1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_BIT_SPINLOCK_H #define __LINUX_BIT_SPINLOCK_H #include <linux/kernel.h> #include <linux/preempt.h> #include <linux/atomic.h> #include <linux/bug.h> /* * bit-based spin_lock() * * Don't use this unless you really need to: spin_lock() and spin_unlock() * are significantly faster. */ static inline void bit_spin_lock(int bitnum, unsigned long *addr) { /* * Assuming the lock is uncontended, this never enters * the body of the outer loop. If it is contended, then * within the inner loop a non-atomic test is used to * busywait with less bus contention for a good time to * attempt to acquire the lock bit. */ preempt_disable(); #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) while (unlikely(test_and_set_bit_lock(bitnum, addr))) { preempt_enable(); do { cpu_relax(); } while (test_bit(bitnum, addr)); preempt_disable(); } #endif __acquire(bitlock); } /* * Return true if it was acquired */ static inline int bit_spin_trylock(int bitnum, unsigned long *addr) { preempt_disable(); #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) if (unlikely(test_and_set_bit_lock(bitnum, addr))) { preempt_enable(); return 0; } #endif __acquire(bitlock); return 1; } /* * bit-based spin_unlock() */ static inline void bit_spin_unlock(int bitnum, unsigned long *addr) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(!test_bit(bitnum, addr)); #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) clear_bit_unlock(bitnum, addr); #endif preempt_enable(); __release(bitlock); } /* * bit-based spin_unlock() * non-atomic version, which can be used eg. if the bit lock itself is * protecting the rest of the flags in the word. */ static inline void __bit_spin_unlock(int bitnum, unsigned long *addr) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(!test_bit(bitnum, addr)); #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) __clear_bit_unlock(bitnum, addr); #endif preempt_enable(); __release(bitlock); } /* * Return true if the lock is held. */ static inline int bit_spin_is_locked(int bitnum, unsigned long *addr) { #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) return test_bit(bitnum, addr); #elif defined CONFIG_PREEMPT_COUNT return preempt_count(); #else return 1; #endif } #endif /* __LINUX_BIT_SPINLOCK_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM x86_fpu #if !defined(_TRACE_FPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FPU_H #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(x86_fpu, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu), TP_STRUCT__entry( __field(struct fpu *, fpu) __field(bool, load_fpu) __field(u64, xfeatures) __field(u64, xcomp_bv) ), TP_fast_assign( __entry->fpu = fpu; __entry->load_fpu = test_thread_flag(TIF_NEED_FPU_LOAD); if (boot_cpu_has(X86_FEATURE_OSXSAVE)) { __entry->xfeatures = fpu->state.xsave.header.xfeatures; __entry->xcomp_bv = fpu->state.xsave.header.xcomp_bv; } ), TP_printk("x86/fpu: %p load: %d xfeatures: %llx xcomp_bv: %llx", __entry->fpu, __entry->load_fpu, __entry->xfeatures, __entry->xcomp_bv ) ); DEFINE_EVENT(x86_fpu, x86_fpu_before_save, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_after_save, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_before_restore, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_after_restore, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_regs_activated, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_regs_deactivated, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_init_state, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_dropped, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_copy_src, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_copy_dst, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_xstate_check_failed, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH asm/trace/ #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE fpu #endif /* _TRACE_FPU_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HIGHMEM_H #define _LINUX_HIGHMEM_H #include <linux/fs.h> #include <linux/kernel.h> #include <linux/bug.h> #include <linux/mm.h> #include <linux/uaccess.h> #include <linux/hardirq.h> #include <asm/cacheflush.h> #ifndef ARCH_HAS_FLUSH_ANON_PAGE static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) { } #endif #ifndef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE static inline void flush_kernel_dcache_page(struct page *page) { } static inline void flush_kernel_vmap_range(void *vaddr, int size) { } static inline void invalidate_kernel_vmap_range(void *vaddr, int size) { } #endif #include <asm/kmap_types.h> #ifdef CONFIG_HIGHMEM extern void *kmap_atomic_high_prot(struct page *page, pgprot_t prot); extern void kunmap_atomic_high(void *kvaddr); #include <asm/highmem.h> #ifndef ARCH_HAS_KMAP_FLUSH_TLB static inline void kmap_flush_tlb(unsigned long addr) { } #endif #ifndef kmap_prot #define kmap_prot PAGE_KERNEL #endif void *kmap_high(struct page *page); static inline void *kmap(struct page *page) { void *addr; might_sleep(); if (!PageHighMem(page)) addr = page_address(page); else addr = kmap_high(page); kmap_flush_tlb((unsigned long)addr); return addr; } void kunmap_high(struct page *page); static inline void kunmap(struct page *page) { might_sleep(); if (!PageHighMem(page)) return; kunmap_high(page); } /* * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap because * no global lock is needed and because the kmap code must perform a global TLB * invalidation when the kmap pool wraps. * * However when holding an atomic kmap it is not legal to sleep, so atomic * kmaps are appropriate for short, tight code paths only. * * The use of kmap_atomic/kunmap_atomic is discouraged - kmap/kunmap * gives a more generic (and caching) interface. But kmap_atomic can * be used in IRQ contexts, so in some (very limited) cases we need * it. */ static inline void *kmap_atomic_prot(struct page *page, pgprot_t prot) { preempt_disable(); pagefault_disable(); if (!PageHighMem(page)) return page_address(page); return kmap_atomic_high_prot(page, prot); } #define kmap_atomic(page) kmap_atomic_prot(page, kmap_prot) /* declarations for linux/mm/highmem.c */ unsigned int nr_free_highpages(void); extern atomic_long_t _totalhigh_pages; static inline unsigned long totalhigh_pages(void) { return (unsigned long)atomic_long_read(&_totalhigh_pages); } static inline void totalhigh_pages_inc(void) { atomic_long_inc(&_totalhigh_pages); } static inline void totalhigh_pages_dec(void) { atomic_long_dec(&_totalhigh_pages); } static inline void totalhigh_pages_add(long count) { atomic_long_add(count, &_totalhigh_pages); } static inline void totalhigh_pages_set(long val) { atomic_long_set(&_totalhigh_pages, val); } void kmap_flush_unused(void); struct page *kmap_to_page(void *addr); #else /* CONFIG_HIGHMEM */ static inline unsigned int nr_free_highpages(void) { return 0; } static inline struct page *kmap_to_page(void *addr) { return virt_to_page(addr); } static inline unsigned long totalhigh_pages(void) { return 0UL; } static inline void *kmap(struct page *page) { might_sleep(); return page_address(page); } static inline void kunmap_high(struct page *page) { } static inline void kunmap(struct page *page) { #ifdef ARCH_HAS_FLUSH_ON_KUNMAP kunmap_flush_on_unmap(page_address(page)); #endif } static inline void *kmap_atomic(struct page *page) { preempt_disable(); pagefault_disable(); return page_address(page); } #define kmap_atomic_prot(page, prot) kmap_atomic(page) static inline void kunmap_atomic_high(void *addr) { /* * Mostly nothing to do in the CONFIG_HIGHMEM=n case as kunmap_atomic() * handles re-enabling faults + preemption */ #ifdef ARCH_HAS_FLUSH_ON_KUNMAP kunmap_flush_on_unmap(addr); #endif } #define kmap_atomic_pfn(pfn) kmap_atomic(pfn_to_page(pfn)) #define kmap_flush_unused() do {} while(0) #endif /* CONFIG_HIGHMEM */ #if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32) DECLARE_PER_CPU(int, __kmap_atomic_idx); static inline int kmap_atomic_idx_push(void) { int idx = __this_cpu_inc_return(__kmap_atomic_idx) - 1; #ifdef CONFIG_DEBUG_HIGHMEM WARN_ON_ONCE(in_irq() && !irqs_disabled()); BUG_ON(idx >= KM_TYPE_NR); #endif return idx; } static inline int kmap_atomic_idx(void) { return __this_cpu_read(__kmap_atomic_idx) - 1; } static inline void kmap_atomic_idx_pop(void) { #ifdef CONFIG_DEBUG_HIGHMEM int idx = __this_cpu_dec_return(__kmap_atomic_idx); BUG_ON(idx < 0); #else __this_cpu_dec(__kmap_atomic_idx); #endif } #endif /* * Prevent people trying to call kunmap_atomic() as if it were kunmap() * kunmap_atomic() should get the return value of kmap_atomic, not the page. */ #define kunmap_atomic(addr) \ do { \ BUILD_BUG_ON(__same_type((addr), struct page *)); \ kunmap_atomic_high(addr); \ pagefault_enable(); \ preempt_enable(); \ } while (0) /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */ #ifndef clear_user_highpage static inline void clear_user_highpage(struct page *page, unsigned long vaddr) { void *addr = kmap_atomic(page); clear_user_page(addr, vaddr, page); kunmap_atomic(addr); } #endif #ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE /** * __alloc_zeroed_user_highpage - Allocate a zeroed HIGHMEM page for a VMA with caller-specified movable GFP flags * @movableflags: The GFP flags related to the pages future ability to move like __GFP_MOVABLE * @vma: The VMA the page is to be allocated for * @vaddr: The virtual address the page will be inserted into * * This function will allocate a page for a VMA but the caller is expected * to specify via movableflags whether the page will be movable in the * future or not * * An architecture may override this function by defining * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE and providing their own * implementation. */ static inline struct page * __alloc_zeroed_user_highpage(gfp_t movableflags, struct vm_area_struct *vma, unsigned long vaddr) { struct page *page = alloc_page_vma(GFP_HIGHUSER | movableflags, vma, vaddr); if (page) clear_user_highpage(page, vaddr); return page; } #endif /** * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move * @vma: The VMA the page is to be allocated for * @vaddr: The virtual address the page will be inserted into * * This function will allocate a page for a VMA that the caller knows will * be able to migrate in the future using move_pages() or reclaimed */ static inline struct page * alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma, unsigned long vaddr) { return __alloc_zeroed_user_highpage(__GFP_MOVABLE, vma, vaddr); } static inline void clear_highpage(struct page *page) { void *kaddr = kmap_atomic(page); clear_page(kaddr); kunmap_atomic(kaddr); } static inline void zero_user_segments(struct page *page, unsigned start1, unsigned end1, unsigned start2, unsigned end2) { void *kaddr = kmap_atomic(page); BUG_ON(end1 > PAGE_SIZE || end2 > PAGE_SIZE); if (end1 > start1) memset(kaddr + start1, 0, end1 - start1); if (end2 > start2) memset(kaddr + start2, 0, end2 - start2); kunmap_atomic(kaddr); flush_dcache_page(page); } static inline void zero_user_segment(struct page *page, unsigned start, unsigned end) { zero_user_segments(page, start, end, 0, 0); } static inline void zero_user(struct page *page, unsigned start, unsigned size) { zero_user_segments(page, start, start + size, 0, 0); } #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE static inline void copy_user_highpage(struct page *to, struct page *from, unsigned long vaddr, struct vm_area_struct *vma) { char *vfrom, *vto; vfrom = kmap_atomic(from); vto = kmap_atomic(to); copy_user_page(vto, vfrom, vaddr, to); kunmap_atomic(vto); kunmap_atomic(vfrom); } #endif #ifndef __HAVE_ARCH_COPY_HIGHPAGE static inline void copy_highpage(struct page *to, struct page *from) { char *vfrom, *vto; vfrom = kmap_atomic(from); vto = kmap_atomic(to); copy_page(vto, vfrom); kunmap_atomic(vto); kunmap_atomic(vfrom); } #endif #endif /* _LINUX_HIGHMEM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * RNG: Random Number Generator algorithms under the crypto API * * Copyright (c) 2008 Neil Horman <nhorman@tuxdriver.com> * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_RNG_H #define _CRYPTO_RNG_H #include <linux/crypto.h> struct crypto_rng; /** * struct rng_alg - random number generator definition * * @generate: The function defined by this variable obtains a * random number. The random number generator transform * must generate the random number out of the context * provided with this call, plus any additional data * if provided to the call. * @seed: Seed or reseed the random number generator. With the * invocation of this function call, the random number * generator shall become ready for generation. If the * random number generator requires a seed for setting * up a new state, the seed must be provided by the * consumer while invoking this function. The required * size of the seed is defined with @seedsize . * @set_ent: Set entropy that would otherwise be obtained from * entropy source. Internal use only. * @seedsize: The seed size required for a random number generator * initialization defined with this variable. Some * random number generators does not require a seed * as the seeding is implemented internally without * the need of support by the consumer. In this case, * the seed size is set to zero. * @base: Common crypto API algorithm data structure. */ struct rng_alg { int (*generate)(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int dlen); int (*seed)(struct crypto_rng *tfm, const u8 *seed, unsigned int slen); void (*set_ent)(struct crypto_rng *tfm, const u8 *data, unsigned int len); unsigned int seedsize; struct crypto_alg base; }; struct crypto_rng { struct crypto_tfm base; }; extern struct crypto_rng *crypto_default_rng; int crypto_get_default_rng(void); void crypto_put_default_rng(void); /** * DOC: Random number generator API * * The random number generator API is used with the ciphers of type * CRYPTO_ALG_TYPE_RNG (listed as type "rng" in /proc/crypto) */ /** * crypto_alloc_rng() -- allocate RNG handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * message digest cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a random number generator. The returned struct * crypto_rng is the cipher handle that is required for any subsequent * API invocation for that random number generator. * * For all random number generators, this call creates a new private copy of * the random number generator that does not share a state with other * instances. The only exception is the "krng" random number generator which * is a kernel crypto API use case for the get_random_bytes() function of the * /dev/random driver. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_rng *crypto_alloc_rng(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_rng_tfm(struct crypto_rng *tfm) { return &tfm->base; } /** * crypto_rng_alg - obtain name of RNG * @tfm: cipher handle * * Return the generic name (cra_name) of the initialized random number generator * * Return: generic name string */ static inline struct rng_alg *crypto_rng_alg(struct crypto_rng *tfm) { return container_of(crypto_rng_tfm(tfm)->__crt_alg, struct rng_alg, base); } /** * crypto_free_rng() - zeroize and free RNG handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_rng(struct crypto_rng *tfm) { crypto_destroy_tfm(tfm, crypto_rng_tfm(tfm)); } /** * crypto_rng_generate() - get random number * @tfm: cipher handle * @src: Input buffer holding additional data, may be NULL * @slen: Length of additional data * @dst: output buffer holding the random numbers * @dlen: length of the output buffer * * This function fills the caller-allocated buffer with random * numbers using the random number generator referenced by the * cipher handle. * * Return: 0 function was successful; < 0 if an error occurred */ static inline int crypto_rng_generate(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int dlen) { struct crypto_alg *alg = tfm->base.__crt_alg; int ret; crypto_stats_get(alg); ret = crypto_rng_alg(tfm)->generate(tfm, src, slen, dst, dlen); crypto_stats_rng_generate(alg, dlen, ret); return ret; } /** * crypto_rng_get_bytes() - get random number * @tfm: cipher handle * @rdata: output buffer holding the random numbers * @dlen: length of the output buffer * * This function fills the caller-allocated buffer with random numbers using the * random number generator referenced by the cipher handle. * * Return: 0 function was successful; < 0 if an error occurred */ static inline int crypto_rng_get_bytes(struct crypto_rng *tfm, u8 *rdata, unsigned int dlen) { return crypto_rng_generate(tfm, NULL, 0, rdata, dlen); } /** * crypto_rng_reset() - re-initialize the RNG * @tfm: cipher handle * @seed: seed input data * @slen: length of the seed input data * * The reset function completely re-initializes the random number generator * referenced by the cipher handle by clearing the current state. The new state * is initialized with the caller provided seed or automatically, depending * on the random number generator type (the ANSI X9.31 RNG requires * caller-provided seed, the SP800-90A DRBGs perform an automatic seeding). * The seed is provided as a parameter to this function call. The provided seed * should have the length of the seed size defined for the random number * generator as defined by crypto_rng_seedsize. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_rng_reset(struct crypto_rng *tfm, const u8 *seed, unsigned int slen); /** * crypto_rng_seedsize() - obtain seed size of RNG * @tfm: cipher handle * * The function returns the seed size for the random number generator * referenced by the cipher handle. This value may be zero if the random * number generator does not implement or require a reseeding. For example, * the SP800-90A DRBGs implement an automated reseeding after reaching a * pre-defined threshold. * * Return: seed size for the random number generator */ static inline int crypto_rng_seedsize(struct crypto_rng *tfm) { return crypto_rng_alg(tfm)->seedsize; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 /* * The VGA aribiter manages VGA space routing and VGA resource decode to * allow multiple VGA devices to be used in a system in a safe way. * * (C) Copyright 2005 Benjamin Herrenschmidt <benh@kernel.crashing.org> * (C) Copyright 2007 Paulo R. Zanoni <przanoni@gmail.com> * (C) Copyright 2007, 2009 Tiago Vignatti <vignatti@freedesktop.org> * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS * IN THE SOFTWARE. * */ #ifndef LINUX_VGA_H #define LINUX_VGA_H #include <video/vga.h> /* Legacy VGA regions */ #define VGA_RSRC_NONE 0x00 #define VGA_RSRC_LEGACY_IO 0x01 #define VGA_RSRC_LEGACY_MEM 0x02 #define VGA_RSRC_LEGACY_MASK (VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM) /* Non-legacy access */ #define VGA_RSRC_NORMAL_IO 0x04 #define VGA_RSRC_NORMAL_MEM 0x08 /* Passing that instead of a pci_dev to use the system "default" * device, that is the one used by vgacon. Archs will probably * have to provide their own vga_default_device(); */ #define VGA_DEFAULT_DEVICE (NULL) struct pci_dev; /* For use by clients */ /** * vga_set_legacy_decoding * * @pdev: pci device of the VGA card * @decodes: bit mask of what legacy regions the card decodes * * Indicates to the arbiter if the card decodes legacy VGA IOs, * legacy VGA Memory, both, or none. All cards default to both, * the card driver (fbdev for example) should tell the arbiter * if it has disabled legacy decoding, so the card can be left * out of the arbitration process (and can be safe to take * interrupts at any time. */ #if defined(CONFIG_VGA_ARB) extern void vga_set_legacy_decoding(struct pci_dev *pdev, unsigned int decodes); #else static inline void vga_set_legacy_decoding(struct pci_dev *pdev, unsigned int decodes) { }; #endif #if defined(CONFIG_VGA_ARB) extern int vga_get(struct pci_dev *pdev, unsigned int rsrc, int interruptible); #else static inline int vga_get(struct pci_dev *pdev, unsigned int rsrc, int interruptible) { return 0; } #endif /** * vga_get_interruptible * @pdev: pci device of the VGA card or NULL for the system default * @rsrc: bit mask of resources to acquire and lock * * Shortcut to vga_get with interruptible set to true. * * On success, release the VGA resource again with vga_put(). */ static inline int vga_get_interruptible(struct pci_dev *pdev, unsigned int rsrc) { return vga_get(pdev, rsrc, 1); } /** * vga_get_uninterruptible - shortcut to vga_get() * @pdev: pci device of the VGA card or NULL for the system default * @rsrc: bit mask of resources to acquire and lock * * Shortcut to vga_get with interruptible set to false. * * On success, release the VGA resource again with vga_put(). */ static inline int vga_get_uninterruptible(struct pci_dev *pdev, unsigned int rsrc) { return vga_get(pdev, rsrc, 0); } #if defined(CONFIG_VGA_ARB) extern void vga_put(struct pci_dev *pdev, unsigned int rsrc); #else #define vga_put(pdev, rsrc) #endif #ifdef CONFIG_VGA_ARB extern struct pci_dev *vga_default_device(void); extern void vga_set_default_device(struct pci_dev *pdev); extern int vga_remove_vgacon(struct pci_dev *pdev); #else static inline struct pci_dev *vga_default_device(void) { return NULL; }; static inline void vga_set_default_device(struct pci_dev *pdev) { }; static inline int vga_remove_vgacon(struct pci_dev *pdev) { return 0; }; #endif /* * Architectures should define this if they have several * independent PCI domains that can afford concurrent VGA * decoding */ #ifndef __ARCH_HAS_VGA_CONFLICT static inline int vga_conflicts(struct pci_dev *p1, struct pci_dev *p2) { return 1; } #endif #if defined(CONFIG_VGA_ARB) int vga_client_register(struct pci_dev *pdev, void *cookie, void (*irq_set_state)(void *cookie, bool state), unsigned int (*set_vga_decode)(void *cookie, bool state)); #else static inline int vga_client_register(struct pci_dev *pdev, void *cookie, void (*irq_set_state)(void *cookie, bool state), unsigned int (*set_vga_decode)(void *cookie, bool state)) { return 0; } #endif #endif /* LINUX_VGA_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_CPUFEATURE_H #define _ASM_X86_CPUFEATURE_H #include <asm/processor.h> #if defined(__KERNEL__) && !defined(__ASSEMBLY__) #include <asm/asm.h> #include <linux/bitops.h> enum cpuid_leafs { CPUID_1_EDX = 0, CPUID_8000_0001_EDX, CPUID_8086_0001_EDX, CPUID_LNX_1, CPUID_1_ECX, CPUID_C000_0001_EDX, CPUID_8000_0001_ECX, CPUID_LNX_2, CPUID_LNX_3, CPUID_7_0_EBX, CPUID_D_1_EAX, CPUID_LNX_4, CPUID_7_1_EAX, CPUID_8000_0008_EBX, CPUID_6_EAX, CPUID_8000_000A_EDX, CPUID_7_ECX, CPUID_8000_0007_EBX, CPUID_7_EDX, }; #ifdef CONFIG_X86_FEATURE_NAMES extern const char * const x86_cap_flags[NCAPINTS*32]; extern const char * const x86_power_flags[32]; #define X86_CAP_FMT "%s" #define x86_cap_flag(flag) x86_cap_flags[flag] #else #define X86_CAP_FMT "%d:%d" #define x86_cap_flag(flag) ((flag) >> 5), ((flag) & 31) #endif /* * In order to save room, we index into this array by doing * X86_BUG_<name> - NCAPINTS*32. */ extern const char * const x86_bug_flags[NBUGINTS*32]; #define test_cpu_cap(c, bit) \ test_bit(bit, (unsigned long *)((c)->x86_capability)) /* * There are 32 bits/features in each mask word. The high bits * (selected with (bit>>5) give us the word number and the low 5 * bits give us the bit/feature number inside the word. * (1UL<<((bit)&31) gives us a mask for the feature_bit so we can * see if it is set in the mask word. */ #define CHECK_BIT_IN_MASK_WORD(maskname, word, bit) \ (((bit)>>5)==(word) && (1UL<<((bit)&31) & maskname##word )) /* * {REQUIRED,DISABLED}_MASK_CHECK below may seem duplicated with the * following BUILD_BUG_ON_ZERO() check but when NCAPINTS gets changed, all * header macros which use NCAPINTS need to be changed. The duplicated macro * use causes the compiler to issue errors for all headers so that all usage * sites can be corrected. */ #define REQUIRED_MASK_BIT_SET(feature_bit) \ ( CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 0, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 1, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 2, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 3, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 4, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 5, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 6, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 7, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 8, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 9, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 10, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 11, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 12, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 13, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 14, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 15, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 16, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 17, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 18, feature_bit) || \ REQUIRED_MASK_CHECK || \ BUILD_BUG_ON_ZERO(NCAPINTS != 19)) #define DISABLED_MASK_BIT_SET(feature_bit) \ ( CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 0, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 1, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 2, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 3, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 4, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 5, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 6, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 7, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 8, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 9, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 10, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 11, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 12, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 13, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 14, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 15, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 16, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 17, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 18, feature_bit) || \ DISABLED_MASK_CHECK || \ BUILD_BUG_ON_ZERO(NCAPINTS != 19)) #define cpu_has(c, bit) \ (__builtin_constant_p(bit) && REQUIRED_MASK_BIT_SET(bit) ? 1 : \ test_cpu_cap(c, bit)) #define this_cpu_has(bit) \ (__builtin_constant_p(bit) && REQUIRED_MASK_BIT_SET(bit) ? 1 : \ x86_this_cpu_test_bit(bit, \ (unsigned long __percpu *)&cpu_info.x86_capability)) /* * This macro is for detection of features which need kernel * infrastructure to be used. It may *not* directly test the CPU * itself. Use the cpu_has() family if you want true runtime * testing of CPU features, like in hypervisor code where you are * supporting a possible guest feature where host support for it * is not relevant. */ #define cpu_feature_enabled(bit) \ (__builtin_constant_p(bit) && DISABLED_MASK_BIT_SET(bit) ? 0 : static_cpu_has(bit)) #define boot_cpu_has(bit) cpu_has(&boot_cpu_data, bit) #define set_cpu_cap(c, bit) set_bit(bit, (unsigned long *)((c)->x86_capability)) extern void setup_clear_cpu_cap(unsigned int bit); extern void clear_cpu_cap(struct cpuinfo_x86 *c, unsigned int bit); #define setup_force_cpu_cap(bit) do { \ set_cpu_cap(&boot_cpu_data, bit); \ set_bit(bit, (unsigned long *)cpu_caps_set); \ } while (0) #define setup_force_cpu_bug(bit) setup_force_cpu_cap(bit) #if defined(__clang__) && !defined(CONFIG_CC_HAS_ASM_GOTO) /* * Workaround for the sake of BPF compilation which utilizes kernel * headers, but clang does not support ASM GOTO and fails the build. */ #ifndef __BPF_TRACING__ #warning "Compiler lacks ASM_GOTO support. Add -D __BPF_TRACING__ to your compiler arguments" #endif #define static_cpu_has(bit) boot_cpu_has(bit) #else /* * Static testing of CPU features. Used the same as boot_cpu_has(). It * statically patches the target code for additional performance. Use * static_cpu_has() only in fast paths, where every cycle counts. Which * means that the boot_cpu_has() variant is already fast enough for the * majority of cases and you should stick to using it as it is generally * only two instructions: a RIP-relative MOV and a TEST. */ static __always_inline bool _static_cpu_has(u16 bit) { asm_volatile_goto("1: jmp 6f\n" "2:\n" ".skip -(((5f-4f) - (2b-1b)) > 0) * " "((5f-4f) - (2b-1b)),0x90\n" "3:\n" ".section .altinstructions,\"a\"\n" " .long 1b - .\n" /* src offset */ " .long 4f - .\n" /* repl offset */ " .word %P[always]\n" /* always replace */ " .byte 3b - 1b\n" /* src len */ " .byte 5f - 4f\n" /* repl len */ " .byte 3b - 2b\n" /* pad len */ ".previous\n" ".section .altinstr_replacement,\"ax\"\n" "4: jmp %l[t_no]\n" "5:\n" ".previous\n" ".section .altinstructions,\"a\"\n" " .long 1b - .\n" /* src offset */ " .long 0\n" /* no replacement */ " .word %P[feature]\n" /* feature bit */ " .byte 3b - 1b\n" /* src len */ " .byte 0\n" /* repl len */ " .byte 0\n" /* pad len */ ".previous\n" ".section .altinstr_aux,\"ax\"\n" "6:\n" " testb %[bitnum],%[cap_byte]\n" " jnz %l[t_yes]\n" " jmp %l[t_no]\n" ".previous\n" : : [feature] "i" (bit), [always] "i" (X86_FEATURE_ALWAYS), [bitnum] "i" (1 << (bit & 7)), [cap_byte] "m" (((const char *)boot_cpu_data.x86_capability)[bit >> 3]) : : t_yes, t_no); t_yes: return true; t_no: return false; } #define static_cpu_has(bit) \ ( \ __builtin_constant_p(boot_cpu_has(bit)) ? \ boot_cpu_has(bit) : \ _static_cpu_has(bit) \ ) #endif #define cpu_has_bug(c, bit) cpu_has(c, (bit)) #define set_cpu_bug(c, bit) set_cpu_cap(c, (bit)) #define clear_cpu_bug(c, bit) clear_cpu_cap(c, (bit)) #define static_cpu_has_bug(bit) static_cpu_has((bit)) #define boot_cpu_has_bug(bit) cpu_has_bug(&boot_cpu_data, (bit)) #define boot_cpu_set_bug(bit) set_cpu_cap(&boot_cpu_data, (bit)) #define MAX_CPU_FEATURES (NCAPINTS * 32) #define cpu_have_feature boot_cpu_has #define CPU_FEATURE_TYPEFMT "x86,ven%04Xfam%04Xmod%04X" #define CPU_FEATURE_TYPEVAL boot_cpu_data.x86_vendor, boot_cpu_data.x86, \ boot_cpu_data.x86_model #endif /* defined(__KERNEL__) && !defined(__ASSEMBLY__) */ #endif /* _ASM_X86_CPUFEATURE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* audit.h -- Auditing support * * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. * All Rights Reserved. * * Written by Rickard E. (Rik) Faith <faith@redhat.com> */ #ifndef _LINUX_AUDIT_H_ #define _LINUX_AUDIT_H_ #include <linux/sched.h> #include <linux/ptrace.h> #include <uapi/linux/audit.h> #include <uapi/linux/netfilter/nf_tables.h> #define AUDIT_INO_UNSET ((unsigned long)-1) #define AUDIT_DEV_UNSET ((dev_t)-1) struct audit_sig_info { uid_t uid; pid_t pid; char ctx[]; }; struct audit_buffer; struct audit_context; struct inode; struct netlink_skb_parms; struct path; struct linux_binprm; struct mq_attr; struct mqstat; struct audit_watch; struct audit_tree; struct sk_buff; struct audit_krule { u32 pflags; u32 flags; u32 listnr; u32 action; u32 mask[AUDIT_BITMASK_SIZE]; u32 buflen; /* for data alloc on list rules */ u32 field_count; char *filterkey; /* ties events to rules */ struct audit_field *fields; struct audit_field *arch_f; /* quick access to arch field */ struct audit_field *inode_f; /* quick access to an inode field */ struct audit_watch *watch; /* associated watch */ struct audit_tree *tree; /* associated watched tree */ struct audit_fsnotify_mark *exe; struct list_head rlist; /* entry in audit_{watch,tree}.rules list */ struct list_head list; /* for AUDIT_LIST* purposes only */ u64 prio; }; /* Flag to indicate legacy AUDIT_LOGINUID unset usage */ #define AUDIT_LOGINUID_LEGACY 0x1 struct audit_field { u32 type; union { u32 val; kuid_t uid; kgid_t gid; struct { char *lsm_str; void *lsm_rule; }; }; u32 op; }; enum audit_ntp_type { AUDIT_NTP_OFFSET, AUDIT_NTP_FREQ, AUDIT_NTP_STATUS, AUDIT_NTP_TAI, AUDIT_NTP_TICK, AUDIT_NTP_ADJUST, AUDIT_NTP_NVALS /* count */ }; #ifdef CONFIG_AUDITSYSCALL struct audit_ntp_val { long long oldval, newval; }; struct audit_ntp_data { struct audit_ntp_val vals[AUDIT_NTP_NVALS]; }; #else struct audit_ntp_data {}; #endif enum audit_nfcfgop { AUDIT_XT_OP_REGISTER, AUDIT_XT_OP_REPLACE, AUDIT_XT_OP_UNREGISTER, AUDIT_NFT_OP_TABLE_REGISTER, AUDIT_NFT_OP_TABLE_UNREGISTER, AUDIT_NFT_OP_CHAIN_REGISTER, AUDIT_NFT_OP_CHAIN_UNREGISTER, AUDIT_NFT_OP_RULE_REGISTER, AUDIT_NFT_OP_RULE_UNREGISTER, AUDIT_NFT_OP_SET_REGISTER, AUDIT_NFT_OP_SET_UNREGISTER, AUDIT_NFT_OP_SETELEM_REGISTER, AUDIT_NFT_OP_SETELEM_UNREGISTER, AUDIT_NFT_OP_GEN_REGISTER, AUDIT_NFT_OP_OBJ_REGISTER, AUDIT_NFT_OP_OBJ_UNREGISTER, AUDIT_NFT_OP_OBJ_RESET, AUDIT_NFT_OP_FLOWTABLE_REGISTER, AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, AUDIT_NFT_OP_INVALID, }; extern int is_audit_feature_set(int which); extern int __init audit_register_class(int class, unsigned *list); extern int audit_classify_syscall(int abi, unsigned syscall); extern int audit_classify_arch(int arch); /* only for compat system calls */ extern unsigned compat_write_class[]; extern unsigned compat_read_class[]; extern unsigned compat_dir_class[]; extern unsigned compat_chattr_class[]; extern unsigned compat_signal_class[]; extern int audit_classify_compat_syscall(int abi, unsigned syscall); /* audit_names->type values */ #define AUDIT_TYPE_UNKNOWN 0 /* we don't know yet */ #define AUDIT_TYPE_NORMAL 1 /* a "normal" audit record */ #define AUDIT_TYPE_PARENT 2 /* a parent audit record */ #define AUDIT_TYPE_CHILD_DELETE 3 /* a child being deleted */ #define AUDIT_TYPE_CHILD_CREATE 4 /* a child being created */ /* maximized args number that audit_socketcall can process */ #define AUDITSC_ARGS 6 /* bit values for ->signal->audit_tty */ #define AUDIT_TTY_ENABLE BIT(0) #define AUDIT_TTY_LOG_PASSWD BIT(1) struct filename; #define AUDIT_OFF 0 #define AUDIT_ON 1 #define AUDIT_LOCKED 2 #ifdef CONFIG_AUDIT /* These are defined in audit.c */ /* Public API */ extern __printf(4, 5) void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...); extern struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type); extern __printf(2, 3) void audit_log_format(struct audit_buffer *ab, const char *fmt, ...); extern void audit_log_end(struct audit_buffer *ab); extern bool audit_string_contains_control(const char *string, size_t len); extern void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len); extern void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n); extern void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n); extern void audit_log_untrustedstring(struct audit_buffer *ab, const char *string); extern void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path); extern void audit_log_key(struct audit_buffer *ab, char *key); extern void audit_log_path_denied(int type, const char *operation); extern void audit_log_lost(const char *message); extern int audit_log_task_context(struct audit_buffer *ab); extern void audit_log_task_info(struct audit_buffer *ab); extern int audit_update_lsm_rules(void); /* Private API (for audit.c only) */ extern int audit_rule_change(int type, int seq, void *data, size_t datasz); extern int audit_list_rules_send(struct sk_buff *request_skb, int seq); extern int audit_set_loginuid(kuid_t loginuid); static inline kuid_t audit_get_loginuid(struct task_struct *tsk) { return tsk->loginuid; } static inline unsigned int audit_get_sessionid(struct task_struct *tsk) { return tsk->sessionid; } extern u32 audit_enabled; extern int audit_signal_info(int sig, struct task_struct *t); #else /* CONFIG_AUDIT */ static inline __printf(4, 5) void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...) { } static inline struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type) { return NULL; } static inline __printf(2, 3) void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) { } static inline void audit_log_end(struct audit_buffer *ab) { } static inline void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len) { } static inline void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n) { } static inline void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n) { } static inline void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) { } static inline void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path) { } static inline void audit_log_key(struct audit_buffer *ab, char *key) { } static inline void audit_log_path_denied(int type, const char *operation) { } static inline int audit_log_task_context(struct audit_buffer *ab) { return 0; } static inline void audit_log_task_info(struct audit_buffer *ab) { } static inline kuid_t audit_get_loginuid(struct task_struct *tsk) { return INVALID_UID; } static inline unsigned int audit_get_sessionid(struct task_struct *tsk) { return AUDIT_SID_UNSET; } #define audit_enabled AUDIT_OFF static inline int audit_signal_info(int sig, struct task_struct *t) { return 0; } #endif /* CONFIG_AUDIT */ #ifdef CONFIG_AUDIT_COMPAT_GENERIC #define audit_is_compat(arch) (!