1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_CPUMASK_H #define __LINUX_CPUMASK_H /* * Cpumasks provide a bitmap suitable for representing the * set of CPU's in a system, one bit position per CPU number. In general, * only nr_cpu_ids (<= NR_CPUS) bits are valid. */ #include <linux/kernel.h> #include <linux/threads.h> #include <linux/bitmap.h> #include <linux/atomic.h> #include <linux/bug.h> /* Don't assign or return these: may not be this big! */ typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t; /** * cpumask_bits - get the bits in a cpumask * @maskp: the struct cpumask * * * You should only assume nr_cpu_ids bits of this mask are valid. This is * a macro so it's const-correct. */ #define cpumask_bits(maskp) ((maskp)->bits) /** * cpumask_pr_args - printf args to output a cpumask * @maskp: cpumask to be printed * * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. */ #define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) #if NR_CPUS == 1 #define nr_cpu_ids 1U #else extern unsigned int nr_cpu_ids; #endif #ifdef CONFIG_CPUMASK_OFFSTACK /* Assuming NR_CPUS is huge, a runtime limit is more efficient. Also, * not all bits may be allocated. */ #define nr_cpumask_bits nr_cpu_ids #else #define nr_cpumask_bits ((unsigned int)NR_CPUS) #endif /* * The following particular system cpumasks and operations manage * possible, present, active and online cpus. * * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable * cpu_present_mask - has bit 'cpu' set iff cpu is populated * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler * cpu_active_mask - has bit 'cpu' set iff cpu available to migration * * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. * * The cpu_possible_mask is fixed at boot time, as the set of CPU id's * that it is possible might ever be plugged in at anytime during the * life of that system boot. The cpu_present_mask is dynamic(*), * representing which CPUs are currently plugged in. And * cpu_online_mask is the dynamic subset of cpu_present_mask, * indicating those CPUs available for scheduling. * * If HOTPLUG is enabled, then cpu_possible_mask is forced to have * all NR_CPUS bits set, otherwise it is just the set of CPUs that * ACPI reports present at boot. * * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, * depending on what ACPI reports as currently plugged in, otherwise * cpu_present_mask is just a copy of cpu_possible_mask. * * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. * * Subtleties: * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode * assumption that their single CPU is online. The UP * cpu_{online,possible,present}_masks are placebos. Changing them * will have no useful affect on the following num_*_cpus() * and cpu_*() macros in the UP case. This ugliness is a UP * optimization - don't waste any instructions or memory references * asking if you're online or how many CPUs there are if there is * only one CPU. */ extern struct cpumask __cpu_possible_mask; extern struct cpumask __cpu_online_mask; extern struct cpumask __cpu_present_mask; extern struct cpumask __cpu_active_mask; #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) #define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) #define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) #define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) extern atomic_t __num_online_cpus; #if NR_CPUS > 1 /** * num_online_cpus() - Read the number of online CPUs * * Despite the fact that __num_online_cpus is of type atomic_t, this * interface gives only a momentary snapshot and is not protected against * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held * region. */ static inline unsigned int num_online_cpus(void) { return atomic_read(&__num_online_cpus); } #define num_possible_cpus() cpumask_weight(cpu_possible_mask) #define num_present_cpus() cpumask_weight(cpu_present_mask) #define num_active_cpus() cpumask_weight(cpu_active_mask) #define cpu_online(cpu) cpumask_test_cpu((cpu), cpu_online_mask) #define cpu_possible(cpu) cpumask_test_cpu((cpu), cpu_possible_mask) #define cpu_present(cpu) cpumask_test_cpu((cpu), cpu_present_mask) #define cpu_active(cpu) cpumask_test_cpu((cpu), cpu_active_mask) #else #define num_online_cpus() 1U #define num_possible_cpus() 1U #define num_present_cpus() 1U #define num_active_cpus() 1U #define cpu_online(cpu) ((cpu) == 0) #define cpu_possible(cpu) ((cpu) == 0) #define cpu_present(cpu) ((cpu) == 0) #define cpu_active(cpu) ((cpu) == 0) #endif extern cpumask_t cpus_booted_once_mask; static inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) { #ifdef CONFIG_DEBUG_PER_CPU_MAPS WARN_ON_ONCE(cpu >= bits); #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ } /* verify cpu argument to cpumask_* operators */ static inline unsigned int cpumask_check(unsigned int cpu) { cpu_max_bits_warn(cpu, nr_cpumask_bits); return cpu; } #if NR_CPUS == 1 /* Uniprocessor. Assume all masks are "1". */ static inline unsigned int cpumask_first(const struct cpumask *srcp) { return 0; } static inline unsigned int cpumask_last(const struct cpumask *srcp) { return 0; } /* Valid inputs for n are -1 and 0. */ static inline unsigned int cpumask_next(int n, const struct cpumask *srcp) { return n+1; } static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) { return n+1; } static inline unsigned int cpumask_next_and(int n, const struct cpumask *srcp, const struct cpumask *andp) { return n+1; } static inline unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap) { /* cpu0 unless stop condition, wrap and at cpu0, then nr_cpumask_bits */ return (wrap && n == 0); } /* cpu must be a valid cpu, ie 0, so there's no other choice. */ static inline unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu) { return 1; } static inline unsigned int cpumask_local_spread(unsigned int i, int node) { return 0; } static inline int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p) { return cpumask_next_and(-1, src1p, src2p); } #define for_each_cpu(cpu, mask) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) #define for_each_cpu_not(cpu, mask) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) #define for_each_cpu_wrap(cpu, mask, start) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask, (void)(start)) #define for_each_cpu_and(cpu, mask1, mask2) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask1, (void)mask2) #else /** * cpumask_first - get the first cpu in a cpumask * @srcp: the cpumask pointer * * Returns >= nr_cpu_ids if no cpus set. */ static inline unsigned int cpumask_first(const struct cpumask *srcp) { return find_first_bit(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_last - get the last CPU in a cpumask * @srcp: - the cpumask pointer * * Returns >= nr_cpumask_bits if no CPUs set. */ static inline unsigned int cpumask_last(const struct cpumask *srcp) { return find_last_bit(cpumask_bits(srcp), nr_cpumask_bits); } unsigned int cpumask_next(int n, const struct cpumask *srcp); /** * cpumask_next_zero - get the next unset cpu in a cpumask * @n: the cpu prior to the place to search (ie. return will be > @n) * @srcp: the cpumask pointer * * Returns >= nr_cpu_ids if no further cpus unset. */ static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) { /* -1 is a legal arg here. */ if (n != -1) cpumask_check(n); return find_next_zero_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1); } int cpumask_next_and(int n, const struct cpumask *, const struct cpumask *); int cpumask_any_but(const struct cpumask *mask, unsigned int cpu); unsigned int cpumask_local_spread(unsigned int i, int node); int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p); /** * for_each_cpu - iterate over every cpu in a mask * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu(cpu, mask) \ for ((cpu) = -1; \ (cpu) = cpumask_next((cpu), (mask)), \ (cpu) < nr_cpu_ids;) /** * for_each_cpu_not - iterate over every cpu in a complemented mask * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_not(cpu, mask) \ for ((cpu) = -1; \ (cpu) = cpumask_next_zero((cpu), (mask)), \ (cpu) < nr_cpu_ids;) extern int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap); /** * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask poiter * @start: the start location * * The implementation does not assume any bit in @mask is set (including @start). * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_wrap(cpu, mask, start) \ for ((cpu) = cpumask_next_wrap((start)-1, (mask), (start), false); \ (cpu) < nr_cpumask_bits; \ (cpu) = cpumask_next_wrap((cpu), (mask), (start), true)) /** * for_each_cpu_and - iterate over every cpu in both masks * @cpu: the (optionally unsigned) integer iterator * @mask1: the first cpumask pointer * @mask2: the second cpumask pointer * * This saves a temporary CPU mask in many places. It is equivalent to: * struct cpumask tmp; * cpumask_and(&tmp, &mask1, &mask2); * for_each_cpu(cpu, &tmp) * ... * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_and(cpu, mask1, mask2) \ for ((cpu) = -1; \ (cpu) = cpumask_next_and((cpu), (mask1), (mask2)), \ (cpu) < nr_cpu_ids;) #endif /* SMP */ #define CPU_BITS_NONE \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } #define CPU_BITS_CPU0 \ { \ [0] = 1UL \ } /** * cpumask_set_cpu - set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_clear_cpu - clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) { clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) { __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_test_cpu - test for a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in @cpumask, else returns 0 */ static inline int cpumask_test_cpu(int cpu, const struct cpumask *cpumask) { return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); } /** * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0 * * test_and_set_bit wrapper for cpumasks. */ static inline int cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) { return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0 * * test_and_clear_bit wrapper for cpumasks. */ static inline int cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) { return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static inline void cpumask_setall(struct cpumask *dstp) { bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static inline void cpumask_clear(struct cpumask *dstp) { bitmap_zero(cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_and - *dstp = *src1p & *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * If *@dstp is empty, returns 0, else returns 1 */ static inline int cpumask_and(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_or - *dstp = *src1p | *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_xor - *dstp = *src1p ^ *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static inline void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_andnot - *dstp = *src1p & ~*src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * If *@dstp is empty, returns 0, else returns 1 */ static inline int cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_complement - *dstp = ~*srcp * @dstp: the cpumask result * @srcp: the input to invert */ static inline void cpumask_complement(struct cpumask *dstp, const struct cpumask *srcp) { bitmap_complement(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_equal - *src1p == *src2p * @src1p: the first input * @src2p: the second input */ static inline bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_or_equal - *src1p | *src2p == *src3p * @src1p: the first input * @src2p: the second input * @src3p: the third input */ static inline bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p, const struct cpumask *src3p) { return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), cpumask_bits(src3p), nr_cpumask_bits); } /** * cpumask_intersects - (*src1p & *src2p) != 0 * @src1p: the first input * @src2p: the second input */ static inline bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_subset - (*src1p & ~*src2p) == 0 * @src1p: the first input * @src2p: the second input * * Returns 1 if *@src1p is a subset of *@src2p, else returns 0 */ static inline int cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_empty - *srcp == 0 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. */ static inline bool cpumask_empty(const struct cpumask *srcp) { return bitmap_empty(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_full - *srcp == 0xFFFFFFFF... * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. */ static inline bool cpumask_full(const struct cpumask *srcp) { return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_weight - Count of bits in *srcp * @srcp: the cpumask to count bits (< nr_cpu_ids) in. */ static inline unsigned int cpumask_weight(const struct cpumask *srcp) { return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_shift_right - *dstp = *srcp >> n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static inline void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, nr_cpumask_bits); } /** * cpumask_shift_left - *dstp = *srcp << n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static inline void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, nr_cpumask_bits); } /** * cpumask_copy - *dstp = *srcp * @dstp: the result * @srcp: the input cpumask */ static inline void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp) { bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_any - pick a "random" cpu from *srcp * @srcp: the input cpumask * * Returns >= nr_cpu_ids if no cpus set. */ #define cpumask_any(srcp) cpumask_first(srcp) /** * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 * @src1p: the first input * @src2p: the second input * * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). */ #define cpumask_first_and(src1p, src2p) cpumask_next_and(-1, (src1p), (src2p)) /** * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 * @mask1: the first input cpumask * @mask2: the second input cpumask * * Returns >= nr_cpu_ids if no cpus set. */ #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) /** * cpumask_of - the cpumask containing just a given cpu * @cpu: the cpu (<= nr_cpu_ids) */ #define cpumask_of(cpu) (get_cpu_mask(cpu)) /** * cpumask_parse_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parselist_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parselist_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parse - extract a cpumask from a string * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parse(const char *buf, struct cpumask *dstp) { return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpulist_parse - extract a cpumask from a user string of ranges * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpulist_parse(const char *buf, struct cpumask *dstp) { return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_size - size to allocate for a 'struct cpumask' in bytes */ static inline unsigned int cpumask_size(void) { return BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long); } /* * cpumask_var_t: struct cpumask for stack usage. * * Oh, the wicked games we play! In order to make kernel coding a * little more difficult, we typedef cpumask_var_t to an array or a * pointer: doing &mask on an array is a noop, so it still works. * * ie. * cpumask_var_t tmpmask; * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) * return -ENOMEM; * * ... use 'tmpmask' like a normal struct cpumask * ... * * free_cpumask_var(tmpmask); * * * However, one notable exception is there. alloc_cpumask_var() allocates * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t. * * cpumask_var_t tmpmask; * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) * return -ENOMEM; * * var = *tmpmask; * * This code makes NR_CPUS length memcopy and brings to a memory corruption. * cpumask_copy() provide safe copy functionality. * * Note that there is another evil here: If you define a cpumask_var_t * as a percpu variable then the way to obtain the address of the cpumask * structure differently influences what this_cpu_* operation needs to be * used. Please use this_cpu_cpumask_var_t in those cases. The direct use * of this_cpu_ptr() or this_cpu_read() will lead to failures when the * other type of cpumask_var_t implementation is configured. * * Please also note that __cpumask_var_read_mostly can be used to declare * a cpumask_var_t variable itself (not its content) as read mostly. */ #ifdef CONFIG_CPUMASK_OFFSTACK typedef struct cpumask *cpumask_var_t; #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) #define __cpumask_var_read_mostly __read_mostly bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); void alloc_bootmem_cpumask_var(cpumask_var_t *mask); void free_cpumask_var(cpumask_var_t mask); void free_bootmem_cpumask_var(cpumask_var_t mask); static inline bool cpumask_available(cpumask_var_t mask) { return mask != NULL; } #else typedef struct cpumask cpumask_var_t[1]; #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) #define __cpumask_var_read_mostly static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { return true; } static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { return true; } static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { cpumask_clear(*mask); return true; } static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { cpumask_clear(*mask); return true; } static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) { } static inline void free_cpumask_var(cpumask_var_t mask) { } static inline void free_bootmem_cpumask_var(cpumask_var_t mask) { } static inline bool cpumask_available(cpumask_var_t mask) { return true; } #endif /* CONFIG_CPUMASK_OFFSTACK */ /* It's common to want to use cpu_all_mask in struct member initializers, * so it has to refer to an address rather than a pointer. */ extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); #define cpu_all_mask to_cpumask(cpu_all_bits) /* First bits of cpu_bit_bitmap are in fact unset. */ #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) /* Wrappers for arch boot code to manipulate normally-constant masks */ void init_cpu_present(const struct cpumask *src); void init_cpu_possible(const struct cpumask *src); void init_cpu_online(const struct cpumask *src); static inline void reset_cpu_possible_mask(void) { bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS); } static inline void set_cpu_possible(unsigned int cpu, bool possible) { if (possible) cpumask_set_cpu(cpu, &__cpu_possible_mask); else cpumask_clear_cpu(cpu, &__cpu_possible_mask); } static inline void set_cpu_present(unsigned int cpu, bool present) { if (present) cpumask_set_cpu(cpu, &__cpu_present_mask); else cpumask_clear_cpu(cpu, &__cpu_present_mask); } void set_cpu_online(unsigned int cpu, bool online); static inline void set_cpu_active(unsigned int cpu, bool active) { if (active) cpumask_set_cpu(cpu, &__cpu_active_mask); else cpumask_clear_cpu(cpu, &__cpu_active_mask); } /** * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask * * @bitmap: the bitmap * * There are a few places where cpumask_var_t isn't appropriate and * static cpumasks must be used (eg. very early boot), yet we don't * expose the definition of 'struct cpumask'. * * This does the conversion, and can be used as a constant initializer. */ #define to_cpumask(bitmap) \ ((struct cpumask *)(1 ? (bitmap) \ : (void *)sizeof(__check_is_bitmap(bitmap)))) static inline int __check_is_bitmap(const unsigned long *bitmap) { return 1; } /* * Special-case data structure for "single bit set only" constant CPU masks. * * We pre-generate all the 64 (or 32) possible bit positions, with enough * padding to the left and the right, and return the constant pointer * appropriately offset. */ extern const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; static inline const struct cpumask *get_cpu_mask(unsigned int cpu) { const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; p -= cpu / BITS_PER_LONG; return to_cpumask(p); } #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) #if NR_CPUS <= BITS_PER_LONG #define CPU_BITS_ALL \ { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #else /* NR_CPUS > BITS_PER_LONG */ #define CPU_BITS_ALL \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #endif /* NR_CPUS > BITS_PER_LONG */ /** * cpumap_print_to_pagebuf - copies the cpumask into the buffer either * as comma-separated list of cpus or hex values of cpumask * @list: indicates whether the cpumap must be list * @mask: the cpumask to copy * @buf: the buffer to copy into * * Returns the length of the (null-terminated) @buf string, zero if * nothing is copied. */ static inline ssize_t cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) { return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), nr_cpu_ids); } #if NR_CPUS <= BITS_PER_LONG #define CPU_MASK_ALL \ (cpumask_t) { { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #else #define CPU_MASK_ALL \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #endif /* NR_CPUS > BITS_PER_LONG */ #define CPU_MASK_NONE \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } } #define CPU_MASK_CPU0 \ (cpumask_t) { { \ [0] = 1UL \ } } #endif /* __LINUX_CPUMASK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _DELAYED_CALL_H #define _DELAYED_CALL_H /* * Poor man's closures; I wish we could've done them sanely polymorphic, * but... */ struct delayed_call { void (*fn)(void *); void *arg; }; #define DEFINE_DELAYED_CALL(name) struct delayed_call name = {NULL, NULL} /* I really wish we had closures with sane typechecking... */ static inline void set_delayed_call(struct delayed_call *call, void (*fn)(void *), void *arg) { call->fn = fn; call->arg = arg; } static inline void do_delayed_call(struct delayed_call *call) { if (call->fn) call->fn(call->arg); } static inline void clear_delayed_call(struct delayed_call *call) { call->fn = NULL; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __IPC_NAMESPACE_H__ #define __IPC_NAMESPACE_H__ #include <linux/err.h> #include <linux/idr.h> #include <linux/rwsem.h> #include <linux/notifier.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/refcount.h> #include <linux/rhashtable-types.h> struct user_namespace; struct ipc_ids { int in_use; unsigned short seq; struct rw_semaphore rwsem; struct idr ipcs_idr; int max_idx; int last_idx; /* For wrap around detection */ #ifdef CONFIG_CHECKPOINT_RESTORE int next_id; #endif struct rhashtable key_ht; }; struct ipc_namespace { refcount_t count; struct ipc_ids ids[3]; int sem_ctls[4]; int used_sems; unsigned int msg_ctlmax; unsigned int msg_ctlmnb; unsigned int msg_ctlmni; atomic_t msg_bytes; atomic_t msg_hdrs; size_t shm_ctlmax; size_t shm_ctlall; unsigned long shm_tot; int shm_ctlmni; /* * Defines whether IPC_RMID is forced for _all_ shm segments regardless * of shmctl() */ int shm_rmid_forced; struct notifier_block ipcns_nb; /* The kern_mount of the mqueuefs sb. We take a ref on it */ struct vfsmount *mq_mnt; /* # queues in this ns, protected by mq_lock */ unsigned int mq_queues_count; /* next fields are set through sysctl */ unsigned int mq_queues_max; /* initialized to DFLT_QUEUESMAX */ unsigned int mq_msg_max; /* initialized to DFLT_MSGMAX */ unsigned int mq_msgsize_max; /* initialized to DFLT_MSGSIZEMAX */ unsigned int mq_msg_default; unsigned int mq_msgsize_default; /* user_ns which owns the ipc ns */ struct user_namespace *user_ns; struct ucounts *ucounts; struct llist_node mnt_llist; struct ns_common ns; } __randomize_layout; extern struct ipc_namespace init_ipc_ns; extern spinlock_t mq_lock; #ifdef CONFIG_SYSVIPC extern void shm_destroy_orphaned(struct ipc_namespace *ns); #else /* CONFIG_SYSVIPC */ static inline void shm_destroy_orphaned(struct ipc_namespace *ns) {} #endif /* CONFIG_SYSVIPC */ #ifdef CONFIG_POSIX_MQUEUE extern int mq_init_ns(struct ipc_namespace *ns); /* * POSIX Message Queue default values: * * MIN_*: Lowest value an admin can set the maximum unprivileged limit to * DFLT_*MAX: Default values for the maximum unprivileged limits * DFLT_{MSG,MSGSIZE}: Default values used when the user doesn't supply * an attribute to the open call and the queue must be created * HARD_*: Highest value the maximums can be set to. These are enforced * on CAP_SYS_RESOURCE apps as well making them inviolate (so make them * suitably high) * * POSIX Requirements: * Per app minimum openable message queues - 8. This does not map well * to the fact that we limit the number of queues on a per namespace * basis instead of a per app basis. So, make the default high enough * that no given app should have a hard time opening 8 queues. * Minimum maximum for HARD_MSGMAX - 32767. I bumped this to 65536. * Minimum maximum for HARD_MSGSIZEMAX - POSIX is silent on this. However, * we have run into a situation where running applications in the wild * require this to be at least 5MB, and preferably 10MB, so I set the * value to 16MB in hopes that this user is the worst of the bunch and * the new maximum will handle anyone else. I may have to revisit this * in the future. */ #define DFLT_QUEUESMAX 256 #define MIN_MSGMAX 1 #define DFLT_MSG 10U #define DFLT_MSGMAX 10 #define HARD_MSGMAX 65536 #define MIN_MSGSIZEMAX 128 #define DFLT_MSGSIZE 8192U #define DFLT_MSGSIZEMAX 8192 #define HARD_MSGSIZEMAX (16*1024*1024) #else static inline int mq_init_ns(struct ipc_namespace *ns) { return 0; } #endif #if defined(CONFIG_IPC_NS) extern struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns); static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { if (ns) refcount_inc(&ns->count); return ns; } static inline struct ipc_namespace *get_ipc_ns_not_zero(struct ipc_namespace *ns) { if (ns) { if (refcount_inc_not_zero(&ns->count)) return ns; } return NULL; } extern void put_ipc_ns(struct ipc_namespace *ns); #else static inline struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns) { if (flags & CLONE_NEWIPC) return ERR_PTR(-EINVAL); return ns; } static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { return ns; } static inline struct ipc_namespace *get_ipc_ns_not_zero(struct ipc_namespace *ns) { return ns; } static inline void put_ipc_ns(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_POSIX_MQUEUE_SYSCTL struct ctl_table_header; extern struct ctl_table_header *mq_register_sysctl_table(void); #else /* CONFIG_POSIX_MQUEUE_SYSCTL */ static inline struct ctl_table_header *mq_register_sysctl_table(void) { return NULL; } #endif /* CONFIG_POSIX_MQUEUE_SYSCTL */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * SR-IPv6 implementation * * Author: * David Lebrun <david.lebrun@uclouvain.be> */ #ifndef _NET_SEG6_H #define _NET_SEG6_H #include <linux/net.h> #include <linux/ipv6.h> #include <linux/seg6.h> #include <linux/rhashtable-types.h> static inline void update_csum_diff4(struct sk_buff *skb, __be32 from, __be32 to) { __be32 diff[] = { ~from, to }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } static inline void update_csum_diff16(struct sk_buff *skb, __be32 *from, __be32 *to) { __be32 diff[] = { ~from[0], ~from[1], ~from[2], ~from[3], to[0], to[1], to[2], to[3], }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } struct seg6_pernet_data { struct mutex lock; struct in6_addr __rcu *tun_src; #ifdef CONFIG_IPV6_SEG6_HMAC struct rhashtable hmac_infos; #endif }; static inline struct seg6_pernet_data *seg6_pernet(struct net *net) { #if IS_ENABLED(CONFIG_IPV6) return net->ipv6.seg6_data; #else return NULL; #endif } extern int seg6_init(void); extern void seg6_exit(void); extern int seg6_iptunnel_init(void); extern void seg6_iptunnel_exit(void); extern int seg6_local_init(void); extern void seg6_local_exit(void); extern bool seg6_validate_srh(struct ipv6_sr_hdr *srh, int len, bool reduced); extern int seg6_do_srh_encap(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, int proto); extern int seg6_do_srh_inline(struct sk_buff *skb, struct ipv6_sr_hdr *osrh); extern int seg6_lookup_nexthop(struct sk_buff *skb, struct in6_addr *nhaddr, u32 tbl_id); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NSPROXY_H #define _LINUX_NSPROXY_H #include <linux/spinlock.h> #include <linux/sched.h> struct mnt_namespace; struct uts_namespace; struct ipc_namespace; struct pid_namespace; struct cgroup_namespace; struct fs_struct; /* * A structure to contain pointers to all per-process * namespaces - fs (mount), uts, network, sysvipc, etc. * * The pid namespace is an exception -- it's accessed using * task_active_pid_ns. The pid namespace here is the * namespace that children will use. * * 'count' is the number of tasks holding a reference. * The count for each namespace, then, will be the number * of nsproxies pointing to it, not the number of tasks. * * The nsproxy is shared by tasks which share all namespaces. * As soon as a single namespace is cloned or unshared, the * nsproxy is copied. */ struct nsproxy { atomic_t count; struct uts_namespace *uts_ns; struct ipc_namespace *ipc_ns; struct mnt_namespace *mnt_ns; struct pid_namespace *pid_ns_for_children; struct net *net_ns; struct time_namespace *time_ns; struct time_namespace *time_ns_for_children; struct cgroup_namespace *cgroup_ns; }; extern struct nsproxy init_nsproxy; /* * A structure to encompass all bits needed to install * a partial or complete new set of namespaces. * * If a new user namespace is requested cred will * point to a modifiable set of credentials. If a pointer * to a modifiable set is needed nsset_cred() must be * used and tested. */ struct nsset { unsigned flags; struct nsproxy *nsproxy; struct fs_struct *fs; const struct cred *cred; }; static inline struct cred *nsset_cred(struct nsset *set) { if (set->flags & CLONE_NEWUSER) return (struct cred *)set->cred; return NULL; } /* * the namespaces access rules are: * * 1. only current task is allowed to change tsk->nsproxy pointer or * any pointer on the nsproxy itself. Current must hold the task_lock * when changing tsk->nsproxy. * * 2. when accessing (i.e. reading) current task's namespaces - no * precautions should be taken - just dereference the pointers * * 3. the access to other task namespaces is performed like this * task_lock(task); * nsproxy = task->nsproxy; * if (nsproxy != NULL) { * / * * * work with the namespaces here * * e.g. get the reference on one of them * * / * } / * * * NULL task->nsproxy means that this task is * * almost dead (zombie) * * / * task_unlock(task); * */ int copy_namespaces(unsigned long flags, struct task_struct *tsk); void exit_task_namespaces(struct task_struct *tsk); void switch_task_namespaces(struct task_struct *tsk, struct nsproxy *new); void free_nsproxy(struct nsproxy *ns); int unshare_nsproxy_namespaces(unsigned long, struct nsproxy **, struct cred *, struct fs_struct *); int __init nsproxy_cache_init(void); static inline void put_nsproxy(struct nsproxy *ns) { if (atomic_dec_and_test(&ns->count)) { free_nsproxy(ns); } } static inline void get_nsproxy(struct nsproxy *ns) { atomic_inc(&ns->count); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BLOCKGROUP_LOCK_H #define _LINUX_BLOCKGROUP_LOCK_H /* * Per-blockgroup locking for ext2 and ext3. * * Simple hashed spinlocking. */ #include <linux/spinlock.h> #include <linux/cache.h> #ifdef CONFIG_SMP #define NR_BG_LOCKS (4 << ilog2(NR_CPUS < 32 ? NR_CPUS : 32)) #else #define NR_BG_LOCKS 1 #endif struct bgl_lock { spinlock_t lock; } ____cacheline_aligned_in_smp; struct blockgroup_lock { struct bgl_lock locks[NR_BG_LOCKS]; }; static inline void bgl_lock_init(struct blockgroup_lock *bgl) { int i; for (i = 0; i < NR_BG_LOCKS; i++) spin_lock_init(&bgl->locks[i].lock); } static inline spinlock_t * bgl_lock_ptr(struct blockgroup_lock *bgl, unsigned int block_group) { return &bgl->locks[block_group & (NR_BG_LOCKS-1)].lock; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _FAT_H #define _FAT_H #include <linux/buffer_head.h> #include <linux/nls.h> #include <linux/hash.h> #include <linux/ratelimit.h> #include <linux/msdos_fs.h> /* * vfat shortname flags */ #define VFAT_SFN_DISPLAY_LOWER 0x0001 /* convert to lowercase for display */ #define VFAT_SFN_DISPLAY_WIN95 0x0002 /* emulate win95 rule for display */ #define VFAT_SFN_DISPLAY_WINNT 0x0004 /* emulate winnt rule for display */ #define VFAT_SFN_CREATE_WIN95 0x0100 /* emulate win95 rule for create */ #define VFAT_SFN_CREATE_WINNT 0x0200 /* emulate winnt rule for create */ #define FAT_ERRORS_CONT 1 /* ignore error and continue */ #define FAT_ERRORS_PANIC 2 /* panic on error */ #define FAT_ERRORS_RO 3 /* remount r/o on error */ #define FAT_NFS_STALE_RW 1 /* NFS RW support, can cause ESTALE */ #define FAT_NFS_NOSTALE_RO 2 /* NFS RO support, no ESTALE issue */ struct fat_mount_options { kuid_t fs_uid; kgid_t fs_gid; unsigned short fs_fmask; unsigned short fs_dmask; unsigned short codepage; /* Codepage for shortname conversions */ int time_offset; /* Offset of timestamps from UTC (in minutes) */ char *iocharset; /* Charset used for filename input/display */ unsigned short shortname; /* flags for shortname display/create rule */ unsigned char name_check; /* r = relaxed, n = normal, s = strict */ unsigned char errors; /* On error: continue, panic, remount-ro */ unsigned char nfs; /* NFS support: nostale_ro, stale_rw */ unsigned short allow_utime;/* permission for setting the [am]time */ unsigned quiet:1, /* set = fake successful chmods and chowns */ showexec:1, /* set = only set x bit for com/exe/bat */ sys_immutable:1, /* set = system files are immutable */ dotsOK:1, /* set = hidden and system files are named '.filename' */ isvfat:1, /* 0=no vfat long filename support, 1=vfat support */ utf8:1, /* Use of UTF-8 character set (Default) */ unicode_xlate:1, /* create escape sequences for unhandled Unicode */ numtail:1, /* Does first alias have a numeric '~1' type tail? */ flush:1, /* write things quickly */ nocase:1, /* Does this need case conversion? 0=need case conversion*/ usefree:1, /* Use free_clusters for FAT32 */ tz_set:1, /* Filesystem timestamps' offset set */ rodir:1, /* allow ATTR_RO for directory */ discard:1, /* Issue discard requests on deletions */ dos1xfloppy:1; /* Assume default BPB for DOS 1.x floppies */ }; #define FAT_HASH_BITS 8 #define FAT_HASH_SIZE (1UL << FAT_HASH_BITS) /* * MS-DOS file system in-core superblock data */ struct msdos_sb_info { unsigned short sec_per_clus; /* sectors/cluster */ unsigned short cluster_bits; /* log2(cluster_size) */ unsigned int cluster_size; /* cluster size */ unsigned char fats, fat_bits; /* number of FATs, FAT bits (12,16 or 32) */ unsigned short fat_start; unsigned long fat_length; /* FAT start & length (sec.) */ unsigned long dir_start; unsigned short dir_entries; /* root dir start & entries */ unsigned long data_start; /* first data sector */ unsigned long max_cluster; /* maximum cluster number */ unsigned long root_cluster; /* first cluster of the root directory */ unsigned long fsinfo_sector; /* sector number of FAT32 fsinfo */ struct mutex fat_lock; struct mutex nfs_build_inode_lock; struct mutex s_lock; unsigned int prev_free; /* previously allocated cluster number */ unsigned int free_clusters; /* -1 if undefined */ unsigned int free_clus_valid; /* is free_clusters valid? */ struct fat_mount_options options; struct nls_table *nls_disk; /* Codepage used on disk */ struct nls_table *nls_io; /* Charset used for input and display */ const void *dir_ops; /* Opaque; default directory operations */ int dir_per_block; /* dir entries per block */ int dir_per_block_bits; /* log2(dir_per_block) */ unsigned int vol_id; /*volume ID*/ int fatent_shift; const struct fatent_operations *fatent_ops; struct inode *fat_inode; struct inode *fsinfo_inode; struct ratelimit_state ratelimit; spinlock_t inode_hash_lock; struct hlist_head inode_hashtable[FAT_HASH_SIZE]; spinlock_t dir_hash_lock; struct hlist_head dir_hashtable[FAT_HASH_SIZE]; unsigned int dirty; /* fs state before mount */ struct rcu_head rcu; }; #define FAT_CACHE_VALID 0 /* special case for valid cache */ /* * MS-DOS file system inode data in memory */ struct msdos_inode_info { spinlock_t cache_lru_lock; struct list_head cache_lru; int nr_caches; /* for avoiding the race between fat_free() and fat_get_cluster() */ unsigned int cache_valid_id; /* NOTE: mmu_private is 64bits, so must hold ->i_mutex to access */ loff_t mmu_private; /* physically allocated size */ int i_start; /* first cluster or 0 */ int i_logstart; /* logical first cluster */ int i_attrs; /* unused attribute bits */ loff_t i_pos; /* on-disk position of directory entry or 0 */ struct hlist_node i_fat_hash; /* hash by i_location */ struct hlist_node i_dir_hash; /* hash by i_logstart */ struct rw_semaphore truncate_lock; /* protect bmap against truncate */ struct inode vfs_inode; }; struct fat_slot_info { loff_t i_pos; /* on-disk position of directory entry */ loff_t slot_off; /* offset for slot or de start */ int nr_slots; /* number of slots + 1(de) in filename */ struct msdos_dir_entry *de; struct buffer_head *bh; }; static inline struct msdos_sb_info *MSDOS_SB(struct super_block *sb) { return sb->s_fs_info; } /* * Functions that determine the variant of the FAT file system (i.e., * whether this is FAT12, FAT16 or FAT32. */ static inline bool is_fat12(const struct msdos_sb_info *sbi) { return sbi->fat_bits == 12; } static inline bool is_fat16(const struct msdos_sb_info *sbi) { return sbi->fat_bits == 16; } static inline bool is_fat32(const struct msdos_sb_info *sbi) { return sbi->fat_bits == 32; } /* Maximum number of clusters */ static inline u32 max_fat(struct super_block *sb) { struct msdos_sb_info *sbi = MSDOS_SB(sb); return is_fat32(sbi) ? MAX_FAT32 : is_fat16(sbi) ? MAX_FAT16 : MAX_FAT12; } static inline struct msdos_inode_info *MSDOS_I(struct inode *inode) { return container_of(inode, struct msdos_inode_info, vfs_inode); } /* * If ->i_mode can't hold S_IWUGO (i.e. ATTR_RO), we use ->i_attrs to * save ATTR_RO instead of ->i_mode. * * If it's directory and !sbi->options.rodir, ATTR_RO isn't read-only * bit, it's just used as flag for app. */ static inline int fat_mode_can_hold_ro(struct inode *inode) { struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb); umode_t mask; if (S_ISDIR(inode->i_mode)) { if (!sbi->options.rodir) return 0; mask = ~sbi->options.fs_dmask; } else mask = ~sbi->options.fs_fmask; if (!(mask & S_IWUGO)) return 0; return 1; } /* Convert attribute bits and a mask to the UNIX mode. */ static inline umode_t fat_make_mode(struct msdos_sb_info *sbi, u8 attrs, umode_t mode) { if (attrs & ATTR_RO && !((attrs & ATTR_DIR) && !sbi->options.rodir)) mode &= ~S_IWUGO; if (attrs & ATTR_DIR) return (mode & ~sbi->options.fs_dmask) | S_IFDIR; else return (mode & ~sbi->options.fs_fmask) | S_IFREG; } /* Return the FAT attribute byte for this inode */ static inline u8 fat_make_attrs(struct inode *inode) { u8 attrs = MSDOS_I(inode)->i_attrs; if (S_ISDIR(inode->i_mode)) attrs |= ATTR_DIR; if (fat_mode_can_hold_ro(inode) && !(inode->i_mode & S_IWUGO)) attrs |= ATTR_RO; return attrs; } static inline void fat_save_attrs(struct inode *inode, u8 attrs) { if (fat_mode_can_hold_ro(inode)) MSDOS_I(inode)->i_attrs = attrs & ATTR_UNUSED; else MSDOS_I(inode)->i_attrs = attrs & (ATTR_UNUSED | ATTR_RO); } static inline unsigned char fat_checksum(const __u8 *name) { unsigned char s = name[0]; s = (s<<7) + (s>>1) + name[1]; s = (s<<7) + (s>>1) + name[2]; s = (s<<7) + (s>>1) + name[3]; s = (s<<7) + (s>>1) + name[4]; s = (s<<7) + (s>>1) + name[5]; s = (s<<7) + (s>>1) + name[6]; s = (s<<7) + (s>>1) + name[7]; s = (s<<7) + (s>>1) + name[8]; s = (s<<7) + (s>>1) + name[9]; s = (s<<7) + (s>>1) + name[10]; return s; } static inline sector_t fat_clus_to_blknr(struct msdos_sb_info *sbi, int clus) { return ((sector_t)clus - FAT_START_ENT) * sbi->sec_per_clus + sbi->data_start; } static inline void fat_get_blknr_offset(struct msdos_sb_info *sbi, loff_t i_pos, sector_t *blknr, int *offset) { *blknr = i_pos >> sbi->dir_per_block_bits; *offset = i_pos & (sbi->dir_per_block - 1); } static inline loff_t fat_i_pos_read(struct msdos_sb_info *sbi, struct inode *inode) { loff_t i_pos; #if BITS_PER_LONG == 32 spin_lock(&sbi->inode_hash_lock); #endif i_pos = MSDOS_I(inode)->i_pos; #if BITS_PER_LONG == 32 spin_unlock(&sbi->inode_hash_lock); #endif return i_pos; } static inline void fat16_towchar(wchar_t *dst, const __u8 *src, size_t len) { #ifdef __BIG_ENDIAN while (len--) { *dst++ = src[0] | (src[1] << 8); src += 2; } #else memcpy(dst, src, len * 2); #endif } static inline int fat_get_start(const struct msdos_sb_info *sbi, const struct msdos_dir_entry *de) { int cluster = le16_to_cpu(de->start); if (is_fat32(sbi)) cluster |= (le16_to_cpu(de->starthi) << 16); return cluster; } static inline void fat_set_start(struct msdos_dir_entry *de, int cluster) { de->start = cpu_to_le16(cluster); de->starthi = cpu_to_le16(cluster >> 16); } static inline void fatwchar_to16(__u8 *dst, const wchar_t *src, size_t len) { #ifdef __BIG_ENDIAN while (len--) { dst[0] = *src & 0x00FF; dst[1] = (*src & 0xFF00) >> 8; dst += 2; src++; } #else memcpy(dst, src, len * 2); #endif } /* fat/cache.c */ extern void fat_cache_inval_inode(struct inode *inode); extern int fat_get_cluster(struct inode *inode, int cluster, int *fclus, int *dclus); extern int fat_get_mapped_cluster(struct inode *inode, sector_t sector, sector_t last_block, unsigned long *mapped_blocks, sector_t *bmap); extern int fat_bmap(struct inode *inode, sector_t sector, sector_t *phys, unsigned long *mapped_blocks, int create, bool from_bmap); /* fat/dir.c */ extern const struct file_operations fat_dir_operations; extern int fat_search_long(struct inode *inode, const unsigned char *name, int name_len, struct fat_slot_info *sinfo); extern int fat_dir_empty(struct inode *dir); extern int fat_subdirs(struct inode *dir); extern int fat_scan(struct inode *dir, const unsigned char *name, struct fat_slot_info *sinfo); extern int fat_scan_logstart(struct inode *dir, int i_logstart, struct fat_slot_info *sinfo); extern int fat_get_dotdot_entry(struct inode *dir, struct buffer_head **bh, struct msdos_dir_entry **de); extern int fat_alloc_new_dir(struct inode *dir, struct timespec64 *ts); extern int fat_add_entries(struct inode *dir, void *slots, int nr_slots, struct fat_slot_info *sinfo); extern int fat_remove_entries(struct inode *dir, struct fat_slot_info *sinfo); /* fat/fatent.c */ struct fat_entry { int entry; union { u8 *ent12_p[2]; __le16 *ent16_p; __le32 *ent32_p; } u; int nr_bhs; struct buffer_head *bhs[2]; struct inode *fat_inode; }; static inline void fatent_init(struct fat_entry *fatent) { fatent->nr_bhs = 0; fatent->entry = 0; fatent->u.ent32_p = NULL; fatent->bhs[0] = fatent->bhs[1] = NULL; fatent->fat_inode = NULL; } static inline void fatent_set_entry(struct fat_entry *fatent, int entry) { fatent->entry = entry; fatent->u.ent32_p = NULL; } static inline void fatent_brelse(struct fat_entry *fatent) { int i; fatent->u.ent32_p = NULL; for (i = 0; i < fatent->nr_bhs; i++) brelse(fatent->bhs[i]); fatent->nr_bhs = 0; fatent->bhs[0] = fatent->bhs[1] = NULL; fatent->fat_inode = NULL; } static inline bool fat_valid_entry(struct msdos_sb_info *sbi, int entry) { return FAT_START_ENT <= entry && entry < sbi->max_cluster; } extern void fat_ent_access_init(struct super_block *sb); extern int fat_ent_read(struct inode *inode, struct fat_entry *fatent, int entry); extern int fat_ent_write(struct inode *inode, struct fat_entry *fatent, int new, int wait); extern int fat_alloc_clusters(struct inode *inode, int *cluster, int nr_cluster); extern int fat_free_clusters(struct inode *inode, int cluster); extern int fat_count_free_clusters(struct super_block *sb); extern int fat_trim_fs(struct inode *inode, struct fstrim_range *range); /* fat/file.c */ extern long fat_generic_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); extern const struct file_operations fat_file_operations; extern const struct inode_operations fat_file_inode_operations; extern int fat_setattr(struct dentry *dentry, struct iattr *attr); extern void fat_truncate_blocks(struct inode *inode, loff_t offset); extern int fat_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int flags); extern int fat_file_fsync(struct file *file, loff_t start, loff_t end, int datasync); /* fat/inode.c */ extern int fat_block_truncate_page(struct inode *inode, loff_t from); extern void fat_attach(struct inode *inode, loff_t i_pos); extern void fat_detach(struct inode *inode); extern struct inode *fat_iget(struct super_block *sb, loff_t i_pos); extern struct inode *fat_build_inode(struct super_block *sb, struct msdos_dir_entry *de, loff_t i_pos); extern int fat_sync_inode(struct inode *inode); extern int fat_fill_super(struct super_block *sb, void *data, int silent, int isvfat, void (*setup)(struct super_block *)); extern int fat_fill_inode(struct inode *inode, struct msdos_dir_entry *de); extern int fat_flush_inodes(struct super_block *sb, struct inode *i1, struct inode *i2); static inline unsigned long fat_dir_hash(int logstart) { return hash_32(logstart, FAT_HASH_BITS); } extern int fat_add_cluster(struct inode *inode); /* fat/misc.c */ extern __printf(3, 4) __cold void __fat_fs_error(struct super_block *sb, int report, const char *fmt, ...); #define fat_fs_error(sb, fmt, args...) \ __fat_fs_error(sb, 1, fmt , ## args) #define fat_fs_error_ratelimit(sb, fmt, args...) \ __fat_fs_error(sb, __ratelimit(&MSDOS_SB(sb)->ratelimit), fmt , ## args) __printf(3, 4) __cold void fat_msg(struct super_block *sb, const char *level, const char *fmt, ...); #define fat_msg_ratelimit(sb, level, fmt, args...) \ do { \ if (__ratelimit(&MSDOS_SB(sb)->ratelimit)) \ fat_msg(sb, level, fmt, ## args); \ } while (0) extern int fat_clusters_flush(struct super_block *sb); extern int fat_chain_add(struct inode *inode, int new_dclus, int nr_cluster); extern void fat_time_fat2unix(struct msdos_sb_info *sbi, struct timespec64 *ts, __le16 __time, __le16 __date, u8 time_cs); extern void fat_time_unix2fat(struct msdos_sb_info *sbi, struct timespec64 *ts, __le16 *time, __le16 *date, u8 *time_cs); extern int fat_truncate_time(struct inode *inode, struct timespec64 *now, int flags); extern int fat_update_time(struct inode *inode, struct timespec64 *now, int flags); extern int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs); int fat_cache_init(void); void fat_cache_destroy(void); /* fat/nfs.c */ extern const struct export_operations fat_export_ops; extern const struct export_operations fat_export_ops_nostale; /* helper for printk */ typedef unsigned long long llu; #endif /* !_FAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _ASM_X86_INSN_H #define _ASM_X86_INSN_H /* * x86 instruction analysis * * Copyright (C) IBM Corporation, 2009 */ /* insn_attr_t is defined in inat.h */ #include <asm/inat.h> struct insn_field { union { insn_value_t value; insn_byte_t bytes[4]; }; /* !0 if we've run insn_get_xxx() for this field */ unsigned char got; unsigned char nbytes; }; struct insn { struct insn_field prefixes; /* * Prefixes * prefixes.bytes[3]: last prefix */ struct insn_field rex_prefix; /* REX prefix */ struct insn_field vex_prefix; /* VEX prefix */ struct insn_field opcode; /* * opcode.bytes[0]: opcode1 * opcode.bytes[1]: opcode2 * opcode.bytes[2]: opcode3 */ struct insn_field modrm; struct insn_field sib; struct insn_field displacement; union { struct insn_field immediate; struct insn_field moffset1; /* for 64bit MOV */ struct insn_field immediate1; /* for 64bit imm or off16/32 */ }; union { struct insn_field moffset2; /* for 64bit MOV */ struct insn_field immediate2; /* for 64bit imm or seg16 */ }; int emulate_prefix_size; insn_attr_t attr; unsigned char opnd_bytes; unsigned char addr_bytes; unsigned char length; unsigned char x86_64; const insn_byte_t *kaddr; /* kernel address of insn to analyze */ const insn_byte_t *end_kaddr; /* kernel address of last insn in buffer */ const insn_byte_t *next_byte; }; #define MAX_INSN_SIZE 15 #define X86_MODRM_MOD(modrm) (((modrm) & 0xc0) >> 6) #define X86_MODRM_REG(modrm) (((modrm) & 0x38) >> 3) #define X86_MODRM_RM(modrm) ((modrm) & 0x07) #define X86_SIB_SCALE(sib) (((sib) & 0xc0) >> 6) #define X86_SIB_INDEX(sib) (((sib) & 0x38) >> 3) #define X86_SIB_BASE(sib) ((sib) & 0x07) #define X86_REX_W(rex) ((rex) & 8) #define X86_REX_R(rex) ((rex) & 4) #define X86_REX_X(rex) ((rex) & 2) #define X86_REX_B(rex) ((rex) & 1) /* VEX bit flags */ #define X86_VEX_W(vex) ((vex) & 0x80) /* VEX3 Byte2 */ #define X86_VEX_R(vex) ((vex) & 0x80) /* VEX2/3 Byte1 */ #define X86_VEX_X(vex) ((vex) & 0x40) /* VEX3 Byte1 */ #define X86_VEX_B(vex) ((vex) & 0x20) /* VEX3 Byte1 */ #define X86_VEX_L(vex) ((vex) & 0x04) /* VEX3 Byte2, VEX2 Byte1 */ /* VEX bit fields */ #define X86_EVEX_M(vex) ((vex) & 0x03) /* EVEX Byte1 */ #define X86_VEX3_M(vex) ((vex) & 0x1f) /* VEX3 Byte1 */ #define X86_VEX2_M 1 /* VEX2.M always 1 */ #define X86_VEX_V(vex) (((vex) & 0x78) >> 3) /* VEX3 Byte2, VEX2 Byte1 */ #define X86_VEX_P(vex) ((vex) & 0x03) /* VEX3 Byte2, VEX2 Byte1 */ #define X86_VEX_M_MAX 0x1f /* VEX3.M Maximum value */ extern void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64); extern void insn_get_prefixes(struct insn *insn); extern void insn_get_opcode(struct insn *insn); extern void insn_get_modrm(struct insn *insn); extern void insn_get_sib(struct insn *insn); extern void insn_get_displacement(struct insn *insn); extern void insn_get_immediate(struct insn *insn); extern void insn_get_length(struct insn *insn); /* Attribute will be determined after getting ModRM (for opcode groups) */ static inline void insn_get_attribute(struct insn *insn) { insn_get_modrm(insn); } /* Instruction uses RIP-relative addressing */ extern int insn_rip_relative(struct insn *insn); /* Init insn for kernel text */ static inline void kernel_insn_init(struct insn *insn, const void *kaddr, int buf_len) { #ifdef CONFIG_X86_64 insn_init(insn, kaddr, buf_len, 1); #else /* CONFIG_X86_32 */ insn_init(insn, kaddr, buf_len, 0); #endif } static inline int insn_is_avx(struct insn *insn) { if (!insn->prefixes.got) insn_get_prefixes(insn); return (insn->vex_prefix.value != 0); } static inline int insn_is_evex(struct insn *insn) { if (!insn->prefixes.got) insn_get_prefixes(insn); return (insn->vex_prefix.nbytes == 4); } static inline int insn_has_emulate_prefix(struct insn *insn) { return !!insn->emulate_prefix_size; } /* Ensure this instruction is decoded completely */ static inline int insn_complete(struct insn *insn) { return insn->opcode.got && insn->modrm.got && insn->sib.got && insn->displacement.got && insn->immediate.got; } static inline insn_byte_t insn_vex_m_bits(struct insn *insn) { if (insn->vex_prefix.nbytes == 2) /* 2 bytes VEX */ return X86_VEX2_M; else if (insn->vex_prefix.nbytes == 3) /* 3 bytes VEX */ return X86_VEX3_M(insn->vex_prefix.bytes[1]); else /* EVEX */ return X86_EVEX_M(insn->vex_prefix.bytes[1]); } static inline insn_byte_t insn_vex_p_bits(struct insn *insn) { if (insn->vex_prefix.nbytes == 2) /* 2 bytes VEX */ return X86_VEX_P(insn->vex_prefix.bytes[1]); else return X86_VEX_P(insn->vex_prefix.bytes[2]); } /* Get the last prefix id from last prefix or VEX prefix */ static inline int insn_last_prefix_id(struct insn *insn) { if (insn_is_avx(insn)) return insn_vex_p_bits(insn); /* VEX_p is a SIMD prefix id */ if (insn->prefixes.bytes[3]) return inat_get_last_prefix_id(insn->prefixes.bytes[3]); return 0; } /* Offset of each field from kaddr */ static inline int insn_offset_rex_prefix(struct insn *insn) { return insn->prefixes.nbytes; } static inline int insn_offset_vex_prefix(struct insn *insn) { return insn_offset_rex_prefix(insn) + insn->rex_prefix.nbytes; } static inline int insn_offset_opcode(struct insn *insn) { return insn_offset_vex_prefix(insn) + insn->vex_prefix.nbytes; } static inline int insn_offset_modrm(struct insn *insn) { return insn_offset_opcode(insn) + insn->opcode.nbytes; } static inline int insn_offset_sib(struct insn *insn) { return insn_offset_modrm(insn) + insn->modrm.nbytes; } static inline int insn_offset_displacement(struct insn *insn) { return insn_offset_sib(insn) + insn->sib.nbytes; } static inline int insn_offset_immediate(struct insn *insn) { return insn_offset_displacement(insn) + insn->displacement.nbytes; } /** * for_each_insn_prefix() -- Iterate prefixes in the instruction * @insn: Pointer to struct insn. * @idx: Index storage. * @prefix: Prefix byte. * * Iterate prefix bytes of given @insn. Each prefix byte is stored in @prefix * and the index is stored in @idx (note that this @idx is just for a cursor, * do not change it.) * Since prefixes.nbytes can be bigger than 4 if some prefixes * are repeated, it cannot be used for looping over the prefixes. */ #define for_each_insn_prefix(insn, idx, prefix) \ for (idx = 0; idx < ARRAY_SIZE(insn->prefixes.bytes) && (prefix = insn->prefixes.bytes[idx]) != 0; idx++) #define POP_SS_OPCODE 0x1f #define MOV_SREG_OPCODE 0x8e /* * Intel SDM Vol.3A 6.8.3 states; * "Any single-step trap that would be delivered following the MOV to SS * instruction or POP to SS instruction (because EFLAGS.TF is 1) is * suppressed." * This function returns true if @insn is MOV SS or POP SS. On these * instructions, single stepping is suppressed. */ static inline int insn_masking_exception(struct insn *insn) { return insn->opcode.bytes[0] == POP_SS_OPCODE || (insn->opcode.bytes[0] == MOV_SREG_OPCODE && X86_MODRM_REG(insn->modrm.bytes[0]) == 2); } #endif /* _ASM_X86_INSN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __PROCFS_FD_H__ #define __PROCFS_FD_H__ #include <linux/fs.h> extern const struct file_operations proc_fd_operations; extern const struct inode_operations proc_fd_inode_operations; extern const struct file_operations proc_fdinfo_operations; extern const struct inode_operations proc_fdinfo_inode_operations; extern int proc_fd_permission(struct inode *inode, int mask); static inline unsigned int proc_fd(struct inode *inode) { return PROC_I(inode)->fd; } #endif /* __PROCFS_FD_H__ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/eventfd.h * * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> * */ #ifndef _LINUX_EVENTFD_H #define _LINUX_EVENTFD_H #include <linux/fcntl.h> #include <linux/wait.h> #include <linux/err.h> #include <linux/percpu-defs.h> #include <linux/percpu.h> /* * CAREFUL: Check include/uapi/asm-generic/fcntl.h when defining * new flags, since they might collide with O_* ones. We want * to re-use O_* flags that couldn't possibly have a meaning * from eventfd, in order to leave a free define-space for * shared O_* flags. */ #define EFD_SEMAPHORE (1 << 0) #define EFD_CLOEXEC O_CLOEXEC #define EFD_NONBLOCK O_NONBLOCK #define EFD_SHARED_FCNTL_FLAGS (O_CLOEXEC | O_NONBLOCK) #define EFD_FLAGS_SET (EFD_SHARED_FCNTL_FLAGS | EFD_SEMAPHORE) struct eventfd_ctx; struct file; #ifdef CONFIG_EVENTFD void eventfd_ctx_put(struct eventfd_ctx *ctx); struct file *eventfd_fget(int fd); struct eventfd_ctx *eventfd_ctx_fdget(int fd); struct eventfd_ctx *eventfd_ctx_fileget(struct file *file); __u64 eventfd_signal(struct eventfd_ctx *ctx, __u64 n); int eventfd_ctx_remove_wait_queue(struct eventfd_ctx *ctx, wait_queue_entry_t *wait, __u64 *cnt); DECLARE_PER_CPU(int, eventfd_wake_count); static inline bool eventfd_signal_count(void) { return this_cpu_read(eventfd_wake_count); } #else /* CONFIG_EVENTFD */ /* * Ugly ugly ugly error layer to support modules that uses eventfd but * pretend to work in !CONFIG_EVENTFD configurations. Namely, AIO. */ static inline struct eventfd_ctx *eventfd_ctx_fdget(int fd) { return ERR_PTR(-ENOSYS); } static inline int eventfd_signal(struct eventfd_ctx *ctx, int n) { return -ENOSYS; } static inline void eventfd_ctx_put(struct eventfd_ctx *ctx) { } static inline int eventfd_ctx_remove_wait_queue(struct eventfd_ctx *ctx, wait_queue_entry_t *wait, __u64 *cnt) { return -ENOSYS; } static inline bool eventfd_signal_count(void) { return false; } #endif #endif /* _LINUX_EVENTFD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_NULLS_H #define _LINUX_LIST_NULLS_H #include <linux/poison.h> #include <linux/const.h> /* * Special version of lists, where end of list is not a NULL pointer, * but a 'nulls' marker, which can have many different values. * (up to 2^31 different values guaranteed on all platforms) * * In the standard hlist, termination of a list is the NULL pointer. * In this special 'nulls' variant, we use the fact that objects stored in * a list are aligned on a word (4 or 8 bytes alignment). * We therefore use the last significant bit of 'ptr' : * Set to 1 : This is a 'nulls' end-of-list marker (ptr >> 1) * Set to 0 : This is a pointer to some object (ptr) */ struct hlist_nulls_head { struct hlist_nulls_node *first; }; struct hlist_nulls_node { struct hlist_nulls_node *next, **pprev; }; #define NULLS_MARKER(value) (1UL | (((long)value) << 1)) #define INIT_HLIST_NULLS_HEAD(ptr, nulls) \ ((ptr)->first = (struct hlist_nulls_node *) NULLS_MARKER(nulls)) #define hlist_nulls_entry(ptr, type, member) container_of(ptr,type,member) #define hlist_nulls_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ !is_a_nulls(____ptr) ? hlist_nulls_entry(____ptr, type, member) : NULL; \ }) /** * ptr_is_a_nulls - Test if a ptr is a nulls * @ptr: ptr to be tested * */ static inline int is_a_nulls(const struct hlist_nulls_node *ptr) { return ((unsigned long)ptr & 1); } /** * get_nulls_value - Get the 'nulls' value of the end of chain * @ptr: end of chain * * Should be called only if is_a_nulls(ptr); */ static inline unsigned long get_nulls_value(const struct hlist_nulls_node *ptr) { return ((unsigned long)ptr) >> 1; } /** * hlist_nulls_unhashed - Has node been removed and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed state. * For example, hlist_del_init_rcu() leaves the node in unhashed state, * but hlist_nulls_del() does not. */ static inline int hlist_nulls_unhashed(const struct hlist_nulls_node *h) { return !h->pprev; } /** * hlist_nulls_unhashed_lockless - Has node been removed and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed state. * For example, hlist_del_init_rcu() leaves the node in unhashed state, * but hlist_nulls_del() does not. Unlike hlist_nulls_unhashed(), this * function may be used locklessly. */ static inline int hlist_nulls_unhashed_lockless(const struct hlist_nulls_node *h) { return !READ_ONCE(h->pprev); } static inline int hlist_nulls_empty(const struct hlist_nulls_head *h) { return is_a_nulls(READ_ONCE(h->first)); } static inline void hlist_nulls_add_head(struct hlist_nulls_node *n, struct hlist_nulls_head *h) { struct hlist_nulls_node *first = h->first; n->next = first; WRITE_ONCE(n->pprev, &h->first); h->first = n; if (!is_a_nulls(first)) WRITE_ONCE(first->pprev, &n->next); } static inline void __hlist_nulls_del(struct hlist_nulls_node *n) { struct hlist_nulls_node *next = n->next; struct hlist_nulls_node **pprev = n->pprev; WRITE_ONCE(*pprev, next); if (!is_a_nulls(next)) WRITE_ONCE(next->pprev, pprev); } static inline void hlist_nulls_del(struct hlist_nulls_node *n) { __hlist_nulls_del(n); WRITE_ONCE(n->pprev, LIST_POISON2); } /** * hlist_nulls_for_each_entry - iterate over list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * */ #define hlist_nulls_for_each_entry(tpos, pos, head, member) \ for (pos = (head)->first; \ (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) /** * hlist_nulls_for_each_entry_from - iterate over a hlist continuing from current point * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @member: the name of the hlist_node within the struct. * */ #define hlist_nulls_for_each_entry_from(tpos, pos, member) \ for (; (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM filemap #if !defined(_TRACE_FILEMAP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FILEMAP_H #include <linux/types.h> #include <linux/tracepoint.h> #include <linux/mm.h> #include <linux/memcontrol.h> #include <linux/device.h> #include <linux/kdev_t.h> #include <linux/errseq.h> DECLARE_EVENT_CLASS(mm_filemap_op_page_cache, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field(unsigned long, pfn) __field(unsigned long, i_ino) __field(unsigned long, index) __field(dev_t, s_dev) ), TP_fast_assign( __entry->pfn = page_to_pfn(page); __entry->i_ino = page->mapping->host->i_ino; __entry->index = page->index; if (page->mapping->host->i_sb) __entry->s_dev = page->mapping->host->i_sb->s_dev; else __entry->s_dev = page->mapping->host->i_rdev; ), TP_printk("dev %d:%d ino %lx page=%p pfn=%lu ofs=%lu", MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, pfn_to_page(__entry->pfn), __entry->pfn, __entry->index << PAGE_SHIFT) ); DEFINE_EVENT(mm_filemap_op_page_cache, mm_filemap_delete_from_page_cache, TP_PROTO(struct page *page), TP_ARGS(page) ); DEFINE_EVENT(mm_filemap_op_page_cache, mm_filemap_add_to_page_cache, TP_PROTO(struct page *page), TP_ARGS(page) ); TRACE_EVENT(filemap_set_wb_err, TP_PROTO(struct address_space *mapping, errseq_t eseq), TP_ARGS(mapping, eseq), TP_STRUCT__entry( __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(errseq_t, errseq) ), TP_fast_assign( __entry->i_ino = mapping->host->i_ino; __entry->errseq = eseq; if (mapping->host->i_sb) __entry->s_dev = mapping->host->i_sb->s_dev; else __entry->s_dev = mapping->host->i_rdev; ), TP_printk("dev=%d:%d ino=0x%lx errseq=0x%x", MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->errseq) ); TRACE_EVENT(file_check_and_advance_wb_err, TP_PROTO(struct file *file, errseq_t old), TP_ARGS(file, old), TP_STRUCT__entry( __field(struct file *, file) __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(errseq_t, old) __field(errseq_t, new) ), TP_fast_assign( __entry->file = file; __entry->i_ino = file->f_mapping->host->i_ino; if (file->f_mapping->host->i_sb) __entry->s_dev = file->f_mapping->host->i_sb->s_dev; else __entry->s_dev = file->f_mapping->host->i_rdev; __entry->old = old; __entry->new = file->f_wb_err; ), TP_printk("file=%p dev=%d:%d ino=0x%lx old=0x%x new=0x%x", __entry->file, MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->old, __entry->new) ); #endif /* _TRACE_FILEMAP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_DMA_MAPPING_H #define _ASM_X86_DMA_MAPPING_H /* * IOMMU interface. See Documentation/core-api/dma-api-howto.rst and * Documentation/core-api/dma-api.rst for documentation. */ #include <linux/scatterlist.h> #include <asm/io.h> #include <asm/swiotlb.h> extern int iommu_merge; extern int panic_on_overflow; extern const struct dma_map_ops *dma_ops; static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus) { return dma_ops; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Definitions for the 'struct ptr_ring' datastructure. * * Author: * Michael S. Tsirkin <mst@redhat.com> * * Copyright (C) 2016 Red Hat, Inc. * * This is a limited-size FIFO maintaining pointers in FIFO order, with * one CPU producing entries and another consuming entries from a FIFO. * * This implementation tries to minimize cache-contention when there is a * single producer and a single consumer CPU. */ #ifndef _LINUX_PTR_RING_H #define _LINUX_PTR_RING_H 1 #ifdef __KERNEL__ #include <linux/spinlock.h> #include <linux/cache.h> #include <linux/types.h> #include <linux/compiler.h> #include <linux/slab.h> #include <linux/mm.h> #include <asm/errno.h> #endif struct ptr_ring { int producer ____cacheline_aligned_in_smp; spinlock_t producer_lock; int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */ int consumer_tail; /* next entry to invalidate */ spinlock_t consumer_lock; /* Shared consumer/producer data */ /* Read-only by both the producer and the consumer */ int size ____cacheline_aligned_in_smp; /* max entries in queue */ int batch; /* number of entries to consume in a batch */ void **queue; }; /* Note: callers invoking this in a loop must use a compiler barrier, * for example cpu_relax(). * * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock: * see e.g. ptr_ring_full. */ static inline bool __ptr_ring_full(struct ptr_ring *r) { return r->queue[r->producer]; } static inline bool ptr_ring_full(struct ptr_ring *r) { bool ret; spin_lock(&r->producer_lock); ret = __ptr_ring_full(r); spin_unlock(&r->producer_lock); return ret; } static inline bool ptr_ring_full_irq(struct ptr_ring *r) { bool ret; spin_lock_irq(&r->producer_lock); ret = __ptr_ring_full(r); spin_unlock_irq(&r->producer_lock); return ret; } static inline bool ptr_ring_full_any(struct ptr_ring *r) { unsigned long flags; bool ret; spin_lock_irqsave(&r->producer_lock, flags); ret = __ptr_ring_full(r); spin_unlock_irqrestore(&r->producer_lock, flags); return ret; } static inline bool ptr_ring_full_bh(struct ptr_ring *r) { bool ret; spin_lock_bh(&r->producer_lock); ret = __ptr_ring_full(r); spin_unlock_bh(&r->producer_lock); return ret; } /* Note: callers invoking this in a loop must use a compiler barrier, * for example cpu_relax(). Callers must hold producer_lock. * Callers are responsible for making sure pointer that is being queued * points to a valid data. */ static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr) { if (unlikely(!r->size) || r->queue[r->producer]) return -ENOSPC; /* Make sure the pointer we are storing points to a valid data. */ /* Pairs with the dependency ordering in __ptr_ring_consume. */ smp_wmb(); WRITE_ONCE(r->queue[r->producer++], ptr); if (unlikely(r->producer >= r->size)) r->producer = 0; return 0; } /* * Note: resize (below) nests producer lock within consumer lock, so if you * consume in interrupt or BH context, you must disable interrupts/BH when * calling this. */ static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr) { int ret; spin_lock(&r->producer_lock); ret = __ptr_ring_produce(r, ptr); spin_unlock(&r->producer_lock); return ret; } static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr) { int ret; spin_lock_irq(&r->producer_lock); ret = __ptr_ring_produce(r, ptr); spin_unlock_irq(&r->producer_lock); return ret; } static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr) { unsigned long flags; int ret; spin_lock_irqsave(&r->producer_lock, flags); ret = __ptr_ring_produce(r, ptr); spin_unlock_irqrestore(&r->producer_lock, flags); return ret; } static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr) { int ret; spin_lock_bh(&r->producer_lock); ret = __ptr_ring_produce(r, ptr); spin_unlock_bh(&r->producer_lock); return ret; } static inline void *__ptr_ring_peek(struct ptr_ring *r) { if (likely(r->size)) return READ_ONCE(r->queue[r->consumer_head]); return NULL; } /* * Test ring empty status without taking any locks. * * NB: This is only safe to call if ring is never resized. * * However, if some other CPU consumes ring entries at the same time, the value * returned is not guaranteed to be correct. * * In this case - to avoid incorrectly detecting the ring * as empty - the CPU consuming the ring entries is responsible * for either consuming all ring entries until the ring is empty, * or synchronizing with some other CPU and causing it to * re-test __ptr_ring_empty and/or consume the ring enteries * after the synchronization point. * * Note: callers invoking this in a loop must use a compiler barrier, * for example cpu_relax(). */ static inline bool __ptr_ring_empty(struct ptr_ring *r) { if (likely(r->size)) return !r->queue[READ_ONCE(r->consumer_head)]; return true; } static inline bool ptr_ring_empty(struct ptr_ring *r) { bool ret; spin_lock(&r->consumer_lock); ret = __ptr_ring_empty(r); spin_unlock(&r->consumer_lock); return ret; } static inline bool ptr_ring_empty_irq(struct ptr_ring *r) { bool ret; spin_lock_irq(&r->consumer_lock); ret = __ptr_ring_empty(r); spin_unlock_irq(&r->consumer_lock); return ret; } static inline bool ptr_ring_empty_any(struct ptr_ring *r) { unsigned long flags; bool ret; spin_lock_irqsave(&r->consumer_lock, flags); ret = __ptr_ring_empty(r); spin_unlock_irqrestore(&r->consumer_lock, flags); return ret; } static inline bool ptr_ring_empty_bh(struct ptr_ring *r) { bool ret; spin_lock_bh(&r->consumer_lock); ret = __ptr_ring_empty(r); spin_unlock_bh(&r->consumer_lock); return ret; } /* Must only be called after __ptr_ring_peek returned !NULL */ static inline void __ptr_ring_discard_one(struct ptr_ring *r) { /* Fundamentally, what we want to do is update consumer * index and zero out the entry so producer can reuse it. * Doing it naively at each consume would be as simple as: * consumer = r->consumer; * r->queue[consumer++] = NULL; * if (unlikely(consumer >= r->size)) * consumer = 0; * r->consumer = consumer; * but that is suboptimal when the ring is full as producer is writing * out new entries in the same cache line. Defer these updates until a * batch of entries has been consumed. */ /* Note: we must keep consumer_head valid at all times for __ptr_ring_empty * to work correctly. */ int consumer_head = r->consumer_head; int head = consumer_head++; /* Once we have processed enough entries invalidate them in * the ring all at once so producer can reuse their space in the ring. * We also do this when we reach end of the ring - not mandatory * but helps keep the implementation simple. */ if (unlikely(consumer_head - r->consumer_tail >= r->batch || consumer_head >= r->size)) { /* Zero out entries in the reverse order: this way we touch the * cache line that producer might currently be reading the last; * producer won't make progress and touch other cache lines * besides the first one until we write out all entries. */ while (likely(head >= r->consumer_tail)) r->queue[head--] = NULL; r->consumer_tail = consumer_head; } if (unlikely(consumer_head >= r->size)) { consumer_head = 0; r->consumer_tail = 0; } /* matching READ_ONCE in __ptr_ring_empty for lockless tests */ WRITE_ONCE(r->consumer_head, consumer_head); } static inline void *__ptr_ring_consume(struct ptr_ring *r) { void *ptr; /* The READ_ONCE in __ptr_ring_peek guarantees that anyone * accessing data through the pointer is up to date. Pairs * with smp_wmb in __ptr_ring_produce. */ ptr = __ptr_ring_peek(r); if (ptr) __ptr_ring_discard_one(r); return ptr; } static inline int __ptr_ring_consume_batched(struct ptr_ring *r, void **array, int n) { void *ptr; int i; for (i = 0; i < n; i++) { ptr = __ptr_ring_consume(r); if (!ptr) break; array[i] = ptr; } return i; } /* * Note: resize (below) nests producer lock within consumer lock, so if you * call this in interrupt or BH context, you must disable interrupts/BH when * producing. */ static inline void *ptr_ring_consume(struct ptr_ring *r) { void *ptr; spin_lock(&r->consumer_lock); ptr = __ptr_ring_consume(r); spin_unlock(&r->consumer_lock); return ptr; } static inline void *ptr_ring_consume_irq(struct ptr_ring *r) { void *ptr; spin_lock_irq(&r->consumer_lock); ptr = __ptr_ring_consume(r); spin_unlock_irq(&r->consumer_lock); return ptr; } static inline void *ptr_ring_consume_any(struct ptr_ring *r) { unsigned long flags; void *ptr; spin_lock_irqsave(&r->consumer_lock, flags); ptr = __ptr_ring_consume(r); spin_unlock_irqrestore(&r->consumer_lock, flags); return ptr; } static inline void *ptr_ring_consume_bh(struct ptr_ring *r) { void *ptr; spin_lock_bh(&r->consumer_lock); ptr = __ptr_ring_consume(r); spin_unlock_bh(&r->consumer_lock); return ptr; } static inline int ptr_ring_consume_batched(struct ptr_ring *r, void **array, int n) { int ret; spin_lock(&r->consumer_lock); ret = __ptr_ring_consume_batched(r, array, n); spin_unlock(&r->consumer_lock); return ret; } static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r, void **array, int n) { int ret; spin_lock_irq(&r->consumer_lock); ret = __ptr_ring_consume_batched(r, array, n); spin_unlock_irq(&r->consumer_lock); return ret; } static inline int ptr_ring_consume_batched_any(struct ptr_ring *r, void **array, int n) { unsigned long flags; int ret; spin_lock_irqsave(&r->consumer_lock, flags); ret = __ptr_ring_consume_batched(r, array, n); spin_unlock_irqrestore(&r->consumer_lock, flags); return ret; } static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r, void **array, int n) { int ret; spin_lock_bh(&r->consumer_lock); ret = __ptr_ring_consume_batched(r, array, n); spin_unlock_bh(&r->consumer_lock); return ret; } /* Cast to structure type and call a function without discarding from FIFO. * Function must return a value. * Callers must take consumer_lock. */ #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r))) #define PTR_RING_PEEK_CALL(r, f) ({ \ typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ \ spin_lock(&(r)->consumer_lock); \ __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ spin_unlock(&(r)->consumer_lock); \ __PTR_RING_PEEK_CALL_v; \ }) #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \ typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ \ spin_lock_irq(&(r)->consumer_lock); \ __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ spin_unlock_irq(&(r)->consumer_lock); \ __PTR_RING_PEEK_CALL_v; \ }) #define PTR_RING_PEEK_CALL_BH(r, f) ({ \ typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ \ spin_lock_bh(&(r)->consumer_lock); \ __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ spin_unlock_bh(&(r)->consumer_lock); \ __PTR_RING_PEEK_CALL_v; \ }) #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \ typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ unsigned long __PTR_RING_PEEK_CALL_f;\ \ spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \ __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \ __PTR_RING_PEEK_CALL_v; \ }) /* Not all gfp_t flags (besides GFP_KERNEL) are allowed. See * documentation for vmalloc for which of them are legal. */ static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp) { if (size > KMALLOC_MAX_SIZE / sizeof(void *)) return NULL; return kvmalloc_array(size, sizeof(void *), gfp | __GFP_ZERO); } static inline void __ptr_ring_set_size(struct ptr_ring *r, int size) { r->size = size; r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue)); /* We need to set batch at least to 1 to make logic * in __ptr_ring_discard_one work correctly. * Batching too much (because ring is small) would cause a lot of * burstiness. Needs tuning, for now disable batching. */ if (r->batch > r->size / 2 || !r->batch) r->batch = 1; } static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp) { r->queue = __ptr_ring_init_queue_alloc(size, gfp); if (!r->queue) return -ENOMEM; __ptr_ring_set_size(r, size); r->producer = r->consumer_head = r->consumer_tail = 0; spin_lock_init(&r->producer_lock); spin_lock_init(&r->consumer_lock); return 0; } /* * Return entries into ring. Destroy entries that don't fit. * * Note: this is expected to be a rare slow path operation. * * Note: producer lock is nested within consumer lock, so if you * resize you must make sure all uses nest correctly. * In particular if you consume ring in interrupt or BH context, you must * disable interrupts/BH when doing so. */ static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n, void (*destroy)(void *)) { unsigned long flags; int head; spin_lock_irqsave(&r->consumer_lock, flags); spin_lock(&r->producer_lock); if (!r->size) goto done; /* * Clean out buffered entries (for simplicity). This way following code * can test entries for NULL and if not assume they are valid. */ head = r->consumer_head - 1; while (likely(head >= r->consumer_tail)) r->queue[head--] = NULL; r->consumer_tail = r->consumer_head; /* * Go over entries in batch, start moving head back and copy entries. * Stop when we run into previously unconsumed entries. */ while (n) { head = r->consumer_head - 1; if (head < 0) head = r->size - 1; if (r->queue[head]) { /* This batch entry will have to be destroyed. */ goto done; } r->queue[head] = batch[--n]; r->consumer_tail = head; /* matching READ_ONCE in __ptr_ring_empty for lockless tests */ WRITE_ONCE(r->consumer_head, head); } done: /* Destroy all entries left in the batch. */ while (n) destroy(batch[--n]); spin_unlock(&r->producer_lock); spin_unlock_irqrestore(&r->consumer_lock, flags); } static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue, int size, gfp_t gfp, void (*destroy)(void *)) { int producer = 0; void **old; void *ptr; while ((ptr = __ptr_ring_consume(r))) if (producer < size) queue[producer++] = ptr; else if (destroy) destroy(ptr); if (producer >= size) producer = 0; __ptr_ring_set_size(r, size); r->producer = producer; r->consumer_head = 0; r->consumer_tail = 0; old = r->queue; r->queue = queue; return old; } /* * Note: producer lock is nested within consumer lock, so if you * resize you must make sure all uses nest correctly. * In particular if you consume ring in interrupt or BH context, you must * disable interrupts/BH when doing so. */ static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp, void (*destroy)(void *)) { unsigned long flags; void **queue = __ptr_ring_init_queue_alloc(size, gfp); void **old; if (!queue) return -ENOMEM; spin_lock_irqsave(&(r)->consumer_lock, flags); spin_lock(&(r)->producer_lock); old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy); spin_unlock(&(r)->producer_lock); spin_unlock_irqrestore(&(r)->consumer_lock, flags); kvfree(old); return 0; } /* * Note: producer lock is nested within consumer lock, so if you * resize you must make sure all uses nest correctly. * In particular if you consume ring in interrupt or BH context, you must * disable interrupts/BH when doing so. */ static inline int ptr_ring_resize_multiple(struct ptr_ring **rings, unsigned int nrings, int size, gfp_t gfp, void (*destroy)(void *)) { unsigned long flags; void ***queues; int i; queues = kmalloc_array(nrings, sizeof(*queues), gfp); if (!queues) goto noqueues; for (i = 0; i < nrings; ++i) { queues[i] = __ptr_ring_init_queue_alloc(size, gfp); if (!queues[i]) goto nomem; } for (i = 0; i < nrings; ++i) { spin_lock_irqsave(&(rings[i])->consumer_lock, flags); spin_lock(&(rings[i])->producer_lock); queues[i] = __ptr_ring_swap_queue(rings[i], queues[i], size, gfp, destroy); spin_unlock(&(rings[i])->producer_lock); spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags); } for (i = 0; i < nrings; ++i) kvfree(queues[i]); kfree(queues); return 0; nomem: while (--i >= 0) kvfree(queues[i]); kfree(queues); noqueues: return -ENOMEM; } static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *)) { void *ptr; if (destroy) while ((ptr = ptr_ring_consume(r))) destroy(ptr); kvfree(r->queue); } #endif /* _LINUX_PTR_RING_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM writeback #if !defined(_TRACE_WRITEBACK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_WRITEBACK_H #include <linux/tracepoint.h> #include <linux/backing-dev.h> #include <linux/writeback.h> #define show_inode_state(state) \ __print_flags(state, "|", \ {I_DIRTY_SYNC, "I_DIRTY_SYNC"}, \ {I_DIRTY_DATASYNC, "I_DIRTY_DATASYNC"}, \ {I_DIRTY_PAGES, "I_DIRTY_PAGES"}, \ {I_NEW, "I_NEW"}, \ {I_WILL_FREE, "I_WILL_FREE"}, \ {I_FREEING, "I_FREEING"}, \ {I_CLEAR, "I_CLEAR"}, \ {I_SYNC, "I_SYNC"}, \ {I_DIRTY_TIME, "I_DIRTY_TIME"}, \ {I_REFERENCED, "I_REFERENCED"} \ ) /* enums need to be exported to user space */ #undef EM #undef EMe #define EM(a,b) TRACE_DEFINE_ENUM(a); #define EMe(a,b) TRACE_DEFINE_ENUM(a); #define WB_WORK_REASON \ EM( WB_REASON_BACKGROUND, "background") \ EM( WB_REASON_VMSCAN, "vmscan") \ EM( WB_REASON_SYNC, "sync") \ EM( WB_REASON_PERIODIC, "periodic") \ EM( WB_REASON_LAPTOP_TIMER, "laptop_timer") \ EM( WB_REASON_FS_FREE_SPACE, "fs_free_space") \ EMe(WB_REASON_FORKER_THREAD, "forker_thread") WB_WORK_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a,b) { a, b }, #define EMe(a,b) { a, b } struct wb_writeback_work; DECLARE_EVENT_CLASS(writeback_page_template, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(pgoff_t, index) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(mapping ? inode_to_bdi(mapping->host) : NULL), 32); __entry->ino = mapping ? mapping->host->i_ino : 0; __entry->index = page->index; ), TP_printk("bdi %s: ino=%lu index=%lu", __entry->name, (unsigned long)__entry->ino, __entry->index ) ); DEFINE_EVENT(writeback_page_template, writeback_dirty_page, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DEFINE_EVENT(writeback_page_template, wait_on_page_writeback, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DECLARE_EVENT_CLASS(writeback_dirty_inode_template, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, flags) ), TP_fast_assign( struct backing_dev_info *bdi = inode_to_bdi(inode); /* may be called for files on pseudo FSes w/ unregistered bdi */ strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->flags = flags; ), TP_printk("bdi %s: ino=%lu state=%s flags=%s", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), show_inode_state(__entry->flags) ) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_mark_inode_dirty, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode_start, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); #ifdef CREATE_TRACE_POINTS #ifdef CONFIG_CGROUP_WRITEBACK static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return cgroup_ino(wb->memcg_css->cgroup); } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { if (wbc->wb) return __trace_wb_assign_cgroup(wbc->wb); else return 1; } #else /* CONFIG_CGROUP_WRITEBACK */ static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return 1; } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { return 1; } #endif /* CONFIG_CGROUP_WRITEBACK */ #endif /* CREATE_TRACE_POINTS */ #ifdef CONFIG_CGROUP_WRITEBACK TRACE_EVENT(inode_foreign_history, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned int history), TP_ARGS(inode, wbc, history), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, cgroup_ino) __field(unsigned int, history) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); __entry->history = history; ), TP_printk("bdi %s: ino=%lu cgroup_ino=%lu history=0x%x", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->cgroup_ino, __entry->history ) ); TRACE_EVENT(inode_switch_wbs, TP_PROTO(struct inode *inode, struct bdi_writeback *old_wb, struct bdi_writeback *new_wb), TP_ARGS(inode, old_wb, new_wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, old_cgroup_ino) __field(ino_t, new_cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(old_wb->bdi), 32); __entry->ino = inode->i_ino; __entry->old_cgroup_ino = __trace_wb_assign_cgroup(old_wb); __entry->new_cgroup_ino = __trace_wb_assign_cgroup(new_wb); ), TP_printk("bdi %s: ino=%lu old_cgroup_ino=%lu new_cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->old_cgroup_ino, (unsigned long)__entry->new_cgroup_ino ) ); TRACE_EVENT(track_foreign_dirty, TP_PROTO(struct page *page, struct bdi_writeback *wb), TP_ARGS(page, wb), TP_STRUCT__entry( __array(char, name, 32) __field(u64, bdi_id) __field(ino_t, ino) __field(unsigned int, memcg_id) __field(ino_t, cgroup_ino) __field(ino_t, page_cgroup_ino) ), TP_fast_assign( struct address_space *mapping = page_mapping(page); struct inode *inode = mapping ? mapping->host : NULL; strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->bdi_id = wb->bdi->id; __entry->ino = inode ? inode->i_ino : 0; __entry->memcg_id = wb->memcg_css->id; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->page_cgroup_ino = cgroup_ino(page->mem_cgroup->css.cgroup); ), TP_printk("bdi %s[%llu]: ino=%lu memcg_id=%u cgroup_ino=%lu page_cgroup_ino=%lu", __entry->name, __entry->bdi_id, (unsigned long)__entry->ino, __entry->memcg_id, (unsigned long)__entry->cgroup_ino, (unsigned long)__entry->page_cgroup_ino ) ); TRACE_EVENT(flush_foreign, TP_PROTO(struct bdi_writeback *wb, unsigned int frn_bdi_id, unsigned int frn_memcg_id), TP_ARGS(wb, frn_bdi_id, frn_memcg_id), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) __field(unsigned int, frn_bdi_id) __field(unsigned int, frn_memcg_id) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->frn_bdi_id = frn_bdi_id; __entry->frn_memcg_id = frn_memcg_id; ), TP_printk("bdi %s: cgroup_ino=%lu frn_bdi_id=%u frn_memcg_id=%u", __entry->name, (unsigned long)__entry->cgroup_ino, __entry->frn_bdi_id, __entry->frn_memcg_id ) ); #endif DECLARE_EVENT_CLASS(writeback_write_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(int, sync_mode) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->sync_mode = wbc->sync_mode; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu sync_mode=%d cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, __entry->sync_mode, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DECLARE_EVENT_CLASS(writeback_work_class, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), TP_ARGS(wb, work), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_pages) __field(dev_t, sb_dev) __field(int, sync_mode) __field(int, for_kupdate) __field(int, range_cyclic) __field(int, for_background) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->nr_pages = work->nr_pages; __entry->sb_dev = work->sb ? work->sb->s_dev : 0; __entry->sync_mode = work->sync_mode; __entry->for_kupdate = work->for_kupdate; __entry->range_cyclic = work->range_cyclic; __entry->for_background = work->for_background; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: sb_dev %d:%d nr_pages=%ld sync_mode=%d " "kupdate=%d range_cyclic=%d background=%d reason=%s cgroup_ino=%lu", __entry->name, MAJOR(__entry->sb_dev), MINOR(__entry->sb_dev), __entry->nr_pages, __entry->sync_mode, __entry->for_kupdate, __entry->range_cyclic, __entry->for_background, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_WORK_EVENT(name) \ DEFINE_EVENT(writeback_work_class, name, \ TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), \ TP_ARGS(wb, work)) DEFINE_WRITEBACK_WORK_EVENT(writeback_queue); DEFINE_WRITEBACK_WORK_EVENT(writeback_exec); DEFINE_WRITEBACK_WORK_EVENT(writeback_start); DEFINE_WRITEBACK_WORK_EVENT(writeback_written); DEFINE_WRITEBACK_WORK_EVENT(writeback_wait); TRACE_EVENT(writeback_pages_written, TP_PROTO(long pages_written), TP_ARGS(pages_written), TP_STRUCT__entry( __field(long, pages) ), TP_fast_assign( __entry->pages = pages_written; ), TP_printk("%ld", __entry->pages) ); DECLARE_EVENT_CLASS(writeback_class, TP_PROTO(struct bdi_writeback *wb), TP_ARGS(wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: cgroup_ino=%lu", __entry->name, (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_EVENT(name) \ DEFINE_EVENT(writeback_class, name, \ TP_PROTO(struct bdi_writeback *wb), \ TP_ARGS(wb)) DEFINE_WRITEBACK_EVENT(writeback_wake_background); TRACE_EVENT(writeback_bdi_register, TP_PROTO(struct backing_dev_info *bdi), TP_ARGS(bdi), TP_STRUCT__entry( __array(char, name, 32) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); ), TP_printk("bdi %s", __entry->name ) ); DECLARE_EVENT_CLASS(wbc_class, TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), TP_ARGS(wbc, bdi), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_to_write) __field(long, pages_skipped) __field(int, sync_mode) __field(int, for_kupdate) __field(int, for_background) __field(int, for_reclaim) __field(int, range_cyclic) __field(long, range_start) __field(long, range_end) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->nr_to_write = wbc->nr_to_write; __entry->pages_skipped = wbc->pages_skipped; __entry->sync_mode = wbc->sync_mode; __entry->for_kupdate = wbc->for_kupdate; __entry->for_background = wbc->for_background; __entry->for_reclaim = wbc->for_reclaim; __entry->range_cyclic = wbc->range_cyclic; __entry->range_start = (long)wbc->range_start; __entry->range_end = (long)wbc->range_end; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: towrt=%ld skip=%ld mode=%d kupd=%d " "bgrd=%d reclm=%d cyclic=%d " "start=0x%lx end=0x%lx cgroup_ino=%lu", __entry->name, __entry->nr_to_write, __entry->pages_skipped, __entry->sync_mode, __entry->for_kupdate, __entry->for_background, __entry->for_reclaim, __entry->range_cyclic, __entry->range_start, __entry->range_end, (unsigned long)__entry->cgroup_ino ) ) #define DEFINE_WBC_EVENT(name) \ DEFINE_EVENT(wbc_class, name, \ TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), \ TP_ARGS(wbc, bdi)) DEFINE_WBC_EVENT(wbc_writepage); TRACE_EVENT(writeback_queue_io, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work, unsigned long dirtied_before, int moved), TP_ARGS(wb, work, dirtied_before, moved), TP_STRUCT__entry( __array(char, name, 32) __field(unsigned long, older) __field(long, age) __field(int, moved) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->older = dirtied_before; __entry->age = (jiffies - dirtied_before) * 1000 / HZ; __entry->moved = moved; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: older=%lu age=%ld enqueue=%d reason=%s cgroup_ino=%lu", __entry->name, __entry->older, /* dirtied_before in jiffies */ __entry->age, /* dirtied_before in relative milliseconds */ __entry->moved, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(global_dirty_state, TP_PROTO(unsigned long background_thresh, unsigned long dirty_thresh ), TP_ARGS(background_thresh, dirty_thresh ), TP_STRUCT__entry( __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, background_thresh) __field(unsigned long, dirty_thresh) __field(unsigned long, dirty_limit) __field(unsigned long, nr_dirtied) __field(unsigned long, nr_written) ), TP_fast_assign( __entry->nr_dirty = global_node_page_state(NR_FILE_DIRTY); __entry->nr_writeback = global_node_page_state(NR_WRITEBACK); __entry->nr_dirtied = global_node_page_state(NR_DIRTIED); __entry->nr_written = global_node_page_state(NR_WRITTEN); __entry->background_thresh = background_thresh; __entry->dirty_thresh = dirty_thresh; __entry->dirty_limit = global_wb_domain.dirty_limit; ), TP_printk("dirty=%lu writeback=%lu " "bg_thresh=%lu thresh=%lu limit=%lu " "dirtied=%lu written=%lu", __entry->nr_dirty, __entry->nr_writeback, __entry->background_thresh, __entry->dirty_thresh, __entry->dirty_limit, __entry->nr_dirtied, __entry->nr_written ) ); #define KBps(x) ((x) << (PAGE_SHIFT - 10)) TRACE_EVENT(bdi_dirty_ratelimit, TP_PROTO(struct bdi_writeback *wb, unsigned long dirty_rate, unsigned long task_ratelimit), TP_ARGS(wb, dirty_rate, task_ratelimit), TP_STRUCT__entry( __array(char, bdi, 32) __field(unsigned long, write_bw) __field(unsigned long, avg_write_bw) __field(unsigned long, dirty_rate) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned long, balanced_dirty_ratelimit) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->write_bw = KBps(wb->write_bandwidth); __entry->avg_write_bw = KBps(wb->avg_write_bandwidth); __entry->dirty_rate = KBps(dirty_rate); __entry->dirty_ratelimit = KBps(wb->dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->balanced_dirty_ratelimit = KBps(wb->balanced_dirty_ratelimit); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "write_bw=%lu awrite_bw=%lu dirty_rate=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "balanced_dirty_ratelimit=%lu cgroup_ino=%lu", __entry->bdi, __entry->write_bw, /* write bandwidth */ __entry->avg_write_bw, /* avg write bandwidth */ __entry->dirty_rate, /* bdi dirty rate */ __entry->dirty_ratelimit, /* base ratelimit */ __entry->task_ratelimit, /* ratelimit with position control */ __entry->balanced_dirty_ratelimit, /* the balanced ratelimit */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(balance_dirty_pages, TP_PROTO(struct bdi_writeback *wb, unsigned long thresh, unsigned long bg_thresh, unsigned long dirty, unsigned long bdi_thresh, unsigned long bdi_dirty, unsigned long dirty_ratelimit, unsigned long task_ratelimit, unsigned long dirtied, unsigned long period, long pause, unsigned long start_time), TP_ARGS(wb, thresh, bg_thresh, dirty, bdi_thresh, bdi_dirty, dirty_ratelimit, task_ratelimit, dirtied, period, pause, start_time), TP_STRUCT__entry( __array( char, bdi, 32) __field(unsigned long, limit) __field(unsigned long, setpoint) __field(unsigned long, dirty) __field(unsigned long, bdi_setpoint) __field(unsigned long, bdi_dirty) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned int, dirtied) __field(unsigned int, dirtied_pause) __field(unsigned long, paused) __field( long, pause) __field(unsigned long, period) __field( long, think) __field(ino_t, cgroup_ino) ), TP_fast_assign( unsigned long freerun = (thresh + bg_thresh) / 2; strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->limit = global_wb_domain.dirty_limit; __entry->setpoint = (global_wb_domain.dirty_limit + freerun) / 2; __entry->dirty = dirty; __entry->bdi_setpoint = __entry->setpoint * bdi_thresh / (thresh + 1); __entry->bdi_dirty = bdi_dirty; __entry->dirty_ratelimit = KBps(dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->dirtied = dirtied; __entry->dirtied_pause = current->nr_dirtied_pause; __entry->think = current->dirty_paused_when == 0 ? 