1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/cpu.h - generic cpu definition * * This is mainly for topological representation. We define the * basic 'struct cpu' here, which can be embedded in per-arch * definitions of processors. * * Basic handling of the devices is done in drivers/base/cpu.c * * CPUs are exported via sysfs in the devices/system/cpu * directory. */ #ifndef _LINUX_CPU_H_ #define _LINUX_CPU_H_ #include <linux/node.h> #include <linux/compiler.h> #include <linux/cpumask.h> #include <linux/cpuhotplug.h> struct device; struct device_node; struct attribute_group; struct cpu { int node_id; /* The node which contains the CPU */ int hotpluggable; /* creates sysfs control file if hotpluggable */ struct device dev; }; extern void boot_cpu_init(void); extern void boot_cpu_hotplug_init(void); extern void cpu_init(void); extern void trap_init(void); extern int register_cpu(struct cpu *cpu, int num); extern struct device *get_cpu_device(unsigned cpu); extern bool cpu_is_hotpluggable(unsigned cpu); extern bool arch_match_cpu_phys_id(int cpu, u64 phys_id); extern bool arch_find_n_match_cpu_physical_id(struct device_node *cpun, int cpu, unsigned int *thread); extern int cpu_add_dev_attr(struct device_attribute *attr); extern void cpu_remove_dev_attr(struct device_attribute *attr); extern int cpu_add_dev_attr_group(struct attribute_group *attrs); extern void cpu_remove_dev_attr_group(struct attribute_group *attrs); extern ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf); extern __printf(4, 5) struct device *cpu_device_create(struct device *parent, void *drvdata, const struct attribute_group **groups, const char *fmt, ...); #ifdef CONFIG_HOTPLUG_CPU extern void unregister_cpu(struct cpu *cpu); extern ssize_t arch_cpu_probe(const char *, size_t); extern ssize_t arch_cpu_release(const char *, size_t); #endif /* * These states are not related to the core CPU hotplug mechanism. They are * used by various (sub)architectures to track internal state */ #define CPU_ONLINE 0x0002 /* CPU is up */ #define CPU_UP_PREPARE 0x0003 /* CPU coming up */ #define CPU_DEAD 0x0007 /* CPU dead */ #define CPU_DEAD_FROZEN 0x0008 /* CPU timed out on unplug */ #define CPU_POST_DEAD 0x0009 /* CPU successfully unplugged */ #define CPU_BROKEN 0x000B /* CPU did not die properly */ #ifdef CONFIG_SMP extern bool cpuhp_tasks_frozen; int add_cpu(unsigned int cpu); int cpu_device_up(struct device *dev); void notify_cpu_starting(unsigned int cpu); extern void cpu_maps_update_begin(void); extern void cpu_maps_update_done(void); int bringup_hibernate_cpu(unsigned int sleep_cpu); void bringup_nonboot_cpus(unsigned int setup_max_cpus); #else /* CONFIG_SMP */ #define cpuhp_tasks_frozen 0 static inline void cpu_maps_update_begin(void) { } static inline void cpu_maps_update_done(void) { } #endif /* CONFIG_SMP */ extern struct bus_type cpu_subsys; #ifdef CONFIG_HOTPLUG_CPU extern void cpus_write_lock(void); extern void cpus_write_unlock(void); extern void cpus_read_lock(void); extern void cpus_read_unlock(void); extern int cpus_read_trylock(void); extern void lockdep_assert_cpus_held(void); extern void cpu_hotplug_disable(void); extern void cpu_hotplug_enable(void); void clear_tasks_mm_cpumask(int cpu); int remove_cpu(unsigned int cpu); int cpu_device_down(struct device *dev); extern void smp_shutdown_nonboot_cpus(unsigned int primary_cpu); #else /* CONFIG_HOTPLUG_CPU */ static inline void cpus_write_lock(void) { } static inline void cpus_write_unlock(void) { } static inline void cpus_read_lock(void) { } static inline void cpus_read_unlock(void) { } static inline int cpus_read_trylock(void) { return true; } static inline void lockdep_assert_cpus_held(void) { } static inline void cpu_hotplug_disable(void) { } static inline void cpu_hotplug_enable(void) { } static inline void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) { } #endif /* !CONFIG_HOTPLUG_CPU */ /* Wrappers which go away once all code is converted */ static inline void cpu_hotplug_begin(void) { cpus_write_lock(); } static inline void cpu_hotplug_done(void) { cpus_write_unlock(); } static inline void get_online_cpus(void) { cpus_read_lock(); } static inline void put_online_cpus(void) { cpus_read_unlock(); } #ifdef CONFIG_PM_SLEEP_SMP extern int freeze_secondary_cpus(int primary); extern void thaw_secondary_cpus(void); static inline int suspend_disable_secondary_cpus(void) { int cpu = 0; if (IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) cpu = -1; return freeze_secondary_cpus(cpu); } static inline void suspend_enable_secondary_cpus(void) { return thaw_secondary_cpus(); } #else /* !CONFIG_PM_SLEEP_SMP */ static inline void thaw_secondary_cpus(void) {} static inline int suspend_disable_secondary_cpus(void) { return 0; } static inline void suspend_enable_secondary_cpus(void) { } #endif /* !CONFIG_PM_SLEEP_SMP */ void cpu_startup_entry(enum cpuhp_state state); void cpu_idle_poll_ctrl(bool enable); /* Attach to any functions which should be considered cpuidle. */ #define __cpuidle __section(".cpuidle.text") bool cpu_in_idle(unsigned long pc); void arch_cpu_idle(void); void arch_cpu_idle_prepare(void); void arch_cpu_idle_enter(void); void arch_cpu_idle_exit(void); void arch_cpu_idle_dead(void); int cpu_report_state(int cpu); int cpu_check_up_prepare(int cpu); void cpu_set_state_online(int cpu); void play_idle_precise(u64 duration_ns, u64 latency_ns); static inline void play_idle(unsigned long duration_us) { play_idle_precise(duration_us * NSEC_PER_USEC, U64_MAX); } #ifdef CONFIG_HOTPLUG_CPU bool cpu_wait_death(unsigned int cpu, int seconds); bool cpu_report_death(void); void cpuhp_report_idle_dead(void); #else static inline void cpuhp_report_idle_dead(void) { } #endif /* #ifdef CONFIG_HOTPLUG_CPU */ enum cpuhp_smt_control { CPU_SMT_ENABLED, CPU_SMT_DISABLED, CPU_SMT_FORCE_DISABLED, CPU_SMT_NOT_SUPPORTED, CPU_SMT_NOT_IMPLEMENTED, }; #if defined(CONFIG_SMP) && defined(CONFIG_HOTPLUG_SMT) extern enum cpuhp_smt_control cpu_smt_control; extern void cpu_smt_disable(bool force); extern void cpu_smt_check_topology(void); extern bool cpu_smt_possible(void); extern int cpuhp_smt_enable(void); extern int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval); #else # define cpu_smt_control (CPU_SMT_NOT_IMPLEMENTED) static inline void cpu_smt_disable(bool force) { } static inline void cpu_smt_check_topology(void) { } static inline bool cpu_smt_possible(void) { return false; } static inline int cpuhp_smt_enable(void) { return 0; } static inline int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) { return 0; } #endif extern bool cpu_mitigations_off(void); extern bool cpu_mitigations_auto_nosmt(void); #endif /* _LINUX_CPU_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/ext4/truncate.h * * Common inline functions needed for truncate support */ /* * Truncate blocks that were not used by write. We have to truncate the * pagecache as well so that corresponding buffers get properly unmapped. */ static inline void ext4_truncate_failed_write(struct inode *inode) { /* * We don't need to call ext4_break_layouts() because the blocks we * are truncating were never visible to userspace. */ down_write(&EXT4_I(inode)->i_mmap_sem); truncate_inode_pages(inode->i_mapping, inode->i_size); ext4_truncate(inode); up_write(&EXT4_I(inode)->i_mmap_sem); } /* * Work out how many blocks we need to proceed with the next chunk of a * truncate transaction. */ static inline unsigned long ext4_blocks_for_truncate(struct inode *inode) { ext4_lblk_t needed; needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); /* Give ourselves just enough room to cope with inodes in which * i_blocks is corrupt: we've seen disk corruptions in the past * which resulted in random data in an inode which looked enough * like a regular file for ext4 to try to delete it. Things * will go a bit crazy if that happens, but at least we should * try not to panic the whole kernel. */ if (needed < 2) needed = 2; /* But we need to bound the transaction so we don't overflow the * journal. */ if (needed > EXT4_MAX_TRANS_DATA) needed = EXT4_MAX_TRANS_DATA; return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* audit.h -- Auditing support * * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. * All Rights Reserved. * * Written by Rickard E. (Rik) Faith <faith@redhat.com> */ #ifndef _LINUX_AUDIT_H_ #define _LINUX_AUDIT_H_ #include <linux/sched.h> #include <linux/ptrace.h> #include <uapi/linux/audit.h> #include <uapi/linux/netfilter/nf_tables.h> #define AUDIT_INO_UNSET ((unsigned long)-1) #define AUDIT_DEV_UNSET ((dev_t)-1) struct audit_sig_info { uid_t uid; pid_t pid; char ctx[]; }; struct audit_buffer; struct audit_context; struct inode; struct netlink_skb_parms; struct path; struct linux_binprm; struct mq_attr; struct mqstat; struct audit_watch; struct audit_tree; struct sk_buff; struct audit_krule { u32 pflags; u32 flags; u32 listnr; u32 action; u32 mask[AUDIT_BITMASK_SIZE]; u32 buflen; /* for data alloc on list rules */ u32 field_count; char *filterkey; /* ties events to rules */ struct audit_field *fields; struct audit_field *arch_f; /* quick access to arch field */ struct audit_field *inode_f; /* quick access to an inode field */ struct audit_watch *watch; /* associated watch */ struct audit_tree *tree; /* associated watched tree */ struct audit_fsnotify_mark *exe; struct list_head rlist; /* entry in audit_{watch,tree}.rules list */ struct list_head list; /* for AUDIT_LIST* purposes only */ u64 prio; }; /* Flag to indicate legacy AUDIT_LOGINUID unset usage */ #define AUDIT_LOGINUID_LEGACY 0x1 struct audit_field { u32 type; union { u32 val; kuid_t uid; kgid_t gid; struct { char *lsm_str; void *lsm_rule; }; }; u32 op; }; enum audit_ntp_type { AUDIT_NTP_OFFSET, AUDIT_NTP_FREQ, AUDIT_NTP_STATUS, AUDIT_NTP_TAI, AUDIT_NTP_TICK, AUDIT_NTP_ADJUST, AUDIT_NTP_NVALS /* count */ }; #ifdef CONFIG_AUDITSYSCALL struct audit_ntp_val { long long oldval, newval; }; struct audit_ntp_data { struct audit_ntp_val vals[AUDIT_NTP_NVALS]; }; #else struct audit_ntp_data {}; #endif enum audit_nfcfgop { AUDIT_XT_OP_REGISTER, AUDIT_XT_OP_REPLACE, AUDIT_XT_OP_UNREGISTER, AUDIT_NFT_OP_TABLE_REGISTER, AUDIT_NFT_OP_TABLE_UNREGISTER, AUDIT_NFT_OP_CHAIN_REGISTER, AUDIT_NFT_OP_CHAIN_UNREGISTER, AUDIT_NFT_OP_RULE_REGISTER, AUDIT_NFT_OP_RULE_UNREGISTER, AUDIT_NFT_OP_SET_REGISTER, AUDIT_NFT_OP_SET_UNREGISTER, AUDIT_NFT_OP_SETELEM_REGISTER, AUDIT_NFT_OP_SETELEM_UNREGISTER, AUDIT_NFT_OP_GEN_REGISTER, AUDIT_NFT_OP_OBJ_REGISTER, AUDIT_NFT_OP_OBJ_UNREGISTER, AUDIT_NFT_OP_OBJ_RESET, AUDIT_NFT_OP_FLOWTABLE_REGISTER, AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, AUDIT_NFT_OP_INVALID, }; extern int is_audit_feature_set(int which); extern int __init audit_register_class(int class, unsigned *list); extern int audit_classify_syscall(int abi, unsigned syscall); extern int audit_classify_arch(int arch); /* only for compat system calls */ extern unsigned compat_write_class[]; extern unsigned compat_read_class[]; extern unsigned compat_dir_class[]; extern unsigned compat_chattr_class[]; extern unsigned compat_signal_class[]; extern int audit_classify_compat_syscall(int abi, unsigned syscall); /* audit_names->type values */ #define AUDIT_TYPE_UNKNOWN 0 /* we don't know yet */ #define AUDIT_TYPE_NORMAL 1 /* a "normal" audit record */ #define AUDIT_TYPE_PARENT 2 /* a parent audit record */ #define AUDIT_TYPE_CHILD_DELETE 3 /* a child being deleted */ #define AUDIT_TYPE_CHILD_CREATE 4 /* a child being created */ /* maximized args number that audit_socketcall can process */ #define AUDITSC_ARGS 6 /* bit values for ->signal->audit_tty */ #define AUDIT_TTY_ENABLE BIT(0) #define AUDIT_TTY_LOG_PASSWD BIT(1) struct filename; #define AUDIT_OFF 0 #define AUDIT_ON 1 #define AUDIT_LOCKED 2 #ifdef CONFIG_AUDIT /* These are defined in audit.c */ /* Public API */ extern __printf(4, 5) void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...); extern struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type); extern __printf(2, 3) void audit_log_format(struct audit_buffer *ab, const char *fmt, ...); extern void audit_log_end(struct audit_buffer *ab); extern bool audit_string_contains_control(const char *string, size_t len); extern void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len); extern void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n); extern void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n); extern void audit_log_untrustedstring(struct audit_buffer *ab, const char *string); extern void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path); extern void audit_log_key(struct audit_buffer *ab, char *key); extern void audit_log_path_denied(int type, const char *operation); extern void audit_log_lost(const char *message); extern int audit_log_task_context(struct audit_buffer *ab); extern void audit_log_task_info(struct audit_buffer *ab); extern int audit_update_lsm_rules(void); /* Private API (for audit.c only) */ extern int audit_rule_change(int type, int seq, void *data, size_t datasz); extern int audit_list_rules_send(struct sk_buff *request_skb, int seq); extern int audit_set_loginuid(kuid_t loginuid); static inline kuid_t audit_get_loginuid(struct task_struct *tsk) { return tsk->loginuid; } static inline unsigned int audit_get_sessionid(struct task_struct *tsk) { return tsk->sessionid; } extern u32 audit_enabled; extern int audit_signal_info(int sig, struct task_struct *t); #else /* CONFIG_AUDIT */ static inline __printf(4, 5) void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...) { } static inline struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type) { return NULL; } static inline __printf(2, 3) void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) { } static inline void audit_log_end(struct audit_buffer *ab) { } static inline void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len) { } static inline void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n) { } static inline void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n) { } static inline void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) { } static inline void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path) { } static inline void audit_log_key(struct audit_buffer *ab, char *key) { } static inline void audit_log_path_denied(int type, const char *operation) { } static inline int audit_log_task_context(struct audit_buffer *ab) { return 0; } static inline void audit_log_task_info(struct audit_buffer *ab) { } static inline kuid_t audit_get_loginuid(struct task_struct *tsk) { return INVALID_UID; } static inline unsigned int audit_get_sessionid(struct task_struct *tsk) { return AUDIT_SID_UNSET; } #define audit_enabled AUDIT_OFF static inline int audit_signal_info(int sig, struct task_struct *t) { return 0; } #endif /* CONFIG_AUDIT */ #ifdef CONFIG_AUDIT_COMPAT_GENERIC #define audit_is_compat(arch) (!((arch) & __AUDIT_ARCH_64BIT)) #else #define audit_is_compat(arch) false #endif #define AUDIT_INODE_PARENT 1 /* dentry represents the parent */ #define AUDIT_INODE_HIDDEN 2 /* audit record should be hidden */ #define AUDIT_INODE_NOEVAL 4 /* audit record incomplete */ #ifdef CONFIG_AUDITSYSCALL #include <asm/syscall.h> /* for syscall_get_arch() */ /* These are defined in auditsc.c */ /* Public API */ extern int audit_alloc(struct task_struct *task); extern void __audit_free(struct task_struct *task); extern void __audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3); extern void __audit_syscall_exit(int ret_success, long ret_value); extern struct filename *__audit_reusename(const __user char *uptr); extern void __audit_getname(struct filename *name); extern void __audit_getcwd(void); extern void __audit_inode(struct filename *name, const struct dentry *dentry, unsigned int flags); extern void __audit_file(const struct file *); extern void __audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type); extern void audit_seccomp(unsigned long syscall, long signr, int code); extern void audit_seccomp_actions_logged(const char *names, const char *old_names, int res); extern void __audit_ptrace(struct task_struct *t); static inline void audit_set_context(struct task_struct *task, struct audit_context *ctx) { task->audit_context = ctx; } static inline struct audit_context *audit_context(void) { return current->audit_context; } static inline bool audit_dummy_context(void) { void *p = audit_context(); return !p || *(int *)p; } static inline void audit_free(struct task_struct *task) { if (unlikely(task->audit_context)) __audit_free(task); } static inline void audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3) { if (unlikely(audit_context())) __audit_syscall_entry(major, a0, a1, a2, a3); } static inline void audit_syscall_exit(void *pt_regs) { if (unlikely(audit_context())) { int success = is_syscall_success(pt_regs); long return_code = regs_return_value(pt_regs); __audit_syscall_exit(success, return_code); } } static inline struct filename *audit_reusename(const __user char *name) { if (unlikely(!audit_dummy_context())) return __audit_reusename(name); return NULL; } static inline void audit_getname(struct filename *name) { if (unlikely(!audit_dummy_context())) __audit_getname(name); } static inline void audit_getcwd(void) { if (unlikely(audit_context())) __audit_getcwd(); } static inline void audit_inode(struct filename *name, const struct dentry *dentry, unsigned int aflags) { if (unlikely(!audit_dummy_context())) __audit_inode(name, dentry, aflags); } static inline void audit_file(struct file *file) { if (unlikely(!audit_dummy_context())) __audit_file(file); } static inline void audit_inode_parent_hidden(struct filename *name, const struct dentry *dentry) { if (unlikely(!audit_dummy_context())) __audit_inode(name, dentry, AUDIT_INODE_PARENT | AUDIT_INODE_HIDDEN); } static inline void audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { if (unlikely(!audit_dummy_context())) __audit_inode_child(parent, dentry, type); } void audit_core_dumps(long signr); static inline void audit_ptrace(struct task_struct *t) { if (unlikely(!audit_dummy_context())) __audit_ptrace(t); } /* Private API (for audit.c only) */ extern void __audit_ipc_obj(struct kern_ipc_perm *ipcp); extern void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode); extern void __audit_bprm(struct linux_binprm *bprm); extern int __audit_socketcall(int nargs, unsigned long *args); extern int __audit_sockaddr(int len, void *addr); extern void __audit_fd_pair(int fd1, int fd2); extern void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr); extern void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout); extern void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification); extern void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat); extern int __audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old); extern void __audit_log_capset(const struct cred *new, const struct cred *old); extern void __audit_mmap_fd(int fd, int flags); extern void __audit_log_kern_module(char *name); extern void __audit_fanotify(unsigned int response); extern void __audit_tk_injoffset(struct timespec64 offset); extern void __audit_ntp_log(const struct audit_ntp_data *ad); extern void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp); static inline void audit_ipc_obj(struct kern_ipc_perm *ipcp) { if (unlikely(!audit_dummy_context())) __audit_ipc_obj(ipcp); } static inline void audit_fd_pair(int fd1, int fd2) { if (unlikely(!audit_dummy_context())) __audit_fd_pair(fd1, fd2); } static inline void audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { if (unlikely(!audit_dummy_context())) __audit_ipc_set_perm(qbytes, uid, gid, mode); } static inline void audit_bprm(struct linux_binprm *bprm) { if (unlikely(!audit_dummy_context())) __audit_bprm(bprm); } static inline int audit_socketcall(int nargs, unsigned long *args) { if (unlikely(!audit_dummy_context())) return __audit_socketcall(nargs, args); return 0; } static inline int audit_socketcall_compat(int nargs, u32 *args) { unsigned long a[AUDITSC_ARGS]; int i; if (audit_dummy_context()) return 0; for (i = 0; i < nargs; i++) a[i] = (unsigned long)args[i]; return __audit_socketcall(nargs, a); } static inline int audit_sockaddr(int len, void *addr) { if (unlikely(!audit_dummy_context())) return __audit_sockaddr(len, addr); return 0; } static inline void audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { if (unlikely(!audit_dummy_context())) __audit_mq_open(oflag, mode, attr); } static inline void audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { if (unlikely(!audit_dummy_context())) __audit_mq_sendrecv(mqdes, msg_len, msg_prio, abs_timeout); } static inline void audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { if (unlikely(!audit_dummy_context())) __audit_mq_notify(mqdes, notification); } static inline void audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { if (unlikely(!audit_dummy_context())) __audit_mq_getsetattr(mqdes, mqstat); } static inline int audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { if (unlikely(!audit_dummy_context())) return __audit_log_bprm_fcaps(bprm, new, old); return 0; } static inline void audit_log_capset(const struct cred *new, const struct cred *old) { if (unlikely(!audit_dummy_context())) __audit_log_capset(new, old); } static inline void audit_mmap_fd(int fd, int flags) { if (unlikely(!audit_dummy_context())) __audit_mmap_fd(fd, flags); } static inline void audit_log_kern_module(char *name) { if (!audit_dummy_context()) __audit_log_kern_module(name); } static inline void audit_fanotify(unsigned int response) { if (!audit_dummy_context()) __audit_fanotify(response); } static inline void audit_tk_injoffset(struct timespec64 offset) { /* ignore no-op events */ if (offset.tv_sec == 0 && offset.tv_nsec == 0) return; if (!audit_dummy_context()) __audit_tk_injoffset(offset); } static inline void audit_ntp_init(struct audit_ntp_data *ad) { memset(ad, 0, sizeof(*ad)); } static inline void audit_ntp_set_old(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { ad->vals[type].oldval = val; } static inline void audit_ntp_set_new(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { ad->vals[type].newval = val; } static inline void audit_ntp_log(const struct audit_ntp_data *ad) { if (!audit_dummy_context()) __audit_ntp_log(ad); } static inline void audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { if (audit_enabled) __audit_log_nfcfg(name, af, nentries, op, gfp); } extern int audit_n_rules; extern int audit_signals; #else /* CONFIG_AUDITSYSCALL */ static inline int audit_alloc(struct task_struct *task) { return 0; } static inline void audit_free(struct task_struct *task) { } static inline void audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3) { } static inline void audit_syscall_exit(void *pt_regs) { } static inline bool audit_dummy_context(void) { return true; } static inline void audit_set_context(struct task_struct *task, struct audit_context *ctx) { } static inline struct audit_context *audit_context(void) { return NULL; } static inline struct filename *audit_reusename(const __user char *name) { return NULL; } static inline void audit_getname(struct filename *name) { } static inline void audit_getcwd(void) { } static inline void audit_inode(struct filename *name, const struct dentry *dentry, unsigned int aflags) { } static inline void audit_file(struct file *file) { } static inline void audit_inode_parent_hidden(struct filename *name, const struct dentry *dentry) { } static inline void audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { } static inline void audit_core_dumps(long signr) { } static inline void audit_seccomp(unsigned long syscall, long signr, int code) { } static inline void audit_seccomp_actions_logged(const char *names, const char *old_names, int res) { } static inline void audit_ipc_obj(struct kern_ipc_perm *ipcp) { } static inline void audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { } static inline void audit_bprm(struct linux_binprm *bprm) { } static inline int audit_socketcall(int nargs, unsigned long *args) { return 0; } static inline int audit_socketcall_compat(int nargs, u32 *args) { return 0; } static inline void audit_fd_pair(int fd1, int fd2) { } static inline int audit_sockaddr(int len, void *addr) { return 0; } static inline void audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { } static inline void audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { } static inline void audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { } static inline void audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { } static inline int audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { return 0; } static inline void audit_log_capset(const struct cred *new, const struct cred *old) { } static inline void audit_mmap_fd(int fd, int flags) { } static inline void audit_log_kern_module(char *name) { } static inline void audit_fanotify(unsigned int response) { } static inline void audit_tk_injoffset(struct timespec64 offset) { } static inline void audit_ntp_init(struct audit_ntp_data *ad) { } static inline void audit_ntp_set_old(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { } static inline void audit_ntp_set_new(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { } static inline void audit_ntp_log(const struct audit_ntp_data *ad) { } static inline void audit_ptrace(struct task_struct *t) { } static inline void audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { } #define audit_n_rules 0 #define audit_signals 0 #endif /* CONFIG_AUDITSYSCALL */ static inline bool audit_loginuid_set(struct task_struct *tsk) { return uid_valid(audit_get_loginuid(tsk)); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* * 25-Jul-1998 Major changes to allow for ip chain table * * 3-Jan-2000 Named tables to allow packet selection for different uses. */ /* * Format of an IP firewall descriptor * * src, dst, src_mask, dst_mask are always stored in network byte order. * flags are stored in host byte order (of course). * Port numbers are stored in HOST byte order. */ #ifndef _UAPI_IPTABLES_H #define _UAPI_IPTABLES_H #include <linux/types.h> #include <linux/compiler.h> #include <linux/if.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter/x_tables.h> #ifndef __KERNEL__ #define IPT_FUNCTION_MAXNAMELEN XT_FUNCTION_MAXNAMELEN #define IPT_TABLE_MAXNAMELEN XT_TABLE_MAXNAMELEN #define ipt_match xt_match #define ipt_target xt_target #define ipt_table xt_table #define ipt_get_revision xt_get_revision #define ipt_entry_match xt_entry_match #define ipt_entry_target xt_entry_target #define ipt_standard_target xt_standard_target #define ipt_error_target xt_error_target #define ipt_counters xt_counters #define IPT_CONTINUE XT_CONTINUE #define IPT_RETURN XT_RETURN /* This group is older than old (iptables < v1.4.0-rc1~89) */ #include <linux/netfilter/xt_tcpudp.h> #define ipt_udp xt_udp #define ipt_tcp xt_tcp #define IPT_TCP_INV_SRCPT XT_TCP_INV_SRCPT #define IPT_TCP_INV_DSTPT XT_TCP_INV_DSTPT #define IPT_TCP_INV_FLAGS XT_TCP_INV_FLAGS #define IPT_TCP_INV_OPTION XT_TCP_INV_OPTION #define IPT_TCP_INV_MASK XT_TCP_INV_MASK #define IPT_UDP_INV_SRCPT XT_UDP_INV_SRCPT #define IPT_UDP_INV_DSTPT XT_UDP_INV_DSTPT #define IPT_UDP_INV_MASK XT_UDP_INV_MASK /* The argument to IPT_SO_ADD_COUNTERS. */ #define ipt_counters_info xt_counters_info /* Standard return verdict, or do jump. */ #define IPT_STANDARD_TARGET XT_STANDARD_TARGET /* Error verdict. */ #define IPT_ERROR_TARGET XT_ERROR_TARGET /* fn returns 0 to continue iteration */ #define IPT_MATCH_ITERATE(e, fn, args...) \ XT_MATCH_ITERATE(struct ipt_entry, e, fn, ## args) /* fn returns 0 to continue iteration */ #define IPT_ENTRY_ITERATE(entries, size, fn, args...) \ XT_ENTRY_ITERATE(struct ipt_entry, entries, size, fn, ## args) #endif /* Yes, Virginia, you have to zero the padding. */ struct ipt_ip { /* Source and destination IP addr */ struct in_addr src, dst; /* Mask for src and dest IP addr */ struct in_addr smsk, dmsk; char iniface[IFNAMSIZ], outiface[IFNAMSIZ]; unsigned char iniface_mask[IFNAMSIZ], outiface_mask[IFNAMSIZ]; /* Protocol, 0 = ANY */ __u16 proto; /* Flags word */ __u8 flags; /* Inverse flags */ __u8 invflags; }; /* Values for "flag" field in struct ipt_ip (general ip structure). */ #define IPT_F_FRAG 0x01 /* Set if rule is a fragment rule */ #define IPT_F_GOTO 0x02 /* Set if jump is a goto */ #define IPT_F_MASK 0x03 /* All possible flag bits mask. */ /* Values for "inv" field in struct ipt_ip. */ #define IPT_INV_VIA_IN 0x01 /* Invert the sense of IN IFACE. */ #define IPT_INV_VIA_OUT 0x02 /* Invert the sense of OUT IFACE */ #define IPT_INV_TOS 0x04 /* Invert the sense of TOS. */ #define IPT_INV_SRCIP 0x08 /* Invert the sense of SRC IP. */ #define IPT_INV_DSTIP 0x10 /* Invert the sense of DST OP. */ #define IPT_INV_FRAG 0x20 /* Invert the sense of FRAG. */ #define IPT_INV_PROTO XT_INV_PROTO #define IPT_INV_MASK 0x7F /* All possible flag bits mask. */ /* This structure defines each of the firewall rules. Consists of 3 parts which are 1) general IP header stuff 2) match specific stuff 3) the target to perform if the rule matches */ struct ipt_entry { struct ipt_ip ip; /* Mark with fields that we care about. */ unsigned int nfcache; /* Size of ipt_entry + matches */ __u16 target_offset; /* Size of ipt_entry + matches + target */ __u16 next_offset; /* Back pointer */ unsigned int comefrom; /* Packet and byte counters. */ struct xt_counters counters; /* The matches (if any), then the target. */ unsigned char elems[0]; }; /* * New IP firewall options for [gs]etsockopt at the RAW IP level. * Unlike BSD Linux inherits IP options so you don't have to use a raw * socket for this. Instead we check rights in the calls. * * ATTENTION: check linux/in.h before adding new number here. */ #define IPT_BASE_CTL 64 #define IPT_SO_SET_REPLACE (IPT_BASE_CTL) #define IPT_SO_SET_ADD_COUNTERS (IPT_BASE_CTL + 1) #define IPT_SO_SET_MAX IPT_SO_SET_ADD_COUNTERS #define IPT_SO_GET_INFO (IPT_BASE_CTL) #define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1) #define IPT_SO_GET_REVISION_MATCH (IPT_BASE_CTL + 2) #define IPT_SO_GET_REVISION_TARGET (IPT_BASE_CTL + 3) #define IPT_SO_GET_MAX IPT_SO_GET_REVISION_TARGET /* ICMP matching stuff */ struct ipt_icmp { __u8 type; /* type to match */ __u8 code[2]; /* range of code */ __u8 invflags; /* Inverse flags */ }; /* Values for "inv" field for struct ipt_icmp. */ #define IPT_ICMP_INV 0x01 /* Invert the sense of type/code test */ /* The argument to IPT_SO_GET_INFO */ struct ipt_getinfo { /* Which table: caller fills this in. */ char name[XT_TABLE_MAXNAMELEN]; /* Kernel fills these in. */ /* Which hook entry points are valid: bitmask */ unsigned int valid_hooks; /* Hook entry points: one per netfilter hook. */ unsigned int hook_entry[NF_INET_NUMHOOKS]; /* Underflow points. */ unsigned int underflow[NF_INET_NUMHOOKS]; /* Number of entries */ unsigned int num_entries; /* Size of entries. */ unsigned int size; }; /* The argument to IPT_SO_SET_REPLACE. */ struct ipt_replace { /* Which table. */ char name[XT_TABLE_MAXNAMELEN]; /* Which hook entry points are valid: bitmask. You can't change this. */ unsigned int valid_hooks; /* Number of entries */ unsigned int num_entries; /* Total size of new entries */ unsigned int size; /* Hook entry points. */ unsigned int hook_entry[NF_INET_NUMHOOKS]; /* Underflow points. */ unsigned int underflow[NF_INET_NUMHOOKS]; /* Information about old entries: */ /* Number of counters (must be equal to current number of entries). */ unsigned int num_counters; /* The old entries' counters. */ struct xt_counters __user *counters; /* The entries (hang off end: not really an array). */ struct ipt_entry entries[0]; }; /* The argument to IPT_SO_GET_ENTRIES. */ struct ipt_get_entries { /* Which table: user fills this in. */ char name[XT_TABLE_MAXNAMELEN]; /* User fills this in: total entry size. */ unsigned int size; /* The entries. */ struct ipt_entry entrytable[0]; }; /* Helper functions */ static __inline__ struct xt_entry_target * ipt_get_target(struct ipt_entry *e) { return (struct xt_entry_target *)((char *)e + e->target_offset); } /* * Main firewall chains definitions and global var's definitions. */ #endif /* _UAPI_IPTABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _X_TABLES_H #define _X_TABLES_H #include <linux/netdevice.h> #include <linux/static_key.h> #include <linux/netfilter.h> #include <uapi/linux/netfilter/x_tables.h> /* Test a struct->invflags and a boolean for inequality */ #define NF_INVF(ptr, flag, boolean) \ ((boolean) ^ !!((ptr)->invflags & (flag))) /** * struct xt_action_param - parameters for matches/targets * * @match: the match extension * @target: the target extension * @matchinfo: per-match data * @targetinfo: per-target data * @state: pointer to hook state this packet came from * @fragoff: packet is a fragment, this is the data offset * @thoff: position of transport header relative to skb->data * * Fields written to by extensions: * * @hotdrop: drop packet if we had inspection problems */ struct xt_action_param { union { const struct xt_match *match; const struct xt_target *target; }; union { const void *matchinfo, *targinfo; }; const struct nf_hook_state *state; int fragoff; unsigned int thoff; bool hotdrop; }; static inline struct net *xt_net(const struct xt_action_param *par) { return par->state->net; } static inline struct net_device *xt_in(const struct xt_action_param *par) { return par->state->in; } static inline const char *xt_inname(const struct xt_action_param *par) { return par->state->in->name; } static inline struct net_device *xt_out(const struct xt_action_param *par) { return par->state->out; } static inline const char *xt_outname(const struct xt_action_param *par) { return par->state->out->name; } static inline unsigned int xt_hooknum(const struct xt_action_param *par) { return par->state->hook; } static inline u_int8_t xt_family(const struct xt_action_param *par) { return par->state->pf; } /** * struct xt_mtchk_param - parameters for match extensions' * checkentry functions * * @net: network namespace through which the check was invoked * @table: table the rule is tried to be inserted into * @entryinfo: the family-specific rule data * (struct ipt_ip, ip6t_ip, arpt_arp or (note) ebt_entry) * @match: struct xt_match through which this function was invoked * @matchinfo: per-match data * @hook_mask: via which hooks the new rule is reachable * Other fields as above. */ struct xt_mtchk_param { struct net *net; const char *table; const void *entryinfo; const struct xt_match *match; void *matchinfo; unsigned int hook_mask; u_int8_t family; bool nft_compat; }; /** * struct xt_mdtor_param - match destructor parameters * Fields as above. */ struct xt_mtdtor_param { struct net *net; const struct xt_match *match; void *matchinfo; u_int8_t family; }; /** * struct xt_tgchk_param - parameters for target extensions' * checkentry functions * * @entryinfo: the family-specific rule data * (struct ipt_entry, ip6t_entry, arpt_entry, ebt_entry) * * Other fields see above. */ struct xt_tgchk_param { struct net *net; const char *table; const void *entryinfo; const struct xt_target *target; void *targinfo; unsigned int hook_mask; u_int8_t family; bool nft_compat; }; /* Target destructor parameters */ struct xt_tgdtor_param { struct net *net; const struct xt_target *target; void *targinfo; u_int8_t family; }; struct xt_match { struct list_head list; const char name[XT_EXTENSION_MAXNAMELEN]; u_int8_t revision; /* Return true or false: return FALSE and set *hotdrop = 1 to force immediate packet drop. */ /* Arguments changed since 2.6.9, as this must now handle non-linear skb, using skb_header_pointer and skb_ip_make_writable. */ bool (*match)(const struct sk_buff *skb, struct xt_action_param *); /* Called when user tries to insert an entry of this type. */ int (*checkentry)(const struct xt_mtchk_param *); /* Called when entry of this type deleted. */ void (*destroy)(const struct xt_mtdtor_param *); #ifdef CONFIG_COMPAT /* Called when userspace align differs from kernel space one */ void (*compat_from_user)(void *dst, const void *src); int (*compat_to_user)(void __user *dst, const void *src); #endif /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; const char *table; unsigned int matchsize; unsigned int usersize; #ifdef CONFIG_COMPAT unsigned int compatsize; #endif unsigned int hooks; unsigned short proto; unsigned short family; }; /* Registration hooks for targets. */ struct xt_target { struct list_head list; const char name[XT_EXTENSION_MAXNAMELEN]; u_int8_t revision; /* Returns verdict. Argument order changed since 2.6.9, as this must now handle non-linear skbs, using skb_copy_bits and skb_ip_make_writable. */ unsigned int (*target)(struct sk_buff *skb, const struct xt_action_param *); /* Called when user tries to insert an entry of this type: hook_mask is a bitmask of hooks from which it can be called. */ /* Should return 0 on success or an error code otherwise (-Exxxx). */ int (*checkentry)(const struct xt_tgchk_param *); /* Called when entry of this type deleted. */ void (*destroy)(const struct xt_tgdtor_param *); #ifdef CONFIG_COMPAT /* Called when userspace align differs from kernel space one */ void (*compat_from_user)(void *dst, const void *src); int (*compat_to_user)(void __user *dst, const void *src); #endif /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; const char *table; unsigned int targetsize; unsigned int usersize; #ifdef CONFIG_COMPAT unsigned int compatsize; #endif unsigned int hooks; unsigned short proto; unsigned short family; }; /* Furniture shopping... */ struct xt_table { struct list_head list; /* What hooks you will enter on */ unsigned int valid_hooks; /* Man behind the curtain... */ struct xt_table_info *private; /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; u_int8_t af; /* address/protocol family */ int priority; /* hook order */ /* called when table is needed in the given netns */ int (*table_init)(struct net *net); /* A unique name... */ const char name[XT_TABLE_MAXNAMELEN]; }; #include <linux/netfilter_ipv4.h> /* The table itself */ struct xt_table_info { /* Size per table */ unsigned int size; /* Number of entries: FIXME. --RR */ unsigned int number; /* Initial number of entries. Needed for module usage count */ unsigned int initial_entries; /* Entry points and underflows */ unsigned int hook_entry[NF_INET_NUMHOOKS]; unsigned int underflow[NF_INET_NUMHOOKS]; /* * Number of user chains. Since tables cannot have loops, at most * @stacksize jumps (number of user chains) can possibly be made. */ unsigned int stacksize; void ***jumpstack; unsigned char entries[] __aligned(8); }; int xt_register_target(struct xt_target *target); void xt_unregister_target(struct xt_target *target); int xt_register_targets(struct xt_target *target, unsigned int n); void xt_unregister_targets(struct xt_target *target, unsigned int n); int xt_register_match(struct xt_match *target); void xt_unregister_match(struct xt_match *target); int xt_register_matches(struct xt_match *match, unsigned int n); void xt_unregister_matches(struct xt_match *match, unsigned int n); int xt_check_entry_offsets(const void *base, const char *elems, unsigned int target_offset, unsigned int next_offset); int xt_check_table_hooks(const struct xt_table_info *info, unsigned int valid_hooks); unsigned int *xt_alloc_entry_offsets(unsigned int size); bool xt_find_jump_offset(const unsigned int *offsets, unsigned int target, unsigned int size); int xt_check_proc_name(const char *name, unsigned int size); int xt_check_match(struct xt_mtchk_param *, unsigned int size, u16 proto, bool inv_proto); int xt_check_target(struct xt_tgchk_param *, unsigned int size, u16 proto, bool inv_proto); int xt_match_to_user(const struct xt_entry_match *m, struct xt_entry_match __user *u); int xt_target_to_user(const struct xt_entry_target *t, struct xt_entry_target __user *u); int xt_data_to_user(void __user *dst, const void *src, int usersize, int size, int aligned_size); void *xt_copy_counters(sockptr_t arg, unsigned int len, struct xt_counters_info *info); struct xt_counters *xt_counters_alloc(unsigned int counters); struct xt_table *xt_register_table(struct net *net, const struct xt_table *table, struct xt_table_info *bootstrap, struct xt_table_info *newinfo); void *xt_unregister_table(struct xt_table *table); struct xt_table_info *xt_replace_table(struct xt_table *table, unsigned int num_counters, struct xt_table_info *newinfo, int *error); struct xt_match *xt_find_match(u8 af, const char *name, u8 revision); struct xt_match *xt_request_find_match(u8 af, const char *name, u8 revision); struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision); int xt_find_revision(u8 af, const char *name, u8 revision, int target, int *err); struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af, const char *name); struct xt_table *xt_request_find_table_lock(struct net *net, u_int8_t af, const char *name); void xt_table_unlock(struct xt_table *t); int xt_proto_init(struct net *net, u_int8_t af); void xt_proto_fini(struct net *net, u_int8_t af); struct xt_table_info *xt_alloc_table_info(unsigned int size); void xt_free_table_info(struct xt_table_info *info); /** * xt_recseq - recursive seqcount for netfilter use * * Packet processing changes the seqcount only if no recursion happened * get_counters() can use read_seqcount_begin()/read_seqcount_retry(), * because we use the normal seqcount convention : * Low order bit set to 1 if a writer is active. */ DECLARE_PER_CPU(seqcount_t, xt_recseq); /* xt_tee_enabled - true if x_tables needs to handle reentrancy * * Enabled if current ip(6)tables ruleset has at least one -j TEE rule. */ extern struct static_key xt_tee_enabled; /** * xt_write_recseq_begin - start of a write section * * Begin packet processing : all readers must wait the end * 1) Must be called with preemption disabled * 2) softirqs must be disabled too (or we should use this_cpu_add()) * Returns : * 1 if no recursion on this cpu * 0 if recursion detected */ static inline unsigned int xt_write_recseq_begin(void) { unsigned int addend; /* * Low order bit of sequence is set if we already * called xt_write_recseq_begin(). */ addend = (__this_cpu_read(xt_recseq.sequence) + 1) & 1; /* * This is kind of a write_seqcount_begin(), but addend is 0 or 1 * We dont check addend value to avoid a test and conditional jump, * since addend is most likely 1 */ __this_cpu_add(xt_recseq.sequence, addend); smp_mb(); return addend; } /** * xt_write_recseq_end - end of a write section * @addend: return value from previous xt_write_recseq_begin() * * End packet processing : all readers can proceed * 1) Must be called with preemption disabled * 2) softirqs must be disabled too (or we should use this_cpu_add()) */ static inline void xt_write_recseq_end(unsigned int addend) { /* this is kind of a write_seqcount_end(), but addend is 0 or 1 */ smp_wmb(); __this_cpu_add(xt_recseq.sequence, addend); } /* * This helper is performance critical and must be inlined */ static inline unsigned long ifname_compare_aligned(const char *_a, const char *_b, const char *_mask) { const unsigned long *a = (const unsigned long *)_a; const unsigned long *b = (const unsigned long *)_b; const