((arch) & __AUDIT_ARCH_64BIT)) #else #define audit_is_compat(arch) false #endif #define AUDIT_INODE_PARENT 1 /* dentry represents the parent */ #define AUDIT_INODE_HIDDEN 2 /* audit record should be hidden */ #define AUDIT_INODE_NOEVAL 4 /* audit record incomplete */ #ifdef CONFIG_AUDITSYSCALL #include <asm/syscall.h> /* for syscall_get_arch() */ /* These are defined in auditsc.c */ /* Public API */ extern int audit_alloc(struct task_struct *task); extern void __audit_free(struct task_struct *task); extern void __audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3); extern void __audit_syscall_exit(int ret_success, long ret_value); extern struct filename *__audit_reusename(const __user char *uptr); extern void __audit_getname(struct filename *name); extern void __audit_getcwd(void); extern void __audit_inode(struct filename *name, const struct dentry *dentry, unsigned int flags); extern void __audit_file(const struct file *); extern void __audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type); extern void audit_seccomp(unsigned long syscall, long signr, int code); extern void audit_seccomp_actions_logged(const char *names, const char *old_names, int res); extern void __audit_ptrace(struct task_struct *t); static inline void audit_set_context(struct task_struct *task, struct audit_context *ctx) { task->audit_context = ctx; } static inline struct audit_context *audit_context(void) { return current->audit_context; } static inline bool audit_dummy_context(void) { void *p = audit_context(); return !p || *(int *)p; } static inline void audit_free(struct task_struct *task) { if (unlikely(task->audit_context)) __audit_free(task); } static inline void audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3) { if (unlikely(audit_context())) __audit_syscall_entry(major, a0, a1, a2, a3); } static inline void audit_syscall_exit(void *pt_regs) { if (unlikely(audit_context())) { int success = is_syscall_success(pt_regs); long return_code = regs_return_value(pt_regs); __audit_syscall_exit(success, return_code); } } static inline struct filename *audit_reusename(const __user char *name) { if (unlikely(!audit_dummy_context())) return __audit_reusename(name); return NULL; } static inline void audit_getname(struct filename *name) { if (unlikely(!audit_dummy_context())) __audit_getname(name); } static inline void audit_getcwd(void) { if (unlikely(audit_context())) __audit_getcwd(); } static inline void audit_inode(struct filename *name, const struct dentry *dentry, unsigned int aflags) { if (unlikely(!audit_dummy_context())) __audit_inode(name, dentry, aflags); } static inline void audit_file(struct file *file) { if (unlikely(!audit_dummy_context())) __audit_file(file); } static inline void audit_inode_parent_hidden(struct filename *name, const struct dentry *dentry) { if (unlikely(!audit_dummy_context())) __audit_inode(name, dentry, AUDIT_INODE_PARENT | AUDIT_INODE_HIDDEN); } static inline void audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { if (unlikely(!audit_dummy_context())) __audit_inode_child(parent, dentry, type); } void audit_core_dumps(long signr); static inline void audit_ptrace(struct task_struct *t) { if (unlikely(!audit_dummy_context())) __audit_ptrace(t); } /* Private API (for audit.c only) */ extern void __audit_ipc_obj(struct kern_ipc_perm *ipcp); extern void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode); extern void __audit_bprm(struct linux_binprm *bprm); extern int __audit_socketcall(int nargs, unsigned long *args); extern int __audit_sockaddr(int len, void *addr); extern void __audit_fd_pair(int fd1, int fd2); extern void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr); extern void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout); extern void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification); extern void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat); extern int __audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old); extern void __audit_log_capset(const struct cred *new, const struct cred *old); extern void __audit_mmap_fd(int fd, int flags); extern void __audit_log_kern_module(char *name); extern void __audit_fanotify(unsigned int response); extern void __audit_tk_injoffset(struct timespec64 offset); extern void __audit_ntp_log(const struct audit_ntp_data *ad); extern void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp); static inline void audit_ipc_obj(struct kern_ipc_perm *ipcp) { if (unlikely(!audit_dummy_context())) __audit_ipc_obj(ipcp); } static inline void audit_fd_pair(int fd1, int fd2) { if (unlikely(!audit_dummy_context())) __audit_fd_pair(fd1, fd2); } static inline void audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { if (unlikely(!audit_dummy_context())) __audit_ipc_set_perm(qbytes, uid, gid, mode); } static inline void audit_bprm(struct linux_binprm *bprm) { if (unlikely(!audit_dummy_context())) __audit_bprm(bprm); } static inline int audit_socketcall(int nargs, unsigned long *args) { if (unlikely(!audit_dummy_context())) return __audit_socketcall(nargs, args); return 0; } static inline int audit_socketcall_compat(int nargs, u32 *args) { unsigned long a[AUDITSC_ARGS]; int i; if (audit_dummy_context()) return 0; for (i = 0; i < nargs; i++) a[i] = (unsigned long)args[i]; return __audit_socketcall(nargs, a); } static inline int audit_sockaddr(int len, void *addr) { if (unlikely(!audit_dummy_context())) return __audit_sockaddr(len, addr); return 0; } static inline void audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { if (unlikely(!audit_dummy_context())) __audit_mq_open(oflag, mode, attr); } static inline void audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { if (unlikely(!audit_dummy_context())) __audit_mq_sendrecv(mqdes, msg_len, msg_prio, abs_timeout); } static inline void audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { if (unlikely(!audit_dummy_context())) __audit_mq_notify(mqdes, notification); } static inline void audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { if (unlikely(!audit_dummy_context())) __audit_mq_getsetattr(mqdes, mqstat); } static inline int audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { if (unlikely(!audit_dummy_context())) return __audit_log_bprm_fcaps(bprm, new, old); return 0; } static inline void audit_log_capset(const struct cred *new, const struct cred *old) { if (unlikely(!audit_dummy_context())) __audit_log_capset(new, old); } static inline void audit_mmap_fd(int fd, int flags) { if (unlikely(!audit_dummy_context())) __audit_mmap_fd(fd, flags); } static inline void audit_log_kern_module(char *name) { if (!audit_dummy_context()) __audit_log_kern_module(name); } static inline void audit_fanotify(unsigned int response) { if (!audit_dummy_context()) __audit_fanotify(response); } static inline void audit_tk_injoffset(struct timespec64 offset) { /* ignore no-op events */ if (offset.tv_sec == 0 && offset.tv_nsec == 0) return; if (!audit_dummy_context()) __audit_tk_injoffset(offset); } static inline void audit_ntp_init(struct audit_ntp_data *ad) { memset(ad, 0, sizeof(*ad)); } static inline void audit_ntp_set_old(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { ad->vals[type].oldval = val; } static inline void audit_ntp_set_new(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { ad->vals[type].newval = val; } static inline void audit_ntp_log(const struct audit_ntp_data *ad) { if (!audit_dummy_context()) __audit_ntp_log(ad); } static inline void audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { if (audit_enabled) __audit_log_nfcfg(name, af, nentries, op, gfp); } extern int audit_n_rules; extern int audit_signals; #else /* CONFIG_AUDITSYSCALL */ static inline int audit_alloc(struct task_struct *task) { return 0; } static inline void audit_free(struct task_struct *task) { } static inline void audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3) { } static inline void audit_syscall_exit(void *pt_regs) { } static inline bool audit_dummy_context(void) { return true; } static inline void audit_set_context(struct task_struct *task, struct audit_context *ctx) { } static inline struct audit_context *audit_context(void) { return NULL; } static inline struct filename *audit_reusename(const __user char *name) { return NULL; } static inline void audit_getname(struct filename *name) { } static inline void audit_getcwd(void) { } static inline void audit_inode(struct filename *name, const struct dentry *dentry, unsigned int aflags) { } static inline void audit_file(struct file *file) { } static inline void audit_inode_parent_hidden(struct filename *name, const struct dentry *dentry) { } static inline void audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { } static inline void audit_core_dumps(long signr) { } static inline void audit_seccomp(unsigned long syscall, long signr, int code) { } static inline void audit_seccomp_actions_logged(const char *names, const char *old_names, int res) { } static inline void audit_ipc_obj(struct kern_ipc_perm *ipcp) { } static inline void audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { } static inline void audit_bprm(struct linux_binprm *bprm) { } static inline int audit_socketcall(int nargs, unsigned long *args) { return 0; } static inline int audit_socketcall_compat(int nargs, u32 *args) { return 0; } static inline void audit_fd_pair(int fd1, int fd2) { } static inline int audit_sockaddr(int len, void *addr) { return 0; } static inline void audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { } static inline void audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { } static inline void audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { } static inline void audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { } static inline int audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { return 0; } static inline void audit_log_capset(const struct cred *new, const struct cred *old) { } static inline void audit_mmap_fd(int fd, int flags) { } static inline void audit_log_kern_module(char *name) { } static inline void audit_fanotify(unsigned int response) { } static inline void audit_tk_injoffset(struct timespec64 offset) { } static inline void audit_ntp_init(struct audit_ntp_data *ad) { } static inline void audit_ntp_set_old(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { } static inline void audit_ntp_set_new(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { } static inline void audit_ntp_log(const struct audit_ntp_data *ad) { } static inline void audit_ptrace(struct task_struct *t) { } static inline void audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { } #define audit_n_rules 0 #define audit_signals 0 #endif /* CONFIG_AUDITSYSCALL */ static inline bool audit_loginuid_set(struct task_struct *tsk) { return uid_valid(audit_get_loginuid(tsk)); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NET Generic infrastructure for Network protocols. * * Authors: Arnaldo Carvalho de Melo <acme@conectiva.com.br> */ #ifndef _TIMEWAIT_SOCK_H #define _TIMEWAIT_SOCK_H #include <linux/slab.h> #include <linux/bug.h> #include <net/sock.h> struct timewait_sock_ops { struct kmem_cache *twsk_slab; char *twsk_slab_name; unsigned int twsk_obj_size; int (*twsk_unique)(struct sock *sk, struct sock *sktw, void *twp); void (*twsk_destructor)(struct sock *sk); }; static inline int twsk_unique(struct sock *sk, struct sock *sktw, void *twp) { if (sk->sk_prot->twsk_prot->twsk_unique != NULL) return sk->sk_prot->twsk_prot->twsk_unique(sk, sktw, twp); return 0; } static inline void twsk_destructor(struct sock *sk) { if (sk->sk_prot->twsk_prot->twsk_destructor != NULL) sk->sk_prot->twsk_prot->twsk_destructor(sk); } #endif /* _TIMEWAIT_SOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MIN_HEAP_H #define _LINUX_MIN_HEAP_H #include <linux/bug.h> #include <linux/string.h> #include <linux/types.h> /** * struct min_heap - Data structure to hold a min-heap. * @data: Start of array holding the heap elements. * @nr: Number of elements currently in the heap. * @size: Maximum number of elements that can be held in current storage. */ struct min_heap { void *data; int nr; int size; }; /** * struct min_heap_callbacks - Data/functions to customise the min_heap. * @elem_size: The nr of each element in bytes. * @less: Partial order function for this heap. * @swp: Swap elements function. */ struct min_heap_callbacks { int elem_size; bool (*less)(const void *lhs, const void *rhs); void (*swp)(void *lhs, void *rhs); }; /* Sift the element at pos down the heap. */ static __always_inline void min_heapify(struct min_heap *heap, int pos, const struct min_heap_callbacks *func) { void *left, *right, *parent, *smallest; void *data = heap->data; for (;;) { if (pos * 2 + 1 >= heap->nr) break; left = data + ((pos * 2 + 1) * func->elem_size); parent = data + (pos * func->elem_size); smallest = parent; if (func->less(left, smallest)) smallest = left; if (pos * 2 + 2 < heap->nr) { right = data + ((pos * 2 + 2) * func->elem_size); if (func->less(right, smallest)) smallest = right; } if (smallest == parent) break; func->swp(smallest, parent); if (smallest == left) pos = (pos * 2) + 1; else pos = (pos * 2) + 2; } } /* Floyd's approach to heapification that is O(nr). */ static __always_inline void min_heapify_all(struct min_heap *heap, const struct min_heap_callbacks *func) { int i; for (i = heap->nr / 2; i >= 0; i--) min_heapify(heap, i, func); } /* Remove minimum element from the heap, O(log2(nr)). */ static __always_inline void min_heap_pop(struct min_heap *heap, const struct min_heap_callbacks *func) { void *data = heap->data; if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) return; /* Place last element at the root (position 0) and then sift down. */ heap->nr--; memcpy(data, data + (heap->nr * func->elem_size), func->elem_size); min_heapify(heap, 0, func); } /* * Remove the minimum element and then push the given element. The * implementation performs 1 sift (O(log2(nr))) and is therefore more * efficient than a pop followed by a push that does 2. */ static __always_inline void min_heap_pop_push(struct min_heap *heap, const void *element, const struct min_heap_callbacks *func) { memcpy(heap->data, element, func->elem_size); min_heapify(heap, 0, func); } /* Push an element on to the heap, O(log2(nr)). */ static __always_inline void min_heap_push(struct min_heap *heap, const void *element, const struct min_heap_callbacks *func) { void *data = heap->data; void *child, *parent; int pos; if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap")) return; /* Place at the end of data. */ pos = heap->nr; memcpy(data + (pos * func->elem_size), element, func->elem_size); heap->nr++; /* Sift child at pos up. */ for (; pos > 0; pos = (pos - 1) / 2) { child = data + (pos * func->elem_size); parent = data + ((pos - 1) / 2) * func->elem_size; if (func->less(parent, child)) break; func->swp(parent, child); } } #endif /* _LINUX_MIN_HEAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM sched #if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SCHED_H #include <linux/sched/numa_balancing.h> #include <linux/tracepoint.h> #include <linux/binfmts.h> /* * Tracepoint for calling kthread_stop, performed to end a kthread: */ TRACE_EVENT(sched_kthread_stop, TP_PROTO(struct task_struct *t), TP_ARGS(t), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) ), TP_fast_assign( memcpy(__entry->comm, t->comm, TASK_COMM_LEN); __entry->pid = t->pid; ), TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid) ); /* * Tracepoint for the return value of the kthread stopping: */ TRACE_EVENT(sched_kthread_stop_ret, TP_PROTO(int ret), TP_ARGS(ret), TP_STRUCT__entry( __field( int, ret ) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret=%d", __entry->ret) ); /* * Tracepoint for waking up a task: */ DECLARE_EVENT_CLASS(sched_wakeup_template, TP_PROTO(struct task_struct *p), TP_ARGS(__perf_task(p)), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field( int, success ) __field( int, target_cpu ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ __entry->success = 1; /* rudiment, kill when possible */ __entry->target_cpu = task_cpu(p); ), TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d", __entry->comm, __entry->pid, __entry->prio, __entry->target_cpu) ); /* * Tracepoint called when waking a task; this tracepoint is guaranteed to be * called from the waking context. */ DEFINE_EVENT(sched_wakeup_template, sched_waking, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint called when the task is actually woken; p->state == TASK_RUNNNG. * It is not always called from the waking context. */ DEFINE_EVENT(sched_wakeup_template, sched_wakeup, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for waking up a new task: */ DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new, TP_PROTO(struct task_struct *p), TP_ARGS(p)); #ifdef CREATE_TRACE_POINTS static inline long __trace_sched_switch_state(bool preempt, struct task_struct *p) { unsigned int state; #ifdef CONFIG_SCHED_DEBUG BUG_ON(p != current); #endif /* CONFIG_SCHED_DEBUG */ /* * Preemption ignores task state, therefore preempted tasks are always * RUNNING (we will not have dequeued if state != RUNNING). */ if (preempt) return TASK_REPORT_MAX; /* * task_state_index() uses fls() and returns a value from 0-8 range. * Decrement it by 1 (except TASK_RUNNING state i.e 0) before using * it for left shift operation to get the correct task->state * mapping. */ state = task_state_index(p); return state ? (1 << (state - 1)) : state; } #endif /* CREATE_TRACE_POINTS */ /* * Tracepoint for task switches, performed by the scheduler: */ TRACE_EVENT(sched_switch, TP_PROTO(bool preempt, struct task_struct *prev, struct task_struct *next), TP_ARGS(preempt, prev, next), TP_STRUCT__entry( __array( char, prev_comm, TASK_COMM_LEN ) __field( pid_t, prev_pid ) __field( int, prev_prio ) __field( long, prev_state ) __array( char, next_comm, TASK_COMM_LEN ) __field( pid_t, next_pid ) __field( int, next_prio ) ), TP_fast_assign( memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN); __entry->prev_pid = prev->pid; __entry->prev_prio = prev->prio; __entry->prev_state = __trace_sched_switch_state(preempt, prev); memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN); __entry->next_pid = next->pid; __entry->next_prio = next->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d", __entry->prev_comm, __entry->prev_pid, __entry->prev_prio, (__entry->prev_state & (TASK_REPORT_MAX - 1)) ? __print_flags(__entry->prev_state & (TASK_REPORT_MAX - 1), "|", { TASK_INTERRUPTIBLE, "S" }, { TASK_UNINTERRUPTIBLE, "D" }, { __TASK_STOPPED, "T" }, { __TASK_TRACED, "t" }, { EXIT_DEAD, "X" }, { EXIT_ZOMBIE, "Z" }, { TASK_PARKED, "P" }, { TASK_DEAD, "I" }) : "R", __entry->prev_state & TASK_REPORT_MAX ? "+" : "", __entry->next_comm, __entry->next_pid, __entry->next_prio) ); /* * Tracepoint for a task being migrated: */ TRACE_EVENT(sched_migrate_task, TP_PROTO(struct task_struct *p, int dest_cpu), TP_ARGS(p, dest_cpu), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field( int, orig_cpu ) __field( int, dest_cpu ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ __entry->orig_cpu = task_cpu(p); __entry->dest_cpu = dest_cpu; ), TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d", __entry->comm, __entry->pid, __entry->prio, __entry->orig_cpu, __entry->dest_cpu) ); DECLARE_EVENT_CLASS(sched_process_template, TP_PROTO(struct task_struct *p), TP_ARGS(p), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("comm=%s pid=%d prio=%d", __entry->comm, __entry->pid, __entry->prio) ); /* * Tracepoint for freeing a task: */ DEFINE_EVENT(sched_process_template, sched_process_free, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for a task exiting: */ DEFINE_EVENT(sched_process_template, sched_process_exit, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for waiting on task to unschedule: */ DEFINE_EVENT(sched_process_template, sched_wait_task, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for a waiting task: */ TRACE_EVENT(sched_process_wait, TP_PROTO(struct pid *pid), TP_ARGS(pid), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) ), TP_fast_assign( memcpy(__entry->comm, current->comm, TASK_COMM_LEN); __entry->pid = pid_nr(pid); __entry->prio = current->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("comm=%s pid=%d prio=%d", __entry->comm, __entry->pid, __entry->prio) ); /* * Tracepoint for do_fork: */ TRACE_EVENT(sched_process_fork, TP_PROTO(struct task_struct *parent, struct task_struct *child), TP_ARGS(parent, child), TP_STRUCT__entry( __array( char, parent_comm, TASK_COMM_LEN ) __field( pid_t, parent_pid ) __array( char, child_comm, TASK_COMM_LEN ) __field( pid_t, child_pid ) ), TP_fast_assign( memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN); __entry->parent_pid = parent->pid; memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN); __entry->child_pid = child->pid; ), TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d", __entry->parent_comm, __entry->parent_pid, __entry->child_comm, __entry->child_pid) ); /* * Tracepoint for exec: */ TRACE_EVENT(sched_process_exec, TP_PROTO(struct task_struct *p, pid_t old_pid, struct linux_binprm *bprm), TP_ARGS(p, old_pid, bprm), TP_STRUCT__entry( __string( filename, bprm->filename ) __field( pid_t, pid ) __field( pid_t, old_pid ) ), TP_fast_assign( __assign_str(filename, bprm->filename); __entry->pid = p->pid; __entry->old_pid = old_pid; ), TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename), __entry->pid, __entry->old_pid) ); #ifdef CONFIG_SCHEDSTATS #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS #else #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT_NOP #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS_NOP #endif /* * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE * adding sched_stat support to SCHED_FIFO/RR would be welcome. */ DECLARE_EVENT_CLASS_SCHEDSTAT(sched_stat_template, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(__perf_task(tsk), __perf_count(delay)), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( u64, delay ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->delay = delay; ), TP_printk("comm=%s pid=%d delay=%Lu [ns]", __entry->comm, __entry->pid, (unsigned long long)__entry->delay) ); /* * Tracepoint for accounting wait time (time the task is runnable * but not actually running due to scheduler contention). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_wait, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting sleep time (time the task is not runnable, * including iowait, see below). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_sleep, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting iowait time (time the task is not runnable * due to waiting on IO to complete). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_iowait, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting blocked time (time the task is in uninterruptible). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_blocked, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting runtime (time the task is executing * on a CPU). */ DECLARE_EVENT_CLASS(sched_stat_runtime, TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime), TP_ARGS(tsk, __perf_count(runtime), vruntime), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( u64, runtime ) __field( u64, vruntime ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->runtime = runtime; __entry->vruntime = vruntime; ), TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]", __entry->comm, __entry->pid, (unsigned long long)__entry->runtime, (unsigned long long)__entry->vruntime) ); DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime, TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime), TP_ARGS(tsk, runtime, vruntime)); /* * Tracepoint for showing priority inheritance modifying a tasks * priority. */ TRACE_EVENT(sched_pi_setprio, TP_PROTO(struct task_struct *tsk, struct task_struct *pi_task), TP_ARGS(tsk, pi_task), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, oldprio ) __field( int, newprio ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->oldprio = tsk->prio; __entry->newprio = pi_task ? min(tsk->normal_prio, pi_task->prio) : tsk->normal_prio; /* XXX SCHED_DEADLINE bits missing */ ), TP_printk("comm=%s pid=%d oldprio=%d newprio=%d", __entry->comm, __entry->pid, __entry->oldprio, __entry->newprio) ); #ifdef CONFIG_DETECT_HUNG_TASK TRACE_EVENT(sched_process_hang, TP_PROTO(struct task_struct *tsk), TP_ARGS(tsk), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; ), TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid) ); #endif /* CONFIG_DETECT_HUNG_TASK */ /* * Tracks migration of tasks from one runqueue to another. Can be used to * detect if automatic NUMA balancing is bouncing between nodes. */ TRACE_EVENT(sched_move_numa, TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu), TP_ARGS(tsk, src_cpu, dst_cpu), TP_STRUCT__entry( __field( pid_t, pid ) __field( pid_t, tgid ) __field( pid_t, ngid ) __field( int, src_cpu ) __field( int, src_nid ) __field( int, dst_cpu ) __field( int, dst_nid ) ), TP_fast_assign( __entry->pid = task_pid_nr(tsk); __entry->tgid = task_tgid_nr(tsk); __entry->ngid = task_numa_group_id(tsk); __entry->src_cpu = src_cpu; __entry->src_nid = cpu_to_node(src_cpu); __entry->dst_cpu = dst_cpu; __entry->dst_nid = cpu_to_node(dst_cpu); ), TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d", __entry->pid, __entry->tgid, __entry->ngid, __entry->src_cpu, __entry->src_nid, __entry->dst_cpu, __entry->dst_nid) ); DECLARE_EVENT_CLASS(sched_numa_pair_template, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu), TP_STRUCT__entry( __field( pid_t, src_pid ) __field( pid_t, src_tgid ) __field( pid_t, src_ngid ) __field( int, src_cpu ) __field( int, src_nid ) __field( pid_t, dst_pid ) __field( pid_t, dst_tgid ) __field( pid_t, dst_ngid ) __field( int, dst_cpu ) __field( int, dst_nid ) ), TP_fast_assign( __entry->src_pid = task_pid_nr(src_tsk); __entry->src_tgid = task_tgid_nr(src_tsk); __entry->src_ngid = task_numa_group_id(src_tsk); __entry->src_cpu = src_cpu; __entry->src_nid = cpu_to_node(src_cpu); __entry->dst_pid = dst_tsk ? task_pid_nr(dst_tsk) : 0; __entry->dst_tgid = dst_tsk ? task_tgid_nr(dst_tsk) : 0; __entry->dst_ngid = dst_tsk ? task_numa_group_id(dst_tsk) : 0; __entry->dst_cpu = dst_cpu; __entry->dst_nid = dst_cpu >= 0 ? cpu_to_node(dst_cpu) : -1; ), TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d", __entry->src_pid, __entry->src_tgid, __entry->src_ngid, __entry->src_cpu, __entry->src_nid, __entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid, __entry->dst_cpu, __entry->dst_nid) ); DEFINE_EVENT(sched_numa_pair_template, sched_stick_numa, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu) ); DEFINE_EVENT(sched_numa_pair_template, sched_swap_numa, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu) ); /* * Tracepoint for waking a polling cpu without an IPI. */ TRACE_EVENT(sched_wake_idle_without_ipi, TP_PROTO(int cpu), TP_ARGS(cpu), TP_STRUCT__entry( __field( int, cpu ) ), TP_fast_assign( __entry->cpu = cpu; ), TP_printk("cpu=%d", __entry->cpu) ); /* * Following tracepoints are not exported in tracefs and provide hooking * mechanisms only for testing and debugging purposes. * * Postfixed with _tp to make them easily identifiable in the code. */ DECLARE_TRACE(pelt_cfs_tp, TP_PROTO(struct cfs_rq *cfs_rq), TP_ARGS(cfs_rq)); DECLARE_TRACE(pelt_rt_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_dl_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_thermal_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_irq_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_se_tp, TP_PROTO(struct sched_entity *se), TP_ARGS(se)); DECLARE_TRACE(sched_cpu_capacity_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(sched_overutilized_tp, TP_PROTO(struct root_domain *rd, bool overutilized), TP_ARGS(rd, overutilized)); DECLARE_TRACE(sched_util_est_cfs_tp, TP_PROTO(struct cfs_rq *cfs_rq), TP_ARGS(cfs_rq)); DECLARE_TRACE(sched_util_est_se_tp, TP_PROTO(struct sched_entity *se), TP_ARGS(se)); DECLARE_TRACE(sched_update_nr_running_tp, TP_PROTO(struct rq *rq, int change), TP_ARGS(rq, change)); #endif /* _TRACE_SCHED_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VIRTIO_NET_H #define _LINUX_VIRTIO_NET_H #include <linux/if_vlan.h> #include <uapi/linux/tcp.h> #include <uapi/linux/udp.h> #include <uapi/linux/virtio_net.h> static inline bool virtio_net_hdr_match_proto(__be16 protocol, __u8 gso_type) { switch (gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: return protocol == cpu_to_be16(ETH_P_IP); case VIRTIO_NET_HDR_GSO_TCPV6: return protocol == cpu_to_be16(ETH_P_IPV6); case VIRTIO_NET_HDR_GSO_UDP: return protocol == cpu_to_be16(ETH_P_IP) || protocol == cpu_to_be16(ETH_P_IPV6); default: return false; } } static inline int virtio_net_hdr_set_proto(struct sk_buff *skb, const struct virtio_net_hdr *hdr) { if (skb->protocol) return 0; switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: case VIRTIO_NET_HDR_GSO_UDP: skb->protocol = cpu_to_be16(ETH_P_IP); break; case VIRTIO_NET_HDR_GSO_TCPV6: skb->protocol = cpu_to_be16(ETH_P_IPV6); break; default: return -EINVAL; } return 0; } static inline int virtio_net_hdr_to_skb(struct sk_buff *skb, const struct virtio_net_hdr *hdr, bool little_endian) { unsigned int gso_type = 0; unsigned int thlen = 0; unsigned int p_off = 0; unsigned int ip_proto; if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) { switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: gso_type = SKB_GSO_TCPV4; ip_proto = IPPROTO_TCP; thlen = sizeof(struct tcphdr); break; case VIRTIO_NET_HDR_GSO_TCPV6: gso_type = SKB_GSO_TCPV6; ip_proto = IPPROTO_TCP; thlen = sizeof(struct tcphdr); break; case VIRTIO_NET_HDR_GSO_UDP: gso_type = SKB_GSO_UDP; ip_proto = IPPROTO_UDP; thlen = sizeof(struct udphdr); break; default: return -EINVAL; } if (hdr->gso_type & VIRTIO_NET_HDR_GSO_ECN) gso_type |= SKB_GSO_TCP_ECN; if (hdr->gso_size == 0) return -EINVAL; } skb_reset_mac_header(skb); if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { u32 start = __virtio16_to_cpu(little_endian, hdr->csum_start); u32 off = __virtio16_to_cpu(little_endian, hdr->csum_offset); u32 needed = start + max_t(u32, thlen, off + sizeof(__sum16)); if (!pskb_may_pull(skb, needed)) return -EINVAL; if (!skb_partial_csum_set(skb, start, off)) return -EINVAL; p_off = skb_transport_offset(skb) + thlen; if (!pskb_may_pull(skb, p_off)) return -EINVAL; } else { /* gso packets without NEEDS_CSUM do not set transport_offset. * probe and drop if does not match one of the above types. */ if (gso_type && skb->network_header) { struct flow_keys_basic keys; if (!skb->protocol) { __be16 protocol = dev_parse_header_protocol(skb); if (!protocol) virtio_net_hdr_set_proto(skb, hdr); else if (!virtio_net_hdr_match_proto(protocol, hdr->gso_type)) return -EINVAL; else skb->protocol = protocol; } retry: if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, NULL, 0, 0, 0, 0)) { /* UFO does not specify ipv4 or 6: try both */ if (gso_type & SKB_GSO_UDP && skb->protocol == htons(ETH_P_IP)) { skb->protocol = htons(ETH_P_IPV6); goto retry; } return -EINVAL; } p_off = keys.control.thoff + thlen; if (!pskb_may_pull(skb, p_off) || keys.basic.ip_proto != ip_proto) return -EINVAL; skb_set_transport_header(skb, keys.control.thoff); } else if (gso_type) { p_off = thlen; if (!pskb_may_pull(skb, p_off)) return -EINVAL; } } if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) { u16 gso_size = __virtio16_to_cpu(little_endian, hdr->gso_size); unsigned int nh_off = p_off; struct skb_shared_info *shinfo = skb_shinfo(skb); /* UFO may not include transport header in gso_size. */ if (gso_type & SKB_GSO_UDP) nh_off -= thlen; /* Too small packets are not really GSO ones. */ if (skb->len - nh_off > gso_size) { shinfo->gso_size = gso_size; shinfo->gso_type = gso_type; /* Header must be checked, and gso_segs computed. */ shinfo->gso_type |= SKB_GSO_DODGY; shinfo->gso_segs = 0; } } return 0; } static inline int virtio_net_hdr_from_skb(const struct sk_buff *skb, struct virtio_net_hdr *hdr, bool little_endian, bool has_data_valid, int vlan_hlen) { memset(hdr, 0, sizeof(*hdr)); /* no info leak */ if (skb_is_gso(skb)) { struct skb_shared_info *sinfo = skb_shinfo(skb); /* This is a hint as to how much should be linear. */ hdr->hdr_len = __cpu_to_virtio16(little_endian, skb_headlen(skb)); hdr->gso_size = __cpu_to_virtio16(little_endian, sinfo->gso_size); if (sinfo->gso_type & SKB_GSO_TCPV4) hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4; else if (sinfo->gso_type & SKB_GSO_TCPV6) hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6; else return -EINVAL; if (sinfo->gso_type & SKB_GSO_TCP_ECN) hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN; } else hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE; if (skb->ip_summed == CHECKSUM_PARTIAL) { hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; hdr->csum_start = __cpu_to_virtio16(little_endian, skb_checksum_start_offset(skb) + vlan_hlen); hdr->csum_offset = __cpu_to_virtio16(little_endian, skb->csum_offset); } else if (has_data_valid && skb->ip_summed == CHECKSUM_UNNECESSARY) { hdr->flags = VIRTIO_NET_HDR_F_DATA_VALID; } /* else everything is zero */ return 0; } #endif /* _LINUX_VIRTIO_NET_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 /* SPDX-License-Identifier: GPL-2.0 */ /* * memory buffer pool support */ #ifndef _LINUX_MEMPOOL_H #define _LINUX_MEMPOOL_H #include <linux/wait.h> #include <linux/compiler.h> struct kmem_cache; typedef void * (mempool_alloc_t)(gfp_t gfp_mask, void *pool_data); typedef void (mempool_free_t)(void *element, void *pool_data); typedef struct mempool_s { spinlock_t lock; int min_nr; /* nr of elements at *elements */ int curr_nr; /* Current nr of elements at *elements */ void **elements; void *pool_data; mempool_alloc_t *alloc; mempool_free_t *free; wait_queue_head_t wait; } mempool_t; static inline bool mempool_initialized(mempool_t *pool) { return pool->elements != NULL; } void mempool_exit(mempool_t *pool); int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data, gfp_t gfp_mask, int node_id); int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data); extern mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data); extern mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, void *pool_data, gfp_t gfp_mask, int nid); extern int mempool_resize(mempool_t *pool, int new_min_nr); extern void mempool_destroy(mempool_t *pool); extern void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask) __malloc; extern void mempool_free(void *element, mempool_t *pool); /* * A mempool_alloc_t and mempool_free_t that get the memory from * a slab cache that is passed in through pool_data. * Note: the slab cache may not have a ctor function. */ void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data); void mempool_free_slab(void *element, void *pool_data); static inline int mempool_init_slab_pool(mempool_t *pool, int min_nr, struct kmem_cache *kc) { return mempool_init(pool, min_nr, mempool_alloc_slab, mempool_free_slab, (void *) kc); } static inline mempool_t * mempool_create_slab_pool(int min_nr, struct kmem_cache *kc) { return mempool_create(min_nr, mempool_alloc_slab, mempool_free_slab, (void *) kc); } /* * a mempool_alloc_t and a mempool_free_t to kmalloc and kfree the * amount of memory specified by pool_data */ void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data); void mempool_kfree(void *element, void *pool_data); static inline int mempool_init_kmalloc_pool(mempool_t *pool, int min_nr, size_t size) { return mempool_init(pool, min_nr, mempool_kmalloc, mempool_kfree, (void *) size); } static inline mempool_t *mempool_create_kmalloc_pool(int min_nr, size_t size) { return mempool_create(min_nr, mempool_kmalloc, mempool_kfree, (void *) size); } /* * A mempool_alloc_t and mempool_free_t for a simple page allocator that * allocates pages of the order specified by pool_data */ void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data); void mempool_free_pages(void *element, void *pool_data); static inline int mempool_init_page_pool(mempool_t *pool, int min_nr, int order) { return mempool_init(pool, min_nr, mempool_alloc_pages, mempool_free_pages, (void *)(long)order); } static inline mempool_t *mempool_create_page_pool(int min_nr, int order) { return mempool_create(min_nr, mempool_alloc_pages, mempool_free_pages, (void *)(long)order); } #endif /* _LINUX_MEMPOOL_H */
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _X_TABLES_H #define _X_TABLES_H #include <linux/netdevice.h> #include <linux/static_key.h> #include <linux/netfilter.h> #include <uapi/linux/netfilter/x_tables.h> /* Test a struct->invflags and a boolean for inequality */ #define NF_INVF(ptr, flag, boolean) \ ((boolean) ^ !!((ptr)->invflags & (flag))) /** * struct xt_action_param - parameters for matches/targets * * @match: the match extension * @target: the target extension * @matchinfo: per-match data * @targetinfo: per-target data * @state: pointer to hook state this packet came from * @fragoff: packet is a fragment, this is the data offset * @thoff: position of transport header relative to skb->data * * Fields written to by extensions: * * @hotdrop: drop packet if we had inspection problems */ struct xt_action_param { union { const struct xt_match *match; const struct xt_target *target; }; union { const void *matchinfo, *targinfo; }; const struct nf_hook_state *state; int fragoff; unsigned int thoff; bool hotdrop; }; static inline struct net *xt_net(const struct xt_action_param *par) { return par->state->net; } static inline struct net_device *xt_in(const struct xt_action_param *par) { return par->state->in; } static inline const char *xt_inname(const struct xt_action_param *par) { return par->state->in->name; } static inline struct net_device *xt_out(const struct xt_action_param *par) { return par->state->out; } static inline const char *xt_outname(const struct xt_action_param *par) { return par->state->out->name; } static inline unsigned int xt_hooknum(const struct xt_action_param *par) { return par->state->hook; } static inline u_int8_t xt_family(const struct xt_action_param *par) { return par->state->pf; } /** * struct xt_mtchk_param - parameters for match extensions' * checkentry functions * * @net: network namespace through which the check was invoked * @table: table the rule is tried to be inserted into * @entryinfo: the family-specific rule data * (struct ipt_ip, ip6t_ip, arpt_arp or (note) ebt_entry) * @match: struct xt_match through which this function was invoked * @matchinfo: per-match data * @hook_mask: via which hooks the new rule is reachable * Other fields as above. */ struct xt_mtchk_param { struct net *net; const char *table; const void *entryinfo; const struct xt_match *match; void *matchinfo; unsigned int hook_mask; u_int8_t family; bool nft_compat; }; /** * struct xt_mdtor_param - match destructor parameters * Fields as above. */ struct xt_mtdtor_param { struct net *net; const struct xt_match *match; void *matchinfo; u_int8_t family; }; /** * struct xt_tgchk_param - parameters for target extensions' * checkentry functions * * @entryinfo: the family-specific rule data * (struct ipt_entry, ip6t_entry, arpt_entry, ebt_entry) * * Other fields see above. */ struct xt_tgchk_param { struct net *net; const char *table; const void *entryinfo; const struct xt_target *target; void *targinfo; unsigned int hook_mask; u_int8_t family; bool nft_compat; }; /* Target destructor parameters */ struct xt_tgdtor_param { struct net *net; const struct xt_target *target; void *targinfo; u_int8_t family; }; struct xt_match { struct list_head list; const char name[XT_EXTENSION_MAXNAMELEN]; u_int8_t revision; /* Return true or false: return FALSE and set *hotdrop = 1 to force immediate packet drop. */ /* Arguments changed since 2.6.9, as this must now handle non-linear skb, using skb_header_pointer and skb_ip_make_writable. */ bool (*match)(const struct sk_buff *skb, struct xt_action_param *); /* Called when user tries to insert an entry of this type. */ int (*checkentry)(const struct xt_mtchk_param *); /* Called when entry of this type deleted. */ void (*destroy)(const struct xt_mtdtor_param *); #ifdef CONFIG_COMPAT /* Called when userspace align differs from kernel space one */ void (*compat_from_user)(void *dst, const void *src); int (*compat_to_user)(void __user *dst, const void *src); #endif /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; const char *table; unsigned int matchsize; unsigned int usersize; #ifdef CONFIG_COMPAT unsigned int compatsize; #endif unsigned int hooks; unsigned short proto; unsigned short family; }; /* Registration hooks for targets. */ struct xt_target { struct list_head list; const char name[XT_EXTENSION_MAXNAMELEN]; u_int8_t revision; /* Returns verdict. Argument order changed since 2.6.9, as this must now handle non-linear skbs, using skb_copy_bits and skb_ip_make_writable. */ unsigned int (*target)(struct sk_buff *skb, const struct xt_action_param *); /* Called when user tries to insert an entry of this type: hook_mask is a bitmask of hooks from which it can be called. */ /* Should return 0 on success or an error code otherwise (-Exxxx). */ int (*checkentry)(const struct xt_tgchk_param *); /* Called when entry of this type deleted. */ void (*destroy)(const struct xt_tgdtor_param *); #ifdef CONFIG_COMPAT /* Called when userspace align differs from kernel space one */ void (*compat_from_user)(void *dst, const void *src); int (*compat_to_user)(void __user *dst, const void *src); #endif /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; const char *table; unsigned int targetsize; unsigned int usersize; #ifdef CONFIG_COMPAT unsigned int compatsize; #endif unsigned int hooks; unsigned short proto; unsigned short family; }; /* Furniture shopping... */ struct xt_table { struct list_head list; /* What hooks you will enter on */ unsigned int valid_hooks; /* Man behind the curtain... */ struct xt_table_info *private; /* Set this to THIS_MODULE if you are a module, otherwise NULL */ struct module *me; u_int8_t af; /* address/protocol family */ int priority; /* hook order */ /* called when table is needed in the given netns */ int (*table_init)(struct net *net); /* A unique name... */ const char name[XT_TABLE_MAXNAMELEN]; }; #include <linux/netfilter_ipv4.h> /* The table itself */ struct xt_table_info { /* Size per table */ unsigned int size; /* Number of entries: FIXME. --RR */ unsigned int number; /* Initial number of entries. Needed for module usage count */ unsigned int initial_entries; /* Entry points and underflows */ unsigned int hook_entry[NF_INET_NUMHOOKS]; unsigned int underflow[NF_INET_NUMHOOKS]; /* * Number of user chains. Since tables cannot have loops, at most * @stacksize jumps (number of user chains) can possibly be made. */ unsigned int stacksize; void ***jumpstack; unsigned char entries[] __aligned(8); }; int xt_register_target(struct xt_target *target); void xt_unregister_target(struct xt_target *target); int xt_register_targets(struct xt_target *target, unsigned int n); void xt_unregister_targets(struct xt_target *target, unsigned int n); int xt_register_match(struct xt_match *target); void xt_unregister_match(struct xt_match *target); int xt_register_matches(struct xt_match *match, unsigned int n); void xt_unregister_matches(struct xt_match *match, unsigned int n); int xt_check_entry_offsets(const void *base, const char *elems, unsigned int target_offset, unsigned int next_offset); int xt_check_table_hooks(const struct xt_table_info *info, unsigned int valid_hooks); unsigned int *xt_alloc_entry_offsets(unsigned int size); bool xt_find_jump_offset(const unsigned int *offsets, unsigned int target, unsigned int size); int xt_check_proc_name(const char *name, unsigned int size); int xt_check_match(struct xt_mtchk_param *, unsigned int size, u16 proto, bool inv_proto); int xt_check_target(struct xt_tgchk_param *, unsigned int size, u16 proto, bool inv_proto); int xt_match_to_user(const struct xt_entry_match *m, struct xt_entry_match __user *u); int xt_target_to_user(const struct xt_entry_target *t, struct xt_entry_target __user *u); int xt_data_to_user(void __user *dst, const void *src, int usersize, int size, int aligned_size); void *xt_copy_counters(sockptr_t arg, unsigned int len, struct xt_counters_info *info); struct xt_counters *xt_counters_alloc(unsigned int counters); struct xt_table *xt_register_table(struct net *net, const struct xt_table *table, struct xt_table_info *bootstrap, struct xt_table_info *newinfo); void *xt_unregister_table(struct xt_table *table); struct xt_table_info *xt_replace_table(struct xt_table *table, unsigned int num_counters, struct xt_table_info *newinfo, int *error); struct xt_match *xt_find_match(u8 af, const char *name, u8 revision); struct xt_match *xt_request_find_match(u8 af, const char *name, u8 revision); struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision); int xt_find_revision(u8 af, const char *name, u8 revision, int target, int *err); struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af, const char *name); struct xt_table *xt_request_find_table_lock(struct net *net, u_int8_t af, const char *name); void xt_table_unlock(struct xt_table *t); int xt_proto_init(struct net *net, u_int8_t af); void xt_proto_fini(struct net *net, u_int8_t af); struct xt_table_info *xt_alloc_table_info(unsigned int size); void xt_free_table_info(struct xt_table_info *info); /** * xt_recseq - recursive seqcount for netfilter use * * Packet processing changes the seqcount only if no recursion happened * get_counters() can use read_seqcount_begin()/read_seqcount_retry(), * because we use the normal seqcount convention : * Low order bit set to 1 if a writer is active. */ DECLARE_PER_CPU(seqcount_t, xt_recseq); /* xt_tee_enabled - true if x_tables needs to handle reentrancy * * Enabled if current ip(6)tables ruleset has at least one -j TEE rule. */ extern struct static_key xt_tee_enabled; /** * xt_write_recseq_begin - start of a write section * * Begin packet processing : all readers must wait the end * 1) Must be called with preemption disabled * 2) softirqs must be disabled too (or we should use this_cpu_add()) * Returns : * 1 if no recursion on this cpu * 0 if recursion detected */ static inline unsigned int xt_write_recseq_begin(void) { unsigned int addend; /* * Low order bit of sequence is set if we already * called xt_write_recseq_begin(). */ addend = (__this_cpu_read(xt_recseq.sequence) + 1) & 1; /* * This is kind of a write_seqcount_begin(), but addend is 0 or 1 * We dont check addend value to