1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PTRACE_H #define _ASM_X86_PTRACE_H #include <asm/segment.h> #include <asm/page_types.h> #include <uapi/asm/ptrace.h> #ifndef __ASSEMBLY__ #ifdef __i386__ struct pt_regs { /* * NB: 32-bit x86 CPUs are inconsistent as what happens in the * following cases (where %seg represents a segment register): * * - pushl %seg: some do a 16-bit write and leave the high * bits alone * - movl %seg, [mem]: some do a 16-bit write despite the movl * - IDT entry: some (e.g. 486) will leave the high bits of CS * and (if applicable) SS undefined. * * Fortunately, x86-32 doesn't read the high bits on POP or IRET, * so we can just treat all of the segment registers as 16-bit * values. */ unsigned long bx; unsigned long cx; unsigned long dx; unsigned long si; unsigned long di; unsigned long bp; unsigned long ax; unsigned short ds; unsigned short __dsh; unsigned short es; unsigned short __esh; unsigned short fs; unsigned short __fsh; /* On interrupt, gs and __gsh store the vector number. */ unsigned short gs; unsigned short __gsh; /* On interrupt, this is the error code. */ unsigned long orig_ax; unsigned long ip; unsigned short cs; unsigned short __csh; unsigned long flags; unsigned long sp; unsigned short ss; unsigned short __ssh; }; #else /* __i386__ */ struct pt_regs { /* * C ABI says these regs are callee-preserved. They aren't saved on kernel entry * unless syscall needs a complete, fully filled "struct pt_regs". */ unsigned long r15; unsigned long r14; unsigned long r13; unsigned long r12; unsigned long bp; unsigned long bx; /* These regs are callee-clobbered. Always saved on kernel entry. */ unsigned long r11; unsigned long r10; unsigned long r9; unsigned long r8; unsigned long ax; unsigned long cx; unsigned long dx; unsigned long si; unsigned long di; /* * On syscall entry, this is syscall#. On CPU exception, this is error code. * On hw interrupt, it's IRQ number: */ unsigned long orig_ax; /* Return frame for iretq */ unsigned long ip; unsigned long cs; unsigned long flags; unsigned long sp; unsigned long ss; /* top of stack page */ }; #endif /* !__i386__ */ #ifdef CONFIG_PARAVIRT #include <asm/paravirt_types.h> #endif #include <asm/proto.h> struct cpuinfo_x86; struct task_struct; extern unsigned long profile_pc(struct pt_regs *regs); extern unsigned long convert_ip_to_linear(struct task_struct *child, struct pt_regs *regs); extern void send_sigtrap(struct pt_regs *regs, int error_code, int si_code); static inline unsigned long regs_return_value(struct pt_regs *regs) { return regs->ax; } static inline void regs_set_return_value(struct pt_regs *regs, unsigned long rc) { regs->ax = rc; } /* * user_mode(regs) determines whether a register set came from user * mode. On x86_32, this is true if V8086 mode was enabled OR if the * register set was from protected mode with RPL-3 CS value. This * tricky test checks that with one comparison. * * On x86_64, vm86 mode is mercifully nonexistent, and we don't need * the extra check. */ static __always_inline int user_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_32 return ((regs->cs & SEGMENT_RPL_MASK) | (regs->flags & X86_VM_MASK)) >= USER_RPL; #else return !!(regs->cs & 3); #endif } static inline int v8086_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_32 return (regs->flags & X86_VM_MASK); #else return 0; /* No V86 mode support in long mode */ #endif } static inline bool user_64bit_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_64 #ifndef CONFIG_PARAVIRT_XXL /* * On non-paravirt systems, this is the only long mode CPL 3 * selector. We do not allow long mode selectors in the LDT. */ return regs->cs == __USER_CS; #else /* Headers are too twisted for this to go in paravirt.h. */ return regs->cs == __USER_CS || regs->cs == pv_info.extra_user_64bit_cs; #endif #else /* !CONFIG_X86_64 */ return false; #endif } /* * Determine whether the register set came from any context that is running in * 64-bit mode. */ static inline bool any_64bit_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_64 return !user_mode(regs) || user_64bit_mode(regs); #else return false; #endif } #ifdef CONFIG_X86_64 #define current_user_stack_pointer() current_pt_regs()->sp #define compat_user_stack_pointer() current_pt_regs()->sp static inline bool ip_within_syscall_gap(struct pt_regs *regs) { bool ret = (regs->ip >= (unsigned long)entry_SYSCALL_64 && regs->ip < (unsigned long)entry_SYSCALL_64_safe_stack); #ifdef CONFIG_IA32_EMULATION ret = ret || (regs->ip >= (unsigned long)entry_SYSCALL_compat && regs->ip < (unsigned long)entry_SYSCALL_compat_safe_stack); #endif return ret; } #endif static inline unsigned long kernel_stack_pointer(struct pt_regs *regs) { return regs->sp; } static inline unsigned long instruction_pointer(struct pt_regs *regs) { return regs->ip; } static inline void instruction_pointer_set(struct pt_regs *regs, unsigned long val) { regs->ip = val; } static inline unsigned long frame_pointer(struct pt_regs *regs) { return regs->bp; } static inline unsigned long user_stack_pointer(struct pt_regs *regs) { return regs->sp; } static inline void user_stack_pointer_set(struct pt_regs *regs, unsigned long val) { regs->sp = val; } static __always_inline bool regs_irqs_disabled(struct pt_regs *regs) { return !(regs->flags & X86_EFLAGS_IF); } /* Query offset/name of register from its name/offset */ extern int regs_query_register_offset(const char *name); extern const char *regs_query_register_name(unsigned int offset); #define MAX_REG_OFFSET (offsetof(struct pt_regs, ss)) /** * regs_get_register() - get register value from its offset * @regs: pt_regs from which register value is gotten. * @offset: offset number of the register. * * regs_get_register returns the value of a register. The @offset is the * offset of the register in struct pt_regs address which specified by @regs. * If @offset is bigger than MAX_REG_OFFSET, this returns 0. */ static inline unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset) { if (unlikely(offset > MAX_REG_OFFSET)) return 0; #ifdef CONFIG_X86_32 /* The selector fields are 16-bit. */ if (offset == offsetof(struct pt_regs, cs) || offset == offsetof(struct pt_regs, ss) || offset == offsetof(struct pt_regs, ds) || offset == offsetof(struct pt_regs, es) || offset == offsetof(struct pt_regs, fs) || offset == offsetof(struct pt_regs, gs)) { return *(u16 *)((unsigned long)regs + offset); } #endif return *(unsigned long *)((unsigned long)regs + offset); } /** * regs_within_kernel_stack() - check the address in the stack * @regs: pt_regs which contains kernel stack pointer. * @addr: address which is checked. * * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). * If @addr is within the kernel stack, it returns true. If not, returns false. */ static inline int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) { return ((addr & ~(THREAD_SIZE - 1)) == (regs->sp & ~(THREAD_SIZE - 1))); } /** * regs_get_kernel_stack_nth_addr() - get the address of the Nth entry on stack * @regs: pt_regs which contains kernel stack pointer. * @n: stack entry number. * * regs_get_kernel_stack_nth() returns the address of the @n th entry of the * kernel stack which is specified by @regs. If the @n th entry is NOT in * the kernel stack, this returns NULL. */ static inline unsigned long *regs_get_kernel_stack_nth_addr(struct pt_regs *regs, unsigned int n) { unsigned long *addr = (unsigned long *)regs->sp; addr += n; if (regs_within_kernel_stack(regs, (unsigned long)addr)) return addr; else return NULL; } /* To avoid include hell, we can't include uaccess.h */ extern long copy_from_kernel_nofault(void *dst, const void *src, size_t size); /** * regs_get_kernel_stack_nth() - get Nth entry of the stack * @regs: pt_regs which contains kernel stack pointer. * @n: stack entry number. * * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which * is specified by @regs. If the @n th entry is NOT in the kernel stack * this returns 0. */ static inline unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) { unsigned long *addr; unsigned long val; long ret; addr = regs_get_kernel_stack_nth_addr(regs, n); if (addr) { ret = copy_from_kernel_nofault(&val, addr, sizeof(val)); if (!ret) return val; } return 0; } /** * regs_get_kernel_argument() - get Nth function argument in kernel * @regs: pt_regs of that context * @n: function argument number (start from 0) * * regs_get_argument() returns @n th argument of the function call. * Note that this chooses most probably assignment, in some case * it can be incorrect. * This is expected to be called from kprobes or ftrace with regs * where the top of stack is the return address. */ static inline unsigned long regs_get_kernel_argument(struct pt_regs *regs, unsigned int n) { static const unsigned int argument_offs[] = { #ifdef __i386__ offsetof(struct pt_regs, ax), offsetof(struct pt_regs, dx), offsetof(struct pt_regs, cx), #define NR_REG_ARGUMENTS 3 #else offsetof(struct pt_regs, di), offsetof(struct pt_regs, si), offsetof(struct pt_regs, dx), offsetof(struct pt_regs, cx), offsetof(struct pt_regs, r8), offsetof(struct pt_regs, r9), #define NR_REG_ARGUMENTS 6 #endif }; if (n >= NR_REG_ARGUMENTS) { n -= NR_REG_ARGUMENTS - 1; return regs_get_kernel_stack_nth(regs, n); } else return regs_get_register(regs, argument_offs[n]); } #define arch_has_single_step() (1) #ifdef CONFIG_X86_DEBUGCTLMSR #define arch_has_block_step() (1) #else #define arch_has_block_step() (boot_cpu_data.x86 >= 6) #endif #define ARCH_HAS_USER_SINGLE_STEP_REPORT struct user_desc; extern int do_get_thread_area(struct task_struct *p, int idx, struct user_desc __user *info); extern int do_set_thread_area(struct task_struct *p, int idx, struct user_desc __user *info, int can_allocate); #ifdef CONFIG_X86_64 # define do_set_thread_area_64(p, s, t) do_arch_prctl_64(p, s, t) #else # define do_set_thread_area_64(p, s, t) (0) #endif #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PTRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 /* * linux/include/video/vga.h -- standard VGA chipset interaction * * Copyright 1999 Jeff Garzik <jgarzik@pobox.com> * * Copyright history from vga16fb.c: * Copyright 1999 Ben Pfaff and Petr Vandrovec * Based on VGA info at http://www.osdever.net/FreeVGA/home.htm * Based on VESA framebuffer (c) 1998 Gerd Knorr * * This file is subject to the terms and conditions of the GNU General * Public License. See the file COPYING in the main directory of this * archive for more details. * */ #ifndef __linux_video_vga_h__ #define __linux_video_vga_h__ #include <linux/types.h> #include <linux/io.h> #include <asm/vga.h> #include <asm/byteorder.h> /* Some of the code below is taken from SVGAlib. The original, unmodified copyright notice for that code is below. */ /* VGAlib version 1.2 - (c) 1993 Tommy Frandsen */ /* */ /* This library is free software; you can redistribute it and/or */ /* modify it without any restrictions. This library is distributed */ /* in the hope that it will be useful, but without any warranty. */ /* Multi-chipset support Copyright 1993 Harm Hanemaayer */ /* partially copyrighted (C) 1993 by Hartmut Schirmer */ /* VGA data register ports */ #define VGA_CRT_DC 0x3D5 /* CRT Controller Data Register - color emulation */ #define VGA_CRT_DM 0x3B5 /* CRT Controller Data Register - mono emulation */ #define VGA_ATT_R 0x3C1 /* Attribute Controller Data Read Register */ #define VGA_ATT_W 0x3C0 /* Attribute Controller Data Write Register */ #define VGA_GFX_D 0x3CF /* Graphics Controller Data Register */ #define VGA_SEQ_D 0x3C5 /* Sequencer Data Register */ #define VGA_MIS_R 0x3CC /* Misc Output Read Register */ #define VGA_MIS_W 0x3C2 /* Misc Output Write Register */ #define VGA_FTC_R 0x3CA /* Feature Control Read Register */ #define VGA_IS1_RC 0x3DA /* Input Status Register 1 - color emulation */ #define VGA_IS1_RM 0x3BA /* Input Status Register 1 - mono emulation */ #define VGA_PEL_D 0x3C9 /* PEL Data Register */ #define VGA_PEL_MSK 0x3C6 /* PEL mask register */ /* EGA-specific registers */ #define EGA_GFX_E0 0x3CC /* Graphics enable processor 0 */ #define EGA_GFX_E1 0x3CA /* Graphics enable processor 1 */ /* VGA index register ports */ #define VGA_CRT_IC 0x3D4 /* CRT Controller Index - color emulation */ #define VGA_CRT_IM 0x3B4 /* CRT Controller Index - mono emulation */ #define VGA_ATT_IW 0x3C0 /* Attribute Controller Index & Data Write Register */ #define VGA_GFX_I 0x3CE /* Graphics Controller Index */ #define VGA_SEQ_I 0x3C4 /* Sequencer Index */ #define VGA_PEL_IW 0x3C8 /* PEL Write Index */ #define VGA_PEL_IR 0x3C7 /* PEL Read Index */ /* standard VGA indexes max counts */ #define VGA_CRT_C 0x19 /* Number of CRT Controller Registers */ #define VGA_ATT_C 0x15 /* Number of Attribute Controller Registers */ #define VGA_GFX_C 0x09 /* Number of Graphics Controller Registers */ #define VGA_SEQ_C 0x05 /* Number of Sequencer Registers */ #define VGA_MIS_C 0x01 /* Number of Misc Output Register */ /* VGA misc register bit masks */ #define VGA_MIS_COLOR 0x01 #define VGA_MIS_ENB_MEM_ACCESS 0x02 #define VGA_MIS_DCLK_28322_720 0x04 #define VGA_MIS_ENB_PLL_LOAD (0x04 | 0x08) #define VGA_MIS_SEL_HIGH_PAGE 0x20 /* VGA CRT controller register indices */ #define VGA_CRTC_H_TOTAL 0 #define VGA_CRTC_H_DISP 1 #define VGA_CRTC_H_BLANK_START 2 #define VGA_CRTC_H_BLANK_END 3 #define VGA_CRTC_H_SYNC_START 4 #define VGA_CRTC_H_SYNC_END 5 #define VGA_CRTC_V_TOTAL 6 #define VGA_CRTC_OVERFLOW 7 #define VGA_CRTC_PRESET_ROW 8 #define VGA_CRTC_MAX_SCAN 9 #define VGA_CRTC_CURSOR_START 0x0A #define VGA_CRTC_CURSOR_END 0x0B #define VGA_CRTC_START_HI 0x0C #define VGA_CRTC_START_LO 0x0D #define VGA_CRTC_CURSOR_HI 0x0E #define VGA_CRTC_CURSOR_LO 0x0F #define VGA_CRTC_V_SYNC_START 0x10 #define VGA_CRTC_V_SYNC_END 0x11 #define VGA_CRTC_V_DISP_END 0x12 #define VGA_CRTC_OFFSET 0x13 #define VGA_CRTC_UNDERLINE 0x14 #define VGA_CRTC_V_BLANK_START 0x15 #define VGA_CRTC_V_BLANK_END 0x16 #define VGA_CRTC_MODE 0x17 #define VGA_CRTC_LINE_COMPARE 0x18 #define VGA_CRTC_REGS VGA_CRT_C /* VGA CRT controller bit masks */ #define VGA_CR11_LOCK_CR0_CR7 0x80 /* lock writes to CR0 - CR7 */ #define VGA_CR17_H_V_SIGNALS_ENABLED 0x80 /* VGA attribute controller register indices */ #define VGA_ATC_PALETTE0 0x00 #define VGA_ATC_PALETTE1 0x01 #define VGA_ATC_PALETTE2 0x02 #define VGA_ATC_PALETTE3 0x03 #define VGA_ATC_PALETTE4 0x04 #define VGA_ATC_PALETTE5 0x05 #define VGA_ATC_PALETTE6 0x06 #define VGA_ATC_PALETTE7 0x07 #define VGA_ATC_PALETTE8 0x08 #define VGA_ATC_PALETTE9 0x09 #define VGA_ATC_PALETTEA 0x0A #define VGA_ATC_PALETTEB 0x0B #define VGA_ATC_PALETTEC 0x0C #define VGA_ATC_PALETTED 0x0D #define VGA_ATC_PALETTEE 0x0E #define VGA_ATC_PALETTEF 0x0F #define VGA_ATC_MODE 0x10 #define VGA_ATC_OVERSCAN 0x11 #define VGA_ATC_PLANE_ENABLE 0x12 #define VGA_ATC_PEL 0x13 #define VGA_ATC_COLOR_PAGE 0x14 #define VGA_AR_ENABLE_DISPLAY 0x20 /* VGA sequencer register indices */ #define VGA_SEQ_RESET 0x00 #define VGA_SEQ_CLOCK_MODE 0x01 #define VGA_SEQ_PLANE_WRITE 0x02 #define VGA_SEQ_CHARACTER_MAP 0x03 #define VGA_SEQ_MEMORY_MODE 0x04 /* VGA sequencer register bit masks */ #define VGA_SR01_CHAR_CLK_8DOTS 0x01 /* bit 0: character clocks 8 dots wide are generated */ #define VGA_SR01_SCREEN_OFF 0x20 /* bit 5: Screen is off */ #define VGA_SR02_ALL_PLANES 0x0F /* bits 3-0: enable access to all planes */ #define VGA_SR04_EXT_MEM 0x02 /* bit 1: allows complete mem access to 256K */ #define VGA_SR04_SEQ_MODE 0x04 /* bit 2: directs system to use a sequential addressing mode */ #define VGA_SR04_CHN_4M 0x08 /* bit 3: selects modulo 4 addressing for CPU access to display memory */ /* VGA graphics controller register indices */ #define VGA_GFX_SR_VALUE 0x00 #define VGA_GFX_SR_ENABLE 0x01 #define VGA_GFX_COMPARE_VALUE 0x02 #define VGA_GFX_DATA_ROTATE 0x03 #define VGA_GFX_PLANE_READ 0x04 #define VGA_GFX_MODE 0x05 #define VGA_GFX_MISC 0x06 #define VGA_GFX_COMPARE_MASK 0x07 #define VGA_GFX_BIT_MASK 0x08 /* VGA graphics controller bit masks */ #define VGA_GR06_GRAPHICS_MODE 0x01 /* macro for composing an 8-bit VGA register index and value * into a single 16-bit quantity */ #define VGA_OUT16VAL(v, r) (((v) << 8) | (r)) /* decide whether we should enable the faster 16-bit VGA register writes */ #ifdef __LITTLE_ENDIAN #define VGA_OUTW_WRITE #endif /* VGA State Save and Restore */ #define VGA_SAVE_FONT0 1 /* save/restore plane 2 fonts */ #define VGA_SAVE_FONT1 2 /* save/restore plane 3 fonts */ #define VGA_SAVE_TEXT 4 /* save/restore plane 0/1 fonts */ #define VGA_SAVE_FONTS 7 /* save/restore all fonts */ #define VGA_SAVE_MODE 8 /* save/restore video mode */ #define VGA_SAVE_CMAP 16 /* save/restore color map/DAC */ struct vgastate { void __iomem *vgabase; /* mmio base, if supported */ unsigned long membase; /* VGA window base, 0 for default - 0xA000 */ __u32 memsize; /* VGA window size, 0 for default 64K */ __u32 flags; /* what state[s] to save (see VGA_SAVE_*) */ __u32 depth; /* current fb depth, not important */ __u32 num_attr; /* number of att registers, 0 for default */ __u32 num_crtc; /* number of crt registers, 0 for default */ __u32 num_gfx; /* number of gfx registers, 0 for default */ __u32 num_seq; /* number of seq registers, 0 for default */ void *vidstate; }; extern int save_vga(struct vgastate *state); extern int restore_vga(struct vgastate *state); /* * generic VGA port read/write */ static inline unsigned char vga_io_r (unsigned short port) { return inb_p(port); } static inline void vga_io_w (unsigned short port, unsigned char val) { outb_p(val, port); } static inline void vga_io_w_fast (unsigned short port, unsigned char reg, unsigned char val) { outw(VGA_OUT16VAL (val, reg), port); } static inline unsigned char vga_mm_r (void __iomem *regbase, unsigned short port) { return readb (regbase + port); } static inline void vga_mm_w (void __iomem *regbase, unsigned short port, unsigned char val) { writeb (val, regbase + port); } static inline void vga_mm_w_fast (void __iomem *regbase, unsigned short port, unsigned char reg, unsigned char val) { writew (VGA_OUT16VAL (val, reg), regbase + port); } static inline unsigned char vga_r (void __iomem *regbase, unsigned short port) { if (regbase) return vga_mm_r (regbase, port); else return vga_io_r (port); } static inline void vga_w (void __iomem *regbase, unsigned short port, unsigned char val) { if (regbase) vga_mm_w (regbase, port, val); else vga_io_w (port, val); } static inline void vga_w_fast (void __iomem *regbase, unsigned short port, unsigned char reg, unsigned char val) { if (regbase) vga_mm_w_fast (regbase, port, reg, val); else vga_io_w_fast (port, reg, val); } /* * VGA CRTC register read/write */ static inline unsigned char vga_rcrt (void __iomem *regbase, unsigned char reg) { vga_w (regbase, VGA_CRT_IC, reg); return vga_r (regbase, VGA_CRT_DC); } static inline void vga_wcrt (void __iomem *regbase, unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_w_fast (regbase, VGA_CRT_IC, reg, val); #else vga_w (regbase, VGA_CRT_IC, reg); vga_w (regbase, VGA_CRT_DC, val); #endif /* VGA_OUTW_WRITE */ } static inline unsigned char vga_io_rcrt (unsigned char reg) { vga_io_w (VGA_CRT_IC, reg); return vga_io_r (VGA_CRT_DC); } static inline void vga_io_wcrt (unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_io_w_fast (VGA_CRT_IC, reg, val); #else vga_io_w (VGA_CRT_IC, reg); vga_io_w (VGA_CRT_DC, val); #endif /* VGA_OUTW_WRITE */ } static inline unsigned char vga_mm_rcrt (void __iomem *regbase, unsigned char reg) { vga_mm_w (regbase, VGA_CRT_IC, reg); return vga_mm_r (regbase, VGA_CRT_DC); } static inline void vga_mm_wcrt (void __iomem *regbase, unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_mm_w_fast (regbase, VGA_CRT_IC, reg, val); #else vga_mm_w (regbase, VGA_CRT_IC, reg); vga_mm_w (regbase, VGA_CRT_DC, val); #endif /* VGA_OUTW_WRITE */ } /* * VGA sequencer register read/write */ static inline unsigned char vga_rseq (void __iomem *regbase, unsigned char reg) { vga_w (regbase, VGA_SEQ_I, reg); return vga_r (regbase, VGA_SEQ_D); } static inline void vga_wseq (void __iomem *regbase, unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_w_fast (regbase, VGA_SEQ_I, reg, val); #else vga_w (regbase, VGA_SEQ_I, reg); vga_w (regbase, VGA_SEQ_D, val); #endif /* VGA_OUTW_WRITE */ } static inline unsigned char vga_io_rseq (unsigned char reg) { vga_io_w (VGA_SEQ_I, reg); return vga_io_r (VGA_SEQ_D); } static inline void vga_io_wseq (unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_io_w_fast (VGA_SEQ_I, reg, val); #else vga_io_w (VGA_SEQ_I, reg); vga_io_w (VGA_SEQ_D, val); #endif /* VGA_OUTW_WRITE */ } static inline unsigned char vga_mm_rseq (void __iomem *regbase, unsigned char reg) { vga_mm_w (regbase, VGA_SEQ_I, reg); return vga_mm_r (regbase, VGA_SEQ_D); } static inline void vga_mm_wseq (void __iomem *regbase, unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_mm_w_fast (regbase, VGA_SEQ_I, reg, val); #else vga_mm_w (regbase, VGA_SEQ_I, reg); vga_mm_w (regbase, VGA_SEQ_D, val); #endif /* VGA_OUTW_WRITE */ } /* * VGA graphics controller register read/write */ static inline unsigned char vga_rgfx (void __iomem *regbase, unsigned char reg) { vga_w (regbase, VGA_GFX_I, reg); return vga_r (regbase, VGA_GFX_D); } static inline void vga_wgfx (void __iomem *regbase, unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_w_fast (regbase, VGA_GFX_I, reg, val); #else vga_w (regbase, VGA_GFX_I, reg); vga_w (regbase, VGA_GFX_D, val); #endif /* VGA_OUTW_WRITE */ } static inline unsigned char vga_io_rgfx (unsigned char reg) { vga_io_w (VGA_GFX_I, reg); return vga_io_r (VGA_GFX_D); } static inline void vga_io_wgfx (unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_io_w_fast (VGA_GFX_I, reg, val); #else vga_io_w (VGA_GFX_I, reg); vga_io_w (VGA_GFX_D, val); #endif /* VGA_OUTW_WRITE */ } static inline unsigned char vga_mm_rgfx (void __iomem *regbase, unsigned char reg) { vga_mm_w (regbase, VGA_GFX_I, reg); return vga_mm_r (regbase, VGA_GFX_D); } static inline void vga_mm_wgfx (void __iomem *regbase, unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_mm_w_fast (regbase, VGA_GFX_I, reg, val); #else vga_mm_w (regbase, VGA_GFX_I, reg); vga_mm_w (regbase, VGA_GFX_D, val); #endif /* VGA_OUTW_WRITE */ } /* * VGA attribute controller register read/write */ static inline unsigned char vga_rattr (void __iomem *regbase, unsigned char reg) { vga_w (regbase, VGA_ATT_IW, reg); return vga_r (regbase, VGA_ATT_R); } static inline void vga_wattr (void __iomem *regbase, unsigned char reg, unsigned char val) { vga_w (regbase, VGA_ATT_IW, reg); vga_w (regbase, VGA_ATT_W, val); } static inline unsigned char vga_io_rattr (unsigned char reg) { vga_io_w (VGA_ATT_IW, reg); return vga_io_r (VGA_ATT_R); } static inline void vga_io_wattr (unsigned char reg, unsigned char val) { vga_io_w (VGA_ATT_IW, reg); vga_io_w (VGA_ATT_W, val); } static inline unsigned char vga_mm_rattr (void __iomem *regbase, unsigned char reg) { vga_mm_w (regbase, VGA_ATT_IW, reg); return vga_mm_r (regbase, VGA_ATT_R); } static inline void vga_mm_wattr (void __iomem *regbase, unsigned char reg, unsigned char val) { vga_mm_w (regbase, VGA_ATT_IW, reg); vga_mm_w (regbase, VGA_ATT_W, val); } #endif /* __linux_video_vga_h__ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the RAW-IP module. * * Version: @(#)raw.h 1.0.2 05/07/93 * * Author: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _RAW_H #define _RAW_H #include <net/inet_sock.h> #include <net/protocol.h> #include <linux/icmp.h> extern struct proto raw_prot; extern struct raw_hashinfo raw_v4_hashinfo; struct sock *__raw_v4_lookup(struct net *net, struct sock *sk, unsigned short num, __be32 raddr, __be32 laddr, int dif, int sdif); int raw_abort(struct sock *sk, int err); void raw_icmp_error(struct sk_buff *, int, u32); int raw_local_deliver(struct sk_buff *, int); int raw_rcv(struct sock *, struct sk_buff *); #define RAW_HTABLE_SIZE MAX_INET_PROTOS struct raw_hashinfo { rwlock_t lock; struct hlist_head ht[RAW_HTABLE_SIZE]; }; #ifdef CONFIG_PROC_FS int raw_proc_init(void); void raw_proc_exit(void); struct raw_iter_state { struct seq_net_private p; int bucket; }; static inline struct raw_iter_state *raw_seq_private(struct seq_file *seq) { return seq->private; } void *raw_seq_start(struct seq_file *seq, loff_t *pos); void *raw_seq_next(struct seq_file *seq, void *v, loff_t *pos); void raw_seq_stop(struct seq_file *seq, void *v); #endif int raw_hash_sk(struct sock *sk); void raw_unhash_sk(struct sock *sk); void raw_init(void); struct raw_sock { /* inet_sock has to be the first member */ struct inet_sock inet; struct icmp_filter filter; u32 ipmr_table; }; static inline struct raw_sock *raw_sk(const struct sock *sk) { return (struct raw_sock *)sk; } static inline bool raw_sk_bound_dev_eq(struct net *net, int bound_dev_if, int dif, int sdif) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) return inet_bound_dev_eq(!!net->ipv4.sysctl_raw_l3mdev_accept, bound_dev_if, dif, sdif); #else return inet_bound_dev_eq(true, bound_dev_if, dif, sdif); #endif } #endif /* _RAW_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCATTERLIST_H #define _LINUX_SCATTERLIST_H #include <linux/string.h> #include <linux/types.h> #include <linux/bug.h> #include <linux/mm.h> #include <asm/io.h> struct scatterlist { unsigned long page_link; unsigned int offset; unsigned int length; dma_addr_t dma_address; #ifdef CONFIG_NEED_SG_DMA_LENGTH unsigned int dma_length; #endif }; /* * Since the above length field is an unsigned int, below we define the maximum * length in bytes that can be stored in one scatterlist entry. */ #define SCATTERLIST_MAX_SEGMENT (UINT_MAX & PAGE_MASK) /* * These macros should be used after a dma_map_sg call has been done * to get bus addresses of each of the SG entries and their lengths. * You should only work with the number of sg entries dma_map_sg * returns, or alternatively stop on the first sg_dma_len(sg) which * is 0. */ #define sg_dma_address(sg) ((sg)->dma_address) #ifdef CONFIG_NEED_SG_DMA_LENGTH #define sg_dma_len(sg) ((sg)->dma_length) #else #define sg_dma_len(sg) ((sg)->length) #endif struct sg_table { struct scatterlist *sgl; /* the list */ unsigned int nents; /* number of mapped entries */ unsigned int orig_nents; /* original size of list */ }; /* * Notes on SG table design. * * We use the unsigned long page_link field in the scatterlist struct to place * the page pointer AND encode information about the sg table as well. The two * lower bits are reserved for this information. * * If bit 0 is set, then the page_link contains a pointer to the next sg * table list. Otherwise the next entry is at sg + 1. * * If bit 1 is set, then this sg entry is the last element in a list. * * See sg_next(). * */ #define SG_CHAIN 0x01UL #define SG_END 0x02UL /* * We overload the LSB of the page pointer to indicate whether it's * a valid sg entry, or whether it points to the start of a new scatterlist. * Those low bits are there for everyone! (thanks mason :-) */ #define sg_is_chain(sg) ((sg)->page_link & SG_CHAIN) #define sg_is_last(sg) ((sg)->page_link & SG_END) #define sg_chain_ptr(sg) \ ((struct scatterlist *) ((sg)->page_link & ~(SG_CHAIN | SG_END))) /** * sg_assign_page - Assign a given page to an SG entry * @sg: SG entry * @page: The page * * Description: * Assign page to sg entry. Also see sg_set_page(), the most commonly used * variant. * **/ static inline void sg_assign_page(struct scatterlist *sg, struct page *page) { unsigned long page_link = sg->page_link & (SG_CHAIN | SG_END); /* * In order for the low bit stealing approach to work, pages * must be aligned at a 32-bit boundary as a minimum. */ BUG_ON((unsigned long) page & (SG_CHAIN | SG_END)); #ifdef CONFIG_DEBUG_SG BUG_ON(sg_is_chain(sg)); #endif sg->page_link = page_link | (unsigned long) page; } /** * sg_set_page - Set sg entry to point at given page * @sg: SG entry * @page: The page * @len: Length of data * @offset: Offset into page * * Description: * Use this function to set an sg entry pointing at a page, never assign * the page directly. We encode sg table information in the lower bits * of the page pointer. See sg_page() for looking up the page belonging * to an sg entry. * **/ static inline void sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len, unsigned int offset) { sg_assign_page(sg, page); sg->offset = offset; sg->length = len; } static inline struct page *sg_page(struct scatterlist *sg) { #ifdef CONFIG_DEBUG_SG BUG_ON(sg_is_chain(sg)); #endif return (struct page *)((sg)->page_link & ~(SG_CHAIN | SG_END)); } /** * sg_set_buf - Set sg entry to point at given data * @sg: SG entry * @buf: Data * @buflen: Data length * **/ static inline void sg_set_buf(struct scatterlist *sg, const void *buf, unsigned int buflen) { #ifdef CONFIG_DEBUG_SG BUG_ON(!virt_addr_valid(buf)); #endif sg_set_page(sg, virt_to_page(buf), buflen, offset_in_page(buf)); } /* * Loop over each sg element, following the pointer to a new list if necessary */ #define for_each_sg(sglist, sg, nr, __i) \ for (__i = 0, sg = (sglist); __i < (nr); __i++, sg = sg_next(sg)) /* * Loop over each sg element in the given sg_table object. */ #define for_each_sgtable_sg(sgt, sg, i) \ for_each_sg((sgt)->sgl, sg, (sgt)->orig_nents, i) /* * Loop over each sg element in the given *DMA mapped* sg_table object. * Please use sg_dma_address(sg) and sg_dma_len(sg) to extract DMA addresses * of the each element. */ #define for_each_sgtable_dma_sg(sgt, sg, i) \ for_each_sg((sgt)->sgl, sg, (sgt)->nents, i) static inline void __sg_chain(struct scatterlist *chain_sg, struct scatterlist *sgl) { /* * offset and length are unused for chain entry. Clear them. */ chain_sg->offset = 0; chain_sg->length = 0; /* * Set lowest bit to indicate a link pointer, and make sure to clear * the termination bit if it happens to be set. */ chain_sg->page_link = ((unsigned long) sgl | SG_CHAIN) & ~SG_END; } /** * sg_chain - Chain two sglists together * @prv: First scatterlist * @prv_nents: Number of entries in prv * @sgl: Second scatterlist * * Description: * Links @prv@ and @sgl@ together, to form a longer scatterlist. * **/ static inline void sg_chain(struct scatterlist *prv, unsigned int prv_nents, struct scatterlist *sgl) { __sg_chain(&prv[prv_nents - 1], sgl); } /** * sg_mark_end - Mark the end of the scatterlist * @sg: SG entryScatterlist * * Description: * Marks the passed in sg entry as the termination point for the sg * table. A call to sg_next() on this entry will return NULL. * **/ static inline void sg_mark_end(struct scatterlist *sg) { /* * Set termination bit, clear potential chain bit */ sg->page_link |= SG_END; sg->page_link &= ~SG_CHAIN; } /** * sg_unmark_end - Undo setting the end of the scatterlist * @sg: SG entryScatterlist * * Description: * Removes the termination marker from the given entry of the scatterlist. * **/ static inline void sg_unmark_end(struct scatterlist *sg) { sg->page_link &= ~SG_END; } /** * sg_phys - Return physical address of an sg entry * @sg: SG entry * * Description: * This calls page_to_phys() on the page in this sg entry, and adds the * sg offset. The caller must know that it is legal to call page_to_phys() * on the sg page. * **/ static inline dma_addr_t sg_phys(struct scatterlist *sg) { return page_to_phys(sg_page(sg)) + sg->offset; } /** * sg_virt - Return virtual address of an sg entry * @sg: SG entry * * Description: * This calls page_address() on the page in this sg entry, and adds the * sg offset. The caller must know that the sg page has a valid virtual * mapping. * **/ static inline void *sg_virt(struct scatterlist *sg) { return page_address(sg_page(sg)) + sg->offset; } /** * sg_init_marker - Initialize markers in sg table * @sgl: The SG table * @nents: Number of entries in table * **/ static inline void sg_init_marker(struct scatterlist *sgl, unsigned int nents) { sg_mark_end(&sgl[nents - 1]); } int sg_nents(struct scatterlist *sg); int sg_nents_for_len(struct scatterlist *sg, u64 len); struct scatterlist *sg_next(struct scatterlist *); struct scatterlist *sg_last(struct scatterlist *s, unsigned int); void sg_init_table(struct scatterlist *, unsigned int); void sg_init_one(struct scatterlist *, const void *, unsigned int); int sg_split(struct scatterlist *in, const int in_mapped_nents, const off_t skip, const int nb_splits, const size_t *split_sizes, struct scatterlist **out, int *out_mapped_nents, gfp_t gfp_mask); typedef struct scatterlist *(sg_alloc_fn)(unsigned int, gfp_t); typedef void (sg_free_fn)(struct scatterlist *, unsigned int); void __sg_free_table(struct sg_table *, unsigned int, unsigned int, sg_free_fn *); void sg_free_table(struct sg_table *); int __sg_alloc_table(struct sg_table *, unsigned int, unsigned int, struct scatterlist *, unsigned int, gfp_t, sg_alloc_fn *); int sg_alloc_table(struct sg_table *, unsigned int, gfp_t); struct scatterlist *__sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages, unsigned int n_pages, unsigned int offset, unsigned long size, unsigned int max_segment, struct scatterlist *prv, unsigned int left_pages, gfp_t gfp_mask); int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages, unsigned int n_pages, unsigned int offset, unsigned long size, gfp_t gfp_mask); #ifdef CONFIG_SGL_ALLOC struct scatterlist *sgl_alloc_order(unsigned long long length, unsigned int order, bool chainable, gfp_t gfp, unsigned int *nent_p); struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp, unsigned int *nent_p); void sgl_free_n_order(struct scatterlist *sgl, int nents, int order); void sgl_free_order(struct scatterlist *sgl, int order); void sgl_free(struct scatterlist *sgl); #endif /* CONFIG_SGL_ALLOC */ size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen, off_t skip, bool to_buffer); size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents, const void *buf, size_t buflen); size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen); size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents, const void *buf, size_t buflen, off_t skip); size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen, off_t skip); size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents, size_t buflen, off_t skip); /* * Maximum number of entries that will be allocated in one piece, if * a list larger than this is required then chaining will be utilized. */ #define SG_MAX_SINGLE_ALLOC (PAGE_SIZE / sizeof(struct scatterlist)) /* * The maximum number of SG segments that we will put inside a * scatterlist (unless chaining is used). Should ideally fit inside a * single page, to avoid a higher order allocation. We could define this * to SG_MAX_SINGLE_ALLOC to pack correctly at the highest order. The * minimum value is 32 */ #define SG_CHUNK_SIZE 128 /* * Like SG_CHUNK_SIZE, but for archs that have sg chaining. This limit * is totally arbitrary, a setting of 2048 will get you at least 8mb ios. */ #ifdef CONFIG_ARCH_NO_SG_CHAIN #define SG_MAX_SEGMENTS SG_CHUNK_SIZE #else #define SG_MAX_SEGMENTS 2048 #endif #ifdef CONFIG_SG_POOL void sg_free_table_chained(struct sg_table *table, unsigned nents_first_chunk); int sg_alloc_table_chained(struct sg_table *table, int nents, struct scatterlist *first_chunk, unsigned nents_first_chunk); #endif /* * sg page iterator * * Iterates over sg entries page-by-page. On each successful iteration, you * can call sg_page_iter_page(@piter) to get the current page. * @piter->sg will point to the sg holding this page and @piter->sg_pgoffset to * the page's page offset within the sg. The iteration will stop either when a * maximum number of sg entries was reached or a terminating sg * (sg_last(sg) == true) was reached. */ struct sg_page_iter { struct scatterlist *sg; /* sg holding the page */ unsigned int sg_pgoffset; /* page offset within the sg */ /* these are internal states, keep away */ unsigned int __nents; /* remaining sg entries */ int __pg_advance; /* nr pages to advance at the * next step */ }; /* * sg page iterator for DMA addresses * * This is the same as sg_page_iter however you can call * sg_page_iter_dma_address(@dma_iter) to get the page's DMA * address. sg_page_iter_page() cannot be called on this iterator. */ struct sg_dma_page_iter { struct sg_page_iter base; }; bool __sg_page_iter_next(struct sg_page_iter *piter); bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter); void __sg_page_iter_start(struct sg_page_iter *piter, struct scatterlist *sglist, unsigned int nents, unsigned long pgoffset); /** * sg_page_iter_page - get the current page held by the page iterator * @piter: page iterator holding the page */ static inline struct page *sg_page_iter_page(struct sg_page_iter *piter) { return nth_page(sg_page(piter->sg), piter->sg_pgoffset); } /** * sg_page_iter_dma_address - get the dma address of the current page held by * the page iterator. * @dma_iter: page iterator holding the page */ static inline dma_addr_t sg_page_iter_dma_address(struct sg_dma_page_iter *dma_iter) { return sg_dma_address(dma_iter->base.sg) + (dma_iter->base.sg_pgoffset << PAGE_SHIFT); } /** * for_each_sg_page - iterate over the pages of the given sg list * @sglist: sglist to iterate over * @piter: page iterator to hold current page, sg, sg_pgoffset * @nents: maximum number of sg entries to iterate over * @pgoffset: starting page offset (in pages) * * Callers may use sg_page_iter_page() to get each page pointer. * In each loop it operates on PAGE_SIZE unit. */ #define for_each_sg_page(sglist, piter, nents, pgoffset) \ for (__sg_page_iter_start((piter), (sglist), (nents), (pgoffset)); \ __sg_page_iter_next(piter);) /** * for_each_sg_dma_page - iterate over the pages of the given sg list * @sglist: sglist to iterate over * @dma_iter: DMA page iterator to hold current page * @dma_nents: maximum number of sg entries to iterate over, this is the value * returned from dma_map_sg * @pgoffset: starting page offset (in pages) * * Callers may use sg_page_iter_dma_address() to get each page's DMA address. * In each loop it operates on PAGE_SIZE unit. */ #define for_each_sg_dma_page(sglist, dma_iter, dma_nents, pgoffset) \ for (__sg_page_iter_start(&(dma_iter)->base, sglist, dma_nents, \ pgoffset); \ __sg_page_iter_dma_next(dma_iter);) /** * for_each_sgtable_page - iterate over all pages in the sg_table object * @sgt: sg_table object to iterate over * @piter: page iterator to hold current page * @pgoffset: starting page offset (in pages) * * Iterates over the all memory pages in the buffer described by * a scatterlist stored in the given sg_table object. * See also for_each_sg_page(). In each loop it operates on PAGE_SIZE unit. */ #define for_each_sgtable_page(sgt, piter, pgoffset) \ for_each_sg_page((sgt)->sgl, piter, (sgt)->orig_nents, pgoffset) /** * for_each_sgtable_dma_page - iterate over the DMA mapped sg_table object * @sgt: sg_table object to iterate over * @dma_iter: DMA page iterator to hold current page * @pgoffset: starting page offset (in pages) * * Iterates over the all DMA mapped pages in the buffer described by * a scatterlist stored in the given sg_table object. * See also for_each_sg_dma_page(). In each loop it operates on PAGE_SIZE * unit. */ #define for_each_sgtable_dma_page(sgt, dma_iter, pgoffset) \ for_each_sg_dma_page((sgt)->sgl, dma_iter, (sgt)->nents, pgoffset) /* * Mapping sg iterator * * Iterates over sg entries mapping page-by-page. On each successful * iteration, @miter->page points to the mapped page and * @miter->length bytes of data can be accessed at @miter->addr. As * long as an interation is enclosed between start and stop, the user * is free to choose control structure and when to stop. * * @miter->consumed is set to @miter->length on each iteration. It * can be adjusted if the user can't consume all the bytes in one go. * Also, a stopped iteration can be resumed by calling next on it. * This is useful when iteration needs to release all resources and * continue later (e.g. at the next interrupt). */ #define SG_MITER_ATOMIC (1 << 0) /* use kmap_atomic */ #define SG_MITER_TO_SG (1 << 1) /* flush back to phys on unmap */ #define SG_MITER_FROM_SG (1 << 2) /* nop */ struct sg_mapping_iter { /* the following three fields can be accessed directly */ struct page *page; /* currently mapped page */ void *addr; /* pointer to the mapped area */ size_t length; /* length of the mapped area */ size_t consumed; /* number of consumed bytes */ struct sg_page_iter piter; /* page iterator */ /* these are internal states, keep away */ unsigned int __offset; /* offset within page */ unsigned int __remaining; /* remaining bytes on page */ unsigned int __flags; }; void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl, unsigned int nents, unsigned int flags); bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset); bool sg_miter_next(struct sg_mapping_iter *miter); void sg_miter_stop(struct sg_mapping_iter *miter); #endif /* _LINUX_SCATTERLIST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * include/linux/eventpoll.h ( Efficient event polling implementation ) * Copyright (C) 2001,...,2006 Davide Libenzi * * Davide Libenzi <davidel@xmailserver.org> */ #ifndef _LINUX_EVENTPOLL_H #define _LINUX_EVENTPOLL_H #include <uapi/linux/eventpoll.h> #include <uapi/linux/kcmp.h> /* Forward declarations to avoid compiler errors */ struct file; #ifdef CONFIG_EPOLL #ifdef CONFIG_KCMP struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, unsigned long toff); #endif /* Used to initialize the epoll bits inside the "struct file" */ static inline void eventpoll_init_file(struct file *file) { INIT_LIST_HEAD(&file->f_ep_links); INIT_LIST_HEAD(&file->f_tfile_llink); } /* Used to release the epoll bits inside the "struct file" */ void eventpoll_release_file(struct file *file); /* * This is called from inside fs/file_table.c:__fput() to unlink files * from the eventpoll interface. We need to have this facility to cleanup * correctly files that are closed without being removed from the eventpoll * interface. */ static inline void eventpoll_release(struct file *file) { /* * Fast check to avoid the get/release of the semaphore. Since * we're doing this outside the semaphore lock, it might return * false negatives, but we don't care. It'll help in 99.99% of cases * to avoid the semaphore lock. False positives simply cannot happen * because the file in on the way to be removed and nobody ( but * eventpoll ) has still a reference to this file. */ if (likely(list_empty(&file->f_ep_links))) return; /* * The file is being closed while it is still linked to an epoll * descriptor. We need to handle this by correctly unlinking it * from its containers. */ eventpoll_release_file(file); } int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, bool nonblock); /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ static inline int ep_op_has_event(int op) { return op != EPOLL_CTL_DEL; } #else static inline void eventpoll_init_file(struct file *file) {} static inline void eventpoll_release(struct file *file) {} #endif #endif /* #ifndef _LINUX_EVENTPOLL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 #ifndef _LINUX_HASH_H #define _LINUX_HASH_H /* Fast hashing routine for ints, longs and pointers. (C) 2002 Nadia Yvette Chambers, IBM */ #include <asm/types.h> #include <linux/compiler.h> /* * The "GOLDEN_RATIO_PRIME" is used in ifs/btrfs/brtfs_inode.h and * fs/inode.c. It's not actually prime any more (the previous primes * were actively bad for hashing), but the name remains. */ #if BITS_PER_LONG == 32 #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_32 #define hash_long(val, bits) hash_32(val, bits) #elif BITS_PER_LONG == 64 #define hash_long(val, bits) hash_64(val, bits) #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_64 #else #error Wordsize not 32 or 64 #endif /* * This hash multiplies the input by a large odd number and takes the * high bits. Since multiplication propagates changes to the most * significant end only, it is essential that the high bits of the * product be used for the hash value. * * Chuck Lever verified the effectiveness of this technique: * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf * * Although a random odd number will do, it turns out that the golden * ratio phi = (sqrt(5)-1)/2, or its negative, has particularly nice * properties. (See Knuth vol 