unsigned long *mask = (const unsigned long *)_mask; unsigned long ret; ret = (a[0] ^ b[0]) & mask[0]; if (IFNAMSIZ > sizeof(unsigned long)) ret |= (a[1] ^ b[1]) & mask[1]; if (IFNAMSIZ > 2 * sizeof(unsigned long)) ret |= (a[2] ^ b[2]) & mask[2]; if (IFNAMSIZ > 3 * sizeof(unsigned long)) ret |= (a[3] ^ b[3]) & mask[3]; BUILD_BUG_ON(IFNAMSIZ > 4 * sizeof(unsigned long)); return ret; } struct xt_percpu_counter_alloc_state { unsigned int off; const char __percpu *mem; }; bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state, struct xt_counters *counter); void xt_percpu_counter_free(struct xt_counters *cnt); static inline struct xt_counters * xt_get_this_cpu_counter(struct xt_counters *cnt) { if (nr_cpu_ids > 1) return this_cpu_ptr((void __percpu *) (unsigned long) cnt->pcnt); return cnt; } static inline struct xt_counters * xt_get_per_cpu_counter(struct xt_counters *cnt, unsigned int cpu) { if (nr_cpu_ids > 1) return per_cpu_ptr((void __percpu *) (unsigned long) cnt->pcnt, cpu); return cnt; } struct nf_hook_ops *xt_hook_ops_alloc(const struct xt_table *, nf_hookfn *); #ifdef CONFIG_COMPAT #include <net/compat.h> struct compat_xt_entry_match { union { struct { u_int16_t match_size; char name[XT_FUNCTION_MAXNAMELEN - 1]; u_int8_t revision; } user; struct { u_int16_t match_size; compat_uptr_t match; } kernel; u_int16_t match_size; } u; unsigned char data[]; }; struct compat_xt_entry_target { union { struct { u_int16_t target_size; char name[XT_FUNCTION_MAXNAMELEN - 1]; u_int8_t revision; } user; struct { u_int16_t target_size; compat_uptr_t target; } kernel; u_int16_t target_size; } u; unsigned char data[]; }; /* FIXME: this works only on 32 bit tasks * need to change whole approach in order to calculate align as function of * current task alignment */ struct compat_xt_counters { compat_u64 pcnt, bcnt; /* Packet and byte counters */ }; struct compat_xt_counters_info { char name[XT_TABLE_MAXNAMELEN]; compat_uint_t num_counters; struct compat_xt_counters counters[]; }; struct _compat_xt_align { __u8 u8; __u16 u16; __u32 u32; compat_u64 u64; }; #define COMPAT_XT_ALIGN(s) __ALIGN_KERNEL((s), __alignof__(struct _compat_xt_align)) void xt_compat_lock(u_int8_t af); void xt_compat_unlock(u_int8_t af); int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta); void xt_compat_flush_offsets(u_int8_t af); int xt_compat_init_offsets(u8 af, unsigned int number); int xt_compat_calc_jump(u_int8_t af, unsigned int offset); int xt_compat_match_offset(const struct xt_match *match); void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr, unsigned int *size); int xt_compat_match_to_user(const struct xt_entry_match *m, void __user **dstptr, unsigned int *size); int xt_compat_target_offset(const struct xt_target *target); void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr, unsigned int *size); int xt_compat_target_to_user(const struct xt_entry_target *t, void __user **dstptr, unsigned int *size); int xt_compat_check_entry_offsets(const void *base, const char *elems, unsigned int target_offset, unsigned int next_offset); #endif /* CONFIG_COMPAT */ #endif /* _X_TABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _DELAYED_CALL_H #define _DELAYED_CALL_H /* * Poor man's closures; I wish we could've done them sanely polymorphic, * but... */ struct delayed_call { void (*fn)(void *); void *arg; }; #define DEFINE_DELAYED_CALL(name) struct delayed_call name = {NULL, NULL} /* I really wish we had closures with sane typechecking... */ static inline void set_delayed_call(struct delayed_call *call, void (*fn)(void *), void *arg) { call->fn = fn; call->arg = arg; } static inline void do_delayed_call(struct delayed_call *call) { if (call->fn) call->fn(call->arg); } static inline void clear_delayed_call(struct delayed_call *call) { call->fn = NULL; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 /* SPDX-License-Identifier: GPL-2.0 */ /* * This header is for implementations of dma_map_ops and related code. * It should not be included in drivers just using the DMA API. */ #ifndef _LINUX_DMA_MAP_OPS_H #define _LINUX_DMA_MAP_OPS_H #include <linux/dma-mapping.h> #include <linux/pgtable.h> struct cma; struct dma_map_ops { void *(*alloc)(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs); void (*free)(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, unsigned long attrs); struct page *(*alloc_pages)(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); void (*free_pages)(struct device *dev, size_t size, struct page *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir); void *(*alloc_noncoherent)(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); void (*free_noncoherent)(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir); int (*mmap)(struct device *, struct vm_area_struct *, void *, dma_addr_t, size_t, unsigned long attrs); int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); dma_addr_t (*map_page)(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs); void (*unmap_page)(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir, unsigned long attrs); /* * map_sg returns 0 on error and a value > 0 on success. * It should never return a value < 0. */ int (*map_sg)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs); void (*unmap_sg)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs); dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr, size_t size, enum dma_data_direction dir, unsigned long attrs); void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir, unsigned long attrs); void (*sync_single_for_cpu)(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir); void (*sync_single_for_device)(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir); void (*sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir); void (*sync_sg_for_device)(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir); void (*cache_sync)(struct device *dev, void *vaddr, size_t size, enum dma_data_direction direction); int (*dma_supported)(struct device *dev, u64 mask); u64 (*get_required_mask)(struct device *dev); size_t (*max_mapping_size)(struct device *dev); unsigned long (*get_merge_boundary)(struct device *dev); }; #ifdef CONFIG_DMA_OPS #include <asm/dma-mapping.h> static inline const struct dma_map_ops *get_dma_ops(struct device *dev) { if (dev->dma_ops) return dev->dma_ops; return get_arch_dma_ops(dev->bus); } static inline void set_dma_ops(struct device *dev, const struct dma_map_ops *dma_ops) { dev->dma_ops = dma_ops; } #else /* CONFIG_DMA_OPS */ static inline const struct dma_map_ops *get_dma_ops(struct device *dev) { return NULL; } static inline void set_dma_ops(struct device *dev, const struct dma_map_ops *dma_ops) { } #endif /* CONFIG_DMA_OPS */ #ifdef CONFIG_DMA_CMA extern struct cma *dma_contiguous_default_area; static inline struct cma *dev_get_cma_area(struct device *dev) { if (dev && dev->cma_area) return dev->cma_area; return dma_contiguous_default_area; } void dma_contiguous_reserve(phys_addr_t addr_limit); int __init dma_contiguous_reserve_area(phys_addr_t size, phys_addr_t base, phys_addr_t limit, struct cma **res_cma, bool fixed); struct page *dma_alloc_from_contiguous(struct device *dev, size_t count, unsigned int order, bool no_warn); bool dma_release_from_contiguous(struct device *dev, struct page *pages, int count); struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp); void dma_free_contiguous(struct device *dev, struct page *page, size_t size); void dma_contiguous_early_fixup(phys_addr_t base, unsigned long size); #else /* CONFIG_DMA_CMA */ static inline struct cma *dev_get_cma_area(struct device *dev) { return NULL; } static inline void dma_contiguous_reserve(phys_addr_t limit) { } static inline int dma_contiguous_reserve_area(phys_addr_t size, phys_addr_t base, phys_addr_t limit, struct cma **res_cma, bool fixed) { return -ENOSYS; } static inline struct page *dma_alloc_from_contiguous(struct device *dev, size_t count, unsigned int order, bool no_warn) { return NULL; } static inline bool dma_release_from_contiguous(struct device *dev, struct page *pages, int count) { return false; } /* Use fallback alloc() and free() when CONFIG_DMA_CMA=n */ static inline struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp) { return NULL; } static inline void dma_free_contiguous(struct device *dev, struct page *page, size_t size) { __free_pages(page, get_order(size)); } #endif /* CONFIG_DMA_CMA*/ #ifdef CONFIG_DMA_PERNUMA_CMA void dma_pernuma_cma_reserve(void); #else static inline void dma_pernuma_cma_reserve(void) { } #endif /* CONFIG_DMA_PERNUMA_CMA */ #ifdef CONFIG_DMA_DECLARE_COHERENT int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, dma_addr_t device_addr, size_t size); int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size, dma_addr_t *dma_handle, void **ret); int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr); int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, size_t size, int *ret); void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size, dma_addr_t *dma_handle); int dma_release_from_global_coherent(int order, void *vaddr); int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr, size_t size, int *ret); #else static inline int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, dma_addr_t device_addr, size_t size) { return -ENOSYS; } #define dma_alloc_from_dev_coherent(dev, size, handle, ret) (0) #define dma_release_from_dev_coherent(dev, order, vaddr) (0) #define dma_mmap_from_dev_coherent(dev, vma, vaddr, order, ret) (0) static inline void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size, dma_addr_t *dma_handle) { return NULL; } static inline int dma_release_from_global_coherent(int order, void *vaddr) { return 0; } static inline int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *cpu_addr, size_t size, int *ret) { return 0; } #endif /* CONFIG_DMA_DECLARE_COHERENT */ int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); struct page *dma_common_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); void dma_common_free_pages(struct device *dev, size_t size, struct page *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir); struct page **dma_common_find_pages(void *cpu_addr); void *dma_common_contiguous_remap(struct page *page, size_t size, pgprot_t prot, const void *caller); void *dma_common_pages_remap(struct page **pages, size_t size, pgprot_t prot, const void *caller); void dma_common_free_remap(void *cpu_addr, size_t size); struct page *dma_alloc_from_pool(struct device *dev, size_t size, void **cpu_addr, gfp_t flags, bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t)); bool dma_free_from_pool(struct device *dev, void *start, size_t size); #ifdef CONFIG_ARCH_HAS_DMA_COHERENCE_H #include <asm/dma-coherence.h> #elif defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) static inline bool dev_is_dma_coherent(struct device *dev) { return dev->dma_coherent; } #else static inline bool dev_is_dma_coherent(struct device *dev) { return true; } #endif /* CONFIG_ARCH_HAS_DMA_COHERENCE_H */ void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs); void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs); #ifdef CONFIG_MMU /* * Page protection so that devices that can't snoop CPU caches can use the * memory coherently. We default to pgprot_noncached which is usually used * for ioremap as a safe bet, but architectures can override this with less * strict semantics if possible. */ #ifndef pgprot_dmacoherent #define pgprot_dmacoherent(prot) pgprot_noncached(prot) #endif pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs); #else static inline pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) { return prot; /* no protection bits supported without page tables */ } #endif /* CONFIG_MMU */ #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE void arch_sync_dma_for_device(phys_addr_t paddr, size_t size, enum dma_data_direction dir); #else static inline void arch_sync_dma_for_device(phys_addr_t paddr, size_t size, enum dma_data_direction dir) { } #endif /* ARCH_HAS_SYNC_DMA_FOR_DEVICE */ #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size, enum dma_data_direction dir); #else static inline void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size, enum dma_data_direction dir) { } #endif /* ARCH_HAS_SYNC_DMA_FOR_CPU */ #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL void arch_sync_dma_for_cpu_all(void); #else static inline void arch_sync_dma_for_cpu_all(void) { } #endif /* CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL */ #ifdef CONFIG_ARCH_HAS_DMA_PREP_COHERENT void arch_dma_prep_coherent(struct page *page, size_t size); #else static inline void arch_dma_prep_coherent(struct page *page, size_t size) { } #endif /* CONFIG_ARCH_HAS_DMA_PREP_COHERENT */ #ifdef CONFIG_ARCH_HAS_DMA_MARK_CLEAN void arch_dma_mark_clean(phys_addr_t paddr, size_t size); #else static inline void arch_dma_mark_clean(phys_addr_t paddr, size_t size) { } #endif /* ARCH_HAS_DMA_MARK_CLEAN */ void *arch_dma_set_uncached(void *addr, size_t size); void arch_dma_clear_uncached(void *addr, size_t size); #ifdef CONFIG_ARCH_HAS_SETUP_DMA_OPS void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, const struct iommu_ops *iommu, bool coherent); #else static inline void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, const struct iommu_ops *iommu, bool coherent) { } #endif /* CONFIG_ARCH_HAS_SETUP_DMA_OPS */ #ifdef CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS void arch_teardown_dma_ops(struct device *dev); #else static inline void arch_teardown_dma_ops(struct device *dev) { } #endif /* CONFIG_ARCH_HAS_TEARDOWN_DMA_OPS */ #ifdef CONFIG_DMA_API_DEBUG void dma_debug_add_bus(struct bus_type *bus); void debug_dma_dump_mappings(struct device *dev); #else static inline void dma_debug_add_bus(struct bus_type *bus) { } static inline void debug_dma_dump_mappings(struct device *dev) { } #endif /* CONFIG_DMA_API_DEBUG */ extern const struct dma_map_ops dma_dummy_ops; #endif /* _LINUX_DMA_MAP_OPS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PGALLLC_TRACK_H #define _LINUX_PGALLLC_TRACK_H #if defined(CONFIG_MMU) static inline p4d_t *p4d_alloc_track(struct mm_struct *mm, pgd_t *pgd, unsigned long address, pgtbl_mod_mask *mod_mask) { if (unlikely(pgd_none(*pgd))) { if (__p4d_alloc(mm, pgd, address)) return NULL; *mod_mask |= PGTBL_PGD_MODIFIED; } return p4d_offset(pgd, address); } static inline pud_t *pud_alloc_track(struct mm_struct *mm, p4d_t *p4d, unsigned long address, pgtbl_mod_mask *mod_mask) { if (unlikely(p4d_none(*p4d))) { if (__pud_alloc(mm, p4d, address)) return NULL; *mod_mask |= PGTBL_P4D_MODIFIED; } return pud_offset(p4d, address); } static inline pmd_t *pmd_alloc_track(struct mm_struct *mm, pud_t *pud, unsigned long address, pgtbl_mod_mask *mod_mask) { if (unlikely(pud_none(*pud))) { if (__pmd_alloc(mm, pud, address)) return NULL; *mod_mask |= PGTBL_PUD_MODIFIED; } return pmd_offset(pud, address); } #endif /* CONFIG_MMU */ #define pte_alloc_kernel_track(pmd, address, mask) \ ((unlikely(pmd_none(*(pmd))) && \ (__pte_alloc_kernel(pmd) || ({*(mask)|=PGTBL_PMD_MODIFIED;0;})))?\ NULL: pte_offset_kernel(pmd, address)) #endif /* _LINUX_PGALLLC_TRACK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 /* SPDX-License-Identifier: GPL-2.0 */ /* * workqueue.h --- work queue handling for Linux. */ #ifndef _LINUX_WORKQUEUE_H #define _LINUX_WORKQUEUE_H #include <linux/timer.h> #include <linux/linkage.h> #include <linux/bitops.h> #include <linux/lockdep.h> #include <linux/threads.h> #include <linux/atomic.h> #include <linux/cpumask.h> #include <linux/rcupdate.h> struct workqueue_struct; struct work_struct; typedef void (*work_func_t)(struct work_struct *work); void delayed_work_timer_fn(struct timer_list *t); /* * The first word is the work queue pointer and the flags rolled into * one */ #define work_data_bits(work) ((unsigned long *)(&(work)->data)) enum { WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */ WORK_STRUCT_DELAYED_BIT = 1, /* work item is delayed */ WORK_STRUCT_PWQ_BIT = 2, /* data points to pwq */ WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */ #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC_BIT = 4, /* static initializer (debugobjects) */ WORK_STRUCT_COLOR_SHIFT = 5, /* color for workqueue flushing */ #else WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */ #endif WORK_STRUCT_COLOR_BITS = 4, WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT, WORK_STRUCT_DELAYED = 1 << WORK_STRUCT_DELAYED_BIT, WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT, WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT, #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT, #else WORK_STRUCT_STATIC = 0, #endif /* * The last color is no color used for works which don't * participate in workqueue flushing. */ WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS) - 1, WORK_NO_COLOR = WORK_NR_COLORS, /* not bound to any CPU, prefer the local CPU */ WORK_CPU_UNBOUND = NR_CPUS, /* * Reserve 8 bits off of pwq pointer w/ debugobjects turned off. * This makes pwqs aligned to 256 bytes and allows 15 workqueue * flush colors. */ WORK_STRUCT_FLAG_BITS = WORK_STRUCT_COLOR_SHIFT + WORK_STRUCT_COLOR_BITS, /* data contains off-queue information when !WORK_STRUCT_PWQ */ WORK_OFFQ_FLAG_BASE = WORK_STRUCT_COLOR_SHIFT, __WORK_OFFQ_CANCELING = WORK_OFFQ_FLAG_BASE, WORK_OFFQ_CANCELING = (1 << __WORK_OFFQ_CANCELING), /* * When a work item is off queue, its high bits point to the last * pool it was on. Cap at 31 bits and use the highest number to * indicate that no pool is associated. */ WORK_OFFQ_FLAG_BITS = 1, WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS, WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT, WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31, WORK_OFFQ_POOL_NONE = (1LU << WORK_OFFQ_POOL_BITS) - 1, /* convenience constants */ WORK_STRUCT_FLAG_MASK = (1UL << WORK_STRUCT_FLAG_BITS) - 1, WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK, WORK_STRUCT_NO_POOL = (unsigned long)WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT, /* bit mask for work_busy() return values */ WORK_BUSY_PENDING = 1 << 0, WORK_BUSY_RUNNING = 1 << 1, /* maximum string length for set_worker_desc() */ WORKER_DESC_LEN = 24, }; struct work_struct { atomic_long_t data; struct list_head entry; work_func_t func; #ifdef CONFIG_LOCKDEP struct lockdep_map lockdep_map; #endif }; #define WORK_DATA_INIT() ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL) #define WORK_DATA_STATIC_INIT() \ ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)) struct delayed_work { struct work_struct work; struct timer_list timer; /* target workqueue and CPU ->timer uses to queue ->work */ struct workqueue_struct *wq; int cpu; }; struct rcu_work { struct work_struct work; struct rcu_head rcu; /* target workqueue ->rcu uses to queue ->work */ struct workqueue_struct *wq; }; /** * struct workqueue_attrs - A struct for workqueue attributes. * * This can be used to change attributes of an unbound workqueue. */ struct workqueue_attrs { /** * @nice: nice level */ int nice; /** * @cpumask: allowed CPUs */ cpumask_var_t cpumask; /** * @no_numa: disable NUMA affinity * * Unlike other fields, ``no_numa`` isn't a property of a worker_pool. It * only modifies how :c:func:`apply_workqueue_attrs` select pools and thus * doesn't participate in pool hash calculations or equality comparisons. */ bool no_numa; }; static inline struct delayed_work *to_delayed_work(struct work_struct *work) { return container_of(work, struct delayed_work, work); } static inline struct rcu_work *to_rcu_work(struct work_struct *work) { return container_of(work, struct rcu_work, work); } struct execute_work { struct work_struct work; }; #ifdef CONFIG_LOCKDEP /* * NB: because we have to copy the lockdep_map, setting _key * here is required, otherwise it could get initialised to the * copy of the lockdep_map! */ #define __WORK_INIT_LOCKDEP_MAP(n, k) \ .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k), #else #define __WORK_INIT_LOCKDEP_MAP(n, k) #endif #define __WORK_INITIALIZER(n, f) { \ .data = WORK_DATA_STATIC_INIT(), \ .entry = { &(n).entry, &(n).entry }, \ .func = (f), \ __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ } #define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \ .work = __WORK_INITIALIZER((n).work, (f)), \ .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\ (tflags) | TIMER_IRQSAFE), \ } #define DECLARE_WORK(n, f) \ struct work_struct n = __WORK_INITIALIZER(n, f) #define DECLARE_DELAYED_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0) #define DECLARE_DEFERRABLE_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE) #ifdef CONFIG_DEBUG_OBJECTS_WORK extern void __init_work(struct work_struct *work, int onstack); extern void destroy_work_on_stack(struct work_struct *work); extern void destroy_delayed_work_on_stack(struct delayed_work *work); static inline unsigned int work_static(struct work_struct *work) { return *work_data_bits(work) & WORK_STRUCT_STATIC; } #else static inline void __init_work(struct work_struct *work, int onstack) { } static inline void destroy_work_on_stack(struct work_struct *work) { } static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { } static inline unsigned int work_static(struct work_struct *work) { return 0; } #endif /* * initialize all of a work item in one go * * NOTE! No point in using "atomic_long_set()": using a direct * assignment of the work data initializer allows the compiler * to generate better code. */ #ifdef CONFIG_LOCKDEP #define __INIT_WORK(_work, _func, _onstack) \ do { \ static struct lock_class_key __key; \ \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #else #define __INIT_WORK(_work, _func, _onstack) \ do { \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #endif #define INIT_WORK(_work, _func) \ __INIT_WORK((_work), (_func), 0) #define INIT_WORK_ONSTACK(_work, _func) \ __INIT_WORK((_work), (_func), 1) #define __INIT_DELAYED_WORK(_work, _func, _tflags) \ do { \ INIT_WORK(&(_work)->work, (_func)); \ __init_timer(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \ do { \ INIT_WORK_ONSTACK(&(_work)->work, (_func)); \ __init_timer_on_stack(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define INIT_DELAYED_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, 0) #define INIT_DELAYED_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0) #define INIT_DEFERRABLE_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE) #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE) #define INIT_RCU_WORK(_work, _func) \ INIT_WORK(&(_work)->work, (_func)) #define INIT_RCU_WORK_ONSTACK(_work, _func) \ INIT_WORK_ONSTACK(&(_work)->work, (_func)) /** * work_pending - Find out whether a work item is currently pending * @work: The work item in question */ #define work_pending(work) \ test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) /** * delayed_work_pending - Find out whether a delayable work item is currently * pending * @w: The work item in question */ #define delayed_work_pending(w) \ work_pending(&(w)->work) /* * Workqueue flags and constants. For details, please refer to * Documentation/core-api/workqueue.rst. */ enum { WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ WQ_FREEZABLE = 1 << 2, /* freeze during suspend */ WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */ WQ_HIGHPRI = 1 << 4, /* high priority */ WQ_CPU_INTENSIVE = 1 << 5, /* cpu intensive workqueue */ WQ_SYSFS = 1 << 6, /* visible in sysfs, see wq_sysfs_register() */ /* * Per-cpu workqueues are generally preferred because they tend to * show better performance thanks to cache locality. Per-cpu * workqueues exclude the scheduler from choosing the CPU to * execute the worker threads, which has an unfortunate side effect * of increasing power consumption. * * The scheduler considers a CPU idle if it doesn't have any task * to execute and tries to keep idle cores idle to conserve power; * however, for example, a per-cpu work item scheduled from an * interrupt handler on an idle CPU will force the scheduler to * excute the work item on that CPU breaking the idleness, which in * turn may lead to more scheduling choices which are sub-optimal * in terms of power consumption. * * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default * but become unbound if workqueue.power_efficient kernel param is * specified. Per-cpu workqueues which are identified to * contribute significantly to power-consumption are identified and * marked with this flag and enabling the power_efficient mode * leads to noticeable power saving at the cost of small * performance disadvantage. * * http://thread.gmane.org/gmane.linux.kernel/1480396 */ WQ_POWER_EFFICIENT = 1 << 7, __WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */ __WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */ __WQ_LEGACY = 1 << 18, /* internal: create*_workqueue() */ __WQ_ORDERED_EXPLICIT = 1 << 19, /* internal: alloc_ordered_workqueue() */ WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */ WQ_MAX_UNBOUND_PER_CPU = 4, /* 4 * #cpus for unbound wq */ WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2, }; /* unbound wq's aren't per-cpu, scale max_active according to #cpus */ #define WQ_UNBOUND_MAX_ACTIVE \ max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU) /* * System-wide workqueues which are always present. * * system_wq is the one used by schedule[_delayed]_work[_on](). * Multi-CPU multi-threaded. There are users which expect relatively * short queue flush time. Don't queue works which can run for too * long. * * system_highpri_wq is similar to system_wq but for work items which * require WQ_HIGHPRI. * * system_long_wq is similar to system_wq but may host long running * works. Queue flushing might take relatively long. * * system_unbound_wq is unbound workqueue. Workers are not bound to * any specific CPU, not concurrency managed, and all queued works are * executed immediately as long as max_active limit is not reached and * resources are available. * * system_freezable_wq is equivalent to system_wq except that it's * freezable. * * *_power_efficient_wq are inclined towards saving power and converted * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise, * they are same as their non-power-efficient counterparts - e.g. * system_power_efficient_wq is identical to system_wq if * 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info. */ extern struct workqueue_struct *system_wq; extern struct workqueue_struct *system_highpri_wq; extern struct workqueue_struct *system_long_wq; extern struct workqueue_struct *system_unbound_wq; extern struct workqueue_struct *system_freezable_wq; extern struct workqueue_struct *system_power_efficient_wq; extern struct workqueue_struct *system_freezable_power_efficient_wq; /** * alloc_workqueue - allocate a workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags * @max_active: max in-flight work items, 0 for default * remaining args: args for @fmt * * Allocate a workqueue with the specified parameters. For detailed * information on WQ_* flags, please refer to * Documentation/core-api/workqueue.rst. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ struct workqueue_struct *alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...); /** * alloc_ordered_workqueue - allocate an ordered workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful) * @args...: args for @fmt * * Allocate an ordered workqueue. An ordered workqueue executes at * most one work item at any given time in the queued order. They are * implemented as unbound workqueues with @max_active of one. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ #define alloc_ordered_workqueue(fmt, flags, args...) \ alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | \ __WQ_ORDERED_EXPLICIT | (flags), 1, ##args) #define create_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name)) #define create_freezable_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \ WQ_MEM_RECLAIM, 1, (name)) #define create_singlethread_workqueue(name) \ alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name) extern void destroy_workqueue(struct workqueue_struct *wq); struct workqueue_attrs *alloc_workqueue_attrs(void); void free_workqueue_attrs(struct workqueue_attrs *attrs); int apply_workqueue_attrs(struct workqueue_struct *wq, const struct workqueue_attrs *attrs); int workqueue_set_unbound_cpumask(cpumask_var_t cpumask); extern bool queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_work_node(int node, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *work, unsigned long delay); extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay); extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork); extern void flush_workqueue(struct workqueue_struct *wq); extern void drain_workqueue(struct workqueue_struct *wq); extern int schedule_on_each_cpu(work_func_t func); int execute_in_process_context(work_func_t fn, struct execute_work *); extern bool flush_work(struct work_struct *work); extern bool cancel_work_sync(struct work_struct *work); extern bool flush_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work_sync(struct delayed_work *dwork); extern bool flush_rcu_work(struct rcu_work *rwork); extern void workqueue_set_max_active(struct workqueue_struct *wq, int max_active); extern struct work_struct *current_work(void); extern bool current_is_workqueue_rescuer(void); extern bool workqueue_congested(int cpu, struct workqueue_struct *wq); extern unsigned int work_busy(struct work_struct *work); extern __printf(1, 2) void set_worker_desc(const char *fmt, ...); extern void print_worker_info(const char *log_lvl, struct task_struct *task); extern void show_workqueue_state(void); extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task); /** * queue_work - queue work on a workqueue * @wq: workqueue to use * @work: work to queue * * Returns %false if @work was already on a queue, %true otherwise. * * We queue the work to the CPU on which it was submitted, but if the CPU dies * it can be processed by another CPU. * * Memory-ordering properties: If it returns %true, guarantees that all stores * preceding the call to queue_work() in the program order will be visible from * the CPU which will execute @work by the time such work executes, e.g., * * { x is initially 0 } * * CPU0 CPU1 * * WRITE_ONCE(x, 1); [ @work is being executed ] * r0 = queue_work(wq, work); r1 = READ_ONCE(x); * * Forbids: r0 == true && r1 == 0 */ static inline bool queue_work(struct workqueue_struct *wq, struct work_struct *work) { return queue_work_on(WORK_CPU_UNBOUND, wq, work); } /** * queue_delayed_work - queue work on a workqueue after delay * @wq: workqueue to use * @dwork: delayable work to queue * @delay: number of jiffies to wait before queueing * * Equivalent to queue_delayed_work_on() but tries to use the local CPU. */ static inline bool queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * mod_delayed_work - modify delay of or queue a delayed work * @wq: workqueue to use * @dwork: work to queue * @delay: number of jiffies to wait before queueing * * mod_delayed_work_on() on local CPU. */ static inline bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * schedule_work_on - put work task on a specific cpu * @cpu: cpu to put the work task on * @work: job to be done * * This puts a job on a specific cpu */ static inline bool schedule_work_on(int cpu, struct work_struct *work) { return queue_work_on(cpu, system_wq, work); } /** * schedule_work - put work task in global workqueue * @work: job to be done * * Returns %false if @work was already on the kernel-global workqueue and * %true otherwise. * * This puts a job in the kernel-global workqueue if it was not already * queued and leaves it in the same position on the kernel-global * workqueue otherwise. * * Shares the same memory-ordering properties of queue_work(), cf. the * DocBook header of queue_work(). */ static inline bool schedule_work(struct work_struct *work) { return queue_work(system_wq, work); } /** * flush_scheduled_work - ensure that any scheduled work has run to completion. * * Forces execution of the kernel-global workqueue and blocks until its * completion. * * Think twice before calling this function! It's very easy to get into * trouble if you don't take great care. Either of the following situations * will lead to deadlock: * * One of the work items currently on the workqueue needs to acquire * a lock held by your code or its caller. * * Your code is running in the context of a work routine. * * They will be detected by lockdep when they occur, but the first might not * occur very often. It depends on what work items are on the workqueue and * what locks they need, which you have no control over. * * In most situations flushing the entire workqueue is overkill; you merely * need to know that a particular work item isn't queued and isn't running. * In such cases you should use cancel_delayed_work_sync() or * cancel_work_sync() instead. */ static inline void flush_scheduled_work(void) { flush_workqueue(system_wq); } /** * schedule_delayed_work_on - queue work in global workqueue on CPU after delay * @cpu: cpu to use * @dwork: job to be done * @delay: number of jiffies to wait * * After waiting for a given time this puts a job in the kernel-global * workqueue on the specified CPU. */ static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(cpu, system_wq, dwork, delay); } /** * schedule_delayed_work - put work task in global workqueue after delay * @dwork: job to be done * @delay: number of jiffies to wait or 0 for immediate execution * * After waiting for a given time this puts a job in the kernel-global * workqueue. */ static inline bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work(system_wq, dwork, delay); } #ifndef CONFIG_SMP static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } #else long work_on_cpu(int cpu, long (*fn)(void *), void *arg); long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg); #endif /* CONFIG_SMP */ #ifdef CONFIG_FREEZER extern void freeze_workqueues_begin(void); extern bool freeze_workqueues_busy(void); extern void thaw_workqueues(void); #endif /* CONFIG_FREEZER */ #ifdef CONFIG_SYSFS int workqueue_sysfs_register(struct workqueue_struct *wq); #else /* CONFIG_SYSFS */ static inline int workqueue_sysfs_register(struct workqueue_struct *wq) { return 0; } #endif /* CONFIG_SYSFS */ #ifdef CONFIG_WQ_WATCHDOG void wq_watchdog_touch(int cpu); #else /* CONFIG_WQ_WATCHDOG */ static inline void wq_watchdog_touch(int cpu) { } #endif /* CONFIG_WQ_WATCHDOG */ #ifdef CONFIG_SMP int workqueue_prepare_cpu(unsigned int cpu); int workqueue_online_cpu(unsigned int cpu); int workqueue_offline_cpu(unsigned int cpu); #endif void __init workqueue_init_early(void); void __init workqueue_init(void); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/pagevec.h * * In many places it is efficient to batch an operation up against multiple * pages. A pagevec is a multipage container which is used for that. */ #ifndef _LINUX_PAGEVEC_H #define _LINUX_PAGEVEC_H #include <linux/xarray.h> /* 15 pointers + header align the pagevec structure to a power of two */ #define PAGEVEC_SIZE 15 struct page; struct address_space; struct pagevec { unsigned char nr; bool percpu_pvec_drained; struct page *pages[PAGEVEC_SIZE]; }; void __pagevec_release(struct pagevec *pvec); void __pagevec_lru_add(struct pagevec *pvec); unsigned pagevec_lookup_entries(struct pagevec *pvec, struct address_space *mapping, pgoff_t start, unsigned nr_entries, pgoff_t *indices); void pagevec_remove_exceptionals(struct pagevec *pvec); unsigned pagevec_lookup_range(struct pagevec *pvec, struct address_space *mapping, pgoff_t *start, pgoff_t end); static inline unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, pgoff_t *start) { return pagevec_lookup_range(pvec, mapping, start, (pgoff_t)-1); } unsigned pagevec_lookup_range_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag); unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag, unsigned max_pages); static inline unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, xa_mark_t tag) { return pagevec_lookup_range_tag(pvec, mapping, index, (pgoff_t)-1, tag); } static inline void pagevec_init(struct pagevec *pvec) { pvec->nr = 0; pvec->percpu_pvec_drained = false; } static inline void pagevec_reinit(struct pagevec *pvec) { pvec->nr = 0; } static inline unsigned pagevec_count(struct pagevec *pvec) { return pvec->nr; } static inline unsigned pagevec_space(struct pagevec *pvec) { return PAGEVEC_SIZE - pvec->nr; } /* * Add a page to a pagevec. Returns the number of slots still available. */ static inline unsigned pagevec_add(struct pagevec *pvec, struct page *page) { pvec->pages[pvec->nr++] = page; return pagevec_space(pvec); } static inline void pagevec_release(struct pagevec *pvec) { if (pagevec_count(pvec)) __pagevec_release(pvec); } #endif /* _LINUX_PAGEVEC_H */