avoid a test and conditional jump, * since addend is most likely 1 */ __this_cpu_add(xt_recseq.sequence, addend); smp_mb(); return addend; } /** * xt_write_recseq_end - end of a write section * @addend: return value from previous xt_write_recseq_begin() * * End packet processing : all readers can proceed * 1) Must be called with preemption disabled * 2) softirqs must be disabled too (or we should use this_cpu_add()) */ static inline void xt_write_recseq_end(unsigned int addend) { /* this is kind of a write_seqcount_end(), but addend is 0 or 1 */ smp_wmb(); __this_cpu_add(xt_recseq.sequence, addend); } /* * This helper is performance critical and must be inlined */ static inline unsigned long ifname_compare_aligned(const char *_a, const char *_b, const char *_mask) { const unsigned long *a = (const unsigned long *)_a; const unsigned long *b = (const unsigned long *)_b; const unsigned long *mask = (const unsigned long *)_mask; unsigned long ret; ret = (a[0] ^ b[0]) & mask[0]; if (IFNAMSIZ > sizeof(unsigned long)) ret |= (a[1] ^ b[1]) & mask[1]; if (IFNAMSIZ > 2 * sizeof(unsigned long)) ret |= (a[2] ^ b[2]) & mask[2]; if (IFNAMSIZ > 3 * sizeof(unsigned long)) ret |= (a[3] ^ b[3]) & mask[3]; BUILD_BUG_ON(IFNAMSIZ > 4 * sizeof(unsigned long)); return ret; } struct xt_percpu_counter_alloc_state { unsigned int off; const char __percpu *mem; }; bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state, struct xt_counters *counter); void xt_percpu_counter_free(struct xt_counters *cnt); static inline struct xt_counters * xt_get_this_cpu_counter(struct xt_counters *cnt) { if (nr_cpu_ids > 1) return this_cpu_ptr((void __percpu *) (unsigned long) cnt->pcnt); return cnt; } static inline struct xt_counters * xt_get_per_cpu_counter(struct xt_counters *cnt, unsigned int cpu) { if (nr_cpu_ids > 1) return per_cpu_ptr((void __percpu *) (unsigned long) cnt->pcnt, cpu); return cnt; } struct nf_hook_ops *xt_hook_ops_alloc(const struct xt_table *, nf_hookfn *); #ifdef CONFIG_COMPAT #include <net/compat.h> struct compat_xt_entry_match { union { struct { u_int16_t match_size; char name[XT_FUNCTION_MAXNAMELEN - 1]; u_int8_t revision; } user; struct { u_int16_t match_size; compat_uptr_t match; } kernel; u_int16_t match_size; } u; unsigned char data[]; }; struct compat_xt_entry_target { union { struct { u_int16_t target_size; char name[XT_FUNCTION_MAXNAMELEN - 1]; u_int8_t revision; } user; struct { u_int16_t target_size; compat_uptr_t target; } kernel; u_int16_t target_size; } u; unsigned char data[]; }; /* FIXME: this works only on 32 bit tasks * need to change whole approach in order to calculate align as function of * current task alignment */ struct compat_xt_counters { compat_u64 pcnt, bcnt; /* Packet and byte counters */ }; struct compat_xt_counters_info { char name[XT_TABLE_MAXNAMELEN]; compat_uint_t num_counters; struct compat_xt_counters counters[]; }; struct _compat_xt_align { __u8 u8; __u16 u16; __u32 u32; compat_u64 u64; }; #define COMPAT_XT_ALIGN(s) __ALIGN_KERNEL((s), __alignof__(struct _compat_xt_align)) void xt_compat_lock(u_int8_t af); void xt_compat_unlock(u_int8_t af); int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta); void xt_compat_flush_offsets(u_int8_t af); int xt_compat_init_offsets(u8 af, unsigned int number); int xt_compat_calc_jump(u_int8_t af, unsigned int offset); int xt_compat_match_offset(const struct xt_match *match); void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr, unsigned int *size); int xt_compat_match_to_user(const struct xt_entry_match *m, void __user **dstptr, unsigned int *size); int xt_compat_target_offset(const struct xt_target *target); void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr, unsigned int *size); int xt_compat_target_to_user(const struct xt_entry_target *t, void __user **dstptr, unsigned int *size); int xt_compat_check_entry_offsets(const void *base, const char *elems, unsigned int target_offset, unsigned int next_offset); #endif /* CONFIG_COMPAT */ #endif /* _X_TABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _XFRM_HASH_H #define _XFRM_HASH_H #include <linux/xfrm.h> #include <linux/socket.h> #include <linux/jhash.h> static inline unsigned int __xfrm4_addr_hash(const xfrm_address_t *addr) { return ntohl(addr->a4); } static inline unsigned int __xfrm6_addr_hash(const xfrm_address_t *addr) { return jhash2((__force u32 *)addr->a6, 4, 0); } static inline unsigned int __xfrm4_daddr_saddr_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr) { u32 sum = (__force u32)daddr->a4 + (__force u32)saddr->a4; return ntohl((__force __be32)sum); } static inline unsigned int __xfrm6_daddr_saddr_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr) { return __xfrm6_addr_hash(daddr) ^ __xfrm6_addr_hash(saddr); } static inline u32 __bits2mask32(__u8 bits) { u32 mask32 = 0xffffffff; if (bits == 0) mask32 = 0; else if (bits < 32) mask32 <<= (32 - bits); return mask32; } static inline unsigned int __xfrm4_dpref_spref_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, __u8 dbits, __u8 sbits) { return jhash_2words(ntohl(daddr->a4) & __bits2mask32(dbits), ntohl(saddr->a4) & __bits2mask32(sbits), 0); } static inline unsigned int __xfrm6_pref_hash(const xfrm_address_t *addr, __u8 prefixlen) { unsigned int pdw; unsigned int pbi; u32 initval = 0; pdw = prefixlen >> 5; /* num of whole u32 in prefix */ pbi = prefixlen & 0x1f; /* num of bits in incomplete u32 in prefix */ if (pbi) { __be32 mask; mask = htonl((0xffffffff) << (32 - pbi)); initval = (__force u32)(addr->a6[pdw] & mask); } return jhash2((__force u32 *)addr->a6, pdw, initval); } static inline unsigned int __xfrm6_dpref_spref_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, __u8 dbits, __u8 sbits) { return __xfrm6_pref_hash(daddr, dbits) ^ __xfrm6_pref_hash(saddr, sbits); } static inline unsigned int __xfrm_dst_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, u32 reqid, unsigned short family, unsigned int hmask) { unsigned int h = family ^ reqid; switch (family) { case AF_INET: h ^= __xfrm4_daddr_saddr_hash(daddr, saddr); break; case AF_INET6: h ^= __xfrm6_daddr_saddr_hash(daddr, saddr); break; } return (h ^ (h >> 16)) & hmask; } static inline unsigned int __xfrm_src_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, unsigned short family, unsigned int hmask) { unsigned int h = family; switch (family) { case AF_INET: h ^= __xfrm4_daddr_saddr_hash(daddr, saddr); break; case AF_INET6: h ^= __xfrm6_daddr_saddr_hash(daddr, saddr); break; } return (h ^ (h >> 16)) & hmask; } static inline unsigned int __xfrm_spi_hash(const xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family, unsigned int hmask) { unsigned int h = (__force u32)spi ^ proto; switch (family) { case AF_INET: h ^= __xfrm4_addr_hash(daddr); break; case AF_INET6: h ^= __xfrm6_addr_hash(daddr); break; } return (h ^ (h >> 10) ^ (h >> 20)) & hmask; } static inline unsigned int __idx_hash(u32 index, unsigned int hmask) { return (index ^ (index >> 8)) & hmask; } static inline unsigned int __sel_hash(const struct xfrm_selector *sel, unsigned short family, unsigned int hmask, u8 dbits, u8 sbits) { const xfrm_address_t *daddr = &sel->daddr; const xfrm_address_t *saddr = &sel->saddr; unsigned int h = 0; switch (family) { case AF_INET: if (sel->prefixlen_d < dbits || sel->prefixlen_s < sbits) return hmask + 1; h = __xfrm4_dpref_spref_hash(daddr, saddr, dbits, sbits); break; case AF_INET6: if (sel->prefixlen_d < dbits || sel->prefixlen_s < sbits) return hmask + 1; h = __xfrm6_dpref_spref_hash(daddr, saddr, dbits, sbits); break; } h ^= (h >> 16); return h & hmask; } static inline unsigned int __addr_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, unsigned short family, unsigned int hmask, u8 dbits, u8 sbits) { unsigned int h = 0; switch (family) { case AF_INET: h = __xfrm4_dpref_spref_hash(daddr, saddr, dbits, sbits); break; case AF_INET6: h = __xfrm6_dpref_spref_hash(daddr, saddr, dbits, sbits); break; } h ^= (h >> 16); return h & hmask; } struct hlist_head *xfrm_hash_alloc(unsigned int sz); void xfrm_hash_free(struct hlist_head *n, unsigned int sz); #endif /* _XFRM_HASH_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 // SPDX-License-Identifier: GPL-2.0-only #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/export.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/if_vlan.h> #include <net/dsa.h> #include <net/dst_metadata.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/gre.h> #include <net/pptp.h> #include <net/tipc.h> #include <linux/igmp.h> #include <linux/icmp.h> #include <linux/sctp.h> #include <linux/dccp.h> #include <linux/if_tunnel.h> #include <linux/if_pppox.h> #include <linux/ppp_defs.h> #include <linux/stddef.h> #include <linux/if_ether.h> #include <linux/mpls.h> #include <linux/tcp.h> #include <net/flow_dissector.h> #include <scsi/fc/fc_fcoe.h> #include <uapi/linux/batadv_packet.h> #include <linux/bpf.h> #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <net/netfilter/nf_conntrack_core.h> #include <net/netfilter/nf_conntrack_labels.h> #endif #include <linux/bpf-netns.h> static void dissector_set_key(struct flow_dissector *flow_dissector, enum flow_dissector_key_id key_id) { flow_dissector->used_keys |= (1 << key_id); } void skb_flow_dissector_init(struct flow_dissector *flow_dissector, const struct flow_dissector_key *key, unsigned int key_count) { unsigned int i; memset(flow_dissector, 0, sizeof(*flow_dissector)); for (i = 0; i < key_count; i++, key++) { /* User should make sure that every key target offset is withing * boundaries of unsigned short. */ BUG_ON(key->offset > USHRT_MAX); BUG_ON(dissector_uses_key(flow_dissector, key->key_id)); dissector_set_key(flow_dissector, key->key_id); flow_dissector->offset[key->key_id] = key->offset; } /* Ensure that the dissector always includes control and basic key. * That way we are able to avoid handling lack of these in fast path. */ BUG_ON(!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CONTROL)); BUG_ON(!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_BASIC)); } EXPORT_SYMBOL(skb_flow_dissector_init); #ifdef CONFIG_BPF_SYSCALL int flow_dissector_bpf_prog_attach_check(struct net *net, struct bpf_prog *prog) { enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR; if (net == &init_net) { /* BPF flow dissector in the root namespace overrides * any per-net-namespace one. When attaching to root, * make sure we don't have any BPF program attached * to the non-root namespaces. */ struct net *ns; for_each_net(ns) { if (ns == &init_net) continue; if (rcu_access_pointer(ns->bpf.run_array[type])) return -EEXIST; } } else { /* Make sure root flow dissector is not attached * when attaching to the non-root namespace. */ if (rcu_access_pointer(init_net.bpf.run_array[type])) return -EEXIST; } return 0; } #endif /* CONFIG_BPF_SYSCALL */ /** * __skb_flow_get_ports - extract the upper layer ports and return them * @skb: sk_buff to extract the ports from * @thoff: transport header offset * @ip_proto: protocol for which to get port offset * @data: raw buffer pointer to the packet, if NULL use skb->data * @hlen: packet header length, if @data is NULL use skb_headlen(skb) * * The function will try to retrieve the ports at offset thoff + poff where poff * is the protocol port offset returned from proto_ports_offset */ __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, void *data, int hlen) { int poff = proto_ports_offset(ip_proto); if (!data) { data = skb->data; hlen = skb_headlen(skb); } if (poff >= 0) { __be32 *ports, _ports; ports = __skb_header_pointer(skb, thoff + poff, sizeof(_ports), data, hlen, &_ports); if (ports) return *ports; } return 0; } EXPORT_SYMBOL(__skb_flow_get_ports); static bool icmp_has_id(u8 type) { switch (type) { case ICMP_ECHO: case ICMP_ECHOREPLY: case ICMP_TIMESTAMP: case ICMP_TIMESTAMPREPLY: case ICMPV6_ECHO_REQUEST: case ICMPV6_ECHO_REPLY: return true; } return false; } /** * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields * @skb: sk_buff to extract from * @key_icmp: struct flow_dissector_key_icmp to fill * @data: raw buffer pointer to the packet * @thoff: offset to extract at * @hlen: packet header length */ void skb_flow_get_icmp_tci(const struct sk_buff *skb, struct flow_dissector_key_icmp *key_icmp, void *data, int thoff, int hlen) { struct icmphdr *ih, _ih; ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih); if (!ih) return; key_icmp->type = ih->type; key_icmp->code = ih->code; /* As we use 0 to signal that the Id field is not present, * avoid confusion with packets without such field */ if (icmp_has_id(ih->type)) key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1; else key_icmp->id = 0; } EXPORT_SYMBOL(skb_flow_get_icmp_tci); /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet * using skb_flow_get_icmp_tci(). */ static void __skb_flow_dissect_icmp(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, void *data, int thoff, int hlen) { struct flow_dissector_key_icmp *key_icmp; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP)) return; key_icmp = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ICMP, target_container); skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen); } void skb_flow_dissect_meta(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container) { struct flow_dissector_key_meta *meta; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META)) return; meta = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_META, target_container); meta->ingress_ifindex = skb->skb_iif; } EXPORT_SYMBOL(skb_flow_dissect_meta); static void skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type, struct flow_dissector *flow_dissector, void *target_container) { struct flow_dissector_key_control *ctrl; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL)) return; ctrl = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL, target_container); ctrl->addr_type = type; } void skb_flow_dissect_ct(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, u16 *ctinfo_map, size_t mapsize) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) struct flow_dissector_key_ct *key; enum ip_conntrack_info ctinfo; struct nf_conn_labels *cl; struct nf_conn *ct; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT)) return; ct = nf_ct_get(skb, &ctinfo); if (!ct) return; key = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_CT, target_container); if (ctinfo < mapsize) key->ct_state = ctinfo_map[ctinfo]; #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) key->ct_zone = ct->zone.id; #endif #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) key->ct_mark = ct->mark; #endif cl = nf_ct_labels_find(ct); if (cl) memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels)); #endif /* CONFIG_NF_CONNTRACK */ } EXPORT_SYMBOL(skb_flow_dissect_ct); void skb_flow_dissect_tunnel_info(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container) { struct ip_tunnel_info *info; struct ip_tunnel_key *key; /* A quick check to see if there might be something to do. */ if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID) && !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) && !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) && !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL) && !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS) && !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP) && !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) return; info = skb_tunnel_info(skb); if (!info) return; key = &info->key; switch (ip_tunnel_info_af(info)) { case AF_INET: skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS, flow_dissector, target_container); if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) { struct flow_dissector_key_ipv4_addrs *ipv4; ipv4 = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, target_container); ipv4->src = key->u.ipv4.src; ipv4->dst = key->u.ipv4.dst; } break; case AF_INET6: skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS, flow_dissector, target_container); if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) { struct flow_dissector_key_ipv6_addrs *ipv6; ipv6 = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, target_container); ipv6->src = key->u.ipv6.src; ipv6->dst = key->u.ipv6.dst; } break; } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { struct flow_dissector_key_keyid *keyid; keyid = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID, target_container); keyid->keyid = tunnel_id_to_key32(key->tun_id); } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) { struct flow_dissector_key_ports *tp; tp = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS, target_container); tp->src = key->tp_src; tp->dst = key->tp_dst; } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) { struct flow_dissector_key_ip *ip; ip = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP, target_container); ip->tos = key->tos; ip->ttl = key->ttl; } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) { struct flow_dissector_key_enc_opts *enc_opt; enc_opt = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS, target_container); if (info->options_len) { enc_opt->len = info->options_len; ip_tunnel_info_opts_get(enc_opt->data, info); enc_opt->dst_opt_type = info->key.tun_flags & TUNNEL_OPTIONS_PRESENT; } } } EXPORT_SYMBOL(skb_flow_dissect_tunnel_info); void skb_flow_dissect_hash(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container) { struct flow_dissector_key_hash *key; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH)) return; key = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_HASH, target_container); key->hash = skb_get_hash_raw(skb); } EXPORT_SYMBOL(skb_flow_dissect_hash); static enum flow_dissect_ret __skb_flow_dissect_mpls(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, void *data, int nhoff, int hlen, int lse_index, bool *entropy_label) { struct mpls_label *hdr, _hdr; u32 entry, label, bos; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS_ENTROPY) && !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) return FLOW_DISSECT_RET_OUT_GOOD; if (lse_index >= FLOW_DIS_MPLS_MAX) return FLOW_DISSECT_RET_OUT_GOOD; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) return FLOW_DISSECT_RET_OUT_BAD; entry = ntohl(hdr->entry); label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT; bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT; if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) { struct flow_dissector_key_mpls *key_mpls; struct flow_dissector_mpls_lse *lse; key_mpls = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_MPLS, target_container); lse = &key_mpls->ls[lse_index]; lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; lse->mpls_bos = bos; lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT; lse->mpls_label = label; dissector_set_mpls_lse(key_mpls, lse_index); } if (*entropy_label && dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) { struct flow_dissector_key_keyid *key_keyid; key_keyid = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_MPLS_ENTROPY, target_container); key_keyid->keyid = cpu_to_be32(label); } *entropy_label = label == MPLS_LABEL_ENTROPY; return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN; } static enum flow_dissect_ret __skb_flow_dissect_arp(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, void *data, int nhoff, int hlen) { struct flow_dissector_key_arp *key_arp; struct { unsigned char ar_sha[ETH_ALEN]; unsigned char ar_sip[4]; unsigned char ar_tha[ETH_ALEN]; unsigned char ar_tip[4]; } *arp_eth, _arp_eth; const struct arphdr *arp; struct arphdr _arp; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP)) return FLOW_DISSECT_RET_OUT_GOOD; arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data, hlen, &_arp); if (!arp) return FLOW_DISSECT_RET_OUT_BAD; if (arp->ar_hrd != htons(ARPHRD_ETHER) || arp->ar_pro != htons(ETH_P_IP) || arp->ar_hln != ETH_ALEN || arp->ar_pln != 4 || (arp->ar_op != htons(ARPOP_REPLY) && arp->ar_op != htons(ARPOP_REQUEST))) return FLOW_DISSECT_RET_OUT_BAD; arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp), sizeof(_arp_eth), data, hlen, &_arp_eth); if (!arp_eth) return FLOW_DISSECT_RET_OUT_BAD; key_arp = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ARP, target_container); memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip)); memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip)); /* Only store the lower byte of the opcode; * this covers ARPOP_REPLY and ARPOP_REQUEST. */ key_arp->op = ntohs(arp->ar_op) & 0xff; ether_addr_copy(key_arp->sha, arp_eth->ar_sha); ether_addr_copy(key_arp->tha, arp_eth->ar_tha); return FLOW_DISSECT_RET_OUT_GOOD; } static enum flow_dissect_ret __skb_flow_dissect_gre(const struct sk_buff *skb, struct flow_dissector_key_control *key_control, struct flow_dissector *flow_dissector, void *target_container, void *data, __be16 *p_proto, int *p_nhoff, int *p_hlen, unsigned int flags) { struct flow_dissector_key_keyid *key_keyid; struct gre_base_hdr *hdr, _hdr; int offset = 0; u16 gre_ver; hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, *p_hlen, &_hdr); if (!hdr) return FLOW_DISSECT_RET_OUT_BAD; /* Only look inside GRE without routing */ if (hdr->flags & GRE_ROUTING) return FLOW_DISSECT_RET_OUT_GOOD; /* Only look inside GRE for version 0 and 1 */ gre_ver = ntohs(hdr->flags & GRE_VERSION); if (gre_ver > 1) return FLOW_DISSECT_RET_OUT_GOOD; *p_proto = hdr->protocol; if (gre_ver) { /* Version1 must be PPTP, and check the flags */ if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY))) return FLOW_DISSECT_RET_OUT_GOOD; } offset += sizeof(struct gre_base_hdr); if (hdr->flags & GRE_CSUM) offset += sizeof_field(struct gre_full_hdr, csum) + sizeof_field(struct gre_full_hdr, reserved1); if (hdr->flags & GRE_KEY) { const __be32 *keyid; __be32 _keyid; keyid = __skb_header_pointer(skb, *p_nhoff + offset, sizeof(_keyid), data, *p_hlen, &_keyid); if (!keyid) return FLOW_DISSECT_RET_OUT_BAD; if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_GRE_KEYID)) { key_keyid = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_GRE_KEYID, target_container); if (gre_ver == 0) key_keyid->keyid = *keyid; else key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK; } offset += sizeof_field(struct gre_full_hdr, key); } if (hdr->flags & GRE_SEQ) offset += sizeof_field(struct pptp_gre_header, seq); if (gre_ver == 0) { if (*p_proto == htons(ETH_P_TEB)) { const struct ethhdr *eth; struct ethhdr _eth; eth = __skb_header_pointer(skb, *p_nhoff + offset, sizeof(_eth), data, *p_hlen, &_eth); if (!eth) return FLOW_DISSECT_RET_OUT_BAD; *p_proto = eth->h_proto; offset += sizeof(*eth); /* Cap headers that we access via pointers at the * end of the Ethernet header as our maximum alignment * at that point is only 2 bytes. */ if (NET_IP_ALIGN) *p_hlen = *p_nhoff + offset; } } else { /* version 1, must be PPTP */ u8 _ppp_hdr[PPP_HDRLEN]; u8 *ppp_hdr; if (hdr->flags & GRE_ACK) offset += sizeof_field(struct pptp_gre_header, ack); ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset, sizeof(_ppp_hdr), data, *p_hlen, _ppp_hdr); if (!ppp_hdr) return FLOW_DISSECT_RET_OUT_BAD; switch (PPP_PROTOCOL(ppp_hdr)) { case PPP_IP: *p_proto = htons(ETH_P_IP); break; case PPP_IPV6: *p_proto = htons(ETH_P_IPV6); break; default: /* Could probably catch some more like MPLS */ break; } offset += PPP_HDRLEN; } *p_nhoff += offset; key_control->flags |= FLOW_DIS_ENCAPSULATION; if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) return FLOW_DISSECT_RET_OUT_GOOD; return FLOW_DISSECT_RET_PROTO_AGAIN; } /** * __skb_flow_dissect_batadv() - dissect batman-adv header * @skb: sk_buff to with the batman-adv header * @key_control: flow dissectors control key * @data: raw buffer pointer to the packet, if NULL use skb->data * @p_proto: pointer used to update the protocol to process next * @p_nhoff: pointer used to update inner network header offset * @hlen: packet header length * @flags: any combination of FLOW_DISSECTOR_F_* * * ETH_P_BATMAN packets are tried to be dissected. Only * &struct batadv_unicast packets are actually processed because they contain an * inner ethernet header and are usually followed by actual network header. This * allows the flow dissector to continue processing the packet. * * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found, * FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation, * otherwise FLOW_DISSECT_RET_OUT_BAD */ static enum flow_dissect_ret __skb_flow_dissect_batadv(const struct sk_buff *skb, struct flow_dissector_key_control *key_control, void *data, __be16 *p_proto, int *p_nhoff, int hlen, unsigned int flags) { struct { struct batadv_unicast_packet batadv_unicast; struct ethhdr eth; } *hdr, _hdr; hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) return FLOW_DISSECT_RET_OUT_BAD; if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION) return FLOW_DISSECT_RET_OUT_BAD; if (hdr->batadv_unicast.packet_type != BATADV_UNICAST) return FLOW_DISSECT_RET_OUT_BAD; *p_proto = hdr->eth.h_proto; *p_nhoff += sizeof(*hdr); key_control->flags |= FLOW_DIS_ENCAPSULATION; if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) return FLOW_DISSECT_RET_OUT_GOOD; return FLOW_DISSECT_RET_PROTO_AGAIN; } static void __skb_flow_dissect_tcp(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, void *data, int thoff, int hlen) { struct flow_dissector_key_tcp *key_tcp; struct tcphdr *th, _th; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP)) return; th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th); if (!th) return; if (unlikely(__tcp_hdrlen(th) < sizeof(_th))) return; key_tcp = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_TCP, target_container); key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF)); } static void __skb_flow_dissect_ports(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, void *data, int nhoff, u8 ip_proto, int hlen) { enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX; struct flow_dissector_key_ports *key_ports; if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) dissector_ports = FLOW_DISSECTOR_KEY_PORTS; else if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS_RANGE)) dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE; if (dissector_ports == FLOW_DISSECTOR_KEY_MAX) return; key_ports = skb_flow_dissector_target(flow_dissector, dissector_ports, target_container); key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto, data, hlen); } static void __skb_flow_dissect_ipv4(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, void *data, const struct iphdr *iph) { struct flow_dissector_key_ip *key_ip; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP)) return; key_ip = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IP, target_container); key_ip->tos = iph->tos; key_ip->ttl = iph->ttl; } static void __skb_flow_dissect_ipv6(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, void *data, const struct ipv6hdr *iph) { struct flow_dissector_key_ip *key_ip; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP)) return; key_ip = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IP, target_container); key_ip->tos = ipv6_get_dsfield(iph); key_ip->ttl = iph->hop_limit; } /* Maximum number of protocol headers that can be parsed in * __skb_flow_dissect */ #define MAX_FLOW_DISSECT_HDRS 15 static bool skb_flow_dissect_allowed(int *num_hdrs) { ++*num_hdrs; return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS); } static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys, struct flow_dissector *flow_dissector, void *target_container) { struct flow_dissector_key_ports *key_ports = NULL; struct flow_dissector_key_control *key_control; struct flow_dissector_key_basic *key_basic; struct flow_dissector_key_addrs *key_addrs; struct flow_dissector_key_tags *key_tags; key_control = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_CONTROL, target_container); key_control->thoff = flow_keys->thoff; if (flow_keys->is_frag) key_control->flags |= FLOW_DIS_IS_FRAGMENT; if (flow_keys->is_first_frag) key_control->flags |= FLOW_DIS_FIRST_FRAG; if (flow_keys->is_encap) key_control->flags |= FLOW_DIS_ENCAPSULATION; key_basic = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_BASIC, target_container); key_basic->n_proto = flow_keys->n_proto; key_basic->ip_proto = flow_keys->ip_proto; if (flow_keys->addr_proto == ETH_P_IP && dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container); key_addrs->v4addrs.src = flow_keys->ipv4_src; key_addrs->v4addrs.dst = flow_keys->ipv4_dst; key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; } else if (flow_keys->addr_proto == ETH_P_IPV6 && dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS, target_container); memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src, sizeof(key_addrs->v6addrs.src)); memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst, sizeof(key_addrs->v6addrs.dst)); key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) key_ports = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_PORTS, target_container); else if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS_RANGE)) key_ports = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_PORTS_RANGE, target_container); if (key_ports) { key_ports->src = flow_keys->sport; key_ports->dst = flow_keys->dport; } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL)) { key_tags = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL, target_container); key_tags->flow_label = ntohl(flow_keys->flow_label); } } bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, __be16 proto, int nhoff, int hlen, unsigned int flags) { struct bpf_flow_keys *flow_keys = ctx->flow_keys; u32 result; /* Pass parameters to the BPF program */ memset(flow_keys, 0, sizeof(*flow_keys)); flow_keys->n_proto = proto; flow_keys->nhoff = nhoff; flow_keys->thoff = flow_keys->nhoff; BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG != (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG); BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL != (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP != (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP); flow_keys->flags = flags; result = bpf_prog_run_pin_on_cpu(prog, ctx); flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen); flow_keys->thoff = clamp_t(u16, flow_keys->thoff, flow_keys->nhoff, hlen); return result == BPF_OK; } /** * __skb_flow_dissect - extract the flow_keys struct and return it * @net: associated network namespace, derived from @skb if NULL * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified * @flow_dissector: list of keys to dissect * @target_container: target structure to put dissected values into * @data: raw buffer pointer to the packet, if NULL use skb->data * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb) * @hlen: packet header length, if @data is NULL use skb_headlen(skb) * @flags: flags that control the dissection process, e.g. * FLOW_DISSECTOR_F_STOP_AT_ENCAP. * * The function will try to retrieve individual keys into target specified * by flow_dissector from either the skbuff or a raw buffer specified by the * rest parameters. * * Caller must take care of zeroing target container memory. */ bool __skb_flow_dissect(const struct net *net, const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, void *data, __be16 proto, int nhoff, int hlen, unsigned int flags) { struct flow_dissector_key_control *key_control; struct flow_dissector_key_basic *key_basic; struct flow_dissector_key_addrs *key_addrs; struct flow_dissector_key_tags *key_tags; struct flow_dissector_key_vlan *key_vlan; enum flow_dissect_ret fdret; enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX; bool mpls_el = false; int mpls_lse = 0; int num_hdrs = 0; u8 ip_proto = 0; bool ret; if (!data) { data = skb->data; proto = skb_vlan_tag_present(skb) ? skb->vlan_proto : skb->protocol; nhoff = skb_network_offset(skb); hlen = skb_headlen(skb); #if IS_ENABLED(CONFIG_NET_DSA) if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) && proto == htons(ETH_P_XDSA))) { const struct dsa_device_ops *ops; int offset = 0; ops = skb->dev->dsa_ptr->tag_ops; /* Tail taggers don't break flow dissection */ if (!ops->tail_tag) { if (ops->flow_dissect) ops->flow_dissect(skb, &proto, &offset); else dsa_tag_generic_flow_dissect(skb, &proto, &offset); hlen -= offset; nhoff += offset; } } #endif } /* It is ensured by skb_flow_dissector_init() that control key will * be always present. */ key_control = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_CONTROL, target_container); /* It is ensured by skb_flow_dissector_init() that basic key will * be always present. */ key_basic = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_BASIC, target_container); if (skb) { if (!net) { if (skb->dev) net = dev_net(skb->dev); else if (skb->sk) net = sock_net(skb->sk); } } WARN_ON_ONCE(!net); if (net) { enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR; struct bpf_prog_array *run_array; rcu_read_lock(); run_array = rcu_dereference(init_net.bpf.run_array[type]); if (!run_array) run_array = rcu_dereference(net->bpf.run_array[type]); if (run_array) { struct bpf_flow_keys flow_keys; struct bpf_flow_dissector ctx = { .flow_keys = &flow_keys, .data = data, .data_end = data + hlen, }; __be16 n_proto = proto; struct bpf_prog *prog; if (skb) { ctx.skb = skb; /* we can't use 'proto' in the skb case * because it might be set to skb->vlan_proto * which has been pulled from the data */ n_proto = skb->protocol; } prog = READ_ONCE(run_array->items[0].prog); ret = bpf_flow_dissect(prog, &ctx, n_proto, nhoff, hlen, flags); __skb_flow_bpf_to_target(&flow_keys, flow_dissector, target_container); rcu_read_unlock(); return ret; } rcu_read_unlock(); } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { struct ethhdr *eth = eth_hdr(skb); struct flow_dissector_key_eth_addrs *key_eth_addrs; key_eth_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS, target_container); memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs)); } proto_again: fdret = FLOW_DISSECT_RET_CONTINUE; switch (proto) { case htons(ETH_P_IP): { const struct iphdr *iph; struct iphdr _iph; iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); if (!iph || iph->ihl < 5) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } nhoff += iph->ihl * 4; ip_proto = iph->protocol; if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container); memcpy(&key_addrs->v4addrs.src, &iph->saddr, sizeof(key_addrs->v4addrs.src)); memcpy(&key_addrs->v4addrs.dst, &iph->daddr, sizeof(key_addrs->v4addrs.dst)); key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; } __skb_flow_dissect_ipv4(skb, flow_dissector, target_container, data, iph); if (ip_is_fragment(iph)) { key_control->flags |= FLOW_DIS_IS_FRAGMENT; if (iph->frag_off & htons(IP_OFFSET)) { fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } else { key_control->flags |= FLOW_DIS_FIRST_FRAG; if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) { fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } } } break; } case htons(ETH_P_IPV6): { const struct ipv6hdr *iph; struct ipv6hdr _iph; iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); if (!iph) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } ip_proto = iph->nexthdr; nhoff += sizeof(struct ipv6hdr); if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS, target_container); memcpy(&key_addrs->v6addrs.src, &iph->saddr, sizeof(key_addrs->v6addrs.src)); memcpy(&key_addrs->v6addrs.dst, &iph->daddr, sizeof(key_addrs->v6addrs.dst)); key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; } if ((dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL) || (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) && ip6_flowlabel(iph)) { __be32 flow_label = ip6_flowlabel(iph); if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL)) { key_tags = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL, target_container); key_tags->flow_label = ntohl(flow_label); } if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) { fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } } __skb_flow_dissect_ipv6(skb, flow_dissector, target_container, data, iph); break; } case htons(ETH_P_8021AD): case htons(ETH_P_8021Q): { const struct vlan_hdr *vlan = NULL; struct vlan_hdr _vlan; __be16 saved_vlan_tpid = proto; if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX && skb && skb_vlan_tag_present(skb)) { proto = skb->protocol; } else { vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan); if (!vlan) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } proto = vlan->h_vlan_encapsulated_proto; nhoff += sizeof(*vlan); } if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) { dissector_vlan = FLOW_DISSECTOR_KEY_VLAN; } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) { dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN; } else { fdret = FLOW_DISSECT_RET_PROTO_AGAIN; break; } if (dissector_uses_key(flow_dissector, dissector_vlan)) { key_vlan = skb_flow_dissector_target(flow_dissector, dissector_vlan, target_container); if (!vlan) { key_vlan->vlan_id = skb_vlan_tag_get_id(skb); key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb); } else { key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) & VLAN_VID_MASK; key_vlan->vlan_priority = (ntohs(vlan->h_vlan_TCI) & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; } key_vlan->vlan_tpid = saved_vlan_tpid; } fdret = FLOW_DISSECT_RET_PROTO_AGAIN; break; } case htons(ETH_P_PPP_SES): { struct { struct pppoe_hdr hdr; __be16 proto; } *hdr, _hdr; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } proto = hdr->proto; nhoff += PPPOE_SES_HLEN; switch (proto) { case htons(PPP_IP): proto = htons(ETH_P_IP); fdret = FLOW_DISSECT_RET_PROTO_AGAIN; break; case htons(PPP_IPV6): proto = htons(ETH_P_IPV6); fdret = FLOW_DISSECT_RET_PROTO_AGAIN; break; default: fdret = FLOW_DISSECT_RET_OUT_BAD; break; } break; } case htons(ETH_P_TIPC): { struct tipc_basic_hdr *hdr, _hdr; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TIPC)) { key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_TIPC, target_container); key_addrs->tipckey.key = tipc_hdr_rps_key(hdr); key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC; } fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } case htons(ETH_P_MPLS_UC): case htons(ETH_P_MPLS_MC): fdret = __skb_flow_dissect_mpls(skb, flow_dissector, target_container, data, nhoff, hlen, mpls_lse, &mpls_el); nhoff += sizeof(struct mpls_label); mpls_lse++; break; case htons(ETH_P_FCOE): if ((hlen - nhoff) < FCOE_HEADER_LEN) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } nhoff += FCOE_HEADER_LEN; fdret = FLOW_DISSECT_RET_OUT_GOOD; break; case htons(ETH_P_ARP): case htons(ETH_P_RARP): fdret = __skb_flow_dissect_arp(skb, flow_dissector, target_container, data, nhoff, hlen); break; case htons(ETH_P_BATMAN): fdret = __skb_flow_dissect_batadv(skb, key_control, data, &proto, &nhoff, hlen, flags); break; default: fdret = FLOW_DISSECT_RET_OUT_BAD; break; } /* Process result of proto processing */ switch (fdret) { case FLOW_DISSECT_RET_OUT_GOOD: goto out_good; case FLOW_DISSECT_RET_PROTO_AGAIN: if (skb_flow_dissect_allowed(&num_hdrs)) goto proto_again; goto out_good; case FLOW_DISSECT_RET_CONTINUE: case FLOW_DISSECT_RET_IPPROTO_AGAIN: break; case FLOW_DISSECT_RET_OUT_BAD: default: goto out_bad; } ip_proto_again: fdret = FLOW_DISSECT_RET_CONTINUE; switch (ip_proto) { case IPPROTO_GRE: fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector, target_container, data, &proto, &nhoff, &hlen, flags); break; case NEXTHDR_HOP: case NEXTHDR_ROUTING: case NEXTHDR_DEST: { u8 _opthdr[2], *opthdr; if (proto != htons(ETH_P_IPV6)) break; opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr), data, hlen, &_opthdr); if (!opthdr) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } ip_proto = opthdr[0]; nhoff += (opthdr[1] + 1) << 3; fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN; break; } case NEXTHDR_FRAGMENT: { struct frag_hdr _fh, *fh; if (proto != htons(ETH_P_IPV6)) break; fh = __skb_header_pointer(skb, nhoff, sizeof(_fh), data, hlen, &_fh); if (!fh) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } key_control->flags |= FLOW_DIS_IS_FRAGMENT; nhoff += sizeof(_fh); ip_proto = fh->nexthdr; if (!