3, section 6.4, exercise 9.) * * These are the negative, (1 - phi) = phi**2 = (3 - sqrt(5))/2, * which is very slightly easier to multiply by and makes no * difference to the hash distribution. */ #define GOLDEN_RATIO_32 0x61C88647 #define GOLDEN_RATIO_64 0x61C8864680B583EBull #ifdef CONFIG_HAVE_ARCH_HASH /* This header may use the GOLDEN_RATIO_xx constants */ #include <asm/hash.h> #endif /* * The _generic versions exist only so lib/test_hash.c can compare * the arch-optimized versions with the generic. * * Note that if you change these, any <asm/hash.h> that aren't updated * to match need to have their HAVE_ARCH_* define values updated so the * self-test will not false-positive. */ #ifndef HAVE_ARCH__HASH_32 #define __hash_32 __hash_32_generic #endif static inline u32 __hash_32_generic(u32 val) { return val * GOLDEN_RATIO_32; } #ifndef HAVE_ARCH_HASH_32 #define hash_32 hash_32_generic #endif static inline u32 hash_32_generic(u32 val, unsigned int bits) { /* High bits are more random, so use them. */ return __hash_32(val) >> (32 - bits); } #ifndef HAVE_ARCH_HASH_64 #define hash_64 hash_64_generic #endif static __always_inline u32 hash_64_generic(u64 val, unsigned int bits) { #if BITS_PER_LONG == 64 /* 64x64-bit multiply is efficient on all 64-bit processors */ return val * GOLDEN_RATIO_64 >> (64 - bits); #else /* Hash 64 bits using only 32x32-bit multiply. */ return hash_32((u32)val ^ __hash_32(val >> 32), bits); #endif } static inline u32 hash_ptr(const void *ptr, unsigned int bits) { return hash_long((unsigned long)ptr, bits); } /* This really should be called fold32_ptr; it does no hashing to speak of. */ static inline u32 hash32_ptr(const void *ptr) { unsigned long val = (unsigned long)ptr; #if BITS_PER_LONG == 64 val ^= (val >> 32); #endif return (u32)val; } #endif /* _LINUX_HASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_FRAG_H__ #define __NET_FRAG_H__ #include <linux/rhashtable-types.h> #include <linux/completion.h> /* Per netns frag queues directory */ struct fqdir { /* sysctls */ long high_thresh; long low_thresh; int timeout; int max_dist; struct inet_frags *f; struct net *net; bool dead; struct rhashtable rhashtable ____cacheline_aligned_in_smp; /* Keep atomic mem on separate cachelines in structs that include it */ atomic_long_t mem ____cacheline_aligned_in_smp; struct work_struct destroy_work; }; /** * fragment queue flags * * @INET_FRAG_FIRST_IN: first fragment has arrived * @INET_FRAG_LAST_IN: final fragment has arrived * @INET_FRAG_COMPLETE: frag queue has been processed and is due for destruction * @INET_FRAG_HASH_DEAD: inet_frag_kill() has not removed fq from rhashtable */ enum { INET_FRAG_FIRST_IN = BIT(0), INET_FRAG_LAST_IN = BIT(1), INET_FRAG_COMPLETE = BIT(2), INET_FRAG_HASH_DEAD = BIT(3), }; struct frag_v4_compare_key { __be32 saddr; __be32 daddr; u32 user; u32 vif; __be16 id; u16 protocol; }; struct frag_v6_compare_key { struct in6_addr saddr; struct in6_addr daddr; u32 user; __be32 id; u32 iif; }; /** * struct inet_frag_queue - fragment queue * * @node: rhash node * @key: keys identifying this frag. * @timer: queue expiration timer * @lock: spinlock protecting this frag * @refcnt: reference count of the queue * @rb_fragments: received fragments rb-tree root * @fragments_tail: received fragments tail * @last_run_head: the head of the last "run". see ip_fragment.c * @stamp: timestamp of the last received fragment * @len: total length of the original datagram * @meat: length of received fragments so far * @flags: fragment queue flags * @max_size: maximum received fragment size * @fqdir: pointer to struct fqdir * @rcu: rcu head for freeing deferall */ struct inet_frag_queue { struct rhash_head node; union { struct frag_v4_compare_key v4; struct frag_v6_compare_key v6; } key; struct timer_list timer; spinlock_t lock; refcount_t refcnt; struct rb_root rb_fragments; struct sk_buff *fragments_tail; struct sk_buff *last_run_head; ktime_t stamp; int len; int meat; __u8 flags; u16 max_size; struct fqdir *fqdir; struct rcu_head rcu; }; struct inet_frags { unsigned int qsize; void (*constructor)(struct inet_frag_queue *q, const void *arg); void (*destructor)(struct inet_frag_queue *); void (*frag_expire)(struct timer_list *t); struct kmem_cache *frags_cachep; const char *frags_cache_name; struct rhashtable_params rhash_params; refcount_t refcnt; struct completion completion; }; int inet_frags_init(struct inet_frags *); void inet_frags_fini(struct inet_frags *); int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net); static inline void fqdir_pre_exit(struct fqdir *fqdir) { fqdir->high_thresh = 0; /* prevent creation of new frags */ fqdir->dead = true; } void fqdir_exit(struct fqdir *fqdir); void inet_frag_kill(struct inet_frag_queue *q); void inet_frag_destroy(struct inet_frag_queue *q); struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key); /* Free all skbs in the queue; return the sum of their truesizes. */ unsigned int inet_frag_rbtree_purge(struct rb_root *root); static inline void inet_frag_put(struct inet_frag_queue *q) { if (refcount_dec_and_test(&q->refcnt)) inet_frag_destroy(q); } /* Memory Tracking Functions. */ static inline long frag_mem_limit(const struct fqdir *fqdir) { return atomic_long_read(&fqdir->mem); } static inline void sub_frag_mem_limit(struct fqdir *fqdir, long val) { atomic_long_sub(val, &fqdir->mem); } static inline void add_frag_mem_limit(struct fqdir *fqdir, long val) { atomic_long_add(val, &fqdir->mem); } /* RFC 3168 support : * We want to check ECN values of all fragments, do detect invalid combinations. * In ipq->ecn, we store the OR value of each ip4_frag_ecn() fragment value. */ #define IPFRAG_ECN_NOT_ECT 0x01 /* one frag had ECN_NOT_ECT */ #define IPFRAG_ECN_ECT_1 0x02 /* one frag had ECN_ECT_1 */ #define IPFRAG_ECN_ECT_0 0x04 /* one frag had ECN_ECT_0 */ #define IPFRAG_ECN_CE 0x08 /* one frag had ECN_CE */ extern const u8 ip_frag_ecn_table[16]; /* Return values of inet_frag_queue_insert() */ #define IPFRAG_OK 0 #define IPFRAG_DUP 1 #define IPFRAG_OVERLAP 2 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb, int offset, int end); void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb, struct sk_buff *parent); void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head, void *reasm_data, bool try_coalesce); struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BYTEORDER_GENERIC_H #define _LINUX_BYTEORDER_GENERIC_H /* * linux/byteorder/generic.h * Generic Byte-reordering support * * The "... p" macros, like le64_to_cpup, can be used with pointers * to unaligned data, but there will be a performance penalty on * some architectures. Use get_unaligned for unaligned data. * * Francois-Rene Rideau <fare@tunes.org> 19970707 * gathered all the good ideas from all asm-foo/byteorder.h into one file, * cleaned them up. * I hope it is compliant with non-GCC compilers. * I decided to put __BYTEORDER_HAS_U64__ in byteorder.h, * because I wasn't sure it would be ok to put it in types.h * Upgraded it to 2.1.43 * Francois-Rene Rideau <fare@tunes.org> 19971012 * Upgraded it to 2.1.57 * to please Linus T., replaced huge #ifdef's between little/big endian * by nestedly #include'd files. * Francois-Rene Rideau <fare@tunes.org> 19971205 * Made it to 2.1.71; now a facelift: * Put files under include/linux/byteorder/ * Split swab from generic support. * * TODO: * = Regular kernel maintainers could also replace all these manual * byteswap macros that remain, disseminated among drivers, * after some grep or the sources... * = Linus might want to rename all these macros and files to fit his taste, * to fit his personal naming scheme. * = it seems that a few drivers would also appreciate * nybble swapping support... * = every architecture could add their byteswap macro in asm/byteorder.h * see how some architectures already do (i386, alpha, ppc, etc) * = cpu_to_beXX and beXX_to_cpu might some day need to be well * distinguished throughout the kernel. This is not the case currently, * since little endian, big endian, and pdp endian machines needn't it. * But this might be the case for, say, a port of Linux to 20/21 bit * architectures (and F21 Linux addict around?). */ /* * The following macros are to be defined by <asm/byteorder.h>: * * Conversion of long and short int between network and host format * ntohl(__u32 x) * ntohs(__u16 x) * htonl(__u32 x) * htons(__u16 x) * It seems that some programs (which? where? or perhaps a standard? POSIX?) * might like the above to be functions, not macros (why?). * if that's true, then detect them, and take measures. * Anyway, the measure is: define only ___ntohl as a macro instead, * and in a separate file, have * unsigned long inline ntohl(x){return ___ntohl(x);} * * The same for constant arguments * __constant_ntohl(__u32 x) * __constant_ntohs(__u16 x) * __constant_htonl(__u32 x) * __constant_htons(__u16 x) * * Conversion of XX-bit integers (16- 32- or 64-) * between native CPU format and little/big endian format * 64-bit stuff only defined for proper architectures * cpu_to_[bl]eXX(__uXX x) * [bl]eXX_to_cpu(__uXX x) * * The same, but takes a pointer to the value to convert * cpu_to_[bl]eXXp(__uXX x) * [bl]eXX_to_cpup(__uXX x) * * The same, but change in situ * cpu_to_[bl]eXXs(__uXX x) * [bl]eXX_to_cpus(__uXX x) * * See asm-foo/byteorder.h for examples of how to provide * architecture-optimized versions * */ #define cpu_to_le64 __cpu_to_le64 #define le64_to_cpu __le64_to_cpu #define cpu_to_le32 __cpu_to_le32 #define le32_to_cpu __le32_to_cpu #define cpu_to_le16 __cpu_to_le16 #define le16_to_cpu __le16_to_cpu #define cpu_to_be64 __cpu_to_be64 #define be64_to_cpu __be64_to_cpu #define cpu_to_be32 __cpu_to_be32 #define be32_to_cpu __be32_to_cpu #define cpu_to_be16 __cpu_to_be16 #define be16_to_cpu __be16_to_cpu #define cpu_to_le64p __cpu_to_le64p #define le64_to_cpup __le64_to_cpup #define cpu_to_le32p __cpu_to_le32p #define le32_to_cpup __le32_to_cpup #define cpu_to_le16p __cpu_to_le16p #define le16_to_cpup __le16_to_cpup #define cpu_to_be64p __cpu_to_be64p #define be64_to_cpup __be64_to_cpup #define cpu_to_be32p __cpu_to_be32p #define be32_to_cpup __be32_to_cpup #define cpu_to_be16p __cpu_to_be16p #define be16_to_cpup __be16_to_cpup #define cpu_to_le64s __cpu_to_le64s #define le64_to_cpus __le64_to_cpus #define cpu_to_le32s __cpu_to_le32s #define le32_to_cpus __le32_to_cpus #define cpu_to_le16s __cpu_to_le16s #define le16_to_cpus __le16_to_cpus #define cpu_to_be64s __cpu_to_be64s #define be64_to_cpus __be64_to_cpus #define cpu_to_be32s __cpu_to_be32s #define be32_to_cpus __be32_to_cpus #define cpu_to_be16s __cpu_to_be16s #define be16_to_cpus __be16_to_cpus /* * They have to be macros in order to do the constant folding * correctly - if the argument passed into a inline function * it is no longer constant according to gcc.. */ #undef ntohl #undef ntohs #undef htonl #undef htons #define ___htonl(x) __cpu_to_be32(x) #define ___htons(x) __cpu_to_be16(x) #define ___ntohl(x) __be32_to_cpu(x) #define ___ntohs(x) __be16_to_cpu(x) #define htonl(x) ___htonl(x) #define ntohl(x) ___ntohl(x) #define htons(x) ___htons(x) #define ntohs(x) ___ntohs(x) static inline void le16_add_cpu(__le16 *var, u16 val) { *var = cpu_to_le16(le16_to_cpu(*var) + val); } static inline void le32_add_cpu(__le32 *var, u32 val) { *var = cpu_to_le32(le32_to_cpu(*var) + val); } static inline void le64_add_cpu(__le64 *var, u64 val) { *var = cpu_to_le64(le64_to_cpu(*var) + val); } /* XXX: this stuff can be optimized */ static inline void le32_to_cpu_array(u32 *buf, unsigned int words) { while (words--) { __le32_to_cpus(buf); buf++; } } static inline void cpu_to_le32_array(u32 *buf, unsigned int words) { while (words--) { __cpu_to_le32s(buf); buf++; } } static inline void be16_add_cpu(__be16 *var, u16 val) { *var = cpu_to_be16(be16_to_cpu(*var) + val); } static inline void be32_add_cpu(__be32 *var, u32 val) { *var = cpu_to_be32(be32_to_cpu(*var) + val); } static inline void be64_add_cpu(__be64 *var, u64 val) { *var = cpu_to_be64(be64_to_cpu(*var) + val); } static inline void cpu_to_be32_array(__be32 *dst, const u32 *src, size_t len) { int i; for (i = 0; i < len; i++) dst[i] = cpu_to_be32(src[i]); } static inline void be32_to_cpu_array(u32 *dst, const __be32 *src, size_t len) { int i; for (i = 0; i < len; i++) dst[i] = be32_to_cpu(src[i]); } #endif /* _LINUX_BYTEORDER_GENERIC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 /* SPDX-License-Identifier: GPL-2.0-only */ /* * fs/kernfs/kernfs-internal.h - kernfs internal header file * * Copyright (c) 2001-3 Patrick Mochel * Copyright (c) 2007 SUSE Linux Products GmbH * Copyright (c) 2007, 2013 Tejun Heo <teheo@suse.de> */ #ifndef __KERNFS_INTERNAL_H #define __KERNFS_INTERNAL_H #include <linux/lockdep.h> #include <linux/fs.h> #include <linux/mutex.h> #include <linux/xattr.h> #include <linux/kernfs.h> #include <linux/fs_context.h> struct kernfs_iattrs { kuid_t ia_uid; kgid_t ia_gid; struct timespec64 ia_atime; struct timespec64 ia_mtime; struct timespec64 ia_ctime; struct simple_xattrs xattrs; atomic_t nr_user_xattrs; atomic_t user_xattr_size; }; /* +1 to avoid triggering overflow warning when negating it */ #define KN_DEACTIVATED_BIAS (INT_MIN + 1) /* KERNFS_TYPE_MASK and types are defined in include/linux/kernfs.h */ /** * kernfs_root - find out the kernfs_root a kernfs_node belongs to * @kn: kernfs_node of interest * * Return the kernfs_root @kn belongs to. */ static inline struct kernfs_root *kernfs_root(struct kernfs_node *kn) { /* if parent exists, it's always a dir; otherwise, @sd is a dir */ if (kn->parent) kn = kn->parent; return kn->dir.root; } /* * mount.c */ struct kernfs_super_info { struct super_block *sb; /* * The root associated with this super_block. Each super_block is * identified by the root and ns it's associated with. */ struct kernfs_root *root; /* * Each sb is associated with one namespace tag, currently the * network namespace of the task which mounted this kernfs * instance. If multiple tags become necessary, make the following * an array and compare kernfs_node tag against every entry. */ const void *ns; /* anchored at kernfs_root->supers, protected by kernfs_mutex */ struct list_head node; }; #define kernfs_info(SB) ((struct kernfs_super_info *)(SB->s_fs_info)) static inline struct kernfs_node *kernfs_dentry_node(struct dentry *dentry) { if (d_really_is_negative(dentry)) return NULL; return d_inode(dentry)->i_private; } extern const struct super_operations kernfs_sops; extern struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache; /* * inode.c */ extern const struct xattr_handler *kernfs_xattr_handlers[]; void kernfs_evict_inode(struct inode *inode); int kernfs_iop_permission(struct inode *inode, int mask); int kernfs_iop_setattr(struct dentry *dentry, struct iattr *iattr); int kernfs_iop_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags); ssize_t kernfs_iop_listxattr(struct dentry *dentry, char *buf, size_t size); int __kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr); /* * dir.c */ extern struct mutex kernfs_mutex; extern const struct dentry_operations kernfs_dops; extern const struct file_operations kernfs_dir_fops; extern const struct inode_operations kernfs_dir_iops; struct kernfs_node *kernfs_get_active(struct kernfs_node *kn); void kernfs_put_active(struct kernfs_node *kn); int kernfs_add_one(struct kernfs_node *kn); struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, unsigned flags); /* * file.c */ extern const struct file_operations kernfs_file_fops; void kernfs_drain_open_files(struct kernfs_node *kn); /* * symlink.c */ extern const struct inode_operations kernfs_symlink_iops; #endif /* __KERNFS_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_UACCESS_64_H #define _ASM_X86_UACCESS_64_H /* * User space memory access functions */ #include <linux/compiler.h> #include <linux/lockdep.h> #include <linux/kasan-checks.h> #include <asm/alternative.h> #include <asm/cpufeatures.h> #include <asm/page.h> /* * Copy To/From Userspace */ /* Handles exceptions in both to and from, but doesn't do access_ok */ __must_check unsigned long copy_user_enhanced_fast_string(void *to, const void *from, unsigned len); __must_check unsigned long copy_user_generic_string(void *to, const void *from, unsigned len); __must_check unsigned long copy_user_generic_unrolled(void *to, const void *from, unsigned len); static __always_inline __must_check unsigned long copy_user_generic(void *to, const void *from, unsigned len) { unsigned ret; /* * If CPU has ERMS feature, use copy_user_enhanced_fast_string. * Otherwise, if CPU has rep_good feature, use copy_user_generic_string. * Otherwise, use copy_user_generic_unrolled. */ alternative_call_2(copy_user_generic_unrolled, copy_user_generic_string, X86_FEATURE_REP_GOOD, copy_user_enhanced_fast_string, X86_FEATURE_ERMS, ASM_OUTPUT2("=a" (ret), "=D" (to), "=S" (from), "=d" (len)), "1" (to), "2" (from), "3" (len) : "memory", "rcx", "r8", "r9", "r10", "r11"); return ret; } static __always_inline __must_check unsigned long raw_copy_from_user(void *dst, const void __user *src, unsigned long size) { return copy_user_generic(dst, (__force void *)src, size); } static __always_inline __must_check unsigned long raw_copy_to_user(void __user *dst, const void *src, unsigned long size) { return copy_user_generic((__force void *)dst, src, size); } static __always_inline __must_check unsigned long raw_copy_in_user(void __user *dst, const void __user *src, unsigned long size) { return copy_user_generic((__force void *)dst, (__force void *)src, size); } extern long __copy_user_nocache(void *dst, const void __user *src, unsigned size, int zerorest); extern long __copy_user_flushcache(void *dst, const void __user *src, unsigned size); extern void memcpy_page_flushcache(char *to, struct page *page, size_t offset, size_t len); static inline int __copy_from_user_inatomic_nocache(void *dst, const void __user *src, unsigned size) { kasan_check_write(dst, size); return __copy_user_nocache(dst, src, size, 0); } static inline int __copy_from_user_flushcache(void *dst, const void __user *src, unsigned size) { kasan_check_write(dst, size); return __copy_user_flushcache(dst, src, size); } #endif /* _ASM_X86_UACCESS_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * VLAN An implementation of 802.1Q VLAN tagging. * * Authors: Ben Greear <greearb@candelatech.com> */ #ifndef _LINUX_IF_VLAN_H_ #define _LINUX_IF_VLAN_H_ #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/rtnetlink.h> #include <linux/bug.h> #include <uapi/linux/if_vlan.h> #define VLAN_HLEN 4 /* The additional bytes required by VLAN * (in addition to the Ethernet header) */ #define VLAN_ETH_HLEN 18 /* Total octets in header. */ #define VLAN_ETH_ZLEN 64 /* Min. octets in frame sans FCS */ /* * According to 802.3ac, the packet can be 4 bytes longer. --Klika Jan */ #define VLAN_ETH_DATA_LEN 1500 /* Max. octets in payload */ #define VLAN_ETH_FRAME_LEN 1518 /* Max. octets in frame sans FCS */ #define VLAN_MAX_DEPTH 8 /* Max. number of nested VLAN tags parsed */ /* * struct vlan_hdr - vlan header * @h_vlan_TCI: priority and VLAN ID * @h_vlan_encapsulated_proto: packet type ID or len */ struct vlan_hdr { __be16 h_vlan_TCI; __be16 h_vlan_encapsulated_proto; }; /** * struct vlan_ethhdr - vlan ethernet header (ethhdr + vlan_hdr) * @h_dest: destination ethernet address * @h_source: source ethernet address * @h_vlan_proto: ethernet protocol * @h_vlan_TCI: priority and VLAN ID * @h_vlan_encapsulated_proto: packet type ID or len */ struct vlan_ethhdr { unsigned char h_dest[ETH_ALEN]; unsigned char h_source[ETH_ALEN]; __be16 h_vlan_proto; __be16 h_vlan_TCI; __be16 h_vlan_encapsulated_proto; }; #include <linux/skbuff.h> static inline struct vlan_ethhdr *vlan_eth_hdr(const struct sk_buff *skb) { return (struct vlan_ethhdr *)skb_mac_header(skb); } #define VLAN_PRIO_MASK 0xe000 /* Priority Code Point */ #define VLAN_PRIO_SHIFT 13 #define VLAN_CFI_MASK 0x1000 /* Canonical Format Indicator / Drop Eligible Indicator */ #define VLAN_VID_MASK 0x0fff /* VLAN Identifier */ #define VLAN_N_VID 4096 /* found in socket.c */ extern void vlan_ioctl_set(int (*hook)(struct net *, void __user *)); static inline bool is_vlan_dev(const struct net_device *dev) { return dev->priv_flags & IFF_802_1Q_VLAN; } #define skb_vlan_tag_present(__skb) ((__skb)->vlan_present) #define skb_vlan_tag_get(__skb) ((__skb)->vlan_tci) #define skb_vlan_tag_get_id(__skb) ((__skb)->vlan_tci & VLAN_VID_MASK) #define skb_vlan_tag_get_cfi(__skb) (!!((__skb)->vlan_tci & VLAN_CFI_MASK)) #define skb_vlan_tag_get_prio(__skb) (((__skb)->vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT) static inline int vlan_get_rx_ctag_filter_info(struct net_device *dev) { ASSERT_RTNL(); return notifier_to_errno(call_netdevice_notifiers(NETDEV_CVLAN_FILTER_PUSH_INFO, dev)); } static inline void vlan_drop_rx_ctag_filter_info(struct net_device *dev) { ASSERT_RTNL(); call_netdevice_notifiers(NETDEV_CVLAN_FILTER_DROP_INFO, dev); } static inline int vlan_get_rx_stag_filter_info(struct net_device *dev) { ASSERT_RTNL(); return notifier_to_errno(call_netdevice_notifiers(NETDEV_SVLAN_FILTER_PUSH_INFO, dev)); } static inline void vlan_drop_rx_stag_filter_info(struct net_device *dev) { ASSERT_RTNL(); call_netdevice_notifiers(NETDEV_SVLAN_FILTER_DROP_INFO, dev); } /** * struct vlan_pcpu_stats - VLAN percpu rx/tx stats * @rx_packets: number of received packets * @rx_bytes: number of received bytes * @rx_multicast: number of received multicast packets * @tx_packets: number of transmitted packets * @tx_bytes: number of transmitted bytes * @syncp: synchronization point for 64bit counters * @rx_errors: number of rx errors * @tx_dropped: number of tx drops */ struct vlan_pcpu_stats { u64 rx_packets; u64 rx_bytes; u64 rx_multicast; u64 tx_packets; u64 tx_bytes; struct u64_stats_sync syncp; u32 rx_errors; u32 tx_dropped; }; #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) extern struct net_device *__vlan_find_dev_deep_rcu(struct net_device *real_dev, __be16 vlan_proto, u16 vlan_id); extern int vlan_for_each(struct net_device *dev, int (*action)(struct net_device *dev, int vid, void *arg), void *arg); extern struct net_device *vlan_dev_real_dev(const struct net_device *dev); extern u16 vlan_dev_vlan_id(const struct net_device *dev); extern __be16 vlan_dev_vlan_proto(const struct net_device *dev); /** * struct vlan_priority_tci_mapping - vlan egress priority mappings * @priority: skb priority * @vlan_qos: vlan priority: (skb->priority << 13) & 0xE000 * @next: pointer to next struct */ struct vlan_priority_tci_mapping { u32 priority; u16 vlan_qos; struct vlan_priority_tci_mapping *next; }; struct proc_dir_entry; struct netpoll; /** * struct vlan_dev_priv - VLAN private device data * @nr_ingress_mappings: number of ingress priority mappings * @ingress_priority_map: ingress priority mappings * @nr_egress_mappings: number of egress priority mappings * @egress_priority_map: hash of egress priority mappings * @vlan_proto: VLAN encapsulation protocol * @vlan_id: VLAN identifier * @flags: device flags * @real_dev: underlying netdevice * @real_dev_addr: address of underlying netdevice * @dent: proc dir entry * @vlan_pcpu_stats: ptr to percpu rx stats */ struct vlan_dev_priv { unsigned int nr_ingress_mappings; u32 ingress_priority_map[8]; unsigned int nr_egress_mappings; struct vlan_priority_tci_mapping *egress_priority_map[16]; __be16 vlan_proto; u16 vlan_id; u16 flags; struct net_device *real_dev; unsigned char real_dev_addr[ETH_ALEN]; struct proc_dir_entry *dent; struct vlan_pcpu_stats __percpu *vlan_pcpu_stats; #ifdef CONFIG_NET_POLL_CONTROLLER struct netpoll *netpoll; #endif }; static inline struct vlan_dev_priv *vlan_dev_priv(const struct net_device *dev) { return netdev_priv(dev); } static inline u16 vlan_dev_get_egress_qos_mask(struct net_device *dev, u32 skprio) { struct vlan_priority_tci_mapping *mp; smp_rmb(); /* coupled with smp_wmb() in vlan_dev_set_egress_priority() */ mp = vlan_dev_priv(dev)->egress_priority_map[(skprio & 0xF)]; while (mp) { if (mp->priority == skprio) { return mp->vlan_qos; /* This should already be shifted * to mask correctly with the * VLAN's TCI */ } mp = mp->next; } return 0; } extern bool vlan_do_receive(struct sk_buff **skb); extern int vlan_vid_add(struct net_device *dev, __be16 proto, u16 vid); extern void vlan_vid_del(struct net_device *dev, __be16 proto, u16 vid); extern int vlan_vids_add_by_dev(struct net_device *dev, const struct net_device *by_dev); extern void vlan_vids_del_by_dev(struct net_device *dev, const struct net_device *by_dev); extern bool vlan_uses_dev(const struct net_device *dev); #else static inline struct net_device * __vlan_find_dev_deep_rcu(struct net_device *real_dev, __be16 vlan_proto, u16 vlan_id) { return NULL; } static inline int vlan_for_each(struct net_device *dev, int (*action)(struct net_device *dev, int vid, void *arg), void *arg) { return 0; } static inline struct net_device *vlan_dev_real_dev(const struct net_device *dev) { BUG(); return NULL; } static inline u16 vlan_dev_vlan_id(const struct net_device *dev) { BUG(); return 0; } static inline __be16 vlan_dev_vlan_proto(const struct net_device *dev) { BUG(); return 0; } static inline u16 vlan_dev_get_egress_qos_mask(struct net_device *dev, u32 skprio) { return 0; } static inline bool vlan_do_receive(struct sk_buff **skb) { return false; } static inline int vlan_vid_add(struct net_device *dev, __be16 proto, u16 vid) { return 0; } static inline void vlan_vid_del(struct net_device *dev, __be16 proto, u16 vid) { } static inline int vlan_vids_add_by_dev(struct net_device *dev, const struct net_device *by_dev) { return 0; } static inline void vlan_vids_del_by_dev(struct net_device *dev, const struct net_device *by_dev) { } static inline bool vlan_uses_dev(const struct net_device *dev) { return false; } #endif /** * eth_type_vlan - check for valid vlan ether type. * @ethertype: ether type to check * * Returns true if the ether type is a vlan ether type. */ static inline bool eth_type_vlan(__be16 ethertype) { switch (ethertype) { case htons(ETH_P_8021Q): case htons(ETH_P_8021AD): return true; default: return false; } } static inline bool vlan_hw_offload_capable(netdev_features_t features, __be16 proto) { if (proto == htons(ETH_P_8021Q) && features & NETIF_F_HW_VLAN_CTAG_TX) return true; if (proto == htons(ETH_P_8021AD) && features & NETIF_F_HW_VLAN_STAG_TX) return true; return false; } /** * __vlan_insert_inner_tag - inner VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * @mac_len: MAC header length including outer vlan headers * * Inserts the VLAN tag into @skb as part of the payload at offset mac_len * Returns error if skb_cow_head fails. * * Does not change skb->protocol so this function can be used during receive. */ static inline int __vlan_insert_inner_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci, unsigned int mac_len) { struct vlan_ethhdr *veth; if (skb_cow_head(skb, VLAN_HLEN) < 0) return -ENOMEM; skb_push(skb, VLAN_HLEN); /* Move the mac header sans proto to the beginning of the new header. */ if (likely(mac_len > ETH_TLEN)) memmove(skb->data, skb->data + VLAN_HLEN, mac_len - ETH_TLEN); skb->mac_header -= VLAN_HLEN; veth = (struct vlan_ethhdr *)(skb->data + mac_len - ETH_HLEN); /* first, the ethernet type */ if (likely(mac_len >= ETH_TLEN)) { /* h_vlan_encapsulated_proto should already be populated, and * skb->data has space for h_vlan_proto */ veth->h_vlan_proto = vlan_proto; } else { /* h_vlan_encapsulated_proto should not be populated, and * skb->data has no space for h_vlan_proto */ veth->h_vlan_encapsulated_proto = skb->protocol; } /* now, the TCI */ veth->h_vlan_TCI = htons(vlan_tci); return 0; } /** * __vlan_insert_tag - regular VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Inserts the VLAN tag into @skb as part of the payload * Returns error if skb_cow_head fails. * * Does not change skb->protocol so this function can be used during receive. */ static inline int __vlan_insert_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { return __vlan_insert_inner_tag(skb, vlan_proto, vlan_tci, ETH_HLEN); } /** * vlan_insert_inner_tag - inner VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * @mac_len: MAC header length including outer vlan headers * * Inserts the VLAN tag into @skb as part of the payload at offset mac_len * Returns a VLAN tagged skb. If a new skb is created, @skb is freed. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. * * Does not change skb->protocol so this function can be used during receive. */ static inline struct sk_buff *vlan_insert_inner_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci, unsigned int mac_len) { int err; err = __vlan_insert_inner_tag(skb, vlan_proto, vlan_tci, mac_len); if (err) { dev_kfree_skb_any(skb); return NULL; } return skb; } /** * vlan_insert_tag - regular VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Inserts the VLAN tag into @skb as part of the payload * Returns a VLAN tagged skb. If a new skb is created, @skb is freed. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. * * Does not change skb->protocol so this function can be used during receive. */ static inline struct sk_buff *vlan_insert_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { return vlan_insert_inner_tag(skb, vlan_proto, vlan_tci, ETH_HLEN); } /** * vlan_insert_tag_set_proto - regular VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Inserts the VLAN tag into @skb as part of the payload * Returns a VLAN tagged skb. If a new skb is created, @skb is freed. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. */ static inline struct sk_buff *vlan_insert_tag_set_proto(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { skb = vlan_insert_tag(skb, vlan_proto, vlan_tci); if (skb) skb->protocol = vlan_proto; return skb; } /** * __vlan_hwaccel_clear_tag - clear hardware accelerated VLAN info * @skb: skbuff to clear * * Clears the VLAN information from @skb */ static inline void __vlan_hwaccel_clear_tag(struct sk_buff *skb) { skb->vlan_present = 0; } /** * __vlan_hwaccel_copy_tag - copy hardware accelerated VLAN info from another skb * @dst: skbuff to copy to * @src: skbuff to copy from * * Copies VLAN information from @src to @dst (for branchless code) */ static inline void __vlan_hwaccel_copy_tag(struct sk_buff *dst, const struct sk_buff *src) { dst->vlan_present = src->vlan_present; dst->vlan_proto = src->vlan_proto; dst->vlan_tci = src->vlan_tci; } /* * __vlan_hwaccel_push_inside - pushes vlan tag to the payload * @skb: skbuff to tag * * Pushes the VLAN tag from @skb->vlan_tci inside to the payload. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. */ static inline struct sk_buff *__vlan_hwaccel_push_inside(struct sk_buff *skb) { skb = vlan_insert_tag_set_proto(skb, skb->vlan_proto, skb_vlan_tag_get(skb)); if (likely(skb)) __vlan_hwaccel_clear_tag(skb); return skb; } /** * __vlan_hwaccel_put_tag - hardware accelerated VLAN inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Puts the VLAN TCI in @skb->vlan_tci and lets the device do the rest */ static inline void __vlan_hwaccel_put_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { skb->vlan_proto = vlan_proto; skb->vlan_tci = vlan_tci; skb->vlan_present = 1; } /** * __vlan_get_tag - get the VLAN ID that is part of the payload * @skb: skbuff to query * @vlan_tci: buffer to store value * * Returns error if the skb is not of VLAN type */ static inline int __vlan_get_tag(const struct sk_buff *skb, u16 *vlan_tci) { struct vlan_ethhdr *veth = (struct vlan_ethhdr *)skb->data; if (!eth_type_vlan(veth->h_vlan_proto)) return -EINVAL; *vlan_tci = ntohs(veth->h_vlan_TCI); return 0; } /** * __vlan_hwaccel_get_tag - get the VLAN ID that is in @skb->cb[] * @skb: skbuff to query * @vlan_tci: buffer to store value * * Returns error if @skb->vlan_tci is not set correctly */ static inline int __vlan_hwaccel_get_tag(const struct sk_buff *skb, u16 *vlan_tci) { if (skb_vlan_tag_present(skb)) { *vlan_tci = skb_vlan_tag_get(skb); return 0; } else { *vlan_tci = 0; return -EINVAL; } } /** * vlan_get_tag - get the VLAN ID from the skb * @skb: skbuff to query * @vlan_tci: buffer to store value * * Returns error if the skb is not VLAN tagged */ static inline int vlan_get_tag(const struct sk_buff *skb, u16 *vlan_tci) { if (skb->dev->features & NETIF_F_HW_VLAN_CTAG_TX) { return __vlan_hwaccel_get_tag(skb, vlan_tci); } else { return __vlan_get_tag(skb, vlan_tci); } } /** * vlan_get_protocol - get protocol EtherType. * @skb: skbuff to query * @type: first vlan protocol * @depth: buffer to store length of eth and vlan tags in bytes * * Returns the EtherType of the packet, regardless of whether it is * vlan encapsulated (normal or hardware accelerated) or not. */ static inline __be16 __vlan_get_protocol(const struct sk_buff *skb, __be16 type, int *depth) { unsigned int vlan_depth = skb->mac_len, parse_depth = VLAN_MAX_DEPTH; /* if type is 802.1Q/AD then the header should already be * present at mac_len - VLAN_HLEN (if mac_len > 0), or at * ETH_HLEN otherwise */ if (eth_type_vlan(type)) { if (vlan_depth) { if (WARN_ON(vlan_depth < VLAN_HLEN)) return 0; vlan_depth -= VLAN_HLEN; } else { vlan_depth = ETH_HLEN; } do { struct vlan_hdr vhdr, *vh; vh = skb_header_pointer(skb, vlan_depth, sizeof(vhdr), &vhdr); if (unlikely(!vh || !--parse_depth)) return 0; type = vh->h_vlan_encapsulated_proto; vlan_depth += VLAN_HLEN; } while (eth_type_vlan(type)); } if (depth) *depth = vlan_depth; return type; } /** * vlan_get_protocol - get protocol EtherType. * @skb: skbuff to query * * Returns the EtherType of the packet, regardless of whether it is * vlan encapsulated (normal or hardware accelerated) or not. */ static inline __be16 vlan_get_protocol(const struct sk_buff *skb) { return __vlan_get_protocol(skb, skb->protocol, NULL); } /* A getter for the SKB protocol field which will handle VLAN tags consistently * whether VLAN acceleration is enabled or not. */ static inline __be16 skb_protocol(const struct sk_buff *skb, bool skip_vlan) { if (!skip_vlan) /* VLAN acceleration strips the VLAN header from the skb and * moves it to skb->vlan_proto */ return skb_vlan_tag_present(skb) ? skb->vlan_proto : skb->protocol; return vlan_get_protocol(skb); } static inline void vlan_set_encap_proto(struct sk_buff *skb, struct vlan_hdr *vhdr) { __be16 proto; unsigned short *rawp; /* * Was a VLAN packet, grab the encapsulated protocol, which the layer * three protocols care about. */ proto = vhdr->h_vlan_encapsulated_proto; if (eth_proto_is_802_3(proto)) { skb->protocol = proto; return; } rawp = (unsigned short *)(vhdr + 1); if (*rawp == 0xFFFF) /* * This is a magic hack to spot IPX packets. Older Novell * breaks the protocol design and runs IPX over 802.3 without * an 802.2 LLC layer. We look for FFFF which isn't a used * 802.2 SSAP/DSAP. This won't work for fault tolerant netware * but does for the rest. */ skb->protocol = htons(ETH_P_802_3); else /* * Real 802.2 LLC */ skb->protocol = htons(ETH_P_802_2); } /** * skb_vlan_tagged - check if skb is vlan tagged. * @skb: skbuff to query * * Returns true if the skb is tagged, regardless of whether it is hardware * accelerated or not. */ static inline bool skb_vlan_tagged(const struct sk_buff *skb) { if (!skb_vlan_tag_present(skb) && likely(!eth_type_vlan(skb->protocol))) return false; return true; } /** * skb_vlan_tagged_multi - check if skb is vlan tagged with multiple headers. * @skb: skbuff to query * * Returns true if the skb is tagged with multiple vlan headers, regardless * of whether it is hardware accelerated or not. */ static inline bool skb_vlan_tagged_multi(struct sk_buff *skb) { __be16 protocol = skb->protocol; if (!skb_vlan_tag_present(skb)) { struct vlan_ethhdr *veh; if (likely(!eth_type_vlan(protocol))) return false; if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) return false; veh = (struct vlan_ethhdr *)skb->data; protocol = veh->h_vlan_encapsulated_proto; } if (!eth_type_vlan(protocol)) return false; return true; } /** * vlan_features_check - drop unsafe features for skb with multiple tags. * @skb: skbuff to query * @features: features to be checked * * Returns features without unsafe ones if the skb has multiple tags. */ static inline netdev_features_t vlan_features_check(struct sk_buff *skb, netdev_features_t features) { if (skb_vlan_tagged_multi(skb)) { /* In the case of multi-tagged packets, use a direct mask * instead of using netdev_interesect_features(), to make * sure that only devices supporting NETIF_F_HW_CSUM will * have checksum offloading support. */ features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM | NETIF_F_FRAGLIST | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; } return features; } /** * compare_vlan_header - Compare two vlan headers * @h1: Pointer to vlan header * @h2: Pointer to vlan header * * Compare two vlan headers, returns 0 if equal. * * Please note that alignment of h1 & h2 are only guaranteed to be 16 bits. */ static inline unsigned long compare_vlan_header(const struct vlan_hdr *h1, const struct vlan_hdr *h2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return *(u32 *)h1 ^ *(u32 *)h2; #else return ((__force u32)h1->h_vlan_TCI ^ (__force u32)h2->h_vlan_TCI) | ((__force u32)h1->h_vlan_encapsulated_proto ^ (__force u32)h2->h_vlan_encapsulated_proto); #endif } #endif /* !(_LINUX_IF_VLAN_H_) */
1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 // SPDX-License-Identifier: GPL-2.0-or-later /* * printk_safe.c - Safe printk for printk-deadlock-prone contexts */ #include <linux/preempt.h> #include <linux/spinlock.h> #include <linux/debug_locks.h> #include <linux/kdb.h> #include <linux/smp.h> #include <linux/cpumask.h> #include <linux/irq_work.h> #include <linux/printk.h> #include <linux/kprobes.h> #include "internal.h" /* * printk() could not take logbuf_lock in NMI context. Instead, * it uses an alternative implementation that temporary stores * the strings into a per-CPU buffer. The content of the buffer * is later flushed into the main ring buffer via IRQ work. * * The alternative implementation is chosen transparently * by examining current printk() context mask stored in @printk_context * per-CPU variable. * * The implementation allows to flush the strings also from another CPU. * There are situations when we want to make sure that all buffers * were handled or when IRQs are blocked. */ #define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) - \ sizeof(atomic_t) - \ sizeof(atomic_t) - \ sizeof(struct irq_work)) struct printk_safe_seq_buf { atomic_t len; /* length of written data */ atomic_t message_lost; struct irq_work work; /* IRQ work that flushes the buffer */ unsigned char buffer[SAFE_LOG_BUF_LEN]; }; static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq); static DEFINE_PER_CPU(int, printk_context); static DEFINE_RAW_SPINLOCK(safe_read_lock); #ifdef CONFIG_PRINTK_NMI static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq); #endif /* Get flushed in a more safe context. */ static void queue_flush_work(struct printk_safe_seq_buf *s) { if (printk_percpu_data_ready()) irq_work_queue(&s->work); } /* * Add a message to per-CPU context-dependent buffer. NMI and printk-safe * have dedicated buffers, because otherwise printk-safe preempted by * NMI-printk would have overwritten the NMI messages. * * The messages are flushed from irq work (or from panic()), possibly, * from other CPU, concurrently with printk_safe_log_store(). Should this * happen, printk_safe_log_store() will notice the buffer->len mismatch * and repeat the write. */ static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s, const char *fmt, va_list args) { int add; size_t len; va_list ap; again: len = atomic_read(&s->len); /* The trailing '\0' is not counted into len. */ if (len >= sizeof(s->buffer) - 1) { atomic_inc(&s->message_lost); queue_flush_work(s); return 0; } /* * Make sure that all old data have been read before the buffer * was reset. This is not needed when we just append data. */ if (!len) smp_rmb(); va_copy(ap, args); add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap); va_end(ap); if (!add) return 0; /* * Do it once again if the buffer has been flushed in the meantime. * Note that atomic_cmpxchg() is an implicit memory barrier that * makes sure that the data were written before updating s->len. */ if (atomic_cmpxchg(&s->len, len, len + add) != len) goto again; queue_flush_work(s); return add; } static inline void printk_safe_flush_line(const char *text, int len) { /* * Avoid any console drivers calls from here, because we may be * in NMI or printk_safe context (when in panic). The messages * must go only into the ring buffer at this stage. Consoles will * get explicitly called later when a crashdump is not generated. */ printk_deferred("%.*s", len, text); } /* printk part of the temporary buffer line by line */ static int printk_safe_flush_buffer(const char *start, size_t len) { const char *c, *end; bool header; c = start; end = start + len; header = true; /* Print line by line. */ while (c < end) { if (*c == '\n') { printk_safe_flush_line(start, c - start + 1); start = ++c; header = true; continue; } /* Handle continuous lines or missing new line. */ if ((c + 1 < end) && printk_get_level(c)) { if (header) { c = printk_skip_level(c); continue; } printk_safe_flush_line(start, c - start); start = c++; header = true; continue; } header = false; c++; } /* Check if there was a partial line. Ignore pure header. */ if (start < end && !header) { static const char newline[] = KERN_CONT "\n"; printk_safe_flush_line(start, end - start); printk_safe_flush_line(newline, strlen(newline)); } return len; } static void report_message_lost(struct printk_safe_seq_buf *s) { int lost = atomic_xchg(&s->message_lost, 0); if (lost) printk_deferred("Lost %d message(s)!