4 4 4 4 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 /* SPDX-License-Identifier: GPL-2.0+ */ /* * Read-Copy Update mechanism for mutual exclusion * * Copyright IBM Corporation, 2001 * * Author: Dipankar Sarma <dipankar@in.ibm.com> * * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. * Papers: * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) * * For detailed explanation of Read-Copy Update mechanism see - * http://lse.sourceforge.net/locking/rcupdate.html * */ #ifndef __LINUX_RCUPDATE_H #define __LINUX_RCUPDATE_H #include <linux/types.h> #include <linux/compiler.h> #include <linux/atomic.h> #include <linux/irqflags.h> #include <linux/preempt.h> #include <linux/bottom_half.h> #include <linux/lockdep.h> #include <asm/processor.h> #include <linux/cpumask.h> #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) #define ulong2long(a) (*(long *)(&(a))) #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) /* Exported common interfaces */ void call_rcu(struct rcu_head *head, rcu_callback_t func); void rcu_barrier_tasks(void); void rcu_barrier_tasks_rude(void); void synchronize_rcu(void); #ifdef CONFIG_PREEMPT_RCU void __rcu_read_lock(void); void __rcu_read_unlock(void); /* * Defined as a macro as it is a very low level header included from * areas that don't even know about current. This gives the rcu_read_lock() * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. */ #define rcu_preempt_depth() (current->rcu_read_lock_nesting) #else /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TINY_RCU #define rcu_read_unlock_strict() do { } while (0) #else void rcu_read_unlock_strict(void); #endif static inline void __rcu_read_lock(void) { preempt_disable(); } static inline void __rcu_read_unlock(void) { preempt_enable(); rcu_read_unlock_strict(); } static inline int rcu_preempt_depth(void) { return 0; } #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ /* Internal to kernel */ void rcu_init(void); extern int rcu_scheduler_active __read_mostly; void rcu_sched_clock_irq(int user); void rcu_report_dead(unsigned int cpu); void rcutree_migrate_callbacks(int cpu); #ifdef CONFIG_TASKS_RCU_GENERIC void rcu_init_tasks_generic(void); #else static inline void rcu_init_tasks_generic(void) { } #endif #ifdef CONFIG_RCU_STALL_COMMON void rcu_sysrq_start(void); void rcu_sysrq_end(void); #else /* #ifdef CONFIG_RCU_STALL_COMMON */ static inline void rcu_sysrq_start(void) { } static inline void rcu_sysrq_end(void) { } #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ #ifdef CONFIG_NO_HZ_FULL void rcu_user_enter(void); void rcu_user_exit(void); #else static inline void rcu_user_enter(void) { } static inline void rcu_user_exit(void) { } #endif /* CONFIG_NO_HZ_FULL */ #ifdef CONFIG_RCU_NOCB_CPU void rcu_init_nohz(void); void rcu_nocb_flush_deferred_wakeup(void); #else /* #ifdef CONFIG_RCU_NOCB_CPU */ static inline void rcu_init_nohz(void) { } static inline void rcu_nocb_flush_deferred_wakeup(void) { } #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ /** * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers * @a: Code that RCU needs to pay attention to. * * RCU read-side critical sections are forbidden in the inner idle loop, * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU * will happily ignore any such read-side critical sections. However, * things like powertop need tracepoints in the inner idle loop. * * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) * will tell RCU that it needs to pay attention, invoke its argument * (in this example, calling the do_something_with_RCU() function), * and then tell RCU to go back to ignoring this CPU. It is permissible * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is * on the order of a million or so, even on 32-bit systems). It is * not legal to block within RCU_NONIDLE(), nor is it permissible to * transfer control either into or out of RCU_NONIDLE()'s statement. */ #define RCU_NONIDLE(a) \ do { \ rcu_irq_enter_irqson(); \ do { a; } while (0); \ rcu_irq_exit_irqson(); \ } while (0) /* * Note a quasi-voluntary context switch for RCU-tasks's benefit. * This is a macro rather than an inline function to avoid #include hell. */ #ifdef CONFIG_TASKS_RCU_GENERIC # ifdef CONFIG_TASKS_RCU # define rcu_tasks_classic_qs(t, preempt) \ do { \ if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ WRITE_ONCE((t)->rcu_tasks_holdout, false); \ } while (0) void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); void synchronize_rcu_tasks(void); # else # define rcu_tasks_classic_qs(t, preempt) do { } while (0) # define call_rcu_tasks call_rcu # define synchronize_rcu_tasks synchronize_rcu # endif # ifdef CONFIG_TASKS_TRACE_RCU # define rcu_tasks_trace_qs(t) \ do { \ if (!likely(READ_ONCE((t)->trc_reader_checked)) && \ !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \ smp_store_release(&(t)->trc_reader_checked, true); \ smp_mb(); /* Readers partitioned by store. */ \ } \ } while (0) # else # define rcu_tasks_trace_qs(t) do { } while (0) # endif #define rcu_tasks_qs(t, preempt) \ do { \ rcu_tasks_classic_qs((t), (preempt)); \ rcu_tasks_trace_qs((t)); \ } while (0) # ifdef CONFIG_TASKS_RUDE_RCU void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); void synchronize_rcu_tasks_rude(void); # endif #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) void exit_tasks_rcu_start(void); void exit_tasks_rcu_finish(void); #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ #define rcu_tasks_qs(t, preempt) do { } while (0) #define rcu_note_voluntary_context_switch(t) do { } while (0) #define call_rcu_tasks call_rcu #define synchronize_rcu_tasks synchronize_rcu static inline void exit_tasks_rcu_start(void) { } static inline void exit_tasks_rcu_finish(void) { } #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ /** * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU * * This macro resembles cond_resched(), except that it is defined to * report potential quiescent states to RCU-tasks even if the cond_resched() * machinery were to be shut off, as some advocate for PREEMPTION kernels. */ #define cond_resched_tasks_rcu_qs() \ do { \ rcu_tasks_qs(current, false); \ cond_resched(); \ } while (0) /* * Infrastructure to implement the synchronize_() primitives in * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. */ #if defined(CONFIG_TREE_RCU) #include <linux/rcutree.h> #elif defined(CONFIG_TINY_RCU) #include <linux/rcutiny.h> #else #error "Unknown RCU implementation specified to kernel configuration" #endif /* * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls * are needed for dynamic initialization and destruction of rcu_head * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for * dynamic initialization and destruction of statically allocated rcu_head * structures. However, rcu_head structures allocated dynamically in the * heap don't need any initialization. */ #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD void init_rcu_head(struct rcu_head *head); void destroy_rcu_head(struct rcu_head *head); void init_rcu_head_on_stack(struct rcu_head *head); void destroy_rcu_head_on_stack(struct rcu_head *head); #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ static inline void init_rcu_head(struct rcu_head *head) { } static inline void destroy_rcu_head(struct rcu_head *head) { } static inline void init_rcu_head_on_stack(struct rcu_head *head) { } static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) bool rcu_lockdep_current_cpu_online(void); #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ static inline bool rcu_lockdep_current_cpu_online(void) { return true; } #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ #ifdef CONFIG_DEBUG_LOCK_ALLOC static inline void rcu_lock_acquire(struct lockdep_map *map) { lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); } static inline void rcu_lock_release(struct lockdep_map *map) { lock_release(map, _THIS_IP_); } extern struct lockdep_map rcu_lock_map; extern struct lockdep_map rcu_bh_lock_map; extern struct lockdep_map rcu_sched_lock_map; extern struct lockdep_map rcu_callback_map; int debug_lockdep_rcu_enabled(void); int rcu_read_lock_held(void); int rcu_read_lock_bh_held(void); int rcu_read_lock_sched_held(void); int rcu_read_lock_any_held(void); #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ # define rcu_lock_acquire(a) do { } while (0) # define rcu_lock_release(a) do { } while (0) static inline int rcu_read_lock_held(void) { return 1; } static inline int rcu_read_lock_bh_held(void) { return 1; } static inline int rcu_read_lock_sched_held(void) { return !preemptible(); } static inline int rcu_read_lock_any_held(void) { return !preemptible(); } #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ #ifdef CONFIG_PROVE_RCU /** * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met * @c: condition to check * @s: informative message */ #define RCU_LOCKDEP_WARN(c, s) \ do { \ static bool __section(".data.unlikely") __warned; \ if ((c) && debug_lockdep_rcu_enabled() && !__warned) { \ __warned = true; \ lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ } \ } while (0) #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) static inline void rcu_preempt_sleep_check(void) { RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), "Illegal context switch in RCU read-side critical section"); } #else /* #ifdef CONFIG_PROVE_RCU */ static inline void rcu_preempt_sleep_check(void) { } #endif /* #else #ifdef CONFIG_PROVE_RCU */ #define rcu_sleep_check() \ do { \ rcu_preempt_sleep_check(); \ RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ "Illegal context switch in RCU-bh read-side critical section"); \ RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ "Illegal context switch in RCU-sched read-side critical section"); \ } while (0) #else /* #ifdef CONFIG_PROVE_RCU */ #define RCU_LOCKDEP_WARN(c, s) do { } while (0) #define rcu_sleep_check() do { } while (0) #endif /* #else #ifdef CONFIG_PROVE_RCU */ /* * Helper functions for rcu_dereference_check(), rcu_dereference_protected() * and rcu_assign_pointer(). Some of these could be folded into their * callers, but they are left separate in order to ease introduction of * multiple pointers markings to match different RCU implementations * (e.g., __srcu), should this make sense in the future. */ #ifdef __CHECKER__ #define rcu_check_sparse(p, space) \ ((void)(((typeof(*p) space *)p) == p)) #else /* #ifdef __CHECKER__ */ #define rcu_check_sparse(p, space) #endif /* #else #ifdef __CHECKER__ */ #define __rcu_access_pointer(p, space) \ ({ \ typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(_________p1)); \ }) #define __rcu_dereference_check(p, c, space) \ ({ \ /* Dependency order vs. p above. */ \ typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(________p1)); \ }) #define __rcu_dereference_protected(p, c, space) \ ({ \ RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(p)); \ }) #define rcu_dereference_raw(p) \ ({ \ /* Dependency order vs. p above. */ \ typeof(p) ________p1 = READ_ONCE(p); \ ((typeof(*p) __force __kernel *)(________p1)); \ }) /** * RCU_INITIALIZER() - statically initialize an RCU-protected global variable * @v: The value to statically initialize with. */ #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) /** * rcu_assign_pointer() - assign to RCU-protected pointer * @p: pointer to assign to * @v: value to assign (publish) * * Assigns the specified value to the specified RCU-protected * pointer, ensuring that any concurrent RCU readers will see * any prior initialization. * * Inserts memory barriers on architectures that require them * (which is most of them), and also prevents the compiler from * reordering the code that initializes the structure after the pointer * assignment. More importantly, this call documents which pointers * will be dereferenced by RCU read-side code. * * In some special cases, you may use RCU_INIT_POINTER() instead * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due * to the fact that it does not constrain either the CPU or the compiler. * That said, using RCU_INIT_POINTER() when you should have used * rcu_assign_pointer() is a very bad thing that results in * impossible-to-diagnose memory corruption. So please be careful. * See the RCU_INIT_POINTER() comment header for details. * * Note that rcu_assign_pointer() evaluates each of its arguments only * once, appearances notwithstanding. One of the "extra" evaluations * is in typeof() and the other visible only to sparse (__CHECKER__), * neither of which actually execute the argument. As with most cpp * macros, this execute-arguments-only-once property is important, so * please be careful when making changes to rcu_assign_pointer() and the * other macros that it invokes. */ #define rcu_assign_pointer(p, v) \ do { \ uintptr_t _r_a_p__v = (uintptr_t)(v); \ rcu_check_sparse(p, __rcu); \ \ if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ else \ smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ } while (0) /** * rcu_replace_pointer() - replace an RCU pointer, returning its old value * @rcu_ptr: RCU pointer, whose old value is returned * @ptr: regular pointer * @c: the lockdep conditions under which the dereference will take place * * Perform a replacement, where @rcu_ptr is an RCU-annotated * pointer and @c is the lockdep argument that is passed to the * rcu_dereference_protected() call used to read that pointer. The old * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. */ #define rcu_replace_pointer(rcu_ptr, ptr, c) \ ({ \ typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ rcu_assign_pointer((rcu_ptr), (ptr)); \ __tmp; \ }) /** * rcu_access_pointer() - fetch RCU pointer with no dereferencing * @p: The pointer to read * * Return the value of the specified RCU-protected pointer, but omit the * lockdep checks for being in an RCU read-side critical section. This is * useful when the value of this pointer is accessed, but the pointer is * not dereferenced, for example, when testing an RCU-protected pointer * against NULL. Although rcu_access_pointer() may also be used in cases * where update-side locks prevent the value of the pointer from changing, * you should instead use rcu_dereference_protected() for this use case. * * It is also permissible to use rcu_access_pointer() when read-side * access to the pointer was removed at least one grace period ago, as * is the case in the context of the RCU callback that is freeing up * the data, or after a synchronize_rcu() returns. This can be useful * when tearing down multi-linked structures after a grace period * has elapsed. */ #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) /** * rcu_dereference_check() - rcu_dereference with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * Do an rcu_dereference(), but check that the conditions under which the * dereference will take place are correct. Typically the conditions * indicate the various locking conditions that should be held at that * point. The check should return true if the conditions are satisfied. * An implicit check for being in an RCU read-side critical section * (rcu_read_lock()) is included. * * For example: * * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); * * could be used to indicate to lockdep that foo->bar may only be dereferenced * if either rcu_read_lock() is held, or that the lock required to replace * the bar struct at foo->bar is held. * * Note that the list of conditions may also include indications of when a lock * need not be held, for example during initialisation or destruction of the * target struct: * * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || * atomic_read(&foo->usage) == 0); * * Inserts memory barriers on architectures that require them * (currently only the Alpha), prevents the compiler from refetching * (and from merging fetches), and, more importantly, documents exactly * which pointers are protected by RCU and checks that the pointer is * annotated as __rcu. */ #define rcu_dereference_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) /** * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * This is the RCU-bh counterpart to rcu_dereference_check(). */ #define rcu_dereference_bh_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) /** * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * This is the RCU-sched counterpart to rcu_dereference_check(). */ #define rcu_dereference_sched_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ __rcu) /* * The tracing infrastructure traces RCU (we want that), but unfortunately * some of the RCU checks causes tracing to lock up the system. * * The no-tracing version of rcu_dereference_raw() must not call * rcu_read_lock_held(). */ #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu) /** * rcu_dereference_protected() - fetch RCU pointer when updates prevented * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * Return the value of the specified RCU-protected pointer, but omit * the READ_ONCE(). This is useful in cases where update-side locks * prevent the value of the pointer from changing. Please note that this * primitive does *not* prevent the compiler from repeating this reference * or combining it with other references, so it should not be used without * protection of appropriate locks. * * This function is only for update-side use. Using this function * when protected only by rcu_read_lock() will result in infrequent * but very ugly failures. */ #define rcu_dereference_protected(p, c) \ __rcu_dereference_protected((p), (c), __rcu) /** * rcu_dereference() - fetch RCU-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * This is a simple wrapper around rcu_dereference_check(). */ #define rcu_dereference(p) rcu_dereference_check(p, 0) /** * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * Makes rcu_dereference_check() do the dirty work. */ #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) /** * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * Makes rcu_dereference_check() do the dirty work. */ #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) /** * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism * @p: The pointer to hand off * * This is simply an identity function, but it documents where a pointer * is handed off from RCU to some other synchronization mechanism, for * example, reference counting or locking. In C11, it would map to * kill_dependency(). It could be used as follows:: * * rcu_read_lock(); * p = rcu_dereference(gp); * long_lived = is_long_lived(p); * if (long_lived) { * if (!atomic_inc_not_zero(p->refcnt)) * long_lived = false; * else * p = rcu_pointer_handoff(p); * } * rcu_read_unlock(); */ #define rcu_pointer_handoff(p) (p) /** * rcu_read_lock() - mark the beginning of an RCU read-side critical section * * When synchronize_rcu() is invoked on one CPU while other CPUs * are within RCU read-side critical sections, then the * synchronize_rcu() is guaranteed to block until after all the other * CPUs exit their critical sections. Similarly, if call_rcu() is invoked * on one CPU while other CPUs are within RCU read-side critical * sections, invocation of the corresponding RCU callback is deferred * until after the all the other CPUs exit their critical sections. * * Note, however, that RCU callbacks are permitted to run concurrently * with new RCU read-side critical sections. One way that this can happen * is via the following sequence of events: (1) CPU 0 enters an RCU * read-side critical section, (2) CPU 1 invokes call_rcu() to register * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU * callback is invoked. This is legal, because the RCU read-side critical * section that was running concurrently with the call_rcu() (and which * therefore might be referencing something that the corresponding RCU * callback would free up) has completed before the corresponding * RCU callback is invoked. * * RCU read-side critical sections may be nested. Any deferred actions * will be deferred until the outermost RCU read-side critical section * completes. * * You can avoid reading and understanding the next paragraph by * following this rule: don't put anything in an rcu_read_lock() RCU * read-side critical section that would block in a !PREEMPTION kernel. * But if you want the full story, read on! * * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), * it is illegal to block while in an RCU read-side critical section. * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION * kernel builds, RCU read-side critical sections may be preempted, * but explicit blocking is illegal. Finally, in preemptible RCU * implementations in real-time (with -rt patchset) kernel builds, RCU * read-side critical sections may be preempted and they may also block, but * only when acquiring spinlocks that are subject to priority inheritance. */ static __always_inline void rcu_read_lock(void) { __rcu_read_lock(); __acquire(RCU); rcu_lock_acquire(&rcu_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock() used illegally while idle"); } /* * So where is rcu_write_lock()? It does not exist, as there is no * way for writers to lock out RCU readers. This is a feature, not * a bug -- this property is what provides RCU's performance benefits. * Of course, writers must coordinate with each other. The normal * spinlock primitives work well for this, but any other technique may be * used as well. RCU does not care how the writers keep out of each * others' way, as long as they do so. */ /** * rcu_read_unlock() - marks the end of an RCU read-side critical section. * * In most situations, rcu_read_unlock() is immune from deadlock. * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() * is responsible for deboosting, which it does via rt_mutex_unlock(). * Unfortunately, this function acquires the scheduler's runqueue and * priority-inheritance spinlocks. This means that deadlock could result * if the caller of rcu_read_unlock() already holds one of these locks or * any lock that is ever acquired while holding them. * * That said, RCU readers are never priority boosted unless they were * preempted. Therefore, one way to avoid deadlock is to make sure * that preemption never happens within any RCU read-side critical * section whose outermost rcu_read_unlock() is called with one of * rt_mutex_unlock()'s locks held. Such preemption can be avoided in * a number of ways, for example, by invoking preempt_disable() before * critical section's outermost rcu_read_lock(). * * Given that the set of locks acquired by rt_mutex_unlock() might change * at any time, a somewhat more future-proofed approach is to make sure * that that preemption never happens within any RCU read-side critical * section whose outermost rcu_read_unlock() is called with irqs disabled. * This approach relies on the fact that rt_mutex_unlock() currently only * acquires irq-disabled locks. * * The second of these two approaches is best in most situations, * however, the first approach can also be useful, at least to those * developers willing to keep abreast of the set of locks acquired by * rt_mutex_unlock(). * * See rcu_read_lock() for more information. */ static inline void rcu_read_unlock(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock() used illegally while idle"); __release(RCU); __rcu_read_unlock(); rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ } /** * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section * * This is equivalent of rcu_read_lock(), but also disables softirqs. * Note that anything else that disables softirqs can also serve as * an RCU read-side critical section. * * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() * must occur in the same context, for example, it is illegal to invoke * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() * was invoked from some other task. */ static inline void rcu_read_lock_bh(void) { local_bh_disable(); __acquire(RCU_BH); rcu_lock_acquire(&rcu_bh_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock_bh() used illegally while idle"); } /** * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section * * See rcu_read_lock_bh() for more information. */ static inline void rcu_read_unlock_bh(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock_bh() used illegally while idle"); rcu_lock_release(&rcu_bh_lock_map); __release(RCU_BH); local_bh_enable(); } /** * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section * * This is equivalent of rcu_read_lock(), but disables preemption. * Read-side critical sections can also be introduced by anything else * that disables preemption, including local_irq_disable() and friends. * * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() * must occur in the same context, for example, it is illegal to invoke * rcu_read_unlock_sched() from process context if the matching * rcu_read_lock_sched() was invoked from an NMI handler. */ static inline void rcu_read_lock_sched(void) { preempt_disable(); __acquire(RCU_SCHED); rcu_lock_acquire(&rcu_sched_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock_sched() used illegally while idle"); } /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ static inline notrace void rcu_read_lock_sched_notrace(void) { preempt_disable_notrace(); __acquire(RCU_SCHED); } /** * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section * * See rcu_read_lock_sched() for more information. */ static inline void rcu_read_unlock_sched(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock_sched() used illegally while idle"); rcu_lock_release(&rcu_sched_lock_map); __release(RCU_SCHED); preempt_enable(); } /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ static inline notrace void rcu_read_unlock_sched_notrace(void) { __release(RCU_SCHED); preempt_enable_notrace(); } /** * RCU_INIT_POINTER() - initialize an RCU protected pointer * @p: The pointer to be initialized. * @v: The value to initialized the pointer to. * * Initialize an RCU-protected pointer in special cases where readers * do not need ordering constraints on the CPU or the compiler. These * special cases are: * * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* * 2. The caller has taken whatever steps are required to prevent * RCU readers from concurrently accessing this pointer *or* * 3. The referenced data structure has already been exposed to * readers either at compile time or via rcu_assign_pointer() *and* * * a. You have not made *any* reader-visible changes to * this structure since then *or* * b. It is OK for readers accessing this structure from its * new location to see the old state of the structure. (For * example, the changes were to statistical counters or to * other state where exact synchronization is not required.) * * Failure to follow these rules governing use of RCU_INIT_POINTER() will * result in impossible-to-diagnose memory corruption. As in the structures * will look OK in crash dumps, but any concurrent RCU readers might * see pre-initialized values of the referenced data structure. So * please be very careful how you use RCU_INIT_POINTER()!!! * * If you are creating an RCU-protected linked structure that is accessed * by a single external-to-structure RCU-protected pointer, then you may * use RCU_INIT_POINTER() to initialize the internal RCU-protected * pointers, but you must use rcu_assign_pointer() to initialize the * external-to-structure pointer *after* you have completely initialized * the reader-accessible portions of the linked structure. * * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no * ordering guarantees for either the CPU or the compiler. */ #define RCU_INIT_POINTER(p, v) \ do { \ rcu_check_sparse(p, __rcu); \ WRITE_ONCE(p, RCU_INITIALIZER(v)); \ } while (0) /** * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer * @p: The pointer to be initialized. * @v: The value to initialized the pointer to. * * GCC-style initialization for an RCU-protected pointer in a structure field. */ #define RCU_POINTER_INITIALIZER(p, v) \ .p = RCU_INITIALIZER(v) /* * Does the specified offset indicate that the corresponding rcu_head * structure can be handled by kvfree_rcu()? */ #define __is_kvfree_rcu_offset(offset) ((offset) < 4096) /* * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. */ #define __kvfree_rcu(head, offset) \ do { \ BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \ kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ } while (0) /** * kfree_rcu() - kfree an object after a grace period. * @ptr: pointer to kfree * @rhf: the name of the struct rcu_head within the type of @ptr. * * Many rcu callbacks functions just call kfree() on the base structure. * These functions are trivial, but their size adds up, and furthermore * when they are used in a kernel module, that module must invoke the * high-latency rcu_barrier() function at module-unload time. * * The kfree_rcu() function handles this issue. Rather than encoding a * function address in the embedded rcu_head structure, kfree_rcu() instead * encodes the offset of the rcu_head structure within the base structure. * Because the functions are not allowed in the low-order 4096 bytes of * kernel virtual memory, offsets up to 4095 bytes can be accommodated. * If the offset is larger than 4095 bytes, a compile-time error will * be generated in __kvfree_rcu(). If this error is triggered, you can * either fall back to use of call_rcu() or rearrange the structure to * position the rcu_head structure into the first 4096 bytes. * * Note that the allowable offset might decrease in the future, for example, * to allow something like kmem_cache_free_rcu(). * * The BUILD_BUG_ON check must not involve any function calls, hence the * checks are done in macros here. */ #define kfree_rcu(ptr, rhf) \ do { \ typeof (ptr) ___p = (ptr); \ \ if (___p) \ __kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \ } while (0) /** * kvfree_rcu() - kvfree an object after a grace period. * * This macro consists of one or two arguments and it is * based on whether an object is head-less or not. If it * has a head then a semantic stays the same as it used * to be before: * * kvfree_rcu(ptr, rhf); * * where @ptr is a pointer to kvfree(), @rhf is the name * of the rcu_head structure within the type of @ptr. * * When it comes to head-less variant, only one argument * is passed and that is just a pointer which has to be * freed after a grace period. Therefore the semantic is * * kvfree_rcu(ptr); * * where @ptr is a pointer to kvfree(). * * Please note, head-less way of freeing is permitted to * use from a context that has to follow might_sleep() * annotation. Otherwise, please switch and embed the * rcu_head structure within the type of @ptr. */ #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \ kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__) #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME #define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf) #define kvfree_rcu_arg_1(ptr) \ do { \ typeof(ptr) ___p = (ptr); \ \ if (___p) \ kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \ } while (0) /* * Place this after a lock-acquisition primitive to guarantee that * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies * if the UNLOCK and LOCK are executed by the same CPU or if the * UNLOCK and LOCK operate on the same lock variable. */ #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ #define smp_mb__after_unlock_lock() do { } while (0) #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ /* Has the specified rcu_head structure been handed to call_rcu()? */ /** * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() * @rhp: The rcu_head structure to initialize. * * If you intend to invoke rcu_head_after_call_rcu() to test whether a * given rcu_head structure has already been passed to call_rcu(), then * you must also invoke this rcu_head_init() function on it just after * allocating that structure. Calls to this function must not race with * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. */ static inline void rcu_head_init(struct rcu_head *rhp) { rhp->func = (rcu_callback_t)~0L; } /** * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? * @rhp: The rcu_head structure to test. * @f: The function passed to call_rcu() along with @rhp. * * Returns @true if the @rhp has been passed to call_rcu() with @func, * and @false otherwise. Emits a warning in any other case, including * the case where @rhp has already been invoked after a grace period. * Calls to this function must not race with callback invocation. One way * to avoid such races is to enclose the call to rcu_head_after_call_rcu() * in an RCU read-side critical section that includes a read-side fetch * of the pointer to the structure containing @rhp. */ static inline bool rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) { rcu_callback_t func = READ_ONCE(rhp->func); if (func == f) return true; WARN_ON_ONCE(func != (rcu_callback_t)~0L); return false; } /* kernel/ksysfs.c definitions */ extern int rcu_expedited; extern int rcu_normal; #endif /* __LINUX_RCUPDATE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 // SPDX-License-Identifier: GPL-2.0 #ifndef _LINUX_KERNEL_TRACE_H #define _LINUX_KERNEL_TRACE_H #include <linux/fs.h> #include <linux/atomic.h> #include <linux/sched.h> #include <linux/clocksource.h> #include <linux/ring_buffer.h> #include <linux/mmiotrace.h> #include <linux/tracepoint.h> #include <linux/ftrace.h> #include <linux/trace.h> #include <linux/hw_breakpoint.h> #include <linux/trace_seq.h> #include <linux/trace_events.h> #include <linux/compiler.h> #include <linux/glob.h> #include <linux/irq_work.h> #include <linux/workqueue.h> #include <linux/ctype.h> #ifdef CONFIG_FTRACE_SYSCALLS #include <asm/unistd.h> /* For NR_SYSCALLS */ #include <asm/syscall.h> /* some archs define it here */ #endif enum trace_type { __TRACE_FIRST_TYPE = 0, TRACE_FN, TRACE_CTX, TRACE_WAKE, TRACE_STACK, TRACE_PRINT, TRACE_BPRINT, TRACE_MMIO_RW, TRACE_MMIO_MAP, TRACE_BRANCH, TRACE_GRAPH_RET, TRACE_GRAPH_ENT, TRACE_USER_STACK, TRACE_BLK, TRACE_BPUTS, TRACE_HWLAT, TRACE_RAW_DATA, __TRACE_LAST_TYPE, }; #undef __field #define __field(type, item) type item; #undef __field_fn #define __field_fn(type, item) type item; #undef __field_struct #define __field_struct(type, item) __field(type, item) #undef __field_desc #define __field_desc(type, container, item) #undef __field_packed #define __field_packed(type, container, item) #undef __array #define __array(type, item, size) type item[size]; #undef __array_desc #define __array_desc(type, container, item, size) #undef __dynamic_array #define __dynamic_array(type, item) type item[]; #undef F_STRUCT #define F_STRUCT(args...) args #undef FTRACE_ENTRY #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ struct struct_name { \ struct trace_entry ent; \ tstruct \ } #undef FTRACE_ENTRY_DUP #define FTRACE_ENTRY_DUP(name, name_struct, id, tstruct, printk) #undef FTRACE_ENTRY_REG #define FTRACE_ENTRY_REG(name, struct_name, id, tstruct, print, regfn) \ FTRACE_ENTRY(name, struct_name, id, PARAMS(tstruct), PARAMS(print)) #undef FTRACE_ENTRY_PACKED #define FTRACE_ENTRY_PACKED(name, struct_name, id, tstruct, print) \ FTRACE_ENTRY(name, struct_name, id, PARAMS(tstruct), PARAMS(print)) __packed #include "trace_entries.h" /* Use this for memory failure errors */ #define MEM_FAIL(condition, fmt, ...) ({ \ static bool __section(".data.once") __warned; \ int __ret_warn_once = !!(condition); \ \ if (unlikely(__ret_warn_once && !__warned)) { \ __warned = true; \ pr_err("ERROR: " fmt, ##__VA_ARGS__); \ } \ unlikely(__ret_warn_once); \ }) /* * syscalls are special, and need special handling, this is why * they are not included in trace_entries.h */ struct syscall_trace_enter { struct trace_entry ent; int nr; unsigned long args[]; }; struct syscall_trace_exit { struct trace_entry ent; int nr; long ret; }; struct kprobe_trace_entry_head { struct trace_entry ent; unsigned long ip; }; struct kretprobe_trace_entry_head { struct trace_entry ent; unsigned long func; unsigned long ret_ip; }; /* * trace_flag_type is an enumeration that holds different * states when a trace occurs. These are: * IRQS_OFF - interrupts were disabled * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags * NEED_RESCHED - reschedule is requested * HARDIRQ - inside an interrupt handler * SOFTIRQ - inside a softirq handler */ enum trace_flag_type { TRACE_FLAG_IRQS_OFF = 0x01, TRACE_FLAG_IRQS_NOSUPPORT = 0x02, TRACE_FLAG_NEED_RESCHED = 0x04, TRACE_FLAG_HARDIRQ = 0x08, TRACE_FLAG_SOFTIRQ = 0x10, TRACE_FLAG_PREEMPT_RESCHED = 0x20, TRACE_FLAG_NMI = 0x40, }; #define TRACE_BUF_SIZE 1024 struct trace_array; /* * The CPU trace array - it consists of thousands of trace entries * plus some other descriptor data: (for example which task started * the trace, etc.) */ struct trace_array_cpu { atomic_t disabled; void *buffer_page; /* ring buffer spare */ unsigned long entries; unsigned long saved_latency; unsigned long critical_start; unsigned long critical_end; unsigned long critical_sequence; unsigned long nice; unsigned long policy; unsigned long rt_priority; unsigned long skipped_entries; u64 preempt_timestamp; pid_t pid; kuid_t uid; char comm[TASK_COMM_LEN]; #ifdef CONFIG_FUNCTION_TRACER int ftrace_ignore_pid; #endif bool ignore_pid; }; struct tracer; struct trace_option_dentry; struct array_buffer { struct trace_array *tr; struct trace_buffer *buffer; struct trace_array_cpu __percpu *data; u64 time_start; int cpu; }; #define TRACE_FLAGS_MAX_SIZE 32 struct trace_options { struct tracer *tracer; struct trace_option_dentry *topts; }; struct trace_pid_list { int pid_max; unsigned long *pids; }; enum { TRACE_PIDS = BIT(0), TRACE_NO_PIDS = BIT(1), }; static inline bool pid_type_enabled(int type, struct trace_pid_list *pid_list, struct trace_pid_list *no_pid_list) { /* Return true if the pid list in type has pids */ return ((type & TRACE_PIDS) && pid_list) || ((type & TRACE_NO_PIDS) && no_pid_list); } static inline bool still_need_pid_events(int type, struct trace_pid_list *pid_list, struct trace_pid_list *no_pid_list) { /* * Turning off what is in @type, return true if the "other" * pid list, still has pids in it. */ return (!(type & TRACE_PIDS) && pid_list) || (!(type & TRACE_NO_PIDS) && no_pid_list); } typedef bool (*cond_update_fn_t)(struct trace_array *tr, void *cond_data); /** * struct cond_snapshot - conditional snapshot data and callback * * The cond_snapshot structure encapsulates a callback function and * data associated with the snapshot for a given tracing instance. * * When a snapshot is taken conditionally, by invoking * tracing_snapshot_cond(tr, cond_data), the cond_data passed in is * passed in turn to the cond_snapshot.update() function. That data * can be compared by the update() implementation with the cond_data * contained within the struct cond_snapshot instance associated with * the trace_array. Because the tr->max_lock is held throughout the * update() call, the update() function can directly retrieve the * cond_snapshot and cond_data associated with the per-instance * snapshot associated with the trace_array. * * The cond_snapshot.update() implementation can save data to be * associated with the snapshot if it decides to, and returns 'true' * in that case, or it returns 'false' if the conditional snapshot * shouldn't be taken. * * The cond_snapshot instance is created and associated with the * user-defined cond_data by tracing_cond_snapshot_enable(). * Likewise, the cond_snapshot instance is destroyed and is no longer * associated with the trace instance by * tracing_cond_snapshot_disable(). * * The method below is required. * * @update: When a conditional snapshot is invoked, the update() * callback function is invoked with the tr->max_lock held. The * update() implementation signals whether or not to actually * take the snapshot, by returning 'true' if so, 'false' if no * snapshot should be taken. Because the max_lock is held for * the duration of update(), the implementation is safe to * directly retrieved and save any implementation data it needs * to in association with the snapshot. */ struct cond_snapshot { void *cond_data; cond_update_fn_t update; }; /* * The trace array - an array of per-CPU trace arrays. This is the * highest level data structure that individual tracers deal with. * They have on/off state as well: */ struct trace_array { struct list_head list; char *name; struct array_buffer array_buffer; #ifdef CONFIG_TRACER_MAX_TRACE /* * The max_buffer is used to snapshot the trace when a maximum * latency is reached, or when the user initiates a snapshot. * Some tracers will use this to store a maximum trace while * it continues examining live traces. * * The buffers for the max_buffer are set up the same as the array_buffer * When a snapshot is taken, the buffer of the max_buffer is swapped * with the buffer of the array_buffer and the buffers are reset for * the array_buffer so the tracing can continue. */ struct array_buffer max_buffer; bool allocated_snapshot; #endif #if defined(CONFIG_TRACER_MAX_TRACE) || defined(CONFIG_HWLAT_TRACER) unsigned long max_latency; #ifdef CONFIG_FSNOTIFY struct dentry *d_max_latency; struct work_struct fsnotify_work; struct irq_work fsnotify_irqwork; #endif #endif struct trace_pid_list __rcu *filtered_pids; struct trace_pid_list __rcu *filtered_no_pids; /* * max_lock is used to protect the swapping of buffers * when taking a max snapshot. The buffers themselves are * protected by per_cpu spinlocks. But the action of the swap * needs its own lock. * * This is defined as a arch_spinlock_t in order to help * with performance when lockdep debugging is enabled. * * It is also used in other places outside the update_max_tr * so it needs to be defined outside of the * CONFIG_TRACER_MAX_TRACE. */ arch_spinlock_t max_lock; int buffer_disabled; #ifdef CONFIG_FTRACE_SYSCALLS int sys_refcount_enter; int sys_refcount_exit; struct trace_event_file __rcu *enter_syscall_files[NR_syscalls]; struct trace_event_file __rcu *exit_syscall_files[NR_syscalls]; #endif int stop_count; int clock_id; int nr_topts; bool clear_trace; int buffer_percent; unsigned int n_err_log_entries; struct tracer *current_trace; unsigned int trace_flags; unsigned char trace_flags_index[TRACE_FLAGS_MAX_SIZE]; unsigned int flags; raw_spinlock_t start_lock; struct list_head err_log; struct dentry *dir; struct dentry *options; struct dentry *percpu_dir; struct dentry *event_dir; struct trace_options *topts; struct list_head systems; struct list_head events; struct trace_event_file *trace_marker_file; cpumask_var_t tracing_cpumask; /* only trace on set CPUs */ int ref; int trace_ref; #ifdef CONFIG_FUNCTION_TRACER struct ftrace_ops *ops; struct trace_pid_list __rcu *function_pids; struct trace_pid_list __rcu *function_no_pids; #ifdef CONFIG_DYNAMIC_FTRACE /* All of these are protected by the ftrace_lock */ struct list_head func_probes; struct list_head mod_trace; struct list_head mod_notrace; #endif /* function tracing enabled */ int function_enabled; #endif int time_stamp_abs_ref; struct list_head hist_vars; #ifdef CONFIG_TRACER_SNAPSHOT struct cond_snapshot *cond_snapshot; #endif }; enum { TRACE_ARRAY_FL_GLOBAL = (1 << 0) }; extern struct list_head ftrace_trace_arrays; extern struct mutex trace_types_lock; extern int trace_array_get(struct trace_array *tr); extern int tracing_check_open_get_tr(struct trace_array *tr); extern struct trace_array *trace_array_find(const char *instance); extern struct trace_array *trace_array_find_get(const char *instance); extern int tracing_set_time_stamp_abs(struct trace_array *tr, bool abs); extern int tracing_set_clock(struct trace_array *tr, const char *clockstr); extern bool trace_clock_in_ns(struct trace_array *tr); /* * The global tracer (top) should be the first trace array added, * but we check the flag anyway. */ static inline struct trace_array *top_trace_array(void) { struct trace_array *tr; if (list_empty(&ftrace_trace_arrays)) return NULL; tr = list_entry(ftrace_trace_arrays.prev, typeof(*tr), list); WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); return tr; } #define FTRACE_CMP_TYPE(var, type) \ __builtin_types_compatible_p(typeof(var), type *) #undef IF_ASSIGN #define IF_ASSIGN(var, entry, etype, id) \ if (FTRACE_CMP_TYPE(var, etype)) { \ var = (typeof(var))(entry); \ WARN_ON(id != 0 && (entry)->type != id); \ break; \ } /* Will cause compile errors if type is not found. */ extern void __ftrace_bad_type(void); /* * The trace_assign_type is a verifier that the entry type is * the same as the type being assigned. To add new types simply * add a line with the following format: * * IF_ASSIGN(var, ent, type, id); * * Where "type" is the trace type that includes the trace_entry * as the "ent" item. And "id" is the trace identifier that is * used in the trace_type enum. * * If the type can have more than one id, then use zero. */ #define trace_assign_type(var, ent) \ do { \ IF_ASSIGN(var, ent, struct ftrace_entry, TRACE_FN); \ IF_ASSIGN(var, ent, struct ctx_switch_entry, 0); \ IF_ASSIGN(var, ent, struct stack_entry, TRACE_STACK); \ IF_ASSIGN(var, ent, struct userstack_entry, TRACE_USER_STACK);\ IF_ASSIGN(var, ent, struct print_entry, TRACE_PRINT); \ IF_ASSIGN(var, ent, struct bprint_entry, TRACE_BPRINT); \ IF_ASSIGN(var, ent, struct bputs_entry, TRACE_BPUTS); \ IF_ASSIGN(var, ent, struct hwlat_entry, TRACE_HWLAT); \ IF_ASSIGN(var, ent, struct raw_data_entry, TRACE_RAW_DATA);\ IF_ASSIGN(var, ent, struct trace_mmiotrace_rw, \ TRACE_MMIO_RW); \ IF_ASSIGN(var, ent, struct trace_mmiotrace_map, \ TRACE_MMIO_MAP); \ IF_ASSIGN(var, ent, struct trace_branch, TRACE_BRANCH); \ IF_ASSIGN(var, ent, struct ftrace_graph_ent_entry, \ TRACE_GRAPH_ENT); \ IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ TRACE_GRAPH_RET); \ __ftrace_bad_type(); \ } while (0) /* * An option specific to a tracer. This is a boolean value. * The bit is the bit index that sets its value on the * flags value in struct tracer_flags. */ struct tracer_opt { const char *name; /* Will appear on the trace_options file */ u32 bit; /* Mask assigned in val field in tracer_flags */ }; /* * The set of specific options for a tracer. Your tracer * have to set the initial value of the flags val. */ struct tracer_flags { u32 val; struct tracer_opt *opts; struct tracer *trace; }; /* Makes more easy to define a tracer opt */ #define TRACER_OPT(s, b) .name = #s, .bit = b struct trace_option_dentry { struct tracer_opt *opt; struct tracer_flags *flags; struct trace_array *tr; struct dentry *entry; }; /** * struct tracer - a specific tracer and its callbacks to interact with tracefs * @name: the name chosen to select it on the available_tracers file * @init: called when one switches to this tracer (echo name > current_tracer) * @reset: called when one switches to another tracer * @start: called when tracing is unpaused (echo 1 > tracing_on) * @stop: called when tracing is paused (echo 0 > tracing_on) * @update_thresh: called when tracing_thresh is updated * @open: called when the trace file is opened * @pipe_open: called when the trace_pipe file is opened * @close: called when the trace file is released * @pipe_close: called when the trace_pipe file is released * @read: override the default read callback on trace_pipe * @splice_read: override the default splice_read callback on trace_pipe * @selftest: selftest to run on boot (see trace_selftest.c) * @print_headers: override the first lines that describe your columns * @print_line: callback that prints a trace * @set_flag: signals one of your private flags changed (trace_options file) * @flags: your private flags */ struct tracer { const char *name; int (*init)(struct trace_array *tr); void (*reset)(struct trace_array *tr); void (*start)(struct trace_array *tr); void (*stop)(struct trace_array *tr); int (*update_thresh)(struct trace_array *tr); void (*open)(struct trace_iterator *iter); void (*pipe_open)(struct trace_iterator *iter); void (*close)(struct trace_iterator *iter); void (*pipe_close)(struct trace_iterator *iter); ssize_t (*read)(struct trace_iterator *iter, struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos); ssize_t (*splice_read)(struct trace_iterator *iter, struct file *filp, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); #ifdef CONFIG_FTRACE_STARTUP_TEST int (*selftest)(struct tracer *trace, struct trace_array *tr); #endif void (*print_header)(struct seq_file *m); enum print_line_t (*print_line)(struct trace_iterator *iter); /* If you handled the flag setting, return 0 */ int (*set_flag)(struct trace_array *tr, u32 old_flags, u32 bit, int set); /* Return 0 if OK with change, else return non-zero */ int (*flag_changed)(struct trace_array *tr, u32 mask, int set); struct tracer *next; struct tracer_flags *flags; int enabled; bool print_max; bool allow_instances; #ifdef CONFIG_TRACER_MAX_TRACE bool use_max_tr; #endif /* True if tracer cannot be enabled in kernel param */ bool noboot; }; /* Only current can touch trace_recursion */ /* * For function tracing recursion: * The order of these bits are important. * * When function tracing occurs, the following steps are made: * If arch does not support a ftrace feature: * call internal function (uses INTERNAL bits) which calls... * If callback is registered to the "global" list, the list * function is called and recursion checks the GLOBAL bits. * then this function calls... * The function callback, which can use the FTRACE bits to * check for recursion. */ enum { /* Function recursion bits */ TRACE_FTRACE_BIT, TRACE_FTRACE_NMI_BIT, TRACE_FTRACE_IRQ_BIT, TRACE_FTRACE_SIRQ_BIT, TRACE_FTRACE_TRANSITION_BIT, /* Internal use recursion bits */ TRACE_INTERNAL_BIT, TRACE_INTERNAL_NMI_BIT, TRACE_INTERNAL_IRQ_BIT, TRACE_INTERNAL_SIRQ_BIT, TRACE_INTERNAL_TRANSITION_BIT, TRACE_BRANCH_BIT, /* * Abuse of the trace_recursion. * As we need a way to maintain state if we are tracing the function * graph in irq because we want to trace a particular function that * was called in irq context but we have irq tracing off. Since this * can only be modified by current, we can reuse trace_recursion. */ TRACE_IRQ_BIT, /* Set if the function is in the set_graph_function file */ TRACE_GRAPH_BIT, /* * In the very unlikely case that an interrupt came in * at a start of graph tracing, and we want to trace * the function in that interrupt, the depth can be greater * than zero, because of the preempted start of a previous * trace. In an even more unlikely case, depth could be 2 * if a softirq interrupted the start of graph tracing, * followed by an interrupt preempting a start of graph * tracing in the softirq, and depth can even be 3 * if an NMI came in at the start of an interrupt function * that preempted a softirq start of a function that * preempted normal context!!!! Luckily, it can't be * greater than 3, so the next two bits are a mask * of what the depth is when we set TRACE_GRAPH_BIT */ TRACE_GRAPH_DEPTH_START_BIT, TRACE_GRAPH_DEPTH_END_BIT, /* * To implement set_graph_notrace, if this bit is set, we ignore * function graph tracing of called functions, until the return * function is called to clear it. */ TRACE_GRAPH_NOTRACE_BIT, }; #define trace_recursion_set(bit) do { (current)->trace_recursion |= (1<<(bit)); } while (0) #define trace_recursion_clear(bit) do { (current)->trace_recursion &= ~(1<<(bit)); } while (0) #define trace_recursion_test(bit) ((current)->trace_recursion & (1<<(bit))) #define trace_recursion_depth() \ (((current)->trace_recursion >> TRACE_GRAPH_DEPTH_START_BIT) & 3) #define trace_recursion_set_depth(depth) \ do { \ current->trace_recursion &= \ ~(3 << TRACE_GRAPH_DEPTH_START_BIT); \ current->trace_recursion |= \ ((depth) & 3) << TRACE_GRAPH_DEPTH_START_BIT; \ } while (0) #define TRACE_CONTEXT_BITS 4 #define TRACE_FTRACE_START TRACE_FTRACE_BIT #define TRACE_LIST_START TRACE_INTERNAL_BIT #define TRACE_CONTEXT_MASK ((1 << (TRACE_LIST_START + TRACE_CONTEXT_BITS)) - 1) enum { TRACE_CTX_NMI, TRACE_CTX_IRQ, TRACE_CTX_SOFTIRQ, TRACE_CTX_NORMAL, TRACE_CTX_TRANSITION, }; static __always_inline int trace_get_context_bit(void) { int bit; if (in_interrupt()) { if (in_nmi()) bit = TRACE_CTX_NMI; else if (in_irq()) bit = TRACE_CTX_IRQ; else bit = TRACE_CTX_SOFTIRQ; } else bit = TRACE_CTX_NORMAL; return bit; } static __always_inline int trace_test_and_set_recursion(int start) { unsigned int val = current->trace_recursion; int bit; bit = trace_get_context_bit() + start; if (unlikely(val & (1 << bit))) { /* * It could be that preempt_count has not been updated during * a switch between contexts. Allow for a single recursion. */ bit = start + TRACE_CTX_TRANSITION; if (trace_recursion_test(bit)) return -1; trace_recursion_set(bit); barrier(); return bit; } val |= 1 << bit; current->trace_recursion = val; barrier(); return bit; } static __always_inline void trace_clear_recursion(int bit) { unsigned int val = current->trace_recursion; bit = 1 << bit; val &= ~bit; barrier(); current->trace_recursion = val; } static inline struct ring_buffer_iter * trace_buffer_iter(struct trace_iterator *iter, int cpu) { return iter->buffer_iter ? iter->buffer_iter[cpu] : NULL; } int tracer_init(struct tracer *t, struct trace_array *tr); int tracing_is_enabled(void); void tracing_reset_online_cpus(struct array_buffer *buf); void tracing_reset_current(int cpu); void tracing_reset_all_online_cpus(void); int tracing_open_generic(struct inode *inode, struct file *filp); int tracing_open_generic_tr(struct inode *inode, struct file *filp); bool tracing_is_disabled(void); bool tracer_tracing_is_on(struct trace_array *tr); void tracer_tracing_on(struct trace_array *tr); void tracer_tracing_off(struct trace_array *tr); struct dentry *trace_create_file(const char *name, umode_t mode, struct dentry *parent, void *data, const struct file_operations *fops); int tracing_init_dentry(void); struct ring_buffer_event; struct ring_buffer_event * trace_buffer_lock_reserve(struct trace_buffer *buffer, int type, unsigned long len, unsigned long flags, int pc); struct trace_entry *tracing_get_trace_entry(struct trace_array *tr, struct trace_array_cpu *data); struct trace_entry *trace_find_next_entry(struct trace_iterator *iter, int *ent_cpu, u64 *ent_ts); void trace_buffer_unlock_commit_nostack(struct trace_buffer *buffer, struct ring_buffer_event *event); int trace_empty(struct trace_iterator *iter); void *trace_find_next_entry_inc(struct trace_iterator *iter); void trace_init_global_iter(struct trace_iterator *iter); void tracing_iter_reset(struct trace_iterator *iter, int cpu); unsigned long trace_total_entries_cpu(struct trace_array *tr, int cpu); unsigned long trace_total_entries(struct trace_array *tr); void trace_function(struct trace_array *tr, unsigned long ip, unsigned long parent_ip, unsigned long flags, int pc); void trace_graph_function(struct trace_array *tr, unsigned long ip, unsigned long parent_ip, unsigned long flags, int pc); void trace_latency_header(struct seq_file *m); void trace_default_header(struct seq_file *m); void print_trace_header(struct seq_file *m, struct trace_iterator *iter); int trace_empty(struct trace_iterator *iter); void trace_graph_return(struct ftrace_graph_ret *trace); int trace_graph_entry(struct ftrace_graph_ent *trace); void set_graph_array(struct trace_array *tr); void tracing_start_cmdline_record(void); void tracing_stop_cmdline_record(void); void tracing_start_tgid_record(void); void tracing_stop_tgid_record(void); int register_tracer(struct tracer *type); int is_tracing_stopped(void); loff_t tracing_lseek(struct file *file, loff_t offset, int whence); extern cpumask_var_t __read_mostly tracing_buffer_mask; #define for_each_tracing_cpu(cpu) \ for_each_cpu(cpu, tracing_buffer_mask) extern unsigned long nsecs_to_usecs(unsigned long nsecs); extern unsigned long tracing_thresh; /* PID filtering */ extern int pid_max; bool trace_find_filtered_pid(struct trace_pid_list *filtered_pids, pid_t search_pid); bool trace_ignore_this_task(struct trace_pid_list *filtered_pids, struct trace_pid_list *filtered_no_pids, struct task_struct *task); void trace_filter_add_remove_task(struct trace_pid_list *pid_list, struct task_struct *self, struct task_struct *task); void *trace_pid_next(struct trace_pid_list *pid_list, void *v, loff_t *pos); void *trace_pid_start(struct trace_pid_list *pid_list, loff_t *pos); int trace_pid_show(struct seq_file *m, void *v); void trace_free_pid_list(struct trace_pid_list *pid_list); int trace_pid_write(struct trace_pid_list *filtered_pids, struct trace_pid_list **new_pid_list, const char __user *ubuf, size_t cnt); #ifdef CONFIG_TRACER_MAX_TRACE void update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu, void *cond_data); void update_max_tr_single(struct trace_array *tr, struct task_struct *tsk, int cpu); #endif /* CONFIG_TRACER_MAX_TRACE */ #if (defined(CONFIG_TRACER_MAX_TRACE) || defined(CONFIG_HWLAT_TRACER)) && \ defined(CONFIG_FSNOTIFY) void latency_fsnotify(struct trace_array *tr); #else static inline void latency_fsnotify(struct trace_array *tr) { } #endif #ifdef CONFIG_STACKTRACE void __trace_stack(struct trace_array *tr, unsigned long flags, int skip, int pc); #else static inline void __trace_stack(struct trace_array *tr, unsigned long flags, int skip, int pc) { } #endif /* CONFIG_STACKTRACE */ extern u64 ftrace_now(int cpu); extern void trace_find_cmdline(int pid, char comm[]); extern int trace_find_tgid(int pid); extern void trace_event_follow_fork(struct trace_array *tr, bool enable); #ifdef CONFIG_DYNAMIC_FTRACE extern unsigned long ftrace_update_tot_cnt; extern unsigned long ftrace_number_of_pages; extern unsigned long ftrace_number_of_groups; void ftrace_init_trace_array(struct trace_array *tr); #else static inline void ftrace_init_trace_array(struct trace_array *tr) { } #endif #define DYN_FTRACE_TEST_NAME trace_selftest_dynamic_test_func extern int DYN_FTRACE_TEST_NAME(void); #define DYN_FTRACE_TEST_NAME2 trace_selftest_dynamic_test_func2 extern int DYN_FTRACE_TEST_NAME2(void); extern bool ring_buffer_expanded; extern bool tracing_selftest_disabled; #ifdef CONFIG_FTRACE_STARTUP_TEST extern void __init disable_tracing_selftest(const char *reason); extern int trace_selftest_startup_function(struct tracer *trace, struct trace_array *tr); extern int trace_selftest_startup_function_graph(struct tracer *trace, struct trace_array *tr); extern int trace_selftest_startup_irqsoff(struct tracer *trace, struct trace_array *tr); extern int trace_selftest_startup_preemptoff(struct tracer *trace, struct trace_array *tr); extern int trace_selftest_startup_preemptirqsoff(struct tracer *trace, struct trace_array *tr); extern int trace_selftest_startup_wakeup(struct tracer *trace, struct trace_array *tr); extern int trace_selftest_startup_nop(struct tracer *trace, struct trace_array *tr); extern int trace_selftest_startup_branch(struct tracer *trace, struct trace_array *tr); /* * Tracer data references selftest functions that only occur * on boot up. These can be __init functions. Thus, when selftests * are enabled, then the tracers need to reference __init functions. */ #define __tracer_data __refdata #else static inline void __init disable_tracing_selftest(const char *reason) { } /* Tracers are seldom changed. Optimize when selftests are disabled. */ #define __tracer_data __read_mostly #endif /* CONFIG_FTRACE_STARTUP_TEST */ extern void *head_page(struct trace_array_cpu *data); extern unsigned long long ns2usecs(u64 nsec); extern int trace_vbprintk(unsigned long ip, const char *fmt, va_list args); extern int trace_vprintk(unsigned long ip, const char *fmt, va_list args); extern int trace_array_vprintk(struct trace_array *tr, unsigned long ip, const char *fmt, va_list args); int trace_array_printk_buf(struct trace_buffer *buffer, unsigned long ip, const char *fmt, ...); void trace_printk_seq(struct trace_seq *s); enum print_line_t print_trace_line(struct trace_iterator *iter); extern char trace_find_mark(unsigned long long duration); struct ftrace_hash; struct ftrace_mod_load { struct list_head list; char *func; char *module; int enable; }; enum { FTRACE_HASH_FL_MOD = (1 << 0), }; struct ftrace_hash { unsigned long size_bits; struct hlist_head *buckets; unsigned long count; unsigned long flags; struct rcu_head rcu; }; struct ftrace_func_entry * ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip); static __always_inline bool ftrace_hash_empty(struct ftrace_hash *hash) { return !hash || !(hash->count || (hash->flags & FTRACE_HASH_FL_MOD)); } /* Standard output formatting function used for function return traces */ #ifdef CONFIG_FUNCTION_GRAPH_TRACER /* Flag options */ #define TRACE_GRAPH_PRINT_OVERRUN 0x1 #define TRACE_GRAPH_PRINT_CPU 0x2 #define TRACE_GRAPH_PRINT_OVERHEAD 0x4 #define TRACE_GRAPH_PRINT_PROC 0x8 #define TRACE_GRAPH_PRINT_DURATION 0x10 #define TRACE_GRAPH_PRINT_ABS_TIME 0x20 #define TRACE_GRAPH_PRINT_REL_TIME 0x40 #define TRACE_GRAPH_PRINT_IRQS 0x80 #define TRACE_GRAPH_PRINT_TAIL 0x100 #define TRACE_GRAPH_SLEEP_TIME 0x200 #define TRACE_GRAPH_GRAPH_TIME 0x400 #define TRACE_GRAPH_PRINT_FILL_SHIFT 28 #define TRACE_GRAPH_PRINT_FILL_MASK (0x3 << TRACE_GRAPH_PRINT_FILL_SHIFT) extern void ftrace_graph_sleep_time_control(bool enable); #ifdef CONFIG_FUNCTION_PROFILER extern void ftrace_graph_graph_time_control(bool enable); #else static inline void ftrace_graph_graph_time_control(bool enable) { } #endif extern enum print_line_t print_graph_function_flags(struct trace_iterator *iter, u32 flags); extern void print_graph_headers_flags(struct seq_file *s, u32 flags); extern void trace_print_graph_duration(unsigned long long duration, struct trace_seq *s); extern void graph_trace_open(struct trace_iterator *iter); extern void graph_trace_close(struct trace_iterator *iter); extern int __trace_graph_entry(struct trace_array *tr, struct ftrace_graph_ent *trace, unsigned long flags, int pc); extern void __trace_graph_return(struct trace_array *tr, struct ftrace_graph_ret *trace, unsigned long flags, int pc); #ifdef CONFIG_DYNAMIC_FTRACE extern struct ftrace_hash __rcu *ftrace_graph_hash; extern struct ftrace_hash __rcu *ftrace_graph_notrace_hash; static inline int ftrace_graph_addr(struct ftrace_graph_ent *trace) { unsigned long addr = trace->func; int ret = 0; struct ftrace_hash *hash; preempt_disable_notrace(); /* * Have to open code "rcu_dereference_sched()" because the * function graph tracer can be called when RCU is not * "watching". * Protected with schedule_on_each_cpu(ftrace_sync) */ hash = rcu_dereference_protected(ftrace_graph_hash, !preemptible()); if (ftrace_hash_empty(hash)) { ret = 1; goto out; } if (ftrace_lookup_ip(hash, addr)) { /* * This needs to be cleared on the return functions * when the depth is zero. */ trace_recursion_set(TRACE_GRAPH_BIT); trace_recursion_set_depth(trace->depth); /* * If no irqs are to be traced, but a set_graph_function * is set, and called by an interrupt handler, we still * want to trace it. */ if (in_irq()) trace_recursion_set(TRACE_IRQ_BIT); else trace_recursion_clear(TRACE_IRQ_BIT); ret = 1; } out: preempt_enable_notrace(); return ret; } static inline void ftrace_graph_addr_finish(struct ftrace_graph_ret *trace) { if (trace_recursion_test(TRACE_GRAPH_BIT) && trace->depth == trace_recursion_depth()) trace_recursion_clear(TRACE_GRAPH_BIT); } static inline int ftrace_graph_notrace_addr(unsigned long addr) { int ret = 0; struct ftrace_hash *notrace_hash; preempt_disable_notrace(); /* * Have to open code "rcu_dereference_sched()" because the * function graph tracer can be called when RCU is not * "watching". * Protected with schedule_on_each_cpu(ftrace_sync) */ notrace_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, !preemptible()); if (ftrace_lookup_ip(notrace_hash, addr)) ret = 1; preempt_enable_notrace(); return ret; } #else static inline int ftrace_graph_addr(struct ftrace_graph_ent *trace) { return 1; } static inline int ftrace_graph_notrace_addr(unsigned long addr) { return 0; } static inline void ftrace_graph_addr_finish(struct ftrace_graph_ret *trace) { } #endif /* CONFIG_DYNAMIC_FTRACE */ extern unsigned int fgraph_max_depth; static inline bool ftrace_graph_ignore_func(struct ftrace_graph_ent *trace) { /* trace it when it is-nested-in or is a function enabled. */ return !(trace_recursion_test(TRACE_GRAPH_BIT) || ftrace_graph_addr(trace)) || (trace->depth < 0) || (fgraph_max_depth && trace->depth >= fgraph_max_depth); } #else /* CONFIG_FUNCTION_GRAPH_TRACER */ static inline enum print_line_t print_graph_function_flags(struct trace_iterator *iter, u32 flags) { return TRACE_TYPE_UNHANDLED; } #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ extern struct list_head ftrace_pids; #ifdef CONFIG_FUNCTION_TRACER #define FTRACE_PID_IGNORE -1 #define FTRACE_PID_TRACE -2 struct ftrace_func_command { struct list_head list; char *name; int (*func)(struct trace_array *tr, struct ftrace_hash *hash, char *func, char *cmd, char *params, int enable); }; extern bool ftrace_filter_param __initdata; static inline int ftrace_trace_task(struct trace_array *tr) { return this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid) != FTRACE_PID_IGNORE; } extern int ftrace_is_dead(void); int ftrace_create_function_files(struct trace_array *tr, struct dentry *parent); void ftrace_destroy_function_files(struct trace_array *tr); int ftrace_allocate_ftrace_ops(struct trace_array *tr); void ftrace_free_ftrace_ops(struct trace_array *tr); void ftrace_init_global_array_ops(struct trace_array *tr); void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func); void ftrace_reset_array_ops(struct trace_array *tr); void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer); void ftrace_init_tracefs_toplevel(struct trace_array *tr, struct dentry *d_tracer); void ftrace_clear_pids(struct trace_array *tr); int init_function_trace(void); void ftrace_pid_follow_fork(struct trace_array *tr, bool enable); #else static inline int ftrace_trace_task(struct trace_array *tr) { return 1; } static inline int ftrace_is_dead(void) { return 0; } static inline int ftrace_create_function_files(struct trace_array *tr, struct dentry *parent) { return 0; } static inline int ftrace_allocate_ftrace_ops(struct trace_array *tr) { return 0; } static inline void ftrace_free_ftrace_ops(struct trace_array *tr) { } static inline void ftrace_destroy_function_files(struct trace_array *tr) { } static inline __init void ftrace_init_global_array_ops(struct trace_array *tr) { } static inline void ftrace_reset_array_ops(struct trace_array *tr) { } static inline void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d) { } static inline void ftrace_init_tracefs_toplevel(struct trace_array *tr, struct dentry *d) { } static inline void ftrace_clear_pids(struct trace_array *tr) { } static inline int init_function_trace(void) { return 0; } static inline void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) { } /* ftace_func_t type is not defined, use macro instead of static inline */ #define ftrace_init_array_ops(tr, func) do { } while (0) #endif /* CONFIG_FUNCTION_TRACER */ #if defined(CONFIG_FUNCTION_TRACER) && defined(CONFIG_DYNAMIC_FTRACE) struct ftrace_probe_ops { void (*func)(unsigned long ip, unsigned long parent_ip, struct trace_array *tr, struct ftrace_probe_ops *ops, void *data); int (*init)(struct ftrace_probe_ops *ops, struct trace_array *tr, unsigned long ip, void *init_data, void **data); void (*free)(struct ftrace_probe_ops *ops, struct trace_array *tr, unsigned long ip, void *data); int (*print)(struct seq_file *m, unsigned long ip, struct ftrace_probe_ops *ops, void *data); }; struct ftrace_func_mapper; typedef int (*ftrace_mapper_func)(void *data); struct ftrace_func_mapper *allocate_ftrace_func_mapper(void); void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, unsigned long ip); int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, unsigned long ip, void *data); void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, unsigned long ip); void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, ftrace_mapper_func free_func); extern int register_ftrace_function_probe(char *glob, struct trace_array *tr, struct ftrace_probe_ops *ops, void *data); extern int unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, struct ftrace_probe_ops *ops); extern void clear_ftrace_function_probes(struct trace_array *tr); int register_ftrace_command(struct ftrace_func_command *cmd); int unregister_ftrace_command(struct ftrace_func_command *cmd); void ftrace_create_filter_files(struct ftrace_ops *ops, struct dentry *parent); void ftrace_destroy_filter_files(struct ftrace_ops *ops); extern int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, int len, int reset); extern int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, int len, int reset); #else struct ftrace_func_command; static inline __init int register_ftrace_command(struct ftrace_func_command *cmd) { return -EINVAL; } static inline __init int unregister_ftrace_command(char *cmd_name) { return -EINVAL; } static inline void clear_ftrace_function_probes(struct trace_array *tr) { } /* * The ops parameter passed in is usually undefined. * This must be a macro. */ #define ftrace_create_filter_files(ops, parent) do { } while (0) #define ftrace_destroy_filter_files(ops) do { } while (0) #endif /* CONFIG_FUNCTION_TRACER && CONFIG_DYNAMIC_FTRACE */ bool ftrace_event_is_function(struct trace_event_call *call); /* * struct trace_parser - servers for reading the user input separated by spaces * @cont: set if the input is not complete - no final space char was found * @buffer: holds the parsed user input * @idx: user input length * @size: buffer size */ struct trace_parser { bool cont; char *buffer; unsigned idx; unsigned size; }; static inline bool trace_parser_loaded(struct trace_parser *parser) { return (parser->idx != 0); } static inline bool trace_parser_cont(struct trace_parser *parser) { return parser->cont; } static inline void trace_parser_clear(struct trace_parser *parser) { parser->cont = false; parser->idx = 0; } extern int trace_parser_get_init(struct trace_parser *parser, int size); extern void trace_parser_put(struct trace_parser *parser); extern int trace_get_user(struct trace_parser *parser, const char __user *ubuf, size_t cnt, loff_t *ppos); /* * Only create function graph options if function graph is configured. */ #ifdef CONFIG_FUNCTION_GRAPH_TRACER # define FGRAPH_FLAGS \ C(DISPLAY_GRAPH, "display-graph"), #else # define FGRAPH_FLAGS #endif #ifdef CONFIG_BRANCH_TRACER # define BRANCH_FLAGS \ C(BRANCH, "branch"), #else # define BRANCH_FLAGS #endif #ifdef CONFIG_FUNCTION_TRACER # define FUNCTION_FLAGS \ C(FUNCTION, "function-trace"), \ C(FUNC_FORK, "function-fork"), # define FUNCTION_DEFAULT_FLAGS TRACE_ITER_FUNCTION #else # define FUNCTION_FLAGS # define FUNCTION_DEFAULT_FLAGS 0UL # define TRACE_ITER_FUNC_FORK 0UL #endif #ifdef CONFIG_STACKTRACE # define STACK_FLAGS \ C(STACKTRACE, "stacktrace"), #else # define STACK_FLAGS #endif /* * trace_iterator_flags is an enumeration that defines bit * positions into trace_flags that controls the output. * * NOTE: These bits must match the trace_options array in * trace.c (this macro guarantees it). */ #define TRACE_FLAGS \ C(PRINT_PARENT, "print-parent"), \ C(SYM_OFFSET, "sym-offset"), \ C(SYM_ADDR, "sym-addr"), \ C(VERBOSE, "verbose"), \ C(RAW, "raw"), \ C(HEX, "hex"), \ C(BIN, "bin"), \ C(BLOCK, "block"), \ C(PRINTK, "trace_printk"), \ C(ANNOTATE, "annotate"), \ C(USERSTACKTRACE, "userstacktrace"), \ C(SYM_USEROBJ, "sym-userobj"), \ C(PRINTK_MSGONLY, "printk-msg-only"), \ C(CONTEXT_INFO, "context-info"), /* Print pid/cpu/time */ \ C(LATENCY_FMT, "latency-format"), \ C(RECORD_CMD, "record-cmd"), \ C(RECORD_TGID, "record-tgid"), \ C(OVERWRITE, "overwrite"), \ C(STOP_ON_FREE, "disable_on_free"), \ C(IRQ_INFO, "irq-info"), \ C(MARKERS, "markers"), \ C(EVENT_FORK, "event-fork"), \ C(PAUSE_ON_TRACE, "pause-on-trace"), \ FUNCTION_FLAGS \ FGRAPH_FLAGS \ STACK_FLAGS \ BRANCH_FLAGS /* * By defining C, we can make TRACE_FLAGS a list of bit names * that will define the bits for the flag masks. */ #undef C #define C(a, b) TRACE_ITER_##a##_BIT enum trace_iterator_bits { TRACE_FLAGS /* Make sure we don't go more than we have bits for */ TRACE_ITER_LAST_BIT }; /* * By redefining C, we can make TRACE_FLAGS a list of masks that * use the bits as defined above. */ #undef C #define C(a, b) TRACE_ITER_##a = (1 << TRACE_ITER_##a##_BIT) enum trace_iterator_flags { TRACE_FLAGS }; /* * TRACE_ITER_SYM_MASK masks the options in trace_flags that * control the output of kernel symbols. */ #define TRACE_ITER_SYM_MASK \ (TRACE_ITER_PRINT_PARENT|TRACE_ITER_SYM_OFFSET|TRACE_ITER_SYM_ADDR) extern struct tracer nop_trace; #ifdef CONFIG_BRANCH_TRACER extern int enable_branch_tracing(struct trace_array *tr); extern void disable_branch_tracing(void); static inline int trace_branch_enable(struct trace_array *tr) { if (tr->trace_flags & TRACE_ITER_BRANCH) return enable_branch_tracing(tr); return 0; } static inline void trace_branch_disable(void) { /* due to races, always disable */ disable_branch_tracing(); } #else static inline int trace_branch_enable(struct trace_array *tr) { return 0; } static inline void trace_branch_disable(void) { } #endif /* CONFIG_BRANCH_TRACER */ /* set ring buffers to default size if not already done so */ int tracing_update_buffers(void); struct ftrace_event_field { struct list_head link; const char *name; const char *type; int filter_type; int offset; int size; int is_signed; }; struct prog_entry; struct event_filter { struct prog_entry __rcu *prog; char *filter_string; }; struct event_subsystem { struct list_head list; const char *name; struct event_filter *filter; int ref_count; }; struct trace_subsystem_dir { struct list_head list; struct event_subsystem *subsystem; struct trace_array *tr; struct dentry *entry; int ref_count; int nr_events; }; extern int call_filter_check_discard(struct trace_event_call *call, void *rec, struct trace_buffer *buffer, struct ring_buffer_event *event); void trace_buffer_unlock_commit_regs(struct trace_array *tr, struct trace_buffer *buffer, struct ring_buffer_event *event, unsigned long flags, int pc, struct pt_regs *regs); static inline void trace_buffer_unlock_commit(struct trace_array *tr, struct trace_buffer *buffer, struct ring_buffer_event *event, unsigned long flags, int pc) { trace_buffer_unlock_commit_regs(tr, buffer, event, flags, pc, NULL); } DECLARE_PER_CPU(struct ring_buffer_event *, trace_buffered_event); DECLARE_PER_CPU(int, trace_buffered_event_cnt); void trace_buffered_event_disable(void); void trace_buffered_event_enable(void); static inline void __trace_event_discard_commit(struct trace_buffer *buffer, struct ring_buffer_event *event) { if (this_cpu_read(trace_buffered_event) == event) { /* Simply release the temp buffer */ this_cpu_dec(trace_buffered_event_cnt); return; } ring_buffer_discard_commit(buffer, event); } /* * Helper function for event_trigger_unlock_commit{_regs}(). * If there are event triggers attached to this event that requires * filtering against its fields, then they will be called as the * entry already holds the field information of the current event. * * It also checks if the event should be discarded or not. * It is to be discarded if the event is soft disabled and the * event was only recorded to process triggers, or if the event * filter is active and this event did not match the filters. * * Returns true if the event is discarded, false otherwise. */ static inline bool __event_trigger_test_discard(struct trace_event_file *file, struct trace_buffer *buffer, struct ring_buffer_event *event, void *entry, enum event_trigger_type *tt) { unsigned long eflags = file->flags; if (eflags & EVENT_FILE_FL_TRIGGER_COND) *tt = event_triggers_call(file, entry, event); if (test_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &file->flags) || (unlikely(file->flags & EVENT_FILE_FL_FILTERED) && !filter_match_preds(file->filter, entry))) { __trace_event_discard_commit(buffer, event); return true; } return false; } /** * event_trigger_unlock_commit - handle triggers and finish event commit * @file: The file pointer assoctiated to the event * @buffer: The ring buffer that the event is being written to * @event: The event meta data in the ring buffer * @entry: The event itself * @irq_flags: The state of the interrupts at the start of the event * @pc: The state of the preempt count at the start of the event. * * This is a helper function to handle triggers that require data * from the event itself. It also tests the event against filters and * if the event is soft disabled and should be discarded. */ static inline void event_trigger_unlock_commit(struct trace_event_file *file, struct trace_buffer *buffer, struct ring_buffer_event *event, void *entry, unsigned long irq_flags, int pc) { enum event_trigger_type tt = ETT_NONE; if (!__event_trigger_test_discard(file, buffer, event, entry, &tt)) trace_buffer_unlock_commit(file->tr, buffer, event, irq_flags, pc); if (tt) event_triggers_post_call(file, tt); } /** * event_trigger_unlock_commit_regs - handle triggers and finish event commit * @file: The file pointer assoctiated to the event * @buffer: The ring buffer that the event is being written to * @event: The event meta data in the ring buffer * @entry: The event itself * @irq_flags: The state of the interrupts at the start of the event * @pc: The state of the preempt count at the start of the event. * * This is a helper function to handle triggers that require data * from the event itself. It also tests the event against filters and * if the event is soft disabled and should be discarded. * * Same as event_trigger_unlock_commit() but calls * trace_buffer_unlock_commit_regs() instead of trace_buffer_unlock_commit(). */ static inline void event_trigger_unlock_commit_regs(struct trace_event_file *file, struct trace_buffer *buffer, struct ring_buffer_event *event, void *entry, unsigned long irq_flags, int pc, struct pt_regs *regs) { enum event_trigger_type tt = ETT_NONE; if (!__event_trigger_test_discard(file, buffer, event, entry, &tt)) trace_buffer_unlock_commit_regs(file->tr, buffer, event, irq_flags, pc, regs); if (tt) event_triggers_post_call(file, tt); } #define FILTER_PRED_INVALID ((unsigned short)-1) #define FILTER_PRED_IS_RIGHT (1 << 15) #define FILTER_PRED_FOLD (1 << 15) /* * The max preds is the size of unsigned short with * two flags at the MSBs. One bit is used for both the IS_RIGHT * and FOLD flags. The other is reserved. * * 2^14 preds is way more than enough. */ #define MAX_FILTER_PRED 16384 struct filter_pred; struct regex; typedef int (*filter_pred_fn_t) (struct filter_pred *pred, void *event); typedef int (*regex_match_func)(char *str, struct regex *r, int len); enum regex_type { MATCH_FULL = 0, MATCH_FRONT_ONLY, MATCH_MIDDLE_ONLY, MATCH_END_ONLY, MATCH_GLOB, MATCH_INDEX, }; struct regex { char pattern[MAX_FILTER_STR_VAL]; int len; int field_len; regex_match_func match; }; struct filter_pred { filter_pred_fn_t fn; u64 val; struct regex regex; unsigned short *ops; struct ftrace_event_field *field; int offset; int not; int op; }; static inline bool is_string_field(struct ftrace_event_field *field) { return field->filter_type == FILTER_DYN_STRING || field->filter_type == FILTER_STATIC_STRING || field->filter_type == FILTER_PTR_STRING || field->filter_type == FILTER_COMM; } static inline bool is_function_field(struct ftrace_event_field *field) { return field->filter_type == FILTER_TRACE_FN; } extern enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not); extern void print_event_filter(struct trace_event_file *file, struct trace_seq *s); extern int apply_event_filter(struct trace_event_file *file, char *filter_string); extern int apply_subsystem_event_filter(struct trace_subsystem_dir *dir, char *filter_string); extern void print_subsystem_event_filter(struct event_subsystem *system, struct trace_seq *s); extern int filter_assign_type(const char *type); extern int create_event_filter(struct trace_array *tr, struct trace_event_call *call, char *filter_str, bool set_str, struct event_filter **filterp); extern void free_event_filter(struct event_filter *filter); struct ftrace_event_field * trace_find_event_field(struct trace_event_call *call, char *name); extern void trace_event_enable_cmd_record(bool enable); extern void trace_event_enable_tgid_record(bool enable); extern int event_trace_init(void); extern int event_trace_add_tracer(struct dentry *parent, struct trace_array *tr); extern int event_trace_del_tracer(struct trace_array *tr); extern void __trace_early_add_events(struct trace_array *tr); extern struct trace_event_file *__find_event_file(struct trace_array *tr, const char *system, const char *event); extern struct trace_event_file *find_event_file(struct trace_array *tr, const char *system, const char *event); static inline void *event_file_data(struct file *filp) { return READ_ONCE(file_inode(filp)->i_private); } extern struct mutex event_mutex; extern struct list_head ftrace_events; extern const struct file_operations event_trigger_fops; extern const struct file_operations event_hist_fops; extern const struct file_operations event_hist_debug_fops; extern const struct file_operations event_inject_fops; #ifdef CONFIG_HIST_TRIGGERS extern int register_trigger_hist_cmd(void); extern int register_trigger_hist_enable_disable_cmds(void); #else static inline int register_trigger_hist_cmd(void) { return 0; } static inline int register_trigger_hist_enable_disable_cmds(void) { return 0; } #endif extern int register_trigger_cmds(void); extern void clear_event_triggers(struct trace_array *tr); struct event_trigger_data { unsigned long count; int ref; struct event_trigger_ops *ops; struct event_command *cmd_ops; struct event_filter __rcu *filter; char *filter_str; void *private_data; bool paused; bool paused_tmp; struct list_head list; char *name; struct list_head named_list; struct event_trigger_data *named_data; }; /* Avoid typos */ #define ENABLE_EVENT_STR "enable_event" #define DISABLE_EVENT_STR "disable_event" #define ENABLE_HIST_STR "enable_hist" #define DISABLE_HIST_STR "disable_hist" struct enable_trigger_data { struct trace_event_file *file; bool enable; bool hist; }; extern int event_enable_trigger_print(struct seq_file *m, struct event_trigger_ops *ops, struct event_trigger_data *data); extern void event_enable_trigger_free(struct event_trigger_ops *ops, struct event_trigger_data *data); extern int event_enable_trigger_func(struct event_command *cmd_ops, struct trace_event_file *file, char *glob, char *cmd, char *param); extern int event_enable_register_trigger(char *glob, struct event_trigger_ops *ops, struct event_trigger_data *data, struct trace_event_file *file); extern void event_enable_unregister_trigger(char *glob, struct event_trigger_ops *ops, struct event_trigger_data *test, struct trace_event_file *file); extern void trigger_data_free(struct event_trigger_data *data); extern int event_trigger_init(struct event_trigger_ops *ops, struct event_trigger_data *data); extern int trace_event_trigger_enable_disable(struct trace_event_file *file, int trigger_enable); extern void update_cond_flag(struct trace_event_file *file); extern int set_trigger_filter(char *filter_str, struct event_trigger_data *trigger_data, struct trace_event_file *file); extern struct event_trigger_data *find_named_trigger(const char *name); extern bool is_named_trigger(struct event_trigger_data *test); extern int save_named_trigger(const char *name, struct event_trigger_data *data); extern void del_named_trigger(struct event_trigger_data *data); extern void pause_named_trigger(struct event_trigger_data *data); extern void unpause_named_trigger(struct event_trigger_data *data); extern void set_named_trigger_data(struct event_trigger_data *data, struct event_trigger_data *named_data); extern struct event_trigger_data * get_named_trigger_data(struct event_trigger_data *data); extern int register_event_command(struct event_command *cmd); extern int unregister_event_command(struct event_command *cmd); extern int register_trigger_hist_enable_disable_cmds(void); /** * struct event_trigger_ops - callbacks for trace event triggers * * The methods in this structure provide per-event trigger hooks for * various trigger operations. * * All the methods below, except for @init() and @free(), must be * implemented. * * @func: The trigger 'probe' function called when the triggering * event occurs. The data passed into this callback is the data * that was supplied to the event_command @reg() function that * registered the trigger (see struct event_command) along with * the trace record, rec. * * @init: An optional initialization function called for the trigger * when the trigger is registered (via the event_command reg() * function). This can be used to perform per-trigger * initialization such as incrementing a per-trigger reference * count, for instance. This is usually implemented by the * generic utility function @event_trigger_init() (see * trace_event_triggers.c). * * @free: An optional de-initialization function called for the * trigger when the trigger is unregistered (via the * event_command @reg() function). This can be used to perform * per-trigger de-initialization such as decrementing a * per-trigger reference count and freeing corresponding trigger * data, for instance. This is usually implemented by the * generic utility function @event_trigger_free() (see * trace_event_triggers.c). * * @print: The callback function invoked to have the trigger print * itself. This is usually implemented by a wrapper function * that calls the generic utility function @event_trigger_print() * (see trace_event_triggers.c). */ struct event_trigger_ops { void (*func)(struct event_trigger_data *data, void *rec, struct ring_buffer_event *rbe); int (*init)(struct event_trigger_ops *ops, struct event_trigger_data *data); void (*free)(struct event_trigger_ops *ops, struct event_trigger_data *data); int (*print)(struct seq_file *m, struct event_trigger_ops *ops, struct event_trigger_data *data); }; /** * struct event_command - callbacks and data members for event commands * * Event commands are invoked by users by writing the command name * into the 'trigger' file associated with a trace event. The * parameters associated with a specific invocation of an event * command are used to create an event trigger instance, which is * added to the list of trigger instances associated with that trace * event. When the event is hit, the set of triggers associated with * that event is invoked. * * The data members in this structure provide per-event command data * for various event commands. * * All the data members below, except for @post_trigger, must be set * for each event command. * * @name: The unique name that identifies the event command. This is * the name used when setting triggers via trigger files. * * @trigger_type: A unique id that identifies the event command * 'type'. This value has two purposes, the first to ensure that * only one trigger of the same type can be set at a given time * for a particular event e.g. it doesn't make sense to have both * a traceon and traceoff trigger attached to a single event at * the same time, so traceon and traceoff have the same type * though they have different names. The @trigger_type value is * also used as a bit value for deferring the actual trigger * action until after the current event is finished. Some * commands need to do this if they themselves log to the trace * buffer (see the @post_trigger() member below). @trigger_type * values are defined by adding new values to the trigger_type * enum in include/linux/trace_events.h. * * @flags: See the enum event_command_flags below. * * All the methods below, except for @set_filter() and @unreg_all(), * must be implemented. * * @func: The callback function responsible for parsing and * registering the trigger written to the 'trigger' file by the * user. It allocates the trigger instance and registers it with * the appropriate trace event. It makes use of the other * event_command callback functions to orchestrate this, and is * usually implemented by the generic utility function * @event_trigger_callback() (see trace_event_triggers.c). * * @reg: Adds the trigger to the list of triggers associated with the * event, and enables the event trigger itself, after * initializing it (via the event_trigger_ops @init() function). * This is also where commands can use the @trigger_type value to * make the decision as to whether or not multiple instances of * the trigger should be allowed. This is usually implemented by * the generic utility function @register_trigger() (see * trace_event_triggers.c). * * @unreg: Removes the trigger from the list of triggers associated * with the event, and disables the event trigger itself, after * initializing it (via the event_trigger_ops @free() function). * This is usually implemented by the generic utility function * @unregister_trigger() (see trace_event_triggers.c). * * @unreg_all: An optional function called to remove all the triggers * from the list of triggers associated with the event. Called * when a trigger file is opened in truncate mode. * * @set_filter: An optional function called to parse and set a filter * for the trigger. If no @set_filter() method is set for the * event command, filters set by the user for the command will be * ignored. This is usually implemented by the generic utility * function @set_trigger_filter() (see trace_event_triggers.c). * * @get_trigger_ops: The callback function invoked to retrieve the * event_trigger_ops implementation associated with the command. */ struct event_command { struct list_head list; char *name; enum event_trigger_type trigger_type; int flags; int (*func)(struct event_command *cmd_ops, struct trace_event_file *file, char *glob, char *cmd, char *params); int (*reg)(char *glob, struct event_trigger_ops *ops, struct event_trigger_data *data, struct trace_event_file *file); void (*unreg)(char *glob, struct event_trigger_ops *ops, struct event_trigger_data *data, struct trace_event_file *file); void (*unreg_all)(struct trace_event_file *file); int (*set_filter)(char *filter_str, struct event_trigger_data *data, struct trace_event_file *file); struct event_trigger_ops *(*get_trigger_ops)(char *cmd, char *param); }; /** * enum event_command_flags - flags for struct event_command * * @POST_TRIGGER: A flag that says whether or not this command needs * to have its action delayed until after the current event has * been closed. Some triggers need to avoid being invoked while * an event is currently in the process of being logged, since * the trigger may itself log data into the trace buffer. Thus * we make sure the current event is committed before invoking * those triggers. To do that, the trigger invocation is split * in two - the first part checks the filter using the current * trace record; if a command has the @post_trigger flag set, it * sets a bit for itself in the return value, otherwise it * directly invokes the trigger. Once all commands have been * either invoked or set their return flag, the current record is * either committed or discarded. At that point, if any commands * have deferred their triggers, those commands are finally * invoked following the close of the current event. In other * words, if the event_trigger_ops @func() probe implementation * itself logs to the trace buffer, this flag should be set, * otherwise it can be left unspecified. * * @NEEDS_REC: A flag that says whether or not this command needs * access to the trace record in order to perform its function, * regardless of whether or not it has a filter associated with * it (filters make a trigger require access to the trace record * but are not always present). */ enum event_command_flags { EVENT_CMD_FL_POST_TRIGGER = 1, EVENT_CMD_FL_NEEDS_REC = 2, }; static inline bool event_command_post_trigger(struct event_command *cmd_ops) { return cmd_ops->flags & EVENT_CMD_FL_POST_TRIGGER; } static inline bool event_command_needs_rec(struct event_command *cmd_ops) { return cmd_ops->flags & EVENT_CMD_FL_NEEDS_REC; } extern int trace_event_enable_disable(struct trace_event_file *file, int enable, int soft_disable); extern int tracing_alloc_snapshot(void); extern void tracing_snapshot_cond(struct trace_array *tr, void *cond_data); extern int tracing_snapshot_cond_enable(struct trace_array *tr, void *cond_data, cond_update_fn_t update); extern int tracing_snapshot_cond_disable(struct trace_array *tr); extern void *tracing_cond_snapshot_data(struct trace_array *tr); extern const char *__start___trace_bprintk_fmt[]; extern const char *__stop___trace_bprintk_fmt[]; extern const char *__start___tracepoint_str[]; extern const char *__stop___tracepoint_str[]; void trace_printk_control(bool enabled); void trace_printk_start_comm(void); int trace_keep_overwrite(struct tracer *tracer, u32 mask, int set); int set_tracer_flag(struct trace_array *tr, unsigned