1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM workqueue #if !defined(_TRACE_WORKQUEUE_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_WORKQUEUE_H #include <linux/tracepoint.h> #include <linux/workqueue.h> struct pool_workqueue; /** * workqueue_queue_work - called when a work gets queued * @req_cpu: the requested cpu * @pwq: pointer to struct pool_workqueue * @work: pointer to struct work_struct * * This event occurs when a work is queued immediately or once a * delayed work is actually queued on a workqueue (ie: once the delay * has been reached). */ TRACE_EVENT(workqueue_queue_work, TP_PROTO(unsigned int req_cpu, struct pool_workqueue *pwq, struct work_struct *work), TP_ARGS(req_cpu, pwq, work), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) __field( void *, workqueue) __field( unsigned int, req_cpu ) __field( unsigned int, cpu ) ), TP_fast_assign( __entry->work = work; __entry->function = work->func; __entry->workqueue = pwq->wq; __entry->req_cpu = req_cpu; __entry->cpu = pwq->pool->cpu; ), TP_printk("work struct=%p function=%ps workqueue=%p req_cpu=%u cpu=%u", __entry->work, __entry->function, __entry->workqueue, __entry->req_cpu, __entry->cpu) ); /** * workqueue_activate_work - called when a work gets activated * @work: pointer to struct work_struct * * This event occurs when a queued work is put on the active queue, * which happens immediately after queueing unless @max_active limit * is reached. */ TRACE_EVENT(workqueue_activate_work, TP_PROTO(struct work_struct *work), TP_ARGS(work), TP_STRUCT__entry( __field( void *, work ) ), TP_fast_assign( __entry->work = work; ), TP_printk("work struct %p", __entry->work) ); /** * workqueue_execute_start - called immediately before the workqueue callback * @work: pointer to struct work_struct * * Allows to track workqueue execution. */ TRACE_EVENT(workqueue_execute_start, TP_PROTO(struct work_struct *work), TP_ARGS(work), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) ), TP_fast_assign( __entry->work = work; __entry->function = work->func; ), TP_printk("work struct %p: function %ps", __entry->work, __entry->function) ); /** * workqueue_execute_end - called immediately after the workqueue callback * @work: pointer to struct work_struct * @function: pointer to worker function * * Allows to track workqueue execution. */ TRACE_EVENT(workqueue_execute_end, TP_PROTO(struct work_struct *work, work_func_t function), TP_ARGS(work, function), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) ), TP_fast_assign( __entry->work = work; __entry->function = function; ), TP_printk("work struct %p: function %ps", __entry->work, __entry->function) ); #endif /* _TRACE_WORKQUEUE_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_FIB_RULES_H #define __NET_FIB_RULES_H #include <linux/types.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <linux/fib_rules.h> #include <linux/refcount.h> #include <net/flow.h> #include <net/rtnetlink.h> #include <net/fib_notifier.h> #include <linux/indirect_call_wrapper.h> struct fib_kuid_range { kuid_t start; kuid_t end; }; struct fib_rule { struct list_head list; int iifindex; int oifindex; u32 mark; u32 mark_mask; u32 flags; u32 table; u8 action; u8 l3mdev; u8 proto; u8 ip_proto; u32 target; __be64 tun_id; struct fib_rule __rcu *ctarget; struct net *fr_net; refcount_t refcnt; u32 pref; int suppress_ifgroup; int suppress_prefixlen; char iifname[IFNAMSIZ]; char oifname[IFNAMSIZ]; struct fib_kuid_range uid_range; struct fib_rule_port_range sport_range; struct fib_rule_port_range dport_range; struct rcu_head rcu; }; struct fib_lookup_arg { void *lookup_ptr; const void *lookup_data; void *result; struct fib_rule *rule; u32 table; int flags; #define FIB_LOOKUP_NOREF 1 #define FIB_LOOKUP_IGNORE_LINKSTATE 2 }; struct fib_rules_ops { int family; struct list_head list; int rule_size; int addr_size; int unresolved_rules; int nr_goto_rules; unsigned int fib_rules_seq; int (*action)(struct fib_rule *, struct flowi *, int, struct fib_lookup_arg *); bool (*suppress)(struct fib_rule *, int, struct fib_lookup_arg *); int (*match)(struct fib_rule *, struct flowi *, int); int (*configure)(struct fib_rule *, struct sk_buff *, struct fib_rule_hdr *, struct nlattr **, struct netlink_ext_ack *); int (*delete)(struct fib_rule *); int (*compare)(struct fib_rule *, struct fib_rule_hdr *, struct nlattr **); int (*fill)(struct fib_rule *, struct sk_buff *, struct fib_rule_hdr *); size_t (*nlmsg_payload)(struct fib_rule *); /* Called after modifications to the rules set, must flush * the route cache if one exists. */ void (*flush_cache)(struct fib_rules_ops *ops); int nlgroup; const struct nla_policy *policy; struct list_head rules_list; struct module *owner; struct net *fro_net; struct rcu_head rcu; }; struct fib_rule_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib_rule *rule; }; #define FRA_GENERIC_POLICY \ [FRA_UNSPEC] = { .strict_start_type = FRA_DPORT_RANGE + 1 }, \ [FRA_IIFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ - 1 }, \ [FRA_OIFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ - 1 }, \ [FRA_PRIORITY] = { .type = NLA_U32 }, \ [FRA_FWMARK] = { .type = NLA_U32 }, \ [FRA_TUN_ID] = { .type = NLA_U64 }, \ [FRA_FWMASK] = { .type = NLA_U32 }, \ [FRA_TABLE] = { .type = NLA_U32 }, \ [FRA_SUPPRESS_PREFIXLEN] = { .type = NLA_U32 }, \ [FRA_SUPPRESS_IFGROUP] = { .type = NLA_U32 }, \ [FRA_GOTO] = { .type = NLA_U32 }, \ [FRA_L3MDEV] = { .type = NLA_U8 }, \ [FRA_UID_RANGE] = { .len = sizeof(struct fib_rule_uid_range) }, \ [FRA_PROTOCOL] = { .type = NLA_U8 }, \ [FRA_IP_PROTO] = { .type = NLA_U8 }, \ [FRA_SPORT_RANGE] = { .len = sizeof(struct fib_rule_port_range) }, \ [FRA_DPORT_RANGE] = { .len = sizeof(struct fib_rule_port_range) } static inline void fib_rule_get(struct fib_rule *rule) { refcount_inc(&rule->refcnt); } static inline void fib_rule_put(struct fib_rule *rule) { if (refcount_dec_and_test(&rule->refcnt)) kfree_rcu(rule, rcu); } #ifdef CONFIG_NET_L3_MASTER_DEV static inline u32 fib_rule_get_table(struct fib_rule *rule, struct fib_lookup_arg *arg) { return rule->l3mdev ? arg->table : rule->table; } #else static inline u32 fib_rule_get_table(struct fib_rule *rule, struct fib_lookup_arg *arg) { return rule->table; } #endif static inline u32 frh_get_table(struct fib_rule_hdr *frh, struct nlattr **nla) { if (nla[FRA_TABLE]) return nla_get_u32(nla[FRA_TABLE]); return frh->table; } static inline bool fib_rule_port_range_set(const struct fib_rule_port_range *range) { return range->start != 0 && range->end != 0; } static inline bool fib_rule_port_inrange(const struct fib_rule_port_range *a, __be16 port) { return ntohs(port) >= a->start && ntohs(port) <= a->end; } static inline bool fib_rule_port_range_valid(const struct fib_rule_port_range *a) { return a->start != 0 && a->end != 0 && a->end < 0xffff && a->start <= a->end; } static inline bool fib_rule_port_range_compare(struct fib_rule_port_range *a, struct fib_rule_port_range *b) { return a->start == b->start && a->end == b->end; } static inline bool fib_rule_requires_fldissect(struct fib_rule *rule) { return rule->iifindex != LOOPBACK_IFINDEX && (rule->ip_proto || fib_rule_port_range_set(&rule->sport_range) || fib_rule_port_range_set(&rule->dport_range)); } struct fib_rules_ops *fib_rules_register(const struct fib_rules_ops *, struct net *); void fib_rules_unregister(struct fib_rules_ops *); int fib_rules_lookup(struct fib_rules_ops *, struct flowi *, int flags, struct fib_lookup_arg *); int fib_default_rule_add(struct fib_rules_ops *, u32 pref, u32 table, u32 flags); bool fib_rule_matchall(const struct fib_rule *rule); int fib_rules_dump(struct net *net, struct notifier_block *nb, int family, struct netlink_ext_ack *extack); unsigned int fib_rules_seq_read(struct net *net, int family); int fib_nl_newrule(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack); int fib_nl_delrule(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack); INDIRECT_CALLABLE_DECLARE(int fib6_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)); INDIRECT_CALLABLE_DECLARE(int fib4_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)); INDIRECT_CALLABLE_DECLARE(int fib6_rule_action(struct fib_rule *rule, struct flowi *flp, int flags, struct fib_lookup_arg *arg)); INDIRECT_CALLABLE_DECLARE(int fib4_rule_action(struct fib_rule *rule, struct flowi *flp, int flags, struct fib_lookup_arg *arg)); INDIRECT_CALLABLE_DECLARE(bool fib6_rule_suppress(struct fib_rule *rule, int flags, struct fib_lookup_arg *arg)); INDIRECT_CALLABLE_DECLARE(bool fib4_rule_suppress(struct fib_rule *rule, int flags, struct fib_lookup_arg *arg)); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * RNG: Random Number Generator algorithms under the crypto API * * Copyright (c) 2008 Neil Horman <nhorman@tuxdriver.com> * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_RNG_H #define _CRYPTO_RNG_H #include <linux/crypto.h> struct crypto_rng; /** * struct rng_alg - random number generator definition * * @generate: The function defined by this variable obtains a * random number. The random number generator transform * must generate the random number out of the context * provided with this call, plus any additional data * if provided to the call. * @seed: Seed or reseed the random number generator. With the * invocation of this function call, the random number * generator shall become ready for generation. If the * random number generator requires a seed for setting * up a new state, the seed must be provided by the * consumer while invoking this function. The required * size of the seed is defined with @seedsize . * @set_ent: Set entropy that would otherwise be obtained from * entropy source. Internal use only. * @seedsize: The seed size required for a random number generator * initialization defined with this variable. Some * random number generators does not require a seed * as the seeding is implemented internally without * the need of support by the consumer. In this case, * the seed size is set to zero. * @base: Common crypto API algorithm data structure. */ struct rng_alg { int (*generate)(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int dlen); int (*seed)(struct crypto_rng *tfm, const u8 *seed, unsigned int slen); void (*set_ent)(struct crypto_rng *tfm, const u8 *data, unsigned int len); unsigned int seedsize; struct crypto_alg base; }; struct crypto_rng { struct crypto_tfm base; }; extern struct crypto_rng *crypto_default_rng; int crypto_get_default_rng(void); void crypto_put_default_rng(void); /** * DOC: Random number generator API * * The random number generator API is used with the ciphers of type * CRYPTO_ALG_TYPE_RNG (listed as type "rng" in /proc/crypto) */ /** * crypto_alloc_rng() -- allocate RNG handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * message digest cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a random number generator. The returned struct * crypto_rng is the cipher handle that is required for any subsequent * API invocation for that random number generator. * * For all random number generators, this call creates a new private copy of * the random number generator that does not share a state with other * instances. The only exception is the "krng" random number generator which * is a kernel crypto API use case for the get_random_bytes() function of the * /dev/random driver. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_rng *crypto_alloc_rng(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_rng_tfm(struct crypto_rng *tfm) { return &tfm->base; } /** * crypto_rng_alg - obtain name of RNG * @tfm: cipher handle * * Return the generic name (cra_name) of the initialized random number generator * * Return: generic name string */ static inline struct rng_alg *crypto_rng_alg(struct crypto_rng *tfm) { return container_of(crypto_rng_tfm(tfm)->__crt_alg, struct rng_alg, base); } /** * crypto_free_rng() - zeroize and free RNG handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_rng(struct crypto_rng *tfm) { crypto_destroy_tfm(tfm, crypto_rng_tfm(tfm)); } /** * crypto_rng_generate() - get random number * @tfm: cipher handle * @src: Input buffer holding additional data, may be NULL * @slen: Length of additional data * @dst: output buffer holding the random numbers * @dlen: length of the output buffer * * This function fills the caller-allocated buffer with random * numbers using the random number generator referenced by the * cipher handle. * * Return: 0 function was successful; < 0 if an error occurred */ static inline int crypto_rng_generate(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int dlen) { struct crypto_alg *alg = tfm->base.__crt_alg; int ret; crypto_stats_get(alg); ret = crypto_rng_alg(tfm)->generate(tfm, src, slen, dst, dlen); crypto_stats_rng_generate(alg, dlen, ret); return ret; } /** * crypto_rng_get_bytes() - get random number * @tfm: cipher handle * @rdata: output buffer holding the random numbers * @dlen: length of the output buffer * * This function fills the caller-allocated buffer with random numbers using the * random number generator referenced by the cipher handle. * * Return: 0 function was successful; < 0 if an error occurred */ static inline int crypto_rng_get_bytes(struct crypto_rng *tfm, u8 *rdata, unsigned int dlen) { return crypto_rng_generate(tfm, NULL, 0, rdata, dlen); } /** * crypto_rng_reset() - re-initialize the RNG * @tfm: cipher handle * @seed: seed input data * @slen: length of the seed input data * * The reset function completely re-initializes the random number generator * referenced by the cipher handle by clearing the current state. The new state * is initialized with the caller provided seed or automatically, depending * on the random number generator type (the ANSI X9.31 RNG requires * caller-provided seed, the SP800-90A DRBGs perform an automatic seeding). * The seed is provided as a parameter to this function call. The provided seed * should have the length of the seed size defined for the random number * generator as defined by crypto_rng_seedsize. