (struct perf_event *event); /*optional */ /* * context-switches callback */ void (*sched_task) (struct perf_event_context *ctx, bool sched_in); /* * Kmem cache of PMU specific data */ struct kmem_cache *task_ctx_cache; /* * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) * can be synchronized using this function. See Intel LBR callstack support * implementation and Perf core context switch handling callbacks for usage * examples. */ void (*swap_task_ctx) (struct perf_event_context *prev, struct perf_event_context *next); /* optional */ /* * Set up pmu-private data structures for an AUX area */ void *(*setup_aux) (struct perf_event *event, void **pages, int nr_pages, bool overwrite); /* optional */ /* * Free pmu-private AUX data structures */ void (*free_aux) (void *aux); /* optional */ /* * Take a snapshot of the AUX buffer without touching the event * state, so that preempting ->start()/->stop() callbacks does * not interfere with their logic. Called in PMI context. * * Returns the size of AUX data copied to the output handle. * * Optional. */ long (*snapshot_aux) (struct perf_event *event, struct perf_output_handle *handle, unsigned long size); /* * Validate address range filters: make sure the HW supports the * requested configuration and number of filters; return 0 if the * supplied filters are valid, -errno otherwise. * * Runs in the context of the ioctl()ing process and is not serialized * with the rest of the PMU callbacks. */ int (*addr_filters_validate) (struct list_head *filters); /* optional */ /* * Synchronize address range filter configuration: * translate hw-agnostic filters into hardware configuration in * event::hw::addr_filters. * * Runs as a part of filter sync sequence that is done in ->start() * callback by calling perf_event_addr_filters_sync(). * * May (and should) traverse event::addr_filters::list, for which its * caller provides necessary serialization. */ void (*addr_filters_sync) (struct perf_event *event); /* optional */ /* * Check if event can be used for aux_output purposes for * events of this PMU. * * Runs from perf_event_open(). Should return 0 for "no match" * or non-zero for "match". */ int (*aux_output_match) (struct perf_event *event); /* optional */ /* * Filter events for PMU-specific reasons. */ int (*filter_match) (struct perf_event *event); /* optional */ /* * Check period value for PERF_EVENT_IOC_PERIOD ioctl. */ int (*check_period) (struct perf_event *event, u64 value); /* optional */ }; enum perf_addr_filter_action_t { PERF_ADDR_FILTER_ACTION_STOP = 0, PERF_ADDR_FILTER_ACTION_START, PERF_ADDR_FILTER_ACTION_FILTER, }; /** * struct perf_addr_filter - address range filter definition * @entry: event's filter list linkage * @path: object file's path for file-based filters * @offset: filter range offset * @size: filter range size (size==0 means single address trigger) * @action: filter/start/stop * * This is a hardware-agnostic filter configuration as specified by the user. */ struct perf_addr_filter { struct list_head entry; struct path path; unsigned long offset; unsigned long size; enum perf_addr_filter_action_t action; }; /** * struct perf_addr_filters_head - container for address range filters * @list: list of filters for this event * @lock: spinlock that serializes accesses to the @list and event's * (and its children's) filter generations. * @nr_file_filters: number of file-based filters * * A child event will use parent's @list (and therefore @lock), so they are * bundled together; see perf_event_addr_filters(). */ struct perf_addr_filters_head { struct list_head list; raw_spinlock_t lock; unsigned int nr_file_filters; }; struct perf_addr_filter_range { unsigned long start; unsigned long size; }; /** * enum perf_event_state - the states of an event: */ enum perf_event_state { PERF_EVENT_STATE_DEAD = -4, PERF_EVENT_STATE_EXIT = -3, PERF_EVENT_STATE_ERROR = -2, PERF_EVENT_STATE_OFF = -1, PERF_EVENT_STATE_INACTIVE = 0, PERF_EVENT_STATE_ACTIVE = 1, }; struct file; struct perf_sample_data; typedef void (*perf_overflow_handler_t)(struct perf_event *, struct perf_sample_data *, struct pt_regs *regs); /* * Event capabilities. For event_caps and groups caps. * * PERF_EV_CAP_SOFTWARE: Is a software event. * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read * from any CPU in the package where it is active. * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and * cannot be a group leader. If an event with this flag is detached from the * group it is scheduled out and moved into an unrecoverable ERROR state. */ #define PERF_EV_CAP_SOFTWARE BIT(0) #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) #define PERF_EV_CAP_SIBLING BIT(2) #define SWEVENT_HLIST_BITS 8 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) struct swevent_hlist { struct hlist_head heads[SWEVENT_HLIST_SIZE]; struct rcu_head rcu_head; }; #define PERF_ATTACH_CONTEXT 0x01 #define PERF_ATTACH_GROUP 0x02 #define PERF_ATTACH_TASK 0x04 #define PERF_ATTACH_TASK_DATA 0x08 #define PERF_ATTACH_ITRACE 0x10 #define PERF_ATTACH_SCHED_CB 0x20 #define PERF_ATTACH_CHILD 0x40 struct perf_cgroup; struct perf_buffer; struct pmu_event_list { raw_spinlock_t lock; struct list_head list; }; #define for_each_sibling_event(sibling, event) \ if ((event)->group_leader == (event)) \ list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) /** * struct perf_event - performance event kernel representation: */ struct perf_event { #ifdef CONFIG_PERF_EVENTS /* * entry onto perf_event_context::event_list; * modifications require ctx->lock * RCU safe iterations. */ struct list_head event_entry; /* * Locked for modification by both ctx->mutex and ctx->lock; holding * either sufficies for read. */ struct list_head sibling_list; struct list_head active_list; /* * Node on the pinned or flexible tree located at the event context; */ struct rb_node group_node; u64 group_index; /* * We need storage to track the entries in perf_pmu_migrate_context; we * cannot use the event_entry because of RCU and we want to keep the * group in tact which avoids us using the other two entries. */ struct list_head migrate_entry; struct hlist_node hlist_entry; struct list_head active_entry; int nr_siblings; /* Not serialized. Only written during event initialization. */ int event_caps; /* The cumulative AND of all event_caps for events in this group. */ int group_caps; struct perf_event *group_leader; struct pmu *pmu; void *pmu_private; enum perf_event_state state; unsigned int attach_state; local64_t count; atomic64_t child_count; /* * These are the total time in nanoseconds that the event * has been enabled (i.e. eligible to run, and the task has * been scheduled in, if this is a per-task event) * and running (scheduled onto the CPU), respectively. */ u64 total_time_enabled; u64 total_time_running; u64 tstamp; /* * timestamp shadows the actual context timing but it can * be safely used in NMI interrupt context. It reflects the * context time as it was when the event was last scheduled in, * or when ctx_sched_in failed to schedule the event because we * run out of PMC. * * ctx_time already accounts for ctx->timestamp. Therefore to * compute ctx_time for a sample, simply add perf_clock(). */ u64 shadow_ctx_time; struct perf_event_attr attr; u16 header_size; u16 id_header_size; u16 read_size; struct hw_perf_event hw; struct perf_event_context *ctx; atomic_long_t refcount; /* * These accumulate total time (in nanoseconds) that children * events have been enabled and running, respectively. */ atomic64_t child_total_time_enabled; atomic64_t child_total_time_running; /* * Protect attach/detach and child_list: */ struct mutex child_mutex; struct list_head child_list; struct perf_event *parent; int oncpu; int cpu; struct list_head owner_entry; struct task_struct *owner; /* mmap bits */ struct mutex mmap_mutex; atomic_t mmap_count; struct perf_buffer *rb; struct list_head rb_entry; unsigned long rcu_batches; int rcu_pending; /* poll related */ wait_queue_head_t waitq; struct fasync_struct *fasync; /* delayed work for NMIs and such */ int pending_wakeup; int pending_kill; int pending_disable; struct irq_work pending; atomic_t event_limit; /* address range filters */ struct perf_addr_filters_head addr_filters; /* vma address array for file-based filders */ struct perf_addr_filter_range *addr_filter_ranges; unsigned long addr_filters_gen; /* for aux_output events */ struct perf_event *aux_event; void (*destroy)(struct perf_event *); struct rcu_head rcu_head; struct pid_namespace *ns; u64 id; u64 (*clock)(void); perf_overflow_handler_t overflow_handler; void *overflow_handler_context; #ifdef CONFIG_BPF_SYSCALL perf_overflow_handler_t orig_overflow_handler; struct bpf_prog *prog; #endif #ifdef CONFIG_EVENT_TRACING struct trace_event_call *tp_event; struct event_filter *filter; #ifdef CONFIG_FUNCTION_TRACER struct ftrace_ops ftrace_ops; #endif #endif #ifdef CONFIG_CGROUP_PERF struct perf_cgroup *cgrp; /* cgroup event is attach to */ #endif #ifdef CONFIG_SECURITY void *security; #endif struct list_head sb_list; #endif /* CONFIG_PERF_EVENTS */ }; struct perf_event_groups { struct rb_root tree; u64 index; }; /** * struct perf_event_context - event context structure * * Used as a container for task events and CPU events as well: */ struct perf_event_context { struct pmu *pmu; /* * Protect the states of the events in the list, * nr_active, and the list: */ raw_spinlock_t lock; /* * Protect the list of events. Locking either mutex or lock * is sufficient to ensure the list doesn't change; to change * the list you need to lock both the mutex and the spinlock. */ struct mutex mutex; struct list_head active_ctx_list; struct perf_event_groups pinned_groups; struct perf_event_groups flexible_groups; struct list_head event_list; struct list_head pinned_active; struct list_head flexible_active; int nr_events; int nr_active; int is_active; int nr_stat; int nr_freq; int rotate_disable; /* * Set when nr_events != nr_active, except tolerant to events not * necessary to be active due to scheduling constraints, such as cgroups. */ int rotate_necessary; refcount_t refcount; struct task_struct *task; /* * Context clock, runs when context enabled. */ u64 time; u64 timestamp; /* * These fields let us detect when two contexts have both * been cloned (inherited) from a common ancestor. */ struct perf_event_context *parent_ctx; u64 parent_gen; u64 generation; int pin_count; #ifdef CONFIG_CGROUP_PERF int nr_cgroups; /* cgroup evts */ #endif void *task_ctx_data; /* pmu specific data */ struct rcu_head rcu_head; }; /* * Number of contexts where an event can trigger: * task, softirq, hardirq, nmi. */ #define PERF_NR_CONTEXTS 4 /** * struct perf_event_cpu_context - per cpu event context structure */ struct perf_cpu_context { struct perf_event_context ctx; struct perf_event_context *task_ctx; int active_oncpu; int exclusive; raw_spinlock_t hrtimer_lock; struct hrtimer hrtimer; ktime_t hrtimer_interval; unsigned int hrtimer_active; #ifdef CONFIG_CGROUP_PERF struct perf_cgroup *cgrp; struct list_head cgrp_cpuctx_entry; #endif struct list_head sched_cb_entry; int sched_cb_usage; int online; /* * Per-CPU storage for iterators used in visit_groups_merge. The default * storage is of size 2 to hold the CPU and any CPU event iterators. */ int heap_size; struct perf_event **heap; struct perf_event *heap_default[2]; }; struct perf_output_handle { struct perf_event *event; struct perf_buffer *rb; unsigned long wakeup; unsigned long size; u64 aux_flags; union { void *addr; unsigned long head; }; int page; }; struct bpf_perf_event_data_kern { bpf_user_pt_regs_t *regs; struct perf_sample_data *data; struct perf_event *event; }; #ifdef CONFIG_CGROUP_PERF /* * perf_cgroup_info keeps track of time_enabled for a cgroup. * This is a per-cpu dynamically allocated data structure. */ struct perf_cgroup_info { u64 time; u64 timestamp; }; struct perf_cgroup { struct cgroup_subsys_state css; struct perf_cgroup_info __percpu *info; }; /* * Must ensure cgroup is pinned (css_get) before calling * this function. In other words, we cannot call this function * if there is no cgroup event for the current CPU context. */ static inline struct perf_cgroup * perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) { return container_of(task_css_check(task, perf_event_cgrp_id, ctx ? lockdep_is_held(&ctx->lock) : true), struct perf_cgroup, css); } #endif /* CONFIG_CGROUP_PERF */ #ifdef CONFIG_PERF_EVENTS extern void *perf_aux_output_begin(struct perf_output_handle *handle, struct perf_event *event); extern void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size); extern int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size); extern void *perf_get_aux(struct perf_output_handle *handle); extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); extern void perf_event_itrace_started(struct perf_event *event); extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); extern void perf_pmu_unregister(struct pmu *pmu); extern int perf_num_counters(void); extern const char *perf_pmu_name(void); extern void __perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task); extern void __perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next); extern int perf_event_init_task(struct task_struct *child); extern void perf_event_exit_task(struct task_struct *child); extern void perf_event_free_task(struct task_struct *task); extern void perf_event_delayed_put(struct task_struct *task); extern struct file *perf_event_get(unsigned int fd); extern const struct perf_event *perf_get_event(struct file *file); extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); extern void perf_event_print_debug(void); extern void perf_pmu_disable(struct pmu *pmu); extern void perf_pmu_enable(struct pmu *pmu); extern void perf_sched_cb_dec(struct pmu *pmu); extern void perf_sched_cb_inc(struct pmu *pmu); extern int