int mask, int enabled); /* Used from boot time tracer */ extern int trace_set_options(struct trace_array *tr, char *option); extern int tracing_set_tracer(struct trace_array *tr, const char *buf); extern ssize_t tracing_resize_ring_buffer(struct trace_array *tr, unsigned long size, int cpu_id); extern int tracing_set_cpumask(struct trace_array *tr, cpumask_var_t tracing_cpumask_new); #define MAX_EVENT_NAME_LEN 64 extern int trace_run_command(const char *buf, int (*createfn)(int, char**)); extern ssize_t trace_parse_run_command(struct file *file, const char __user *buffer, size_t count, loff_t *ppos, int (*createfn)(int, char**)); extern unsigned int err_pos(char *cmd, const char *str); extern void tracing_log_err(struct trace_array *tr, const char *loc, const char *cmd, const char **errs, u8 type, u8 pos); /* * Normal trace_printk() and friends allocates special buffers * to do the manipulation, as well as saves the print formats * into sections to display. But the trace infrastructure wants * to use these without the added overhead at the price of being * a bit slower (used mainly for warnings, where we don't care * about performance). The internal_trace_puts() is for such * a purpose. */ #define internal_trace_puts(str) __trace_puts(_THIS_IP_, str, strlen(str)) #undef FTRACE_ENTRY #define FTRACE_ENTRY(call, struct_name, id, tstruct, print) \ extern struct trace_event_call \ __aligned(4) event_##call; #undef FTRACE_ENTRY_DUP #define FTRACE_ENTRY_DUP(call, struct_name, id, tstruct, print) \ FTRACE_ENTRY(call, struct_name, id, PARAMS(tstruct), PARAMS(print)) #undef FTRACE_ENTRY_PACKED #define FTRACE_ENTRY_PACKED(call, struct_name, id, tstruct, print) \ FTRACE_ENTRY(call, struct_name, id, PARAMS(tstruct), PARAMS(print)) #include "trace_entries.h" #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_FUNCTION_TRACER) int perf_ftrace_event_register(struct trace_event_call *call, enum trace_reg type, void *data); #else #define perf_ftrace_event_register NULL #endif #ifdef CONFIG_FTRACE_SYSCALLS void init_ftrace_syscalls(void); const char *get_syscall_name(int syscall); #else static inline void init_ftrace_syscalls(void) { } static inline const char *get_syscall_name(int syscall) { return NULL; } #endif #ifdef CONFIG_EVENT_TRACING void trace_event_init(void); void trace_event_eval_update(struct trace_eval_map **map, int len); /* Used from boot time tracer */ extern int ftrace_set_clr_event(struct trace_array *tr, char *buf, int set); extern int trigger_process_regex(struct trace_event_file *file, char *buff); #else static inline void __init trace_event_init(void) { } static inline void trace_event_eval_update(struct trace_eval_map **map, int len) { } #endif #ifdef CONFIG_TRACER_SNAPSHOT void tracing_snapshot_instance(struct trace_array *tr); int tracing_alloc_snapshot_instance(struct trace_array *tr); #else static inline void tracing_snapshot_instance(struct trace_array *tr) { } static inline int tracing_alloc_snapshot_instance(struct trace_array *tr) { return 0; } #endif #ifdef CONFIG_PREEMPT_TRACER void tracer_preempt_on(unsigned long a0, unsigned long a1); void tracer_preempt_off(unsigned long a0, unsigned long a1); #else static inline void tracer_preempt_on(unsigned long a0, unsigned long a1) { } static inline void tracer_preempt_off(unsigned long a0, unsigned long a1) { } #endif #ifdef CONFIG_IRQSOFF_TRACER void tracer_hardirqs_on(unsigned long a0, unsigned long a1); void tracer_hardirqs_off(unsigned long a0, unsigned long a1); #else static inline void tracer_hardirqs_on(unsigned long a0, unsigned long a1) { } static inline void tracer_hardirqs_off(unsigned long a0, unsigned long a1) { } #endif extern struct trace_iterator *tracepoint_print_iter; /* * Reset the state of the trace_iterator so that it can read consumed data. * Normally, the trace_iterator is used for reading the data when it is not * consumed, and must retain state. */ static __always_inline void trace_iterator_reset(struct trace_iterator *iter) { const size_t offset = offsetof(struct trace_iterator, seq); /* * Keep gcc from complaining about overwriting more than just one * member in the structure. */ memset((char *)iter + offset, 0, sizeof(struct trace_iterator) - offset); iter->pos = -1; } /* Check the name is good for event/group/fields */ static inline bool is_good_name(const char *name) { if (!isalpha(*name) && *name != '_') return false; while (*++name != '\0') { if (!isalpha(*name) && !isdigit(*name) && *name != '_') return false; } return true; } #endif /* _LINUX_KERNEL_TRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SMP_H #define _ASM_X86_SMP_H #ifndef __ASSEMBLY__ #include <linux/cpumask.h> #include <asm/percpu.h> #include <asm/thread_info.h> #include <asm/cpumask.h> extern int smp_num_siblings; extern unsigned int num_processors; DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); /* cpus sharing the last level cache: */ DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); DECLARE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id); DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number); static inline struct cpumask *cpu_llc_shared_mask(int cpu) { return per_cpu(cpu_llc_shared_map, cpu); } DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid); #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_X86_32) DECLARE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid); #endif struct task_struct; struct smp_ops { void (*smp_prepare_boot_cpu)(void); void (*smp_prepare_cpus)(unsigned max_cpus); void (*smp_cpus_done)(unsigned max_cpus); void (*stop_other_cpus)(int wait); void (*crash_stop_other_cpus)(void); void (*smp_send_reschedule)(int cpu); int (*cpu_up)(unsigned cpu, struct task_struct *tidle); int (*cpu_disable)(void); void (*cpu_die)(unsigned int cpu); void (*play_dead)(void); void (*send_call_func_ipi)(const struct cpumask *mask); void (*send_call_func_single_ipi)(int cpu); }; /* Globals due to paravirt */ extern void set_cpu_sibling_map(int cpu); #ifdef CONFIG_SMP extern struct smp_ops smp_ops; static inline void smp_send_stop(void) { smp_ops.stop_other_cpus(0); } static inline void stop_other_cpus(void) { smp_ops.stop_other_cpus(1); } static inline void smp_prepare_boot_cpu(void) { smp_ops.smp_prepare_boot_cpu(); } static inline void smp_prepare_cpus(unsigned int max_cpus) { smp_ops.smp_prepare_cpus(max_cpus); } static inline void smp_cpus_done(unsigned int max_cpus) { smp_ops.smp_cpus_done(max_cpus); } static inline int __cpu_up(unsigned int cpu, struct task_struct *tidle) { return smp_ops.cpu_up(cpu, tidle); } static inline int __cpu_disable(void) { return smp_ops.cpu_disable(); } static inline void __cpu_die(unsigned int cpu) { smp_ops.cpu_die(cpu); } static inline void play_dead(void) { smp_ops.play_dead(); } static inline void smp_send_reschedule(int cpu) { smp_ops.smp_send_reschedule(cpu); } static inline void arch_send_call_function_single_ipi(int cpu) { smp_ops.send_call_func_single_ipi(cpu); } static inline void arch_send_call_function_ipi_mask(const struct cpumask *mask) { smp_ops.send_call_func_ipi(mask); } void cpu_disable_common(void); void native_smp_prepare_boot_cpu(void); void native_smp_prepare_cpus(unsigned int max_cpus); void calculate_max_logical_packages(void); void native_smp_cpus_done(unsigned int max_cpus); int common_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_disable(void); int common_cpu_die(unsigned int cpu); void native_cpu_die(unsigned int cpu); void hlt_play_dead(void); void native_play_dead(void); void play_dead_common(void); void wbinvd_on_cpu(int cpu); int wbinvd_on_all_cpus(void); void cond_wakeup_cpu0(void); void native_smp_send_reschedule(int cpu); void native_send_call_func_ipi(const struct cpumask *mask); void native_send_call_func_single_ipi(int cpu); void x86_idle_thread_init(unsigned int cpu, struct task_struct *idle); void smp_store_boot_cpu_info(void); void smp_store_cpu_info(int id); asmlinkage __visible void smp_reboot_interrupt(void); __visible void smp_reschedule_interrupt(struct pt_regs *regs); __visible void smp_call_function_interrupt(struct pt_regs *regs); __visible void smp_call_function_single_interrupt(struct pt_regs *r); #define cpu_physical_id(cpu) per_cpu(x86_cpu_to_apicid, cpu) #define cpu_acpi_id(cpu) per_cpu(x86_cpu_to_acpiid, cpu) /* * This function is needed by all SMP systems. It must _always_ be valid * from the initial startup. We map APIC_BASE very early in page_setup(), * so this is correct in the x86 case. */ #define raw_smp_processor_id() this_cpu_read(cpu_number) #define __smp_processor_id() __this_cpu_read(cpu_number) #ifdef CONFIG_X86_32 extern int safe_smp_processor_id(void); #else # define safe_smp_processor_id() smp_processor_id() #endif #else /* !CONFIG_SMP */ #define wbinvd_on_cpu(cpu) wbinvd() static inline int wbinvd_on_all_cpus(void) { wbinvd(); return 0; } #endif /* CONFIG_SMP */ extern unsigned disabled_cpus; #ifdef CONFIG_X86_LOCAL_APIC extern int hard_smp_processor_id(void); #else /* CONFIG_X86_LOCAL_APIC */ #define hard_smp_processor_id() 0 #endif /* CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_DEBUG_NMI_SELFTEST extern void nmi_selftest(void); #else #define nmi_selftest() do { } while (0) #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_SMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/backing-dev.h * * low-level device information and state which is propagated up through * to high-level code. */ #ifndef _LINUX_BACKING_DEV_H #define _LINUX_BACKING_DEV_H #include <linux/kernel.h> #include <linux/fs.h> #include <linux/sched.h> #include <linux/blkdev.h> #include <linux/device.h> #include <linux/writeback.h> #include <linux/blk-cgroup.h> #include <linux/backing-dev-defs.h> #include <linux/slab.h> static inline struct backing_dev_info *bdi_get(struct backing_dev_info *bdi) { kref_get(&bdi->refcnt); return bdi; } struct backing_dev_info *bdi_get_by_id(u64 id); void bdi_put(struct backing_dev_info *bdi); __printf(2, 3) int bdi_register(struct backing_dev_info *bdi, const char *fmt, ...); __printf(2, 0) int bdi_register_va(struct backing_dev_info *bdi, const char *fmt, va_list args); void bdi_set_owner(struct backing_dev_info *bdi, struct device *owner); void bdi_unregister(struct backing_dev_info *bdi); struct backing_dev_info *bdi_alloc(int node_id); void wb_start_background_writeback(struct bdi_writeback *wb); void wb_workfn(struct work_struct *work); void wb_wakeup_delayed(struct bdi_writeback *wb); void wb_wait_for_completion(struct wb_completion *done); extern spinlock_t bdi_lock; extern struct list_head bdi_list; extern struct workqueue_struct *bdi_wq; extern struct workqueue_struct *bdi_async_bio_wq; static inline bool wb_has_dirty_io(struct bdi_writeback *wb) { return test_bit(WB_has_dirty_io, &wb->state); } static inline bool bdi_has_dirty_io(struct backing_dev_info *bdi) { /* * @bdi->tot_write_bandwidth is guaranteed to be > 0 if there are * any dirty wbs. See wb_update_write_bandwidth(). */ return atomic_long_read(&bdi->tot_write_bandwidth); } static inline void __add_wb_stat(struct bdi_writeback *wb, enum wb_stat_item item, s64 amount) { percpu_counter_add_batch(&wb->stat[item], amount, WB_STAT_BATCH); } static inline void inc_wb_stat(struct bdi_writeback *wb, enum wb_stat_item item) { __add_wb_stat(wb, item, 1); } static inline void dec_wb_stat(struct bdi_writeback *wb, enum wb_stat_item item) { __add_wb_stat(wb, item, -1); } static inline s64 wb_stat(struct bdi_writeback *wb, enum wb_stat_item item) { return percpu_counter_read_positive(&wb->stat[item]); } static inline s64 wb_stat_sum(struct bdi_writeback *wb, enum wb_stat_item item) { return percpu_counter_sum_positive(&wb->stat[item]); } extern void wb_writeout_inc(struct bdi_writeback *wb); /* * maximal error of a stat counter. */ static inline unsigned long wb_stat_error(void) { #ifdef CONFIG_SMP return nr_cpu_ids * WB_STAT_BATCH; #else return 1; #endif } int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio); int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio); /* * Flags in backing_dev_info::capability * * BDI_CAP_WRITEBACK: Supports dirty page writeback, and dirty pages * should contribute to accounting * BDI_CAP_WRITEBACK_ACCT: Automatically account writeback pages * BDI_CAP_STRICTLIMIT: Keep number of dirty pages below bdi threshold */ #define BDI_CAP_WRITEBACK (1 << 0) #define BDI_CAP_WRITEBACK_ACCT (1 << 1) #define BDI_CAP_STRICTLIMIT (1 << 2) extern struct backing_dev_info noop_backing_dev_info; /** * writeback_in_progress - determine whether there is writeback in progress * @wb: bdi_writeback of interest * * Determine whether there is writeback waiting to be handled against a * bdi_writeback. */ static inline bool writeback_in_progress(struct bdi_writeback *wb) { return test_bit(WB_writeback_running, &wb->state); } static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) { struct super_block *sb; if (!inode) return &noop_backing_dev_info; sb = inode->i_sb; #ifdef CONFIG_BLOCK if (sb_is_blkdev_sb(sb)) return I_BDEV(inode)->bd_bdi; #endif return sb->s_bdi; } static inline int wb_congested(struct bdi_writeback *wb, int cong_bits) { return wb->congested & cong_bits; } long congestion_wait(int sync, long timeout); long wait_iff_congested(int sync, long timeout); static inline bool mapping_can_writeback(struct address_space *mapping) { return inode_to_bdi(mapping->host)->capabilities & BDI_CAP_WRITEBACK; } static inline int bdi_sched_wait(void *word) { schedule(); return 0; } #ifdef CONFIG_CGROUP_WRITEBACK struct bdi_writeback *wb_get_lookup(struct backing_dev_info *bdi, struct cgroup_subsys_state *memcg_css); struct bdi_writeback *wb_get_create(struct backing_dev_info *bdi, struct cgroup_subsys_state *memcg_css, gfp_t gfp); void wb_memcg_offline(struct mem_cgroup *memcg); void wb_blkcg_offline(struct blkcg *blkcg); int inode_congested(struct inode *inode, int cong_bits); /** * inode_cgwb_enabled - test whether cgroup writeback is enabled on an inode * @inode: inode of interest * * Cgroup writeback requires support from the filesystem. Also, both memcg and * iocg have to be on the default hierarchy. Test whether all conditions are * met. * * Note that the test result may change dynamically on the same inode * depending on how memcg and iocg are configured. */ static inline bool inode_cgwb_enabled(struct inode *inode) { struct backing_dev_info *bdi = inode_to_bdi(inode); return cgroup_subsys_on_dfl(memory_cgrp_subsys) && cgroup_subsys_on_dfl(io_cgrp_subsys) && (bdi->capabilities & BDI_CAP_WRITEBACK) && (inode->i_sb->s_iflags & SB_I_CGROUPWB); } /** * wb_find_current - find wb for %current on a bdi * @bdi: bdi of interest * * Find the wb of @bdi which matches both the memcg and blkcg of %current. * Must be called under rcu_read_lock() which protects the returend wb. * NULL if not found. */ static inline struct bdi_writeback *wb_find_current(struct backing_dev_info *bdi) { struct cgroup_subsys_state *memcg_css; struct bdi_writeback *wb; memcg_css = task_css(current, memory_cgrp_id); if (!memcg_css->parent) return &bdi->wb; wb = radix_tree_lookup(&bdi->cgwb_tree, memcg_css->id); /* * %current's blkcg equals the effective blkcg of its memcg. No * need to use the relatively expensive cgroup_get_e_css(). */ if (likely(wb && wb->blkcg_css == task_css(current, io_cgrp_id))) return wb; return NULL; } /** * wb_get_create_current - get or create wb for %current on a bdi * @bdi: bdi of interest * @gfp: allocation mask * * Equivalent to wb_get_create() on %current's memcg. This function is * called from a relatively hot path and optimizes the common cases using * wb_find_current(). */ static inline struct bdi_writeback * wb_get_create_current(struct backing_dev_info *bdi, gfp_t gfp) { struct bdi_writeback *wb; rcu_read_lock(); wb = wb_find_current(bdi); if (wb && unlikely(!wb_tryget(wb))) wb = NULL; rcu_read_unlock(); if (unlikely(!wb)) { struct cgroup_subsys_state *memcg_css; memcg_css = task_get_css(current, memory_cgrp_id); wb = wb_get_create(bdi, memcg_css, gfp); css_put(memcg_css); } return wb; } /** * inode_to_wb_is_valid - test whether an inode has a wb associated * @inode: inode of interest * * Returns %true if @inode has a wb associated. May be called without any * locking. */ static inline bool inode_to_wb_is_valid(struct inode *inode) { return inode->i_wb; } /** * inode_to_wb - determine the wb of an inode * @inode: inode of interest * * Returns the wb @inode is currently associated with. The caller must be * holding either @inode->i_lock, the i_pages lock, or the * associated wb's list_lock. */ static inline struct bdi_writeback *inode_to_wb(const struct inode *inode) { #ifdef CONFIG_LOCKDEP WARN_ON_ONCE(debug_locks && (!lockdep_is_held(&inode->i_lock) && !lockdep_is_held(&inode->i_mapping->i_pages.xa_lock) && !lockdep_is_held(&inode->i_wb->list_lock))); #endif return inode->i_wb; } /** * unlocked_inode_to_wb_begin - begin unlocked inode wb access transaction * @inode: target inode * @cookie: output param, to be passed to the end function * * The caller wants to access the wb associated with @inode but isn't * holding inode->i_lock, the i_pages lock or wb->list_lock. This * function determines the wb associated with @inode and ensures that the * association doesn't change until the transaction is finished with * unlocked_inode_to_wb_end(). * * The caller must call unlocked_inode_to_wb_end() with *@cookie afterwards and * can't sleep during the transaction. IRQs may or may not be disabled on * return. */ static inline struct bdi_writeback * unlocked_inode_to_wb_begin(struct inode *inode, struct wb_lock_cookie *cookie) { rcu_read_lock(); /* * Paired with store_release in inode_switch_wbs_work_fn() and * ensures that we see the new wb if we see cleared I_WB_SWITCH. */ cookie->locked = smp_load_acquire(&inode->i_state) & I_WB_SWITCH; if (unlikely(cookie->locked)) xa_lock_irqsave(&inode->i_mapping->i_pages, cookie->flags); /* * Protected by either !I_WB_SWITCH + rcu_read_lock() or the i_pages * lock. inode_to_wb() will bark. Deref directly. */ return inode->i_wb; } /** * unlocked_inode_to_wb_end - end inode wb access transaction * @inode: target inode * @cookie: @cookie from unlocked_inode_to_wb_begin() */ static inline void unlocked_inode_to_wb_end(struct inode *inode, struct wb_lock_cookie *cookie) { if (unlikely(cookie->locked)) xa_unlock_irqrestore(&inode->i_mapping->i_pages, cookie->flags); rcu_read_unlock(); } #else /* CONFIG_CGROUP_WRITEBACK */ static inline bool inode_cgwb_enabled(struct inode *inode) { return false; } static inline struct bdi_writeback *wb_find_current(struct backing_dev_info *bdi) { return &bdi->wb; } static inline struct bdi_writeback * wb_get_create_current(struct backing_dev_info *bdi, gfp_t gfp) { return &bdi->wb; } static inline bool inode_to_wb_is_valid(struct inode *inode) { return true; } static inline struct bdi_writeback *inode_to_wb(struct inode *inode) { return &inode_to_bdi(inode)->wb; } static inline struct bdi_writeback * unlocked_inode_to_wb_begin(struct inode *inode, struct wb_lock_cookie *cookie) { return inode_to_wb(inode); } static inline void unlocked_inode_to_wb_end(struct inode *inode, struct wb_lock_cookie *cookie) { } static inline void wb_memcg_offline(struct mem_cgroup *memcg) { } static inline void wb_blkcg_offline(struct blkcg *blkcg) { } static inline int inode_congested(struct inode *inode, int cong_bits) { return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); } #endif /* CONFIG_CGROUP_WRITEBACK */ static inline int inode_read_congested(struct inode *inode) { return inode_congested(inode, 1 << WB_sync_congested); } static inline int inode_write_congested(struct inode *inode) { return inode_congested(inode, 1 << WB_async_congested); } static inline int inode_rw_congested(struct inode *inode) { return inode_congested(inode, (1 << WB_sync_congested) | (1 << WB_async_congested)); } static inline int bdi_congested(struct backing_dev_info *bdi, int cong_bits) { return wb_congested(&bdi->wb, cong_bits); } static inline int bdi_read_congested(struct backing_dev_info *bdi) { return bdi_congested(bdi, 1 << WB_sync_congested); } static inline int bdi_write_congested(struct backing_dev_info *bdi) { return bdi_congested(bdi, 1 << WB_async_congested); } static inline int bdi_rw_congested(struct backing_dev_info *bdi) { return bdi_congested(bdi, (1 << WB_sync_congested) | (1 << WB_async_congested)); } const char *bdi_dev_name(struct backing_dev_info *bdi); #endif /* _LINUX_BACKING_DEV_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef LLIST_H #define LLIST_H /* * Lock-less NULL terminated single linked list * * Cases where locking is not needed: * If there are multiple producers and multiple consumers, llist_add can be * used in producers and llist_del_all can be used in consumers simultaneously * without locking. Also a single consumer can use llist_del_first while * multiple producers simultaneously use llist_add, without any locking. * * Cases where locking is needed: * If we have multiple consumers with llist_del_first used in one consumer, and * llist_del_first or llist_del_all used in other consumers, then a lock is * needed. This is because llist_del_first depends on list->first->next not * changing, but without lock protection, there's no way to be sure about that * if a preemption happens in the middle of the delete operation and on being * preempted back, the list->first is the same as before causing the cmpxchg in * llist_del_first to succeed. For example, while a llist_del_first operation * is in progress in one consumer, then a llist_del_first, llist_add, * llist_add (or llist_del_all, llist_add, llist_add) sequence in another * consumer may cause violations. * * This can be summarized as follows: * * | add | del_first | del_all * add | - | - | - * del_first | | L | L * del_all | | | - * * Where, a particular row's operation can happen concurrently with a column's * operation, with "-" being no lock needed, while "L" being lock is needed. * * The list entries deleted via llist_del_all can be traversed with * traversing function such as llist_for_each etc. But the list * entries can not be traversed safely before deleted from the list. * The order of deleted entries is from the newest to the oldest added * one. If you want to traverse from the oldest to the newest, you * must reverse the order by yourself before traversing. * * The basic atomic operation of this list is cmpxchg on long. On * architectures that don't have NMI-safe cmpxchg implementation, the * list can NOT be used in NMI handlers. So code that uses the list in * an NMI handler should depend on CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. * * Copyright 2010,2011 Intel Corp. * Author: Huang Ying <ying.huang@intel.com> */ #include <linux/atomic.h> #include <linux/kernel.h> struct llist_head { struct llist_node *first; }; struct llist_node { struct llist_node *next; }; #define LLIST_HEAD_INIT(name) { NULL } #define LLIST_HEAD(name) struct llist_head name = LLIST_HEAD_INIT(name) /** * init_llist_head - initialize lock-less list head * @head: the head for your lock-less list */ static inline void init_llist_head(struct llist_head *list) { list->first = NULL; } /** * llist_entry - get the struct of this entry * @ptr: the &struct llist_node pointer. * @type: the type of the struct this is embedded in. * @member: the name of the llist_node within the struct. */ #define llist_entry(ptr, type, member) \ container_of(ptr, type, member) /** * member_address_is_nonnull - check whether the member address is not NULL * @ptr: the object pointer (struct type * that contains the llist_node) * @member: the name of the llist_node within the struct. * * This macro is conceptually the same as * &ptr->member != NULL * but it works around the fact that compilers can decide that taking a member * address is never a NULL pointer. * * Real objects that start at a high address and have a member at NULL are * unlikely to exist, but such pointers may be returned e.g. by the * container_of() macro. */ #define member_address_is_nonnull(ptr, member) \ ((uintptr_t)(ptr) + offsetof(typeof(*(ptr)), member) != 0) /** * llist_for_each - iterate over some deleted entries of a lock-less list * @pos: the &struct llist_node to use as a loop cursor * @node: the first entry of deleted list entries * * In general, some entries of the lock-less list can be traversed * safely only after being deleted from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each(pos, node) \ for ((pos) = (node); pos; (pos) = (pos)->next) /** * llist_for_each_safe - iterate over some deleted entries of a lock-less list * safe against removal of list entry * @pos: the &struct llist_node to use as a loop cursor * @n: another &struct llist_node to use as temporary storage * @node: the first entry of deleted list entries * * In general, some entries of the lock-less list can be traversed * safely only after being deleted from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_safe(pos, n, node) \ for ((pos) = (node); (pos) && ((n) = (pos)->next, true); (pos) = (n)) /** * llist_for_each_entry - iterate over some deleted entries of lock-less list of given type * @pos: the type * to use as a loop cursor. * @node: the fist entry of deleted list entries. * @member: the name of the llist_node with the struct. * * In general, some entries of the lock-less list can be traversed * safely only after being removed from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_entry(pos, node, member) \ for ((pos) = llist_entry((node), typeof(*(pos)), member); \ member_address_is_nonnull(pos, member); \ (pos) = llist_entry((pos)->member.next, typeof(*(pos)), member)) /** * llist_for_each_entry_safe - iterate over some deleted entries of lock-less list of given type * safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @node: the first entry of deleted list entries. * @member: the name of the llist_node with the struct. * * In general, some entries of the lock-less list can be traversed * safely only after being removed from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_entry_safe(pos, n, node, member) \ for (pos = llist_entry((node), typeof(*pos), member); \ member_address_is_nonnull(pos, member) && \ (n = llist_entry(pos->member.next, typeof(*n), member), true); \ pos = n) /** * llist_empty - tests whether a lock-less list is empty * @head: the list to test * * Not guaranteed to be accurate or up to date. Just a quick way to * test whether the list is empty without deleting something from the * list. */ static inline bool llist_empty(const struct llist_head *head) { return READ_ONCE(head->first) == NULL; } static inline struct llist_node *llist_next(struct llist_node *node) { return node->next; } extern bool llist_add_batch(struct llist_node *new_first, struct llist_node *new_last, struct llist_head *head); /** * llist_add - add a new entry * @new: new entry to be added * @head: the head for your lock-less list * * Returns true if the list was empty prior to adding this entry. */ static inline bool llist_add(struct llist_node *new, struct llist_head *head) { return llist_add_batch(new, new, head); } /** * llist_del_all - delete all entries from lock-less list * @head: the head of lock-less list to delete all entries * * If list is empty, return NULL, otherwise, delete all entries and * return the pointer to the first entry. The order of entries * deleted is from the newest to the oldest added one. */ static inline struct llist_node *llist_del_all(struct llist_head *head) { return xchg(&head->first, NULL); } extern struct llist_node *llist_del_first(struct llist_head *head); struct llist_node *llist_reverse_order(struct llist_node *head); #endif /* LLIST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_INETDEVICE_H #define _LINUX_INETDEVICE_H #ifdef __KERNEL__ #include <linux/bitmap.h> #include <linux/if.h> #include <linux/ip.h> #include <linux/netdevice.h> #include <linux/rcupdate.h> #include <linux/timer.h> #include <linux/sysctl.h> #include <linux/rtnetlink.h> #include <linux/refcount.h> struct ipv4_devconf { void *sysctl; int data[IPV4_DEVCONF_MAX]; DECLARE_BITMAP(state, IPV4_DEVCONF_MAX); }; #define MC_HASH_SZ_LOG 9 struct in_device { struct net_device *dev; refcount_t refcnt; int dead; struct in_ifaddr __rcu *ifa_list;/* IP ifaddr chain */ struct ip_mc_list __rcu *mc_list; /* IP multicast filter chain */ struct ip_mc_list __rcu * __rcu *mc_hash; int mc_count; /* Number of installed mcasts */ spinlock_t mc_tomb_lock; struct ip_mc_list *mc_tomb; unsigned long mr_v1_seen; unsigned long mr_v2_seen; unsigned long mr_maxdelay; unsigned long mr_qi; /* Query Interval */ unsigned long mr_qri; /* Query Response Interval */ unsigned char mr_qrv; /* Query Robustness Variable */ unsigned char mr_gq_running; u32 mr_ifc_count; struct timer_list mr_gq_timer; /* general query timer */ struct timer_list mr_ifc_timer; /* interface change timer */ struct neigh_parms *arp_parms; struct ipv4_devconf cnf; struct rcu_head rcu_head; }; #define IPV4_DEVCONF(cnf, attr) ((cnf).data[IPV4_DEVCONF_ ## attr - 1]) #define IPV4_DEVCONF_ALL(net, attr) \ IPV4_DEVCONF((*(net)->ipv4.devconf_all), attr) static inline int ipv4_devconf_get(struct in_device *in_dev, int index) { index--; return in_dev->cnf.data[index]; } static inline void ipv4_devconf_set(struct in_device *in_dev, int index, int val) { index--; set_bit(index, in_dev->cnf.state); in_dev->cnf.data[index] = val; } static inline void ipv4_devconf_setall(struct in_device *in_dev) { bitmap_fill(in_dev->cnf.state, IPV4_DEVCONF_MAX); } #define IN_DEV_CONF_GET(in_dev, attr) \ ipv4_devconf_get((in_dev), IPV4_DEVCONF_ ## attr) #define IN_DEV_CONF_SET(in_dev, attr, val) \ ipv4_devconf_set((in_dev), IPV4_DEVCONF_ ## attr, (val)) #define IN_DEV_ANDCONF(in_dev, attr) \ (IPV4_DEVCONF_ALL(dev_net(in_dev->dev), attr) && \ IN_DEV_CONF_GET((in_dev), attr)) #define IN_DEV_NET_ORCONF(in_dev, net, attr) \ (IPV4_DEVCONF_ALL(net, attr) || \ IN_DEV_CONF_GET((in_dev), attr)) #define IN_DEV_ORCONF(in_dev, attr) \ IN_DEV_NET_ORCONF(in_dev, dev_net(in_dev->dev), attr) #define IN_DEV_MAXCONF(in_dev, attr) \ (max(IPV4_DEVCONF_ALL(dev_net(in_dev->dev), attr), \ IN_DEV_CONF_GET((in_dev), attr))) #define IN_DEV_FORWARD(in_dev) IN_DEV_CONF_GET((in_dev), FORWARDING) #define IN_DEV_MFORWARD(in_dev) IN_DEV_ANDCONF((in_dev), MC_FORWARDING) #define IN_DEV_BFORWARD(in_dev) IN_DEV_ANDCONF((in_dev), BC_FORWARDING) #define IN_DEV_RPFILTER(in_dev) IN_DEV_MAXCONF((in_dev), RP_FILTER) #define IN_DEV_SRC_VMARK(in_dev) IN_DEV_ORCONF((in_dev), SRC_VMARK) #define IN_DEV_SOURCE_ROUTE(in_dev) IN_DEV_ANDCONF((in_dev), \ ACCEPT_SOURCE_ROUTE) #define IN_DEV_ACCEPT_LOCAL(in_dev) IN_DEV_ORCONF((in_dev), ACCEPT_LOCAL) #define IN_DEV_BOOTP_RELAY(in_dev) IN_DEV_ANDCONF((in_dev), BOOTP_RELAY) #define IN_DEV_LOG_MARTIANS(in_dev) IN_DEV_ORCONF((in_dev), LOG_MARTIANS) #define IN_DEV_PROXY_ARP(in_dev) IN_DEV_ORCONF((in_dev), PROXY_ARP) #define IN_DEV_PROXY_ARP_PVLAN(in_dev) IN_DEV_CONF_GET(in_dev, PROXY_ARP_PVLAN) #define IN_DEV_SHARED_MEDIA(in_dev) IN_DEV_ORCONF((in_dev), SHARED_MEDIA) #define IN_DEV_TX_REDIRECTS(in_dev) IN_DEV_ORCONF((in_dev), SEND_REDIRECTS) #define IN_DEV_SEC_REDIRECTS(in_dev) IN_DEV_ORCONF((in_dev), \ SECURE_REDIRECTS) #define IN_DEV_IDTAG(in_dev) IN_DEV_CONF_GET(in_dev, TAG) #define IN_DEV_MEDIUM_ID(in_dev) IN_DEV_CONF_GET(in_dev, MEDIUM_ID) #define IN_DEV_PROMOTE_SECONDARIES(in_dev) \ IN_DEV_ORCONF((in_dev), \ PROMOTE_SECONDARIES) #define IN_DEV_ROUTE_LOCALNET(in_dev) IN_DEV_ORCONF(in_dev, ROUTE_LOCALNET) #define IN_DEV_NET_ROUTE_LOCALNET(in_dev, net) \ IN_DEV_NET_ORCONF(in_dev, net, ROUTE_LOCALNET) #define IN_DEV_RX_REDIRECTS(in_dev) \ ((IN_DEV_FORWARD(in_dev) && \ IN_DEV_ANDCONF((in_dev), ACCEPT_REDIRECTS)) \ || (!IN_DEV_FORWARD(in_dev) && \ IN_DEV_ORCONF((in_dev), ACCEPT_REDIRECTS))) #define IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) \ IN_DEV_CONF_GET((in_dev), IGNORE_ROUTES_WITH_LINKDOWN) #define IN_DEV_ARPFILTER(in_dev) IN_DEV_ORCONF((in_dev), ARPFILTER) #define IN_DEV_ARP_ACCEPT(in_dev) IN_DEV_ORCONF((in_dev), ARP_ACCEPT) #define IN_DEV_ARP_ANNOUNCE(in_dev) IN_DEV_MAXCONF((in_dev), ARP_ANNOUNCE) #define IN_DEV_ARP_IGNORE(in_dev) IN_DEV_MAXCONF((in_dev), ARP_IGNORE) #define IN_DEV_ARP_NOTIFY(in_dev) IN_DEV_MAXCONF((in_dev), ARP_NOTIFY) struct in_ifaddr { struct hlist_node hash; struct in_ifaddr __rcu *ifa_next; struct in_device *ifa_dev; struct rcu_head rcu_head; __be32 ifa_local; __be32 ifa_address; __be32 ifa_mask; __u32 ifa_rt_priority; __be32 ifa_broadcast; unsigned char ifa_scope; unsigned char ifa_prefixlen; __u32 ifa_flags; char ifa_label[IFNAMSIZ]; /* In seconds, relative to tstamp. Expiry is at tstamp + HZ * lft. */ __u32 ifa_valid_lft; __u32 ifa_preferred_lft; unsigned long ifa_cstamp; /* created timestamp */ unsigned long ifa_tstamp; /* updated timestamp */ }; struct in_validator_info { __be32 ivi_addr; struct in_device *ivi_dev; struct netlink_ext_ack *extack; }; int register_inetaddr_notifier(struct notifier_block *nb); int unregister_inetaddr_notifier(struct notifier_block *nb); int register_inetaddr_validator_notifier(struct notifier_block *nb); int unregister_inetaddr_validator_notifier(struct notifier_block *nb); void inet_netconf_notify_devconf(struct net *net, int event, int type, int ifindex, struct ipv4_devconf *devconf); struct net_device *__ip_dev_find(struct net *net, __be32 addr, bool devref); static inline struct net_device *ip_dev_find(struct net *net, __be32 addr) { return __ip_dev_find(net, addr, true); } int inet_addr_onlink(struct in_device *in_dev, __be32 a, __be32 b); int devinet_ioctl(struct net *net, unsigned int cmd, struct ifreq *); void devinet_init(void); struct in_device *inetdev_by_index(struct net *, int); __be32 inet_select_addr(const struct net_device *dev, __be32 dst, int scope); __be32 inet_confirm_addr(struct net *net, struct in_device *in_dev, __be32 dst, __be32 local, int scope); struct in_ifaddr *inet_ifa_byprefix(struct in_device *in_dev, __be32 prefix, __be32 mask); struct in_ifaddr *inet_lookup_ifaddr_rcu(struct net *net, __be32 addr); static inline bool inet_ifa_match(__be32 addr, const struct in_ifaddr *ifa) { return !((addr^ifa->ifa_address)&ifa->ifa_mask); } /* * Check if a mask is acceptable. */ static __inline__ bool bad_mask(__be32 mask, __be32 addr) { __u32 hmask; if (addr & (mask = ~mask)) return true; hmask = ntohl(mask); if (hmask & (hmask+1)) return true; return false; } #define in_dev_for_each_ifa_rtnl(ifa, in_dev) \ for (ifa = rtnl_dereference((in_dev)->ifa_list); ifa; \ ifa = rtnl_dereference(ifa->ifa_next)) #define in_dev_for_each_ifa_rcu(ifa, in_dev) \ for (ifa = rcu_dereference((in_dev)->ifa_list); ifa; \ ifa = rcu_dereference(ifa->ifa_next)) static inline struct in_device *__in_dev_get_rcu(const struct net_device *dev) { return rcu_dereference(dev->ip_ptr); } static inline struct in_device *in_dev_get(const struct net_device *dev) { struct in_device *in_dev; rcu_read_lock(); in_dev = __in_dev_get_rcu(dev); if (in_dev) refcount_inc(&in_dev->refcnt); rcu_read_unlock(); return in_dev; } static inline struct in_device *__in_dev_get_rtnl(const struct net_device *dev) { return rtnl_dereference(dev->ip_ptr); } /* called with rcu_read_lock or rtnl held */ static inline bool ip_ignore_linkdown(const struct net_device *dev) { struct in_device *in_dev; bool rc = false; in_dev = rcu_dereference_rtnl(dev->ip_ptr); if (in_dev && IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev)) rc = true; return rc; } static inline struct neigh_parms *__in_dev_arp_parms_get_rcu(const struct net_device *dev) { struct in_device *in_dev = __in_dev_get_rcu(dev); return in_dev ? in_dev->arp_parms : NULL; } void in_dev_finish_destroy(struct in_device *idev); static inline void in_dev_put(struct in_device *idev) { if (refcount_dec_and_test(&idev->refcnt)) in_dev_finish_destroy(idev); } #define __in_dev_put(idev) refcount_dec(&(idev)->refcnt) #define in_dev_hold(idev) refcount_inc(&(idev)->refcnt) #endif /* __KERNEL__ */ static __inline__ __be32 inet_make_mask(int logmask) { if (logmask) return htonl(~((1U<<(32-logmask))-1)); return 0; } static __inline__ int inet_mask_len(__be32 mask) { __u32 hmask = ntohl(mask); if (!hmask) return 0; return 32 - ffz(~hmask); } #endif /* _LINUX_INETDEVICE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VMALLOC_H #define _LINUX_VMALLOC_H #include <linux/spinlock.h> #include <linux/init.h> #include <linux/list.h> #include <linux/llist.h> #include <asm/page.h> /* pgprot_t */ #include <linux/rbtree.h> #include <linux/overflow.h> #include <asm/vmalloc.h> struct vm_area_struct; /* vma defining user mapping in mm_types.h */ struct notifier_block; /* in notifier.h */ /* bits in flags of vmalloc's vm_struct below */ #define VM_IOREMAP 0x00000001 /* ioremap() and friends */ #define VM_ALLOC 0x00000002 /* vmalloc() */ #define VM_MAP 0x00000004 /* vmap()ed pages */ #define VM_USERMAP 0x00000008 /* suitable for remap_vmalloc_range */ #define VM_DMA_COHERENT 0x00000010 /* dma_alloc_coherent */ #define VM_UNINITIALIZED 0x00000020 /* vm_struct is not fully initialized */ #define VM_NO_GUARD 0x00000040 /* don't add guard page */ #define VM_KASAN 0x00000080 /* has allocated kasan shadow memory */ #define VM_FLUSH_RESET_PERMS 0x00000100 /* reset direct map and flush TLB on unmap, can't be freed in atomic context */ #define VM_MAP_PUT_PAGES 0x00000200 /* put pages and free array in vfree */ /* * VM_KASAN is used slighly differently depending on CONFIG_KASAN_VMALLOC. * * If IS_ENABLED(CONFIG_KASAN_VMALLOC), VM_KASAN is set on a vm_struct after * shadow memory has been mapped. It's used to handle allocation errors so that * we don't try to poision shadow on free if it was never allocated. * * Otherwise, VM_KASAN is set for kasan_module_alloc() allocations and used to * determine which allocations need the module shadow freed. */ /* bits [20..32] reserved for arch specific ioremap internals */ /* * Maximum alignment for ioremap() regions. * Can be overriden by arch-specific value. */ #ifndef IOREMAP_MAX_ORDER #define IOREMAP_MAX_ORDER (7 + PAGE_SHIFT) /* 128 pages */ #endif struct vm_struct { struct vm_struct *next; void *addr; unsigned long size; unsigned long flags; struct page **pages; unsigned int nr_pages; phys_addr_t phys_addr; const void *caller; }; struct vmap_area { unsigned long va_start; unsigned long va_end; struct rb_node rb_node; /* address sorted rbtree */ struct list_head list; /* address sorted list */ /* * The following three variables can be packed, because * a vmap_area object is always one of the three states: * 1) in "free" tree (root is vmap_area_root) * 2) in "busy" tree (root is free_vmap_area_root) * 3) in purge list (head is vmap_purge_list) */ union { unsigned long subtree_max_size; /* in "free" tree */ struct vm_struct *vm; /* in "busy" tree */ struct llist_node purge_list; /* in purge list */ }; }; /* * Highlevel APIs for driver use */ extern void vm_unmap_ram(const void *mem, unsigned int count); extern void *vm_map_ram(struct page **pages, unsigned int count, int node); extern void vm_unmap_aliases(void); #ifdef CONFIG_MMU extern void __init vmalloc_init(void); extern unsigned long vmalloc_nr_pages(void); #else static inline void vmalloc_init(void) { } static inline unsigned long vmalloc_nr_pages(void) { return 0; } #endif extern void *vmalloc(unsigned long size); extern void *vzalloc(unsigned long size); extern void *vmalloc_user(unsigned long size); extern void *vmalloc_node(unsigned long size, int node); extern void *vzalloc_node(unsigned long size, int node); extern void *vmalloc_32(unsigned long size); extern void *vmalloc_32_user(unsigned long size); extern void *__vmalloc(unsigned long size, gfp_t gfp_mask); extern void *__vmalloc_node_range(unsigned long size, unsigned long align, unsigned long start, unsigned long end, gfp_t gfp_mask, pgprot_t prot, unsigned long vm_flags, int node, const void *caller); void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, int node, const void *caller); extern void vfree(const void *addr); extern void vfree_atomic(const void *addr); extern void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot); void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot); extern void vunmap(const void *addr); extern int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, void *kaddr, unsigned long pgoff, unsigned long size); extern int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, unsigned long pgoff); /* * Architectures can set this mask to a combination of PGTBL_P?D_MODIFIED values * and let generic vmalloc and ioremap code know when arch_sync_kernel_mappings() * needs to be called. */ #ifndef ARCH_PAGE_TABLE_SYNC_MASK #define ARCH_PAGE_TABLE_SYNC_MASK 0 #endif /* * There is no default implementation for arch_sync_kernel_mappings(). It is * relied upon the compiler to optimize calls out if ARCH_PAGE_TABLE_SYNC_MASK * is 0. */ void arch_sync_kernel_mappings(unsigned long start, unsigned long end); /* * Lowlevel-APIs (not for driver use!) */ static inline size_t get_vm_area_size(const struct vm_struct *area) { if (!