(fh->frag_off & htons(IP6_OFFSET))) { key_control->flags |= FLOW_DIS_FIRST_FRAG; if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) { fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN; break; } } fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } case IPPROTO_IPIP: proto = htons(ETH_P_IP); key_control->flags |= FLOW_DIS_ENCAPSULATION; if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) { fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } fdret = FLOW_DISSECT_RET_PROTO_AGAIN; break; case IPPROTO_IPV6: proto = htons(ETH_P_IPV6); key_control->flags |= FLOW_DIS_ENCAPSULATION; if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) { fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } fdret = FLOW_DISSECT_RET_PROTO_AGAIN; break; case IPPROTO_MPLS: proto = htons(ETH_P_MPLS_UC); fdret = FLOW_DISSECT_RET_PROTO_AGAIN; break; case IPPROTO_TCP: __skb_flow_dissect_tcp(skb, flow_dissector, target_container, data, nhoff, hlen); break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: __skb_flow_dissect_icmp(skb, flow_dissector, target_container, data, nhoff, hlen); break; default: break; } if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT)) __skb_flow_dissect_ports(skb, flow_dissector, target_container, data, nhoff, ip_proto, hlen); /* Process result of IP proto processing */ switch (fdret) { case FLOW_DISSECT_RET_PROTO_AGAIN: if (skb_flow_dissect_allowed(&num_hdrs)) goto proto_again; break; case FLOW_DISSECT_RET_IPPROTO_AGAIN: if (skb_flow_dissect_allowed(&num_hdrs)) goto ip_proto_again; break; case FLOW_DISSECT_RET_OUT_GOOD: case FLOW_DISSECT_RET_CONTINUE: break; case FLOW_DISSECT_RET_OUT_BAD: default: goto out_bad; } out_good: ret = true; out: key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen); key_basic->n_proto = proto; key_basic->ip_proto = ip_proto; return ret; out_bad: ret = false; goto out; } EXPORT_SYMBOL(__skb_flow_dissect); static siphash_key_t hashrnd __read_mostly; static __always_inline void __flow_hash_secret_init(void) { net_get_random_once(&hashrnd, sizeof(hashrnd)); } static const void *flow_keys_hash_start(const struct flow_keys *flow) { BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT); return &flow->FLOW_KEYS_HASH_START_FIELD; } static inline size_t flow_keys_hash_length(const struct flow_keys *flow) { size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs); BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32)); switch (flow->control.addr_type) { case FLOW_DISSECTOR_KEY_IPV4_ADDRS: diff -= sizeof(flow->addrs.v4addrs); break; case FLOW_DISSECTOR_KEY_IPV6_ADDRS: diff -= sizeof(flow->addrs.v6addrs); break; case FLOW_DISSECTOR_KEY_TIPC: diff -= sizeof(flow->addrs.tipckey); break; } return sizeof(*flow) - diff; } __be32 flow_get_u32_src(const struct flow_keys *flow) { switch (flow->control.addr_type) { case FLOW_DISSECTOR_KEY_IPV4_ADDRS: return flow->addrs.v4addrs.src; case FLOW_DISSECTOR_KEY_IPV6_ADDRS: return (__force __be32)ipv6_addr_hash( &flow->addrs.v6addrs.src); case FLOW_DISSECTOR_KEY_TIPC: return flow->addrs.tipckey.key; default: return 0; } } EXPORT_SYMBOL(flow_get_u32_src); __be32 flow_get_u32_dst(const struct flow_keys *flow) { switch (flow->control.addr_type) { case FLOW_DISSECTOR_KEY_IPV4_ADDRS: return flow->addrs.v4addrs.dst; case FLOW_DISSECTOR_KEY_IPV6_ADDRS: return (__force __be32)ipv6_addr_hash( &flow->addrs.v6addrs.dst); default: return 0; } } EXPORT_SYMBOL(flow_get_u32_dst); /* Sort the source and destination IP (and the ports if the IP are the same), * to have consistent hash within the two directions */ static inline void __flow_hash_consistentify(struct flow_keys *keys) { int addr_diff, i; switch (keys->control.addr_type) { case FLOW_DISSECTOR_KEY_IPV4_ADDRS: addr_diff = (__force u32)keys->addrs.v4addrs.dst - (__force u32)keys->addrs.v4addrs.src; if ((addr_diff < 0) || (addr_diff == 0 && ((__force u16)keys->ports.dst < (__force u16)keys->ports.src))) { swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst); swap(keys->ports.src, keys->ports.dst); } break; case FLOW_DISSECTOR_KEY_IPV6_ADDRS: addr_diff = memcmp(&keys->addrs.v6addrs.dst, &keys->addrs.v6addrs.src, sizeof(keys->addrs.v6addrs.dst)); if ((addr_diff < 0) || (addr_diff == 0 && ((__force u16)keys->ports.dst < (__force u16)keys->ports.src))) { for (i = 0; i < 4; i++) swap(keys->addrs.v6addrs.src.s6_addr32[i], keys->addrs.v6addrs.dst.s6_addr32[i]); swap(keys->ports.src, keys->ports.dst); } break; } } static inline u32 __flow_hash_from_keys(struct flow_keys *keys, const siphash_key_t *keyval) { u32 hash; __flow_hash_consistentify(keys); hash = siphash(flow_keys_hash_start(keys), flow_keys_hash_length(keys), keyval); if (!hash) hash = 1; return hash; } u32 flow_hash_from_keys(struct flow_keys *keys) { __flow_hash_secret_init(); return __flow_hash_from_keys(keys, &hashrnd); } EXPORT_SYMBOL(flow_hash_from_keys); static inline u32 ___skb_get_hash(const struct sk_buff *skb, struct flow_keys *keys, const siphash_key_t *keyval) { skb_flow_dissect_flow_keys(skb, keys, FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); return __flow_hash_from_keys(keys, keyval); } struct _flow_keys_digest_data { __be16 n_proto; u8 ip_proto; u8 padding; __be32 ports; __be32 src; __be32 dst; }; void make_flow_keys_digest(struct flow_keys_digest *digest, const struct flow_keys *flow) { struct _flow_keys_digest_data *data = (struct _flow_keys_digest_data *)digest; BUILD_BUG_ON(sizeof(*data) > sizeof(*digest)); memset(digest, 0, sizeof(*digest)); data->n_proto = flow->basic.n_proto; data->ip_proto = flow->basic.ip_proto; data->ports = flow->ports.ports; data->src = flow->addrs.v4addrs.src; data->dst = flow->addrs.v4addrs.dst; } EXPORT_SYMBOL(make_flow_keys_digest); static struct flow_dissector flow_keys_dissector_symmetric __read_mostly; u32 __skb_get_hash_symmetric(const struct sk_buff *skb) { struct flow_keys keys; __flow_hash_secret_init(); memset(&keys, 0, sizeof(keys)); __skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric, &keys, NULL, 0, 0, 0, FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); return __flow_hash_from_keys(&keys, &hashrnd); } EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric); /** * __skb_get_hash: calculate a flow hash * @skb: sk_buff to calculate flow hash from * * This function calculates a flow hash based on src/dst addresses * and src/dst port numbers. Sets hash in skb to non-zero hash value * on success, zero indicates no valid hash. Also, sets l4_hash in skb * if hash is a canonical 4-tuple hash over transport ports. */ void __skb_get_hash(struct sk_buff *skb) { struct flow_keys keys; u32 hash; __flow_hash_secret_init(); hash = ___skb_get_hash(skb, &keys, &hashrnd); __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); } EXPORT_SYMBOL(__skb_get_hash); __u32 skb_get_hash_perturb(const struct sk_buff *skb, const siphash_key_t *perturb) { struct flow_keys keys; return ___skb_get_hash(skb, &keys, perturb); } EXPORT_SYMBOL(skb_get_hash_perturb); u32 __skb_get_poff(const struct sk_buff *skb, void *data, const struct flow_keys_basic *keys, int hlen) { u32 poff = keys->control.thoff; /* skip L4 headers for fragments after the first */ if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) && !(keys->control.flags & FLOW_DIS_FIRST_FRAG)) return poff; switch (keys->basic.ip_proto) { case IPPROTO_TCP: { /* access doff as u8 to avoid unaligned access */ const u8 *doff; u8 _doff; doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff), data, hlen, &_doff); if (!doff) return poff; poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2); break; } case IPPROTO_UDP: case IPPROTO_UDPLITE: poff += sizeof(struct udphdr); break; /* For the rest, we do not really care about header * extensions at this point for now. */ case IPPROTO_ICMP: poff += sizeof(struct icmphdr); break; case IPPROTO_ICMPV6: poff += sizeof(struct icmp6hdr); break; case IPPROTO_IGMP: poff += sizeof(struct igmphdr); break; case IPPROTO_DCCP: poff += sizeof(struct dccp_hdr); break; case IPPROTO_SCTP: poff += sizeof(struct sctphdr); break; } return poff; } /** * skb_get_poff - get the offset to the payload * @skb: sk_buff to get the payload offset from * * The function will get the offset to the payload as far as it could * be dissected. The main user is currently BPF, so that we can dynamically * truncate packets without needing to push actual payload to the user * space and can analyze headers only, instead. */ u32 skb_get_poff(const struct sk_buff *skb) { struct flow_keys_basic keys; if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, NULL, 0, 0, 0, 0)) return 0; return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb)); } __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys) { memset(keys, 0, sizeof(*keys)); memcpy(&keys->addrs.v6addrs.src, &fl6->saddr, sizeof(keys->addrs.v6addrs.src)); memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr, sizeof(keys->addrs.v6addrs.dst)); keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; keys->ports.src = fl6->fl6_sport; keys->ports.dst = fl6->fl6_dport; keys->keyid.keyid = fl6->fl6_gre_key; keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); keys->basic.ip_proto = fl6->flowi6_proto; return flow_hash_from_keys(keys); } EXPORT_SYMBOL(__get_hash_from_flowi6); static const struct flow_dissector_key flow_keys_dissector_keys[] = { { .key_id = FLOW_DISSECTOR_KEY_CONTROL, .offset = offsetof(struct flow_keys, control), }, { .key_id = FLOW_DISSECTOR_KEY_BASIC, .offset = offsetof(struct flow_keys, basic), }, { .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, .offset = offsetof(struct flow_keys, addrs.v4addrs), }, { .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, .offset = offsetof(struct flow_keys, addrs.v6addrs), }, { .key_id = FLOW_DISSECTOR_KEY_TIPC, .offset = offsetof(struct flow_keys, addrs.tipckey), }, { .key_id = FLOW_DISSECTOR_KEY_PORTS, .offset = offsetof(struct flow_keys, ports), }, { .key_id = FLOW_DISSECTOR_KEY_VLAN, .offset = offsetof(struct flow_keys, vlan), }, { .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL, .offset = offsetof(struct flow_keys, tags), }, { .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID, .offset = offsetof(struct flow_keys, keyid), }, }; static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = { { .key_id = FLOW_DISSECTOR_KEY_CONTROL, .offset = offsetof(struct flow_keys, control), }, { .key_id = FLOW_DISSECTOR_KEY_BASIC, .offset = offsetof(struct flow_keys, basic), }, { .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, .offset = offsetof(struct flow_keys, addrs.v4addrs), }, { .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, .offset = offsetof(struct flow_keys, addrs.v6addrs), }, { .key_id = FLOW_DISSECTOR_KEY_PORTS, .offset = offsetof(struct flow_keys, ports), }, }; static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = { { .key_id = FLOW_DISSECTOR_KEY_CONTROL, .offset = offsetof(struct flow_keys, control), }, { .key_id = FLOW_DISSECTOR_KEY_BASIC, .offset = offsetof(struct flow_keys, basic), }, }; struct flow_dissector flow_keys_dissector __read_mostly; EXPORT_SYMBOL(flow_keys_dissector); struct flow_dissector flow_keys_basic_dissector __read_mostly; EXPORT_SYMBOL(flow_keys_basic_dissector); static int __init init_default_flow_dissectors(void) { skb_flow_dissector_init(&flow_keys_dissector, flow_keys_dissector_keys, ARRAY_SIZE(flow_keys_dissector_keys)); skb_flow_dissector_init(&flow_keys_dissector_symmetric, flow_keys_dissector_symmetric_keys, ARRAY_SIZE(flow_keys_dissector_symmetric_keys)); skb_flow_dissector_init(&flow_keys_basic_dissector, flow_keys_basic_dissector_keys, ARRAY_SIZE(flow_keys_basic_dissector_keys)); return 0; } core_initcall(init_default_flow_dissectors);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 /* SPDX-License-Identifier: GPL-2.0 */ /* * Connection state tracking for netfilter. This is separated from, * but required by, the (future) NAT layer; it can also be used by an iptables * extension. * * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp> * - generalize L3 protocol dependent part. * * Derived from include/linux/netfiter_ipv4/ip_conntrack.h */ #ifndef _NF_CONNTRACK_H #define _NF_CONNTRACK_H #include <linux/bitops.h> #include <linux/compiler.h> #include <linux/netfilter/nf_conntrack_common.h> #include <linux/netfilter/nf_conntrack_tcp.h> #include <linux/netfilter/nf_conntrack_dccp.h> #include <linux/netfilter/nf_conntrack_sctp.h> #include <linux/netfilter/nf_conntrack_proto_gre.h> #include <net/netfilter/nf_conntrack_tuple.h> struct nf_ct_udp { unsigned long stream_ts; }; /* per conntrack: protocol private data */ union nf_conntrack_proto { /* insert conntrack proto private data here */ struct nf_ct_dccp dccp; struct ip_ct_sctp sctp; struct ip_ct_tcp tcp; struct nf_ct_udp udp; struct nf_ct_gre gre; unsigned int tmpl_padto; }; union nf_conntrack_expect_proto { /* insert expect proto private data here */ }; struct nf_conntrack_net { unsigned int users4; unsigned int users6; unsigned int users_bridge; }; #include <linux/types.h> #include <linux/skbuff.h> #include <net/netfilter/ipv4/nf_conntrack_ipv4.h> #include <net/netfilter/ipv6/nf_conntrack_ipv6.h> struct nf_conn { /* Usage count in here is 1 for hash table, 1 per skb, * plus 1 for any connection(s) we are `master' for * * Hint, SKB address this struct and refcnt via skb->_nfct and * helpers nf_conntrack_get() and nf_conntrack_put(). * Helper nf_ct_put() equals nf_conntrack_put() by dec refcnt, * beware nf_ct_get() is different and don't inc refcnt. */ struct nf_conntrack ct_general; spinlock_t lock; /* jiffies32 when this ct is considered dead */ u32 timeout; #ifdef CONFIG_NF_CONNTRACK_ZONES struct nf_conntrack_zone zone; #endif /* XXX should I move this to the tail ? - Y.K */ /* These are my tuples; original and reply */ struct nf_conntrack_tuple_hash tuplehash[IP_CT_DIR_MAX]; /* Have we seen traffic both ways yet? (bitset) */ unsigned long status; u16 cpu; possible_net_t ct_net; #if IS_ENABLED(CONFIG_NF_NAT) struct hlist_node nat_bysource; #endif /* all members below initialized via memset */ struct { } __nfct_init_offset; /* If we were expected by an expectation, this will be it */ struct nf_conn *master; #if defined(CONFIG_NF_CONNTRACK_MARK) u_int32_t mark; #endif #ifdef CONFIG_NF_CONNTRACK_SECMARK u_int32_t secmark; #endif /* Extensions */ struct nf_ct_ext *ext; /* Storage reserved for other modules, must be the last member */ union nf_conntrack_proto proto; }; static inline struct nf_conn * nf_ct_tuplehash_to_ctrack(const struct nf_conntrack_tuple_hash *hash) { return container_of(hash, struct nf_conn, tuplehash[hash->tuple.dst.dir]); } static inline u_int16_t nf_ct_l3num(const struct nf_conn *ct) { return ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.l3num; } static inline u_int8_t nf_ct_protonum(const struct nf_conn *ct) { return ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.protonum; } #define nf_ct_tuple(ct, dir) (&(ct)->tuplehash[dir].tuple) /* get master conntrack via master expectation */ #define master_ct(conntr) (conntr->master) extern struct net init_net; static inline struct net *nf_ct_net(const struct nf_conn *ct) { return read_pnet(&ct->ct_net); } /* Alter reply tuple (maybe alter helper). */ void nf_conntrack_alter_reply(struct nf_conn *ct, const struct nf_conntrack_tuple *newreply); /* Is this tuple taken? (ignoring any belonging to the given conntrack). */ int nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple, const struct nf_conn *ignored_conntrack); /* Return conntrack_info and tuple hash for given skb. */ static inline struct nf_conn * nf_ct_get(const struct sk_buff *skb, enum ip_conntrack_info *ctinfo) { unsigned long nfct = skb_get_nfct(skb); *ctinfo = nfct & NFCT_INFOMASK; return (struct nf_conn *)(nfct & NFCT_PTRMASK); } /* decrement reference count on a conntrack */ static inline void nf_ct_put(struct nf_conn *ct) { WARN_ON(!ct); nf_conntrack_put(&ct->ct_general); } /* Protocol module loading */ int nf_ct_l3proto_try_module_get(unsigned short l3proto); void nf_ct_l3proto_module_put(unsigned short l3proto); /* load module; enable/disable conntrack in this namespace */ int nf_ct_netns_get(struct net *net, u8 nfproto); void nf_ct_netns_put(struct net *net, u8 nfproto); /* * Allocate a hashtable of hlist_head (if nulls == 0), * or hlist_nulls_head (if nulls == 1) */ void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls); int nf_conntrack_hash_check_insert(struct nf_conn *ct); bool nf_ct_delete(struct nf_conn *ct, u32 pid, int report); bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff, u_int16_t l3num, struct net *net, struct nf_conntrack_tuple *tuple); void __nf_ct_refresh_acct(struct nf_conn *ct, enum ip_conntrack_info ctinfo, const struct sk_buff *skb, u32 extra_jiffies, bool do_acct); /* Refresh conntrack for this many jiffies and do accounting */ static inline void nf_ct_refresh_acct(struct nf_conn *ct, enum ip_conntrack_info ctinfo, const struct sk_buff *skb, u32 extra_jiffies) { __nf_ct_refresh_acct(ct, ctinfo, skb, extra_jiffies, true); } /* Refresh conntrack for this many jiffies */ static inline void nf_ct_refresh(struct nf_conn *ct, const struct sk_buff *skb, u32 extra_jiffies) { __nf_ct_refresh_acct(ct, 0, skb, extra_jiffies, false); } /* kill conntrack and do accounting */ bool nf_ct_kill_acct(struct nf_conn *ct, enum ip_conntrack_info ctinfo, const struct sk_buff *skb); /* kill conntrack without accounting */ static inline bool nf_ct_kill(struct nf_conn *ct) { return nf_ct_delete(ct, 0, 0); } /* Set all unconfirmed conntrack as dying */ void nf_ct_unconfirmed_destroy(struct net *); /* Iterate over all conntracks: if iter returns true, it's deleted. */ void nf_ct_iterate_cleanup_net(struct net *net, int (*iter)(struct nf_conn *i, void *data), void *data, u32 portid, int report); /* also set unconfirmed conntracks as dying. Only use in module exit path. */ void nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data); struct nf_conntrack_zone; void nf_conntrack_free(struct nf_conn *ct); struct nf_conn *nf_conntrack_alloc(struct net *net, const struct nf_conntrack_zone *zone, const struct nf_conntrack_tuple *orig, const struct nf_conntrack_tuple *repl, gfp_t gfp); static inline int nf_ct_is_template(const struct nf_conn *ct) { return test_bit(IPS_TEMPLATE_BIT, &ct->status); } /* It's confirmed if it is, or has been in the hash table. */ static inline int nf_ct_is_confirmed(const struct nf_conn *ct) { return test_bit(IPS_CONFIRMED_BIT, &ct->status); } static inline int nf_ct_is_dying(const struct nf_conn *ct) { return test_bit(IPS_DYING_BIT, &ct->status); } /* Packet is received from loopback */ static inline bool nf_is_loopback_packet(const struct sk_buff *skb) { return skb->dev && skb->skb_iif && skb->dev->flags & IFF_LOOPBACK; } #define nfct_time_stamp ((u32)(jiffies)) /* jiffies until ct expires, 0 if already expired */ static inline unsigned long nf_ct_expires(const struct nf_conn *ct) { s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp; return timeout > 0 ? timeout : 0; } static inline bool nf_ct_is_expired(const struct nf_conn *ct) { return (__s32)(READ_ONCE(ct->timeout) - nfct_time_stamp) <= 0; } /* use after obtaining a reference count */ static inline bool nf_ct_should_gc(const struct nf_conn *ct) { return nf_ct_is_expired(ct) && nf_ct_is_confirmed(ct) && !nf_ct_is_dying(ct); } #define NF_CT_DAY (86400 * HZ) /* Set an arbitrary timeout large enough not to ever expire, this save * us a check for the IPS_OFFLOAD_BIT from the packet path via * nf_ct_is_expired(). */ static inline void nf_ct_offload_timeout(struct nf_conn *ct) { if (nf_ct_expires(ct) < NF_CT_DAY / 2) WRITE_ONCE(ct->timeout, nfct_time_stamp + NF_CT_DAY); } struct kernel_param; int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp); int nf_conntrack_hash_resize(unsigned int hashsize); extern struct hlist_nulls_head *nf_conntrack_hash; extern unsigned int nf_conntrack_htable_size; extern seqcount_spinlock_t nf_conntrack_generation; extern unsigned int nf_conntrack_max; /* must be called with rcu read lock held */ static inline void nf_conntrack_get_ht(struct hlist_nulls_head **hash, unsigned int *hsize) { struct hlist_nulls_head *hptr; unsigned int sequence, hsz; do { sequence = read_seqcount_begin(&nf_conntrack_generation); hsz = nf_conntrack_htable_size; hptr = nf_conntrack_hash; } while (read_seqcount_retry(&nf_conntrack_generation, sequence)); *hash = hptr; *hsize = hsz; } struct nf_conn *nf_ct_tmpl_alloc(struct net *net, const struct nf_conntrack_zone *zone, gfp_t flags); void nf_ct_tmpl_free(struct nf_conn *tmpl); u32 nf_ct_get_id(const struct nf_conn *ct); static inline void nf_ct_set(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info info) { skb_set_nfct(skb, (unsigned long)ct | info); } #define NF_CT_STAT_INC(net, count) __this_cpu_inc((net)->ct.stat->count) #define NF_CT_STAT_INC_ATOMIC(net, count) this_cpu_inc((net)->ct.stat->count) #define NF_CT_STAT_ADD_ATOMIC(net, count, v) this_cpu_add((net)->ct.stat->count, (v)) #define MODULE_ALIAS_NFCT_HELPER(helper) \ MODULE_ALIAS("nfct-helper-" helper) #endif /* _NF_CONNTRACK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 /* SPDX-License-Identifier: GPL-2.0 */ /* * Internal header to deal with irq_desc->status which will be renamed * to irq_desc->settings. */ enum { _IRQ_DEFAULT_INIT_FLAGS = IRQ_DEFAULT_INIT_FLAGS, _IRQ_PER_CPU = IRQ_PER_CPU, _IRQ_LEVEL = IRQ_LEVEL, _IRQ_NOPROBE = IRQ_NOPROBE, _IRQ_NOREQUEST = IRQ_NOREQUEST, _IRQ_NOTHREAD = IRQ_NOTHREAD, _IRQ_NOAUTOEN = IRQ_NOAUTOEN, _IRQ_MOVE_PCNTXT = IRQ_MOVE_PCNTXT, _IRQ_NO_BALANCING = IRQ_NO_BALANCING, _IRQ_NESTED_THREAD = IRQ_NESTED_THREAD, _IRQ_PER_CPU_DEVID = IRQ_PER_CPU_DEVID, _IRQ_IS_POLLED = IRQ_IS_POLLED, _IRQ_DISABLE_UNLAZY = IRQ_DISABLE_UNLAZY, _IRQ_HIDDEN = IRQ_HIDDEN, _IRQF_MODIFY_MASK = IRQF_MODIFY_MASK, }; #define IRQ_PER_CPU GOT_YOU_MORON #define IRQ_NO_BALANCING GOT_YOU_MORON #define IRQ_LEVEL GOT_YOU_MORON #define IRQ_NOPROBE GOT_YOU_MORON #define IRQ_NOREQUEST GOT_YOU_MORON #define IRQ_NOTHREAD GOT_YOU_MORON #define IRQ_NOAUTOEN GOT_YOU_MORON #define IRQ_NESTED_THREAD GOT_YOU_MORON #define IRQ_PER_CPU_DEVID GOT_YOU_MORON #define IRQ_IS_POLLED GOT_YOU_MORON #define IRQ_DISABLE_UNLAZY GOT_YOU_MORON #define IRQ_HIDDEN GOT_YOU_MORON #undef IRQF_MODIFY_MASK #define IRQF_MODIFY_MASK GOT_YOU_MORON static inline void irq_settings_clr_and_set(struct irq_desc *desc, u32 clr, u32 set) { desc->status_use_accessors &= ~(clr & _IRQF_MODIFY_MASK); desc->status_use_accessors |= (set & _IRQF_MODIFY_MASK); } static inline bool irq_settings_is_per_cpu(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_PER_CPU; } static inline bool irq_settings_is_per_cpu_devid(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_PER_CPU_DEVID; } static inline void irq_settings_set_per_cpu(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_PER_CPU; } static inline void irq_settings_set_no_balancing(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NO_BALANCING; } static inline bool irq_settings_has_no_balance_set(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_NO_BALANCING; } static inline u32 irq_settings_get_trigger_mask(struct irq_desc *desc) { return desc->status_use_accessors & IRQ_TYPE_SENSE_MASK; } static inline void irq_settings_set_trigger_mask(struct irq_desc *desc, u32 mask) { desc->status_use_accessors &= ~IRQ_TYPE_SENSE_MASK; desc->status_use_accessors |= mask & IRQ_TYPE_SENSE_MASK; } static inline bool irq_settings_is_level(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_LEVEL; } static inline void irq_settings_clr_level(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_LEVEL; } static inline void irq_settings_set_level(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_LEVEL; } static inline bool irq_settings_can_request(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOREQUEST); } static inline void irq_settings_clr_norequest(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_NOREQUEST; } static inline void irq_settings_set_norequest(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NOREQUEST; } static inline bool irq_settings_can_thread(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOTHREAD); } static inline void irq_settings_clr_nothread(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_NOTHREAD; } static inline void irq_settings_set_nothread(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NOTHREAD; } static inline bool irq_settings_can_probe(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOPROBE); } static inline void irq_settings_clr_noprobe(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_NOPROBE; } static inline void irq_settings_set_noprobe(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NOPROBE; } static inline bool irq_settings_can_move_pcntxt(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_MOVE_PCNTXT; } static inline bool irq_settings_can_autoenable(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOAUTOEN); } static inline bool irq_settings_is_nested_thread(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_NESTED_THREAD; } static inline bool irq_settings_is_polled(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_IS_POLLED; } static inline bool irq_settings_disable_unlazy(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_DISABLE_UNLAZY; } static inline void irq_settings_clr_disable_unlazy(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_DISABLE_UNLAZY; } static inline bool irq_settings_is_hidden(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_HIDDEN; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/xattr.h Extended attributes handling. Copyright (C) 2001 by Andreas Gruenbacher <a.gruenbacher@computer.org> Copyright (c) 2001-2002 Silicon Graphics, Inc. All Rights Reserved. Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> */ #ifndef _LINUX_XATTR_H #define _LINUX_XATTR_H #include <linux/slab.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <uapi/linux/xattr.h> struct inode; struct dentry; /* * struct xattr_handler: When @name is set, match attributes with exactly that * name. When @prefix is set instead, match attributes with that prefix and * with a non-empty suffix. */ struct xattr_handler { const char *name; const char *prefix; int flags; /* fs private flags */ bool (*list)(struct dentry *dentry); int (*get)(const struct xattr_handler *, struct dentry *dentry, struct inode *inode, const char *name, void *buffer, size_t size); int (*set)(const struct xattr_handler *, struct dentry *dentry, struct inode *inode, const char *name, const void *buffer, size_t size, int flags); }; const char *xattr_full_name(const struct xattr_handler *, const char *); struct xattr { const char *name; void *value; size_t value_len; }; ssize_t __vfs_getxattr(struct dentry *, struct inode *, const char *, void *, size_t); ssize_t vfs_getxattr(struct dentry *, const char *, void *, size_t); ssize_t vfs_listxattr(struct dentry *d, char *list, size_t size); int __vfs_setxattr(struct dentry *, struct inode *, const char *, const void *, size_t, int); int __vfs_setxattr_noperm(struct dentry *, const char *, const void *, size_t, int); int __vfs_setxattr_locked(struct dentry *, const char *, const void *, size_t, int, struct inode **); int vfs_setxattr(struct dentry *, const char *, const void *, size_t, int); int __vfs_removexattr(struct dentry *, const char *); int __vfs_removexattr_locked(struct dentry *, const char *, struct inode **); int vfs_removexattr(struct dentry *, const char *); ssize_t generic_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size); ssize_t vfs_getxattr_alloc(struct dentry *dentry, const char *name, char **xattr_value, size_t size, gfp_t flags); int xattr_supported_namespace(struct inode *inode, const char *prefix); static inline const char *xattr_prefix(const struct xattr_handler *handler) { return handler->prefix ?: handler->name; } struct simple_xattrs { struct list_head head; spinlock_t lock; }; struct simple_xattr { struct list_head list; char *name; size_t size; char value[]; }; /* * initialize the simple_xattrs structure */ static inline void simple_xattrs_init(struct simple_xattrs *xattrs) { INIT_LIST_HEAD(&xattrs->head); spin_lock_init(&xattrs->lock); } /* * free all the xattrs */ static inline void simple_xattrs_free(struct simple_xattrs *xattrs) { struct simple_xattr *xattr, *node; list_for_each_entry_safe(xattr, node, &xattrs->head, list) { kfree(xattr->name); kvfree(xattr); } } struct simple_xattr *simple_xattr_alloc(const void *value, size_t size); int simple_xattr_get(struct simple_xattrs *xattrs, const char *name, void *buffer, size_t size); int simple_xattr_set(struct simple_xattrs *xattrs, const char *name, const void *value, size_t size, int flags, ssize_t *removed_size); ssize_t simple_xattr_list(struct inode *inode, struct simple_xattrs *xattrs, char *buffer, size_t size); void simple_xattr_list_add(struct simple_xattrs *xattrs, struct simple_xattr *new_xattr); #endif /* _LINUX_XATTR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 /* SPDX-License-Identifier: GPL-2.0+ */ #undef TRACE_SYSTEM #define TRACE_SYSTEM rseq #if !defined(_TRACE_RSEQ_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RSEQ_H #include <linux/tracepoint.h> #include <linux/types.h> TRACE_EVENT(rseq_update, TP_PROTO(struct task_struct *t), TP_ARGS(t), TP_STRUCT__entry( __field(s32, cpu_id) ), TP_fast_assign( __entry->cpu_id = raw_smp_processor_id(); ), TP_printk("cpu_id=%d", __entry->cpu_id) ); TRACE_EVENT(rseq_ip_fixup, TP_PROTO(unsigned long regs_ip, unsigned long start_ip, unsigned long post_commit_offset, unsigned long abort_ip), TP_ARGS(regs_ip, start_ip, post_commit_offset, abort_ip), TP_STRUCT__entry( __field(unsigned long, regs_ip) __field(unsigned long, start_ip) __field(unsigned long, post_commit_offset) __field(unsigned long, abort_ip) ), TP_fast_assign( __entry->regs_ip = regs_ip; __entry->start_ip = start_ip; __entry->post_commit_offset = post_commit_offset; __entry->abort_ip = abort_ip; ), TP_printk("regs_ip=0x%lx start_ip=0x%lx post_commit_offset=%lu abort_ip=0x%lx", __entry->regs_ip, __entry->start_ip, __entry->post_commit_offset, __entry->abort_ip) ); #endif /* _TRACE_SOCK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VMSTAT_H #define _LINUX_VMSTAT_H #include <linux/types.h> #include <linux/percpu.h> #include <linux/mmzone.h> #include <linux/vm_event_item.h> #include <linux/atomic.h> #include <linux/static_key.h> #include <linux/mmdebug.h> extern int sysctl_stat_interval; #ifdef CONFIG_NUMA #define ENABLE_NUMA_STAT 1 #define DISABLE_NUMA_STAT 0 extern int sysctl_vm_numa_stat; DECLARE_STATIC_KEY_TRUE(vm_numa_stat_key); int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos); #endif struct reclaim_stat { unsigned nr_dirty; unsigned nr_unqueued_dirty; unsigned nr_congested; unsigned nr_writeback; unsigned nr_immediate; unsigned nr_pageout; unsigned nr_activate[ANON_AND_FILE]; unsigned nr_ref_keep; unsigned nr_unmap_fail; unsigned nr_lazyfree_fail; }; enum writeback_stat_item { NR_DIRTY_THRESHOLD, NR_DIRTY_BG_THRESHOLD, NR_VM_WRITEBACK_STAT_ITEMS, }; #ifdef CONFIG_VM_EVENT_COUNTERS /* * Light weight per cpu counter implementation. * * Counters should only be incremented and no critical kernel component * should rely on the counter values. * * Counters are handled completely inline. On many platforms the code * generated will simply be the increment of a global address. */ struct vm_event_state { unsigned long event[NR_VM_EVENT_ITEMS]; }; DECLARE_PER_CPU(struct vm_event_state, vm_event_states); /* * vm counters are allowed to be racy. Use raw_cpu_ops to avoid the * local_irq_disable overhead. */ static inline void __count_vm_event(enum vm_event_item item) { raw_cpu_inc(vm_event_states.event[item]); } static inline void count_vm_event(enum vm_event_item item) { this_cpu_inc(vm_event_states.event[item]); } static inline void __count_vm_events(enum vm_event_item item, long delta) { raw_cpu_add(vm_event_states.event[item], delta); } static inline void count_vm_events(enum vm_event_item item, long delta) { this_cpu_add(vm_event_states.event[item], delta); } extern void all_vm_events(unsigned long *); extern void vm_events_fold_cpu(int cpu); #else /* Disable counters */ static inline void count_vm_event(enum vm_event_item item) { } static inline void count_vm_events(enum vm_event_item item, long delta) { } static inline void __count_vm_event(enum vm_event_item item) { } static inline void __count_vm_events(enum vm_event_item item, long delta) { } static inline void all_vm_events(unsigned long *ret) { } static inline void vm_events_fold_cpu(int cpu) { } #endif /* CONFIG_VM_EVENT_COUNTERS */ #ifdef CONFIG_NUMA_BALANCING #define count_vm_numa_event(x) count_vm_event(x) #define count_vm_numa_events(x, y) count_vm_events(x, y) #else #define count_vm_numa_event(x) do {} while (0) #define count_vm_numa_events(x, y) do { (void)(y); } while (0) #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_DEBUG_TLBFLUSH #define count_vm_tlb_event(x) count_vm_event(x) #define count_vm_tlb_events(x, y) count_vm_events(x, y) #else #define count_vm_tlb_event(x) do {} while (0) #define count_vm_tlb_events(x, y) do { (void)(y); } while (0) #endif #ifdef CONFIG_DEBUG_VM_VMACACHE #define count_vm_vmacache_event(x) count_vm_event(x) #else #define count_vm_vmacache_event(x) do {} while (0) #endif #define __count_zid_vm_events(item, zid, delta) \ __count_vm_events(item##_NORMAL - ZONE_NORMAL + zid, delta) /* * Zone and node-based page accounting with per cpu differentials. */ extern atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS]; extern atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; extern atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS]; #ifdef CONFIG_NUMA static inline void zone_numa_state_add(long x, struct zone *zone, enum numa_stat_item item) { atomic_long_add(x, &zone->vm_numa_stat[item]); atomic_long_add(x, &vm_numa_stat[item]); } static inline unsigned long global_numa_state(enum numa_stat_item item) { long x = atomic_long_read(&vm_numa_stat[item]); return x; } static inline unsigned long zone_numa_state_snapshot(struct zone *zone, enum numa_stat_item item) { long x = atomic_long_read(&zone->vm_numa_stat[item]); int cpu; for_each_online_cpu(cpu) x += per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]; return x; } #endif /* CONFIG_NUMA */ static inline void zone_page_state_add(long x, struct zone *zone, enum zone_stat_item item) { atomic_long_add(x, &zone->vm_stat[item]); atomic_long_add(x, &vm_zone_stat[item]); } static inline void node_page_state_add(long x, struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_add(x, &pgdat->vm_stat[item]); atomic_long_add(x, &vm_node_stat[item]); } static inline unsigned long global_zone_page_state(enum zone_stat_item item) { long x = atomic_long_read(&vm_zone_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long global_node_page_state_pages(enum node_stat_item item) { long x = atomic_long_read(&vm_node_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long global_node_page_state(enum node_stat_item item) { VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); return global_node_page_state_pages(item); } static inline unsigned long zone_page_state(struct zone *zone, enum zone_stat_item item) { long x = atomic_long_read(&zone->vm_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } /* * More accurate version that also considers the currently pending * deltas. For that we need to loop over all cpus to find the current * deltas. There is no synchronization so the result cannot be * exactly accurate either. */ static inline unsigned long zone_page_state_snapshot(struct zone *zone, enum zone_stat_item item) { long x = atomic_long_read(&zone->vm_stat[item]); #ifdef CONFIG_SMP int cpu; for_each_online_cpu(cpu) x += per_cpu_ptr(zone->pageset, cpu)->vm_stat_diff[item]; if (x < 0) x = 0; #endif return x; } #ifdef CONFIG_NUMA extern void __inc_numa_state(struct zone *zone, enum numa_stat_item item); extern unsigned long sum_zone_node_page_state(int node, enum zone_stat_item item); extern unsigned long sum_zone_numa_state(int node, enum numa_stat_item item); extern unsigned long node_page_state(struct pglist_data *pgdat, enum node_stat_item item); extern unsigned long node_page_state_pages(struct pglist_data *pgdat, enum node_stat_item item); #else #define sum_zone_node_page_state(node, item) global_zone_page_state(item) #define node_page_state(node, item) global_node_page_state(item) #define node_page_state_pages(node, item) global_node_page_state_pages(item) #endif /* CONFIG_NUMA */ #ifdef CONFIG_SMP void __mod_zone_page_state(struct zone *, enum zone_stat_item item, long); void __inc_zone_page_state(struct page *, enum zone_stat_item); void __dec_zone_page_state(struct page *, enum zone_stat_item); void __mod_node_page_state(struct pglist_data *, enum node_stat_item item, long); void __inc_node_page_state(struct page *, enum node_stat_item); void __dec_node_page_state(struct page *, enum node_stat_item); void mod_zone_page_state(struct zone *, enum zone_stat_item, long); void inc_zone_page_state(struct page *, enum zone_stat_item); void dec_zone_page_state(struct page *, enum zone_stat_item); void mod_node_page_state(struct pglist_data *, enum node_stat_item, long); void inc_node_page_state(struct page *, enum node_stat_item); void dec_node_page_state(struct page *, enum node_stat_item); extern void inc_node_state(struct pglist_data *, enum node_stat_item); extern void __inc_zone_state(struct zone *, enum zone_stat_item); extern void __inc_node_state(struct pglist_data *, enum node_stat_item); extern void dec_zone_state(struct zone *, enum zone_stat_item); extern void __dec_zone_state(struct zone *, enum zone_stat_item); extern void __dec_node_state(struct pglist_data *, enum node_stat_item); void quiet_vmstat(void); void cpu_vm_stats_fold(int cpu); void refresh_zone_stat_thresholds(void); struct ctl_table; int vmstat_refresh(struct ctl_table *, int write, void *buffer, size_t *lenp, loff_t *ppos); void drain_zonestat(struct zone *zone, struct per_cpu_pageset *); int calculate_pressure_threshold(struct zone *zone); int calculate_normal_threshold(struct zone *zone); void set_pgdat_percpu_threshold(pg_data_t *pgdat, int (*calculate_pressure)(struct zone *)); #else /* CONFIG_SMP */ /* * We do not maintain differentials in a single processor configuration. * The functions directly modify the zone and global counters. */ static inline void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, long delta) { zone_page_state_add(delta, zone, item); } static inline void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, int delta) { if (vmstat_item_in_bytes(item)) { VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); delta >>= PAGE_SHIFT; } node_page_state_add(delta, pgdat, item); } static inline void __inc_zone_state(struct zone *zone, enum zone_stat_item item) { atomic_long_inc(&zone->vm_stat[item]); atomic_long_inc(&vm_zone_stat[item]); } static inline void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_inc(&pgdat->vm_stat[item]); atomic_long_inc(&vm_node_stat[item]); } static inline void __dec_zone_state(struct zone *zone, enum zone_stat_item item) { atomic_long_dec(&zone->vm_stat[item]); atomic_long_dec(&vm_zone_stat[item]); } static inline void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_dec(&pgdat->vm_stat[item]); atomic_long_dec(&vm_node_stat[item]); } static inline void __inc_zone_page_state(struct page *page, enum zone_stat_item item) { __inc_zone_state(page_zone(page), item); } static inline void __inc_node_page_state(struct page *page, enum node_stat_item item) { __inc_node_state(page_pgdat(page), item); } static inline void __dec_zone_page_state(struct page *page, enum zone_stat_item item) { __dec_zone_state(page_zone(page), item); } static inline void __dec_node_page_state(struct page *page, enum node_stat_item item) { __dec_node_state(page_pgdat(page), item); } /* * We only use atomic operations to update counters. So there is no need to * disable interrupts. */ #define inc_zone_page_state __inc_zone_page_state #define dec_zone_page_state __dec_zone_page_state #define mod_zone_page_state __mod_zone_page_state #define inc_node_page_state __inc_node_page_state #define dec_node_page_state __dec_node_page_state #define mod_node_page_state __mod_node_page_state #define inc_zone_state __inc_zone_state #define inc_node_state __inc_node_state #define dec_zone_state __dec_zone_state #define set_pgdat_percpu_threshold(pgdat, callback) { } static inline void refresh_zone_stat_thresholds(void) { } static inline void cpu_vm_stats_fold(int cpu) { } static inline void quiet_vmstat(void) { } static inline void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) { } #endif /* CONFIG_SMP */ static inline void __mod_zone_freepage_state(struct zone *zone, int nr_pages, int migratetype) { __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); if (is_migrate_cma(migratetype)) __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); } extern const char * const vmstat_text[]; static inline const char *zone_stat_name(enum zone_stat_item item) { return vmstat_text[item]; } #ifdef CONFIG_NUMA static inline const char *numa_stat_name(enum numa_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + item]; } #endif /* CONFIG_NUMA */ static inline const char *node_stat_name(enum node_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_STAT_ITEMS + item]; } static inline const char *lru_list_name(enum lru_list lru) { return node_stat_name(NR_LRU_BASE + lru) + 3; // skip "nr_" } static inline const char *writeback_stat_name(enum writeback_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_STAT_ITEMS + NR_VM_NODE_STAT_ITEMS + item]; } #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) static inline const char *vm_event_name(enum vm_event_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_STAT_ITEMS + NR_VM_NODE_STAT_ITEMS + NR_VM_WRITEBACK_STAT_ITEMS + item]; } #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ #endif /* _LINUX_VMSTAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_RTNETLINK_H #define __NET_RTNETLINK_H #include <linux/rtnetlink.h> #include <net/netlink.h> typedef int (*rtnl_doit_func)(struct sk_buff *, struct nlmsghdr *, struct netlink_ext_ack *); typedef int (*rtnl_dumpit_func)(struct sk_buff *, struct netlink_callback *); enum rtnl_link_flags { RTNL_FLAG_DOIT_UNLOCKED = 1, }; void rtnl_register(int protocol, int msgtype, rtnl_doit_func, rtnl_dumpit_func, unsigned int flags); int rtnl_register_module(struct module *owner, int protocol, int msgtype, rtnl_doit_func, rtnl_dumpit_func, unsigned int flags); int rtnl_unregister(int protocol, int msgtype); void rtnl_unregister_all(int protocol); static inline int rtnl_msg_family(const struct nlmsghdr *nlh) { if (nlmsg_len(nlh) >= sizeof(struct rtgenmsg)) return ((struct rtgenmsg *) nlmsg_data(nlh))->rtgen_family; else return AF_UNSPEC; } /** * struct rtnl_link_ops - rtnetlink link operations * * @list: Used internally * @kind: Identifier * @netns_refund: Physical device, move to init_net on netns exit * @maxtype: Highest device specific netlink attribute number * @policy: Netlink policy for device specific attribute validation * @validate: Optional validation function for netlink/changelink parameters * @priv_size: sizeof net_device private space * @setup: net_device setup function * @newlink: Function for