perf_event_task_disable(void); extern int perf_event_task_enable(void); extern void perf_pmu_resched(struct pmu *pmu); extern int perf_event_refresh(struct perf_event *event, int refresh); extern void perf_event_update_userpage(struct perf_event *event); extern int perf_event_release_kernel(struct perf_event *event); extern struct perf_event * perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, struct task_struct *task, perf_overflow_handler_t callback, void *context); extern void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu); int perf_event_read_local(struct perf_event *event, u64 *value, u64 *enabled, u64 *running); extern u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running); struct perf_sample_data { /* * Fields set by perf_sample_data_init(), group so as to * minimize the cachelines touched. */ u64 addr; struct perf_raw_record *raw; struct perf_branch_stack *br_stack; u64 period; u64 weight; u64 txn; union perf_mem_data_src data_src; /* * The other fields, optionally {set,used} by * perf_{prepare,output}_sample(). */ u64 type; u64 ip; struct { u32 pid; u32 tid; } tid_entry; u64 time; u64 id; u64 stream_id; struct { u32 cpu; u32 reserved; } cpu_entry; struct perf_callchain_entry *callchain; u64 aux_size; struct perf_regs regs_user; struct perf_regs regs_intr; u64 stack_user_size; u64 phys_addr; u64 cgroup; } ____cacheline_aligned; /* default value for data source */ #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ PERF_MEM_S(LVL, NA) |\ PERF_MEM_S(SNOOP, NA) |\ PERF_MEM_S(LOCK, NA) |\ PERF_MEM_S(TLB, NA)) static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr, u64 period) { /* remaining struct members initialized in perf_prepare_sample() */ data->addr = addr; data->raw = NULL; data->br_stack = NULL; data->period = period; data->weight = 0; data->data_src.val = PERF_MEM_NA; data->txn = 0; } extern void perf_output_sample(struct perf_output_handle *handle, struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event); extern void perf_prepare_sample(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event, struct pt_regs *regs); extern int perf_event_overflow(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern void perf_event_output_forward(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern void perf_event_output_backward(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); extern int perf_event_output(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); static inline bool is_default_overflow_handler(struct perf_event *event) { if (likely(event->overflow_handler == perf_event_output_forward)) return true; if (unlikely(event->overflow_handler == perf_event_output_backward)) return true; return false; } extern void perf_event_header__init_id(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event); extern void perf_event__output_id_sample(struct perf_event *event, struct perf_output_handle *handle, struct perf_sample_data *sample); extern void perf_log_lost_samples(struct perf_event *event, u64 lost); static inline bool event_has_any_exclude_flag(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; return attr->exclude_idle || attr->exclude_user || attr->exclude_kernel || attr->exclude_hv || attr->exclude_guest || attr->exclude_host; } static inline bool is_sampling_event(struct perf_event *event) { return event->attr.sample_period != 0; } /* * Return 1 for a software event, 0 for a hardware event */ static inline int is_software_event(struct perf_event *event) { return event->event_caps & PERF_EV_CAP_SOFTWARE; } /* * Return 1 for event in sw context, 0 for event in hw context */ static inline int in_software_context(struct perf_event *event) { return event->ctx->pmu->task_ctx_nr == perf_sw_context; } static inline int is_exclusive_pmu(struct pmu *pmu) { return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; } extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); #ifndef perf_arch_fetch_caller_regs static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } #endif /* * When generating a perf sample in-line, instead of from an interrupt / * exception, we lack a pt_regs. This is typically used from software events * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. * * We typically don't need a full set, but (for x86) do require: * - ip for PERF_SAMPLE_IP * - cs for user_mode() tests * - sp for PERF_SAMPLE_CALLCHAIN * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) * * NOTE: assumes @regs is otherwise already 0 filled; this is important for * things like PERF_SAMPLE_REGS_INTR. */ static inline void perf_fetch_caller_regs(struct pt_regs *regs) { perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); } static __always_inline void perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { if (static_key_false(&perf_swevent_enabled[event_id])) __perf_sw_event(event_id, nr, regs, addr); } DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); /* * 'Special' version for the scheduler, it hard assumes no recursion, * which is guaranteed by us not actually scheduling inside other swevents * because those disable preemption. */ static __always_inline void perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { if (static_key_false(&perf_swevent_enabled[event_id])) { struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); perf_fetch_caller_regs(regs); ___perf_sw_event(event_id, nr, regs, addr); } } extern struct static_key_false perf_sched_events; static __always_inline bool perf_sw_migrate_enabled(void) { if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) return true; return false; } static inline void perf_event_task_migrate(struct task_struct *task) { if (perf_sw_migrate_enabled()) task->sched_migrated = 1; } static inline void perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { if (static_branch_unlikely(&perf_sched_events)) __perf_event_task_sched_in(prev, task); if (perf_sw_migrate_enabled() && task->sched_migrated) { struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); perf_fetch_caller_regs(regs); ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); task->sched_migrated = 0; } } static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); if (static_branch_unlikely(&perf_sched_events)) __perf_event_task_sched_out(prev, next); } extern void perf_event_mmap(struct vm_area_struct *vma); extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, const char *sym); extern void perf_event_bpf_event(struct bpf_prog *prog, enum perf_bpf_event_type type, u16 flags); extern struct perf_guest_info_callbacks *perf_guest_cbs; extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); extern void perf_event_exec(void); extern void perf_event_comm(struct task_struct *tsk, bool exec); extern void perf_event_namespaces(struct task_struct *tsk); extern void perf_event_fork(struct task_struct *tsk); extern void perf_event_text_poke(const void *addr, const void *old_bytes, size_t old_len, const void *new_bytes, size_t new_len); /* Callchains */ DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); extern struct perf_callchain_entry * get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, u32 max_stack, bool crosstask, bool add_mark); extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); extern int get_callchain_buffers(int max_stack); extern void put_callchain_buffers(void); extern struct perf_callchain_entry *get_callchain_entry(int *rctx); extern void put_callchain_entry(int rctx); extern int sysctl_perf_event_max_stack; extern int sysctl_perf_event_max_contexts_per_stack; static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) { if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { struct perf_callchain_entry *entry = ctx->entry; entry->ip[entry->nr++] = ip; ++ctx->contexts; return 0; } else { ctx->contexts_maxed = true; return -1; /* no more room, stop walking the stack */ } } static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) { if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { struct perf_callchain_entry *entry = ctx->entry; entry->ip[entry->nr++] = ip; ++ctx->nr; return 0; } else { return -1; /* no more room, stop walking the stack */ } } extern int sysctl_perf_event_paranoid; extern int sysctl_perf_event_mlock; extern int sysctl_perf_event_sample_rate; extern int sysctl_perf_cpu_time_max_percent; extern void perf_sample_event_took(u64 sample_len_ns); int perf_proc_update_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int perf_event_max_stack_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); /* Access to perf_event_open(2) syscall. */ #define PERF_SECURITY_OPEN 0 /* Finer grained perf_event_open(2) access control. */ #define PERF_SECURITY_CPU 1 #define PERF_SECURITY_KERNEL 2 #define PERF_SECURITY_TRACEPOINT 3 static inline int perf_is_paranoid(void) { return sysctl_perf_event_paranoid > -1; } static inline int perf_allow_kernel(struct perf_event_attr *attr) { if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) return -EACCES; return security_perf_event_open(attr, PERF_SECURITY_KERNEL); } static inline int perf_allow_cpu(struct perf_event_attr *attr) { if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) return -EACCES; return security_perf_event_open(attr, PERF_SECURITY_CPU); } static inline int perf_allow_tracepoint(struct perf_event_attr *attr) { if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) return -EPERM; return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); } extern void perf_event_init(void); extern void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, struct pt_regs *regs, struct hlist_head *head, int rctx, struct task_struct *task); extern void perf_bp_event(struct perf_event *event, void *data); #ifndef perf_misc_flags # define perf_misc_flags(regs) \ (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) # define perf_instruction_pointer(regs) instruction_pointer(regs) #endif #ifndef perf_arch_bpf_user_pt_regs # define perf_arch_bpf_user_pt_regs(regs) regs #endif static inline bool has_branch_stack(struct perf_event *event) { return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; } static inline bool needs_branch_stack(struct perf_event *event) { return event->attr.branch_sample_type != 0; } static inline bool has_aux(struct perf_event *event) { return event->pmu->setup_aux; } static inline bool is_write_backward(struct perf_event *event) { return !!event->attr.write_backward; } static inline bool has_addr_filter(struct perf_event *event) { return event->pmu->nr_addr_filters; } /* * An inherited event uses parent's filters */ static inline struct perf_addr_filters_head * perf_event_addr_filters(struct perf_event *event) { struct perf_addr_filters_head *ifh = &event->addr_filters; if (event->parent) ifh = &event->parent->addr_filters; return ifh; } extern void perf_event_addr_filters_sync(struct perf_event *event); extern int perf_output_begin(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern int perf_output_begin_forward(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern int perf_output_begin_backward(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size); extern void perf_output_end(struct perf_output_handle *handle); extern unsigned int perf_output_copy(struct perf_output_handle *handle, const void *buf, unsigned int len); extern unsigned int perf_output_skip(struct perf_output_handle *handle, unsigned int len); extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, struct perf_output_handle *handle, unsigned long from, unsigned long to); extern int perf_swevent_get_recursion_context(void); extern void perf_swevent_put_recursion_context(int rctx); extern u64 perf_swevent_set_period(struct perf_event *event); extern void perf_event_enable(struct perf_event *event); extern void perf_event_disable(struct perf_event *event); extern void perf_event_disable_local(struct perf_event *event); extern void perf_event_disable_inatomic(struct perf_event *event); extern void perf_event_task_tick(void); extern int perf_event_account_interrupt(struct perf_event *event); extern int perf_event_period(struct perf_event *event, u64 value); extern u64 perf_event_pause(struct perf_event *event, bool reset); #else /* !CONFIG_PERF_EVENTS: */ static inline void * perf_aux_output_begin(struct perf_output_handle *handle, struct perf_event *event) { return NULL; } static inline void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) { } static inline int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) { return -EINVAL; } static inline void * perf_get_aux(struct perf_output_handle *handle) { return NULL; } static inline void perf_event_task_migrate(struct task_struct *task) { } static inline void perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { } static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { } static inline int perf_event_init_task(struct task_struct *child) { return 0; } static inline void perf_event_exit_task(struct task_struct *child) { } static inline void perf_event_free_task(struct task_struct *task) { } static inline void perf_event_delayed_put(struct task_struct *task) { } static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } static inline const struct perf_event *perf_get_event(struct file *file) { return ERR_PTR(-EINVAL); } static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) { return ERR_PTR(-EINVAL); } static inline int perf_event_read_local(struct perf_event *event, u64 *value, u64 *enabled, u64 *running) { return -EINVAL; } static inline void perf_event_print_debug(void) { } static inline int perf_event_task_disable(void) { return -EINVAL; } static inline int perf_event_task_enable(void) { return -EINVAL; } static inline int perf_event_refresh(struct perf_event *event, int refresh) { return -EINVAL; } static inline void perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } static inline void perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } static inline void perf_bp_event(struct perf_event *event, void *data) { } static inline int perf_register_guest_info_callbacks (struct perf_guest_info_callbacks *callbacks) { return 0; } static inline int perf_unregister_guest_info_callbacks (struct perf_guest_info_callbacks *callbacks) { return 0; } static inline void perf_event_mmap(struct vm_area_struct *vma) { } typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, const char *sym) { } static inline void perf_event_bpf_event(struct bpf_prog *prog, enum perf_bpf_event_type type, u16 flags) { } static inline void perf_event_exec(void) { } static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } static inline void perf_event_namespaces(struct task_struct *tsk) { } static inline void perf_event_fork(struct task_struct *tsk) { } static inline void perf_event_text_poke(const void *addr, const void *old_bytes, size_t old_len, const void *new_bytes, size_t new_len) { } static inline void perf_event_init(void) { } static inline int perf_swevent_get_recursion_context(void) { return -1; } static inline void perf_swevent_put_recursion_context(int rctx) { } static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } static inline void perf_event_enable(struct perf_event *event) { } static inline void perf_event_disable(struct perf_event *event) { } static inline int __perf_event_disable(void *info) { return -1; } static inline void perf_event_task_tick(void) { } static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } static inline int perf_event_period(struct perf_event *event, u64 value) { return -EINVAL; } static inline u64 perf_event_pause(struct perf_event *event, bool reset) { return 0; } #endif #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) extern void perf_restore_debug_store(void); #else static inline void perf_restore_debug_store(void) { } #endif static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) { return frag->pad < sizeof(u64); } #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) struct perf_pmu_events_attr { struct device_attribute attr; u64 id; const char *event_str; }; struct perf_pmu_events_ht_attr { struct device_attribute attr; u64 id; const char *event_str_ht; const char *event_str_noht; }; ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, char *page); #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ static struct perf_pmu_events_attr _var = { \ .attr = __ATTR(_name, 0444, _show, NULL), \ .id = _id, \ }; #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ static struct perf_pmu_events_attr _var = { \ .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ .id = 0, \ .event_str = _str, \ }; #define PMU_FORMAT_ATTR(_name, _format) \ static ssize_t \ _name##_show(struct device *dev, \ struct device_attribute *attr, \ char *page) \ { \ BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ return sprintf(page, _format "\n"); \ } \ \ static struct device_attribute format_attr_##_name = __ATTR_RO(_name) /* Performance counter hotplug functions */ #ifdef CONFIG_PERF_EVENTS int perf_event_init_cpu(unsigned int cpu); int perf_event_exit_cpu(unsigned int cpu); #else #define perf_event_init_cpu NULL #define perf_event_exit_cpu NULL #endif extern void __weak arch_perf_update_userpage(struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now); #endif /* _LINUX_PERF_EVENT_H */
6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PROCESSOR_H #define _ASM_X86_PROCESSOR_H #include <asm/processor-flags.h> /* Forward declaration, a strange C thing */ struct task_struct; struct mm_struct; struct io_bitmap; struct vm86; #include <asm/math_emu.h> #include <asm/segment.h> #include <asm/types.h> #include <uapi/asm/sigcontext.h> #include <asm/current.h> #include <asm/cpufeatures.h> #include <asm/page.h> #include <asm/pgtable_types.h> #include <asm/percpu.h> #include <asm/msr.h> #include <asm/desc_defs.h> #include <asm/nops.h> #include <asm/special_insns.h> #include <asm/fpu/types.h> #include <asm/unwind_hints.h> #include <asm/vmxfeatures.h> #include <asm/vdso/processor.h> #include <linux/personality.h> #include <linux/cache.h> #include <linux/threads.h> #include <linux/math64.h> #include <linux/err.h> #include <linux/irqflags.h> #include <linux/mem_encrypt.h> /* * We handle most unaligned accesses in hardware. On the other hand * unaligned DMA can be quite expensive on some Nehalem processors. * * Based on this we disable the IP header alignment in network drivers. */ #define NET_IP_ALIGN 0 #define HBP_NUM 4 /* * These alignment constraints are for performance in the vSMP case, * but in the task_struct case we must also meet hardware imposed * alignment requirements of the FPU state: */ #ifdef CONFIG_X86_VSMP # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) #else # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) # define ARCH_MIN_MMSTRUCT_ALIGN 0 #endif enum tlb_infos { ENTRIES, NR_INFO }; extern u16 __read_mostly tlb_lli_4k[NR_INFO]; extern u16 __read_mostly tlb_lli_2m[NR_INFO]; extern u16 __read_mostly tlb_lli_4m[NR_INFO]; extern u16 __read_mostly tlb_lld_4k[NR_INFO]; extern u16 __read_mostly tlb_lld_2m[NR_INFO]; extern u16 __read_mostly tlb_lld_4m[NR_INFO]; extern u16 __read_mostly tlb_lld_1g[NR_INFO]; /* * CPU type and hardware bug flags. Kept separately for each CPU. * Members of this structure are referenced in head_32.S, so think twice * before touching them. [mj] */ struct cpuinfo_x86 { __u8 x86; /* CPU family */ __u8 x86_vendor; /* CPU vendor */ __u8 x86_model; __u8 x86_stepping; #ifdef CONFIG_X86_64 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ int x86_tlbsize; #endif #ifdef CONFIG_X86_VMX_FEATURE_NAMES __u32 vmx_capability[NVMXINTS]; #endif __u8 x86_virt_bits; __u8 x86_phys_bits; /* CPUID returned core id bits: */ __u8 x86_coreid_bits; __u8 cu_id; /* Max extended CPUID function supported: */ __u32 extended_cpuid_level; /* Maximum supported CPUID level, -1=no CPUID: */ int cpuid_level; /* * Align to size of unsigned long because the x86_capability array * is passed to bitops which require the alignment. Use unnamed * union to enforce the array is aligned to size of unsigned long. */ union { __u32 x86_capability[NCAPINTS + NBUGINTS]; unsigned long x86_capability_alignment; }; char x86_vendor_id[16]; char x86_model_id[64]; /* in KB - valid for CPUS which support this call: */ unsigned int x86_cache_size; int x86_cache_alignment; /* In bytes */ /* Cache QoS architectural values, valid only on the BSP: */ int x86_cache_max_rmid; /* max index */ int x86_cache_occ_scale; /* scale to bytes */ int x86_cache_mbm_width_offset; int x86_power; unsigned long loops_per_jiffy; /* cpuid returned max cores value: */ u16 x86_max_cores; u16 apicid; u16 initial_apicid; u16 x86_clflush_size; /* number of cores as seen by the OS: */ u16 booted_cores; /* Physical processor id: */ u16 phys_proc_id; /* Logical processor id: */ u16 logical_proc_id; /* Core id: */ u16 cpu_core_id; u16 cpu_die_id; u16 logical_die_id; /* Index into per_cpu list: */ u16 cpu_index; u32 microcode; /* Address space bits used by the cache internally */ u8 x86_cache_bits; unsigned initialized : 1; } __randomize_layout; struct cpuid_regs { u32 eax, ebx, ecx, edx; }; enum cpuid_regs_idx { CPUID_EAX = 0, CPUID_EBX, CPUID_ECX, CPUID_EDX, }; #define X86_VENDOR_INTEL 0 #define X86_VENDOR_CYRIX 1 #define X86_VENDOR_AMD 2 #define X86_VENDOR_UMC 3 #define X86_VENDOR_CENTAUR 5 #define X86_VENDOR_TRANSMETA 7 #define X86_VENDOR_NSC 8 #define X86_VENDOR_HYGON 9 #define X86_VENDOR_ZHAOXIN 10 #define X86_VENDOR_NUM 11 #define X86_VENDOR_UNKNOWN 0xff /* * capabilities of CPUs */ extern struct cpuinfo_x86 boot_cpu_data; extern struct cpuinfo_x86 new_cpu_data; extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; #ifdef CONFIG_SMP DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); #define cpu_data(cpu) per_cpu(cpu_info, cpu) #else #define cpu_info boot_cpu_data #define cpu_data(cpu) boot_cpu_data #endif extern const struct seq_operations cpuinfo_op; #define cache_line_size() (boot_cpu_data.x86_cache_alignment) extern void cpu_detect(struct cpuinfo_x86 *c); static inline unsigned long long l1tf_pfn_limit(void) { return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); } extern void early_cpu_init(void); extern void identify_boot_cpu(void); extern void identify_secondary_cpu(struct cpuinfo_x86 *); extern void print_cpu_info(struct cpuinfo_x86 *); void print_cpu_msr(struct cpuinfo_x86 *); #ifdef CONFIG_X86_32 extern int have_cpuid_p(void); #else static inline int have_cpuid_p(void) { return 1; } #endif static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { /* ecx is often an input as well as an output. */ asm volatile("cpuid" : "=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx) : "0" (*eax), "2" (*ecx) : "memory"); } #define native_cpuid_reg(reg) \ static inline unsigned int native_cpuid_##reg(unsigned int op) \ { \ unsigned int eax = op, ebx, ecx = 0, edx; \ \ native_cpuid(&eax, &ebx, &ecx, &edx); \ \ return reg; \ } /* * Native CPUID functions returning a single datum. */ native_cpuid_reg(eax) native_cpuid_reg(ebx) native_cpuid_reg(ecx) native_cpuid_reg(edx) /* * Friendlier CR3 helpers. */ static inline unsigned long read_cr3_pa(void) { return __read_cr3() & CR3_ADDR_MASK; } static inline unsigned long native_read_cr3_pa(void) { return __native_read_cr3() & CR3_ADDR_MASK; } static inline void load_cr3(pgd_t *pgdir) { write_cr3(__sme_pa(pgdir)); } /* * Note that while the legacy 'TSS' name comes from 'Task State Segment', * on modern x86 CPUs the TSS also holds information important to 64-bit mode, * unrelated to the task-switch mechanism: */ #ifdef CONFIG_X86_32 /* This is the TSS defined by the hardware. */ struct x86_hw_tss { unsigned short back_link, __blh; unsigned long sp0; unsigned short ss0, __ss0h; unsigned long sp1; /* * We don't use ring 1, so ss1 is a convenient scratch space in * the same cacheline as sp0. We use ss1 to cache the value in * MSR_IA32_SYSENTER_CS. When we context switch * MSR_IA32_SYSENTER_CS, we first check if the new value being * written matches ss1, and, if it's not, then we wrmsr the new * value and update ss1. * * The only reason we context switch MSR_IA32_SYSENTER_CS is * that we set it to zero in vm86 tasks to avoid corrupting the * stack if we were to go through the sysenter path from vm86 * mode. */ unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ unsigned short __ss1h; unsigned long sp2; unsigned short ss2, __ss2h; unsigned long __cr3; unsigned long ip; unsigned long flags; unsigned long ax; unsigned long cx; unsigned long dx; unsigned long bx; unsigned long sp; unsigned long bp; unsigned long si; unsigned long di; unsigned short es, __esh; unsigned short cs, __csh; unsigned short ss, __ssh; unsigned short ds, __dsh; unsigned short fs, __fsh; unsigned short gs, __gsh; unsigned short ldt, __ldth; unsigned short trace; unsigned short io_bitmap_base; } __attribute__((packed)); #else struct x86_hw_tss { u32 reserved1; u64 sp0; /* * We store cpu_current_top_of_stack in sp1 so it's always accessible. * Linux does not use ring 1, so sp1 is not otherwise needed. */ u64 sp1; /* * Since Linux does not use ring 2, the 'sp2' slot is unused by * hardware. entry_SYSCALL_64 uses it as scratch space to stash * the user RSP value. */ u64 sp2; u64 reserved2; u64 ist[7]; u32 reserved3; u32 reserved4; u16 reserved5; u16 io_bitmap_base; } __attribute__((packed)); #endif /* * IO-bitmap sizes: */ #define IO_BITMAP_BITS 65536 #define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE) #define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long)) #define IO_BITMAP_OFFSET_VALID_MAP \ (offsetof(struct tss_struct, io_bitmap.bitmap) - \ offsetof(struct tss_struct, x86_tss)) #define IO_BITMAP_OFFSET_VALID_ALL \ (offsetof(struct tss_struct, io_bitmap.mapall) - \ offsetof(struct tss_struct, x86_tss)) #ifdef CONFIG_X86_IOPL_IOPERM /* * sizeof(unsigned long) coming from an extra "long" at the end of the * iobitmap. The limit is inclusive, i.e. the last valid byte. */ # define __KERNEL_TSS_LIMIT \ (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \ sizeof(unsigned long) - 1) #else # define __KERNEL_TSS_LIMIT \ (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1) #endif /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */ #define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1) struct entry_stack { char stack[PAGE_SIZE]; }; struct entry_stack_page { struct entry_stack stack; } __aligned(PAGE_SIZE); /* * All IO bitmap related data stored in the TSS: */ struct x86_io_bitmap { /* The sequence number of the last active bitmap. */ u64 prev_sequence; /* * Store the dirty size of the last io bitmap offender. The next * one will have to do the cleanup as the switch out to a non io * bitmap user will just set x86_tss.io_bitmap_base to a value * outside of the TSS limit. So for sane tasks there is no need to * actually touch the io_bitmap at all. */ unsigned int prev_max; /* * The extra 1 is there because the CPU will access an * additional byte beyond the end of the IO permission * bitmap. The extra byte must be all 1 bits, and must * be within the limit. */ unsigned long bitmap[IO_BITMAP_LONGS + 1]; /* * Special I/O bitmap to emulate IOPL(3). All bytes zero, * except the additional byte at the end. */ unsigned long mapall[IO_BITMAP_LONGS + 1]; }; struct tss_struct { /* * The fixed hardware portion. This must not cross a page boundary * at risk of violating the SDM's advice and potentially triggering * errata. */ struct x86_hw_tss x86_tss; struct x86_io_bitmap io_bitmap; } __aligned(PAGE_SIZE); DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); /* Per CPU interrupt stacks */ struct irq_stack { char stack[IRQ_STACK_SIZE]; } __aligned(IRQ_STACK_SIZE); DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); #ifdef CONFIG_X86_32 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); #else /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 #endif #ifdef CONFIG_X86_64 struct fixed_percpu_data { /* * GCC hardcodes the stack canary as %gs:40. Since the * irq_stack is the object at %gs:0, we reserve the bottom * 48 bytes of the irq stack for the canary. */ char gs_base[40]; unsigned long stack_canary; }; DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible; DECLARE_INIT_PER_CPU(fixed_percpu_data); static inline unsigned long cpu_kernelmode_gs_base(int cpu) { return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu); } DECLARE_PER_CPU(unsigned int, irq_count); extern asmlinkage void ignore_sysret(void); /* Save actual FS/GS selectors and bases to current->thread */ void current_save_fsgs(void); #else /* X86_64 */ #ifdef CONFIG_STACKPROTECTOR /* * Make sure stack canary segment base is cached-aligned: * "For Intel Atom processors, avoid non zero segment base address * that is not aligned to cache line boundary at all cost." * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) */ struct stack_canary { char __pad[20]; /* canary at %gs:20 */ unsigned long canary; }; DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); #endif /* Per CPU softirq stack pointer */ DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr); #endif /* X86_64 */ extern unsigned int fpu_kernel_xstate_size; extern unsigned int fpu_user_xstate_size; struct perf_event; struct thread_struct { /* Cached TLS descriptors: */ struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; #ifdef CONFIG_X86_32 unsigned long sp0; #endif unsigned long sp; #ifdef CONFIG_X86_32 unsigned long sysenter_cs; #else unsigned short es; unsigned short ds; unsigned short fsindex; unsigned short gsindex; #endif #ifdef CONFIG_X86_64 unsigned long fsbase; unsigned long gsbase; #else /* * XXX: this could presumably be unsigned short. Alternatively, * 32-bit kernels could be taught to use fsindex instead. */ unsigned long fs; unsigned long gs; #endif /* Save middle states of ptrace breakpoints */ struct perf_event *ptrace_bps[HBP_NUM]; /* Debug status used for traps, single steps, etc... */ unsigned long virtual_dr6; /* Keep track of the exact dr7 value set by the user */ unsigned long ptrace_dr7; /* Fault info: */ unsigned long cr2; unsigned long trap_nr; unsigned long error_code; #ifdef CONFIG_VM86 /* Virtual 86 mode info */ struct vm86 *vm86; #endif /* IO permissions: */ struct io_bitmap *io_bitmap; /* * IOPL. Priviledge level dependent I/O permission which is * emulated via the I/O bitmap to prevent user space from disabling * interrupts. */ unsigned long iopl_emul; unsigned int sig_on_uaccess_err:1; /* Floating point and extended processor state */ struct fpu fpu; /* * WARNING: 'fpu' is dynamically-sized. It *MUST* be at * the end. */ }; /* Whitelist the FPU state from the task_struct for hardened usercopy. */ static inline void arch_thread_struct_whitelist(unsigned long *offset, unsigned long *size) { *offset = offsetof(struct thread_struct, fpu.state); *size = fpu_kernel_xstate_size; } static inline void native_load_sp0(unsigned long sp0) { this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); } static __always_inline void native_swapgs(void) { #ifdef CONFIG_X86_64 asm volatile("swapgs" ::: "memory"); #endif } static inline unsigned long current_top_of_stack(void) { /* * We can't read directly from tss.sp0: sp0 on x86_32 is special in * and around vm86 mode and sp0 on x86_64 is special because of the * entry trampoline. */ return this_cpu_read_stable(cpu_current_top_of_stack); } static inline bool on_thread_stack(void) { return (unsigned long)(current_top_of_stack() - current_stack_pointer) < THREAD_SIZE; } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #define __cpuid native_cpuid static inline void load_sp0(unsigned long sp0) { native_load_sp0(sp0); } #endif /* CONFIG_PARAVIRT_XXL */ /* Free all resources held by a thread. */ extern void release_thread(struct task_struct *); unsigned long get_wchan(struct task_struct *p); /* * Generic CPUID function * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx * resulting in stale register contents being returned. */ static inline void cpuid(unsigned int op, unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { *eax = op; *ecx = 0; __cpuid(eax, ebx, ecx, edx); } /* Some CPUID calls want 'count' to be placed in ecx */ static inline void cpuid_count(unsigned int op, int count, unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { *eax = op; *ecx = count; __cpuid(eax, ebx, ecx, edx); } /* * CPUID functions returning a single datum */ static inline unsigned int cpuid_eax(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return eax; } static inline unsigned int cpuid_ebx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return ebx; } static inline unsigned int cpuid_ecx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return ecx; } static inline unsigned int cpuid_edx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return edx; } extern void select_idle_routine(const struct cpuinfo_x86 *c); extern void amd_e400_c1e_apic_setup(void); extern unsigned long boot_option_idle_override; enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, IDLE_POLL}; extern void enable_sep_cpu(void); extern int sysenter_setup(void); /* Defined in head.S */ extern struct desc_ptr early_gdt_descr; extern void switch_to_new_gdt(int); extern void load_direct_gdt(int); extern void load_fixmap_gdt(int); extern void load_percpu_segment(int); extern void cpu_init(void); extern void cpu_init_exception_handling(void); extern void cr4_init(void); static inline unsigned long get_debugctlmsr(void) { unsigned long debugctlmsr = 0; #ifndef CONFIG_X86_DEBUGCTLMSR if (boot_cpu_data.x86 < 6) return 0; #endif rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); return debugctlmsr; } static inline void update_debugctlmsr(unsigned long debugctlmsr) { #ifndef CONFIG_X86_DEBUGCTLMSR if (boot_cpu_data.x86 < 6) return; #endif wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); } extern void set_task_blockstep(struct task_struct *task, bool on); /* Boot loader type from the setup header: */ extern int bootloader_type; extern int bootloader_version; extern char ignore_fpu_irq; #define HAVE_ARCH_PICK_MMAP_LAYOUT 1 #define ARCH_HAS_PREFETCHW #define ARCH_HAS_SPINLOCK_PREFETCH #ifdef CONFIG_X86_32 # define BASE_PREFETCH "" # define ARCH_HAS_PREFETCH #else # define BASE_PREFETCH "prefetcht0 %P1" #endif /* * Prefetch instructions for Pentium III (+) and AMD Athlon (+) * * It's not worth to care about 3dnow prefetches for the K6 * because they are microcoded there and very slow. */ static inline void prefetch(const void *x) { alternative_input(BASE_PREFETCH, "prefetchnta %P1", X86_FEATURE_XMM, "m" (*(const char *)x)); } /* * 3dnow prefetch to get an exclusive cache line. * Useful for spinlocks to avoid one state transition in the * cache coherency protocol: */ static __always_inline void prefetchw(const void *x) { alternative_input(BASE_PREFETCH, "prefetchw %P1", X86_FEATURE_3DNOWPREFETCH, "m" (*(const char *)x)); } static inline void spin_lock_prefetch(const void *x) { prefetchw(x); } #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ TOP_OF_KERNEL_STACK_PADDING) #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) #define task_pt_regs(task) \ ({ \ unsigned long __ptr = (unsigned long)task_stack_page(task); \ __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ ((struct pt_regs *)__ptr) - 1; \ }) #ifdef CONFIG_X86_32 #define INIT_THREAD { \ .sp0 = TOP_OF_INIT_STACK, \ .sysenter_cs = __KERNEL_CS, \ } #define KSTK_ESP(task) (task_pt_regs(task)->sp) #else #define INIT_THREAD { } extern unsigned long KSTK_ESP(struct task_struct *task); #endif /* CONFIG_X86_64 */ extern void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp); /* * This decides where the kernel will search for a free chunk of vm * space during mmap's. */ #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) #define KSTK_EIP(task) (task_pt_regs(task)->ip) /* Get/set a process' ability to use the timestamp counter instruction */ #define GET_TSC_CTL(adr) get_tsc_mode((adr)) #define SET_TSC_CTL(val) set_tsc_mode((val)) extern int get_tsc_mode(unsigned long adr); extern int set_tsc_mode(unsigned int val); DECLARE_PER_CPU(u64, msr_misc_features_shadow); #ifdef CONFIG_CPU_SUP_AMD extern u16 amd_get_nb_id(int cpu); extern u32 amd_get_nodes_per_socket(void); #else static inline u16 amd_get_nb_id(int cpu) { return 0; } static inline u32 amd_get_nodes_per_socket(void) { return 0; } #endif static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) { uint32_t base, eax, signature[3]; for (base = 0x40000000; base < 0x40010000; base += 0x100) { cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); if (!memcmp(sig, signature, 12) && (leaves == 0 || ((eax - base) >= leaves))) return base; } return 0; } extern unsigned long arch_align_stack(unsigned long sp); void free_init_pages(const char *what, unsigned long begin, unsigned long end); extern void free_kernel_image_pages(const char *what, void *begin, void *end); void default_idle(void); #ifdef CONFIG_XEN bool xen_set_default_idle(void); #else #define xen_set_default_idle 0 #endif void stop_this_cpu(void *dummy); void microcode_check(void); enum l1tf_mitigations { L1TF_MITIGATION_OFF, L1TF_MITIGATION_FLUSH_NOWARN, L1TF_MITIGATION_FLUSH, L1TF_MITIGATION_FLUSH_NOSMT, L1TF_MITIGATION_FULL, L1TF_MITIGATION_FULL_FORCE }; extern enum l1tf_mitigations l1tf_mitigation; enum mds_mitigations { MDS_MITIGATION_OFF, MDS_MITIGATION_FULL, MDS_MITIGATION_VMWERV, }; #endif /* _ASM_X86_PROCESSOR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions of structures and functions for quota formats using trie */ #ifndef _LINUX_DQBLK_QTREE_H #define _LINUX_DQBLK_QTREE_H #include <linux/types.h> /* Numbers of blocks needed for updates - we count with the smallest * possible block size (1024) */ #define QTREE_INIT_ALLOC 4 #define QTREE_INIT_REWRITE 2 #define QTREE_DEL_ALLOC 0 #define QTREE_DEL_REWRITE 6 struct dquot; struct kqid; /* Operations */ struct qtree_fmt_operations { void (*mem2disk_dqblk)(void *disk, struct dquot *dquot); /* Convert given entry from in memory format to disk one */ void (*disk2mem_dqblk)(struct dquot *dquot, void *disk); /* Convert given entry from disk format to in memory one */ int (*is_id)(void *disk, struct dquot *dquot); /* Is this structure for given id? */ }; /* Inmemory copy of version specific information */ struct qtree_mem_dqinfo { struct super_block *dqi_sb; /* Sb quota is on */ int dqi_type; /* Quota type */ unsigned int dqi_blocks; /* # of blocks in quota file */ unsigned int dqi_free_blk; /* First block in list of free blocks */ unsigned int dqi_free_entry; /* First block with free entry */ unsigned int dqi_blocksize_bits; /* Block size of quota file */ unsigned int dqi_entry_size; /* Size of quota entry in quota file */ unsigned int dqi_usable_bs; /* Space usable in block for quota data */ unsigned int dqi_qtree_depth; /* Precomputed depth of quota tree */ const struct qtree_fmt_operations *dqi_ops; /* Operations for entry manipulation */ }; int qtree_write_dquot(struct qtree_mem_dqinfo *info, struct dquot *dquot); int qtree_read_dquot(struct qtree_mem_dqinfo *info, struct dquot *dquot); int qtree_delete_dquot(struct qtree_mem_dqinfo *info, struct dquot *dquot); int qtree_release_dquot(struct qtree_mem_dqinfo *info, struct dquot *dquot); int qtree_entry_unused(struct qtree_mem_dqinfo *info, char *disk); static inline int qtree_depth(struct qtree_mem_dqinfo *info) { unsigned int epb = info->dqi_usable_bs >> 2; unsigned long long entries = epb; int i; for (i = 1; entries < (1ULL << 32); i++) entries *= epb; return i; } int qtree_get_next_id(struct qtree_mem_dqinfo *info, struct kqid *qid); #endif /* _LINUX_DQBLK_QTREE_H */