0 : (long)(jiffies - current->dirty_paused_when) * 1000/HZ; __entry->period = period * 1000 / HZ; __entry->pause = pause * 1000 / HZ; __entry->paused = (jiffies - start_time) * 1000 / HZ; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "limit=%lu setpoint=%lu dirty=%lu " "bdi_setpoint=%lu bdi_dirty=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "dirtied=%u dirtied_pause=%u " "paused=%lu pause=%ld period=%lu think=%ld cgroup_ino=%lu", __entry->bdi, __entry->limit, __entry->setpoint, __entry->dirty, __entry->bdi_setpoint, __entry->bdi_dirty, __entry->dirty_ratelimit, __entry->task_ratelimit, __entry->dirtied, __entry->dirtied_pause, __entry->paused, /* ms */ __entry->pause, /* ms */ __entry->period, /* ms */ __entry->think, /* ms */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(writeback_sb_inodes_requeue, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->cgroup_ino = __trace_wb_assign_cgroup(inode_to_wb(inode)); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, (unsigned long)__entry->cgroup_ino ) ); DECLARE_EVENT_CLASS(writeback_congest_waited_template, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed), TP_STRUCT__entry( __field( unsigned int, usec_timeout ) __field( unsigned int, usec_delayed ) ), TP_fast_assign( __entry->usec_timeout = usec_timeout; __entry->usec_delayed = usec_delayed; ), TP_printk("usec_timeout=%u usec_delayed=%u", __entry->usec_timeout, __entry->usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_congestion_wait, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_wait_iff_congested, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DECLARE_EVENT_CLASS(writeback_single_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write ), TP_ARGS(inode, wbc, nr_to_write), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(unsigned long, writeback_index) __field(long, nr_to_write) __field(unsigned long, wrote) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->writeback_index = inode->i_mapping->writeback_index; __entry->nr_to_write = nr_to_write; __entry->wrote = nr_to_write - wbc->nr_to_write; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu " "index=%lu to_write=%ld wrote=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, __entry->writeback_index, __entry->nr_to_write, __entry->wrote, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DECLARE_EVENT_CLASS(writeback_inode_template, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field(unsigned long, state ) __field( __u16, mode ) __field(unsigned long, dirtied_when ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->mode = inode->i_mode; __entry->dirtied_when = inode->dirtied_when; ), TP_printk("dev %d,%d ino %lu dirtied %lu state %s mode 0%o", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long)__entry->ino, __entry->dirtied_when, show_inode_state(__entry->state), __entry->mode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime_iput, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_dirty_inode_enqueue, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); /* * Inode writeback list tracking. */ DEFINE_EVENT(writeback_inode_template, sb_mark_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, sb_clear_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); #endif /* _TRACE_WRITEBACK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM tlb #if !defined(_TRACE_TLB_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_TLB_H #include <linux/mm_types.h> #include <linux/tracepoint.h> #define TLB_FLUSH_REASON \ EM( TLB_FLUSH_ON_TASK_SWITCH, "flush on task switch" ) \ EM( TLB_REMOTE_SHOOTDOWN, "remote shootdown" ) \ EM( TLB_LOCAL_SHOOTDOWN, "local shootdown" ) \ EM( TLB_LOCAL_MM_SHOOTDOWN, "local mm shootdown" ) \ EMe( TLB_REMOTE_SEND_IPI, "remote ipi send" ) /* * First define the enums in TLB_FLUSH_REASON to be exported to userspace * via TRACE_DEFINE_ENUM(). */ #undef EM #undef EMe #define EM(a,b) TRACE_DEFINE_ENUM(a); #define EMe(a,b) TRACE_DEFINE_ENUM(a); TLB_FLUSH_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a,b) { a, b }, #define EMe(a,b) { a, b } TRACE_EVENT(tlb_flush, TP_PROTO(int reason, unsigned long pages), TP_ARGS(reason, pages), TP_STRUCT__entry( __field( int, reason) __field(unsigned long, pages) ), TP_fast_assign( __entry->reason = reason; __entry->pages = pages; ), TP_printk("pages:%ld reason:%s (%d)", __entry->pages, __print_symbolic(__entry->reason, TLB_FLUSH_REASON), __entry->reason) ); #endif /* _TRACE_TLB_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for inet_sock * * Authors: Many, reorganised here by * Arnaldo Carvalho de Melo <acme@mandriva.com> */ #ifndef _INET_SOCK_H #define _INET_SOCK_H #include <linux/bitops.h> #include <linux/string.h> #include <linux/types.h> #include <linux/jhash.h> #include <linux/netdevice.h> #include <net/flow.h> #include <net/sock.h> #include <net/request_sock.h> #include <net/netns/hash.h> #include <net/tcp_states.h> #include <net/l3mdev.h> /** struct ip_options - IP Options * * @faddr - Saved first hop address * @nexthop - Saved nexthop address in LSRR and SSRR * @is_strictroute - Strict source route * @srr_is_hit - Packet destination addr was our one * @is_changed - IP checksum more not valid * @rr_needaddr - Need to record addr of outgoing dev * @ts_needtime - Need to record timestamp * @ts_needaddr - Need to record addr of outgoing dev */ struct ip_options { __be32 faddr; __be32 nexthop; unsigned char optlen; unsigned char srr; unsigned char rr; unsigned char ts; unsigned char is_strictroute:1, srr_is_hit:1, is_changed:1, rr_needaddr:1, ts_needtime:1, ts_needaddr:1; unsigned char router_alert; unsigned char cipso; unsigned char __pad2; unsigned char __data[]; }; struct ip_options_rcu { struct rcu_head rcu; struct ip_options opt; }; struct ip_options_data { struct ip_options_rcu opt; char data[40]; }; struct inet_request_sock { struct request_sock req; #define ir_loc_addr req.__req_common.skc_rcv_saddr #define ir_rmt_addr req.__req_common.skc_daddr #define ir_num req.__req_common.skc_num #define ir_rmt_port req.__req_common.skc_dport #define ir_v6_rmt_addr req.__req_common.skc_v6_daddr #define ir_v6_loc_addr req.__req_common.skc_v6_rcv_saddr #define ir_iif req.__req_common.skc_bound_dev_if #define ir_cookie req.__req_common.skc_cookie #define ireq_net req.__req_common.skc_net #define ireq_state req.__req_common.skc_state #define ireq_family req.__req_common.skc_family u16 snd_wscale : 4, rcv_wscale : 4, tstamp_ok : 1, sack_ok : 1, wscale_ok : 1, ecn_ok : 1, acked : 1, no_srccheck: 1, smc_ok : 1; u32 ir_mark; union { struct ip_options_rcu __rcu *ireq_opt; #if IS_ENABLED(CONFIG_IPV6) struct { struct ipv6_txoptions *ipv6_opt; struct sk_buff *pktopts; }; #endif }; }; static inline struct inet_request_sock *inet_rsk(const struct request_sock *sk) { return (struct inet_request_sock *)sk; } static inline u32 inet_request_mark(const struct sock *sk, struct sk_buff *skb) { if (!sk->sk_mark && sock_net(sk)->ipv4.sysctl_tcp_fwmark_accept) return skb->mark; return sk->sk_mark; } static inline int inet_request_bound_dev_if(const struct sock *sk, struct sk_buff *skb) { #ifdef CONFIG_NET_L3_MASTER_DEV struct net *net = sock_net(sk); if (!sk->sk_bound_dev_if && net->ipv4.sysctl_tcp_l3mdev_accept) return l3mdev_master_ifindex_by_index(net, skb->skb_iif); #endif return sk->sk_bound_dev_if; } static inline int inet_sk_bound_l3mdev(const struct sock *sk) { #ifdef CONFIG_NET_L3_MASTER_DEV struct net *net = sock_net(sk); if (!net->ipv4.sysctl_tcp_l3mdev_accept) return l3mdev_master_ifindex_by_index(net, sk->sk_bound_dev_if); #endif return 0; } static inline bool inet_bound_dev_eq(bool l3mdev_accept, int bound_dev_if, int dif, int sdif) { if (!bound_dev_if) return !sdif || l3mdev_accept; return bound_dev_if == dif || bound_dev_if == sdif; } struct inet_cork { unsigned int flags; __be32 addr; struct ip_options *opt; unsigned int fragsize; int length; /* Total length of all frames */ struct dst_entry *dst; u8 tx_flags; __u8 ttl; __s16 tos; char priority; __u16 gso_size; u64 transmit_time; u32 mark; }; struct inet_cork_full { struct inet_cork base; struct flowi fl; }; struct ip_mc_socklist; struct ipv6_pinfo; struct rtable; /** struct inet_sock - representation of INET sockets * * @sk - ancestor class * @pinet6 - pointer to IPv6 control block * @inet_daddr - Foreign IPv4 addr * @inet_rcv_saddr - Bound local IPv4 addr * @inet_dport - Destination port * @inet_num - Local port * @inet_saddr - Sending source * @uc_ttl - Unicast TTL * @inet_sport - Source port * @inet_id - ID counter for DF pkts * @tos - TOS * @mc_ttl - Multicasting TTL * @is_icsk - is this an inet_connection_sock? * @uc_index - Unicast outgoing device index * @mc_index - Multicast device index * @mc_list - Group array * @cork - info to build ip hdr on each ip frag while socket is corked */ struct inet_sock { /* sk and pinet6 has to be the first two members of inet_sock */ struct sock sk; #if IS_ENABLED(CONFIG_IPV6) struct ipv6_pinfo *pinet6; #endif /* Socket demultiplex comparisons on incoming packets. */ #define inet_daddr sk.__sk_common.skc_daddr #define inet_rcv_saddr sk.__sk_common.skc_rcv_saddr #define inet_dport sk.__sk_common.skc_dport #define inet_num sk.__sk_common.skc_num __be32 inet_saddr; __s16 uc_ttl; __u16 cmsg_flags; __be16 inet_sport; __u16 inet_id; struct ip_options_rcu __rcu *inet_opt; int rx_dst_ifindex; __u8 tos; __u8 min_ttl; __u8 mc_ttl; __u8 pmtudisc; __u8 recverr:1, is_icsk:1, freebind:1, hdrincl:1, mc_loop:1, transparent:1, mc_all:1, nodefrag:1; __u8 bind_address_no_port:1, recverr_rfc4884:1, defer_connect:1; /* Indicates that fastopen_connect is set * and cookie exists so we defer connect * until first data frame is written */ __u8 rcv_tos; __u8 convert_csum; int uc_index; int mc_index; __be32 mc_addr; struct ip_mc_socklist __rcu *mc_list; struct inet_cork_full cork; }; #define IPCORK_OPT 1 /* ip-options has been held in ipcork.opt */ #define IPCORK_ALLFRAG 2 /* always fragment (for ipv6 for now) */ /* cmsg flags for inet */ #define IP_CMSG_PKTINFO BIT(0) #define IP_CMSG_TTL BIT(1) #define IP_CMSG_TOS BIT(2) #define IP_CMSG_RECVOPTS BIT(3) #define IP_CMSG_RETOPTS BIT(4) #define IP_CMSG_PASSSEC BIT(5) #define IP_CMSG_ORIGDSTADDR BIT(6) #define IP_CMSG_CHECKSUM BIT(7) #define IP_CMSG_RECVFRAGSIZE BIT(8) /** * sk_to_full_sk - Access to a full socket * @sk: pointer to a socket * * SYNACK messages might be attached to request sockets. * Some places want to reach the listener in this case. */ static inline struct sock *sk_to_full_sk(struct sock *sk) { #ifdef CONFIG_INET if (sk && sk->sk_state == TCP_NEW_SYN_RECV) sk = inet_reqsk(sk)->rsk_listener; #endif return sk; } /* sk_to_full_sk() variant with a const argument */ static inline const struct sock *sk_const_to_full_sk(const struct sock *sk) { #ifdef CONFIG_INET if (sk && sk->sk_state == TCP_NEW_SYN_RECV) sk = ((const struct request_sock *)sk)->rsk_listener; #endif return sk; } static inline struct sock *skb_to_full_sk(const struct sk_buff *skb) { return sk_to_full_sk(skb->sk); } static inline struct inet_sock *inet_sk(const struct sock *sk) { return (struct inet_sock *)sk; } static inline void __inet_sk_copy_descendant(struct sock *sk_to, const struct sock *sk_from, const int ancestor_size) { memcpy(inet_sk(sk_to) + 1, inet_sk(sk_from) + 1, sk_from->sk_prot->obj_size - ancestor_size); } int inet_sk_rebuild_header(struct sock *sk); /** * inet_sk_state_load - read sk->sk_state for lockless contexts * @sk: socket pointer * * Paired with inet_sk_state_store(). Used in places we don't hold socket lock: * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ... */ static inline int inet_sk_state_load(const struct sock *sk) { /* state change might impact lockless readers. */ return smp_load_acquire(&sk->sk_state); } /** * inet_sk_state_store - update sk->sk_state * @sk: socket pointer * @newstate: new state * * Paired with inet_sk_state_load(). Should be used in contexts where * state change might impact lockless readers. */ void inet_sk_state_store(struct sock *sk, int newstate); void inet_sk_set_state(struct sock *sk, int state); static inline unsigned int __inet_ehashfn(const __be32 laddr, const __u16 lport, const __be32 faddr, const __be16 fport, u32 initval) { return jhash_3words((__force __u32) laddr, (__force __u32) faddr, ((__u32) lport) << 16 | (__force __u32)fport, initval); } struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, struct sock *sk_listener, bool attach_listener); static inline __u8 inet_sk_flowi_flags(const struct sock *sk) { __u8 flags = 0; if (inet_sk(sk)->transparent || inet_sk(sk)->hdrincl) flags |= FLOWI_FLAG_ANYSRC; return flags; } static inline void inet_inc_convert_csum(struct sock *sk) { inet_sk(sk)->convert_csum++; } static inline void inet_dec_convert_csum(struct sock *sk) { if (inet_sk(sk)->convert_csum > 0) inet_sk(sk)->convert_csum--; } static inline bool inet_get_convert_csum(struct sock *sk) { return !!inet_sk(sk)->convert_csum; } static inline bool inet_can_nonlocal_bind(struct net *net, struct inet_sock *inet) { return net->ipv4.sysctl_ip_nonlocal_bind || inet->freebind || inet->transparent; } #endif /* _INET_SOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM workqueue #if !defined(_TRACE_WORKQUEUE_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_WORKQUEUE_H #include <linux/tracepoint.h> #include <linux/workqueue.h> struct pool_workqueue; /** * workqueue_queue_work - called when a work gets queued * @req_cpu: the requested cpu * @pwq: pointer to struct pool_workqueue * @work: pointer to struct work_struct * * This event occurs when a work is queued immediately or once a * delayed work is actually queued on a workqueue (ie: once the delay * has been reached). */ TRACE_EVENT(workqueue_queue_work, TP_PROTO(unsigned int req_cpu, struct pool_workqueue *pwq, struct work_struct *work), TP_ARGS(req_cpu, pwq, work), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) __field( void *, workqueue) __field( unsigned int, req_cpu ) __field( unsigned int, cpu ) ), TP_fast_assign( __entry->work = work; __entry->function = work->func; __entry->workqueue = pwq->wq; __entry->req_cpu = req_cpu; __entry->cpu = pwq->pool->cpu; ), TP_printk("work struct=%p function=%ps workqueue=%p req_cpu=%u cpu=%u", __entry->work, __entry->function, __entry->workqueue, __entry->req_cpu, __entry->cpu) ); /** * workqueue_activate_work - called when a work gets activated * @work: pointer to struct work_struct * * This event occurs when a queued work is put on the active queue, * which happens immediately after queueing unless @max_active limit * is reached. */ TRACE_EVENT(workqueue_activate_work, TP_PROTO(struct work_struct *work), TP_ARGS(work), TP_STRUCT__entry( __field( void *, work ) ), TP_fast_assign( __entry->work = work; ), TP_printk("work struct %p", __entry->work) ); /** * workqueue_execute_start - called immediately before the workqueue callback * @work: pointer to struct work_struct * * Allows to track workqueue execution. */ TRACE_EVENT(workqueue_execute_start, TP_PROTO(struct work_struct *work), TP_ARGS(work), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) ), TP_fast_assign( __entry->work = work; __entry->function = work->func; ), TP_printk("work struct %p: function %ps", __entry->work, __entry->function) ); /** * workqueue_execute_end - called immediately after the workqueue callback * @work: pointer to struct work_struct * @function: pointer to worker function * * Allows to track workqueue execution. */ TRACE_EVENT(workqueue_execute_end, TP_PROTO(struct work_struct *work, work_func_t function), TP_ARGS(work, function), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) ), TP_fast_assign( __entry->work = work; __entry->function = function; ), TP_printk("work struct %p: function %ps", __entry->work, __entry->function) ); #endif /* _TRACE_WORKQUEUE_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * AEAD: Authenticated Encryption with Associated Data * * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_AEAD_H #define _CRYPTO_AEAD_H #include <linux/crypto.h> #include <linux/kernel.h> #include <linux/slab.h> /** * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API * * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD * (listed as type "aead" in /proc/crypto) * * The most prominent examples for this type of encryption is GCM and CCM. * However, the kernel supports other types of AEAD ciphers which are defined * with the following cipher string: * * authenc(keyed message digest, block cipher) * * For example: authenc(hmac(sha256), cbc(aes)) * * The example code provided for the symmetric key cipher operation * applies here as well. Naturally all *skcipher* symbols must be exchanged * the *aead* pendants discussed in the following. In addition, for the AEAD * operation, the aead_request_set_ad function must be used to set the * pointer to the associated data memory location before performing the * encryption or decryption operation. In case of an encryption, the associated * data memory is filled during the encryption operation. For decryption, the * associated data memory must contain data that is used to verify the integrity * of the decrypted data. Another deviation from the asynchronous block cipher * operation is that the caller should explicitly check for -EBADMSG of the * crypto_aead_decrypt. That error indicates an authentication error, i.e. * a breach in the integrity of the message. In essence, that -EBADMSG error * code is the key bonus an AEAD cipher has over "standard" block chaining * modes. * * Memory Structure: * * The source scatterlist must contain the concatenation of * associated data || plaintext or ciphertext. * * The destination scatterlist has the same layout, except that the plaintext * (resp. ciphertext) will grow (resp. shrink) by the authentication tag size * during encryption (resp. decryption). * * In-place encryption/decryption is enabled by using the same scatterlist * pointer for both the source and destination. * * Even in the out-of-place case, space must be reserved in the destination for * the associated data, even though it won't be written to. This makes the * in-place and out-of-place cases more consistent. It is permissible for the * "destination" associated data to alias the "source" associated data. * * As with the other scatterlist crypto APIs, zero-length scatterlist elements * are not allowed in the used part of the scatterlist. Thus, if there is no * associated data, the first element must point to the plaintext/ciphertext. * * To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309, * rfc4543, and rfc7539esp ciphers. For these ciphers, the final 'ivsize' bytes * of the associated data buffer must contain a second copy of the IV. This is * in addition to the copy passed to aead_request_set_crypt(). These two IV * copies must not differ; different implementations of the same algorithm may * behave differently in that case. Note that the algorithm might not actually * treat the IV as associated data; nevertheless the length passed to * aead_request_set_ad() must include it. */ struct crypto_aead; /** * struct aead_request - AEAD request * @base: Common attributes for async crypto requests * @assoclen: Length in bytes of associated data for authentication * @cryptlen: Length of data to be encrypted or decrypted * @iv: Initialisation vector * @src: Source data * @dst: Destination data * @__ctx: Start of private context data */ struct aead_request { struct crypto_async_request base; unsigned int assoclen; unsigned int cryptlen; u8 *iv; struct scatterlist *src; struct scatterlist *dst; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; /** * struct aead_alg - AEAD cipher definition * @maxauthsize: Set the maximum authentication tag size supported by the * transformation. A transformation may support smaller tag sizes. * As the authentication tag is a message digest to ensure the * integrity of the encrypted data, a consumer typically wants the * largest authentication tag possible as defined by this * variable. * @setauthsize: Set authentication size for the AEAD transformation. This * function is used to specify the consumer requested size of the * authentication tag to be either generated by the transformation * during encryption or the size of the authentication tag to be * supplied during the decryption operation. This function is also * responsible for checking the authentication tag size for * validity. * @setkey: see struct skcipher_alg * @encrypt: see struct skcipher_alg * @decrypt: see struct skcipher_alg * @ivsize: see struct skcipher_alg * @chunksize: see struct skcipher_alg * @init: Initialize the cryptographic transformation object. This function * is used to initialize the cryptographic transformation object. * This function is called only once at the instantiation time, right * after the transformation context was allocated. In case the * cryptographic hardware has some special requirements which need to * be handled by software, this function shall check for the precise * requirement of the transformation and put any software fallbacks * in place. * @exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @init, used to remove various changes set in * @init. * @base: Definition of a generic crypto cipher algorithm. * * All fields except @ivsize is mandatory and must be filled. */ struct aead_alg { int (*setkey)(struct crypto_aead *tfm, const u8 *key, unsigned int keylen); int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize); int (*encrypt)(struct aead_request *req); int (*decrypt)(struct aead_request *req); int (*init)(struct crypto_aead *tfm); void (*exit)(struct crypto_aead *tfm); unsigned int ivsize; unsigned int maxauthsize; unsigned int chunksize; struct crypto_alg base; }; struct crypto_aead { unsigned int authsize; unsigned int reqsize; struct crypto_tfm base; }; static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_aead, base); } /** * crypto_alloc_aead() - allocate AEAD cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * AEAD cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for an AEAD. The returned struct * crypto_aead is the cipher handle that is required for any subsequent * API invocation for that AEAD. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm) { return &tfm->base; } /** * crypto_free_aead() - zeroize and free aead handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_aead(struct crypto_aead *tfm) { crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm)); } static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm) { return container_of(crypto_aead_tfm(tfm)->__crt_alg, struct aead_alg, base); } static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg) { return alg->ivsize; } /** * crypto_aead_ivsize() - obtain IV size * @tfm: cipher handle * * The size of the IV for the aead referenced by the cipher handle is * returned. This IV size may be zero if the cipher does not need an IV. * * Return: IV size in bytes */ static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm) { return crypto_aead_alg_ivsize(crypto_aead_alg(tfm)); } /** * crypto_aead_authsize() - obtain maximum authentication data size * @tfm: cipher handle * * The maximum size of the authentication data for the AEAD cipher referenced * by the AEAD cipher handle is returned. The authentication data size may be * zero if the cipher implements a hard-coded maximum. * * The authentication data may also be known as "tag value". * * Return: authentication data size / tag size in bytes */ static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm) { return tfm->authsize; } static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg) { return alg->maxauthsize; } static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead) { return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead)); } /** * crypto_aead_blocksize() - obtain block size of cipher * @tfm: cipher handle * * The block size for the AEAD referenced with the cipher handle is returned. * The caller may use that information to allocate appropriate memory for the * data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm) { return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm)); } static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm) { return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm)); } static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm) { return crypto_tfm_get_flags(crypto_aead_tfm(tfm)); } static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags) { crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags); } static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags); } /** * crypto_aead_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the AEAD referenced by the cipher * handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen); /** * crypto_aead_setauthsize() - set authentication data size * @tfm: cipher handle * @authsize: size of the authentication data / tag in bytes * * Set the authentication data size / tag size. AEAD requires an authentication * tag (or MAC) in addition to the associated data. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize); static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req) { return __crypto_aead_cast(req->base.tfm); } /** * crypto_aead_encrypt() - encrypt plaintext * @req: reference to the aead_request handle that holds all information * needed to perform the cipher operation * * Encrypt plaintext data using the aead_request handle. That data structure * and how it is filled with data is discussed with the aead_request_* * functions. * * IMPORTANT NOTE The encryption operation creates the authentication data / * tag. That data is concatenated with the created ciphertext. * The ciphertext memory size is therefore the given number of * block cipher blocks + the size defined by the * crypto_aead_setauthsize invocation. The caller must ensure * that sufficient memory is available for the ciphertext and * the authentication tag. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ int crypto_aead_encrypt(struct aead_request *req); /** * crypto_aead_decrypt() - decrypt ciphertext * @req: reference to the aead_request handle that holds all information * needed to perform the cipher operation * * Decrypt ciphertext data using the aead_request handle. That data structure * and how it is filled with data is discussed with the aead_request_* * functions. * * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the * authentication data / tag. That authentication data / tag * must have the size defined by the crypto_aead_setauthsize * invocation. * * * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD * cipher operation performs the authentication of the data during the * decryption operation. Therefore, the function returns this error if * the authentication of the ciphertext was unsuccessful (i.e. the * integrity of the ciphertext or the associated data was violated); * < 0 if an error occurred. */ int crypto_aead_decrypt(struct aead_request *req); /** * DOC: Asynchronous AEAD Request Handle * * The aead_request data structure contains all pointers to data required for * the AEAD cipher operation. This includes the cipher handle (which can be * used by multiple aead_request instances), pointer to plaintext and * ciphertext, asynchronous callback function, etc. It acts as a handle to the * aead_request_* API calls in a similar way as AEAD handle to the * crypto_aead_* API calls. */ /** * crypto_aead_reqsize() - obtain size of the request data structure * @tfm: cipher handle * * Return: number of bytes */ static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm) { return tfm->reqsize; } /** * aead_request_set_tfm() - update cipher handle reference in request * @req: request handle to be modified * @tfm: cipher handle that shall be added to the request handle * * Allow the caller to replace the existing aead handle in the request * data structure with a different one. */ static inline void aead_request_set_tfm(struct aead_request *req, struct crypto_aead *tfm) { req->base.tfm = crypto_aead_tfm(tfm); } /** * aead_request_alloc() - allocate request data structure * @tfm: cipher handle to be registered with the request * @gfp: memory allocation flag that is handed to kmalloc by the API call. * * Allocate the request data structure that must be used with the AEAD * encrypt and decrypt API calls. During the allocation, the provided aead * handle is registered in the request data structure. * * Return: allocated request handle in case of success, or NULL if out of memory */ static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm, gfp_t gfp) { struct aead_request *req; req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp); if (likely(req)) aead_request_set_tfm(req, tfm); return req; } /** * aead_request_free() - zeroize and free request data structure * @req: request data structure cipher handle to be freed */ static inline void aead_request_free(struct aead_request *req) { kfree_sensitive(req); } /** * aead_request_set_callback() - set asynchronous callback function * @req: request handle * @flags: specify zero or an ORing of the flags * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and * increase the wait queue beyond the initial maximum size; * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep * @compl: callback function pointer to be registered with the request handle * @data: The data pointer refers to memory that is not used by the kernel * crypto API, but provided to the callback function for it to use. Here, * the caller can provide a reference to memory the callback function can * operate on. As the callback function is invoked asynchronously to the * related functionality, it may need to access data structures of the * related functionality which can be referenced using this pointer. The * callback function can access the memory via the "data" field in the * crypto_async_request data structure provided to the callback function. * * Setting the callback function that is triggered once the cipher operation * completes * * The callback function is registered with the aead_request handle and * must comply with the following template:: * * void callback_function(struct crypto_async_request *req, int error) */ static inline void aead_request_set_callback(struct aead_request *req, u32 flags, crypto_completion_t compl, void *data) { req->base.complete = compl; req->base.data = data; req->base.flags = flags; } /** * aead_request_set_crypt - set data buffers * @req: request handle * @src: source scatter / gather list * @dst: destination scatter / gather list * @cryptlen: number of bytes to process from @src * @iv: IV for the cipher operation which must comply with the IV size defined * by crypto_aead_ivsize() * * Setting the source data and destination data scatter / gather lists which * hold the associated data concatenated with the plaintext or ciphertext. See * below for the authentication tag. * * For encryption, the source is treated as the plaintext and the * destination is the ciphertext. For a decryption operation, the use is * reversed - the source is the ciphertext and the destination is the plaintext. * * The memory structure for cipher operation has the following structure: * * - AEAD encryption input: assoc data || plaintext * - AEAD encryption output: assoc data || cipherntext || auth tag * - AEAD decryption input: assoc data || ciphertext || auth tag * - AEAD decryption output: assoc data || plaintext * * Albeit the kernel requires the presence of the AAD buffer, however, * the kernel does not fill the AAD buffer in the output case. If the * caller wants to have that data buffer filled, the caller must either * use an in-place cipher operation (i.e. same memory location for * input/output memory location). */ static inline void aead_request_set_crypt(struct aead_request *req, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, u8 *iv) { req->src = src; req->dst = dst; req->cryptlen = cryptlen; req->iv = iv; } /** * aead_request_set_ad - set associated data information * @req: request handle * @assoclen: number of bytes in associated data * * Setting the AD information. This function sets the length of * the associated data. */ static inline void aead_request_set_ad(struct aead_request *req, unsigned int assoclen) { req->assoclen = assoclen; } #endif /* _CRYPTO_AEAD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 /* SPDX-License-Identifier: GPL-2.0 */ /* * fscrypt.h: declarations for per-file encryption * * Filesystems that implement per-file encryption must include this header * file. * * Copyright (C) 2015, Google, Inc. * * Written by Michael Halcrow, 2015. * Modified by Jaegeuk Kim, 2015. */ #ifndef _LINUX_FSCRYPT_H #define _LINUX_FSCRYPT_H #include <linux/fs.h> #include <linux/mm.h> #include <linux/slab.h> #include <uapi/linux/fscrypt.h> #define FS_CRYPTO_BLOCK_SIZE 16 union fscrypt_policy; struct fscrypt_info; struct seq_file; struct fscrypt_str { unsigned char *name; u32 len; }; struct fscrypt_name { const struct qstr *usr_fname; struct fscrypt_str disk_name; u32 hash; u32 minor_hash; struct fscrypt_str crypto_buf; bool is_nokey_name; }; #define FSTR_INIT(n, l) { .name = n, .len = l } #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) #define fname_name(p) ((p)->disk_name.name) #define fname_len(p) ((p)->disk_name.len) /* Maximum value for the third parameter of fscrypt_operations.set_context(). */ #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 #ifdef CONFIG_FS_ENCRYPTION /* * fscrypt superblock flags */ #define FS_CFLG_OWN_PAGES (1U << 1) /* * crypto operations for filesystems */ struct fscrypt_operations { unsigned int flags; const char *key_prefix; int (*get_context)(struct inode *inode, void *ctx, size_t len); int (*set_context)(struct inode *inode, const void *ctx, size_t len, void *fs_data); const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb); bool (*empty_dir)(struct inode *inode); unsigned int max_namelen; bool (*has_stable_inodes)(struct super_block *sb); void (*get_ino_and_lblk_bits)(struct super_block *sb, int *ino_bits_ret, int *lblk_bits_ret); int (*get_num_devices)(struct super_block *sb); void (*get_devices)(struct super_block *sb, struct request_queue **devs); }; static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) { /* * Pairs with the cmpxchg_release() in fscrypt_get_encryption_info(). * I.e., another task may publish ->i_crypt_info concurrently, executing * a RELEASE barrier. We need to use smp_load_acquire() here to safely * ACQUIRE the memory the other task published. */ return smp_load_acquire(&inode->i_crypt_info); } /** * fscrypt_needs_contents_encryption() - check whether an inode needs * contents encryption * @inode: the inode to check * * Return: %true iff the inode is an encrypted regular file and the kernel was * built with fscrypt support. * * If you need to know whether the encrypt bit is set even when the kernel was * built without fscrypt support, you must use IS_ENCRYPTED() directly instead. */ static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) { return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); } /* * When d_splice_alias() moves a directory's no-key alias to its plaintext alias * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be * cleared. Note that we don't have to support arbitrary moves of this flag * because fscrypt doesn't allow no-key names to be the source or target of a * rename(). */ static inline void fscrypt_handle_d_move(struct dentry *dentry) { dentry->d_flags &= ~DCACHE_NOKEY_NAME; } /** * fscrypt_is_nokey_name() - test whether a dentry is a no-key name * @dentry: the dentry to check * * This returns true if the dentry is a no-key dentry. A no-key dentry is a * dentry that was created in an encrypted directory that hasn't had its * encryption key added yet. Such dentries may be either positive or negative. * * When a filesystem is asked to create a new filename in an encrypted directory * and the new filename's dentry is a no-key dentry, it must fail the operation * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(), * ->rename(), and ->link(). (However, ->rename() and ->link() are already * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().) * * This is necessary because creating a filename requires the directory's * encryption key, but just checking for the key on the directory inode during * the final filesystem operation doesn't guarantee that the key was available * during the preceding dentry lookup. And the key must have already been * available during the dentry lookup in order for it to have been checked * whether the filename already exists in the directory and for the new file's * dentry not to be invalidated due to it incorrectly having the no-key flag. * * Return: %true if the dentry is a no-key name */ static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) { return dentry->d_flags & DCACHE_NOKEY_NAME; } /* crypto.c */ void fscrypt_enqueue_decrypt_work(struct work_struct *); struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, unsigned int len, unsigned int offs, gfp_t gfp_flags); int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num, gfp_t gfp_flags); int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len, unsigned int offs); int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num); static inline bool fscrypt_is_bounce_page(struct page *page) { return page->mapping == NULL; } static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) { return (struct page *)page_private(bounce_page); } void fscrypt_free_bounce_page(struct page *bounce_page); /* policy.c */ int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg); int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg); int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg); int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg); int fscrypt_has_permitted_context(struct inode *parent, struct inode *child); int fscrypt_set_context(struct inode *inode, void *fs_data); struct fscrypt_dummy_policy { const union fscrypt_policy *policy; }; int fscrypt_set_test_dummy_encryption(struct super_block *sb, const char *arg, struct fscrypt_dummy_policy *dummy_policy); void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, struct super_block *sb); static inline void fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) { kfree(dummy_policy->policy); dummy_policy->policy = NULL; } /* keyring.c */ void fscrypt_sb_free(struct super_block *sb); int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg); int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); /* keysetup.c */ int fscrypt_get_encryption_info(struct inode *inode); int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, bool *encrypt_ret); void fscrypt_put_encryption_info(struct inode *inode); void fscrypt_free_inode(struct inode *inode); int fscrypt_drop_inode(struct inode *inode); /* fname.c */ int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname, int lookup, struct fscrypt_name *fname); static inline void fscrypt_free_filename(struct fscrypt_name *fname) { kfree(fname->crypto_buf.name); } int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, struct fscrypt_str *crypto_str); void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str); int fscrypt_fname_disk_to_usr(const struct inode *inode, u32 hash, u32 minor_hash, const struct fscrypt_str *iname, struct fscrypt_str *oname); bool fscrypt_match_name(const struct fscrypt_name *fname, const u8 *de_name, u32 de_name_len); u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name); int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags); /* bio.c */ void fscrypt_decrypt_bio(struct bio *bio); int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, sector_t pblk, unsigned int len); /* hooks.c */ int fscrypt_file_open(struct inode *inode, struct file *filp); int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, struct dentry *dentry); int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags); int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, struct fscrypt_name *fname); int fscrypt_prepare_setflags(struct inode *inode, unsigned int oldflags, unsigned int flags); int fscrypt_prepare_symlink(struct inode *dir, const char *target, unsigned int len, unsigned int max_len, struct fscrypt_str *disk_link); int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, unsigned int len, struct fscrypt_str *disk_link); const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, unsigned int max_size, struct delayed_call *done); int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat); static inline void fscrypt_set_ops(struct super_block *sb, const struct fscrypt_operations *s_cop) { sb->s_cop = s_cop; } #else /* !CONFIG_FS_ENCRYPTION */ static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) { return NULL; } static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) { return false; } static inline void fscrypt_handle_d_move(struct dentry *dentry) { } static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) { return false; } /* crypto.c */ static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) { } static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, unsigned int len, unsigned int offs, gfp_t gfp_flags) { return ERR_PTR(-EOPNOTSUPP); } static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num, gfp_t gfp_flags) { return -EOPNOTSUPP; } static inline int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len, unsigned int offs) { return -EOPNOTSUPP; } static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num) { return -EOPNOTSUPP; } static inline bool fscrypt_is_bounce_page(struct page *page) { return false; } static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) { WARN_ON_ONCE(1); return ERR_PTR(-EINVAL); } static inline void fscrypt_free_bounce_page(struct page *bounce_page) { } /* policy.c */ static inline int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_has_permitted_context(struct inode *parent, struct inode *child) { return 0; } static inline int fscrypt_set_context(struct inode *inode, void *fs_data) { return -EOPNOTSUPP; } struct fscrypt_dummy_policy { }; static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, struct super_block *sb) { } static inline void fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) { } /* keyring.c */ static inline void fscrypt_sb_free(struct super_block *sb) { } static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } /* keysetup.c */ static inline int fscrypt_get_encryption_info(struct inode *inode) { return -EOPNOTSUPP; } static inline int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, bool *encrypt_ret) { if (IS_ENCRYPTED(dir)) return -EOPNOTSUPP; return 0; } static inline void fscrypt_put_encryption_info(struct inode *inode) { return; } static inline void fscrypt_free_inode(struct inode *inode) { } static inline int fscrypt_drop_inode(struct inode *inode) { return 0; } /* fname.c */ static inline int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname, int lookup, struct fscrypt_name *fname) { if (IS_ENCRYPTED(dir)) return -EOPNOTSUPP; memset(fname, 0, sizeof(*fname)); fname->usr_fname = iname; fname->disk_name.name = (unsigned char *)iname->name; fname->disk_name.len = iname->len; return 0; } static inline void fscrypt_free_filename(struct fscrypt_name *fname) { return; } static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, struct fscrypt_str *crypto_str) { return -EOPNOTSUPP; } static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) { return; } static inline int fscrypt_fname_disk_to_usr(const struct inode *inode, u32 hash, u32 minor_hash, const struct fscrypt_str *iname, struct fscrypt_str *oname) { return -EOPNOTSUPP; } static inline bool fscrypt_match_name(const struct fscrypt_name *fname, const u8 *de_name, u32 de_name_len) { /* Encryption support disabled; use standard comparison */ if (de_name_len != fname->disk_name.len) return false; return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); } static inline u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name) { WARN_ON_ONCE(1); return 0; } static inline int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) { return 1; } /* bio.c */ static inline void fscrypt_decrypt_bio(struct bio *bio) { } static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, sector_t pblk, unsigned int len) { return -EOPNOTSUPP; } /* hooks.c */ static inline int fscrypt_file_open(struct inode *inode, struct file *filp) { if (IS_ENCRYPTED(inode)) return -EOPNOTSUPP; return 0; } static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, struct dentry *dentry) { return -EOPNOTSUPP; } static inline int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { return -EOPNOTSUPP; } static inline int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, struct fscrypt_name *fname) { return -EOPNOTSUPP; } static inline int fscrypt_prepare_setflags(struct inode *inode, unsigned int oldflags, unsigned int flags) { return 0; } static inline int fscrypt_prepare_symlink(struct inode *dir, const char *target, unsigned int len, unsigned int max_len, struct fscrypt_str *disk_link) { if (IS_ENCRYPTED(dir)) return -EOPNOTSUPP; disk_link->name = (unsigned char *)target; disk_link->len = len + 1; if (disk_link->len > max_len) return -ENAMETOOLONG; return 0; } static inline int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, unsigned int len, struct fscrypt_str *disk_link) { return -EOPNOTSUPP; } static inline const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, unsigned int max_size, struct delayed_call *done) { return ERR_PTR(-EOPNOTSUPP); } static inline int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat) { return -EOPNOTSUPP; } static inline void fscrypt_set_ops(struct super_block *sb, const struct fscrypt_operations *s_cop) { } #endif /* !CONFIG_FS_ENCRYPTION */ /* inline_crypt.c */ #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode); void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, u64 first_lblk, gfp_t gfp_mask); void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, const struct buffer_head *first_bh, gfp_t gfp_mask); bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, u64 next_lblk); bool fscrypt_mergeable_bio_bh(struct bio *bio, const struct buffer_head *next_bh); #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) { return false; } static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, u64 first_lblk, gfp_t gfp_mask) { } static inline void fscrypt_set_bio_crypt_ctx_bh( struct bio *bio, const struct buffer_head *first_bh, gfp_t gfp_mask) { } static inline bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, u64 next_lblk) { return true; } static inline bool fscrypt_mergeable_bio_bh(struct bio *bio, const struct buffer_head *next_bh) { return true; } #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ /** * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline * encryption * @inode: an inode. If encrypted, its key must be set up. * * Return: true if the inode requires file contents encryption and if the * encryption should be done in the block layer via blk-crypto rather * than in the filesystem layer. */ static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode) { return fscrypt_needs_contents_encryption(inode) && __fscrypt_inode_uses_inline_crypto(inode); } /** * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer * encryption * @inode: an inode. If encrypted, its key must be set up. * * Return: true if the inode requires file contents encryption and if the * encryption should be done in the filesystem layer rather than in the * block layer via blk-crypto. */ static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode) { return fscrypt_needs_contents_encryption(inode) && !