configuring and registering a new device * @changelink: Function for changing parameters of an existing device * @dellink: Function to remove a device * @get_size: Function to calculate required room for dumping device * specific netlink attributes * @fill_info: Function to dump device specific netlink attributes * @get_xstats_size: Function to calculate required room for dumping device * specific statistics * @fill_xstats: Function to dump device specific statistics * @get_num_tx_queues: Function to determine number of transmit queues * to create when creating a new device. * @get_num_rx_queues: Function to determine number of receive queues * to create when creating a new device. * @get_link_net: Function to get the i/o netns of the device * @get_linkxstats_size: Function to calculate the required room for * dumping device-specific extended link stats * @fill_linkxstats: Function to dump device-specific extended link stats */ struct rtnl_link_ops { struct list_head list; const char *kind; size_t priv_size; void (*setup)(struct net_device *dev); bool netns_refund; unsigned int maxtype; const struct nla_policy *policy; int (*validate)(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); int (*newlink)(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); int (*changelink)(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); void (*dellink)(struct net_device *dev, struct list_head *head); size_t (*get_size)(const struct net_device *dev); int (*fill_info)(struct sk_buff *skb, const struct net_device *dev); size_t (*get_xstats_size)(const struct net_device *dev); int (*fill_xstats)(struct sk_buff *skb, const struct net_device *dev); unsigned int (*get_num_tx_queues)(void); unsigned int (*get_num_rx_queues)(void); unsigned int slave_maxtype; const struct nla_policy *slave_policy; int (*slave_changelink)(struct net_device *dev, struct net_device *slave_dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); size_t (*get_slave_size)(const struct net_device *dev, const struct net_device *slave_dev); int (*fill_slave_info)(struct sk_buff *skb, const struct net_device *dev, const struct net_device *slave_dev); struct net *(*get_link_net)(const struct net_device *dev); size_t (*get_linkxstats_size)(const struct net_device *dev, int attr); int (*fill_linkxstats)(struct sk_buff *skb, const struct net_device *dev, int *prividx, int attr); }; int __rtnl_link_register(struct rtnl_link_ops *ops); void __rtnl_link_unregister(struct rtnl_link_ops *ops); int rtnl_link_register(struct rtnl_link_ops *ops); void rtnl_link_unregister(struct rtnl_link_ops *ops); /** * struct rtnl_af_ops - rtnetlink address family operations * * @list: Used internally * @family: Address family * @fill_link_af: Function to fill IFLA_AF_SPEC with address family * specific netlink attributes. * @get_link_af_size: Function to calculate size of address family specific * netlink attributes. * @validate_link_af: Validate a IFLA_AF_SPEC attribute, must check attr * for invalid configuration settings. * @set_link_af: Function to parse a IFLA_AF_SPEC attribute and modify * net_device accordingly. */ struct rtnl_af_ops { struct list_head list; int family; int (*fill_link_af)(struct sk_buff *skb, const struct net_device *dev, u32 ext_filter_mask); size_t (*get_link_af_size)(const struct net_device *dev, u32 ext_filter_mask); int (*validate_link_af)(const struct net_device *dev, const struct nlattr *attr); int (*set_link_af)(struct net_device *dev, const struct nlattr *attr); int (*fill_stats_af)(struct sk_buff *skb, const struct net_device *dev); size_t (*get_stats_af_size)(const struct net_device *dev); }; void rtnl_af_register(struct rtnl_af_ops *ops); void rtnl_af_unregister(struct rtnl_af_ops *ops); struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[]); struct net_device *rtnl_create_link(struct net *net, const char *ifname, unsigned char name_assign_type, const struct rtnl_link_ops *ops, struct nlattr *tb[], struct netlink_ext_ack *extack); int rtnl_delete_link(struct net_device *dev); int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm); int rtnl_nla_parse_ifla(struct nlattr **tb, const struct nlattr *head, int len, struct netlink_ext_ack *exterr); struct net *rtnl_get_net_ns_capable(struct sock *sk, int netnsid); #define MODULE_ALIAS_RTNL_LINK(kind) MODULE_ALIAS("rtnl-link-" kind) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 // SPDX-License-Identifier: GPL-2.0 /* * Helper routines for building identity mapping page tables. This is * included by both the compressed kernel and the regular kernel. */ static void ident_pmd_init(struct x86_mapping_info *info, pmd_t *pmd_page, unsigned long addr, unsigned long end) { addr &= PMD_MASK; for (; addr < end; addr += PMD_SIZE) { pmd_t *pmd = pmd_page + pmd_index(addr); if (pmd_present(*pmd)) continue; set_pmd(pmd, __pmd((addr - info->offset) | info->page_flag)); } } static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page, unsigned long addr, unsigned long end) { unsigned long next; for (; addr < end; addr = next) { pud_t *pud = pud_page + pud_index(addr); pmd_t *pmd; next = (addr & PUD_MASK) + PUD_SIZE; if (next > end) next = end; if (info->direct_gbpages) { pud_t pudval; if (pud_present(*pud)) continue; addr &= PUD_MASK; pudval = __pud((addr - info->offset) | info->page_flag); set_pud(pud, pudval); continue; } if (pud_present(*pud)) { pmd = pmd_offset(pud, 0); ident_pmd_init(info, pmd, addr, next); continue; } pmd = (pmd_t *)info->alloc_pgt_page(info->context); if (!pmd) return -ENOMEM; ident_pmd_init(info, pmd, addr, next); set_pud(pud, __pud(__pa(pmd) | info->kernpg_flag)); } return 0; } static int ident_p4d_init(struct x86_mapping_info *info, p4d_t *p4d_page, unsigned long addr, unsigned long end) { unsigned long next; int result; for (; addr < end; addr = next) { p4d_t *p4d = p4d_page + p4d_index(addr); pud_t *pud; next = (addr & P4D_MASK) + P4D_SIZE; if (next > end) next = end; if (p4d_present(*p4d)) { pud = pud_offset(p4d, 0); result = ident_pud_init(info, pud, addr, next); if (result) return result; continue; } pud = (pud_t *)info->alloc_pgt_page(info->context); if (!pud) return -ENOMEM; result = ident_pud_init(info, pud, addr, next); if (result) return result; set_p4d(p4d, __p4d(__pa(pud) | info->kernpg_flag)); } return 0; } int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page, unsigned long pstart, unsigned long pend) { unsigned long addr = pstart + info->offset; unsigned long end = pend + info->offset; unsigned long next; int result; /* Set the default pagetable flags if not supplied */ if (!info->kernpg_flag) info->kernpg_flag = _KERNPG_TABLE; /* Filter out unsupported __PAGE_KERNEL_* bits: */ info->kernpg_flag &= __default_kernel_pte_mask; for (; addr < end; addr = next) { pgd_t *pgd = pgd_page + pgd_index(addr); p4d_t *p4d; next = (addr & PGDIR_MASK) + PGDIR_SIZE; if (next > end) next = end; if (pgd_present(*pgd)) { p4d = p4d_offset(pgd, 0); result = ident_p4d_init(info, p4d, addr, next); if (result) return result; continue; } p4d = (p4d_t *)info->alloc_pgt_page(info->context); if (!p4d) return -ENOMEM; result = ident_p4d_init(info, p4d, addr, next); if (result) return result; if (pgtable_l5_enabled()) { set_pgd(pgd, __pgd(__pa(p4d) | info->kernpg_flag)); } else { /* * With p4d folded, pgd is equal to p4d. * The pgd entry has to point to the pud page table in this case. */ pud_t *pud = pud_offset(p4d, 0); set_pgd(pgd, __pgd(__pa(pud) | info->kernpg_flag)); } } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RCULIST_H #define _LINUX_RCULIST_H #ifdef __KERNEL__ /* * RCU-protected list version */ #include <linux/list.h> #include <linux/rcupdate.h> /* * Why is there no list_empty_rcu()? Because list_empty() serves this * purpose. The list_empty() function fetches the RCU-protected pointer * and compares it to the address of the list head, but neither dereferences * this pointer itself nor provides this pointer to the caller. Therefore, * it is not necessary to use rcu_dereference(), so that list_empty() can * be used anywhere you would want to use a list_empty_rcu(). */ /* * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers * @list: list to be initialized * * You should instead use INIT_LIST_HEAD() for normal initialization and * cleanup tasks, when readers have no access to the list being initialized. * However, if the list being initialized is visible to readers, you * need to keep the compiler from being too mischievous. */ static inline void INIT_LIST_HEAD_RCU(struct list_head *list) { WRITE_ONCE(list->next, list); WRITE_ONCE(list->prev, list); } /* * return the ->next pointer of a list_head in an rcu safe * way, we must not access it directly */ #define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next))) /** * list_tail_rcu - returns the prev pointer of the head of the list * @head: the head of the list * * Note: This should only be used with the list header, and even then * only if list_del() and similar primitives are not also used on the * list header. */ #define list_tail_rcu(head) (*((struct list_head __rcu **)(&(head)->prev))) /* * Check during list traversal that we are within an RCU reader */ #define check_arg_count_one(dummy) #ifdef CONFIG_PROVE_RCU_LIST #define __list_check_rcu(dummy, cond, extra...) \ ({ \ check_arg_count_one(extra); \ RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(), \ "RCU-list traversed in non-reader section!"); \ }) #define __list_check_srcu(cond) \ ({ \ RCU_LOCKDEP_WARN(!(cond), \ "RCU-list traversed without holding the required lock!");\ }) #else #define __list_check_rcu(dummy, cond, extra...) \ ({ check_arg_count_one(extra); }) #define __list_check_srcu(cond) ({ }) #endif /* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_add_rcu(struct list_head *new, struct list_head *prev, struct list_head *next) { if (!__list_add_valid(new, prev, next)) return; new->next = next; new->prev = prev; rcu_assign_pointer(list_next_rcu(prev), new); next->prev = new; } /** * list_add_rcu - add a new entry to rcu-protected list * @new: new entry to be added * @head: list head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as list_add_rcu() * or list_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * list_for_each_entry_rcu(). */ static inline void list_add_rcu(struct list_head *new, struct list_head *head) { __list_add_rcu(new, head, head->next); } /** * list_add_tail_rcu - add a new entry to rcu-protected list * @new: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as list_add_tail_rcu() * or list_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * list_for_each_entry_rcu(). */ static inline void list_add_tail_rcu(struct list_head *new, struct list_head *head) { __list_add_rcu(new, head->prev, head); } /** * list_del_rcu - deletes entry from list without re-initialization * @entry: the element to delete from the list. * * Note: list_empty() on entry does not return true after this, * the entry is in an undefined state. It is useful for RCU based * lockfree traversal. * * In particular, it means that we can not poison the forward * pointers that may still be used for walking the list. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as list_del_rcu() * or list_add_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * list_for_each_entry_rcu(). * * Note that the caller is not permitted to immediately free * the newly deleted entry. Instead, either synchronize_rcu() * or call_rcu() must be used to defer freeing until an RCU * grace period has elapsed. */ static inline void list_del_rcu(struct list_head *entry) { __list_del_entry(entry); entry->prev = LIST_POISON2; } /** * hlist_del_init_rcu - deletes entry from hash list with re-initialization * @n: the element to delete from the hash list. * * Note: list_unhashed() on the node return true after this. It is * useful for RCU based read lockfree traversal if the writer side * must know if the list entry is still hashed or already unhashed. * * In particular, it means that we can not poison the forward pointers * that may still be used for walking the hash list and we can only * zero the pprev pointer so list_unhashed() will return true after * this. * * The caller must take whatever precautions are necessary (such as * holding appropriate locks) to avoid racing with another * list-mutation primitive, such as hlist_add_head_rcu() or * hlist_del_rcu(), running on this same list. However, it is * perfectly legal to run concurrently with the _rcu list-traversal * primitives, such as hlist_for_each_entry_rcu(). */ static inline void hlist_del_init_rcu(struct hlist_node *n) { if (!hlist_unhashed(n)) { __hlist_del(n); WRITE_ONCE(n->pprev, NULL); } } /** * list_replace_rcu - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * The @old entry will be replaced with the @new entry atomically. * Note: @old should not be empty. */ static inline void list_replace_rcu(struct list_head *old, struct list_head *new) { new->next = old->next; new->prev = old->prev; rcu_assign_pointer(list_next_rcu(new->prev), new); new->next->prev = new; old->prev = LIST_POISON2; } /** * __list_splice_init_rcu - join an RCU-protected list into an existing list. * @list: the RCU-protected list to splice * @prev: points to the last element of the existing list * @next: points to the first element of the existing list * @sync: synchronize_rcu, synchronize_rcu_expedited, ... * * The list pointed to by @prev and @next can be RCU-read traversed * concurrently with this function. * * Note that this function blocks. * * Important note: the caller must take whatever action is necessary to prevent * any other updates to the existing list. In principle, it is possible to * modify the list as soon as sync() begins execution. If this sort of thing * becomes necessary, an alternative version based on call_rcu() could be * created. But only if -really- needed -- there is no shortage of RCU API * members. */ static inline void __list_splice_init_rcu(struct list_head *list, struct list_head *prev, struct list_head *next, void (*sync)(void)) { struct list_head *first = list->next; struct list_head *last = list->prev; /* * "first" and "last" tracking list, so initialize it. RCU readers * have access to this list, so we must use INIT_LIST_HEAD_RCU() * instead of INIT_LIST_HEAD(). */ INIT_LIST_HEAD_RCU(list); /* * At this point, the list body still points to the source list. * Wait for any readers to finish using the list before splicing * the list body into the new list. Any new readers will see * an empty list. */ sync(); ASSERT_EXCLUSIVE_ACCESS(*first); ASSERT_EXCLUSIVE_ACCESS(*last); /* * Readers are finished with the source list, so perform splice. * The order is important if the new list is global and accessible * to concurrent RCU readers. Note that RCU readers are not * permitted to traverse the prev pointers without excluding * this function. */ last->next = next; rcu_assign_pointer(list_next_rcu(prev), first); first->prev = prev; next->prev = last; } /** * list_splice_init_rcu - splice an RCU-protected list into an existing list, * designed for stacks. * @list: the RCU-protected list to splice * @head: the place in the existing list to splice the first list into * @sync: synchronize_rcu, synchronize_rcu_expedited, ... */ static inline void list_splice_init_rcu(struct list_head *list, struct list_head *head, void (*sync)(void)) { if (!list_empty(list)) __list_splice_init_rcu(list, head, head->next, sync); } /** * list_splice_tail_init_rcu - splice an RCU-protected list into an existing * list, designed for queues. * @list: the RCU-protected list to splice * @head: the place in the existing list to splice the first list into * @sync: synchronize_rcu, synchronize_rcu_expedited, ... */ static inline void list_splice_tail_init_rcu(struct list_head *list, struct list_head *head, void (*sync)(void)) { if (!list_empty(list)) __list_splice_init_rcu(list, head->prev, head, sync); } /** * list_entry_rcu - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * This primitive may safely run concurrently with the _rcu list-mutation * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). */ #define list_entry_rcu(ptr, type, member) \ container_of(READ_ONCE(ptr), type, member) /* * Where are list_empty_rcu() and list_first_entry_rcu()? * * Implementing those functions following their counterparts list_empty() and * list_first_entry() is not advisable because they lead to subtle race * conditions as the following snippet shows: * * if (!list_empty_rcu(mylist)) { * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member); * do_something(bar); * } * * The list may not be empty when list_empty_rcu checks it, but it may be when * list_first_entry_rcu rereads the ->next pointer. * * Rereading the ->next pointer is not a problem for list_empty() and * list_first_entry() because they would be protected by a lock that blocks * writers. * * See list_first_or_null_rcu for an alternative. */ /** * list_first_or_null_rcu - get the first element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note that if the list is empty, it returns NULL. * * This primitive may safely run concurrently with the _rcu list-mutation * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). */ #define list_first_or_null_rcu(ptr, type, member) \ ({ \ struct list_head *__ptr = (ptr); \ struct list_head *__next = READ_ONCE(__ptr->next); \ likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \ }) /** * list_next_or_null_rcu - get the first element from a list * @head: the head for the list. * @ptr: the list head to take the next element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note that if the ptr is at the end of the list, NULL is returned. * * This primitive may safely run concurrently with the _rcu list-mutation * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). */ #define list_next_or_null_rcu(head, ptr, type, member) \ ({ \ struct list_head *__head = (head); \ struct list_head *__ptr = (ptr); \ struct list_head *__next = READ_ONCE(__ptr->next); \ likely(__next != __head) ? list_entry_rcu(__next, type, \ member) : NULL; \ }) /** * list_for_each_entry_rcu - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * @cond: optional lockdep expression if called from non-RCU protection. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as list_add_rcu() * as long as the traversal is guarded by rcu_read_lock(). */ #define list_for_each_entry_rcu(pos, head, member, cond...) \ for (__list_check_rcu(dummy, ## cond, 0), \ pos = list_entry_rcu((head)->next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) /** * list_for_each_entry_srcu - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * @cond: lockdep expression for the lock required to traverse the list. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as list_add_rcu() * as long as the traversal is guarded by srcu_read_lock(). * The lockdep expression srcu_read_lock_held() can be passed as the * cond argument from read side. */ #define list_for_each_entry_srcu(pos, head, member, cond) \ for (__list_check_srcu(cond), \ pos = list_entry_rcu((head)->next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) /** * list_entry_lockless - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * This primitive may safely run concurrently with the _rcu * list-mutation primitives such as list_add_rcu(), but requires some * implicit RCU read-side guarding. One example is running within a special * exception-time environment where preemption is disabled and where lockdep * cannot be invoked. Another example is when items are added to the list, * but never deleted. */ #define list_entry_lockless(ptr, type, member) \ container_of((typeof(ptr))READ_ONCE(ptr), type, member) /** * list_for_each_entry_lockless - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_struct within the struct. * * This primitive may safely run concurrently with the _rcu * list-mutation primitives such as list_add_rcu(), but requires some * implicit RCU read-side guarding. One example is running within a special * exception-time environment where preemption is disabled and where lockdep * cannot be invoked. Another example is when items are added to the list, * but never deleted. */ #define list_for_each_entry_lockless(pos, head, member) \ for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry_lockless(pos->member.next, typeof(*pos), member)) /** * list_for_each_entry_continue_rcu - continue iteration over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Continue to iterate over list of given type, continuing after * the current position which must have been in the list when the RCU read * lock was taken. * This would typically require either that you obtained the node from a * previous walk of the list in the same RCU read-side critical section, or * that you held some sort of non-RCU reference (such as a reference count) * to keep the node alive *and* in the list. * * This iterator is similar to list_for_each_entry_from_rcu() except * this starts after the given position and that one starts at the given * position. */ #define list_for_each_entry_continue_rcu(pos, head, member) \ for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) /** * list_for_each_entry_from_rcu - iterate over a list from current point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_node within the struct. * * Iterate over the tail of a list starting from a given position, * which must have been in the list when the RCU read lock was taken. * This would typically require either that you obtained the node from a * previous walk of the list in the same RCU read-side critical section, or * that you held some sort of non-RCU reference (such as a reference count) * to keep the node alive *and* in the list. * * This iterator is similar to list_for_each_entry_continue_rcu() except * this starts from the given position and that one starts from the position * after the given position. */ #define list_for_each_entry_from_rcu(pos, head, member) \ for (; &(pos)->member != (head); \ pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member)) /** * hlist_del_rcu - deletes entry from hash list without re-initialization * @n: the element to delete from the hash list. * * Note: list_unhashed() on entry does not return true after this, * the entry is in an undefined state. It is useful for RCU based * lockfree traversal. * * In particular, it means that we can not poison the forward * pointers that may still be used for walking the hash list. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry(). */ static inline void hlist_del_rcu(struct hlist_node *n) { __hlist_del(n); WRITE_ONCE(n->pprev, LIST_POISON2); } /** * hlist_replace_rcu - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * The @old entry will be replaced with the @new entry atomically. */ static inline void hlist_replace_rcu(struct hlist_node *old, struct hlist_node *new) { struct hlist_node *next = old->next; new->next = next; WRITE_ONCE(new->pprev, old->pprev); rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new); if (next) WRITE_ONCE(new->next->pprev, &new->next); WRITE_ONCE(old->pprev, LIST_POISON2); } /** * hlists_swap_heads_rcu - swap the lists the hlist heads point to * @left: The hlist head on the left * @right: The hlist head on the right * * The lists start out as [@left ][node1 ... ] and * [@right ][node2 ... ] * The lists end up as [@left ][node2 ... ] * [@right ][node1 ... ] */ static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right) { struct hlist_node *node1 = left->first; struct hlist_node *node2 = right->first; rcu_assign_pointer(left->first, node2); rcu_assign_pointer(right->first, node1); WRITE_ONCE(node2->pprev, &left->first); WRITE_ONCE(node1->pprev, &right->first); } /* * return the first or the next element in an RCU protected hlist */ #define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first))) #define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next))) #define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev))) /** * hlist_add_head_rcu * @n: the element to add to the hash list. * @h: the list to add to. * * Description: * Adds the specified element to the specified hlist, * while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. Regardless of the type of CPU, the * list-traversal primitive must be guarded by rcu_read_lock(). */ static inline void hlist_add_head_rcu(struct hlist_node *n, struct hlist_head *h) { struct hlist_node *first = h->first; n->next = first; WRITE_ONCE(n->pprev, &h->first); rcu_assign_pointer(hlist_first_rcu(h), n); if (first) WRITE_ONCE(first->pprev, &n->next); } /** * hlist_add_tail_rcu * @n: the element to add to the hash list. * @h: the list to add to. * * Description: * Adds the specified element to the specified hlist, * while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. Regardless of the type of CPU, the * list-traversal primitive must be guarded by rcu_read_lock(). */ static inline void hlist_add_tail_rcu(struct hlist_node *n, struct hlist_head *h) { struct hlist_node *i, *last = NULL; /* Note: write side code, so rcu accessors are not needed. */ for (i = h->first; i; i = i->next) last = i; if (last) { n->next = last->next; WRITE_ONCE(n->pprev, &last->next); rcu_assign_pointer(hlist_next_rcu(last), n); } else { hlist_add_head_rcu(n, h); } } /** * hlist_add_before_rcu * @n: the new element to add to the hash list. * @next: the existing element to add the new element before. * * Description: * Adds the specified element to the specified hlist * before the specified node while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. */ static inline void hlist_add_before_rcu(struct hlist_node *n, struct hlist_node *next) { WRITE_ONCE(n->pprev, next->pprev); n->next = next; rcu_assign_pointer(hlist_pprev_rcu(n), n); WRITE_ONCE(next->pprev, &n->next); } /** * hlist_add_behind_rcu * @n: the new element to add to the hash list. * @prev: the existing element to add the new element after. * * Description: * Adds the specified element to the specified hlist * after the specified node while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. */ static inline void hlist_add_behind_rcu(struct hlist_node *n, struct hlist_node *prev) { n->next = prev->next; WRITE_ONCE(n->pprev, &prev->next); rcu_assign_pointer(hlist_next_rcu(prev), n); if (n->next) WRITE_ONCE(n->next->pprev, &n->next); } #define __hlist_for_each_rcu(pos, head) \ for (pos = rcu_dereference(hlist_first_rcu(head)); \ pos; \ pos = rcu_dereference(hlist_next_rcu(pos))) /** * hlist_for_each_entry_rcu - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * @cond: optional lockdep expression if called from non-RCU protection. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as hlist_add_head_rcu() * as long as the traversal is guarded by rcu_read_lock(). */ #define hlist_for_each_entry_rcu(pos, head, member, cond...) \ for (__list_check_rcu(dummy, ## cond, 0), \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_srcu - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * @cond: lockdep expression for the lock required to traverse the list. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as hlist_add_head_rcu() * as long as the traversal is guarded by srcu_read_lock(). * The lockdep expression srcu_read_lock_held() can be passed as the * cond argument from read side. */ #define hlist_for_each_entry_srcu(pos, head, member, cond) \ for (__list_check_srcu(cond), \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing) * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as hlist_add_head_rcu() * as long as the traversal is guarded by rcu_read_lock(). * * This is the same as hlist_for_each_entry_rcu() except that it does * not do any RCU debugging or tracing. */ #define hlist_for_each_entry_rcu_notrace(pos, head, member) \ for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\ typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as hlist_add_head_rcu() * as long as the traversal is guarded by rcu_read_lock(). */ #define hlist_for_each_entry_rcu_bh(pos, head, member) \ for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\ typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_continue_rcu(pos, member) \ for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_continue_rcu_bh(pos, member) \ for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_from_rcu(pos, member) \ for (; pos; \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member)) #endif /* __KERNEL__ */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* memcontrol.h - Memory Controller * * Copyright IBM Corporation, 2007 * Author Balbir Singh <balbir@linux.vnet.ibm.com> * * Copyright 2007 OpenVZ SWsoft Inc * Author: Pavel Emelianov <xemul@openvz.org> */ #ifndef _LINUX_MEMCONTROL_H #define _LINUX_MEMCONTROL_H #include <linux/cgroup.h> #include <linux/vm_event_item.h> #include <linux/hardirq.h> #include <linux/jump_label.h> #include <linux/page_counter.h> #include <linux/vmpressure.h> #include <linux/eventfd.h> #include <linux/mm.h> #include <linux/vmstat.h> #include <linux/writeback.h> #include <linux/page-flags.h> struct mem_cgroup; struct obj_cgroup; struct page; struct mm_struct; struct kmem_cache; /* Cgroup-specific page state, on top of universal node page state */ enum memcg_stat_item { MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, MEMCG_SOCK, MEMCG_PERCPU_B, MEMCG_NR_STAT, }; enum memcg_memory_event { MEMCG_LOW, MEMCG_HIGH, MEMCG_MAX, MEMCG_OOM, MEMCG_OOM_KILL, MEMCG_SWAP_HIGH, MEMCG_SWAP_MAX, MEMCG_SWAP_FAIL, MEMCG_NR_MEMORY_EVENTS, }; struct mem_cgroup_reclaim_cookie { pg_data_t *pgdat; unsigned int generation; }; #ifdef CONFIG_MEMCG #define MEM_CGROUP_ID_SHIFT 16 #define MEM_CGROUP_ID_MAX USHRT_MAX struct mem_cgroup_id { int id; refcount_t ref; }; /* * Per memcg event counter is incremented at every pagein/pageout. With THP, * it will be incremented by the number of pages. This counter is used * to trigger some periodic events. This is straightforward and better * than using jiffies etc. to handle periodic memcg event. */ enum mem_cgroup_events_target { MEM_CGROUP_TARGET_THRESH, MEM_CGROUP_TARGET_SOFTLIMIT, MEM_CGROUP_NTARGETS, }; struct memcg_vmstats_percpu { long stat[MEMCG_NR_STAT]; unsigned long events[NR_VM_EVENT_ITEMS]; unsigned long nr_page_events; unsigned long targets[MEM_CGROUP_NTARGETS]; }; struct mem_cgroup_reclaim_iter { struct mem_cgroup *position; /* scan generation, increased every round-trip */ unsigned int generation; }; struct lruvec_stat { long count[NR_VM_NODE_STAT_ITEMS]; }; /* * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, * which have elements charged to this memcg. */ struct memcg_shrinker_map { struct rcu_head rcu; unsigned long map[]; }; /* * per-node information in memory controller. */ struct mem_cgroup_per_node { struct lruvec lruvec; /* Legacy local VM stats */ struct lruvec_stat __percpu *lruvec_stat_local; /* Subtree VM stats (batched updates) */ struct lruvec_stat __percpu *lruvec_stat_cpu; atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; struct mem_cgroup_reclaim_iter iter; struct memcg_shrinker_map __rcu *shrinker_map; struct rb_node tree_node; /* RB tree node */ unsigned long usage_in_excess;/* Set to the value by which */ /* the soft limit is exceeded*/ bool on_tree; struct mem_cgroup *memcg; /* Back pointer, we cannot */ /* use container_of */ }; struct mem_cgroup_threshold { struct eventfd_ctx *eventfd; unsigned long threshold; }; /* For threshold */ struct mem_cgroup_threshold_ary { /* An array index points to threshold just below or equal to usage. */ int current_threshold; /* Size of entries[] */ unsigned int size; /* Array of thresholds */ struct mem_cgroup_threshold entries[]; }; struct mem_cgroup_thresholds { /* Primary thresholds array */ struct mem_cgroup_threshold_ary *primary; /* * Spare threshold array. * This is needed to make mem_cgroup_unregister_event() "never fail". * It must be able to store at least primary->size - 1 entries. */ struct mem_cgroup_threshold_ary *spare; }; enum memcg_kmem_state { KMEM_NONE, KMEM_ALLOCATED, KMEM_ONLINE, }; #if defined(CONFIG_SMP) struct memcg_padding { char x[0]; } ____cacheline_internodealigned_in_smp; #define MEMCG_PADDING(name) struct memcg_padding name; #else #define MEMCG_PADDING(name) #endif /* * Remember four most recent foreign writebacks with dirty pages in this * cgroup. Inode sharing is expected to be uncommon and, even if we miss * one in a given round, we're likely to catch it later if it keeps * foreign-dirtying, so a fairly low count should be enough. * * See mem_cgroup_track_foreign_dirty_slowpath() for details. */ #define MEMCG_CGWB_FRN_CNT 4 struct memcg_cgwb_frn { u64 bdi_id; /* bdi->id of the foreign inode */ int memcg_id; /* memcg->css.id of foreign inode */ u64 at; /* jiffies_64 at the time of dirtying */ struct wb_completion done; /* tracks in-flight foreign writebacks */ }; /* * Bucket for arbitrarily byte-sized objects charged to a memory * cgroup. The bucket can be reparented in one piece when the cgroup * is destroyed, without having to round up the individual references * of all live memory objects in the wild. */ struct obj_cgroup { struct percpu_ref refcnt; struct mem_cgroup *memcg; atomic_t nr_charged_bytes; union { struct list_head list; struct rcu_head rcu; }; }; /* * The memory controller data structure. The memory controller controls both * page cache and RSS per cgroup. We would eventually like to provide * statistics based on the statistics developed by Rik Van Riel for clock-pro, * to help the administrator determine what knobs to tune. */ struct mem_cgroup { struct cgroup_subsys_state css; /* Private memcg ID. Used to ID objects that outlive the cgroup */ struct mem_cgroup_id id; /* Accounted resources */ struct page_counter memory; /* Both v1 & v2 */ union { struct page_counter swap; /* v2 only */ struct page_counter memsw; /* v1 only */ }; /* Legacy consumer-oriented counters */ struct page_counter kmem; /* v1 only */ struct page_counter tcpmem; /* v1 only */ /* Range enforcement for interrupt charges */ struct work_struct high_work; unsigned long soft_limit; /* vmpressure notifications */ struct vmpressure vmpressure; /* * Should the accounting and control be hierarchical, per subtree? */ bool use_hierarchy; /* * Should the OOM killer kill all belonging tasks, had it kill one? */ bool oom_group; /* protected by memcg_oom_lock */ bool oom_lock; int under_oom; int swappiness; /* OOM-Killer disable */ int oom_kill_disable; /* memory.events and memory.events.local */ struct cgroup_file events_file; struct cgroup_file events_local_file; /* handle for "memory.swap.events" */ struct cgroup_file swap_events_file; /* protect arrays of thresholds */ struct mutex thresholds_lock; /* thresholds for memory usage. RCU-protected */ struct mem_cgroup_thresholds thresholds; /* thresholds for mem+swap usage. RCU-protected */ struct mem_cgroup_thresholds memsw_thresholds; /* For oom notifier event fd */ struct list_head oom_notify; /* * Should we move charges of a task when a task is moved into this * mem_cgroup ? And what type of charges should we move ? */ unsigned long move_charge_at_immigrate; /* taken only while moving_account > 0 */ spinlock_t move_lock; unsigned long move_lock_flags; MEMCG_PADDING(_pad1_); atomic_long_t vmstats[MEMCG_NR_STAT]; atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; /* memory.events */ atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; unsigned long socket_pressure; /* Legacy tcp memory accounting */ bool tcpmem_active; int tcpmem_pressure; #ifdef CONFIG_MEMCG_KMEM /* Index in the kmem_cache->memcg_params.memcg_caches array */ int kmemcg_id; enum memcg_kmem_state kmem_state; struct obj_cgroup __rcu *objcg; struct list_head objcg_list; /* list of inherited objcgs */ #endif MEMCG_PADDING(_pad2_); /* * set > 0 if pages under this cgroup are moving to other cgroup. */ atomic_t moving_account; struct task_struct *move_lock_task; /* Legacy local VM stats and events */ struct memcg_vmstats_percpu __percpu *vmstats_local; /* Subtree VM stats and events (batched updates) */ struct memcg_vmstats_percpu __percpu *vmstats_percpu; #ifdef CONFIG_CGROUP_WRITEBACK struct list_head cgwb_list; struct wb_domain cgwb_domain; struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; #endif /* List of events which userspace want to receive */ struct list_head event_list; spinlock_t event_list_lock; #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct deferred_split deferred_split_queue; #endif struct mem_cgroup_per_node *nodeinfo[0]; /* WARNING: nodeinfo must be the last member here */ }; /* * size of first charge trial. "32" comes from vmscan.c's magic value. * TODO: maybe necessary to use big numbers in big irons. */ #define MEMCG_CHARGE_BATCH 32U extern struct mem_cgroup *root_mem_cgroup; static __always_inline bool memcg_stat_item_in_bytes(int idx) { if (idx == MEMCG_PERCPU_B) return true; return vmstat_item_in_bytes(idx); } static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return (memcg == root_mem_cgroup); } static inline bool mem_cgroup_disabled(void) { return !cgroup_subsys_enabled(memory_cgrp_subsys); } static inline void mem_cgroup_protection(struct mem_cgroup *root, struct mem_cgroup *memcg, unsigned long *min, unsigned long *low) { *min = *low = 0; if (mem_cgroup_disabled()) return; /* * There is no reclaim protection applied to a targeted reclaim. * We are special casing this specific case here because * mem_cgroup_protected calculation is not robust enough to keep * the protection invariant for calculated effective values for * parallel reclaimers with different reclaim target. This is * especially a problem for tail memcgs (as they have pages on LRU) * which would want to have effective values 0 for targeted reclaim * but a different value for external reclaim. * * Example * Let's have global and A's reclaim in parallel: * | * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) * |\ * | C (low = 1G, usage = 2.5G) * B (low = 1G, usage = 0.5G) * * For the global reclaim * A.elow = A.low * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow * C.elow = min(C.usage, C.low) * * With the effective values resetting we have A reclaim * A.elow = 0 * B.elow = B.low * C.elow = C.low * * If the global reclaim races with A's reclaim then * B.elow = C.elow = 0 because children_low_usage > A.elow) * is possible and reclaiming B would be violating the protection. * */ if (root == memcg) return; *min = READ_ONCE(memcg->memory.emin); *low = READ_ONCE(memcg->memory.elow); } void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg); static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) { /* * The root memcg doesn't account charges, and doesn't support * protection. */ return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); } static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) { if (!mem_cgroup_supports_protection(memcg)) return false; return READ_ONCE(memcg->memory.elow) >= page_counter_read(&memcg->memory); } static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) { if (!mem_cgroup_supports_protection(memcg)) return false; return READ_ONCE(memcg->memory.emin) >= page_counter_read(&memcg->memory); } int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); void mem_cgroup_uncharge(struct page *page); void mem_cgroup_uncharge_list(struct list_head *page_list); void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); static struct mem_cgroup_per_node * mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) { return memcg->nodeinfo[nid]; } /** * mem_cgroup_lruvec - get the lru list vector for a memcg & node * @memcg: memcg of the wanted lruvec * * Returns the lru list vector holding pages for a given @memcg & * @node combination. This can be the node lruvec, if the memory * controller is disabled. */ static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, struct pglist_data *pgdat) { struct mem_cgroup_per_node *mz; struct lruvec *lruvec; if (mem_cgroup_disabled()) { lruvec = &pgdat->__lruvec; goto out; } if (!memcg) memcg = root_mem_cgroup; mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); lruvec = &mz->lruvec; out: /* * Since a node can be onlined after the mem_cgroup was created, * we have to be prepared to initialize lruvec->pgdat here; * and if offlined then reonlined, we need to reinitialize it. */ if (unlikely(lruvec->pgdat != pgdat)) lruvec->pgdat = pgdat; return lruvec; } struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); static inline struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ return css ? container_of(css, struct mem_cgroup, css) : NULL; } static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) { return percpu_ref_tryget(&objcg->refcnt); } static inline void obj_cgroup_get(struct obj_cgroup *objcg) { percpu_ref_get(&objcg->refcnt); } static inline void obj_cgroup_put(struct obj_cgroup *objcg) { percpu_ref_put(&objcg->refcnt); } /* * After the initialization objcg->memcg is always pointing at * a valid memcg, but can be atomically swapped to the parent memcg. * * The caller must ensure that the returned memcg won't be released: * e.g. acquire the rcu_read_lock or css_set_lock. */ static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) { return READ_ONCE(objcg->memcg); } static inline void mem_cgroup_put(struct mem_cgroup *memcg) { if (memcg) css_put(&memcg->css); } #define mem_cgroup_from_counter(counter, member) \ container_of(counter, struct mem_cgroup, member) struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, struct mem_cgroup *, struct mem_cgroup_reclaim_cookie *); void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); int mem_cgroup_scan_tasks(struct mem_cgroup *, int (*)(struct task_struct *, void *), void *); static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return 0; return memcg->id.id; } struct mem_cgroup *mem_cgroup_from_id(unsigned short id); static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) { return mem_cgroup_from_css(seq_css(m)); } static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) { struct mem_cgroup_per_node *mz; if (mem_cgroup_disabled()) return NULL; mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return mz->memcg; } /** * parent_mem_cgroup - find the accounting parent of a memcg * @memcg: memcg whose parent to find * * Returns the parent memcg, or NULL if this is the root or the memory * controller is in legacy no-hierarchy mode. */ static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { if (!memcg->memory.parent) return NULL; return mem_cgroup_from_counter(memcg->memory.parent, memory); } static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root) { if (root == memcg) return true; if (!root->use_hierarchy) return false; return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { struct mem_cgroup *task_memcg; bool match = false; rcu_read_lock(); task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (task_memcg) match = mem_cgroup_is_descendant(task_memcg, memcg); rcu_read_unlock(); return match; } struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); ino_t page_cgroup_ino(struct page *page); static inline bool mem_cgroup_online(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return true; return !!