\n", lost); } /* * Flush data from the associated per-CPU buffer. The function * can be called either via IRQ work or independently. */ static void __printk_safe_flush(struct irq_work *work) { struct printk_safe_seq_buf *s = container_of(work, struct printk_safe_seq_buf, work); unsigned long flags; size_t len; int i; /* * The lock has two functions. First, one reader has to flush all * available message to make the lockless synchronization with * writers easier. Second, we do not want to mix messages from * different CPUs. This is especially important when printing * a backtrace. */ raw_spin_lock_irqsave(&safe_read_lock, flags); i = 0; more: len = atomic_read(&s->len); /* * This is just a paranoid check that nobody has manipulated * the buffer an unexpected way. If we printed something then * @len must only increase. Also it should never overflow the * buffer size. */ if ((i && i >= len) || len > sizeof(s->buffer)) { const char *msg = "printk_safe_flush: internal error\n"; printk_safe_flush_line(msg, strlen(msg)); len = 0; } if (!len) goto out; /* Someone else has already flushed the buffer. */ /* Make sure that data has been written up to the @len */ smp_rmb(); i += printk_safe_flush_buffer(s->buffer + i, len - i); /* * Check that nothing has got added in the meantime and truncate * the buffer. Note that atomic_cmpxchg() is an implicit memory * barrier that makes sure that the data were copied before * updating s->len. */ if (atomic_cmpxchg(&s->len, len, 0) != len) goto more; out: report_message_lost(s); raw_spin_unlock_irqrestore(&safe_read_lock, flags); } /** * printk_safe_flush - flush all per-cpu nmi buffers. * * The buffers are flushed automatically via IRQ work. This function * is useful only when someone wants to be sure that all buffers have * been flushed at some point. */ void printk_safe_flush(void) { int cpu; for_each_possible_cpu(cpu) { #ifdef CONFIG_PRINTK_NMI __printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work); #endif __printk_safe_flush(&per_cpu(safe_print_seq, cpu).work); } } /** * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system * goes down. * * Similar to printk_safe_flush() but it can be called even in NMI context when * the system goes down. It does the best effort to get NMI messages into * the main ring buffer. * * Note that it could try harder when there is only one CPU online. */ void printk_safe_flush_on_panic(void) { /* * Make sure that we could access the main ring buffer. * Do not risk a double release when more CPUs are up. */ if (raw_spin_is_locked(&logbuf_lock)) { if (num_online_cpus() > 1) return; debug_locks_off(); raw_spin_lock_init(&logbuf_lock); } if (raw_spin_is_locked(&safe_read_lock)) { if (num_online_cpus() > 1) return; debug_locks_off(); raw_spin_lock_init(&safe_read_lock); } printk_safe_flush(); } #ifdef CONFIG_PRINTK_NMI /* * Safe printk() for NMI context. It uses a per-CPU buffer to * store the message. NMIs are not nested, so there is always only * one writer running. But the buffer might get flushed from another * CPU, so we need to be careful. */ static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args) { struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq); return printk_safe_log_store(s, fmt, args); } void noinstr printk_nmi_enter(void) { this_cpu_add(printk_context, PRINTK_NMI_CONTEXT_OFFSET); } void noinstr printk_nmi_exit(void) { this_cpu_sub(printk_context, PRINTK_NMI_CONTEXT_OFFSET); } /* * Marks a code that might produce many messages in NMI context * and the risk of losing them is more critical than eventual * reordering. * * It has effect only when called in NMI context. Then printk() * will try to store the messages into the main logbuf directly * and use the per-CPU buffers only as a fallback when the lock * is not available. */ void printk_nmi_direct_enter(void) { if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK) this_cpu_or(printk_context, PRINTK_NMI_DIRECT_CONTEXT_MASK); } void printk_nmi_direct_exit(void) { this_cpu_and(printk_context, ~PRINTK_NMI_DIRECT_CONTEXT_MASK); } #else static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args) { return 0; } #endif /* CONFIG_PRINTK_NMI */ /* * Lock-less printk(), to avoid deadlocks should the printk() recurse * into itself. It uses a per-CPU buffer to store the message, just like * NMI. */ static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args) { struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq); return printk_safe_log_store(s, fmt, args); } /* Can be preempted by NMI. */ void __printk_safe_enter(void) { this_cpu_inc(printk_context); } /* Can be preempted by NMI. */ void __printk_safe_exit(void) { this_cpu_dec(printk_context); } __printf(1, 0) int vprintk_func(const char *fmt, va_list args) { #ifdef CONFIG_KGDB_KDB /* Allow to pass printk() to kdb but avoid a recursion. */ if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) return vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); #endif /* * Try to use the main logbuf even in NMI. But avoid calling console * drivers that might have their own locks. */ if ((this_cpu_read(printk_context) & PRINTK_NMI_DIRECT_CONTEXT_MASK) && raw_spin_trylock(&logbuf_lock)) { int len; len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, fmt, args); raw_spin_unlock(&logbuf_lock); defer_console_output(); return len; } /* Use extra buffer in NMI when logbuf_lock is taken or in safe mode. */ if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK) return vprintk_nmi(fmt, args); /* Use extra buffer to prevent a recursion deadlock in safe mode. */ if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK) return vprintk_safe(fmt, args); /* No obstacles. */ return vprintk_default(fmt, args); } void __init printk_safe_init(void) { int cpu; for_each_possible_cpu(cpu) { struct printk_safe_seq_buf *s; s = &per_cpu(safe_print_seq, cpu); init_irq_work(&s->work, __printk_safe_flush); #ifdef CONFIG_PRINTK_NMI s = &per_cpu(nmi_print_seq, cpu); init_irq_work(&s->work, __printk_safe_flush); #endif } /* Flush pending messages that did not have scheduled IRQ works. */ printk_safe_flush(); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 #ifndef _LINUX_PSI_H #define _LINUX_PSI_H #include <linux/jump_label.h> #include <linux/psi_types.h> #include <linux/sched.h> #include <linux/poll.h> struct seq_file; struct css_set; #ifdef CONFIG_PSI extern struct static_key_false psi_disabled; extern struct psi_group psi_system; void psi_init(void); void psi_task_change(struct task_struct *task, int clear, int set); void psi_task_switch(struct task_struct *prev, struct task_struct *next, bool sleep); void psi_memstall_tick(struct task_struct *task, int cpu); void psi_memstall_enter(unsigned long *flags); void psi_memstall_leave(unsigned long *flags); int psi_show(struct seq_file *s, struct psi_group *group, enum psi_res res); #ifdef CONFIG_CGROUPS int psi_cgroup_alloc(struct cgroup *cgrp); void psi_cgroup_free(struct cgroup *cgrp); void cgroup_move_task(struct task_struct *p, struct css_set *to); struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf, size_t nbytes, enum psi_res res); void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *t); __poll_t psi_trigger_poll(void **trigger_ptr, struct file *file, poll_table *wait); #endif #else /* CONFIG_PSI */ static inline void psi_init(void) {} static inline void psi_memstall_enter(unsigned long *flags) {} static inline void psi_memstall_leave(unsigned long *flags) {} #ifdef CONFIG_CGROUPS static inline int psi_cgroup_alloc(struct cgroup *cgrp) { return 0; } static inline void psi_cgroup_free(struct cgroup *cgrp) { } static inline void cgroup_move_task(struct task_struct *p, struct css_set *to) { rcu_assign_pointer(p->cgroups, to); } #endif #endif /* CONFIG_PSI */ #endif /* _LINUX_PSI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NET Generic infrastructure for INET connection oriented protocols. * * Definitions for inet_connection_sock * * Authors: Many people, see the TCP sources * * From code originally in TCP */ #ifndef _INET_CONNECTION_SOCK_H #define _INET_CONNECTION_SOCK_H #include <linux/compiler.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/poll.h> #include <linux/kernel.h> #include <linux/sockptr.h> #include <net/inet_sock.h> #include <net/request_sock.h> /* Cancel timers, when they are not required. */ #undef INET_CSK_CLEAR_TIMERS struct inet_bind_bucket; struct tcp_congestion_ops; /* * Pointers to address related TCP functions * (i.e. things that depend on the address family) */ struct inet_connection_sock_af_ops { int (*queue_xmit)(struct sock *sk, struct sk_buff *skb, struct flowi *fl); void (*send_check)(struct sock *sk, struct sk_buff *skb); int (*rebuild_header)(struct sock *sk); void (*sk_rx_dst_set)(struct sock *sk, const struct sk_buff *skb); int (*conn_request)(struct sock *sk, struct sk_buff *skb); struct sock *(*syn_recv_sock)(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req); u16 net_header_len; u16 net_frag_header_len; u16 sockaddr_len; int (*setsockopt)(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int (*getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); void (*addr2sockaddr)(struct sock *sk, struct sockaddr *); void (*mtu_reduced)(struct sock *sk); }; /** inet_connection_sock - INET connection oriented sock * * @icsk_accept_queue: FIFO of established children * @icsk_bind_hash: Bind node * @icsk_timeout: Timeout * @icsk_retransmit_timer: Resend (no ack) * @icsk_rto: Retransmit timeout * @icsk_pmtu_cookie Last pmtu seen by socket * @icsk_ca_ops Pluggable congestion control hook * @icsk_af_ops Operations which are AF_INET{4,6} specific * @icsk_ulp_ops Pluggable ULP control hook * @icsk_ulp_data ULP private data * @icsk_clean_acked Clean acked data hook * @icsk_listen_portaddr_node hash to the portaddr listener hashtable * @icsk_ca_state: Congestion control state * @icsk_retransmits: Number of unrecovered [RTO] timeouts * @icsk_pending: Scheduled timer event * @icsk_backoff: Backoff * @icsk_syn_retries: Number of allowed SYN (or equivalent) retries * @icsk_probes_out: unanswered 0 window probes * @icsk_ext_hdr_len: Network protocol overhead (IP/IPv6 options) * @icsk_ack: Delayed ACK control data * @icsk_mtup; MTU probing control data * @icsk_probes_tstamp: Probe timestamp (cleared by non-zero window ack) * @icsk_user_timeout: TCP_USER_TIMEOUT value */ struct inet_connection_sock { /* inet_sock has to be the first member! */ struct inet_sock icsk_inet; struct request_sock_queue icsk_accept_queue; struct inet_bind_bucket *icsk_bind_hash; unsigned long icsk_timeout; struct timer_list icsk_retransmit_timer; struct timer_list icsk_delack_timer; __u32 icsk_rto; __u32 icsk_rto_min; __u32 icsk_delack_max; __u32 icsk_pmtu_cookie; const struct tcp_congestion_ops *icsk_ca_ops; const struct inet_connection_sock_af_ops *icsk_af_ops; const struct tcp_ulp_ops *icsk_ulp_ops; void __rcu *icsk_ulp_data; void (*icsk_clean_acked)(struct sock *sk, u32 acked_seq); struct hlist_node icsk_listen_portaddr_node; unsigned int (*icsk_sync_mss)(struct sock *sk, u32 pmtu); __u8 icsk_ca_state:5, icsk_ca_initialized:1, icsk_ca_setsockopt:1, icsk_ca_dst_locked:1; __u8 icsk_retransmits; __u8 icsk_pending; __u8 icsk_backoff; __u8 icsk_syn_retries; __u8 icsk_probes_out; __u16 icsk_ext_hdr_len; struct { __u8 pending; /* ACK is pending */ __u8 quick; /* Scheduled number of quick acks */ __u8 pingpong; /* The session is interactive */ __u8 retry; /* Number of attempts */ __u32 ato; /* Predicted tick of soft clock */ unsigned long timeout; /* Currently scheduled timeout */ __u32 lrcvtime; /* timestamp of last received data packet */ __u16 last_seg_size; /* Size of last incoming segment */ __u16 rcv_mss; /* MSS used for delayed ACK decisions */ } icsk_ack; struct { int enabled; /* Range of MTUs to search */ int search_high; int search_low; /* Information on the current probe. */ int probe_size; u32 probe_timestamp; } icsk_mtup; u32 icsk_probes_tstamp; u32 icsk_user_timeout; u64 icsk_ca_priv[104 / sizeof(u64)]; #define ICSK_CA_PRIV_SIZE (13 * sizeof(u64)) }; #define ICSK_TIME_RETRANS 1 /* Retransmit timer */ #define ICSK_TIME_DACK 2 /* Delayed ack timer */ #define ICSK_TIME_PROBE0 3 /* Zero window probe timer */ #define ICSK_TIME_EARLY_RETRANS 4 /* Early retransmit timer */ #define ICSK_TIME_LOSS_PROBE 5 /* Tail loss probe timer */ #define ICSK_TIME_REO_TIMEOUT 6 /* Reordering timer */ static inline struct inet_connection_sock *inet_csk(const struct sock *sk) { return (struct inet_connection_sock *)sk; } static inline void *inet_csk_ca(const struct sock *sk) { return (void *)inet_csk(sk)->icsk_ca_priv; } struct sock *inet_csk_clone_lock(const struct sock *sk, const struct request_sock *req, const gfp_t priority); enum inet_csk_ack_state_t { ICSK_ACK_SCHED = 1, ICSK_ACK_TIMER = 2, ICSK_ACK_PUSHED = 4, ICSK_ACK_PUSHED2 = 8, ICSK_ACK_NOW = 16 /* Send the next ACK immediately (once) */ }; void inet_csk_init_xmit_timers(struct sock *sk, void (*retransmit_handler)(struct timer_list *), void (*delack_handler)(struct timer_list *), void (*keepalive_handler)(struct timer_list *)); void inet_csk_clear_xmit_timers(struct sock *sk); static inline void inet_csk_schedule_ack(struct sock *sk) { inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_SCHED; } static inline int inet_csk_ack_scheduled(const struct sock *sk) { return inet_csk(sk)->icsk_ack.pending & ICSK_ACK_SCHED; } static inline void inet_csk_delack_init(struct sock *sk) { memset(&inet_csk(sk)->icsk_ack, 0, sizeof(inet_csk(sk)->icsk_ack)); } void inet_csk_delete_keepalive_timer(struct sock *sk); void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long timeout); static inline void inet_csk_clear_xmit_timer(struct sock *sk, const int what) { struct inet_connection_sock *icsk = inet_csk(sk); if (what == ICSK_TIME_RETRANS || what == ICSK_TIME_PROBE0) { icsk->icsk_pending = 0; #ifdef INET_CSK_CLEAR_TIMERS sk_stop_timer(sk, &icsk->icsk_retransmit_timer); #endif } else if (what == ICSK_TIME_DACK) { icsk->icsk_ack.pending = 0; icsk->icsk_ack.retry = 0; #ifdef INET_CSK_CLEAR_TIMERS sk_stop_timer(sk, &icsk->icsk_delack_timer); #endif } else { pr_debug("inet_csk BUG: unknown timer value\n"); } } /* * Reset the retransmission timer */ static inline void inet_csk_reset_xmit_timer(struct sock *sk, const int what, unsigned long when, const unsigned long max_when) { struct inet_connection_sock *icsk = inet_csk(sk); if (when > max_when) { pr_debug("reset_xmit_timer: sk=%p %d when=0x%lx, caller=%p\n", sk, what, when, (void *)_THIS_IP_); when = max_when; } if (what == ICSK_TIME_RETRANS || what == ICSK_TIME_PROBE0 || what == ICSK_TIME_EARLY_RETRANS || what == ICSK_TIME_LOSS_PROBE || what == ICSK_TIME_REO_TIMEOUT) { icsk->icsk_pending = what; icsk->icsk_timeout = jiffies + when; sk_reset_timer(sk, &icsk->icsk_retransmit_timer, icsk->icsk_timeout); } else if (what == ICSK_TIME_DACK) { icsk->icsk_ack.pending |= ICSK_ACK_TIMER; icsk->icsk_ack.timeout = jiffies + when; sk_reset_timer(sk, &icsk->icsk_delack_timer, icsk->icsk_ack.timeout); } else { pr_debug("inet_csk BUG: unknown timer value\n"); } } static inline unsigned long inet_csk_rto_backoff(const struct inet_connection_sock *icsk, unsigned long max_when) { u64 when = (u64)icsk->icsk_rto << icsk->icsk_backoff; return (unsigned long)min_t(u64, when, max_when); } struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern); int inet_csk_get_port(struct sock *sk, unsigned short snum); struct dst_entry *inet_csk_route_req(const struct sock *sk, struct flowi4 *fl4, const struct request_sock *req); struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, struct sock *newsk, const struct request_sock *req); struct sock *inet_csk_reqsk_queue_add(struct sock *sk, struct request_sock *req, struct sock *child); void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, unsigned long timeout); struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, struct request_sock *req, bool own_req); static inline void inet_csk_reqsk_queue_added(struct sock *sk) { reqsk_queue_added(&inet_csk(sk)->icsk_accept_queue); } static inline int inet_csk_reqsk_queue_len(const struct sock *sk) { return reqsk_queue_len(&inet_csk(sk)->icsk_accept_queue); } static inline int inet_csk_reqsk_queue_is_full(const struct sock *sk) { return inet_csk_reqsk_queue_len(sk) >= sk->sk_max_ack_backlog; } bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req); void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req); static inline void inet_csk_prepare_for_destroy_sock(struct sock *sk) { /* The below has to be done to allow calling inet_csk_destroy_sock */ sock_set_flag(sk, SOCK_DEAD); percpu_counter_inc(sk->sk_prot->orphan_count); } void inet_csk_destroy_sock(struct sock *sk); void inet_csk_prepare_forced_close(struct sock *sk); /* * LISTEN is a special case for poll.. */ static inline __poll_t inet_csk_listen_poll(const struct sock *sk) { return !reqsk_queue_empty(&inet_csk(sk)->icsk_accept_queue) ? (EPOLLIN | EPOLLRDNORM) : 0; } int inet_csk_listen_start(struct sock *sk, int backlog); void inet_csk_listen_stop(struct sock *sk); void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr); /* update the fast reuse flag when adding a socket */ void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, struct sock *sk); struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu); #define TCP_PINGPONG_THRESH 3 static inline void inet_csk_enter_pingpong_mode(struct sock *sk) { inet_csk(sk)->icsk_ack.pingpong = TCP_PINGPONG_THRESH; } static inline void inet_csk_exit_pingpong_mode(struct sock *sk) { inet_csk(sk)->icsk_ack.pingpong = 0; } static inline bool inet_csk_in_pingpong_mode(struct sock *sk) { return inet_csk(sk)->icsk_ack.pingpong >= TCP_PINGPONG_THRESH; } static inline void inet_csk_inc_pingpong_cnt(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ack.pingpong < U8_MAX) icsk->icsk_ack.pingpong++; } static inline bool inet_csk_has_ulp(struct sock *sk) { return inet_sk(sk)->is_icsk && !!inet_csk(sk)->icsk_ulp_ops; } #endif /* _INET_CONNECTION_SOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* * 25-Jul-1998 Major changes to allow for ip chain table * * 3-Jan-2000 Named tables to allow packet selection for different uses. */ /* * Format of an IP6 firewall descriptor * * src, dst, src_mask, dst_mask are always stored in network byte order. * flags are stored in host byte order (of course). * Port numbers are stored in HOST byte order. */ #ifndef _UAPI_IP6_TABLES_H #define _UAPI_IP6_TABLES_H #include <linux/types.h> #include <linux/compiler.h> #include <linux/if.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter/x_tables.h> #ifndef __KERNEL__ #define IP6T_FUNCTION_MAXNAMELEN XT_FUNCTION_MAXNAMELEN #define IP6T_TABLE_MAXNAMELEN XT_TABLE_MAXNAMELEN #define ip6t_match xt_match #define ip6t_target xt_target #define ip6t_table xt_table #define ip6t_get_revision xt_get_revision #define ip6t_entry_match xt_entry_match #define ip6t_entry_target xt_entry_target #define ip6t_standard_target xt_standard_target #define ip6t_error_target xt_error_target #define ip6t_counters xt_counters #define IP6T_CONTINUE XT_CONTINUE #define IP6T_RETURN XT_RETURN /* Pre-iptables-1.4.0 */ #include <linux/netfilter/xt_tcpudp.h> #define ip6t_tcp xt_tcp #define ip6t_udp xt_udp #define IP6T_TCP_INV_SRCPT XT_TCP_INV_SRCPT #define IP6T_TCP_INV_DSTPT XT_TCP_INV_DSTPT #define IP6T_TCP_INV_FLAGS XT_TCP_INV_FLAGS #define IP6T_TCP_INV_OPTION XT_TCP_INV_OPTION #define IP6T_TCP_INV_MASK XT_TCP_INV_MASK #define IP6T_UDP_INV_SRCPT XT_UDP_INV_SRCPT #define IP6T_UDP_INV_DSTPT XT_UDP_INV_DSTPT #define IP6T_UDP_INV_MASK XT_UDP_INV_MASK #define ip6t_counters_info xt_counters_info #define IP6T_STANDARD_TARGET XT_STANDARD_TARGET #define IP6T_ERROR_TARGET XT_ERROR_TARGET #define IP6T_MATCH_ITERATE(e, fn, args...) \ XT_MATCH_ITERATE(struct ip6t_entry, e, fn, ## args) #define IP6T_ENTRY_ITERATE(entries, size, fn, args...) \ XT_ENTRY_ITERATE(struct ip6t_entry, entries, size, fn, ## args) #endif /* Yes, Virginia, you have to zero the padding. */ struct ip6t_ip6 { /* Source and destination IP6 addr */ struct in6_addr src, dst; /* Mask for src and dest IP6 addr */ struct in6_addr smsk, dmsk; char iniface[IFNAMSIZ], outiface[IFNAMSIZ]; unsigned char iniface_mask[IFNAMSIZ], outiface_mask[IFNAMSIZ]; /* Upper protocol number * - The allowed value is 0 (any) or protocol number of last parsable * header, which is 50 (ESP), 59 (No Next Header), 135 (MH), or * the non IPv6 extension headers. * - The protocol numbers of IPv6 extension headers except of ESP and * MH do not match any packets. * - You also need to set IP6T_FLAGS_PROTO to "flags" to check protocol. */ __u16 proto; /* TOS to match iff flags & IP6T_F_TOS */ __u8 tos; /* Flags word */ __u8 flags; /* Inverse flags */ __u8 invflags; }; /* Values for "flag" field in struct ip6t_ip6 (general ip6 structure). */ #define IP6T_F_PROTO 0x01 /* Set if rule cares about upper protocols */ #define IP6T_F_TOS 0x02 /* Match the TOS. */ #define IP6T_F_GOTO 0x04 /* Set if jump is a goto */ #define IP6T_F_MASK 0x07 /* All possible flag bits mask. */ /* Values for "inv" field in struct ip6t_ip6. */ #define IP6T_INV_VIA_IN 0x01 /* Invert the sense of IN IFACE. */ #define IP6T_INV_VIA_OUT 0x02 /* Invert the sense of OUT IFACE */ #define IP6T_INV_TOS 0x04 /* Invert the sense of TOS. */ #define IP6T_INV_SRCIP 0x08 /* Invert the sense of SRC IP. */ #define IP6T_INV_DSTIP 0x10 /* Invert the sense of DST OP. */ #define IP6T_INV_FRAG 0x20 /* Invert the sense of FRAG. */ #define IP6T_INV_PROTO XT_INV_PROTO #define IP6T_INV_MASK 0x7F /* All possible flag bits mask. */ /* This structure defines each of the firewall rules. Consists of 3 parts which are 1) general IP header stuff 2) match specific stuff 3) the target to perform if the rule matches */ struct ip6t_entry { struct ip6t_ip6 ipv6; /* Mark with fields that we care about. */ unsigned int nfcache; /* Size of ipt_entry + matches */ __u16 target_offset; /* Size of ipt_entry + matches + target */ __u16 next_offset; /* Back pointer */ unsigned int comefrom; /* Packet and byte counters. */ struct xt_counters counters; /* The matches (if any), then the target. */ unsigned char elems[0]; }; /* Standard entry */ struct ip6t_standard { struct ip6t_entry entry; struct xt_standard_target target; }; struct ip6t_error { struct ip6t_entry entry; struct xt_error_target target; }; #define IP6T_ENTRY_INIT(__size) \ { \ .target_offset = sizeof(struct ip6t_entry), \ .next_offset = (__size), \ } #define IP6T_STANDARD_INIT(__verdict) \ { \ .entry = IP6T_ENTRY_INIT(sizeof(struct ip6t_standard)), \ .target = XT_TARGET_INIT(XT_STANDARD_TARGET, \ sizeof(struct xt_standard_target)), \ .target.verdict = -(__verdict) - 1, \ } #define IP6T_ERROR_INIT \ { \ .entry = IP6T_ENTRY_INIT(sizeof(struct ip6t_error)), \ .target = XT_TARGET_INIT(XT_ERROR_TARGET, \ sizeof(struct xt_error_target)), \ .target.errorname = "ERROR", \ } /* * New IP firewall options for [gs]etsockopt at the RAW IP level. * Unlike BSD Linux inherits IP options so you don't have to use * a raw socket for this. Instead we check rights in the calls. * * ATTENTION: check linux/in6.h before adding new number here. */ #define IP6T_BASE_CTL 64 #define IP6T_SO_SET_REPLACE (IP6T_BASE_CTL) #define IP6T_SO_SET_ADD_COUNTERS (IP6T_BASE_CTL + 1) #define IP6T_SO_SET_MAX IP6T_SO_SET_ADD_COUNTERS #define IP6T_SO_GET_INFO (IP6T_BASE_CTL) #define IP6T_SO_GET_ENTRIES (IP6T_BASE_CTL + 1) #define IP6T_SO_GET_REVISION_MATCH (IP6T_BASE_CTL + 4) #define IP6T_SO_GET_REVISION_TARGET (IP6T_BASE_CTL + 5) #define IP6T_SO_GET_MAX IP6T_SO_GET_REVISION_TARGET /* obtain original address if REDIRECT'd connection */ #define IP6T_SO_ORIGINAL_DST 80 /* ICMP matching stuff */ struct ip6t_icmp { __u8 type; /* type to match */ __u8 code[2]; /* range of code */ __u8 invflags; /* Inverse flags */ }; /* Values for "inv" field for struct ipt_icmp. */ #define IP6T_ICMP_INV 0x01 /* Invert the sense of type/code test */ /* The argument to IP6T_SO_GET_INFO */ struct ip6t_getinfo { /* Which table: caller fills this in. */ char name[XT_TABLE_MAXNAMELEN]; /* Kernel fills these in. */ /* Which hook entry points are valid: bitmask */ unsigned int valid_hooks; /* Hook entry points: one per netfilter hook. */ unsigned int hook_entry[NF_INET_NUMHOOKS]; /* Underflow points. */ unsigned int underflow[NF_INET_NUMHOOKS]; /* Number of entries */ unsigned int num_entries; /* Size of entries. */ unsigned int size; }; /* The argument to IP6T_SO_SET_REPLACE. */ struct ip6t_replace { /* Which table. */ char name[XT_TABLE_MAXNAMELEN]; /* Which hook entry points are valid: bitmask. You can't change this. */ unsigned int valid_hooks; /* Number of entries */ unsigned int num_entries; /* Total size of new entries */ unsigned int size; /* Hook entry points. */ unsigned int hook_entry[NF_INET_NUMHOOKS]; /* Underflow points. */ unsigned int underflow[NF_INET_NUMHOOKS]; /* Information about old entries: */ /* Number of counters (must be equal to current number of entries). */ unsigned int num_counters; /* The old entries' counters. */ struct xt_counters __user *counters; /* The entries (hang off end: not really an array). */ struct ip6t_entry entries[0]; }; /* The argument to IP6T_SO_GET_ENTRIES. */ struct ip6t_get_entries { /* Which table: user fills this in. */ char name[XT_TABLE_MAXNAMELEN]; /* User fills this in: total entry size. */ unsigned int size; /* The entries. */ struct ip6t_entry entrytable[0]; }; /* Helper functions */ static __inline__ struct xt_entry_target * ip6t_get_target(struct ip6t_entry *e) { return (struct xt_entry_target *)((char *)e + e->target_offset); } /* * Main firewall chains definitions and global var's definitions. */ #endif /* _UAPI_IP6_TABLES_H */
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 // SPDX-License-Identifier: GPL-2.0+ /* * Driver core for serial ports * * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. * * Copyright 1999 ARM Limited * Copyright (C) 2000-2001 Deep Blue Solutions Ltd. */ #include <linux/module.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/slab.h> #include <linux/sched/signal.h> #include <linux/init.h> #include <linux/console.h> #include <linux/gpio/consumer.h> #include <linux/of.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/device.h> #include <linux/serial.h> /* for serial_state and serial_icounter_struct */ #include <linux/serial_core.h> #include <linux/sysrq.h> #include <linux/delay.h> #include <linux/mutex.h> #include <linux/security.h> #include <linux/irq.h> #include <linux/uaccess.h> /* * This is used to lock changes in serial line configuration. */ static DEFINE_MUTEX(port_mutex); /* * lockdep: port->lock is initialized in two places, but we * want only one lock-class: */ static struct lock_class_key port_lock_key; #define HIGH_BITS_OFFSET ((sizeof(long)-sizeof(int))*8) static void uart_change_speed(struct tty_struct *tty, struct uart_state *state, struct ktermios *old_termios); static void uart_wait_until_sent(struct tty_struct *tty, int timeout); static void uart_change_pm(struct uart_state *state, enum uart_pm_state pm_state); static void uart_port_shutdown(struct tty_port *port); static int uart_dcd_enabled(struct uart_port *uport) { return !!(uport->status & UPSTAT_DCD_ENABLE); } static inline struct uart_port *uart_port_ref(struct uart_state *state) { if (atomic_add_unless(&state->refcount, 1, 0)) return state->uart_port; return NULL; } static inline void uart_port_deref(struct uart_port *uport) { if (atomic_dec_and_test(&uport->state->refcount)) wake_up(&uport->state->remove_wait); } #define uart_port_lock(state, flags) \ ({ \ struct uart_port *__uport = uart_port_ref(state); \ if (__uport) \ spin_lock_irqsave(&__uport->lock, flags); \ __uport; \ }) #define uart_port_unlock(uport, flags) \ ({ \ struct uart_port *__uport = uport; \ if (__uport) { \ spin_unlock_irqrestore(&__uport->lock, flags); \ uart_port_deref(__uport); \ } \ }) static inline struct uart_port *uart_port_check(struct uart_state *state) { lockdep_assert_held(&state->port.mutex); return state->uart_port; } /* * This routine is used by the interrupt handler to schedule processing in * the software interrupt portion of the driver. */ void uart_write_wakeup(struct uart_port *port) { struct uart_state *state = port->state; /* * This means you called this function _after_ the port was * closed. No cookie for you. */ BUG_ON(!state); tty_port_tty_wakeup(&state->port); } static void uart_stop(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct uart_port *port; unsigned long flags; port = uart_port_lock(state, flags); if (port) port->ops->stop_tx(port); uart_port_unlock(port, flags); } static void __uart_start(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct uart_port *port = state->uart_port; if (port && !uart_tx_stopped(port)) port->ops->start_tx(port); } static void uart_start(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct uart_port *port; unsigned long flags; port = uart_port_lock(state, flags); __uart_start(tty); uart_port_unlock(port, flags); } static void uart_update_mctrl(struct uart_port *port, unsigned int set, unsigned int clear) { unsigned long flags; unsigned int old; spin_lock_irqsave(&port->lock, flags); old = port->mctrl; port->mctrl = (old & ~clear) | set; if (old != port->mctrl) port->ops->set_mctrl(port, port->mctrl); spin_unlock_irqrestore(&port->lock, flags); } #define uart_set_mctrl(port, set) uart_update_mctrl(port, set, 0) #define uart_clear_mctrl(port, clear) uart_update_mctrl(port, 0, clear) static void uart_port_dtr_rts(struct uart_port *uport, int raise) { int rs485_on = uport->rs485_config && (uport->rs485.flags & SER_RS485_ENABLED); int RTS_after_send = !!(uport->rs485.flags & SER_RS485_RTS_AFTER_SEND); if (raise) { if (rs485_on && !RTS_after_send) { uart_set_mctrl(uport, TIOCM_DTR); uart_clear_mctrl(uport, TIOCM_RTS); } else { uart_set_mctrl(uport, TIOCM_DTR | TIOCM_RTS); } } else { unsigned int clear = TIOCM_DTR; clear |= (!rs485_on || !RTS_after_send) ? TIOCM_RTS : 0; uart_clear_mctrl(uport, clear); } } /* * Startup the port. This will be called once per open. All calls * will be serialised by the per-port mutex. */ static int uart_port_startup(struct tty_struct *tty, struct uart_state *state, int init_hw) { struct uart_port *uport = uart_port_check(state); unsigned long page; unsigned long flags = 0; int retval = 0; if (uport->type == PORT_UNKNOWN) return 1; /* * Make sure the device is in D0 state. */ uart_change_pm(state, UART_PM_STATE_ON); /* * Initialise and allocate the transmit and temporary * buffer. */ page = get_zeroed_page(GFP_KERNEL); if (!page) return -ENOMEM; uart_port_lock(state, flags); if (!state->xmit.buf) { state->xmit.buf = (unsigned char *) page; uart_circ_clear(&state->xmit); uart_port_unlock(uport, flags); } else { uart_port_unlock(uport, flags); /* * Do not free() the page under the port lock, see * uart_shutdown(). */ free_page(page); } retval = uport->ops->startup(uport); if (retval == 0) { if (uart_console(uport) && uport->cons->cflag) { tty->termios.c_cflag = uport->cons->cflag; uport->cons->cflag = 0; } /* * Initialise the hardware port settings. */ uart_change_speed(tty, state, NULL); /* * Setup the RTS and DTR signals once the * port is open and ready to respond. */ if (init_hw && C_BAUD(tty)) uart_port_dtr_rts(uport, 1); } /* * This is to allow setserial on this port. People may want to set * port/irq/type and then reconfigure the port properly if it failed * now. */ if (retval && capable(CAP_SYS_ADMIN)) return 1; return retval; } static int uart_startup(struct tty_struct *tty, struct uart_state *state, int init_hw) { struct tty_port *port = &state->port; int retval; if (tty_port_initialized(port)) return 0; retval = uart_port_startup(tty, state, init_hw); if (retval) set_bit(TTY_IO_ERROR, &tty->flags); return retval; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. Calls to * uart_shutdown are serialised by the per-port semaphore. * * uport == NULL if uart_port has already been removed */ static void uart_shutdown(struct tty_struct *tty, struct uart_state *state) { struct uart_port *uport = uart_port_check(state); struct tty_port *port = &state->port; unsigned long flags = 0; char *xmit_buf = NULL; /* * Set the TTY IO error marker */ if (tty) set_bit(TTY_IO_ERROR, &tty->flags); if (tty_port_initialized(port)) { tty_port_set_initialized(port, 0); /* * Turn off DTR and RTS early. */ if (uport && uart_console(uport) && tty) uport->cons->cflag = tty->termios.c_cflag; if (!tty || C_HUPCL(tty)) uart_port_dtr_rts(uport, 0); uart_port_shutdown(port); } /* * It's possible for shutdown to be called after suspend if we get * a DCD drop (hangup) at just the right time. Clear suspended bit so * we don't try to resume a port that has been shutdown. */ tty_port_set_suspended(port, 0); /* * Do not free() the transmit buffer page under the port lock since * this can create various circular locking scenarios. For instance, * console driver may need to allocate/free a debug object, which * can endup in printk() recursion. */ uart_port_lock(state, flags); xmit_buf = state->xmit.buf; state->xmit.buf = NULL; uart_port_unlock(uport, flags); if (xmit_buf) free_page((unsigned long)xmit_buf); } /** * uart_update_timeout - update per-port FIFO timeout. * @port: uart_port structure describing the port * @cflag: termios cflag value * @baud: speed of the port * * Set the port FIFO timeout value. The @cflag value should * reflect the actual hardware settings. */ void uart_update_timeout(struct uart_port *port, unsigned int cflag, unsigned int baud) { unsigned int bits; /* byte size and parity */ switch (cflag & CSIZE) { case CS5: bits = 7; break; case CS6: bits = 8; break; case CS7: bits = 9; break; default: bits = 10; break; /* CS8 */ } if (cflag & CSTOPB) bits++; if (cflag & PARENB) bits++; /* * The total number of bits to be transmitted in the fifo. */ bits = bits * port->fifosize; /* * Figure the timeout to send the above number of bits. * Add .02 seconds of slop */ port->timeout = (HZ * bits) / baud + HZ/50; } EXPORT_SYMBOL(uart_update_timeout); /** * uart_get_baud_rate - return baud rate for a particular port * @port: uart_port structure describing the port in question. * @termios: desired termios settings. * @old: old termios (or NULL) * @min: minimum acceptable baud rate * @max: maximum acceptable baud rate * * Decode the termios structure into a numeric baud rate, * taking account of the magic 38400 baud rate (with spd_* * flags), and mapping the %B0 rate to 9600 baud. * * If the new baud rate is invalid, try the old termios setting. * If it's still invalid, we try 9600 baud. * * Update the @termios structure to reflect the baud rate * we're actually going to be using. Don't do this for the case * where B0 is requested ("hang up"). */ unsigned int uart_get_baud_rate(struct uart_port *port, struct ktermios *termios, struct ktermios *old, unsigned int min, unsigned int max) { unsigned int try; unsigned int baud; unsigned int altbaud; int hung_up = 0; upf_t flags = port->flags & UPF_SPD_MASK; switch (flags) { case UPF_SPD_HI: altbaud = 57600; break; case UPF_SPD_VHI: altbaud = 115200; break; case UPF_SPD_SHI: altbaud = 230400; break; case UPF_SPD_WARP: altbaud = 460800; break; default: altbaud = 38400; break; } for (try = 0; try < 2; try++) { baud = tty_termios_baud_rate(termios); /* * The spd_hi, spd_vhi, spd_shi, spd_warp kludge... * Die! Die! Die! */ if (try == 0 && baud == 38400) baud = altbaud; /* * Special case: B0 rate. */ if (baud == 0) { hung_up = 1; baud = 9600; } if (baud >= min && baud <= max) return baud; /* * Oops, the quotient was zero. Try again with * the old baud rate if possible. */ termios->c_cflag &= ~CBAUD; if (old) { baud = tty_termios_baud_rate(old); if (!hung_up) tty_termios_encode_baud_rate(termios, baud, baud); old = NULL; continue; } /* * As a last resort, if the range cannot be met then clip to * the nearest chip supported rate. */ if (!hung_up) { if (baud <= min) tty_termios_encode_baud_rate(termios, min + 1, min + 1); else tty_termios_encode_baud_rate(termios, max - 1, max - 1); } } /* Should never happen */ WARN_ON(1); return 0; } EXPORT_SYMBOL(uart_get_baud_rate); /** * uart_get_divisor - return uart clock divisor * @port: uart_port structure describing the port. * @baud: desired baud rate * * Calculate the uart clock divisor for the port. */ unsigned int uart_get_divisor(struct uart_port *port, unsigned int baud) { unsigned int quot; /* * Old custom speed handling. */ if (baud == 38400 && (port->flags & UPF_SPD_MASK) == UPF_SPD_CUST) quot = port->custom_divisor; else quot = DIV_ROUND_CLOSEST(port->uartclk, 16 * baud); return quot; } EXPORT_SYMBOL(uart_get_divisor); /* Caller holds port mutex */ static void uart_change_speed(struct tty_struct *tty, struct uart_state *state, struct ktermios *old_termios) { struct uart_port *uport = uart_port_check(state); struct ktermios *termios; int hw_stopped; /* * If we have no tty, termios, or the port does not exist, * then we can't set the parameters for this port. */ if (!tty || uport->type == PORT_UNKNOWN) return; termios = &tty->termios; uport->ops->set_termios(uport, termios, old_termios); /* * Set modem status enables based on termios cflag */ spin_lock_irq(&uport->lock); if (termios->c_cflag & CRTSCTS) uport->status |= UPSTAT_CTS_ENABLE; else uport->status &= ~UPSTAT_CTS_ENABLE; if (termios->c_cflag & CLOCAL) uport->status &= ~UPSTAT_DCD_ENABLE; else uport->status |= UPSTAT_DCD_ENABLE; /* reset sw-assisted CTS flow control based on (possibly) new mode */ hw_stopped = uport->hw_stopped; uport->hw_stopped = uart_softcts_mode(uport) && !(uport->ops->get_mctrl(uport) & TIOCM_CTS); if (uport->hw_stopped) { if (!hw_stopped) uport->ops->stop_tx(uport); } else { if (hw_stopped) __uart_start(tty); } spin_unlock_irq(&uport->lock); } static int uart_put_char(struct tty_struct *tty, unsigned char c) { struct uart_state *state = tty->driver_data; struct uart_port *port; struct circ_buf *circ; unsigned long flags; int ret = 0; circ = &state->xmit; port = uart_port_lock(state, flags); if (!circ->buf) { uart_port_unlock(port, flags); return 0; } if (port && uart_circ_chars_free(circ) != 0) { circ->buf[circ->head] = c; circ->head = (circ->head + 1) & (UART_XMIT_SIZE - 1); ret = 1; } uart_port_unlock(port, flags); return ret; } static void uart_flush_chars(struct tty_struct *tty) { uart_start(tty); } static int uart_write(struct tty_struct *tty, const unsigned char *buf, int count) { struct uart_state *state = tty->driver_data; struct uart_port *port; struct circ_buf *circ; unsigned long flags; int c, ret = 0; /* * This means you called this function _after_ the port was * closed. No cookie for you. */ if (!state) { WARN_ON(1); return -EL3HLT; } port = uart_port_lock(state, flags); circ = &state->xmit; if (!circ->buf) { uart_port_unlock(port, flags); return 0; } while (port) { c = CIRC_SPACE_TO_END(circ->head, circ->tail, UART_XMIT_SIZE); if (count < c) c = count; if (c <= 0) break; memcpy(circ->buf + circ->head, buf, c); circ->head = (circ->head + c) & (UART_XMIT_SIZE - 1); buf += c; count -= c; ret += c; } __uart_start(tty); uart_port_unlock(port, flags); return ret; } static int uart_write_room(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct uart_port *port; unsigned long flags; int ret; port = uart_port_lock(state, flags); ret = uart_circ_chars_free(&state->xmit); uart_port_unlock(port, flags); return ret; } static int uart_chars_in_buffer(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct uart_port *port; unsigned long flags; int ret; port = uart_port_lock(state, flags); ret = uart_circ_chars_pending(&state->xmit); uart_port_unlock(port, flags); return ret; } static void uart_flush_buffer(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct uart_port *port; unsigned long flags; /* * This means you called this function _after_ the port was * closed. No cookie for you. */ if (!state) { WARN_ON(1); return; } pr_debug("uart_flush_buffer(%d) called\n", tty->index); port = uart_port_lock(state, flags); if (!port) return; uart_circ_clear(&state->xmit); if (port->ops->flush_buffer) port->ops->flush_buffer(port); uart_port_unlock(port, flags); tty_port_tty_wakeup(&state->port); } /* * This function is used to send a high-priority XON/XOFF character to * the device */ static void uart_send_xchar(struct tty_struct *tty, char ch) { struct uart_state *state = tty->driver_data; struct uart_port *port; unsigned long flags; port = uart_port_ref(state); if (!port) return; if (port->ops->send_xchar) port->ops->send_xchar(port, ch); else { spin_lock_irqsave(&port->lock, flags); port->x_char = ch; if (ch) port->ops->start_tx(port); spin_unlock_irqrestore(&port->lock, flags); } uart_port_deref(port); } static void uart_throttle(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; upstat_t mask = UPSTAT_SYNC_FIFO; struct uart_port *port; port = uart_port_ref(state); if (!port) return; if (I_IXOFF(tty)) mask |= UPSTAT_AUTOXOFF; if (C_CRTSCTS(tty)) mask |= UPSTAT_AUTORTS; if (port->status & mask) { port->ops->throttle(port); mask &= ~port->status; } if (mask & UPSTAT_AUTORTS) uart_clear_mctrl(port, TIOCM_RTS); if (mask & UPSTAT_AUTOXOFF) uart_send_xchar(tty, STOP_CHAR(tty)); uart_port_deref(port); } static void uart_unthrottle(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; upstat_t mask = UPSTAT_SYNC_FIFO; struct uart_port *port; port = uart_port_ref(state); if (!port) return; if (I_IXOFF(tty)) mask |= UPSTAT_AUTOXOFF; if (C_CRTSCTS(tty)) mask |= UPSTAT_AUTORTS; if (port->status & mask) { port->ops->unthrottle(port); mask &= ~port->status; } if (mask & UPSTAT_AUTORTS) uart_set_mctrl(port, TIOCM_RTS); if (mask & UPSTAT_AUTOXOFF) uart_send_xchar(tty, START_CHAR(tty)); uart_port_deref(port); } static int uart_get_info(struct tty_port *port, struct serial_struct *retinfo) { struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport; int ret = -ENODEV; memset(retinfo, 0, sizeof(*retinfo)); /* * Ensure the state we copy is consistent and no hardware changes * occur as we go */ mutex_lock(&port->mutex); uport = uart_port_check(state); if (!uport) goto out; retinfo->type = uport->type; retinfo->line = uport->line; retinfo->port = uport->iobase; if (HIGH_BITS_OFFSET) retinfo->port_high = (long) uport->iobase >> HIGH_BITS_OFFSET; retinfo->irq = uport->irq; retinfo->flags = (__force int)uport->flags; retinfo->xmit_fifo_size = uport->fifosize; retinfo->baud_base = uport->uartclk / 16; retinfo->close_delay = jiffies_to_msecs(port->close_delay) / 10; retinfo->closing_wait = port->closing_wait == ASYNC_CLOSING_WAIT_NONE ? ASYNC_CLOSING_WAIT_NONE : jiffies_to_msecs(port->closing_wait) / 10; retinfo->custom_divisor = uport->custom_divisor; retinfo->hub6 = uport->hub6; retinfo->io_type = uport->iotype; retinfo->iomem_reg_shift = uport->regshift; retinfo->iomem_base = (void *)(unsigned long)uport->mapbase; ret = 0; out: mutex_unlock(&port->mutex); return ret; } static int uart_get_info_user(struct tty_struct *tty, struct serial_struct *ss) { struct uart_state *state = tty->driver_data; struct tty_port *port = &state->port; return uart_get_info(port, ss) < 0 ? -EIO : 0; } static int uart_set_info(struct tty_struct *tty, struct tty_port *port, struct uart_state *state, struct serial_struct *new_info) { struct uart_port *uport = uart_port_check(state); unsigned long new_port; unsigned int change_irq, change_port, closing_wait; unsigned int old_custom_divisor, close_delay; upf_t old_flags, new_flags; int retval = 0; if (!uport) return -EIO; new_port = new_info->port; if (HIGH_BITS_OFFSET) new_port += (unsigned long) new_info->port_high << HIGH_BITS_OFFSET; new_info->irq = irq_canonicalize(new_info->irq); close_delay = msecs_to_jiffies(new_info->close_delay * 10); closing_wait = new_info->closing_wait == ASYNC_CLOSING_WAIT_NONE ? ASYNC_CLOSING_WAIT_NONE : msecs_to_jiffies(new_info->closing_wait * 10); change_irq = !(uport->flags & UPF_FIXED_PORT) && new_info->irq != uport->irq; /* * Since changing the 'type' of the port changes its resource * allocations, we should treat type changes the same as * IO port changes. */ change_port = !(uport->flags & UPF_FIXED_PORT) && (new_port != uport->iobase || (unsigned long)new_info->iomem_base != uport->mapbase || new_info->hub6 != uport->hub6 || new_info->io_type != uport->iotype || new_info->iomem_reg_shift != uport->regshift || new_info->type != uport->type); old_flags = uport->flags; new_flags = (__force upf_t)new_info->flags; old_custom_divisor = uport->custom_divisor; if (!capable(CAP_SYS_ADMIN)) { retval = -EPERM; if (change_irq || change_port || (new_info->baud_base != uport->uartclk / 16) || (close_delay != port->close_delay) || (closing_wait != port->closing_wait) || (new_info->xmit_fifo_size && new_info->xmit_fifo_size != uport->fifosize) || (((new_flags ^ old_flags) & ~UPF_USR_MASK) != 0)) goto exit; uport->flags = ((uport->flags & ~UPF_USR_MASK) | (new_flags & UPF_USR_MASK)); uport->custom_divisor = new_info->custom_divisor; goto check_and_exit; } if (change_irq || change_port) { retval = security_locked_down(LOCKDOWN_TIOCSSERIAL); if (retval) goto exit; } /* * Ask the low level driver to verify the settings. */ if (uport->ops->verify_port) retval = uport->ops->verify_port(uport, new_info); if ((new_info->irq >= nr_irqs) || (new_info->irq < 0) || (new_info->baud_base < 9600)) retval = -EINVAL; if (retval) goto exit; if (change_port || change_irq) { retval = -EBUSY; /* * Make sure that we are the sole user of this port. */ if (tty_port_users(port) > 1) goto exit; /* * We need to shutdown the serial port at the old * port/type/irq combination. */ uart_shutdown(tty, state); } if (change_port) { unsigned long old_iobase, old_mapbase; unsigned int old_type, old_iotype, old_hub6, old_shift; old_iobase = uport->iobase; old_mapbase = uport->mapbase; old_type = uport->type; old_hub6 = uport->hub6; old_iotype = uport->iotype; old_shift = uport->regshift; /* * Free and release old regions */ if (old_type != PORT_UNKNOWN && uport->ops->release_port) uport->ops->release_port(uport); uport->iobase = new_port; uport->type = new_info->type; uport->hub6 = new_info->hub6; uport->iotype = new_info->io_type; uport->regshift = new_info->iomem_reg_shift; uport->mapbase = (unsigned long)new_info->iomem_base; /* * Claim and map the new regions */ if (uport->type != PORT_UNKNOWN && uport->ops->request_port) { retval = uport->ops->request_port(uport); } else { /* Always success - Jean II */ retval = 0; } /* * If we fail to request resources for the * new port, try to restore the old settings. */ if (retval) { uport->iobase = old_iobase; uport->type = old_type; uport->hub6 = old_hub6; uport->iotype = old_iotype; uport->regshift = old_shift; uport->mapbase = old_mapbase; if (old_type != PORT_UNKNOWN) { retval = uport->ops->request_port(uport); /* * If we failed to restore the old settings, * we fail like this. */ if (retval) uport->type = PORT_UNKNOWN; /* * We failed anyway. */ retval = -EBUSY; } /* Added to return the correct error -Ram Gupta */ goto exit; } } if (change_irq) uport->irq = new_info->irq; if (!