__fscrypt_inode_uses_inline_crypto(inode); } /** * fscrypt_has_encryption_key() - check whether an inode has had its key set up * @inode: the inode to check * * Return: %true if the inode has had its encryption key set up, else %false. * * Usually this should be preceded by fscrypt_get_encryption_info() to try to * set up the key first. */ static inline bool fscrypt_has_encryption_key(const struct inode *inode) { return fscrypt_get_info(inode) != NULL; } /** * fscrypt_require_key() - require an inode's encryption key * @inode: the inode we need the key for * * If the inode is encrypted, set up its encryption key if not already done. * Then require that the key be present and return -ENOKEY otherwise. * * No locks are needed, and the key will live as long as the struct inode --- so * it won't go away from under you. * * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code * if a problem occurred while setting up the encryption key. */ static inline int fscrypt_require_key(struct inode *inode) { if (IS_ENCRYPTED(inode)) { int err = fscrypt_get_encryption_info(inode); if (err) return err; if (!fscrypt_has_encryption_key(inode)) return -ENOKEY; } return 0; } /** * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted * directory * @old_dentry: an existing dentry for the inode being linked * @dir: the target directory * @dentry: negative dentry for the target filename * * A new link can only be added to an encrypted directory if the directory's * encryption key is available --- since otherwise we'd have no way to encrypt * the filename. Therefore, we first set up the directory's encryption key (if * not already done) and return an error if it's unavailable. * * We also verify that the link will not violate the constraint that all files * in an encrypted directory tree use the same encryption policy. * * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, * -EXDEV if the link would result in an inconsistent encryption policy, or * another -errno code. */ static inline int fscrypt_prepare_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { if (IS_ENCRYPTED(dir)) return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); return 0; } /** * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted * directories * @old_dir: source directory * @old_dentry: dentry for source file * @new_dir: target directory * @new_dentry: dentry for target location (may be negative unless exchanging) * @flags: rename flags (we care at least about %RENAME_EXCHANGE) * * Prepare for ->rename() where the source and/or target directories may be * encrypted. A new link can only be added to an encrypted directory if the * directory's encryption key is available --- since otherwise we'd have no way * to encrypt the filename. A rename to an existing name, on the other hand, * *is* cryptographically possible without the key. However, we take the more * conservative approach and just forbid all no-key renames. * * We also verify that the rename will not violate the constraint that all files * in an encrypted directory tree use the same encryption policy. * * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the * rename would cause inconsistent encryption policies, or another -errno code. */ static inline int fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) return __fscrypt_prepare_rename(old_dir, old_dentry, new_dir, new_dentry, flags); return 0; } /** * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted * directory * @dir: directory being searched * @dentry: filename being looked up * @fname: (output) the name to use to search the on-disk directory * * Prepare for ->lookup() in a directory which may be encrypted by determining * the name that will actually be used to search the directory on-disk. If the * directory's encryption key is available, then the lookup is assumed to be by * plaintext name; otherwise, it is assumed to be by no-key name. * * This also installs a custom ->d_revalidate() method which will invalidate the * dentry if it was created without the key and the key is later added. * * Return: 0 on success; -ENOENT if the directory's key is unavailable but the * filename isn't a valid no-key name, so a negative dentry should be created; * or another -errno code. */ static inline int fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, struct fscrypt_name *fname) { if (IS_ENCRYPTED(dir)) return __fscrypt_prepare_lookup(dir, dentry, fname); memset(fname, 0, sizeof(*fname)); fname->usr_fname = &dentry->d_name; fname->disk_name.name = (unsigned char *)dentry->d_name.name; fname->disk_name.len = dentry->d_name.len; return 0; } /** * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's * attributes * @dentry: dentry through which the inode is being changed * @attr: attributes to change * * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, * most attribute changes are allowed even without the encryption key. However, * without the encryption key we do have to forbid truncates. This is needed * because the size being truncated to may not be a multiple of the filesystem * block size, and in that case we'd have to decrypt the final block, zero the * portion past i_size, and re-encrypt it. (We *could* allow truncating to a * filesystem block boundary, but it's simpler to just forbid all truncates --- * and we already forbid all other contents modifications without the key.) * * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code * if a problem occurred while setting up the encryption key. */ static inline int fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr) { if (attr->ia_valid & ATTR_SIZE) return fscrypt_require_key(d_inode(dentry)); return 0; } /** * fscrypt_encrypt_symlink() - encrypt the symlink target if needed * @inode: symlink inode * @target: plaintext symlink target * @len: length of @target excluding null terminator * @disk_link: (in/out) the on-disk symlink target being prepared * * If the symlink target needs to be encrypted, then this function encrypts it * into @disk_link->name. fscrypt_prepare_symlink() must have been called * previously to compute @disk_link->len. If the filesystem did not allocate a * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one * will be kmalloc()'ed and the filesystem will be responsible for freeing it. * * Return: 0 on success, -errno on failure */ static inline int fscrypt_encrypt_symlink(struct inode *inode, const char *target, unsigned int len, struct fscrypt_str *disk_link) { if (IS_ENCRYPTED(inode)) return __fscrypt_encrypt_symlink(inode, target, len, disk_link); return 0; } /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ static inline void fscrypt_finalize_bounce_page(struct page **pagep) { struct page *page = *pagep; if (fscrypt_is_bounce_page(page)) { *pagep = fscrypt_pagecache_page(page); fscrypt_free_bounce_page(page); } } #endif /* _LINUX_FSCRYPT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_HWEIGHT_H #define _ASM_X86_HWEIGHT_H #include <asm/cpufeatures.h> #ifdef CONFIG_64BIT #define REG_IN "D" #define REG_OUT "a" #else #define REG_IN "a" #define REG_OUT "a" #endif static __always_inline unsigned int __arch_hweight32(unsigned int w) { unsigned int res; asm (ALTERNATIVE("call __sw_hweight32", "popcntl %1, %0", X86_FEATURE_POPCNT) : "="REG_OUT (res) : REG_IN (w)); return res; } static inline unsigned int __arch_hweight16(unsigned int w) { return __arch_hweight32(w & 0xffff); } static inline unsigned int __arch_hweight8(unsigned int w) { return __arch_hweight32(w & 0xff); } #ifdef CONFIG_X86_32 static inline unsigned long __arch_hweight64(__u64 w) { return __arch_hweight32((u32)w) + __arch_hweight32((u32)(w >> 32)); } #else static __always_inline unsigned long __arch_hweight64(__u64 w) { unsigned long res; asm (ALTERNATIVE("call __sw_hweight64", "popcntq %1, %0", X86_FEATURE_POPCNT) : "="REG_OUT (res) : REG_IN (w)); return res; } #endif /* CONFIG_X86_32 */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Generic associative array implementation. * * See Documentation/core-api/assoc_array.rst for information. * * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_ASSOC_ARRAY_H #define _LINUX_ASSOC_ARRAY_H #ifdef CONFIG_ASSOCIATIVE_ARRAY #include <linux/types.h> #define ASSOC_ARRAY_KEY_CHUNK_SIZE BITS_PER_LONG /* Key data retrieved in chunks of this size */ /* * Generic associative array. */ struct assoc_array { struct assoc_array_ptr *root; /* The node at the root of the tree */ unsigned long nr_leaves_on_tree; }; /* * Operations on objects and index keys for use by array manipulation routines. */ struct assoc_array_ops { /* Method to get a chunk of an index key from caller-supplied data */ unsigned long (*get_key_chunk)(const void *index_key, int level); /* Method to get a piece of an object's index key */ unsigned long (*get_object_key_chunk)(const void *object, int level); /* Is this the object we're looking for? */ bool (*compare_object)(const void *object, const void *index_key); /* How different is an object from an index key, to a bit position in * their keys? (or -1 if they're the same) */ int (*diff_objects)(const void *object, const void *index_key); /* Method to free an object. */ void (*free_object)(void *object); }; /* * Access and manipulation functions. */ struct assoc_array_edit; static inline void assoc_array_init(struct assoc_array *array) { array->root = NULL; array->nr_leaves_on_tree = 0; } extern int assoc_array_iterate(const struct assoc_array *array, int (*iterator)(const void *object, void *iterator_data), void *iterator_data); extern void *assoc_array_find(const struct assoc_array *array, const struct assoc_array_ops *ops, const void *index_key); extern void assoc_array_destroy(struct assoc_array *array, const struct assoc_array_ops *ops); extern struct assoc_array_edit *assoc_array_insert(struct assoc_array *array, const struct assoc_array_ops *ops, const void *index_key, void *object); extern void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object); extern struct assoc_array_edit *assoc_array_delete(struct assoc_array *array, const struct assoc_array_ops *ops, const void *index_key); extern struct assoc_array_edit *assoc_array_clear(struct assoc_array *array, const struct assoc_array_ops *ops); extern void assoc_array_apply_edit(struct assoc_array_edit *edit); extern void assoc_array_cancel_edit(struct assoc_array_edit *edit); extern int assoc_array_gc(struct assoc_array *array, const struct assoc_array_ops *ops, bool (*iterator)(void *object, void *iterator_data), void *iterator_data); #endif /* CONFIG_ASSOCIATIVE_ARRAY */ #endif /* _LINUX_ASSOC_ARRAY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Definitions for the 'struct sk_buff' memory handlers. * * Authors: * Alan Cox, <gw4pts@gw4pts.ampr.org> * Florian La Roche, <rzsfl@rz.uni-sb.de> */ #ifndef _LINUX_SKBUFF_H #define _LINUX_SKBUFF_H #include <linux/kernel.h> #include <linux/compiler.h> #include <linux/time.h> #include <linux/bug.h> #include <linux/bvec.h> #include <linux/cache.h> #include <linux/rbtree.h> #include <linux/socket.h> #include <linux/refcount.h> #include <linux/atomic.h> #include <asm/types.h> #include <linux/spinlock.h> #include <linux/net.h> #include <linux/textsearch.h> #include <net/checksum.h> #include <linux/rcupdate.h> #include <linux/hrtimer.h> #include <linux/dma-mapping.h> #include <linux/netdev_features.h> #include <linux/sched.h> #include <linux/sched/clock.h> #include <net/flow_dissector.h> #include <linux/splice.h> #include <linux/in6.h> #include <linux/if_packet.h> #include <net/flow.h> #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <linux/netfilter/nf_conntrack_common.h> #endif /* The interface for checksum offload between the stack and networking drivers * is as follows... * * A. IP checksum related features * * Drivers advertise checksum offload capabilities in the features of a device. * From the stack's point of view these are capabilities offered by the driver. * A driver typically only advertises features that it is capable of offloading * to its device. * * The checksum related features are: * * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one * IP (one's complement) checksum for any combination * of protocols or protocol layering. The checksum is * computed and set in a packet per the CHECKSUM_PARTIAL * interface (see below). * * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain * TCP or UDP packets over IPv4. These are specifically * unencapsulated packets of the form IPv4|TCP or * IPv4|UDP where the Protocol field in the IPv4 header * is TCP or UDP. The IPv4 header may contain IP options. * This feature cannot be set in features for a device * with NETIF_F_HW_CSUM also set. This feature is being * DEPRECATED (see below). * * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain * TCP or UDP packets over IPv6. These are specifically * unencapsulated packets of the form IPv6|TCP or * IPv6|UDP where the Next Header field in the IPv6 * header is either TCP or UDP. IPv6 extension headers * are not supported with this feature. This feature * cannot be set in features for a device with * NETIF_F_HW_CSUM also set. This feature is being * DEPRECATED (see below). * * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. * This flag is only used to disable the RX checksum * feature for a device. The stack will accept receive * checksum indication in packets received on a device * regardless of whether NETIF_F_RXCSUM is set. * * B. Checksumming of received packets by device. Indication of checksum * verification is set in skb->ip_summed. Possible values are: * * CHECKSUM_NONE: * * Device did not checksum this packet e.g. due to lack of capabilities. * The packet contains full (though not verified) checksum in packet but * not in skb->csum. Thus, skb->csum is undefined in this case. * * CHECKSUM_UNNECESSARY: * * The hardware you're dealing with doesn't calculate the full checksum * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY * if their checksums are okay. skb->csum is still undefined in this case * though. A driver or device must never modify the checksum field in the * packet even if checksum is verified. * * CHECKSUM_UNNECESSARY is applicable to following protocols: * TCP: IPv6 and IPv4. * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a * zero UDP checksum for either IPv4 or IPv6, the networking stack * may perform further validation in this case. * GRE: only if the checksum is present in the header. * SCTP: indicates the CRC in SCTP header has been validated. * FCOE: indicates the CRC in FC frame has been validated. * * skb->csum_level indicates the number of consecutive checksums found in * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet * and a device is able to verify the checksums for UDP (possibly zero), * GRE (checksum flag is set) and TCP, skb->csum_level would be set to * two. If the device were only able to verify the UDP checksum and not * GRE, either because it doesn't support GRE checksum or because GRE * checksum is bad, skb->csum_level would be set to zero (TCP checksum is * not considered in this case). * * CHECKSUM_COMPLETE: * * This is the most generic way. The device supplied checksum of the _whole_ * packet as seen by netif_rx() and fills in skb->csum. This means the * hardware doesn't need to parse L3/L4 headers to implement this. * * Notes: * - Even if device supports only some protocols, but is able to produce * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. * * CHECKSUM_PARTIAL: * * A checksum is set up to be offloaded to a device as described in the * output description for CHECKSUM_PARTIAL. This may occur on a packet * received directly from another Linux OS, e.g., a virtualized Linux kernel * on the same host, or it may be set in the input path in GRO or remote * checksum offload. For the purposes of checksum verification, the checksum * referred to by skb->csum_start + skb->csum_offset and any preceding * checksums in the packet are considered verified. Any checksums in the * packet that are after the checksum being offloaded are not considered to * be verified. * * C. Checksumming on transmit for non-GSO. The stack requests checksum offload * in the skb->ip_summed for a packet. Values are: * * CHECKSUM_PARTIAL: * * The driver is required to checksum the packet as seen by hard_start_xmit() * from skb->csum_start up to the end, and to record/write the checksum at * offset skb->csum_start + skb->csum_offset. A driver may verify that the * csum_start and csum_offset values are valid values given the length and * offset of the packet, but it should not attempt to validate that the * checksum refers to a legitimate transport layer checksum -- it is the * purview of the stack to validate that csum_start and csum_offset are set * correctly. * * When the stack requests checksum offload for a packet, the driver MUST * ensure that the checksum is set correctly. A driver can either offload the * checksum calculation to the device, or call skb_checksum_help (in the case * that the device does not support offload for a particular checksum). * * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate * checksum offload capability. * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based * on network device checksumming capabilities: if a packet does not match * them, skb_checksum_help or skb_crc32c_help (depending on the value of * csum_not_inet, see item D.) is called to resolve the checksum. * * CHECKSUM_NONE: * * The skb was already checksummed by the protocol, or a checksum is not * required. * * CHECKSUM_UNNECESSARY: * * This has the same meaning as CHECKSUM_NONE for checksum offload on * output. * * CHECKSUM_COMPLETE: * Not used in checksum output. If a driver observes a packet with this value * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set. * * D. Non-IP checksum (CRC) offloads * * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of * offloading the SCTP CRC in a packet. To perform this offload the stack * will set csum_start and csum_offset accordingly, set ip_summed to * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. * A driver that supports both IP checksum offload and SCTP CRC32c offload * must verify which offload is configured for a packet by testing the * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. * * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of * offloading the FCOE CRC in a packet. To perform this offload the stack * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset * accordingly. Note that there is no indication in the skbuff that the * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports * both IP checksum offload and FCOE CRC offload must verify which offload * is configured for a packet, presumably by inspecting packet headers. * * E. Checksumming on output with GSO. * * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as * part of the GSO operation is implied. If a checksum is being offloaded * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and * csum_offset are set to refer to the outermost checksum being offloaded * (two offloaded checksums are possible with UDP encapsulation). */ /* Don't change this without changing skb_csum_unnecessary! */ #define CHECKSUM_NONE 0 #define CHECKSUM_UNNECESSARY 1 #define CHECKSUM_COMPLETE 2 #define CHECKSUM_PARTIAL 3 /* Maximum value in skb->csum_level */ #define SKB_MAX_CSUM_LEVEL 3 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) #define SKB_WITH_OVERHEAD(X) \ ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) #define SKB_MAX_ORDER(X, ORDER) \ SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) /* return minimum truesize of one skb containing X bytes of data */ #define SKB_TRUESIZE(X) ((X) + \ SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) struct ahash_request; struct net_device; struct scatterlist; struct pipe_inode_info; struct iov_iter; struct napi_struct; struct bpf_prog; union bpf_attr; struct skb_ext; #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) struct nf_bridge_info { enum { BRNF_PROTO_UNCHANGED, BRNF_PROTO_8021Q, BRNF_PROTO_PPPOE } orig_proto:8; u8 pkt_otherhost:1; u8 in_prerouting:1; u8 bridged_dnat:1; __u16 frag_max_size; struct net_device *physindev; /* always valid & non-NULL from FORWARD on, for physdev match */ struct net_device *physoutdev; union { /* prerouting: detect dnat in orig/reply direction */ __be32 ipv4_daddr; struct in6_addr ipv6_daddr; /* after prerouting + nat detected: store original source * mac since neigh resolution overwrites it, only used while * skb is out in neigh layer. */ char neigh_header[8]; }; }; #endif #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) /* Chain in tc_skb_ext will be used to share the tc chain with * ovs recirc_id. It will be set to the current chain by tc * and read by ovs to recirc_id. */ struct tc_skb_ext { __u32 chain; __u16 mru; }; #endif struct sk_buff_head { /* These two members must be first. */ struct sk_buff *next; struct sk_buff *prev; __u32 qlen; spinlock_t lock; }; struct sk_buff; /* To allow 64K frame to be packed as single skb without frag_list we * require 64K/PAGE_SIZE pages plus 1 additional page to allow for * buffers which do not start on a page boundary. * * Since GRO uses frags we allocate at least 16 regardless of page * size. */ #if (65536/PAGE_SIZE + 1) < 16 #define MAX_SKB_FRAGS 16UL #else #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) #endif extern int sysctl_max_skb_frags; /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to * segment using its current segmentation instead. */ #define GSO_BY_FRAGS 0xFFFF typedef struct bio_vec skb_frag_t; /** * skb_frag_size() - Returns the size of a skb fragment * @frag: skb fragment */ static inline unsigned int skb_frag_size(const skb_frag_t *frag) { return frag->bv_len; } /** * skb_frag_size_set() - Sets the size of a skb fragment * @frag: skb fragment * @size: size of fragment */ static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) { frag->bv_len = size; } /** * skb_frag_size_add() - Increments the size of a skb fragment by @delta * @frag: skb fragment * @delta: value to add */ static inline void skb_frag_size_add(skb_frag_t *frag, int delta) { frag->bv_len += delta; } /** * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta * @frag: skb fragment * @delta: value to subtract */ static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) { frag->bv_len -= delta; } /** * skb_frag_must_loop - Test if %p is a high memory page * @p: fragment's page */ static inline bool skb_frag_must_loop(struct page *p) { #if defined(CONFIG_HIGHMEM) if (PageHighMem(p)) return true; #endif return false; } /** * skb_frag_foreach_page - loop over pages in a fragment * * @f: skb frag to operate on * @f_off: offset from start of f->bv_page * @f_len: length from f_off to loop over * @p: (temp var) current page * @p_off: (temp var) offset from start of current page, * non-zero only on first page. * @p_len: (temp var) length in current page, * < PAGE_SIZE only on first and last page. * @copied: (temp var) length so far, excluding current p_len. * * A fragment can hold a compound page, in which case per-page * operations, notably kmap_atomic, must be called for each * regular page. */ #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ p_off = (f_off) & (PAGE_SIZE - 1), \ p_len = skb_frag_must_loop(p) ? \ min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ copied = 0; \ copied < f_len; \ copied += p_len, p++, p_off = 0, \ p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ #define HAVE_HW_TIME_STAMP /** * struct skb_shared_hwtstamps - hardware time stamps * @hwtstamp: hardware time stamp transformed into duration * since arbitrary point in time * * Software time stamps generated by ktime_get_real() are stored in * skb->tstamp. * * hwtstamps can only be compared against other hwtstamps from * the same device. * * This structure is attached to packets as part of the * &skb_shared_info. Use skb_hwtstamps() to get a pointer. */ struct skb_shared_hwtstamps { ktime_t hwtstamp; }; /* Definitions for tx_flags in struct skb_shared_info */ enum { /* generate hardware time stamp */ SKBTX_HW_TSTAMP = 1 << 0, /* generate software time stamp when queueing packet to NIC */ SKBTX_SW_TSTAMP = 1 << 1, /* device driver is going to provide hardware time stamp */ SKBTX_IN_PROGRESS = 1 << 2, /* device driver supports TX zero-copy buffers */ SKBTX_DEV_ZEROCOPY = 1 << 3, /* generate wifi status information (where possible) */ SKBTX_WIFI_STATUS = 1 << 4, /* This indicates at least one fragment might be overwritten * (as in vmsplice(), sendfile() ...) * If we need to compute a TX checksum, we'll need to copy * all frags to avoid possible bad checksum */ SKBTX_SHARED_FRAG = 1 << 5, /* generate software time stamp when entering packet scheduling */ SKBTX_SCHED_TSTAMP = 1 << 6, }; #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ SKBTX_SCHED_TSTAMP) #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) /* * The callback notifies userspace to release buffers when skb DMA is done in * lower device, the skb last reference should be 0 when calling this. * The zerocopy_success argument is true if zero copy transmit occurred, * false on data copy or out of memory error caused by data copy attempt. * The ctx field is used to track device context. * The desc field is used to track userspace buffer index. */ struct ubuf_info { void (*callback)(struct ubuf_info *, bool zerocopy_success); union { struct { unsigned long desc; void *ctx; }; struct { u32 id; u16 len; u16 zerocopy:1; u32 bytelen; }; }; refcount_t refcnt; struct mmpin { struct user_struct *user; unsigned int num_pg; } mmp; }; #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) int mm_account_pinned_pages(struct mmpin *mmp, size_t size); void mm_unaccount_pinned_pages(struct mmpin *mmp); struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, struct ubuf_info *uarg); static inline void sock_zerocopy_get(struct ubuf_info *uarg) { refcount_inc(&uarg->refcnt); } void sock_zerocopy_put(struct ubuf_info *uarg); void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, struct msghdr *msg, int len, struct ubuf_info *uarg); /* This data is invariant across clones and lives at * the end of the header data, ie. at skb->end. */ struct skb_shared_info { __u8 __unused; __u8 meta_len; __u8 nr_frags; __u8 tx_flags; unsigned short gso_size; /* Warning: this field is not always filled in (UFO)! */ unsigned short gso_segs; struct sk_buff *frag_list; struct skb_shared_hwtstamps hwtstamps; unsigned int gso_type; u32 tskey; /* * Warning : all fields before dataref are cleared in __alloc_skb() */ atomic_t dataref; /* Intermediate layers must ensure that destructor_arg * remains valid until skb destructor */ void * destructor_arg; /* must be last field, see pskb_expand_head() */ skb_frag_t frags[MAX_SKB_FRAGS]; }; /* We divide dataref into two halves. The higher 16 bits hold references * to the payload part of skb->data. The lower 16 bits hold references to * the entire skb->data. A clone of a headerless skb holds the length of * the header in skb->hdr_len. * * All users must obey the rule that the skb->data reference count must be * greater than or equal to the payload reference count. * * Holding a reference to the payload part means that the user does not * care about modifications to the header part of skb->data. */ #define SKB_DATAREF_SHIFT 16 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) enum { SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ }; enum { SKB_GSO_TCPV4 = 1 << 0, /* This indicates the skb is from an untrusted source. */ SKB_GSO_DODGY = 1 << 1, /* This indicates the tcp segment has CWR set. */ SKB_GSO_TCP_ECN = 1 << 2, SKB_GSO_TCP_FIXEDID = 1 << 3, SKB_GSO_TCPV6 = 1 << 4, SKB_GSO_FCOE = 1 << 5, SKB_GSO_GRE = 1 << 6, SKB_GSO_GRE_CSUM = 1 << 7, SKB_GSO_IPXIP4 = 1 << 8, SKB_GSO_IPXIP6 = 1 << 9, SKB_GSO_UDP_TUNNEL = 1 << 10, SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, SKB_GSO_PARTIAL = 1 << 12, SKB_GSO_TUNNEL_REMCSUM = 1 << 13, SKB_GSO_SCTP = 1 << 14, SKB_GSO_ESP = 1 << 15, SKB_GSO_UDP = 1 << 16, SKB_GSO_UDP_L4 = 1 << 17, SKB_GSO_FRAGLIST = 1 << 18, }; #if BITS_PER_LONG > 32 #define NET_SKBUFF_DATA_USES_OFFSET 1 #endif #ifdef NET_SKBUFF_DATA_USES_OFFSET typedef unsigned int sk_buff_data_t; #else typedef unsigned char *sk_buff_data_t; #endif /** * struct sk_buff - socket buffer * @next: Next buffer in list * @prev: Previous buffer in list * @tstamp: Time we arrived/left * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point * for retransmit timer * @rbnode: RB tree node, alternative to next/prev for netem/tcp * @list: queue head * @sk: Socket we are owned by * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in * fragmentation management * @dev: Device we arrived on/are leaving by * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL * @cb: Control buffer. Free for use by every layer. Put private vars here * @_skb_refdst: destination entry (with norefcount bit) * @sp: the security path, used for xfrm * @len: Length of actual data * @data_len: Data length * @mac_len: Length of link layer header * @hdr_len: writable header length of cloned skb * @csum: Checksum (must include start/offset pair) * @csum_start: Offset from skb->head where checksumming should start * @csum_offset: Offset from csum_start where checksum should be stored * @priority: Packet queueing priority * @ignore_df: allow local fragmentation * @cloned: Head may be cloned (check refcnt to be sure) * @ip_summed: Driver fed us an IP checksum * @nohdr: Payload reference only, must not modify header * @pkt_type: Packet class * @fclone: skbuff clone status * @ipvs_property: skbuff is owned by ipvs * @inner_protocol_type: whether the inner protocol is * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO * @remcsum_offload: remote checksum offload is enabled * @offload_fwd_mark: Packet was L2-forwarded in hardware * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware * @tc_skip_classify: do not classify packet. set by IFB device * @tc_at_ingress: used within tc_classify to distinguish in/egress * @redirected: packet was redirected by packet classifier * @from_ingress: packet was redirected from the ingress path * @peeked: this packet has been seen already, so stats have been * done for it, don't do them again * @nf_trace: netfilter packet trace flag * @protocol: Packet protocol from driver * @destructor: Destruct function * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) * @_nfct: Associated connection, if any (with nfctinfo bits) * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c * @skb_iif: ifindex of device we arrived on * @tc_index: Traffic control index * @hash: the packet hash * @queue_mapping: Queue mapping for multiqueue devices * @head_frag: skb was allocated from page fragments, * not allocated by kmalloc() or vmalloc(). * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves * @active_extensions: active extensions (skb_ext_id types) * @ndisc_nodetype: router type (from link layer) * @ooo_okay: allow the mapping of a socket to a queue to be changed * @l4_hash: indicate hash is a canonical 4-tuple hash over transport * ports. * @sw_hash: indicates hash was computed in software stack * @wifi_acked_valid: wifi_acked was set * @wifi_acked: whether frame was acked on wifi or not * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS * @encapsulation: indicates the inner headers in the skbuff are valid * @encap_hdr_csum: software checksum is needed * @csum_valid: checksum is already valid * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL * @csum_complete_sw: checksum was completed by software * @csum_level: indicates the number of consecutive checksums found in * the packet minus one that have been verified as * CHECKSUM_UNNECESSARY (max 3) * @dst_pending_confirm: need to confirm neighbour * @decrypted: Decrypted SKB * @napi_id: id of the NAPI struct this skb came from * @sender_cpu: (aka @napi_id) source CPU in XPS * @secmark: security marking * @mark: Generic packet mark * @reserved_tailroom: (aka @mark) number of bytes of free space available * at the tail of an sk_buff * @vlan_present: VLAN tag is present * @vlan_proto: vlan encapsulation protocol * @vlan_tci: vlan tag control information * @inner_protocol: Protocol (encapsulation) * @inner_ipproto: (aka @inner_protocol) stores ipproto when * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; * @inner_transport_header: Inner transport layer header (encapsulation) * @inner_network_header: Network layer header (encapsulation) * @inner_mac_header: Link layer header (encapsulation) * @transport_header: Transport layer header * @network_header: Network layer header * @mac_header: Link layer header * @tail: Tail pointer * @end: End pointer * @head: Head of buffer * @data: Data head pointer * @truesize: Buffer size * @users: User count - see {datagram,tcp}.c * @extensions: allocated extensions, valid if active_extensions is nonzero */ struct sk_buff { union { struct { /* These two members must be first. */ struct sk_buff *next; struct sk_buff *prev; union { struct net_device *dev; /* Some protocols might use this space to store information, * while device pointer would be NULL. * UDP receive path is one user. */ unsigned long dev_scratch; }; }; struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ struct list_head list; }; union { struct sock *sk; int ip_defrag_offset; }; union { ktime_t tstamp; u64 skb_mstamp_ns; /* earliest departure time */ }; /* * This is the control buffer. It is free to use for every * layer. Please put your private variables there. If you * want to keep them across layers you have to do a skb_clone() * first. This is owned by whoever has the skb queued ATM. */ char cb[48] __aligned(8); union { struct { unsigned long _skb_refdst; void (*destructor)(struct sk_buff *skb); }; struct list_head tcp_tsorted_anchor; }; #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) unsigned long _nfct; #endif unsigned int len, data_len; __u16 mac_len, hdr_len; /* Following fields are _not_ copied in __copy_skb_header() * Note that queue_mapping is here mostly to fill a hole. */ __u16 queue_mapping; /* if you move cloned around you also must adapt those constants */ #ifdef __BIG_ENDIAN_BITFIELD #define CLONED_MASK (1 << 7) #else #define CLONED_MASK 1 #endif #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) /* private: */ __u8 __cloned_offset[0]; /* public: */ __u8 cloned:1, nohdr:1, fclone:2, peeked:1, head_frag:1, pfmemalloc:1; #ifdef CONFIG_SKB_EXTENSIONS __u8 active_extensions; #endif /* fields enclosed in headers_start/headers_end are copied * using a single memcpy() in __copy_skb_header() */ /* private: */ __u32 headers_start[0]; /* public: */ /* if you move pkt_type around you also must adapt those constants */ #ifdef __BIG_ENDIAN_BITFIELD #define PKT_TYPE_MAX (7 << 5) #else #define PKT_TYPE_MAX 7 #endif #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) /* private: */ __u8 __pkt_type_offset[0]; /* public: */ __u8 pkt_type:3; __u8 ignore_df:1; __u8 nf_trace:1; __u8 ip_summed:2; __u8 ooo_okay:1; __u8 l4_hash:1; __u8 sw_hash:1; __u8 wifi_acked_valid:1; __u8 wifi_acked:1; __u8 no_fcs:1; /* Indicates the inner headers are valid in the skbuff. */ __u8 encapsulation:1; __u8 encap_hdr_csum:1; __u8 csum_valid:1; #ifdef __BIG_ENDIAN_BITFIELD #define PKT_VLAN_PRESENT_BIT 7 #else #define PKT_VLAN_PRESENT_BIT 0 #endif #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset) /* private: */ __u8 __pkt_vlan_present_offset[0]; /* public: */ __u8 vlan_present:1; __u8 csum_complete_sw:1; __u8 csum_level:2; __u8 csum_not_inet:1; __u8 dst_pending_confirm:1; #ifdef CONFIG_IPV6_NDISC_NODETYPE __u8 ndisc_nodetype:2; #endif __u8 ipvs_property:1; __u8 inner_protocol_type:1; __u8 remcsum_offload:1; #ifdef CONFIG_NET_SWITCHDEV __u8 offload_fwd_mark:1; __u8 offload_l3_fwd_mark:1; #endif #ifdef CONFIG_NET_CLS_ACT __u8 tc_skip_classify:1; __u8 tc_at_ingress:1; #endif #ifdef CONFIG_NET_REDIRECT __u8 redirected:1; __u8 from_ingress:1; #endif #ifdef CONFIG_TLS_DEVICE __u8 decrypted:1; #endif #ifdef CONFIG_NET_SCHED __u16 tc_index; /* traffic control index */ #endif union { __wsum csum; struct { __u16 csum_start; __u16 csum_offset; }; }; __u32 priority; int skb_iif; __u32 hash; __be16 vlan_proto; __u16 vlan_tci; #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) union { unsigned int napi_id; unsigned int sender_cpu; }; #endif #ifdef CONFIG_NETWORK_SECMARK __u32 secmark; #endif union { __u32 mark; __u32 reserved_tailroom; }; union { __be16 inner_protocol; __u8 inner_ipproto; }; __u16 inner_transport_header; __u16 inner_network_header; __u16 inner_mac_header; __be16 protocol; __u16 transport_header; __u16 network_header; __u16 mac_header; /* private: */ __u32 headers_end[0]; /* public: */ /* These elements must be at the end, see alloc_skb() for details. */ sk_buff_data_t tail; sk_buff_data_t end; unsigned char *head, *data; unsigned int truesize; refcount_t users; #ifdef CONFIG_SKB_EXTENSIONS /* only useable after checking ->active_extensions != 0 */ struct skb_ext *extensions; #endif }; #ifdef __KERNEL__ /* * Handling routines are only of interest to the kernel */ #define SKB_ALLOC_FCLONE 0x01 #define SKB_ALLOC_RX 0x02 #define SKB_ALLOC_NAPI 0x04 /** * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves * @skb: buffer */ static inline bool skb_pfmemalloc(const struct sk_buff *skb) { return unlikely(skb->pfmemalloc); } /* * skb might have a dst pointer attached, refcounted or not. * _skb_refdst low order bit is set if refcount was _not_ taken */ #define SKB_DST_NOREF 1UL #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) /** * skb_dst - returns skb dst_entry * @skb: buffer * * Returns skb dst_entry, regardless of reference taken or not. */ static inline struct dst_entry *skb_dst(const struct sk_buff *skb) { /* If refdst was not refcounted, check we still are in a * rcu_read_lock section */ WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && !rcu_read_lock_held() && !rcu_read_lock_bh_held()); return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); } /** * skb_dst_set - sets skb dst * @skb: buffer * @dst: dst entry * * Sets skb dst, assuming a reference was taken on dst and should * be released by skb_dst_drop() */ static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) { skb->_skb_refdst = (unsigned long)dst; } /** * skb_dst_set_noref - sets skb dst, hopefully, without taking reference * @skb: buffer * @dst: dst entry * * Sets skb dst, assuming a reference was not taken on dst. * If dst entry is cached, we do not take reference and dst_release * will be avoided by refdst_drop. If dst entry is not cached, we take * reference, so that last dst_release can destroy the dst immediately. */ static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) { WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; } /** * skb_dst_is_noref - Test if skb dst isn't refcounted * @skb: buffer */ static inline bool skb_dst_is_noref(const struct sk_buff *skb) { return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); } /** * skb_rtable - Returns the skb &rtable * @skb: buffer */ static inline struct rtable *skb_rtable(const struct sk_buff *skb) { return (struct rtable *)skb_dst(skb); } /* For mangling skb->pkt_type from user space side from applications * such as nft, tc, etc, we only allow a conservative subset of * possible pkt_types to be set. */ static inline bool skb_pkt_type_ok(u32 ptype) { return ptype <= PACKET_OTHERHOST; } /** * skb_napi_id - Returns the skb's NAPI id * @skb: buffer */ static inline unsigned int skb_napi_id(const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL return skb->napi_id; #else return 0; #endif } /** * skb_unref - decrement the skb's reference count * @skb: buffer * * Returns true if we can free the skb. */ static inline bool skb_unref(struct sk_buff *skb) { if (unlikely(!skb)) return false; if (likely(refcount_read(&skb->users) == 1)) smp_rmb(); else if (likely(!refcount_dec_and_test(&skb->users))) return false; return true; } void skb_release_head_state(struct sk_buff *skb); void kfree_skb(struct sk_buff *skb); void kfree_skb_list(struct sk_buff *segs); void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); void skb_tx_error(struct sk_buff *skb); #ifdef CONFIG_TRACEPOINTS void consume_skb(struct sk_buff *skb); #else static inline void consume_skb(struct sk_buff *skb) { return kfree_skb(skb); } #endif void __consume_stateless_skb(struct sk_buff *skb); void __kfree_skb(struct sk_buff *skb); extern struct kmem_cache *skbuff_head_cache; void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, bool *fragstolen, int *delta_truesize); struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, int node); struct sk_buff *__build_skb(void *data, unsigned int frag_size); struct sk_buff *build_skb(void *data, unsigned int frag_size); struct sk_buff *build_skb_around(struct sk_buff *skb, void *data, unsigned int frag_size); /** * alloc_skb - allocate a network buffer * @size: size to allocate * @priority: allocation mask * * This function is a convenient wrapper around __alloc_skb(). */ static inline struct sk_buff *alloc_skb(unsigned int size, gfp_t priority) { return __alloc_skb(size, priority, 0, NUMA_NO_NODE); } struct sk_buff *alloc_skb_with_frags(unsigned long header_len, unsigned long data_len, int max_page_order, int *errcode, gfp_t gfp_mask); struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); /* Layout of fast clones : [skb1][skb2][fclone_ref] */ struct sk_buff_fclones { struct sk_buff skb1; struct sk_buff skb2; refcount_t fclone_ref; }; /** * skb_fclone_busy - check if fclone is busy * @sk: socket * @skb: buffer * * Returns true if skb is a fast clone, and its clone is not freed. * Some drivers call skb_orphan() in their ndo_start_xmit(), * so we also check that this didnt happen. */ static inline bool skb_fclone_busy(const struct sock *sk, const struct sk_buff *skb) { const struct sk_buff_fclones *fclones; fclones = container_of(skb, struct sk_buff_fclones, skb1); return skb->fclone == SKB_FCLONE_ORIG && refcount_read(&fclones->fclone_ref) > 1 && fclones->skb2.sk == sk; } /** * alloc_skb_fclone - allocate a network buffer from fclone cache * @size: size to allocate * @priority: allocation mask * * This function is a convenient wrapper around __alloc_skb(). */ static inline struct sk_buff *alloc_skb_fclone(unsigned int size, gfp_t priority) { return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); } struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); void skb_headers_offset_update(struct sk_buff *skb, int off); int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, gfp_t gfp_mask, bool fclone); static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask) { return __pskb_copy_fclone(skb, headroom, gfp_mask, false); } int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom); struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, int newtailroom, gfp_t priority); int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, int offset, int len); int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len); int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); /** * skb_pad - zero pad the tail of an skb * @skb: buffer to pad * @pad: space to pad * * Ensure that a buffer is followed by a padding area that is zero * filled. Used by network drivers which may DMA or transfer data * beyond the buffer end onto the wire. * * May return error in out of memory cases. The skb is freed on error. */ static inline int skb_pad(struct sk_buff *skb, int pad) { return __skb_pad(skb, pad, true); } #define dev_kfree_skb(a) consume_skb(a) int skb_append_pagefrags(struct sk_buff *skb, struct page *page, int offset, size_t size); struct skb_seq_state { __u32 lower_offset; __u32 upper_offset; __u32 frag_idx; __u32 stepped_offset; struct sk_buff *root_skb; struct sk_buff *cur_skb; __u8 *frag_data; }; void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, unsigned int to, struct skb_seq_state *st); unsigned int skb_seq_read(unsigned int consumed, const u8 **data, struct skb_seq_state *st); void skb_abort_seq_read(struct skb_seq_state *st); unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, unsigned int to, struct ts_config *config); /* * Packet hash types specify the type of hash in skb_set_hash. * * Hash types refer to the protocol layer addresses which are used to * construct a packet's hash. The hashes are used to differentiate or identify * flows of the protocol layer for the hash type. Hash types are either * layer-2 (L2), layer-3 (L3), or layer-4 (L4). * * Properties of hashes: * * 1) Two packets in different flows have different hash values * 2) Two packets in the same flow should have the same hash value * * A hash at a higher layer is considered to be more specific. A driver should * set the most specific hash possible. * * A driver cannot indicate a more specific hash than the layer at which a hash * was computed. For instance an L3 hash cannot be set as an L4 hash. * * A driver may indicate a hash level which is less specific than the * actual layer the hash was computed on. For instance, a hash computed * at L4 may be considered an L3 hash. This should only be done if the * driver can't unambiguously determine that the HW computed the hash at * the higher layer. Note that the "should" in the second property above * permits this. */ enum pkt_hash_types { PKT_HASH_TYPE_NONE, /* Undefined type */ PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ }; static inline void skb_clear_hash(struct sk_buff *skb) { skb->hash = 0; skb->sw_hash = 0; skb->l4_hash = 0; } static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) { if (!skb->l4_hash) skb_clear_hash(skb); } static inline void __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) { skb->l4_hash = is_l4; skb->sw_hash = is_sw; skb->hash = hash; } static inline void skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) { /* Used by drivers to set hash from HW */ __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); } static inline void __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) { __skb_set_hash(skb, hash, true, is_l4); } void __skb_get_hash(struct sk_buff *skb); u32 __skb_get_hash_symmetric(const struct sk_buff *skb); u32 skb_get_poff(const struct sk_buff *skb); u32 __skb_get_poff(const struct sk_buff *skb, void *data, const struct flow_keys_basic *keys, int hlen); __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, void *data, int hlen_proto); static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto) { return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); } void skb_flow_dissector_init(struct flow_dissector *flow_dissector, const struct flow_dissector_key *key, unsigned int key_count); struct bpf_flow_dissector; bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, __be16 proto, int nhoff, int hlen, unsigned int flags); bool __skb_flow_dissect(const struct net *net, const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, void *data, __be16 proto, int nhoff, int hlen, unsigned int flags); static inline bool skb_flow_dissect(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, unsigned int flags) { return __skb_flow_dissect(NULL, skb, flow_dissector, target_container, NULL, 0, 0, 0, flags); } static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, struct flow_keys *flow, unsigned int flags) { memset(flow, 0, sizeof(*flow)); return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, flow, NULL, 0, 0, 0, flags); } static inline bool skb_flow_dissect_flow_keys_basic(const struct net *net, const struct sk_buff *skb, struct flow_keys_basic *flow, void *data, __be16 proto, int nhoff, int hlen, unsigned int flags) { memset(flow, 0, sizeof(*flow)); return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, data, proto, nhoff, hlen, flags); } void skb_flow_dissect_meta(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container); /* Gets a skb connection tracking info, ctinfo map should be a * map of mapsize to translate enum ip_conntrack_info states * to user states. */ void skb_flow_dissect_ct(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, u16 *ctinfo_map, size_t mapsize); void skb_flow_dissect_tunnel_info(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container); void skb_flow_dissect_hash(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container); static inline __u32 skb_get_hash(struct sk_buff *skb) { if (!skb->l4_hash && !skb->sw_hash) __skb_get_hash(skb); return skb->hash; } static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) { if (!skb->l4_hash && !skb->sw_hash) { struct flow_keys keys; __u32 hash = __get_hash_from_flowi6(fl6, &keys); __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); } return skb->hash; } __u32 skb_get_hash_perturb(const struct sk_buff *skb, const siphash_key_t *perturb); static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) { return skb->hash; } static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) { to->hash = from->hash; to->sw_hash = from->sw_hash; to->l4_hash = from->l4_hash; }; static inline void skb_copy_decrypted(struct sk_buff *to, const struct sk_buff *from) { #ifdef CONFIG_TLS_DEVICE to->decrypted = from->decrypted; #endif } #ifdef NET_SKBUFF_DATA_USES_OFFSET static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) { return skb->head + skb->end; } static inline unsigned int skb_end_offset(const struct sk_buff *skb) { return skb->end; } #else static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) { return skb->end; } static inline unsigned int skb_end_offset(const struct sk_buff *skb) { return skb->end - skb->head; } #endif /* Internal */ #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) { return &skb_shinfo(skb)->hwtstamps; } static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) { bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; return is_zcopy ? skb_uarg(skb) : NULL; } static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, bool *have_ref) { if (skb && uarg && !skb_zcopy(skb)) { if (unlikely(have_ref && *have_ref)) *have_ref = false; else sock_zerocopy_get(uarg); skb_shinfo(skb)->destructor_arg = uarg; skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; } } static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) { skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; } static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) { return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; } static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) { return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); } /* Release a reference on a zerocopy structure */ static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) { struct ubuf_info *uarg = skb_zcopy(skb); if (uarg) { if (skb_zcopy_is_nouarg(skb)) { /* no notification callback */ } else if (uarg->callback == sock_zerocopy_callback) { uarg->zerocopy = uarg->zerocopy && zerocopy; sock_zerocopy_put(uarg); } else { uarg->callback(uarg, zerocopy); } skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; } } /* Abort a zerocopy operation and revert zckey on error in send syscall */ static inline void skb_zcopy_abort(struct sk_buff *skb) { struct ubuf_info *uarg = skb_zcopy(skb); if (uarg) { sock_zerocopy_put_abort(uarg, false); skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; } } static inline void skb_mark_not_on_list(struct sk_buff *skb) { skb->next = NULL; } /* Iterate through singly-linked GSO fragments of an skb. */ #define skb_list_walk_safe(first, skb, next_skb) \ for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) static inline void skb_list_del_init(struct sk_buff *skb) { __list_del_entry(&skb->list); skb_mark_not_on_list(skb); } /** * skb_queue_empty - check if a queue is empty * @list: queue head * * Returns true if the queue is empty, false otherwise. */ static inline int skb_queue_empty(const struct sk_buff_head *list) { return list->next == (const struct sk_buff *) list; } /** * skb_queue_empty_lockless - check if a queue is empty * @list: queue head * * Returns true if the queue is empty, false otherwise. * This variant can be used in lockless contexts. */ static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) { return READ_ONCE(list->next) == (const struct sk_buff *) list; } /** * skb_queue_is_last - check if skb is the last entry in the queue * @list: queue head * @skb: buffer * * Returns true if @skb is the last buffer on the list. */ static inline bool skb_queue_is_last(const struct sk_buff_head *list, const struct sk_buff *skb) { return skb->next == (const struct sk_buff *) list; } /** * skb_queue_is_first - check if skb is the first entry in the queue * @list: queue head * @skb: buffer * * Returns true if @skb is the first buffer on the list. */ static inline bool skb_queue_is_first(const struct sk_buff_head *list, const struct sk_buff *skb) { return skb->prev == (const struct sk_buff *) list; } /** * skb_queue_next - return the next packet in the queue * @list: queue head * @skb: current buffer * * Return the next packet in @list after @skb. It is only valid to * call this if skb_queue_is_last() evaluates to false. */ static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, const struct sk_buff *skb) { /* This BUG_ON may seem severe, but if we just return then we * are going to dereference garbage. */ BUG_ON(skb_queue_is_last(list, skb)); return skb->next; } /** * skb_queue_prev - return the prev packet in the queue * @list: queue head * @skb: current buffer * * Return the prev packet in @list before @skb. It is only valid to * call this if skb_queue_is_first() evaluates to false. */ static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, const struct sk_buff *skb) { /* This BUG_ON may seem severe, but if we just return then we * are going to dereference garbage. */ BUG_ON(skb_queue_is_first(list, skb)); return skb->prev; } /** * skb_get - reference buffer * @skb: buffer to reference * * Makes another reference to a socket buffer and returns a pointer * to the buffer. */ static inline struct sk_buff *skb_get(struct sk_buff *skb) { refcount_inc(&skb->users); return skb; } /* * If users == 1, we are the only owner and can avoid redundant atomic changes. */ /** * skb_cloned - is the buffer a clone * @skb: buffer to check * * Returns true if the buffer was generated with skb_clone() and is * one of multiple shared copies of the buffer. Cloned buffers are * shared data so must not be written to under normal circumstances. */ static inline int skb_cloned(const struct sk_buff *skb) { return skb->cloned && (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; } static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_cloned(skb)) return pskb_expand_head(skb, 0, 0, pri); return 0; } /** * skb_header_cloned - is the header a clone * @skb: buffer to check * * Returns true if modifying the header part of the buffer requires * the data to be copied. */ static inline int skb_header_cloned(const struct sk_buff *skb) { int dataref; if (!skb->cloned) return 0; dataref = atomic_read(&skb_shinfo(skb)->dataref); dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); return dataref != 1; } static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_header_cloned(skb)) return pskb_expand_head(skb, 0, 0, pri); return 0; } /** * __skb_header_release - release reference to header * @skb: buffer to operate on */ static inline void __skb_header_release(struct sk_buff *skb) { skb->nohdr = 1; atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); } /** * skb_shared - is the buffer shared * @skb: buffer to check * * Returns true if more than one person has a reference to this * buffer. */ static inline int skb_shared(const struct sk_buff *skb) { return refcount_read(&skb->users) != 1; } /** * skb_share_check - check if buffer is shared and if so clone it * @skb: buffer to check * @pri: priority for memory allocation * * If the buffer is shared the buffer is cloned and the old copy * drops a reference. A new clone with a single reference is returned. * If the buffer is not shared the original buffer is returned. When * being called from interrupt status or with spinlocks held pri must * be GFP_ATOMIC. * * NULL is returned on a memory allocation failure. */ static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_shared(skb)) { struct sk_buff *nskb = skb_clone(skb, pri); if (likely(nskb)) consume_skb(skb); else kfree_skb(skb); skb = nskb; } return skb; } /* * Copy shared buffers into a new sk_buff. We effectively do COW on * packets to handle cases where we have a local reader and forward * and a couple of other messy ones. The normal one is tcpdumping * a packet thats being forwarded. */ /** * skb_unshare - make a copy of a shared buffer * @skb: buffer to check * @pri: priority for memory allocation * * If the socket buffer is a clone then this function creates a new * copy of the data, drops a reference count on the old copy and returns * the new copy with the reference count at 1. If the buffer is not a clone * the original buffer is returned. When called with a spinlock held or * from interrupt state @pri must be %GFP_ATOMIC * * %NULL is returned on a memory allocation failure. */ static inline struct sk_buff *skb_unshare(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_cloned(skb)) { struct sk_buff *nskb = skb_copy(skb, pri); /* Free our shared copy */ if (likely(nskb)) consume_skb(skb); else kfree_skb(skb); skb = nskb; } return skb; } /** * skb_peek - peek at the head of an &sk_buff_head * @list_: list to peek at * * Peek an &sk_buff. Unlike most other operations you _MUST_ * be careful with this one. A peek leaves the buffer on the * list and someone else may run off with it. You must hold * the appropriate locks or have a private queue to do this. * * Returns %NULL for an empty list or a pointer to the head element. * The reference count is not incremented and the reference is therefore * volatile. Use with caution. */ static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) { struct sk_buff *skb = list_->next; if (skb == (struct sk_buff *)list_) skb = NULL; return skb; } /** * __skb_peek - peek at the head of a non-empty &sk_buff_head * @list_: list to peek at * * Like skb_peek(), but the caller knows that the list is not empty. */ static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) { return list_->next; } /** * skb_peek_next - peek skb following the given one from a queue * @skb: skb to start from * @list_: list to peek at * * Returns %NULL when the end of the list is met or a pointer to the * next element. The reference count is not incremented and the * reference is therefore volatile. Use with caution. */ static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, const struct sk_buff_head *list_) { struct sk_buff *next = skb->next; if (next == (struct sk_buff *)list_) next = NULL; return next; } /** * skb_peek_tail - peek at the tail of an &sk_buff_head * @list_: list to peek at * * Peek an &sk_buff. Unlike most other operations you _MUST_ * be careful with this one. A peek leaves the buffer on the * list and someone else may run off with it. You must hold * the appropriate locks or have a private queue to do this. * * Returns %NULL for an empty list or a pointer to the tail element. * The reference count is not incremented and the reference is therefore * volatile. Use with caution. */ static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) { struct sk_buff *skb = READ_ONCE(list_->prev); if (skb == (struct sk_buff *)list_) skb = NULL; return skb; } /** * skb_queue_len - get queue length * @list_: list to measure * * Return the length of an &sk_buff queue. */ static inline __u32 skb_queue_len(const struct sk_buff_head *list_) { return list_->qlen; } /** * skb_queue_len_lockless - get queue length * @list_: list to measure * * Return the length of an &sk_buff queue. * This variant can be used in lockless contexts. */ static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) { return READ_ONCE(list_->qlen); } /** * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head * @list: queue to initialize * * This initializes only the list and queue length aspects of * an sk_buff_head object. This allows to initialize the list * aspects of an sk_buff_head without reinitializing things like * the spinlock. It can also be used for on-stack sk_buff_head * objects where the spinlock is known to not be used. */ static inline void __skb_queue_head_init(struct sk_buff_head *list) { list->prev = list->next = (struct sk_buff *)list; list->qlen = 0; } /* * This function creates a split out lock class for each invocation; * this is needed for now since a whole lot of users of the skb-queue * infrastructure in drivers have different locking usage (in hardirq) * than the networking core (in softirq only). In the long run either the * network layer or drivers should need annotation to consolidate the * main types of usage into 3 classes. */ static inline void skb_queue_head_init(struct sk_buff_head *list) { spin_lock_init(&list->lock); __skb_queue_head_init(list); } static inline void skb_queue_head_init_class(struct sk_buff_head *list, struct lock_class_key *class) { skb_queue_head_init(list); lockdep_set_class(&list->lock, class); } /* * Insert an sk_buff on a list. * * The "__skb_xxxx()" functions are the non-atomic ones that * can only be called with interrupts disabled. */ static inline void __skb_insert(struct sk_buff *newsk, struct sk_buff *prev, struct sk_buff *next, struct sk_buff_head *list) { /* See skb_queue_empty_lockless() and skb_peek_tail() * for the opposite READ_ONCE() */ WRITE_ONCE(newsk->next, next); WRITE_ONCE(newsk->prev, prev); WRITE_ONCE(next->prev, newsk); WRITE_ONCE(prev->next, newsk); WRITE_ONCE(list->qlen, list->qlen + 1); } static inline void __skb_queue_splice(const struct sk_buff_head *list, struct sk_buff *prev, struct sk_buff *next) { struct sk_buff *first = list->next; struct sk_buff *last = list->prev; WRITE_ONCE(first->prev, prev); WRITE_ONCE(prev->next, first); WRITE_ONCE(last->next, next); WRITE_ONCE(next->prev, last); } /** * skb_queue_splice - join two skb lists, this is designed for stacks * @list: the new list to add * @head: the place to add it in the first list */ static inline void skb_queue_splice(const struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, (struct sk_buff *) head, head->next); head->qlen += list->qlen; } } /** * skb_queue_splice_init - join two skb lists and reinitialise the emptied list * @list: the new list to add * @head: the place to add it in the first list * * The list at @list is reinitialised */ static inline void skb_queue_splice_init(struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, (struct sk_buff *) head, head->next); head->qlen += list->qlen; __skb_queue_head_init(list); } } /** * skb_queue_splice_tail - join two skb lists, each list being a queue * @list: the new list to add * @head: the place to add it in the first list */ static inline void skb_queue_splice_tail(const struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, head->prev, (struct sk_buff *) head); head->qlen += list->qlen; } } /** * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list * @list: the new list to add * @head: the place to add it in the first list * * Each of the lists is a queue. * The list at @list is reinitialised */ static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, head->prev, (struct sk_buff *) head); head->qlen += list->qlen; __skb_queue_head_init(list); } } /** * __skb_queue_after - queue a buffer at the list head * @list: list to use * @prev: place after this buffer * @newsk: buffer to queue * * Queue a buffer int the middle of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ static inline void __skb_queue_after(struct sk_buff_head *list, struct sk_buff *prev, struct sk_buff *newsk) { __skb_insert(newsk, prev, prev->next, list); } void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); static inline void __skb_queue_before(struct sk_buff_head *list, struct sk_buff *next, struct sk_buff *newsk) { __skb_insert(newsk, next->prev, next, list); } /** * __skb_queue_head - queue a buffer at the list head * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the start of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ static inline void __skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) { __skb_queue_after(list, (struct sk_buff *)list, newsk); } void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); /** * __skb_queue_tail - queue a buffer at the list tail * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the end of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ static inline void __skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) { __skb_queue_before(list, (struct sk_buff *)list, newsk); } void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); /* * remove sk_buff from list. _Must_ be called atomically, and with * the list known.. */ void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) { struct sk_buff *next, *prev; WRITE_ONCE(list->qlen, list->qlen - 1); next = skb->next; prev = skb->prev; skb->next = skb->prev = NULL; WRITE_ONCE(next->prev, prev); WRITE_ONCE(prev->next, next); } /** * __skb_dequeue - remove from the head of the queue * @list: list to dequeue from * * Remove the head of the list. This function does not take any locks * so must be used with appropriate locks held only. The head item is * returned or %NULL if the list is empty. */ static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) { struct sk_buff *skb = skb_peek(list); if (skb) __skb_unlink(skb, list); return skb; } struct sk_buff *skb_dequeue(struct sk_buff_head *list); /** * __skb_dequeue_tail - remove from the tail of the queue * @list: list to dequeue from * * Remove the tail of the list. This function does not take any locks * so must be used with appropriate locks held only. The tail item is * returned or %NULL if the list is empty. */ static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) { struct sk_buff *skb = skb_peek_tail(list); if (skb) __skb_unlink(skb, list); return skb; } struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); static inline bool skb_is_nonlinear(const struct sk_buff *skb) { return skb->data_len; } static inline unsigned int skb_headlen(const struct sk_buff *skb) { return skb->len - skb->data_len; } static inline unsigned int __skb_pagelen(const struct sk_buff *skb) { unsigned int i, len = 0; for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) len += skb_frag_size(&skb_shinfo(skb)->frags[i]); return len; } static inline unsigned int skb_pagelen(const struct sk_buff *skb) { return skb_headlen(skb) + __skb_pagelen(skb); } /** * __skb_fill_page_desc - initialise a paged fragment in an skb * @skb: buffer containing fragment to be initialised * @i: paged fragment index to initialise * @page: the page to use for this fragment * @off: the offset to the data with @page * @size: the length of the data * * Initialises the @i'th fragment of @skb to point to &size bytes at * offset @off within @page. * * Does not take any additional reference on the fragment. */ static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, struct page *page, int off, int size) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; /* * Propagate page pfmemalloc to the skb if we can. The problem is * that not all callers have unique ownership of the page but rely * on page_is_pfmemalloc doing the right thing(tm). */ frag->bv_page = page; frag->bv_offset = off; skb_frag_size_set(frag, size); page = compound_head(page); if (page_is_pfmemalloc(page)) skb->pfmemalloc = true; } /** * skb_fill_page_desc - initialise a paged fragment in an skb * @skb: buffer containing fragment to be initialised * @i: paged fragment index to initialise * @page: the page to use for this fragment * @off: the offset to the data with @page * @size: the length of the data * * As per __skb_fill_page_desc() -- initialises the @i'th fragment of * @skb to point to @size bytes at offset @off within @page. In * addition updates @skb such that @i is the last fragment. * * Does not take any additional reference on the fragment. */ static inline void skb_fill_page_desc(struct sk_buff *skb, int i, struct page *page, int off, int size) { __skb_fill_page_desc(skb, i, page, off, size); skb_shinfo(skb)->nr_frags = i + 1; } void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, int size, unsigned int truesize); void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, unsigned int truesize); #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) #ifdef NET_SKBUFF_DATA_USES_OFFSET static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) { return skb->head + skb->tail; } static inline void skb_reset_tail_pointer(struct sk_buff *skb) { skb->tail = skb->data - skb->head; } static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) { skb_reset_tail_pointer(skb); skb->tail += offset; } #else /* NET_SKBUFF_DATA_USES_OFFSET */ static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) { return skb->tail; } static inline void skb_reset_tail_pointer(struct sk_buff *skb) { skb->tail = skb->data; } static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) { skb->tail = skb->data + offset; } #endif /* NET_SKBUFF_DATA_USES_OFFSET */ /* * Add data to an sk_buff */ void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); void *skb_put(struct sk_buff *skb, unsigned int len); static inline void *__skb_put(struct sk_buff *skb, unsigned int len) { void *tmp = skb_tail_pointer(skb); SKB_LINEAR_ASSERT(skb); skb->tail += len; skb->len += len; return tmp; } static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) { void *tmp = __skb_put(skb, len); memset(tmp, 0, len); return tmp; } static inline void *__skb_put_data(struct sk_buff *skb, const void *data, unsigned int len) { void *tmp = __skb_put(skb, len); memcpy(tmp, data, len); return tmp; } static inline void __skb_put_u8(struct sk_buff *skb, u8 val) { *(u8 *)__skb_put(skb, 1) = val; } static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) { void *tmp = skb_put(skb, len); memset(tmp, 0, len); return tmp; } static inline void *skb_put_data(struct sk_buff *skb, const void *data, unsigned int len) { void *tmp = skb_put(skb, len); memcpy(tmp, data, len); return tmp; } static inline void skb_put_u8(struct sk_buff *skb, u8 val) { *(u8 *)skb_put(skb, 1) = val; } void *skb_push(struct sk_buff *skb, unsigned int len); static inline void *__skb_push(struct sk_buff *skb, unsigned int len) { skb->data -= len; skb->len += len; return skb->data; } void *skb_pull(struct sk_buff *skb, unsigned int len); static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) { skb->len -= len; BUG_ON(skb->len < skb->data_len); return skb->data += len; } static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) { return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); } void *__pskb_pull_tail(struct sk_buff *skb, int delta); static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) { if (len > skb_headlen(skb) && !__pskb_pull_tail(skb, len - skb_headlen(skb))) return NULL; skb->len -= len; return skb->data += len; } static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) { return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); } static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) { if (likely(len <= skb_headlen(skb))) return true; if (unlikely(len > skb->len)) return false; return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; } void skb_condense(struct sk_buff *skb); /** * skb_headroom - bytes at buffer head * @skb: buffer to check * * Return the number of bytes of free space at the head of an &sk_buff. */ static inline unsigned int skb_headroom(const struct sk_buff *skb) { return skb->data - skb->head; } /** * skb_tailroom - bytes at buffer end * @skb: buffer to check * * Return the number of bytes of free space at the tail of an sk_buff */ static inline int skb_tailroom(const struct sk_buff *skb) { return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; } /** * skb_availroom - bytes at buffer end * @skb: buffer to check * * Return the number of bytes of free space at the tail of an sk_buff * allocated by sk_stream_alloc() */ static inline int skb_availroom(const struct sk_buff *skb) { if (skb_is_nonlinear(skb)) return 0; return skb->end - skb->tail - skb->reserved_tailroom; } /** * skb_reserve - adjust headroom * @skb: buffer to alter * @len: bytes to move * * Increase the headroom of an empty &sk_buff by reducing the tail * room. This is only allowed for an empty buffer. */ static inline void skb_reserve(struct sk_buff *skb, int len) { skb->data += len; skb->tail += len; } /** * skb_tailroom_reserve - adjust reserved_tailroom * @skb: buffer to alter * @mtu: maximum amount of headlen permitted * @needed_tailroom: minimum amount of reserved_tailroom * * Set reserved_tailroom so that headlen can be as large as possible but * not larger than mtu and tailroom cannot be smaller than * needed_tailroom. * The required headroom should already have been reserved before using * this function. */ static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, unsigned int needed_tailroom) { SKB_LINEAR_ASSERT(skb); if (mtu < skb_tailroom(skb) - needed_tailroom) /* use at most mtu */ skb->reserved_tailroom = skb_tailroom(skb) - mtu; else /* use up to all available space */ skb->reserved_tailroom = needed_tailroom; } #define ENCAP_TYPE_ETHER 0 #define ENCAP_TYPE_IPPROTO 1 static inline void skb_set_inner_protocol(struct sk_buff *skb, __be16 protocol) { skb->inner_protocol = protocol; skb->inner_protocol_type = ENCAP_TYPE_ETHER; } static inline void skb_set_inner_ipproto(struct sk_buff *skb, __u8 ipproto) { skb->inner_ipproto = ipproto; skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; } static inline void skb_reset_inner_headers(struct sk_buff *skb) { skb->inner_mac_header = skb->mac_header; skb->inner_network_header = skb->network_header; skb->inner_transport_header = skb->transport_header; } static inline void skb_reset_mac_len(struct sk_buff *skb) { skb->mac_len = skb->network_header - skb->mac_header; } static inline unsigned char *skb_inner_transport_header(const struct sk_buff *skb) { return skb->head + skb->inner_transport_header; } static inline int skb_inner_transport_offset(const struct sk_buff *skb) { return skb_inner_transport_header(skb) - skb->data; } static inline void skb_reset_inner_transport_header(struct sk_buff *skb) { skb->inner_transport_header = skb->data - skb->head; } static inline void skb_set_inner_transport_header(struct sk_buff *skb, const int offset) { skb_reset_inner_transport_header(skb); skb->inner_transport_header += offset; } static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) { return skb->head + skb->inner_network_header; } static inline void skb_reset_inner_network_header(struct sk_buff *skb) { skb->inner_network_header = skb->data - skb->head; } static inline void skb_set_inner_network_header(struct sk_buff *skb, const int offset) { skb_reset_inner_network_header(skb); skb->inner_network_header += offset; } static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) { return skb->head + skb->inner_mac_header; } static inline void skb_reset_inner_mac_header(struct sk_buff *skb) { skb->inner_mac_header = skb->data - skb->head; } static inline void skb_set_inner_mac_header(struct sk_buff *skb, const int offset) { skb_reset_inner_mac_header(skb); skb->inner_mac_header += offset; } static inline bool skb_transport_header_was_set(const struct sk_buff *skb) { return skb->transport_header != (typeof(skb->transport_header))~0U; } static inline unsigned char *skb_transport_header(const struct sk_buff *skb) { return skb->head + skb->transport_header; } static inline void skb_reset_transport_header(struct sk_buff *skb) { skb->transport_header = skb->data - skb->head; } static inline void skb_set_transport_header(struct sk_buff *skb, const int offset) { skb_reset_transport_header(skb); skb->transport_header += offset; } static inline unsigned char *skb_network_header(const struct sk_buff *skb) { return skb->head + skb->network_header; } static inline void skb_reset_network_header(struct sk_buff *skb) { skb->network_header = skb->data - skb->head; } static inline void skb_set_network_header(struct sk_buff *skb, const int offset) { skb_reset_network_header(skb); skb->network_header += offset; } static inline unsigned char *skb_mac_header(const struct sk_buff *skb) { return skb->head + skb->mac_header; } static inline int skb_mac_offset(const struct sk_buff *skb) { return skb_mac_header(skb) - skb->data; } static inline u32 skb_mac_header_len(const struct sk_buff *skb) { return skb->network_header - skb->mac_header; } static inline int skb_mac_header_was_set(const struct sk_buff *skb) { return skb->mac_header != (typeof(skb->mac_header))~0U; } static inline void skb_unset_mac_header(struct sk_buff *skb) { skb->mac_header = (typeof(skb->mac_header))~0U; } static inline void skb_reset_mac_header(struct sk_buff *skb) { skb->mac_header = skb->data - skb->head; } static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) { skb_reset_mac_header(skb); skb->mac_header += offset; } static inline void skb_pop_mac_header(struct sk_buff *skb) { skb->mac_header = skb->network_header; } static inline void skb_probe_transport_header(struct sk_buff *skb) { struct flow_keys_basic keys; if (skb_transport_header_was_set(skb)) return; if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, NULL, 0, 0, 0, 0)) skb_set_transport_header(skb, keys.control.thoff); } static inline void skb_mac_header_rebuild(struct sk_buff *skb) { if (skb_mac_header_was_set(skb)) { const unsigned char *old_mac = skb_mac_header(skb); skb_set_mac_header(skb, -skb->mac_len); memmove(skb_mac_header(skb), old_mac, skb->mac_len); } } static inline int skb_checksum_start_offset(const struct sk_buff *skb) { return skb->csum_start - skb_headroom(skb); } static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) { return skb->head + skb->csum_start; } static inline int skb_transport_offset(const struct sk_buff *skb) { return skb_transport_header(skb) - skb->data; } static inline u32 skb_network_header_len(const struct sk_buff *skb) { return skb->transport_header - skb->network_header; } static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) { return skb->inner_transport_header - skb->inner_network_header; } static inline int skb_network_offset(const struct sk_buff *skb) { return skb_network_header(skb) - skb->data; } static inline int skb_inner_network_offset(const struct sk_buff *skb) { return skb_inner_network_header(skb) - skb->data; } static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) { return pskb_may_pull(skb, skb_network_offset(skb) + len); } /* * CPUs often take a performance hit when accessing unaligned memory * locations. The actual performance hit varies, it can be small if the * hardware handles it or large if we have to take an exception and fix it * in software. * * Since an ethernet header is 14 bytes network drivers often end up with * the IP header at an unaligned offset. The IP header can be aligned by * shifting the start of the packet by 2 bytes. Drivers should do this * with: * * skb_reserve(skb, NET_IP_ALIGN); * * The downside to this alignment of the IP header is that the DMA is now * unaligned. On some architectures the cost of an unaligned DMA is high * and this cost outweighs the gains made by aligning the IP header. * * Since this trade off varies between architectures, we allow NET_IP_ALIGN * to be overridden. */ #ifndef NET_IP_ALIGN #define NET_IP_ALIGN 2 #endif /* * The networking layer reserves some headroom in skb data (via * dev_alloc_skb). This is used to avoid having to reallocate skb data when * the header has to grow. In the default case, if the header has to grow * 32 bytes or less we avoid the reallocation. * * Unfortunately this headroom changes the DMA alignment of the resulting * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive * on some architectures. An architecture can override this value, * perhaps setting it to a cacheline in size (since that will maintain * cacheline alignment of the DMA). It must be a power of 2. * * Various parts of the networking layer expect at least 32 bytes of * headroom, you should not reduce this. * * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) * to reduce average number of cache lines per packet. * get_rps_cpu() for example only access one 64 bytes aligned block : * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) */ #ifndef NET_SKB_PAD #define NET_SKB_PAD max(32, L1_CACHE_BYTES) #endif int ___pskb_trim(struct sk_buff *skb, unsigned int len); static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) { if (WARN_ON(skb_is_nonlinear(skb))) return; skb->len = len; skb_set_tail_pointer(skb, len); } static inline void __skb_trim(struct sk_buff *skb, unsigned int len) { __skb_set_length(skb, len); } void skb_trim(struct sk_buff *skb, unsigned int len); static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) { if (skb->data_len) return ___pskb_trim(skb, len); __skb_trim(skb, len); return 0; } static inline int pskb_trim(struct sk_buff *skb, unsigned int len) { return (len < skb->len) ? __pskb_trim(skb, len) : 0; } /** * pskb_trim_unique - remove end from a paged unique (not cloned) buffer * @skb: buffer to alter * @len: new length * * This is identical to pskb_trim except that the caller knows that * the skb is not cloned so we should never get an error due to out- * of-memory. */ static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) { int err = pskb_trim(skb, len); BUG_ON(err); } static inline int __skb_grow(struct sk_buff *skb, unsigned int len) { unsigned int diff = len - skb->len; if (skb_tailroom(skb) < diff) { int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), GFP_ATOMIC); if (ret) return ret; } __skb_set_length(skb, len); return 0; } /** * skb_orphan - orphan a buffer * @skb: buffer to orphan * * If a buffer currently has an owner then we call the owner's * destructor function and make the @skb unowned. The buffer continues * to exist but is no longer charged to its former owner. */ static inline void skb_orphan(struct sk_buff *skb) { if (skb->destructor) { skb->destructor(skb); skb->destructor = NULL; skb->sk = NULL; } else { BUG_ON(skb->sk); } } /** * skb_orphan_frags - orphan the frags contained in a buffer * @skb: buffer to orphan frags from * @gfp_mask: allocation mask for replacement pages * * For each frag in the SKB which needs a destructor (i.e. has an * owner) create a copy of that frag and release the original * page by calling the destructor. */ static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) { if (likely(!skb_zcopy(skb))) return 0; if (!skb_zcopy_is_nouarg(skb) && skb_uarg(skb)->callback == sock_zerocopy_callback) return 0; return skb_copy_ubufs(skb, gfp_mask); } /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) { if (likely(!skb_zcopy(skb))) return 0; return skb_copy_ubufs(skb, gfp_mask); } /** * __skb_queue_purge - empty a list * @list: list to empty * * Delete all buffers on an &sk_buff list. Each buffer is removed from * the list and one reference dropped. This function does not take the * list lock and the caller must hold the relevant locks to use it. */ static inline void __skb_queue_purge(struct sk_buff_head *list) { struct sk_buff *skb; while ((skb = __skb_dequeue(list)) != NULL) kfree_skb(skb); } void skb_queue_purge(struct sk_buff_head *list); unsigned int skb_rbtree_purge(struct rb_root *root); void *netdev_alloc_frag(unsigned int fragsz); struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, gfp_t gfp_mask); /** * netdev_alloc_skb - allocate an skbuff for rx on a specific device * @dev: network device to receive on * @length: length to allocate * * Allocate a new &sk_buff and assign it a usage count of one. The * buffer has unspecified headroom built in. Users should allocate * the headroom they think they need without accounting for the * built in space. The built in space is used for optimisations. * * %NULL is returned if there is no free memory. Although this function * allocates memory it can be called from an interrupt. */ static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, unsigned int length) { return __netdev_alloc_skb(dev, length, GFP_ATOMIC); } /* legacy helper around __netdev_alloc_skb() */ static inline struct sk_buff *__dev_alloc_skb(unsigned int length, gfp_t gfp_mask) { return __netdev_alloc_skb(NULL, length, gfp_mask); } /* legacy helper around netdev_alloc_skb() */ static inline struct sk_buff *dev_alloc_skb(unsigned int length) { return netdev_alloc_skb(NULL, length); } static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, unsigned int length, gfp_t gfp) { struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); if (NET_IP_ALIGN && skb) skb_reserve(skb, NET_IP_ALIGN); return skb; } static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, unsigned int length) { return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); } static inline void skb_free_frag(void *addr) { page_frag_free(addr); } void *napi_alloc_frag(unsigned int fragsz); struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int length, gfp_t gfp_mask); static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length) { return __napi_alloc_skb(napi, length, GFP_ATOMIC); } void napi_consume_skb(struct sk_buff *skb, int budget); void __kfree_skb_flush(void); void __kfree_skb_defer(struct sk_buff *skb); /** * __dev_alloc_pages - allocate page for network Rx * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx * @order: size of the allocation * * Allocate a new page. * * %NULL is returned if there is no free memory. */ static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, unsigned int order) { /* This piece of code contains several assumptions. * 1. This is for device Rx, therefor a cold page is preferred. * 2. The expectation is the user wants a compound page. * 3. If requesting a order 0 page it will not be compound * due to the check to see if order has a value in prep_new_page * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to * code in gfp_to_alloc_flags that should be enforcing this. */ gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); } static inline struct page *dev_alloc_pages(unsigned int order) { return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); } /** * __dev_alloc_page - allocate a page for network Rx * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx * * Allocate a new page. * * %NULL is returned if there is no free memory. */ static inline struct page *__dev_alloc_page(gfp_t gfp_mask) { return __dev_alloc_pages(gfp_mask, 0); } static inline struct page *dev_alloc_page(void) { return dev_alloc_pages(0); } /** * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page * @page: The page that was allocated from skb_alloc_page * @skb: The skb that may need pfmemalloc set */ static inline void skb_propagate_pfmemalloc(struct page *page, struct sk_buff *skb) { if (page_is_pfmemalloc(page)) skb->pfmemalloc = true; } /** * skb_frag_off() - Returns the offset of a skb fragment * @frag: the paged fragment */ static inline unsigned int skb_frag_off(const skb_frag_t *frag) { return frag->bv_offset; } /** * skb_frag_off_add() - Increments the offset of a skb fragment by @delta * @frag: skb fragment * @delta: value to add */ static inline void skb_frag_off_add(skb_frag_t *frag, int delta) { frag->bv_offset += delta; } /** * skb_frag_off_set() - Sets the offset of a skb fragment * @frag: skb fragment * @offset: offset of fragment */ static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) { frag->bv_offset = offset; } /** * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment * @fragto: skb fragment where offset is set * @fragfrom: skb fragment offset is copied from */ static inline void skb_frag_off_copy(skb_frag_t *fragto, const skb_frag_t *fragfrom) { fragto->bv_offset = fragfrom->bv_offset; } /** * skb_frag_page - retrieve the page referred to by a paged fragment * @frag: the paged fragment * * Returns the &struct page associated with @frag. */ static inline struct page *skb_frag_page(const skb_frag_t *frag) { return frag->bv_page; } /** * __skb_frag_ref - take an addition reference on a paged fragment. * @frag: the paged fragment * * Takes an additional reference on the paged fragment @frag. */ static inline void __skb_frag_ref(skb_frag_t *frag) { get_page(skb_frag_page(frag)); } /** * skb_frag_ref - take an addition reference on a paged fragment of an skb. * @skb: the buffer * @f: the fragment offset. * * Takes an additional reference on the @f'th paged fragment of @skb. */ static inline void skb_frag_ref(struct sk_buff *skb, int f) { __skb_frag_ref(&skb_shinfo(skb)->frags[f]); } /** * __skb_frag_unref - release a reference on a paged fragment. * @frag: the paged fragment * * Releases a reference on the paged fragment @frag. */ static inline void __skb_frag_unref(skb_frag_t *frag) { put_page(skb_frag_page(frag)); } /** * skb_frag_unref - release a reference on a paged fragment of an skb. * @skb: the buffer * @f: the fragment offset * * Releases a reference on the @f'th paged fragment of @skb. */ static inline void skb_frag_unref(struct sk_buff *skb, int f) { __skb_frag_unref(&skb_shinfo(skb)->frags[f]); } /** * skb_frag_address - gets the address of the data contained in a paged fragment * @frag: the paged fragment buffer * * Returns the address of the data within @frag. The page must already * be mapped. */ static inline void *skb_frag_address(const skb_frag_t *frag) { return page_address(skb_frag_page(frag)) + skb_frag_off(frag); } /** * skb_frag_address_safe - gets the address of the data contained in a paged fragment * @frag: the paged fragment buffer * * Returns the address of the data within @frag. Checks that the page * is mapped and returns %NULL otherwise. */ static inline void *skb_frag_address_safe(const skb_frag_t *frag) { void *ptr = page_address(skb_frag_page(frag)); if (unlikely(!ptr)) return NULL; return ptr + skb_frag_off(frag); } /** * skb_frag_page_copy() - sets the page in a fragment from another fragment * @fragto: skb fragment where page is set * @fragfrom: skb fragment page is copied from */ static inline void skb_frag_page_copy(skb_frag_t *fragto, const skb_frag_t *fragfrom) { fragto->bv_page = fragfrom->bv_page; } /** * __skb_frag_set_page - sets the page contained in a paged fragment * @frag: the paged fragment * @page: the page to set * * Sets the fragment @frag to contain @page. */ static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) { frag->bv_page = page; } /** * skb_frag_set_page - sets the page contained in a paged fragment of an skb * @skb: the buffer * @f: the fragment offset * @page: the page to set * * Sets the @f'th fragment of @skb to contain @page. */ static inline void skb_frag_set_page(struct sk_buff *skb, int f, struct page *page) { __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); } bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); /** * skb_frag_dma_map - maps a paged fragment via the DMA API * @dev: the device to map the fragment to * @frag: the paged fragment to map * @offset: the offset within the fragment (starting at the * fragment's own offset) * @size: the number of bytes to map * @dir: the direction of the mapping (``PCI_DMA_*``) * * Maps the page associated with @frag to @device. */ static inline dma_addr_t skb_frag_dma_map(struct device *dev, const skb_frag_t *frag, size_t offset, size_t size, enum dma_data_direction dir) { return dma_map_page(dev, skb_frag_page(frag), skb_frag_off(frag) + offset, size, dir); } static inline struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) { return __pskb_copy(skb, skb_headroom(skb), gfp_mask); } static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, gfp_t gfp_mask) { return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); } /** * skb_clone_writable - is the header of a clone writable * @skb: buffer to check * @len: length up to which to write * * Returns true if modifying the header part of the cloned buffer * does not requires the data to be copied. */ static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) { return !skb_header_cloned(skb) && skb_headroom(skb) + len <= skb->hdr_len; } static inline int skb_try_make_writable(struct sk_buff *skb, unsigned int write_len) { return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); } static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, int cloned) { int delta = 0; if (headroom > skb_headroom(skb)) delta = headroom - skb_headroom(skb); if (delta || cloned) return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, GFP_ATOMIC); return 0; } /** * skb_cow - copy header of skb when it is required * @skb: buffer to cow * @headroom: needed