(memcg->css.flags & CSS_ONLINE); } /* * For memory reclaim. */ int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, int zid, int nr_pages); static inline unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { struct mem_cgroup_per_node *mz; mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); } void mem_cgroup_handle_over_high(void); unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); unsigned long mem_cgroup_size(struct mem_cgroup *memcg); void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p); void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); static inline void mem_cgroup_enter_user_fault(void) { WARN_ON(current->in_user_fault); current->in_user_fault = 1; } static inline void mem_cgroup_exit_user_fault(void) { WARN_ON(!current->in_user_fault); current->in_user_fault = 0; } static inline bool task_in_memcg_oom(struct task_struct *p) { return p->memcg_in_oom; } bool mem_cgroup_oom_synchronize(bool wait); struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, struct mem_cgroup *oom_domain); void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); #ifdef CONFIG_MEMCG_SWAP extern bool cgroup_memory_noswap; #endif struct mem_cgroup *lock_page_memcg(struct page *page); void __unlock_page_memcg(struct mem_cgroup *memcg); void unlock_page_memcg(struct page *page); /* * idx can be of type enum memcg_stat_item or node_stat_item. * Keep in sync with memcg_exact_page_state(). */ static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) { long x = atomic_long_read(&memcg->vmstats[idx]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } /* * idx can be of type enum memcg_stat_item or node_stat_item. * Keep in sync with memcg_exact_page_state(). */ static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) { long x = 0; int cpu; for_each_possible_cpu(cpu) x += per_cpu(memcg->vmstats_local->stat[idx], cpu); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) { unsigned long flags; local_irq_save(flags); __mod_memcg_state(memcg, idx, val); local_irq_restore(flags); } /** * mod_memcg_page_state - update page state statistics * @page: the page * @idx: page state item to account * @val: number of pages (positive or negative) * * The @page must be locked or the caller must use lock_page_memcg() * to prevent double accounting when the page is concurrently being * moved to another memcg: * * lock_page(page) or lock_page_memcg(page) * if (TestClearPageState(page)) * mod_memcg_page_state(page, state, -1); * unlock_page(page) or unlock_page_memcg(page) * * Kernel pages are an exception to this, since they'll never move. */ static inline void __mod_memcg_page_state(struct page *page, int idx, int val) { if (page->mem_cgroup) __mod_memcg_state(page->mem_cgroup, idx, val); } static inline void mod_memcg_page_state(struct page *page, int idx, int val) { if (page->mem_cgroup) mod_memcg_state(page->mem_cgroup, idx, val); } static inline unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) { struct mem_cgroup_per_node *pn; long x; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); x = atomic_long_read(&pn->lruvec_stat[idx]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, enum node_stat_item idx) { struct mem_cgroup_per_node *pn; long x = 0; int cpu; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); for_each_possible_cpu(cpu) x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val); void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val); void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); void mod_memcg_obj_state(void *p, int idx, int val); static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_slab_state(p, idx, val); local_irq_restore(flags); } static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_memcg_lruvec_state(lruvec, idx, val); local_irq_restore(flags); } static inline void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_state(lruvec, idx, val); local_irq_restore(flags); } static inline void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { struct page *head = compound_head(page); /* rmap on tail pages */ pg_data_t *pgdat = page_pgdat(page); struct lruvec *lruvec; /* Untracked pages have no memcg, no lruvec. Update only the node */ if (!head->mem_cgroup) { __mod_node_page_state(pgdat, idx, val); return; } lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat); __mod_lruvec_state(lruvec, idx, val); } static inline void mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_page_state(page, idx, val); local_irq_restore(flags); } unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned); void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count); static inline void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { unsigned long flags; local_irq_save(flags); __count_memcg_events(memcg, idx, count); local_irq_restore(flags); } static inline void count_memcg_page_event(struct page *page, enum vm_event_item idx) { if (page->mem_cgroup) count_memcg_events(page->mem_cgroup, idx, 1); } static inline void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) { struct mem_cgroup *memcg; if (mem_cgroup_disabled()) return; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (likely(memcg)) count_memcg_events(memcg, idx, 1); rcu_read_unlock(); } static inline void memcg_memory_event(struct mem_cgroup *memcg, enum memcg_memory_event event) { bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || event == MEMCG_SWAP_FAIL; atomic_long_inc(&memcg->memory_events_local[event]); if (!swap_event) cgroup_file_notify(&memcg->events_local_file); do { atomic_long_inc(&memcg->memory_events[event]); if (swap_event) cgroup_file_notify(&memcg->swap_events_file); else cgroup_file_notify(&memcg->events_file); if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) break; if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) break; } while ((memcg = parent_mem_cgroup(memcg)) && !mem_cgroup_is_root(memcg)); } static inline void memcg_memory_event_mm(struct mm_struct *mm, enum memcg_memory_event event) { struct mem_cgroup *memcg; if (mem_cgroup_disabled()) return; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (likely(memcg)) memcg_memory_event(memcg, event); rcu_read_unlock(); } void split_page_memcg(struct page *head, unsigned int nr); #else /* CONFIG_MEMCG */ #define MEM_CGROUP_ID_SHIFT 0 #define MEM_CGROUP_ID_MAX 0 struct mem_cgroup; static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return true; } static inline bool mem_cgroup_disabled(void) { return true; } static inline void memcg_memory_event(struct mem_cgroup *memcg, enum memcg_memory_event event) { } static inline void memcg_memory_event_mm(struct mm_struct *mm, enum memcg_memory_event event) { } static inline void mem_cgroup_protection(struct mem_cgroup *root, struct mem_cgroup *memcg, unsigned long *min, unsigned long *low) { *min = *low = 0; } static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg) { } static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) { return false; } static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) { return false; } static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { return 0; } static inline void mem_cgroup_uncharge(struct page *page) { } static inline void mem_cgroup_uncharge_list(struct list_head *page_list) { } static inline void mem_cgroup_migrate(struct page *old, struct page *new) { } static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, struct pglist_data *pgdat) { return &pgdat->__lruvec; } static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) { return &pgdat->__lruvec; } static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { return NULL; } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { return true; } static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) { return NULL; } static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) { return NULL; } static inline void mem_cgroup_put(struct mem_cgroup *memcg) { } static inline struct mem_cgroup * mem_cgroup_iter(struct mem_cgroup *root, struct mem_cgroup *prev, struct mem_cgroup_reclaim_cookie *reclaim) { return NULL; } static inline void mem_cgroup_iter_break(struct mem_cgroup *root, struct mem_cgroup *prev) { } static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, int (*fn)(struct task_struct *, void *), void *arg) { return 0; } static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) { return 0; } static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) { WARN_ON_ONCE(id); /* XXX: This should always return root_mem_cgroup */ return NULL; } static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) { return NULL; } static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) { return NULL; } static inline bool mem_cgroup_online(struct mem_cgroup *memcg) { return true; } static inline unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { return 0; } static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) { return 0; } static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) { return 0; } static inline void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) { } static inline void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) { } static inline struct mem_cgroup *lock_page_memcg(struct page *page) { return NULL; } static inline void __unlock_page_memcg(struct mem_cgroup *memcg) { } static inline void unlock_page_memcg(struct page *page) { } static inline void mem_cgroup_handle_over_high(void) { } static inline void mem_cgroup_enter_user_fault(void) { } static inline void mem_cgroup_exit_user_fault(void) { } static inline bool task_in_memcg_oom(struct task_struct *p) { return false; } static inline bool mem_cgroup_oom_synchronize(bool wait) { return false; } static inline struct mem_cgroup *mem_cgroup_get_oom_group( struct task_struct *victim, struct mem_cgroup *oom_domain) { return NULL; } static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) { } static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) { return 0; } static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) { return 0; } static inline void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int nr) { } static inline void mod_memcg_state(struct mem_cgroup *memcg, int idx, int nr) { } static inline void __mod_memcg_page_state(struct page *page, int idx, int nr) { } static inline void mod_memcg_page_state(struct page *page, int idx, int nr) { } static inline unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) { return node_page_state(lruvec_pgdat(lruvec), idx); } static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, enum node_stat_item idx) { return node_page_state(lruvec_pgdat(lruvec), idx); } static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { } static inline void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); } static inline void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { mod_node_page_state(lruvec_pgdat(lruvec), idx, val); } static inline void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { __mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { mod_node_page_state(page_pgdat(page), idx, val); } static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) { struct page *page = virt_to_head_page(p); __mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) { struct page *page = virt_to_head_page(p); mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_memcg_obj_state(void *p, int idx, int val) { } static inline unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned) { return 0; } static inline void split_page_memcg(struct page *head, unsigned int nr) { } static inline void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { } static inline void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { } static inline void count_memcg_page_event(struct page *page, int idx) { } static inline void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) { } #endif /* CONFIG_MEMCG */ /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __inc_memcg_state(struct mem_cgroup *memcg, int idx) { __mod_memcg_state(memcg, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __dec_memcg_state(struct mem_cgroup *memcg, int idx) { __mod_memcg_state(memcg, idx, -1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __inc_memcg_page_state(struct page *page, int idx) { __mod_memcg_page_state(page, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __dec_memcg_page_state(struct page *page, int idx) { __mod_memcg_page_state(page, idx, -1); } static inline void __inc_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { __mod_lruvec_state(lruvec, idx, 1); } static inline void __dec_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { __mod_lruvec_state(lruvec, idx, -1); } static inline void __inc_lruvec_page_state(struct page *page, enum node_stat_item idx) { __mod_lruvec_page_state(page, idx, 1); } static inline void __dec_lruvec_page_state(struct page *page, enum node_stat_item idx) { __mod_lruvec_page_state(page, idx, -1); } static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx) { __mod_lruvec_slab_state(p, idx, 1); } static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx) { __mod_lruvec_slab_state(p, idx, -1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void inc_memcg_state(struct mem_cgroup *memcg, int idx) { mod_memcg_state(memcg, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void dec_memcg_state(struct mem_cgroup *memcg, int idx) { mod_memcg_state(memcg, idx, -1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void inc_memcg_page_state(struct page *page, int idx) { mod_memcg_page_state(page, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void dec_memcg_page_state(struct page *page, int idx) { mod_memcg_page_state(page, idx, -1); } static inline void inc_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { mod_lruvec_state(lruvec, idx, 1); } static inline void dec_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { mod_lruvec_state(lruvec, idx, -1); } static inline void inc_lruvec_page_state(struct page *page, enum node_stat_item idx) { mod_lruvec_page_state(page, idx, 1); } static inline void dec_lruvec_page_state(struct page *page, enum node_stat_item idx) { mod_lruvec_page_state(page, idx, -1); } static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) { struct mem_cgroup *memcg; memcg = lruvec_memcg(lruvec); if (!memcg) return NULL; memcg = parent_mem_cgroup(memcg); if (!memcg) return NULL; return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); } #ifdef CONFIG_CGROUP_WRITEBACK struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, unsigned long *pheadroom, unsigned long *pdirty, unsigned long *pwriteback); void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, struct bdi_writeback *wb); static inline void mem_cgroup_track_foreign_dirty(struct page *page, struct bdi_writeback *wb) { if (mem_cgroup_disabled()) return; if (unlikely(&page->mem_cgroup->css != wb->memcg_css)) mem_cgroup_track_foreign_dirty_slowpath(page, wb); } void mem_cgroup_flush_foreign(struct bdi_writeback *wb); #else /* CONFIG_CGROUP_WRITEBACK */ static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) { return NULL; } static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, unsigned long *pheadroom, unsigned long *pdirty, unsigned long *pwriteback) { } static inline void mem_cgroup_track_foreign_dirty(struct page *page, struct bdi_writeback *wb) { } static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) { } #endif /* CONFIG_CGROUP_WRITEBACK */ struct sock; bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); #ifdef CONFIG_MEMCG extern struct static_key_false memcg_sockets_enabled_key; #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) void mem_cgroup_sk_alloc(struct sock *sk); void mem_cgroup_sk_free(struct sock *sk); static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) { if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) return true; do { if (time_before(jiffies, memcg->socket_pressure)) return true; } while ((memcg = parent_mem_cgroup(memcg))); return false; } extern int memcg_expand_shrinker_maps(int new_id); extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); #else #define mem_cgroup_sockets_enabled 0 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; static inline void mem_cgroup_sk_free(struct sock *sk) { }; static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) { return false; } static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) { } #endif #ifdef CONFIG_MEMCG_KMEM int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, unsigned int nr_pages); void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); void __memcg_kmem_uncharge_page(struct page *page, int order); struct obj_cgroup *get_obj_cgroup_from_current(void); int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); extern struct static_key_false memcg_kmem_enabled_key; extern int memcg_nr_cache_ids; void memcg_get_cache_ids(void); void memcg_put_cache_ids(void); /* * Helper macro to loop through all memcg-specific caches. Callers must still * check if the cache is valid (it is either valid or NULL). * the slab_mutex must be held when looping through those caches */ #define for_each_memcg_cache_index(_idx) \ for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) static inline bool memcg_kmem_enabled(void) { return static_branch_likely(&memcg_kmem_enabled_key); } static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { if (memcg_kmem_enabled()) return __memcg_kmem_charge_page(page, gfp, order); return 0; } static inline void memcg_kmem_uncharge_page(struct page *page, int order) { if (memcg_kmem_enabled()) __memcg_kmem_uncharge_page(page, order); } static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, unsigned int nr_pages) { if (memcg_kmem_enabled()) return __memcg_kmem_charge(memcg, gfp, nr_pages); return 0; } static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) { if (memcg_kmem_enabled()) __memcg_kmem_uncharge(memcg, nr_pages); } /* * helper for accessing a memcg's index. It will be used as an index in the * child cache array in kmem_cache, and also to derive its name. This function * will return -1 when this is not a kmem-limited memcg. */ static inline int memcg_cache_id(struct mem_cgroup *memcg) { return memcg ? memcg->kmemcg_id : -1; } struct mem_cgroup *mem_cgroup_from_obj(void *p); #else static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { return 0; } static inline void memcg_kmem_uncharge_page(struct page *page, int order) { } static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { return 0; } static inline void __memcg_kmem_uncharge_page(struct page *page, int order) { } #define for_each_memcg_cache_index(_idx) \ for (; NULL; ) static inline bool memcg_kmem_enabled(void) { return false; } static inline int memcg_cache_id(struct mem_cgroup *memcg) { return -1; } static inline void memcg_get_cache_ids(void) { } static inline void memcg_put_cache_ids(void) { } static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) { return NULL; } #endif /* CONFIG_MEMCG_KMEM */ #endif /* _LINUX_MEMCONTROL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_SIGNAL_H #define _LINUX_SCHED_SIGNAL_H #include <linux/rculist.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/sched/jobctl.h> #include <linux/sched/task.h> #include <linux/cred.h> #include <linux/refcount.h> #include <linux/posix-timers.h> #include <linux/mm_types.h> #include <asm/ptrace.h> /* * Types defining task->signal and task->sighand and APIs using them: */ struct sighand_struct { spinlock_t siglock; refcount_t count; wait_queue_head_t signalfd_wqh; struct k_sigaction action[_NSIG]; }; /* * Per-process accounting stats: */ struct pacct_struct { int ac_flag; long ac_exitcode; unsigned long ac_mem; u64 ac_utime, ac_stime; unsigned long ac_minflt, ac_majflt; }; struct cpu_itimer { u64 expires; u64 incr; }; /* * This is the atomic variant of task_cputime, which can be used for * storing and updating task_cputime statistics without locking. */ struct task_cputime_atomic { atomic64_t utime; atomic64_t stime; atomic64_t sum_exec_runtime; }; #define INIT_CPUTIME_ATOMIC \ (struct task_cputime_atomic) { \ .utime = ATOMIC64_INIT(0), \ .stime = ATOMIC64_INIT(0), \ .sum_exec_runtime = ATOMIC64_INIT(0), \ } /** * struct thread_group_cputimer - thread group interval timer counts * @cputime_atomic: atomic thread group interval timers. * * This structure contains the version of task_cputime, above, that is * used for thread group CPU timer calculations. */ struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic; }; struct multiprocess_signals { sigset_t signal; struct hlist_node node; }; /* * NOTE! "signal_struct" does not have its own * locking, because a shared signal_struct always * implies a shared sighand_struct, so locking * sighand_struct is always a proper superset of * the locking of signal_struct. */ struct signal_struct { refcount_t sigcnt; atomic_t live; int nr_threads; struct list_head thread_head; wait_queue_head_t wait_chldexit; /* for wait4() */ /* current thread group signal load-balancing target: */ struct task_struct *curr_target; /* shared signal handling: */ struct sigpending shared_pending; /* For collecting multiprocess signals during fork */ struct hlist_head multiprocess; /* thread group exit support */ int group_exit_code; /* overloaded: * - notify group_exit_task when ->count is equal to notify_count * - everyone except group_exit_task is stopped during signal delivery * of fatal signals, group_exit_task processes the signal. */ int notify_count; struct task_struct *group_exit_task; /* thread group stop support, overloads group_exit_code too */ int group_stop_count; unsigned int flags; /* see SIGNAL_* flags below */ /* * PR_SET_CHILD_SUBREAPER marks a process, like a service * manager, to re-parent orphan (double-forking) child processes * to this process instead of 'init'. The service manager is * able to receive SIGCHLD signals and is able to investigate * the process until it calls wait(). All children of this * process will inherit a flag if they should look for a * child_subreaper process at exit. */ unsigned int is_child_subreaper:1; unsigned int has_child_subreaper:1; #ifdef CONFIG_POSIX_TIMERS /* POSIX.1b Interval Timers */ int posix_timer_id; struct list_head posix_timers; /* ITIMER_REAL timer for the process */ struct hrtimer real_timer; ktime_t it_real_incr; /* * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these * values are defined to 0 and 1 respectively */ struct cpu_itimer it[2]; /* * Thread group totals for process CPU timers. * See thread_group_cputimer(), et al, for details. */ struct thread_group_cputimer cputimer; #endif /* Empty if CONFIG_POSIX_TIMERS=n */ struct posix_cputimers posix_cputimers; /* PID/PID hash table linkage. */ struct pid *pids[PIDTYPE_MAX]; #ifdef CONFIG_NO_HZ_FULL atomic_t tick_dep_mask; #endif struct pid *tty_old_pgrp; /* boolean value for session group leader */ int leader; struct tty_struct *tty; /* NULL if no tty */ #ifdef CONFIG_SCHED_AUTOGROUP struct autogroup *autogroup; #endif /* * Cumulative resource counters for dead threads in the group, * and for reaped dead child processes forked by this group. * Live threads maintain their own counters and add to these * in __exit_signal, except for the group leader. */ seqlock_t stats_lock; u64 utime, stime, cutime, cstime; u64 gtime; u64 cgtime; struct prev_cputime prev_cputime; unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; unsigned long inblock, oublock, cinblock, coublock; unsigned long maxrss, cmaxrss; struct task_io_accounting ioac; /* * Cumulative ns of schedule CPU time fo dead threads in the * group, not including a zombie group leader, (This only differs * from jiffies_to_ns(utime + stime) if sched_clock uses something * other than jiffies.) */ unsigned long long sum_sched_runtime; /* * We don't bother to synchronize most readers of this at all, * because there is no reader checking a limit that actually needs * to get both rlim_cur and rlim_max atomically, and either one * alone is a single word that can safely be read normally. * getrlimit/setrlimit use task_lock(current->group_leader) to * protect this instead of the siglock, because they really * have no need to disable irqs. */ struct rlimit rlim[RLIM_NLIMITS]; #ifdef CONFIG_BSD_PROCESS_ACCT struct pacct_struct pacct; /* per-process accounting information */ #endif #ifdef CONFIG_TASKSTATS struct taskstats *stats; #endif #ifdef CONFIG_AUDIT unsigned audit_tty; struct tty_audit_buf *tty_audit_buf; #endif /* * Thread is the potential origin of an oom condition; kill first on * oom */ bool oom_flag_origin; short oom_score_adj; /* OOM kill score adjustment */ short oom_score_adj_min; /* OOM kill score adjustment min value. * Only settable by CAP_SYS_RESOURCE. */ struct mm_struct *oom_mm; /* recorded mm when the thread group got * killed by the oom killer */ struct mutex cred_guard_mutex; /* guard against foreign influences on * credential calculations * (notably. ptrace) * Deprecated do not use in new code. * Use exec_update_lock instead. */ struct rw_semaphore exec_update_lock; /* Held while task_struct is * being updated during exec, * and may have inconsistent * permissions. */ } __randomize_layout; /* * Bits in flags field of signal_struct. */ #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ /* * Pending notifications to parent. */ #define SIGNAL_CLD_STOPPED 0x00000010 #define SIGNAL_CLD_CONTINUED 0x00000020 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ SIGNAL_STOP_CONTINUED) static inline void signal_set_stop_flags(struct signal_struct *sig, unsigned int flags) { WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; } /* If true, all threads except ->group_exit_task have pending SIGKILL */ static inline int signal_group_exit(const struct signal_struct *sig) { return (sig->flags & SIGNAL_GROUP_EXIT) || (sig->group_exit_task != NULL); } extern void flush_signals(struct task_struct *); extern void ignore_signals(struct task_struct *); extern void flush_signal_handlers(struct task_struct *, int force_default); extern int dequeue_signal(struct task_struct *task, sigset_t *mask, kernel_siginfo_t *info); static inline int kernel_dequeue_signal(void) { struct task_struct *task = current; kernel_siginfo_t __info; int ret; spin_lock_irq(&task->sighand->siglock); ret = dequeue_signal(task, &task->blocked, &__info); spin_unlock_irq(&task->sighand->siglock); return ret; } static inline void kernel_signal_stop(void) { spin_lock_irq(&current->sighand->siglock); if (current->jobctl & JOBCTL_STOP_DEQUEUED) set_special_state(TASK_STOPPED); spin_unlock_irq(&current->sighand->siglock); schedule(); } #ifdef __ARCH_SI_TRAPNO # define ___ARCH_SI_TRAPNO(_a1) , _a1 #else # define ___ARCH_SI_TRAPNO(_a1) #endif #ifdef __ia64__ # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 #else # define ___ARCH_SI_IA64(_a1, _a2, _a3) #endif int force_sig_fault_to_task(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) , struct task_struct *t); int force_sig_fault(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)); int send_sig_fault(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) , struct task_struct *t); int force_sig_mceerr(int code, void __user *, short); int send_sig_mceerr(int code, void __user *, short, struct task_struct *); int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); int force_sig_pkuerr(void __user *addr, u32 pkey); int force_sig_ptrace_errno_trap(int errno, void __user *addr); extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); extern void force_sigsegv(int sig); extern int force_sig_info(struct kernel_siginfo *); extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, const struct cred *); extern int kill_pgrp(struct pid *pid, int sig, int priv); extern int kill_pid(struct pid *pid, int sig, int priv); extern __must_check bool do_notify_parent(struct task_struct *, int); extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); extern void force_sig(int); extern int send_sig(int, struct task_struct *, int); extern int zap_other_threads(struct task_struct *p); extern struct sigqueue *sigqueue_alloc(void); extern void sigqueue_free(struct sigqueue *); extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); static inline int restart_syscall(void) { set_tsk_thread_flag(current, TIF_SIGPENDING); return -ERESTARTNOINTR; } static inline int signal_pending(struct task_struct *p) { return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); } static inline int __fatal_signal_pending(struct task_struct *p) { return unlikely(sigismember(&p->pending.signal, SIGKILL)); } static inline int fatal_signal_pending(struct task_struct *p) { return signal_pending(p) && __fatal_signal_pending(p); } static inline int signal_pending_state(long state, struct task_struct *p) { if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) return 0; if (!signal_pending(p)) return 0; return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); } /* * This should only be used in fault handlers to decide whether we * should stop the current fault routine to handle the signals * instead, especially with the case where we've got interrupted with * a VM_FAULT_RETRY. */ static inline bool fault_signal_pending(vm_fault_t fault_flags, struct pt_regs *regs) { return unlikely((fault_flags & VM_FAULT_RETRY) && (fatal_signal_pending(current) || (user_mode(regs) && signal_pending(current)))); } /* * Reevaluate whether the task has signals pending delivery. * Wake the task if so. * This is required every time the blocked sigset_t changes. * callers must hold sighand->siglock. */ extern void recalc_sigpending_and_wake(struct task_struct *t); extern void recalc_sigpending(void); extern void calculate_sigpending(void); extern void signal_wake_up_state(struct task_struct *t, unsigned int state); static inline void signal_wake_up(struct task_struct *t, bool resume) { signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); } static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) { signal_wake_up_state(t, resume ? __TASK_TRACED : 0); } void task_join_group_stop(struct task_struct *task); #ifdef TIF_RESTORE_SIGMASK /* * Legacy restore_sigmask accessors. These are inefficient on * SMP architectures because they require atomic operations. */ /** * set_restore_sigmask() - make sure saved_sigmask processing gets done * * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code * will run before returning to user mode, to process the flag. For * all callers, TIF_SIGPENDING is already set or it's no harm to set * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the * arch code will notice on return to user mode, in case those bits * are scarce. We set TIF_SIGPENDING here to ensure that the arch * signal code always gets run when TIF_RESTORE_SIGMASK is set. */ static inline void set_restore_sigmask(void) { set_thread_flag(TIF_RESTORE_SIGMASK); } static inline void clear_tsk_restore_sigmask(struct task_struct *task) { clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); } static inline void clear_restore_sigmask(void) { clear_thread_flag(TIF_RESTORE_SIGMASK); } static inline bool test_tsk_restore_sigmask(struct task_struct *task) { return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); } static inline bool test_restore_sigmask(void) { return test_thread_flag(TIF_RESTORE_SIGMASK); } static inline bool test_and_clear_restore_sigmask(void) { return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); } #else /* TIF_RESTORE_SIGMASK */ /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ static inline void set_restore_sigmask(void) { current->restore_sigmask = true; } static inline void clear_tsk_restore_sigmask(struct task_struct *task) { task->restore_sigmask = false; } static inline void clear_restore_sigmask(void) { current->restore_sigmask = false; } static inline bool test_restore_sigmask(void) { return current->restore_sigmask; } static inline bool test_tsk_restore_sigmask(struct task_struct *task) { return task->restore_sigmask; } static inline bool test_and_clear_restore_sigmask(void) { if (!current->restore_sigmask) return false; current->restore_sigmask = false; return true; } #endif static inline void restore_saved_sigmask(void) { if (test_and_clear_restore_sigmask()) __set_current_blocked(&current->saved_sigmask); } extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); static inline void restore_saved_sigmask_unless(bool interrupted) { if (interrupted) WARN_ON(!test_thread_flag(TIF_SIGPENDING)); else restore_saved_sigmask(); } static inline sigset_t *sigmask_to_save(void) { sigset_t *res = &current->blocked; if (unlikely(test_restore_sigmask())) res = &current->saved_sigmask; return res; } static inline int kill_cad_pid(int sig, int priv) { return kill_pid(cad_pid, sig, priv); } /* These can be the second arg to send_sig_info/send_group_sig_info. */ #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) static inline int __on_sig_stack(unsigned long sp) { #ifdef CONFIG_STACK_GROWSUP return sp >= current->sas_ss_sp && sp - current->sas_ss_sp < current->sas_ss_size; #else return sp > current->sas_ss_sp && sp - current->sas_ss_sp <= current->sas_ss_size; #endif } /* * True if we are on the alternate signal stack. */ static inline int on_sig_stack(unsigned long sp) { /* * If the signal stack is SS_AUTODISARM then, by construction, we * can't be on the signal stack unless user code deliberately set * SS_AUTODISARM when we were already on it. * * This improves reliability: if user state gets corrupted such that * the stack pointer points very close to the end of the signal stack, * then this check will enable the signal to be handled anyway. */ if (current->sas_ss_flags & SS_AUTODISARM) return 0; return __on_sig_stack(sp); } static inline int sas_ss_flags(unsigned long sp) { if (!current->sas_ss_size) return SS_DISABLE; return on_sig_stack(sp) ? SS_ONSTACK : 0; } static inline void sas_ss_reset(struct task_struct *p) { p->sas_ss_sp = 0; p->sas_ss_size = 0; p->sas_ss_flags = SS_DISABLE; } static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) { if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) #ifdef CONFIG_STACK_GROWSUP return current->sas_ss_sp; #else return current->sas_ss_sp + current->sas_ss_size; #endif return sp; } extern void __cleanup_sighand(struct sighand_struct *); extern void flush_itimer_signals(void); #define tasklist_empty() \ list_empty(&init_task.tasks) #define next_task(p) \ list_entry_rcu((p)->tasks.next, struct task_struct, tasks) #define for_each_process(p) \ for (p = &init_task ; (p = next_task(p)) != &init_task ; ) extern bool current_is_single_threaded(void); /* * Careful: do_each_thread/while_each_thread is a double loop so * 'break' will not work as expected - use goto instead. */ #define do_each_thread(g, t) \ for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do #define while_each_thread(g, t) \ while ((t = next_thread(t)) != g) #define __for_each_thread(signal, t) \ list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) #define for_each_thread(p, t) \ __for_each_thread((p)->signal, t) /* Careful: this is a double loop, 'break' won't work as expected. */ #define for_each_process_thread(p, t) \ for_each_process(p) for_each_thread(p, t) typedef int (*proc_visitor)(struct task_struct *p, void *data); void walk_process_tree(struct task_struct *top, proc_visitor, void *); static inline struct pid *task_pid_type(struct task_struct *task, enum pid_type type) { struct pid *pid; if (type == PIDTYPE_PID) pid = task_pid(task); else pid = task->signal->pids[type]; return pid; } static inline struct pid *task_tgid(struct task_struct *task) { return task->signal->pids[PIDTYPE_TGID]; } /* * Without tasklist or RCU lock it is not safe to dereference * the result of task_pgrp/task_session even if task == current, * we can race with another thread doing sys_setsid/sys_setpgid. */ static inline struct pid *task_pgrp(struct task_struct *task) { return task->signal->pids[PIDTYPE_PGID]; } static inline struct pid *task_session(struct task_struct *task) { return task->signal->pids[PIDTYPE_SID]; } static inline int get_nr_threads(struct task_struct *task) { return task->signal->nr_threads; } static inline bool thread_group_leader(struct task_struct *p) { return p->exit_signal >= 0; } static inline bool same_thread_group(struct task_struct *p1, struct task_struct *p2) { return p1->signal == p2->signal; } static inline struct task_struct *next_thread(const struct task_struct *p) { return list_entry_rcu(p->thread_group.next, struct task_struct, thread_group); } static inline int thread_group_empty(struct task_struct *p) { return list_empty(&p->thread_group); } #define delay_group_leader(p) \ (thread_group_leader(p) && !thread_group_empty(p)) extern bool thread_group_exited(struct pid *pid); extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, unsigned long *flags); static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, unsigned long *flags) { struct sighand_struct *ret; ret = __lock_task_sighand(task, flags); (void)__cond_lock(&task->sighand->siglock, ret); return ret; } static inline void unlock_task_sighand(struct task_struct *task, unsigned long *flags) { spin_unlock_irqrestore(&task->sighand->siglock, *flags); } static inline unsigned long task_rlimit(const struct task_struct *task, unsigned int limit) { return READ_ONCE(task->signal->rlim[limit].rlim_cur); } static inline unsigned long task_rlimit_max(const struct task_struct *task, unsigned int limit) { return READ_ONCE(task->signal->rlim[limit].rlim_max); } static inline unsigned long rlimit(unsigned int limit) { return task_rlimit(current, limit); } static inline unsigned long rlimit_max(unsigned int limit) { return task_rlimit_max(current, limit); } #endif /* _LINUX_SCHED_SIGNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/fs.h> #include <linux/buffer_head.h> #include <linux/exportfs.h> #include <linux/iso_fs.h> #include <asm/unaligned.h> enum isofs_file_format { isofs_file_normal = 0, isofs_file_sparse = 1, isofs_file_compressed = 2, }; /* * iso fs inode data in memory */ struct iso_inode_info { unsigned long i_iget5_block; unsigned long i_iget5_offset; unsigned int i_first_extent; unsigned char i_file_format; unsigned char i_format_parm[3]; unsigned long i_next_section_block; unsigned long i_next_section_offset; off_t i_section_size; struct inode vfs_inode; }; /* * iso9660 super-block data in memory */ struct isofs_sb_info { unsigned long s_ninodes; unsigned long s_nzones; unsigned long s_firstdatazone; unsigned long s_log_zone_size; unsigned long s_max_size; int s_rock_offset; /* offset of SUSP fields within SU area */ s32 s_sbsector; unsigned char s_joliet_level; unsigned char s_mapping; unsigned char s_check; unsigned char s_session; unsigned int s_high_sierra:1; unsigned int s_rock:2; unsigned int s_cruft:1; /* Broken disks with high byte of length * containing junk */ unsigned int s_nocompress:1; unsigned int s_hide:1; unsigned int s_showassoc:1; unsigned int s_overriderockperm:1; unsigned int s_uid_set:1; unsigned int s_gid_set:1; umode_t s_fmode; umode_t s_dmode; kgid_t s_gid; kuid_t s_uid; struct nls_table *s_nls_iocharset; /* Native language support table */ }; #define ISOFS_INVALID_MODE ((umode_t) -1) static inline struct isofs_sb_info *ISOFS_SB(struct super_block *sb) { return sb->s_fs_info; } static inline struct iso_inode_info *ISOFS_I(struct inode *inode) { return container_of(inode, struct iso_inode_info, vfs_inode); } static inline int isonum_711(u8 *p) { return *p; } static inline int isonum_712(s8 *p) { return *p; } static inline unsigned int isonum_721(u8 *p) { return get_unaligned_le16(p); } static inline unsigned int isonum_722(u8 *p) { return get_unaligned_be16(p); } static inline unsigned int isonum_723(u8 *p) { /* Ignore bigendian datum due to broken mastering programs */ return get_unaligned_le16(p); } static inline unsigned int isonum_731(u8 *p) { return get_unaligned_le32(p); } static inline unsigned int isonum_732(u8 *p) { return get_unaligned_be32(p); } static inline unsigned int isonum_733(u8 *p) { /* Ignore bigendian datum due to broken mastering programs */ return get_unaligned_le32(p); } extern int iso_date(u8 *, int); struct inode; /* To make gcc happy */ extern int parse_rock_ridge_inode(struct iso_directory_record *, struct inode *, int relocated); extern int get_rock_ridge_filename(struct iso_directory_record *, char *, struct inode *); extern int