(uport->flags & UPF_FIXED_PORT)) uport->uartclk = new_info->baud_base * 16; uport->flags = (uport->flags & ~UPF_CHANGE_MASK) | (new_flags & UPF_CHANGE_MASK); uport->custom_divisor = new_info->custom_divisor; port->close_delay = close_delay; port->closing_wait = closing_wait; if (new_info->xmit_fifo_size) uport->fifosize = new_info->xmit_fifo_size; port->low_latency = (uport->flags & UPF_LOW_LATENCY) ? 1 : 0; check_and_exit: retval = 0; if (uport->type == PORT_UNKNOWN) goto exit; if (tty_port_initialized(port)) { if (((old_flags ^ uport->flags) & UPF_SPD_MASK) || old_custom_divisor != uport->custom_divisor) { /* * If they're setting up a custom divisor or speed, * instead of clearing it, then bitch about it. */ if (uport->flags & UPF_SPD_MASK) { dev_notice_ratelimited(uport->dev, "%s sets custom speed on %s. This is deprecated.\n", current->comm, tty_name(port->tty)); } uart_change_speed(tty, state, NULL); } } else { retval = uart_startup(tty, state, 1); if (retval == 0) tty_port_set_initialized(port, true); if (retval > 0) retval = 0; } exit: return retval; } static int uart_set_info_user(struct tty_struct *tty, struct serial_struct *ss) { struct uart_state *state = tty->driver_data; struct tty_port *port = &state->port; int retval; down_write(&tty->termios_rwsem); /* * This semaphore protects port->count. It is also * very useful to prevent opens. Also, take the * port configuration semaphore to make sure that a * module insertion/removal doesn't change anything * under us. */ mutex_lock(&port->mutex); retval = uart_set_info(tty, port, state, ss); mutex_unlock(&port->mutex); up_write(&tty->termios_rwsem); return retval; } /** * uart_get_lsr_info - get line status register info * @tty: tty associated with the UART * @state: UART being queried * @value: returned modem value */ static int uart_get_lsr_info(struct tty_struct *tty, struct uart_state *state, unsigned int __user *value) { struct uart_port *uport = uart_port_check(state); unsigned int result; result = uport->ops->tx_empty(uport); /* * If we're about to load something into the transmit * register, we'll pretend the transmitter isn't empty to * avoid a race condition (depending on when the transmit * interrupt happens). */ if (uport->x_char || ((uart_circ_chars_pending(&state->xmit) > 0) && !uart_tx_stopped(uport))) result &= ~TIOCSER_TEMT; return put_user(result, value); } static int uart_tiocmget(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct tty_port *port = &state->port; struct uart_port *uport; int result = -EIO; mutex_lock(&port->mutex); uport = uart_port_check(state); if (!uport) goto out; if (!tty_io_error(tty)) { result = uport->mctrl; spin_lock_irq(&uport->lock); result |= uport->ops->get_mctrl(uport); spin_unlock_irq(&uport->lock); } out: mutex_unlock(&port->mutex); return result; } static int uart_tiocmset(struct tty_struct *tty, unsigned int set, unsigned int clear) { struct uart_state *state = tty->driver_data; struct tty_port *port = &state->port; struct uart_port *uport; int ret = -EIO; mutex_lock(&port->mutex); uport = uart_port_check(state); if (!uport) goto out; if (!tty_io_error(tty)) { uart_update_mctrl(uport, set, clear); ret = 0; } out: mutex_unlock(&port->mutex); return ret; } static int uart_break_ctl(struct tty_struct *tty, int break_state) { struct uart_state *state = tty->driver_data; struct tty_port *port = &state->port; struct uart_port *uport; int ret = -EIO; mutex_lock(&port->mutex); uport = uart_port_check(state); if (!uport) goto out; if (uport->type != PORT_UNKNOWN && uport->ops->break_ctl) uport->ops->break_ctl(uport, break_state); ret = 0; out: mutex_unlock(&port->mutex); return ret; } static int uart_do_autoconfig(struct tty_struct *tty, struct uart_state *state) { struct tty_port *port = &state->port; struct uart_port *uport; int flags, ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; /* * Take the per-port semaphore. This prevents count from * changing, and hence any extra opens of the port while * we're auto-configuring. */ if (mutex_lock_interruptible(&port->mutex)) return -ERESTARTSYS; uport = uart_port_check(state); if (!uport) { ret = -EIO; goto out; } ret = -EBUSY; if (tty_port_users(port) == 1) { uart_shutdown(tty, state); /* * If we already have a port type configured, * we must release its resources. */ if (uport->type != PORT_UNKNOWN && uport->ops->release_port) uport->ops->release_port(uport); flags = UART_CONFIG_TYPE; if (uport->flags & UPF_AUTO_IRQ) flags |= UART_CONFIG_IRQ; /* * This will claim the ports resources if * a port is found. */ uport->ops->config_port(uport, flags); ret = uart_startup(tty, state, 1); if (ret == 0) tty_port_set_initialized(port, true); if (ret > 0) ret = 0; } out: mutex_unlock(&port->mutex); return ret; } static void uart_enable_ms(struct uart_port *uport) { /* * Force modem status interrupts on */ if (uport->ops->enable_ms) uport->ops->enable_ms(uport); } /* * Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change * - mask passed in arg for lines of interest * (use |'ed TIOCM_RNG/DSR/CD/CTS for masking) * Caller should use TIOCGICOUNT to see which one it was * * FIXME: This wants extracting into a common all driver implementation * of TIOCMWAIT using tty_port. */ static int uart_wait_modem_status(struct uart_state *state, unsigned long arg) { struct uart_port *uport; struct tty_port *port = &state->port; DECLARE_WAITQUEUE(wait, current); struct uart_icount cprev, cnow; int ret; /* * note the counters on entry */ uport = uart_port_ref(state); if (!uport) return -EIO; spin_lock_irq(&uport->lock); memcpy(&cprev, &uport->icount, sizeof(struct uart_icount)); uart_enable_ms(uport); spin_unlock_irq(&uport->lock); add_wait_queue(&port->delta_msr_wait, &wait); for (;;) { spin_lock_irq(&uport->lock); memcpy(&cnow, &uport->icount, sizeof(struct uart_icount)); spin_unlock_irq(&uport->lock); set_current_state(TASK_INTERRUPTIBLE); if (((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) || ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) || ((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) || ((arg & TIOCM_CTS) && (cnow.cts != cprev.cts))) { ret = 0; break; } schedule(); /* see if a signal did it */ if (signal_pending(current)) { ret = -ERESTARTSYS; break; } cprev = cnow; } __set_current_state(TASK_RUNNING); remove_wait_queue(&port->delta_msr_wait, &wait); uart_port_deref(uport); return ret; } /* * Get counter of input serial line interrupts (DCD,RI,DSR,CTS) * Return: write counters to the user passed counter struct * NB: both 1->0 and 0->1 transitions are counted except for * RI where only 0->1 is counted. */ static int uart_get_icount(struct tty_struct *tty, struct serial_icounter_struct *icount) { struct uart_state *state = tty->driver_data; struct uart_icount cnow; struct uart_port *uport; uport = uart_port_ref(state); if (!uport) return -EIO; spin_lock_irq(&uport->lock); memcpy(&cnow, &uport->icount, sizeof(struct uart_icount)); spin_unlock_irq(&uport->lock); uart_port_deref(uport); icount->cts = cnow.cts; icount->dsr = cnow.dsr; icount->rng = cnow.rng; icount->dcd = cnow.dcd; icount->rx = cnow.rx; icount->tx = cnow.tx; icount->frame = cnow.frame; icount->overrun = cnow.overrun; icount->parity = cnow.parity; icount->brk = cnow.brk; icount->buf_overrun = cnow.buf_overrun; return 0; } static int uart_get_rs485_config(struct uart_port *port, struct serial_rs485 __user *rs485) { unsigned long flags; struct serial_rs485 aux; spin_lock_irqsave(&port->lock, flags); aux = port->rs485; spin_unlock_irqrestore(&port->lock, flags); if (copy_to_user(rs485, &aux, sizeof(aux))) return -EFAULT; return 0; } static int uart_set_rs485_config(struct uart_port *port, struct serial_rs485 __user *rs485_user) { struct serial_rs485 rs485; int ret; unsigned long flags; if (!port->rs485_config) return -ENOTTY; if (copy_from_user(&rs485, rs485_user, sizeof(*rs485_user))) return -EFAULT; spin_lock_irqsave(&port->lock, flags); ret = port->rs485_config(port, &rs485); spin_unlock_irqrestore(&port->lock, flags); if (ret) return ret; if (copy_to_user(rs485_user, &port->rs485, sizeof(port->rs485))) return -EFAULT; return 0; } static int uart_get_iso7816_config(struct uart_port *port, struct serial_iso7816 __user *iso7816) { unsigned long flags; struct serial_iso7816 aux; if (!port->iso7816_config) return -ENOTTY; spin_lock_irqsave(&port->lock, flags); aux = port->iso7816; spin_unlock_irqrestore(&port->lock, flags); if (copy_to_user(iso7816, &aux, sizeof(aux))) return -EFAULT; return 0; } static int uart_set_iso7816_config(struct uart_port *port, struct serial_iso7816 __user *iso7816_user) { struct serial_iso7816 iso7816; int i, ret; unsigned long flags; if (!port->iso7816_config) return -ENOTTY; if (copy_from_user(&iso7816, iso7816_user, sizeof(*iso7816_user))) return -EFAULT; /* * There are 5 words reserved for future use. Check that userspace * doesn't put stuff in there to prevent breakages in the future. */ for (i = 0; i < 5; i++) if (iso7816.reserved[i]) return -EINVAL; spin_lock_irqsave(&port->lock, flags); ret = port->iso7816_config(port, &iso7816); spin_unlock_irqrestore(&port->lock, flags); if (ret) return ret; if (copy_to_user(iso7816_user, &port->iso7816, sizeof(port->iso7816))) return -EFAULT; return 0; } /* * Called via sys_ioctl. We can use spin_lock_irq() here. */ static int uart_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) { struct uart_state *state = tty->driver_data; struct tty_port *port = &state->port; struct uart_port *uport; void __user *uarg = (void __user *)arg; int ret = -ENOIOCTLCMD; /* * These ioctls don't rely on the hardware to be present. */ switch (cmd) { case TIOCSERCONFIG: down_write(&tty->termios_rwsem); ret = uart_do_autoconfig(tty, state); up_write(&tty->termios_rwsem); break; } if (ret != -ENOIOCTLCMD) goto out; if (tty_io_error(tty)) { ret = -EIO; goto out; } /* * The following should only be used when hardware is present. */ switch (cmd) { case TIOCMIWAIT: ret = uart_wait_modem_status(state, arg); break; } if (ret != -ENOIOCTLCMD) goto out; mutex_lock(&port->mutex); uport = uart_port_check(state); if (!uport || tty_io_error(tty)) { ret = -EIO; goto out_up; } /* * All these rely on hardware being present and need to be * protected against the tty being hung up. */ switch (cmd) { case TIOCSERGETLSR: /* Get line status register */ ret = uart_get_lsr_info(tty, state, uarg); break; case TIOCGRS485: ret = uart_get_rs485_config(uport, uarg); break; case TIOCSRS485: ret = uart_set_rs485_config(uport, uarg); break; case TIOCSISO7816: ret = uart_set_iso7816_config(state->uart_port, uarg); break; case TIOCGISO7816: ret = uart_get_iso7816_config(state->uart_port, uarg); break; default: if (uport->ops->ioctl) ret = uport->ops->ioctl(uport, cmd, arg); break; } out_up: mutex_unlock(&port->mutex); out: return ret; } static void uart_set_ldisc(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct uart_port *uport; struct tty_port *port = &state->port; if (!tty_port_initialized(port)) return; mutex_lock(&state->port.mutex); uport = uart_port_check(state); if (uport && uport->ops->set_ldisc) uport->ops->set_ldisc(uport, &tty->termios); mutex_unlock(&state->port.mutex); } static void uart_set_termios(struct tty_struct *tty, struct ktermios *old_termios) { struct uart_state *state = tty->driver_data; struct uart_port *uport; unsigned int cflag = tty->termios.c_cflag; unsigned int iflag_mask = IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK; bool sw_changed = false; mutex_lock(&state->port.mutex); uport = uart_port_check(state); if (!uport) goto out; /* * Drivers doing software flow control also need to know * about changes to these input settings. */ if (uport->flags & UPF_SOFT_FLOW) { iflag_mask |= IXANY|IXON|IXOFF; sw_changed = tty->termios.c_cc[VSTART] != old_termios->c_cc[VSTART] || tty->termios.c_cc[VSTOP] != old_termios->c_cc[VSTOP]; } /* * These are the bits that are used to setup various * flags in the low level driver. We can ignore the Bfoo * bits in c_cflag; c_[io]speed will always be set * appropriately by set_termios() in tty_ioctl.c */ if ((cflag ^ old_termios->c_cflag) == 0 && tty->termios.c_ospeed == old_termios->c_ospeed && tty->termios.c_ispeed == old_termios->c_ispeed && ((tty->termios.c_iflag ^ old_termios->c_iflag) & iflag_mask) == 0 && !sw_changed) { goto out; } uart_change_speed(tty, state, old_termios); /* reload cflag from termios; port driver may have overridden flags */ cflag = tty->termios.c_cflag; /* Handle transition to B0 status */ if ((old_termios->c_cflag & CBAUD) && !(cflag & CBAUD)) uart_clear_mctrl(uport, TIOCM_RTS | TIOCM_DTR); /* Handle transition away from B0 status */ else if (!(old_termios->c_cflag & CBAUD) && (cflag & CBAUD)) { unsigned int mask = TIOCM_DTR; if (!(cflag & CRTSCTS) || !tty_throttled(tty)) mask |= TIOCM_RTS; uart_set_mctrl(uport, mask); } out: mutex_unlock(&state->port.mutex); } /* * Calls to uart_close() are serialised via the tty_lock in * drivers/tty/tty_io.c:tty_release() * drivers/tty/tty_io.c:do_tty_hangup() */ static void uart_close(struct tty_struct *tty, struct file *filp) { struct uart_state *state = tty->driver_data; if (!state) { struct uart_driver *drv = tty->driver->driver_state; struct tty_port *port; state = drv->state + tty->index; port = &state->port; spin_lock_irq(&port->lock); --port->count; spin_unlock_irq(&port->lock); return; } pr_debug("uart_close(%d) called\n", tty->index); tty_port_close(tty->port, tty, filp); } static void uart_tty_port_shutdown(struct tty_port *port) { struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport = uart_port_check(state); /* * At this point, we stop accepting input. To do this, we * disable the receive line status interrupts. */ if (WARN(!uport, "detached port still initialized!\n")) return; spin_lock_irq(&uport->lock); uport->ops->stop_rx(uport); spin_unlock_irq(&uport->lock); uart_port_shutdown(port); /* * It's possible for shutdown to be called after suspend if we get * a DCD drop (hangup) at just the right time. Clear suspended bit so * we don't try to resume a port that has been shutdown. */ tty_port_set_suspended(port, 0); uart_change_pm(state, UART_PM_STATE_OFF); } static void uart_wait_until_sent(struct tty_struct *tty, int timeout) { struct uart_state *state = tty->driver_data; struct uart_port *port; unsigned long char_time, expire; port = uart_port_ref(state); if (!port) return; if (port->type == PORT_UNKNOWN || port->fifosize == 0) { uart_port_deref(port); return; } /* * Set the check interval to be 1/5 of the estimated time to * send a single character, and make it at least 1. The check * interval should also be less than the timeout. * * Note: we have to use pretty tight timings here to satisfy * the NIST-PCTS. */ char_time = (port->timeout - HZ/50) / port->fifosize; char_time = char_time / 5; if (char_time == 0) char_time = 1; if (timeout && timeout < char_time) char_time = timeout; /* * If the transmitter hasn't cleared in twice the approximate * amount of time to send the entire FIFO, it probably won't * ever clear. This assumes the UART isn't doing flow * control, which is currently the case. Hence, if it ever * takes longer than port->timeout, this is probably due to a * UART bug of some kind. So, we clamp the timeout parameter at * 2*port->timeout. */ if (timeout == 0 || timeout > 2 * port->timeout) timeout = 2 * port->timeout; expire = jiffies + timeout; pr_debug("uart_wait_until_sent(%d), jiffies=%lu, expire=%lu...\n", port->line, jiffies, expire); /* * Check whether the transmitter is empty every 'char_time'. * 'timeout' / 'expire' give us the maximum amount of time * we wait. */ while (!port->ops->tx_empty(port)) { msleep_interruptible(jiffies_to_msecs(char_time)); if (signal_pending(current)) break; if (time_after(jiffies, expire)) break; } uart_port_deref(port); } /* * Calls to uart_hangup() are serialised by the tty_lock in * drivers/tty/tty_io.c:do_tty_hangup() * This runs from a workqueue and can sleep for a _short_ time only. */ static void uart_hangup(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct tty_port *port = &state->port; struct uart_port *uport; unsigned long flags; pr_debug("uart_hangup(%d)\n", tty->index); mutex_lock(&port->mutex); uport = uart_port_check(state); WARN(!uport, "hangup of detached port!\n"); if (tty_port_active(port)) { uart_flush_buffer(tty); uart_shutdown(tty, state); spin_lock_irqsave(&port->lock, flags); port->count = 0; spin_unlock_irqrestore(&port->lock, flags); tty_port_set_active(port, 0); tty_port_tty_set(port, NULL); if (uport && !uart_console(uport)) uart_change_pm(state, UART_PM_STATE_OFF); wake_up_interruptible(&port->open_wait); wake_up_interruptible(&port->delta_msr_wait); } mutex_unlock(&port->mutex); } /* uport == NULL if uart_port has already been removed */ static void uart_port_shutdown(struct tty_port *port) { struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport = uart_port_check(state); /* * clear delta_msr_wait queue to avoid mem leaks: we may free * the irq here so the queue might never be woken up. Note * that we won't end up waiting on delta_msr_wait again since * any outstanding file descriptors should be pointing at * hung_up_tty_fops now. */ wake_up_interruptible(&port->delta_msr_wait); /* * Free the IRQ and disable the port. */ if (uport) uport->ops->shutdown(uport); /* * Ensure that the IRQ handler isn't running on another CPU. */ if (uport) synchronize_irq(uport->irq); } static int uart_carrier_raised(struct tty_port *port) { struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport; int mctrl; uport = uart_port_ref(state); /* * Should never observe uport == NULL since checks for hangup should * abort the tty_port_block_til_ready() loop before checking for carrier * raised -- but report carrier raised if it does anyway so open will * continue and not sleep */ if (WARN_ON(!uport)) return 1; spin_lock_irq(&uport->lock); uart_enable_ms(uport); mctrl = uport->ops->get_mctrl(uport); spin_unlock_irq(&uport->lock); uart_port_deref(uport); if (mctrl & TIOCM_CAR) return 1; return 0; } static void uart_dtr_rts(struct tty_port *port, int raise) { struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport; uport = uart_port_ref(state); if (!uport) return; uart_port_dtr_rts(uport, raise); uart_port_deref(uport); } static int uart_install(struct tty_driver *driver, struct tty_struct *tty) { struct uart_driver *drv = driver->driver_state; struct uart_state *state = drv->state + tty->index; tty->driver_data = state; return tty_standard_install(driver, tty); } /* * Calls to uart_open are serialised by the tty_lock in * drivers/tty/tty_io.c:tty_open() * Note that if this fails, then uart_close() _will_ be called. * * In time, we want to scrap the "opening nonpresent ports" * behaviour and implement an alternative way for setserial * to set base addresses/ports/types. This will allow us to * get rid of a certain amount of extra tests. */ static int uart_open(struct tty_struct *tty, struct file *filp) { struct uart_state *state = tty->driver_data; int retval; retval = tty_port_open(&state->port, tty, filp); if (retval > 0) retval = 0; return retval; } static int uart_port_activate(struct tty_port *port, struct tty_struct *tty) { struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport; int ret; uport = uart_port_check(state); if (!uport || uport->flags & UPF_DEAD) return -ENXIO; port->low_latency = (uport->flags & UPF_LOW_LATENCY) ? 1 : 0; /* * Start up the serial port. */ ret = uart_startup(tty, state, 0); if (ret > 0) tty_port_set_active(port, 1); return ret; } static const char *uart_type(struct uart_port *port) { const char *str = NULL; if (port->ops->type) str = port->ops->type(port); if (!str) str = "unknown"; return str; } #ifdef CONFIG_PROC_FS static void uart_line_info(struct seq_file *m, struct uart_driver *drv, int i) { struct uart_state *state = drv->state + i; struct tty_port *port = &state->port; enum uart_pm_state pm_state; struct uart_port *uport; char stat_buf[32]; unsigned int status; int mmio; mutex_lock(&port->mutex); uport = uart_port_check(state); if (!uport) goto out; mmio = uport->iotype >= UPIO_MEM; seq_printf(m, "%d: uart:%s %s%08llX irq:%d", uport->line, uart_type(uport), mmio ? "mmio:0x" : "port:", mmio ? (unsigned long long)uport->mapbase : (unsigned long long)uport->iobase, uport->irq); if (uport->type == PORT_UNKNOWN) { seq_putc(m, '\n'); goto out; } if (capable(CAP_SYS_ADMIN)) { pm_state = state->pm_state; if (pm_state != UART_PM_STATE_ON) uart_change_pm(state, UART_PM_STATE_ON); spin_lock_irq(&uport->lock); status = uport->ops->get_mctrl(uport); spin_unlock_irq(&uport->lock); if (pm_state != UART_PM_STATE_ON) uart_change_pm(state, pm_state); seq_printf(m, " tx:%d rx:%d", uport->icount.tx, uport->icount.rx); if (uport->icount.frame) seq_printf(m, " fe:%d", uport->icount.frame); if (uport->icount.parity) seq_printf(m, " pe:%d", uport->icount.parity); if (uport->icount.brk) seq_printf(m, " brk:%d", uport->icount.brk); if (uport->icount.overrun) seq_printf(m, " oe:%d", uport->icount.overrun); if (uport->icount.buf_overrun) seq_printf(m, " bo:%d", uport->icount.buf_overrun); #define INFOBIT(bit, str) \ if (uport->mctrl & (bit)) \ strncat(stat_buf, (str), sizeof(stat_buf) - \ strlen(stat_buf) - 2) #define STATBIT(bit, str) \ if (status & (bit)) \ strncat(stat_buf, (str), sizeof(stat_buf) - \ strlen(stat_buf) - 2) stat_buf[0] = '\0'; stat_buf[1] = '\0'; INFOBIT(TIOCM_RTS, "|RTS"); STATBIT(TIOCM_CTS, "|CTS"); INFOBIT(TIOCM_DTR, "|DTR"); STATBIT(TIOCM_DSR, "|DSR"); STATBIT(TIOCM_CAR, "|CD"); STATBIT(TIOCM_RNG, "|RI"); if (stat_buf[0]) stat_buf[0] = ' '; seq_puts(m, stat_buf); } seq_putc(m, '\n'); #undef STATBIT #undef INFOBIT out: mutex_unlock(&port->mutex); } static int uart_proc_show(struct seq_file *m, void *v) { struct tty_driver *ttydrv = m->private; struct uart_driver *drv = ttydrv->driver_state; int i; seq_printf(m, "serinfo:1.0 driver%s%s revision:%s\n", "", "", ""); for (i = 0; i < drv->nr; i++) uart_line_info(m, drv, i); return 0; } #endif static inline bool uart_console_enabled(struct uart_port *port) { return uart_console(port) && (port->cons->flags & CON_ENABLED); } static void uart_port_spin_lock_init(struct uart_port *port) { spin_lock_init(&port->lock); lockdep_set_class(&port->lock, &port_lock_key); } #if defined(CONFIG_SERIAL_CORE_CONSOLE) || defined(CONFIG_CONSOLE_POLL) /** * uart_console_write - write a console message to a serial port * @port: the port to write the message * @s: array of characters * @count: number of characters in string to write * @putchar: function to write character to port */ void uart_console_write(struct uart_port *port, const char *s, unsigned int count, void (*putchar)(struct uart_port *, int)) { unsigned int i; for (i = 0; i < count; i++, s++) { if (*s == '\n') putchar(port, '\r'); putchar(port, *s); } } EXPORT_SYMBOL_GPL(uart_console_write); /* * Check whether an invalid uart number has been specified, and * if so, search for the first available port that does have * console support. */ struct uart_port * __init uart_get_console(struct uart_port *ports, int nr, struct console *co) { int idx = co->index; if (idx < 0 || idx >= nr || (ports[idx].iobase == 0 && ports[idx].membase == NULL)) for (idx = 0; idx < nr; idx++) if (ports[idx].iobase != 0 || ports[idx].membase != NULL) break; co->index = idx; return ports + idx; } /** * uart_parse_earlycon - Parse earlycon options * @p: ptr to 2nd field (ie., just beyond '<name>,') * @iotype: ptr for decoded iotype (out) * @addr: ptr for decoded mapbase/iobase (out) * @options: ptr for <options> field; NULL if not present (out) * * Decodes earlycon kernel command line parameters of the form * earlycon=<name>,io|mmio|mmio16|mmio32|mmio32be|mmio32native,<addr>,<options> * console=<name>,io|mmio|mmio16|mmio32|mmio32be|mmio32native,<addr>,<options> * * The optional form * * earlycon=<name>,0x<addr>,<options> * console=<name>,0x<addr>,<options> * * is also accepted; the returned @iotype will be UPIO_MEM. * * Returns 0 on success or -EINVAL on failure */ int uart_parse_earlycon(char *p, unsigned char *iotype, resource_size_t *addr, char **options) { if (strncmp(p, "mmio,", 5) == 0) { *iotype = UPIO_MEM; p += 5; } else if (strncmp(p, "mmio16,", 7) == 0) { *iotype = UPIO_MEM16; p += 7; } else if (strncmp(p, "mmio32,", 7) == 0) { *iotype = UPIO_MEM32; p += 7; } else if (strncmp(p, "mmio32be,", 9) == 0) { *iotype = UPIO_MEM32BE; p += 9; } else if (strncmp(p, "mmio32native,", 13) == 0) { *iotype = IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) ? UPIO_MEM32BE : UPIO_MEM32; p += 13; } else if (strncmp(p, "io,", 3) == 0) { *iotype = UPIO_PORT; p += 3; } else if (strncmp(p, "0x", 2) == 0) { *iotype = UPIO_MEM; } else { return -EINVAL; } /* * Before you replace it with kstrtoull(), think about options separator * (',') it will not tolerate */ *addr = simple_strtoull(p, NULL, 0); p = strchr(p, ','); if (p) p++; *options = p; return 0; } EXPORT_SYMBOL_GPL(uart_parse_earlycon); /** * uart_parse_options - Parse serial port baud/parity/bits/flow control. * @options: pointer to option string * @baud: pointer to an 'int' variable for the baud rate. * @parity: pointer to an 'int' variable for the parity. * @bits: pointer to an 'int' variable for the number of data bits. * @flow: pointer to an 'int' variable for the flow control character. * * uart_parse_options decodes a string containing the serial console * options. The format of the string is <baud><parity><bits><flow>, * eg: 115200n8r */ void uart_parse_options(const char *options, int *baud, int *parity, int *bits, int *flow) { const char *s = options; *baud = simple_strtoul(s, NULL, 10); while (*s >= '0' && *s <= '9') s++; if (*s) *parity = *s++; if (*s) *bits = *s++ - '0'; if (*s) *flow = *s; } EXPORT_SYMBOL_GPL(uart_parse_options); /** * uart_set_options - setup the serial console parameters * @port: pointer to the serial ports uart_port structure * @co: console pointer * @baud: baud rate * @parity: parity character - 'n' (none), 'o' (odd), 'e' (even) * @bits: number of data bits * @flow: flow control character - 'r' (rts) */ int uart_set_options(struct uart_port *port, struct console *co, int baud, int parity, int bits, int flow) { struct ktermios termios; static struct ktermios dummy; /* * Ensure that the serial-console lock is initialised early. * * Note that the console-enabled check is needed because of kgdboc, * which can end up calling uart_set_options() for an already enabled * console via tty_find_polling_driver() and uart_poll_init(). */ if (!uart_console_enabled(port) && !port->console_reinit) uart_port_spin_lock_init(port); memset(&termios, 0, sizeof(struct ktermios)); termios.c_cflag |= CREAD | HUPCL | CLOCAL; tty_termios_encode_baud_rate(&termios, baud, baud); if (bits == 7) termios.c_cflag |= CS7; else termios.c_cflag |= CS8; switch (parity) { case 'o': case 'O': termios.c_cflag |= PARODD; fallthrough; case 'e': case 'E': termios.c_cflag |= PARENB; break; } if (flow == 'r') termios.c_cflag |= CRTSCTS; /* * some uarts on other side don't support no flow control. * So we set * DTR in host uart to make them happy */ port->mctrl |= TIOCM_DTR; port->ops->set_termios(port, &termios, &dummy); /* * Allow the setting of the UART parameters with a NULL console * too: */ if (co) co->cflag = termios.c_cflag; return 0; } EXPORT_SYMBOL_GPL(uart_set_options); #endif /* CONFIG_SERIAL_CORE_CONSOLE */ /** * uart_change_pm - set power state of the port * * @state: port descriptor * @pm_state: new state * * Locking: port->mutex has to be held */ static void uart_change_pm(struct uart_state *state, enum uart_pm_state pm_state) { struct uart_port *port = uart_port_check(state); if (state->pm_state != pm_state) { if (port && port->ops->pm) port->ops->pm(port, pm_state, state->pm_state); state->pm_state = pm_state; } } struct uart_match { struct uart_port *port; struct uart_driver *driver; }; static int serial_match_port(struct device *dev, void *data) { struct uart_match *match = data; struct tty_driver *tty_drv = match->driver->tty_driver; dev_t devt = MKDEV(tty_drv->major, tty_drv->minor_start) + match->port->line; return dev->devt == devt; /* Actually, only one tty per port */ } int uart_suspend_port(struct uart_driver *drv, struct uart_port *uport) { struct uart_state *state = drv->state + uport->line; struct tty_port *port = &state->port; struct device *tty_dev; struct uart_match match = {uport, drv}; mutex_lock(&port->mutex); tty_dev = device_find_child(uport->dev, &match, serial_match_port); if (tty_dev && device_may_wakeup(tty_dev)) { enable_irq_wake(uport->irq); put_device(tty_dev); mutex_unlock(&port->mutex); return 0; } put_device(tty_dev); /* Nothing to do if the console is not suspending */ if (!console_suspend_enabled && uart_console(uport)) goto unlock; uport->suspended = 1; if (tty_port_initialized(port)) { const struct uart_ops *ops = uport->ops; int tries; tty_port_set_suspended(port, 1); tty_port_set_initialized(port, 0); spin_lock_irq(&uport->lock); ops->stop_tx(uport); ops->set_mctrl(uport, 0); ops->stop_rx(uport); spin_unlock_irq(&uport->lock); /* * Wait for the transmitter to empty. */ for (tries = 3; !ops->tx_empty(uport) && tries; tries--) msleep(10); if (!tries) dev_err(uport->dev, "%s: Unable to drain transmitter\n", uport->name); ops->shutdown(uport); } /* * Disable the console device before suspending. */ if (uart_console(uport)) console_stop(uport->cons); uart_change_pm(state, UART_PM_STATE_OFF); unlock: mutex_unlock(&port->mutex); return 0; } int uart_resume_port(struct uart_driver *drv, struct uart_port *uport) { struct uart_state *state = drv->state + uport->line; struct tty_port *port = &state->port; struct device *tty_dev; struct uart_match match = {uport, drv}; struct ktermios termios; mutex_lock(&port->mutex); tty_dev = device_find_child(uport->dev, &match, serial_match_port); if (!uport->suspended && device_may_wakeup(tty_dev)) { if (irqd_is_wakeup_set(irq_get_irq_data((uport->irq)))) disable_irq_wake(uport->irq); put_device(tty_dev); mutex_unlock(&port->mutex); return 0; } put_device(tty_dev); uport->suspended = 0; /* * Re-enable the console device after suspending. */ if (uart_console(uport)) { /* * First try to use the console cflag setting. */ memset(&termios, 0, sizeof(struct ktermios)); termios.c_cflag = uport->cons->cflag; /* * If that's unset, use the tty termios setting. */ if (port->tty && termios.c_cflag == 0) termios = port->tty->termios; if (console_suspend_enabled) uart_change_pm(state, UART_PM_STATE_ON); uport->ops->set_termios(uport, &termios, NULL); if (console_suspend_enabled) console_start(uport->cons); } if (tty_port_suspended(port)) { const struct uart_ops *ops = uport->ops; int ret; uart_change_pm(state, UART_PM_STATE_ON); spin_lock_irq(&uport->lock); ops->set_mctrl(uport, 0); spin_unlock_irq(&uport->lock); if (console_suspend_enabled || !uart_console(uport)) { /* Protected by port mutex for now */ struct tty_struct *tty = port->tty; ret = ops->startup(uport); if (ret == 0) { if (tty) uart_change_speed(tty, state, NULL); spin_lock_irq(&uport->lock); ops->set_mctrl(uport, uport->mctrl); ops->start_tx(uport); spin_unlock_irq(&uport->lock); tty_port_set_initialized(port, 1); } else { /* * Failed to resume - maybe hardware went away? * Clear the "initialized" flag so we won't try * to call the low level drivers shutdown method. */ uart_shutdown(tty, state); } } tty_port_set_suspended(port, 0); } mutex_unlock(&port->mutex); return 0; } static inline void uart_report_port(struct uart_driver *drv, struct uart_port *port) { char address[64]; switch (port->iotype) { case UPIO_PORT: snprintf(address, sizeof(address), "I/O 0x%lx", port->iobase); break; case UPIO_HUB6: snprintf(address, sizeof(address), "I/O 0x%lx offset 0x%x", port->iobase, port->hub6); break; case UPIO_MEM: case UPIO_MEM16: case UPIO_MEM32: case UPIO_MEM32BE: case UPIO_AU: case UPIO_TSI: snprintf(address, sizeof(address), "MMIO 0x%llx", (unsigned long long)port->mapbase); break; default: strlcpy(address, "*unknown*", sizeof(address)); break; } pr_info("%s%s%s at %s (irq = %d, base_baud = %d) is a %s\n", port->dev ? dev_name(port->dev) : "", port->dev ? ": " : "", port->name, address, port->irq, port->uartclk / 16, uart_type(port)); } static void uart_configure_port(struct uart_driver *drv, struct uart_state *state, struct uart_port *port) { unsigned int flags; /* * If there isn't a port here, don't do anything further. */ if (!port->iobase && !port->mapbase && !port->membase) return; /* * Now do the auto configuration stuff. Note that config_port * is expected to claim the resources and map the port for us. */ flags = 0; if (port->flags & UPF_AUTO_IRQ) flags |= UART_CONFIG_IRQ; if (port->flags & UPF_BOOT_AUTOCONF) { if (!(port->flags & UPF_FIXED_TYPE)) { port->type = PORT_UNKNOWN; flags |= UART_CONFIG_TYPE; } port->ops->config_port(port, flags); } if (port->type != PORT_UNKNOWN) { unsigned long flags; uart_report_port(drv, port); /* Power up port for set_mctrl() */ uart_change_pm(state, UART_PM_STATE_ON); /* * Ensure that the modem control lines are de-activated. * keep the DTR setting that is set in uart_set_options() * We probably don't need a spinlock around this, but */ spin_lock_irqsave(&port->lock, flags); port->ops->set_mctrl(port, port->mctrl & TIOCM_DTR); spin_unlock_irqrestore(&port->lock, flags); /* * If this driver supports console, and it hasn't been * successfully registered yet, try to re-register it. * It may be that the port was not available. */ if (port->cons && !(port->cons->flags & CON_ENABLED)) register_console(port->cons); /* * Power down all ports by default, except the * console if we have one. */ if (!uart_console(port)) uart_change_pm(state, UART_PM_STATE_OFF); } } #ifdef CONFIG_CONSOLE_POLL static int uart_poll_init(struct tty_driver *driver, int line, char *options) { struct uart_driver *drv = driver->driver_state; struct uart_state *state = drv->state + line; struct tty_port *tport; struct uart_port *port; int baud = 9600; int bits = 8; int parity = 'n'; int flow = 'n'; int ret = 0; tport = &state->port; mutex_lock(&tport->mutex); port = uart_port_check(state); if (!port || !(port->ops->poll_get_char && port->ops->poll_put_char)) { ret = -1; goto out; } if (port->ops->poll_init) { /* * We don't set initialized as we only initialized the hw, * e.g. state->xmit is still uninitialized. */ if (!tty_port_initialized(tport)) ret = port->ops->poll_init(port); } if (!ret && options) { uart_parse_options(options, &baud, &parity, &bits, &flow); ret = uart_set_options(port, NULL, baud, parity, bits, flow); } out: mutex_unlock(&tport->mutex); return ret; } static int uart_poll_get_char(struct tty_driver *driver, int line) { struct uart_driver *drv = driver->driver_state; struct uart_state *state = drv->state + line; struct uart_port *port; int ret = -1; port = uart_port_ref(state); if (port) { ret = port->ops->poll_get_char(port); uart_port_deref(port); } return ret; } static void uart_poll_put_char(struct tty_driver *driver, int line, char ch) { struct uart_driver *drv = driver->driver_state; struct uart_state *state = drv->state + line; struct uart_port *port; port = uart_port_ref(state); if (!port) return; if (ch == '\n') port->ops->poll_put_char(port, '\r'); port->ops->poll_put_char(port, ch); uart_port_deref(port); } #endif static const struct tty_operations uart_ops = { .install = uart_install, .open = uart_open, .close = uart_close, .write = uart_write, .put_char = uart_put_char, .flush_chars = uart_flush_chars, .write_room = uart_write_room, .chars_in_buffer= uart_chars_in_buffer, .flush_buffer = uart_flush_buffer, .ioctl = uart_ioctl, .throttle = uart_throttle, .unthrottle = uart_unthrottle, .send_xchar = uart_send_xchar, .set_termios = uart_set_termios, .set_ldisc = uart_set_ldisc, .stop = uart_stop, .start = uart_start, .hangup = uart_hangup, .break_ctl = uart_break_ctl, .wait_until_sent= uart_wait_until_sent, #ifdef CONFIG_PROC_FS .proc_show = uart_proc_show, #endif .tiocmget = uart_tiocmget, .tiocmset = uart_tiocmset, .set_serial = uart_set_info_user, .get_serial = uart_get_info_user, .get_icount = uart_get_icount, #ifdef CONFIG_CONSOLE_POLL .poll_init = uart_poll_init, .poll_get_char = uart_poll_get_char, .poll_put_char = uart_poll_put_char, #endif }; static const struct tty_port_operations uart_port_ops = { .carrier_raised = uart_carrier_raised, .dtr_rts = uart_dtr_rts, .activate = uart_port_activate, .shutdown = uart_tty_port_shutdown, }; /** * uart_register_driver - register a driver with the uart core layer * @drv: low level driver structure * * Register a uart driver with the core driver. We in turn register * with the tty layer, and initialise the core driver per-port state. * * We have a proc file in /proc/tty/driver which is named after the * normal driver. * * drv->port should be NULL, and the per-port structures should be * registered using uart_add_one_port after this call has succeeded. */ int uart_register_driver(struct uart_driver *drv) { struct tty_driver *normal; int i, retval = -ENOMEM; BUG_ON(drv->state); /* * Maybe we should be using a slab cache for this, especially if * we have a large number of ports to handle. */ drv->state = kcalloc(drv->nr, sizeof(struct uart_state), GFP_KERNEL); if (!drv->state) goto out; normal = alloc_tty_driver(drv->nr); if (!normal) goto out_kfree; drv->tty_driver = normal; normal->driver_name = drv->driver_name; normal->name = drv->dev_name; normal->major = drv->major; normal->minor_start = drv->minor; normal->type = TTY_DRIVER_TYPE_SERIAL; normal->subtype = SERIAL_TYPE_NORMAL; normal->init_termios = tty_std_termios; normal->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; normal->init_termios.c_ispeed = normal->init_termios.c_ospeed = 9600; normal->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; normal->driver_state = drv; tty_set_operations(normal, &uart_ops); /* * Initialise the UART state(s). */ for (i = 0; i < drv->nr; i++) { struct uart_state *state = drv->state + i; struct tty_port *port = &state->port; tty_port_init(port); port->ops = &uart_port_ops; } retval = tty_register_driver(normal); if (retval >= 0) return retval; for (i = 0; i < drv->nr; i++) tty_port_destroy(&drv->state[i].port); put_tty_driver(normal); out_kfree: kfree(drv->state); out: return retval; } /** * uart_unregister_driver - remove a driver from the uart core layer * @drv: low level driver structure * * Remove all references to a driver from the core driver. The low * level driver must have removed all its ports via the * uart_remove_one_port() if it registered them with uart_add_one_port(). * (ie, drv->port == NULL) */ void uart_unregister_driver(struct uart_driver *drv) { struct tty_driver *p = drv->tty_driver; unsigned int i; tty_unregister_driver(p); put_tty_driver(p); for (i = 0; i < drv->nr; i++) tty_port_destroy(&drv->state[i].port); kfree(drv->state); drv->state = NULL; drv->tty_driver = NULL; } struct tty_driver *uart_console_device(struct console *co, int *index) { struct uart_driver *p = co->data; *index = co->index; return p->tty_driver; } EXPORT_SYMBOL_GPL(uart_console_device); static ssize_t uartclk_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.baud_base * 16); } static ssize_t type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.type); } static ssize_t line_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.line); } static ssize_t port_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); unsigned long ioaddr; uart_get_info(port, &tmp); ioaddr = tmp.port; if (HIGH_BITS_OFFSET) ioaddr |= (unsigned long)tmp.port_high << HIGH_BITS_OFFSET; return sprintf(buf, "0x%lX\n", ioaddr); } static ssize_t irq_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.irq); } static ssize_t flags_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "0x%X\n", tmp.flags); } static ssize_t xmit_fifo_size_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.xmit_fifo_size); } static ssize_t close_delay_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.close_delay); } static ssize_t closing_wait_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.closing_wait); } static ssize_t custom_divisor_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.custom_divisor); } static ssize_t io_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.io_type); } static ssize_t iomem_base_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "0x%lX\n", (unsigned long)tmp.iomem_base); } static ssize_t iomem_reg_shift_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.iomem_reg_shift); } static ssize_t console_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tty_port *port = dev_get_drvdata(dev); struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport; bool console = false; mutex_lock(&port->mutex); uport = uart_port_check(state); if (uport) console = uart_console_enabled(uport); mutex_unlock(&port->mutex); return sprintf(buf, "%c\n", console ? 