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_rng_reset(struct crypto_rng *tfm, const u8 *seed, unsigned int slen); /** * crypto_rng_seedsize() - obtain seed size of RNG * @tfm: cipher handle * * The function returns the seed size for the random number generator * referenced by the cipher handle. This value may be zero if the random * number generator does not implement or require a reseeding. For example, * the SP800-90A DRBGs implement an automated reseeding after reaching a * pre-defined threshold. * * Return: seed size for the random number generator */ static inline int crypto_rng_seedsize(struct crypto_rng *tfm) { return crypto_rng_alg(tfm)->seedsize; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM tlb #if !defined(_TRACE_TLB_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_TLB_H #include <linux/mm_types.h> #include <linux/tracepoint.h> #define TLB_FLUSH_REASON \ EM( TLB_FLUSH_ON_TASK_SWITCH, "flush on task switch" ) \ EM( TLB_REMOTE_SHOOTDOWN, "remote shootdown" ) \ EM( TLB_LOCAL_SHOOTDOWN, "local shootdown" ) \ EM( TLB_LOCAL_MM_SHOOTDOWN, "local mm shootdown" ) \ EMe( TLB_REMOTE_SEND_IPI, "remote ipi send" ) /* * First define the enums in TLB_FLUSH_REASON to be exported to userspace * via TRACE_DEFINE_ENUM(). */ #undef EM #undef EMe #define EM(a,b) TRACE_DEFINE_ENUM(a); #define EMe(a,b) TRACE_DEFINE_ENUM(a); TLB_FLUSH_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a,b) { a, b }, #define EMe(a,b) { a, b } TRACE_EVENT(tlb_flush, TP_PROTO(int reason, unsigned long pages), TP_ARGS(reason, pages), TP_STRUCT__entry( __field( int, reason) __field(unsigned long, pages) ), TP_fast_assign( __entry->reason = reason; __entry->pages = pages; ), TP_printk("pages:%ld reason:%s (%d)", __entry->pages, __print_symbolic(__entry->reason, TLB_FLUSH_REASON), __entry->reason) ); #endif /* _TRACE_TLB_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Integer base 2 logarithm calculation * * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_LOG2_H #define _LINUX_LOG2_H #include <linux/types.h> #include <linux/bitops.h> /* * non-constant log of base 2 calculators * - the arch may override these in asm/bitops.h if they can be implemented * more efficiently than using fls() and fls64() * - the arch is not required to handle n==0 if implementing the fallback */ #ifndef CONFIG_ARCH_HAS_ILOG2_U32 static inline __attribute__((const)) int __ilog2_u32(u32 n) { return fls(n) - 1; } #endif #ifndef CONFIG_ARCH_HAS_ILOG2_U64 static inline __attribute__((const)) int __ilog2_u64(u64 n) { return fls64(n) - 1; } #endif /** * is_power_of_2() - check if a value is a power of two * @n: the value to check * * Determine whether some value is a power of two, where zero is * *not* considered a power of two. * Return: true if @n is a power of 2, otherwise false. */ static inline __attribute__((const)) bool is_power_of_2(unsigned long n) { return (n != 0 && ((n & (n - 1)) == 0)); } /** * __roundup_pow_of_two() - round up to nearest power of two * @n: value to round up */ static inline __attribute__((const)) unsigned long __roundup_pow_of_two(unsigned long n) { return 1UL << fls_long(n - 1); } /** * __rounddown_pow_of_two() - round down to nearest power of two * @n: value to round down */ static inline __attribute__((const)) unsigned long __rounddown_pow_of_two(unsigned long n) { return 1UL << (fls_long(n) - 1); } /** * const_ilog2 - log base 2 of 32-bit or a 64-bit constant unsigned value * @n: parameter * * Use this where sparse expects a true constant expression, e.g. for array * indices. */ #define const_ilog2(n) \ ( \ __builtin_constant_p(n) ? ( \ (n) < 2 ? 0 : \ (n) & (1ULL << 63) ? 63 : \ (n) & (1ULL << 62) ? 62 : \ (n) & (1ULL << 61) ? 61 : \ (n) & (1ULL << 60) ? 60 : \ (n) & (1ULL << 59) ? 59 : \ (n) & (1ULL << 58) ? 58 : \ (n) & (1ULL << 57) ? 57 : \ (n) & (1ULL << 56) ? 56 : \ (n) & (1ULL << 55) ? 55 : \ (n) & (1ULL << 54) ? 54 : \ (n) & (1ULL << 53) ? 53 : \ (n) & (1ULL << 52) ? 52 : \ (n) & (1ULL << 51) ? 51 : \ (n) & (1ULL << 50) ? 50 : \ (n) & (1ULL << 49) ? 49 : \ (n) & (1ULL << 48) ? 48 : \ (n) & (1ULL << 47) ? 47 : \ (n) & (1ULL << 46) ? 46 : \ (n) & (1ULL << 45) ? 45 : \ (n) & (1ULL << 44) ? 44 : \ (n) & (1ULL << 43) ? 43 : \ (n) & (1ULL << 42) ? 42 : \ (n) & (1ULL << 41) ? 41 : \ (n) & (1ULL << 40) ? 40 : \ (n) & (1ULL << 39) ? 39 : \ (n) & (1ULL << 38) ? 38 : \ (n) & (1ULL << 37) ? 37 : \ (n) & (1ULL << 36) ? 36 : \ (n) & (1ULL << 35) ? 35 : \ (n) & (1ULL << 34) ? 34 : \ (n) & (1ULL << 33) ? 33 : \ (n) & (1ULL << 32) ? 32 : \ (n) & (1ULL << 31) ? 31 : \ (n) & (1ULL << 30) ? 30 : \ (n) & (1ULL << 29) ? 29 : \ (n) & (1ULL << 28) ? 28 : \ (n) & (1ULL << 27) ? 27 : \ (n) & (1ULL << 26) ? 26 : \ (n) & (1ULL << 25) ? 25 : \ (n) & (1ULL << 24) ? 24 : \ (n) & (1ULL << 23) ? 23 : \ (n) & (1ULL << 22) ? 22 : \ (n) & (1ULL << 21) ? 21 : \ (n) & (1ULL << 20) ? 20 : \ (n) & (1ULL << 19) ? 19 : \ (n) & (1ULL << 18) ? 18 : \ (n) & (1ULL << 17) ? 17 : \ (n) & (1ULL << 16) ? 16 : \ (n) & (1ULL << 15) ? 15 : \ (n) & (1ULL << 14) ? 14 : \ (n) & (1ULL << 13) ? 13 : \ (n) & (1ULL << 12) ? 12 : \ (n) & (1ULL << 11) ? 11 : \ (n) & (1ULL << 10) ? 10 : \ (n) & (1ULL << 9) ? 9 : \ (n) & (1ULL << 8) ? 8 : \ (n) & (1ULL << 7) ? 7 : \ (n) & (1ULL << 6) ? 6 : \ (n) & (1ULL << 5) ? 5 : \ (n) & (1ULL << 4) ? 4 : \ (n) & (1ULL << 3) ? 3 : \ (n) & (1ULL << 2) ? 2 : \ 1) : \ -1) /** * ilog2 - log base 2 of 32-bit or a 64-bit unsigned value * @n: parameter * * constant-capable log of base 2 calculation * - this can be used to initialise global variables from constant data, hence * the massive ternary operator construction * * selects the appropriately-sized optimised version depending on sizeof(n) */ #define ilog2(n) \ ( \ __builtin_constant_p(n) ? \ const_ilog2(n) : \ (sizeof(n) <= 4) ? \ __ilog2_u32(n) : \ __ilog2_u64(n) \ ) /** * roundup_pow_of_two - round the given value up to nearest power of two * @n: parameter * * round the given value up to the nearest power of two * - the result is undefined when n == 0 * - this can be used to initialise global variables from constant data */ #define roundup_pow_of_two(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 1) ? 1 : \ (1UL << (ilog2((n) - 1) + 1)) \ ) : \ __roundup_pow_of_two(n) \ ) /** * rounddown_pow_of_two - round the given value down to nearest power of two * @n: parameter * * round the given value down to the nearest power of two * - the result is undefined when n == 0 * - this can be used to initialise global variables from constant data */ #define rounddown_pow_of_two(n) \ ( \ __builtin_constant_p(n) ? ( \ (1UL << ilog2(n))) : \ __rounddown_pow_of_two(n) \ ) static inline __attribute_const__ int __order_base_2(unsigned long n) { return n > 1 ? ilog2(n - 1) + 1 : 0; } /** * order_base_2 - calculate the (rounded up) base 2 order of the argument * @n: parameter * * The first few values calculated by this routine: * ob2(0) = 0 * ob2(1) = 0 * ob2(2) = 1 * ob2(3) = 2 * ob2(4) = 2 * ob2(5) = 3 * ... and so on. */ #define order_base_2(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 0 || (n) == 1) ? 0 : \ ilog2((n) - 1) + 1) : \ __order_base_2(n) \ ) static inline __attribute__((const)) int __bits_per(unsigned long n) { if (n < 2) return 1; if (is_power_of_2(n)) return order_base_2(n) + 1; return order_base_2(n); } /** * bits_per - calculate the number of bits required for the argument * @n: parameter * * This is constant-capable and can be used for compile time * initializations, e.g bitfields. * * The first few values calculated by this routine: * bf(0) = 1 * bf(1) = 1 * bf(2) = 2 * bf(3) = 2 * bf(4) = 3 * ... and so on. */ #define bits_per(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 0 || (n) == 1) \ ? 1 : ilog2(n) + 1 \ ) : \ __bits_per(n) \ ) #endif /* _LINUX_LOG2_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM block #if !defined(_TRACE_BLOCK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_BLOCK_H #include <linux/blktrace_api.h> #include <linux/blkdev.h> #include <linux/buffer_head.h> #include <linux/tracepoint.h> #define RWBS_LEN 8 DECLARE_EVENT_CLASS(block_buffer, TP_PROTO(struct buffer_head *bh), TP_ARGS(bh), TP_STRUCT__entry ( __field( dev_t, dev ) __field( sector_t, sector ) __field( size_t, size ) ), TP_fast_assign( __entry->dev = bh->b_bdev->bd_dev; __entry->sector = bh->b_blocknr; __entry->size = bh->b_size; ), TP_printk("%d,%d sector=%llu size=%zu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long long)__entry->sector, __entry->size ) ); /** * block_touch_buffer - mark a buffer accessed * @bh: buffer_head being touched * * Called from touch_buffer(). */ DEFINE_EVENT(block_buffer, block_touch_buffer, TP_PROTO(struct buffer_head *bh), TP_ARGS(bh) ); /** * block_dirty_buffer - mark a buffer dirty * @bh: buffer_head being dirtied * * Called from mark_buffer_dirty(). */ DEFINE_EVENT(block_buffer, block_dirty_buffer, TP_PROTO(struct buffer_head *bh), TP_ARGS(bh) ); /** * block_rq_requeue - place block IO request back on a queue * @q: queue holding operation * @rq: block IO operation request * * The block operation request @rq is being placed back into queue * @q. For some reason the request was not completed and needs to be * put back in the queue. */ TRACE_EVENT(block_rq_requeue, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __dynamic_array( char, cmd, 1 ) ), TP_fast_assign( __entry->dev = rq->rq_disk ? disk_devt(rq->rq_disk) : 0; __entry->sector = blk_rq_trace_sector(rq); __entry->nr_sector = blk_rq_trace_nr_sectors(rq); blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, blk_rq_bytes(rq)); __get_str(cmd)[0] = '\0'; ), TP_printk("%d,%d %s (%s) %llu + %u [%d]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, __get_str(cmd), (unsigned long long)__entry->sector, __entry->nr_sector, 0) ); /** * block_rq_complete - block IO operation completed by device driver * @rq: block operations request * @error: status code * @nr_bytes: number of completed bytes * * The block_rq_complete tracepoint event indicates that some portion * of operation request has been completed by the device driver. If * the @rq->bio is %NULL, then there is absolutely no additional work to * do for the request. If @rq->bio is non-NULL then there is * additional work required to complete the request. */ TRACE_EVENT(block_rq_complete, TP_PROTO(struct request *rq, int error, unsigned int nr_bytes), TP_ARGS(rq, error, nr_bytes), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( int, error ) __array( char, rwbs, RWBS_LEN ) __dynamic_array( char, cmd, 1 ) ), TP_fast_assign( __entry->dev = rq->rq_disk ? disk_devt(rq->rq_disk) : 0; __entry->sector = blk_rq_pos(rq); __entry->nr_sector = nr_bytes >> 9; __entry->error = error; blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, nr_bytes); __get_str(cmd)[0] = '\0'; ), TP_printk("%d,%d %s (%s) %llu + %u [%d]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, __get_str(cmd), (unsigned long long)__entry->sector, __entry->nr_sector, __entry->error) ); DECLARE_EVENT_CLASS(block_rq, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( unsigned int, bytes ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) __dynamic_array( char, cmd, 1 ) ), TP_fast_assign( __entry->dev = rq->rq_disk ? disk_devt(rq->rq_disk) : 0; __entry->sector = blk_rq_trace_sector(rq); __entry->nr_sector = blk_rq_trace_nr_sectors(rq); __entry->bytes = blk_rq_bytes(rq); blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, blk_rq_bytes(rq)); __get_str(cmd)[0] = '\0'; memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %u (%s) %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, __entry->bytes, __get_str(cmd), (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_rq_insert - insert block operation request into queue * @q: target queue * @rq: block IO operation request * * Called immediately before block operation request @rq is inserted * into queue @q. The fields in the operation request @rq struct can * be examined to determine which device and sectors the pending * operation would access. */ DEFINE_EVENT(block_rq, block_rq_insert, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq) ); /** * block_rq_issue - issue pending block IO request operation to device driver * @q: queue holding operation * @rq: block IO operation operation request * * Called when block operation request @rq from queue @q is sent to a * device driver for processing. */ DEFINE_EVENT(block_rq, block_rq_issue, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq) ); /** * block_rq_merge - merge request with another one in the elevator * @q: queue holding operation * @rq: block IO operation operation request * * Called when block operation request @rq from queue @q is merged to another * request queued in the elevator. */ DEFINE_EVENT(block_rq, block_rq_merge, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq) ); /** * block_bio_bounce - used bounce buffer when processing block operation * @q: queue holding the block operation * @bio: block operation * * A bounce buffer was used to handle the block operation @bio in @q. * This occurs when hardware limitations prevent a direct transfer of * data between the @bio data memory area and the IO device. Use of a * bounce buffer requires extra copying of data and decreases * performance. */ TRACE_EVENT(block_bio_bounce, TP_PROTO(struct request_queue *q, struct bio *bio), TP_ARGS(q, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_bio_complete - completed all work on the block operation * @q: queue holding the block operation * @bio: block operation completed * * This tracepoint indicates there is no further work to do on this * block IO operation @bio. */ TRACE_EVENT(block_bio_complete, TP_PROTO(struct request_queue *q, struct bio *bio), TP_ARGS(q, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned, nr_sector ) __field( int, error ) __array( char, rwbs, RWBS_LEN) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); __entry->error = blk_status_to_errno(bio->bi_status); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); ), TP_printk("%d,%d %s %llu + %u [%d]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->error) ); DECLARE_EVENT_CLASS(block_bio_merge, TP_PROTO(struct request_queue *q, struct request *rq, struct bio *bio), TP_ARGS(q, rq, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_bio_backmerge - merging block operation to the end of an existing operation * @q: queue holding operation * @rq: request bio is being merged into * @bio: new block operation to merge * * Merging block request @bio to the end of an existing block request * in queue @q. */ DEFINE_EVENT(block_bio_merge, block_bio_backmerge, TP_PROTO(struct request_queue *q, struct request *rq, struct bio *bio), TP_ARGS(q, rq, bio) ); /** * block_bio_frontmerge - merging block operation to the beginning of an existing operation * @q: queue holding operation * @rq: request bio is being merged into * @bio: new block operation to merge * * Merging block IO operation @bio to the beginning of an existing block * operation in queue @q. */ DEFINE_EVENT(block_bio_merge, block_bio_frontmerge, TP_PROTO(struct request_queue *q, struct request *rq, struct bio *bio), TP_ARGS(q, rq, bio) ); /** * block_bio_queue - putting new block IO operation in queue * @q: queue holding operation * @bio: new block operation * * About to place the block IO operation @bio into queue @q. */ TRACE_EVENT(block_bio_queue, TP_PROTO(struct request_queue *q, struct bio *bio), TP_ARGS(q, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); DECLARE_EVENT_CLASS(block_get_rq, TP_PROTO(struct request_queue *q, struct bio *bio, int rw), TP_ARGS(q, bio, rw), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio ? bio_dev(bio) : 0; __entry->sector = bio ? bio->bi_iter.bi_sector : 0; __entry->nr_sector = bio ? bio_sectors(bio) : 0; blk_fill_rwbs(__entry->rwbs, bio ? bio->bi_opf : 0, __entry->nr_sector); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_getrq - get a free request entry in queue for block IO operations * @q: queue for operations * @bio: pending block IO operation (can be %NULL) * @rw: low bit indicates a read (%0) or a write (%1) * * A request struct for queue @q has been allocated to handle the * block IO operation @bio. */ DEFINE_EVENT(block_get_rq, block_getrq, TP_PROTO(struct request_queue *q, struct bio *bio, int rw), TP_ARGS(q, bio, rw) ); /** * block_sleeprq - waiting to get a free request entry in queue for block IO operation * @q: queue for operation * @bio: pending block IO operation (can be %NULL) * @rw: low bit indicates a read (%0) or a write (%1) * * In the case where a request struct cannot be provided for queue @q * the process needs to wait for an request struct to become * available. This tracepoint event is generated each time the * process goes to sleep waiting for request struct become available. */ DEFINE_EVENT(block_get_rq, block_sleeprq, TP_PROTO(struct request_queue *q, struct bio *bio, int rw), TP_ARGS(q, bio, rw) ); /** * block_plug - keep operations requests in request queue * @q: request queue to plug * * Plug the request queue @q. Do not allow block operation requests * to be sent to the device driver. Instead, accumulate requests in * the queue to improve throughput performance of the block device. */ TRACE_EVENT(block_plug, TP_PROTO(struct request_queue *q), TP_ARGS(q), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("[%s]", __entry->comm) ); DECLARE_EVENT_CLASS(block_unplug, TP_PROTO(struct request_queue *q, unsigned int depth, bool explicit), TP_ARGS(q, depth, explicit), TP_STRUCT__entry( __field( int, nr_rq ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->nr_rq = depth; memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("[%s] %d", __entry->comm, __entry->nr_rq) ); /** * block_unplug - release of operations requests in request queue * @q: request queue to unplug * @depth: number of requests just added to the queue * @explicit: whether this was an explicit unplug, or one from schedule() * * Unplug request queue @q because device driver is scheduled to work * on elements in the request queue. */ DEFINE_EVENT(block_unplug, block_unplug, TP_PROTO(struct request_queue *q, unsigned int depth, bool explicit), TP_ARGS(q, depth, explicit) ); /** * block_split - split a single bio struct into two bio structs * @q: queue containing the bio * @bio: block operation being split * @new_sector: The starting sector for the new bio * * The bio request @bio in request queue @q needs to be split into two * bio requests. The newly created @bio request starts at * @new_sector. This split may be required due to hardware limitation * such as operation crossing device boundaries in a RAID system. */ TRACE_EVENT(block_split, TP_PROTO(struct request_queue *q, struct bio *bio, unsigned int new_sector), TP_ARGS(q, bio, new_sector), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( sector_t, new_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->new_sector = new_sector; blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu / %llu [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, (unsigned long long)__entry->new_sector, __entry->comm) ); /** * block_bio_remap - map request for a logical device to the raw device * @q: queue holding the operation * @bio: revised operation * @dev: device for the operation * @from: original sector for the operation * * An operation for a logical device has been mapped to the * raw block device. */ TRACE_EVENT(block_bio_remap, TP_PROTO(struct request_queue *q, struct bio *bio, dev_t dev, sector_t from), TP_ARGS(q, bio, dev, from), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( dev_t, old_dev ) __field( sector_t, old_sector ) __array( char, rwbs, RWBS_LEN) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); __entry->old_dev = dev; __entry->old_sector = from; blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); ), TP_printk("%d,%d %s %llu + %u <- (%d,%d) %llu", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, MAJOR(__entry->old_dev), MINOR(__entry->old_dev), (unsigned long long)__entry->old_sector) ); /** * block_rq_remap - map request for a block operation request * @q: queue holding the operation * @rq: block IO operation request * @dev: device for the operation * @from: original sector for the operation * * The block operation request @rq in @q has been remapped. The block * operation request @rq holds the current information and @from hold * the original sector. */ TRACE_EVENT(block_rq_remap, TP_PROTO(struct request_queue *q, struct request *rq, dev_t dev, sector_t from), TP_ARGS(q, rq, dev, from), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( dev_t, old_dev ) __field( sector_t, old_sector ) __field( unsigned int, nr_bios ) __array( char, rwbs, RWBS_LEN) ), TP_fast_assign( __entry->dev = disk_devt(rq->rq_disk); __entry->sector = blk_rq_pos(rq); __entry->nr_sector = blk_rq_sectors(rq); __entry->old_dev = dev; __entry->old_sector = from; __entry->nr_bios = blk_rq_count_bios(rq); blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, blk_rq_bytes(rq)); ), TP_printk("%d,%d %s %llu + %u <- (%d,%d) %llu %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, MAJOR(__entry->old_dev), MINOR(__entry->old_dev), (unsigned long long)__entry->old_sector, __entry->nr_bios) ); #endif /* _TRACE_BLOCK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NET Generic infrastructure for Network protocols. * * Authors: Arnaldo Carvalho de Melo <acme@conectiva.com.br> */ #ifndef _TIMEWAIT_SOCK_H #define _TIMEWAIT_SOCK_H #include <linux/slab.h> #include <linux/bug.h> #include <net/sock.h> struct timewait_sock_ops { struct kmem_cache *twsk_slab; char *twsk_slab_name; unsigned int twsk_obj_size; int (*twsk_unique)(struct sock *sk, struct sock *sktw, void *twp); void (*twsk_destructor)(struct sock *sk); }; static inline int twsk_unique(struct sock *sk, struct sock *sktw, void *twp) { if (sk->sk_prot->twsk_prot->twsk_unique != NULL) return sk->sk_prot->twsk_prot->twsk_unique(sk, sktw, twp); return 0; } static inline void twsk_destructor(struct sock *sk) { if (sk->sk_prot->twsk_prot->twsk_destructor != NULL) sk->sk_prot->twsk_prot->twsk_destructor(sk); } #endif /* _TIMEWAIT_SOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_GENHD_H #define _LINUX_GENHD_H /* * genhd.h Copyright (C) 1992 Drew Eckhardt * Generic hard disk header file by * Drew Eckhardt * * <drew@colorado.edu> */ #include <linux/types.h> #include <linux/kdev_t.h> #include <linux/rcupdate.h> #include <linux/slab.h> #include <linux/percpu-refcount.h> #include <linux/uuid.h> #include <linux/blk_types.h> #include <asm/local.h> #define dev_to_disk(device) container_of((device), struct gendisk, part0.__dev) #define dev_to_part(device) container_of((device), struct hd_struct, __dev) #define disk_to_dev(disk) (&(disk)->part0.__dev) #define part_to_dev(part) (&((part)->__dev)) extern const struct device_type disk_type; extern struct device_type part_type; extern struct class block_class; #define DISK_MAX_PARTS 256 #define DISK_NAME_LEN 32 #include <linux/major.h> #include <linux/device.h> #include <linux/smp.h> #include <linux/string.h> #include <linux/fs.h> #include <linux/workqueue.h> #define PARTITION_META_INFO_VOLNAMELTH 64 /* * Enough for the string representation of any kind of UUID plus NULL. * EFI UUID is 36 characters. MSDOS UUID is 11 characters. */ #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) struct partition_meta_info { char uuid[PARTITION_META_INFO_UUIDLTH]; u8 volname[PARTITION_META_INFO_VOLNAMELTH]; }; struct hd_struct { sector_t start_sect; /* * nr_sects is protected by sequence counter. One might extend a * partition while IO is happening to it and update of nr_sects * can be non-atomic on 32bit machines with 64bit sector_t. */ sector_t nr_sects; #if BITS_PER_LONG==32 && defined(CONFIG_SMP) seqcount_t nr_sects_seq; #endif unsigned long stamp; struct disk_stats __percpu *dkstats; struct percpu_ref ref; struct device __dev; struct kobject *holder_dir; int policy, partno; struct partition_meta_info *info; #ifdef CONFIG_FAIL_MAKE_REQUEST int make_it_fail; #endif struct rcu_work rcu_work; }; /** * DOC: genhd capability flags * * ``GENHD_FL_REMOVABLE`` (0x0001): indicates that the block device * gives access to removable media. * When set, the device remains present even when media is not * inserted. * Must not be set for devices which are removed entirely when the * media is removed. * * ``GENHD_FL_CD`` (0x0008): the block device is a CD-ROM-style * device. * Affects responses to the ``CDROM_GET_CAPABILITY`` ioctl. * * ``GENHD_FL_UP`` (0x0010): indicates that the block device is "up", * with a similar meaning to network interfaces. * * ``GENHD_FL_SUPPRESS_PARTITION_INFO`` (0x0020): don't include * partition information in ``/proc/partitions`` or in the output of * printk_all_partitions(). * Used for the null block device and some MMC devices. * * ``GENHD_FL_EXT_DEVT`` (0x0040): the driver supports extended * dynamic ``dev_t``, i.e. it wants extended device numbers * (``BLOCK_EXT_MAJOR``). * This affects the maximum number of partitions. * * ``GENHD_FL_NATIVE_CAPACITY`` (0x0080): based on information in the * partition table, the device's capacity has been extended to its * native capacity; i.e. the device has hidden capacity used by one * of the partitions (this is a flag used so that native capacity is * only ever unlocked once). * * ``GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE`` (0x0100): event polling is * blocked whenever a writer holds an exclusive lock. * * ``GENHD_FL_NO_PART_SCAN`` (0x0200): partition scanning is disabled. * Used for loop devices in their default settings and some MMC * devices. * * ``GENHD_FL_HIDDEN`` (0x0400): the block device is hidden; it * doesn't produce events, doesn't appear in sysfs, and doesn't have * an associated ``bdev``. * Implies ``GENHD_FL_SUPPRESS_PARTITION_INFO`` and * ``GENHD_FL_NO_PART_SCAN``. * Used for multipath devices. */ #define GENHD_FL_REMOVABLE 0x0001 /* 2 is unused (used to be GENHD_FL_DRIVERFS) */ /* 4 is unused (used to be GENHD_FL_MEDIA_CHANGE_NOTIFY) */ #define GENHD_FL_CD 0x0008 #define GENHD_FL_UP 0x0010 #define GENHD_FL_SUPPRESS_PARTITION_INFO 0x0020 #define GENHD_FL_EXT_DEVT 0x0040 #define GENHD_FL_NATIVE_CAPACITY 0x0080 #define GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE 0x0100 #define GENHD_FL_NO_PART_SCAN 0x0200 #define GENHD_FL_HIDDEN 0x0400 enum { DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ }; enum { /* Poll even if events_poll_msecs is unset */ DISK_EVENT_FLAG_POLL = 1 << 0, /* Forward events to udev */ DISK_EVENT_FLAG_UEVENT = 1 << 1, }; struct disk_part_tbl { struct rcu_head rcu_head; int len; struct hd_struct __rcu *last_lookup; struct hd_struct __rcu *part[]; }; struct disk_events; struct badblocks; struct blk_integrity { const struct blk_integrity_profile *profile; unsigned char flags; unsigned char tuple_size; unsigned char interval_exp; unsigned char tag_size; }; struct gendisk { /* major, first_minor and minors are input parameters only, * don't use directly. Use disk_devt() and disk_max_parts(). */ int major; /* major number of driver */ int first_minor; int minors; /* maximum number of minors, =1 for * disks that can't be partitioned. */ char disk_name[DISK_NAME_LEN]; /* name of major driver */ unsigned short events; /* supported events */ unsigned short event_flags; /* flags related to event processing */ /* Array of pointers to partitions indexed by partno. * Protected with matching bdev lock but stat and other * non-critical accesses use RCU. Always access through * helpers. */ struct disk_part_tbl __rcu *part_tbl; struct hd_struct part0; const struct block_device_operations *fops; struct request_queue *queue; void *private_data; int flags; unsigned long state; #define GD_NEED_PART_SCAN 0 struct rw_semaphore lookup_sem; struct kobject *slave_dir; struct timer_rand_state *random; atomic_t sync_io; /* RAID */ struct disk_events *ev; #ifdef CONFIG_BLK_DEV_INTEGRITY struct kobject integrity_kobj; #endif /* CONFIG_BLK_DEV_INTEGRITY */ #if IS_ENABLED(CONFIG_CDROM) struct cdrom_device_info *cdi; #endif int node_id; struct badblocks *bb; struct lockdep_map lockdep_map; }; #if IS_REACHABLE(CONFIG_CDROM) #define disk_to_cdi(disk) ((disk)->cdi) #else #define disk_to_cdi(disk) NULL #endif static inline struct gendisk *part_to_disk(struct hd_struct *part) { if (likely(part)) { if (part->partno) return dev_to_disk(part_to_dev(part)->parent); else return dev_to_disk(part_to_dev(part)); } return NULL; } static inline int disk_max_parts(struct gendisk *disk) { if (disk->flags & GENHD_FL_EXT_DEVT) return DISK_MAX_PARTS; return disk->minors; } static inline bool disk_part_scan_enabled(struct gendisk *disk) { return disk_max_parts(disk) > 1 && !