headroom * * If the skb passed lacks sufficient headroom or its data part * is shared, data is reallocated. If reallocation fails, an error * is returned and original skb is not changed. * * The result is skb with writable area skb->head...skb->tail * and at least @headroom of space at head. */ static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) { return __skb_cow(skb, headroom, skb_cloned(skb)); } /** * skb_cow_head - skb_cow but only making the head writable * @skb: buffer to cow * @headroom: needed headroom * * This function is identical to skb_cow except that we replace the * skb_cloned check by skb_header_cloned. It should be used when * you only need to push on some header and do not need to modify * the data. */ static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) { return __skb_cow(skb, headroom, skb_header_cloned(skb)); } /** * skb_padto - pad an skbuff up to a minimal size * @skb: buffer to pad * @len: minimal length * * Pads up a buffer to ensure the trailing bytes exist and are * blanked. If the buffer already contains sufficient data it * is untouched. Otherwise it is extended. Returns zero on * success. The skb is freed on error. */ static inline int skb_padto(struct sk_buff *skb, unsigned int len) { unsigned int size = skb->len; if (likely(size >= len)) return 0; return skb_pad(skb, len - size); } /** * __skb_put_padto - increase size and pad an skbuff up to a minimal size * @skb: buffer to pad * @len: minimal length * @free_on_error: free buffer on error * * Pads up a buffer to ensure the trailing bytes exist and are * blanked. If the buffer already contains sufficient data it * is untouched. Otherwise it is extended. Returns zero on * success. The skb is freed on error if @free_on_error is true. */ static inline int __must_check __skb_put_padto(struct sk_buff *skb, unsigned int len, bool free_on_error) { unsigned int size = skb->len; if (unlikely(size < len)) { len -= size; if (__skb_pad(skb, len, free_on_error)) return -ENOMEM; __skb_put(skb, len); } return 0; } /** * skb_put_padto - increase size and pad an skbuff up to a minimal size * @skb: buffer to pad * @len: minimal length * * Pads up a buffer to ensure the trailing bytes exist and are * blanked. If the buffer already contains sufficient data it * is untouched. Otherwise it is extended. Returns zero on * success. The skb is freed on error. */ static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) { return __skb_put_padto(skb, len, true); } static inline int skb_add_data(struct sk_buff *skb, struct iov_iter *from, int copy) { const int off = skb->len; if (skb->ip_summed == CHECKSUM_NONE) { __wsum csum = 0; if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, &csum, from)) { skb->csum = csum_block_add(skb->csum, csum, off); return 0; } } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) return 0; __skb_trim(skb, off); return -EFAULT; } static inline bool skb_can_coalesce(struct sk_buff *skb, int i, const struct page *page, int off) { if (skb_zcopy(skb)) return false; if (i) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; return page == skb_frag_page(frag) && off == skb_frag_off(frag) + skb_frag_size(frag); } return false; } static inline int __skb_linearize(struct sk_buff *skb) { return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; } /** * skb_linearize - convert paged skb to linear one * @skb: buffer to linarize * * If there is no free memory -ENOMEM is returned, otherwise zero * is returned and the old skb data released. */ static inline int skb_linearize(struct sk_buff *skb) { return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; } /** * skb_has_shared_frag - can any frag be overwritten * @skb: buffer to test * * Return true if the skb has at least one frag that might be modified * by an external entity (as in vmsplice()/sendfile()) */ static inline bool skb_has_shared_frag(const struct sk_buff *skb) { return skb_is_nonlinear(skb) && skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; } /** * skb_linearize_cow - make sure skb is linear and writable * @skb: buffer to process * * If there is no free memory -ENOMEM is returned, otherwise zero * is returned and the old skb data released. */ static inline int skb_linearize_cow(struct sk_buff *skb) { return skb_is_nonlinear(skb) || skb_cloned(skb) ? __skb_linearize(skb) : 0; } static __always_inline void __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, unsigned int off) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_block_sub(skb->csum, csum_partial(start, len, 0), off); else if (skb->ip_summed == CHECKSUM_PARTIAL && skb_checksum_start_offset(skb) < 0) skb->ip_summed = CHECKSUM_NONE; } /** * skb_postpull_rcsum - update checksum for received skb after pull * @skb: buffer to update * @start: start of data before pull * @len: length of data pulled * * After doing a pull on a received packet, you need to call this to * update the CHECKSUM_COMPLETE checksum, or set ip_summed to * CHECKSUM_NONE so that it can be recomputed from scratch. */ static inline void skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len) { __skb_postpull_rcsum(skb, start, len, 0); } static __always_inline void __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, unsigned int off) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_block_add(skb->csum, csum_partial(start, len, 0), off); } /** * skb_postpush_rcsum - update checksum for received skb after push * @skb: buffer to update * @start: start of data after push * @len: length of data pushed * * After doing a push on a received packet, you need to call this to * update the CHECKSUM_COMPLETE checksum. */ static inline void skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len) { __skb_postpush_rcsum(skb, start, len, 0); } void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); /** * skb_push_rcsum - push skb and update receive checksum * @skb: buffer to update * @len: length of data pulled * * This function performs an skb_push on the packet and updates * the CHECKSUM_COMPLETE checksum. It should be used on * receive path processing instead of skb_push unless you know * that the checksum difference is zero (e.g., a valid IP header) * or you are setting ip_summed to CHECKSUM_NONE. */ static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) { skb_push(skb, len); skb_postpush_rcsum(skb, skb->data, len); return skb->data; } int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); /** * pskb_trim_rcsum - trim received skb and update checksum * @skb: buffer to trim * @len: new length * * This is exactly the same as pskb_trim except that it ensures the * checksum of received packets are still valid after the operation. * It can change skb pointers. */ static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) { if (likely(len >= skb->len)) return 0; return pskb_trim_rcsum_slow(skb, len); } static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; __skb_trim(skb, len); return 0; } static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; return __skb_grow(skb, len); } #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) #define skb_rb_first(root) rb_to_skb(rb_first(root)) #define skb_rb_last(root) rb_to_skb(rb_last(root)) #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) #define skb_queue_walk(queue, skb) \ for (skb = (queue)->next; \ skb != (struct sk_buff *)(queue); \ skb = skb->next) #define skb_queue_walk_safe(queue, skb, tmp) \ for (skb = (queue)->next, tmp = skb->next; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->next) #define skb_queue_walk_from(queue, skb) \ for (; skb != (struct sk_buff *)(queue); \ skb = skb->next) #define skb_rbtree_walk(skb, root) \ for (skb = skb_rb_first(root); skb != NULL; \ skb = skb_rb_next(skb)) #define skb_rbtree_walk_from(skb) \ for (; skb != NULL; \ skb = skb_rb_next(skb)) #define skb_rbtree_walk_from_safe(skb, tmp) \ for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ skb = tmp) #define skb_queue_walk_from_safe(queue, skb, tmp) \ for (tmp = skb->next; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->next) #define skb_queue_reverse_walk(queue, skb) \ for (skb = (queue)->prev; \ skb != (struct sk_buff *)(queue); \ skb = skb->prev) #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ for (skb = (queue)->prev, tmp = skb->prev; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->prev) #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ for (tmp = skb->prev; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->prev) static inline bool skb_has_frag_list(const struct sk_buff *skb) { return skb_shinfo(skb)->frag_list != NULL; } static inline void skb_frag_list_init(struct sk_buff *skb) { skb_shinfo(skb)->frag_list = NULL; } #define skb_walk_frags(skb, iter) \ for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, int *err, long *timeo_p, const struct sk_buff *skb); struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, struct sk_buff_head *queue, unsigned int flags, int *off, int *err, struct sk_buff **last); struct sk_buff *__skb_try_recv_datagram(struct sock *sk, struct sk_buff_head *queue, unsigned int flags, int *off, int *err, struct sk_buff **last); struct sk_buff *__skb_recv_datagram(struct sock *sk, struct sk_buff_head *sk_queue, unsigned int flags, int *off, int *err); struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, int *err); __poll_t datagram_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait); int skb_copy_datagram_iter(const struct sk_buff *from, int offset, struct iov_iter *to, int size); static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, struct msghdr *msg, int size) { return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); } int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, struct msghdr *msg); int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, struct iov_iter *to, int len, struct ahash_request *hash); int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, struct iov_iter *from, int len); int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); void skb_free_datagram(struct sock *sk, struct sk_buff *skb); void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); static inline void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb) { __skb_free_datagram_locked(sk, skb, 0); } int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, int len); int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, struct pipe_inode_info *pipe, unsigned int len, unsigned int flags); int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, int len); void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); unsigned int skb_zerocopy_headlen(const struct sk_buff *from); int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen); void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); void skb_scrub_packet(struct sk_buff *skb, bool xnet); bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, unsigned int offset); struct sk_buff *skb_vlan_untag(struct sk_buff *skb); int skb_ensure_writable(struct sk_buff *skb, int write_len); int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); int skb_vlan_pop(struct sk_buff *skb); int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); int skb_eth_pop(struct sk_buff *skb); int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, const unsigned char *src); int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, int mac_len, bool ethernet); int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, bool ethernet); int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); int skb_mpls_dec_ttl(struct sk_buff *skb); struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, gfp_t gfp); static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) { return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; } static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) { return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; } struct skb_checksum_ops { __wsum (*update)(const void *mem, int len, __wsum wsum); __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); }; extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum, const struct skb_checksum_ops *ops); __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum); static inline void * __must_check __skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *data, int hlen, void *buffer) { if (hlen - offset >= len) return data + offset; if (!skb || skb_copy_bits(skb, offset, buffer, len) < 0) return NULL; return buffer; } static inline void * __must_check skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) { return __skb_header_pointer(skb, offset, len, skb->data, skb_headlen(skb), buffer); } /** * skb_needs_linearize - check if we need to linearize a given skb * depending on the given device features. * @skb: socket buffer to check * @features: net device features * * Returns true if either: * 1. skb has frag_list and the device doesn't support FRAGLIST, or * 2. skb is fragmented and the device does not support SG. */ static inline bool skb_needs_linearize(struct sk_buff *skb, netdev_features_t features) { return skb_is_nonlinear(skb) && ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); } static inline void skb_copy_from_linear_data(const struct sk_buff *skb, void *to, const unsigned int len) { memcpy(to, skb->data, len); } static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, const int offset, void *to, const unsigned int len) { memcpy(to, skb->data + offset, len); } static inline void skb_copy_to_linear_data(struct sk_buff *skb, const void *from, const unsigned int len) { memcpy(skb->data, from, len); } static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, const int offset, const void *from, const unsigned int len) { memcpy(skb->data + offset, from, len); } void skb_init(void); static inline ktime_t skb_get_ktime(const struct sk_buff *skb) { return skb->tstamp; } /** * skb_get_timestamp - get timestamp from a skb * @skb: skb to get stamp from * @stamp: pointer to struct __kernel_old_timeval to store stamp in * * Timestamps are stored in the skb as offsets to a base timestamp. * This function converts the offset back to a struct timeval and stores * it in stamp. */ static inline void skb_get_timestamp(const struct sk_buff *skb, struct __kernel_old_timeval *stamp) { *stamp = ns_to_kernel_old_timeval(skb->tstamp); } static inline void skb_get_new_timestamp(const struct sk_buff *skb, struct __kernel_sock_timeval *stamp) { struct timespec64 ts = ktime_to_timespec64(skb->tstamp); stamp->tv_sec = ts.tv_sec; stamp->tv_usec = ts.tv_nsec / 1000; } static inline void skb_get_timestampns(const struct sk_buff *skb, struct __kernel_old_timespec *stamp) { struct timespec64 ts = ktime_to_timespec64(skb->tstamp); stamp->tv_sec = ts.tv_sec; stamp->tv_nsec = ts.tv_nsec; } static inline void skb_get_new_timestampns(const struct sk_buff *skb, struct __kernel_timespec *stamp) { struct timespec64 ts = ktime_to_timespec64(skb->tstamp); stamp->tv_sec = ts.tv_sec; stamp->tv_nsec = ts.tv_nsec; } static inline void __net_timestamp(struct sk_buff *skb) { skb->tstamp = ktime_get_real(); } static inline ktime_t net_timedelta(ktime_t t) { return ktime_sub(ktime_get_real(), t); } static inline ktime_t net_invalid_timestamp(void) { return 0; } static inline u8 skb_metadata_len(const struct sk_buff *skb) { return skb_shinfo(skb)->meta_len; } static inline void *skb_metadata_end(const struct sk_buff *skb) { return skb_mac_header(skb); } static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, const struct sk_buff *skb_b, u8 meta_len) { const void *a = skb_metadata_end(skb_a); const void *b = skb_metadata_end(skb_b); /* Using more efficient varaiant than plain call to memcmp(). */ #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 u64 diffs = 0; switch (meta_len) { #define __it(x, op) (x -= sizeof(u##op)) #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) case 32: diffs |= __it_diff(a, b, 64); fallthrough; case 24: diffs |= __it_diff(a, b, 64); fallthrough; case 16: diffs |= __it_diff(a, b, 64); fallthrough; case 8: diffs |= __it_diff(a, b, 64); break; case 28: diffs |= __it_diff(a, b, 64); fallthrough; case 20: diffs |= __it_diff(a, b, 64); fallthrough; case 12: diffs |= __it_diff(a, b, 64); fallthrough; case 4: diffs |= __it_diff(a, b, 32); break; } return diffs; #else return memcmp(a - meta_len, b - meta_len, meta_len); #endif } static inline bool skb_metadata_differs(const struct sk_buff *skb_a, const struct sk_buff *skb_b) { u8 len_a = skb_metadata_len(skb_a); u8 len_b = skb_metadata_len(skb_b); if (!(len_a | len_b)) return false; return len_a != len_b ? true : __skb_metadata_differs(skb_a, skb_b, len_a); } static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) { skb_shinfo(skb)->meta_len = meta_len; } static inline void skb_metadata_clear(struct sk_buff *skb) { skb_metadata_set(skb, 0); } struct sk_buff *skb_clone_sk(struct sk_buff *skb); #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING void skb_clone_tx_timestamp(struct sk_buff *skb); bool skb_defer_rx_timestamp(struct sk_buff *skb); #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ static inline void skb_clone_tx_timestamp(struct sk_buff *skb) { } static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) { return false; } #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ /** * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps * * PHY drivers may accept clones of transmitted packets for * timestamping via their phy_driver.txtstamp method. These drivers * must call this function to return the skb back to the stack with a * timestamp. * * @skb: clone of the original outgoing packet * @hwtstamps: hardware time stamps * */ void skb_complete_tx_timestamp(struct sk_buff *skb, struct skb_shared_hwtstamps *hwtstamps); void __skb_tstamp_tx(struct sk_buff *orig_skb, struct skb_shared_hwtstamps *hwtstamps, struct sock *sk, int tstype); /** * skb_tstamp_tx - queue clone of skb with send time stamps * @orig_skb: the original outgoing packet * @hwtstamps: hardware time stamps, may be NULL if not available * * If the skb has a socket associated, then this function clones the * skb (thus sharing the actual data and optional structures), stores * the optional hardware time stamping information (if non NULL) or * generates a software time stamp (otherwise), then queues the clone * to the error queue of the socket. Errors are silently ignored. */ void skb_tstamp_tx(struct sk_buff *orig_skb, struct skb_shared_hwtstamps *hwtstamps); /** * skb_tx_timestamp() - Driver hook for transmit timestamping * * Ethernet MAC Drivers should call this function in their hard_xmit() * function immediately before giving the sk_buff to the MAC hardware. * * Specifically, one should make absolutely sure that this function is * called before TX completion of this packet can trigger. Otherwise * the packet could potentially already be freed. * * @skb: A socket buffer. */ static inline void skb_tx_timestamp(struct sk_buff *skb) { skb_clone_tx_timestamp(skb); if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) skb_tstamp_tx(skb, NULL); } /** * skb_complete_wifi_ack - deliver skb with wifi status * * @skb: the original outgoing packet * @acked: ack status * */ void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); __sum16 __skb_checksum_complete(struct sk_buff *skb); static inline int skb_csum_unnecessary(const struct sk_buff *skb) { return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || skb->csum_valid || (skb->ip_summed == CHECKSUM_PARTIAL && skb_checksum_start_offset(skb) >= 0)); } /** * skb_checksum_complete - Calculate checksum of an entire packet * @skb: packet to process * * This function calculates the checksum over the entire packet plus * the value of skb->csum. The latter can be used to supply the * checksum of a pseudo header as used by TCP/UDP. It returns the * checksum. * * For protocols that contain complete checksums such as ICMP/TCP/UDP, * this function can be used to verify that checksum on received * packets. In that case the function should return zero if the * checksum is correct. In particular, this function will return zero * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the * hardware has already verified the correctness of the checksum. */ static inline __sum16 skb_checksum_complete(struct sk_buff *skb) { return skb_csum_unnecessary(skb) ? 0 : __skb_checksum_complete(skb); } static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_UNNECESSARY) { if (skb->csum_level == 0) skb->ip_summed = CHECKSUM_NONE; else skb->csum_level--; } } static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_UNNECESSARY) { if (skb->csum_level < SKB_MAX_CSUM_LEVEL) skb->csum_level++; } else if (skb->ip_summed == CHECKSUM_NONE) { skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum_level = 0; } } static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_UNNECESSARY) { skb->ip_summed = CHECKSUM_NONE; skb->csum_level = 0; } } /* Check if we need to perform checksum complete validation. * * Returns true if checksum complete is needed, false otherwise * (either checksum is unnecessary or zero checksum is allowed). */ static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, bool zero_okay, __sum16 check) { if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { skb->csum_valid = 1; __skb_decr_checksum_unnecessary(skb); return false; } return true; } /* For small packets <= CHECKSUM_BREAK perform checksum complete directly * in checksum_init. */ #define CHECKSUM_BREAK 76 /* Unset checksum-complete * * Unset checksum complete can be done when packet is being modified * (uncompressed for instance) and checksum-complete value is * invalidated. */ static inline void skb_checksum_complete_unset(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; } /* Validate (init) checksum based on checksum complete. * * Return values: * 0: checksum is validated or try to in skb_checksum_complete. In the latter * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo * checksum is stored in skb->csum for use in __skb_checksum_complete * non-zero: value of invalid checksum * */ static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, bool complete, __wsum psum) { if (skb->ip_summed == CHECKSUM_COMPLETE) { if (!csum_fold(csum_add(psum, skb->csum))) { skb->csum_valid = 1; return 0; } } skb->csum = psum; if (complete || skb->len <= CHECKSUM_BREAK) { __sum16 csum; csum = __skb_checksum_complete(skb); skb->csum_valid = !csum; return csum; } return 0; } static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) { return 0; } /* Perform checksum validate (init). Note that this is a macro since we only * want to calculate the pseudo header which is an input function if necessary. * First we try to validate without any computation (checksum unnecessary) and * then calculate based on checksum complete calling the function to compute * pseudo header. * * Return values: * 0: checksum is validated or try to in skb_checksum_complete * non-zero: value of invalid checksum */ #define __skb_checksum_validate(skb, proto, complete, \ zero_okay, check, compute_pseudo) \ ({ \ __sum16 __ret = 0; \ skb->csum_valid = 0; \ if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ __ret = __skb_checksum_validate_complete(skb, \ complete, compute_pseudo(skb, proto)); \ __ret; \ }) #define skb_checksum_init(skb, proto, compute_pseudo) \ __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) #define skb_checksum_validate(skb, proto, compute_pseudo) \ __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) #define skb_checksum_validate_zero_check(skb, proto, check, \ compute_pseudo) \ __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) #define skb_checksum_simple_validate(skb) \ __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) static inline bool __skb_checksum_convert_check(struct sk_buff *skb) { return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); } static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) { skb->csum = ~pseudo; skb->ip_summed = CHECKSUM_COMPLETE; } #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ do { \ if (__skb_checksum_convert_check(skb)) \ __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ } while (0) static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, u16 start, u16 offset) { skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = ((unsigned char *)ptr + start) - skb->head; skb->csum_offset = offset - start; } /* Update skbuf and packet to reflect the remote checksum offload operation. * When called, ptr indicates the starting point for skb->csum when * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete * here, skb_postpull_rcsum is done so skb->csum start is ptr. */ static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, int start, int offset, bool nopartial) { __wsum delta; if (!nopartial) { skb_remcsum_adjust_partial(skb, ptr, start, offset); return; } if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { __skb_checksum_complete(skb); skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); } delta = remcsum_adjust(ptr, skb->csum, start, offset); /* Adjust skb->csum since we changed the packet */ skb->csum = csum_add(skb->csum, delta); } static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) return (void *)(skb->_nfct & NFCT_PTRMASK); #else return NULL; #endif } static inline unsigned long skb_get_nfct(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) return skb->_nfct; #else return 0UL; #endif } static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) skb->_nfct = nfct; #endif } #ifdef CONFIG_SKB_EXTENSIONS enum skb_ext_id { #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) SKB_EXT_BRIDGE_NF, #endif #ifdef CONFIG_XFRM SKB_EXT_SEC_PATH, #endif #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) TC_SKB_EXT, #endif #if IS_ENABLED(CONFIG_MPTCP) SKB_EXT_MPTCP, #endif #if IS_ENABLED(CONFIG_KCOV) SKB_EXT_KCOV_HANDLE, #endif SKB_EXT_NUM, /* must be last */ }; /** * struct skb_ext - sk_buff extensions * @refcnt: 1 on allocation, deallocated on 0 * @offset: offset to add to @data to obtain extension address * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units * @data: start of extension data, variable sized * * Note: offsets/lengths are stored in chunks of 8 bytes, this allows * to use 'u8' types while allowing up to 2kb worth of extension data. */ struct skb_ext { refcount_t refcnt; u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ u8 chunks; /* same */ char data[] __aligned(8); }; struct skb_ext *__skb_ext_alloc(gfp_t flags); void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, struct skb_ext *ext); void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); void __skb_ext_put(struct skb_ext *ext); static inline void skb_ext_put(struct sk_buff *skb) { if (skb->active_extensions) __skb_ext_put(skb->extensions); } static inline void __skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) { dst->active_extensions = src->active_extensions; if (src->active_extensions) { struct skb_ext *ext = src->extensions; refcount_inc(&ext->refcnt); dst->extensions = ext; } } static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) { skb_ext_put(dst); __skb_ext_copy(dst, src); } static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) { return !!ext->offset[i]; } static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) { return skb->active_extensions & (1 << id); } static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) { if (skb_ext_exist(skb, id)) __skb_ext_del(skb, id); } static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) { if (skb_ext_exist(skb, id)) { struct skb_ext *ext = skb->extensions; return (void *)ext + (ext->offset[id] << 3); } return NULL; } static inline void skb_ext_reset(struct sk_buff *skb) { if (unlikely(skb->active_extensions)) { __skb_ext_put(skb->extensions); skb->active_extensions = 0; } } static inline bool skb_has_extensions(struct sk_buff *skb) { return unlikely(skb->active_extensions); } #else static inline void skb_ext_put(struct sk_buff *skb) {} static inline void skb_ext_reset(struct sk_buff *skb) {} static inline void skb_ext_del(struct sk_buff *skb, int unused) {} static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } #endif /* CONFIG_SKB_EXTENSIONS */ static inline void nf_reset_ct(struct sk_buff *skb) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) nf_conntrack_put(skb_nfct(skb)); skb->_nfct = 0; #endif } static inline void nf_reset_trace(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) skb->nf_trace = 0; #endif } static inline void ipvs_reset(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_IP_VS) skb->ipvs_property = 0; #endif } /* Note: This doesn't put any conntrack info in dst. */ static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, bool copy) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) dst->_nfct = src->_nfct; nf_conntrack_get(skb_nfct(src)); #endif #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) if (copy) dst->nf_trace = src->nf_trace; #endif } static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) nf_conntrack_put(skb_nfct(dst)); #endif __nf_copy(dst, src, true); } #ifdef CONFIG_NETWORK_SECMARK static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) { to->secmark = from->secmark; } static inline void skb_init_secmark(struct sk_buff *skb) { skb->secmark = 0; } #else static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) { } static inline void skb_init_secmark(struct sk_buff *skb) { } #endif static inline int secpath_exists(const struct sk_buff *skb) { #ifdef CONFIG_XFRM return skb_ext_exist(skb, SKB_EXT_SEC_PATH); #else return 0; #endif } static inline bool skb_irq_freeable(const struct sk_buff *skb) { return !skb->destructor && !secpath_exists(skb) && !skb_nfct(skb) && !skb->_skb_refdst && !skb_has_frag_list(skb); } static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) { skb->queue_mapping = queue_mapping; } static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) { return skb->queue_mapping; } static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) { to->queue_mapping = from->queue_mapping; } static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) { skb->queue_mapping = rx_queue + 1; } static inline u16 skb_get_rx_queue(const struct sk_buff *skb) { return skb->queue_mapping - 1; } static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) { return skb->queue_mapping != 0; } static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) { skb->dst_pending_confirm = val; } static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) { return skb->dst_pending_confirm != 0; } static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) { #ifdef CONFIG_XFRM return skb_ext_find(skb, SKB_EXT_SEC_PATH); #else return NULL; #endif } /* Keeps track of mac header offset relative to skb->head. * It is useful for TSO of Tunneling protocol. e.g. GRE. * For non-tunnel skb it points to skb_mac_header() and for * tunnel skb it points to outer mac header. * Keeps track of level of encapsulation of network headers. */ struct skb_gso_cb { union { int mac_offset; int data_offset; }; int encap_level; __wsum csum; __u16 csum_start; }; #define SKB_GSO_CB_OFFSET 32 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) { return (skb_mac_header(inner_skb) - inner_skb->head) - SKB_GSO_CB(inner_skb)->mac_offset; } static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) { int new_headroom, headroom; int ret; headroom = skb_headroom(skb); ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); if (ret) return ret; new_headroom = skb_headroom(skb); SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); return 0; } static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) { /* Do not update partial checksums if remote checksum is enabled. */ if (skb->remcsum_offload) return; SKB_GSO_CB(skb)->csum = res; SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; } /* Compute the checksum for a gso segment. First compute the checksum value * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and * then add in skb->csum (checksum from csum_start to end of packet). * skb->csum and csum_start are then updated to reflect the checksum of the * resultant packet starting from the transport header-- the resultant checksum * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo * header. */ static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) { unsigned char *csum_start = skb_transport_header(skb); int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; __wsum partial = SKB_GSO_CB(skb)->csum; SKB_GSO_CB(skb)->csum = res; SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; return csum_fold(csum_partial(csum_start, plen, partial)); } static inline bool skb_is_gso(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_size; } /* Note: Should be called only if skb_is_gso(skb) is true */ static inline bool skb_is_gso_v6(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; } /* Note: Should be called only if skb_is_gso(skb) is true */ static inline bool skb_is_gso_sctp(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; } /* Note: Should be called only if skb_is_gso(skb) is true */ static inline bool skb_is_gso_tcp(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); } static inline void skb_gso_reset(struct sk_buff *skb) { skb_shinfo(skb)->gso_size = 0; skb_shinfo(skb)->gso_segs = 0; skb_shinfo(skb)->gso_type = 0; } static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, u16 increment) { if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) return; shinfo->gso_size += increment; } static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, u16 decrement) { if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) return; shinfo->gso_size -= decrement; } void __skb_warn_lro_forwarding(const struct sk_buff *skb); static inline bool skb_warn_if_lro(const struct sk_buff *skb) { /* LRO sets gso_size but not gso_type, whereas if GSO is really * wanted then gso_type will be set. */ const struct skb_shared_info *shinfo = skb_shinfo(skb); if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { __skb_warn_lro_forwarding(skb); return true; } return false; } static inline void skb_forward_csum(struct sk_buff *skb) { /* Unfortunately we don't support this one. Any brave souls? */ if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; } /** * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE * @skb: skb to check * * fresh skbs have their ip_summed set to CHECKSUM_NONE. * Instead of forcing ip_summed to CHECKSUM_NONE, we can * use this helper, to document places where we make this assertion. */ static inline void skb_checksum_none_assert(const struct sk_buff *skb) { #ifdef DEBUG BUG_ON(skb->ip_summed != CHECKSUM_NONE); #endif } bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); int skb_checksum_setup(struct sk_buff *skb, bool recalculate); struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, unsigned int transport_len, __sum16(*skb_chkf)(struct sk_buff *skb)); /** * skb_head_is_locked - Determine if the skb->head is locked down * @skb: skb to check * * The head on skbs build around a head frag can be removed if they are * not cloned. This function returns true if the skb head is locked down * due to either being allocated via kmalloc, or by being a clone with * multiple references to the head. */ static inline bool skb_head_is_locked(const struct sk_buff *skb) { return !skb->head_frag || skb_cloned(skb); } /* Local Checksum Offload. * Compute outer checksum based on the assumption that the * inner checksum will be offloaded later. * See Documentation/networking/checksum-offloads.rst for * explanation of how this works. * Fill in outer checksum adjustment (e.g. with sum of outer * pseudo-header) before calling. * Also ensure that inner checksum is in linear data area. */ static inline __wsum lco_csum(struct sk_buff *skb) { unsigned char *csum_start = skb_checksum_start(skb); unsigned char *l4_hdr = skb_transport_header(skb); __wsum partial; /* Start with complement of inner checksum adjustment */ partial = ~csum_unfold(*(__force __sum16 *)(csum_start + skb->csum_offset)); /* Add in checksum of our headers (incl. outer checksum * adjustment filled in by caller) and return result. */ return csum_partial(l4_hdr, csum_start - l4_hdr, partial); } static inline bool skb_is_redirected(const struct sk_buff *skb) { #ifdef CONFIG_NET_REDIRECT return skb->redirected; #else return false; #endif } static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) { #ifdef CONFIG_NET_REDIRECT skb->redirected = 1; skb->from_ingress = from_ingress; if (skb->from_ingress) skb->tstamp = 0; #endif } static inline void skb_reset_redirect(struct sk_buff *skb) { #ifdef CONFIG_NET_REDIRECT skb->redirected = 0; #endif } #if IS_ENABLED(CONFIG_KCOV) && IS_ENABLED(CONFIG_SKB_EXTENSIONS) static inline void skb_set_kcov_handle(struct sk_buff *skb, const u64 kcov_handle) { /* Do not allocate skb extensions only to set kcov_handle to zero * (as it is zero by default). However, if the extensions are * already allocated, update kcov_handle anyway since * skb_set_kcov_handle can be called to zero a previously set * value. */ if (skb_has_extensions(skb) || kcov_handle) { u64 *kcov_handle_ptr = skb_ext_add(skb, SKB_EXT_KCOV_HANDLE); if (kcov_handle_ptr) *kcov_handle_ptr = kcov_handle; } } static inline u64 skb_get_kcov_handle(struct sk_buff *skb) { u64 *kcov_handle = skb_ext_find(skb, SKB_EXT_KCOV_HANDLE); return kcov_handle ? *kcov_handle : 0; } #else static inline void skb_set_kcov_handle(struct sk_buff *skb, const u64 kcov_handle) { } static inline u64 skb_get_kcov_handle(struct sk_buff *skb) { return 0; } #endif /* CONFIG_KCOV && CONFIG_SKB_EXTENSIONS */ #endif /* __KERNEL__ */ #endif /* _LINUX_SKBUFF_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __KERNEL_PRINTK__ #define __KERNEL_PRINTK__ #include <stdarg.h> #include <linux/init.h> #include <linux/kern_levels.h> #include <linux/linkage.h> #include <linux/cache.h> #include <linux/ratelimit_types.h> extern const char linux_banner[]; extern const char linux_proc_banner[]; extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ #define PRINTK_MAX_SINGLE_HEADER_LEN 2 static inline int printk_get_level(const char *buffer) { if (buffer[0] == KERN_SOH_ASCII && buffer[1]) { switch (buffer[1]) { case '0' ... '7': case 'c': /* KERN_CONT */ return buffer[1]; } } return 0; } static inline const char *printk_skip_level(const char *buffer) { if (printk_get_level(buffer)) return buffer + 2; return buffer; } static inline const char *printk_skip_headers(const char *buffer) { while (printk_get_level(buffer)) buffer = printk_skip_level(buffer); return buffer; } #define CONSOLE_EXT_LOG_MAX 8192 /* printk's without a loglevel use this.. */ #define MESSAGE_LOGLEVEL_DEFAULT CONFIG_MESSAGE_LOGLEVEL_DEFAULT /* We show everything that is MORE important than this.. */ #define CONSOLE_LOGLEVEL_SILENT 0 /* Mum's the word */ #define CONSOLE_LOGLEVEL_MIN 1 /* Minimum loglevel we let people use */ #define CONSOLE_LOGLEVEL_DEBUG 10 /* issue debug messages */ #define CONSOLE_LOGLEVEL_MOTORMOUTH 15 /* You can't shut this one up */ /* * Default used to be hard-coded at 7, quiet used to be hardcoded at 4, * we're now allowing both to be set from kernel config. */ #define CONSOLE_LOGLEVEL_DEFAULT CONFIG_CONSOLE_LOGLEVEL_DEFAULT #define CONSOLE_LOGLEVEL_QUIET CONFIG_CONSOLE_LOGLEVEL_QUIET extern int console_printk[]; #define console_loglevel (console_printk[0]) #define default_message_loglevel (console_printk[1]) #define minimum_console_loglevel (console_printk[2]) #define default_console_loglevel (console_printk[3]) static inline void console_silent(void) { console_loglevel = CONSOLE_LOGLEVEL_SILENT; } static inline void console_verbose(void) { if (console_loglevel) console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; } /* strlen("ratelimit") + 1 */ #define DEVKMSG_STR_MAX_SIZE 10 extern char devkmsg_log_str[]; struct ctl_table; extern int suppress_printk; struct va_format { const char *fmt; va_list *va; }; /* * FW_BUG * Add this to a message where you are sure the firmware is buggy or behaves * really stupid or out of spec. Be aware that the responsible BIOS developer * should be able to fix this issue or at least get a concrete idea of the * problem by reading your message without the need of looking at the kernel * code. * * Use it for definite and high priority BIOS bugs. * * FW_WARN * Use it for not that clear (e.g. could the kernel messed up things already?) * and medium priority BIOS bugs. * * FW_INFO * Use this one if you want to tell the user or vendor about something * suspicious, but generally harmless related to the firmware. * * Use it for information or very low priority BIOS bugs. */ #define FW_BUG "[Firmware Bug]: " #define FW_WARN "[Firmware Warn]: " #define FW_INFO "[Firmware Info]: " /* * HW_ERR * Add this to a message for hardware errors, so that user can report * it to hardware vendor instead of LKML or software vendor. */ #define HW_ERR "[Hardware Error]: " /* * DEPRECATED * Add this to a message whenever you want to warn user space about the use * of a deprecated aspect of an API so they can stop using it */ #define DEPRECATED "[Deprecated]: " /* * Dummy printk for disabled debugging statements to use whilst maintaining * gcc's format checking. */ #define no_printk(fmt, ...) \ ({ \ if (0) \ printk(fmt, ##__VA_ARGS__); \ 0; \ }) #ifdef CONFIG_EARLY_PRINTK extern asmlinkage __printf(1, 2) void early_printk(const char *fmt, ...); #else static inline __printf(1, 2) __cold void early_printk(const char *s, ...) { } #endif #ifdef CONFIG_PRINTK_NMI extern void printk_nmi_enter(void); extern void printk_nmi_exit(void); extern void printk_nmi_direct_enter(void); extern void printk_nmi_direct_exit(void); #else static inline void printk_nmi_enter(void) { } static inline void printk_nmi_exit(void) { } static inline void printk_nmi_direct_enter(void) { } static inline void printk_nmi_direct_exit(void) { } #endif /* PRINTK_NMI */ struct dev_printk_info; #ifdef CONFIG_PRINTK asmlinkage __printf(4, 0) int vprintk_emit(int facility, int level, const struct dev_printk_info *dev_info, const char *fmt, va_list args); asmlinkage __printf(1, 0) int vprintk(const char *fmt, va_list args); asmlinkage __printf(1, 2) __cold int printk(const char *fmt, ...); /* * Special printk facility for scheduler/timekeeping use only, _DO_NOT_USE_ ! */ __printf(1, 2) __cold int printk_deferred(const char *fmt, ...); /* * Please don't use printk_ratelimit(), because it shares ratelimiting state * with all other unrelated printk_ratelimit() callsites. Instead use * printk_ratelimited() or plain old __ratelimit(). */ extern int __printk_ratelimit(const char *func); #define printk_ratelimit() __printk_ratelimit(__func__) extern bool printk_timed_ratelimit(unsigned long *caller_jiffies, unsigned int interval_msec); extern int printk_delay_msec; extern int dmesg_restrict; extern int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, void *buf, size_t *lenp, loff_t *ppos); extern void wake_up_klogd(void); char *log_buf_addr_get(void); u32 log_buf_len_get(void); void log_buf_vmcoreinfo_setup(void); void __init setup_log_buf(int early); __printf(1, 2) void dump_stack_set_arch_desc(const char *fmt, ...); void dump_stack_print_info(const char *log_lvl); void show_regs_print_info(const char *log_lvl); extern asmlinkage void dump_stack(void) __cold; extern void printk_safe_flush(void); extern void printk_safe_flush_on_panic(void); #else static inline __printf(1, 0) int vprintk(const char *s, va_list args) { return 0; } static inline __printf(1, 2) __cold int printk(const char *s, ...) { return 0; } static inline __printf(1, 2) __cold int printk_deferred(const char *s, ...) { return 0; } static inline int printk_ratelimit(void) { return 0; } static inline bool printk_timed_ratelimit(unsigned long *caller_jiffies, unsigned int interval_msec) { return false; } static inline void wake_up_klogd(void) { } static inline char *log_buf_addr_get(void) { return NULL; } static inline u32 log_buf_len_get(void) { return 0; } static inline void log_buf_vmcoreinfo_setup(void) { } static inline void setup_log_buf(int early) { } static inline __printf(1, 2) void dump_stack_set_arch_desc(const char *fmt, ...) { } static inline void dump_stack_print_info(const char *log_lvl) { } static inline void show_regs_print_info(const char *log_lvl) { } static inline void dump_stack(void) { } static inline void printk_safe_flush(void) { } static inline void printk_safe_flush_on_panic(void) { } #endif extern int kptr_restrict; /** * pr_fmt - used by the pr_*() macros to generate the printk format string * @fmt: format string passed from a pr_*() macro * * This macro can be used to generate a unified format string for pr_*() * macros. A common use is to prefix all pr_*() messages in a file with a common * string. For example, defining this at the top of a source file: * * #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt * * would prefix all pr_info, pr_emerg... messages in the file with the module * name. */ #ifndef pr_fmt #define pr_fmt(fmt) fmt #endif /** * pr_emerg - Print an emergency-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_EMERG loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_emerg(fmt, ...) \ printk(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) /** * pr_alert - Print an alert-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_ALERT loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_alert(fmt, ...) \ printk(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) /** * pr_crit - Print a critical-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_CRIT loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_crit(fmt, ...) \ printk(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) /** * pr_err - Print an error-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_ERR loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_err(fmt, ...) \ printk(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) /** * pr_warn - Print a warning-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_WARNING loglevel. It uses pr_fmt() * to generate the format string. */ #define pr_warn(fmt, ...) \ printk(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) /** * pr_notice - Print a notice-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_NOTICE loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_notice(fmt, ...) \ printk(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) /** * pr_info - Print an info-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_INFO loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_info(fmt, ...) \ printk(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /** * pr_cont - Continues a previous log message in the same line. * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_CONT loglevel. It should only be * used when continuing a log message with no newline ('\n') enclosed. Otherwise * it defaults back to KERN_DEFAULT loglevel. */ #define pr_cont(fmt, ...) \ printk(KERN_CONT fmt, ##__VA_ARGS__) /** * pr_devel - Print a debug-level message conditionally * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_DEBUG loglevel if DEBUG is * defined. Otherwise it does nothing. * * It uses pr_fmt() to generate the format string. */ #ifdef DEBUG #define pr_devel(fmt, ...) \ printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) #include <linux/dynamic_debug.h> /** * pr_debug - Print a debug-level message conditionally * @fmt: format string * @...: arguments for the format string * * This macro expands to dynamic_pr_debug() if CONFIG_DYNAMIC_DEBUG is * set. Otherwise, if DEBUG is defined, it's equivalent to a printk with * KERN_DEBUG loglevel. If DEBUG is not defined it does nothing. * * It uses pr_fmt() to generate the format string (dynamic_pr_debug() uses * pr_fmt() internally). */ #define pr_debug(fmt, ...) \ dynamic_pr_debug(fmt, ##__VA_ARGS__) #elif defined(DEBUG) #define pr_debug(fmt, ...) \ printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* * Print a one-time message (analogous to WARN_ONCE() et al): */ #ifdef CONFIG_PRINTK #define printk_once(fmt, ...) \ ({ \ static bool __section(".data.once") __print_once; \ bool __ret_print_once = !