'Y' : 'N'); } static ssize_t console_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct tty_port *port = dev_get_drvdata(dev); struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport; bool oldconsole, newconsole; int ret; ret = kstrtobool(buf, &newconsole); if (ret) return ret; mutex_lock(&port->mutex); uport = uart_port_check(state); if (uport) { oldconsole = uart_console_enabled(uport); if (oldconsole && !newconsole) { ret = unregister_console(uport->cons); } else if (!oldconsole && newconsole) { if (uart_console(uport)) { uport->console_reinit = 1; register_console(uport->cons); } else { ret = -ENOENT; } } } else { ret = -ENXIO; } mutex_unlock(&port->mutex); return ret < 0 ? ret : count; } static DEVICE_ATTR_RO(uartclk); static DEVICE_ATTR_RO(type); static DEVICE_ATTR_RO(line); static DEVICE_ATTR_RO(port); static DEVICE_ATTR_RO(irq); static DEVICE_ATTR_RO(flags); static DEVICE_ATTR_RO(xmit_fifo_size); static DEVICE_ATTR_RO(close_delay); static DEVICE_ATTR_RO(closing_wait); static DEVICE_ATTR_RO(custom_divisor); static DEVICE_ATTR_RO(io_type); static DEVICE_ATTR_RO(iomem_base); static DEVICE_ATTR_RO(iomem_reg_shift); static DEVICE_ATTR_RW(console); static struct attribute *tty_dev_attrs[] = { &dev_attr_uartclk.attr, &dev_attr_type.attr, &dev_attr_line.attr, &dev_attr_port.attr, &dev_attr_irq.attr, &dev_attr_flags.attr, &dev_attr_xmit_fifo_size.attr, &dev_attr_close_delay.attr, &dev_attr_closing_wait.attr, &dev_attr_custom_divisor.attr, &dev_attr_io_type.attr, &dev_attr_iomem_base.attr, &dev_attr_iomem_reg_shift.attr, &dev_attr_console.attr, NULL }; static const struct attribute_group tty_dev_attr_group = { .attrs = tty_dev_attrs, }; /** * uart_add_one_port - attach a driver-defined port structure * @drv: pointer to the uart low level driver structure for this port * @uport: uart port structure to use for this port. * * This allows the driver to register its own uart_port structure * with the core driver. The main purpose is to allow the low * level uart drivers to expand uart_port, rather than having yet * more levels of structures. */ int uart_add_one_port(struct uart_driver *drv, struct uart_port *uport) { struct uart_state *state; struct tty_port *port; int ret = 0; struct device *tty_dev; int num_groups; BUG_ON(in_interrupt()); if (uport->line >= drv->nr) return -EINVAL; state = drv->state + uport->line; port = &state->port; mutex_lock(&port_mutex); mutex_lock(&port->mutex); if (state->uart_port) { ret = -EINVAL; goto out; } /* Link the port to the driver state table and vice versa */ atomic_set(&state->refcount, 1); init_waitqueue_head(&state->remove_wait); state->uart_port = uport; uport->state = state; state->pm_state = UART_PM_STATE_UNDEFINED; uport->cons = drv->cons; uport->minor = drv->tty_driver->minor_start + uport->line; uport->name = kasprintf(GFP_KERNEL, "%s%d", drv->dev_name, drv->tty_driver->name_base + uport->line); if (!uport->name) { ret = -ENOMEM; goto out; } /* * If this port is in use as a console then the spinlock is already * initialised. */ if (!uart_console_enabled(uport)) uart_port_spin_lock_init(uport); if (uport->cons && uport->dev) of_console_check(uport->dev->of_node, uport->cons->name, uport->line); tty_port_link_device(port, drv->tty_driver, uport->line); uart_configure_port(drv, state, uport); port->console = uart_console(uport); num_groups = 2; if (uport->attr_group) num_groups++; uport->tty_groups = kcalloc(num_groups, sizeof(*uport->tty_groups), GFP_KERNEL); if (!uport->tty_groups) { ret = -ENOMEM; goto out; } uport->tty_groups[0] = &tty_dev_attr_group; if (uport->attr_group) uport->tty_groups[1] = uport->attr_group; /* * Register the port whether it's detected or not. This allows * setserial to be used to alter this port's parameters. */ tty_dev = tty_port_register_device_attr_serdev(port, drv->tty_driver, uport->line, uport->dev, port, uport->tty_groups); if (!IS_ERR(tty_dev)) { device_set_wakeup_capable(tty_dev, 1); } else { dev_err(uport->dev, "Cannot register tty device on line %d\n", uport->line); } /* * Ensure UPF_DEAD is not set. */ uport->flags &= ~UPF_DEAD; out: mutex_unlock(&port->mutex); mutex_unlock(&port_mutex); return ret; } /** * uart_remove_one_port - detach a driver defined port structure * @drv: pointer to the uart low level driver structure for this port * @uport: uart port structure for this port * * This unhooks (and hangs up) the specified port structure from the * core driver. No further calls will be made to the low-level code * for this port. */ int uart_remove_one_port(struct uart_driver *drv, struct uart_port *uport) { struct uart_state *state = drv->state + uport->line; struct tty_port *port = &state->port; struct uart_port *uart_port; struct tty_struct *tty; int ret = 0; BUG_ON(in_interrupt()); mutex_lock(&port_mutex); /* * Mark the port "dead" - this prevents any opens from * succeeding while we shut down the port. */ mutex_lock(&port->mutex); uart_port = uart_port_check(state); if (uart_port != uport) dev_alert(uport->dev, "Removing wrong port: %p != %p\n", uart_port, uport); if (!uart_port) { mutex_unlock(&port->mutex); ret = -EINVAL; goto out; } uport->flags |= UPF_DEAD; mutex_unlock(&port->mutex); /* * Remove the devices from the tty layer */ tty_port_unregister_device(port, drv->tty_driver, uport->line); tty = tty_port_tty_get(port); if (tty) { tty_vhangup(port->tty); tty_kref_put(tty); } /* * If the port is used as a console, unregister it */ if (uart_console(uport)) unregister_console(uport->cons); /* * Free the port IO and memory resources, if any. */ if (uport->type != PORT_UNKNOWN && uport->ops->release_port) uport->ops->release_port(uport); kfree(uport->tty_groups); kfree(uport->name); /* * Indicate that there isn't a port here anymore. */ uport->type = PORT_UNKNOWN; mutex_lock(&port->mutex); WARN_ON(atomic_dec_return(&state->refcount) < 0); wait_event(state->remove_wait, !atomic_read(&state->refcount)); state->uart_port = NULL; mutex_unlock(&port->mutex); out: mutex_unlock(&port_mutex); return ret; } /* * Are the two ports equivalent? */ int uart_match_port(struct uart_port *port1, struct uart_port *port2) { if (port1->iotype != port2->iotype) return 0; switch (port1->iotype) { case UPIO_PORT: return (port1->iobase == port2->iobase); case UPIO_HUB6: return (port1->iobase == port2->iobase) && (port1->hub6 == port2->hub6); case UPIO_MEM: case UPIO_MEM16: case UPIO_MEM32: case UPIO_MEM32BE: case UPIO_AU: case UPIO_TSI: return (port1->mapbase == port2->mapbase); } return 0; } EXPORT_SYMBOL(uart_match_port); /** * uart_handle_dcd_change - handle a change of carrier detect state * @uport: uart_port structure for the open port * @status: new carrier detect status, nonzero if active * * Caller must hold uport->lock */ void uart_handle_dcd_change(struct uart_port *uport, unsigned int status) { struct tty_port *port = &uport->state->port; struct tty_struct *tty = port->tty; struct tty_ldisc *ld; lockdep_assert_held_once(&uport->lock); if (tty) { ld = tty_ldisc_ref(tty); if (ld) { if (ld->ops->dcd_change) ld->ops->dcd_change(tty, status); tty_ldisc_deref(ld); } } uport->icount.dcd++; if (uart_dcd_enabled(uport)) { if (status) wake_up_interruptible(&port->open_wait); else if (tty) tty_hangup(tty); } } EXPORT_SYMBOL_GPL(uart_handle_dcd_change); /** * uart_handle_cts_change - handle a change of clear-to-send state * @uport: uart_port structure for the open port * @status: new clear to send status, nonzero if active * * Caller must hold uport->lock */ void uart_handle_cts_change(struct uart_port *uport, unsigned int status) { lockdep_assert_held_once(&uport->lock); uport->icount.cts++; if (uart_softcts_mode(uport)) { if (uport->hw_stopped) { if (status) { uport->hw_stopped = 0; uport->ops->start_tx(uport); uart_write_wakeup(uport); } } else { if (!status) { uport->hw_stopped = 1; uport->ops->stop_tx(uport); } } } } EXPORT_SYMBOL_GPL(uart_handle_cts_change); /** * uart_insert_char - push a char to the uart layer * * User is responsible to call tty_flip_buffer_push when they are done with * insertion. * * @port: corresponding port * @status: state of the serial port RX buffer (LSR for 8250) * @overrun: mask of overrun bits in @status * @ch: character to push * @flag: flag for the character (see TTY_NORMAL and friends) */ void uart_insert_char(struct uart_port *port, unsigned int status, unsigned int overrun, unsigned int ch, unsigned int flag) { struct tty_port *tport = &port->state->port; if ((status & port->ignore_status_mask & ~overrun) == 0) if (tty_insert_flip_char(tport, ch, flag) == 0) ++port->icount.buf_overrun; /* * Overrun is special. Since it's reported immediately, * it doesn't affect the current character. */ if (status & ~port->ignore_status_mask & overrun) if (tty_insert_flip_char(tport, 0, TTY_OVERRUN) == 0) ++port->icount.buf_overrun; } EXPORT_SYMBOL_GPL(uart_insert_char); #ifdef CONFIG_MAGIC_SYSRQ_SERIAL static const char sysrq_toggle_seq[] = CONFIG_MAGIC_SYSRQ_SERIAL_SEQUENCE; static void uart_sysrq_on(struct work_struct *w) { int sysrq_toggle_seq_len = strlen(sysrq_toggle_seq); sysrq_toggle_support(1); pr_info("SysRq is enabled by magic sequence '%*pE' on serial\n", sysrq_toggle_seq_len, sysrq_toggle_seq); } static DECLARE_WORK(sysrq_enable_work, uart_sysrq_on); /** * uart_try_toggle_sysrq - Enables SysRq from serial line * @port: uart_port structure where char(s) after BREAK met * @ch: new character in the sequence after received BREAK * * Enables magic SysRq when the required sequence is met on port * (see CONFIG_MAGIC_SYSRQ_SERIAL_SEQUENCE). * * Returns false if @ch is out of enabling sequence and should be * handled some other way, true if @ch was consumed. */ bool uart_try_toggle_sysrq(struct uart_port *port, unsigned int ch) { int sysrq_toggle_seq_len = strlen(sysrq_toggle_seq); if (!sysrq_toggle_seq_len) return false; BUILD_BUG_ON(ARRAY_SIZE(sysrq_toggle_seq) >= U8_MAX); if (sysrq_toggle_seq[port->sysrq_seq] != ch) { port->sysrq_seq = 0; return false; } if (++port->sysrq_seq < sysrq_toggle_seq_len) { port->sysrq = jiffies + SYSRQ_TIMEOUT; return true; } schedule_work(&sysrq_enable_work); port->sysrq = 0; return true; } EXPORT_SYMBOL_GPL(uart_try_toggle_sysrq); #endif EXPORT_SYMBOL(uart_write_wakeup); EXPORT_SYMBOL(uart_register_driver); EXPORT_SYMBOL(uart_unregister_driver); EXPORT_SYMBOL(uart_suspend_port); EXPORT_SYMBOL(uart_resume_port); EXPORT_SYMBOL(uart_add_one_port); EXPORT_SYMBOL(uart_remove_one_port); /** * uart_get_rs485_mode() - retrieve rs485 properties for given uart * @port: uart device's target port * * This function implements the device tree binding described in * Documentation/devicetree/bindings/serial/rs485.txt. */ int uart_get_rs485_mode(struct uart_port *port) { struct serial_rs485 *rs485conf = &port->rs485; struct device *dev = port->dev; u32 rs485_delay[2]; int ret; ret = device_property_read_u32_array(dev, "rs485-rts-delay", rs485_delay, 2); if (!ret) { rs485conf->delay_rts_before_send = rs485_delay[0]; rs485conf->delay_rts_after_send = rs485_delay[1]; } else { rs485conf->delay_rts_before_send = 0; rs485conf->delay_rts_after_send = 0; } /* * Clear full-duplex and enabled flags, set RTS polarity to active high * to get to a defined state with the following properties: */ rs485conf->flags &= ~(SER_RS485_RX_DURING_TX | SER_RS485_ENABLED | SER_RS485_TERMINATE_BUS | SER_RS485_RTS_AFTER_SEND); rs485conf->flags |= SER_RS485_RTS_ON_SEND; if (device_property_read_bool(dev, "rs485-rx-during-tx")) rs485conf->flags |= SER_RS485_RX_DURING_TX; if (device_property_read_bool(dev, "linux,rs485-enabled-at-boot-time")) rs485conf->flags |= SER_RS485_ENABLED; if (device_property_read_bool(dev, "rs485-rts-active-low")) { rs485conf->flags &= ~SER_RS485_RTS_ON_SEND; rs485conf->flags |= SER_RS485_RTS_AFTER_SEND; } /* * Disabling termination by default is the safe choice: Else if many * bus participants enable it, no communication is possible at all. * Works fine for short cables and users may enable for longer cables. */ port->rs485_term_gpio = devm_gpiod_get_optional(dev, "rs485-term", GPIOD_OUT_LOW); if (IS_ERR(port->rs485_term_gpio)) { ret = PTR_ERR(port->rs485_term_gpio); port->rs485_term_gpio = NULL; return dev_err_probe(dev, ret, "Cannot get rs485-term-gpios\n"); } return 0; } EXPORT_SYMBOL_GPL(uart_get_rs485_mode); MODULE_DESCRIPTION("Serial driver core"); MODULE_LICENSE("GPL");
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 /* SPDX-License-Identifier: GPL-2.0 */ /* * Access vector cache interface for object managers. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ #ifndef _SELINUX_AVC_H_ #define _SELINUX_AVC_H_ #include <linux/stddef.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/kdev_t.h> #include <linux/spinlock.h> #include <linux/init.h> #include <linux/audit.h> #include <linux/lsm_audit.h> #include <linux/in6.h> #include "flask.h" #include "av_permissions.h" #include "security.h" /* * An entry in the AVC. */ struct avc_entry; struct task_struct; struct inode; struct sock; struct sk_buff; /* * AVC statistics */ struct avc_cache_stats { unsigned int lookups; unsigned int misses; unsigned int allocations; unsigned int reclaims; unsigned int frees; }; /* * We only need this data after we have decided to send an audit message. */ struct selinux_audit_data { u32 ssid; u32 tsid; u16 tclass; u32 requested; u32 audited; u32 denied; int result; struct selinux_state *state; }; /* * AVC operations */ void __init avc_init(void); static inline u32 avc_audit_required(u32 requested, struct av_decision *avd, int result, u32 auditdeny, u32 *deniedp) { u32 denied, audited; denied = requested & ~avd->allowed; if (unlikely(denied)) { audited = denied & avd->auditdeny; /* * auditdeny is TRICKY! Setting a bit in * this field means that ANY denials should NOT be audited if * the policy contains an explicit dontaudit rule for that * permission. Take notice that this is unrelated to the * actual permissions that were denied. As an example lets * assume: * * denied == READ * avd.auditdeny & ACCESS == 0 (not set means explicit rule) * auditdeny & ACCESS == 1 * * We will NOT audit the denial even though the denied * permission was READ and the auditdeny checks were for * ACCESS */ if (auditdeny && !(auditdeny & avd->auditdeny)) audited = 0; } else if (result) audited = denied = requested; else audited = requested & avd->auditallow; *deniedp = denied; return audited; } int slow_avc_audit(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, u32 audited, u32 denied, int result, struct common_audit_data *a); /** * avc_audit - Audit the granting or denial of permissions. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions * @avd: access vector decisions * @result: result from avc_has_perm_noaudit * @a: auxiliary audit data * @flags: VFS walk flags * * Audit the granting or denial of permissions in accordance * with the policy. This function is typically called by * avc_has_perm() after a permission check, but can also be * called directly by callers who use avc_has_perm_noaudit() * in order to separate the permission check from the auditing. * For example, this separation is useful when the permission check must * be performed under a lock, to allow the lock to be released * before calling the auditing code. */ static inline int avc_audit(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, struct av_decision *avd, int result, struct common_audit_data *a, int flags) { u32 audited, denied; audited = avc_audit_required(requested, avd, result, 0, &denied); if (likely(!audited)) return 0; /* fall back to ref-walk if we have to generate audit */ if (flags & MAY_NOT_BLOCK) return -ECHILD; return slow_avc_audit(state, ssid, tsid, tclass, requested, audited, denied, result, a); } #define AVC_STRICT 1 /* Ignore permissive mode. */ #define AVC_EXTENDED_PERMS 2 /* update extended permissions */ #define AVC_NONBLOCKING 4 /* non blocking */ int avc_has_perm_noaudit(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, unsigned flags, struct av_decision *avd); int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, struct common_audit_data *auditdata); int avc_has_perm_flags(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, struct common_audit_data *auditdata, int flags); int avc_has_extended_perms(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, u8 driver, u8 perm, struct common_audit_data *ad); u32 avc_policy_seqno(struct selinux_state *state); #define AVC_CALLBACK_GRANT 1 #define AVC_CALLBACK_TRY_REVOKE 2 #define AVC_CALLBACK_REVOKE 4 #define AVC_CALLBACK_RESET 8 #define AVC_CALLBACK_AUDITALLOW_ENABLE 16 #define AVC_CALLBACK_AUDITALLOW_DISABLE 32 #define AVC_CALLBACK_AUDITDENY_ENABLE 64 #define AVC_CALLBACK_AUDITDENY_DISABLE 128 #define AVC_CALLBACK_ADD_XPERMS 256 int avc_add_callback(int (*callback)(u32 event), u32 events); /* Exported to selinuxfs */ struct selinux_avc; int avc_get_hash_stats(struct selinux_avc *avc, char *page); unsigned int avc_get_cache_threshold(struct selinux_avc *avc); void avc_set_cache_threshold(struct selinux_avc *avc, unsigned int cache_threshold); /* Attempt to free avc node cache */ void avc_disable(void); #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS DECLARE_PER_CPU(struct avc_cache_stats, avc_cache_stats); #endif #endif /* _SELINUX_AVC_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_64_H #define _ASM_X86_PGTABLE_64_H #include <linux/const.h> #include <asm/pgtable_64_types.h> #ifndef __ASSEMBLY__ /* * This file contains the functions and defines necessary to modify and use * the x86-64 page table tree. */ #include <asm/processor.h> #include <linux/bitops.h> #include <linux/threads.h> #include <asm/fixmap.h> extern p4d_t level4_kernel_pgt[512]; extern p4d_t level4_ident_pgt[512]; extern pud_t level3_kernel_pgt[512]; extern pud_t level3_ident_pgt[512]; extern pmd_t level2_kernel_pgt[512]; extern pmd_t level2_fixmap_pgt[512]; extern pmd_t level2_ident_pgt[512]; extern pte_t level1_fixmap_pgt[512 * FIXMAP_PMD_NUM]; extern pgd_t init_top_pgt[]; #define swapper_pg_dir init_top_pgt extern void paging_init(void); static inline void sync_initial_page_table(void) { } #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pte_val(e)) #define pmd_ERROR(e) \ pr_err("%s:%d: bad pmd %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pmd_val(e)) #define pud_ERROR(e) \ pr_err("%s:%d: bad pud %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pud_val(e)) #if CONFIG_PGTABLE_LEVELS >= 5 #define p4d_ERROR(e) \ pr_err("%s:%d: bad p4d %p(%016lx)\n", \ __FILE__, __LINE__, &(e), p4d_val(e)) #endif #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pgd_val(e)) struct mm_struct; #define mm_p4d_folded mm_p4d_folded static inline bool mm_p4d_folded(struct mm_struct *mm) { return !pgtable_l5_enabled(); } void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte); void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte); static inline void native_set_pte(pte_t *ptep, pte_t pte) { WRITE_ONCE(*ptep, pte); } static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { native_set_pte(ptep, native_make_pte(0)); } static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte) { native_set_pte(ptep, pte); } static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd) { WRITE_ONCE(*pmdp, pmd); } static inline void native_pmd_clear(pmd_t *pmd) { native_set_pmd(pmd, native_make_pmd(0)); } static inline pte_t native_ptep_get_and_clear(pte_t *xp) { #ifdef CONFIG_SMP return native_make_pte(xchg(&xp->pte, 0)); #else /* native_local_ptep_get_and_clear, but duplicated because of cyclic dependency */ pte_t ret = *xp; native_pte_clear(NULL, 0, xp); return ret; #endif } static inline pmd_t native_pmdp_get_and_clear(pmd_t *xp) { #ifdef CONFIG_SMP return native_make_pmd(xchg(&xp->pmd, 0)); #else /* native_local_pmdp_get_and_clear, but duplicated because of cyclic dependency */ pmd_t ret = *xp; native_pmd_clear(xp); return ret; #endif } static inline void native_set_pud(pud_t *pudp, pud_t pud) { WRITE_ONCE(*pudp, pud); } static inline void native_pud_clear(pud_t *pud) { native_set_pud(pud, native_make_pud(0)); } static inline pud_t native_pudp_get_and_clear(pud_t *xp) { #ifdef CONFIG_SMP return native_make_pud(xchg(&xp->pud, 0)); #else /* native_local_pudp_get_and_clear, * but duplicated because of cyclic dependency */ pud_t ret = *xp; native_pud_clear(xp); return ret; #endif } static inline void native_set_p4d(p4d_t *p4dp, p4d_t p4d) { pgd_t pgd; if (pgtable_l5_enabled() || !IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) { WRITE_ONCE(*p4dp, p4d); return; } pgd = native_make_pgd(native_p4d_val(p4d)); pgd = pti_set_user_pgtbl((pgd_t *)p4dp, pgd); WRITE_ONCE(*p4dp, native_make_p4d(native_pgd_val(pgd))); } static inline void native_p4d_clear(p4d_t *p4d) { native_set_p4d(p4d, native_make_p4d(0)); } static inline void native_set_pgd(pgd_t *pgdp, pgd_t pgd) { WRITE_ONCE(*pgdp, pti_set_user_pgtbl(pgdp, pgd)); } static inline void native_pgd_clear(pgd_t *pgd) { native_set_pgd(pgd, native_make_pgd(0)); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ /* PGD - Level 4 access */ /* PUD - Level 3 access */ /* PMD - Level 2 access */ /* PTE - Level 1 access */ /* * Encode and de-code a swap entry * * | ... | 11| 10| 9|8|7|6|5| 4| 3|2| 1|0| <- bit number * | ... |SW3|SW2|SW1|G|L|D|A|CD|WT|U| W|P| <- bit names * | TYPE (59-63) | ~OFFSET (9-58) |0|0|X|X| X| X|F|SD|0| <- swp entry * * G (8) is aliased and used as a PROT_NONE indicator for * !present ptes. We need to start storing swap entries above * there. We also need to avoid using A and D because of an * erratum where they can be incorrectly set by hardware on * non-present PTEs. * * SD Bits 1-4 are not used in non-present format and available for * special use described below: * * SD (1) in swp entry is used to store soft dirty bit, which helps us * remember soft dirty over page migration * * F (2) in swp entry is used to record when a pagetable is * writeprotected by userfaultfd WP support. * * Bit 7 in swp entry should be 0 because pmd_present checks not only P, * but also L and G. * * The offset is inverted by a binary not operation to make the high * physical bits set. */ #define SWP_TYPE_BITS 5 #define SWP_OFFSET_FIRST_BIT (_PAGE_BIT_PROTNONE + 1) /* We always extract/encode the offset by shifting it all the way up, and then down again */ #define SWP_OFFSET_SHIFT (SWP_OFFSET_FIRST_BIT+SWP_TYPE_BITS) #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS) /* Extract the high bits for type */ #define __swp_type(x) ((x).val >> (64 - SWP_TYPE_BITS)) /* Shift up (to get rid of type), then down to get value */ #define __swp_offset(x) (~(x).val << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT) /* * Shift the offset up "too far" by TYPE bits, then down again * The offset is inverted by a binary not operation to make the high * physical bits set. */ #define __swp_entry(type, offset) ((swp_entry_t) { \ (~(unsigned long)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \ | ((unsigned long)(type) << (64-SWP_TYPE_BITS)) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) }) #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val((pmd)) }) #define __swp_entry_to_pte(x) ((pte_t) { .pte = (x).val }) #define __swp_entry_to_pmd(x) ((pmd_t) { .pmd = (x).val }) extern int kern_addr_valid(unsigned long addr); extern void cleanup_highmap(void); #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN #define PAGE_AGP PAGE_KERNEL_NOCACHE #define HAVE_PAGE_AGP 1 /* fs/proc/kcore.c */ #define kc_vaddr_to_offset(v) ((v) & __VIRTUAL_MASK) #define kc_offset_to_vaddr(o) ((o) | ~__VIRTUAL_MASK) #define __HAVE_ARCH_PTE_SAME #define vmemmap ((struct page *)VMEMMAP_START) extern void init_extra_mapping_uc(unsigned long phys, unsigned long size); extern void init_extra_mapping_wb(unsigned long phys, unsigned long size); #define gup_fast_permitted gup_fast_permitted static inline bool gup_fast_permitted(unsigned long start, unsigned long end) { if (end >> __VIRTUAL_MASK_SHIFT) return false; return true; } #include <asm/pgtable-invert.h> #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CGROUP_INTERNAL_H #define __CGROUP_INTERNAL_H #include <linux/cgroup.h> #include <linux/kernfs.h> #include <linux/workqueue.h> #include <linux/list.h> #include <linux/refcount.h> #include <linux/fs_parser.h> #define TRACE_CGROUP_PATH_LEN 1024 extern spinlock_t trace_cgroup_path_lock; extern char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; extern bool cgroup_debug; extern void __init enable_debug_cgroup(void); /* * cgroup_path() takes a spin lock. It is good practice not to take * spin locks within trace point handlers, as they are mostly hidden * from normal view. As cgroup_path() can take the kernfs_rename_lock * spin lock, it is best to not call that function from the trace event * handler. * * Note: trace_cgroup_##type##_enabled() is a static branch that will only * be set when the trace event is enabled. */ #define TRACE_CGROUP_PATH(type, cgrp, ...) \ do { \ if (trace_cgroup_##type##_enabled()) { \ unsigned long flags; \ spin_lock_irqsave(&trace_cgroup_path_lock, \ flags); \ cgroup_path(cgrp, trace_cgroup_path, \ TRACE_CGROUP_PATH_LEN); \ trace_cgroup_##type(cgrp, trace_cgroup_path, \ ##__VA_ARGS__); \ spin_unlock_irqrestore(&trace_cgroup_path_lock, \ flags); \ } \ } while (0) /* * The cgroup filesystem superblock creation/mount context. */ struct cgroup_fs_context { struct kernfs_fs_context kfc; struct cgroup_root *root; struct cgroup_namespace *ns; unsigned int flags; /* CGRP_ROOT_* flags */ /* cgroup1 bits */ bool cpuset_clone_children; bool none; /* User explicitly requested empty subsystem */ bool all_ss; /* Seen 'all' option */ u16 subsys_mask; /* Selected subsystems */ char *name; /* Hierarchy name */ char *release_agent; /* Path for release notifications */ }; static inline struct cgroup_fs_context *cgroup_fc2context(struct fs_context *fc) { struct kernfs_fs_context *kfc = fc->fs_private; return container_of(kfc, struct cgroup_fs_context, kfc); } /* * A cgroup can be associated with multiple css_sets as different tasks may * belong to different cgroups on different hierarchies. In the other * direction, a css_set is naturally associated with multiple cgroups. * This M:N relationship is represented by the following link structure * which exists for each association and allows traversing the associations * from both sides. */ struct cgrp_cset_link { /* the cgroup and css_set this link associates */ struct cgroup *cgrp; struct css_set *cset; /* list of cgrp_cset_links anchored at cgrp->cset_links */ struct list_head cset_link; /* list of cgrp_cset_links anchored at css_set->cgrp_links */ struct list_head cgrp_link; }; /* used to track tasks and csets during migration */ struct cgroup_taskset { /* the src and dst cset list running through cset->mg_node */ struct list_head src_csets; struct list_head dst_csets; /* the number of tasks in the set */ int nr_tasks; /* the subsys currently being processed */ int ssid; /* * Fields for cgroup_taskset_*() iteration. * * Before migration is committed, the target migration tasks are on * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of * the csets on ->dst_csets. ->csets point to either ->src_csets * or ->dst_csets depending on whether migration is committed. * * ->cur_csets and ->cur_task point to the current task position * during iteration. */ struct list_head *csets; struct css_set *cur_cset; struct task_struct *cur_task; }; /* migration context also tracks preloading */ struct cgroup_mgctx { /* * Preloaded source and destination csets. Used to guarantee * atomic success or failure on actual migration. */ struct list_head preloaded_src_csets; struct list_head preloaded_dst_csets; /* tasks and csets to migrate */ struct cgroup_taskset tset; /* subsystems affected by migration */ u16 ss_mask; }; #define CGROUP_TASKSET_INIT(tset) \ { \ .src_csets = LIST_HEAD_INIT(tset.src_csets), \ .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \ .csets = &tset.src_csets, \ } #define CGROUP_MGCTX_INIT(name) \ { \ LIST_HEAD_INIT(name.preloaded_src_csets), \ LIST_HEAD_INIT(name.preloaded_dst_csets), \ CGROUP_TASKSET_INIT(name.tset), \ } #define DEFINE_CGROUP_MGCTX(name) \ struct cgroup_mgctx name = CGROUP_MGCTX_INIT(name) extern struct mutex cgroup_mutex; extern spinlock_t css_set_lock; extern struct cgroup_subsys *cgroup_subsys[]; extern struct list_head cgroup_roots; extern struct file_system_type cgroup_fs_type; /* iterate across the hierarchies */ #define for_each_root(root) \ list_for_each_entry((root), &cgroup_roots, root_list) /** * for_each_subsys - iterate all enabled cgroup subsystems * @ss: the iteration cursor * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end */ #define for_each_subsys(ss, ssid) \ for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \ (((ss) = cgroup_subsys[ssid]) || true); (ssid)++) static inline bool cgroup_is_dead(const struct cgroup *cgrp) { return !(cgrp->self.flags & CSS_ONLINE); } static inline bool notify_on_release(const struct cgroup *cgrp) { return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); } void put_css_set_locked(struct css_set *cset); static inline void put_css_set(struct css_set *cset) { unsigned long flags; /* * Ensure that the refcount doesn't hit zero while any readers * can see it. Similar to atomic_dec_and_lock(), but for an * rwlock */ if (refcount_dec_not_one(&cset->refcount)) return; spin_lock_irqsave(&css_set_lock, flags); put_css_set_locked(cset); spin_unlock_irqrestore(&css_set_lock, flags); } /* * refcounted get/put for css_set objects */ static inline void get_css_set(struct css_set *cset) { refcount_inc(&cset->refcount); } bool cgroup_ssid_enabled(int ssid); bool cgroup_on_dfl(const struct cgroup *cgrp); bool cgroup_is_thread_root(struct cgroup *cgrp); bool cgroup_is_threaded(struct cgroup *cgrp); struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root); struct cgroup *task_cgroup_from_root(struct task_struct *task, struct cgroup_root *root); struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline); void cgroup_kn_unlock(struct kernfs_node *kn); int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, struct cgroup_namespace *ns); void cgroup_free_root(struct cgroup_root *root); void init_cgroup_root(struct cgroup_fs_context *ctx); int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask); int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask); int cgroup_do_get_tree(struct fs_context *fc); int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp); void cgroup_migrate_finish(struct cgroup_mgctx *mgctx); void cgroup_migrate_add_src(struct css_set *src_cset, struct cgroup *dst_cgrp, struct cgroup_mgctx *mgctx); int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx); int cgroup_migrate(struct task_struct *leader, bool threadgroup, struct cgroup_mgctx *mgctx); int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, bool threadgroup); struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, bool *locked) __acquires(&cgroup_threadgroup_rwsem); void cgroup_procs_write_finish(struct task_struct *task, bool locked) __releases(&cgroup_threadgroup_rwsem); void cgroup_lock_and_drain_offline(struct cgroup *cgrp); int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode); int cgroup_rmdir(struct kernfs_node *kn); int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, struct kernfs_root *kf_root); int __cgroup_task_count(const struct cgroup *cgrp); int cgroup_task_count(const struct cgroup *cgrp); /* * rstat.c */ int cgroup_rstat_init(struct cgroup *cgrp); void cgroup_rstat_exit(struct cgroup *cgrp); void cgroup_rstat_boot(void); void cgroup_base_stat_cputime_show(struct seq_file *seq); /* * namespace.c */ extern const struct proc_ns_operations cgroupns_operations; /* * cgroup-v1.c */ extern struct cftype cgroup1_base_files[]; extern struct kernfs_syscall_ops cgroup1_kf_syscall_ops; extern const struct fs_parameter_spec cgroup1_fs_parameters[]; int proc_cgroupstats_show(struct seq_file *m, void *v); bool cgroup1_ssid_disabled(int ssid); void cgroup1_pidlist_destroy_all(struct cgroup *cgrp); void cgroup1_release_agent(struct work_struct *work); void cgroup1_check_for_release(struct cgroup *cgrp); int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param); int cgroup1_get_tree(struct fs_context *fc); int cgroup1_reconfigure(struct fs_context *ctx); #endif /* __CGROUP_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Hash: Hash algorithms under the crypto API * * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_HASH_H #define _CRYPTO_HASH_H #include <linux/crypto.h> #include <linux/string.h> struct crypto_ahash; /** * DOC: Message Digest Algorithm Definitions * * These data structures define modular message digest algorithm * implementations, managed via crypto_register_ahash(), * crypto_register_shash(), crypto_unregister_ahash() and * crypto_unregister_shash(). */ /** * struct hash_alg_common - define properties of message digest * @digestsize: Size of the result of the transformation. A buffer of this size * must be available to the @final and @finup calls, so they can * store the resulting hash into it. For various predefined sizes, * search include/crypto/ using * git grep _DIGEST_SIZE include/crypto. * @statesize: Size of the block for partial state of the transformation. A * buffer of this size must be passed to the @export function as it * will save the partial state of the transformation into it. On the * other side, the @import function will load the state from a * buffer of this size as well. * @base: Start of data structure of cipher algorithm. The common data * structure of crypto_alg contains information common to all ciphers. * The hash_alg_common data structure now adds the hash-specific * information. */ struct hash_alg_common { unsigned int digestsize; unsigned int statesize; struct crypto_alg base; }; struct ahash_request { struct crypto_async_request base; unsigned int nbytes; struct scatterlist *src; u8 *result; /* This field may only be used by the ahash API code. */ void *priv; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; /** * struct ahash_alg - asynchronous message digest definition * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the * state of the HASH transformation at the beginning. This shall fill in * the internal structures used during the entire duration of the whole * transformation. No data processing happens at this point. Driver code * implementation must not use req->result. * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This * function actually pushes blocks of data from upper layers into the * driver, which then passes those to the hardware as seen fit. This * function must not finalize the HASH transformation by calculating the * final message digest as this only adds more data into the * transformation. This function shall not modify the transformation * context, as this function may be called in parallel with the same * transformation object. Data processing can happen synchronously * [SHASH] or asynchronously [AHASH] at this point. Driver must not use * req->result. * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the * transformation and retrieves the resulting hash from the driver and * pushes it back to upper layers. No data processing happens at this * point unless hardware requires it to finish the transformation * (then the data buffered by the device driver is processed). * @finup: **[optional]** Combination of @update and @final. This function is effectively a * combination of @update and @final calls issued in sequence. As some * hardware cannot do @update and @final separately, this callback was * added to allow such hardware to be used at least by IPsec. Data * processing can happen synchronously [SHASH] or asynchronously [AHASH] * at this point. * @digest: Combination of @init and @update and @final. This function * effectively behaves as the entire chain of operations, @init, * @update and @final issued in sequence. Just like @finup, this was * added for hardware which cannot do even the @finup, but can only do * the whole transformation in one run. Data processing can happen * synchronously [SHASH] or asynchronously [AHASH] at this point. * @setkey: Set optional key used by the hashing algorithm. Intended to push * optional key used by the hashing algorithm from upper layers into * the driver. This function can store the key in the transformation * context or can outright program it into the hardware. In the former * case, one must be careful to program the key into the hardware at * appropriate time and one must be careful that .setkey() can be * called multiple times during the existence of the transformation * object. Not all hashing algorithms do implement this function as it * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement * this function. This function must be called before any other of the * @init, @update, @final, @finup, @digest is called. No data * processing happens at this point. * @export: Export partial state of the transformation. This function dumps the * entire state of the ongoing transformation into a provided block of * data so it can be @import 'ed back later on. This is useful in case * you want to save partial result of the transformation after * processing certain amount of data and reload this partial result * multiple times later on for multiple re-use. No data processing * happens at this point. Driver must not use req->result. * @import: Import partial state of the transformation. This function loads the * entire state of the ongoing transformation from a provided block of * data so the transformation can continue from this point onward. No * data processing happens at this point. Driver must not use * req->result. * @init_tfm: Initialize the cryptographic transformation object. * This function is called only once at the instantiation * time, right after the transformation context was * allocated. In case the cryptographic hardware has * some special requirements which need to be handled * by software, this function shall check for the precise * requirement of the transformation and put any software * fallbacks in place. * @exit_tfm: Deinitialize the cryptographic transformation object. * This is a counterpart to @init_tfm, used to remove * various changes set in @init_tfm. * @halg: see struct hash_alg_common */ struct ahash_alg { int (*init)(struct ahash_request *req); int (*update)(struct ahash_request *req); int (*final)(struct ahash_request *req); int (*finup)(struct ahash_request *req); int (*digest)(struct ahash_request *req); int (*export)(struct ahash_request *req, void *out); int (*import)(struct ahash_request *req, const void *in); int (*setkey)(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen); int (*init_tfm)(struct crypto_ahash *tfm); void (*exit_tfm)(struct crypto_ahash *tfm); struct hash_alg_common halg; }; struct shash_desc { struct crypto_shash *tfm; void *__ctx[] __aligned(ARCH_SLAB_MINALIGN); }; #define HASH_MAX_DIGESTSIZE 64 /* * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc' * containing a 'struct sha3_state'. */ #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360) #define HASH_MAX_STATESIZE 512 #define SHASH_DESC_ON_STACK(shash, ctx) \ char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \ __aligned(__alignof__(struct shash_desc)); \ struct shash_desc *shash = (struct shash_desc *)__##shash##_desc /** * struct shash_alg - synchronous message digest definition * @init: see struct ahash_alg * @update: see struct ahash_alg * @final: see struct ahash_alg * @finup: see struct ahash_alg * @digest: see struct ahash_alg * @export: see struct ahash_alg * @import: see struct ahash_alg * @setkey: see struct ahash_alg * @init_tfm: Initialize the cryptographic transformation object. * This function is called only once at the instantiation * time, right after the transformation context was * allocated. In case the cryptographic hardware has * some special requirements which need to be handled * by software, this function shall check for the precise * requirement of the transformation and put any software * fallbacks in place. * @exit_tfm: Deinitialize the cryptographic transformation object. * This is a counterpart to @init_tfm, used to remove * various changes set in @init_tfm. * @digestsize: see struct ahash_alg * @statesize: see struct ahash_alg * @descsize: Size of the operational state for the message digest. This state * size is the memory size that needs to be allocated for * shash_desc.__ctx * @base: internally used */ struct shash_alg { int (*init)(struct shash_desc *desc); int (*update)(struct shash_desc *desc, const u8 *data, unsigned int len); int (*final)(struct shash_desc *desc, u8 *out); int (*finup)(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); int (*digest)(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); int (*export)(struct shash_desc *desc, void *out); int (*import)(struct shash_desc *desc, const void *in); int (*setkey)(struct crypto_shash *tfm, const u8 *key, unsigned int keylen); int (*init_tfm)(struct crypto_shash *tfm); void (*exit_tfm)(struct crypto_shash *tfm); unsigned int descsize; /* These fields must match hash_alg_common. */ unsigned int digestsize __attribute__ ((aligned(__alignof__(struct hash_alg_common)))); unsigned int statesize; struct crypto_alg base; }; struct crypto_ahash { int (*init)(struct ahash_request *req); int (*update)(struct ahash_request *req); int (*final)(struct ahash_request *req); int (*finup)(struct ahash_request *req); int (*digest)(struct ahash_request *req); int (*export)(struct ahash_request *req, void *out); int (*import)(struct ahash_request *req, const void *in); int (*setkey)(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen); unsigned int reqsize; struct crypto_tfm base; }; struct crypto_shash { unsigned int descsize; struct crypto_tfm base; }; /** * DOC: Asynchronous Message Digest API * * The asynchronous message digest API is used with the ciphers of type * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) * * The asynchronous cipher operation discussion provided for the * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well. */ static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_ahash, base); } /** * crypto_alloc_ahash() - allocate ahash cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * ahash cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for an ahash. The returned struct * crypto_ahash is the cipher handle that is required for any subsequent * API invocation for that ahash. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) { return &tfm->base; } /** * crypto_free_ahash() - zeroize and free the ahash handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_ahash(struct crypto_ahash *tfm) { crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); } /** * crypto_has_ahash() - Search for the availability of an ahash. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * ahash * @type: specifies the type of the ahash * @mask: specifies the mask for the ahash * * Return: true when the ahash is known to the kernel crypto API; false * otherwise */ int crypto_has_ahash(const char *alg_name, u32 type, u32 mask); static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm) { return crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); } static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm) { return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); } static inline unsigned int crypto_ahash_alignmask( struct crypto_ahash *tfm) { return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm)); } /** * crypto_ahash_blocksize() - obtain block size for cipher * @tfm: cipher handle * * The block size for the message digest cipher referenced with the cipher * handle is returned. * * Return: block size of cipher */ static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm) { return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); } static inline struct hash_alg_common *__crypto_hash_alg_common( struct crypto_alg *alg) { return container_of(alg, struct hash_alg_common, base); } static inline struct hash_alg_common *crypto_hash_alg_common( struct crypto_ahash *tfm) { return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); } /** * crypto_ahash_digestsize() - obtain message digest size * @tfm: cipher handle * * The size for the message digest created by the message digest cipher * referenced with the cipher handle is returned. * * * Return: message digest size of cipher */ static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) { return crypto_hash_alg_common(tfm)->digestsize; } /** * crypto_ahash_statesize() - obtain size of the ahash state * @tfm: cipher handle * * Return the size of the ahash state. With the crypto_ahash_export() * function, the caller can export the state into a buffer whose size is * defined with this function. * * Return: size of the ahash state */ static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm) { return crypto_hash_alg_common(tfm)->statesize; } static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm) { return crypto_tfm_get_flags(crypto_ahash_tfm(tfm)); } static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags) { crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags); } static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); } /** * crypto_ahash_reqtfm() - obtain cipher handle from request * @req: asynchronous request handle that contains the reference to the ahash * cipher handle * * Return the ahash cipher handle that is registered with the asynchronous * request handle ahash_request. * * Return: ahash cipher handle */ static inline struct crypto_ahash *crypto_ahash_reqtfm( struct ahash_request *req) { return __crypto_ahash_cast(req->base.tfm); } /** * crypto_ahash_reqsize() - obtain size of the request data structure * @tfm: cipher handle * * Return: size of the request data */ static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) { return tfm->reqsize; } static inline void *ahash_request_ctx(struct ahash_request *req) { return req->__ctx; } /** * crypto_ahash_setkey - set key for cipher handle * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the ahash cipher. The cipher * handle must point to a keyed hash in order for this function to succeed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen); /** * crypto_ahash_finup() - update and finalize message digest * @req: reference to the ahash_request handle that holds all information * needed to perform the cipher operation * * This function is a "short-hand" for the function calls of * crypto_ahash_update and crypto_ahash_final. The parameters have the same * meaning as discussed for those separate functions. * * Return: see crypto_ahash_final() */ int crypto_ahash_finup(struct ahash_request *req); /** * crypto_ahash_final() - calculate message digest * @req: reference to the ahash_request handle that holds all information * needed to perform the cipher operation * * Finalize the message digest operation and create the message digest * based on all data added to the cipher handle. The message digest is placed * into the output buffer registered with the ahash_request handle. * * Return: * 0 if the message digest was successfully calculated; * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later; * -EBUSY if queue is full and request should be resubmitted later; * other < 0 if an error occurred */ int crypto_ahash_final(struct ahash_request *req); /** * crypto_ahash_digest() - calculate message digest for a buffer * @req: reference to the ahash_request handle that holds all information * needed to perform the cipher operation * * This function is a "short-hand" for the function calls of crypto_ahash_init, * crypto_ahash_update and crypto_ahash_final. The parameters have the same * meaning as discussed for those separate three functions. * * Return: see crypto_ahash_final() */ int crypto_ahash_digest(struct ahash_request *req); /** * crypto_ahash_export() - extract current message digest state * @req: reference to the ahash_request handle whose state is exported * @out: output buffer of sufficient size that can hold the hash state * * This function exports the hash state of the ahash_request handle into the * caller-allocated output buffer out which must have sufficient size (e.g. by * calling crypto_ahash_statesize()). * * Return: 0 if the export was successful; < 0 if an error occurred */ static inline int crypto_ahash_export(struct ahash_request *req, void *out) { return crypto_ahash_reqtfm(req)->export(req, out); } /** * crypto_ahash_import() - import message digest state * @req: reference to ahash_request handle the state is imported into * @in: buffer holding the state * * This function imports the hash state into the ahash_request handle from the * input buffer. That buffer should have been generated with the * crypto_ahash_export function. * * Return: 0 if the import was successful; < 0 if an error occurred */ static inline int crypto_ahash_import(struct ahash_request *req, const void *in) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return tfm->import(req, in); } /** * crypto_ahash_init() - (re)initialize message digest handle * @req: ahash_request handle that already is initialized with all necessary * data using the ahash_request_* API functions * * The call (re-)initializes the message digest referenced by the ahash_request * handle. Any potentially existing state created by previous operations is * discarded. * * Return: see crypto_ahash_final() */ static inline int crypto_ahash_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return tfm->init(req); } /** * crypto_ahash_update() - add data to message digest for processing * @req: ahash_request handle that was previously initialized with the * crypto_ahash_init call. * * Updates the message digest state of the &ahash_request handle. The input data * is pointed to by the scatter/gather list registered in the &ahash_request * handle * * Return: see crypto_ahash_final() */ static inline int crypto_ahash_update(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct crypto_alg *alg = tfm->base.