(area->flags & VM_NO_GUARD)) /* return actual size without guard page */ return area->size - PAGE_SIZE; else return area->size; } extern struct vm_struct *get_vm_area(unsigned long size, unsigned long flags); extern struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, const void *caller); extern struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, unsigned long start, unsigned long end, const void *caller); void free_vm_area(struct vm_struct *area); extern struct vm_struct *remove_vm_area(const void *addr); extern struct vm_struct *find_vm_area(const void *addr); #ifdef CONFIG_MMU extern int map_kernel_range_noflush(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages); int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages); extern void unmap_kernel_range_noflush(unsigned long addr, unsigned long size); extern void unmap_kernel_range(unsigned long addr, unsigned long size); static inline void set_vm_flush_reset_perms(void *addr) { struct vm_struct *vm = find_vm_area(addr); if (vm) vm->flags |= VM_FLUSH_RESET_PERMS; } #else static inline int map_kernel_range_noflush(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages) { return size >> PAGE_SHIFT; } #define map_kernel_range map_kernel_range_noflush static inline void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) { } #define unmap_kernel_range unmap_kernel_range_noflush static inline void set_vm_flush_reset_perms(void *addr) { } #endif /* for /dev/kmem */ extern long vread(char *buf, char *addr, unsigned long count); extern long vwrite(char *buf, char *addr, unsigned long count); /* * Internals. Dont't use.. */ extern struct list_head vmap_area_list; extern __init void vm_area_add_early(struct vm_struct *vm); extern __init void vm_area_register_early(struct vm_struct *vm, size_t align); #ifdef CONFIG_SMP # ifdef CONFIG_MMU struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align); void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms); # else static inline struct vm_struct ** pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align) { return NULL; } static inline void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) { } # endif #endif #ifdef CONFIG_MMU #define VMALLOC_TOTAL (VMALLOC_END - VMALLOC_START) #else #define VMALLOC_TOTAL 0UL #endif int register_vmap_purge_notifier(struct notifier_block *nb); int unregister_vmap_purge_notifier(struct notifier_block *nb); #endif /* _LINUX_VMALLOC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_X86_XSAVE_H #define __ASM_X86_XSAVE_H #include <linux/uaccess.h> #include <linux/types.h> #include <asm/processor.h> #include <asm/user.h> /* Bit 63 of XCR0 is reserved for future expansion */ #define XFEATURE_MASK_EXTEND (~(XFEATURE_MASK_FPSSE | (1ULL << 63))) #define XSTATE_CPUID 0x0000000d #define FXSAVE_SIZE 512 #define XSAVE_HDR_SIZE 64 #define XSAVE_HDR_OFFSET FXSAVE_SIZE #define XSAVE_YMM_SIZE 256 #define XSAVE_YMM_OFFSET (XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET) #define XSAVE_ALIGNMENT 64 /* All currently supported user features */ #define XFEATURE_MASK_USER_SUPPORTED (XFEATURE_MASK_FP | \ XFEATURE_MASK_SSE | \ XFEATURE_MASK_YMM | \ XFEATURE_MASK_OPMASK | \ XFEATURE_MASK_ZMM_Hi256 | \ XFEATURE_MASK_Hi16_ZMM | \ XFEATURE_MASK_PKRU | \ XFEATURE_MASK_BNDREGS | \ XFEATURE_MASK_BNDCSR) /* All currently supported supervisor features */ #define XFEATURE_MASK_SUPERVISOR_SUPPORTED (XFEATURE_MASK_PASID) /* * A supervisor state component may not always contain valuable information, * and its size may be huge. Saving/restoring such supervisor state components * at each context switch can cause high CPU and space overhead, which should * be avoided. Such supervisor state components should only be saved/restored * on demand. The on-demand dynamic supervisor features are set in this mask. * * Unlike the existing supported supervisor features, a dynamic supervisor * feature does not allocate a buffer in task->fpu, and the corresponding * supervisor state component cannot be saved/restored at each context switch. * * To support a dynamic supervisor feature, a developer should follow the * dos and don'ts as below: * - Do dynamically allocate a buffer for the supervisor state component. * - Do manually invoke the XSAVES/XRSTORS instruction to save/restore the * state component to/from the buffer. * - Don't set the bit corresponding to the dynamic supervisor feature in * IA32_XSS at run time, since it has been set at boot time. */ #define XFEATURE_MASK_DYNAMIC (XFEATURE_MASK_LBR) /* * Unsupported supervisor features. When a supervisor feature in this mask is * supported in the future, move it to the supported supervisor feature mask. */ #define XFEATURE_MASK_SUPERVISOR_UNSUPPORTED (XFEATURE_MASK_PT) /* All supervisor states including supported and unsupported states. */ #define XFEATURE_MASK_SUPERVISOR_ALL (XFEATURE_MASK_SUPERVISOR_SUPPORTED | \ XFEATURE_MASK_DYNAMIC | \ XFEATURE_MASK_SUPERVISOR_UNSUPPORTED) #ifdef CONFIG_X86_64 #define REX_PREFIX "0x48, " #else #define REX_PREFIX #endif extern u64 xfeatures_mask_all; static inline u64 xfeatures_mask_supervisor(void) { return xfeatures_mask_all & XFEATURE_MASK_SUPERVISOR_SUPPORTED; } static inline u64 xfeatures_mask_user(void) { return xfeatures_mask_all & XFEATURE_MASK_USER_SUPPORTED; } static inline u64 xfeatures_mask_dynamic(void) { if (!boot_cpu_has(X86_FEATURE_ARCH_LBR)) return XFEATURE_MASK_DYNAMIC & ~XFEATURE_MASK_LBR; return XFEATURE_MASK_DYNAMIC; } extern u64 xstate_fx_sw_bytes[USER_XSTATE_FX_SW_WORDS]; extern void __init update_regset_xstate_info(unsigned int size, u64 xstate_mask); void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr); const void *get_xsave_field_ptr(int xfeature_nr); int using_compacted_format(void); int xfeature_size(int xfeature_nr); struct membuf; void copy_xstate_to_kernel(struct membuf to, struct xregs_state *xsave); int copy_kernel_to_xstate(struct xregs_state *xsave, const void *kbuf); int copy_user_to_xstate(struct xregs_state *xsave, const void __user *ubuf); void copy_supervisor_to_kernel(struct xregs_state *xsave); void copy_dynamic_supervisor_to_kernel(struct xregs_state *xstate, u64 mask); void copy_kernel_to_dynamic_supervisor(struct xregs_state *xstate, u64 mask); /* Validate an xstate header supplied by userspace (ptrace or sigreturn) */ int validate_user_xstate_header(const struct xstate_header *hdr); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 // SPDX-License-Identifier: GPL-2.0 /* * Helper routines for building identity mapping page tables. This is * included by both the compressed kernel and the regular kernel. */ static void ident_pmd_init(struct x86_mapping_info *info, pmd_t *pmd_page, unsigned long addr, unsigned long end) { addr &= PMD_MASK; for (; addr < end; addr += PMD_SIZE) { pmd_t *pmd = pmd_page + pmd_index(addr); if (pmd_present(*pmd)) continue; set_pmd(pmd, __pmd((addr - info->offset) | info->page_flag)); } } static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page, unsigned long addr, unsigned long end) { unsigned long next; for (; addr < end; addr = next) { pud_t *pud = pud_page + pud_index(addr); pmd_t *pmd; next = (addr & PUD_MASK) + PUD_SIZE; if (next > end) next = end; if (info->direct_gbpages) { pud_t pudval; if (pud_present(*pud)) continue; addr &= PUD_MASK; pudval = __pud((addr - info->offset) | info->page_flag); set_pud(pud, pudval); continue; } if (pud_present(*pud)) { pmd = pmd_offset(pud, 0); ident_pmd_init(info, pmd, addr, next); continue; } pmd = (pmd_t *)info->alloc_pgt_page(info->context); if (!pmd) return -ENOMEM; ident_pmd_init(info, pmd, addr, next); set_pud(pud, __pud(__pa(pmd) | info->kernpg_flag)); } return 0; } static int ident_p4d_init(struct x86_mapping_info *info, p4d_t *p4d_page, unsigned long addr, unsigned long end) { unsigned long next; int result; for (; addr < end; addr = next) { p4d_t *p4d = p4d_page + p4d_index(addr); pud_t *pud; next = (addr & P4D_MASK) + P4D_SIZE; if (next > end) next = end; if (p4d_present(*p4d)) { pud = pud_offset(p4d, 0); result = ident_pud_init(info, pud, addr, next); if (result) return result; continue; } pud = (pud_t *)info->alloc_pgt_page(info->context); if (!pud) return -ENOMEM; result = ident_pud_init(info, pud, addr, next); if (result) return result; set_p4d(p4d, __p4d(__pa(pud) | info->kernpg_flag)); } return 0; } int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page, unsigned long pstart, unsigned long pend) { unsigned long addr = pstart + info->offset; unsigned long end = pend + info->offset; unsigned long next; int result; /* Set the default pagetable flags if not supplied */ if (!info->kernpg_flag) info->kernpg_flag = _KERNPG_TABLE; /* Filter out unsupported __PAGE_KERNEL_* bits: */ info->kernpg_flag &= __default_kernel_pte_mask; for (; addr < end; addr = next) { pgd_t *pgd = pgd_page + pgd_index(addr); p4d_t *p4d; next = (addr & PGDIR_MASK) + PGDIR_SIZE; if (next > end) next = end; if (pgd_present(*pgd)) { p4d = p4d_offset(pgd, 0); result = ident_p4d_init(info, p4d, addr, next); if (result) return result; continue; } p4d = (p4d_t *)info->alloc_pgt_page(info->context); if (!p4d) return -ENOMEM; result = ident_p4d_init(info, p4d, addr, next); if (result) return result; if (pgtable_l5_enabled()) { set_pgd(pgd, __pgd(__pa(p4d) | info->kernpg_flag)); } else { /* * With p4d folded, pgd is equal to p4d. * The pgd entry has to point to the pud page table in this case. */ pud_t *pud = pud_offset(p4d, 0); set_pgd(pgd, __pgd(__pa(pud) | info->kernpg_flag)); } } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_TASK_STACK_H #define _LINUX_SCHED_TASK_STACK_H /* * task->stack (kernel stack) handling interfaces: */ #include <linux/sched.h> #include <linux/magic.h> #ifdef CONFIG_THREAD_INFO_IN_TASK /* * When accessing the stack of a non-current task that might exit, use * try_get_task_stack() instead. task_stack_page will return a pointer * that could get freed out from under you. */ static inline void *task_stack_page(const struct task_struct *task) { return task->stack; } #define setup_thread_stack(new,old) do { } while(0) static inline unsigned long *end_of_stack(const struct task_struct *task) { return task->stack; } #elif !defined(__HAVE_THREAD_FUNCTIONS) #define task_stack_page(task) ((void *)(task)->stack) static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) { *task_thread_info(p) = *task_thread_info(org); task_thread_info(p)->task = p; } /* * Return the address of the last usable long on the stack. * * When the stack grows down, this is just above the thread * info struct. Going any lower will corrupt the threadinfo. * * When the stack grows up, this is the highest address. * Beyond that position, we corrupt data on the next page. */ static inline unsigned long *end_of_stack(struct task_struct *p) { #ifdef CONFIG_STACK_GROWSUP return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; #else return (unsigned long *)(task_thread_info(p) + 1); #endif } #endif #ifdef CONFIG_THREAD_INFO_IN_TASK static inline void *try_get_task_stack(struct task_struct *tsk) { return refcount_inc_not_zero(&tsk->stack_refcount) ? task_stack_page(tsk) : NULL; } extern void put_task_stack(struct task_struct *tsk); #else static inline void *try_get_task_stack(struct task_struct *tsk) { return task_stack_page(tsk); } static inline void put_task_stack(struct task_struct *tsk) {} #endif #define task_stack_end_corrupted(task) \ (*(end_of_stack(task)) != STACK_END_MAGIC) static inline int object_is_on_stack(const void *obj) { void *stack = task_stack_page(current); return (obj >= stack) && (obj < (stack + THREAD_SIZE)); } extern void thread_stack_cache_init(void); #ifdef CONFIG_DEBUG_STACK_USAGE static inline unsigned long stack_not_used(struct task_struct *p) { unsigned long *n = end_of_stack(p); do { /* Skip over canary */ # ifdef CONFIG_STACK_GROWSUP n--; # else n++; # endif } while (!*n); # ifdef CONFIG_STACK_GROWSUP return (unsigned long)end_of_stack(p) - (unsigned long)n; # else return (unsigned long)n - (unsigned long)end_of_stack(p); # endif } #endif extern void set_task_stack_end_magic(struct task_struct *tsk); #ifndef __HAVE_ARCH_KSTACK_END static inline int kstack_end(void *addr) { /* Reliable end of stack detection: * Some APM bios versions misalign the stack */ return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); } #endif #endif /* _LINUX_SCHED_TASK_STACK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM libata #if !defined(_TRACE_LIBATA_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_LIBATA_H #include <linux/ata.h> #include <linux/libata.h> #include <linux/tracepoint.h> #include <linux/trace_seq.h> #define ata_opcode_name(opcode) { opcode, #opcode } #define show_opcode_name(val) \ __print_symbolic(val, \ ata_opcode_name(ATA_CMD_DEV_RESET), \ ata_opcode_name(ATA_CMD_CHK_POWER), \ ata_opcode_name(ATA_CMD_STANDBY), \ ata_opcode_name(ATA_CMD_IDLE), \ ata_opcode_name(ATA_CMD_EDD), \ ata_opcode_name(ATA_CMD_DOWNLOAD_MICRO), \ ata_opcode_name(ATA_CMD_DOWNLOAD_MICRO_DMA), \ ata_opcode_name(ATA_CMD_NOP), \ ata_opcode_name(ATA_CMD_FLUSH), \ ata_opcode_name(ATA_CMD_FLUSH_EXT), \ ata_opcode_name(ATA_CMD_ID_ATA), \ ata_opcode_name(ATA_CMD_ID_ATAPI), \ ata_opcode_name(ATA_CMD_SERVICE), \ ata_opcode_name(ATA_CMD_READ), \ ata_opcode_name(ATA_CMD_READ_EXT), \ ata_opcode_name(ATA_CMD_READ_QUEUED), \ ata_opcode_name(ATA_CMD_READ_STREAM_EXT), \ ata_opcode_name(ATA_CMD_READ_STREAM_DMA_EXT), \ ata_opcode_name(ATA_CMD_WRITE), \ ata_opcode_name(ATA_CMD_WRITE_EXT), \ ata_opcode_name(ATA_CMD_WRITE_QUEUED), \ ata_opcode_name(ATA_CMD_WRITE_STREAM_EXT), \ ata_opcode_name(ATA_CMD_WRITE_STREAM_DMA_EXT), \ ata_opcode_name(ATA_CMD_WRITE_FUA_EXT), \ ata_opcode_name(ATA_CMD_WRITE_QUEUED_FUA_EXT), \ ata_opcode_name(ATA_CMD_FPDMA_READ), \ ata_opcode_name(ATA_CMD_FPDMA_WRITE), \ ata_opcode_name(ATA_CMD_NCQ_NON_DATA), \ ata_opcode_name(ATA_CMD_FPDMA_SEND), \ ata_opcode_name(ATA_CMD_FPDMA_RECV), \ ata_opcode_name(ATA_CMD_PIO_READ), \ ata_opcode_name(ATA_CMD_PIO_READ_EXT), \ ata_opcode_name(ATA_CMD_PIO_WRITE), \ ata_opcode_name(ATA_CMD_PIO_WRITE_EXT), \ ata_opcode_name(ATA_CMD_READ_MULTI), \ ata_opcode_name(ATA_CMD_READ_MULTI_EXT), \ ata_opcode_name(ATA_CMD_WRITE_MULTI), \ ata_opcode_name(ATA_CMD_WRITE_MULTI_EXT), \ ata_opcode_name(ATA_CMD_WRITE_MULTI_FUA_EXT), \ ata_opcode_name(ATA_CMD_SET_FEATURES), \ ata_opcode_name(ATA_CMD_SET_MULTI), \ ata_opcode_name(ATA_CMD_PACKET), \ ata_opcode_name(ATA_CMD_VERIFY), \ ata_opcode_name(ATA_CMD_VERIFY_EXT), \ ata_opcode_name(ATA_CMD_WRITE_UNCORR_EXT), \ ata_opcode_name(ATA_CMD_STANDBYNOW1), \ ata_opcode_name(ATA_CMD_IDLEIMMEDIATE), \ ata_opcode_name(ATA_CMD_SLEEP), \ ata_opcode_name(ATA_CMD_INIT_DEV_PARAMS), \ ata_opcode_name(ATA_CMD_READ_NATIVE_MAX), \ ata_opcode_name(ATA_CMD_READ_NATIVE_MAX_EXT), \ ata_opcode_name(ATA_CMD_SET_MAX), \ ata_opcode_name(ATA_CMD_SET_MAX_EXT), \ ata_opcode_name(ATA_CMD_READ_LOG_EXT), \ ata_opcode_name(ATA_CMD_WRITE_LOG_EXT), \ ata_opcode_name(ATA_CMD_READ_LOG_DMA_EXT), \ ata_opcode_name(ATA_CMD_WRITE_LOG_DMA_EXT), \ ata_opcode_name(ATA_CMD_TRUSTED_NONDATA), \ ata_opcode_name(ATA_CMD_TRUSTED_RCV), \ ata_opcode_name(ATA_CMD_TRUSTED_RCV_DMA), \ ata_opcode_name(ATA_CMD_TRUSTED_SND), \ ata_opcode_name(ATA_CMD_TRUSTED_SND_DMA), \ ata_opcode_name(ATA_CMD_PMP_READ), \ ata_opcode_name(ATA_CMD_PMP_READ_DMA), \ ata_opcode_name(ATA_CMD_PMP_WRITE), \ ata_opcode_name(ATA_CMD_PMP_WRITE_DMA), \ ata_opcode_name(ATA_CMD_CONF_OVERLAY), \ ata_opcode_name(ATA_CMD_SEC_SET_PASS), \ ata_opcode_name(ATA_CMD_SEC_UNLOCK), \ ata_opcode_name(ATA_CMD_SEC_ERASE_PREP), \ ata_opcode_name(ATA_CMD_SEC_ERASE_UNIT), \ ata_opcode_name(ATA_CMD_SEC_FREEZE_LOCK), \ ata_opcode_name(ATA_CMD_SEC_DISABLE_PASS), \ ata_opcode_name(ATA_CMD_CONFIG_STREAM), \ ata_opcode_name(ATA_CMD_SMART), \ ata_opcode_name(ATA_CMD_MEDIA_LOCK), \ ata_opcode_name(ATA_CMD_MEDIA_UNLOCK), \ ata_opcode_name(ATA_CMD_DSM), \ ata_opcode_name(ATA_CMD_CHK_MED_CRD_TYP), \ ata_opcode_name(ATA_CMD_CFA_REQ_EXT_ERR), \ ata_opcode_name(ATA_CMD_CFA_WRITE_NE), \ ata_opcode_name(ATA_CMD_CFA_TRANS_SECT), \ ata_opcode_name(ATA_CMD_CFA_ERASE), \ ata_opcode_name(ATA_CMD_CFA_WRITE_MULT_NE), \ ata_opcode_name(ATA_CMD_REQ_SENSE_DATA), \ ata_opcode_name(ATA_CMD_SANITIZE_DEVICE), \ ata_opcode_name(ATA_CMD_ZAC_MGMT_IN), \ ata_opcode_name(ATA_CMD_ZAC_MGMT_OUT), \ ata_opcode_name(ATA_CMD_RESTORE), \ ata_opcode_name(ATA_CMD_READ_LONG), \ ata_opcode_name(ATA_CMD_READ_LONG_ONCE), \ ata_opcode_name(ATA_CMD_WRITE_LONG), \ ata_opcode_name(ATA_CMD_WRITE_LONG_ONCE)) #define ata_error_name(result) { result, #result } #define show_error_name(val) \ __print_symbolic(val, \ ata_error_name(ATA_ICRC), \ ata_error_name(ATA_UNC), \ ata_error_name(ATA_MC), \ ata_error_name(ATA_IDNF), \ ata_error_name(ATA_MCR), \ ata_error_name(ATA_ABORTED), \ ata_error_name(ATA_TRK0NF), \ ata_error_name(ATA_AMNF)) #define ata_protocol_name(proto) { proto, #proto } #define show_protocol_name(val) \ __print_symbolic(val, \ ata_protocol_name(ATA_PROT_UNKNOWN), \ ata_protocol_name(ATA_PROT_NODATA), \ ata_protocol_name(ATA_PROT_PIO), \ ata_protocol_name(ATA_PROT_DMA), \ ata_protocol_name(ATA_PROT_NCQ), \ ata_protocol_name(ATA_PROT_NCQ_NODATA), \ ata_protocol_name(ATAPI_PROT_NODATA), \ ata_protocol_name(ATAPI_PROT_PIO), \ ata_protocol_name(ATAPI_PROT_DMA)) const char *libata_trace_parse_status(struct trace_seq*, unsigned char); #define __parse_status(s) libata_trace_parse_status(p, s) const char *libata_trace_parse_eh_action(struct trace_seq *, unsigned int); #define __parse_eh_action(a) libata_trace_parse_eh_action(p, a) const char *libata_trace_parse_eh_err_mask(struct trace_seq *, unsigned int); #define __parse_eh_err_mask(m) libata_trace_parse_eh_err_mask(p, m) const char *libata_trace_parse_qc_flags(struct trace_seq *, unsigned int); #define __parse_qc_flags(f) libata_trace_parse_qc_flags(p, f) const char *libata_trace_parse_subcmd(struct trace_seq *, unsigned char, unsigned char, unsigned char); #define __parse_subcmd(c,f,h) libata_trace_parse_subcmd(p, c, f, h) TRACE_EVENT(ata_qc_issue, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc), TP_STRUCT__entry( __field( unsigned int, ata_port ) __field( unsigned int, ata_dev ) __field( unsigned int, tag ) __field( unsigned char, cmd ) __field( unsigned char, dev ) __field( unsigned char, lbal ) __field( unsigned char, lbam ) __field( unsigned char, lbah ) __field( unsigned char, nsect ) __field( unsigned char, feature ) __field( unsigned char, hob_lbal ) __field( unsigned char, hob_lbam ) __field( unsigned char, hob_lbah ) __field( unsigned char, hob_nsect ) __field( unsigned char, hob_feature ) __field( unsigned char, ctl ) __field( unsigned char, proto ) __field( unsigned long, flags ) ), TP_fast_assign( __entry->ata_port = qc->ap->print_id; __entry->ata_dev = qc->dev->link->pmp + qc->dev->devno; __entry->tag = qc->tag; __entry->proto = qc->tf.protocol; __entry->cmd = qc->tf.command; __entry->dev = qc->tf.device; __entry->lbal = qc->tf.lbal; __entry->lbam = qc->tf.lbam; __entry->lbah = qc->tf.lbah; __entry->hob_lbal = qc->tf.hob_lbal; __entry->hob_lbam = qc->tf.hob_lbam; __entry->hob_lbah = qc->tf.hob_lbah; __entry->feature = qc->tf.feature; __entry->hob_feature = qc->tf.hob_feature; __entry->nsect = qc->tf.nsect; __entry->hob_nsect = qc->tf.hob_nsect; ), TP_printk("ata_port=%u ata_dev=%u tag=%d proto=%s cmd=%s%s " \ " tf=(%02x/%02x:%02x:%02x:%02x:%02x/%02x:%02x:%02x:%02x:%02x/%02x)", __entry->ata_port, __entry->ata_dev, __entry->tag, show_protocol_name(__entry->proto), show_opcode_name(__entry->cmd), __parse_subcmd(__entry->cmd, __entry->feature, __entry->hob_nsect), __entry->cmd, __entry->feature, __entry->nsect, __entry->lbal, __entry->lbam, __entry->lbah, __entry->hob_feature, __entry->hob_nsect, __entry->hob_lbal, __entry->hob_lbam, __entry->hob_lbah, __entry->dev) ); DECLARE_EVENT_CLASS(ata_qc_complete_template, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc), TP_STRUCT__entry( __field( unsigned int, ata_port ) __field( unsigned int, ata_dev ) __field( unsigned int, tag ) __field( unsigned char, status ) __field( unsigned char, dev ) __field( unsigned char, lbal ) __field( unsigned char, lbam ) __field( unsigned char, lbah ) __field( unsigned char, nsect ) __field( unsigned char, error ) __field( unsigned char, hob_lbal ) __field( unsigned char, hob_lbam ) __field( unsigned char, hob_lbah ) __field( unsigned char, hob_nsect ) __field( unsigned char, hob_feature ) __field( unsigned char, ctl ) __field( unsigned long, flags ) ), TP_fast_assign( __entry->ata_port = qc->ap->print_id; __entry->ata_dev = qc->dev->link->pmp + qc->dev->devno; __entry->tag = qc->tag; __entry->status = qc->result_tf.command; __entry->dev = qc->result_tf.device; __entry->lbal = qc->result_tf.lbal; __entry->lbam = qc->result_tf.lbam; __entry->lbah = qc->result_tf.lbah; __entry->hob_lbal = qc->result_tf.hob_lbal; __entry->hob_lbam = qc->result_tf.hob_lbam; __entry->hob_lbah = qc->result_tf.hob_lbah; __entry->error = qc->result_tf.feature; __entry->hob_feature = qc->result_tf.hob_feature; __entry->nsect = qc->result_tf.nsect; __entry->hob_nsect = qc->result_tf.hob_nsect; ), TP_printk("ata_port=%u ata_dev=%u tag=%d flags=%s status=%s " \ " res=(%02x/%02x:%02x:%02x:%02x:%02x/%02x:%02x:%02x:%02x:%02x/%02x)", __entry->ata_port, __entry->ata_dev, __entry->tag, __parse_qc_flags(__entry->flags), __parse_status(__entry->status), __entry->status, __entry->error, __entry->nsect, __entry->lbal, __entry->lbam, __entry->lbah, __entry->hob_feature, __entry->hob_nsect, __entry->hob_lbal, __entry->hob_lbam, __entry->hob_lbah, __entry->dev) ); DEFINE_EVENT(ata_qc_complete_template, ata_qc_complete_internal, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc)); DEFINE_EVENT(ata_qc_complete_template, ata_qc_complete_failed, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc)); DEFINE_EVENT(ata_qc_complete_template, ata_qc_complete_done, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc)); TRACE_EVENT(ata_eh_link_autopsy, TP_PROTO(struct ata_device *dev, unsigned int eh_action, unsigned int eh_err_mask), TP_ARGS(dev, eh_action, eh_err_mask), TP_STRUCT__entry( __field( unsigned int, ata_port ) __field( unsigned int, ata_dev ) __field( unsigned int, eh_action ) __field( unsigned int, eh_err_mask) ), TP_fast_assign( __entry->ata_port = dev->link->ap->print_id; __entry->ata_dev = dev->link->pmp + dev->devno; __entry->eh_action = eh_action; __entry->eh_err_mask = eh_err_mask; ), TP_printk("ata_port=%u ata_dev=%u eh_action=%s err_mask=%s", __entry->ata_port, __entry->ata_dev, __parse_eh_action(__entry->eh_action), __parse_eh_err_mask(__entry->eh_err_mask)) ); TRACE_EVENT(ata_eh_link_autopsy_qc, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc), TP_STRUCT__entry( __field( unsigned int, ata_port ) __field( unsigned int, ata_dev ) __field( unsigned int, tag ) __field( unsigned int, qc_flags ) __field( unsigned int, eh_err_mask) ), TP_fast_assign( __entry->ata_port = qc->ap->print_id; __entry->ata_dev = qc->dev->link->pmp + qc->dev->devno; __entry->tag = qc->tag; __entry->qc_flags = qc->flags; __entry->eh_err_mask = qc->err_mask; ), TP_printk("ata_port=%u ata_dev=%u tag=%d flags=%s err_mask=%s", __entry->ata_port, __entry->ata_dev, __entry->tag, __parse_qc_flags(__entry->qc_flags), __parse_eh_err_mask(__entry->eh_err_mask)) ); #endif /* _TRACE_LIBATA_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PTRACE_H #define _ASM_X86_PTRACE_H #include <asm/segment.h> #include <asm/page_types.h> #include <uapi/asm/ptrace.h> #ifndef __ASSEMBLY__ #ifdef __i386__ struct pt_regs { /* * NB: 32-bit x86 CPUs are inconsistent as what happens in the * following cases (where %seg represents a segment register): * * - pushl %seg: some do a 16-bit write and leave the high * bits alone * - movl %seg, [mem]: some do a 16-bit write despite the movl * - IDT entry: some (e.g. 486) will leave the high bits of CS * and (if applicable) SS undefined. * * Fortunately, x86-32 doesn't read the high bits on POP or IRET, * so we can just treat all of the segment registers as 16-bit * values. */ unsigned long bx; unsigned long cx; unsigned long dx; unsigned long si; unsigned long di; unsigned long bp; unsigned long ax; unsigned short ds; unsigned short __dsh; unsigned short es; unsigned short __esh; unsigned short fs; unsigned short __fsh; /* On interrupt, gs and __gsh store the vector number. */ unsigned short gs; unsigned short __gsh; /* On interrupt, this is the error code. */ unsigned long orig_ax; unsigned long ip; unsigned short cs; unsigned short __csh; unsigned long flags; unsigned long sp; unsigned short ss; unsigned short __ssh; }; #else /* __i386__ */ struct pt_regs { /* * C ABI says these regs are callee-preserved. They aren't saved on kernel entry * unless syscall needs a complete, fully filled "struct pt_regs". */ unsigned long r15; unsigned long r14; unsigned long r13; unsigned long r12; unsigned long bp; unsigned long bx; /* These regs are callee-clobbered. Always saved on kernel entry. */ unsigned long r11; unsigned long r10; unsigned long r9; unsigned long r8; unsigned long ax; unsigned long cx; unsigned long dx; unsigned long si; unsigned long di; /* * On syscall entry, this is syscall#. On CPU exception, this is error code. * On hw interrupt, it's IRQ number: */ unsigned long orig_ax; /* Return frame for iretq */ unsigned long ip; unsigned long cs; unsigned long flags; unsigned long sp; unsigned long ss; /* top of stack page */ }; #endif /* !__i386__ */ #ifdef CONFIG_PARAVIRT #include <asm/paravirt_types.h> #endif #include <asm/proto.h> struct cpuinfo_x86; struct task_struct; extern unsigned long profile_pc(struct pt_regs *regs); extern unsigned long convert_ip_to_linear(struct task_struct *child, struct pt_regs *regs); extern void send_sigtrap(struct pt_regs *regs, int error_code, int si_code); static inline unsigned long regs_return_value(struct pt_regs *regs) { return regs->ax; } static inline void regs_set_return_value(struct pt_regs *regs, unsigned long rc) { regs->ax = rc; } /* * user_mode(regs) determines whether a register set came from user * mode. On x86_32, this is true if V8086 mode was enabled OR if the * register set was from protected mode with RPL-3 CS value. This * tricky test checks that with one comparison. * * On x86_64, vm86 mode is mercifully nonexistent, and we don't need * the extra check. */ static __always_inline int user_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_32 return ((regs->cs & SEGMENT_RPL_MASK) | (regs->flags & X86_VM_MASK)) >= USER_RPL; #else return !!(regs->cs & 3); #endif } static inline int v8086_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_32 return (regs->flags & X86_VM_MASK); #else return 0; /* No V86 mode support in long mode */ #endif } static inline bool user_64bit_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_64 #ifndef CONFIG_PARAVIRT_XXL /* * On non-paravirt systems, this is the only long mode CPL 3 * selector. We do not allow long mode selectors in the LDT. */ return regs->cs == __USER_CS; #else /* Headers are too twisted for this to go in paravirt.h. */ return regs->cs == __USER_CS || regs->cs == pv_info.extra_user_64bit_cs; #endif #else /* !CONFIG_X86_64 */ return false; #endif } /* * Determine whether the register set came from any context that is running in * 64-bit mode. */ static inline bool any_64bit_mode(struct pt_regs *regs) { #ifdef CONFIG_X86_64 return !user_mode(regs) || user_64bit_mode(regs); #else return false; #endif } #ifdef CONFIG_X86_64 #define current_user_stack_pointer() current_pt_regs()->sp #define compat_user_stack_pointer() current_pt_regs()->sp static inline bool ip_within_syscall_gap(struct pt_regs *regs) { bool ret = (regs->ip >= (unsigned long)entry_SYSCALL_64 && regs->ip < (unsigned long)entry_SYSCALL_64_safe_stack); #ifdef CONFIG_IA32_EMULATION ret = ret || (regs->ip >= (unsigned long)entry_SYSCALL_compat && regs->ip < (unsigned long)entry_SYSCALL_compat_safe_stack); #endif return ret; } #endif static inline unsigned long kernel_stack_pointer(struct pt_regs *regs) { return regs->sp; } static inline unsigned long instruction_pointer(struct pt_regs *regs) { return regs->ip; } static inline void instruction_pointer_set(struct pt_regs *regs, unsigned long val) { regs->ip = val; } static inline unsigned long frame_pointer(struct pt_regs *regs) { return regs->bp; } static inline unsigned long user_stack_pointer(struct pt_regs *regs) { return regs->sp; } static inline void user_stack_pointer_set(struct pt_regs *regs, unsigned long val) { regs->sp = val; } static __always_inline bool regs_irqs_disabled(struct pt_regs *regs) { return !(regs->flags & X86_EFLAGS_IF); } /* Query offset/name of register from its name/offset */ extern int regs_query_register_offset(const char *name); extern const char *regs_query_register_name(unsigned int offset); #define MAX_REG_OFFSET (offsetof(struct pt_regs, ss)) /** * regs_get_register() - get register value from its offset * @regs: pt_regs from which register value is gotten. * @offset: offset number of the register. * * regs_get_register returns the value of a register. The @offset is the * offset of the register in struct pt_regs address which specified by @regs. * If @offset is bigger than MAX_REG_OFFSET, this returns 0. */ static inline unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset) { if (unlikely(offset > MAX_REG_OFFSET)) return 0; #ifdef CONFIG_X86_32 /* The selector fields are 16-bit. */ if (offset == offsetof(struct pt_regs, cs) || offset == offsetof(struct pt_regs, ss) || offset == offsetof(struct pt_regs, ds) || offset == offsetof(struct pt_regs, es) || offset == offsetof(struct pt_regs, fs) || offset == offsetof(struct pt_regs, gs)) { return *(u16 *)((unsigned long)regs + offset); } #endif return *(unsigned long *)((unsigned long)regs + offset); } /** * regs_within_kernel_stack() - check the address in the stack * @regs: pt_regs which contains kernel stack pointer. * @addr: address which is checked. * * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). * If @addr is within the kernel stack, it returns true. If not, returns false. */ static inline int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) { return ((addr & ~(THREAD_SIZE - 1)) == (regs->sp & ~(THREAD_SIZE - 1))); } /** * regs_get_kernel_stack_nth_addr() - get the address of the Nth entry on stack * @regs: pt_regs which contains kernel stack pointer. * @n: stack entry number. * * regs_get_kernel_stack_nth() returns the address of the @n th entry of the * kernel stack which is specified by @regs. If the @n th entry is NOT in * the kernel stack, this returns NULL. */ static inline unsigned long *regs_get_kernel_stack_nth_addr(struct pt_regs *regs, unsigned int n) { unsigned long *addr = (unsigned long *)regs->sp; addr += n; if (regs_within_kernel_stack(regs, (unsigned long)addr)) return addr; else return NULL; } /* To avoid include hell, we can't include uaccess.h */ extern long copy_from_kernel_nofault(void *dst, const void *src, size_t size); /** * regs_get_kernel_stack_nth() - get Nth entry of the stack * @regs: pt_regs which contains kernel stack pointer. * @n: stack entry number. * * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which * is specified by @regs. If the @n th entry is NOT in the kernel stack * this returns 0. */ static inline unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) { unsigned long *addr; unsigned long val; long ret; addr = regs_get_kernel_stack_nth_addr(regs, n); if (addr) { ret = copy_from_kernel_nofault(&val, addr, sizeof(val)); if (!ret) return val; } return 0; } /** * regs_get_kernel_argument() - get Nth function argument in kernel * @regs: pt_regs of that context * @n: function argument number (start from 0) * * regs_get_argument() returns @n th argument of the function call. * Note that this chooses most probably assignment, in some case * it can be incorrect. * This is expected to be called from kprobes or ftrace with regs * where the top of stack is the return address. */ static inline unsigned long regs_get_kernel_argument(struct pt_regs *regs, unsigned int n) { static const unsigned int argument_offs[] = { #ifdef __i386__ offsetof(struct pt_regs, ax), offsetof(struct pt_regs, dx), offsetof(struct pt_regs, cx), #define NR_REG_ARGUMENTS 3 #else offsetof(struct pt_regs, di), offsetof(struct pt_regs, si), offsetof(struct pt_regs, dx), offsetof(struct pt_regs, cx), offsetof(struct pt_regs, r8), offsetof(struct pt_regs, r9), #define NR_REG_ARGUMENTS 6 #endif }; if (n >= NR_REG_ARGUMENTS) { n -= NR_REG_ARGUMENTS - 1; return regs_get_kernel_stack_nth(regs, n); } else return regs_get_register(regs, argument_offs[n]); } #define arch_has_single_step() (1) #ifdef CONFIG_X86_DEBUGCTLMSR #define arch_has_block_step() (1) #else #define arch_has_block_step() (boot_cpu_data.x86 >= 6) #endif #define ARCH_HAS_USER_SINGLE_STEP_REPORT struct user_desc; extern int do_get_thread_area(struct task_struct *p, int idx, struct user_desc __user *info); extern int do_set_thread_area(struct task_struct *p, int idx, struct user_desc __user *info, int can_allocate); #ifdef CONFIG_X86_64 # define do_set_thread_area_64(p, s, t) do_arch_prctl_64(p, s, t) #else # define do_set_thread_area_64(p, s, t) (0) #endif #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PTRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_JUMP_LABEL_H #define _LINUX_JUMP_LABEL_H /* * Jump label support * * Copyright (C) 2009-2012 Jason Baron <jbaron@redhat.com> * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra * * DEPRECATED API: * * The use of 'struct static_key' directly, is now DEPRECATED. In addition * static_key_{true,false}() is also DEPRECATED. IE DO NOT use the following: * * struct static_key false = STATIC_KEY_INIT_FALSE; * struct static_key true = STATIC_KEY_INIT_TRUE; * static_key_true() * static_key_false() * * The updated API replacements are: * * DEFINE_STATIC_KEY_TRUE(key); * DEFINE_STATIC_KEY_FALSE(key); * DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count); * DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count); * static_branch_likely() * static_branch_unlikely() * * Jump labels provide an interface to generate dynamic branches using * self-modifying code. Assuming toolchain and architecture support, if we * define a "key" that is initially false via "DEFINE_STATIC_KEY_FALSE(key)", * an "if (static_branch_unlikely(&key))" statement is an unconditional branch * (which defaults to false - and the true block is placed out of line). * Similarly, we can define an initially true key via * "DEFINE_STATIC_KEY_TRUE(key)", and use it in the same * "if (static_branch_unlikely(&key))", in which case we will generate an * unconditional branch to the out-of-line true branch. Keys that are * initially true or false can be using in both static_branch_unlikely() * and static_branch_likely() statements. * * At runtime we can change the branch target by setting the key * to true via a call to static_branch_enable(), or false using * static_branch_disable(). If the direction of the branch is switched by * these calls then we run-time modify the branch target via a * no-op -> jump or jump -> no-op conversion. For example, for an * initially false key that is used in an "if (static_branch_unlikely(&key))" * statement, setting the key to true requires us to patch in a jump * to the out-of-line of true branch. * * In addition to static_branch_{enable,disable}, we can also reference count * the key or branch direction via static_branch_{inc,dec}. Thus, * static_branch_inc() can be thought of as a 'make more true' and * static_branch_dec() as a 'make more false'. * * Since this relies on modifying code, the branch modifying functions * must be considered absolute slow paths (machine wide synchronization etc.). * OTOH, since the affected branches are unconditional, their runtime overhead * will be absolutely minimal, esp. in the default (off) case where the total * effect is a single NOP of appropriate size. The on case will patch in a jump * to the out-of-line block. * * When the control is directly exposed to userspace, it is prudent to delay the * decrement to avoid high frequency code modifications which can (and do) * cause significant performance degradation. Struct static_key_deferred and * static_key_slow_dec_deferred() provide for this. * * Lacking toolchain and or architecture support, static keys fall back to a * simple conditional branch. * * Additional babbling in: Documentation/staging/static-keys.rst */ #ifndef __ASSEMBLY__ #include <linux/types.h> #include <linux/compiler.h> extern bool static_key_initialized; #define STATIC_KEY_CHECK_USE(key) WARN(!static_key_initialized, \ "%s(): static key '%pS' used before call to jump_label_init()", \ __func__, (key)) #ifdef CONFIG_JUMP_LABEL struct static_key { atomic_t enabled; /* * Note: * To make anonymous unions work with old compilers, the static * initialization of them requires brackets. This creates a dependency * on the order of the struct with the initializers. If any fields * are added, STATIC_KEY_INIT_TRUE and STATIC_KEY_INIT_FALSE may need * to be modified. * * bit 0 => 1 if key is initially true * 0 if initially false * bit 1 => 1 if points to struct static_key_mod * 0 if points to struct jump_entry */ union { unsigned long type; struct jump_entry *entries; struct static_key_mod *next; }; }; #else struct static_key { atomic_t enabled; }; #endif /* CONFIG_JUMP_LABEL */ #endif /* __ASSEMBLY__ */ #ifdef CONFIG_JUMP_LABEL #include <asm/jump_label.h> #ifndef __ASSEMBLY__ #ifdef CONFIG_HAVE_ARCH_JUMP_LABEL_RELATIVE struct jump_entry { s32 code; s32 target; long key; // key may be far away from the core kernel under KASLR }; static inline unsigned long jump_entry_code(const struct jump_entry *entry) { return (unsigned long)&entry->code + entry->code; } static inline unsigned long jump_entry_target(const struct jump_entry *entry) { return (unsigned long)&entry->target + entry->target; } static inline struct static_key *jump_entry_key(const struct jump_entry *entry) { long offset = entry->key & ~3L; return (struct static_key *)((unsigned long)&entry->key + offset); } #else static inline unsigned long jump_entry_code(const struct jump_entry *entry) { return entry->code; } static inline unsigned long jump_entry_target(const struct jump_entry *entry) { return entry->target; } static inline struct static_key *jump_entry_key(const struct jump_entry *entry) { return (struct static_key *)((unsigned long)entry->key & ~3UL); } #endif static inline bool jump_entry_is_branch(const struct jump_entry *entry) { return (unsigned long)entry->key & 1UL; } static inline bool jump_entry_is_init(const struct jump_entry *entry) { return (unsigned long)entry->key & 2UL; } static inline void jump_entry_set_init(struct jump_entry *entry) { entry->key |= 2; } #endif #endif #ifndef __ASSEMBLY__ enum jump_label_type { JUMP_LABEL_NOP = 0, JUMP_LABEL_JMP, }; struct module; #ifdef CONFIG_JUMP_LABEL #define JUMP_TYPE_FALSE 0UL #define JUMP_TYPE_TRUE 1UL #define JUMP_TYPE_LINKED 2UL #define JUMP_TYPE_MASK 3UL static __always_inline bool static_key_false(struct static_key *key) { return arch_static_branch(key, false); } static __always_inline bool static_key_true(struct static_key *key) { return !arch_static_branch(key, true); } extern struct jump_entry __start___jump_table[]; extern struct jump_entry __stop___jump_table[]; extern void jump_label_init(void); extern void jump_label_lock(void); extern void jump_label_unlock(void); extern void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type); extern void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type); extern bool arch_jump_label_transform_queue(struct jump_entry *entry, enum jump_label_type type); extern void arch_jump_label_transform_apply(void); extern int jump_label_text_reserved(void *start, void *end); extern void static_key_slow_inc(struct static_key *key); extern void static_key_slow_dec(struct static_key *key); extern void static_key_slow_inc_cpuslocked(struct static_key *key); extern void static_key_slow_dec_cpuslocked(struct static_key *key); extern void jump_label_apply_nops(struct module *mod); extern int static_key_count(struct static_key *key); extern void static_key_enable(struct static_key *key); extern void static_key_disable(struct static_key *key); extern void static_key_enable_cpuslocked(struct static_key *key); extern void static_key_disable_cpuslocked(struct static_key *key); /* * We should be using ATOMIC_INIT() for initializing .enabled, but * the inclusion of atomic.h is problematic for inclusion of jump_label.h * in 'low-level' headers. Thus, we are initializing .enabled with a * raw value, but have added a BUILD_BUG_ON() to catch any issues in * jump_label_init() see: kernel/jump_label.c. */ #define STATIC_KEY_INIT_TRUE \ { .enabled = { 1 }, \ { .entries = (void *)JUMP_TYPE_TRUE } } #define STATIC_KEY_INIT_FALSE \ { .enabled = { 0 }, \ { .entries = (void *)JUMP_TYPE_FALSE } } #else /* !CONFIG_JUMP_LABEL */ #include <linux/atomic.h> #include <linux/bug.h> static inline int static_key_count(struct static_key *key) { return atomic_read(&key->enabled); } static __always_inline void jump_label_init(void) { static_key_initialized = true; } static __always_inline bool static_key_false(struct static_key *key) { if (unlikely(static_key_count(key) > 0)) return true; return false; } static __always_inline bool static_key_true(struct static_key *key) { if (likely(static_key_count(key) > 0)) return true; return false; } static inline void static_key_slow_inc(struct static_key *key) { STATIC_KEY_CHECK_USE(key); atomic_inc(&key->enabled); } static inline void static_key_slow_dec(struct static_key *key) { STATIC_KEY_CHECK_USE(key); atomic_dec(&key->enabled); } #define static_key_slow_inc_cpuslocked(key) static_key_slow_inc(key) #define static_key_slow_dec_cpuslocked(key) static_key_slow_dec(key) static inline int jump_label_text_reserved(void *start, void *end) { return 0; } static inline void jump_label_lock(void) {} static inline void jump_label_unlock(void) {} static inline int jump_label_apply_nops(struct module *mod) { return 0; } static inline void static_key_enable(struct static_key *key) { STATIC_KEY_CHECK_USE(key); if (atomic_read(&key->enabled) != 0) { WARN_ON_ONCE(atomic_read(&key->enabled) != 1); return; } atomic_set(&key->enabled, 1); } static inline void static_key_disable(struct static_key *key) { STATIC_KEY_CHECK_USE(key); if (atomic_read(&key->enabled) != 1) { WARN_ON_ONCE(atomic_read(&key->enabled) != 0); return; } atomic_set(&key->enabled, 0); } #define static_key_enable_cpuslocked(k) static_key_enable((k)) #define static_key_disable_cpuslocked(k) static_key_disable((k)) #define STATIC_KEY_INIT_TRUE { .enabled = ATOMIC_INIT(1) } #define STATIC_KEY_INIT_FALSE { .enabled = ATOMIC_INIT(0) } #endif /* CONFIG_JUMP_LABEL */ #define STATIC_KEY_INIT STATIC_KEY_INIT_FALSE #define jump_label_enabled static_key_enabled /* -------------------------------------------------------------------------- */ /* * Two type wrappers around static_key, such that we can use compile time * type differentiation to emit the right code. * * All the below code is macros in order to play type games. */ struct static_key_true { struct static_key key; }; struct static_key_false { struct static_key key; }; #define STATIC_KEY_TRUE_INIT (struct static_key_true) { .key = STATIC_KEY_INIT_TRUE, } #define STATIC_KEY_FALSE_INIT (struct static_key_false){ .key = STATIC_KEY_INIT_FALSE, } #define DEFINE_STATIC_KEY_TRUE(name) \ struct static_key_true name = STATIC_KEY_TRUE_INIT #define DEFINE_STATIC_KEY_TRUE_RO(name) \ struct static_key_true name __ro_after_init = STATIC_KEY_TRUE_INIT #define DECLARE_STATIC_KEY_TRUE(name) \ extern struct static_key_true name #define DEFINE_STATIC_KEY_FALSE(name) \ struct static_key_false name = STATIC_KEY_FALSE_INIT #define DEFINE_STATIC_KEY_FALSE_RO(name) \ struct static_key_false name __ro_after_init = STATIC_KEY_FALSE_INIT #define DECLARE_STATIC_KEY_FALSE(name) \ extern struct static_key_false name #define DEFINE_STATIC_KEY_ARRAY_TRUE(name, count) \ struct static_key_true name[count] = { \ [0 ... (count) - 1] = STATIC_KEY_TRUE_INIT, \ } #define DEFINE_STATIC_KEY_ARRAY_FALSE(name, count) \ struct static_key_false name[count] = { \ [0 ... (count) - 1] = STATIC_KEY_FALSE_INIT, \ } extern bool ____wrong_branch_error(void); #define static_key_enabled(x) \ ({ \ if (!__builtin_types_compatible_p(typeof(*x), struct static_key) && \ !__builtin_types_compatible_p(typeof(*x), struct static_key_true) &&\ !