isofs_name_translate(struct iso_directory_record *, char *, struct inode *); int get_joliet_filename(struct iso_directory_record *, unsigned char *, struct inode *); int get_acorn_filename(struct iso_directory_record *, char *, struct inode *); extern struct dentry *isofs_lookup(struct inode *, struct dentry *, unsigned int flags); extern struct buffer_head *isofs_bread(struct inode *, sector_t); extern int isofs_get_blocks(struct inode *, sector_t, struct buffer_head **, unsigned long); struct inode *__isofs_iget(struct super_block *sb, unsigned long block, unsigned long offset, int relocated); static inline struct inode *isofs_iget(struct super_block *sb, unsigned long block, unsigned long offset) { return __isofs_iget(sb, block, offset, 0); } static inline struct inode *isofs_iget_reloc(struct super_block *sb, unsigned long block, unsigned long offset) { return __isofs_iget(sb, block, offset, 1); } /* Because the inode number is no longer relevant to finding the * underlying meta-data for an inode, we are free to choose a more * convenient 32-bit number as the inode number. The inode numbering * scheme was recommended by Sergey Vlasov and Eric Lammerts. */ static inline unsigned long isofs_get_ino(unsigned long block, unsigned long offset, unsigned long bufbits) { return (block << (bufbits - 5)) | (offset >> 5); } /* Every directory can have many redundant directory entries scattered * throughout the directory tree. First there is the directory entry * with the name of the directory stored in the parent directory. * Then, there is the "." directory entry stored in the directory * itself. Finally, there are possibly many ".." directory entries * stored in all the subdirectories. * * In order for the NFS get_parent() method to work and for the * general consistency of the dcache, we need to make sure the * "i_iget5_block" and "i_iget5_offset" all point to exactly one of * the many redundant entries for each directory. We normalize the * block and offset by always making them point to the "." directory. * * Notice that we do not use the entry for the directory with the name * that is located in the parent directory. Even though choosing this * first directory is more natural, it is much easier to find the "." * entry in the NFS get_parent() method because it is implicitly * encoded in the "extent + ext_attr_length" fields of _all_ the * redundant entries for the directory. Thus, it can always be * reached regardless of which directory entry you have in hand. * * This works because the "." entry is simply the first directory * record when you start reading the file that holds all the directory * records, and this file starts at "extent + ext_attr_length" blocks. * Because the "." entry is always the first entry listed in the * directories file, the normalized "offset" value is always 0. * * You should pass the directory entry in "de". On return, "block" * and "offset" will hold normalized values. Only directories are * affected making it safe to call even for non-directory file * types. */ static inline void isofs_normalize_block_and_offset(struct iso_directory_record* de, unsigned long *block, unsigned long *offset) { /* Only directories are normalized. */ if (de->flags[0] & 2) { *offset = 0; *block = (unsigned long)isonum_733(de->extent) + (unsigned long)isonum_711(de->ext_attr_length); } } extern const struct inode_operations isofs_dir_inode_operations; extern const struct file_operations isofs_dir_operations; extern const struct address_space_operations isofs_symlink_aops; extern const struct export_operations isofs_export_ops;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_64_H #define _ASM_X86_PGTABLE_64_H #include <linux/const.h> #include <asm/pgtable_64_types.h> #ifndef __ASSEMBLY__ /* * This file contains the functions and defines necessary to modify and use * the x86-64 page table tree. */ #include <asm/processor.h> #include <linux/bitops.h> #include <linux/threads.h> #include <asm/fixmap.h> extern p4d_t level4_kernel_pgt[512]; extern p4d_t level4_ident_pgt[512]; extern pud_t level3_kernel_pgt[512]; extern pud_t level3_ident_pgt[512]; extern pmd_t level2_kernel_pgt[512]; extern pmd_t level2_fixmap_pgt[512]; extern pmd_t level2_ident_pgt[512]; extern pte_t level1_fixmap_pgt[512 * FIXMAP_PMD_NUM]; extern pgd_t init_top_pgt[]; #define swapper_pg_dir init_top_pgt extern void paging_init(void); static inline void sync_initial_page_table(void) { } #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pte_val(e)) #define pmd_ERROR(e) \ pr_err("%s:%d: bad pmd %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pmd_val(e)) #define pud_ERROR(e) \ pr_err("%s:%d: bad pud %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pud_val(e)) #if CONFIG_PGTABLE_LEVELS >= 5 #define p4d_ERROR(e) \ pr_err("%s:%d: bad p4d %p(%016lx)\n", \ __FILE__, __LINE__, &(e), p4d_val(e)) #endif #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pgd_val(e)) struct mm_struct; #define mm_p4d_folded mm_p4d_folded static inline bool mm_p4d_folded(struct mm_struct *mm) { return !pgtable_l5_enabled(); } void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte); void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte); static inline void native_set_pte(pte_t *ptep, pte_t pte) { WRITE_ONCE(*ptep, pte); } static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { native_set_pte(ptep, native_make_pte(0)); } static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte) { native_set_pte(ptep, pte); } static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd) { WRITE_ONCE(*pmdp, pmd); } static inline void native_pmd_clear(pmd_t *pmd) { native_set_pmd(pmd, native_make_pmd(0)); } static inline pte_t native_ptep_get_and_clear(pte_t *xp) { #ifdef CONFIG_SMP return native_make_pte(xchg(&xp->pte, 0)); #else /* native_local_ptep_get_and_clear, but duplicated because of cyclic dependency */ pte_t ret = *xp; native_pte_clear(NULL, 0, xp); return ret; #endif } static inline pmd_t native_pmdp_get_and_clear(pmd_t *xp) { #ifdef CONFIG_SMP return native_make_pmd(xchg(&xp->pmd, 0)); #else /* native_local_pmdp_get_and_clear, but duplicated because of cyclic dependency */ pmd_t ret = *xp; native_pmd_clear(xp); return ret; #endif } static inline void native_set_pud(pud_t *pudp, pud_t pud) { WRITE_ONCE(*pudp, pud); } static inline void native_pud_clear(pud_t *pud) { native_set_pud(pud, native_make_pud(0)); } static inline pud_t native_pudp_get_and_clear(pud_t *xp) { #ifdef CONFIG_SMP return native_make_pud(xchg(&xp->pud, 0)); #else /* native_local_pudp_get_and_clear, * but duplicated because of cyclic dependency */ pud_t ret = *xp; native_pud_clear(xp); return ret; #endif } static inline void native_set_p4d(p4d_t *p4dp, p4d_t p4d) { pgd_t pgd; if (pgtable_l5_enabled() || !IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) { WRITE_ONCE(*p4dp, p4d); return; } pgd = native_make_pgd(native_p4d_val(p4d)); pgd = pti_set_user_pgtbl((pgd_t *)p4dp, pgd); WRITE_ONCE(*p4dp, native_make_p4d(native_pgd_val(pgd))); } static inline void native_p4d_clear(p4d_t *p4d) { native_set_p4d(p4d, native_make_p4d(0)); } static inline void native_set_pgd(pgd_t *pgdp, pgd_t pgd) { WRITE_ONCE(*pgdp, pti_set_user_pgtbl(pgdp, pgd)); } static inline void native_pgd_clear(pgd_t *pgd) { native_set_pgd(pgd, native_make_pgd(0)); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ /* PGD - Level 4 access */ /* PUD - Level 3 access */ /* PMD - Level 2 access */ /* PTE - Level 1 access */ /* * Encode and de-code a swap entry * * | ... | 11| 10| 9|8|7|6|5| 4| 3|2| 1|0| <- bit number * | ... |SW3|SW2|SW1|G|L|D|A|CD|WT|U| W|P| <- bit names * | TYPE (59-63) | ~OFFSET (9-58) |0|0|X|X| X| X|F|SD|0| <- swp entry * * G (8) is aliased and used as a PROT_NONE indicator for * !present ptes. We need to start storing swap entries above * there. We also need to avoid using A and D because of an * erratum where they can be incorrectly set by hardware on * non-present PTEs. * * SD Bits 1-4 are not used in non-present format and available for * special use described below: * * SD (1) in swp entry is used to store soft dirty bit, which helps us * remember soft dirty over page migration * * F (2) in swp entry is used to record when a pagetable is * writeprotected by userfaultfd WP support. * * Bit 7 in swp entry should be 0 because pmd_present checks not only P, * but also L and G. * * The offset is inverted by a binary not operation to make the high * physical bits set. */ #define SWP_TYPE_BITS 5 #define SWP_OFFSET_FIRST_BIT (_PAGE_BIT_PROTNONE + 1) /* We always extract/encode the offset by shifting it all the way up, and then down again */ #define SWP_OFFSET_SHIFT (SWP_OFFSET_FIRST_BIT+SWP_TYPE_BITS) #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS) /* Extract the high bits for type */ #define __swp_type(x) ((x).val >> (64 - SWP_TYPE_BITS)) /* Shift up (to get rid of type), then down to get value */ #define __swp_offset(x) (~(x).val << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT) /* * Shift the offset up "too far" by TYPE bits, then down again * The offset is inverted by a binary not operation to make the high * physical bits set. */ #define __swp_entry(type, offset) ((swp_entry_t) { \ (~(unsigned long)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \ | ((unsigned long)(type) << (64-SWP_TYPE_BITS)) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) }) #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val((pmd)) }) #define __swp_entry_to_pte(x) ((pte_t) { .pte = (x).val }) #define __swp_entry_to_pmd(x) ((pmd_t) { .pmd = (x).val }) extern int kern_addr_valid(unsigned long addr); extern void cleanup_highmap(void); #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN #define PAGE_AGP PAGE_KERNEL_NOCACHE #define HAVE_PAGE_AGP 1 /* fs/proc/kcore.c */ #define kc_vaddr_to_offset(v) ((v) & __VIRTUAL_MASK) #define kc_offset_to_vaddr(o) ((o) | ~__VIRTUAL_MASK) #define __HAVE_ARCH_PTE_SAME #define vmemmap ((struct page *)VMEMMAP_START) extern void init_extra_mapping_uc(unsigned long phys, unsigned long size); extern void init_extra_mapping_wb(unsigned long phys, unsigned long size); #define gup_fast_permitted gup_fast_permitted static inline bool gup_fast_permitted(unsigned long start, unsigned long end) { if (end >> __VIRTUAL_MASK_SHIFT) return false; return true; } #include <asm/pgtable-invert.h> #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_64_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 #ifdef CONFIG_PREEMPTIRQ_TRACEPOINTS #undef TRACE_SYSTEM #define TRACE_SYSTEM preemptirq #if !defined(_TRACE_PREEMPTIRQ_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PREEMPTIRQ_H #include <linux/ktime.h> #include <linux/tracepoint.h> #include <linux/string.h> #include <asm/sections.h> DECLARE_EVENT_CLASS(preemptirq_template, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip), TP_STRUCT__entry( __field(s32, caller_offs) __field(s32, parent_offs) ), TP_fast_assign( __entry->caller_offs = (s32)(ip - (unsigned long)_stext); __entry->parent_offs = (s32)(parent_ip - (unsigned long)_stext); ), TP_printk("caller=%pS parent=%pS", (void *)((unsigned long)(_stext) + __entry->caller_offs), (void *)((unsigned long)(_stext) + __entry->parent_offs)) ); #ifdef CONFIG_TRACE_IRQFLAGS DEFINE_EVENT(preemptirq_template, irq_disable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); DEFINE_EVENT(preemptirq_template, irq_enable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); #else #define trace_irq_enable(...) #define trace_irq_disable(...) #define trace_irq_enable_rcuidle(...) #define trace_irq_disable_rcuidle(...) #endif #ifdef CONFIG_TRACE_PREEMPT_TOGGLE DEFINE_EVENT(preemptirq_template, preempt_disable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); DEFINE_EVENT(preemptirq_template, preempt_enable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); #else #define trace_preempt_enable(...) #define trace_preempt_disable(...) #define trace_preempt_enable_rcuidle(...) #define trace_preempt_disable_rcuidle(...) #endif #endif /* _TRACE_PREEMPTIRQ_H */ #include <trace/define_trace.h> #else /* !CONFIG_PREEMPTIRQ_TRACEPOINTS */ #define trace_irq_enable(...) #define trace_irq_disable(...) #define trace_irq_enable_rcuidle(...) #define trace_irq_disable_rcuidle(...) #define trace_preempt_enable(...) #define trace_preempt_disable(...) #define trace_preempt_enable_rcuidle(...) #define trace_preempt_disable_rcuidle(...) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NVRAM_H #define _LINUX_NVRAM_H #include <linux/errno.h> #include <uapi/linux/nvram.h> #ifdef CONFIG_PPC #include <asm/machdep.h> #endif /** * struct nvram_ops - NVRAM functionality made available to drivers * @read: validate checksum (if any) then load a range of bytes from NVRAM * @write: store a range of bytes to NVRAM then update checksum (if any) * @read_byte: load a single byte from NVRAM * @write_byte: store a single byte to NVRAM * @get_size: return the fixed number of bytes in the NVRAM * * Architectures which provide an nvram ops struct need not implement all * of these methods. If the NVRAM hardware can be accessed only one byte * at a time then it may be sufficient to provide .read_byte and .write_byte. * If the NVRAM has a checksum (and it is to be checked) the .read and * .write methods can be used to implement that efficiently. * * Portable drivers may use the wrapper functions defined here. * The nvram_read() and nvram_write() functions call the .read and .write * methods when available and fall back on the .read_byte and .write_byte * methods otherwise. */ struct nvram_ops { ssize_t (*get_size)(void); unsigned char (*read_byte)(int); void (*write_byte)(unsigned char, int); ssize_t (*read)(char *, size_t, loff_t *); ssize_t (*write)(char *, size_t, loff_t *); #if defined(CONFIG_X86) || defined(CONFIG_M68K) long (*initialize)(void); long (*set_checksum)(void); #endif }; extern const struct nvram_ops arch_nvram_ops; static inline ssize_t nvram_get_size(void) { #ifdef CONFIG_PPC if (ppc_md.nvram_size) return ppc_md.nvram_size(); #else if (arch_nvram_ops.get_size) return arch_nvram_ops.get_size(); #endif return -ENODEV; } static inline unsigned char nvram_read_byte(int addr) { #ifdef CONFIG_PPC if (ppc_md.nvram_read_val) return ppc_md.nvram_read_val(addr); #else if (arch_nvram_ops.read_byte) return arch_nvram_ops.read_byte(addr); #endif return 0xFF; } static inline void nvram_write_byte(unsigned char val, int addr) { #ifdef CONFIG_PPC if (ppc_md.nvram_write_val) ppc_md.nvram_write_val(addr, val); #else if (arch_nvram_ops.write_byte) arch_nvram_ops.write_byte(val, addr); #endif } static inline ssize_t nvram_read_bytes(char *buf, size_t count, loff_t *ppos) { ssize_t nvram_size = nvram_get_size(); loff_t i; char *p = buf; if (nvram_size < 0) return nvram_size; for (i = *ppos; count > 0 && i < nvram_size; ++i, ++p, --count) *p = nvram_read_byte(i); *ppos = i; return p - buf; } static inline ssize_t nvram_write_bytes(char *buf, size_t count, loff_t *ppos) { ssize_t nvram_size = nvram_get_size(); loff_t i; char *p = buf; if (nvram_size < 0) return nvram_size; for (i = *ppos; count > 0 && i < nvram_size; ++i, ++p, --count) nvram_write_byte(*p, i); *ppos = i; return p - buf; } static inline ssize_t nvram_read(char *buf, size_t count, loff_t *ppos) { #ifdef CONFIG_PPC if (ppc_md.nvram_read) return ppc_md.nvram_read(buf, count, ppos); #else if (arch_nvram_ops.read) return arch_nvram_ops.read(buf, count, ppos); #endif return nvram_read_bytes(buf, count, ppos); } static inline ssize_t nvram_write(char *buf, size_t count, loff_t *ppos) { #ifdef CONFIG_PPC if (ppc_md.nvram_write) return ppc_md.nvram_write(buf, count, ppos); #else if (arch_nvram_ops.write) return arch_nvram_ops.write(buf, count, ppos); #endif return nvram_write_bytes(buf, count, ppos); } #endif /* _LINUX_NVRAM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_SPINLOCK_H #define __LINUX_SPINLOCK_H /* * include/linux/spinlock.h - generic spinlock/rwlock declarations * * here's the role of the various spinlock/rwlock related include files: * * on SMP builds: * * asm/spinlock_types.h: contains the arch_spinlock_t/arch_rwlock_t and the * initializers * * linux/spinlock_types.h: * defines the generic type and initializers * * asm/spinlock.h: contains the arch_spin_*()/etc. lowlevel * implementations, mostly inline assembly code * * (also included on UP-debug builds:) * * linux/spinlock_api_smp.h: * contains the prototypes for the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. * * on UP builds: * * linux/spinlock_type_up.h: * contains the generic, simplified UP spinlock type. * (which is an empty structure on non-debug builds) * * linux/spinlock_types.h: * defines the generic type and initializers * * linux/spinlock_up.h: * contains the arch_spin_*()/etc. version of UP * builds. (which are NOPs on non-debug, non-preempt * builds) * * (included on UP-non-debug builds:) * * linux/spinlock_api_up.h: * builds the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. */ #include <linux/typecheck.h> #include <linux/preempt.h> #include <linux/linkage.h> #include <linux/compiler.h> #include <linux/irqflags.h> #include <linux/thread_info.h> #include <linux/kernel.h> #include <linux/stringify.h> #include <linux/bottom_half.h> #include <linux/lockdep.h> #include <asm/barrier.h> #include <asm/mmiowb.h> /* * Must define these before including other files, inline functions need them */ #define LOCK_SECTION_NAME ".text..lock."KBUILD_BASENAME #define LOCK_SECTION_START(extra) \ ".subsection 1\n\t" \ extra \ ".ifndef " LOCK_SECTION_NAME "\n\t" \ LOCK_SECTION_NAME ":\n\t" \ ".endif\n" #define LOCK_SECTION_END \ ".previous\n\t" #define __lockfunc __section(".spinlock.text") /* * Pull the arch_spinlock_t and arch_rwlock_t definitions: */ #include <linux/spinlock_types.h> /* * Pull the arch_spin*() functions/declarations (UP-nondebug doesn't need them): */ #ifdef CONFIG_SMP # include <asm/spinlock.h> #else # include <linux/spinlock_up.h> #endif #ifdef CONFIG_DEBUG_SPINLOCK extern void __raw_spin_lock_init(raw_spinlock_t *lock, const char *name, struct lock_class_key *key, short inner); # define raw_spin_lock_init(lock) \ do { \ static struct lock_class_key __key; \ \ __raw_spin_lock_init((lock), #lock, &__key, LD_WAIT_SPIN); \ } while (0) #else # define raw_spin_lock_init(lock) \ do { *(lock) = __RAW_SPIN_LOCK_UNLOCKED(lock); } while (0) #endif #define raw_spin_is_locked(lock) arch_spin_is_locked(&(lock)->raw_lock) #ifdef arch_spin_is_contended #define raw_spin_is_contended(lock) arch_spin_is_contended(&(lock)->raw_lock) #else #define raw_spin_is_contended(lock) (((void)(lock), 0)) #endif /*arch_spin_is_contended*/ /* * smp_mb__after_spinlock() provides the equivalent of a full memory barrier * between program-order earlier lock acquisitions and program-order later * memory accesses. * * This guarantees that the following two properties hold: * * 1) Given the snippet: * * { X = 0; Y = 0; } * * CPU0 CPU1 * * WRITE_ONCE(X, 1); WRITE_ONCE(Y, 1); * spin_lock(S); smp_mb(); * smp_mb__after_spinlock(); r1 = READ_ONCE(X); * r0 = READ_ONCE(Y); * spin_unlock(S); * * it is forbidden that CPU0 does not observe CPU1's store to Y (r0 = 0) * and CPU1 does not observe CPU0's store to X (r1 = 0); see the comments * preceding the call to smp_mb__after_spinlock() in __schedule() and in * try_to_wake_up(). * * 2) Given the snippet: * * { X = 0; Y = 0; } * * CPU0 CPU1 CPU2 * * spin_lock(S); spin_lock(S); r1 = READ_ONCE(Y); * WRITE_ONCE(X, 1); smp_mb__after_spinlock(); smp_rmb(); * spin_unlock(S); r0 = READ_ONCE(X); r2 = READ_ONCE(X); * WRITE_ONCE(Y, 1); * spin_unlock(S); * * it is forbidden that CPU0's critical section executes before CPU1's * critical section (r0 = 1), CPU2 observes CPU1's store to Y (r1 = 1) * and CPU2 does not observe CPU0's store to X (r2 = 0); see the comments * preceding the calls to smp_rmb() in try_to_wake_up() for similar * snippets but "projected" onto two CPUs. * * Property (2) upgrades the lock to an RCsc lock. * * Since most load-store architectures implement ACQUIRE with an smp_mb() after * the LL/SC loop, they need no further barriers. Similarly all our TSO * architectures imply an smp_mb() for each atomic instruction and equally don't * need more. * * Architectures that can implement ACQUIRE better need to take care. */ #ifndef smp_mb__after_spinlock #define smp_mb__after_spinlock() do { } while (0) #endif #ifdef CONFIG_DEBUG_SPINLOCK extern void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock); #define do_raw_spin_lock_flags(lock, flags) do_raw_spin_lock(lock) extern int do_raw_spin_trylock(raw_spinlock_t *lock); extern void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock); #else static inline void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock) { __acquire(lock); arch_spin_lock(&lock->raw_lock); mmiowb_spin_lock(); } #ifndef arch_spin_lock_flags #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock) #endif static inline void do_raw_spin_lock_flags(raw_spinlock_t *lock, unsigned long *flags) __acquires(lock) { __acquire(lock); arch_spin_lock_flags(&lock->raw_lock, *flags); mmiowb_spin_lock(); } static inline int do_raw_spin_trylock(raw_spinlock_t *lock) { int ret = arch_spin_trylock(&(lock)->raw_lock); if (ret) mmiowb_spin_lock(); return ret; } static inline void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock) { mmiowb_spin_unlock(); arch_spin_unlock(&lock->raw_lock); __release(lock); } #endif /* * Define the various spin_lock methods. Note we define these * regardless of whether CONFIG_SMP or CONFIG_PREEMPTION are set. The * various methods are defined as nops in the case they are not * required. */ #define raw_spin_trylock(lock) __cond_lock(lock, _raw_spin_trylock(lock)) #define raw_spin_lock(lock) _raw_spin_lock(lock) #ifdef CONFIG_DEBUG_LOCK_ALLOC # define raw_spin_lock_nested(lock, subclass) \ _raw_spin_lock_nested(lock, subclass) # define raw_spin_lock_nest_lock(lock, nest_lock) \ do { \ typecheck(struct lockdep_map *, &(nest_lock)->dep_map);\ _raw_spin_lock_nest_lock(lock, &(nest_lock)->dep_map); \ } while (0) #else /* * Always evaluate the 'subclass' argument to avoid that the compiler * warns about set-but-not-used variables when building with * CONFIG_DEBUG_LOCK_ALLOC=n and with W=1. */ # define raw_spin_lock_nested(lock, subclass) \ _raw_spin_lock(((void)(subclass), (lock))) # define raw_spin_lock_nest_lock(lock, nest_lock) _raw_spin_lock(lock) #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) #define raw_spin_lock_irqsave(lock, flags) \ do { \ typecheck(unsigned long, flags); \ flags = _raw_spin_lock_irqsave(lock); \ } while (0) #ifdef CONFIG_DEBUG_LOCK_ALLOC #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ do { \ typecheck(unsigned long, flags); \ flags = _raw_spin_lock_irqsave_nested(lock, subclass); \ } while (0) #else #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ do { \ typecheck(unsigned long, flags); \ flags = _raw_spin_lock_irqsave(lock); \ } while (0) #endif #else #define raw_spin_lock_irqsave(lock, flags) \ do { \ typecheck(unsigned long, flags); \ _raw_spin_lock_irqsave(lock, flags); \ } while (0) #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ raw_spin_lock_irqsave(lock, flags) #endif #define raw_spin_lock_irq(lock) _raw_spin_lock_irq(lock) #define raw_spin_lock_bh(lock) _raw_spin_lock_bh(lock) #define raw_spin_unlock(lock) _raw_spin_unlock(lock) #define raw_spin_unlock_irq(lock) _raw_spin_unlock_irq(lock) #define raw_spin_unlock_irqrestore(lock, flags) \ do { \ typecheck(unsigned long, flags); \ _raw_spin_unlock_irqrestore(lock, flags); \ } while (0) #define raw_spin_unlock_bh(lock) _raw_spin_unlock_bh(lock) #define raw_spin_trylock_bh(lock) \ __cond_lock(lock, _raw_spin_trylock_bh(lock)) #define raw_spin_trylock_irq(lock) \ ({ \ local_irq_disable(); \ raw_spin_trylock(lock) ? \ 1 : ({ local_irq_enable(); 0; }); \ }) #define raw_spin_trylock_irqsave(lock, flags) \ ({ \ local_irq_save(flags); \ raw_spin_trylock(lock) ? \ 1 : ({ local_irq_restore(flags); 0; }); \ }) /* Include rwlock functions */ #include <linux/rwlock.h> /* * Pull the _spin_*()/_read_*()/_write_*() functions/declarations: */ #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) # include <linux/spinlock_api_smp.h> #else # include <linux/spinlock_api_up.h> #endif /* * Map the spin_lock functions to the raw variants for PREEMPT_RT=n */ static __always_inline raw_spinlock_t *spinlock_check(spinlock_t *lock) { return &lock->rlock; } #ifdef CONFIG_DEBUG_SPINLOCK # define spin_lock_init(lock) \ do { \ static struct lock_class_key __key; \ \ __raw_spin_lock_init(spinlock_check(lock), \ #lock, &__key, LD_WAIT_CONFIG); \ } while (0) #else # define spin_lock_init(_lock) \ do { \ spinlock_check(_lock); \ *(_lock) = __SPIN_LOCK_UNLOCKED(_lock); \ } while (0) #endif static __always_inline void spin_lock(spinlock_t *lock) { raw_spin_lock(&lock->rlock); } static __always_inline void spin_lock_bh(spinlock_t *lock) { raw_spin_lock_bh(&lock->rlock); } static __always_inline int spin_trylock(spinlock_t *lock) { return raw_spin_trylock(&lock->rlock); } #define spin_lock_nested(lock, subclass) \ do { \ raw_spin_lock_nested(spinlock_check(lock), subclass); \ } while (0) #define spin_lock_nest_lock(lock, nest_lock) \ do { \ raw_spin_lock_nest_lock(spinlock_check(lock), nest_lock); \ } while (0) static __always_inline void spin_lock_irq(spinlock_t *lock) { raw_spin_lock_irq(&lock->rlock); } #define spin_lock_irqsave(lock, flags) \ do { \ raw_spin_lock_irqsave(spinlock_check(lock), flags); \ } while (0) #define spin_lock_irqsave_nested(lock, flags, subclass) \ do { \ raw_spin_lock_irqsave_nested(spinlock_check(lock), flags, subclass); \ } while (0) static __always_inline void spin_unlock(spinlock_t *lock) { raw_spin_unlock(&lock->rlock); } static __always_inline void spin_unlock_bh(spinlock_t *lock) { raw_spin_unlock_bh(&lock->rlock); } static __always_inline void spin_unlock_irq(spinlock_t *lock) { raw_spin_unlock_irq(&lock->rlock); } static __always_inline void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) { raw_spin_unlock_irqrestore(&lock->rlock, flags); } static __always_inline int spin_trylock_bh(spinlock_t *lock) { return raw_spin_trylock_bh(&lock->rlock); } static __always_inline int spin_trylock_irq(spinlock_t *lock) { return raw_spin_trylock_irq(&lock->rlock); } #define spin_trylock_irqsave(lock, flags) \ ({ \ raw_spin_trylock_irqsave(spinlock_check(lock), flags); \ }) /** * spin_is_locked() - Check whether a spinlock is locked. * @lock: Pointer to the spinlock. * * This function is NOT required to provide any memory ordering * guarantees; it could be used for debugging purposes or, when * additional synchronization is needed, accompanied with other * constructs (memory barriers) enforcing the synchronization. * * Returns: 1 if @lock is locked, 0 otherwise. * * Note that the function only tells you that the spinlock is * seen to be locked, not that it is locked on your CPU. * * Further, on CONFIG_SMP=n builds with CONFIG_DEBUG_SPINLOCK=n, * the return value is always 0 (see include/linux/spinlock_up.h). * Therefore you should not rely heavily on the return value. */ static __always_inline int spin_is_locked(spinlock_t *lock) { return raw_spin_is_locked(&lock->rlock); } static __always_inline int spin_is_contended(spinlock_t *lock) { return raw_spin_is_contended(&lock->rlock); } #define assert_spin_locked(lock) assert_raw_spin_locked(&(lock)->rlock) /* * Pull the atomic_t declaration: * (asm-mips/atomic.h needs above definitions) */ #include <linux/atomic.h> /** * atomic_dec_and_lock - lock on reaching reference count zero * @atomic: the atomic counter * @lock: the spinlock in question * * Decrements @atomic by 1. If the result is 0, returns true and locks * @lock. Returns false for all other cases. */ extern int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock); #define atomic_dec_and_lock(atomic, lock) \ __cond_lock(lock, _atomic_dec_and_lock(atomic, lock)) extern int _atomic_dec_and_lock_irqsave(atomic_t *atomic, spinlock_t *lock, unsigned long *flags); #define atomic_dec_and_lock_irqsave(atomic, lock, flags) \ __cond_lock(lock, _atomic_dec_and_lock_irqsave(atomic, lock, &(flags))) int __alloc_bucket_spinlocks(spinlock_t **locks, unsigned int *lock_mask, size_t max_size, unsigned int cpu_mult, gfp_t gfp, const char *name, struct lock_class_key *key); #define alloc_bucket_spinlocks(locks, lock_mask, max_size, cpu_mult, gfp) \ ({ \ static struct lock_class_key key; \ int ret; \ \ ret = __alloc_bucket_spinlocks(locks, lock_mask, max_size, \ cpu_mult, gfp, #locks, &key); \ ret; \ }) void free_bucket_spinlocks(spinlock_t *locks); #endif /* __LINUX_SPINLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 /* SPDX-License-Identifier: GPL-2.0 */ /* taskstats_kern.h - kernel header for per-task statistics interface * * Copyright (C) Shailabh Nagar, IBM Corp. 2006 * (C) Balbir Singh, IBM Corp. 2006 */ #ifndef _LINUX_TASKSTATS_KERN_H #define _LINUX_TASKSTATS_KERN_H #include <linux/taskstats.h> #include <linux/sched/signal.h> #include <linux/slab.h> #ifdef CONFIG_TASKSTATS extern struct kmem_cache *taskstats_cache; extern struct mutex taskstats_exit_mutex; static inline void taskstats_tgid_free(struct signal_struct *sig) { if (sig->stats) kmem_cache_free(taskstats_cache, sig->stats); } extern void taskstats_exit(struct task_struct *, int group_dead); extern void taskstats_init_early(void); #else static inline void taskstats_exit(struct task_struct *tsk, int group_dead) {} static inline void taskstats_tgid_free(struct signal_struct *sig) {} static inline void taskstats_init_early(void) {} #endif /* CONFIG_TASKSTATS */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions and Declarations for tuple. * * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp> * - generalize L3 protocol dependent part. * * Derived from include/linux/netfiter_ipv4/ip_conntrack_tuple.h */ #ifndef _NF_CONNTRACK_TUPLE_H #define _NF_CONNTRACK_TUPLE_H #include <linux/netfilter/x_tables.h> #include <linux/netfilter/nf_conntrack_tuple_common.h> #include <linux/list_nulls.h> /* A `tuple' is a structure containing the information to uniquely identify a connection. ie. if two packets have the same tuple, they are in the same connection; if not, they are not. We divide the structure along "manipulatable" and "non-manipulatable" lines, for the benefit of the NAT code. */ #define NF_CT_TUPLE_L3SIZE ARRAY_SIZE(((union nf_inet_addr *)NULL)->all) /* The manipulable part of the tuple. */ struct nf_conntrack_man { union nf_inet_addr u3; union nf_conntrack_man_proto u; /* Layer 3 protocol */ u_int16_t l3num; }; /* This contains the information to distinguish a connection. */ struct nf_conntrack_tuple { struct nf_conntrack_man src; /* These are the parts of the tuple which are fixed. */ struct { union nf_inet_addr u3; union { /* Add other protocols here. */ __be16 all; struct { __be16 port; } tcp; struct { __be16 port; } udp; struct { u_int8_t type, code; } icmp; struct { __be16 port; } dccp; struct { __be16 port; } sctp; struct { __be16 key; } gre; } u; /* The protocol. */ u_int8_t protonum; /* The direction (for tuplehash) */ u_int8_t dir; } dst; }; struct nf_conntrack_tuple_mask { struct { union nf_inet_addr u3; union nf_conntrack_man_proto u; } src; }; static inline void nf_ct_dump_tuple_ip(const struct nf_conntrack_tuple *t) { #ifdef DEBUG printk("tuple %p: %u %pI4:%hu -> %pI4:%hu\n", t, t->dst.protonum, &t->src.u3.ip, ntohs(t->src.u.all), &t->dst.u3.ip, ntohs(t->dst.u.all)); #endif } static inline void nf_ct_dump_tuple_ipv6(const struct nf_conntrack_tuple *t) { #ifdef DEBUG printk("tuple %p: %u %pI6 %hu -> %pI6 %hu\n", t, t->dst.protonum, t->src.u3.all, ntohs(t->src.u.all), t->dst.u3.all, ntohs(t->dst.u.all)); #endif } static inline void nf_ct_dump_tuple(const struct nf_conntrack_tuple *t) { switch (t->src.l3num) { case AF_INET: nf_ct_dump_tuple_ip(t); break; case AF_INET6: nf_ct_dump_tuple_ipv6(t); break; } } /* If we're the first tuple, it's the original dir. */ #define NF_CT_DIRECTION(h) \ ((enum ip_conntrack_dir)(h)->tuple.dst.dir) /* Connections have two entries in the hash table: one for each way */ struct nf_conntrack_tuple_hash { struct hlist_nulls_node hnnode; struct nf_conntrack_tuple tuple; }; static inline bool __nf_ct_tuple_src_equal(const struct nf_conntrack_tuple *t1, const struct nf_conntrack_tuple *t2) { return (nf_inet_addr_cmp(&t1->src.u3, &t2->src.u3) && t1->src.u.all == t2->src.u.all && t1->src.l3num == t2->src.l3num); } static inline bool __nf_ct_tuple_dst_equal(const struct nf_conntrack_tuple *t1, const struct nf_conntrack_tuple *t2) { return (nf_inet_addr_cmp(&t1->dst.u3, &t2->dst.u3) && t1->dst.u.all == t2->dst.u.all && t1->dst.protonum == t2->dst.protonum); } static inline bool nf_ct_tuple_equal(const struct nf_conntrack_tuple *t1, const struct nf_conntrack_tuple *t2) { return __nf_ct_tuple_src_equal(t1, t2) && __nf_ct_tuple_dst_equal(t1, t2); } static inline bool nf_ct_tuple_mask_equal(const struct nf_conntrack_tuple_mask *m1, const struct nf_conntrack_tuple_mask *m2) { return (nf_inet_addr_cmp(&m1->src.u3, &m2->src.u3) && m1->src.u.all == m2->src.u.all); } static inline bool nf_ct_tuple_src_mask_cmp(const struct nf_conntrack_tuple *t1, const struct nf_conntrack_tuple *t2, const struct nf_conntrack_tuple_mask *mask) { int count; for (count = 0; count < NF_CT_TUPLE_L3SIZE; count++) { if ((t1->src.u3.all[count] ^ t2->src.u3.all[count]) & mask->src.u3.all[count]) return false; } if ((t1->src.u.all ^ t2->src.u.all) & mask->src.u.all) return false; if (t1->src.l3num != t2->src.l3num || t1->dst.protonum != t2->dst.protonum) return false; return true; } static inline bool nf_ct_tuple_mask_cmp(const struct nf_conntrack_tuple *t, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_tuple_mask *mask) { return nf_ct_tuple_src_mask_cmp(t, tuple, mask) && __nf_ct_tuple_dst_equal(t, tuple); } #endif /* _NF_CONNTRACK_TUPLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM xdp #if !defined(_TRACE_XDP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_XDP_H #include <linux/netdevice.h> #include <linux/filter.h> #include <linux/tracepoint.h> #include <linux/bpf.h> #define __XDP_ACT_MAP(FN) \ FN(ABORTED) \ FN(DROP) \ FN(PASS) \ FN(TX) \ FN(REDIRECT) #define __XDP_ACT_TP_FN(x) \ TRACE_DEFINE_ENUM(XDP_##x); #define __XDP_ACT_SYM_FN(x) \ { XDP_##x, #x }, #define __XDP_ACT_SYM_TAB \ __XDP_ACT_MAP(__XDP_ACT_SYM_FN) { -1, NULL } __XDP_ACT_MAP(__XDP_ACT_TP_FN) TRACE_EVENT(xdp_exception, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, u32 act), TP_ARGS(dev, xdp, act), TP_STRUCT__entry( __field(int, prog_id) __field(u32, act) __field(int, ifindex) ), TP_fast_assign( __entry->prog_id = xdp->aux->id; __entry->act = act; __entry->ifindex = dev->ifindex; ), TP_printk("prog_id=%d action=%s ifindex=%d", __entry->prog_id, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->ifindex) ); TRACE_EVENT(xdp_bulk_tx, TP_PROTO(const struct net_device *dev, int sent, int drops, int err), TP_ARGS(dev, sent, drops, err), TP_STRUCT__entry( __field(int, ifindex) __field(u32, act) __field(int, drops) __field(int, sent) __field(int, err) ), TP_fast_assign( __entry->ifindex = dev->ifindex; __entry->act = XDP_TX; __entry->drops = drops; __entry->sent = sent; __entry->err = err; ), TP_printk("ifindex=%d action=%s sent=%d drops=%d err=%d", __entry->ifindex, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->sent, __entry->drops, __entry->err) ); #ifndef __DEVMAP_OBJ_TYPE #define __DEVMAP_OBJ_TYPE struct _bpf_dtab_netdev { struct net_device *dev; }; #endif /* __DEVMAP_OBJ_TYPE */ #define devmap_ifindex(tgt, map) \ (((map->map_type == BPF_MAP_TYPE_DEVMAP || \ map->map_type == BPF_MAP_TYPE_DEVMAP_HASH)) ? \ ((struct _bpf_dtab_netdev *)tgt)->dev->ifindex : 0) DECLARE_EVENT_CLASS(xdp_redirect_template, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index), TP_STRUCT__entry( __field(int, prog_id) __field(u32, act) __field(int, ifindex) __field(int, err) __field(int, to_ifindex) __field(u32, map_id) __field(int, map_index) ), TP_fast_assign( __entry->prog_id = xdp->aux->id; __entry->act = XDP_REDIRECT; __entry->ifindex = dev->ifindex; __entry->err = err; __entry->to_ifindex = map ? devmap_ifindex(tgt, map) : index; __entry->map_id = map ? map->id : 0; __entry->map_index = map ? index : 0; ), TP_printk("prog_id=%d action=%s ifindex=%d to_ifindex=%d err=%d" " map_id=%d map_index=%d", __entry->prog_id, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->ifindex, __entry->to_ifindex, __entry->err, __entry->map_id, __entry->map_index) ); DEFINE_EVENT(xdp_redirect_template, xdp_redirect, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index) ); DEFINE_EVENT(xdp_redirect_template, xdp_redirect_err, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index) ); #define _trace_xdp_redirect(dev, xdp, to) \ trace_xdp_redirect(dev, xdp, NULL, 0, NULL, to); #define _trace_xdp_redirect_err(dev, xdp, to, err) \ trace_xdp_redirect_err(dev, xdp, NULL, err, NULL, to); #define _trace_xdp_redirect_map(dev, xdp, to, map, index) \ trace_xdp_redirect(dev, xdp, to, 0, map, index); #define _trace_xdp_redirect_map_err(dev, xdp, to, map, index, err) \ trace_xdp_redirect_err(dev, xdp, to, err, map, index); /* not used anymore, but kept around so as not to break old programs */ DEFINE_EVENT(xdp_redirect_template, xdp_redirect_map, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index) ); DEFINE_EVENT(xdp_redirect_template, xdp_redirect_map_err, TP_PROTO(const struct net_device *dev, const struct bpf_prog *xdp, const void *tgt, int err, const struct bpf_map *map, u32 index), TP_ARGS(dev, xdp, tgt, err, map, index) ); TRACE_EVENT(xdp_cpumap_kthread, TP_PROTO(int map_id, unsigned int processed, unsigned int drops, int sched, struct xdp_cpumap_stats *xdp_stats), TP_ARGS(map_id, processed, drops, sched, xdp_stats), TP_STRUCT__entry( __field(int, map_id) __field(u32, act) __field(int, cpu) __field(unsigned int, drops) __field(unsigned int, processed) __field(int, sched) __field(unsigned int, xdp_pass) __field(unsigned int, xdp_drop) __field(unsigned int, xdp_redirect) ), TP_fast_assign( __entry->map_id = map_id; __entry->act = XDP_REDIRECT; __entry->cpu = smp_processor_id(); __entry->drops = drops; __entry->processed = processed; __entry->sched = sched; __entry->xdp_pass = xdp_stats->pass; __entry->xdp_drop = xdp_stats->drop; __entry->xdp_redirect = xdp_stats->redirect; ), TP_printk("kthread" " cpu=%d map_id=%d action=%s" " processed=%u drops=%u" " sched=%d" " xdp_pass=%u xdp_drop=%u xdp_redirect=%u", __entry->cpu, __entry->map_id, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->processed, __entry->drops, __entry->sched, __entry->xdp_pass, __entry->xdp_drop, __entry->xdp_redirect) ); TRACE_EVENT(xdp_cpumap_enqueue, TP_PROTO(int map_id, unsigned int processed, unsigned int drops, int to_cpu), TP_ARGS(map_id, processed, drops, to_cpu), TP_STRUCT__entry( __field(int, map_id) __field(u32, act) __field(int, cpu) __field(unsigned int, drops) __field(unsigned int, processed) __field(int, to_cpu) ), TP_fast_assign( __entry->map_id = map_id; __entry->act = XDP_REDIRECT; __entry->cpu = smp_processor_id(); __entry->drops = drops; __entry->processed = processed; __entry->to_cpu = to_cpu; ), TP_printk("enqueue" " cpu=%d map_id=%d action=%s" " processed=%u drops=%u" " to_cpu=%d", __entry->cpu, __entry->map_id, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->processed, __entry->drops, __entry->to_cpu) ); TRACE_EVENT(xdp_devmap_xmit, TP_PROTO(const struct net_device *from_dev, const struct net_device *to_dev, int sent, int drops, int err), TP_ARGS(from_dev, to_dev, sent, drops, err), TP_STRUCT__entry( __field(int, from_ifindex) __field(u32, act) __field(int, to_ifindex) __field(int, drops) __field(int, sent) __field(int, err) ), TP_fast_assign( __entry->from_ifindex = from_dev->ifindex; __entry->act = XDP_REDIRECT; __entry->to_ifindex = to_dev->ifindex; __entry->drops = drops; __entry->sent = sent; __entry->err = err; ), TP_printk("ndo_xdp_xmit" " from_ifindex=%d to_ifindex=%d action=%s" " sent=%d drops=%d" " err=%d", __entry->from_ifindex, __entry->to_ifindex, __print_symbolic(__entry->act, __XDP_ACT_SYM_TAB), __entry->sent, __entry->drops, __entry->err) ); /* Expect users already include <net/xdp.h>, but not xdp_priv.h */ #include <net/xdp_priv.h> #define __MEM_TYPE_MAP(FN) \ FN(PAGE_SHARED) \ FN(PAGE_ORDER0) \ FN(PAGE_POOL) \ FN(XSK_BUFF_POOL) #define __MEM_TYPE_TP_FN(x) \ TRACE_DEFINE_ENUM(MEM_TYPE_##x); #define __MEM_TYPE_SYM_FN(x) \ { MEM_TYPE_##x, #x }, #define __MEM_TYPE_SYM_TAB \ __MEM_TYPE_MAP(__MEM_TYPE_SYM_FN) { -1, 0 } __MEM_TYPE_MAP(__MEM_TYPE_TP_FN) TRACE_EVENT(mem_disconnect, TP_PROTO(const struct xdp_mem_allocator *xa), TP_ARGS(xa), TP_STRUCT__entry( __field(const struct xdp_mem_allocator *, xa) __field(u32, mem_id) __field(u32, mem_type) __field(const void *, allocator) ), TP_fast_assign( __entry->xa = xa; __entry->mem_id = xa->mem.id; __entry->mem_type = xa->mem.type; __entry->allocator = xa->allocator; ), TP_printk("mem_id=%d mem_type=%s allocator=%p", __entry->mem_id, __print_symbolic(__entry->mem_type, __MEM_TYPE_SYM_TAB), __entry->allocator ) ); TRACE_EVENT(mem_connect, TP_PROTO(const struct xdp_mem_allocator *xa, const struct xdp_rxq_info *rxq), TP_ARGS(xa, rxq), TP_STRUCT__entry( __field(const struct xdp_mem_allocator *, xa) __field(u32, mem_id) __field(u32, mem_type) __field(const void *, allocator) __field(const struct xdp_rxq_info *, rxq) __field(int, ifindex) ), TP_fast_assign( __entry->xa = xa; __entry->mem_id = xa->mem.id; __entry->mem_type = xa->mem.type; __entry->allocator = xa->allocator; __entry->rxq = rxq; __entry->ifindex = rxq->dev->ifindex; ), TP_printk("mem_id=%d mem_type=%s allocator=%p" " ifindex=%d", __entry->mem_id, __print_symbolic(__entry->mem_type, __MEM_TYPE_SYM_TAB), __entry->allocator, __entry->ifindex ) ); TRACE_EVENT(mem_return_failed, TP_PROTO(const struct xdp_mem_info *mem, const struct page *page), TP_ARGS(mem, page), TP_STRUCT__entry( __field(const struct page *, page) __field(u32, mem_id) __field(u32, mem_type) ), TP_fast_assign( __entry->page = page; __entry->mem_id = mem->id; __entry->mem_type = mem->type; ), TP_printk("mem_id=%d mem_type=%s page=%p", __entry->mem_id, __print_symbolic(__entry->mem_type, __MEM_TYPE_SYM_TAB), __entry->page ) ); #endif /* _TRACE_XDP_H */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Credentials management - see Documentation/security/credentials.rst * * Copyright (C) 2008 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_CRED_H #define _LINUX_CRED_H #include <linux/capability.h> #include <linux/init.h> #include <linux/key.h> #include <linux/atomic.h> #include <linux/uidgid.h> #include <linux/sched.h> #include <linux/sched/user.h> struct cred; struct inode; /* * COW Supplementary groups list */ struct group_info { atomic_t usage; int ngroups; kgid_t gid[0]; } __randomize_layout; /** * get_group_info - Get a reference to a group info structure * @group_info: The group info to reference * * This gets a reference to a set of supplementary groups. * * If the caller is accessing a task's credentials, they must hold the RCU read * lock when reading. */ static inline struct group_info *get_group_info(struct group_info *gi) { atomic_inc(&gi->usage); return gi; } /** * put_group_info - Release a reference to a group info structure * @group_info: The group info to release */ #define put_group_info(group_info) \ do { \ if (atomic_dec_and_test(&(group_info)->usage)) \ groups_free(group_info); \ } while (0) extern struct group_info init_groups; #ifdef CONFIG_MULTIUSER extern struct group_info *groups_alloc(int); extern void groups_free(struct group_info *); extern int in_group_p(kgid_t); extern int in_egroup_p(kgid_t); extern int groups_search(const struct group_info *, kgid_t); extern int set_current_groups(struct group_info *); extern void set_groups(struct cred *, struct group_info *); extern bool may_setgroups(void); extern void groups_sort(struct group_info *); #else static inline void groups_free(struct group_info *group_info) { } static inline int in_group_p(kgid_t grp) { return 1; } static inline int in_egroup_p(kgid_t grp) { return 1; } static inline int groups_search(const struct group_info *group_info, kgid_t grp) { return 1; } #endif /* * The security context of a task * * The parts of the context break down into two categories: * * (1) The objective context of a task. These parts are used when some other * task is attempting to affect this one. * * (2) The subjective context. These details are used when the task is acting * upon another object, be that a file, a task, a key or whatever. * * Note that some members of this structure belong to both categories - the * LSM security pointer for instance. * * A task has two security pointers. task->real_cred points to the objective * context that defines that task's actual details. The objective part of this * context is used whenever that task is acted upon. * * task->cred points to the subjective context that defines the details of how * that task is going to act upon another object. This may be overridden * temporarily to point to another security context, but normally points to the * same context as task->real_cred. */ struct cred { atomic_t usage; #ifdef CONFIG_DEBUG_CREDENTIALS atomic_t subscribers; /* number of processes subscribed */ void *put_addr; unsigned magic; #define CRED_MAGIC 0x43736564 #define CRED_MAGIC_DEAD 0x44656144 #endif kuid_t uid; /* real UID of the task */ kgid_t gid; /* real GID of the task */ kuid_t suid; /* saved UID of the task */ kgid_t sgid; /* saved GID of the task */ kuid_t euid; /* effective UID of the task */ kgid_t egid; /* effective GID of the task */ kuid_t fsuid; /* UID for VFS ops */ kgid_t fsgid; /* GID for VFS ops */ unsigned securebits; /* SUID-less security management */ kernel_cap_t cap_inheritable; /* caps our children can inherit */ kernel_cap_t cap_permitted; /* caps we're permitted */ kernel_cap_t cap_effective; /* caps we can actually use */ kernel_cap_t cap_bset; /* capability bounding set */ kernel_cap_t cap_ambient; /* Ambient capability set */ #ifdef CONFIG_KEYS unsigned char jit_keyring; /* default keyring to attach requested * keys to */ struct key *session_keyring; /* keyring inherited over fork */ struct key *process_keyring; /* keyring private to this process */ struct key *thread_keyring; /* keyring private to this thread */ struct key *request_key_auth; /* assumed request_key authority */ #endif #ifdef CONFIG_SECURITY void *security; /* subjective LSM security */ #endif struct user_struct *user; /* real user ID subscription */ struct user_namespace *user_ns; /* user_ns the caps and keyrings are relative to. */ struct group_info *group_info; /* supplementary groups for euid/fsgid */ /* RCU deletion */ union { int non_rcu; /* Can we skip RCU deletion? */ struct rcu_head rcu; /* RCU deletion hook */ }; } __randomize_layout; extern void __put_cred(struct cred *); extern void exit_creds(struct task_struct *); extern int copy_creds(struct task_struct *, unsigned long); extern const struct cred *get_task_cred(struct task_struct *); extern struct cred *cred_alloc_blank(void); extern struct cred *prepare_creds(void); extern struct cred *prepare_exec_creds(void); extern int commit_creds(struct cred *); extern void abort_creds(struct cred *); extern const struct cred *override_creds(const struct cred *); extern void revert_creds(const struct cred *); extern struct cred *prepare_kernel_cred(struct task_struct *); extern int change_create_files_as(struct cred *, struct inode *); extern int set_security_override(struct cred *, u32); extern int set_security_override_from_ctx(struct cred *, const char *); extern int set_create_files_as(struct cred *, struct inode *); extern int cred_fscmp(const struct cred *, const struct cred *); extern void __init cred_init(void); /* * check for validity of credentials */ #ifdef CONFIG_DEBUG_CREDENTIALS extern void __invalid_creds(const struct cred *, const char *, unsigned); extern void __validate_process_creds(struct task_struct *, const char *, unsigned); extern bool creds_are_invalid(const struct cred *cred); static inline void __validate_creds(const struct cred *cred, const char *file, unsigned line) { if (unlikely(creds_are_invalid(cred))) __invalid_creds(cred, file, line); } #define validate_creds(cred) \ do { \ __validate_creds((cred), __FILE__, __LINE__); \ } while(0) #define validate_process_creds() \ do { \ __validate_process_creds(current, __FILE__, __LINE__); \ } while(0) extern void validate_creds_for_do_exit(struct task_struct *); #else static inline void validate_creds(const struct cred *cred) { } static inline void validate_creds_for_do_exit(struct task_struct *tsk) { } static inline void validate_process_creds(void) { } #endif static inline bool cap_ambient_invariant_ok(const struct cred *cred) { return cap_issubset(cred->cap_ambient, cap_intersect(cred->cap_permitted, cred->cap_inheritable)); } /** * get_new_cred - Get a reference on a new set of credentials * @cred: The new credentials to reference * * Get a reference on the specified set of new credentials. The caller must * release the reference. */ static inline struct cred *get_new_cred(struct cred *cred) { atomic_inc(&cred->usage); return cred; } /** * get_cred - Get a reference on a set of credentials * @cred: The credentials to reference * * Get a reference on the specified set of credentials. The caller must * release the reference. If %NULL is passed, it is returned with no action. * * This is used to deal with a committed set of credentials. Although the * pointer is const, this will temporarily discard the const and increment the * usage count. The purpose of this is to attempt to catch at compile time the * accidental alteration of a set of credentials that should be considered * immutable. */ static inline const struct cred *get_cred(const struct cred *cred) { struct cred *nonconst_cred = (struct cred *) cred; if (!cred) return cred; validate_creds(cred); nonconst_cred->non_rcu = 0; return get_new_cred(nonconst_cred); } static inline const struct cred *get_cred_rcu(const struct cred *cred) { struct cred *nonconst_cred = (struct cred *) cred; if (!cred) return NULL; if (!atomic_inc_not_zero(&nonconst_cred->usage)) return NULL; validate_creds(cred); nonconst_cred->non_rcu = 0; return cred; } /** * put_cred - Release a reference to a set of credentials * @cred: The credentials to release * * Release a reference to a set of credentials, deleting them when the last ref * is released. If %NULL is passed, nothing is done. * * This takes a const pointer to a set of credentials because the credentials * on task_struct are attached by const pointers to prevent accidental * alteration of otherwise immutable credential sets. */ static inline void put_cred(const struct cred *_cred) { struct cred *cred = (struct cred *) _cred; if (cred) { validate_creds(cred); if (atomic_dec_and_test(&(cred)->usage)) __put_cred(cred); } } /** * current_cred - Access the current task's subjective credentials * * Access the subjective credentials of the current task. RCU-safe, * since nobody else can modify it. */ #define current_cred() \ rcu_dereference_protected(current->cred, 1) /** * current_real_cred - Access the current task's objective credentials * * Access the objective credentials of the current task. RCU-safe, * since nobody else can modify it. */ #define current_real_cred() \ rcu_dereference_protected(current->real_cred, 1) /** * __task_cred - Access a task's objective credentials * @task: The task to query * * Access the objective credentials of a task. The caller must hold the RCU * readlock. * * The result of this function should not be passed directly to get_cred(); * rather get_task_cred() should be used instead. */ #define __task_cred(task) \ rcu_dereference((task)->real_cred) /** * get_current_cred - Get the current task's subjective credentials * * Get the subjective credentials of the current task, pinning them so that * they can't go away. Accessing the current task's credentials directly is * not permitted. */ #define get_current_cred() \ (get_cred(current_cred())) /** * get_current_user - Get the current task's user_struct * * Get the user record of the current task, pinning it so that it can't go * away. */ #define get_current_user() \ ({ \ struct user_struct *__u; \ const struct cred *__cred; \ __cred = current_cred(); \ __u = get_uid(__cred->user); \ __u; \ }) /** * get_current_groups - Get the current task's supplementary group list * * Get the supplementary group list of the current task, pinning it so that it * can't go away. */ #define get_current_groups() \ ({ \ struct group_info *__groups; \ const struct cred *__cred; \ __cred = current_cred(); \ __groups = get_group_info(__cred->group_info); \ __groups; \ }) #define task_cred_xxx(task, xxx) \ ({ \ __typeof__(((struct cred *)NULL)->xxx) ___val; \ rcu_read_lock(); \ ___val = __task_cred((task))->xxx; \ rcu_read_unlock(); \ ___val; \ }) #define task_uid(task) (task_cred_xxx((task), uid)) #define task_euid(task) (task_cred_xxx((task), euid)) #define current_cred_xxx(xxx) \ ({ \ current_cred()->xxx; \ }) #define current_uid() (current_cred_xxx(uid)) #define current_gid() (current_cred_xxx(gid)) #define current_euid() (current_cred_xxx(euid)) #define current_egid() (current_cred_xxx(egid)) #define current_suid() (current_cred_xxx(suid)) #define current_sgid() (current_cred_xxx(sgid)) #define current_fsuid() (current_cred_xxx(fsuid)) #define current_fsgid() (current_cred_xxx(fsgid)) #define current_cap() (current_cred_xxx(cap_effective)) #define current_user() (current_cred_xxx(user)) extern struct user_namespace init_user_ns; #ifdef CONFIG_USER_NS #define current_user_ns() (current_cred_xxx(user_ns)) #else static inline struct user_namespace *current_user_ns(void) { return &init_user_ns; } #endif #define current_uid_gid(_uid, _gid) \ do { \ const struct cred *__cred; \ __cred = current_cred(); \ *(_uid) = __cred->uid; \ *(_gid) = __cred->gid; \ } while(0) #define current_euid_egid(_euid, _egid) \ do { \ const struct cred *__cred; \ __cred = current_cred(); \ *(_euid) = __cred->euid; \ *(_egid) = __cred->egid; \ } while(0) #define current_fsuid_fsgid(_fsuid, _fsgid) \ do { \ const struct cred *__cred; \ __cred = current_cred(); \ *(_fsuid) = __cred->fsuid; \ *(_fsgid) = __cred->fsgid; \ } while(0) #endif /* _LINUX_CRED_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NET Generic infrastructure for INET connection oriented protocols. * * Definitions for inet_connection_sock * * Authors: Many people, see the TCP sources * * From code originally in TCP */ #ifndef _INET_CONNECTION_SOCK_H #define _INET_CONNECTION_SOCK_H #include <linux/compiler.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/poll.h> #include <linux/kernel.h> #include <linux/sockptr.h> #include <net/inet_sock.h> #include <net/request_sock.h> /* Cancel timers, when they are not required. */ #undef INET_CSK_CLEAR_TIMERS struct inet_bind_bucket; struct tcp_congestion_ops; /* * Pointers to address related TCP functions * (i.e. things that depend on the address family) */ struct inet_connection_sock_af_ops { int (*queue_xmit)(struct sock *sk, struct sk_buff *skb, struct flowi *fl); void (*send_check)(struct sock *sk, struct sk_buff *skb); int (*rebuild_header)(struct sock *sk); void (*sk_rx_dst_set)(struct sock *sk, const struct sk_buff *skb); int (*conn_request)(struct sock *sk, struct sk_buff *skb); struct sock *(*syn_recv_sock)(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req); u16 net_header_len; u16 net_frag_header_len; u16 sockaddr_len; int (*setsockopt)(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int (*getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); void (*addr2sockaddr)(struct sock *sk, struct sockaddr *); void (*mtu_reduced)(struct sock *sk); }; /** inet_connection_sock - INET connection oriented sock * * @icsk_accept_queue: FIFO of established children * @icsk_bind_hash: Bind node * @icsk_timeout: Timeout * @icsk_retransmit_timer: Resend (no ack) * @icsk_rto: Retransmit timeout * @icsk_pmtu_cookie Last pmtu seen by socket * @icsk_ca_ops Pluggable congestion control hook * @icsk_af_ops Operations which are AF_INET{4,6} specific * @icsk_ulp_ops Pluggable ULP control hook * @icsk_ulp_data ULP private data * @icsk_clean_acked Clean acked data hook * @icsk_listen_portaddr_node hash to the portaddr listener hashtable * @icsk_ca_state: Congestion control state * @icsk_retransmits: Number of unrecovered [RTO] timeouts * @icsk_pending: Scheduled timer event * @icsk_backoff: Backoff * @icsk_syn_retries: Number of allowed SYN (or equivalent) retries * @icsk_probes_out: unanswered 0 window probes * @icsk_ext_hdr_len: Network protocol overhead (IP/IPv6 options) * @icsk_ack: Delayed ACK control data * @icsk_mtup; MTU probing control data * @icsk_probes_tstamp: Probe timestamp (cleared by non-zero window ack) * @icsk_user_timeout: TCP_USER_TIMEOUT value */ struct inet_connection_sock { /* inet_sock has to be the first member! */ struct inet_sock icsk_inet; struct request_sock_queue icsk_accept_queue; struct inet_bind_bucket *icsk_bind_hash; unsigned long icsk_timeout; struct timer_list icsk_retransmit_timer; struct timer_list icsk_delack_timer; __u32 icsk_rto; __u32 icsk_rto_min; __u32 icsk_delack_max; __u32 icsk_pmtu_cookie; const struct tcp_congestion_ops *icsk_ca_ops; const struct inet_connection_sock_af_ops *icsk_af_ops; const struct tcp_ulp_ops *icsk_ulp_ops; void __rcu *icsk_ulp_data; void (*icsk_clean_acked)(struct sock *sk, u32 acked_seq); struct hlist_node icsk_listen_portaddr_node; unsigned int (*icsk_sync_mss)(struct sock *sk, u32 pmtu); __u8 icsk_ca_state:5, icsk_ca_initialized:1, icsk_ca_setsockopt:1, icsk_ca_dst_locked:1; __u8 icsk_retransmits; __u8 icsk_pending; __u8 icsk_backoff; __u8 icsk_syn_retries; __u8 icsk_probes_out; __u16 icsk_ext_hdr_len; struct { __u8 pending; /* ACK is pending */ __u8 quick; /* Scheduled number of quick acks */ __u8 pingpong; /* The session is interactive */ __u8 retry; /* Number of attempts */ __u32 ato; /* Predicted tick of soft clock */ unsigned long timeout; /* Currently scheduled timeout */ __u32 lrcvtime; /* timestamp of last received data packet */ __u16 last_seg_size; /* Size of last incoming segment */ __u16 rcv_mss; /* MSS used for delayed ACK decisions */ } icsk_ack; struct { int enabled; /* Range of MTUs to search */ int search_high; int search_low; /* Information on the current probe. */ int probe_size; u32 probe_timestamp; } icsk_mtup; u32 icsk_probes_tstamp; u32 icsk_user_timeout; u64 icsk_ca_priv[104 / sizeof(u64)]; #define ICSK_CA_PRIV_SIZE (13 * sizeof(u64)) }; #define ICSK_TIME_RETRANS 1 /* Retransmit timer */ #define ICSK_TIME_DACK 2 /* Delayed ack timer */ #define ICSK_TIME_PROBE0 3 /* Zero window probe timer */ #define ICSK_TIME_EARLY_RETRANS 4 /* Early retransmit timer */ #define ICSK_TIME_LOSS_PROBE 5 /* Tail loss probe timer */ #define ICSK_TIME_REO_TIMEOUT 6 /* Reordering timer */ static inline struct inet_connection_sock *inet_csk(const struct sock *sk) { return (struct inet_connection_sock *)sk; } static inline void *inet_csk_ca(const struct sock *sk) { return (void *)inet_csk(sk)->icsk_ca_priv; } struct sock *inet_csk_clone_lock(const struct sock *sk, const struct request_sock *req, const gfp_t priority); enum inet_csk_ack_state_t { ICSK_ACK_SCHED = 1, ICSK_ACK_TIMER = 2, ICSK_ACK_PUSHED = 4, ICSK_ACK_PUSHED2 = 8, ICSK_ACK_NOW = 16 /* Send the next ACK immediately (once) */ }; void inet_csk_init_xmit_timers(struct sock *sk, void (*retransmit_handler)(struct timer_list *), void (*delack_handler)(struct timer_list *), void (*keepalive_handler)(struct timer_list *)); void inet_csk_clear_xmit_timers(struct sock *sk); static inline void inet_csk_schedule_ack(struct sock *sk) { inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_SCHED; } static inline int inet_csk_ack_scheduled(const struct sock *sk) { return inet_csk(sk)->icsk_ack.pending & ICSK_ACK_SCHED; } static inline void inet_csk_delack_init(struct sock *sk) { memset(&inet_csk(sk)->icsk_ack, 0, sizeof(inet_csk(sk)->icsk_ack)); } void inet_csk_delete_keepalive_timer(struct sock *sk); void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long timeout); static inline void inet_csk_clear_xmit_timer(struct sock *sk, const int what) { struct inet_connection_sock *icsk = inet_csk(sk); if (what == ICSK_TIME_RETRANS || what == ICSK_TIME_PROBE0) { icsk->icsk_pending = 0; #ifdef INET_CSK_CLEAR_TIMERS sk_stop_timer(sk, &icsk->icsk_retransmit_timer); #endif } else if (what == ICSK_TIME_DACK) { icsk->icsk_ack.pending = 0; icsk->icsk_ack.retry = 0; #ifdef INET_CSK_CLEAR_TIMERS sk_stop_timer(sk, &icsk->icsk_delack_timer); #endif } else { pr_debug("inet_csk BUG: unknown timer value\n"); } } /* * Reset the retransmission timer */ static inline void inet_csk_reset_xmit_timer(struct sock *sk, const int what, unsigned long when, const unsigned long max_when) { struct inet_connection_sock *icsk = inet_csk(sk); if (when > max_when) { pr_debug("reset_xmit_timer: sk=%p %d when=0x%lx, caller=%p\n", sk, what, when, (void *)_THIS_IP_); when = max_when; } if (what == ICSK_TIME_RETRANS || what == ICSK_TIME_PROBE0 || what == ICSK_TIME_EARLY_RETRANS || what == ICSK_TIME_LOSS_PROBE || what == ICSK_TIME_REO_TIMEOUT) { icsk->icsk_pending = what; icsk->icsk_timeout = jiffies + when; sk_reset_timer(sk, &icsk->icsk_retransmit_timer, icsk->icsk_timeout); } else if (what == ICSK_TIME_DACK) { icsk->icsk_ack.pending |= ICSK_ACK_TIMER; icsk->icsk_ack.timeout = jiffies + when; sk_reset_timer(sk, &icsk->icsk_delack_timer, icsk->icsk_ack.timeout); } else { pr_debug("inet_csk BUG: unknown timer value\n"); } } static inline unsigned long inet_csk_rto_backoff(const struct inet_connection_sock *icsk, unsigned long max_when) { u64 when = (u64)icsk->icsk_rto << icsk->icsk_backoff; return (unsigned long)min_t(u64, when, max_when); } struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern); int inet_csk_get_port(struct sock *sk, unsigned short snum); struct dst_entry *inet_csk_route_req(const struct sock *sk, struct flowi4 *fl4, const struct request_sock *req); struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, struct sock *newsk, const struct request_sock *req); struct sock *inet_csk_reqsk_queue_add(struct sock *sk, struct request_sock *req, struct sock *child); void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, unsigned long timeout); struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, struct request_sock *req, bool own_req); static inline void inet_csk_reqsk_queue_added(struct sock *sk) { reqsk_queue_added(&inet_csk(sk)->icsk_accept_queue); } static inline int inet_csk_reqsk_queue_len(const struct sock *sk) { return reqsk_queue_len(&inet_csk(sk)->icsk_accept_queue); } static inline int inet_csk_reqsk_queue_is_full(const struct sock *sk) { return inet_csk_reqsk_queue_len(sk) >= sk->sk_max_ack_backlog; } bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req); void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req); static inline void inet_csk_prepare_for_destroy_sock(struct sock *sk) { /* The below has to be done to allow calling inet_csk_destroy_sock */ sock_set_flag(sk, SOCK_DEAD); this_cpu_inc(*sk->sk_prot->orphan_count); } void inet_csk_destroy_sock(struct sock *sk); void inet_csk_prepare_forced_close(struct sock *sk); /* * LISTEN is a special case for poll.. */ static inline __poll_t inet_csk_listen_poll(const struct sock *sk) { return !reqsk_queue_empty(&inet_csk(sk)->icsk_accept_queue) ? (EPOLLIN | EPOLLRDNORM) : 0; } int inet_csk_listen_start(struct sock *sk, int backlog); void inet_csk_listen_stop(struct sock *sk); void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr); /* update the fast reuse flag when adding a socket */ void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, struct sock *sk); struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu); #define TCP_PINGPONG_THRESH 3 static inline void inet_csk_enter_pingpong_mode(struct sock *sk) { inet_csk(sk)->icsk_ack.pingpong = TCP_PINGPONG_THRESH; } static inline void inet_csk_exit_pingpong_mode(struct sock *sk) { inet_csk(sk)->icsk_ack.pingpong = 0; } static inline bool inet_csk_in_pingpong_mode(struct sock *sk) { return inet_csk(sk)->icsk_ack.pingpong >= TCP_PINGPONG_THRESH; } static inline void inet_csk_inc_pingpong_cnt(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ack.pingpong < U8_MAX) icsk->icsk_ack.pingpong++; } static inline bool inet_csk_has_ulp(struct sock *sk) { return inet_sk(sk)->is_icsk && !!inet_csk(sk)->icsk_ulp_ops; } #endif /* _INET_CONNECTION_SOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BYTEORDER_GENERIC_H #define _LINUX_BYTEORDER_GENERIC_H /* * linux/byteorder/generic.h * Generic Byte-reordering support * * The "... p" macros, like le64_to_cpup, can be used with pointers * to unaligned data, but there will be a performance penalty on * some architectures. Use get_unaligned for unaligned data. * * Francois-Rene Rideau <fare@tunes.org> 19970707 * gathered all the good ideas from all asm-foo/byteorder.h into one file, * cleaned them up. * I hope it is compliant with non-GCC compilers. * I decided to put __BYTEORDER_HAS_U64__ in byteorder.h, * because I wasn't sure it would be ok to put it in types.h * Upgraded it to 2.1.43 * Francois-Rene Rideau <fare@tunes.org> 19971012 * Upgraded it to 2.1.57 * to please Linus T., replaced huge #ifdef's between little/big endian * by nestedly #include'd files. * Francois-Rene Rideau <fare@tunes.org> 19971205 * Made it to 2.1.71; now a facelift: * Put files under include/linux/byteorder/ * Split swab from generic support. * * TODO: * = Regular kernel maintainers could also replace all these manual * byteswap macros that remain, disseminated among drivers, * after some grep or the sources... * = Linus might want to rename all these macros and files to fit his taste, * to fit his personal naming scheme. * = it seems that a few drivers would also appreciate * nybble swapping support... * = every architecture could add their byteswap macro in asm/byteorder.h * see how some architectures already do (i386, alpha, ppc, etc) * = cpu_to_beXX and beXX_to_cpu might some day need to be well * distinguished throughout the kernel. This is not the case currently, * since little endian, big endian, and pdp endian machines needn't it. * But this might be the case for, say, a port of Linux to 20/21 bit * architectures (and F21 Linux addict around?). */ /* * The following macros are to be defined by <asm/byteorder.h>: * * Conversion of long and short int between network and host format * ntohl(__u32 x) * ntohs(__u16 x) * htonl(__u32 x) * htons(__u16 x) * It seems that some programs (which? where? or perhaps a standard? POSIX?) * might like the above to be functions, not macros (why?). * if that's true, then detect them, and take measures. * Anyway, the measure is: define only ___ntohl as a macro instead, * and in a separate file, have * unsigned long inline ntohl(x){return ___ntohl(x);} * * The same for constant arguments * __constant_ntohl(__u32 x) * __constant_ntohs(__u16 x) * __constant_htonl(__u32 x) * __constant_htons(__u16 x) * * Conversion of XX-bit integers (16- 32- or 64-) * between native CPU format and little/big endian format * 64-bit stuff only defined for proper architectures * cpu_to_[bl]eXX(__uXX x) * [bl]eXX_to_cpu(__uXX x) * * The same, but takes a pointer to the value to convert * cpu_to_[bl]eXXp(__uXX x) * [bl]eXX_to_cpup(__uXX x) * * The same, but change in situ * cpu_to_[bl]eXXs(__uXX x) * [bl]eXX_to_cpus(__uXX x) * * See asm-foo/byteorder.h for examples of how to provide * architecture-optimized versions * */ #define cpu_to_le64 __cpu_to_le64 #define le64_to_cpu __le64_to_cpu #define cpu_to_le32 __cpu_to_le32 #define le32_to_cpu __le32_to_cpu #define cpu_to_le16 __cpu_to_le16 #define le16_to_cpu __le16_to_cpu #define cpu_to_be64 __cpu_to_be64 #define be64_to_cpu __be64_to_cpu #define cpu_to_be32 __cpu_to_be32 #define be32_to_cpu __be32_to_cpu #define cpu_to_be16 __cpu_to_be16 #define be16_to_cpu __be16_to_cpu #define cpu_to_le64p __cpu_to_le64p #define le64_to_cpup __le64_to_cpup #define cpu_to_le32p __cpu_to_le32p #define le32_to_cpup __le32_to_cpup #define cpu_to_le16p __cpu_to_le16p #define le16_to_cpup __le16_to_cpup #define cpu_to_be64p __cpu_to_be64p #define be64_to_cpup __be64_to_cpup #define cpu_to_be32p __cpu_to_be32p #define be32_to_cpup __be32_to_cpup #define cpu_to_be16p __cpu_to_be16p #define be16_to_cpup __be16_to_cpup #define cpu_to_le64s __cpu_to_le64s #define le64_to_cpus __le64_to_cpus #define cpu_to_le32s __cpu_to_le32s #define le32_to_cpus __le32_to_cpus #define cpu_to_le16s __cpu_to_le16s #define le16_to_cpus __le16_to_cpus #define cpu_to_be64s __cpu_to_be64s #define be64_to_cpus __be64_to_cpus #define cpu_to_be32s __cpu_to_be32s #define be32_to_cpus __be32_to_cpus #define cpu_to_be16s __cpu_to_be16s #define be16_to_cpus __be16_to_cpus /* * They have to be macros in order to do the constant folding * correctly - if the argument passed into a inline function * it is no longer constant according to gcc.. */ #undef ntohl #undef ntohs #undef htonl #undef htons #define ___htonl(x) __cpu_to_be32(x) #define ___htons(x) __cpu_to_be16(x) #define ___ntohl(x) __be32_to_cpu(x) #define ___ntohs(x) __be16_to_cpu(x) #define htonl(x) ___htonl(x) #define ntohl(x) ___ntohl(x) #define htons(x) ___htons(x) #define ntohs(x) ___ntohs(x) static inline void le16_add_cpu(__le16 *var, u16 val) { *var = cpu_to_le16(le16_to_cpu(*var) + val); } static inline void le32_add_cpu(__le32 *var, u32 val) { *var = cpu_to_le32(le32_to_cpu(*var) + val); } static inline void le64_add_cpu(__le64 *var, u64 val) { *var = cpu_to_le64(le64_to_cpu(*var) + val); } /* XXX: this stuff can be optimized */ static inline void le32_to_cpu_array(u32 *buf, unsigned int words) { while (words--) { __le32_to_cpus(buf); buf++; } } static inline void cpu_to_le32_array(u32 *buf, unsigned int words) { while (words--) { __cpu_to_le32s(buf); buf++; } } static inline void be16_add_cpu(__be16 *var, u16 val) { *var = cpu_to_be16(be16_to_cpu(*var) + val); } static inline void be32_add_cpu(__be32 *var, u32 val) { *var = cpu_to_be32(be32_to_cpu(*var) + val); } static inline void be64_add_cpu(__be64 *var, u64 val) { *var = cpu_to_be64(be64_to_cpu(*var) + val); } static inline void cpu_to_be32_array(__be32 *dst, const u32 *src, size_t len) { int i; for (i = 0; i < len; i++) dst[i] = cpu_to_be32(src[i]); } static inline void be32_to_cpu_array(u32 *dst, const __be32 *src, size_t len) { int i; for (i = 0; i < len; i++) dst[i] = be32_to_cpu(src[i]); } #endif /* _LINUX_BYTEORDER_GENERIC_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 /* SPDX-License-Identifier: GPL-2.0 */ /* * Operations on the network namespace */ #ifndef __NET_NET_NAMESPACE_H #define __NET_NET_NAMESPACE_H #include <linux/atomic.h> #include <linux/refcount.h> #include <linux/workqueue.h> #include <linux/list.h> #include <linux/sysctl.h> #include <linux/uidgid.h> #include <net/flow.h> #include <net/netns/core.h> #include <net/netns/mib.h> #include <net/netns/unix.h> #include <net/netns/packet.h> #include <net/netns/ipv4.h> #include <net/netns/ipv6.h> #include <net/netns/nexthop.h> #include <net/netns/ieee802154_6lowpan.h> #include <net/netns/sctp.h> #include <net/netns/dccp.h> #include <net/netns/netfilter.h> #include <net/netns/x_tables.h> #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) #include <net/netns/conntrack.h> #endif #include <net/netns/nftables.h> #include <net/netns/xfrm.h> #include <net/netns/mpls.h> #include <net/netns/can.h> #include <net/netns/xdp.h> #include <net/netns/bpf.h> #include <linux/ns_common.h> #include <linux/idr.h> #include <linux/skbuff.h> #include <linux/notifier.h> struct user_namespace; struct proc_dir_entry; struct net_device; struct sock; struct ctl_table_header; struct net_generic; struct uevent_sock; struct netns_ipvs; struct bpf_prog; #define NETDEV_HASHBITS 8 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) struct net { /* First cache line can be often dirtied. * Do not place here read-mostly fields. */ refcount_t passive; /* To decide when the network * namespace should be freed. */ refcount_t count; /* To decided when the network * namespace should be shut down. */ spinlock_t rules_mod_lock; unsigned int dev_unreg_count; unsigned int dev_base_seq; /* protected by rtnl_mutex */ int ifindex; spinlock_t nsid_lock; atomic_t fnhe_genid; struct list_head list; /* list of network namespaces */ struct list_head exit_list; /* To linked to call pernet exit * methods on dead net ( * pernet_ops_rwsem read locked), * or to unregister pernet ops * (pernet_ops_rwsem write locked). */ struct llist_node cleanup_list; /* namespaces on death row */ #ifdef CONFIG_KEYS struct key_tag *key_domain; /* Key domain of operation tag */ #endif struct user_namespace *user_ns; /* Owning user namespace */ struct ucounts *ucounts; struct idr netns_ids; struct ns_common ns; struct list_head dev_base_head; struct proc_dir_entry *proc_net; struct proc_dir_entry *proc_net_stat; #ifdef CONFIG_SYSCTL struct ctl_table_set sysctls; #endif struct sock *rtnl; /* rtnetlink socket */ struct sock *genl_sock; struct uevent_sock *uevent_sock; /* uevent socket */ struct hlist_head *dev_name_head; struct hlist_head *dev_index_head; struct raw_notifier_head netdev_chain; /* Note that @hash_mix can be read millions times per second, * it is critical that it is on a read_mostly cache line. */ u32 hash_mix; struct net_device *loopback_dev; /* The loopback */ /* core fib_rules */ struct list_head rules_ops; struct netns_core core; struct netns_mib mib; struct netns_packet packet; struct netns_unix unx; struct netns_nexthop nexthop; struct netns_ipv4 ipv4; #if IS_ENABLED(CONFIG_IPV6) struct netns_ipv6 ipv6; #endif #if IS_ENABLED(CONFIG_IEEE802154_6LOWPAN) struct netns_ieee802154_lowpan ieee802154_lowpan; #endif #if defined(CONFIG_IP_SCTP) || defined(CONFIG_IP_SCTP_MODULE) struct netns_sctp sctp; #endif #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE) struct netns_dccp dccp; #endif #ifdef CONFIG_NETFILTER struct netns_nf nf; struct netns_xt xt; #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) struct netns_ct ct; #endif #if defined(CONFIG_NF_TABLES) || defined(CONFIG_NF_TABLES_MODULE) struct netns_nftables nft; #endif #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) struct netns_nf_frag nf_frag; struct ctl_table_header *nf_frag_frags_hdr; #endif struct sock *nfnl; struct sock *nfnl_stash; #if IS_ENABLED(CONFIG_NETFILTER_NETLINK_ACCT) struct list_head nfnl_acct_list; #endif #if IS_ENABLED(CONFIG_NF_CT_NETLINK_TIMEOUT) struct list_head nfct_timeout_list; #endif #endif #ifdef CONFIG_WEXT_CORE struct sk_buff_head wext_nlevents; #endif struct net_generic __rcu *gen; /* Used to store attached BPF programs */ struct netns_bpf bpf; /* Note : following structs are cache line aligned */ #ifdef CONFIG_XFRM struct netns_xfrm xfrm; #endif atomic64_t net_cookie; /* written once */ #if IS_ENABLED(CONFIG_IP_VS) struct netns_ipvs *ipvs; #endif #if IS_ENABLED(CONFIG_MPLS) struct netns_mpls mpls; #endif #if IS_ENABLED(CONFIG_CAN) struct netns_can can; #endif #ifdef CONFIG_XDP_SOCKETS struct netns_xdp xdp; #endif #if IS_ENABLED(CONFIG_CRYPTO_USER) struct sock *crypto_nlsk; #endif struct sock *diag_nlsk; } __randomize_layout; #include <linux/seq_file_net.h> /* Init's network namespace */ extern struct net init_net; #ifdef CONFIG_NET_NS struct net *copy_net_ns(unsigned long flags, struct user_namespace *user_ns, struct net *old_net); void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid); void net_ns_barrier(void); struct ns_common *get_net_ns(struct ns_common *ns); #else /* CONFIG_NET_NS */ #include <linux/sched.h> #include <linux/nsproxy.h> static inline struct net *copy_net_ns(unsigned long flags, struct user_namespace *user_ns, struct net *old_net) { if (flags & CLONE_NEWNET) return ERR_PTR(-EINVAL); return old_net; } static inline void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) { *uid = GLOBAL_ROOT_UID; *gid = GLOBAL_ROOT_GID; } static inline void net_ns_barrier(void) {} static inline struct ns_common *get_net_ns(struct ns_common *ns) { return ERR_PTR(-EINVAL); } #endif /* CONFIG_NET_NS */ extern struct list_head net_namespace_list; struct net *get_net_ns_by_pid(pid_t pid); struct net *get_net_ns_by_fd(int fd); u64 __net_gen_cookie(struct net *net); #ifdef CONFIG_SYSCTL void ipx_register_sysctl(void); void ipx_unregister_sysctl(void); #else #define ipx_register_sysctl() #define ipx_unregister_sysctl() #endif #ifdef CONFIG_NET_NS void __put_net(struct net *net); static inline struct net *get_net(struct net *net) { refcount_inc(&net->count); return net; } static inline struct net *maybe_get_net(struct net *net) { /* Used when we know struct net exists but we * aren't guaranteed a previous reference count * exists. If the reference count is zero this * function fails and returns NULL. */ if (!refcount_inc_not_zero(&net->count)) net = NULL; return net; } static inline void put_net(struct net *net) { if (refcount_dec_and_test(&net->count)) __put_net(net); } static inline int net_eq(const struct net *net1, const struct net *net2) { return net1 == net2; } static inline int check_net(const struct net *net) { return refcount_read(&net->count) != 0; } void net_drop_ns(void *); #else static inline struct net *get_net(struct net *net) { return net; } static inline void put_net(struct net *net) { } static inline struct net *maybe_get_net(struct net *net) { return net; } static inline int net_eq(const struct net *net1, const struct net *net2) { return 1; } static inline int check_net(const struct net *net) { return 1; } #define net_drop_ns NULL #endif typedef struct { #ifdef CONFIG_NET_NS struct net *net; #endif } possible_net_t; static inline void write_pnet(possible_net_t *pnet, struct net *net) { #ifdef CONFIG_NET_NS pnet->net = net; #endif } static inline struct net *read_pnet(const possible_net_t *pnet) { #ifdef CONFIG_NET_NS return pnet->net; #else return &init_net; #endif } /* Protected by net_rwsem */ #define for_each_net(VAR) \ list_for_each_entry(VAR, &net_namespace_list, list) #define for_each_net_continue_reverse(VAR) \ list_for_each_entry_continue_reverse(VAR, &net_namespace_list, list) #define for_each_net_rcu(VAR) \ list_for_each_entry_rcu(VAR, &net_namespace_list, list) #ifdef CONFIG_NET_NS #define __net_init #define __net_exit #define __net_initdata #define __net_initconst #else #define __net_init __init #define __net_exit __ref #define __net_initdata __initdata #define __net_initconst __initconst #endif int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp); int peernet2id(const struct net *net, struct net *peer); bool peernet_has_id(const struct net *net, struct net *peer); struct net *get_net_ns_by_id(const struct net *net, int id); struct pernet_operations { struct list_head list; /* * Below methods are called without any exclusive locks. * More than one net may be constructed and destructed * in parallel on several cpus. Every pernet_operations * have to keep in mind all other pernet_operations and * to introduce a locking, if they share common resources. * * The only time they are called with exclusive lock is * from register_pernet_subsys(), unregister_pernet_subsys() * register_pernet_device() and unregister_pernet_device(). * * Exit methods using blocking RCU primitives, such as * synchronize_rcu(), should be implemented via exit_batch. * Then, destruction of a group of net requires single * synchronize_rcu() related to these pernet_operations, * instead of separate synchronize_rcu() for every net. * Please, avoid synchronize_rcu() at all, where it's possible. * * Note that a combination of pre_exit() and exit() can * be used, since a synchronize_rcu() is guaranteed between * the calls. */ int (*init)(struct net *net); void (*pre_exit)(struct net *net); void (*exit)(struct net *net); void (*exit_batch)(struct list_head *net_exit_list); unsigned int *id; size_t size; }; /* * Use these carefully. If you implement a network device and it * needs per network namespace operations use device pernet operations, * otherwise use pernet subsys operations. * * Network interfaces need to be removed from a dying netns _before_ * subsys notifiers can be called, as most of the network code cleanup * (which is done from subsys notifiers) runs with the assumption that * dev_remove_pack has been called so no new packets will arrive during * and after the cleanup functions have been called. dev_remove_pack * is not per namespace so instead the guarantee of no more packets * arriving in a network namespace is provided by ensuring that all * network devices and all sockets have left the network namespace * before the cleanup methods are called. * * For the longest time the ipv4 icmp code was registered as a pernet * device which caused kernel oops, and panics during network * namespace cleanup. So please don't get this wrong. */ int register_pernet_subsys(struct pernet_operations *); void unregister_pernet_subsys(struct pernet_operations *); int register_pernet_device(struct pernet_operations *); void unregister_pernet_device(struct pernet_operations *); struct ctl_table; struct ctl_table_header; #ifdef CONFIG_SYSCTL int net_sysctl_init(void); struct ctl_table_header *register_net_sysctl(struct net *net, const char *path, struct ctl_table *table); void unregister_net_sysctl_table(struct ctl_table_header *header); #else static inline int net_sysctl_init(void) { return 0; } static inline struct ctl_table_header *register_net_sysctl(struct net *net, const char *path, struct ctl_table *table) { return NULL; } static inline void unregister_net_sysctl_table(struct ctl_table_header *header) { } #endif static inline int rt_genid_ipv4(const struct net *net) { return atomic_read(&net->ipv4.rt_genid); } #if IS_ENABLED(CONFIG_IPV6) static inline int rt_genid_ipv6(const struct net *net) { return atomic_read(&net->ipv6.fib6_sernum); } #endif static inline void rt_genid_bump_ipv4(struct net *net) { atomic_inc(&net->ipv4.rt_genid); } extern void (*__fib6_flush_trees)(struct net *net); static inline void rt_genid_bump_ipv6(struct net *net) { if (__fib6_flush_trees) __fib6_flush_trees(net); } #if IS_ENABLED(CONFIG_IEEE802154_6LOWPAN) static inline struct netns_ieee802154_lowpan * net_ieee802154_lowpan(struct net *net) { return &net->ieee802154_lowpan; } #endif /* For callers who don't really care about whether it's IPv4 or IPv6 */ static inline void rt_genid_bump_all(struct net *net) { rt_genid_bump_ipv4(net); rt_genid_bump_ipv6(net); } static inline int fnhe_genid(const struct net *net) { return atomic_read(&net->fnhe_genid); } static inline void fnhe_genid_bump(struct net *net) { atomic_inc(&net->fnhe_genid); } #endif /* __NET_NET_NAMESPACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 #undef TRACE_SYSTEM #define TRACE_SYSTEM rtc #if !defined(_TRACE_RTC_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RTC_H #include <linux/rtc.h> #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(rtc_time_alarm_class, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err), TP_STRUCT__entry( __field(time64_t, secs) __field(int, err) ), TP_fast_assign( __entry->secs = secs; __entry->err = err; ), TP_printk("UTC (%lld) (%d)", __entry->secs, __entry->err ) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_set_time, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_read_time, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_set_alarm, TP_PROTO(time64_t secs,