__crt_alg; unsigned int nbytes = req->nbytes; int ret; crypto_stats_get(alg); ret = crypto_ahash_reqtfm(req)->update(req); crypto_stats_ahash_update(nbytes, ret, alg); return ret; } /** * DOC: Asynchronous Hash Request Handle * * The &ahash_request data structure contains all pointers to data * required for the asynchronous cipher operation. This includes the cipher * handle (which can be used by multiple &ahash_request instances), pointer * to plaintext and the message digest output buffer, asynchronous callback * function, etc. It acts as a handle to the ahash_request_* API calls in a * similar way as ahash handle to the crypto_ahash_* API calls. */ /** * ahash_request_set_tfm() - update cipher handle reference in request * @req: request handle to be modified * @tfm: cipher handle that shall be added to the request handle * * Allow the caller to replace the existing ahash handle in the request * data structure with a different one. */ static inline void ahash_request_set_tfm(struct ahash_request *req, struct crypto_ahash *tfm) { req->base.tfm = crypto_ahash_tfm(tfm); } /** * ahash_request_alloc() - allocate request data structure * @tfm: cipher handle to be registered with the request * @gfp: memory allocation flag that is handed to kmalloc by the API call. * * Allocate the request data structure that must be used with the ahash * message digest API calls. During * the allocation, the provided ahash handle * is registered in the request data structure. * * Return: allocated request handle in case of success, or NULL if out of memory */ static inline struct ahash_request *ahash_request_alloc( struct crypto_ahash *tfm, gfp_t gfp) { struct ahash_request *req; req = kmalloc(sizeof(struct ahash_request) + crypto_ahash_reqsize(tfm), gfp); if (likely(req)) ahash_request_set_tfm(req, tfm); return req; } /** * ahash_request_free() - zeroize and free the request data structure * @req: request data structure cipher handle to be freed */ static inline void ahash_request_free(struct ahash_request *req) { kfree_sensitive(req); } static inline void ahash_request_zero(struct ahash_request *req) { memzero_explicit(req, sizeof(*req) + crypto_ahash_reqsize(crypto_ahash_reqtfm(req))); } static inline struct ahash_request *ahash_request_cast( struct crypto_async_request *req) { return container_of(req, struct ahash_request, base); } /** * ahash_request_set_callback() - set asynchronous callback function * @req: request handle * @flags: specify zero or an ORing of the flags * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and * increase the wait queue beyond the initial maximum size; * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep * @compl: callback function pointer to be registered with the request handle * @data: The data pointer refers to memory that is not used by the kernel * crypto API, but provided to the callback function for it to use. Here, * the caller can provide a reference to memory the callback function can * operate on. As the callback function is invoked asynchronously to the * related functionality, it may need to access data structures of the * related functionality which can be referenced using this pointer. The * callback function can access the memory via the "data" field in the * &crypto_async_request data structure provided to the callback function. * * This function allows setting the callback function that is triggered once * the cipher operation completes. * * The callback function is registered with the &ahash_request handle and * must comply with the following template:: * * void callback_function(struct crypto_async_request *req, int error) */ static inline void ahash_request_set_callback(struct ahash_request *req, u32 flags, crypto_completion_t compl, void *data) { req->base.complete = compl; req->base.data = data; req->base.flags = flags; } /** * ahash_request_set_crypt() - set data buffers * @req: ahash_request handle to be updated * @src: source scatter/gather list * @result: buffer that is filled with the message digest -- the caller must * ensure that the buffer has sufficient space by, for example, calling * crypto_ahash_digestsize() * @nbytes: number of bytes to process from the source scatter/gather list * * By using this call, the caller references the source scatter/gather list. * The source scatter/gather list points to the data the message digest is to * be calculated for. */ static inline void ahash_request_set_crypt(struct ahash_request *req, struct scatterlist *src, u8 *result, unsigned int nbytes) { req->src = src; req->nbytes = nbytes; req->result = result; } /** * DOC: Synchronous Message Digest API * * The synchronous message digest API is used with the ciphers of type * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) * * The message digest API is able to maintain state information for the * caller. * * The synchronous message digest API can store user-related context in its * shash_desc request data structure. */ /** * crypto_alloc_shash() - allocate message digest handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * message digest cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a message digest. The returned &struct * crypto_shash is the cipher handle that is required for any subsequent * API invocation for that message digest. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) { return &tfm->base; } /** * crypto_free_shash() - zeroize and free the message digest handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_shash(struct crypto_shash *tfm) { crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); } static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm) { return crypto_tfm_alg_name(crypto_shash_tfm(tfm)); } static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm) { return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm)); } static inline unsigned int crypto_shash_alignmask( struct crypto_shash *tfm) { return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm)); } /** * crypto_shash_blocksize() - obtain block size for cipher * @tfm: cipher handle * * The block size for the message digest cipher referenced with the cipher * handle is returned. * * Return: block size of cipher */ static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) { return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); } static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg) { return container_of(alg, struct shash_alg, base); } static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) { return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); } /** * crypto_shash_digestsize() - obtain message digest size * @tfm: cipher handle * * The size for the message digest created by the message digest cipher * referenced with the cipher handle is returned. * * Return: digest size of cipher */ static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) { return crypto_shash_alg(tfm)->digestsize; } static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm) { return crypto_shash_alg(tfm)->statesize; } static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm) { return crypto_tfm_get_flags(crypto_shash_tfm(tfm)); } static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags) { crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags); } static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); } /** * crypto_shash_descsize() - obtain the operational state size * @tfm: cipher handle * * The size of the operational state the cipher needs during operation is * returned for the hash referenced with the cipher handle. This size is * required to calculate the memory requirements to allow the caller allocating * sufficient memory for operational state. * * The operational state is defined with struct shash_desc where the size of * that data structure is to be calculated as * sizeof(struct shash_desc) + crypto_shash_descsize(alg) * * Return: size of the operational state */ static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) { return tfm->descsize; } static inline void *shash_desc_ctx(struct shash_desc *desc) { return desc->__ctx; } /** * crypto_shash_setkey() - set key for message digest * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the keyed message digest cipher. The * cipher handle must point to a keyed message digest cipher in order for this * function to succeed. * * Context: Any context. * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen); /** * crypto_shash_digest() - calculate message digest for buffer * @desc: see crypto_shash_final() * @data: see crypto_shash_update() * @len: see crypto_shash_update() * @out: see crypto_shash_final() * * This function is a "short-hand" for the function calls of crypto_shash_init, * crypto_shash_update and crypto_shash_final. The parameters have the same * meaning as discussed for those separate three functions. * * Context: Any context. * Return: 0 if the message digest creation was successful; < 0 if an error * occurred */ int crypto_shash_digest(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); /** * crypto_shash_tfm_digest() - calculate message digest for buffer * @tfm: hash transformation object * @data: see crypto_shash_update() * @len: see crypto_shash_update() * @out: see crypto_shash_final() * * This is a simplified version of crypto_shash_digest() for users who don't * want to allocate their own hash descriptor (shash_desc). Instead, * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash) * directly, and it allocates a hash descriptor on the stack internally. * Note that this stack allocation may be fairly large. * * Context: Any context. * Return: 0 on success; < 0 if an error occurred. */ int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data, unsigned int len, u8 *out); /** * crypto_shash_export() - extract operational state for message digest * @desc: reference to the operational state handle whose state is exported * @out: output buffer of sufficient size that can hold the hash state * * This function exports the hash state of the operational state handle into the * caller-allocated output buffer out which must have sufficient size (e.g. by * calling crypto_shash_descsize). * * Context: Any context. * Return: 0 if the export creation was successful; < 0 if an error occurred */ static inline int crypto_shash_export(struct shash_desc *desc, void *out) { return crypto_shash_alg(desc->tfm)->export(desc, out); } /** * crypto_shash_import() - import operational state * @desc: reference to the operational state handle the state imported into * @in: buffer holding the state * * This function imports the hash state into the operational state handle from * the input buffer. That buffer should have been generated with the * crypto_ahash_export function. * * Context: Any context. * Return: 0 if the import was successful; < 0 if an error occurred */ static inline int crypto_shash_import(struct shash_desc *desc, const void *in) { struct crypto_shash *tfm = desc->tfm; if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return crypto_shash_alg(tfm)->import(desc, in); } /** * crypto_shash_init() - (re)initialize message digest * @desc: operational state handle that is already filled * * The call (re-)initializes the message digest referenced by the * operational state handle. Any potentially existing state created by * previous operations is discarded. * * Context: Any context. * Return: 0 if the message digest initialization was successful; < 0 if an * error occurred */ static inline int crypto_shash_init(struct shash_desc *desc) { struct crypto_shash *tfm = desc->tfm; if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return crypto_shash_alg(tfm)->init(desc); } /** * crypto_shash_update() - add data to message digest for processing * @desc: operational state handle that is already initialized * @data: input data to be added to the message digest * @len: length of the input data * * Updates the message digest state of the operational state handle. * * Context: Any context. * Return: 0 if the message digest update was successful; < 0 if an error * occurred */ int crypto_shash_update(struct shash_desc *desc, const u8 *data, unsigned int len); /** * crypto_shash_final() - calculate message digest * @desc: operational state handle that is already filled with data * @out: output buffer filled with the message digest * * Finalize the message digest operation and create the message digest * based on all data added to the cipher handle. The message digest is placed * into the output buffer. The caller must ensure that the output buffer is * large enough by using crypto_shash_digestsize. * * Context: Any context. * Return: 0 if the message digest creation was successful; < 0 if an error * occurred */ int crypto_shash_final(struct shash_desc *desc, u8 *out); /** * crypto_shash_finup() - calculate message digest of buffer * @desc: see crypto_shash_final() * @data: see crypto_shash_update() * @len: see crypto_shash_update() * @out: see crypto_shash_final() * * This function is a "short-hand" for the function calls of * crypto_shash_update and crypto_shash_final. The parameters have the same * meaning as discussed for those separate functions. * * Context: Any context. * Return: 0 if the message digest creation was successful; < 0 if an error * occurred */ int crypto_shash_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); static inline void shash_desc_zero(struct shash_desc *desc) { memzero_explicit(desc, sizeof(*desc) + crypto_shash_descsize(desc->tfm)); } #endif /* _CRYPTO_HASH_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_PREEMPT_H #define __ASM_PREEMPT_H #include <asm/rmwcc.h> #include <asm/percpu.h> #include <linux/thread_info.h> DECLARE_PER_CPU(int, __preempt_count); /* We use the MSB mostly because its available */ #define PREEMPT_NEED_RESCHED 0x80000000 /* * We use the PREEMPT_NEED_RESCHED bit as an inverted NEED_RESCHED such * that a decrement hitting 0 means we can and should reschedule. */ #define PREEMPT_ENABLED (0 + PREEMPT_NEED_RESCHED) /* * We mask the PREEMPT_NEED_RESCHED bit so as not to confuse all current users * that think a non-zero value indicates we cannot preempt. */ static __always_inline int preempt_count(void) { return raw_cpu_read_4(__preempt_count) & ~PREEMPT_NEED_RESCHED; } static __always_inline void preempt_count_set(int pc) { int old, new; do { old = raw_cpu_read_4(__preempt_count); new = (old & PREEMPT_NEED_RESCHED) | (pc & ~PREEMPT_NEED_RESCHED); } while (raw_cpu_cmpxchg_4(__preempt_count, old, new) != old); } /* * must be macros to avoid header recursion hell */ #define init_task_preempt_count(p) do { } while (0) #define init_idle_preempt_count(p, cpu) do { \ per_cpu(__preempt_count, (cpu)) = PREEMPT_DISABLED; \ } while (0) /* * We fold the NEED_RESCHED bit into the preempt count such that * preempt_enable() can decrement and test for needing to reschedule with a * single instruction. * * We invert the actual bit, so that when the decrement hits 0 we know we both * need to resched (the bit is cleared) and can resched (no preempt count). */ static __always_inline void set_preempt_need_resched(void) { raw_cpu_and_4(__preempt_count, ~PREEMPT_NEED_RESCHED); } static __always_inline void clear_preempt_need_resched(void) { raw_cpu_or_4(__preempt_count, PREEMPT_NEED_RESCHED); } static __always_inline bool test_preempt_need_resched(void) { return !(raw_cpu_read_4(__preempt_count) & PREEMPT_NEED_RESCHED); } /* * The various preempt_count add/sub methods */ static __always_inline void __preempt_count_add(int val) { raw_cpu_add_4(__preempt_count, val); } static __always_inline void __preempt_count_sub(int val) { raw_cpu_add_4(__preempt_count, -val); } /* * Because we keep PREEMPT_NEED_RESCHED set when we do _not_ need to reschedule * a decrement which hits zero means we have no preempt_count and should * reschedule. */ static __always_inline bool __preempt_count_dec_and_test(void) { return GEN_UNARY_RMWcc("decl", __preempt_count, e, __percpu_arg([var])); } /* * Returns true when we need to resched and can (barring IRQ state). */ static __always_inline bool should_resched(int preempt_offset) { return unlikely(raw_cpu_read_4(__preempt_count) == preempt_offset); } #ifdef CONFIG_PREEMPTION extern asmlinkage void preempt_schedule_thunk(void); # define __preempt_schedule() \ asm volatile ("call preempt_schedule_thunk" : ASM_CALL_CONSTRAINT) extern asmlinkage void preempt_schedule(void); extern asmlinkage void preempt_schedule_notrace_thunk(void); # define __preempt_schedule_notrace() \ asm volatile ("call preempt_schedule_notrace_thunk" : ASM_CALL_CONSTRAINT) extern asmlinkage void preempt_schedule_notrace(void); #endif #endif /* __ASM_PREEMPT_H */
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 /* SPDX-License-Identifier: GPL-2.0 */ /* * Variant of atomic_t specialized for reference counts. * * The interface matches the atomic_t interface (to aid in porting) but only * provides the few functions one should use for reference counting. * * Saturation semantics * ==================== * * refcount_t differs from atomic_t in that the counter saturates at * REFCOUNT_SATURATED and will not move once there. This avoids wrapping the * counter and causing 'spurious' use-after-free issues. In order to avoid the * cost associated with introducing cmpxchg() loops into all of the saturating * operations, we temporarily allow the counter to take on an unchecked value * and then explicitly set it to REFCOUNT_SATURATED on detecting that underflow * or overflow has occurred. Although this is racy when multiple threads * access the refcount concurrently, by placing REFCOUNT_SATURATED roughly * equidistant from 0 and INT_MAX we minimise the scope for error: * * INT_MAX REFCOUNT_SATURATED UINT_MAX * 0 (0x7fff_ffff) (0xc000_0000) (0xffff_ffff) * +--------------------------------+----------------+----------------+ * <---------- bad value! ----------> * * (in a signed view of the world, the "bad value" range corresponds to * a negative counter value). * * As an example, consider a refcount_inc() operation that causes the counter * to overflow: * * int old = atomic_fetch_add_relaxed(r); * // old is INT_MAX, refcount now INT_MIN (0x8000_0000) * if (old < 0) * atomic_set(r, REFCOUNT_SATURATED); * * If another thread also performs a refcount_inc() operation between the two * atomic operations, then the count will continue to edge closer to 0. If it * reaches a value of 1 before /any/ of the threads reset it to the saturated * value, then a concurrent refcount_dec_and_test() may erroneously free the * underlying object. * Linux limits the maximum number of tasks to PID_MAX_LIMIT, which is currently * 0x400000 (and can't easily be raised in the future beyond FUTEX_TID_MASK). * With the current PID limit, if no batched refcounting operations are used and * the attacker can't repeatedly trigger kernel oopses in the middle of refcount * operations, this makes it impossible for a saturated refcount to leave the * saturation range, even if it is possible for multiple uses of the same * refcount to nest in the context of a single task: * * (UINT_MAX+1-REFCOUNT_SATURATED) / PID_MAX_LIMIT = * 0x40000000 / 0x400000 = 0x100 = 256 * * If hundreds of references are added/removed with a single refcounting * operation, it may potentially be possible to leave the saturation range; but * given the precise timing details involved with the round-robin scheduling of * each thread manipulating the refcount and the need to hit the race multiple * times in succession, there doesn't appear to be a practical avenue of attack * even if using refcount_add() operations with larger increments. * * Memory ordering * =============== * * Memory ordering rules are slightly relaxed wrt regular atomic_t functions * and provide only what is strictly required for refcounts. * * The increments are fully relaxed; these will not provide ordering. The * rationale is that whatever is used to obtain the object we're increasing the * reference count on will provide the ordering. For locked data structures, * its the lock acquire, for RCU/lockless data structures its the dependent * load. * * Do note that inc_not_zero() provides a control dependency which will order * future stores against the inc, this ensures we'll never modify the object * if we did not in fact acquire a reference. * * The decrements will provide release order, such that all the prior loads and * stores will be issued before, it also provides a control dependency, which * will order us against the subsequent free(). * * The control dependency is against the load of the cmpxchg (ll/sc) that * succeeded. This means the stores aren't fully ordered, but this is fine * because the 1->0 transition indicates no concurrency. * * Note that the allocator is responsible for ordering things between free() * and alloc(). * * The decrements dec_and_test() and sub_and_test() also provide acquire * ordering on success. * */ #ifndef _LINUX_REFCOUNT_H #define _LINUX_REFCOUNT_H #include <linux/atomic.h> #include <linux/bug.h> #include <linux/compiler.h> #include <linux/limits.h> #include <linux/spinlock_types.h> struct mutex; /** * struct refcount_t - variant of atomic_t specialized for reference counts * @refs: atomic_t counter field * * The counter saturates at REFCOUNT_SATURATED and will not move once * there. This avoids wrapping the counter and causing 'spurious' * use-after-free bugs. */ typedef struct refcount_struct { atomic_t refs; } refcount_t; #define REFCOUNT_INIT(n) { .refs = ATOMIC_INIT(n), } #define REFCOUNT_MAX INT_MAX #define REFCOUNT_SATURATED (INT_MIN / 2) enum refcount_saturation_type { REFCOUNT_ADD_NOT_ZERO_OVF, REFCOUNT_ADD_OVF, REFCOUNT_ADD_UAF, REFCOUNT_SUB_UAF, REFCOUNT_DEC_LEAK, }; void refcount_warn_saturate(refcount_t *r, enum refcount_saturation_type t); /** * refcount_set - set a refcount's value * @r: the refcount * @n: value to which the refcount will be set */ static inline void refcount_set(refcount_t *r, int n) { atomic_set(&r->refs, n); } /** * refcount_read - get a refcount's value * @r: the refcount * * Return: the refcount's value */ static inline unsigned int refcount_read(const refcount_t *r) { return atomic_read(&r->refs); } static inline __must_check bool __refcount_add_not_zero(int i, refcount_t *r, int *oldp) { int old = refcount_read(r); do { if (!old) break; } while (!atomic_try_cmpxchg_relaxed(&r->refs, &old, old + i)); if (oldp) *oldp = old; if (unlikely(old < 0 || old + i < 0)) refcount_warn_saturate(r, REFCOUNT_ADD_NOT_ZERO_OVF); return old; } /** * refcount_add_not_zero - add a value to a refcount unless it is 0 * @i: the value to add to the refcount * @r: the refcount * * Will saturate at REFCOUNT_SATURATED and WARN. * * Provides no memory ordering, it is assumed the caller has guaranteed the * object memory to be stable (RCU, etc.). It does provide a control dependency * and thereby orders future stores. See the comment on top. * * Use of this function is not recommended for the normal reference counting * use case in which references are taken and released one at a time. In these * cases, refcount_inc(), or one of its variants, should instead be used to * increment a reference count. * * Return: false if the passed refcount is 0, true otherwise */ static inline __must_check bool refcount_add_not_zero(int i, refcount_t *r) { return __refcount_add_not_zero(i, r, NULL); } static inline void __refcount_add(int i, refcount_t *r, int *oldp) { int old = atomic_fetch_add_relaxed(i, &r->refs); if (oldp) *oldp = old; if (unlikely(!old)) refcount_warn_saturate(r, REFCOUNT_ADD_UAF); else if (unlikely(old < 0 || old + i < 0)) refcount_warn_saturate(r, REFCOUNT_ADD_OVF); } /** * refcount_add - add a value to a refcount * @i: the value to add to the refcount * @r: the refcount * * Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN. * * Provides no memory ordering, it is assumed the caller has guaranteed the * object memory to be stable (RCU, etc.). It does provide a control dependency * and thereby orders future stores. See the comment on top. * * Use of this function is not recommended for the normal reference counting * use case in which references are taken and released one at a time. In these * cases, refcount_inc(), or one of its variants, should instead be used to * increment a reference count. */ static inline void refcount_add(int i, refcount_t *r) { __refcount_add(i, r, NULL); } static inline __must_check bool __refcount_inc_not_zero(refcount_t *r, int *oldp) { return __refcount_add_not_zero(1, r, oldp); } /** * refcount_inc_not_zero - increment a refcount unless it is 0 * @r: the refcount to increment * * Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED * and WARN. * * Provides no memory ordering, it is assumed the caller has guaranteed the * object memory to be stable (RCU, etc.). It does provide a control dependency * and thereby orders future stores. See the comment on top. * * Return: true if the increment was successful, false otherwise */ static inline __must_check bool refcount_inc_not_zero(refcount_t *r) { return __refcount_inc_not_zero(r, NULL); } static inline void __refcount_inc(refcount_t *r, int *oldp) { __refcount_add(1, r, oldp); } /** * refcount_inc - increment a refcount * @r: the refcount to increment * * Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN. * * Provides no memory ordering, it is assumed the caller already has a * reference on the object. * * Will WARN if the refcount is 0, as this represents a possible use-after-free * condition. */ static inline void refcount_inc(refcount_t *r) { __refcount_inc(r, NULL); } static inline __must_check bool __refcount_sub_and_test(int i, refcount_t *r, int *oldp) { int old = atomic_fetch_sub_release(i, &r->refs); if (oldp) *oldp = old; if (old == i) { smp_acquire__after_ctrl_dep(); return true; } if (unlikely(old < 0 || old - i < 0)) refcount_warn_saturate(r, REFCOUNT_SUB_UAF); return false; } /** * refcount_sub_and_test - subtract from a refcount and test if it is 0 * @i: amount to subtract from the refcount * @r: the refcount * * Similar to atomic_dec_and_test(), but it will WARN, return false and * ultimately leak on underflow and will fail to decrement when saturated * at REFCOUNT_SATURATED. * * Provides release memory ordering, such that prior loads and stores are done * before, and provides an acquire ordering on success such that free() * must come after. * * Use of this function is not recommended for the normal reference counting * use case in which references are taken and released one at a time. In these * cases, refcount_dec(), or one of its variants, should instead be used to * decrement a reference count. * * Return: true if the resulting refcount is 0, false otherwise */ static inline __must_check bool refcount_sub_and_test(int i, refcount_t *r) { return __refcount_sub_and_test(i, r, NULL); } static inline __must_check bool __refcount_dec_and_test(refcount_t *r, int *oldp) { return __refcount_sub_and_test(1, r, oldp); } /** * refcount_dec_and_test - decrement a refcount and test if it is 0 * @r: the refcount * * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to * decrement when saturated at REFCOUNT_SATURATED. * * Provides release memory ordering, such that prior loads and stores are done * before, and provides an acquire ordering on success such that free() * must come after. * * Return: true if the resulting refcount is 0, false otherwise */ static inline __must_check bool refcount_dec_and_test(refcount_t *r) { return __refcount_dec_and_test(r, NULL); } static inline void __refcount_dec(refcount_t *r, int *oldp) { int old = atomic_fetch_sub_release(1, &r->refs); if (oldp) *oldp = old; if (unlikely(old <= 1)) refcount_warn_saturate(r, REFCOUNT_DEC_LEAK); } /** * refcount_dec - decrement a refcount * @r: the refcount * * Similar to atomic_dec(), it will WARN on underflow and fail to decrement * when saturated at REFCOUNT_SATURATED. * * Provides release memory ordering, such that prior loads and stores are done * before. */ static inline void refcount_dec(refcount_t *r) { __refcount_dec(r, NULL); } extern __must_check bool refcount_dec_if_one(refcount_t *r); extern __must_check bool refcount_dec_not_one(refcount_t *r); extern __must_check bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock); extern __must_check bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock); extern __must_check bool refcount_dec_and_lock_irqsave(refcount_t *r, spinlock_t *lock, unsigned long *flags); #endif /* _LINUX_REFCOUNT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 /* SPDX-License-Identifier: GPL-2.0 */ /* * A security identifier table (sidtab) is a lookup table * of security context structures indexed by SID value. * * Original author: Stephen Smalley, <sds@tycho.nsa.gov> * Author: Ondrej Mosnacek, <omosnacek@gmail.com> * * Copyright (C) 2018 Red Hat, Inc. */ #ifndef _SS_SIDTAB_H_ #define _SS_SIDTAB_H_ #include <linux/spinlock_types.h> #include <linux/log2.h> #include <linux/hashtable.h> #include "context.h" struct sidtab_entry { u32 sid; u32 hash; struct context context; #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 struct sidtab_str_cache __rcu *cache; #endif struct hlist_node list; }; union sidtab_entry_inner { struct sidtab_node_inner *ptr_inner; struct sidtab_node_leaf *ptr_leaf; }; /* align node size to page boundary */ #define SIDTAB_NODE_ALLOC_SHIFT PAGE_SHIFT #define SIDTAB_NODE_ALLOC_SIZE PAGE_SIZE #define size_to_shift(size) ((size) == 1 ? 1 : (const_ilog2((size) - 1) + 1)) #define SIDTAB_INNER_SHIFT \ (SIDTAB_NODE_ALLOC_SHIFT - size_to_shift(sizeof(union sidtab_entry_inner))) #define SIDTAB_INNER_ENTRIES ((size_t)1 << SIDTAB_INNER_SHIFT) #define SIDTAB_LEAF_ENTRIES \ (SIDTAB_NODE_ALLOC_SIZE / sizeof(struct sidtab_entry)) #define SIDTAB_MAX_BITS 32 #define SIDTAB_MAX U32_MAX /* ensure enough tree levels for SIDTAB_MAX entries */ #define SIDTAB_MAX_LEVEL \ DIV_ROUND_UP(SIDTAB_MAX_BITS - size_to_shift(SIDTAB_LEAF_ENTRIES), \ SIDTAB_INNER_SHIFT) struct sidtab_node_leaf { struct sidtab_entry entries[SIDTAB_LEAF_ENTRIES]; }; struct sidtab_node_inner { union sidtab_entry_inner entries[SIDTAB_INNER_ENTRIES]; }; struct sidtab_isid_entry { int set; struct sidtab_entry entry; }; struct sidtab_convert_params { int (*func)(struct context *oldc, struct context *newc, void *args); void *args; struct sidtab *target; }; #define SIDTAB_HASH_BITS CONFIG_SECURITY_SELINUX_SIDTAB_HASH_BITS #define SIDTAB_HASH_BUCKETS (1 << SIDTAB_HASH_BITS) struct sidtab { /* * lock-free read access only for as many items as a prior read of * 'count' */ union sidtab_entry_inner roots[SIDTAB_MAX_LEVEL + 1]; /* * access atomically via {READ|WRITE}_ONCE(); only increment under * spinlock */ u32 count; /* access only under spinlock */ struct sidtab_convert_params *convert; bool frozen; spinlock_t lock; #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 /* SID -> context string cache */ u32 cache_free_slots; struct list_head cache_lru_list; spinlock_t cache_lock; #endif /* index == SID - 1 (no entry for SECSID_NULL) */ struct sidtab_isid_entry isids[SECINITSID_NUM]; /* Hash table for fast reverse context-to-sid lookups. */ DECLARE_HASHTABLE(context_to_sid, SIDTAB_HASH_BITS); }; int sidtab_init(struct sidtab *s); int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context); struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid); struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid); static inline struct context *sidtab_search(struct sidtab *s, u32 sid) { struct sidtab_entry *entry = sidtab_search_entry(s, sid); return entry ? &entry->context : NULL; } static inline struct context *sidtab_search_force(struct sidtab *s, u32 sid) { struct sidtab_entry *entry = sidtab_search_entry_force(s, sid); return entry ? &entry->context : NULL; } int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params); void sidtab_cancel_convert(struct sidtab *s); void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags) __acquires(&s->lock); void sidtab_freeze_end(struct sidtab *s, unsigned long *flags) __releases(&s->lock); int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid); void sidtab_destroy(struct sidtab *s); int sidtab_hash_stats(struct sidtab *sidtab, char *page); #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry, const char *str, u32 str_len); int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out, u32 *out_len); #else static inline void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry, const char *str, u32 str_len) { } static inline int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out, u32 *out_len) { return -ENOENT; } #endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */ #endif /* _SS_SIDTAB_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PTRACE_H #define _LINUX_PTRACE_H #include <linux/compiler.h> /* For unlikely. */ #include <linux/sched.h> /* For struct task_struct. */ #include <linux/sched/signal.h> /* For send_sig(), same_thread_group(), etc. */ #include <linux/err.h> /* for IS_ERR_VALUE */ #include <linux/bug.h> /* For BUG_ON. */ #include <linux/pid_namespace.h> /* For task_active_pid_ns. */ #include <uapi/linux/ptrace.h> #include <linux/seccomp.h> /* Add sp to seccomp_data, as seccomp is user API, we don't want to modify it */ struct syscall_info { __u64 sp; struct seccomp_data data; }; extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags); /* * Ptrace flags * * The owner ship rules for task->ptrace which holds the ptrace * flags is simple. When a task is running it owns it's task->ptrace * flags. When the a task is stopped the ptracer owns task->ptrace. */ #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */ #define PT_PTRACED 0x00000001 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */ #define PT_OPT_FLAG_SHIFT 3 /* PT_TRACE_* event enable flags */ #define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event))) #define PT_TRACESYSGOOD PT_EVENT_FLAG(0) #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK) #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK) #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE) #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC) #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE) #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT) #define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP) #define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT) #define PT_SUSPEND_SECCOMP (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT) /* single stepping state bits (used on ARM and PA-RISC) */ #define PT_SINGLESTEP_BIT 31 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT) #define PT_BLOCKSTEP_BIT 30 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT) extern long arch_ptrace(struct task_struct *child, long request, unsigned long addr, unsigned long data); extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len); extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len); extern void ptrace_disable(struct task_struct *); extern int ptrace_request(struct task_struct *child, long request, unsigned long addr, unsigned long data); extern void ptrace_notify(int exit_code); extern void __ptrace_link(struct task_struct *child, struct task_struct *new_parent, const struct cred *ptracer_cred); extern void __ptrace_unlink(struct task_struct *child); extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead); #define PTRACE_MODE_READ 0x01 #define PTRACE_MODE_ATTACH 0x02 #define PTRACE_MODE_NOAUDIT 0x04 #define PTRACE_MODE_FSCREDS 0x08 #define PTRACE_MODE_REALCREDS 0x10 /* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */ #define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS) #define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS) #define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS) #define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS) /** * ptrace_may_access - check whether the caller is permitted to access * a target task. * @task: target task * @mode: selects type of access and caller credentials * * Returns true on success, false on denial. * * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must * be set in @mode to specify whether the access was requested through * a filesystem syscall (should use effective capabilities and fsuid * of the caller) or through an explicit syscall such as * process_vm_writev or ptrace (and should use the real credentials). */ extern bool ptrace_may_access(struct task_struct *task, unsigned int mode); static inline int ptrace_reparented(struct task_struct *child) { return !same_thread_group(child->real_parent, child->parent); } static inline void ptrace_unlink(struct task_struct *child) { if (unlikely(child->ptrace)) __ptrace_unlink(child); } int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, unsigned long data); int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, unsigned long data); /** * ptrace_parent - return the task that is tracing the given task * @task: task to consider * * Returns %NULL if no one is tracing @task, or the &struct task_struct * pointer to its tracer. * * Must called under rcu_read_lock(). The pointer returned might be kept * live only by RCU. During exec, this may be called with task_lock() held * on @task, still held from when check_unsafe_exec() was called. */ static inline struct task_struct *ptrace_parent(struct task_struct *task) { if (unlikely(task->ptrace)) return rcu_dereference(task->parent); return NULL; } /** * ptrace_event_enabled - test whether a ptrace event is enabled * @task: ptracee of interest * @event: %PTRACE_EVENT_* to test * * Test whether @event is enabled for ptracee @task. * * Returns %true if @event is enabled, %false otherwise. */ static inline bool ptrace_event_enabled(struct task_struct *task, int event) { return task->ptrace & PT_EVENT_FLAG(event); } /** * ptrace_event - possibly stop for a ptrace event notification * @event: %PTRACE_EVENT_* value to report * @message: value for %PTRACE_GETEVENTMSG to return * * Check whether @event is enabled and, if so, report @event and @message * to the ptrace parent. * * Called without locks. */ static inline void ptrace_event(int event, unsigned long message) { if (unlikely(ptrace_event_enabled(current, event))) { current->ptrace_message = message; ptrace_notify((event << 8) | SIGTRAP); } else if (event == PTRACE_EVENT_EXEC) { /* legacy EXEC report via SIGTRAP */ if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED) send_sig(SIGTRAP, current, 0); } } /** * ptrace_event_pid - possibly stop for a ptrace event notification * @event: %PTRACE_EVENT_* value to report * @pid: process identifier for %PTRACE_GETEVENTMSG to return * * Check whether @event is enabled and, if so, report @event and @pid * to the ptrace parent. @pid is reported as the pid_t seen from the * the ptrace parent's pid namespace. * * Called without locks. */ static inline void ptrace_event_pid(int event, struct pid *pid) { /* * FIXME: There's a potential race if a ptracer in a different pid * namespace than parent attaches between computing message below and * when we acquire tasklist_lock in ptrace_stop(). If this happens, * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG. */ unsigned long message = 0; struct pid_namespace *ns; rcu_read_lock(); ns = task_active_pid_ns(rcu_dereference(current->parent)); if (ns) message = pid_nr_ns(pid, ns); rcu_read_unlock(); ptrace_event(event, message); } /** * ptrace_init_task - initialize ptrace state for a new child * @child: new child task * @ptrace: true if child should be ptrace'd by parent's tracer * * This is called immediately after adding @child to its parent's children * list. @ptrace is false in the normal case, and true to ptrace @child. * * Called with current's siglock and write_lock_irq(&tasklist_lock) held. */ static inline void ptrace_init_task(struct task_struct *child, bool ptrace) { INIT_LIST_HEAD(&child->ptrace_entry); INIT_LIST_HEAD(&child->ptraced); child->jobctl = 0; child->ptrace = 0; child->parent = child->real_parent; if (unlikely(ptrace) && current->ptrace) { child->ptrace = current->ptrace; __ptrace_link(child, current->parent, current->ptracer_cred); if (child->ptrace & PT_SEIZED) task_set_jobctl_pending(child, JOBCTL_TRAP_STOP); else sigaddset(&child->pending.signal, SIGSTOP); } else child->ptracer_cred = NULL; } /** * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped * @task: task in %EXIT_DEAD state * * Called with write_lock(&tasklist_lock) held. */ static inline void ptrace_release_task(struct task_struct *task) { BUG_ON(!list_empty(&task->ptraced)); ptrace_unlink(task); BUG_ON(!list_empty(&task->ptrace_entry)); } #ifndef force_successful_syscall_return /* * System call handlers that, upon successful completion, need to return a * negative value should call force_successful_syscall_return() right before * returning. On architectures where the syscall convention provides for a * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly * others), this macro can be used to ensure that the error flag will not get * set. On architectures which do not support a separate error flag, the macro * is a no-op and the spurious error condition needs to be filtered out by some * other means (e.g., in user-level, by passing an extra argument to the * syscall handler, or something along those lines). */ #define