6 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Berkeley style UIO structures - Alan Cox 1994. */ #ifndef __LINUX_UIO_H #define __LINUX_UIO_H #include <linux/kernel.h> #include <linux/thread_info.h> #include <uapi/linux/uio.h> struct page; struct pipe_inode_info; struct kvec { void *iov_base; /* and that should *never* hold a userland pointer */ size_t iov_len; }; enum iter_type { /* iter types */ ITER_IOVEC = 4, ITER_KVEC = 8, ITER_BVEC = 16, ITER_PIPE = 32, ITER_DISCARD = 64, }; struct iov_iter { /* * Bit 0 is the read/write bit, set if we're writing. * Bit 1 is the BVEC_FLAG_NO_REF bit, set if type is a bvec and * the caller isn't expecting to drop a page reference when done. */ unsigned int type; size_t iov_offset; size_t count; union { const struct iovec *iov; const struct kvec *kvec; const struct bio_vec *bvec; struct pipe_inode_info *pipe; }; union { unsigned long nr_segs; struct { unsigned int head; unsigned int start_head; }; }; }; static inline enum iter_type iov_iter_type(const struct iov_iter *i) { return i->type & ~(READ | WRITE); } static inline bool iter_is_iovec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_IOVEC; } static inline bool iov_iter_is_kvec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_KVEC; } static inline bool iov_iter_is_bvec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_BVEC; } static inline bool iov_iter_is_pipe(const struct iov_iter *i) { return iov_iter_type(i) == ITER_PIPE; } static inline bool iov_iter_is_discard(const struct iov_iter *i) { return iov_iter_type(i) == ITER_DISCARD; } static inline unsigned char iov_iter_rw(const struct iov_iter *i) { return i->type & (READ | WRITE); } /* * Total number of bytes covered by an iovec. * * NOTE that it is not safe to use this function until all the iovec's * segment lengths have been validated. Because the individual lengths can * overflow a size_t when added together. */ static inline size_t iov_length(const struct iovec *iov, unsigned long nr_segs) { unsigned long seg; size_t ret = 0; for (seg = 0; seg < nr_segs; seg++) ret += iov[seg].iov_len; return ret; } static inline struct iovec iov_iter_iovec(const struct iov_iter *iter) { return (struct iovec) { .iov_base = iter->iov->iov_base + iter->iov_offset, .iov_len = min(iter->count, iter->iov->iov_len - iter->iov_offset), }; } size_t iov_iter_copy_from_user_atomic(struct page *page, struct iov_iter *i, unsigned long offset, size_t bytes); void iov_iter_advance(struct iov_iter *i, size_t bytes); void iov_iter_revert(struct iov_iter *i, size_t bytes); int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes); size_t iov_iter_single_seg_count(const struct iov_iter *i); size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i); size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i); size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i); size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i); bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i); size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i); bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i); static __always_inline __must_check size_t copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(!check_copy_size(addr, bytes, true))) return 0; else return _copy_to_iter(addr, bytes, i); } static __always_inline __must_check size_t copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(!check_copy_size(addr, bytes, false))) return 0; else return _copy_from_iter(addr, bytes, i); } static __always_inline __must_check bool copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(!check_copy_size(addr, bytes, false))) return false; else return _copy_from_iter_full(addr, bytes, i); } static __always_inline __must_check size_t copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(!check_copy_size(addr, bytes, false))) return 0; else return _copy_from_iter_nocache(addr, bytes, i); } static __always_inline __must_check bool copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(!check_copy_size(addr, bytes, false))) return false; else return _copy_from_iter_full_nocache(addr, bytes, i); } #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE /* * Note, users like pmem that depend on the stricter semantics of * copy_from_iter_flushcache() than copy_from_iter_nocache() must check for * IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) before assuming that the * destination is flushed from the cache on return. */ size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i); #else #define _copy_from_iter_flushcache _copy_from_iter_nocache #endif #ifdef CONFIG_ARCH_HAS_COPY_MC size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i); #else #define _copy_mc_to_iter _copy_to_iter #endif static __always_inline __must_check size_t copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(!check_copy_size(addr, bytes, false))) return 0; else return _copy_from_iter_flushcache(addr, bytes, i); } static __always_inline __must_check size_t copy_mc_to_iter(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(!check_copy_size(addr, bytes, true))) return 0; else return _copy_mc_to_iter(addr, bytes, i); } size_t iov_iter_zero(size_t bytes, struct iov_iter *); unsigned long iov_iter_alignment(const struct iov_iter *i); unsigned long iov_iter_gap_alignment(const struct iov_iter *i); void iov_iter_init(struct iov_iter *i, unsigned int direction, const struct iovec *iov, unsigned long nr_segs, size_t count); void iov_iter_kvec(struct iov_iter *i, unsigned int direction, const struct kvec *kvec, unsigned long nr_segs, size_t count); void iov_iter_bvec(struct iov_iter *i, unsigned int direction, const struct bio_vec *bvec, unsigned long nr_segs, size_t count); void iov_iter_pipe(struct iov_iter *i, unsigned int direction, struct pipe_inode_info *pipe, size_t count); void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count); ssize_t iov_iter_get_pages(struct iov_iter *i, struct page **pages, size_t maxsize, unsigned maxpages, size_t *start); ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, struct page ***pages, size_t maxsize, size_t *start); int iov_iter_npages(const struct iov_iter *i, int maxpages); const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags); static inline size_t iov_iter_count(const struct iov_iter *i) { return i->count; } /* * Cap the iov_iter by given limit; note that the second argument is * *not* the new size - it's upper limit for such. Passing it a value * greater than the amount of data in iov_iter is fine - it'll just do * nothing in that case. */ static inline void iov_iter_truncate(struct iov_iter *i, u64 count) { /* * count doesn't have to fit in size_t - comparison extends both * operands to u64 here and any value that would be truncated by * conversion in assignement is by definition greater than all * values of size_t, including old i->count. */ if (i->count > count) i->count = count; } /* * reexpand a previously truncated iterator; count must be no more than how much * we had shrunk it. */ static inline void iov_iter_reexpand(struct iov_iter *i, size_t count) { i->count = count; } struct csum_state { __wsum csum; size_t off; }; size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csstate, struct iov_iter *i); size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i); bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i); size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, struct iov_iter *i); struct iovec *iovec_from_user(const struct iovec __user *uvector, unsigned long nr_segs, unsigned long fast_segs, struct iovec *fast_iov, bool compat); ssize_t import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i); ssize_t __import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i, bool compat); int import_single_range(int type, void __user *buf, size_t len, struct iovec *iov, struct iov_iter *i); int iov_iter_for_each_range(struct iov_iter *i, size_t bytes, int (*f)(struct kvec *vec, void *context), void *context); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_FRAG_H__ #define __NET_FRAG_H__ #include <linux/rhashtable-types.h> #include <linux/completion.h> /* Per netns frag queues directory */ struct fqdir { /* sysctls */ long high_thresh; long low_thresh; int timeout; int max_dist; struct inet_frags *f; struct net *net; bool dead; struct rhashtable rhashtable ____cacheline_aligned_in_smp; /* Keep atomic mem on separate cachelines in structs that include it */ atomic_long_t mem ____cacheline_aligned_in_smp; struct work_struct destroy_work; }; /** * fragment queue flags * * @INET_FRAG_FIRST_IN: first fragment has arrived * @INET_FRAG_LAST_IN: final fragment has arrived * @INET_FRAG_COMPLETE: frag queue has been processed and is due for destruction * @INET_FRAG_HASH_DEAD: inet_frag_kill() has not removed fq from rhashtable */ enum { INET_FRAG_FIRST_IN = BIT(0), INET_FRAG_LAST_IN = BIT(1), INET_FRAG_COMPLETE = BIT(2), INET_FRAG_HASH_DEAD = BIT(3), }; struct frag_v4_compare_key { __be32 saddr; __be32 daddr; u32 user; u32 vif; __be16 id; u16 protocol; }; struct frag_v6_compare_key { struct in6_addr saddr; struct in6_addr daddr; u32 user; __be32 id; u32 iif; }; /** * struct inet_frag_queue - fragment queue * * @node: rhash node * @key: keys identifying this frag. * @timer: queue expiration timer * @lock: spinlock protecting this frag * @refcnt: reference count of the queue * @rb_fragments: received fragments rb-tree root * @fragments_tail: received fragments tail * @last_run_head: the head of the last "run". see ip_fragment.c * @stamp: timestamp of the last received fragment * @len: total length of the original datagram * @meat: length of received fragments so far * @flags: fragment queue flags * @max_size: maximum received fragment size * @fqdir: pointer to struct fqdir * @rcu: rcu head for freeing deferall */ struct inet_frag_queue { struct rhash_head node; union { struct frag_v4_compare_key v4; struct frag_v6_compare_key v6; } key; struct timer_list timer; spinlock_t lock; refcount_t refcnt; struct rb_root rb_fragments; struct sk_buff *fragments_tail; struct sk_buff *last_run_head; ktime_t stamp; int len; int meat; __u8 flags; u16 max_size; struct fqdir *fqdir; struct rcu_head rcu; }; struct inet_frags { unsigned int qsize; void (*constructor)(struct inet_frag_queue *q, const void *arg); void (*destructor)(struct inet_frag_queue *); void (*frag_expire)(struct timer_list *t); struct kmem_cache *frags_cachep; const char *frags_cache_name; struct rhashtable_params rhash_params; refcount_t refcnt; struct completion completion; }; int inet_frags_init(struct inet_frags *); void inet_frags_fini(struct inet_frags *); int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net); static inline void fqdir_pre_exit(struct fqdir *fqdir) { fqdir->high_thresh = 0; /* prevent creation of new frags */ fqdir->dead = true; } void fqdir_exit(struct fqdir *fqdir); void inet_frag_kill(struct inet_frag_queue *q); void inet_frag_destroy(struct inet_frag_queue *q); struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key); /* Free all skbs in the queue; return the sum of their truesizes. */ unsigned int inet_frag_rbtree_purge(struct rb_root *root); static inline void inet_frag_put(struct inet_frag_queue *q) { if (refcount_dec_and_test(&q->refcnt)) inet_frag_destroy(q); } /* Memory Tracking Functions. */ static inline long frag_mem_limit(const struct fqdir *fqdir) { return atomic_long_read(&fqdir->mem); } static inline void sub_frag_mem_limit(struct fqdir *fqdir, long val) { atomic_long_sub(val, &fqdir->mem); } static inline void add_frag_mem_limit(struct fqdir *fqdir, long val) { atomic_long_add(val, &fqdir->mem); } /* RFC 3168 support : * We want to check ECN values of all fragments, do detect invalid combinations. * In ipq->ecn, we store the OR value of each ip4_frag_ecn() fragment value. */ #define IPFRAG_ECN_NOT_ECT 0x01 /* one frag had ECN_NOT_ECT */ #define IPFRAG_ECN_ECT_1 0x02 /* one frag had ECN_ECT_1 */ #define IPFRAG_ECN_ECT_0 0x04 /* one frag had ECN_ECT_0 */ #define IPFRAG_ECN_CE 0x08 /* one frag had ECN_CE */ extern const u8 ip_frag_ecn_table[16]; /* Return values of inet_frag_queue_insert() */ #define IPFRAG_OK 0 #define IPFRAG_DUP 1 #define IPFRAG_OVERLAP 2 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb, int offset, int end); void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb, struct sk_buff *parent); void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head, void *reasm_data, bool try_coalesce); struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q); #endif
6 6 6 1 1 6 6 6 6 5 6 6 4 4 4 4 4 4 4 3 3 4 4 4 5 5 5 5 6 6 5 5 5 5 5 6 6 6 1 6 6 6 6 6 5 5 6 6 1 1 1 6 6 4 2 6 6 6 6 6 6 1 1 1 1 1 1 1 5 5 5 1 5 5 5 5 5 6 5 5 5 5 5 6 5 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 // SPDX-License-Identifier: GPL-2.0-or-later /* * NETLINK Kernel-user communication protocol. * * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> * Patrick McHardy <kaber@trash.net> * * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith * added netlink_proto_exit * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> * use nlk_sk, as sk->protinfo is on a diet 8) * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> * - inc module use count of module that owns * the kernel socket in case userspace opens * socket of same protocol * - remove all module support, since netlink is * mandatory if CONFIG_NET=y these days */ #include <linux/module.h> #include <linux/capability.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/stat.h> #include <linux/socket.h> #include <linux/un.h> #include <linux/fcntl.h> #include <linux/termios.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/rtnetlink.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/notifier.h> #include <linux/security.h> #include <linux/jhash.h> #include <linux/jiffies.h> #include <linux/random.h> #include <linux/bitops.h> #include <linux/mm.h> #include <linux/types.h> #include <linux/audit.h> #include <linux/mutex.h> #include <linux/vmalloc.h> #include <linux/if_arp.h> #include <linux/rhashtable.h> #include <asm/cacheflush.h> #include <linux/hash.h> #include <linux/genetlink.h> #include <linux/net_namespace.h> #include <linux/nospec.h> #include <linux/btf_ids.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/sock.h> #include <net/scm.h> #include <net/netlink.h> #include "af_netlink.h" struct listeners { struct rcu_head rcu; unsigned long masks[]; }; /* state bits */ #define NETLINK_S_CONGESTED 0x0 static inline int netlink_is_kernel(struct sock *sk) { return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET; } struct netlink_table *nl_table __read_mostly; EXPORT_SYMBOL_GPL(nl_table); static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS]; static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = { "nlk_cb_mutex-ROUTE", "nlk_cb_mutex-1", "nlk_cb_mutex-USERSOCK", "nlk_cb_mutex-FIREWALL", "nlk_cb_mutex-SOCK_DIAG", "nlk_cb_mutex-NFLOG", "nlk_cb_mutex-XFRM", "nlk_cb_mutex-SELINUX", "nlk_cb_mutex-ISCSI", "nlk_cb_mutex-AUDIT", "nlk_cb_mutex-FIB_LOOKUP", "nlk_cb_mutex-CONNECTOR", "nlk_cb_mutex-NETFILTER", "nlk_cb_mutex-IP6_FW", "nlk_cb_mutex-DNRTMSG", "nlk_cb_mutex-KOBJECT_UEVENT", "nlk_cb_mutex-GENERIC", "nlk_cb_mutex-17", "nlk_cb_mutex-SCSITRANSPORT", "nlk_cb_mutex-ECRYPTFS", "nlk_cb_mutex-RDMA", "nlk_cb_mutex-CRYPTO", "nlk_cb_mutex-SMC", "nlk_cb_mutex-23", "nlk_cb_mutex-24", "nlk_cb_mutex-25", "nlk_cb_mutex-26", "nlk_cb_mutex-27", "nlk_cb_mutex-28", "nlk_cb_mutex-29", "nlk_cb_mutex-30", "nlk_cb_mutex-31", "nlk_cb_mutex-MAX_LINKS" }; static int netlink_dump(struct sock *sk); /* nl_table locking explained: * Lookup and traversal are protected with an RCU read-side lock. Insertion * and removal are protected with per bucket lock while using RCU list * modification primitives and may run in parallel to RCU protected lookups. * Destruction of the Netlink socket may only occur *after* nl_table_lock has * been acquired * either during or after the socket has been removed from * the list and after an RCU grace period. */ DEFINE_RWLOCK(nl_table_lock); EXPORT_SYMBOL_GPL(nl_table_lock); static atomic_t nl_table_users = ATOMIC_INIT(0); #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); static BLOCKING_NOTIFIER_HEAD(netlink_chain); static const struct rhashtable_params netlink_rhashtable_params; static inline u32 netlink_group_mask(u32 group) { return group ? 