(disk->flags & GENHD_FL_NO_PART_SCAN); } static inline dev_t disk_devt(struct gendisk *disk) { return MKDEV(disk->major, disk->first_minor); } static inline dev_t part_devt(struct hd_struct *part) { return part_to_dev(part)->devt; } extern struct hd_struct *__disk_get_part(struct gendisk *disk, int partno); extern struct hd_struct *disk_get_part(struct gendisk *disk, int partno); static inline void disk_put_part(struct hd_struct *part) { if (likely(part)) put_device(part_to_dev(part)); } static inline void hd_sects_seq_init(struct hd_struct *p) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) seqcount_init(&p->nr_sects_seq); #endif } /* * Smarter partition iterator without context limits. */ #define DISK_PITER_REVERSE (1 << 0) /* iterate in the reverse direction */ #define DISK_PITER_INCL_EMPTY (1 << 1) /* include 0-sized parts */ #define DISK_PITER_INCL_PART0 (1 << 2) /* include partition 0 */ #define DISK_PITER_INCL_EMPTY_PART0 (1 << 3) /* include empty partition 0 */ struct disk_part_iter { struct gendisk *disk; struct hd_struct *part; int idx; unsigned int flags; }; extern void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, unsigned int flags); extern struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter); extern void disk_part_iter_exit(struct disk_part_iter *piter); extern bool disk_has_partitions(struct gendisk *disk); /* block/genhd.c */ extern void device_add_disk(struct device *parent, struct gendisk *disk, const struct attribute_group **groups); static inline void add_disk(struct gendisk *disk) { device_add_disk(NULL, disk, NULL); } extern void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk); static inline void add_disk_no_queue_reg(struct gendisk *disk) { device_add_disk_no_queue_reg(NULL, disk); } extern void del_gendisk(struct gendisk *gp); extern struct gendisk *get_gendisk(dev_t dev, int *partno); extern struct block_device *bdget_disk(struct gendisk *disk, int partno); extern void set_device_ro(struct block_device *bdev, int flag); extern void set_disk_ro(struct gendisk *disk, int flag); static inline int get_disk_ro(struct gendisk *disk) { return disk->part0.policy; } extern void disk_block_events(struct gendisk *disk); extern void disk_unblock_events(struct gendisk *disk); extern void disk_flush_events(struct gendisk *disk, unsigned int mask); bool set_capacity_revalidate_and_notify(struct gendisk *disk, sector_t size, bool update_bdev); /* drivers/char/random.c */ extern void add_disk_randomness(struct gendisk *disk) __latent_entropy; extern void rand_initialize_disk(struct gendisk *disk); static inline sector_t get_start_sect(struct block_device *bdev) { return bdev->bd_part->start_sect; } static inline sector_t get_capacity(struct gendisk *disk) { return disk->part0.nr_sects; } static inline void set_capacity(struct gendisk *disk, sector_t size) { disk->part0.nr_sects = size; } int bdev_disk_changed(struct block_device *bdev, bool invalidate); int blk_add_partitions(struct gendisk *disk, struct block_device *bdev); int blk_drop_partitions(struct block_device *bdev); extern struct gendisk *__alloc_disk_node(int minors, int node_id); extern struct kobject *get_disk_and_module(struct gendisk *disk); extern void put_disk(struct gendisk *disk); extern void put_disk_and_module(struct gendisk *disk); extern void blk_register_region(dev_t devt, unsigned long range, struct module *module, struct kobject *(*probe)(dev_t, int *, void *), int (*lock)(dev_t, void *), void *data); extern void blk_unregister_region(dev_t devt, unsigned long range); #define alloc_disk_node(minors, node_id) \ ({ \ static struct lock_class_key __key; \ const char *__name; \ struct gendisk *__disk; \ \ __name = "(gendisk_completion)"#minors"("#node_id")"; \ \ __disk = __alloc_disk_node(minors, node_id); \ \ if (__disk) \ lockdep_init_map(&__disk->lockdep_map, __name, &__key, 0); \ \ __disk; \ }) #define alloc_disk(minors) alloc_disk_node(minors, NUMA_NO_NODE) int register_blkdev(unsigned int major, const char *name); void unregister_blkdev(unsigned int major, const char *name); void revalidate_disk_size(struct gendisk *disk, bool verbose); bool bdev_check_media_change(struct block_device *bdev); int __invalidate_device(struct block_device *bdev, bool kill_dirty); void bd_set_nr_sectors(struct block_device *bdev, sector_t sectors); /* for drivers/char/raw.c: */ int blkdev_ioctl(struct block_device *, fmode_t, unsigned, unsigned long); long compat_blkdev_ioctl(struct file *, unsigned, unsigned long); #ifdef CONFIG_SYSFS int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); #else static inline int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) { return 0; } static inline void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) { } #endif /* CONFIG_SYSFS */ #ifdef CONFIG_BLOCK void printk_all_partitions(void); dev_t blk_lookup_devt(const char *name, int partno); #else /* CONFIG_BLOCK */ static inline void printk_all_partitions(void) { } static inline dev_t blk_lookup_devt(const char *name, int partno) { dev_t devt = MKDEV(0, 0); return devt; } #endif /* CONFIG_BLOCK */ #endif /* _LINUX_GENHD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 /* SPDX-License-Identifier: GPL-2.0 */ /* * This header file contains public constants and structures used by * the SCSI initiator code. */ #ifndef _SCSI_SCSI_H #define _SCSI_SCSI_H #include <linux/types.h> #include <linux/scatterlist.h> #include <linux/kernel.h> #include <scsi/scsi_common.h> #include <scsi/scsi_proto.h> struct scsi_cmnd; enum scsi_timeouts { SCSI_DEFAULT_EH_TIMEOUT = 10 * HZ, }; /* * DIX-capable adapters effectively support infinite chaining for the * protection information scatterlist */ #define SCSI_MAX_PROT_SG_SEGMENTS 0xFFFF /* * Special value for scanning to specify scanning or rescanning of all * possible channels, (target) ids, or luns on a given shost. */ #define SCAN_WILD_CARD ~0 /** scsi_status_is_good - check the status return. * * @status: the status passed up from the driver (including host and * driver components) * * This returns true for known good conditions that may be treated as * command completed normally */ static inline int scsi_status_is_good(int status) { /* * FIXME: bit0 is listed as reserved in SCSI-2, but is * significant in SCSI-3. For now, we follow the SCSI-2 * behaviour and ignore reserved bits. */ status &= 0xfe; return ((status == SAM_STAT_GOOD) || (status == SAM_STAT_CONDITION_MET) || /* Next two "intermediate" statuses are obsolete in SAM-4 */ (status == SAM_STAT_INTERMEDIATE) || (status == SAM_STAT_INTERMEDIATE_CONDITION_MET) || /* FIXME: this is obsolete in SAM-3 */ (status == SAM_STAT_COMMAND_TERMINATED)); } /* * standard mode-select header prepended to all mode-select commands */ struct ccs_modesel_head { __u8 _r1; /* reserved */ __u8 medium; /* device-specific medium type */ __u8 _r2; /* reserved */ __u8 block_desc_length; /* block descriptor length */ __u8 density; /* device-specific density code */ __u8 number_blocks_hi; /* number of blocks in this block desc */ __u8 number_blocks_med; __u8 number_blocks_lo; __u8 _r3; __u8 block_length_hi; /* block length for blocks in this desc */ __u8 block_length_med; __u8 block_length_lo; }; /* * The Well Known LUNS (SAM-3) in our int representation of a LUN */ #define SCSI_W_LUN_BASE 0xc100 #define SCSI_W_LUN_REPORT_LUNS (SCSI_W_LUN_BASE + 1) #define SCSI_W_LUN_ACCESS_CONTROL (SCSI_W_LUN_BASE + 2) #define SCSI_W_LUN_TARGET_LOG_PAGE (SCSI_W_LUN_BASE + 3) static inline int scsi_is_wlun(u64 lun) { return (lun & 0xff00) == SCSI_W_LUN_BASE; } /* * MESSAGE CODES */ #define COMMAND_COMPLETE 0x00 #define EXTENDED_MESSAGE 0x01 #define EXTENDED_MODIFY_DATA_POINTER 0x00 #define EXTENDED_SDTR 0x01 #define EXTENDED_EXTENDED_IDENTIFY 0x02 /* SCSI-I only */ #define EXTENDED_WDTR 0x03 #define EXTENDED_PPR 0x04 #define EXTENDED_MODIFY_BIDI_DATA_PTR 0x05 #define SAVE_POINTERS 0x02 #define RESTORE_POINTERS 0x03 #define DISCONNECT 0x04 #define INITIATOR_ERROR 0x05 #define ABORT_TASK_SET 0x06 #define MESSAGE_REJECT 0x07 #define NOP 0x08 #define MSG_PARITY_ERROR 0x09 #define LINKED_CMD_COMPLETE 0x0a #define LINKED_FLG_CMD_COMPLETE 0x0b #define TARGET_RESET 0x0c #define ABORT_TASK 0x0d #define CLEAR_TASK_SET 0x0e #define INITIATE_RECOVERY 0x0f /* SCSI-II only */ #define RELEASE_RECOVERY 0x10 /* SCSI-II only */ #define CLEAR_ACA 0x16 #define LOGICAL_UNIT_RESET 0x17 #define SIMPLE_QUEUE_TAG 0x20 #define HEAD_OF_QUEUE_TAG 0x21 #define ORDERED_QUEUE_TAG 0x22 #define IGNORE_WIDE_RESIDUE 0x23 #define ACA 0x24 #define QAS_REQUEST 0x55 /* Old SCSI2 names, don't use in new code */ #define BUS_DEVICE_RESET TARGET_RESET #define ABORT ABORT_TASK_SET /* * Host byte codes */ #define DID_OK 0x00 /* NO error */ #define DID_NO_CONNECT 0x01 /* Couldn't connect before timeout period */ #define DID_BUS_BUSY 0x02 /* BUS stayed busy through time out period */ #define DID_TIME_OUT 0x03 /* TIMED OUT for other reason */ #define DID_BAD_TARGET 0x04 /* BAD target. */ #define DID_ABORT 0x05 /* Told to abort for some other reason */ #define DID_PARITY 0x06 /* Parity error */ #define DID_ERROR 0x07 /* Internal error */ #define DID_RESET 0x08 /* Reset by somebody. */ #define DID_BAD_INTR 0x09 /* Got an interrupt we weren't expecting. */ #define DID_PASSTHROUGH 0x0a /* Force command past mid-layer */ #define DID_SOFT_ERROR 0x0b /* The low level driver just wish a retry */ #define DID_IMM_RETRY 0x0c /* Retry without decrementing retry count */ #define DID_REQUEUE 0x0d /* Requeue command (no immediate retry) also * without decrementing the retry count */ #define DID_TRANSPORT_DISRUPTED 0x0e /* Transport error disrupted execution * and the driver blocked the port to * recover the link. Transport class will * retry or fail IO */ #define DID_TRANSPORT_FAILFAST 0x0f /* Transport class fastfailed the io */ #define DID_TARGET_FAILURE 0x10 /* Permanent target failure, do not retry on * other paths */ #define DID_NEXUS_FAILURE 0x11 /* Permanent nexus failure, retry on other * paths might yield different results */ #define DID_ALLOC_FAILURE 0x12 /* Space allocation on the device failed */ #define DID_MEDIUM_ERROR 0x13 /* Medium error */ #define DRIVER_OK 0x00 /* Driver status */ /* * These indicate the error that occurred, and what is available. */ #define DRIVER_BUSY 0x01 #define DRIVER_SOFT 0x02 #define DRIVER_MEDIA 0x03 #define DRIVER_ERROR 0x04 #define DRIVER_INVALID 0x05 #define DRIVER_TIMEOUT 0x06 #define DRIVER_HARD 0x07 #define DRIVER_SENSE 0x08 /* * Internal return values. */ #define NEEDS_RETRY 0x2001 #define SUCCESS 0x2002 #define FAILED 0x2003 #define QUEUED 0x2004 #define SOFT_ERROR 0x2005 #define ADD_TO_MLQUEUE 0x2006 #define TIMEOUT_ERROR 0x2007 #define SCSI_RETURN_NOT_HANDLED 0x2008 #define FAST_IO_FAIL 0x2009 /* * Midlevel queue return values. */ #define SCSI_MLQUEUE_HOST_BUSY 0x1055 #define SCSI_MLQUEUE_DEVICE_BUSY 0x1056 #define SCSI_MLQUEUE_EH_RETRY 0x1057 #define SCSI_MLQUEUE_TARGET_BUSY 0x1058 /* * Use these to separate status msg and our bytes * * These are set by: * * status byte = set from target device * msg_byte = return status from host adapter itself. * host_byte = set by low-level driver to indicate status. * driver_byte = set by mid-level. */ #define status_byte(result) (((result) >> 1) & 0x7f) #define msg_byte(result) (((result) >> 8) & 0xff) #define host_byte(result) (((result) >> 16) & 0xff) #define driver_byte(result) (((result) >> 24) & 0xff) #define sense_class(sense) (((sense) >> 4) & 0x7) #define sense_error(sense) ((sense) & 0xf) #define sense_valid(sense) ((sense) & 0x80) /* * default timeouts */ #define FORMAT_UNIT_TIMEOUT (2 * 60 * 60 * HZ) #define START_STOP_TIMEOUT (60 * HZ) #define MOVE_MEDIUM_TIMEOUT (5 * 60 * HZ) #define READ_ELEMENT_STATUS_TIMEOUT (5 * 60 * HZ) #define READ_DEFECT_DATA_TIMEOUT (60 * HZ ) #define IDENTIFY_BASE 0x80 #define IDENTIFY(can_disconnect, lun) (IDENTIFY_BASE |\ ((can_disconnect) ? 