force_successful_syscall_return() do { } while (0) #endif #ifndef is_syscall_success /* * On most systems we can tell if a syscall is a success based on if the retval * is an error value. On some systems like ia64 and powerpc they have different * indicators of success/failure and must define their own. */ #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs)))) #endif /* * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__. * * These do-nothing inlines are used when the arch does not * implement single-step. The kerneldoc comments are here * to document the interface for all arch definitions. */ #ifndef arch_has_single_step /** * arch_has_single_step - does this CPU support user-mode single-step? * * If this is defined, then there must be function declarations or * inlines for user_enable_single_step() and user_disable_single_step(). * arch_has_single_step() should evaluate to nonzero iff the machine * supports instruction single-step for user mode. * It can be a constant or it can test a CPU feature bit. */ #define arch_has_single_step() (0) /** * user_enable_single_step - single-step in user-mode task * @task: either current or a task stopped in %TASK_TRACED * * This can only be called when arch_has_single_step() has returned nonzero. * Set @task so that when it returns to user mode, it will trap after the * next single instruction executes. If arch_has_block_step() is defined, * this must clear the effects of user_enable_block_step() too. */ static inline void user_enable_single_step(struct task_struct *task) { BUG(); /* This can never be called. */ } /** * user_disable_single_step - cancel user-mode single-step * @task: either current or a task stopped in %TASK_TRACED * * Clear @task of the effects of user_enable_single_step() and * user_enable_block_step(). This can be called whether or not either * of those was ever called on @task, and even if arch_has_single_step() * returned zero. */ static inline void user_disable_single_step(struct task_struct *task) { } #else extern void user_enable_single_step(struct task_struct *); extern void user_disable_single_step(struct task_struct *); #endif /* arch_has_single_step */ #ifndef arch_has_block_step /** * arch_has_block_step - does this CPU support user-mode block-step? * * If this is defined, then there must be a function declaration or inline * for user_enable_block_step(), and arch_has_single_step() must be defined * too. arch_has_block_step() should evaluate to nonzero iff the machine * supports step-until-branch for user mode. It can be a constant or it * can test a CPU feature bit. */ #define arch_has_block_step() (0) /** * user_enable_block_step - step until branch in user-mode task * @task: either current or a task stopped in %TASK_TRACED * * This can only be called when arch_has_block_step() has returned nonzero, * and will never be called when single-instruction stepping is being used. * Set @task so that when it returns to user mode, it will trap after the * next branch or trap taken. */ static inline void user_enable_block_step(struct task_struct *task) { BUG(); /* This can never be called. */ } #else extern void user_enable_block_step(struct task_struct *); #endif /* arch_has_block_step */ #ifdef ARCH_HAS_USER_SINGLE_STEP_REPORT extern void user_single_step_report(struct pt_regs *regs); #else static inline void user_single_step_report(struct pt_regs *regs) { kernel_siginfo_t info; clear_siginfo(&info); info.si_signo = SIGTRAP; info.si_errno = 0; info.si_code = SI_USER; info.si_pid = 0; info.si_uid = 0; force_sig_info(&info); } #endif #ifndef arch_ptrace_stop_needed /** * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called * @code: current->exit_code value ptrace will stop with * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with * * This is called with the siglock held, to decide whether or not it's * necessary to release the siglock and call arch_ptrace_stop() with the * same @code and @info arguments. It can be defined to a constant if * arch_ptrace_stop() is never required, or always is. On machines where * this makes sense, it should be defined to a quick test to optimize out * calling arch_ptrace_stop() when it would be superfluous. For example, * if the thread has not been back to user mode since the last stop, the * thread state might indicate that nothing needs to be done. * * This is guaranteed to be invoked once before a task stops for ptrace and * may include arch-specific operations necessary prior to a ptrace stop. */ #define arch_ptrace_stop_needed(code, info) (0) #endif #ifndef arch_ptrace_stop /** * arch_ptrace_stop - Do machine-specific work before stopping for ptrace * @code: current->exit_code value ptrace will stop with * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with * * This is called with no locks held when arch_ptrace_stop_needed() has * just returned nonzero. It is allowed to block, e.g. for user memory * access. The arch can have machine-specific work to be done before * ptrace stops. On ia64, register backing store gets written back to user * memory here. Since this can be costly (requires dropping the siglock), * we only do it when the arch requires it for this particular stop, as * indicated by arch_ptrace_stop_needed(). */ #define arch_ptrace_stop(code, info) do { } while (0) #endif #ifndef current_pt_regs #define current_pt_regs() task_pt_regs(current) #endif /* * unlike current_pt_regs(), this one is equal to task_pt_regs(current) * on *all* architectures; the only reason to have a per-arch definition * is optimisation. */ #ifndef signal_pt_regs #define signal_pt_regs() task_pt_regs(current) #endif #ifndef current_user_stack_pointer #define current_user_stack_pointer() user_stack_pointer(current_pt_regs()) #endif extern int task_current_syscall(struct task_struct *target, struct syscall_info *info); extern void sigaction_compat_abi(struct k_sigaction *act, struct k_sigaction *oact); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SMP_H #define _ASM_X86_SMP_H #ifndef __ASSEMBLY__ #include <linux/cpumask.h> #include <asm/percpu.h> #include <asm/thread_info.h> #include <asm/cpumask.h> extern int smp_num_siblings; extern unsigned int num_processors; DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); /* cpus sharing the last level cache: */ DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); DECLARE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id); DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number); static inline struct cpumask *cpu_llc_shared_mask(int cpu) { return per_cpu(cpu_llc_shared_map, cpu); } DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid); #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_X86_32) DECLARE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid); #endif struct task_struct; struct smp_ops { void (*smp_prepare_boot_cpu)(void); void (*smp_prepare_cpus)(unsigned max_cpus); void (*smp_cpus_done)(unsigned max_cpus); void (*stop_other_cpus)(int wait); void (*crash_stop_other_cpus)(void); void (*smp_send_reschedule)(int cpu); int (*cpu_up)(unsigned cpu, struct task_struct *tidle); int (*cpu_disable)(void); void (*cpu_die)(unsigned int cpu); void (*play_dead)(void); void (*send_call_func_ipi)(const struct cpumask *mask); void (*send_call_func_single_ipi)(int cpu); }; /* Globals due to paravirt */ extern void set_cpu_sibling_map(int cpu); #ifdef CONFIG_SMP extern struct smp_ops smp_ops; static inline void smp_send_stop(void) { smp_ops.stop_other_cpus(0); } static inline void stop_other_cpus(void) { smp_ops.stop_other_cpus(1); } static inline void smp_prepare_boot_cpu(void) { smp_ops.smp_prepare_boot_cpu(); } static inline void smp_prepare_cpus(unsigned int max_cpus) { smp_ops.smp_prepare_cpus(max_cpus); } static inline void smp_cpus_done(unsigned int max_cpus) { smp_ops.smp_cpus_done(max_cpus); } static inline int __cpu_up(unsigned int cpu, struct task_struct *tidle) { return smp_ops.cpu_up(cpu, tidle); } static inline int __cpu_disable(void) { return smp_ops.cpu_disable(); } static inline void __cpu_die(unsigned int cpu) { smp_ops.cpu_die(cpu); } static inline void play_dead(void) { smp_ops.play_dead(); } static inline void smp_send_reschedule(int cpu) { smp_ops.smp_send_reschedule(cpu); } static inline void arch_send_call_function_single_ipi(int cpu) { smp_ops.send_call_func_single_ipi(cpu); } static inline void arch_send_call_function_ipi_mask(const struct cpumask *mask) { smp_ops.send_call_func_ipi(mask); } void cpu_disable_common(void); void native_smp_prepare_boot_cpu(void); void native_smp_prepare_cpus(unsigned int max_cpus); void calculate_max_logical_packages(void); void native_smp_cpus_done(unsigned int max_cpus); int common_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_disable(void); int common_cpu_die(unsigned int cpu); void native_cpu_die(unsigned int cpu); void hlt_play_dead(void); void native_play_dead(void); void play_dead_common(void); void wbinvd_on_cpu(int cpu); int wbinvd_on_all_cpus(void); void cond_wakeup_cpu0(void); void native_smp_send_reschedule(int cpu); void native_send_call_func_ipi(const struct cpumask *mask); void native_send_call_func_single_ipi(int cpu); void x86_idle_thread_init(unsigned int cpu, struct task_struct *idle); void smp_store_boot_cpu_info(void); void smp_store_cpu_info(int id); asmlinkage __visible void smp_reboot_interrupt(void); __visible void smp_reschedule_interrupt(struct pt_regs *regs); __visible void smp_call_function_interrupt(struct pt_regs *regs); __visible void smp_call_function_single_interrupt(struct pt_regs *r); #define cpu_physical_id(cpu) per_cpu(x86_cpu_to_apicid, cpu) #define cpu_acpi_id(cpu) per_cpu(x86_cpu_to_acpiid, cpu) /* * This function is needed by all SMP systems. It must _always_ be valid * from the initial startup. We map APIC_BASE very early in page_setup(), * so this is correct in the x86 case. */ #define raw_smp_processor_id() this_cpu_read(cpu_number) #define __smp_processor_id() __this_cpu_read(cpu_number) #ifdef CONFIG_X86_32 extern int safe_smp_processor_id(void); #else # define safe_smp_processor_id() smp_processor_id() #endif #else /* !CONFIG_SMP */ #define wbinvd_on_cpu(cpu) wbinvd() static inline int wbinvd_on_all_cpus(void) { wbinvd(); return 0; } #endif /* CONFIG_SMP */ extern unsigned disabled_cpus; #ifdef CONFIG_X86_LOCAL_APIC extern int hard_smp_processor_id(void); #else /* CONFIG_X86_LOCAL_APIC */ #define hard_smp_processor_id() 0 #endif /* CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_DEBUG_NMI_SELFTEST extern void nmi_selftest(void); #else #define nmi_selftest() do { } while (0) #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_SMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BSEARCH_H #define _LINUX_BSEARCH_H #include <linux/types.h> static __always_inline void *__inline_bsearch(const void *key, const void *base, size_t num, size_t size, cmp_func_t cmp) { const char *pivot; int result; while (num > 0) { pivot = base + (num >> 1) * size; result = cmp(key, pivot); if (result == 0) return (void *)pivot; if (result > 0) { base = pivot + size; num--; } num >>= 1; } return NULL; } extern void *bsearch(const void *key, const void *base, size_t num, size_t size, cmp_func_t cmp); #endif /* _LINUX_BSEARCH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 /* SPDX-License-Identifier: GPL-2.0-only */ /* * V9FS definitions. * * Copyright (C) 2004-2008 by Eric Van Hensbergen <ericvh@gmail.com> * Copyright (C) 2002 by Ron Minnich <rminnich@lanl.gov> */ #ifndef FS_9P_V9FS_H #define FS_9P_V9FS_H #include <linux/backing-dev.h> /** * enum p9_session_flags - option flags for each 9P session * @V9FS_PROTO_2000U: whether or not to use 9P2000.u extensions * @V9FS_PROTO_2000L: whether or not to use 9P2000.l extensions * @V9FS_ACCESS_SINGLE: only the mounting user can access the hierarchy * @V9FS_ACCESS_USER: a new attach will be issued for every user (default) * @V9FS_ACCESS_CLIENT: Just like user, but access check is performed on client. * @V9FS_ACCESS_ANY: use a single attach for all users * @V9FS_ACCESS_MASK: bit mask of different ACCESS options * @V9FS_POSIX_ACL: POSIX ACLs are enforced * * Session flags reflect options selected by users at mount time */ #define V9FS_ACCESS_ANY (V9FS_ACCESS_SINGLE | \ V9FS_ACCESS_USER | \ V9FS_ACCESS_CLIENT) #define V9FS_ACCESS_MASK V9FS_ACCESS_ANY #define V9FS_ACL_MASK V9FS_POSIX_ACL enum p9_session_flags { V9FS_PROTO_2000U = 0x01, V9FS_PROTO_2000L = 0x02, V9FS_ACCESS_SINGLE = 0x04, V9FS_ACCESS_USER = 0x08, V9FS_ACCESS_CLIENT = 0x10, V9FS_POSIX_ACL = 0x20 }; /* possible values of ->cache */ /** * enum p9_cache_modes - user specified cache preferences * @CACHE_NONE: do not cache data, dentries, or directory contents (default) * @CACHE_LOOSE: cache data, dentries, and directory contents w/no consistency * * eventually support loose, tight, time, session, default always none */ enum p9_cache_modes { CACHE_NONE, CACHE_MMAP, CACHE_LOOSE, CACHE_FSCACHE, nr__p9_cache_modes }; /** * struct v9fs_session_info - per-instance session information * @flags: session options of type &p9_session_flags * @nodev: set to 1 to disable device mapping * @debug: debug level * @afid: authentication handle * @cache: cache mode of type &p9_cache_modes * @cachetag: the tag of the cache associated with this session * @fscache: session cookie associated with FS-Cache * @uname: string user name to mount hierarchy as * @aname: mount specifier for remote hierarchy * @maxdata: maximum data to be sent/recvd per protocol message * @dfltuid: default numeric userid to mount hierarchy as * @dfltgid: default numeric groupid to mount hierarchy as * @uid: if %V9FS_ACCESS_SINGLE, the numeric uid which mounted the hierarchy * @clnt: reference to 9P network client instantiated for this session * @slist: reference to list of registered 9p sessions * * This structure holds state for each session instance established during * a sys_mount() . * * Bugs: there seems to be a lot of state which could be condensed and/or * removed. */ struct v9fs_session_info { /* options */ unsigned char flags; unsigned char nodev; unsigned short debug; unsigned int afid; unsigned int cache; #ifdef CONFIG_9P_FSCACHE char *cachetag; struct fscache_cookie *fscache; #endif char *uname; /* user name to mount as */ char *aname; /* name of remote hierarchy being mounted */ unsigned int maxdata; /* max data for client interface */ kuid_t dfltuid; /* default uid/muid for legacy support */ kgid_t dfltgid; /* default gid for legacy support */ kuid_t uid; /* if ACCESS_SINGLE, the uid that has access */ struct p9_client *clnt; /* 9p client */ struct list_head slist; /* list of sessions registered with v9fs */ struct rw_semaphore rename_sem; long session_lock_timeout; /* retry interval for blocking locks */ }; /* cache_validity flags */ #define V9FS_INO_INVALID_ATTR 0x01 struct v9fs_inode { #ifdef CONFIG_9P_FSCACHE struct mutex fscache_lock; struct fscache_cookie *fscache; #endif struct p9_qid qid; unsigned int cache_validity; struct p9_fid *writeback_fid; struct mutex v_mutex; struct inode vfs_inode; }; static inline struct v9fs_inode *V9FS_I(const struct inode *inode) { return container_of(inode, struct v9fs_inode, vfs_inode); } extern int v9fs_show_options(struct seq_file *m, struct dentry *root); struct p9_fid *v9fs_session_init(struct v9fs_session_info *, const char *, char *); extern void v9fs_session_close(struct v9fs_session_info *v9ses); extern void v9fs_session_cancel(struct v9fs_session_info *v9ses); extern void v9fs_session_begin_cancel(struct v9fs_session_info *v9ses); extern struct dentry *v9fs_vfs_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags); extern int v9fs_vfs_unlink(struct inode *i, struct dentry *d); extern int v9fs_vfs_rmdir(struct inode *i, struct dentry *d); extern int v9fs_vfs_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags); extern struct inode *v9fs_inode_from_fid(struct v9fs_session_info *v9ses, struct p9_fid *fid, struct super_block *sb, int new); extern const struct inode_operations v9fs_dir_inode_operations_dotl; extern const struct inode_operations v9fs_file_inode_operations_dotl; extern const struct inode_operations v9fs_symlink_inode_operations_dotl; extern struct inode *v9fs_inode_from_fid_dotl(struct v9fs_session_info *v9ses, struct p9_fid *fid, struct super_block *sb, int new); /* other default globals */ #define V9FS_PORT 564 #define V9FS_DEFUSER "nobody" #define V9FS_DEFANAME "" #define V9FS_DEFUID KUIDT_INIT(-2) #define V9FS_DEFGID KGIDT_INIT(-2) static inline struct v9fs_session_info *v9fs_inode2v9ses(struct inode *inode) { return (inode->i_sb->s_fs_info); } static inline struct v9fs_session_info *v9fs_dentry2v9ses(struct dentry *dentry) { return dentry->d_sb->s_fs_info; } static inline int v9fs_proto_dotu(struct v9fs_session_info *v9ses) { return v9ses->flags & V9FS_PROTO_2000U; } static inline int v9fs_proto_dotl(struct v9fs_session_info *v9ses) { return v9ses->flags & V9FS_PROTO_2000L; } /** * v9fs_get_inode_from_fid - Helper routine to populate an inode by * issuing a attribute request * @v9ses: session information * @fid: fid to issue attribute request for * @sb: superblock on which to create inode * */ static inline struct inode * v9fs_get_inode_from_fid(struct v9fs_session_info *v9ses, struct p9_fid *fid, struct super_block *sb) { if (v9fs_proto_dotl(v9ses)) return v9fs_inode_from_fid_dotl(v9ses, fid, sb, 0); else return v9fs_inode_from_fid(v9ses, fid, sb, 0); } /** * v9fs_get_new_inode_from_fid - Helper routine to populate an inode by * issuing a attribute request * @v9ses: session information * @fid: fid to issue attribute request for * @sb: superblock on which to create inode * */ static inline struct inode * v9fs_get_new_inode_from_fid(struct v9fs_session_info *v9ses, struct p9_fid *fid, struct super_block *sb) { if (v9fs_proto_dotl(v9ses)) return v9fs_inode_from_fid_dotl(v9ses, fid, sb, 1); else return v9fs_inode_from_fid(v9ses, fid, sb, 1); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_RT_H #define _LINUX_SCHED_RT_H #include <linux/sched.h> struct task_struct; static inline int rt_prio(int prio) { if (unlikely(prio < MAX_RT_PRIO)) return 1; return 0; } static inline int rt_task(struct task_struct *p) { return rt_prio(p->prio); } static inline bool task_is_realtime(struct task_struct *tsk) { int policy = tsk->policy; if (policy == SCHED_FIFO || policy == SCHED_RR) return true; if (policy == SCHED_DEADLINE) return true; return false; } #ifdef CONFIG_RT_MUTEXES /* * Must hold either p->pi_lock or task_rq(p)->lock. */ static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *p) { return p->pi_top_task; } extern void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task); extern void rt_mutex_adjust_pi(struct task_struct *p); static inline bool tsk_is_pi_blocked(struct task_struct *tsk) { return tsk->pi_blocked_on != NULL; } #else static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *task) { return NULL; } # define rt_mutex_adjust_pi(p) do { } while (0) static inline bool tsk_is_pi_blocked(struct task_struct *tsk) { return false; } #endif extern void normalize_rt_tasks(void); /* * default timeslice is 100 msecs (used only for SCHED_RR tasks). * Timeslices get refilled after they expire. */ #define RR_TIMESLICE (100 * HZ / 1000) #endif /* _LINUX_SCHED_RT_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * linux/drivers/char/serial_core.h * * Copyright (C) 2000 Deep Blue Solutions Ltd. */ #ifndef LINUX_SERIAL_CORE_H #define LINUX_SERIAL_CORE_H #include <linux/bitops.h> #include <linux/compiler.h> #include <linux/console.h> #include <linux/interrupt.h> #include <linux/circ_buf.h> #include <linux/spinlock.h> #include <linux/sched.h> #include <linux/tty.h> #include <linux/mutex.h> #include <linux/sysrq.h> #include <uapi/linux/serial_core.h> #ifdef CONFIG_SERIAL_CORE_CONSOLE #define uart_console(port) \ ((port)->cons && (port)->cons->index == (port)->line) #else #define uart_console(port) ({ (void)port; 0; }) #endif struct uart_port; struct serial_struct; struct device; struct gpio_desc; /* * This structure describes all the operations that can be done on the * physical hardware. See Documentation/driver-api/serial/driver.rst for details. */ struct uart_ops { unsigned int (*tx_empty)(struct uart_port *); void (*set_mctrl)(struct uart_port *, unsigned int mctrl); unsigned int (*get_mctrl)(struct uart_port *); void (*stop_tx)(struct uart_port *); void (*start_tx)(struct uart_port *); void (*throttle)(struct uart_port *); void (*unthrottle)(struct uart_port *); void (*send_xchar)(struct uart_port *, char ch); void (*stop_rx)(struct uart_port *); void (*enable_ms)(struct uart_port *); void (*break_ctl)(struct uart_port *, int ctl); int (*startup)(struct uart_port *); void (*shutdown)(struct uart_port *); void (*flush_buffer)(struct uart_port *); void (*set_termios)(struct uart_port *, struct ktermios *new, struct ktermios *old); void (*set_ldisc)(struct uart_port *, struct ktermios *); void (*pm)(struct uart_port *, unsigned int state, unsigned int oldstate); /* * Return a string describing the type of the port */ const char *(*type)(struct uart_port *); /* * Release IO and memory resources used by the port. * This includes iounmap if necessary. */ void (*release_port)(struct uart_port *); /* * Request IO and memory resources used by the port. * This includes iomapping the port if necessary. */ int (*request_port)(struct uart_port *); void (*config_port)(struct uart_port *, int); int (*verify_port)(struct uart_port *, struct serial_struct *); int (*ioctl)(struct uart_port *, unsigned int, unsigned long); #ifdef CONFIG_CONSOLE_POLL int (*poll_init)(struct uart_port *); void (*poll_put_char)(struct uart_port *, unsigned char); int (*poll_get_char)(struct uart_port *); #endif }; #define NO_POLL_CHAR 0x00ff0000 #define UART_CONFIG_TYPE (1 << 0) #define UART_CONFIG_IRQ (1 << 1) struct uart_icount { __u32 cts; __u32 dsr; __u32 rng; __u32 dcd; __u32 rx; __u32 tx; __u32 frame; __u32 overrun; __u32 parity; __u32 brk; __u32 buf_overrun; }; typedef unsigned int __bitwise upf_t; typedef unsigned int __bitwise upstat_t; struct uart_port { spinlock_t lock; /* port lock */ unsigned long iobase; /* in/out[bwl] */ unsigned char __iomem *membase; /* read/write[bwl] */ unsigned int (*serial_in)(struct uart_port *, int); void (*serial_out)(struct uart_port *, int, int); void (*set_termios)(struct uart_port *, struct ktermios *new, struct ktermios *old); void (*set_ldisc)(struct uart_port *, struct ktermios *); unsigned int (*get_mctrl)(struct uart_port *); void (*set_mctrl)(struct uart_port *, unsigned int); unsigned int (*get_divisor)(struct uart_port *, unsigned int baud, unsigned int *frac); void (*set_divisor)(struct uart_port *, unsigned int baud, unsigned int quot, unsigned int quot_frac); int (*startup)(struct uart_port *port); void (*shutdown)(struct uart_port *port); void (*throttle)(struct uart_port *port); void (*unthrottle)(struct uart_port *port); int (*handle_irq)(struct uart_port *); void (*pm)(struct uart_port *, unsigned int state, unsigned int old); void (*handle_break)(struct uart_port *); int (*rs485_config)(struct uart_port *, struct serial_rs485 *rs485); int (*iso7816_config)(struct uart_port *, struct serial_iso7816 *iso7816); unsigned int irq; /* irq number */ unsigned long irqflags; /* irq flags */ unsigned int uartclk; /* base uart clock */ unsigned int fifosize; /* tx fifo size */ unsigned char x_char; /* xon/xoff char */ unsigned char regshift; /* reg offset shift */ unsigned char iotype; /* io access style */ unsigned char quirks; /* internal quirks */ #define UPIO_PORT (SERIAL_IO_PORT) /* 8b I/O port access */ #define UPIO_HUB6 (SERIAL_IO_HUB6) /* Hub6 ISA card */ #define UPIO_MEM (SERIAL_IO_MEM) /* driver-specific */ #define UPIO_MEM32 (SERIAL_IO_MEM32) /* 32b little endian */ #define UPIO_AU (SERIAL_IO_AU) /* Au1x00 and RT288x type IO */ #define UPIO_TSI (SERIAL_IO_TSI) /* Tsi108/109 type IO */ #define UPIO_MEM32BE (SERIAL_IO_MEM32BE) /* 32b big endian */ #define UPIO_MEM16 (SERIAL_IO_MEM16) /* 16b little endian */ /* quirks must be updated while holding port mutex */ #define UPQ_NO_TXEN_TEST BIT(0) unsigned int read_status_mask; /* driver specific */ unsigned int ignore_status_mask; /* driver specific */ struct uart_state *state; /* pointer to parent state */ struct uart_icount icount; /* statistics */ struct console *cons; /* struct console, if any */ /* flags must be updated while holding port mutex */ upf_t flags; /* * These flags must be equivalent to the flags defined in * include/uapi/linux/tty_flags.h which are the userspace definitions * assigned from the serial_struct flags in uart_set_info() * [for bit definitions in the UPF_CHANGE_MASK] * * Bits [0..UPF_LAST_USER] are userspace defined/visible/changeable * The remaining bits are serial-core specific and not modifiable by * userspace. */ #define UPF_FOURPORT ((__force upf_t) ASYNC_FOURPORT /* 1 */ ) #define UPF_SAK ((__force upf_t) ASYNC_SAK /* 2 */ ) #define UPF_SPD_HI ((__force upf_t) ASYNC_SPD_HI /* 4 */ ) #define UPF_SPD_VHI ((__force upf_t) ASYNC_SPD_VHI /* 5 */ ) #define UPF_SPD_CUST ((__force upf_t) ASYNC_SPD_CUST /* 0x0030 */ ) #define UPF_SPD_WARP ((__force upf_t) ASYNC_SPD_WARP /* 0x1010 */ ) #define UPF_SPD_MASK ((__force upf_t) ASYNC_SPD_MASK /* 0x1030 */ ) #define UPF_SKIP_TEST ((__force upf_t) ASYNC_SKIP_TEST /* 6 */ ) #define UPF_AUTO_IRQ ((__force upf_t) ASYNC_AUTO_IRQ /* 7 */ ) #define UPF_HARDPPS_CD ((__force upf_t) ASYNC_HARDPPS_CD /* 11 */ ) #define UPF_SPD_SHI ((__force upf_t) ASYNC_SPD_SHI /* 12 */ ) #define UPF_LOW_LATENCY ((__force upf_t) ASYNC_LOW_LATENCY /* 13 */ ) #define UPF_BUGGY_UART ((__force upf_t) ASYNC_BUGGY_UART /* 14 */ ) #define UPF_MAGIC_MULTIPLIER ((__force upf_t) ASYNC_MAGIC_MULTIPLIER /* 16 */ ) #define UPF_NO_THRE_TEST ((__force upf_t) (1 << 19)) /* Port has hardware-assisted h/w flow control */ #define UPF_AUTO_CTS ((__force upf_t) (1 << 20)) #define UPF_AUTO_RTS ((__force upf_t) (1 << 21)) #define UPF_HARD_FLOW ((__force upf_t) (UPF_AUTO_CTS | UPF_AUTO_RTS)) /* Port has hardware-assisted s/w flow control */ #define UPF_SOFT_FLOW ((__force upf_t) (1 << 22)) #define UPF_CONS_FLOW ((__force upf_t) (1 << 23)) #define UPF_SHARE_IRQ ((__force upf_t) (1 << 24)) #define UPF_EXAR_EFR ((__force upf_t) (1 << 25)) #define UPF_BUG_THRE ((__force upf_t) (1 << 26)) /* The exact UART type is known and should not be probed. */ #define UPF_FIXED_TYPE ((__force upf_t) (1 << 27)) #define UPF_BOOT_AUTOCONF ((__force upf_t) (1 << 28)) #define UPF_FIXED_PORT ((__force upf_t) (1 << 29)) #define UPF_DEAD ((__force upf_t) (1 << 30)) #define UPF_IOREMAP ((__force upf_t) (1 << 31)) #define __UPF_CHANGE_MASK 0x17fff #define UPF_CHANGE_MASK ((__force upf_t) __UPF_CHANGE_MASK) #define UPF_USR_MASK ((__force upf_t) (UPF_SPD_MASK|UPF_LOW_LATENCY)) #if __UPF_CHANGE_MASK > ASYNC_FLAGS #error Change mask not equivalent to userspace-visible bit defines #endif /* * Must hold termios_rwsem, port mutex and port lock to change; * can hold any one lock to read. */ upstat_t status; #define UPSTAT_CTS_ENABLE ((__force upstat_t) (1 << 0)) #define UPSTAT_DCD_ENABLE ((__force upstat_t) (1 << 1)) #define UPSTAT_AUTORTS ((__force upstat_t) (1 << 2)) #define UPSTAT_AUTOCTS ((__force upstat_t) (1 << 3)) #define UPSTAT_AUTOXOFF ((__force upstat_t) (1 << 4)) #define UPSTAT_SYNC_FIFO ((__force upstat_t) (1 << 5)) int hw_stopped; /* sw-assisted CTS flow state */ unsigned int mctrl; /* current modem ctrl settings */ unsigned int timeout; /* character-based timeout */ unsigned int type; /* port type */ const struct uart_ops *ops; unsigned int custom_divisor; unsigned int line; /* port index */ unsigned int minor; resource_size_t mapbase; /* for ioremap */ resource_size_t mapsize; struct device *dev; /* parent device */ unsigned long sysrq; /* sysrq timeout */ unsigned int sysrq_ch; /* char for sysrq */ unsigned char has_sysrq; unsigned char sysrq_seq; /* index in sysrq_toggle_seq */ unsigned char hub6; /* this should be in the 8250 driver */ unsigned char suspended; unsigned char console_reinit; const char *name; /* port name */ struct attribute_group *attr_group; /* port specific attributes */ const struct attribute_group **tty_groups; /* all attributes (serial core use only) */ struct serial_rs485 rs485; struct gpio_desc *rs485_term_gpio; /* enable RS485 bus termination */ struct serial_iso7816 iso7816; void *private_data; /* generic platform data pointer */ }; static inline int serial_port_in(struct uart_port *up, int offset) { return up->serial_in(up, offset); } static inline void serial_port_out(struct uart_port *up, int offset, int value) { up->serial_out(up, offset, value); } /** * enum uart_pm_state - power states for UARTs * @UART_PM_STATE_ON: UART is powered, up and operational * @UART_PM_STATE_OFF: UART is powered off * @UART_PM_STATE_UNDEFINED: sentinel */ enum uart_pm_state { UART_PM_STATE_ON = 0, UART_PM_STATE_OFF = 3, /* number taken from ACPI */ UART_PM_STATE_UNDEFINED, }; /* * This is the state information which is persistent across opens. */ struct uart_state { struct tty_port port; enum uart_pm_state pm_state; struct circ_buf xmit; atomic_t refcount; wait_queue_head_t remove_wait; struct uart_port *uart_port; }; #define UART_XMIT_SIZE PAGE_SIZE /* number of characters left in xmit buffer before we ask for more */ #define WAKEUP_CHARS 256 struct module; struct tty_driver; struct uart_driver { struct module *owner; const char *driver_name; const char *dev_name; int major; int minor; int nr; struct console *cons; /* * these are private; the low level driver should not * touch these; they should be initialised to NULL */ struct uart_state *state; struct tty_driver *tty_driver; }; void uart_write_wakeup(struct uart_port *port); /* * Baud rate helpers. */ void uart_update_timeout(struct uart_port *port, unsigned int cflag, unsigned int baud); unsigned int uart_get_baud_rate(struct uart_port *port, struct ktermios *termios, struct ktermios *old, unsigned int min, unsigned int max); unsigned int uart_get_divisor(struct uart_port *port, unsigned int baud); /* Base timer interval for polling */ static inline int uart_poll_timeout(struct uart_port *port) { int timeout = port->timeout; return timeout > 6 ? (timeout / 2 - 2) : 1; } /* * Console helpers. */ struct earlycon_device { struct console *con; struct uart_port port; char options[16]; /* e.g., 115200n8 */ unsigned int baud; }; struct earlycon_id { char name[15]; char name_term; /* In case compiler didn't '\0' term name */ char compatible[128]; int (*setup)(struct earlycon_device *, const char *options); }; extern const struct earlycon_id *__earlycon_table[]; extern const struct earlycon_id *__earlycon_table_end[]; #if defined(CONFIG_SERIAL_EARLYCON) && !defined(MODULE) #define EARLYCON_USED_OR_UNUSED __used #else #define EARLYCON_USED_OR_UNUSED __maybe_unused #endif #define _OF_EARLYCON_DECLARE(_name, compat, fn, unique_id) \ static const struct earlycon_id unique_id \ EARLYCON_USED_OR_UNUSED __initconst \ = { .name = __stringify(_name), \ .compatible = compat, \ .setup = fn }; \ static const struct earlycon_id EARLYCON_USED_OR_UNUSED \ __section("__earlycon_table") \ * const __PASTE(__p, unique_id) = &unique_id #define OF_EARLYCON_DECLARE(_name, compat, fn) \ _OF_EARLYCON_DECLARE(_name, compat, fn, \ __UNIQUE_ID(__earlycon_##_name)) #define EARLYCON_DECLARE(_name, fn) OF_EARLYCON_DECLARE(_name, "", fn) extern int of_setup_earlycon(const struct earlycon_id *match, unsigned long node, const char *options); #ifdef CONFIG_SERIAL_EARLYCON extern bool earlycon_acpi_spcr_enable __initdata; int setup_earlycon(char *buf); #else static const bool earlycon_acpi_spcr_enable EARLYCON_USED_OR_UNUSED; static inline int setup_earlycon(char *buf) { return 0; } #endif struct uart_port *uart_get_console(struct uart_port *ports, int nr, struct console *c); int uart_parse_earlycon(char *p, unsigned char *iotype, resource_size_t *addr, char **options); void uart_parse_options(const char *options, int *baud, int *parity, int *bits, int *flow); int uart_set_options(struct uart_port *port, struct console *co, int baud, int parity, int bits, int flow); struct tty_driver *uart_console_device(struct console *co, int *index); void uart_console_write(struct uart_port *port, const char *s, unsigned int count, void (*putchar)(struct uart_port *, int)); /* * Port/driver registration/removal */ int uart_register_driver(struct uart_driver *uart); void uart_unregister_driver(struct uart_driver *uart); int uart_add_one_port(struct uart_driver *reg, struct uart_port *port); int uart_remove_one_port(struct uart_driver *reg, struct uart_port *port); int uart_match_port(struct uart_port *port1, struct uart_port *port2); /* * Power Management */ int uart_suspend_port(struct uart_driver *reg, struct uart_port *port); int uart_resume_port(struct uart_driver *reg, struct uart_port *port); #define uart_circ_empty(circ) ((circ)->head == (circ)->tail) #define uart_circ_clear(circ) ((circ)->head = (circ)->tail = 0) #define uart_circ_chars_pending(circ) \ (CIRC_CNT((circ)->head, (circ)->tail, UART_XMIT_SIZE)) #define uart_circ_chars_free(circ) \ (CIRC_SPACE((circ)->head, (circ)->tail, UART_XMIT_SIZE)) static inline int uart_tx_stopped(struct uart_port *port) { struct tty_struct *tty = port->state->port.tty; if ((tty && tty->stopped) || port->hw_stopped) return 1; return 0; } static inline bool uart_cts_enabled(struct uart_port *uport) { return !!(uport->status & UPSTAT_CTS_ENABLE); } static inline bool uart_softcts_mode(struct uart_port *uport) { upstat_t mask = UPSTAT_CTS_ENABLE | UPSTAT_AUTOCTS; return ((uport->status & mask) == UPSTAT_CTS_ENABLE); } /* * The following are helper functions for the low level drivers. */ extern void uart_handle_dcd_change(struct uart_port *uport, unsigned int status); extern void uart_handle_cts_change(struct uart_port *uport, unsigned int status); extern void uart_insert_char(struct uart_port *port, unsigned int status, unsigned int overrun, unsigned int ch, unsigned int flag); #ifdef CONFIG_MAGIC_SYSRQ_SERIAL #define SYSRQ_TIMEOUT (HZ * 5) bool uart_try_toggle_sysrq(struct uart_port *port, unsigned int ch); static inline int uart_handle_sysrq_char(struct uart_port *port, unsigned int ch) { if (!port->sysrq) return 0; if (ch && time_before(jiffies, port->sysrq)) { if (sysrq_mask()) { handle_sysrq(ch); port->sysrq = 0; return 1; } if (uart_try_toggle_sysrq(port, ch)) return 1; } port->sysrq = 0; return 0; } static inline int uart_prepare_sysrq_char(struct uart_port *port, unsigned int ch) { if (!port->sysrq) return 0; if (ch && time_before(jiffies, port->sysrq)) { if (sysrq_mask()) { port->sysrq_ch = ch; port->sysrq = 0; return 1; } if (uart_try_toggle_sysrq(port, ch)) return 1; } port->sysrq = 0; return 0; } static inline void uart_unlock_and_check_sysrq(struct uart_port *port, unsigned long irqflags) { int sysrq_ch; if (!port->has_sysrq) { spin_unlock_irqrestore(&port->lock, irqflags); return; } sysrq_ch = port->sysrq_ch; port->sysrq_ch = 0; spin_unlock_irqrestore(&port->lock, irqflags); if (sysrq_ch) handle_sysrq(sysrq_ch); } #else /* CONFIG_MAGIC_SYSRQ_SERIAL */ static inline int uart_handle_sysrq_char(struct uart_port *port, unsigned int ch) { return 0; } static inline int uart_prepare_sysrq_char(struct uart_port *port, unsigned int ch) { return 0; } static inline void uart_unlock_and_check_sysrq(struct uart_port *port, unsigned long irqflags) { spin_unlock_irqrestore(&port->lock, irqflags); } #endif /* CONFIG_MAGIC_SYSRQ_SERIAL */ /* * We do the SysRQ and SAK checking like this... */ static inline int uart_handle_break(struct uart_port *port) { struct uart_state *state = port->state; if (port->handle_break) port->handle_break(port); #ifdef CONFIG_MAGIC_SYSRQ_SERIAL if (port->has_sysrq && uart_console(port)) { if (!port->sysrq) { port->sysrq = jiffies + SYSRQ_TIMEOUT; return 1; } port->sysrq = 0; } #endif if (port->flags & UPF_SAK) do_SAK(state->port.tty); return 0; } /* * UART_ENABLE_MS - determine if port should enable modem status irqs */ #define UART_ENABLE_MS(port,cflag) ((port)->flags & UPF_HARDPPS_CD || \ (cflag) & CRTSCTS || \ !((cflag) & CLOCAL)) int uart_get_rs485_mode(struct uart_port *port); #endif /* LINUX_SERIAL_CORE_H */
1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 // SPDX-License-Identifier: GPL-2.0-only /* * Simple NUMA memory policy for the Linux kernel. * * Copyright 2003,2004 Andi Kleen, SuSE Labs. * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. * * NUMA policy allows the user to give hints in which node(s) memory should * be allocated. * * Support four policies per VMA and per process: * * The VMA policy has priority over the process policy for a page fault. * * interleave Allocate memory interleaved over a set of nodes, * with normal fallback if it fails. * For VMA based allocations this interleaves based on the * offset into the backing object or offset into the mapping * for anonymous memory. For process policy an process counter * is used. * * bind Only allocate memory on a specific set of nodes, * no fallback. * FIXME: memory is allocated starting with the first node * to the last. It would be better if bind would truly restrict * the allocation to memory nodes instead * * preferred Try a specific node first before normal fallback. * As a special case NUMA_NO_NODE here means do the allocation * on the local CPU. This is normally identical to default, * but useful to set in a VMA when you have a non default * process policy. * * default Allocate on the local node first, or when on a VMA * use the process policy. This is what Linux always did * in a NUMA aware kernel and still does by, ahem, default. * * The process policy is applied for most non interrupt memory allocations * in that process' context. Interrupts ignore the policies and always * try to allocate on the local CPU. The VMA policy is only applied for memory * allocations for a VMA in the VM. * * Currently there are a few corner cases in swapping where the policy * is not applied, but the majority should be handled. When process policy * is used it is not remembered over swap outs/swap ins. * * Only the highest zone in the zone hierarchy gets policied. Allocations * requesting a lower zone just use default policy. This implies that * on systems with highmem kernel lowmem allocation don't get policied. * Same with GFP_DMA allocations. * * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between * all users and remembered even when nobody has memory mapped. */ /* Notebook: fix mmap readahead to honour policy and enable policy for any page cache object statistics for bigpages global policy for page cache? currently it uses process policy. Requires first item above. handle mremap for shared memory (currently ignored for the policy) grows down? make bind policy root only? It can trigger oom much faster and the kernel is not always grateful with that. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/mempolicy.h> #include <linux/pagewalk.h> #include <linux/highmem.h> #include <linux/hugetlb.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/sched/numa_balancing.h> #include <linux/sched/task.h> #include <linux/nodemask.h> #include <linux/cpuset.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/export.h> #include <linux/nsproxy.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/compat.h> #include <linux/ptrace.h> #include <linux/swap.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <linux/migrate.h> #include <linux/ksm.h> #include <linux/rmap.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/ctype.h> #include <linux/mm_inline.h> #include <linux/mmu_notifier.h> #include <linux/printk.h> #include <linux/swapops.h> #include <asm/tlbflush.h> #include <linux/uaccess.h> #include "internal.h" /* Internal flags */ #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ static struct kmem_cache *policy_cache; static struct kmem_cache *sn_cache; /* Highest zone. An specific allocation for a zone below that is not policied. */ enum zone_type policy_zone = 0; /* * run-time system-wide default policy => local allocation */ static struct mempolicy default_policy = { .refcnt = ATOMIC_INIT(1), /* never free it */ .mode = MPOL_PREFERRED, .flags = MPOL_F_LOCAL, }; static struct mempolicy preferred_node_policy[MAX_NUMNODES]; /** * numa_map_to_online_node - Find closest online node * @node: Node id to start the search * * Lookup the next closest node by distance if @nid is not online. */ int numa_map_to_online_node(int node) { int min_dist = INT_MAX, dist, n, min_node; if (node == NUMA_NO_NODE || node_online(node)) return node; min_node = node; for_each_online_node(n) { dist = node_distance(node, n); if (dist < min_dist) { min_dist = dist; min_node = n; } } return min_node; } EXPORT_SYMBOL_GPL(numa_map_to_online_node); struct mempolicy *get_task_policy(struct task_struct *p) { struct mempolicy *pol = p->mempolicy; int node; if (pol) return pol; node = numa_node_id(); if (node != NUMA_NO_NODE) { pol = &preferred_node_policy[node]; /* preferred_node_policy is not initialised early in boot */ if (pol->mode) return pol; } return &default_policy; } static const struct mempolicy_operations { int (*create)(struct mempolicy *pol, const nodemask_t *nodes); void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); } mpol_ops[MPOL_MAX]; static inline int mpol_store_user_nodemask(const struct mempolicy *pol) { return pol->flags & MPOL_MODE_FLAGS; } static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, const nodemask_t *rel) { nodemask_t tmp; nodes_fold(tmp, *orig, nodes_weight(*rel)); nodes_onto(*ret, tmp, *rel); } static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) { if (nodes_empty(*nodes)) return -EINVAL; pol->v.nodes = *nodes; return 0; } static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) { if (!nodes) pol->flags |= MPOL_F_LOCAL; /* local allocation */ else if (nodes_empty(*nodes)) return -EINVAL; /* no allowed nodes */ else pol->v.preferred_node = first_node(*nodes); return 0; } static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) { if (nodes_empty(*nodes)) return -EINVAL; pol->v.nodes = *nodes; return 0; } /* * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if * any, for the new policy. mpol_new() has already validated the nodes * parameter with respect to the policy mode and flags. But, we need to * handle an empty nodemask with MPOL_PREFERRED here. * * Must be called holding task's alloc_lock to protect task's mems_allowed * and mempolicy. May also be called holding the mmap_lock for write. */ static int mpol_set_nodemask(struct mempolicy *pol, const nodemask_t *nodes, struct nodemask_scratch *nsc) { int ret; /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ if (pol == NULL) return 0; /* Check N_MEMORY */ nodes_and(nsc->mask1, cpuset_current_mems_allowed, node_states[N_MEMORY]); VM_BUG_ON(!nodes); if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) nodes = NULL; /* explicit local allocation */ else { if (pol->flags & MPOL_F_RELATIVE_NODES) mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); else nodes_and(nsc->mask2, *nodes, nsc->mask1); if (mpol_store_user_nodemask(pol)) pol->w.user_nodemask = *nodes; else pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; } if (nodes) ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); else ret = mpol_ops[pol->mode].create(pol, NULL); return ret; } /* * This function just creates a new policy, does some check and simple * initialization. You must invoke mpol_set_nodemask() to set nodes. */ static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, nodemask_t *nodes) { struct mempolicy *policy; pr_debug("setting mode %d flags %d nodes[0] %lx\n", mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); if (mode == MPOL_DEFAULT) { if (nodes && !nodes_empty(*nodes)) return ERR_PTR(-EINVAL); return NULL; } VM_BUG_ON(!nodes); /* * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). * All other modes require a valid pointer to a non-empty nodemask. */ if (mode == MPOL_PREFERRED) { if (nodes_empty(*nodes)) { if (((flags & MPOL_F_STATIC_NODES) || (flags & MPOL_F_RELATIVE_NODES))) return ERR_PTR(-EINVAL); } } else if (mode == MPOL_LOCAL) { if (!nodes_empty(*nodes) || (flags & MPOL_F_STATIC_NODES) || (flags & MPOL_F_RELATIVE_NODES)) return ERR_PTR(-EINVAL); mode = MPOL_PREFERRED; } else if (nodes_empty(*nodes)) return ERR_PTR(-EINVAL); policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); if (!policy) return ERR_PTR(-ENOMEM); atomic_set(&policy->refcnt, 1); policy->mode = mode; policy->flags = flags; return policy; } /* Slow path of a mpol destructor. */ void __mpol_put(struct mempolicy *p) { if (!atomic_dec_and_test(&p->refcnt)) return; kmem_cache_free(policy_cache, p); } static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) { } static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) { nodemask_t tmp; if (pol->flags & MPOL_F_STATIC_NODES) nodes_and(tmp, pol->w.user_nodemask, *nodes); else if (pol->flags & MPOL_F_RELATIVE_NODES) mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); else { nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, *nodes); pol->w.cpuset_mems_allowed = *nodes; } if (nodes_empty(tmp)) tmp = *nodes; pol->v.nodes = tmp; } static void mpol_rebind_preferred(struct mempolicy *pol, const nodemask_t *nodes) { nodemask_t tmp; if (pol->flags & MPOL_F_STATIC_NODES) { int node = first_node(pol->w.user_nodemask); if (node_isset(node, *nodes)) { pol->v.preferred_node = node; pol->flags &= ~MPOL_F_LOCAL; } else pol->flags |= MPOL_F_LOCAL; } else if (pol->flags & MPOL_F_RELATIVE_NODES) { mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); pol->v.preferred_node = first_node(tmp); } else if (!