__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \ ____wrong_branch_error(); \ static_key_count((struct static_key *)x) > 0; \ }) #ifdef CONFIG_JUMP_LABEL /* * Combine the right initial value (type) with the right branch order * to generate the desired result. * * * type\branch| likely (1) | unlikely (0) * -----------+-----------------------+------------------ * | | * true (1) | ... | ... * | NOP | JMP L * | <br-stmts> | 1: ... * | L: ... | * | | * | | L: <br-stmts> * | | jmp 1b * | | * -----------+-----------------------+------------------ * | | * false (0) | ... | ... * | JMP L | NOP * | <br-stmts> | 1: ... * | L: ... | * | | * | | L: <br-stmts> * | | jmp 1b * | | * -----------+-----------------------+------------------ * * The initial value is encoded in the LSB of static_key::entries, * type: 0 = false, 1 = true. * * The branch type is encoded in the LSB of jump_entry::key, * branch: 0 = unlikely, 1 = likely. * * This gives the following logic table: * * enabled type branch instuction * -----------------------------+----------- * 0 0 0 | NOP * 0 0 1 | JMP * 0 1 0 | NOP * 0 1 1 | JMP * * 1 0 0 | JMP * 1 0 1 | NOP * 1 1 0 | JMP * 1 1 1 | NOP * * Which gives the following functions: * * dynamic: instruction = enabled ^ branch * static: instruction = type ^ branch * * See jump_label_type() / jump_label_init_type(). */ #define static_branch_likely(x) \ ({ \ bool branch; \ if (__builtin_types_compatible_p(typeof(*x), struct static_key_true)) \ branch = !arch_static_branch(&(x)->key, true); \ else if (__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \ branch = !arch_static_branch_jump(&(x)->key, true); \ else \ branch = ____wrong_branch_error(); \ likely(branch); \ }) #define static_branch_unlikely(x) \ ({ \ bool branch; \ if (__builtin_types_compatible_p(typeof(*x), struct static_key_true)) \ branch = arch_static_branch_jump(&(x)->key, false); \ else if (__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \ branch = arch_static_branch(&(x)->key, false); \ else \ branch = ____wrong_branch_error(); \ unlikely(branch); \ }) #else /* !CONFIG_JUMP_LABEL */ #define static_branch_likely(x) likely(static_key_enabled(&(x)->key)) #define static_branch_unlikely(x) unlikely(static_key_enabled(&(x)->key)) #endif /* CONFIG_JUMP_LABEL */ /* * Advanced usage; refcount, branch is enabled when: count != 0 */ #define static_branch_inc(x) static_key_slow_inc(&(x)->key) #define static_branch_dec(x) static_key_slow_dec(&(x)->key) #define static_branch_inc_cpuslocked(x) static_key_slow_inc_cpuslocked(&(x)->key) #define static_branch_dec_cpuslocked(x) static_key_slow_dec_cpuslocked(&(x)->key) /* * Normal usage; boolean enable/disable. */ #define static_branch_enable(x) static_key_enable(&(x)->key) #define static_branch_disable(x) static_key_disable(&(x)->key) #define static_branch_enable_cpuslocked(x) static_key_enable_cpuslocked(&(x)->key) #define static_branch_disable_cpuslocked(x) static_key_disable_cpuslocked(&(x)->key) #endif /* __ASSEMBLY__ */ #endif /* _LINUX_JUMP_LABEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM oom #if !defined(_TRACE_OOM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_OOM_H #include <linux/tracepoint.h> #include <trace/events/mmflags.h> TRACE_EVENT(oom_score_adj_update, TP_PROTO(struct task_struct *task), TP_ARGS(task), TP_STRUCT__entry( __field( pid_t, pid) __array( char, comm, TASK_COMM_LEN ) __field( short, oom_score_adj) ), TP_fast_assign( __entry->pid = task->pid; memcpy(__entry->comm, task->comm, TASK_COMM_LEN); __entry->oom_score_adj = task->signal->oom_score_adj; ), TP_printk("pid=%d comm=%s oom_score_adj=%hd", __entry->pid, __entry->comm, __entry->oom_score_adj) ); TRACE_EVENT(reclaim_retry_zone, TP_PROTO(struct zoneref *zoneref, int order, unsigned long reclaimable, unsigned long available, unsigned long min_wmark, int no_progress_loops, bool wmark_check), TP_ARGS(zoneref, order, reclaimable, available, min_wmark, no_progress_loops, wmark_check), TP_STRUCT__entry( __field( int, node) __field( int, zone_idx) __field( int, order) __field( unsigned long, reclaimable) __field( unsigned long, available) __field( unsigned long, min_wmark) __field( int, no_progress_loops) __field( bool, wmark_check) ), TP_fast_assign( __entry->node = zone_to_nid(zoneref->zone); __entry->zone_idx = zoneref->zone_idx; __entry->order = order; __entry->reclaimable = reclaimable; __entry->available = available; __entry->min_wmark = min_wmark; __entry->no_progress_loops = no_progress_loops; __entry->wmark_check = wmark_check; ), TP_printk("node=%d zone=%-8s order=%d reclaimable=%lu available=%lu min_wmark=%lu no_progress_loops=%d wmark_check=%d", __entry->node, __print_symbolic(__entry->zone_idx, ZONE_TYPE), __entry->order, __entry->reclaimable, __entry->available, __entry->min_wmark, __entry->no_progress_loops, __entry->wmark_check) ); TRACE_EVENT(mark_victim, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(wake_reaper, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(start_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(finish_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(skip_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); #ifdef CONFIG_COMPACTION TRACE_EVENT(compact_retry, TP_PROTO(int order, enum compact_priority priority, enum compact_result result, int retries, int max_retries, bool ret), TP_ARGS(order, priority, result, retries, max_retries, ret), TP_STRUCT__entry( __field( int, order) __field( int, priority) __field( int, result) __field( int, retries) __field( int, max_retries) __field( bool, ret) ), TP_fast_assign( __entry->order = order; __entry->priority = priority; __entry->result = compact_result_to_feedback(result); __entry->retries = retries; __entry->max_retries = max_retries; __entry->ret = ret; ), TP_printk("order=%d priority=%s compaction_result=%s retries=%d max_retries=%d should_retry=%d", __entry->order, __print_symbolic(__entry->priority, COMPACTION_PRIORITY), __print_symbolic(__entry->result, COMPACTION_FEEDBACK), __entry->retries, __entry->max_retries, __entry->ret) ); #endif /* CONFIG_COMPACTION */ #endif /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * The User Datagram Protocol (UDP). * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Alan Cox, <alan@lxorguk.ukuu.org.uk> * Hirokazu Takahashi, <taka@valinux.co.jp> * * Fixes: * Alan Cox : verify_area() calls * Alan Cox : stopped close while in use off icmp * messages. Not a fix but a botch that * for udp at least is 'valid'. * Alan Cox : Fixed icmp handling properly * Alan Cox : Correct error for oversized datagrams * Alan Cox : Tidied select() semantics. * Alan Cox : udp_err() fixed properly, also now * select and read wake correctly on errors * Alan Cox : udp_send verify_area moved to avoid mem leak * Alan Cox : UDP can count its memory * Alan Cox : send to an unknown connection causes * an ECONNREFUSED off the icmp, but * does NOT close. * Alan Cox : Switched to new sk_buff handlers. No more backlog! * Alan Cox : Using generic datagram code. Even smaller and the PEEK * bug no longer crashes it. * Fred Van Kempen : Net2e support for sk->broadcast. * Alan Cox : Uses skb_free_datagram * Alan Cox : Added get/set sockopt support. * Alan Cox : Broadcasting without option set returns EACCES. * Alan Cox : No wakeup calls. Instead we now use the callbacks. * Alan Cox : Use ip_tos and ip_ttl * Alan Cox : SNMP Mibs * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. * Matt Dillon : UDP length checks. * Alan Cox : Smarter af_inet used properly. * Alan Cox : Use new kernel side addressing. * Alan Cox : Incorrect return on truncated datagram receive. * Arnt Gulbrandsen : New udp_send and stuff * Alan Cox : Cache last socket * Alan Cox : Route cache * Jon Peatfield : Minor efficiency fix to sendto(). * Mike Shaver : RFC1122 checks. * Alan Cox : Nonblocking error fix. * Willy Konynenberg : Transparent proxying support. * Mike McLagan : Routing by source * David S. Miller : New socket lookup architecture. * Last socket cache retained as it * does have a high hit rate. * Olaf Kirch : Don't linearise iovec on sendmsg. * Andi Kleen : Some cleanups, cache destination entry * for connect. * Vitaly E. Lavrov : Transparent proxy revived after year coma. * Melvin Smith : Check msg_name not msg_namelen in sendto(), * return ENOTCONN for unconnected sockets (POSIX) * Janos Farkas : don't deliver multi/broadcasts to a different * bound-to-device socket * Hirokazu Takahashi : HW checksumming for outgoing UDP * datagrams. * Hirokazu Takahashi : sendfile() on UDP works now. * Arnaldo C. Melo : convert /proc/net/udp to seq_file * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind * a single port at the same time. * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support * James Chapman : Add L2TP encapsulation type. */ #define pr_fmt(fmt) "UDP: " fmt #include <linux/uaccess.h> #include <asm/ioctls.h> #include <linux/memblock.h> #include <linux/highmem.h> #include <linux/swap.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/module.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/igmp.h> #include <linux/inetdevice.h> #include <linux/in.h> #include <linux/errno.h> #include <linux/timer.h> #include <linux/mm.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/slab.h> #include <net/tcp_states.h> #include <linux/skbuff.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <net/net_namespace.h> #include <net/icmp.h> #include <net/inet_hashtables.h> #include <net/ip_tunnels.h> #include <net/route.h> #include <net/checksum.h> #include <net/xfrm.h> #include <trace/events/udp.h> #include <linux/static_key.h> #include <linux/btf_ids.h> #include <trace/events/skb.h> #include <net/busy_poll.h> #include "udp_impl.h" #include <net/sock_reuseport.h> #include <net/addrconf.h> #include <net/udp_tunnel.h> #if IS_ENABLED(CONFIG_IPV6) #include <net/ipv6_stubs.h> #endif struct udp_table udp_table __read_mostly; EXPORT_SYMBOL(udp_table); long sysctl_udp_mem[3] __read_mostly; EXPORT_SYMBOL(sysctl_udp_mem); atomic_long_t udp_memory_allocated; EXPORT_SYMBOL(udp_memory_allocated); #define MAX_UDP_PORTS 65536 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) static int udp_lib_lport_inuse(struct net *net, __u16 num, const struct udp_hslot *hslot, unsigned long *bitmap, struct sock *sk, unsigned int log) { struct sock *sk2; kuid_t uid = sock_i_uid(sk); sk_for_each(sk2, &hslot->head) { if (net_eq(sock_net(sk2), net) && sk2 != sk && (bitmap || udp_sk(sk2)->udp_port_hash == num) && (!sk2->sk_reuse || !sk->sk_reuse) && (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && inet_rcv_saddr_equal(sk, sk2, true)) { if (sk2->sk_reuseport && sk->sk_reuseport && !rcu_access_pointer(sk->sk_reuseport_cb) && uid_eq(uid, sock_i_uid(sk2))) { if (!bitmap) return 0; } else { if (!bitmap) return 1; __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap); } } } return 0; } /* * Note: we still hold spinlock of primary hash chain, so no other writer * can insert/delete a socket with local_port == num */ static int udp_lib_lport_inuse2(struct net *net, __u16 num, struct udp_hslot *hslot2, struct sock *sk) { struct sock *sk2; kuid_t uid = sock_i_uid(sk); int res = 0; spin_lock(&hslot2->lock); udp_portaddr_for_each_entry(sk2, &hslot2->head) { if (net_eq(sock_net(sk2), net) && sk2 != sk && (udp_sk(sk2)->udp_port_hash == num) && (!sk2->sk_reuse || !sk->sk_reuse) && (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && inet_rcv_saddr_equal(sk, sk2, true)) { if (sk2->sk_reuseport && sk->sk_reuseport && !rcu_access_pointer(sk->sk_reuseport_cb) && uid_eq(uid, sock_i_uid(sk2))) { res = 0; } else { res = 1; } break; } } spin_unlock(&hslot2->lock); return res; } static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) { struct net *net = sock_net(sk); kuid_t uid = sock_i_uid(sk); struct sock *sk2; sk_for_each(sk2, &hslot->head) { if (net_eq(sock_net(sk2), net) && sk2 != sk && sk2->sk_family == sk->sk_family && ipv6_only_sock(sk2) == ipv6_only_sock(sk) && (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && inet_rcv_saddr_equal(sk, sk2, false)) { return reuseport_add_sock(sk, sk2, inet_rcv_saddr_any(sk)); } } return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); } /** * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 * * @sk: socket struct in question * @snum: port number to look up * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, * with NULL address */ int udp_lib_get_port(struct sock *sk, unsigned short snum, unsigned int hash2_nulladdr) { struct udp_hslot *hslot, *hslot2; struct udp_table *udptable = sk->sk_prot->h.udp_table; int error = 1; struct net *net = sock_net(sk); if (!snum) { int low, high, remaining; unsigned int rand; unsigned short first, last; DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); inet_get_local_port_range(net, &low, &high); remaining = (high - low) + 1; rand = prandom_u32(); first = reciprocal_scale(rand, remaining) + low; /* * force rand to be an odd multiple of UDP_HTABLE_SIZE */ rand = (rand | 1) * (udptable->mask + 1); last = first + udptable->mask + 1; do { hslot = udp_hashslot(udptable, net, first); bitmap_zero(bitmap, PORTS_PER_CHAIN); spin_lock_bh(&hslot->lock); udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, udptable->log); snum = first; /* * Iterate on all possible values of snum for this hash. * Using steps of an odd multiple of UDP_HTABLE_SIZE * give us randomization and full range coverage. */ do { if (low <= snum && snum <= high && !test_bit(snum >> udptable->log, bitmap) && !inet_is_local_reserved_port(net, snum)) goto found; snum += rand; } while (snum != first); spin_unlock_bh(&hslot->lock); cond_resched(); } while (++first != last); goto fail; } else { hslot = udp_hashslot(udptable, net, snum); spin_lock_bh(&hslot->lock); if (hslot->count > 10) { int exist; unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; slot2 &= udptable->mask; hash2_nulladdr &= udptable->mask; hslot2 = udp_hashslot2(udptable, slot2); if (hslot->count < hslot2->count) goto scan_primary_hash; exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); if (!exist && (hash2_nulladdr != slot2)) { hslot2 = udp_hashslot2(udptable, hash2_nulladdr); exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); } if (exist) goto fail_unlock; else goto found; } scan_primary_hash: if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) goto fail_unlock; } found: inet_sk(sk)->inet_num = snum; udp_sk(sk)->udp_port_hash = snum; udp_sk(sk)->udp_portaddr_hash ^= snum; if (sk_unhashed(sk)) { if (sk->sk_reuseport && udp_reuseport_add_sock(sk, hslot)) { inet_sk(sk)->inet_num = 0; udp_sk(sk)->udp_port_hash = 0; udp_sk(sk)->udp_portaddr_hash ^= snum; goto fail_unlock; } sk_add_node_rcu(sk, &hslot->head); hslot->count++; sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); spin_lock(&hslot2->lock); if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && sk->sk_family == AF_INET6) hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, &hslot2->head); else hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, &hslot2->head); hslot2->count++; spin_unlock(&hslot2->lock); } sock_set_flag(sk, SOCK_RCU_FREE); error = 0; fail_unlock: spin_unlock_bh(&hslot->lock); fail: return error; } EXPORT_SYMBOL(udp_lib_get_port); int udp_v4_get_port(struct sock *sk, unsigned short snum) { unsigned int hash2_nulladdr = ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); unsigned int hash2_partial = ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); /* precompute partial secondary hash */ udp_sk(sk)->udp_portaddr_hash = hash2_partial; return udp_lib_get_port(sk, snum, hash2_nulladdr); } static int compute_score(struct sock *sk, struct net *net, __be32 saddr, __be16 sport, __be32 daddr, unsigned short hnum, int dif, int sdif) { int score; struct inet_sock *inet; bool dev_match; if (!net_eq(sock_net(sk), net) || udp_sk(sk)->udp_port_hash != hnum || ipv6_only_sock(sk)) return -1; if (sk->sk_rcv_saddr != daddr) return -1; score = (sk->sk_family == PF_INET) ? 2 : 1; inet = inet_sk(sk); if (inet->inet_daddr) { if (inet->inet_daddr != saddr) return -1; score += 4; } if (inet->inet_dport) { if (inet->inet_dport != sport) return -1; score += 4; } dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif); if (!dev_match) return -1; if (sk->sk_bound_dev_if) score += 4; if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) score++; return score; } static u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, const __be32 faddr, const __be16 fport) { static u32 udp_ehash_secret __read_mostly; net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); return __inet_ehashfn(laddr, lport, faddr, fport, udp_ehash_secret + net_hash_mix(net)); } static struct sock *lookup_reuseport(struct net *net, struct sock *sk, struct sk_buff *skb, __be32 saddr, __be16 sport, __be32 daddr, unsigned short hnum) { struct sock *reuse_sk = NULL; u32 hash; if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) { hash = udp_ehashfn(net, daddr, hnum, saddr, sport); reuse_sk = reuseport_select_sock(sk, hash, skb, sizeof(struct udphdr)); } return reuse_sk; } /* called with rcu_read_lock() */ static struct sock *udp4_lib_lookup2(struct net *net, __be32 saddr, __be16 sport, __be32 daddr, unsigned int hnum, int dif, int sdif, struct udp_hslot *hslot2, struct sk_buff *skb) { struct sock *sk, *result; int score, badness; result = NULL; badness = 0; udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { score = compute_score(sk, net, saddr, sport, daddr, hnum, dif, sdif); if (score > badness) { result = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum); /* Fall back to scoring if group has connections */ if (result && !reuseport_has_conns(sk, false)) return result; result = result ? : sk; badness = score; } } return result; } static struct sock *udp4_lookup_run_bpf(struct net *net, struct udp_table *udptable, struct sk_buff *skb, __be32 saddr, __be16 sport, __be32 daddr, u16 hnum) { struct sock *sk, *reuse_sk; bool no_reuseport; if (udptable != &udp_table) return NULL; /* only UDP is supported */ no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport, daddr, hnum, &sk); if (no_reuseport || IS_ERR_OR_NULL(sk)) return sk; reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum); if (reuse_sk) sk = reuse_sk; return sk; } /* UDP is nearly always wildcards out the wazoo, it makes no sense to try * harder than this. -DaveM */ struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, __be32 daddr, __be16 dport, int dif, int sdif, struct udp_table *udptable, struct sk_buff *skb) { unsigned short hnum = ntohs(dport); unsigned int hash2, slot2; struct udp_hslot *hslot2; struct sock *result, *sk; hash2 = ipv4_portaddr_hash(net, daddr, hnum); slot2 = hash2 & udptable->mask; hslot2 = &udptable->hash2[slot2]; /* Lookup connected or non-wildcard socket */ result = udp4_lib_lookup2(net, saddr, sport, daddr, hnum, dif, sdif, hslot2, skb); if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) goto done; /* Lookup redirect from BPF */ if (static_branch_unlikely(&bpf_sk_lookup_enabled)) { sk = udp4_lookup_run_bpf(net, udptable, skb, saddr, sport, daddr, hnum); if (sk) { result = sk; goto done; } } /* Got non-wildcard socket or error on first lookup */ if (result) goto done; /* Lookup wildcard sockets */ hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); slot2 = hash2 & udptable->mask; hslot2 = &udptable->hash2[slot2]; result = udp4_lib_lookup2(net, saddr, sport, htonl(INADDR_ANY), hnum, dif, sdif, hslot2, skb); done: if (IS_ERR(result)) return NULL; return result; } EXPORT_SYMBOL_GPL(__udp4_lib_lookup); static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, __be16 sport, __be16 dport, struct udp_table *udptable) { const struct iphdr *iph = ip_hdr(skb); return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, iph->daddr, dport, inet_iif(skb), inet_sdif(skb), udptable, skb); } struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, __be16 sport, __be16 dport) { const struct iphdr *iph = ip_hdr(skb); return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, iph->daddr, dport, inet_iif(skb), inet_sdif(skb), &udp_table, NULL); } EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); /* Must be called under rcu_read_lock(). * Does increment socket refcount. */ #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, __be32 daddr, __be16 dport, int dif) { struct sock *sk; sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, 0, &udp_table, NULL); if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) sk = NULL; return sk; } EXPORT_SYMBOL_GPL(udp4_lib_lookup); #endif static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, __be16 loc_port, __be32 loc_addr, __be16 rmt_port, __be32 rmt_addr, int dif, int sdif, unsigned short hnum) { struct inet_sock *inet = inet_sk(sk); if (!net_eq(sock_net(sk), net) || udp_sk(sk)->udp_port_hash != hnum || (inet->inet_daddr && inet->inet_daddr != rmt_addr) || (inet->inet_dport != rmt_port && inet->inet_dport) || (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || ipv6_only_sock(sk) || !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) return false; if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) return false; return true; } DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); void udp_encap_enable(void) { static_branch_inc(&udp_encap_needed_key); } EXPORT_SYMBOL(udp_encap_enable); /* Handler for tunnels with arbitrary destination ports: no socket lookup, go * through error handlers in encapsulations looking for a match. */ static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) { int i; for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { int (*handler)(struct sk_buff *skb, u32 info); const struct ip_tunnel_encap_ops *encap; encap = rcu_dereference(iptun_encaps[i]); if (!encap) continue; handler = encap->err_handler; if (handler && !handler(skb, info)) return 0; } return -ENOENT; } /* Try to match ICMP errors to UDP tunnels by looking up a socket without * reversing source and destination port: this will match tunnels that force the * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that * lwtunnels might actually break this assumption by being configured with * different destination ports on endpoints, in this case we won't be able to * trace ICMP messages back to them. * * If this doesn't match any socket, probe tunnels with arbitrary destination * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port * we've sent packets to won't necessarily match the local destination port. * * Then ask the tunnel implementation to match the error against a valid * association. * * Return an error if we can't find a match, the socket if we need further * processing, zero otherwise. */ static struct sock *__udp4_lib_err_encap(struct net *net, const struct iphdr *iph, struct udphdr *uh, struct udp_table *udptable, struct sk_buff *skb, u32 info) { int network_offset, transport_offset; struct sock *sk; network_offset = skb_network_offset(skb); transport_offset = skb_transport_offset(skb); /* Network header needs to point to the outer IPv4 header inside ICMP */ skb_reset_network_header(skb); /* Transport header needs to point to the UDP header */ skb_set_transport_header(skb, iph->ihl << 2); sk = __udp4_lib_lookup(net, iph->daddr, uh->source, iph->saddr, uh->dest, skb->dev->ifindex, 0, udptable, NULL); if (sk) { int (*lookup)(struct sock *sk, struct sk_buff *skb); struct udp_sock *up = udp_sk(sk); lookup = READ_ONCE(up->encap_err_lookup); if (!lookup || lookup(sk, skb)) sk = NULL; } if (!sk) sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); skb_set_transport_header(skb, transport_offset); skb_set_network_header(skb, network_offset); return sk; } /* * This routine is called by the ICMP module when it gets some * sort of error condition. If err < 0 then the socket should * be closed and the error returned to the user. If err > 0 * it's just the icmp type << 8 | icmp code. * Header points to the ip header of the error packet. We move * on past this. Then (as it used to claim before adjustment) * header points to the first 8 bytes of the udp header. We need * to find the appropriate port. */ int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) { struct inet_sock *inet; const struct iphdr *iph = (const struct iphdr *)skb->data; struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); const int type = icmp_hdr(skb)->type; const int code = icmp_hdr(skb)->code; bool tunnel = false; struct sock *sk; int harderr; int err; struct net *net = dev_net(skb->dev); sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, iph->saddr, uh->source, skb->dev->ifindex, inet_sdif(skb), udptable, NULL); if (!sk) { /* No socket for error: try tunnels before discarding */ sk = ERR_PTR(-ENOENT); if (static_branch_unlikely(&udp_encap_needed_key)) { sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb, info); if (!sk) return 0; } if (IS_ERR(sk)) { __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); return PTR_ERR(sk); } tunnel = true; } err = 0; harderr = 0; inet = inet_sk(sk); switch (type) { default: case ICMP_TIME_EXCEEDED: err = EHOSTUNREACH; break; case ICMP_SOURCE_QUENCH: goto out; case ICMP_PARAMETERPROB: err = EPROTO; harderr = 1; break; case ICMP_DEST_UNREACH: if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ ipv4_sk_update_pmtu(skb, sk, info); if (inet->pmtudisc != IP_PMTUDISC_DONT) { err = EMSGSIZE; harderr = 1; break; } goto out; } err = EHOSTUNREACH; if (code <= NR_ICMP_UNREACH) { harderr = icmp_err_convert[code].fatal; err = icmp_err_convert[code].errno; } break; case ICMP_REDIRECT: ipv4_sk_redirect(skb, sk); goto out; } /* * RFC1122: OK. Passes ICMP errors back to application, as per * 4.1.3.3. */ if (tunnel) { /* ...not for tunnels though: we don't have a sending socket */ goto out; } if (!inet->recverr) { if (!harderr || sk->sk_state != TCP_ESTABLISHED) goto out; } else ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); sk->sk_err = err; sk->sk_error_report(sk); out: return 0; } int udp_err(struct sk_buff *skb, u32 info) { return __udp4_lib_err(skb, info, &udp_table); } /* * Throw away all pending data and cancel the corking. Socket is locked. */ void udp_flush_pending_frames(struct sock *sk) { struct udp_sock *up = udp_sk(sk); if (up->pending) { up->len = 0; up->pending = 0; ip_flush_pending_frames(sk); } } EXPORT_SYMBOL(udp_flush_pending_frames); /** * udp4_hwcsum - handle outgoing HW checksumming * @skb: sk_buff containing the filled-in UDP header * (checksum field must be zeroed out) * @src: source IP address * @dst: destination IP address */ void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) { struct udphdr *uh = udp_hdr(skb); int offset = skb_transport_offset(skb); int len = skb->len - offset; int hlen = len; __wsum csum = 0; if (!skb_has_frag_list(skb)) { /* * Only one fragment on the socket. */ skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct udphdr, check); uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0); } else { struct sk_buff *frags; /* * HW-checksum won't work as there are two or more * fragments on the socket so that all csums of sk_buffs * should be together */ skb_walk_frags(skb, frags) { csum = csum_add(csum, frags->csum); hlen -= frags->len; } csum = skb_checksum(skb, offset, hlen, csum); skb->ip_summed = CHECKSUM_NONE; uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); if (uh->check == 0) uh->check = CSUM_MANGLED_0; } } EXPORT_SYMBOL_GPL(udp4_hwcsum); /* Function to set UDP checksum for an IPv4 UDP packet. This is intended * for the simple case like when setting the checksum for a UDP tunnel. */ void udp_set_csum(bool nocheck, struct sk_buff *skb, __be32 saddr, __be32 daddr, int len) { struct udphdr *uh = udp_hdr(skb); if (nocheck) { uh->check = 0; } else if (skb_is_gso(skb)) { uh->check = ~udp_v4_check(len, saddr, daddr, 0); } else if (skb->ip_summed == CHECKSUM_PARTIAL) { uh->check = 0; uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); if (uh->check == 0) uh->check = CSUM_MANGLED_0; } else { skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct udphdr, check); uh->check = ~udp_v4_check(len, saddr, daddr, 0); } } EXPORT_SYMBOL(udp_set_csum); static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, struct inet_cork *cork) { struct sock *sk = skb->sk; struct inet_sock *inet = inet_sk(sk); struct udphdr *uh; int err = 0; int is_udplite = IS_UDPLITE(sk); int offset = skb_transport_offset(skb); int len = skb->len - offset; int datalen = len - sizeof(*uh); __wsum csum = 0; /* * Create a UDP header */ uh = udp_hdr(skb); uh->source = inet->inet_sport; uh->dest = fl4->fl4_dport; uh->len = htons(len); uh->check = 0; if (cork->gso_size) { const int hlen = skb_network_header_len(skb) + sizeof(struct udphdr); if (hlen + cork->gso_size > cork->fragsize) { kfree_skb(skb); return -EINVAL; } if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) { kfree_skb(skb); return -EINVAL; } if (sk->sk_no_check_tx) { kfree_skb(skb); return -EINVAL; } if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || dst_xfrm(skb_dst(skb))) { kfree_skb(skb); return -EIO; } if (datalen > cork->gso_size) { skb_shinfo(skb)->gso_size = cork->gso_size; skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, cork->gso_size); } goto csum_partial; } if (is_udplite) /* UDP-Lite */ csum = udplite_csum(skb); else if (sk->sk_no_check_tx) { /* UDP csum off */ skb->ip_summed = CHECKSUM_NONE; goto send; } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ csum_partial: udp4_hwcsum(skb, fl4->saddr, fl4->daddr); goto send; } else csum = udp_csum(skb); /* add protocol-dependent pseudo-header */ uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, sk->sk_protocol, csum); if (uh->check == 0) uh->check = CSUM_MANGLED_0; send: err = ip_send_skb(sock_net(sk), skb); if (err) { if (err == -ENOBUFS && !inet->recverr) { UDP_INC_STATS(sock_net(sk), UDP_MIB_SNDBUFERRORS, is_udplite); err = 0; } } else UDP_INC_STATS(sock_net(sk), UDP_MIB_OUTDATAGRAMS, is_udplite); return err; } /* * Push out all pending data as one UDP datagram. Socket is locked. */ int udp_push_pending_frames(struct sock *sk) { struct udp_sock *up = udp_sk(sk); struct inet_sock *inet = inet_sk(sk); struct flowi4 *fl4 = &inet->cork.fl.u.ip4; struct sk_buff *skb; int err = 0; skb = ip_finish_skb(sk, fl4); if (!skb) goto out; err = udp_send_skb(skb, fl4, &inet->cork.base); out: up->len = 0; up->pending = 0; return err; } EXPORT_SYMBOL(udp_push_pending_frames); static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) { switch (cmsg->cmsg_type) { case UDP_SEGMENT: if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) return -EINVAL; *gso_size = *(__u16 *)CMSG_DATA(cmsg); return 0; default: return -EINVAL; } } int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) { struct cmsghdr *cmsg; bool need_ip = false; int err; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_UDP) { need_ip = true; continue; } err = __udp_cmsg_send(cmsg, gso_size); if (err) return err; } return need_ip; } EXPORT_SYMBOL_GPL(udp_cmsg_send); int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) { struct inet_sock *inet = inet_sk(sk); struct udp_sock *up = udp_sk(sk); DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); struct flowi4 fl4_stack; struct flowi4 *fl4; int ulen = len; struct ipcm_cookie ipc; struct rtable *rt = NULL; int free = 0; int connected = 0; __be32 daddr, faddr, saddr; __be16 dport; u8 tos; int err, is_udplite = IS_UDPLITE(sk); int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE; int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); struct sk_buff *skb; struct ip_options_data opt_copy; if (len > 0xFFFF) return -EMSGSIZE; /* * Check the flags. */ if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ return -EOPNOTSUPP; getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; fl4 = &inet->cork.fl.u.ip4; if (up->pending) { /* * There are pending frames. * The socket lock must be held while it's corked. */ lock_sock(sk); if (likely(up->pending)) { if (unlikely(up->pending != AF_INET)) { release_sock(sk); return -EINVAL; } goto do_append_data; } release_sock(sk); } ulen += sizeof(struct udphdr); /* * Get and verify the address. */ if (usin) { if (msg->msg_namelen < sizeof(*usin)) return -EINVAL; if (usin->sin_family != AF_INET) { if (usin->sin_family != AF_UNSPEC) return -EAFNOSUPPORT; } daddr = usin->sin_addr.s_addr; dport = usin->sin_port; if (dport == 0) return -EINVAL; } else { if (sk->sk_state != TCP_ESTABLISHED) return -EDESTADDRREQ; daddr = inet->inet_daddr; dport = inet->inet_dport; /* Open fast path for connected socket. Route will not be used, if at least one option is set. */ connected = 1; } ipcm_init_sk(&ipc, inet); ipc.gso_size = READ_ONCE(up->gso_size); if (msg->msg_controllen) { err = udp_cmsg_send(sk, msg, &ipc.gso_size); if (err > 0) err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6); if (unlikely(err < 0)) { kfree(ipc.opt); return err; } if (ipc.opt) free = 1; connected = 0; } if (!ipc.opt) { struct ip_options_rcu *inet_opt; rcu_read_lock(); inet_opt = rcu_dereference(inet->inet_opt); if (inet_opt) { memcpy(&opt_copy, inet_opt, sizeof(*inet_opt) + inet_opt->opt.optlen); ipc.opt = &opt_copy.opt; } rcu_read_unlock(); } if (cgroup_bpf_enabled && !connected) { err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, (struct sockaddr *)usin, &ipc.addr); if (err) goto out_free; if (usin) { if (usin->sin_port == 0) { /* BPF program set invalid port. Reject it. */ err = -EINVAL; goto out_free; } daddr = usin->sin_addr.s_addr; dport = usin->sin_port; } } saddr = ipc.addr; ipc.addr = faddr = daddr; if (ipc.opt && ipc.opt->opt.srr) { if (!daddr) { err = -EINVAL; goto out_free; } faddr = ipc.opt->opt.faddr; connected = 0; } tos = get_rttos(&ipc, inet); if (sock_flag(sk, SOCK_LOCALROUTE) || (msg->msg_flags & MSG_DONTROUTE) || (ipc.opt && ipc.opt->opt.is_strictroute)) { tos |= RTO_ONLINK; connected = 0; } if (ipv4_is_multicast(daddr)) { if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) ipc.oif = inet->mc_index; if (!saddr) saddr = inet->mc_addr; connected = 0; } else if (!ipc.oif) { ipc.oif = inet->uc_index; } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { /* oif is set, packet is to local broadcast and * uc_index is set. oif is most likely set * by sk_bound_dev_if. If uc_index != oif check if the * oif is an L3 master and uc_index is an L3 slave. * If so, we want to allow the send using the uc_index. */ if (ipc.oif != inet->uc_index && ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), inet->uc_index)) { ipc.oif = inet->uc_index; } } if (connected) rt = (struct rtable *)sk_dst_check(sk, 0); if (!rt) { struct net *net = sock_net(sk); __u8 flow_flags = inet_sk_flowi_flags(sk); fl4 = &fl4_stack; flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, RT_SCOPE_UNIVERSE, sk->sk_protocol, flow_flags, faddr, saddr, dport, inet->inet_sport, sk->sk_uid); security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); rt = ip_route_output_flow(net, fl4, sk); if (IS_ERR(rt)) { err = PTR_ERR(rt); rt = NULL; if (err == -ENETUNREACH) IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); goto out; } err = -EACCES; if ((rt->rt_flags & RTCF_BROADCAST) && !sock_flag(sk, SOCK_BROADCAST)) goto out; if (connected) sk_dst_set(sk, dst_clone(&rt->dst)); } if (msg->msg_flags&MSG_CONFIRM) goto do_confirm; back_from_confirm: saddr = fl4->saddr; if (!ipc.addr) daddr = ipc.addr = fl4->daddr; /* Lockless fast path for the non-corking case. */ if (!corkreq) { struct inet_cork cork; skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, sizeof(struct udphdr), &ipc, &rt, &cork, msg->msg_flags); err = PTR_ERR(skb); if (!IS_ERR_OR_NULL(skb)) err = udp_send_skb(skb, fl4, &cork); goto out; } lock_sock(sk); if (unlikely(up->pending)) { /* The socket is already corked while preparing it. */ /* ... which is an evident application bug. --ANK */ release_sock(sk); net_dbg_ratelimited("socket already corked\n"); err = -EINVAL; goto out; } /* * Now cork the socket to pend data. */ fl4 = &inet->cork.fl.u.ip4; fl4->daddr = daddr; fl4->saddr = saddr; fl4->fl4_dport = dport; fl4->fl4_sport = inet->inet_sport; up->pending = AF_INET; do_append_data: up->len += ulen; err = ip_append_data(sk, fl4, getfrag, msg, ulen, sizeof(struct udphdr), &ipc, &rt, corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); if (err) udp_flush_pending_frames(sk); else if (!corkreq) err = udp_push_pending_frames(sk); else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) up->pending = 0; release_sock(sk); out: ip_rt_put(rt); out_free: if (free) kfree(ipc.opt); if (!err) return len; /* * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting * ENOBUFS might not be good (it's not tunable per se), but otherwise * we don't have a good statistic (IpOutDiscards but it can be too many * things). We could add another new stat but at least for now that * seems like overkill. */ if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { UDP_INC_STATS(sock_net(sk), UDP_MIB_SNDBUFERRORS, is_udplite); } return err; do_confirm: if (msg->msg_flags & MSG_PROBE) dst_confirm_neigh(&rt->dst, &fl4->daddr); if (!(msg->msg_flags&MSG_PROBE) || len) goto back_from_confirm; err = 0; goto out; } EXPORT_SYMBOL(udp_sendmsg); int udp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags) { struct inet_sock *inet = inet_sk(sk); struct udp_sock *up = udp_sk(sk); int ret; if (flags & MSG_SENDPAGE_NOTLAST) flags |= MSG_MORE; if (!up->pending) { struct msghdr msg = { .msg_flags = flags|MSG_MORE }; /* Call udp_sendmsg to specify destination address which * sendpage interface can't pass. * This will succeed only when the socket is connected. */ ret = udp_sendmsg(sk, &msg, 0); if (ret < 0) return ret; } lock_sock(sk); if (unlikely(!up->pending)) { release_sock(sk); net_dbg_ratelimited("cork failed\n"); return -EINVAL; } ret = ip_append_page(sk, &inet->cork.fl.u.ip4, page, offset, size, flags); if (ret == -EOPNOTSUPP) { release_sock(sk); return sock_no_sendpage(sk->sk_socket, page, offset, size, flags); } if (ret < 0) { udp_flush_pending_frames(sk); goto out; } up->len += size; if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE))) ret = udp_push_pending_frames(sk); if (!ret) ret = size; out: release_sock(sk); return ret; } #define UDP_SKB_IS_STATELESS 0x80000000 /* all head states (dst, sk, nf conntrack) except skb extensions are * cleared by udp_rcv(). * * We need to preserve secpath, if present, to eventually process * IP_CMSG_PASSSEC at recvmsg() time. * * Other extensions can be cleared. */ static bool udp_try_make_stateless(struct sk_buff *skb) { if (!skb_has_extensions(skb)) return true; if (!secpath_exists(skb)) { skb_ext_reset(skb); return true; } return false; } static void udp_set_dev_scratch(struct sk_buff *skb) { struct udp_dev_scratch *scratch = udp_skb_scratch(skb); BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); scratch->_tsize_state = skb->truesize; #if BITS_PER_LONG == 64 scratch->len = skb->len; scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); scratch->is_linear = !skb_is_nonlinear(skb); #endif if (udp_try_make_stateless(skb)) scratch->_tsize_state |= UDP_SKB_IS_STATELESS; } static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) { /* We come here after udp_lib_checksum_complete() returned 0. * This means that __skb_checksum_complete() might have * set skb->csum_valid to 1. * On 64bit platforms, we can set csum_unnecessary * to true, but only if the skb is not shared. */ #if BITS_PER_LONG == 64 if (!skb_shared(skb)) udp_skb_scratch(skb)->csum_unnecessary = true; #endif } static int udp_skb_truesize(struct sk_buff *skb) { return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; } static bool udp_skb_has_head_state(struct sk_buff *skb) { return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); } /* fully reclaim rmem/fwd memory allocated for skb */ static void udp_rmem_release(struct sock *sk, int size, int partial, bool rx_queue_lock_held) { struct udp_sock *up = udp_sk(sk); struct sk_buff_head *sk_queue; int amt; if (likely(partial)) { up->forward_deficit += size; size = up->forward_deficit; if (size < (sk->sk_rcvbuf >> 2) && !skb_queue_empty(&up->reader_queue)) return; } else { size += up->forward_deficit; } up->forward_deficit = 0; /* acquire the sk_receive_queue for fwd allocated memory scheduling, * if the called don't held it already */ sk_queue = &sk->sk_receive_queue; if (!rx_queue_lock_held) spin_lock(&sk_queue->lock); sk->sk_forward_alloc += size; amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); sk->sk_forward_alloc -= amt; if (amt) __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); atomic_sub(size, &sk->sk_rmem_alloc); /* this can save us from acquiring the rx queue lock on next receive */ skb_queue_splice_tail_init(sk_queue, &up->reader_queue); if (!rx_queue_lock_held) spin_unlock(&sk_queue->lock); } /* Note: called with reader_queue.lock held. * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch * This avoids a cache line miss while receive_queue lock is held. * Look at __udp_enqueue_schedule_skb() to find where this copy is done. */ void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) { prefetch(&skb->data); udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); } EXPORT_SYMBOL(udp_skb_destructor); /* as above, but the caller held the rx queue lock, too */ static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) { prefetch(&skb->data); udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); } /* Idea of busylocks is to let producers grab an extra spinlock * to relieve pressure on the receive_queue spinlock shared by consumer. * Under flood, this means that only one producer can be in line * trying to acquire the receive_queue spinlock. * These busylock can be allocated on a per cpu manner, instead of a * per socket one (that would consume a cache line per socket) */ static int udp_busylocks_log __read_mostly; static spinlock_t *udp_busylocks __read_mostly; static spinlock_t *busylock_acquire(void *ptr) { spinlock_t *busy; busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); spin_lock(busy); return busy; } static void busylock_release(spinlock_t *busy) { if (busy) spin_unlock(busy); } int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) { struct sk_buff_head *list = &sk->sk_receive_queue; int rmem, delta, amt, err = -ENOMEM; spinlock_t *busy = NULL; int size; /* try to avoid the costly atomic add/sub pair when the receive * queue is full; always allow at least a packet */ rmem = atomic_read(&sk->sk_rmem_alloc); if (rmem > sk->sk_rcvbuf) goto drop; /* Under mem pressure, it might be helpful to help udp_recvmsg() * having linear skbs : * - Reduce memory overhead and thus increase receive queue capacity * - Less cache line misses at copyout() time * - Less work at consume_skb() (less alien page frag freeing) */ if (rmem > (sk->sk_rcvbuf >> 1)) { skb_condense(skb); busy = busylock_acquire(sk); } size = skb->truesize; udp_set_dev_scratch(skb); /* we drop only if the receive buf is full and the receive * queue contains some other skb */ rmem = atomic_add_return(size, &sk->sk_rmem_alloc); if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) goto uncharge_drop; spin_lock(&list->lock); if (size >= sk->sk_forward_alloc) { amt = sk_mem_pages(size); delta = amt << SK_MEM_QUANTUM_SHIFT; if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { err = -ENOBUFS; spin_unlock(&list->lock); goto uncharge_drop; } sk->sk_forward_alloc += delta; } sk->sk_forward_alloc -= size; /* no need to setup a destructor, we will explicitly release the * forward allocated memory on dequeue */ sock_skb_set_dropcount(sk, skb); __skb_queue_tail(list, skb); spin_unlock(&list->lock); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_data_ready(sk); busylock_release(busy); return 0; uncharge_drop: atomic_sub(skb->truesize, &sk->sk_rmem_alloc); drop: atomic_inc(&sk->sk_drops); busylock_release(busy); return err; } EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); void udp_destruct_sock(struct sock *sk) { /* reclaim completely the forward allocated memory */ struct udp_sock *up = udp_sk(sk); unsigned int total = 0; struct sk_buff *skb; skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { total += skb->truesize; kfree_skb(skb); } udp_rmem_release(sk, total, 0, true); inet_sock_destruct(sk); } EXPORT_SYMBOL_GPL(udp_destruct_sock); int udp_init_sock(struct sock *sk) { skb_queue_head_init(&udp_sk(sk)->reader_queue); sk->sk_destruct = udp_destruct_sock; return 0; } EXPORT_SYMBOL_GPL(udp_init_sock); void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) { if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { bool slow = lock_sock_fast(sk); sk_peek_offset_bwd(sk, len); unlock_sock_fast(sk, slow); } if (!skb_unref(skb)) return; /* In the more common cases we cleared the head states previously, * see __udp_queue_rcv_skb(). */ if (unlikely(udp_skb_has_head_state(skb))) skb_release_head_state(skb); __consume_stateless_skb(skb); } EXPORT_SYMBOL_GPL(skb_consume_udp); static struct sk_buff *__first_packet_length(struct sock *sk, struct sk_buff_head *rcvq, int *total) { struct sk_buff *skb; while ((skb = skb_peek(rcvq)) != NULL) { if (udp_lib_checksum_complete(skb)) { __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, IS_UDPLITE(sk)); __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, IS_UDPLITE(sk)); atomic_inc(&sk->sk_drops); __skb_unlink(skb, rcvq); *total += skb->truesize; kfree_skb(skb); } else { udp_skb_csum_unnecessary_set(skb); break; } } return skb; } /** * first_packet_length - return length of first packet in receive queue * @sk: socket * * Drops all bad checksum frames, until a valid one is found. * Returns the length of found skb, or -1 if none is found. */ static int first_packet_length(struct sock *sk) { struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; struct sk_buff_head *sk_queue = &sk->sk_receive_queue; struct sk_buff *skb; int total = 0; int res; spin_lock_bh(&rcvq->lock); skb = __first_packet_length(sk, rcvq, &total); if (!skb && !skb_queue_empty_lockless(sk_queue)) { spin_lock(&sk_queue->lock); skb_queue_splice_tail_init(sk_queue, rcvq); spin_unlock(&sk_queue->lock); skb = __first_packet_length(sk, rcvq, &total); } res = skb ? skb->len : -1; if (total) udp_rmem_release(sk, total, 1, false); spin_unlock_bh(&rcvq->lock); return res; } /* * IOCTL requests applicable to the UDP protocol */ int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) { switch (cmd) { case SIOCOUTQ: { int amount = sk_wmem_alloc_get(sk); return put_user(amount, (int __user *)arg); } case SIOCINQ: { int amount = max_t(int, 0, first_packet_length(sk)); return put_user(amount, (int __user *)arg); } default: return -ENOIOCTLCMD; } return 0; } EXPORT_SYMBOL(udp_ioctl); struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, int noblock, int *off, int *err) { struct sk_buff_head *sk_queue = &sk->sk_receive_queue; struct sk_buff_head *queue; struct sk_buff *last; long timeo; int error; queue = &udp_sk(sk)->reader_queue; flags |= noblock ? MSG_DONTWAIT : 0; timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); do { struct sk_buff *skb; error = sock_error(sk); if (error) break; error = -EAGAIN; do { spin_lock_bh(&queue->lock); skb = __skb_try_recv_from_queue(sk, queue, flags, off, err, &last); if (skb) { if (!