0x40 : 0) |\ ((lun) & 0x07)) /* * struct scsi_device::scsi_level values. For SCSI devices other than those * prior to SCSI-2 (i.e. over 12 years old) this value is (resp[2] + 1) * where "resp" is a byte array of the response to an INQUIRY. The scsi_level * variable is visible to the user via sysfs. */ #define SCSI_UNKNOWN 0 #define SCSI_1 1 #define SCSI_1_CCS 2 #define SCSI_2 3 #define SCSI_3 4 /* SPC */ #define SCSI_SPC_2 5 #define SCSI_SPC_3 6 /* * INQ PERIPHERAL QUALIFIERS */ #define SCSI_INQ_PQ_CON 0x00 #define SCSI_INQ_PQ_NOT_CON 0x01 #define SCSI_INQ_PQ_NOT_CAP 0x03 /* * Here are some scsi specific ioctl commands which are sometimes useful. * * Note that include/linux/cdrom.h also defines IOCTL 0x5300 - 0x5395 */ /* Used to obtain PUN and LUN info. Conflicts with CDROMAUDIOBUFSIZ */ #define SCSI_IOCTL_GET_IDLUN 0x5382 /* 0x5383 and 0x5384 were used for SCSI_IOCTL_TAGGED_{ENABLE,DISABLE} */ /* Used to obtain the host number of a device. */ #define SCSI_IOCTL_PROBE_HOST 0x5385 /* Used to obtain the bus number for a device */ #define SCSI_IOCTL_GET_BUS_NUMBER 0x5386 /* Used to obtain the PCI location of a device */ #define SCSI_IOCTL_GET_PCI 0x5387 #endif /* _SCSI_SCSI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 /* SPDX-License-Identifier: GPL-2.0 */ /* * * Generic internet FLOW. * */ #ifndef _NET_FLOW_H #define _NET_FLOW_H #include <linux/socket.h> #include <linux/in6.h> #include <linux/atomic.h> #include <net/flow_dissector.h> #include <linux/uidgid.h> /* * ifindex generation is per-net namespace, and loopback is * always the 1st device in ns (see net_dev_init), thus any * loopback device should get ifindex 1 */ #define LOOPBACK_IFINDEX 1 struct flowi_tunnel { __be64 tun_id; }; struct flowi_common { int flowic_oif; int flowic_iif; __u32 flowic_mark; __u8 flowic_tos; __u8 flowic_scope; __u8 flowic_proto; __u8 flowic_flags; #define FLOWI_FLAG_ANYSRC 0x01 #define FLOWI_FLAG_KNOWN_NH 0x02 #define FLOWI_FLAG_SKIP_NH_OIF 0x04 __u32 flowic_secid; kuid_t flowic_uid; struct flowi_tunnel flowic_tun_key; __u32 flowic_multipath_hash; }; union flowi_uli { struct { __be16 dport; __be16 sport; } ports; struct { __u8 type; __u8 code; } icmpt; struct { __le16 dport; __le16 sport; } dnports; __be32 spi; __be32 gre_key; struct { __u8 type; } mht; }; struct flowi4 { struct flowi_common __fl_common; #define flowi4_oif __fl_common.flowic_oif #define flowi4_iif __fl_common.flowic_iif #define flowi4_mark __fl_common.flowic_mark #define flowi4_tos __fl_common.flowic_tos #define flowi4_scope __fl_common.flowic_scope #define flowi4_proto __fl_common.flowic_proto #define flowi4_flags __fl_common.flowic_flags #define flowi4_secid __fl_common.flowic_secid #define flowi4_tun_key __fl_common.flowic_tun_key #define flowi4_uid __fl_common.flowic_uid #define flowi4_multipath_hash __fl_common.flowic_multipath_hash /* (saddr,daddr) must be grouped, same order as in IP header */ __be32 saddr; __be32 daddr; union flowi_uli uli; #define fl4_sport uli.ports.sport #define fl4_dport uli.ports.dport #define fl4_icmp_type uli.icmpt.type #define fl4_icmp_code uli.icmpt.code #define fl4_ipsec_spi uli.spi #define fl4_mh_type uli.mht.type #define fl4_gre_key uli.gre_key } __attribute__((__aligned__(BITS_PER_LONG/8))); static inline void flowi4_init_output(struct flowi4 *fl4, int oif, __u32 mark, __u8 tos, __u8 scope, __u8 proto, __u8 flags, __be32 daddr, __be32 saddr, __be16 dport, __be16 sport, kuid_t uid) { fl4->flowi4_oif = oif; fl4->flowi4_iif = LOOPBACK_IFINDEX; fl4->flowi4_mark = mark; fl4->flowi4_tos = tos; fl4->flowi4_scope = scope; fl4->flowi4_proto = proto; fl4->flowi4_flags = flags; fl4->flowi4_secid = 0; fl4->flowi4_tun_key.tun_id = 0; fl4->flowi4_uid = uid; fl4->daddr = daddr; fl4->saddr = saddr; fl4->fl4_dport = dport; fl4->fl4_sport = sport; fl4->flowi4_multipath_hash = 0; } /* Reset some input parameters after previous lookup */ static inline void flowi4_update_output(struct flowi4 *fl4, int oif, __u8 tos, __be32 daddr, __be32 saddr) { fl4->flowi4_oif = oif; fl4->flowi4_tos = tos; fl4->daddr = daddr; fl4->saddr = saddr; } struct flowi6 { struct flowi_common __fl_common; #define flowi6_oif __fl_common.flowic_oif #define flowi6_iif __fl_common.flowic_iif #define flowi6_mark __fl_common.flowic_mark #define flowi6_scope __fl_common.flowic_scope #define flowi6_proto __fl_common.flowic_proto #define flowi6_flags __fl_common.flowic_flags #define flowi6_secid __fl_common.flowic_secid #define flowi6_tun_key __fl_common.flowic_tun_key #define flowi6_uid __fl_common.flowic_uid struct in6_addr daddr; struct in6_addr saddr; /* Note: flowi6_tos is encoded in flowlabel, too. */ __be32 flowlabel; union flowi_uli uli; #define fl6_sport uli.ports.sport #define fl6_dport uli.ports.dport #define fl6_icmp_type uli.icmpt.type #define fl6_icmp_code uli.icmpt.code #define fl6_ipsec_spi uli.spi #define fl6_mh_type uli.mht.type #define fl6_gre_key uli.gre_key __u32 mp_hash; } __attribute__((__aligned__(BITS_PER_LONG/8))); struct flowidn { struct flowi_common __fl_common; #define flowidn_oif __fl_common.flowic_oif #define flowidn_iif __fl_common.flowic_iif #define flowidn_mark __fl_common.flowic_mark #define flowidn_scope __fl_common.flowic_scope #define flowidn_proto __fl_common.flowic_proto #define flowidn_flags __fl_common.flowic_flags __le16 daddr; __le16 saddr; union flowi_uli uli; #define fld_sport uli.ports.sport #define fld_dport uli.ports.dport } __attribute__((__aligned__(BITS_PER_LONG/8))); struct flowi { union { struct flowi_common __fl_common; struct flowi4 ip4; struct flowi6 ip6; struct flowidn dn; } u; #define flowi_oif u.__fl_common.flowic_oif #define flowi_iif u.__fl_common.flowic_iif #define flowi_mark u.__fl_common.flowic_mark #define flowi_tos u.__fl_common.flowic_tos #define flowi_scope u.__fl_common.flowic_scope #define flowi_proto u.__fl_common.flowic_proto #define flowi_flags u.__fl_common.flowic_flags #define flowi_secid u.__fl_common.flowic_secid #define flowi_tun_key u.__fl_common.flowic_tun_key #define flowi_uid u.__fl_common.flowic_uid } __attribute__((__aligned__(BITS_PER_LONG/8))); static inline struct flowi *flowi4_to_flowi(struct flowi4 *fl4) { return container_of(fl4, struct flowi, u.ip4); } static inline struct flowi *flowi6_to_flowi(struct flowi6 *fl6) { return container_of(fl6, struct flowi, u.ip6); } static inline struct flowi *flowidn_to_flowi(struct flowidn *fldn) { return container_of(fldn, struct flowi, u.dn); } __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_COOKIE_H #define __LINUX_COOKIE_H #include <linux/atomic.h> #include <linux/percpu.h> #include <asm/local.h> struct pcpu_gen_cookie { local_t nesting; u64 last; } __aligned(16); struct gen_cookie { struct pcpu_gen_cookie __percpu *local; atomic64_t forward_last ____cacheline_aligned_in_smp; atomic64_t reverse_last; }; #define COOKIE_LOCAL_BATCH 4096 #define DEFINE_COOKIE(name) \ static DEFINE_PER_CPU(struct pcpu_gen_cookie, __##name); \ static struct gen_cookie name = { \ .local = &__##name, \ .forward_last = ATOMIC64_INIT(0), \ .reverse_last = ATOMIC64_INIT(0), \ } static __always_inline u64 gen_cookie_next(struct gen_cookie *gc) { struct pcpu_gen_cookie *local = this_cpu_ptr(gc->local); u64 val; if (likely(local_inc_return(&local->nesting) == 1)) { val = local->last; if (__is_defined(CONFIG_SMP) && unlikely((val & (COOKIE_LOCAL_BATCH - 1)) == 0)) { s64 next = atomic64_add_return(COOKIE_LOCAL_BATCH, &gc->forward_last); val = next - COOKIE_LOCAL_BATCH; } local->last = ++val; } else { val = atomic64_dec_return(&gc->reverse_last); } local_dec(&local->nesting); return val; } #endif /* __LINUX_COOKIE_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_JUMP_LABEL_H #define _ASM_X86_JUMP_LABEL_H #define HAVE_JUMP_LABEL_BATCH #define JUMP_LABEL_NOP_SIZE 5 #ifdef CONFIG_X86_64 # define STATIC_KEY_INIT_NOP P6_NOP5_ATOMIC #else # define STATIC_KEY_INIT_NOP GENERIC_NOP5_ATOMIC #endif #include <asm/asm.h> #include <asm/nops.h> #ifndef __ASSEMBLY__ #include <linux/stringify.h> #include <linux/types.h> static __always_inline bool arch_static_branch(struct static_key *key, bool branch) { asm_volatile_goto("1:" ".byte " __stringify(STATIC_KEY_INIT_NOP) "\n\t" ".pushsection __jump_table, \"aw\" \n\t" _ASM_ALIGN "\n\t" ".long 1b - ., %l[l_yes] - . \n\t" _ASM_PTR "%c0 + %c1 - .\n\t" ".popsection \n\t" : : "i" (key), "i" (branch) : : l_yes); return false; l_yes: return true; } static __always_inline bool arch_static_branch_jump(struct static_key *key, bool branch) { asm_volatile_goto("1:" ".byte 0xe9\n\t .long %l[l_yes] - 2f\n\t" "2:\n\t" ".pushsection __jump_table, \"aw\" \n\t" _ASM_ALIGN "\n\t" ".long 1b - ., %l[l_yes] - . \n\t" _ASM_PTR "%c0 + %c1 - .\n\t" ".popsection \n\t" : : "i" (key), "i" (branch) : : l_yes); return false; l_yes: return true; } #else /* __ASSEMBLY__ */ .macro STATIC_JUMP_IF_TRUE target, key, def .Lstatic_jump_\@: .if \def /* Equivalent to "jmp.d32 \target" */ .byte 0xe9 .long \target - .Lstatic_jump_after_\@ .Lstatic_jump_after_\@: .else .byte STATIC_KEY_INIT_NOP .endif .pushsection __jump_table, "aw" _ASM_ALIGN .long .Lstatic_jump_\@ - ., \target - . _ASM_PTR \key - . .popsection .endm .macro STATIC_JUMP_IF_FALSE target, key, def .Lstatic_jump_\@: .if \def .byte STATIC_KEY_INIT_NOP .else /* Equivalent to "jmp.d32 \target" */ .byte 0xe9 .long \target - .Lstatic_jump_after_\@ .Lstatic_jump_after_\@: .endif .pushsection __jump_table, "aw" _ASM_ALIGN .long .Lstatic_jump_\@ - ., \target - . _ASM_PTR \key + 1 - . .popsection .endm #endif /* __ASSEMBLY__ */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __KERNEL_PRINTK__ #define __KERNEL_PRINTK__ #include <stdarg.h> #include <linux/init.h> #include <linux/kern_levels.h> #include <linux/linkage.h> #include <linux/cache.h> #include <linux/ratelimit_types.h> extern const char linux_banner[]; extern const char linux_proc_banner[]; extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ #define PRINTK_MAX_SINGLE_HEADER_LEN 2 static inline int printk_get_level(const char *buffer) { if (buffer[0] == KERN_SOH_ASCII && buffer[1]) { switch (buffer[1]) { case '0' ... '7': case 'c': /* KERN_CONT */ return buffer[1]; } } return 0; } static inline const char *printk_skip_level(const char *buffer) { if (printk_get_level(buffer)) return buffer + 2; return buffer; } static inline const char *printk_skip_headers(const char *buffer) { while (printk_get_level(buffer)) buffer = printk_skip_level(buffer); return buffer; } #define CONSOLE_EXT_LOG_MAX 8192 /* printk's without a loglevel use this.. */ #define MESSAGE_LOGLEVEL_DEFAULT CONFIG_MESSAGE_LOGLEVEL_DEFAULT /* We show everything that is MORE important than this.. */ #define CONSOLE_LOGLEVEL_SILENT 0 /* Mum's the word */ #define CONSOLE_LOGLEVEL_MIN 1 /* Minimum loglevel we let people use */ #define CONSOLE_LOGLEVEL_DEBUG 10 /* issue debug messages */ #define CONSOLE_LOGLEVEL_MOTORMOUTH 15 /* You can't shut this one up */ /* * Default used to be hard-coded at 7, quiet used to be hardcoded at 4, * we're now allowing both to be set from kernel config. */ #define CONSOLE_LOGLEVEL_DEFAULT CONFIG_CONSOLE_LOGLEVEL_DEFAULT #define CONSOLE_LOGLEVEL_QUIET CONFIG_CONSOLE_LOGLEVEL_QUIET extern int console_printk[]; #define console_loglevel (console_printk[0]) #define default_message_loglevel (console_printk[1]) #define minimum_console_loglevel (console_printk[2]) #define default_console_loglevel (console_printk[3]) static inline void console_silent(void) { console_loglevel = CONSOLE_LOGLEVEL_SILENT; } static inline void console_verbose(void) { if (console_loglevel) console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; } /* strlen("ratelimit") + 1 */ #define DEVKMSG_STR_MAX_SIZE 10 extern char devkmsg_log_str[]; struct ctl_table; extern int suppress_printk; struct va_format { const char *fmt; va_list *va; }; /* * FW_BUG * Add this to a message where you are sure the firmware is buggy or behaves * really stupid or out of spec. Be aware that the responsible BIOS developer * should be able to fix this issue or at least get a concrete idea of the * problem by reading your message without the need of looking at the kernel * code. * * Use it for definite and high priority BIOS bugs. * * FW_WARN * Use it for not that clear (e.g. could the kernel messed up things already?) * and medium priority BIOS bugs. * * FW_INFO * Use this one if you want to tell the user or vendor about something * suspicious, but generally harmless related to the firmware. * * Use it for information or very low priority BIOS bugs. */ #define FW_BUG "[Firmware Bug]: " #define FW_WARN "[Firmware Warn]: " #define FW_INFO "[Firmware Info]: " /* * HW_ERR * Add this to a message for hardware errors, so that user can report * it to hardware vendor instead of LKML or software vendor. */ #define HW_ERR "[Hardware Error]: " /* * DEPRECATED * Add this to a message whenever you want to warn user space about the use * of a deprecated aspect of an API so they can stop using it */ #define DEPRECATED "[Deprecated]: " /* * Dummy printk for disabled debugging statements to use whilst maintaining * gcc's format checking. */ #define no_printk(fmt, ...) \ ({ \ if (0) \ printk(fmt, ##__VA_ARGS__); \ 0; \ }) #ifdef CONFIG_EARLY_PRINTK extern asmlinkage __printf(1, 2) void early_printk(const char *fmt, ...); #else static inline __printf(1, 2) __cold void early_printk(const char *s, ...) { } #endif #ifdef CONFIG_PRINTK_NMI extern void printk_nmi_enter(void); extern void printk_nmi_exit(void); extern void printk_nmi_direct_enter(void); extern void printk_nmi_direct_exit(void); #else static inline void printk_nmi_enter(void) { } static inline void printk_nmi_exit(void) { } static inline void printk_nmi_direct_enter(void) { } static inline void printk_nmi_direct_exit(void) { } #endif /* PRINTK_NMI */ struct dev_printk_info; #ifdef CONFIG_PRINTK asmlinkage __printf(4, 0) int vprintk_emit(int facility, int level, const struct dev_printk_info *dev_info, const char *fmt, va_list args); asmlinkage __printf(1, 0) int vprintk(const char *fmt, va_list args); asmlinkage __printf(1, 2) __cold int printk(const char *fmt, ...); /* * Special printk facility for scheduler/timekeeping use only, _DO_NOT_USE_ ! */ __printf(1, 2) __cold int printk_deferred(const char *fmt, ...); /* * Please don't use printk_ratelimit(), because it shares ratelimiting state * with all other unrelated printk_ratelimit() callsites. Instead use * printk_ratelimited() or plain old __ratelimit(). */ extern int __printk_ratelimit(const char *func); #define printk_ratelimit() __printk_ratelimit(__func__) extern bool printk_timed_ratelimit(unsigned long *caller_jiffies, unsigned int interval_msec); extern int printk_delay_msec; extern int dmesg_restrict; extern int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, void *buf, size_t *lenp, loff_t *ppos); extern void wake_up_klogd(void); char *log_buf_addr_get(void); u32 log_buf_len_get(void); void log_buf_vmcoreinfo_setup(void); void __init setup_log_buf(int early); __printf(1, 2) void dump_stack_set_arch_desc(const char *fmt, ...); void dump_stack_print_info(const char *log_lvl); void show_regs_print_info(const char *log_lvl); extern asmlinkage void dump_stack(void) __cold; extern void printk_safe_flush(void); extern void printk_safe_flush_on_panic(void); #else static inline __printf(1, 0) int vprintk(const char *s, va_list args) { return 0; } static inline __printf(1, 2) __cold int printk(const char *s, ...) { return 0; } static inline __printf(1, 2) __cold int printk_deferred(const