__print_once; \ \ if (!__print_once) { \ __print_once = true; \ printk(fmt, ##__VA_ARGS__); \ } \ unlikely(__ret_print_once); \ }) #define printk_deferred_once(fmt, ...) \ ({ \ static bool __section(".data.once") __print_once; \ bool __ret_print_once = !__print_once; \ \ if (!__print_once) { \ __print_once = true; \ printk_deferred(fmt, ##__VA_ARGS__); \ } \ unlikely(__ret_print_once); \ }) #else #define printk_once(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #define printk_deferred_once(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #endif #define pr_emerg_once(fmt, ...) \ printk_once(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) #define pr_alert_once(fmt, ...) \ printk_once(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) #define pr_crit_once(fmt, ...) \ printk_once(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) #define pr_err_once(fmt, ...) \ printk_once(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) #define pr_warn_once(fmt, ...) \ printk_once(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) #define pr_notice_once(fmt, ...) \ printk_once(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) #define pr_info_once(fmt, ...) \ printk_once(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /* no pr_cont_once, don't do that... */ #if defined(DEBUG) #define pr_devel_once(fmt, ...) \ printk_once(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel_once(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(DEBUG) #define pr_debug_once(fmt, ...) \ printk_once(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug_once(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* * ratelimited messages with local ratelimit_state, * no local ratelimit_state used in the !PRINTK case */ #ifdef CONFIG_PRINTK #define printk_ratelimited(fmt, ...) \ ({ \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ \ if (__ratelimit(&_rs)) \ printk(fmt, ##__VA_ARGS__); \ }) #else #define printk_ratelimited(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #endif #define pr_emerg_ratelimited(fmt, ...) \ printk_ratelimited(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) #define pr_alert_ratelimited(fmt, ...) \ printk_ratelimited(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) #define pr_crit_ratelimited(fmt, ...) \ printk_ratelimited(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) #define pr_err_ratelimited(fmt, ...) \ printk_ratelimited(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) #define pr_warn_ratelimited(fmt, ...) \ printk_ratelimited(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) #define pr_notice_ratelimited(fmt, ...) \ printk_ratelimited(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) #define pr_info_ratelimited(fmt, ...) \ printk_ratelimited(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /* no pr_cont_ratelimited, don't do that... */ #if defined(DEBUG) #define pr_devel_ratelimited(fmt, ...) \ printk_ratelimited(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel_ratelimited(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) /* descriptor check is first to prevent flooding with "callbacks suppressed" */ #define pr_debug_ratelimited(fmt, ...) \ do { \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, pr_fmt(fmt)); \ if (DYNAMIC_DEBUG_BRANCH(descriptor) && \ __ratelimit(&_rs)) \ __dynamic_pr_debug(&descriptor, pr_fmt(fmt), ##__VA_ARGS__); \ } while (0) #elif defined(DEBUG) #define pr_debug_ratelimited(fmt, ...) \ printk_ratelimited(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug_ratelimited(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif extern const struct file_operations kmsg_fops; enum { DUMP_PREFIX_NONE, DUMP_PREFIX_ADDRESS, DUMP_PREFIX_OFFSET }; extern int hex_dump_to_buffer(const void *buf, size_t len, int rowsize, int groupsize, char *linebuf, size_t linebuflen, bool ascii); #ifdef CONFIG_PRINTK extern void print_hex_dump(const char *level, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii); #else static inline void print_hex_dump(const char *level, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii) { } static inline void print_hex_dump_bytes(const char *prefix_str, int prefix_type, const void *buf, size_t len) { } #endif #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) #define print_hex_dump_debug(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) \ dynamic_hex_dump(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) #elif defined(DEBUG) #define print_hex_dump_debug(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) \ print_hex_dump(KERN_DEBUG, prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) #else static inline void print_hex_dump_debug(const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii) { } #endif /** * print_hex_dump_bytes - shorthand form of print_hex_dump() with default params * @prefix_str: string to prefix each line with; * caller supplies trailing spaces for alignment if desired * @prefix_type: controls whether prefix of an offset, address, or none * is printed (%DUMP_PREFIX_OFFSET, %DUMP_PREFIX_ADDRESS, %DUMP_PREFIX_NONE) * @buf: data blob to dump * @len: number of bytes in the @buf * * Calls print_hex_dump(), with log level of KERN_DEBUG, * rowsize of 16, groupsize of 1, and ASCII output included. */ #define print_hex_dump_bytes(prefix_str, prefix_type, buf, len) \ print_hex_dump_debug(prefix_str, prefix_type, 16, 1, buf, len, true) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_DELAY_H #define _LINUX_DELAY_H /* * Copyright (C) 1993 Linus Torvalds * * Delay routines, using a pre-computed "loops_per_jiffy" value. * * Please note that ndelay(), udelay() and mdelay() may return early for * several reasons: * 1. computed loops_per_jiffy too low (due to the time taken to * execute the timer interrupt.) * 2. cache behaviour affecting the time it takes to execute the * loop function. * 3. CPU clock rate changes. * * Please see this thread: * https://lists.openwall.net/linux-kernel/2011/01/09/56 */ #include <linux/kernel.h> extern unsigned long loops_per_jiffy; #include <asm/delay.h> /* * Using udelay() for intervals greater than a few milliseconds can * risk overflow for high loops_per_jiffy (high bogomips) machines. The * mdelay() provides a wrapper to prevent this. For delays greater * than MAX_UDELAY_MS milliseconds, the wrapper is used. Architecture * specific values can be defined in asm-???/delay.h as an override. * The 2nd mdelay() definition ensures GCC will optimize away the * while loop for the common cases where n <= MAX_UDELAY_MS -- Paul G. */ #ifndef MAX_UDELAY_MS #define MAX_UDELAY_MS 5 #endif #ifndef mdelay #define mdelay(n) (\ (__builtin_constant_p(n) && (n)<=MAX_UDELAY_MS) ? udelay((n)*1000) : \ ({unsigned long __ms=(n); while (__ms--) udelay(1000);})) #endif #ifndef ndelay static inline void ndelay(unsigned long x) { udelay(DIV_ROUND_UP(x, 1000)); } #define ndelay(x) ndelay(x) #endif extern unsigned long lpj_fine; void calibrate_delay(void); void __attribute__((weak)) calibration_delay_done(void); void msleep(unsigned int msecs); unsigned long msleep_interruptible(unsigned int msecs); void usleep_range(unsigned long min, unsigned long max); static inline void ssleep(unsigned int seconds) { msleep(seconds * 1000); } /* see Documentation/timers/timers-howto.rst for the thresholds */ static inline void fsleep(unsigned long usecs) { if (usecs <= 10) udelay(usecs); else if (usecs <= 20000) usleep_range(usecs, 2 * usecs); else msleep(DIV_ROUND_UP(usecs, 1000)); } #endif /* defined(_LINUX_DELAY_H) */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_BARRIER_H #define _ASM_X86_BARRIER_H #include <asm/alternative.h> #include <asm/nops.h> /* * Force strict CPU ordering. * And yes, this might be required on UP too when we're talking * to devices. */ #ifdef CONFIG_X86_32 #define mb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "mfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #define rmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "lfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #define wmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "sfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #else #define mb() asm volatile("mfence":::"memory") #define rmb() asm volatile("lfence":::"memory") #define wmb() asm volatile("sfence" ::: "memory") #endif /** * array_index_mask_nospec() - generate a mask that is ~0UL when the * bounds check succeeds and 0 otherwise * @index: array element index * @size: number of elements in array * * Returns: * 0 - (index < size) */ static inline unsigned long array_index_mask_nospec(unsigned long index, unsigned long size) { unsigned long mask; asm volatile ("cmp %1,%2; sbb %0,%0;" :"=r" (mask) :"g"(size),"r" (index) :"cc"); return mask; } /* Override the default implementation from linux/nospec.h. */ #define array_index_mask_nospec array_index_mask_nospec /* Prevent speculative execution past this barrier. */ #define barrier_nospec() alternative("", "lfence", X86_FEATURE_LFENCE_RDTSC) #define dma_rmb() barrier() #define dma_wmb() barrier() #ifdef CONFIG_X86_32 #define __smp_mb() asm volatile("lock; addl $0,-4(%%esp)" ::: "memory", "cc") #else #define __smp_mb() asm volatile("lock; addl $0,-4(%%rsp)" ::: "memory", "cc") #endif #define __smp_rmb() dma_rmb() #define __smp_wmb() barrier() #define __smp_store_mb(var, value) do { (void)xchg(&var, value); } while (0) #define __smp_store_release(p, v) \ do { \ compiletime_assert_atomic_type(*p); \ barrier(); \ WRITE_ONCE(*p, v); \ } while (0) #define __smp_load_acquire(p) \ ({ \ typeof(*p) ___p1 = READ_ONCE(*p); \ compiletime_assert_atomic_type(*p); \ barrier(); \ ___p1; \ }) /* Atomic operations are already serializing on x86 */ #define __smp_mb__before_atomic() do { } while (0) #define __smp_mb__after_atomic() do { } while (0) #include <asm-generic/barrier.h> /* * Make previous memory operations globally visible before * a WRMSR. * * MFENCE makes writes visible, but only affects load/store * instructions. WRMSR is unfortunately not a load/store * instruction and is unaffected by MFENCE. The LFENCE ensures * that the WRMSR is not reordered. * * Most WRMSRs are full serializing instructions themselves and * do not require this barrier. This is only required for the * IA32_TSC_DEADLINE and X2APIC MSRs. */ static inline void weak_wrmsr_fence(void) { asm volatile("mfence; lfence" : : : "memory"); } #endif /* _ASM_X86_BARRIER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Filesystem parameter description and parser * * Copyright (C) 2018 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_FS_PARSER_H #define _LINUX_FS_PARSER_H #include <linux/fs_context.h> struct path; struct constant_table { const char *name; int value; }; struct fs_parameter_spec; struct fs_parse_result; typedef int fs_param_type(struct p_log *, const struct fs_parameter_spec *, struct fs_parameter *, struct fs_parse_result *); /* * The type of parameter expected. */ fs_param_type fs_param_is_bool, fs_param_is_u32, fs_param_is_s32, fs_param_is_u64, fs_param_is_enum, fs_param_is_string, fs_param_is_blob, fs_param_is_blockdev, fs_param_is_path, fs_param_is_fd; /* * Specification of the type of value a parameter wants. * * Note that the fsparam_flag(), fsparam_string(), fsparam_u32(), ... macros * should be used to generate elements of this type. */ struct fs_parameter_spec { const char *name; fs_param_type *type; /* The desired parameter type */ u8 opt; /* Option number (returned by fs_parse()) */ unsigned short flags; #define fs_param_neg_with_no 0x0002 /* "noxxx" is negative param */ #define fs_param_neg_with_empty 0x0004 /* "xxx=" is negative param */ #define fs_param_deprecated 0x0008 /* The param is deprecated */ const void *data; }; /* * Result of parse. */ struct fs_parse_result { bool negated; /* T if param was "noxxx" */ union { bool boolean; /* For spec_bool */ int int_32; /* For spec_s32/spec_enum */ unsigned int uint_32; /* For spec_u32{,_octal,_hex}/spec_enum */ u64 uint_64; /* For spec_u64 */ }; }; extern int __fs_parse(struct p_log *log, const struct fs_parameter_spec *desc, struct fs_parameter *value, struct fs_parse_result *result); static inline int fs_parse(struct fs_context *fc, const struct fs_parameter_spec *desc, struct fs_parameter *param, struct fs_parse_result *result) { return __fs_parse(&fc->log, desc, param, result); } extern int fs_lookup_param(struct fs_context *fc, struct fs_parameter *param, bool want_bdev, struct path *_path); extern int lookup_constant(const struct constant_table tbl[], const char *name, int not_found); #ifdef CONFIG_VALIDATE_FS_PARSER extern bool validate_constant_table(const struct constant_table *tbl, size_t tbl_size, int low, int high, int special); extern bool fs_validate_description(const char *name, const struct fs_parameter_spec *desc); #else static inline bool validate_constant_table(const struct constant_table *tbl, size_t tbl_size, int low, int high, int special) { return true; } static inline bool fs_validate_description(const char *name, const struct fs_parameter_spec *desc) { return true; } #endif /* * Parameter type, name, index and flags element constructors. Use as: * * fsparam_xxxx("foo", Opt_foo) * * If existing helpers are not enough, direct use of __fsparam() would * work, but any such case is probably a sign that new helper is needed. * Helpers will remain stable; low-level implementation may change. */ #define __fsparam(TYPE, NAME, OPT, FLAGS, DATA) \ { \ .name = NAME, \ .opt = OPT, \ .type = TYPE, \ .flags = FLAGS, \ .data = DATA \ } #define fsparam_flag(NAME, OPT) __fsparam(NULL, NAME, OPT, 0, NULL) #define fsparam_flag_no(NAME, OPT) \ __fsparam(NULL, NAME, OPT, fs_param_neg_with_no, NULL) #define fsparam_bool(NAME, OPT) __fsparam(fs_param_is_bool, NAME, OPT, 0, NULL) #define fsparam_u32(NAME, OPT) __fsparam(fs_param_is_u32, NAME, OPT, 0, NULL) #define fsparam_u32oct(NAME, OPT) \ __fsparam(fs_param_is_u32, NAME, OPT, 0, (void *)8) #define fsparam_u32hex(NAME, OPT) \ __fsparam(fs_param_is_u32_hex, NAME, OPT, 0, (void *)16) #define fsparam_s32(NAME, OPT) __fsparam(fs_param_is_s32, NAME, OPT, 0, NULL) #define fsparam_u64(NAME, OPT) __fsparam(fs_param_is_u64, NAME, OPT, 0, NULL) #define fsparam_enum(NAME, OPT, array) __fsparam(fs_param_is_enum, NAME, OPT, 0, array) #define fsparam_string(NAME, OPT) \ __fsparam(fs_param_is_string, NAME, OPT, 0, NULL) #define fsparam_blob(NAME, OPT) __fsparam(fs_param_is_blob, NAME, OPT, 0, NULL) #define fsparam_bdev(NAME, OPT) __fsparam(fs_param_is_blockdev, NAME, OPT, 0, NULL) #define fsparam_path(NAME, OPT) __fsparam(fs_param_is_path, NAME, OPT, 0, NULL) #define fsparam_fd(NAME, OPT) __fsparam(fs_param_is_fd, NAME, OPT, 0, NULL) #endif /* _LINUX_FS_PARSER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NETFILTER_INGRESS_H_ #define _NETFILTER_INGRESS_H_ #include <linux/netfilter.h> #include <linux/netdevice.h> #ifdef CONFIG_NETFILTER_INGRESS static inline bool nf_hook_ingress_active(const struct sk_buff *skb) { #ifdef CONFIG_JUMP_LABEL if (!static_key_false(&nf_hooks_needed[NFPROTO_NETDEV][NF_NETDEV_INGRESS])) return false; #endif return rcu_access_pointer(skb->dev->nf_hooks_ingress); } /* caller must hold rcu_read_lock */ static inline int nf_hook_ingress(struct sk_buff *skb) { struct nf_hook_entries *e = rcu_dereference(skb->dev->nf_hooks_ingress); struct nf_hook_state state; int ret; /* Must recheck the ingress hook head, in the event it became NULL * after the check in nf_hook_ingress_active evaluated to true. */ if (unlikely(!e)) return 0; nf_hook_state_init(&state, NF_NETDEV_INGRESS, NFPROTO_NETDEV, skb->dev, NULL, NULL, dev_net(skb->dev), NULL); ret = nf_hook_slow(skb, &state, e, 0); if (ret == 0) return -1; return ret; } static inline void nf_hook_ingress_init(struct net_device *dev) { RCU_INIT_POINTER(dev->nf_hooks_ingress, NULL); } #else /* CONFIG_NETFILTER_INGRESS */ static inline int nf_hook_ingress_active(struct sk_buff *skb) { return 0; } static inline int nf_hook_ingress(struct sk_buff *skb) { return 0; } static inline void nf_hook_ingress_init(struct net_device *dev) {} #endif /* CONFIG_NETFILTER_INGRESS */ #endif /* _NETFILTER_INGRESS_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CFG802154_RDEV_OPS #define __CFG802154_RDEV_OPS #include <net/cfg802154.h> #include "core.h" #include "trace.h" static inline struct net_device * rdev_add_virtual_intf_deprecated(struct cfg802154_registered_device *rdev, const char *name, unsigned char name_assign_type, int type) { return rdev->ops->add_virtual_intf_deprecated(&rdev->wpan_phy, name, name_assign_type, type); } static inline void rdev_del_virtual_intf_deprecated(struct cfg802154_registered_device *rdev, struct net_device *dev) { rdev->ops->del_virtual_intf_deprecated(&rdev->wpan_phy, dev); } static inline int rdev_suspend(struct cfg802154_registered_device *rdev) { int ret; trace_802154_rdev_suspend(&rdev->wpan_phy); ret = rdev->ops->suspend(&rdev->wpan_phy); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_resume(struct cfg802154_registered_device *rdev) { int ret; trace_802154_rdev_resume(&rdev->wpan_phy); ret = rdev->ops->resume(&rdev->wpan_phy); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_add_virtual_intf(struct cfg802154_registered_device *rdev, char *name, unsigned char name_assign_type, enum nl802154_iftype type, __le64 extended_addr) { int ret; trace_802154_rdev_add_virtual_intf(&rdev->wpan_phy, name, type, extended_addr); ret = rdev->ops->add_virtual_intf(&rdev->wpan_phy, name, name_assign_type, type, extended_addr); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_del_virtual_intf(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { int ret; trace_802154_rdev_del_virtual_intf(&rdev->wpan_phy, wpan_dev); ret = rdev->ops->del_virtual_intf(&rdev->wpan_phy, wpan_dev); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_channel(struct cfg802154_registered_device *rdev, u8 page, u8 channel) { int ret; trace_802154_rdev_set_channel(&rdev->wpan_phy, page, channel); ret = rdev->ops->set_channel(&rdev->wpan_phy, page, channel); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_cca_mode(struct cfg802154_registered_device *rdev, const struct wpan_phy_cca *cca) { int ret; trace_802154_rdev_set_cca_mode(&rdev->wpan_phy, cca); ret = rdev->ops->set_cca_mode(&rdev->wpan_phy, cca); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_cca_ed_level(struct cfg802154_registered_device *rdev, s32 ed_level) { int ret; trace_802154_rdev_set_cca_ed_level(&rdev->wpan_phy, ed_level); ret = rdev->ops->set_cca_ed_level(&rdev->wpan_phy, ed_level); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_tx_power(struct cfg802154_registered_device *rdev, s32 power) { int ret; trace_802154_rdev_set_tx_power(&rdev->wpan_phy, power); ret = rdev->ops->set_tx_power(&rdev->wpan_phy, power); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_pan_id(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le16 pan_id) { int ret; trace_802154_rdev_set_pan_id(&rdev->wpan_phy, wpan_dev, pan_id); ret = rdev->ops->set_pan_id(&rdev->wpan_phy, wpan_dev, pan_id); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_short_addr(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le16 short_addr) { int ret; trace_802154_rdev_set_short_addr(&rdev->wpan_phy, wpan_dev, short_addr); ret = rdev->ops->set_short_addr(&rdev->wpan_phy, wpan_dev, short_addr); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_backoff_exponent(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, u8 min_be, u8 max_be) { int ret; trace_802154_rdev_set_backoff_exponent(&rdev->wpan_phy, wpan_dev, min_be, max_be); ret = rdev->ops->set_backoff_exponent(&rdev->wpan_phy, wpan_dev, min_be, max_be); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_max_csma_backoffs(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, u8 max_csma_backoffs) { int ret; trace_802154_rdev_set_csma_backoffs(&rdev->wpan_phy, wpan_dev, max_csma_backoffs); ret = rdev->ops->set_max_csma_backoffs(&rdev->wpan_phy, wpan_dev, max_csma_backoffs); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_max_frame_retries(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, s8 max_frame_retries) { int ret; trace_802154_rdev_set_max_frame_retries(&rdev->wpan_phy, wpan_dev, max_frame_retries); ret = rdev->ops->set_max_frame_retries(&rdev->wpan_phy, wpan_dev, max_frame_retries); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_lbt_mode(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, bool mode) { int ret; trace_802154_rdev_set_lbt_mode(&rdev->wpan_phy, wpan_dev, mode); ret = rdev->ops->set_lbt_mode(&rdev->wpan_phy, wpan_dev, mode); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } static inline int rdev_set_ackreq_default(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, bool ackreq) { int ret; trace_802154_rdev_set_ackreq_default(&rdev->wpan_phy, wpan_dev, ackreq); ret = rdev->ops->set_ackreq_default(&rdev->wpan_phy, wpan_dev, ackreq); trace_802154_rdev_return_int(&rdev->wpan_phy, ret); return ret; } #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL /* TODO this is already a nl802154, so move into ieee802154 */ static inline void rdev_get_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, struct ieee802154_llsec_table **table) { rdev->ops->get_llsec_table(&rdev->wpan_phy, wpan_dev, table); } static inline void rdev_lock_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { rdev->ops->lock_llsec_table(&rdev->wpan_phy, wpan_dev); } static inline void rdev_unlock_llsec_table(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { rdev->ops->unlock_llsec_table(&rdev->wpan_phy, wpan_dev); } static inline int rdev_get_llsec_params(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, struct ieee802154_llsec_params *params) { return rdev->ops->get_llsec_params(&rdev->wpan_phy, wpan_dev, params); } static inline int rdev_set_llsec_params(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_params *params, u32 changed) { return rdev->ops->set_llsec_params(&rdev->wpan_phy, wpan_dev, params, changed); } static inline int rdev_add_llsec_key(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id, const struct ieee802154_llsec_key *key) { return rdev->ops->add_llsec_key(&rdev->wpan_phy, wpan_dev, id, key); } static inline int rdev_del_llsec_key(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id) { return rdev->ops->del_llsec_key(&rdev->wpan_phy, wpan_dev, id); } static inline int rdev_add_seclevel(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl) { return rdev->ops->add_seclevel(&rdev->wpan_phy, wpan_dev, sl); } static inline int rdev_del_seclevel(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl) { return rdev->ops->del_seclevel(&rdev->wpan_phy, wpan_dev, sl); } static inline int rdev_add_device(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_device *dev_desc) { return rdev->ops->add_device(&rdev->wpan_phy, wpan_dev, dev_desc); } static inline int rdev_del_device(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr) { return rdev->ops->del_device(&rdev->wpan_phy, wpan_dev, extended_addr); } static inline int rdev_add_devkey(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *devkey) { return rdev->ops->add_devkey(&rdev->wpan_phy, wpan_dev, extended_addr, devkey); } static inline int rdev_del_devkey(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *devkey) { return rdev->ops->del_devkey(&rdev->wpan_phy, wpan_dev, extended_addr, devkey); } #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ #endif /* __CFG802154_RDEV_OPS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM net #if !defined(_TRACE_NET_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_NET_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/if_vlan.h> #include <linux/ip.h> #include <linux/tracepoint.h> TRACE_EVENT(net_dev_start_xmit, TP_PROTO(const struct sk_buff *skb, const struct net_device *dev), TP_ARGS(skb, dev), TP_STRUCT__entry( __string( name, dev->name ) __field( u16, queue_mapping ) __field( const void *, skbaddr ) __field( bool, vlan_tagged ) __field( u16, vlan_proto ) __field( u16, vlan_tci ) __field( u16, protocol ) __field( u8, ip_summed ) __field( unsigned int, len ) __field( unsigned int, data_len ) __field( int, network_offset ) __field( bool, transport_offset_valid) __field( int, transport_offset) __field( u8, tx_flags ) __field( u16, gso_size ) __field( u16, gso_segs ) __field( u16, gso_type ) ), TP_fast_assign( __assign_str(name, dev->name); __entry->queue_mapping = skb->queue_mapping; __entry->skbaddr = skb; __entry->vlan_tagged = skb_vlan_tag_present(skb); __entry->vlan_proto = ntohs(skb->vlan_proto); __entry->vlan_tci = skb_vlan_tag_get(skb); __entry->protocol = ntohs(skb->protocol); __entry->ip_summed = skb->ip_summed; __entry->len = skb->len; __entry->data_len = skb->data_len; __entry->network_offset = skb_network_offset(skb); __entry->transport_offset_valid = skb_transport_header_was_set(skb); __entry->transport_offset = skb_transport_offset(skb); __entry->tx_flags = skb_shinfo(skb)->tx_flags; __entry->gso_size = skb_shinfo(skb)->gso_size; __entry->gso_segs = skb_shinfo(skb)->gso_segs; __entry->gso_type = skb_shinfo(skb)->gso_type; ), TP_printk("dev=%s queue_mapping=%u skbaddr=%p vlan_tagged=%d vlan_proto=0x%04x vlan_tci=0x%04x protocol=0x%04x ip_summed=%d len=%u data_len=%u network_offset=%d transport_offset_valid=%d transport_offset=%d tx_flags=%d gso_size=%d gso_segs=%d gso_type=%#x", __get_str(name), __entry->queue_mapping, __entry->skbaddr, __entry->vlan_tagged, __entry->vlan_proto, __entry->vlan_tci, __entry->protocol, __entry->ip_summed, __entry->len, __entry->data_len, __entry->network_offset, __entry->transport_offset_valid, __entry->transport_offset, __entry->tx_flags, __entry->gso_size, __entry->gso_segs, __entry->gso_type) ); TRACE_EVENT(net_dev_xmit, TP_PROTO(struct sk_buff *skb, int rc, struct net_device *dev, unsigned int skb_len), TP_ARGS(skb, rc, dev, skb_len), TP_STRUCT__entry( __field( void *, skbaddr ) __field( unsigned int, len ) __field( int, rc ) __string( name, dev->name ) ), TP_fast_assign( __entry->skbaddr = skb; __entry->len = skb_len; __entry->rc = rc; __assign_str(name, dev->name); ), TP_printk("dev=%s skbaddr=%p len=%u rc=%d", __get_str(name), __entry->skbaddr, __entry->len, __entry->rc) ); TRACE_EVENT(net_dev_xmit_timeout, TP_PROTO(struct net_device *dev, int queue_index), TP_ARGS(dev, queue_index), TP_STRUCT__entry( __string( name, dev->name ) __string( driver, netdev_drivername(dev)) __field( int, queue_index ) ), TP_fast_assign( __assign_str(name, dev->name); __assign_str(driver, netdev_drivername(dev)); __entry->queue_index = queue_index; ), TP_printk("dev=%s driver=%s queue=%d", __get_str(name), __get_str(driver), __entry->queue_index) ); DECLARE_EVENT_CLASS(net_dev_template, TP_PROTO(struct sk_buff *skb), TP_ARGS(skb), TP_STRUCT__entry( __field( void *, skbaddr ) __field( unsigned int, len ) __string( name, skb->dev->name ) ), TP_fast_assign( __entry->skbaddr = skb; __entry->len = skb->len; __assign_str(name, skb->dev->name); ), TP_printk("dev=%s skbaddr=%p len=%u", __get_str(name), __entry->skbaddr, __entry->len) ) DEFINE_EVENT(net_dev_template, net_dev_queue, TP_PROTO(struct sk_buff *skb), TP_ARGS(skb) ); DEFINE_EVENT(net_dev_template, netif_receive_skb, TP_PROTO(struct sk_buff *skb), TP_ARGS(skb) ); DEFINE_EVENT(net_dev_template, netif_rx, TP_PROTO(struct sk_buff *skb), TP_ARGS(skb) ); DECLARE_EVENT_CLASS(net_dev_rx_verbose_template, TP_PROTO(const struct sk_buff *skb), TP_ARGS(skb), TP_STRUCT__entry( __string( name, skb->dev->name ) __field( unsigned int, napi_id ) __field( u16, queue_mapping ) __field( const void *, skbaddr ) __field( bool, vlan_tagged ) __field( u16, vlan_proto ) __field( u16, vlan_tci ) __field( u16, protocol ) __field( u8, ip_summed ) __field( u32, hash ) __field( bool, l4_hash ) __field( unsigned int, len ) __field( unsigned int, data_len ) __field( unsigned int, truesize ) __field( bool, mac_header_valid) __field( int, mac_header ) __field( unsigned char, nr_frags ) __field( u16, gso_size ) __field( u16, gso_type ) ), TP_fast_assign( __assign_str(name, skb->dev->name); #ifdef CONFIG_NET_RX_BUSY_POLL __entry->napi_id = skb->napi_id; #else __entry->napi_id = 0; #endif __entry->queue_mapping = skb->queue_mapping; __entry->skbaddr = skb; __entry->vlan_tagged = skb_vlan_tag_present(skb); __entry->vlan_proto = ntohs(skb->vlan_proto); __entry->vlan_tci = skb_vlan_tag_get(skb); __entry->protocol = ntohs(skb->protocol); __entry->ip_summed = skb->ip_summed; __entry->hash = skb->hash; __entry->l4_hash = skb->l4_hash; __entry->len = skb->len; __entry->data_len = skb->data_len; __entry->truesize = skb->truesize; __entry->mac_header_valid = skb_mac_header_was_set(skb); __entry->mac_header = skb_mac_header(skb) - skb->data; __entry->nr_frags = skb_shinfo(skb)->nr_frags; __entry->gso_size = skb_shinfo(skb)->gso_size; __entry->gso_type = skb_shinfo(skb)->gso_type; ), TP_printk("dev=%s napi_id=%#x queue_mapping=%u skbaddr=%p vlan_tagged=%d vlan_proto=0x%04x vlan_tci=0x%04x protocol=0x%04x ip_summed=%d hash=0x%08x l4_hash=%d len=%u data_len=%u truesize=%u mac_header_valid=%d mac_header=%d nr_frags=%d gso_size=%d gso_type=%#x", __get_str(name), __entry->napi_id, __entry->queue_mapping, __entry->skbaddr, __entry->vlan_tagged, __entry->vlan_proto, __entry->vlan_tci, __entry->protocol, __entry->ip_summed, __entry->hash, __entry->l4_hash, __entry->len, __entry->data_len, __entry->truesize, __entry->mac_header_valid, __entry->mac_header, __entry->nr_frags, __entry->gso_size, __entry->gso_type) ); DEFINE_EVENT(net_dev_rx_verbose_template, napi_gro_frags_entry, TP_PROTO(const struct sk_buff *skb), TP_ARGS(skb) ); DEFINE_EVENT(net_dev_rx_verbose_template, napi_gro_receive_entry, TP_PROTO(const struct sk_buff *skb), TP_ARGS(skb) ); DEFINE_EVENT(net_dev_rx_verbose_template, netif_receive_skb_entry, TP_PROTO(const struct sk_buff *skb), TP_ARGS(skb) ); DEFINE_EVENT(net_dev_rx_verbose_template, netif_receive_skb_list_entry, TP_PROTO(const struct sk_buff *skb), TP_ARGS(skb) ); DEFINE_EVENT(net_dev_rx_verbose_template, netif_rx_entry, TP_PROTO(const struct sk_buff *skb), TP_ARGS(skb) ); DEFINE_EVENT(net_dev_rx_verbose_template, netif_rx_ni_entry, TP_PROTO(const struct sk_buff *skb), TP_ARGS(skb) ); DECLARE_EVENT_CLASS(net_dev_rx_exit_template, TP_PROTO(int ret), TP_ARGS(ret), TP_STRUCT__entry( __field(int, ret) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret=%d", __entry->ret) ); DEFINE_EVENT(net_dev_rx_exit_template, napi_gro_frags_exit, TP_PROTO(int ret), TP_ARGS(ret) ); DEFINE_EVENT(net_dev_rx_exit_template, napi_gro_receive_exit, TP_PROTO(int ret), TP_ARGS(ret) ); DEFINE_EVENT(net_dev_rx_exit_template, netif_receive_skb_exit, TP_PROTO(int ret), TP_ARGS(ret) ); DEFINE_EVENT(net_dev_rx_exit_template, netif_rx_exit, TP_PROTO(int ret), TP_ARGS(ret) ); DEFINE_EVENT(net_dev_rx_exit_template, netif_rx_ni_exit, TP_PROTO(int ret), TP_ARGS(ret) ); DEFINE_EVENT(net_dev_rx_exit_template, netif_receive_skb_list_exit, TP_PROTO(int ret), TP_ARGS(ret) ); #endif /* _TRACE_NET_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef IOCONTEXT_H #define IOCONTEXT_H #include <linux/radix-tree.h> #include <linux/rcupdate.h> #include <linux/workqueue.h> enum { ICQ_EXITED = 1 << 2, ICQ_DESTROYED = 1 << 3, }; /* * An io_cq (icq) is association between an io_context (ioc) and a * request_queue (q). This is used by elevators which need to track * information per ioc - q pair. * * Elevator can request use of icq by setting elevator_type->icq_size and * ->icq_align. Both size and align must be larger than that of struct * io_cq and elevator can use the tail area for private information. The * recommended way to do this is defining a struct which contains io_cq as * the first member followed by private members and using its size and * align. For example, * * struct snail_io_cq { * struct io_cq icq; * int poke_snail; * int feed_snail; * }; * * struct elevator_type snail_elv_type { * .ops = { ... }, * .icq_size = sizeof(struct snail_io_cq), * .icq_align = __alignof__(struct snail_io_cq), * ... * }; * * If icq_size is set, block core will manage icq's. All requests will * have its ->elv.icq field set before elevator_ops->elevator_set_req_fn() * is called and be holding a reference to the associated io_context. * * Whenever a new icq is created, elevator_ops->elevator_init_icq_fn() is * called and, on destruction, ->elevator_exit_icq_fn(). Both functions * are called with both the associated io_context and queue locks held. * * Elevator is allowed to lookup icq using ioc_lookup_icq() while holding * queue lock but the returned icq is valid only until the queue lock is * released. Elevators can not and should not try to create or destroy * icq's. * * As icq's are linked from both ioc and q, the locking rules are a bit * complex. * * - ioc lock nests inside q lock. * * - ioc->icq_list and icq->ioc_node are protected by ioc lock. * q->icq_list and icq->q_node by q lock. * * - ioc->icq_tree and ioc->icq_hint are protected by ioc lock, while icq * itself is protected by q lock. However, both the indexes and icq * itself are also RCU managed and lookup can be performed holding only * the q lock. * * - icq's are not reference counted. They are destroyed when either the * ioc or q goes away. Each request with icq set holds an extra * reference to ioc to ensure it stays until the request is completed. * * - Linking and unlinking icq's are performed while holding both ioc and q * locks. Due to the lock ordering, q exit is simple but ioc exit * requires reverse-order double lock dance. */ struct io_cq { struct request_queue *q; struct io_context *ioc; /* * q_node and ioc_node link io_cq through icq_list of q and ioc * respectively. Both fields are unused once ioc_exit_icq() is * called and shared with __rcu_icq_cache and __rcu_head which are * used for RCU free of io_cq. */ union { struct list_head q_node; struct kmem_cache *__rcu_icq_cache; }; union { struct hlist_node ioc_node; struct rcu_head __rcu_head; }; unsigned int flags; }; /* * I/O subsystem state of the associated processes. It is refcounted * and kmalloc'ed. These could be shared between processes. */ struct io_context { atomic_long_t refcount; atomic_t active_ref; atomic_t nr_tasks; /* all the fields below are protected by this lock */ spinlock_t lock; unsigned short ioprio; struct radix_tree_root icq_tree; struct io_cq __rcu *icq_hint; struct hlist_head icq_list; struct work_struct release_work; }; /** * get_io_context_active - get active reference on ioc * @ioc: ioc of interest * * Only iocs with active reference can issue new IOs. This function * acquires an active reference on @ioc. The caller must already have an * active reference on @ioc. */ static inline void get_io_context_active(struct io_context *ioc) { WARN_ON_ONCE(atomic_long_read(&ioc->refcount) <= 0); WARN_ON_ONCE(atomic_read(&ioc->active_ref) <= 0); atomic_long_inc(&ioc->refcount); atomic_inc(&ioc->active_ref); } static inline void ioc_task_link(struct io_context *ioc) { get_io_context_active(ioc); WARN_ON_ONCE(atomic_read(&ioc->nr_tasks) <= 0); atomic_inc(&ioc->nr_tasks); } struct task_struct; #ifdef CONFIG_BLOCK void put_io_context(struct io_context *ioc); void put_io_context_active(struct io_context *ioc); void exit_io_context(struct task_struct *task); struct io_context *get_task_io_context(struct task_struct *task, gfp_t gfp_flags, int node); #else struct io_context; static inline void put_io_context(struct io_context *ioc) { } static inline void exit_io_context(struct task_struct *task) { } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0-only */ /* * This file is part of the Linux kernel. * * Copyright (c) 2011-2014, Intel Corporation * Authors: Fenghua Yu <fenghua.yu@intel.com>, * H. Peter Anvin <hpa@linux.intel.com> */ #ifndef ASM_X86_ARCHRANDOM_H #define ASM_X86_ARCHRANDOM_H #include <asm/processor.h> #include <asm/cpufeature.h> #define RDRAND_RETRY_LOOPS 10 /* Unconditional execution of RDRAND and RDSEED */ static inline bool __must_check rdrand_long(unsigned long *v) { bool ok; unsigned int retry = RDRAND_RETRY_LOOPS; do { asm volatile("rdrand %[out]" CC_SET(c) : CC_OUT(c) (ok), [out] "=r" (*v)); if (ok) return true; } while (--retry); return false; } static inline bool __must_check rdrand_int(unsigned int *v) { bool ok; unsigned int retry = RDRAND_RETRY_LOOPS; do { asm volatile("rdrand %[out]" CC_SET(c) : CC_OUT(c) (ok), [out] "=r" (*v)); if (ok) return true; } while (--retry); return false; } static inline bool __must_check rdseed_long(unsigned long *v) { bool ok; asm volatile("rdseed %[out]" CC_SET(c) : CC_OUT(c) (ok), [out] "=r" (*v)); return ok; } static inline bool __must_check rdseed_int(unsigned int *v) { bool ok; asm volatile("rdseed %[out]" CC_SET(c) : CC_OUT(c) (ok), [out] "=r" (*v)); return ok; } /* * These are the generic interfaces; they must not be declared if the * stubs in <linux/random.h> are to be invoked, * i.e. CONFIG_ARCH_RANDOM is not defined. */ #ifdef CONFIG_ARCH_RANDOM static inline bool __must_check arch_get_random_long(unsigned long *v) { return static_cpu_has(X86_FEATURE_RDRAND) ? rdrand_long(v) : false; } static inline bool __must_check arch_get_random_int(unsigned int *v) { return static_cpu_has(X86_FEATURE_RDRAND) ? rdrand_int(v) : false; } static inline bool __must_check arch_get_random_seed_long(unsigned long *v) { return static_cpu_has(X86_FEATURE_RDSEED) ? rdseed_long(v) : false; } static inline bool __must_check arch_get_random_seed_int(unsigned int *v) { return static_cpu_has(X86_FEATURE_RDSEED) ? rdseed_int(v) : false; } extern void x86_init_rdrand(struct cpuinfo_x86 *c); #else /* !CONFIG_ARCH_RANDOM */ static inline void x86_init_rdrand(struct cpuinfo_x86 *c) { } #endif /* !CONFIG_ARCH_RANDOM */ #endif /* ASM_X86_ARCHRANDOM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Authentication token and access key management * * Copyright (C) 2004, 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * See Documentation/security/keys/core.rst for information on keys/keyrings. */ #ifndef _LINUX_KEY_H #define _LINUX_KEY_H #include <linux/types.h> #include <linux/list.h> #include <linux/rbtree.h> #include <linux/rcupdate.h> #include <linux/sysctl.h> #include <linux/rwsem.h> #include <linux/atomic.h> #include <linux/assoc_array.h> #include <linux/refcount.h> #include <linux/time64.h> #ifdef __KERNEL__ #include <linux/uidgid.h> /* key handle serial number */ typedef int32_t key_serial_t; /* key handle permissions mask */ typedef uint32_t key_perm_t; struct key; struct net; #ifdef CONFIG_KEYS #undef KEY_DEBUGGING #define KEY_POS_VIEW 0x01000000 /* possessor can view a key's attributes */ #define KEY_POS_READ 0x02000000 /* possessor can read key payload / view keyring */ #define KEY_POS_WRITE 0x04000000 /* possessor can update key payload / add link to keyring */ #define KEY_POS_SEARCH 0x08000000 /* possessor can find a key in search / search a keyring */ #define KEY_POS_LINK 0x10000000 /* possessor can create a link to a key/keyring */ #define KEY_POS_SETATTR 0x20000000 /* possessor can set key attributes */ #define KEY_POS_ALL 0x3f000000 #define KEY_USR_VIEW 0x00010000 /* user permissions... */ #define KEY_USR_READ 0x00020000 #define KEY_USR_WRITE 0x00040000 #define KEY_USR_SEARCH 0x00080000 #define KEY_USR_LINK 0x00100000 #define KEY_USR_SETATTR 0x00200000 #define KEY_USR_ALL 0x003f0000 #define KEY_GRP_VIEW 0x00000100 /* group permissions... */ #define KEY_GRP_READ 0x00000200 #define KEY_GRP_WRITE 0x00000400 #define KEY_GRP_SEARCH 0x00000800 #define KEY_GRP_LINK 0x00001000 #define KEY_GRP_SETATTR 0x00002000 #define KEY_GRP_ALL 0x00003f00 #define KEY_OTH_VIEW 0x00000001 /* third party permissions... */ #define KEY_OTH_READ 0x00000002 #define KEY_OTH_WRITE 0x00000004 #define KEY_OTH_SEARCH 0x00000008 #define KEY_OTH_LINK 0x00000010 #define KEY_OTH_SETATTR 0x00000020 #define KEY_OTH_ALL 0x0000003f #define KEY_PERM_UNDEF 0xffffffff /* * The permissions required on a key that we're looking up. */ enum key_need_perm { KEY_NEED_UNSPECIFIED, /* Needed permission unspecified */ KEY_NEED_VIEW, /* Require permission to view attributes */ KEY_NEED_READ, /* Require permission to read content */ KEY_NEED_WRITE, /* Require permission to update / modify */ KEY_NEED_SEARCH, /* Require permission to search (keyring) or find (key) */ KEY_NEED_LINK, /* Require permission to link */ KEY_NEED_SETATTR, /* Require permission to change attributes */ KEY_NEED_UNLINK, /* Require permission to unlink key */ KEY_SYSADMIN_OVERRIDE, /* Special: override by CAP_SYS_ADMIN */ KEY_AUTHTOKEN_OVERRIDE, /* Special: override by possession of auth token */ KEY_DEFER_PERM_CHECK, /* Special: permission check is deferred */ }; struct seq_file; struct user_struct; struct signal_struct; struct cred; struct key_type; struct key_owner; struct key_tag; struct keyring_list; struct keyring_name; struct key_tag { struct rcu_head rcu; refcount_t usage; bool removed; /* T when subject removed */ }; struct keyring_index_key { /* [!] If this structure is altered, the union in struct key must change too! */ unsigned long hash; /* Hash value */ union { struct { #ifdef __LITTLE_ENDIAN /* Put desc_len at the LSB of x */ u16 desc_len; char desc[sizeof(long) - 2]; /* First few chars of description */ #else char desc[sizeof(long) - 2]; /* First few chars of description */ u16 desc_len; #endif }; unsigned long x; }; struct key_type *type; struct key_tag *domain_tag; /* Domain of operation */ const char *description; }; union key_payload { void __rcu *rcu_data0; void *data[4]; }; /*****************************************************************************/ /* * key reference with possession attribute handling * * NOTE! key_ref_t is a typedef'd pointer to a type that is not actually * defined. This is because we abuse the bottom bit of the reference to carry a * flag to indicate whether the calling process possesses that key in one of * its keyrings. * * the key_ref_t has been made a separate type so that the compiler can reject * attempts to dereference it without proper conversion. * * the three functions are used to assemble and disassemble references */ typedef struct __key_reference_with_attributes *key_ref_t; static inline key_ref_t make_key_ref(const struct key *key, bool possession) { return (key_ref_t) ((unsigned long) key | possession); } static inline struct key *key_ref_to_ptr(const key_ref_t key_ref) { return (struct key *) ((unsigned long) key_ref & ~1UL); } static inline bool is_key_possessed(const key_ref_t key_ref) { return (unsigned long) key_ref & 1UL; } typedef int (*key_restrict_link_func_t)(struct key *dest_keyring, const struct key_type *type, const union key_payload *payload, struct key *restriction_key); struct key_restriction { key_restrict_link_func_t check; struct key *key; struct key_type *keytype; }; enum key_state { KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE, /* Positively instantiated */ }; /*****************************************************************************/ /* * authentication token / access credential / keyring * - types of key include: * - keyrings * - disk encryption IDs * - Kerberos TGTs and tickets */ struct key { refcount_t usage; /* number of references */ key_serial_t serial; /* key serial number */ union { struct list_head graveyard_link; struct rb_node serial_node; }; #ifdef CONFIG_KEY_NOTIFICATIONS struct watch_list *watchers; /* Entities watching this key for changes */ #endif struct rw_semaphore sem; /* change vs change sem */ struct key_user *user; /* owner of this key */ void *security; /* security data for this key */ union { time64_t expiry; /* time at which key expires (or 0) */ time64_t revoked_at; /* time at which key was revoked */ }; time64_t last_used_at; /* last time used for LRU keyring discard */ kuid_t uid; kgid_t gid; key_perm_t perm; /* access permissions */ unsigned short quotalen; /* length added to quota */ unsigned short datalen; /* payload data length * - may not match RCU dereferenced payload * - payload should contain own length */ short state; /* Key state (+) or rejection error (-) */ #ifdef KEY_DEBUGGING unsigned magic; #define KEY_DEBUG_MAGIC 0x18273645u #endif unsigned long flags; /* status flags (change with bitops) */ #define KEY_FLAG_DEAD 0 /* set if key type has been deleted */ #define KEY_FLAG_REVOKED 1 /* set if key had been revoked */ #define KEY_FLAG_IN_QUOTA 2 /* set if key consumes quota */ #define KEY_FLAG_USER_CONSTRUCT 3 /* set if key is being constructed in userspace */ #define KEY_FLAG_ROOT_CAN_CLEAR 4 /* set if key can be cleared by root without permission */ #define KEY_FLAG_INVALIDATED 5 /* set if key has been invalidated */ #define KEY_FLAG_BUILTIN 6 /* set if key is built in to the kernel */ #define KEY_FLAG_ROOT_CAN_INVAL 7 /* set if key can be invalidated by root without permission */ #define KEY_FLAG_KEEP 8 /* set if key should not be removed */ #define KEY_FLAG_UID_KEYRING 9 /* set if key is a user or user session keyring */ /* the key type and key description string * - the desc is