(flags & MSG_PEEK)) udp_skb_destructor(sk, skb); spin_unlock_bh(&queue->lock); return skb; } if (skb_queue_empty_lockless(sk_queue)) { spin_unlock_bh(&queue->lock); goto busy_check; } /* refill the reader queue and walk it again * keep both queues locked to avoid re-acquiring * the sk_receive_queue lock if fwd memory scheduling * is needed. */ spin_lock(&sk_queue->lock); skb_queue_splice_tail_init(sk_queue, queue); skb = __skb_try_recv_from_queue(sk, queue, flags, off, err, &last); if (skb && !(flags & MSG_PEEK)) udp_skb_dtor_locked(sk, skb); spin_unlock(&sk_queue->lock); spin_unlock_bh(&queue->lock); if (skb) return skb; busy_check: if (!sk_can_busy_loop(sk)) break; sk_busy_loop(sk, flags & MSG_DONTWAIT); } while (!skb_queue_empty_lockless(sk_queue)); /* sk_queue is empty, reader_queue may contain peeked packets */ } while (timeo && !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, &error, &timeo, (struct sk_buff *)sk_queue)); *err = error; return NULL; } EXPORT_SYMBOL(__skb_recv_udp); /* * This should be easy, if there is something there we * return it, otherwise we block. */ int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len) { struct inet_sock *inet = inet_sk(sk); DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); struct sk_buff *skb; unsigned int ulen, copied; int off, err, peeking = flags & MSG_PEEK; int is_udplite = IS_UDPLITE(sk); bool checksum_valid = false; if (flags & MSG_ERRQUEUE) return ip_recv_error(sk, msg, len, addr_len); try_again: off = sk_peek_offset(sk, flags); skb = __skb_recv_udp(sk, flags, noblock, &off, &err); if (!skb) return err; ulen = udp_skb_len(skb); copied = len; if (copied > ulen - off) copied = ulen - off; else if (copied < ulen) msg->msg_flags |= MSG_TRUNC; /* * If checksum is needed at all, try to do it while copying the * data. If the data is truncated, or if we only want a partial * coverage checksum (UDP-Lite), do it before the copy. */ if (copied < ulen || peeking || (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { checksum_valid = udp_skb_csum_unnecessary(skb) || !__udp_lib_checksum_complete(skb); if (!checksum_valid) goto csum_copy_err; } if (checksum_valid || udp_skb_csum_unnecessary(skb)) { if (udp_skb_is_linear(skb)) err = copy_linear_skb(skb, copied, off, &msg->msg_iter); else err = skb_copy_datagram_msg(skb, off, msg, copied); } else { err = skb_copy_and_csum_datagram_msg(skb, off, msg); if (err == -EINVAL) goto csum_copy_err; } if (unlikely(err)) { if (!peeking) { atomic_inc(&sk->sk_drops); UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); } kfree_skb(skb); return err; } if (!peeking) UDP_INC_STATS(sock_net(sk), UDP_MIB_INDATAGRAMS, is_udplite); sock_recv_ts_and_drops(msg, sk, skb); /* Copy the address. */ if (sin) { sin->sin_family = AF_INET; sin->sin_port = udp_hdr(skb)->source; sin->sin_addr.s_addr = ip_hdr(skb)->saddr; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); *addr_len = sizeof(*sin); if (cgroup_bpf_enabled) BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, (struct sockaddr *)sin); } if (udp_sk(sk)->gro_enabled) udp_cmsg_recv(msg, sk, skb); if (inet->cmsg_flags) ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); err = copied; if (flags & MSG_TRUNC) err = ulen; skb_consume_udp(sk, skb, peeking ? -err : err); return err; csum_copy_err: if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, udp_skb_destructor)) { UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); } kfree_skb(skb); /* starting over for a new packet, but check if we need to yield */ cond_resched(); msg->msg_flags &= ~MSG_TRUNC; goto try_again; } int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { /* This check is replicated from __ip4_datagram_connect() and * intended to prevent BPF program called below from accessing bytes * that are out of the bound specified by user in addr_len. */ if (addr_len < sizeof(struct sockaddr_in)) return -EINVAL; return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); } EXPORT_SYMBOL(udp_pre_connect); int __udp_disconnect(struct sock *sk, int flags) { struct inet_sock *inet = inet_sk(sk); /* * 1003.1g - break association. */ sk->sk_state = TCP_CLOSE; inet->inet_daddr = 0; inet->inet_dport = 0; sock_rps_reset_rxhash(sk); sk->sk_bound_dev_if = 0; if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { inet_reset_saddr(sk); if (sk->sk_prot->rehash && (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) sk->sk_prot->rehash(sk); } if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { sk->sk_prot->unhash(sk); inet->inet_sport = 0; } sk_dst_reset(sk); return 0; } EXPORT_SYMBOL(__udp_disconnect); int udp_disconnect(struct sock *sk, int flags) { lock_sock(sk); __udp_disconnect(sk, flags); release_sock(sk); return 0; } EXPORT_SYMBOL(udp_disconnect); void udp_lib_unhash(struct sock *sk) { if (sk_hashed(sk)) { struct udp_table *udptable = sk->sk_prot->h.udp_table; struct udp_hslot *hslot, *hslot2; hslot = udp_hashslot(udptable, sock_net(sk), udp_sk(sk)->udp_port_hash); hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); spin_lock_bh(&hslot->lock); if (rcu_access_pointer(sk->sk_reuseport_cb)) reuseport_detach_sock(sk); if (sk_del_node_init_rcu(sk)) { hslot->count--; inet_sk(sk)->inet_num = 0; sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); spin_lock(&hslot2->lock); hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); hslot2->count--; spin_unlock(&hslot2->lock); } spin_unlock_bh(&hslot->lock); } } EXPORT_SYMBOL(udp_lib_unhash); /* * inet_rcv_saddr was changed, we must rehash secondary hash */ void udp_lib_rehash(struct sock *sk, u16 newhash) { if (sk_hashed(sk)) { struct udp_table *udptable = sk->sk_prot->h.udp_table; struct udp_hslot *hslot, *hslot2, *nhslot2; hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); nhslot2 = udp_hashslot2(udptable, newhash); udp_sk(sk)->udp_portaddr_hash = newhash; if (hslot2 != nhslot2 || rcu_access_pointer(sk->sk_reuseport_cb)) { hslot = udp_hashslot(udptable, sock_net(sk), udp_sk(sk)->udp_port_hash); /* we must lock primary chain too */ spin_lock_bh(&hslot->lock); if (rcu_access_pointer(sk->sk_reuseport_cb)) reuseport_detach_sock(sk); if (hslot2 != nhslot2) { spin_lock(&hslot2->lock); hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); hslot2->count--; spin_unlock(&hslot2->lock); spin_lock(&nhslot2->lock); hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, &nhslot2->head); nhslot2->count++; spin_unlock(&nhslot2->lock); } spin_unlock_bh(&hslot->lock); } } } EXPORT_SYMBOL(udp_lib_rehash); void udp_v4_rehash(struct sock *sk) { u16 new_hash = ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, inet_sk(sk)->inet_num); udp_lib_rehash(sk, new_hash); } static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { int rc; if (inet_sk(sk)->inet_daddr) { sock_rps_save_rxhash(sk, skb); sk_mark_napi_id(sk, skb); sk_incoming_cpu_update(sk); } else { sk_mark_napi_id_once(sk, skb); } rc = __udp_enqueue_schedule_skb(sk, skb); if (rc < 0) { int is_udplite = IS_UDPLITE(sk); /* Note that an ENOMEM error is charged twice */ if (rc == -ENOMEM) UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, is_udplite); UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); kfree_skb(skb); trace_udp_fail_queue_rcv_skb(rc, sk); return -1; } return 0; } /* returns: * -1: error * 0: success * >0: "udp encap" protocol resubmission * * Note that in the success and error cases, the skb is assumed to * have either been requeued or freed. */ static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) { struct udp_sock *up = udp_sk(sk); int is_udplite = IS_UDPLITE(sk); /* * Charge it to the socket, dropping if the queue is full. */ if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) goto drop; nf_reset_ct(skb); if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); /* * This is an encapsulation socket so pass the skb to * the socket's udp_encap_rcv() hook. Otherwise, just * fall through and pass this up the UDP socket. * up->encap_rcv() returns the following value: * =0 if skb was successfully passed to the encap * handler or was discarded by it. * >0 if skb should be passed on to UDP. * <0 if skb should be resubmitted as proto -N */ /* if we're overly short, let UDP handle it */ encap_rcv = READ_ONCE(up->encap_rcv); if (encap_rcv) { int ret; /* Verify checksum before giving to encap */ if (udp_lib_checksum_complete(skb)) goto csum_error; ret = encap_rcv(sk, skb); if (ret <= 0) { __UDP_INC_STATS(sock_net(sk), UDP_MIB_INDATAGRAMS, is_udplite); return -ret; } } /* FALLTHROUGH -- it's a UDP Packet */ } /* * UDP-Lite specific tests, ignored on UDP sockets */ if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { /* * MIB statistics other than incrementing the error count are * disabled for the following two types of errors: these depend * on the application settings, not on the functioning of the * protocol stack as such. * * RFC 3828 here recommends (sec 3.3): "There should also be a * way ... to ... at least let the receiving application block * delivery of packets with coverage values less than a value * provided by the application." */ if (up->pcrlen == 0) { /* full coverage was set */ net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", UDP_SKB_CB(skb)->cscov, skb->len); goto drop; } /* The next case involves violating the min. coverage requested * by the receiver. This is subtle: if receiver wants x and x is * greater than the buffersize/MTU then receiver will complain * that it wants x while sender emits packets of smaller size y. * Therefore the above ...()->partial_cov statement is essential. */ if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", UDP_SKB_CB(skb)->cscov, up->pcrlen); goto drop; } } prefetch(&sk->sk_rmem_alloc); if (rcu_access_pointer(sk->sk_filter) && udp_lib_checksum_complete(skb)) goto csum_error; if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) goto drop; udp_csum_pull_header(skb); ipv4_pktinfo_prepare(sk, skb); return __udp_queue_rcv_skb(sk, skb); csum_error: __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); drop: __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); atomic_inc(&sk->sk_drops); kfree_skb(skb); return -1; } static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { struct sk_buff *next, *segs; int ret; if (likely(!udp_unexpected_gso(sk, skb))) return udp_queue_rcv_one_skb(sk, skb); BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); __skb_push(skb, -skb_mac_offset(skb)); segs = udp_rcv_segment(sk, skb, true); skb_list_walk_safe(segs, skb, next) { __skb_pull(skb, skb_transport_offset(skb)); ret = udp_queue_rcv_one_skb(sk, skb); if (ret > 0) ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); } return 0; } /* For TCP sockets, sk_rx_dst is protected by socket lock * For UDP, we use xchg() to guard against concurrent changes. */ bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) { struct dst_entry *old; if (dst_hold_safe(dst)) { old = xchg(&sk->sk_rx_dst, dst); dst_release(old); return old != dst; } return false; } EXPORT_SYMBOL(udp_sk_rx_dst_set); /* * Multicasts and broadcasts go to each listener. * * Note: called only from the BH handler context. */ static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, struct udphdr *uh, __be32 saddr, __be32 daddr, struct udp_table *udptable, int proto) { struct sock *sk, *first = NULL; unsigned short hnum = ntohs(uh->dest); struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); unsigned int offset = offsetof(typeof(*sk), sk_node); int dif = skb->dev->ifindex; int sdif = inet_sdif(skb); struct hlist_node *node; struct sk_buff *nskb; if (use_hash2) { hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & udptable->mask; hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; start_lookup: hslot = &udptable->hash2[hash2]; offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); } sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, uh->source, saddr, dif, sdif, hnum)) continue; if (!first) { first = sk; continue; } nskb = skb_clone(skb, GFP_ATOMIC); if (unlikely(!nskb)) { atomic_inc(&sk->sk_drops); __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, IS_UDPLITE(sk)); __UDP_INC_STATS(net, UDP_MIB_INERRORS, IS_UDPLITE(sk)); continue; } if (udp_queue_rcv_skb(sk, nskb) > 0) consume_skb(nskb); } /* Also lookup *:port if we are using hash2 and haven't done so yet. */ if (use_hash2 && hash2 != hash2_any) { hash2 = hash2_any; goto start_lookup; } if (first) { if (udp_queue_rcv_skb(first, skb) > 0) consume_skb(skb); } else { kfree_skb(skb); __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, proto == IPPROTO_UDPLITE); } return 0; } /* Initialize UDP checksum. If exited with zero value (success), * CHECKSUM_UNNECESSARY means, that no more checks are required. * Otherwise, csum completion requires checksumming packet body, * including udp header and folding it to skb->csum. */ static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, int proto) { int err; UDP_SKB_CB(skb)->partial_cov = 0; UDP_SKB_CB(skb)->cscov = skb->len; if (proto == IPPROTO_UDPLITE) { err = udplite_checksum_init(skb, uh); if (err) return err; if (UDP_SKB_CB(skb)->partial_cov) { skb->csum = inet_compute_pseudo(skb, proto); return 0; } } /* Note, we are only interested in != 0 or == 0, thus the * force to int. */ err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, inet_compute_pseudo); if (err) return err; if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { /* If SW calculated the value, we know it's bad */ if (skb->csum_complete_sw) return 1; /* HW says the value is bad. Let's validate that. * skb->csum is no longer the full packet checksum, * so don't treat it as such. */ skb_checksum_complete_unset(skb); } return 0; } /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and * return code conversion for ip layer consumption */ static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, struct udphdr *uh) { int ret; if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); ret = udp_queue_rcv_skb(sk, skb); /* a return value > 0 means to resubmit the input, but * it wants the return to be -protocol, or 0 */ if (ret > 0) return -ret; return 0; } /* * All we need to do is get the socket, and then do a checksum. */ int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, int proto) { struct sock *sk; struct udphdr *uh; unsigned short ulen; struct rtable *rt = skb_rtable(skb); __be32 saddr, daddr; struct net *net = dev_net(skb->dev); bool refcounted; /* * Validate the packet. */ if (!pskb_may_pull(skb, sizeof(struct udphdr))) goto drop; /* No space for header. */ uh = udp_hdr(skb); ulen = ntohs(uh->len); saddr = ip_hdr(skb)->saddr; daddr = ip_hdr(skb)->daddr; if (ulen > skb->len) goto short_packet; if (proto == IPPROTO_UDP) { /* UDP validates ulen. */ if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) goto short_packet; uh = udp_hdr(skb); } if (udp4_csum_init(skb, uh, proto)) goto csum_error; sk = skb_steal_sock(skb, &refcounted); if (sk) { struct dst_entry *dst = skb_dst(skb); int ret; if (unlikely(sk->sk_rx_dst != dst)) udp_sk_rx_dst_set(sk, dst); ret = udp_unicast_rcv_skb(sk, skb, uh); if (refcounted) sock_put(sk); return ret; } if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) return __udp4_lib_mcast_deliver(net, skb, uh, saddr, daddr, udptable, proto); sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); if (sk) return udp_unicast_rcv_skb(sk, skb, uh); if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) goto drop; nf_reset_ct(skb); /* No socket. Drop packet silently, if checksum is wrong */ if (udp_lib_checksum_complete(skb)) goto csum_error; __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); /* * Hmm. We got an UDP packet to a port to which we * don't wanna listen. Ignore it. */ kfree_skb(skb); return 0; short_packet: net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", proto == IPPROTO_UDPLITE ? "Lite" : "", &saddr, ntohs(uh->source), ulen, skb->len, &daddr, ntohs(uh->dest)); goto drop; csum_error: /* * RFC1122: OK. Discards the bad packet silently (as far as * the network is concerned, anyway) as per 4.1.3.4 (MUST). */ net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", proto == IPPROTO_UDPLITE ? "Lite" : "", &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), ulen); __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); drop: __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); kfree_skb(skb); return 0; } /* We can only early demux multicast if there is a single matching socket. * If more than one socket found returns NULL */ static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, __be16 loc_port, __be32 loc_addr, __be16 rmt_port, __be32 rmt_addr, int dif, int sdif) { struct sock *sk, *result; unsigned short hnum = ntohs(loc_port); unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); struct udp_hslot *hslot = &udp_table.hash[slot]; /* Do not bother scanning a too big list */ if (hslot->count > 10) return NULL; result = NULL; sk_for_each_rcu(sk, &hslot->head) { if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, rmt_port, rmt_addr, dif, sdif, hnum)) { if (result) return NULL; result = sk; } } return result; } /* For unicast we should only early demux connected sockets or we can * break forwarding setups. The chains here can be long so only check * if the first socket is an exact match and if not move on. */ static struct sock *__udp4_lib_demux_lookup(struct net *net, __be16 loc_port, __be32 loc_addr, __be16 rmt_port, __be32 rmt_addr, int dif, int sdif) { unsigned short hnum = ntohs(loc_port); unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); unsigned int slot2 = hash2 & udp_table.mask; struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); struct sock *sk; udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { if (INET_MATCH(sk, net, acookie, rmt_addr, loc_addr, ports, dif, sdif)) return sk; /* Only check first socket in chain */ break; } return NULL; } int udp_v4_early_demux(struct sk_buff *skb) { struct net *net = dev_net(skb->dev); struct in_device *in_dev = NULL; const struct iphdr *iph; const struct udphdr *uh; struct sock *sk = NULL; struct dst_entry *dst; int dif = skb->dev->ifindex; int sdif = inet_sdif(skb); int ours; /* validate the packet */ if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) return 0; iph = ip_hdr(skb); uh = udp_hdr(skb); if (skb->pkt_type == PACKET_MULTICAST) { in_dev = __in_dev_get_rcu(skb->dev); if (!in_dev) return 0; ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, iph->protocol); if (!ours) return 0; sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, uh->source, iph->saddr, dif, sdif); } else if (skb->pkt_type == PACKET_HOST) { sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, uh->source, iph->saddr, dif, sdif); } if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) return 0; skb->sk = sk; skb->destructor = sock_efree; dst = READ_ONCE(sk->sk_rx_dst); if (dst) dst = dst_check(dst, 0); if (dst) { u32 itag = 0; /* set noref for now. * any place which wants to hold dst has to call * dst_hold_safe() */ skb_dst_set_noref(skb, dst); /* for unconnected multicast sockets we need to validate * the source on each packet */ if (!inet_sk(sk)->inet_daddr && in_dev) return ip_mc_validate_source(skb, iph->daddr, iph->saddr, iph->tos & IPTOS_RT_MASK, skb->dev, in_dev, &itag); } return 0; } int udp_rcv(struct sk_buff *skb) { return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); } void udp_destroy_sock(struct sock *sk) { struct udp_sock *up = udp_sk(sk); bool slow = lock_sock_fast(sk); /* protects from races with udp_abort() */ sock_set_flag(sk, SOCK_DEAD); udp_flush_pending_frames(sk); unlock_sock_fast(sk, slow); if (static_branch_unlikely(&udp_encap_needed_key)) { if (up->encap_type) { void (*encap_destroy)(struct sock *sk); encap_destroy = READ_ONCE(up->encap_destroy); if (encap_destroy) encap_destroy(sk); } if (up->encap_enabled) static_branch_dec(&udp_encap_needed_key); } } /* * Socket option code for UDP */ int udp_lib_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen, int (*push_pending_frames)(struct sock *)) { struct udp_sock *up = udp_sk(sk); int val, valbool; int err = 0; int is_udplite = IS_UDPLITE(sk); if (optlen < sizeof(int)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; valbool = val ? 1 : 0; switch (optname) { case UDP_CORK: if (val != 0) { WRITE_ONCE(up->corkflag, 1); } else { WRITE_ONCE(up->corkflag, 0); lock_sock(sk); push_pending_frames(sk); release_sock(sk); } break; case UDP_ENCAP: switch (val) { case 0: #ifdef CONFIG_XFRM case UDP_ENCAP_ESPINUDP: case UDP_ENCAP_ESPINUDP_NON_IKE: #if IS_ENABLED(CONFIG_IPV6) if (sk->sk_family == AF_INET6) up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv; else #endif up->encap_rcv = xfrm4_udp_encap_rcv; #endif fallthrough; case UDP_ENCAP_L2TPINUDP: up->encap_type = val; lock_sock(sk); udp_tunnel_encap_enable(sk->sk_socket); release_sock(sk); break; default: err = -ENOPROTOOPT; break; } break; case UDP_NO_CHECK6_TX: up->no_check6_tx = valbool; break; case UDP_NO_CHECK6_RX: up->no_check6_rx = valbool; break; case UDP_SEGMENT: if (val < 0 || val > USHRT_MAX) return -EINVAL; WRITE_ONCE(up->gso_size, val); break; case UDP_GRO: lock_sock(sk); /* when enabling GRO, accept the related GSO packet type */ if (valbool) udp_tunnel_encap_enable(sk->sk_socket); up->gro_enabled = valbool; up->accept_udp_l4 = valbool; release_sock(sk); break; /* * UDP-Lite's partial checksum coverage (RFC 3828). */ /* The sender sets actual checksum coverage length via this option. * The case coverage > packet length is handled by send module. */ case UDPLITE_SEND_CSCOV: if (!is_udplite) /* Disable the option on UDP sockets */ return -ENOPROTOOPT; if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ val = 8; else if (val > USHRT_MAX) val = USHRT_MAX; up->pcslen = val; up->pcflag |= UDPLITE_SEND_CC; break; /* The receiver specifies a minimum checksum coverage value. To make * sense, this should be set to at least 8 (as done below). If zero is * used, this again means full checksum coverage. */ case UDPLITE_RECV_CSCOV: if (!is_udplite) /* Disable the option on UDP sockets */ return -ENOPROTOOPT; if (val != 0 && val < 8) /* Avoid silly minimal values. */ val = 8; else if (val > USHRT_MAX) val = USHRT_MAX; up->pcrlen = val; up->pcflag |= UDPLITE_RECV_CC; break; default: err = -ENOPROTOOPT; break; } return err; } EXPORT_SYMBOL(udp_lib_setsockopt); int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { if (level == SOL_UDP || level == SOL_UDPLITE) return udp_lib_setsockopt(sk, level, optname, optval, optlen, udp_push_pending_frames); return ip_setsockopt(sk, level, optname, optval, optlen); } int udp_lib_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct udp_sock *up = udp_sk(sk); int val, len; if (get_user(len, optlen)) return -EFAULT; len = min_t(unsigned int, len, sizeof(int)); if (len < 0) return -EINVAL; switch (optname) { case UDP_CORK: val = READ_ONCE(up->corkflag); break; case UDP_ENCAP: val = up->encap_type; break; case UDP_NO_CHECK6_TX: val = up->no_check6_tx; break; case UDP_NO_CHECK6_RX: val = up->no_check6_rx; break; case UDP_SEGMENT: val = READ_ONCE(up->gso_size); break; case UDP_GRO: val = up->gro_enabled; break; /* The following two cannot be changed on UDP sockets, the return is * always 0 (which corresponds to the full checksum coverage of UDP). */ case UDPLITE_SEND_CSCOV: val = up->pcslen; break; case UDPLITE_RECV_CSCOV: val = up->pcrlen; break; default: return -ENOPROTOOPT; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } EXPORT_SYMBOL(udp_lib_getsockopt); int udp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { if (level == SOL_UDP || level == SOL_UDPLITE) return udp_lib_getsockopt(sk, level, optname, optval, optlen); return ip_getsockopt(sk, level, optname, optval, optlen); } /** * udp_poll - wait for a UDP event. * @file: - file struct * @sock: - socket * @wait: - poll table * * This is same as datagram poll, except for the special case of * blocking sockets. If application is using a blocking fd * and a packet with checksum error is in the queue; * then it could get return from select indicating data available * but then block when reading it. Add special case code * to work around these arguably broken applications. */ __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) { __poll_t mask = datagram_poll(file, sock, wait); struct sock *sk = sock->sk; if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) mask |= EPOLLIN | EPOLLRDNORM; /* Check for false positives due to checksum errors */ if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) mask &= ~(EPOLLIN | EPOLLRDNORM); return mask; } EXPORT_SYMBOL(udp_poll); int udp_abort(struct sock *sk, int err) { lock_sock(sk); /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing * with close() */ if (sock_flag(sk, SOCK_DEAD)) goto out; sk->sk_err = err; sk->sk_error_report(sk); __udp_disconnect(sk, 0); out: release_sock(sk); return 0; } EXPORT_SYMBOL_GPL(udp_abort); struct proto udp_prot = { .name = "UDP", .owner = THIS_MODULE, .close = udp_lib_close, .pre_connect = udp_pre_connect, .connect = ip4_datagram_connect, .disconnect = udp_disconnect, .ioctl = udp_ioctl, .init = udp_init_sock, .destroy = udp_destroy_sock, .setsockopt = udp_setsockopt, .getsockopt = udp_getsockopt, .sendmsg = udp_sendmsg, .recvmsg = udp_recvmsg, .sendpage = udp_sendpage, .release_cb = ip4_datagram_release_cb, .hash = udp_lib_hash, .unhash = udp_lib_unhash, .rehash = udp_v4_rehash, .get_port = udp_v4_get_port, .memory_allocated = &udp_memory_allocated, .sysctl_mem = sysctl_udp_mem, .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), .obj_size = sizeof(struct udp_sock), .h.udp_table = &udp_table, .diag_destroy = udp_abort, }; EXPORT_SYMBOL(udp_prot); /* ------------------------------------------------------------------------ */ #ifdef CONFIG_PROC_FS static struct sock *udp_get_first(struct seq_file *seq, int start) { struct sock *sk; struct udp_seq_afinfo *afinfo; struct udp_iter_state *state = seq->private; struct net *net = seq_file_net(seq); if (state->bpf_seq_afinfo) afinfo = state->bpf_seq_afinfo; else afinfo = PDE_DATA(file_inode(seq->file)); for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; ++state->bucket) { struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; if (hlist_empty(&hslot->head)) continue; spin_lock_bh(&hslot->lock); sk_for_each(sk, &hslot->head) { if (!net_eq(sock_net(sk), net)) continue; if (afinfo->family == AF_UNSPEC || sk->sk_family == afinfo->family) goto found; } spin_unlock_bh(&hslot->lock); } sk = NULL; found: return sk; } static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) { struct udp_seq_afinfo *afinfo; struct udp_iter_state *state = seq->private; struct net *net = seq_file_net(seq); if (state->bpf_seq_afinfo) afinfo = state->bpf_seq_afinfo; else afinfo = PDE_DATA(file_inode(seq->file)); do { sk = sk_next(sk); } while (sk && (!net_eq(sock_net(sk), net) || (afinfo->family != AF_UNSPEC && sk->sk_family != afinfo->family))); if (!sk) { if (state->bucket <= afinfo->udp_table->mask) spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); return udp_get_first(seq, state->bucket + 1); } return sk; } static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) { struct sock *sk = udp_get_first(seq, 0); if (sk) while (pos && (sk = udp_get_next(seq, sk)) != NULL) --pos; return pos ? NULL : sk; } void *udp_seq_start(struct seq_file *seq, loff_t *pos) { struct udp_iter_state *state = seq->private; state->bucket = MAX_UDP_PORTS; return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; } EXPORT_SYMBOL(udp_seq_start); void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct sock *sk; if (v == SEQ_START_TOKEN) sk = udp_get_idx(seq, 0); else sk = udp_get_next(seq, v); ++*pos; return sk; } EXPORT_SYMBOL(udp_seq_next); void udp_seq_stop(struct seq_file *seq, void *v) { struct udp_seq_afinfo *afinfo; struct udp_iter_state *state = seq->private; if (state->bpf_seq_afinfo) afinfo = state->bpf_seq_afinfo; else afinfo = PDE_DATA(file_inode(seq->file)); if (state->bucket <= afinfo->udp_table->mask) spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); } EXPORT_SYMBOL(udp_seq_stop); /* ------------------------------------------------------------------------ */ static void udp4_format_sock(struct sock *sp, struct seq_file *f, int bucket) { struct inet_sock *inet = inet_sk(sp); __be32 dest = inet->inet_daddr; __be32 src = inet->inet_rcv_saddr; __u16 destp = ntohs(inet->inet_dport); __u16 srcp = ntohs(inet->inet_sport); seq_printf(f, "%5d: %08X:%04X %08X:%04X" " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", bucket, src, srcp, dest, destp, sp->sk_state, sk_wmem_alloc_get(sp), udp_rqueue_get(sp), 0, 0L, 0, from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 0, sock_i_ino(sp), refcount_read(&sp->sk_refcnt), sp, atomic_read(&sp->sk_drops)); } int udp4_seq_show(struct seq_file *seq, void *v) { seq_setwidth(seq, 127); if (v == SEQ_START_TOKEN) seq_puts(seq, " sl local_address rem_address st tx_queue " "rx_queue tr tm->when retrnsmt uid timeout " "inode ref pointer drops"); else { struct udp_iter_state *state = seq->private; udp4_format_sock(v, seq, state->bucket); } seq_pad(seq, '\n'); return 0; } #ifdef CONFIG_BPF_SYSCALL struct bpf_iter__udp { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct udp_sock *, udp_sk); uid_t uid __aligned(8); int bucket __aligned(8); }; static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, struct udp_sock *udp_sk, uid_t uid, int bucket) { struct bpf_iter__udp ctx; meta->seq_num--; /* skip SEQ_START_TOKEN */ ctx.meta = meta; ctx.udp_sk = udp_sk; ctx.uid = uid; ctx.bucket = bucket; return bpf_iter_run_prog(prog, &ctx); } static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) { struct udp_iter_state *state = seq->private; struct bpf_iter_meta meta; struct bpf_prog *prog; struct sock *sk = v; uid_t uid; if (v == SEQ_START_TOKEN) return 0; uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); meta.seq = seq; prog = bpf_iter_get_info(&meta, false); return udp_prog_seq_show(prog, &meta, v, uid, state->bucket); } static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) { struct bpf_iter_meta meta; struct bpf_prog *prog; if (!v) { meta.seq = seq; prog = bpf_iter_get_info(&meta, true); if (prog) (void)udp_prog_seq_show(prog, &meta, v, 0, 0); } udp_seq_stop(seq, v); } static const struct seq_operations bpf_iter_udp_seq_ops = { .start = udp_seq_start, .next = udp_seq_next, .stop = bpf_iter_udp_seq_stop, .show = bpf_iter_udp_seq_show, }; #endif const struct seq_operations udp_seq_ops = { .start = udp_seq_start, .next = udp_seq_next, .stop = udp_seq_stop, .show = udp4_seq_show, }; EXPORT_SYMBOL(udp_seq_ops); static struct udp_seq_afinfo udp4_seq_afinfo = { .family = AF_INET, .udp_table = &udp_table, }; static int __net_init udp4_proc_init_net(struct net *net) { if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, sizeof(struct udp_iter_state), &udp4_seq_afinfo)) return -ENOMEM; return 0; } static void __net_exit udp4_proc_exit_net(struct net *net) { remove_proc_entry("udp", net->proc_net); } static struct pernet_operations udp4_net_ops = { .init = udp4_proc_init_net, .exit = udp4_proc_exit_net, }; int __init udp4_proc_init(void) { return register_pernet_subsys(&udp4_net_ops); } void udp4_proc_exit(void) { unregister_pernet_subsys(&udp4_net_ops); } #endif /* CONFIG_PROC_FS */ static __initdata unsigned long uhash_entries; static int __init set_uhash_entries(char *str) { ssize_t ret; if (!str) return 0; ret = kstrtoul(str, 0, &uhash_entries); if (ret) return 0; if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) uhash_entries = UDP_HTABLE_SIZE_MIN; return 1; } __setup("uhash_entries=", set_uhash_entries); void __init udp_table_init(struct udp_table *table, const char *name) { unsigned int i; table->hash = alloc_large_system_hash(name, 2 * sizeof(struct udp_hslot), uhash_entries, 21, /* one slot per 2 MB */ 0, &table->log, &table->mask, UDP_HTABLE_SIZE_MIN, 64 * 1024); table->hash2 = table->hash + (table->mask + 1); for (i = 0; i <= table->mask; i++) { INIT_HLIST_HEAD(&table->hash[i].head); table->hash[i].count = 0; spin_lock_init(&table->hash[i].lock); } for (i = 0; i <= table->mask; i++) { INIT_HLIST_HEAD(&table->hash2[i].head); table->hash2[i].count = 0; spin_lock_init(&table->hash2[i].lock); } } u32 udp_flow_hashrnd(void) { static u32 hashrnd __read_mostly; net_get_random_once(&hashrnd, sizeof(hashrnd)); return hashrnd; } EXPORT_SYMBOL(udp_flow_hashrnd); static void __udp_sysctl_init(struct net *net) { net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; #ifdef CONFIG_NET_L3_MASTER_DEV net->ipv4.sysctl_udp_l3mdev_accept = 0; #endif } static int __net_init udp_sysctl_init(struct net *net) { __udp_sysctl_init(net); return 0; } static struct pernet_operations __net_initdata udp_sysctl_ops = { .init = udp_sysctl_init, }; #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, struct udp_sock *udp_sk, uid_t uid, int bucket) static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) { struct udp_iter_state *st = priv_data; struct udp_seq_afinfo *afinfo; int ret; afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN); if (!afinfo) return -ENOMEM; afinfo->family = AF_UNSPEC; afinfo->udp_table = &udp_table; st->bpf_seq_afinfo = afinfo; ret = bpf_iter_init_seq_net(priv_data, aux); if (ret) kfree(afinfo); return ret; } static void bpf_iter_fini_udp(void *priv_data) { struct udp_iter_state *st = priv_data; kfree(st->bpf_seq_afinfo); bpf_iter_fini_seq_net(priv_data); } static const struct bpf_iter_seq_info udp_seq_info = { .seq_ops = &bpf_iter_udp_seq_ops, .init_seq_private = bpf_iter_init_udp, .fini_seq_private = bpf_iter_fini_udp, .seq_priv_size = sizeof(struct udp_iter_state), }; static struct bpf_iter_reg udp_reg_info = { .target = "udp", .ctx_arg_info_size = 1, .ctx_arg_info = { { offsetof(struct bpf_iter__udp, udp_sk), PTR_TO_BTF_ID_OR_NULL }, }, .seq_info = &udp_seq_info, }; static void __init bpf_iter_register(void) { udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; if (bpf_iter_reg_target(&udp_reg_info)) pr_warn("Warning: could not register bpf iterator udp\n"); } #endif void __init udp_init(void) { unsigned long limit; unsigned int i; udp_table_init(&udp_table, "UDP"); limit = nr_free_buffer_pages() / 8; limit = max(limit, 128UL); sysctl_udp_mem[0] = limit / 4 * 3; sysctl_udp_mem[1] = limit; sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; __udp_sysctl_init(&init_net); /* 16 spinlocks per cpu */ udp_busylocks_log = ilog2(nr_cpu_ids) + 4; udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, GFP_KERNEL); if (!udp_busylocks) panic("UDP: failed to alloc udp_busylocks\n"); for (i = 0; i < (1U << udp_busylocks_log); i++) spin_lock_init(udp_busylocks + i); if (register_pernet_subsys(&udp_sysctl_ops)) panic("UDP: failed to init sysctl parameters.\n"); #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) bpf_iter_register(); #endif }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_SCHED_GENERIC_H #define __NET_SCHED_GENERIC_H #include <linux/netdevice.h> #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/pkt_sched.h> #include <linux/pkt_cls.h> #include <linux/percpu.h> #include <linux/dynamic_queue_limits.h> #include <linux/list.h> #include <linux/refcount.h> #include <linux/workqueue.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/atomic.h> #include <linux/hashtable.h> #include <net/gen_stats.h> #include <net/rtnetlink.h> #include <net/flow_offload.h> struct Qdisc_ops; struct qdisc_walker; struct tcf_walker; struct module; struct bpf_flow_keys; struct qdisc_rate_table { struct tc_ratespec rate; u32 data[256]; struct qdisc_rate_table *next; int refcnt; }; enum qdisc_state_t { __QDISC_STATE_SCHED, __QDISC_STATE_DEACTIVATED, __QDISC_STATE_MISSED, }; struct qdisc_size_table { struct rcu_head rcu; struct list_head list; struct tc_sizespec szopts; int refcnt; u16 data[]; }; /* similar to sk_buff_head, but skb->prev pointer is undefined. */ struct qdisc_skb_head { struct sk_buff *head; struct sk_buff *tail; __u32 qlen; spinlock_t lock; }; struct Qdisc { int (*enqueue)(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free); struct sk_buff * (*dequeue)(struct Qdisc *sch); unsigned int flags; #define TCQ_F_BUILTIN 1 #define TCQ_F_INGRESS 2 #define TCQ_F_CAN_BYPASS 4 #define TCQ_F_MQROOT 8 #define TCQ_F_ONETXQUEUE 0x10 /* dequeue_skb() can assume all skbs are for * q->dev_queue : It can test * netif_xmit_frozen_or_stopped() before * dequeueing next packet. * Its true for MQ/MQPRIO slaves, or non * multiqueue device. */ #define TCQ_F_WARN_NONWC (1 << 16) #define TCQ_F_CPUSTATS 0x20 /* run using percpu statistics */ #define TCQ_F_NOPARENT 0x40 /* root of its hierarchy : * qdisc_tree_decrease_qlen() should stop. */ #define TCQ_F_INVISIBLE 0x80 /* invisible by default in dump */ #define TCQ_F_NOLOCK 0x100 /* qdisc does not require locking */ #define TCQ_F_OFFLOADED 0x200 /* qdisc is offloaded to HW */ u32 limit; const struct Qdisc_ops *ops; struct qdisc_size_table __rcu *stab; struct hlist_node hash; u32 handle; u32 parent; struct netdev_queue *dev_queue; struct net_rate_estimator __rcu *rate_est; struct gnet_stats_basic_cpu __percpu *cpu_bstats; struct gnet_stats_queue __percpu *cpu_qstats; int pad; refcount_t refcnt; /* * For performance sake on SMP, we put highly modified fields at the end */ struct sk_buff_head gso_skb ____cacheline_aligned_in_smp; struct qdisc_skb_head q; struct gnet_stats_basic_packed bstats; seqcount_t running; struct gnet_stats_queue qstats; unsigned long state; struct Qdisc *next_sched; struct sk_buff_head skb_bad_txq; spinlock_t busylock ____cacheline_aligned_in_smp; spinlock_t seqlock; /* for NOLOCK qdisc, true if there are no enqueued skbs */ bool empty; struct rcu_head rcu; /* private data */ long privdata[] ____cacheline_aligned; }; static inline void qdisc_refcount_inc(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_BUILTIN) return; refcount_inc(&qdisc->refcnt); } /* Intended to be used by unlocked users, when concurrent qdisc release is * possible. */ static inline struct Qdisc *qdisc_refcount_inc_nz(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_BUILTIN) return qdisc; if (refcount_inc_not_zero(&qdisc->refcnt)) return qdisc; return NULL; } static inline bool qdisc_is_running(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_NOLOCK) return spin_is_locked(&qdisc->seqlock); return (raw_read_seqcount(&qdisc->running) & 1) ? true : false; } static inline bool qdisc_is_percpu_stats(const struct Qdisc *q) { return q->flags & TCQ_F_CPUSTATS; } static inline bool qdisc_is_empty(const struct Qdisc *qdisc) { if (qdisc_is_percpu_stats(qdisc)) return READ_ONCE(qdisc->empty); return !READ_ONCE(qdisc->q.qlen); } static inline bool qdisc_run_begin(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_NOLOCK) { if (spin_trylock(&qdisc->seqlock)) goto nolock_empty; /* Paired with smp_mb__after_atomic() to make sure * STATE_MISSED checking is synchronized with clearing * in pfifo_fast_dequeue(). */ smp_mb__before_atomic(); /* If the MISSED flag is set, it means other thread has * set the MISSED flag before second spin_trylock(), so * we can return false here to avoid multi cpus doing * the set_bit() and second spin_trylock() concurrently. */ if (test_bit(__QDISC_STATE_MISSED, &qdisc->state)) return false; /* Set the MISSED flag before the second spin_trylock(), * if the second spin_trylock() return false, it means * other cpu holding the lock will do dequeuing for us * or it will see the MISSED flag set after releasing * lock and reschedule the net_tx_action() to do the * dequeuing. */ set_bit(__QDISC_STATE_MISSED, &qdisc->state); /* spin_trylock() only has load-acquire semantic, so use * smp_mb__after_atomic() to ensure STATE_MISSED is set * before doing the second spin_trylock(). */ smp_mb__after_atomic(); /* Retry again in case other CPU may not see the new flag * after it releases the lock at the end of qdisc_run_end(). */ if (!spin_trylock(&qdisc->seqlock)) return false; nolock_empty: WRITE_ONCE(qdisc->empty, false); } else if (qdisc_is_running(qdisc)) { return false; } /* Variant of write_seqcount_begin() telling lockdep a trylock * was attempted. */ raw_write_seqcount_begin(&qdisc->running); seqcount_acquire(&qdisc->running.dep_map, 0, 1, _RET_IP_); return true; } static inline void qdisc_run_end(struct Qdisc *qdisc) { write_seqcount_end(&qdisc->running); if (qdisc->flags & TCQ_F_NOLOCK) { spin_unlock(&qdisc