char *s, ...) { return 0; } static inline int printk_ratelimit(void) { return 0; } static inline bool printk_timed_ratelimit(unsigned long *caller_jiffies, unsigned int interval_msec) { return false; } static inline void wake_up_klogd(void) { } static inline char *log_buf_addr_get(void) { return NULL; } static inline u32 log_buf_len_get(void) { return 0; } static inline void log_buf_vmcoreinfo_setup(void) { } static inline void setup_log_buf(int early) { } static inline __printf(1, 2) void dump_stack_set_arch_desc(const char *fmt, ...) { } static inline void dump_stack_print_info(const char *log_lvl) { } static inline void show_regs_print_info(const char *log_lvl) { } static inline void dump_stack(void) { } static inline void printk_safe_flush(void) { } static inline void printk_safe_flush_on_panic(void) { } #endif extern int kptr_restrict; /** * pr_fmt - used by the pr_*() macros to generate the printk format string * @fmt: format string passed from a pr_*() macro * * This macro can be used to generate a unified format string for pr_*() * macros. A common use is to prefix all pr_*() messages in a file with a common * string. For example, defining this at the top of a source file: * * #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt * * would prefix all pr_info, pr_emerg... messages in the file with the module * name. */ #ifndef pr_fmt #define pr_fmt(fmt) fmt #endif /** * pr_emerg - Print an emergency-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_EMERG loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_emerg(fmt, ...) \ printk(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) /** * pr_alert - Print an alert-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_ALERT loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_alert(fmt, ...) \ printk(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) /** * pr_crit - Print a critical-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_CRIT loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_crit(fmt, ...) \ printk(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) /** * pr_err - Print an error-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_ERR loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_err(fmt, ...) \ printk(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) /** * pr_warn - Print a warning-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_WARNING loglevel. It uses pr_fmt() * to generate the format string. */ #define pr_warn(fmt, ...) \ printk(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) /** * pr_notice - Print a notice-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_NOTICE loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_notice(fmt, ...) \ printk(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) /** * pr_info - Print an info-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_INFO loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_info(fmt, ...) \ printk(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /** * pr_cont - Continues a previous log message in the same line. * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_CONT loglevel. It should only be * used when continuing a log message with no newline ('\n') enclosed. Otherwise * it defaults back to KERN_DEFAULT loglevel. */ #define pr_cont(fmt, ...) \ printk(KERN_CONT fmt, ##__VA_ARGS__) /** * pr_devel - Print a debug-level message conditionally * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_DEBUG loglevel if DEBUG is * defined. Otherwise it does nothing. * * It uses pr_fmt() to generate the format string. */ #ifdef DEBUG #define pr_devel(fmt, ...) \ printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) #include <linux/dynamic_debug.h> /** * pr_debug - Print a debug-level message conditionally * @fmt: format string * @...: arguments for the format string * * This macro expands to dynamic_pr_debug() if CONFIG_DYNAMIC_DEBUG is * set. Otherwise, if DEBUG is defined, it's equivalent to a printk with * KERN_DEBUG loglevel. If DEBUG is not defined it does nothing. * * It uses pr_fmt() to generate the format string (dynamic_pr_debug() uses * pr_fmt() internally). */ #define pr_debug(fmt, ...) \ dynamic_pr_debug(fmt, ##__VA_ARGS__) #elif defined(DEBUG) #define pr_debug(fmt, ...) \ printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* * Print a one-time message (analogous to WARN_ONCE() et al): */ #ifdef CONFIG_PRINTK #define printk_once(fmt, ...) \ ({ \ static bool __section(".data.once") __print_once; \ bool __ret_print_once = !__print_once; \ \ if (!__print_once) { \ __print_once = true; \ printk(fmt, ##__VA_ARGS__); \ } \ unlikely(__ret_print_once); \ }) #define printk_deferred_once(fmt, ...) \ ({ \ static bool __section(".data.once") __print_once; \ bool __ret_print_once = !__print_once; \ \ if (!__print_once) { \ __print_once = true; \ printk_deferred(fmt, ##__VA_ARGS__); \ } \ unlikely(__ret_print_once); \ }) #else #define printk_once(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #define printk_deferred_once(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #endif #define pr_emerg_once(fmt, ...) \ printk_once(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) #define pr_alert_once(fmt, ...) \ printk_once(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) #define pr_crit_once(fmt, ...) \ printk_once(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) #define pr_err_once(fmt, ...) \ printk_once(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) #define pr_warn_once(fmt, ...) \ printk_once(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) #define pr_notice_once(fmt, ...) \ printk_once(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) #define pr_info_once(fmt, ...) \ printk_once(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /* no pr_cont_once, don't do that... */ #if defined(DEBUG) #define pr_devel_once(fmt, ...) \ printk_once(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel_once(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(DEBUG) #define pr_debug_once(fmt, ...) \ printk_once(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug_once(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* * ratelimited messages with local ratelimit_state, * no local ratelimit_state used in the !PRINTK case */ #ifdef CONFIG_PRINTK #define printk_ratelimited(fmt, ...) \ ({ \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ \ if (__ratelimit(&_rs)) \ printk(fmt, ##__VA_ARGS__); \ }) #else #define printk_ratelimited(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #endif #define pr_emerg_ratelimited(fmt, ...) \ printk_ratelimited(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) #define pr_alert_ratelimited(fmt, ...) \ printk_ratelimited(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) #define pr_crit_ratelimited(fmt, ...) \ printk_ratelimited(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) #define pr_err_ratelimited(fmt, ...) \ printk_ratelimited(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) #define pr_warn_ratelimited(fmt, ...) \ printk_ratelimited(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) #define pr_notice_ratelimited(fmt, ...) \ printk_ratelimited(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) #define pr_info_ratelimited(fmt, ...) \ printk_ratelimited(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /* no pr_cont_ratelimited, don't do that... */ #if defined(DEBUG) #define pr_devel_ratelimited(fmt, ...) \ printk_ratelimited(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel_ratelimited(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) /* descriptor check is first to prevent flooding with "callbacks suppressed" */ #define pr_debug_ratelimited(fmt, ...) \ do { \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, pr_fmt(fmt)); \ if (DYNAMIC_DEBUG_BRANCH(descriptor) && \ __ratelimit(&_rs)) \ __dynamic_pr_debug(&descriptor, pr_fmt(fmt), ##__VA_ARGS__); \ } while (0) #elif defined(DEBUG) #define pr_debug_ratelimited(fmt, ...) \ printk_ratelimited(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug_ratelimited(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif extern const struct file_operations kmsg_fops; enum { DUMP_PREFIX_NONE, DUMP_PREFIX_ADDRESS, DUMP_PREFIX_OFFSET }; extern int hex_dump_to_buffer(const void *buf, size_t len, int rowsize, int groupsize, char *linebuf, size_t linebuflen, bool ascii); #ifdef CONFIG_PRINTK extern void print_hex_dump(const char *level, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii); #else static inline void print_hex_dump(const char *level, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii) { } static inline void print_hex_dump_bytes(const char *prefix_str, int prefix_type, const void *buf, size_t len) { } #endif #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) #define print_hex_dump_debug(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) \ dynamic_hex_dump(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) #elif defined(DEBUG) #define print_hex_dump_debug(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) \ print_hex_dump(KERN_DEBUG, prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) #else static inline void print_hex_dump_debug(const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii) { } #endif /** * print_hex_dump_bytes - shorthand form of print_hex_dump() with default params * @prefix_str: string to prefix each line with; * caller supplies trailing spaces for alignment if desired * @prefix_type: controls whether prefix of an offset, address, or none * is printed (%DUMP_PREFIX_OFFSET, %DUMP_PREFIX_ADDRESS, %DUMP_PREFIX_NONE) * @buf: data blob to dump * @len: number of bytes in the @buf * * Calls print_hex_dump(), with log level of KERN_DEBUG, * rowsize of 16, groupsize of 1, and ASCII output included. */ #define print_hex_dump_bytes(prefix_str, prefix_type, buf, len) \ print_hex_dump_debug(prefix_str, prefix_type, 16, 1, buf, len, true) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * SR-IPv6 implementation * * Author: * David Lebrun <david.lebrun@uclouvain.be> */ #ifndef _NET_SEG6_H #define _NET_SEG6_H #include <linux/net.h> #include <linux/ipv6.h> #include <linux/seg6.h> #include <linux/rhashtable-types.h> static inline void update_csum_diff4(struct sk_buff *skb, __be32 from, __be32 to) { __be32 diff[] = { ~from, to }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } static inline void update_csum_diff16(struct sk_buff *skb, __be32 *from, __be32 *to) { __be32 diff[] = { ~from[0], ~from[1], ~from[2], ~from[3], to[0], to[1], to[2], to[3], }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } struct seg6_pernet_data { struct mutex lock; struct in6_addr __rcu *tun_src; #ifdef CONFIG_IPV6_SEG6_HMAC struct rhashtable hmac_infos; #endif }; static inline struct seg6_pernet_data *seg6_pernet(struct net *net) { #if IS_ENABLED(CONFIG_IPV6) return net->ipv6.seg6_data; #else return NULL; #endif } extern int seg6_init(void); extern void seg6_exit(void); extern int seg6_iptunnel_init(void); extern void seg6_iptunnel_exit(void); extern int seg6_local_init(void); extern void seg6_local_exit(void); extern bool seg6_validate_srh(struct ipv6_sr_hdr *srh, int len, bool reduced); extern int seg6_do_srh_encap(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, int proto); extern int seg6_do_srh_inline(struct sk_buff *skb, struct ipv6_sr_hdr *osrh); extern int seg6_lookup_nexthop(struct sk_buff *skb, struct in6_addr *nhaddr, u32 tbl_id); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com * Written by Alex Tomas <alex@clusterfs.com> */ #ifndef _EXT4_EXTENTS #define _EXT4_EXTENTS #include "ext4.h" /* * With AGGRESSIVE_TEST defined, the capacity of index/leaf blocks * becomes very small, so index split, in-depth growing and * other hard changes happen much more often. * This is for debug purposes only. */ #define AGGRESSIVE_TEST_ /* * With EXTENTS_STATS defined, the number of blocks and extents * are collected in the truncate path. They'll be shown at * umount time. */ #define EXTENTS_STATS__ /* * If CHECK_BINSEARCH is defined, then the results of the binary search * will also be checked by linear search. */ #define CHECK_BINSEARCH__ /* * If EXT_STATS is defined then stats numbers are collected. * These number will be displayed at umount time. */ #define EXT_STATS_ /* * ext4_inode has i_block array (60 bytes total). * The first 12 bytes store ext4_extent_header; * the remainder stores an array of ext4_extent. * For non-inode extent blocks, ext4_extent_tail * follows the array. */ /* * This is the extent tail on-disk structure. * All other extent structures are 12 bytes long. It turns out that * block_size % 12 >= 4 for at least all powers of 2 greater than 512, which * covers all valid ext4 block sizes. Therefore, this tail structure can be * crammed into the end of the block without having to rebalance the tree. */ struct ext4_extent_tail { __le32 et_checksum; /* crc32c(uuid+inum+extent_block) */ }; /* * This is the extent on-disk structure. * It's used at the bottom of the tree. */ struct ext4_extent { __le32 ee_block; /* first logical block extent covers */ __le16 ee_len; /* number of blocks covered by extent */ __le16 ee_start_hi; /* high 16 bits of physical block */ __le32 ee_start_lo; /* low 32 bits of physical block */ }; /* * This is index on-disk structure. * It's used at all the levels except the bottom. */ struct ext4_extent_idx { __le32 ei_block; /* index covers logical blocks from 'block' */ __le32 ei_leaf_lo; /* pointer to the physical block of the next * * level. leaf or next index could be there */ __le16 ei_leaf_hi; /* high 16 bits of physical block */ __u16 ei_unused; }; /* * Each block (leaves and indexes), even inode-stored has header. */ struct ext4_extent_header { __le16 eh_magic; /* probably will support different formats */ __le16 eh_entries; /* number of valid entries */ __le16 eh_max; /* capacity of store in entries */ __le16 eh_depth; /* has tree real underlying blocks? */ __le32 eh_generation; /* generation of