1 << (group - 1) : 0; } static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb, gfp_t gfp_mask) { unsigned int len = skb_end_offset(skb); struct sk_buff *new; new = alloc_skb(len, gfp_mask); if (new == NULL) return NULL; NETLINK_CB(new).portid = NETLINK_CB(skb).portid; NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group; NETLINK_CB(new).creds = NETLINK_CB(skb).creds; skb_put_data(new, skb->data, len); return new; } static unsigned int netlink_tap_net_id; struct netlink_tap_net { struct list_head netlink_tap_all; struct mutex netlink_tap_lock; }; int netlink_add_tap(struct netlink_tap *nt) { struct net *net = dev_net(nt->dev); struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); if (unlikely(nt->dev->type != ARPHRD_NETLINK)) return -EINVAL; mutex_lock(&nn->netlink_tap_lock); list_add_rcu(&nt->list, &nn->netlink_tap_all); mutex_unlock(&nn->netlink_tap_lock); __module_get(nt->module); return 0; } EXPORT_SYMBOL_GPL(netlink_add_tap); static int __netlink_remove_tap(struct netlink_tap *nt) { struct net *net = dev_net(nt->dev); struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); bool found = false; struct netlink_tap *tmp; mutex_lock(&nn->netlink_tap_lock); list_for_each_entry(tmp, &nn->netlink_tap_all, list) { if (nt == tmp) { list_del_rcu(&nt->list); found = true; goto out; } } pr_warn("__netlink_remove_tap: %p not found\n", nt); out: mutex_unlock(&nn->netlink_tap_lock); if (found) module_put(nt->module); return found ? 0 : -ENODEV; } int netlink_remove_tap(struct netlink_tap *nt) { int ret; ret = __netlink_remove_tap(nt); synchronize_net(); return ret; } EXPORT_SYMBOL_GPL(netlink_remove_tap); static __net_init int netlink_tap_init_net(struct net *net) { struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); INIT_LIST_HEAD(&nn->netlink_tap_all); mutex_init(&nn->netlink_tap_lock); return 0; } static struct pernet_operations netlink_tap_net_ops = { .init = netlink_tap_init_net, .id = &netlink_tap_net_id, .size = sizeof(struct netlink_tap_net), }; static bool netlink_filter_tap(const struct sk_buff *skb) { struct sock *sk = skb->sk; /* We take the more conservative approach and * whitelist socket protocols that may pass. */ switch (sk->sk_protocol) { case NETLINK_ROUTE: case NETLINK_USERSOCK: case NETLINK_SOCK_DIAG: case NETLINK_NFLOG: case NETLINK_XFRM: case NETLINK_FIB_LOOKUP: case NETLINK_NETFILTER: case NETLINK_GENERIC: return true; } return false; } static int __netlink_deliver_tap_skb(struct sk_buff *skb, struct net_device *dev) { struct sk_buff *nskb; struct sock *sk = skb->sk; int ret = -ENOMEM; if (!net_eq(dev_net(dev), sock_net(sk))) return 0; dev_hold(dev); if (is_vmalloc_addr(skb->head)) nskb = netlink_to_full_skb(skb, GFP_ATOMIC); else nskb = skb_clone(skb, GFP_ATOMIC); if (nskb) { nskb->dev = dev; nskb->protocol = htons((u16) sk->sk_protocol); nskb->pkt_type = netlink_is_kernel(sk) ? PACKET_KERNEL : PACKET_USER; skb_reset_network_header(nskb); ret = dev_queue_xmit(nskb); if (unlikely(ret > 0)) ret = net_xmit_errno(ret); } dev_put(dev); return ret; } static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn) { int ret; struct netlink_tap *tmp; if (!netlink_filter_tap(skb)) return; list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) { ret = __netlink_deliver_tap_skb(skb, tmp->dev); if (unlikely(ret)) break; } } static void netlink_deliver_tap(struct net *net, struct sk_buff *skb) { struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); rcu_read_lock(); if (unlikely(!list_empty(&nn->netlink_tap_all))) __netlink_deliver_tap(skb, nn); rcu_read_unlock(); } static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, struct sk_buff *skb) { if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) netlink_deliver_tap(sock_net(dst), skb); } static void netlink_overrun(struct sock *sk) { struct netlink_sock *nlk = nlk_sk(sk); if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) { if (!test_and_set_bit(NETLINK_S_CONGESTED, &nlk_sk(sk)->state)) { sk->sk_err = ENOBUFS; sk->sk_error_report(sk); } } atomic_inc(&sk->sk_drops); } static void netlink_rcv_wake(struct sock *sk) { struct netlink_sock *nlk = nlk_sk(sk); if (skb_queue_empty_lockless(&sk->sk_receive_queue)) clear_bit(NETLINK_S_CONGESTED, &nlk->state); if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) wake_up_interruptible(&nlk->wait); } static void netlink_skb_destructor(struct sk_buff *skb) { if (is_vmalloc_addr(skb->head)) { if (!skb->cloned || !atomic_dec_return(&(skb_shinfo(skb)->dataref))) vfree(skb->head); skb->head = NULL; } if (skb->sk != NULL) sock_rfree(skb); } static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) { WARN_ON(skb->sk != NULL); skb->sk = sk; skb->destructor = netlink_skb_destructor; atomic_add(skb->truesize, &sk->sk_rmem_alloc); sk_mem_charge(sk, skb->truesize); } static void netlink_sock_destruct(struct sock *sk) { struct netlink_sock *nlk = nlk_sk(sk); if (nlk->cb_running) { if (nlk->cb.done) nlk->cb.done(&nlk->cb); module_put(nlk->cb.module); kfree_skb(nlk->cb.skb); } skb_queue_purge(&sk->sk_receive_queue); if (!sock_flag(sk, SOCK_DEAD)) { printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); return; } WARN_ON(atomic_read(&sk->sk_rmem_alloc)); WARN_ON(refcount_read(&sk->sk_wmem_alloc)); WARN_ON(nlk_sk(sk)->groups); } static void netlink_sock_destruct_work(struct work_struct *work) { struct netlink_sock *nlk = container_of(work, struct netlink_sock, work); sk_free(&nlk->sk); } /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on * SMP. Look, when several writers sleep and reader wakes them up, all but one * immediately hit write lock and grab all the cpus. Exclusive sleep solves * this, _but_ remember, it adds useless work on UP machines. */ void netlink_table_grab(void) __acquires(nl_table_lock) { might_sleep(); write_lock_irq(&nl_table_lock); if (atomic_read(&nl_table_users)) { DECLARE_WAITQUEUE(wait, current); add_wait_queue_exclusive(&nl_table_wait, &wait); for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (atomic_read(&nl_table_users) == 0) break; write_unlock_irq(&nl_table_lock); schedule(); write_lock_irq(&nl_table_lock); } __set_current_state(TASK_RUNNING); remove_wait_queue(&nl_table_wait, &wait); } } void netlink_table_ungrab(void) __releases(nl_table_lock) { write_unlock_irq(&nl_table_lock); wake_up(&nl_table_wait); } static inline void netlink_lock_table(void) { unsigned long flags; /* read_lock() synchronizes us to netlink_table_grab */ read_lock_irqsave(&nl_table_lock, flags); atomic_inc(&nl_table_users); read_unlock_irqrestore(&nl_table_lock, flags); } static inline void netlink_unlock_table(void) { if (atomic_dec_and_test(&nl_table_users)) wake_up(&nl_table_wait); } struct netlink_compare_arg { possible_net_t pnet; u32 portid; }; /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ #define netlink_compare_arg_len \ (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) static inline int netlink_compare(struct rhashtable_compare_arg *arg, const void *ptr) { const struct netlink_compare_arg *x = arg->key; const struct netlink_sock *nlk = ptr; return nlk->portid != x->portid || !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); } static void netlink_compare_arg_init(struct netlink_compare_arg *arg, struct net *net, u32 portid) { memset(arg, 0, sizeof(*arg)); write_pnet(&arg->pnet, net); arg->portid = portid; } static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, struct net *net) { struct netlink_compare_arg arg; netlink_compare_arg_init(&arg, net, portid); return rhashtable_lookup_fast(&table->hash, &arg, netlink_rhashtable_params); } static int __netlink_insert(struct netlink_table *table, struct sock *sk) { struct netlink_compare_arg arg; netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); return rhashtable_lookup_insert_key(&table->hash, &arg, &nlk_sk(sk)->node, netlink_rhashtable_params); } static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) { struct netlink_table *table = &nl_table[protocol]; struct sock *sk; rcu_read_lock(); sk = __netlink_lookup(table, portid, net); if (sk) sock_hold(sk); rcu_read_unlock(); return sk; } static const struct proto_ops netlink_ops; static void netlink_update_listeners(struct sock *sk) { struct netlink_table *tbl = &nl_table[sk->sk_protocol]; unsigned long mask; unsigned int i; struct listeners *listeners; listeners = nl_deref_protected(tbl->listeners); if (!listeners) return; for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { mask = 0; sk_for_each_bound(sk, &tbl->mc_list) { if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) mask |= nlk_sk(sk)->groups[i]; } listeners->masks[i] = mask; } /* this function is only called with the netlink table "grabbed", which * makes sure updates are visible before bind or setsockopt return. */ } static int netlink_insert(struct sock *sk, u32 portid) { struct netlink_table *table = &nl_table[sk->sk_protocol]; int err; lock_sock(sk); err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY; if (nlk_sk(sk)->bound) goto err; nlk_sk(sk)->portid = portid; sock_hold(sk); err = __netlink_insert(table, sk); if (err) { /* In case the hashtable backend returns with -EBUSY * from here, it must not escape to the caller. */ if (unlikely(err == -EBUSY)) err = -EOVERFLOW; if (err == -EEXIST) err = -EADDRINUSE; sock_put(sk); goto err; } /* We need to ensure that the socket is hashed and visible. */ smp_wmb(); /* Paired with lockless reads from netlink_bind(), * netlink_connect() and netlink_sendmsg(). */ WRITE_ONCE(nlk_sk(sk)->bound, portid); err: release_sock(sk); return err; } static void netlink_remove(struct sock *sk) { struct netlink_table *table; table = &nl_table[sk->sk_protocol]; if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, netlink_rhashtable_params)) { WARN_ON(refcount_read(&sk->sk_refcnt) == 1); __sock_put(sk); } netlink_table_grab(); if (nlk_sk(sk)->subscriptions) { __sk_del_bind_node(sk); netlink_update_listeners(sk); } if (sk->sk_protocol == NETLINK_GENERIC) atomic_inc(&genl_sk_destructing_cnt); netlink_table_ungrab(); } static struct proto netlink_proto = { .name = "NETLINK", .owner = THIS_MODULE, .obj_size = sizeof(struct netlink_sock), }; static int __netlink_create(struct net *net, struct socket *sock, struct mutex *cb_mutex, int protocol, int kern) { struct sock *sk; struct netlink_sock *nlk; sock->ops = &netlink_ops; sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); if (!sk) return -ENOMEM; sock_init_data(sock, sk); nlk = nlk_sk(sk); if (cb_mutex) { nlk->cb_mutex = cb_mutex; } else { nlk->cb_mutex = &nlk->cb_def_mutex; mutex_init(nlk->cb_mutex); lockdep_set_class_and_name(nlk->cb_mutex, nlk_cb_mutex_keys + protocol, nlk_cb_mutex_key_strings[protocol]); } init_waitqueue_head(&nlk->wait); sk->sk_destruct = netlink_sock_destruct; sk->sk_protocol = protocol; return 0; } static int netlink_create(struct net *net, struct socket *sock, int protocol, int kern) { struct module *module = NULL; struct mutex *cb_mutex; struct netlink_sock *nlk; int (*bind)(struct net *net, int group); void (*unbind)(struct net *net, int group); int err = 0; sock->state = SS_UNCONNECTED; if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) return -ESOCKTNOSUPPORT; if (protocol < 0 || protocol >= MAX_LINKS) return -EPROTONOSUPPORT; protocol = array_index_nospec(protocol, MAX_LINKS); netlink_lock_table(); #ifdef CONFIG_MODULES if (!nl_table[protocol].registered) { netlink_unlock_table(); request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); netlink_lock_table(); } #endif if (nl_table[protocol].registered && try_module_get(nl_table[protocol].module)) module = nl_table[protocol].module; else err = -EPROTONOSUPPORT; cb_mutex = nl_table[protocol].cb_mutex; bind = nl_table[protocol].bind; unbind = nl_table[protocol].unbind; netlink_unlock_table(); if (err < 0) goto out; err = __netlink_create(net, sock, cb_mutex, protocol, kern); if (err < 0) goto out_module; local_bh_disable(); sock_prot_inuse_add(net, &netlink_proto, 1); local_bh_enable(); nlk = nlk_sk(sock->sk); nlk->module = module; nlk->netlink_bind = bind; nlk->netlink_unbind = unbind; out: return err; out_module: module_put(module); goto out; } static void deferred_put_nlk_sk(struct rcu_head *head) { struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); struct sock *sk = &nlk->sk; kfree(nlk->groups); nlk->groups = NULL; if (!refcount_dec_and_test(&sk->sk_refcnt)) return; if (nlk->cb_running && nlk->cb.done) { INIT_WORK(&nlk->work, netlink_sock_destruct_work); schedule_work(&nlk->work); return; } sk_free(sk); } static int netlink_release(struct socket *sock) { struct sock *sk = sock->sk; struct netlink_sock *nlk; if (!sk) return 0; netlink_remove(sk); sock_orphan(sk); nlk = nlk_sk(sk); /* * OK. Socket is unlinked, any packets that arrive now * will be purged. */ /* must not acquire netlink_table_lock in any way again before unbind * and notifying genetlink is done as otherwise it might deadlock */ if (nlk->netlink_unbind) { int i; for (i = 0; i < nlk->ngroups; i++) if (test_bit(i, nlk->groups)) nlk->netlink_unbind(sock_net(sk), i + 1); } if (sk->sk_protocol == NETLINK_GENERIC && atomic_dec_return(&genl_sk_destructing_cnt) == 0) wake_up(&genl_sk_destructing_waitq); sock->sk = NULL; wake_up_interruptible_all(&nlk->wait); skb_queue_purge(&sk->sk_write_queue); if (nlk->portid && nlk->bound) { struct netlink_notify n = { .net = sock_net(sk), .protocol = sk->sk_protocol, .portid = nlk->portid, }; blocking_notifier_call_chain(&netlink_chain, NETLINK_URELEASE, &n); } module_put(nlk->module); if (netlink_is_kernel(sk)) { netlink_table_grab(); BUG_ON(nl_table[sk->sk_protocol].registered == 0); if (--nl_table[sk->sk_protocol].registered == 0) { struct listeners *old; old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); kfree_rcu(old, rcu); nl_table[sk->sk_protocol].module = NULL; nl_table[sk->sk_protocol].bind = NULL; nl_table[sk->sk_protocol].unbind = NULL; nl_table[sk->sk_protocol].flags = 0; nl_table[sk->sk_protocol].registered = 0; } netlink_table_ungrab(); } local_bh_disable(); sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); local_bh_enable(); call_rcu(&nlk->rcu, deferred_put_nlk_sk); return 0; } static int netlink_autobind(struct socket *sock) { struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct netlink_table *table = &nl_table[sk->sk_protocol]; s32 portid = task_tgid_vnr(current); int err; s32 rover = -4096; bool ok; retry: cond_resched(); rcu_read_lock(); ok = !