used to match a key against search criteria * - it should be a printable string * - eg: for krb5 AFS, this might be "afs@REDHAT.COM" */ union { struct keyring_index_key index_key; struct { unsigned long hash; unsigned long len_desc; struct key_type *type; /* type of key */ struct key_tag *domain_tag; /* Domain of operation */ char *description; }; }; /* key data * - this is used to hold the data actually used in cryptography or * whatever */ union { union key_payload payload; struct { /* Keyring bits */ struct list_head name_link; struct assoc_array keys; }; }; /* This is set on a keyring to restrict the addition of a link to a key * to it. If this structure isn't provided then it is assumed that the * keyring is open to any addition. It is ignored for non-keyring * keys. Only set this value using keyring_restrict(), keyring_alloc(), * or key_alloc(). * * This is intended for use with rings of trusted keys whereby addition * to the keyring needs to be controlled. KEY_ALLOC_BYPASS_RESTRICTION * overrides this, allowing the kernel to add extra keys without * restriction. */ struct key_restriction *restrict_link; }; extern struct key *key_alloc(struct key_type *type, const char *desc, kuid_t uid, kgid_t gid, const struct cred *cred, key_perm_t perm, unsigned long flags, struct key_restriction *restrict_link); #define KEY_ALLOC_IN_QUOTA 0x0000 /* add to quota, reject if would overrun */ #define KEY_ALLOC_QUOTA_OVERRUN 0x0001 /* add to quota, permit even if overrun */ #define KEY_ALLOC_NOT_IN_QUOTA 0x0002 /* not in quota */ #define KEY_ALLOC_BUILT_IN 0x0004 /* Key is built into kernel */ #define KEY_ALLOC_BYPASS_RESTRICTION 0x0008 /* Override the check on restricted keyrings */ #define KEY_ALLOC_UID_KEYRING 0x0010 /* allocating a user or user session keyring */ #define KEY_ALLOC_SET_KEEP 0x0020 /* Set the KEEP flag on the key/keyring */ extern void key_revoke(struct key *key); extern void key_invalidate(struct key *key); extern void key_put(struct key *key); extern bool key_put_tag(struct key_tag *tag); extern void key_remove_domain(struct key_tag *domain_tag); static inline struct key *__key_get(struct key *key) { refcount_inc(&key->usage); return key; } static inline struct key *key_get(struct key *key) { return key ? __key_get(key) : key; } static inline void key_ref_put(key_ref_t key_ref) { key_put(key_ref_to_ptr(key_ref)); } extern struct key *request_key_tag(struct key_type *type, const char *description, struct key_tag *domain_tag, const char *callout_info); extern struct key *request_key_rcu(struct key_type *type, const char *description, struct key_tag *domain_tag); extern struct key *request_key_with_auxdata(struct key_type *type, const char *description, struct key_tag *domain_tag, const void *callout_info, size_t callout_len, void *aux); /** * request_key - Request a key and wait for construction * @type: Type of key. * @description: The searchable description of the key. * @callout_info: The data to pass to the instantiation upcall (or NULL). * * As for request_key_tag(), but with the default global domain tag. */ static inline struct key *request_key(struct key_type *type, const char *description, const char *callout_info) { return request_key_tag(type, description, NULL, callout_info); } #ifdef CONFIG_NET /** * request_key_net - Request a key for a net namespace and wait for construction * @type: Type of key. * @description: The searchable description of the key. * @net: The network namespace that is the key's domain of operation. * @callout_info: The data to pass to the instantiation upcall (or NULL). * * As for request_key() except that it does not add the returned key to a * keyring if found, new keys are always allocated in the user's quota, the * callout_info must be a NUL-terminated string and no auxiliary data can be * passed. Only keys that operate the specified network namespace are used. * * Furthermore, it then works as wait_for_key_construction() to wait for the * completion of keys undergoing construction with a non-interruptible wait. */ #define request_key_net(type, description, net, callout_info) \ request_key_tag(type, description, net->key_domain, callout_info); /** * request_key_net_rcu - Request a key for a net namespace under RCU conditions * @type: Type of key. * @description: The searchable description of the key. * @net: The network namespace that is the key's domain of operation. * * As for request_key_rcu() except that only keys that operate the specified * network namespace are used. */ #define request_key_net_rcu(type, description, net) \ request_key_rcu(type, description, net->key_domain); #endif /* CONFIG_NET */ extern int wait_for_key_construction(struct key *key, bool intr); extern int key_validate(const struct key *key); extern key_ref_t key_create_or_update(key_ref_t keyring, const char *type, const char *description, const void *payload, size_t plen, key_perm_t perm, unsigned long flags); extern int key_update(key_ref_t key, const void *payload, size_t plen); extern int key_link(struct key *keyring, struct key *key); extern int key_move(struct key *key, struct key *from_keyring, struct key *to_keyring, unsigned int flags); extern int key_unlink(struct key *keyring, struct key *key); extern struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, const struct cred *cred, key_perm_t perm, unsigned long flags, struct key_restriction *restrict_link, struct key *dest); extern int restrict_link_reject(struct key *keyring, const struct key_type *type, const union key_payload *payload, struct key *restriction_key); extern int keyring_clear(struct key *keyring); extern key_ref_t keyring_search(key_ref_t keyring, struct key_type *type, const char *description, bool recurse); extern int keyring_add_key(struct key *keyring, struct key *key); extern int keyring_restrict(key_ref_t keyring, const char *type, const char *restriction); extern struct key *key_lookup(key_serial_t id); static inline key_serial_t key_serial(const struct key *key) { return key ? key->serial : 0; } extern void key_set_timeout(struct key *, unsigned); extern key_ref_t lookup_user_key(key_serial_t id, unsigned long flags, enum key_need_perm need_perm); extern void key_free_user_ns(struct user_namespace *); static inline short key_read_state(const struct key *key) { /* Barrier versus mark_key_instantiated(). */ return smp_load_acquire(&key->state); } /** * key_is_positive - Determine if a key has been positively instantiated * @key: The key to check. * * Return true if the specified key has been positively instantiated, false * otherwise. */ static inline bool key_is_positive(const struct key *key) { return key_read_state(key) == KEY_IS_POSITIVE; } static inline bool key_is_negative(const struct key *key) { return key_read_state(key) < 0; } #define dereference_key_rcu(KEY) \ (rcu_dereference((KEY)->payload.rcu_data0)) #define dereference_key_locked(KEY) \ (rcu_dereference_protected((KEY)->payload.rcu_data0, \ rwsem_is_locked(&((struct key *)(KEY))->sem))) #define rcu_assign_keypointer(KEY, PAYLOAD) \ do { \ rcu_assign_pointer((KEY)->payload.rcu_data0, (PAYLOAD)); \ } while (0) #ifdef CONFIG_SYSCTL extern struct ctl_table key_sysctls[]; #endif /* * the userspace interface */ extern int install_thread_keyring_to_cred(struct cred *cred); extern void key_fsuid_changed(struct cred *new_cred); extern void key_fsgid_changed(struct cred *new_cred); extern void key_init(void); #else /* CONFIG_KEYS */ #define key_validate(k) 0 #define key_serial(k) 0 #define key_get(k) ({ NULL; }) #define key_revoke(k) do { } while(0) #define key_invalidate(k) do { } while(0) #define key_put(k) do { } while(0) #define key_ref_put(k) do { } while(0) #define make_key_ref(k, p) NULL #define key_ref_to_ptr(k) NULL #define is_key_possessed(k) 0 #define key_fsuid_changed(c) do { } while(0) #define key_fsgid_changed(c) do { } while(0) #define key_init() do { } while(0) #define key_free_user_ns(ns) do { } while(0) #define key_remove_domain(d) do { } while(0) #endif /* CONFIG_KEYS */ #endif /* __KERNEL__ */ #endif /* _LINUX_KEY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _X_TABLES_H #define _X_TABLES_H #include <linux/netdevice.h> #include <linux/static_key.h> #include <linux/netfilter.h> #include <uapi/linux/netfilter/x_tables.h> /* Test a struct->invflags and a boolean for inequality */ #define NF_INVF(ptr, flag, boolean) \ ((boolean) ^ !!((ptr)->invflags & (flag))) /** * struct xt_action_param - parameters for matches/targets * * @match: the match extension * @target: the target extension * @matchinfo: per-match data * @targetinfo: per-target data * @state: pointer to hook state this packet came from * @fragoff: packet is a fragment, this is the data offset * @thoff: position of transport header relative to skb->data * * Fields written to by extensions: * * @hotdrop: drop packet if we had inspection problems */ struct xt_action_param { union { const struct xt_match *match; const struct xt_target *target; }; union { const void *matchinfo, *targinfo; }; const struct nf_hook_state *state; int fragoff; unsigned int thoff; bool hotdrop; }; static inline struct net *xt_net(const struct xt_action_param *par) { return par->state->net; } static inline struct net_device *xt_in(const struct xt_action_param *par) { return par->state->in; } static inline const char *xt_inname(const struct xt_action_param *par) { return par->state->in->name; } static inline struct net_device *xt_out(const struct xt_action_param *par) { return par->state->out; } static inline const char *xt_outname(const struct xt_action_param *par) { return par->state->out->name; } static inline unsigned int xt_hooknum(const struct xt_action_param *par) { return par->state->hook; } static inline u_int8_t xt_family(const struct xt_action_param *par) { return par->state->pf; } /** * struct xt_mtchk_param - parameters for match extensions' * checkentry functions * * @net: network namespace through which the check was invoked * @table: table the rule is tried to be inserted into * @entryinfo: the family-specific rule data * (struct ipt_ip, ip6t_ip, arpt_arp or (note) ebt_entry) * @match: struct xt_match through which this function was invoked * @matchinfo: per-match data * @hook_mask: via which hooks the new rule is reachable * Other fields as above. */ struct xt_mtchk_param { struct net *net; const char *table; const void *entryinfo; const struct xt_match *match; void *matchinfo; unsigned int hook_mask; u_int8_t family; bool nft_compat; }; /** * struct xt_mdtor_param - match destructor parameters * Fields as above. */ struct xt_mtdtor_param { struct net *net; const struct xt_match *match; void *matchinfo; u_int8_t family; }; /** * struct xt_tgchk_param - parameters for target extensions' * checkentry functions * * @entryinfo: the family-specific rule data * (struct ipt_entry, ip6t_entry, arpt_entry, ebt_entry) * * Other fields see above. */ struct xt_tgchk_param { struct net *net; const char *table; const void *entryinfo; const struct xt_target *target; void *targinfo; unsigned int hook_mask; u_int8_t family; bool nft_compat; }; /* Target destructor parameters */ struct xt_tgdtor_param { struct net *net; const struct xt_target *target; void *targinfo; u_int8_t family; }; struct xt_match { struct list_head list; const char name[XT_EXTENSION_MAXNAMELEN]; u_int8_t revision; /* Return true or false: return FALSE and set *hotdrop = 1 to force immediate packet drop. */ /* Arguments changed since 2.6.9, as this must now handle non-linear skb, using skb_header_pointer and skb_ip_make_writable. */ bool (*match)(const struct sk_buff *skb, struct xt_action_param *); /* Called when user tries to insert an entry of this type. */ int (*checkentry)(const struct xt_mtchk_param *); /* Called when entry of this type deleted. */ void (*destroy)(const struct xt_mtdtor_param *); #ifdef CONFIG_COMPAT /* Called when userspace align differs from kernel space one */ void (*compat_from_user)(void *dst, const void *src); int (*compat_to_user)(void __user *dst, const void *src); #endif /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; const char *table; unsigned int matchsize; unsigned int usersize; #ifdef CONFIG_COMPAT unsigned int compatsize; #endif unsigned int hooks; unsigned short proto; unsigned short family; }; /* Registration hooks for targets. */ struct xt_target { struct list_head list; const char name[XT_EXTENSION_MAXNAMELEN]; u_int8_t revision; /* Returns verdict. Argument order changed since 2.6.9, as this must now handle non-linear skbs, using skb_copy_bits and skb_ip_make_writable. */ unsigned int (*target)(struct sk_buff *skb, const struct xt_action_param *); /* Called when user tries to insert an entry of this type: hook_mask is a bitmask of hooks from which it can be called. */ /* Should return 0 on success or an error code otherwise (-Exxxx). */ int (*checkentry)(const struct xt_tgchk_param *); /* Called when entry of this type deleted. */ void (*destroy)(const struct xt_tgdtor_param *); #ifdef CONFIG_COMPAT /* Called when userspace align differs from kernel space one */ void (*compat_from_user)(void *dst, const void *src); int (*compat_to_user)(void __user *dst, const void *src); #endif /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; const char *table; unsigned int targetsize; unsigned int usersize; #ifdef CONFIG_COMPAT unsigned int compatsize; #endif unsigned int hooks; unsigned short proto; unsigned short family; }; /* Furniture shopping... */ struct xt_table { struct list_head list; /* What hooks you will enter on */ unsigned int valid_hooks; /* Man behind the curtain... */ struct xt_table_info *private; /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; u_int8_t af; /* address/protocol family */ int priority; /* hook order */ /* called when table is needed in the given netns */ int (*table_init)(struct net *net); /* A unique name... */ const char name[XT_TABLE_MAXNAMELEN]; }; #include <linux/netfilter_ipv4.h> /* The table itself */ struct xt_table_info { /* Size per table */ unsigned int size; /* Number of entries: FIXME. --RR */ unsigned int number; /* Initial number of entries. Needed for module usage count */ unsigned int initial_entries; /* Entry points and underflows */ unsigned int hook_entry[NF_INET_NUMHOOKS]; unsigned int underflow[NF_INET_NUMHOOKS]; /* * Number of user chains. Since tables cannot have loops, at most * @stacksize jumps (number of user chains) can possibly be made. */ unsigned int stacksize; void ***jumpstack; unsigned char entries[] __aligned(8); }; int xt_register_target(struct xt_target *target); void xt_unregister_target(struct xt_target *target); int xt_register_targets(struct xt_target *target, unsigned int n); void xt_unregister_targets(struct xt_target *target, unsigned int n); int xt_register_match(struct xt_match *target); void xt_unregister_match(struct xt_match *target); int xt_register_matches(struct xt_match *match, unsigned int n); void xt_unregister_matches(struct xt_match *match, unsigned int n); int xt_check_entry_offsets(const void *base, const char *elems, unsigned int target_offset, unsigned int next_offset); int xt_check_table_hooks(const struct xt_table_info *info, unsigned int valid_hooks); unsigned int *xt_alloc_entry_offsets(unsigned int size); bool xt_find_jump_offset(const unsigned int *offsets, unsigned int target, unsigned int size); int xt_check_proc_name(const char *name, unsigned int size); int xt_check_match(struct xt_mtchk_param *, unsigned int size, u16 proto, bool inv_proto); int xt_check_target(struct xt_tgchk_param *, unsigned int size, u16 proto, bool inv_proto); int xt_match_to_user(const struct xt_entry_match *m, struct xt_entry_match __user *u); int xt_target_to_user(const struct xt_entry_target *t, struct xt_entry_target __user *u); int xt_data_to_user(void __user *dst, const void *src, int usersize, int size, int aligned_size); void *xt_copy_counters(sockptr_t arg, unsigned int len, struct xt_counters_info *info); struct xt_counters *xt_counters_alloc(unsigned int counters); struct xt_table *xt_register_table(struct net *net, const struct xt_table *table, struct xt_table_info *bootstrap, struct xt_table_info *newinfo); void *xt_unregister_table(struct xt_table *table); struct xt_table_info *xt_replace_table(struct xt_table *table, unsigned int num_counters, struct xt_table_info *newinfo, int *error); struct xt_match *xt_find_match(u8 af, const char *name, u8 revision); struct xt_match *xt_request_find_match(u8 af, const char *name, u8 revision); struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision); int xt_find_revision(u8 af, const char *name, u8 revision, int target, int *err); struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af, const char *name); struct xt_table *xt_request_find_table_lock(struct net *net, u_int8_t af, const char *name); void xt_table_unlock(struct xt_table *t); int xt_proto_init(struct net *net, u_int8_t af); void xt_proto_fini(struct net *net, u_int8_t af); struct xt_table_info *xt_alloc_table_info(unsigned int size); void xt_free_table_info(struct xt_table_info *info); /** * xt_recseq - recursive seqcount for netfilter use * * Packet processing changes the seqcount only if no recursion happened * get_counters() can use read_seqcount_begin()/read_seqcount_retry(), * because we use the normal seqcount convention : * Low order bit set to 1 if a writer is active. */ DECLARE_PER_CPU(seqcount_t, xt_recseq); /* xt_tee_enabled - true if x_tables needs to handle reentrancy * * Enabled if current ip(6)tables ruleset has at least one -j TEE rule. */ extern struct static_key xt_tee_enabled; /** * xt_write_recseq_begin - start of a write section * * Begin packet processing : all readers must wait the end * 1) Must be called with preemption disabled * 2) softirqs must be disabled too (or we should use this_cpu_add()) * Returns : * 1 if no recursion on this cpu * 0 if recursion detected */ static inline unsigned int xt_write_recseq_begin(void) { unsigned int addend; /* * Low order bit of sequence is set if we already * called xt_write_recseq_begin(). */ addend = (__this_cpu_read(xt_recseq.sequence) + 1) & 1; /* * This is kind of a write_seqcount_begin(), but addend is 0 or 1 * We dont check addend value to avoid a test and conditional jump, * since addend is most likely 1 */ __this_cpu_add(xt_recseq.sequence, addend); smp_mb(); return addend; } /** * xt_write_recseq_end - end of a write section * @addend: return value from previous xt_write_recseq_begin() * * End packet processing : all readers can proceed * 1) Must be called with preemption disabled * 2) softirqs must be disabled too (or we should use this_cpu_add()) */ static inline void xt_write_recseq_end(unsigned int addend) { /* this is kind of a write_seqcount_end(), but addend is 0 or 1 */ smp_wmb(); __this_cpu_add(xt_recseq.sequence, addend); } /* * This helper is performance critical and must be inlined */ static inline unsigned long ifname_compare_aligned(const char *_a, const char *_b, const char *_mask) { const unsigned long *a = (const unsigned long *)_a; const unsigned long *b = (const unsigned long *)_b; const unsigned long *mask = (const unsigned long *)_mask; unsigned long ret; ret = (a[0] ^ b[0]) & mask[0]; if (IFNAMSIZ > sizeof(unsigned long)) ret |= (a[1] ^ b[1]) & mask[1]; if (IFNAMSIZ > 2 * sizeof(unsigned long)) ret |= (a[2] ^ b[2]) & mask[2]; if (IFNAMSIZ > 3 * sizeof(unsigned long)) ret |= (a[3] ^ b[3]) & mask[3]; BUILD_BUG_ON(IFNAMSIZ > 4 * sizeof(unsigned long)); return ret; } struct xt_percpu_counter_alloc_state { unsigned int off; const char __percpu *mem; }; bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state, struct xt_counters *counter); void xt_percpu_counter_free(struct xt_counters *cnt); static inline struct xt_counters * xt_get_this_cpu_counter(struct xt_counters *cnt) { if (nr_cpu_ids > 1) return this_cpu_ptr((void __percpu *) (unsigned long) cnt->pcnt); return cnt; } static inline struct xt_counters * xt_get_per_cpu_counter(struct xt_counters *cnt, unsigned int cpu) { if (nr_cpu_ids > 1) return per_cpu_ptr((void __percpu *) (unsigned long) cnt->pcnt, cpu); return cnt; } struct nf_hook_ops *xt_hook_ops_alloc(const struct xt_table *, nf_hookfn *); #ifdef CONFIG_COMPAT #include <net/compat.h> struct compat_xt_entry_match { union { struct { u_int16_t match_size; char name[XT_FUNCTION_MAXNAMELEN - 1]; u_int8_t revision; } user; struct { u_int16_t match_size; compat_uptr_t match; } kernel; u_int16_t match_size; } u; unsigned char data[]; }; struct compat_xt_entry_target { union { struct { u_int16_t target_size; char name[XT_FUNCTION_MAXNAMELEN - 1]; u_int8_t revision; } user; struct { u_int16_t target_size; compat_uptr_t target; } kernel; u_int16_t target_size; } u; unsigned char data[]; }; /* FIXME: this works only on 32 bit tasks * need to change whole approach in order to calculate align as function of * current task alignment */ struct compat_xt_counters { compat_u64 pcnt, bcnt; /* Packet and byte counters */ }; struct compat_xt_counters_info { char name[XT_TABLE_MAXNAMELEN]; compat_uint_t num_counters; struct compat_xt_counters counters[]; }; struct _compat_xt_align { __u8 u8; __u16 u16; __u32 u32; compat_u64 u64; }; #define COMPAT_XT_ALIGN(s) __ALIGN_KERNEL((s), __alignof__(struct _compat_xt_align)) void xt_compat_lock(u_int8_t af); void xt_compat_unlock(u_int8_t af); int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta); void xt_compat_flush_offsets(u_int8_t af); int xt_compat_init_offsets(u8 af, unsigned int number); int xt_compat_calc_jump(u_int8_t af, unsigned int offset); int xt_compat_match_offset(const struct xt_match *match); void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr, unsigned int *size); int xt_compat_match_to_user(const struct xt_entry_match *m, void __user **dstptr, unsigned int *size); int xt_compat_target_offset(const struct xt_target *target); void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr, unsigned int *size); int xt_compat_target_to_user(const struct xt_entry_target *t, void __user **dstptr, unsigned int *size); int xt_compat_check_entry_offsets(const void *base, const char *elems, unsigned int target_offset, unsigned int next_offset); #endif /* CONFIG_COMPAT */ #endif /* _X_TABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 /* SPDX-License-Identifier: GPL-2.0-only */ /* * IEEE802.15.4-2003 specification * * Copyright (C) 2007, 2008 Siemens AG * * Written by: * Pavel Smolenskiy <pavel.smolenskiy@gmail.com> * Maxim Gorbachyov <maxim.gorbachev@siemens.com> * Maxim Osipov <maxim.osipov@siemens.com> * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> */ #ifndef LINUX_IEEE802154_H #define LINUX_IEEE802154_H #include <linux/types.h> #include <linux/random.h> #define IEEE802154_MTU 127 #define IEEE802154_ACK_PSDU_LEN 5 #define IEEE802154_MIN_PSDU_LEN 9 #define IEEE802154_FCS_LEN 2 #define IEEE802154_MAX_AUTH_TAG_LEN 16 #define IEEE802154_FC_LEN 2 #define IEEE802154_SEQ_LEN 1 /* General MAC frame format: * 2 bytes: Frame Control * 1 byte: Sequence Number * 20 bytes: Addressing fields * 14 bytes: Auxiliary Security Header */ #define IEEE802154_MAX_HEADER_LEN (2 + 1 + 20 + 14) #define IEEE802154_MIN_HEADER_LEN (IEEE802154_ACK_PSDU_LEN - \ IEEE802154_FCS_LEN) #define IEEE802154_PAN_ID_BROADCAST 0xffff #define IEEE802154_ADDR_SHORT_BROADCAST 0xffff #define IEEE802154_ADDR_SHORT_UNSPEC 0xfffe #define IEEE802154_EXTENDED_ADDR_LEN 8 #define IEEE802154_SHORT_ADDR_LEN 2 #define IEEE802154_PAN_ID_LEN 2 #define IEEE802154_LIFS_PERIOD 40 #define IEEE802154_SIFS_PERIOD 12 #define IEEE802154_MAX_SIFS_FRAME_SIZE 18 #define IEEE802154_MAX_CHANNEL 26 #define IEEE802154_MAX_PAGE 31 #define IEEE802154_FC_TYPE_BEACON 0x0 /* Frame is beacon */ #define IEEE802154_FC_TYPE_DATA 0x1 /* Frame is data */ #define IEEE802154_FC_TYPE_ACK 0x2 /* Frame is acknowledgment */ #define IEEE802154_FC_TYPE_MAC_CMD 0x3 /* Frame is MAC command */ #define IEEE802154_FC_TYPE_SHIFT 0 #define IEEE802154_FC_TYPE_MASK ((1 << 3) - 1) #define IEEE802154_FC_TYPE(x) ((x & IEEE802154_FC_TYPE_MASK) >> IEEE802154_FC_TYPE_SHIFT) #define IEEE802154_FC_SET_TYPE(v, x) do { \ v = (((v) & ~IEEE802154_FC_TYPE_MASK) | \ (((x) << IEEE802154_FC_TYPE_SHIFT) & IEEE802154_FC_TYPE_MASK)); \ } while (0) #define IEEE802154_FC_SECEN_SHIFT 3 #define IEEE802154_FC_SECEN (1 << IEEE802154_FC_SECEN_SHIFT) #define IEEE802154_FC_FRPEND_SHIFT 4 #define IEEE802154_FC_FRPEND (1 << IEEE802154_FC_FRPEND_SHIFT) #define IEEE802154_FC_ACK_REQ_SHIFT 5 #define IEEE802154_FC_ACK_REQ (1 << IEEE802154_FC_ACK_REQ_SHIFT) #define IEEE802154_FC_INTRA_PAN_SHIFT 6 #define IEEE802154_FC_INTRA_PAN (1 << IEEE802154_FC_INTRA_PAN_SHIFT) #define IEEE802154_FC_SAMODE_SHIFT 14 #define IEEE802154_FC_SAMODE_MASK (3 << IEEE802154_FC_SAMODE_SHIFT) #define IEEE802154_FC_DAMODE_SHIFT 10 #define IEEE802154_FC_DAMODE_MASK (3 << IEEE802154_FC_DAMODE_SHIFT) #define IEEE802154_FC_VERSION_SHIFT 12 #define IEEE802154_FC_VERSION_MASK (3 << IEEE802154_FC_VERSION_SHIFT) #define IEEE802154_FC_VERSION(x) ((x & IEEE802154_FC_VERSION_MASK) >> IEEE802154_FC_VERSION_SHIFT) #define IEEE802154_FC_SAMODE(x) \ (((x) & IEEE802154_FC_SAMODE_MASK) >> IEEE802154_FC_SAMODE_SHIFT) #define IEEE802154_FC_DAMODE(x) \ (((x) & IEEE802154_FC_DAMODE_MASK) >> IEEE802154_FC_DAMODE_SHIFT) #define IEEE802154_SCF_SECLEVEL_MASK 7 #define IEEE802154_SCF_SECLEVEL_SHIFT 0 #define IEEE802154_SCF_SECLEVEL(x) (x & IEEE802154_SCF_SECLEVEL_MASK) #define IEEE802154_SCF_KEY_ID_MODE_SHIFT 3 #define IEEE802154_SCF_KEY_ID_MODE_MASK (3 << IEEE802154_SCF_KEY_ID_MODE_SHIFT) #define IEEE802154_SCF_KEY_ID_MODE(x) \ ((x & IEEE802154_SCF_KEY_ID_MODE_MASK) >> IEEE802154_SCF_KEY_ID_MODE_SHIFT) #define IEEE802154_SCF_KEY_IMPLICIT 0 #define IEEE802154_SCF_KEY_INDEX 1 #define IEEE802154_SCF_KEY_SHORT_INDEX 2 #define IEEE802154_SCF_KEY_HW_INDEX 3 #define IEEE802154_SCF_SECLEVEL_NONE 0 #define IEEE802154_SCF_SECLEVEL_MIC32 1 #define IEEE802154_SCF_SECLEVEL_MIC64 2 #define IEEE802154_SCF_SECLEVEL_MIC128 3 #define IEEE802154_SCF_SECLEVEL_ENC 4 #define IEEE802154_SCF_SECLEVEL_ENC_MIC32 5 #define IEEE802154_SCF_SECLEVEL_ENC_MIC64 6 #define IEEE802154_SCF_SECLEVEL_ENC_MIC128 7 /* MAC footer size */ #define IEEE802154_MFR_SIZE 2 /* 2 octets */ /* MAC's Command Frames Identifiers */ #define IEEE802154_CMD_ASSOCIATION_REQ 0x01 #define IEEE802154_CMD_ASSOCIATION_RESP 0x02 #define IEEE802154_CMD_DISASSOCIATION_NOTIFY 0x03 #define IEEE802154_CMD_DATA_REQ 0x04 #define IEEE802154_CMD_PANID_CONFLICT_NOTIFY 0x05 #define IEEE802154_CMD_ORPHAN_NOTIFY 0x06 #define IEEE802154_CMD_BEACON_REQ 0x07 #define IEEE802154_CMD_COORD_REALIGN_NOTIFY 0x08 #define IEEE802154_CMD_GTS_REQ 0x09 /* * The return values of MAC operations */ enum { /* * The requested operation was completed successfully. * For a transmission request, this value indicates * a successful transmission. */ IEEE802154_SUCCESS = 0x0, /* The beacon was lost following a synchronization request. */ IEEE802154_BEACON_LOSS = 0xe0, /* * A transmission could not take place due to activity on the * channel, i.e., the CSMA-CA mechanism has failed. */ IEEE802154_CHNL_ACCESS_FAIL = 0xe1, /* The GTS request has been denied by the PAN coordinator. */ IEEE802154_DENINED = 0xe2, /* The attempt to disable the transceiver has failed. */ IEEE802154_DISABLE_TRX_FAIL = 0xe3, /* * The received frame induces a failed security check according to * the security suite. */ IEEE802154_FAILED_SECURITY_CHECK = 0xe4, /* * The frame resulting from secure processing has a length that is * greater than aMACMaxFrameSize. */ IEEE802154_FRAME_TOO_LONG = 0xe5, /* * The requested GTS transmission failed because the specified GTS * either did not have a transmit GTS direction or was not defined. */ IEEE802154_INVALID_GTS = 0xe6, /* * A request to purge an MSDU from the transaction queue was made using * an MSDU handle that was not found in the transaction table. */ IEEE802154_INVALID_HANDLE = 0xe7, /* A parameter in the primitive is out of the valid range.*/ IEEE802154_INVALID_PARAMETER = 0xe8, /* No acknowledgment was received after aMaxFrameRetries. */ IEEE802154_NO_ACK = 0xe9, /* A scan operation failed to find any network beacons.*/ IEEE802154_NO_BEACON = 0xea, /* No response data were available following a request. */ IEEE802154_NO_DATA = 0xeb, /* The operation failed because a short address was not allocated. */ IEEE802154_NO_SHORT_ADDRESS = 0xec, /* * A receiver enable request was unsuccessful because it could not be * completed within the CAP. */ IEEE802154_OUT_OF_CAP = 0xed, /* * A PAN identifier conflict has been detected and communicated to the * PAN coordinator. */ IEEE802154_PANID_CONFLICT = 0xee, /* A coordinator realignment command has been received. */ IEEE802154_REALIGMENT = 0xef, /* The transaction has expired and its information discarded. */ IEEE802154_TRANSACTION_EXPIRED = 0xf0, /* There is no capacity to store the transaction. */ IEEE802154_TRANSACTION_OVERFLOW = 0xf1, /* * The transceiver was in the transmitter enabled state when the * receiver was requested to be enabled. */ IEEE802154_TX_ACTIVE = 0xf2, /* The appropriate key is not available in the ACL. */ IEEE802154_UNAVAILABLE_KEY = 0xf3, /* * A SET/GET request was issued with the identifier of a PIB attribute * that is not supported. */ IEEE802154_UNSUPPORTED_ATTR = 0xf4, /* * A request to perform a scan operation failed because the MLME was * in the process of performing a previously initiated scan operation. */ IEEE802154_SCAN_IN_PROGRESS = 0xfc, }; /* frame control handling */ #define IEEE802154_FCTL_FTYPE 0x0003 #define IEEE802154_FCTL_ACKREQ 0x0020 #define IEEE802154_FCTL_SECEN 0x0004 #define IEEE802154_FCTL_INTRA_PAN 0x0040 #define IEEE802154_FCTL_DADDR 0x0c00 #define IEEE802154_FCTL_SADDR 0xc000 #define IEEE802154_FTYPE_DATA 0x0001 #define IEEE802154_FCTL_ADDR_NONE 0x0000 #define IEEE802154_FCTL_DADDR_SHORT 0x0800 #define IEEE802154_FCTL_DADDR_EXTENDED 0x0c00 #define IEEE802154_FCTL_SADDR_SHORT 0x8000 #define IEEE802154_FCTL_SADDR_EXTENDED 0xc000 /* * ieee802154_is_data - check if type is IEEE802154_FTYPE_DATA * @fc: frame control bytes in little-endian byteorder */ static inline int ieee802154_is_data(__le16 fc) { return (fc & cpu_to_le16(IEEE802154_FCTL_FTYPE)) == cpu_to_le16(IEEE802154_FTYPE_DATA); } /** * ieee802154_is_secen - check if Security bit is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee802154_is_secen(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_SECEN); } /** * ieee802154_is_ackreq - check if acknowledgment request bit is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee802154_is_ackreq(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_ACKREQ); } /** * ieee802154_is_intra_pan - check if intra pan id communication * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee802154_is_intra_pan(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_INTRA_PAN); } /* * ieee802154_daddr_mode - get daddr mode from fc * @fc: frame control bytes in little-endian byteorder */ static inline __le16 ieee802154_daddr_mode(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_DADDR); } /* * ieee802154_saddr_mode - get saddr mode from fc * @fc: frame control bytes in little-endian byteorder */ static inline __le16 ieee802154_saddr_mode(__le16 fc) { return fc & cpu_to_le16(IEEE802154_FCTL_SADDR); } /** * ieee802154_is_valid_psdu_len - check if psdu len is valid * available lengths: * 0-4 Reserved * 5 MPDU (Acknowledgment) * 6-8 Reserved * 9-127 MPDU * * @len: psdu len with (MHR + payload + MFR) */ static inline bool ieee802154_is_valid_psdu_len(u8 len) { return (len == IEEE802154_ACK_PSDU_LEN || (len >= IEEE802154_MIN_PSDU_LEN && len <= IEEE802154_MTU)); } /** * ieee802154_is_valid_extended_unicast_addr - check if extended addr is valid * @addr: extended addr to check */ static inline bool ieee802154_is_valid_extended_unicast_addr(__le64 addr) { /* Bail out if the address is all zero, or if the group * address bit is set. */ return ((addr != cpu_to_le64(0x0000000000000000ULL)) && !(addr & cpu_to_le64(0x0100000000000000ULL))); } /** * ieee802154_is_broadcast_short_addr - check if short addr is broadcast * @addr: short addr to check */ static inline bool ieee802154_is_broadcast_short_addr(__le16 addr) { return (addr == cpu_to_le16(IEEE802154_ADDR_SHORT_BROADCAST)); } /** * ieee802154_is_unspec_short_addr - check if short addr is unspecified * @addr: short addr to check */ static inline bool ieee802154_is_unspec_short_addr(__le16 addr) { return (addr == cpu_to_le16(IEEE802154_ADDR_SHORT_UNSPEC)); } /** * ieee802154_is_valid_src_short_addr - check if source short address is valid * @addr: short addr to check */ static inline bool ieee802154_is_valid_src_short_addr(__le16 addr) { return !(ieee802154_is_broadcast_short_addr(addr) || ieee802154_is_unspec_short_addr(addr)); } /** * ieee802154_random_extended_addr - generates a random extended address * @addr: extended addr pointer to place the random address */ static inline void ieee802154_random_extended_addr(__le64 *addr) { get_random_bytes(addr, IEEE802154_EXTENDED_ADDR_LEN); /* clear the group bit, and set the locally administered bit */ ((u8 *)addr)[IEEE802154_EXTENDED_ADDR_LEN - 1] &= ~0x01; ((u8 *)addr)[IEEE802154_EXTENDED_ADDR_LEN - 1] |= 0x02; } #endif /* LINUX_IEEE802154_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef _ASM_X86_APIC_H #define _ASM_X86_APIC_H #include <linux/cpumask.h> #include <asm/alternative.h> #include <asm/cpufeature.h> #include <asm/apicdef.h> #include <linux/atomic.h> #include <asm/fixmap.h> #include <asm/mpspec.h> #include <asm/msr.h> #include <asm/hardirq.h> #define ARCH_APICTIMER_STOPS_ON_C3 1 /* * Debugging macros */ #define APIC_QUIET 0 #define APIC_VERBOSE 1 #define APIC_DEBUG 2 /* Macros for apic_extnmi which controls external NMI masking */ #define APIC_EXTNMI_BSP 0 /* Default */ #define APIC_EXTNMI_ALL 1 #define APIC_EXTNMI_NONE 2 /* * Define the default level of output to be very little * This can be turned up by using apic=verbose for more * information and apic=debug for _lots_ of information. * apic_verbosity is defined in apic.c */ #define apic_printk(v, s, a...) do { \ if ((v) <= apic_verbosity) \ printk(s, ##a); \ } while (0) #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_X86_32) extern void generic_apic_probe(void); #else static inline void generic_apic_probe(void) { } #endif #ifdef CONFIG_X86_LOCAL_APIC extern int apic_verbosity; extern int local_apic_timer_c2_ok; extern int disable_apic; extern unsigned int lapic_timer_period; extern enum apic_intr_mode_id apic_intr_mode; enum apic_intr_mode_id { APIC_PIC, APIC_VIRTUAL_WIRE, APIC_VIRTUAL_WIRE_NO_CONFIG, APIC_SYMMETRIC_IO, APIC_SYMMETRIC_IO_NO_ROUTING }; #ifdef CONFIG_SMP extern void __inquire_remote_apic(int apicid); #else /* CONFIG_SMP */ static inline void __inquire_remote_apic(int apicid) { } #endif /* CONFIG_SMP */ static inline void default_inquire_remote_apic(int apicid) { if (apic_verbosity >= APIC_DEBUG) __inquire_remote_apic(apicid); } /* * With 82489DX we can't rely on apic feature bit * retrieved via cpuid but still have to deal with * such an apic chip so we assume that SMP configuration * is found from MP table (64bit case uses ACPI mostly * which set smp presence flag as well so we are safe * to use this helper too). */ static inline bool apic_from_smp_config(void) { return smp_found_config && !disable_apic; } /* * Basic functions accessing APICs. */ #ifdef CONFIG_PARAVIRT #include <asm/paravirt.h> #endif extern int setup_profiling_timer(unsigned int); static inline void native_apic_mem_write(u32 reg, u32 v) { volatile u32 *addr = (volatile u32 *)(APIC_BASE + reg); alternative_io("movl %0, %P1", "xchgl %0, %P1", X86_BUG_11AP, ASM_OUTPUT2("=r" (v), "=m" (*addr)), ASM_OUTPUT2("0" (v), "m" (*addr))); } static inline u32 native_apic_mem_read(u32 reg) { return *((volatile u32 *)(APIC_BASE + reg)); } extern void native_apic_wait_icr_idle(void); extern u32 native_safe_apic_wait_icr_idle(void); extern void native_apic_icr_write(u32 low, u32 id); extern u64 native_apic_icr_read(void); static inline bool apic_is_x2apic_enabled(void) { u64 msr; if (rdmsrl_safe(MSR_IA32_APICBASE, &msr)) return false; return msr & X2APIC_ENABLE; } extern void enable_IR_x2apic(void); extern int get_physical_broadcast(void); extern int lapic_get_maxlvt(void); extern void clear_local_APIC(void); extern void disconnect_bsp_APIC(int virt_wire_setup); extern void disable_local_APIC(void); extern void apic_soft_disable(void); extern void lapic_shutdown(void); extern void sync_Arb_IDs(void); extern void init_bsp_APIC(void); extern void apic_intr_mode_select(void); extern void apic_intr_mode_init(void); extern void init_apic_mappings(void); void register_lapic_address(unsigned long address); extern void setup_boot_APIC_clock(void); extern void setup_secondary_APIC_clock(void); extern void lapic_update_tsc_freq(void); #ifdef CONFIG_X86_64 static inline int apic_force_enable(unsigned long addr) { return -1; } #else extern int apic_force_enable(unsigned long addr); #endif extern void apic_ap_setup(void); /* * On 32bit this is mach-xxx local */ #ifdef CONFIG_X86_64 extern int apic_is_clustered_box(void); #else static inline int apic_is_clustered_box(void) { return 0; } #endif extern int setup_APIC_eilvt(u8 lvt_off, u8 vector, u8 msg_type, u8 mask); extern void lapic_assign_system_vectors(void); extern void lapic_assign_legacy_vector(unsigned int isairq, bool replace); extern void lapic_update_legacy_vectors(void); extern void lapic_online(void); extern void lapic_offline(void); extern bool apic_needs_pit(void); extern void apic_send_IPI_allbutself(unsigned int vector); #else /* !CONFIG_X86_LOCAL_APIC */ static inline void lapic_shutdown(void) { } #define local_apic_timer_c2_ok 1 static inline void init_apic_mappings(void) { } static inline void disable_local_APIC(void) { } # define setup_boot_APIC_clock x86_init_noop # define setup_secondary_APIC_clock x86_init_noop static inline void lapic_update_tsc_freq(void) { } static inline void init_bsp_APIC(void) { } static inline void apic_intr_mode_select(void) { } static inline void apic_intr_mode_init(void) { } static inline void lapic_assign_system_vectors(void) { } static inline void lapic_assign_legacy_vector(unsigned int i, bool r) { } static inline bool apic_needs_pit(void) { return true; } #endif /* !CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_X86_X2APIC static inline void native_apic_msr_write(u32 reg, u32 v) { if (reg == APIC_DFR || reg == APIC_ID || reg == APIC_LDR || reg == APIC_LVR) return; wrmsr(APIC_BASE_MSR + (reg >> 4), v, 0); } static inline void native_apic_msr_eoi_write(u32 reg, u32 v) { __wrmsr(APIC_BASE_MSR + (APIC_EOI >> 4), APIC_EOI_ACK, 0); } static inline u32 native_apic_msr_read(u32 reg) { u64 msr; if (reg == APIC_DFR) return -1; rdmsrl(APIC_BASE_MSR + (reg >> 4), msr); return (u32)msr; } static inline void native_x2apic_wait_icr_idle(void) { /* no need to wait for icr idle in x2apic */ return; } static inline u32 native_safe_x2apic_wait_icr_idle(void) { /* no need to wait for icr idle in x2apic */ return 0; } static inline void native_x2apic_icr_write(u32 low, u32 id) { wrmsrl(APIC_BASE_MSR + (APIC_ICR >> 4), ((__u64) id) << 32 | low); } static inline u64 native_x2apic_icr_read(void) { unsigned long val; rdmsrl(APIC_BASE_MSR + (APIC_ICR >> 4), val); return val; } extern int x2apic_mode; extern int x2apic_phys; extern void __init x2apic_set_max_apicid(u32 apicid); extern void __init check_x2apic(void); extern void x2apic_setup(void); static inline int x2apic_enabled(void) { return boot_cpu_has(X86_FEATURE_X2APIC) && apic_is_x2apic_enabled(); } #define x2apic_supported() (boot_cpu_has(X86_FEATURE_X2APIC)) #else /* !CONFIG_X86_X2APIC */ static inline void check_x2apic(void) { } static inline void x2apic_setup(void) { } static inline int x2apic_enabled(void) { return 0; } #define x2apic_mode (0) #define x2apic_supported() (0) #endif /* !CONFIG_X86_X2APIC */ struct irq_data; /* * Copyright 2004 James Cleverdon, IBM. * * Generic APIC sub-arch data struct. * * Hacked for x86-64 by James Cleverdon from i386 architecture code by * Martin Bligh, Andi Kleen, James Bottomley, John Stultz, and * James Cleverdon. */ struct apic { /* Hotpath functions first */ void (*eoi_write)(u32 reg, u32 v); void (*native_eoi_write)(u32 reg, u32 v); void (*write)(u32 reg, u32 v); u32 (*read)(u32 reg); /* IPI related functions */ void (*wait_icr_idle)(void); u32 (*safe_wait_icr_idle)(void); void (*send_IPI)(int cpu, int vector); void (*send_IPI_mask)(const struct cpumask *mask, int vector); void (*send_IPI_mask_allbutself)(const struct cpumask *msk, int vec); void (*send_IPI_allbutself)(int vector); void (*send_IPI_all)(int vector); void (*send_IPI_self)(int vector); /* dest_logical is used by the IPI functions */ u32 dest_logical; u32 disable_esr; u32 irq_delivery_mode; u32 irq_dest_mode; u32 (*calc_dest_apicid)(unsigned int cpu); /* ICR related functions */ u64 (*icr_read)(void); void (*icr_write)(u32 low, u32 high); /* Probe, setup and smpboot functions */ int (*probe)(void); int (*acpi_madt_oem_check)(char *oem_id, char *oem_table_id); int (*apic_id_valid)(u32 apicid); int (*apic_id_registered)(void); bool (*check_apicid_used)(physid_mask_t *map, int apicid); void (*init_apic_ldr)(void); void (*ioapic_phys_id_map)(physid_mask_t *phys_map, physid_mask_t *retmap); void (*setup_apic_routing)(void); int (*cpu_present_to_apicid)(int mps_cpu); void (*apicid_to_cpu_present)(int phys_apicid, physid_mask_t *retmap); int (*check_phys_apicid_present)(int phys_apicid); int (*phys_pkg_id)(int cpuid_apic, int index_msb); u32 (*get_apic_id)(unsigned long x); u32 (*set_apic_id)(unsigned int id); /* wakeup_secondary_cpu */ int (*wakeup_secondary_cpu)(int apicid, unsigned long start_eip); void (*inquire_remote_apic)(int apicid); #ifdef CONFIG_X86_32 /* * Called very early during boot from get_smp_config(). It should * return the logical apicid. x86_[bios]_cpu_to_apicid is * initialized before this function is called. * * If logical apicid can't be determined that early, the function * may return BAD_APICID. Logical apicid will be configured after * init_apic_ldr() while bringing up CPUs. Note that NUMA affinity * won't be applied properly during early boot in this case. */ int (*x86_32_early_logical_apicid)(int cpu); #endif char *name; }; /* * Pointer to the local APIC driver in use on this system (there's * always just one such driver in use - the kernel decides via an * early probing process which one it picks - and then sticks to it): */ extern struct apic *apic; /* * APIC drivers are probed based on how they are listed in the .apicdrivers * section. So the order is important and enforced by the ordering * of different apic driver files in the Makefile. * * For the files having two apic drivers, we use apic_drivers() * to enforce the order with in them. */ #define apic_driver(sym) \ static const struct apic *__apicdrivers_##sym __used \ __aligned(sizeof(struct apic *)) \ __section(".apicdrivers") = { &sym } #define apic_drivers(sym1, sym2) \ static struct apic *__apicdrivers_##sym1##sym2[2] __used \ __aligned(sizeof(struct apic *)) \ __section(".apicdrivers") = { &sym1, &sym2 } extern struct apic *__apicdrivers[], *__apicdrivers_end[]; /* * APIC functionality to boot other CPUs - only used on SMP: */ #ifdef CONFIG_SMP extern int wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip); extern int lapic_can_unplug_cpu(void); #endif #ifdef CONFIG_X86_LOCAL_APIC static inline u32 apic_read(u32 reg) { return apic->read(reg); } static inline void apic_write(u32 reg, u32 val) { apic->write(reg, val); } static inline void apic_eoi(void) { apic->eoi_write(APIC_EOI, APIC_EOI_ACK); } static inline u64 apic_icr_read(void) { return apic->icr_read(); } static inline void apic_icr_write(u32 low, u32 high) { apic->icr_write(low, high); } static inline void apic_wait_icr_idle(void) { apic->wait_icr_idle(); } static inline u32 safe_apic_wait_icr_idle(void) { return apic->safe_wait_icr_idle(); } extern void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v)); #else /* CONFIG_X86_LOCAL_APIC */ static inline u32 apic_read(u32 reg) { return 0; } static inline void apic_write(u32 reg, u32 val) { } static inline void apic_eoi(void) { } static inline u64 apic_icr_read(void) { return 0; } static inline void apic_icr_write(u32 low, u32 high) { } static inline void apic_wait_icr_idle(void) { } static inline u32 safe_apic_wait_icr_idle(void) { return 0; } static inline void apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v)) {} #endif /* CONFIG_X86_LOCAL_APIC */ extern void apic_ack_irq(struct irq_data *data); static inline void ack_APIC_irq(void) { /* * ack_APIC_irq() actually gets compiled as a single instruction * ... yummie. */ apic_eoi(); } static inline bool lapic_vector_set_in_irr(unsigned int vector) { u32 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); return !!(irr & (1U << (vector % 32))); } static inline unsigned default_get_apic_id(unsigned long x) { unsigned int ver = GET_APIC_VERSION(apic_read(APIC_LVR)); if (APIC_XAPIC(ver) || boot_cpu_has(X86_FEATURE_EXTD_APICID)) return (x >> 24) & 0xFF; else return (x >> 24) & 0x0F; } /* * Warm reset vector position: */ #define TRAMPOLINE_PHYS_LOW 0x467 #define TRAMPOLINE_PHYS_HIGH 0x469 extern void generic_bigsmp_probe(void); #ifdef CONFIG_X86_LOCAL_APIC #include <asm/smp.h> #define APIC_DFR_VALUE (APIC_DFR_FLAT) DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid); extern struct apic apic_noop; static inline unsigned int read_apic_id(void) { unsigned int reg = apic_read(APIC_ID); return apic->get_apic_id(reg); } extern int default_apic_id_valid(u32 apicid); extern int default_acpi_madt_oem_check(char *, char *); extern void default_setup_apic_routing(void); extern u32 apic_default_calc_apicid(unsigned int cpu); extern u32 apic_flat_calc_apicid(unsigned int cpu); extern bool default_check_apicid_used(physid_mask_t *map, int apicid); extern void default_ioapic_phys_id_map(physid_mask_t *phys_map, physid_mask_t *retmap); extern int default_cpu_present_to_apicid(int mps_cpu); extern int default_check_phys_apicid_present(int phys_apicid); #endif /* CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_SMP bool apic_id_is_primary_thread(unsigned int id); void apic_smt_update(void); #else static inline bool apic_id_is_primary_thread(unsigned int id) { return false; } static inline void apic_smt_update(void) { } #endif struct msi_msg; #ifdef CONFIG_PCI_MSI void x86_vector_msi_compose_msg(struct irq_data *data, struct msi_msg *msg); #else # define x86_vector_msi_compose_msg NULL #endif extern void ioapic_zap_locks(void); #endif /