the tree */ }; #define EXT4_EXT_MAGIC cpu_to_le16(0xf30a) #define EXT4_MAX_EXTENT_DEPTH 5 #define EXT4_EXTENT_TAIL_OFFSET(hdr) \ (sizeof(struct ext4_extent_header) + \ (sizeof(struct ext4_extent) * le16_to_cpu((hdr)->eh_max))) static inline struct ext4_extent_tail * find_ext4_extent_tail(struct ext4_extent_header *eh) { return (struct ext4_extent_tail *)(((void *)eh) + EXT4_EXTENT_TAIL_OFFSET(eh)); } /* * Array of ext4_ext_path contains path to some extent. * Creation/lookup routines use it for traversal/splitting/etc. * Truncate uses it to simulate recursive walking. */ struct ext4_ext_path { ext4_fsblk_t p_block; __u16 p_depth; __u16 p_maxdepth; struct ext4_extent *p_ext; struct ext4_extent_idx *p_idx; struct ext4_extent_header *p_hdr; struct buffer_head *p_bh; }; /* * Used to record a portion of a cluster found at the beginning or end * of an extent while traversing the extent tree during space removal. * A partial cluster may be removed if it does not contain blocks shared * with extents that aren't being deleted (tofree state). Otherwise, * it cannot be removed (nofree state). */ struct partial_cluster { ext4_fsblk_t pclu; /* physical cluster number */ ext4_lblk_t lblk; /* logical block number within logical cluster */ enum {initial, tofree, nofree} state; }; /* * structure for external API */ /* * EXT_INIT_MAX_LEN is the maximum number of blocks we can have in an * initialized extent. This is 2^15 and not (2^16 - 1), since we use the * MSB of ee_len field in the extent datastructure to signify if this * particular extent is an initialized extent or an unwritten (i.e. * preallocated). * EXT_UNWRITTEN_MAX_LEN is the maximum number of blocks we can have in an * unwritten extent. * If ee_len is <= 0x8000, it is an initialized extent. Otherwise, it is an * unwritten one. In other words, if MSB of ee_len is set, it is an * unwritten extent with only one special scenario when ee_len = 0x8000. * In this case we can not have an unwritten extent of zero length and * thus we make it as a special case of initialized extent with 0x8000 length. * This way we get better extent-to-group alignment for initialized extents. * Hence, the maximum number of blocks we can have in an *initialized* * extent is 2^15 (32768) and in an *unwritten* extent is 2^15-1 (32767). */ #define EXT_INIT_MAX_LEN (1UL << 15) #define EXT_UNWRITTEN_MAX_LEN (EXT_INIT_MAX_LEN - 1) #define EXT_FIRST_EXTENT(__hdr__) \ ((struct ext4_extent *) (((char *) (__hdr__)) + \ sizeof(struct ext4_extent_header))) #define EXT_FIRST_INDEX(__hdr__) \ ((struct ext4_extent_idx *) (((char *) (__hdr__)) + \ sizeof(struct ext4_extent_header))) #define EXT_HAS_FREE_INDEX(__path__) \ (le16_to_cpu((__path__)->p_hdr->eh_entries) \ < le16_to_cpu((__path__)->p_hdr->eh_max)) #define EXT_LAST_EXTENT(__hdr__) \ (EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) #define EXT_LAST_INDEX(__hdr__) \ (EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) #define EXT_MAX_EXTENT(__hdr__) \ ((le16_to_cpu((__hdr__)->eh_max)) ? \ ((EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1)) \ : 0) #define EXT_MAX_INDEX(__hdr__) \ ((le16_to_cpu((__hdr__)->eh_max)) ? \ ((EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1)) : 0) static inline struct ext4_extent_header *ext_inode_hdr(struct inode *inode) { return (struct ext4_extent_header *) EXT4_I(inode)->i_data; } static inline struct ext4_extent_header *ext_block_hdr(struct buffer_head *bh) { return (struct ext4_extent_header *) bh->b_data; } static inline unsigned short ext_depth(struct inode *inode) { return le16_to_cpu(ext_inode_hdr(inode)->eh_depth); } static inline void ext4_ext_mark_unwritten(struct ext4_extent *ext) { /* We can not have an unwritten extent of zero length! */ BUG_ON((le16_to_cpu(ext->ee_len) & ~EXT_INIT_MAX_LEN) == 0); ext->ee_len |= cpu_to_le16(EXT_INIT_MAX_LEN); } static inline int ext4_ext_is_unwritten(struct ext4_extent *ext) { /* Extent with ee_len of 0x8000 is treated as an initialized extent */ return (le16_to_cpu(ext->ee_len) > EXT_INIT_MAX_LEN); } static inline int ext4_ext_get_actual_len(struct ext4_extent *ext) { return (le16_to_cpu(ext->ee_len) <= EXT_INIT_MAX_LEN ? le16_to_cpu(ext->ee_len) : (le16_to_cpu(ext->ee_len) - EXT_INIT_MAX_LEN)); } static inline void ext4_ext_mark_initialized(struct ext4_extent *ext) { ext->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ext)); } /* * ext4_ext_pblock: * combine low and high parts of physical block number into ext4_fsblk_t */ static inline ext4_fsblk_t ext4_ext_pblock(struct ext4_extent *ex) { ext4_fsblk_t block; block = le32_to_cpu(ex->ee_start_lo); block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1; return block; } /* * ext4_idx_pblock: * combine low and high parts of a leaf physical block number into ext4_fsblk_t */ static inline ext4_fsblk_t ext4_idx_pblock(struct ext4_extent_idx *ix) { ext4_fsblk_t block; block = le32_to_cpu(ix->ei_leaf_lo); block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1; return block; } /* * ext4_ext_store_pblock: * stores a large physical block number into an extent struct, * breaking it into parts */ static inline void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb) { ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); } /* * ext4_idx_store_pblock: * stores a large physical block number into an index struct, * breaking it into parts */ static inline void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb) { ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); } #endif /* _EXT4_EXTENTS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_COMPAT_H #define _LINUX_COMPAT_H /* * These are the type definitions for the architecture specific * syscall compatibility layer. */ #include <linux/types.h> #include <linux/time.h> #include <linux/stat.h> #include <linux/param.h> /* for HZ */ #include <linux/sem.h> #include <linux/socket.h> #include <linux/if.h> #include <linux/fs.h> #include <linux/aio_abi.h> /* for aio_context_t */ #include <linux/uaccess.h> #include <linux/unistd.h> #include <asm/compat.h> #ifdef CONFIG_COMPAT #include <asm/siginfo.h> #include <asm/signal.h> #endif #ifdef CONFIG_ARCH_HAS_SYSCALL_WRAPPER /* * It may be useful for an architecture to override the definitions of the * COMPAT_SYSCALL_DEFINE0 and COMPAT_SYSCALL_DEFINEx() macros, in particular * to use a different calling convention for syscalls. To allow for that, + the prototypes for the compat_sys_*() functions below will *not* be included * if CONFIG_ARCH_HAS_SYSCALL_WRAPPER is enabled. */ #include <asm/syscall_wrapper.h> #endif /* CONFIG_ARCH_HAS_SYSCALL_WRAPPER */ #ifndef COMPAT_USE_64BIT_TIME #define COMPAT_USE_64BIT_TIME 0 #endif #ifndef __SC_DELOUSE #define __SC_DELOUSE(t,v) ((__force t)(unsigned long)(v)) #endif #ifndef COMPAT_SYSCALL_DEFINE0 #define COMPAT_SYSCALL_DEFINE0(name) \ asmlinkage long compat_sys_##name(void); \ ALLOW_ERROR_INJECTION(compat_sys_##name, ERRNO); \ asmlinkage long compat_sys_##name(void) #endif /* COMPAT_SYSCALL_DEFINE0 */ #define COMPAT_SYSCALL_DEFINE1(name, ...) \ COMPAT_SYSCALL_DEFINEx(1, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE2(name, ...) \ COMPAT_SYSCALL_DEFINEx(2, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE3(name, ...) \ COMPAT_SYSCALL_DEFINEx(3, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE4(name, ...) \ COMPAT_SYSCALL_DEFINEx(4, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE5(name, ...) \ COMPAT_SYSCALL_DEFINEx(5, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE6(name, ...) \ COMPAT_SYSCALL_DEFINEx(6, _##name, __VA_ARGS__) /* * The asmlinkage stub is aliased to a function named __se_compat_sys_*() which * sign-extends 32-bit ints to longs whenever needed. The actual work is * done within __do_compat_sys_*(). */ #ifndef COMPAT_SYSCALL_DEFINEx #define COMPAT_SYSCALL_DEFINEx(x, name, ...) \ __diag_push(); \ __diag_ignore(GCC, 8, "-Wattribute-alias", \ "Type aliasing is used to sanitize syscall arguments");\ asmlinkage long compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)); \ asmlinkage long compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)) \ __attribute__((alias(__stringify(__se_compat_sys##name)))); \ ALLOW_ERROR_INJECTION(compat_sys##name, ERRNO); \ static inline long __do_compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__));\ asmlinkage long __se_compat_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)); \ asmlinkage long __se_compat_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)) \ { \ long ret = __do_compat_sys##name(__MAP(x,__SC_DELOUSE,__VA_ARGS__));\ __MAP(x,__SC_TEST,__VA_ARGS__); \ return ret; \ } \ __diag_pop(); \ static inline long __do_compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)) #endif /* COMPAT_SYSCALL_DEFINEx */ struct compat_iovec { compat_uptr_t iov_base; compat_size_t iov_len; }; #ifdef CONFIG_COMPAT #ifndef compat_user_stack_pointer #define compat_user_stack_pointer() current_user_stack_pointer() #endif #ifndef compat_sigaltstack /* we'll need that for MIPS */ typedef struct compat_sigaltstack { compat_uptr_t ss_sp; int ss_flags; compat_size_t ss_size; } compat_stack_t; #endif #ifndef COMPAT_MINSIGSTKSZ #define COMPAT_MINSIGSTKSZ MINSIGSTKSZ #endif #define compat_jiffies_to_clock_t(x) \ (((unsigned long)(x) * COMPAT_USER_HZ) / HZ) typedef __compat_uid32_t compat_uid_t; typedef __compat_gid32_t compat_gid_t; struct compat_sel_arg_struct; struct rusage; struct old_itimerval32; struct compat_tms { compat_clock_t tms_utime; compat_clock_t tms_stime; compat_clock_t tms_cutime; compat_clock_t tms_cstime; }; #define _COMPAT_NSIG_WORDS (_COMPAT_NSIG / _COMPAT_NSIG_BPW) typedef struct { compat_sigset_word sig[_COMPAT_NSIG_WORDS]; } compat_sigset_t; int set_compat_user_sigmask(const compat_sigset_t __user *umask, size_t sigsetsize); struct compat_sigaction { #ifndef __ARCH_HAS_IRIX_SIGACTION compat_uptr_t sa_handler; compat_ulong_t sa_flags; #else compat_uint_t sa_flags; compat_uptr_t sa_handler; #endif #ifdef __ARCH_HAS_SA_RESTORER compat_uptr_t sa_restorer; #endif compat_sigset_t sa_mask __packed; }; typedef union compat_sigval { compat_int_t sival_int; compat_uptr_t sival_ptr; } compat_sigval_t; typedef struct compat_siginfo { int si_signo; #ifndef __ARCH_HAS_SWAPPED_SIGINFO int si_errno; int si_code; #else int si_code; int si_errno; #endif union { int _pad[128/sizeof(int) - 3]; /* kill() */ struct { compat_pid_t _pid; /* sender's pid */ __compat_uid32_t _uid; /* sender's uid */ } _kill; /* POSIX.1b timers */ struct { compat_timer_t _tid; /* timer id */ int _overrun; /* overrun count */ compat_sigval_t _sigval; /* same as below */ } _timer; /* POSIX.1b signals */ struct { compat_pid_t _pid; /* sender's pid */ __compat_uid32_t _uid; /* sender's uid */ compat_sigval_t _sigval; } _rt; /* SIGCHLD */ struct { compat_pid_t _pid; /* which child */ __compat_uid32_t _uid; /* sender's uid */ int _status; /* exit code */ compat_clock_t _utime; compat_clock_t _stime; } _sigchld; #ifdef CONFIG_X86_X32_ABI /* SIGCHLD (x32 version) */ struct { compat_pid_t _pid; /* which child */ __compat_uid32_t _uid; /* sender's uid */ int _status; /* exit code */ compat_s64 _utime; compat_s64 _stime; } _sigchld_x32; #endif /* SIGILL, SIGFPE, SIGSEGV, SIGBUS, SIGTRAP, SIGEMT */ struct { compat_uptr_t _addr; /* faulting insn/memory ref. */ #ifdef __ARCH_SI_TRAPNO int _trapno; /* TRAP # which caused the signal */ #endif #define __COMPAT_ADDR_BND_PKEY_PAD (__alignof__(compat_uptr_t) < sizeof(short) ? \ sizeof(short) : __alignof__(compat_uptr_t)) union { /* * used when si_code=BUS_MCEERR_AR or * used when si_code=BUS_MCEERR_AO */ short int _addr_lsb; /* Valid LSB of the reported address. */ /* used when si_code=SEGV_BNDERR */ struct { char _dummy_bnd[__COMPAT_ADDR_BND_PKEY_PAD]; compat_uptr_t _lower; compat_uptr_t _upper; } _addr_bnd; /* used when si_code=SEGV_PKUERR */ struct { char _dummy_pkey[__COMPAT_ADDR_BND_PKEY_PAD]; u32 _pkey; } _addr_pkey; }; } _sigfault; /* SIGPOLL */ struct { compat_long_t _band; /* POLL_IN, POLL_OUT, POLL_MSG */ int _fd; } _sigpoll; struct { compat_uptr_t _call_addr; /* calling user insn */ int _syscall; /* triggering system call number */ unsigned int _arch; /* AUDIT_ARCH_* of syscall */ } _sigsys; } _sifields; } compat_siginfo_t; struct compat_rlimit { compat_ulong_t rlim_cur; compat_ulong_t rlim_max; }; struct compat_rusage { struct old_timeval32 ru_utime; struct old_timeval32 ru_stime; compat_long_t ru_maxrss; compat_long_t ru_ixrss; compat_long_t ru_idrss; compat_long_t ru_isrss; compat_long_t ru_minflt; compat_long_t ru_majflt; compat_long_t ru_nswap; compat_long_t ru_inblock; compat_long_t ru_oublock; compat_long_t ru_msgsnd; compat_long_t ru_msgrcv; compat_long_t ru_nsignals; compat_long_t ru_nvcsw; compat_long_t ru_nivcsw; }; extern int put_compat_rusage(const struct rusage *, struct compat_rusage __user *); struct compat_siginfo; struct __compat_aio_sigset; struct compat_dirent { u32 d_ino; compat_off_t d_off; u16 d_reclen; char d_name[256]; }; struct compat_ustat { compat_daddr_t f_tfree; compat_ino_t f_tinode; char f_fname[6]; char f_fpack[6]; }; #define COMPAT_SIGEV_PAD_SIZE ((SIGEV_MAX_SIZE/sizeof(int)) - 3) typedef struct compat_sigevent { compat_sigval_t sigev_value; compat_int_t sigev_signo; compat_int_t sigev_notify; union { compat_int_t _pad[COMPAT_SIGEV_PAD_SIZE]; compat_int_t _tid; struct { compat_uptr_t _function; compat_uptr_t _attribute; } _sigev_thread; } _sigev_un; } compat_sigevent_t; struct compat_ifmap { compat_ulong_t mem_start; compat_ulong_t mem_end; unsigned short base_addr; unsigned char irq; unsigned char dma; unsigned char port; }; struct compat_if_settings { unsigned int type; /* Type of physical device or protocol */ unsigned int size; /* Size of the data allocated by the caller */ compat_uptr_t ifs_ifsu; /* union of pointers */ }; struct compat_ifreq { union { char ifrn_name[IFNAMSIZ]; /* if name, e.g. "en0" */ } ifr_ifrn; union { struct sockaddr ifru_addr; struct sockaddr ifru_dstaddr; struct sockaddr ifru_broadaddr; struct sockaddr ifru_netmask; struct sockaddr