(pol->flags & MPOL_F_LOCAL)) { pol->v.preferred_node = node_remap(pol->v.preferred_node, pol->w.cpuset_mems_allowed, *nodes); pol->w.cpuset_mems_allowed = *nodes; } } /* * mpol_rebind_policy - Migrate a policy to a different set of nodes * * Per-vma policies are protected by mmap_lock. Allocations using per-task * policies are protected by task->mems_allowed_seq to prevent a premature * OOM/allocation failure due to parallel nodemask modification. */ static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) { if (!pol) return; if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) && nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) return; mpol_ops[pol->mode].rebind(pol, newmask); } /* * Wrapper for mpol_rebind_policy() that just requires task * pointer, and updates task mempolicy. * * Called with task's alloc_lock held. */ void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) { mpol_rebind_policy(tsk->mempolicy, new); } /* * Rebind each vma in mm to new nodemask. * * Call holding a reference to mm. Takes mm->mmap_lock during call. */ void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) { struct vm_area_struct *vma; mmap_write_lock(mm); for (vma = mm->mmap; vma; vma = vma->vm_next) mpol_rebind_policy(vma->vm_policy, new); mmap_write_unlock(mm); } static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { [MPOL_DEFAULT] = { .rebind = mpol_rebind_default, }, [MPOL_INTERLEAVE] = { .create = mpol_new_interleave, .rebind = mpol_rebind_nodemask, }, [MPOL_PREFERRED] = { .create = mpol_new_preferred, .rebind = mpol_rebind_preferred, }, [MPOL_BIND] = { .create = mpol_new_bind, .rebind = mpol_rebind_nodemask, }, }; static int migrate_page_add(struct page *page, struct list_head *pagelist, unsigned long flags); struct queue_pages { struct list_head *pagelist; unsigned long flags; nodemask_t *nmask; unsigned long start; unsigned long end; struct vm_area_struct *first; }; /* * Check if the page's nid is in qp->nmask. * * If MPOL_MF_INVERT is set in qp->flags, check if the nid is * in the invert of qp->nmask. */ static inline bool queue_pages_required(struct page *page, struct queue_pages *qp) { int nid = page_to_nid(page); unsigned long flags = qp->flags; return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); } /* * queue_pages_pmd() has four possible return values: * 0 - pages are placed on the right node or queued successfully. * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were * specified. * 2 - THP was split. * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an * existing page was already on a node that does not follow the * policy. */ static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, unsigned long end, struct mm_walk *walk) __releases(ptl) { int ret = 0; struct page *page; struct queue_pages *qp = walk->private; unsigned long flags; if (unlikely(is_pmd_migration_entry(*pmd))) { ret = -EIO; goto unlock; } page = pmd_page(*pmd); if (is_huge_zero_page(page)) { spin_unlock(ptl); __split_huge_pmd(walk->vma, pmd, addr, false, NULL); ret = 2; goto out; } if (!queue_pages_required(page, qp)) goto unlock; flags = qp->flags; /* go to thp migration */ if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { if (!vma_migratable(walk->vma) || migrate_page_add(page, qp->pagelist, flags)) { ret = 1; goto unlock; } } else ret = -EIO; unlock: spin_unlock(ptl); out: return ret; } /* * Scan through pages checking if pages follow certain conditions, * and move them to the pagelist if they do. * * queue_pages_pte_range() has three possible return values: * 0 - pages are placed on the right node or queued successfully. * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were * specified. * -EIO - only MPOL_MF_STRICT was specified and an existing page was already * on a node that does not follow the policy. */ static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; struct page *page; struct queue_pages *qp = walk->private; unsigned long flags = qp->flags; int ret; bool has_unmovable = false; pte_t *pte, *mapped_pte; spinlock_t *ptl; ptl = pmd_trans_huge_lock(pmd, vma); if (ptl) { ret = queue_pages_pmd(pmd, ptl, addr, end, walk); if (ret != 2) return ret; } /* THP was split, fall through to pte walk */ if (pmd_trans_unstable(pmd)) return 0; mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); for (; addr != end; pte++, addr += PAGE_SIZE) { if (!pte_present(*pte)) continue; page = vm_normal_page(vma, addr, *pte); if (!page) continue; /* * vm_normal_page() filters out zero pages, but there might * still be PageReserved pages to skip, perhaps in a VDSO. */ if (PageReserved(page)) continue; if (!queue_pages_required(page, qp)) continue; if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { /* MPOL_MF_STRICT must be specified if we get here */ if (!vma_migratable(vma)) { has_unmovable = true; break; } /* * Do not abort immediately since there may be * temporary off LRU pages in the range. Still * need migrate other LRU pages. */ if (migrate_page_add(page, qp->pagelist, flags)) has_unmovable = true; } else break; } pte_unmap_unlock(mapped_pte, ptl); cond_resched(); if (has_unmovable) return 1; return addr != end ? -EIO : 0; } static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk) { int ret = 0; #ifdef CONFIG_HUGETLB_PAGE struct queue_pages *qp = walk->private; unsigned long flags = (qp->flags & MPOL_MF_VALID); struct page *page; spinlock_t *ptl; pte_t entry; ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); entry = huge_ptep_get(pte); if (!pte_present(entry)) goto unlock; page = pte_page(entry); if (!queue_pages_required(page, qp)) goto unlock; if (flags == MPOL_MF_STRICT) { /* * STRICT alone means only detecting misplaced page and no * need to further check other vma. */ ret = -EIO; goto unlock; } if (!vma_migratable(walk->vma)) { /* * Must be STRICT with MOVE*, otherwise .test_walk() have * stopped walking current vma. * Detecting misplaced page but allow migrating pages which * have been queued. */ ret = 1; goto unlock; } /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ if (flags & (MPOL_MF_MOVE_ALL) || (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { if (!isolate_huge_page(page, qp->pagelist) && (flags & MPOL_MF_STRICT)) /* * Failed to isolate page but allow migrating pages * which have been queued. */ ret = 1; } unlock: spin_unlock(ptl); #else BUG(); #endif return ret; } #ifdef CONFIG_NUMA_BALANCING /* * This is used to mark a range of virtual addresses to be inaccessible. * These are later cleared by a NUMA hinting fault. Depending on these * faults, pages may be migrated for better NUMA placement. * * This is assuming that NUMA faults are handled using PROT_NONE. If * an architecture makes a different choice, it will need further * changes to the core. */ unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long addr, unsigned long end) { int nr_updated; nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA); if (nr_updated) count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); return nr_updated; } #else static unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long addr, unsigned long end) { return 0; } #endif /* CONFIG_NUMA_BALANCING */ static int queue_pages_test_walk(unsigned long start, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; struct queue_pages *qp = walk->private; unsigned long endvma = vma->vm_end; unsigned long flags = qp->flags; /* range check first */ VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma); if (!qp->first) { qp->first = vma; if (!(flags & MPOL_MF_DISCONTIG_OK) && (qp->start < vma->vm_start)) /* hole at head side of range */ return -EFAULT; } if (!(flags & MPOL_MF_DISCONTIG_OK) && ((vma->vm_end < qp->end) && (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start))) /* hole at middle or tail of range */ return -EFAULT; /* * Need check MPOL_MF_STRICT to return -EIO if possible * regardless of vma_migratable */ if (!vma_migratable(vma) && !(flags & MPOL_MF_STRICT)) return 1; if (endvma > end) endvma = end; if (flags & MPOL_MF_LAZY) { /* Similar to task_numa_work, skip inaccessible VMAs */ if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && !(vma->vm_flags & VM_MIXEDMAP)) change_prot_numa(vma, start, endvma); return 1; } /* queue pages from current vma */ if (flags & MPOL_MF_VALID) return 0; return 1; } static const struct mm_walk_ops queue_pages_walk_ops = { .hugetlb_entry = queue_pages_hugetlb, .pmd_entry = queue_pages_pte_range, .test_walk = queue_pages_test_walk, }; /* * Walk through page tables and collect pages to be migrated. * * If pages found in a given range are on a set of nodes (determined by * @nodes and @flags,) it's isolated and queued to the pagelist which is * passed via @private. * * queue_pages_range() has three possible return values: * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were * specified. * 0 - queue pages successfully or no misplaced page. * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or * memory range specified by nodemask and maxnode points outside * your accessible address space (-EFAULT) */ static int queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, nodemask_t *nodes, unsigned long flags, struct list_head *pagelist) { int err; struct queue_pages qp = { .pagelist = pagelist, .flags = flags, .nmask = nodes, .start = start, .end = end, .first = NULL, }; err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); if (!qp.first) /* whole range in hole */ err = -EFAULT; return err; } /* * Apply policy to a single VMA * This must be called with the mmap_lock held for writing. */ static int vma_replace_policy(struct vm_area_struct *vma, struct mempolicy *pol) { int err; struct mempolicy *old; struct mempolicy *new; pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", vma->vm_start, vma->vm_end, vma->vm_pgoff, vma->vm_ops, vma->vm_file, vma->vm_ops ? vma->vm_ops->set_policy : NULL); new = mpol_dup(pol); if (IS_ERR(new)) return PTR_ERR(new); if (vma->vm_ops && vma->vm_ops->set_policy) { err = vma->vm_ops->set_policy(vma, new); if (err) goto err_out; } old = vma->vm_policy; vma->vm_policy = new; /* protected by mmap_lock */ mpol_put(old); return 0; err_out: mpol_put(new); return err; } /* Step 2: apply policy to a range and do splits. */ static int mbind_range(struct mm_struct *mm, unsigned long start, unsigned long end, struct mempolicy *new_pol) { struct vm_area_struct *next; struct vm_area_struct *prev; struct vm_area_struct *vma; int err = 0; pgoff_t pgoff; unsigned long vmstart; unsigned long vmend; vma = find_vma(mm, start); VM_BUG_ON(!vma); prev = vma->vm_prev; if (start > vma->vm_start) prev = vma; for (; vma && vma->vm_start < end; prev = vma, vma = next) { next = vma->vm_next; vmstart = max(start, vma->vm_start); vmend = min(end, vma->vm_end); if (mpol_equal(vma_policy(vma), new_pol)) continue; pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT); prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff, new_pol, vma->vm_userfaultfd_ctx); if (prev) { vma = prev; next = vma->vm_next; if (mpol_equal(vma_policy(vma), new_pol)) continue; /* vma_merge() joined vma && vma->next, case 8 */ goto replace; } if (vma->vm_start != vmstart) { err = split_vma(vma->vm_mm, vma, vmstart, 1); if (err) goto out; } if (vma->vm_end != vmend) { err = split_vma(vma->vm_mm, vma, vmend, 0); if (err) goto out; } replace: err = vma_replace_policy(vma, new_pol); if (err) goto out; } out: return err; } /* Set the process memory policy */ static long do_set_mempolicy(unsigned short mode, unsigned short flags, nodemask_t *nodes) { struct mempolicy *new, *old; NODEMASK_SCRATCH(scratch); int ret; if (!scratch) return -ENOMEM; new = mpol_new(mode, flags, nodes); if (IS_ERR(new)) { ret = PTR_ERR(new); goto out; } ret = mpol_set_nodemask(new, nodes, scratch); if (ret) { mpol_put(new); goto out; } task_lock(current); old = current->mempolicy; current->mempolicy = new; if (new && new->mode == MPOL_INTERLEAVE) current->il_prev = MAX_NUMNODES-1; task_unlock(current); mpol_put(old); ret = 0; out: NODEMASK_SCRATCH_FREE(scratch); return ret; } /* * Return nodemask for policy for get_mempolicy() query * * Called with task's alloc_lock held */ static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) { nodes_clear(*nodes); if (p == &default_policy) return; switch (p->mode) { case MPOL_BIND: case MPOL_INTERLEAVE: *nodes = p->v.nodes; break; case MPOL_PREFERRED: if (!(p->flags & MPOL_F_LOCAL)) node_set(p->v.preferred_node, *nodes); /* else return empty node mask for local allocation */ break; default: BUG(); } } static int lookup_node(struct mm_struct *mm, unsigned long addr) { struct page *p = NULL; int err; int locked = 1; err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked); if (err > 0) { err = page_to_nid(p); put_page(p); } if (locked) mmap_read_unlock(mm); return err; } /* Retrieve NUMA policy */ static long do_get_mempolicy(int *policy, nodemask_t *nmask, unsigned long addr, unsigned long flags) { int err; struct mm_struct *mm = current->mm; struct vm_area_struct *vma = NULL; struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) return -EINVAL; if (flags & MPOL_F_MEMS_ALLOWED) { if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) return -EINVAL; *policy = 0; /* just so it's initialized */ task_lock(current); *nmask = cpuset_current_mems_allowed; task_unlock(current); return 0; } if (flags & MPOL_F_ADDR) { /* * Do NOT fall back to task policy if the * vma/shared policy at addr is NULL. We * want to return MPOL_DEFAULT in this case. */ mmap_read_lock(mm); vma = find_vma_intersection(mm, addr, addr+1); if (!vma) { mmap_read_unlock(mm); return -EFAULT; } if (vma->vm_ops && vma->vm_ops->get_policy) pol = vma->vm_ops->get_policy(vma, addr); else pol = vma->vm_policy; } else if (addr) return -EINVAL; if (!pol) pol = &default_policy; /* indicates default behavior */ if (flags & MPOL_F_NODE) { if (flags & MPOL_F_ADDR) { /* * Take a refcount on the mpol, lookup_node() * wil drop the mmap_lock, so after calling * lookup_node() only "pol" remains valid, "vma" * is stale. */ pol_refcount = pol; vma = NULL; mpol_get(pol); err = lookup_node(mm, addr); if (err < 0) goto out; *policy = err; } else if (pol == current->mempolicy && pol->mode == MPOL_INTERLEAVE) { *policy = next_node_in(current->il_prev, pol->v.nodes); } else { err = -EINVAL; goto out; } } else { *policy = pol == &default_policy ? MPOL_DEFAULT : pol->mode; /* * Internal mempolicy flags must be masked off before exposing * the policy to userspace. */ *policy |= (pol->flags & MPOL_MODE_FLAGS); } err = 0; if (nmask) { if (mpol_store_user_nodemask(pol)) { *nmask = pol->w.user_nodemask; } else { task_lock(current); get_policy_nodemask(pol, nmask); task_unlock(current); } } out: mpol_cond_put(pol); if (vma) mmap_read_unlock(mm); if (pol_refcount) mpol_put(pol_refcount); return err; } #ifdef CONFIG_MIGRATION /* * page migration, thp tail pages can be passed. */ static int migrate_page_add(struct page *page, struct list_head *pagelist, unsigned long flags) { struct page *head = compound_head(page); /* * Avoid migrating a page that is shared with others. */ if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { if (!isolate_lru_page(head)) { list_add_tail(&head->lru, pagelist); mod_node_page_state(page_pgdat(head), NR_ISOLATED_ANON + page_is_file_lru(head), thp_nr_pages(head)); } else if (flags & MPOL_MF_STRICT) { /* * Non-movable page may reach here. And, there may be * temporary off LRU pages or non-LRU movable pages. * Treat them as unmovable pages since they can't be * isolated, so they can't be moved at the moment. It * should return -EIO for this case too. */ return -EIO; } } return 0; } /* * Migrate pages from one node to a target node. * Returns error or the number of pages not migrated. */ static int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags) { nodemask_t nmask; LIST_HEAD(pagelist); int err = 0; struct migration_target_control mtc = { .nid = dest, .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, }; nodes_clear(nmask); node_set(source, nmask); /* * This does not "check" the range but isolates all pages that * need migration. Between passing in the full user address * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. */ VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, flags | MPOL_MF_DISCONTIG_OK, &pagelist); if (!list_empty(&pagelist)) { err = migrate_pages(&pagelist, alloc_migration_target, NULL, (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); if (err) putback_movable_pages(&pagelist); } return err; } /* * Move pages between the two nodesets so as to preserve the physical * layout as much as possible. * * Returns the number of page that could not be moved. */ int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags) { int busy = 0; int err; nodemask_t tmp; err = migrate_prep(); if (err) return err; mmap_read_lock(mm); /* * Find a 'source' bit set in 'tmp' whose corresponding 'dest' * bit in 'to' is not also set in 'tmp'. Clear the found 'source' * bit in 'tmp', and return that <source, dest> pair for migration. * The pair of nodemasks 'to' and 'from' define the map. * * If no pair of bits is found that way, fallback to picking some * pair of 'source' and 'dest' bits that are not the same. If the * 'source' and 'dest' bits are the same, this represents a node * that will be migrating to itself, so no pages need move. * * If no bits are left in 'tmp', or if all remaining bits left * in 'tmp' correspond to the same bit in 'to', return false * (nothing left to migrate). * * This lets us pick a pair of nodes to migrate between, such that * if possible the dest node is not already occupied by some other * source node, minimizing the risk of overloading the memory on a * node that would happen if we migrated incoming memory to a node * before migrating outgoing memory source that same node. * * A single scan of tmp is sufficient. As we go, we remember the * most recent <s, d> pair that moved (s != d). If we find a pair * that not only moved, but what's better, moved to an empty slot * (d is not set in tmp), then we break out then, with that pair. * Otherwise when we finish scanning from_tmp, we at least have the * most recent <s, d> pair that moved. If we get all the way through * the scan of tmp without finding any node that moved, much less * moved to an empty node, then there is nothing left worth migrating. */ tmp = *from; while (!nodes_empty(tmp)) { int s,d; int source = NUMA_NO_NODE; int dest = 0; for_each_node_mask(s, tmp) { /* * do_migrate_pages() tries to maintain the relative * node relationship of the pages established between * threads and memory areas. * * However if the number of source nodes is not equal to * the number of destination nodes we can not preserve * this node relative relationship. In that case, skip * copying memory from a node that is in the destination * mask. * * Example: [2,3,4] -> [3,4,5] moves everything. * [0-7] - > [3,4,5] moves only 0,1,2,6,7. */ if ((nodes_weight(*from) != nodes_weight(*to)) && (node_isset(s, *to))) continue; d = node_remap(s, *from, *to); if (s == d) continue; source = s; /* Node moved. Memorize */ dest = d; /* dest not in remaining from nodes? */ if (!node_isset(dest, tmp)) break; } if (source == NUMA_NO_NODE) break; node_clear(source, tmp); err = migrate_to_node(mm, source, dest, flags); if (err > 0) busy += err; if (err < 0) break; } mmap_read_unlock(mm); if (err < 0) return err; return busy; } /* * Allocate a new page for page migration based on vma policy. * Start by assuming the page is mapped by the same vma as contains @start. * Search forward from there, if not. N.B., this assumes that the * list of pages handed to migrate_pages()--which is how we get here-- * is in virtual address order. */ static struct page *new_page(struct page *page, unsigned long start) { struct vm_area_struct *vma; unsigned long address; vma = find_vma(current->mm, start); while (vma) { address = page_address_in_vma(page, vma); if (address != -EFAULT) break; vma = vma->vm_next; } if (PageHuge(page)) { return alloc_huge_page_vma(page_hstate(compound_head(page)), vma, address); } else if (PageTransHuge(page)) { struct page *thp; thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, HPAGE_PMD_ORDER); if (!thp) return NULL; prep_transhuge_page(thp); return thp; } /* * if !vma, alloc_page_vma() will use task or system default policy */ return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, vma, address); } #else static int migrate_page_add(struct page *page, struct list_head *pagelist, unsigned long flags) { return -EIO; } int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags) { return -ENOSYS; } static struct page *new_page(struct page *page, unsigned long start) { return NULL; } #endif static long do_mbind(unsigned long start, unsigned long len, unsigned short mode, unsigned short mode_flags, nodemask_t *nmask, unsigned long flags) { struct mm_struct *mm = current->mm; struct mempolicy *new; unsigned long end; int err; int ret; LIST_HEAD(pagelist); if (flags & ~(unsigned long)MPOL_MF_VALID) return -EINVAL; if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) return -EPERM; if (start & ~PAGE_MASK) return -EINVAL; if (mode == MPOL_DEFAULT) flags &= ~MPOL_MF_STRICT; len = (len + PAGE_SIZE - 1) & PAGE_MASK; end = start + len; if (end < start) return -EINVAL; if (end == start) return 0; new = mpol_new(mode, mode_flags, nmask); if (IS_ERR(new)) return PTR_ERR(new); if (flags & MPOL_MF_LAZY) new->flags |= MPOL_F_MOF; /* * If we are using the default policy then operation * on discontinuous address spaces is okay after all */ if (!new) flags |= MPOL_MF_DISCONTIG_OK; pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", start, start + len, mode, mode_flags, nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { err = migrate_prep(); if (err) goto mpol_out; } { NODEMASK_SCRATCH(scratch); if (scratch) { mmap_write_lock(mm); err = mpol_set_nodemask(new, nmask, scratch); if (err) mmap_write_unlock(mm); } else err = -ENOMEM; NODEMASK_SCRATCH_FREE(scratch); } if (err) goto mpol_out; ret = queue_pages_range(mm, start, end, nmask, flags | MPOL_MF_INVERT, &pagelist); if (ret < 0) { err = ret; goto up_out; } err = mbind_range(mm, start, end, new); if (!err) { int nr_failed = 0; if (!list_empty(&pagelist)) { WARN_ON_ONCE(flags & MPOL_MF_LAZY); nr_failed = migrate_pages(&pagelist, new_page, NULL, start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); if (nr_failed) putback_movable_pages(&pagelist); } if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) err = -EIO; } else { up_out: if (!list_empty(&pagelist)) putback_movable_pages(&pagelist); } mmap_write_unlock(mm); mpol_out: mpol_put(new); return err; } /* * User space interface with variable sized bitmaps for nodelists. */ /* Copy a node mask from user space. */ static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, unsigned long maxnode) { unsigned long k; unsigned long t; unsigned long nlongs; unsigned long endmask; --maxnode; nodes_clear(*nodes); if (maxnode == 0 || !nmask) return 0; if (maxnode > PAGE_SIZE*BITS_PER_BYTE) return -EINVAL; nlongs = BITS_TO_LONGS(maxnode); if ((maxnode % BITS_PER_LONG) == 0) endmask = ~0UL; else endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; /* * When the user specified more nodes than supported just check * if the non supported part is all zero. * * If maxnode have more longs than MAX_NUMNODES, check * the bits in that area first. And then go through to * check the rest bits which equal or bigger than MAX_NUMNODES. * Otherwise, just check bits [MAX_NUMNODES, maxnode). */ if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { if (get_user(t, nmask + k)) return -EFAULT; if (k == nlongs - 1) { if (t & endmask) return -EINVAL; } else if (t) return -EINVAL; } nlongs = BITS_TO_LONGS(MAX_NUMNODES); endmask = ~0UL; } if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { unsigned long valid_mask = endmask; valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); if (get_user(t, nmask + nlongs - 1)) return -EFAULT; if (t & valid_mask) return -EINVAL; } if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) return -EFAULT; nodes_addr(*nodes)[nlongs-1] &= endmask; return 0; } /* Copy a kernel node mask to user space */ static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, nodemask_t *nodes) { unsigned long copy = ALIGN(maxnode-1, 64) / 8; unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); if (copy > nbytes) { if (copy > PAGE_SIZE) return -EINVAL; if (clear_user((char __user *)mask + nbytes, copy - nbytes)) return -EFAULT; copy = nbytes; } return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; } static long kernel_mbind(unsigned long start, unsigned long len, unsigned long mode, const unsigned long __user *nmask, unsigned long maxnode, unsigned int flags) { nodemask_t nodes; int err; unsigned short mode_flags; start = untagged_addr(start); mode_flags = mode & MPOL_MODE_FLAGS; mode &= ~MPOL_MODE_FLAGS; if (mode >= MPOL_MAX) return -EINVAL; if ((mode_flags & MPOL_F_STATIC_NODES) && (mode_flags & MPOL_F_RELATIVE_NODES)) return -EINVAL; err = get_nodes(&nodes, nmask, maxnode); if (err) return err; return do_mbind(start, len, mode, mode_flags, &nodes, flags); } SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, unsigned long, mode, const unsigned long __user *, nmask, unsigned long, maxnode, unsigned int, flags) { return kernel_mbind(start, len, mode, nmask, maxnode, flags); } /* Set the process memory policy */ static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, unsigned long maxnode) { int err; nodemask_t nodes; unsigned short flags; flags = mode & MPOL_MODE_FLAGS; mode &= ~MPOL_MODE_FLAGS; if ((unsigned int)mode >= MPOL_MAX) return -EINVAL; if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) return -EINVAL; err = get_nodes(&nodes, nmask, maxnode); if (err) return err; return do_set_mempolicy(mode, flags, &nodes); } SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, unsigned long, maxnode) { return kernel_set_mempolicy(mode, nmask, maxnode); } static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, const unsigned long __user *old_nodes, const unsigned long __user *new_nodes) { struct mm_struct *mm = NULL; struct task_struct *task; nodemask_t task_nodes; int err; nodemask_t *old; nodemask_t *new; NODEMASK_SCRATCH(scratch); if (!scratch) return -ENOMEM; old = &scratch->mask1; new = &scratch->mask2; err = get_nodes(old, old_nodes, maxnode); if (err) goto out; err = get_nodes(new, new_nodes, maxnode); if (err) goto out; /* Find the mm_struct */ rcu_read_lock(); task = pid ? find_task_by_vpid(pid) : current; if (!task) { rcu_read_unlock(); err = -ESRCH; goto out; } get_task_struct(task); err = -EINVAL; /* * Check if this process has the right to modify the specified process. * Use the regular "ptrace_may_access()" checks. */ if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { rcu_read_unlock(); err = -EPERM; goto out_put; } rcu_read_unlock(); task_nodes = cpuset_mems_allowed(task); /* Is the user allowed to access the target nodes? */ if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { err = -EPERM; goto out_put; } task_nodes = cpuset_mems_allowed(current); nodes_and(*new, *new, task_nodes); if (nodes_empty(*new)) goto out_put; err = security_task_movememory(task); if (err) goto out_put; mm = get_task_mm(task); put_task_struct(task); if (!mm) { err = -EINVAL; goto out; } err = do_migrate_pages(mm, old, new, capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); mmput(mm); out: NODEMASK_SCRATCH_FREE(scratch); return err; out_put: put_task_struct(task); goto out; } SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, const unsigned long __user *, old_nodes, const unsigned long __user *, new_nodes) { return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); } /* Retrieve NUMA policy */ static int kernel_get_mempolicy(int __user *policy, unsigned long __user *nmask, unsigned long maxnode, unsigned long addr, unsigned long flags) { int err; int pval; nodemask_t nodes; if (nmask != NULL && maxnode < nr_node_ids) return -EINVAL; addr = untagged_addr(addr); err = do_get_mempolicy(&pval, &nodes, addr, flags); if (err) return err; if (policy && put_user(pval, policy)) return -EFAULT; if (nmask) err = copy_nodes_to_user(nmask, maxnode, &nodes); return err; } SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, unsigned long __user *, nmask, unsigned long, maxnode, unsigned long, addr, unsigned long, flags) { return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, compat_ulong_t __user *, nmask, compat_ulong_t, maxnode, compat_ulong_t, addr, compat_ulong_t, flags) { long err; unsigned long __user *nm = NULL; unsigned long nr_bits, alloc_size; DECLARE_BITMAP(bm, MAX_NUMNODES); nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids); alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; if (nmask) nm = compat_alloc_user_space(alloc_size); err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); if (!err && nmask) { unsigned long copy_size; copy_size = min_t(unsigned long, sizeof(bm), alloc_size); err = copy_from_user(bm, nm, copy_size); /* ensure entire bitmap is zeroed */ err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); err |= compat_put_bitmap(nmask, bm, nr_bits); } return err; } COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, compat_ulong_t, maxnode) { unsigned long __user *nm = NULL; unsigned long nr_bits, alloc_size; DECLARE_BITMAP(bm, MAX_NUMNODES); nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; if (nmask) { if (compat_get_bitmap(bm, nmask, nr_bits)) return -EFAULT; nm = compat_alloc_user_space(alloc_size); if (copy_to_user(nm, bm, alloc_size)) return -EFAULT; } return kernel_set_mempolicy(mode, nm, nr_bits+1); } COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, compat_ulong_t, mode, compat_ulong_t __user *, nmask, compat_ulong_t, maxnode, compat_ulong_t, flags) { unsigned long __user *nm = NULL; unsigned long nr_bits, alloc_size; nodemask_t bm; nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; if (nmask) { if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) return -EFAULT; nm = compat_alloc_user_space(alloc_size); if (copy_to_user(nm, nodes_addr(bm), alloc_size)) return -EFAULT; } return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); } COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, compat_ulong_t, maxnode, const compat_ulong_t __user *, old_nodes, const compat_ulong_t __user *, new_nodes) { unsigned long __user *old = NULL; unsigned long __user *new = NULL; nodemask_t tmp_mask; unsigned long nr_bits; unsigned long size; nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); size = ALIGN(nr_bits, BITS_PER_LONG) / 8; if (old_nodes) { if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) return -EFAULT; old = compat_alloc_user_space(new_nodes ? size * 2 : size); if (new_nodes) new = old + size / sizeof(unsigned long); if (copy_to_user(old, nodes_addr(tmp_mask), size)) return -EFAULT; } if (new_nodes) { if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) return -EFAULT; if (new == NULL) new = compat_alloc_user_space(size); if (copy_to_user(new, nodes_addr(tmp_mask), size)) return -EFAULT; } return kernel_migrate_pages(pid, nr_bits + 1, old, new); } #endif /* CONFIG_COMPAT */ bool vma_migratable(struct vm_area_struct *vma) { if (vma->vm_flags & (VM_IO | VM_PFNMAP)) return false; /* * DAX device mappings require predictable access latency, so avoid * incurring periodic faults. */ if (vma_is_dax(vma)) return false; if (is_vm_hugetlb_page(vma) && !hugepage_migration_supported(hstate_vma(vma))) return false; /* * Migration allocates pages in the highest zone. If we cannot * do so then migration (at least from node to node) is not * possible. */ if (vma->vm_file && gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) < policy_zone) return false; return true; } struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, unsigned long addr) { struct mempolicy *pol = NULL; if (vma) { if (vma->vm_ops && vma->vm_ops->get_policy) { pol = vma->vm_ops->get_policy(vma, addr); } else if (vma->vm_policy) { pol = vma->vm_policy; /* * shmem_alloc_page() passes MPOL_F_SHARED policy with * a pseudo vma whose vma->vm_ops=NULL. Take a reference * count on these policies which will be dropped by * mpol_cond_put() later */ if (mpol_needs_cond_ref(pol)) mpol_get(pol); } } return pol; } /* * get_vma_policy(@vma, @addr) * @vma: virtual memory area whose policy is sought * @addr: address in @vma for shared policy lookup * * Returns effective policy for a VMA at specified address. * Falls back to current->mempolicy or system default policy, as necessary. * Shared policies [those marked as MPOL_F_SHARED] require an extra reference * count--added by the get_policy() vm_op, as appropriate--to protect against * freeing by another task. It is the caller's responsibility to free the * extra reference for shared policies. */ static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, unsigned long addr) { struct mempolicy *pol = __get_vma_policy(vma, addr); if (!pol) pol = get_task_policy(current); return pol; } bool vma_policy_mof(struct vm_area_struct *vma) { struct mempolicy *pol; if (vma->vm_ops && vma->vm_ops->get_policy) { bool ret = false; pol = vma->vm_ops->get_policy(vma, vma->vm_start); if (pol && (pol->flags & MPOL_F_MOF)) ret = true; mpol_cond_put(pol); return ret; } pol = vma->vm_policy; if (!pol) pol = get_task_policy(current); return pol->flags & MPOL_F_MOF; } static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) { enum zone_type dynamic_policy_zone = policy_zone; BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); /* * if policy->v.nodes has movable memory only, * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. * * policy->v.nodes is intersect with node_states[N_MEMORY]. * so if the following test faile, it implies * policy->v.nodes has movable memory only. */ if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) dynamic_policy_zone = ZONE_MOVABLE; return zone >= dynamic_policy_zone; } /* * Return a nodemask representing a mempolicy for filtering nodes for * page allocation */ nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) { /* Lower zones don't get a nodemask applied for MPOL_BIND */ if (unlikely(policy->mode == MPOL_BIND) && apply_policy_zone(policy, gfp_zone(gfp)) && cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) return &policy->v.nodes; return NULL; } /* Return the node id preferred by the given mempolicy, or the given id */ static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) { if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) nd = policy->v.preferred_node; else { /* * __GFP_THISNODE shouldn't even be used with the bind policy * because we might easily break the expectation to stay on the * requested node and not break the policy. */ WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); } return nd; } /* Do dynamic interleaving for a process */ static unsigned interleave_nodes(struct mempolicy *policy) { unsigned next; struct task_struct *me = current; next = next_node_in(me->il_prev, policy->v.nodes); if (next < MAX_NUMNODES) me->il_prev = next; return next; } /* * Depending on the memory policy provide a node from which to allocate the * next slab entry. */ unsigned int mempolicy_slab_node(void) { struct mempolicy *policy; int node = numa_mem_id(); if (in_interrupt()) return node; policy = current->mempolicy; if (!policy || policy->flags & MPOL_F_LOCAL) return node; switch (policy->mode) { case MPOL_PREFERRED: /* * handled MPOL_F_LOCAL above */ return policy->v.preferred_node; case MPOL_INTERLEAVE: return interleave_nodes(policy); case MPOL_BIND: { struct zoneref *z; /* * Follow bind policy behavior and start allocation at the * first node. */ struct zonelist *zonelist; enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; z = first_zones_zonelist(zonelist, highest_zoneidx, &policy->v.nodes); return z->zone ? zone_to_nid(z->zone) : node; } default: BUG(); } } /* * Do static interleaving for a VMA with known offset @n. Returns the n'th * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the * number of present nodes. */ static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) { unsigned nnodes = nodes_weight(pol->v.nodes); unsigned target; int i; int nid; if (!nnodes) return numa_node_id(); target = (unsigned int)n % nnodes; nid = first_node(pol->v.nodes); for (i = 0; i < target; i++) nid = next_node(nid, pol->v.nodes); return nid; } /* Determine a node number for interleave */ static inline unsigned interleave_nid(struct mempolicy *pol, struct vm_area_struct *vma, unsigned long addr, int shift) { if (vma) { unsigned long off; /* * for small pages, there is no difference between * shift and PAGE_SHIFT, so the bit-shift is safe. * for huge pages, since vm_pgoff is in units of small * pages, we need to shift off the always 0 bits to get * a useful offset. */ BUG_ON(shift < PAGE_SHIFT); off = vma->vm_pgoff >> (shift - PAGE_SHIFT); off += (addr - vma->vm_start) >> shift; return offset_il_node(pol, off); } else return interleave_nodes(pol); } #ifdef CONFIG_HUGETLBFS /* * huge_node(@vma, @addr, @gfp_flags, @mpol) * @vma: virtual memory area whose policy is sought * @addr: address in @vma for shared policy lookup and interleave policy * @gfp_flags: for requested zone * @mpol: pointer to mempolicy pointer for reference counted mempolicy * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask * * Returns a nid suitable for a huge page allocation and a pointer * to the struct mempolicy for conditional unref after allocation. * If the effective policy is 'BIND, returns a pointer to the mempolicy's * @nodemask for filtering the zonelist. * * Must be protected by read_mems_allowed_begin() */ int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask) { int nid; *mpol = get_vma_policy(vma, addr); *nodemask = NULL; /* assume !MPOL_BIND */ if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { nid = interleave_nid(*mpol, vma, addr, huge_page_shift(hstate_vma(vma))); } else { nid = policy_node(gfp_flags, *mpol, numa_node_id()); if ((*mpol)->mode == MPOL_BIND) *nodemask = &(*mpol)->v.nodes; } return nid; } /* * init_nodemask_of_mempolicy * * If the current task's mempolicy is "default" [NULL], return 'false' * to indicate default policy. Otherwise, extract the policy nodemask * for 'bind' or 'interleave' policy into the argument nodemask, or * initialize the argument nodemask to contain the single node for * 'preferred' or 'local' policy and return 'true' to indicate presence * of non-default mempolicy. * * We don't bother with reference counting the mempolicy [mpol_get/put] * because the current task is examining it's own mempolicy and a task's * mempolicy is only ever changed by the task itself. * * N.B., it is the caller's responsibility to free a returned nodemask. */ bool init_nodemask_of_mempolicy(nodemask_t *mask) { struct mempolicy *mempolicy; int nid; if (!(mask && current->mempolicy)) return false; task_lock(current); mempolicy = current->mempolicy; switch (mempolicy->mode) { case MPOL_PREFERRED: if (mempolicy->flags & MPOL_F_LOCAL) nid = numa_node_id(); else nid = mempolicy->v.preferred_node; init_nodemask_of_node(mask, nid); break; case MPOL_BIND: case MPOL_INTERLEAVE: *mask = mempolicy->v.nodes; break; default: BUG(); } task_unlock(current); return true; } #endif /* * mempolicy_nodemask_intersects * * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default * policy. Otherwise, check for intersection between mask and the policy * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' * policy, always return true since it may allocate elsewhere on fallback. * * Takes task_lock(tsk) to prevent freeing of its mempolicy. */ bool mempolicy_nodemask_intersects(struct task_struct *tsk, const nodemask_t *mask) { struct mempolicy *mempolicy; bool ret = true; if (!mask) return ret; task_lock(tsk); mempolicy = tsk->mempolicy; if (!mempolicy) goto out; switch (mempolicy->mode) { case MPOL_PREFERRED: /* * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to * allocate from, they may fallback to other nodes when oom. * Thus, it's possible for tsk to have allocated memory from * nodes in mask. */ break; case MPOL_BIND: case MPOL_INTERLEAVE: ret = nodes_intersects(mempolicy->v.nodes, *mask); break; default: BUG(); } out: task_unlock(tsk); return ret; } /* Allocate a page in interleaved policy. Own path because it needs to do special accounting. */ static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, unsigned nid) { struct page *page; page = __alloc_pages(gfp, order, nid); /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ if (!static_branch_likely(&vm_numa_stat_key)) return page; if (page && page_to_nid(page) == nid) { preempt_disable(); __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); preempt_enable(); } return page; } /** * alloc_pages_vma - Allocate a page for a VMA. * * @gfp: * %GFP_USER user allocation. * %GFP_KERNEL kernel allocations, * %GFP_HIGHMEM highmem/user allocations, * %GFP_FS allocation should not call back into a file system. * %GFP_ATOMIC don't sleep. * * @order:Order of the GFP allocation. * @vma: Pointer to VMA or NULL if not available. * @addr: Virtual Address of the allocation. Must be inside the VMA. * @node: Which node to prefer for allocation (modulo policy). * @hugepage: for hugepages try only the preferred node if possible * * This function allocates a page from the kernel page pool and applies * a NUMA policy associated with the VMA or the current process. * When VMA is not NULL caller must read-lock the mmap_lock of the * mm_struct of the VMA to prevent it from going away. Should be used for * all allocations for pages that will be mapped into user space. Returns * NULL when no page can be allocated. */ struct page * alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, unsigned long addr, int node, bool hugepage) { struct mempolicy *pol; struct page *page; int preferred_nid; nodemask_t *nmask; pol = get_vma_policy(vma, addr); if (pol->mode == MPOL_INTERLEAVE) { unsigned nid; nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); mpol_cond_put(pol); page = alloc_page_interleave(gfp, order, nid); goto out; } if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { int hpage_node = node; /* * For hugepage allocation and non-interleave policy which * allows the current node (or other explicitly preferred * node) we only try to allocate from the current/preferred * node and don't fall back to other nodes, as the cost of * remote accesses would likely offset THP benefits. * * If the policy is interleave, or does not allow the current * node in its nodemask, we allocate the standard way. */ if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL)) hpage_node = pol->v.preferred_node; nmask = policy_nodemask(gfp, p