__netlink_lookup(table, portid, net); rcu_read_unlock(); if (!ok) { /* Bind collision, search negative portid values. */ if (rover == -4096) /* rover will be in range [S32_MIN, -4097] */ rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN); else if (rover >= -4096) rover = -4097; portid = rover--; goto retry; } err = netlink_insert(sk, portid); if (err == -EADDRINUSE) goto retry; /* If 2 threads race to autobind, that is fine. */ if (err == -EBUSY) err = 0; return err; } /** * __netlink_ns_capable - General netlink message capability test * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. * @user_ns: The user namespace of the capability to use * @cap: The capability to use * * Test to see if the opener of the socket we received the message * from had when the netlink socket was created and the sender of the * message has the capability @cap in the user namespace @user_ns. */ bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, struct user_namespace *user_ns, int cap) { return ((nsp->flags & NETLINK_SKB_DST) || file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && ns_capable(user_ns, cap); } EXPORT_SYMBOL(__netlink_ns_capable); /** * netlink_ns_capable - General netlink message capability test * @skb: socket buffer holding a netlink command from userspace * @user_ns: The user namespace of the capability to use * @cap: The capability to use * * Test to see if the opener of the socket we received the message * from had when the netlink socket was created and the sender of the * message has the capability @cap in the user namespace @user_ns. */ bool netlink_ns_capable(const struct sk_buff *skb, struct user_namespace *user_ns, int cap) { return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); } EXPORT_SYMBOL(netlink_ns_capable); /** * netlink_capable - Netlink global message capability test * @skb: socket buffer holding a netlink command from userspace * @cap: The capability to use * * Test to see if the opener of the socket we received the message * from had when the netlink socket was created and the sender of the * message has the capability @cap in all user namespaces. */ bool netlink_capable(const struct sk_buff *skb, int cap) { return netlink_ns_capable(skb, &init_user_ns, cap); } EXPORT_SYMBOL(netlink_capable); /** * netlink_net_capable - Netlink network namespace message capability test * @skb: socket buffer holding a netlink command from userspace * @cap: The capability to use * * Test to see if the opener of the socket we received the message * from had when the netlink socket was created and the sender of the * message has the capability @cap over the network namespace of * the socket we received the message from. */ bool netlink_net_capable(const struct sk_buff *skb, int cap) { return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); } EXPORT_SYMBOL(netlink_net_capable); static inline int netlink_allowed(const struct socket *sock, unsigned int flag) { return (nl_table[sock->sk->sk_protocol].flags & flag) || ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); } static void netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) { struct netlink_sock *nlk = nlk_sk(sk); if (nlk->subscriptions && !subscriptions) __sk_del_bind_node(sk); else if (!nlk->subscriptions && subscriptions) sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); nlk->subscriptions = subscriptions; } static int netlink_realloc_groups(struct sock *sk) { struct netlink_sock *nlk = nlk_sk(sk); unsigned int groups; unsigned long *new_groups; int err = 0; netlink_table_grab(); groups = nl_table[sk->sk_protocol].groups; if (!nl_table[sk->sk_protocol].registered) { err = -ENOENT; goto out_unlock; } if (nlk->ngroups >= groups) goto out_unlock; new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); if (new_groups == NULL) { err = -ENOMEM; goto out_unlock; } memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); nlk->groups = new_groups; nlk->ngroups = groups; out_unlock: netlink_table_ungrab(); return err; } static void netlink_undo_bind(int group, long unsigned int groups, struct sock *sk) { struct netlink_sock *nlk = nlk_sk(sk); int undo; if (!nlk->netlink_unbind) return; for (undo = 0; undo < group; undo++) if (test_bit(undo, &groups)) nlk->netlink_unbind(sock_net(sk), undo + 1); } static int netlink_bind(struct socket *sock, struct sockaddr *addr, int addr_len) { struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct netlink_sock *nlk = nlk_sk(sk); struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; int err = 0; unsigned long groups; bool bound; if (addr_len < sizeof(struct sockaddr_nl)) return -EINVAL; if (nladdr->nl_family != AF_NETLINK) return -EINVAL; groups = nladdr->nl_groups; /* Only superuser is allowed to listen multicasts */ if (groups) { if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) return -EPERM; err = netlink_realloc_groups(sk); if (err) return err; } if (nlk->ngroups < BITS_PER_LONG) groups &= (1UL << nlk->ngroups) - 1; /* Paired with WRITE_ONCE() in netlink_insert() */ bound = READ_ONCE(nlk->bound); if (bound) { /* Ensure nlk->portid is up-to-date. */ smp_rmb(); if (nladdr->nl_pid != nlk->portid) return -EINVAL; } netlink_lock_table(); if (nlk->netlink_bind && groups) { int group; /* nl_groups is a u32, so cap the maximum groups we can bind */ for (group = 0; group < BITS_PER_TYPE(u32); group++) { if (!test_bit(group, &groups)) continue; err = nlk->netlink_bind(net, group + 1); if (!err) continue; netlink_undo_bind(group, groups, sk); goto unlock; } } /* No need for barriers here as we return to user-space without * using any of the bound attributes. */ if (!bound) { err = nladdr->nl_pid ? netlink_insert(sk, nladdr->nl_pid) : netlink_autobind(sock); if (err) { netlink_undo_bind(BITS_PER_TYPE(u32), groups, sk); goto unlock; } } if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) goto unlock; netlink_unlock_table(); netlink_table_grab(); netlink_update_subscriptions(sk, nlk->subscriptions + hweight32(groups) - hweight32(nlk->groups[0])); nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; netlink_update_listeners(sk); netlink_table_ungrab(); return 0; unlock: netlink_unlock_table(); return err; } static int netlink_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) { int err = 0; struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; if (alen < sizeof(addr->sa_family)) return -EINVAL; if (addr->sa_family == AF_UNSPEC) { sk->sk_state = NETLINK_UNCONNECTED; nlk->dst_portid = 0; nlk->dst_group = 0; return 0; } if (addr->sa_family != AF_NETLINK) return -EINVAL; if (alen < sizeof(struct sockaddr_nl)) return -EINVAL; if ((nladdr->nl_groups || nladdr->nl_pid) && !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) return -EPERM; /* No need for barriers here as we return to user-space without * using any of the bound attributes. * Paired with WRITE_ONCE() in netlink_insert(). */ if (!READ_ONCE(nlk->bound)) err = netlink_autobind(sock); if (err == 0) { sk->sk_state = NETLINK_CONNECTED; nlk->dst_portid = nladdr->nl_pid; nlk->dst_group = ffs(nladdr->nl_groups); } return err; } static int netlink_getname(struct socket *sock, struct sockaddr *addr, int peer) { struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); nladdr->nl_family = AF_NETLINK; nladdr->nl_pad = 0; if (peer) { nladdr->nl_pid = nlk->dst_portid; nladdr->nl_groups = netlink_group_mask(nlk->dst_group); } else { nladdr->nl_pid = nlk->portid; netlink_lock_table(); nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; netlink_unlock_table(); } return sizeof(*nladdr); } static int netlink_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { /* try to hand this ioctl down to the NIC drivers. */ return -ENOIOCTLCMD; } static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) { struct sock *sock; struct netlink_sock *nlk; sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); if (!sock) return ERR_PTR(-ECONNREFUSED); /* Don't bother queuing skb if kernel socket has no input function */ nlk = nlk_sk(sock); if (sock->sk_state == NETLINK_CONNECTED && nlk->dst_portid != nlk_sk(ssk)->portid) { sock_put(sock); return ERR_PTR(-ECONNREFUSED); } return sock; } struct sock *netlink_getsockbyfilp(struct file *filp) { struct inode *inode = file_inode(filp); struct sock *sock; if (!S_ISSOCK(inode->i_mode)) return ERR_PTR(-ENOTSOCK); sock = SOCKET_I(inode)->sk; if (sock->sk_family != AF_NETLINK) return ERR_PTR(-EINVAL); sock_hold(sock); return sock; } static struct sk_buff *netlink_alloc_large_skb(unsigned int size, int broadcast) { struct sk_buff *skb; void *data; if (size <= NLMSG_GOODSIZE || broadcast) return alloc_skb(size, GFP_KERNEL); size = SKB_DATA_ALIGN(size) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); data = vmalloc(size); if (data == NULL) return NULL; skb = __build_skb(data, size); if (skb == NULL) vfree(data); else skb->destructor = netlink_skb_destructor; return skb; } /* * Attach a skb to a netlink socket. * The caller must hold a reference to the destination socket. On error, the * reference is dropped. The skb is not send to the destination, just all * all error checks are performed and memory in the queue is reserved. * Return values: * < 0: error. skb freed, reference to sock dropped. * 0: continue * 1: repeat lookup - reference dropped while waiting for socket memory. */ int netlink_attachskb(struct sock *sk, struct sk_buff *skb, long *timeo, struct sock *ssk) { struct netlink_sock *nlk; nlk = nlk_sk(sk); if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || test_bit(NETLINK_S_CONGESTED, &nlk->state))) { DECLARE_WAITQUEUE(wait, current); if (!*timeo) { if (!ssk || netlink_is_kernel(ssk)) netlink_overrun(sk); sock_put(sk); kfree_skb(skb); return -EAGAIN; } __set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&nlk->wait, &wait); if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || test_bit(NETLINK_S_CONGESTED, &nlk->state)) && !sock_flag(sk, SOCK_DEAD)) *timeo = schedule_timeout(*timeo); __set_current_state(TASK_RUNNING); remove_wait_queue(&nlk->wait, &wait); sock_put(sk); if (signal_pending(current)) { kfree_skb(skb); return sock_intr_errno(*timeo); } return 1; } netlink_skb_set_owner_r(skb, sk); return 0; } static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) { int len = skb->len; netlink_deliver_tap(sock_net(sk), skb); skb_queue_tail(&sk->sk_receive_queue, skb); sk->sk_data_ready(sk); return len; } int netlink_sendskb(struct sock *sk, struct sk_buff *skb) { int len = __netlink_sendskb(sk, skb); sock_put(sk); return len; } void netlink_detachskb(struct sock *sk, struct sk_buff *skb) { kfree_skb(skb); sock_put(sk); } static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) { int delta; WARN_ON(skb->sk != NULL); delta = skb->end - skb->tail; if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) return skb; if (skb_shared(skb)) { struct sk_buff *nskb = skb_clone(skb, allocation); if (!nskb) return skb; consume_skb(skb); skb = nskb; } pskb_expand_head(skb, 0, -delta, (allocation & ~__GFP_DIRECT_RECLAIM) | __GFP_NOWARN | __GFP_NORETRY); return skb; } static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, struct sock *ssk) { int ret; struct netlink_sock *nlk = nlk_sk(sk); ret = -ECONNREFUSED; if (nlk->netlink_rcv != NULL) { ret = skb->len; netlink_skb_set_owner_r(skb, sk); NETLINK_CB(skb).sk = ssk; netlink_deliver_tap_kernel(sk, ssk, skb); nlk->netlink_rcv(skb); consume_skb(skb); } else { kfree_skb(skb); } sock_put(sk); return ret; } int netlink_unicast(struct sock *ssk, struct sk_buff *skb, u32 portid, int nonblock) { struct sock *sk; int err; long timeo; skb = netlink_trim(skb, gfp_any()); timeo = sock_sndtimeo(ssk, nonblock); retry: sk = netlink_getsockbyportid(ssk, portid); if (IS_ERR(sk)) { kfree_skb(skb); return PTR_ERR(sk); } if (netlink_is_kernel(sk)) return netlink_unicast_kernel(sk, skb, ssk); if (sk_filter(sk, skb)) { err = skb->len; kfree_skb(skb); sock_put(sk); return err; } err = netlink_attachskb(sk, skb, &timeo, ssk); if (err == 1) goto retry; if (err) return err; return netlink_sendskb(sk, skb); } EXPORT_SYMBOL(netlink_unicast); int netlink_has_listeners(struct sock *sk, unsigned int group) { int res = 0; struct listeners *listeners; BUG_ON(!netlink_is_kernel(sk)); rcu_read_lock(); listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) res = test_bit(group - 1, listeners->masks); rcu_read_unlock(); return res; } EXPORT_SYMBOL_GPL(netlink_has_listeners); bool netlink_strict_get_check(struct sk_buff *skb) { const struct netlink_sock *nlk = nlk_sk(NETLINK_CB(skb).sk); return nlk->flags & NETLINK_F_STRICT_CHK; } EXPORT_SYMBOL_GPL(netlink_strict_get_check); static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) { struct netlink_sock *nlk = nlk_sk(sk); if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { netlink_skb_set_owner_r(skb, sk); __netlink_sendskb(sk, skb); return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); } return -1; } struct netlink_broadcast_data { struct sock *exclude_sk; struct net *net; u32 portid; u32 group; int failure; int delivery_failure; int congested; int delivered; gfp_t allocation; struct sk_buff *skb, *skb2; int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); void *tx_data; }; static void do_one_broadcast(struct sock *sk, struct netlink_broadcast_data *p) { struct netlink_sock *nlk = nlk_sk(sk); int val; if (p->exclude_sk == sk) return; if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || !test_bit(p->group - 1, nlk->groups)) return; if (!net_eq(sock_net(sk), p->net)) { if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID)) return; if (!peernet_has_id(sock_net(sk), p->net)) return; if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, CAP_NET_BROADCAST)) return; } if (p->failure) { netlink_overrun(sk); return; } sock_hold(sk); if (p->skb2 == NULL) { if (skb_shared(p->skb)) { p->skb2 = skb_clone(p->skb, p->allocation); } else { p->skb2 = skb_get(p->skb); /* * skb ownership may have been set when * delivered to a previous socket. */ skb_orphan(p->skb2); } } if (p->skb2 == NULL) { netlink_overrun(sk); /* Clone failed. Notify ALL listeners. */ p->failure = 1; if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) p->delivery_failure = 1; goto out; } if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { kfree_skb(p->skb2); p->skb2 = NULL; goto out; } if (sk_filter(sk, p->skb2)) { kfree_skb(p->skb2); p->skb2 = NULL; goto out; } NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED) NETLINK_CB(p->skb2).nsid_is_set = true; val = netlink_broadcast_deliver(sk, p->skb2); if (val < 0) { netlink_overrun(sk); if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) p->delivery_failure = 1; } else { p->congested |= val; p->delivered = 1; p->skb2 = NULL; } out: sock_put(sk); } int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, u32 group, gfp_t allocation, int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), void *filter_data) { struct net *net = sock_net(ssk); struct netlink_broadcast_data info; struct sock *sk; skb = netlink_trim(skb, allocation); info.exclude_sk = ssk; info.net = net; info.portid = portid; info.group = group; info.failure = 0; info.delivery_failure = 0; info.congested = 0; info.delivered = 0; info.allocation = allocation; info.skb = skb; info.skb2 = NULL; info.tx_filter = filter; info.tx_data = filter_data; /* While we sleep in clone, do not allow to change socket list */ netlink_lock_table(); sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) do_one_broadcast(sk, &info); consume_skb(skb); netlink_unlock_table(); if (info.delivery_failure) { kfree_skb(info.skb2); return -ENOBUFS; } consume_skb(info.skb2); if (info.delivered) { if (info.congested && gfpflags_allow_blocking(allocation)) yield(); return 0; } return -ESRCH; } EXPORT_SYMBOL(netlink_broadcast_filtered); int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, u32 group, gfp_t allocation) { return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, NULL, NULL); } EXPORT_SYMBOL(netlink_broadcast); struct netlink_set_err_data { struct sock *exclude_sk; u32 portid; u32 group; int code; }; static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) { struct netlink_sock *nlk = nlk_sk(sk); int ret = 0; if (sk == p->exclude_sk) goto out; if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) goto out; if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || !test_bit(p->group - 1, nlk->groups)) goto out; if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) { ret = 1; goto out; } sk->sk_err = p->code; sk->sk_error_report(sk); out: return ret; } /** * netlink_set_err - report error to broadcast listeners * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() * @portid: the PORTID of a process that we want to skip (if any) * @group: the broadcast group that will notice the error * @code: error code, must be negative (as usual in kernelspace) * * This function returns the number of broadcast listeners that have set the * NETLINK_NO_ENOBUFS socket option. */ int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) { struct netlink_set_err_data info; struct sock *sk; int ret = 0; info.exclude_sk = ssk; info.portid = portid; info.group = group; /* sk->sk_err wants a positive error value */ info.code = -code; read_lock(&nl_table_lock); sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) ret += do_one_set_err(sk, &info); read_unlock(&nl_table_lock); return ret; } EXPORT_SYMBOL(netlink_set_err); /* must be called with netlink table grabbed */ static void netlink_update_socket_mc(struct netlink_sock *nlk, unsigned int group, int is_new) { int old, new = !!is_new, subscriptions; old = test_bit(group - 1, nlk->groups); subscriptions = nlk->subscriptions - old + new; if (new) __set_bit(group - 1, nlk->groups); else __clear_bit(group - 1, nlk->groups); netlink_update_subscriptions(&nlk->sk, subscriptions); netlink_update_listeners(&nlk->sk); } static int netlink_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); unsigned int val = 0; int err; if (level != SOL_NETLINK) return -ENOPROTOOPT; if (optlen >= sizeof(int) && copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; switch (optname) { case NETLINK_PKTINFO: if (val) nlk->flags |= NETLINK_F_RECV_PKTINFO; else nlk->flags &= ~NETLINK_F_RECV_PKTINFO; err = 0; break; case NETLINK_ADD_MEMBERSHIP: case NETLINK_DROP_MEMBERSHIP: { if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) return -EPERM; err = netlink_realloc_groups(sk); if (err) return err; if (!val || val - 1 >= nlk->ngroups) return -EINVAL; if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { err = nlk->netlink_bind(sock_net(sk), val); if (err) return err; } netlink_table_grab(); netlink_update_socket_mc(nlk, val, optname == NETLINK_ADD_MEMBERSHIP); netlink_table_ungrab(); if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) nlk->netlink_unbind(sock_net(sk), val); err = 0; break; } case NETLINK_BROADCAST_ERROR: if (val) nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR; else nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR; err = 0; break; case NETLINK_NO_ENOBUFS: if (val) { nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS; clear_bit(NETLINK_S_CONGESTED, &nlk->state); wake_up_interruptible(&nlk->wait); } else { nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS; } err = 0; break; case NETLINK_LISTEN_ALL_NSID: if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) return -EPERM; if (val) nlk->flags |= NETLINK_F_LISTEN_ALL_NSID; else nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID; err = 0; break; case NETLINK_CAP_ACK: if (val) nlk->flags |= NETLINK_F_CAP_ACK; else nlk->flags &= ~NETLINK_F_CAP_ACK; err = 0; break; case NETLINK_EXT_ACK: if (val) nlk->flags |= NETLINK_F_EXT_ACK; else nlk->flags &= ~NETLINK_F_EXT_ACK; err = 0; break; case NETLINK_GET_STRICT_CHK: if (val) nlk->flags |= NETLINK_F_STRICT_CHK; else nlk->flags &= ~NETLINK_F_STRICT_CHK; err = 0; break; default: err = -ENOPROTOOPT; } return err; } static int netlink_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); int len, val, err; if (level != SOL_NETLINK) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; switch (optname) { case NETLINK_PKTINFO: if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0; if (put_user(len, optlen) || put_user(val, optval)) return -EFAULT; err = 0; break; case NETLINK_BROADCAST_ERROR: if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0; if (put_user(len, optlen) || put_user(val, optval)) return -EFAULT; err = 0; break; case NETLINK_NO_ENOBUFS: if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0; if (put_user(len, optlen) || put_user(val, optval)) return -EFAULT; err = 0; break; case NETLINK_LIST_MEMBERSHIPS: { int pos, idx, shift; err = 0; netlink_lock_table(); for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { if (len - pos < sizeof(u32)) break; idx = pos / sizeof(unsigned long); shift = (pos % sizeof(unsigned long)) * 8; if (put_user((u32)(nlk->groups[idx] >> shift), (u32 __user *)(optval + pos))) { err = -EFAULT; break; } } if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen)) err = -EFAULT; netlink_unlock_table(); break; } case NETLINK_CAP_ACK: if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0; if (put_user(len, optlen) || put_user(val, optval)) return -EFAULT; err = 0; break; case NETLINK_EXT_ACK: if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = nlk->flags & NETLINK_F_EXT_ACK ? 1 : 0; if (put_user(len, optlen) || put_user(val, optval)) return -EFAULT; err = 0; break; case NETLINK_GET_STRICT_CHK: if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = nlk->flags & NETLINK_F_STRICT_CHK ? 1 : 0; if (put_user(len, optlen) || put_user(val, optval)) return -EFAULT; err = 0; break; default: err = -ENOPROTOOPT; } return err; } static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) { struct nl_pktinfo info; info.group = NETLINK_CB(skb).dst_group; put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); } static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, struct sk_buff *skb) { if (!NETLINK_CB(skb).nsid_is_set) return; put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), &NETLINK_CB(skb).nsid); } static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); u32 dst_portid; u32 dst_group; struct sk_buff *skb; int err; struct scm_cookie scm; u32 netlink_skb_flags = 0; if (msg->msg_flags & MSG_OOB) return -EOPNOTSUPP; err = scm_send(sock, msg, &scm, true); if (err < 0) return err; if (msg->msg_namelen) { err = -EINVAL; if (msg->msg_namelen < sizeof(struct sockaddr_nl)) goto out; if (addr->nl_family != AF_NETLINK) goto out; dst_portid = addr->nl_pid; dst_group = ffs(addr->nl_groups); err = -EPERM; if ((dst_group || dst_portid) && !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) goto out; netlink_skb_flags |= NETLINK_SKB_DST; } else { dst_portid = nlk->dst_portid; dst_group = nlk->dst_group; } /* Paired with WRITE_ONCE() in netlink_insert() */ if (!READ_ONCE(nlk->bound)) { err = netlink_autobind(sock); if (err) goto out; } else { /* Ensure nlk is hashed and visible. */ smp_rmb(); } err = -EMSGSIZE; if (len > sk->sk_sndbuf - 32) goto out; err = -ENOBUFS; skb = netlink_alloc_large_skb(len, dst_group); if (skb == NULL) goto out; NETLINK_CB(skb).portid = nlk->portid; NETLINK_CB(skb).dst_group = dst_group; NETLINK_CB(skb).creds = scm.creds; NETLINK_CB(skb).flags = netlink_skb_flags; err = -EFAULT; if (memcpy_from_msg(skb_put(skb, len), msg, len)) { kfree_skb(skb); goto out; } err = security_netlink_send(sk, skb); if (err) { kfree_skb(skb); goto out; } if (dst_group) { refcount_inc(&skb->users); netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); } err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags & MSG_DONTWAIT); out: scm_destroy(&scm); return err; } static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct scm_cookie scm; struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); int noblock = flags & MSG_DONTWAIT; size_t copied; struct sk_buff *skb, *data_skb; int err, ret; if (flags & MSG_OOB) return -EOPNOTSUPP; copied = 0; skb = skb_recv_datagram(sk, flags, noblock, &err); if (skb == NULL) goto out; data_skb = skb; #ifdef CONFIG_COMPAT_NETLINK_MESSAGES if (unlikely(skb_shinfo(skb)->frag_list)) { /* * If this skb has a frag_list, then here that means that we * will have to use the frag_list skb's data for compat tasks * and the regular skb's data for normal (non-compat) tasks. * * If we need to send the compat skb, assign it to the * 'data_skb' variable so that it will be used below for data * copying. We keep 'skb' for everything else, including * freeing both later. */ if (flags & MSG_CMSG_COMPAT) data_skb = skb_shinfo(skb)->frag_list; } #endif /* Record the max length of recvmsg() calls for future allocations */ nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, SKB_WITH_OVERHEAD(32768)); copied = data_skb->len; if (len < copied) { msg->msg_flags |= MSG_TRUNC; copied = len; } skb_reset_transport_header(data_skb); err = skb_copy_datagram_msg(data_skb, 0, msg, copied); if (msg->msg_name) { DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); addr->nl_family = AF_NETLINK; addr->nl_pad = 0; addr->nl_pid = NETLINK_CB(skb).portid; addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); msg->msg_namelen = sizeof(*addr); } if (nlk->flags & NETLINK_F_RECV_PKTINFO) netlink_cmsg_recv_pktinfo(msg, skb); if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID) netlink_cmsg_listen_all_nsid(sk, msg, skb); memset(&scm, 0, sizeof(scm)); scm.creds = *NETLINK_CREDS(skb); if (flags & MSG_TRUNC) copied = data_skb->len; skb_free_datagram(sk, skb); if (nlk->cb_running && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { ret = netlink_dump(sk); if (ret) { sk->sk_err = -ret; sk->sk_error_report(sk); } } scm_recv(sock, msg, &scm, flags); out: netlink_rcv_wake(sk); return err ? : copied; } static void netlink_data_ready(struct sock *sk) { BUG(); } /* * We export these functions to other modules. They provide a * complete set of kernel non-blocking support for message * queueing. */ struct sock * __netlink_kernel_create(struct net *net, int unit, struct module *module, struct netlink_kernel_cfg *cfg) { struct socket *sock; struct sock *sk; struct netlink_sock *nlk; struct listeners *listeners = NULL; struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; unsigned int groups; BUG_ON(!nl_table); if (unit < 0 || unit >= MAX_LINKS) return NULL; if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) return NULL; if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0) goto out_sock_release_nosk; sk = sock->sk; if (!cfg || cfg->groups < 32) groups = 32; else groups = cfg->groups; listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); if (!listeners) goto out_sock_release; sk->sk_data_ready = netlink_data_ready; if (cfg && cfg->input) nlk_sk(sk)->netlink_rcv = cfg->input;