ifru_hwaddr; short ifru_flags; compat_int_t ifru_ivalue; compat_int_t ifru_mtu; struct compat_ifmap ifru_map; char ifru_slave[IFNAMSIZ]; /* Just fits the size */ char ifru_newname[IFNAMSIZ]; compat_caddr_t ifru_data; struct compat_if_settings ifru_settings; } ifr_ifru; }; struct compat_ifconf { compat_int_t ifc_len; /* size of buffer */ compat_caddr_t ifcbuf; }; struct compat_robust_list { compat_uptr_t next; }; struct compat_robust_list_head { struct compat_robust_list list; compat_long_t futex_offset; compat_uptr_t list_op_pending; }; #ifdef CONFIG_COMPAT_OLD_SIGACTION struct compat_old_sigaction { compat_uptr_t sa_handler; compat_old_sigset_t sa_mask; compat_ulong_t sa_flags; compat_uptr_t sa_restorer; }; #endif struct compat_keyctl_kdf_params { compat_uptr_t hashname; compat_uptr_t otherinfo; __u32 otherinfolen; __u32 __spare[8]; }; struct compat_statfs; struct compat_statfs64; struct compat_old_linux_dirent; struct compat_linux_dirent; struct linux_dirent64; struct compat_msghdr; struct compat_mmsghdr; struct compat_sysinfo; struct compat_sysctl_args; struct compat_kexec_segment; struct compat_mq_attr; struct compat_msgbuf; #define BITS_PER_COMPAT_LONG (8*sizeof(compat_long_t)) #define BITS_TO_COMPAT_LONGS(bits) DIV_ROUND_UP(bits, BITS_PER_COMPAT_LONG) long compat_get_bitmap(unsigned long *mask, const compat_ulong_t __user *umask, unsigned long bitmap_size); long compat_put_bitmap(compat_ulong_t __user *umask, unsigned long *mask, unsigned long bitmap_size); void copy_siginfo_to_external32(struct compat_siginfo *to, const struct kernel_siginfo *from); int copy_siginfo_from_user32(kernel_siginfo_t *to, const struct compat_siginfo __user *from); int __copy_siginfo_to_user32(struct compat_siginfo __user *to, const kernel_siginfo_t *from); #ifndef copy_siginfo_to_user32 #define copy_siginfo_to_user32 __copy_siginfo_to_user32 #endif int get_compat_sigevent(struct sigevent *event, const struct compat_sigevent __user *u_event); extern int get_compat_sigset(sigset_t *set, const compat_sigset_t __user *compat); /* * Defined inline such that size can be compile time constant, which avoids * CONFIG_HARDENED_USERCOPY complaining about copies from task_struct */ static inline int put_compat_sigset(compat_sigset_t __user *compat, const sigset_t *set, unsigned int size) { /* size <= sizeof(compat_sigset_t) <= sizeof(sigset_t) */ #ifdef __BIG_ENDIAN compat_sigset_t v; switch (_NSIG_WORDS) { case 4: v.sig[7] = (set->sig[3] >> 32); v.sig[6] = set->sig[3]; fallthrough; case 3: v.sig[5] = (set->sig[2] >> 32); v.sig[4] = set->sig[2]; fallthrough; case 2: v.sig[3] = (set->sig[1] >> 32); v.sig[2] = set->sig[1]; fallthrough; case 1: v.sig[1] = (set->sig[0] >> 32); v.sig[0] = set->sig[0]; } return copy_to_user(compat, &v, size) ? -EFAULT : 0; #else return copy_to_user(compat, set, size) ? -EFAULT : 0; #endif } extern int compat_ptrace_request(struct task_struct *child, compat_long_t request, compat_ulong_t addr, compat_ulong_t data); extern long compat_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t addr, compat_ulong_t data); struct epoll_event; /* fortunately, this one is fixed-layout */ extern void __user *compat_alloc_user_space(unsigned long len); int compat_restore_altstack(const compat_stack_t __user *uss); int __compat_save_altstack(compat_stack_t __user *, unsigned long); #define unsafe_compat_save_altstack(uss, sp, label) do { \ compat_stack_t __user *__uss = uss; \ struct task_struct *t = current; \ unsafe_put_user(ptr_to_compat((void __user *)t->sas_ss_sp), \ &__uss->ss_sp, label); \ unsafe_put_user(t->sas_ss_flags, &__uss->ss_flags, label); \ unsafe_put_user(t->sas_ss_size, &__uss->ss_size, label); \ if (t->sas_ss_flags & SS_AUTODISARM) \ sas_ss_reset(t); \ } while (0); /* * These syscall function prototypes are kept in the same order as * include/uapi/asm-generic/unistd.h. Deprecated or obsolete system calls * go below. * * Please note that these prototypes here are only provided for information * purposes, for static analysis, and for linking from the syscall table. * These functions should not be called elsewhere from kernel code. * * As the syscall calling convention may be different from the default * for architectures overriding the syscall calling convention, do not * include the prototypes if CONFIG_ARCH_HAS_SYSCALL_WRAPPER is enabled. */ #ifndef CONFIG_ARCH_HAS_SYSCALL_WRAPPER asmlinkage long compat_sys_io_setup(unsigned nr_reqs, u32 __user *ctx32p); asmlinkage long compat_sys_io_submit(compat_aio_context_t ctx_id, int nr, u32 __user *iocb); asmlinkage long compat_sys_io_pgetevents(compat_aio_context_t ctx_id, compat_long_t min_nr, compat_long_t nr, struct io_event __user *events, struct old_timespec32 __user *timeout, const struct __compat_aio_sigset __user *usig); asmlinkage long compat_sys_io_pgetevents_time64(compat_aio_context_t ctx_id, compat_long_t min_nr, compat_long_t nr, struct io_event __user *events, struct __kernel_timespec __user *timeout, const struct __compat_aio_sigset __user *usig); /* fs/cookies.c */ asmlinkage long compat_sys_lookup_dcookie(u32, u32, char __user *, compat_size_t); /* fs/eventpoll.c */ asmlinkage long compat_sys_epoll_pwait(int epfd, struct epoll_event __user *events, int maxevents, int timeout, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* fs/fcntl.c */ asmlinkage long compat_sys_fcntl(unsigned int fd, unsigned int cmd, compat_ulong_t arg); asmlinkage long compat_sys_fcntl64(unsigned int fd, unsigned int cmd, compat_ulong_t arg); /* fs/ioctl.c */ asmlinkage long compat_sys_ioctl(unsigned int fd, unsigned int cmd, compat_ulong_t arg); /* fs/open.c */ asmlinkage long compat_sys_statfs(const char __user *pathname, struct compat_statfs __user *buf); asmlinkage long compat_sys_statfs64(const char __user *pathname, compat_size_t sz, struct compat_statfs64 __user *buf); asmlinkage long compat_sys_fstatfs(unsigned int fd, struct compat_statfs __user *buf); asmlinkage long compat_sys_fstatfs64(unsigned int fd, compat_size_t sz, struct compat_statfs64 __user *buf); asmlinkage long compat_sys_truncate(const char __user *, compat_off_t); asmlinkage long compat_sys_ftruncate(unsigned int, compat_ulong_t); /* No generic prototype for truncate64, ftruncate64, fallocate */ asmlinkage long compat_sys_openat(int dfd, const char __user *filename, int flags, umode_t mode); /* fs/readdir.c */ asmlinkage long compat_sys_getdents(unsigned int fd, struct compat_linux_dirent __user *dirent, unsigned int count); /* fs/read_write.c */ asmlinkage long compat_sys_lseek(unsigned int, compat_off_t, unsigned int); /* No generic prototype for pread64 and pwrite64 */ asmlinkage ssize_t compat_sys_preadv(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high); asmlinkage ssize_t compat_sys_pwritev(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high); #ifdef __ARCH_WANT_COMPAT_SYS_PREADV64 asmlinkage long compat_sys_preadv64(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos); #endif #ifdef __ARCH_WANT_COMPAT_SYS_PWRITEV64 asmlinkage long compat_sys_pwritev64(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos); #endif /* fs/sendfile.c */ asmlinkage long compat_sys_sendfile(int out_fd, int in_fd, compat_off_t __user *offset, compat_size_t count); asmlinkage long compat_sys_sendfile64(int out_fd, int in_fd, compat_loff_t __user *offset, compat_size_t count); /* fs/select.c */ asmlinkage long compat_sys_pselect6_time32(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct old_timespec32 __user *tsp, void __user *sig); asmlinkage long compat_sys_pselect6_time64(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct __kernel_timespec __user *tsp, void __user *sig); asmlinkage long compat_sys_ppoll_time32(struct pollfd __user *ufds, unsigned int nfds, struct old_timespec32 __user *tsp, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); asmlinkage long compat_sys_ppoll_time64(struct pollfd __user *ufds, unsigned int nfds, struct __kernel_timespec __user *tsp, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* fs/signalfd.c */ asmlinkage long compat_sys_signalfd4(int ufd, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize, int flags); /* fs/stat.c */ asmlinkage long compat_sys_newfstatat(unsigned int dfd, const char __user *filename, struct compat_stat __user *statbuf, int flag); asmlinkage long compat_sys_newfstat(unsigned int fd, struct compat_stat __user *statbuf); /* fs/sync.c: No generic prototype for sync_file_range and sync_file_range2 */ /* kernel/exit.c */ asmlinkage long compat_sys_waitid(int, compat_pid_t, struct compat_siginfo __user *, int, struct compat_rusage __user *); /* kernel/futex.c */ asmlinkage long compat_sys_set_robust_list(struct compat_robust_list_head __user *head, compat_size_t len); asmlinkage long compat_sys_get_robust_list(int pid, compat_uptr_t __user *head_ptr, compat_size_t __user *len_ptr); /* kernel/itimer.c */ asmlinkage long compat_sys_getitimer(int which, struct old_itimerval32 __user *it); asmlinkage long compat_sys_setitimer(int which, struct old_itimerval32 __user *in, struct old_itimerval32 __user *out); /* kernel/kexec.c */ asmlinkage long compat_sys_kexec_load(compat_ulong_t entry, compat_ulong_t nr_segments, struct compat_kexec_segment __user *, compat_ulong_t flags); /* kernel/posix-timers.c */ asmlinkage long compat_sys_timer_create(clockid_t which_clock, struct compat_sigevent __user *timer_event_spec, timer_t __user *created_timer_id); /* kernel/ptrace.c */ asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid, compat_long_t addr, compat_long_t data); /* kernel/sched/core.c */ asmlinkage long compat_sys_sched_setaffinity(compat_pid_t pid, unsigned int len, compat_ulong_t __user *user_mask_ptr); asmlinkage long compat_sys_sched_getaffinity(compat_pid_t pid, unsigned int len, compat_ulong_t __user *user_mask_ptr); /* kernel/signal.c */ asmlinkage long compat_sys_sigaltstack(const compat_stack_t __user *uss_ptr, compat_stack_t __user *uoss_ptr); asmlinkage long compat_sys_rt_sigsuspend(compat_sigset_t __user *unewset, compat_size_t sigsetsize); #ifndef CONFIG_ODD_RT_SIGACTION asmlinkage long compat_sys_rt_sigaction(int, const struct compat_sigaction __user *, struct compat_sigaction __user *, compat_size_t); #endif asmlinkage long compat_sys_rt_sigprocmask(int how, compat_sigset_t __user *set, compat_sigset_t __user *oset, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigpending(compat_sigset_t __user *uset, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigtimedwait_time32(compat_sigset_t __user *uthese, struct compat_siginfo __user *uinfo, struct old_timespec32 __user *uts, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigtimedwait_time64(compat_sigset_t __user *uthese, struct compat_siginfo __user *uinfo, struct __kernel_timespec __user *uts, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigqueueinfo(compat_pid_t pid, int sig, struct compat_siginfo __user *uinfo); /* No generic prototype for rt_sigreturn */ /* kernel/sys.c */ asmlinkage long compat_sys_times(struct compat_tms __user *tbuf); asmlinkage long compat_sys_getrlimit(unsigned int resource, struct compat_rlimit __user *rlim); asmlinkage long compat_sys_setrlimit(unsigned int resource, struct compat_rlimit __user *rlim); asmlinkage long compat_sys_getrusage(int who, struct compat_rusage __user *ru); /* kernel/time.c */ asmlinkage long compat_sys_gettimeofday(struct old_timeval32 __user *tv, struct timezone __user *tz); asmlinkage long compat_sys_settimeofday(struct old_timeval32 __user *tv, struct timezone __user *tz); /* kernel/timer.c */ asmlinkage long compat_sys_sysinfo(struct compat_sysinfo __user *info); /* ipc/mqueue.c */ asmlinkage long compat_sys_mq_open(const char __user *u_name, int oflag, compat_mode_t mode, struct compat_mq_attr __user *u_attr); asmlinkage long compat_sys_mq_notify(mqd_t mqdes, const struct compat_sigevent __user *u_notification); asmlinkage long compat_sys_mq_getsetattr(mqd_t mqdes, const struct compat_mq_attr __user *u_mqstat, struct compat_mq_attr __user *u_omqstat); /* ipc/msg.c */ asmlinkage long compat_sys_msgctl(int first, int second, void __user *uptr); asmlinkage long compat_sys_msgrcv(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, compat_long_t msgtyp, int msgflg); asmlinkage long compat_sys_msgsnd(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, int msgflg); /* ipc/sem.c */ asmlinkage long compat_sys_semctl(int semid, int semnum, int cmd, int arg); /* ipc/shm.c */ asmlinkage long compat_sys_shmctl(int first, int second, void __user *uptr); asmlinkage long compat_sys_shmat(int shmid, compat_uptr_t shmaddr, int shmflg); /* net/socket.c */ asmlinkage long compat_sys_recvfrom(int fd, void __user *buf, compat_size_t len, unsigned flags, struct sockaddr __user *addr, int __user *addrlen); asmlinkage long compat_sys_sendmsg(int fd, struct compat_msghdr __user *msg, unsigned flags); asmlinkage long compat_sys_recvmsg(int fd, struct compat_msghdr __user *msg, unsigned int flags); /* mm/filemap.c: No generic prototype for readahead */ /* security/keys/keyctl.c */ asmlinkage long compat_sys_keyctl(u32 option, u32 arg2, u32 arg3, u32 arg4, u32 arg5); /* arch/example/kernel/sys_example.c */ asmlinkage long compat_sys_execve(const char __user *filename, const compat_uptr_t __user *argv, const compat_uptr_t __user *envp); /* mm/fadvise.c: No generic prototype for fadvise64_64 */ /* mm/, CONFIG_MMU only */ asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, compat_ulong_t mode, compat_ulong_t __user *nmask, compat_ulong_t maxnode, compat_ulong_t flags); asmlinkage long compat_sys_get_mempolicy(int __user *policy, compat_ulong_t __user *nmask, compat_ulong_t maxnode, compat_ulong_t addr, compat_ulong_t flags); asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, compat_ulong_t maxnode); asmlinkage long compat_sys_migrate_pages(compat_pid_t pid, compat_ulong_t maxnode, const compat_ulong_t __user *old_nodes, const compat_ulong_t __user *new_nodes); asmlinkage long compat_sys_move_pages(pid_t pid, compat_ulong_t nr_pages, __u32 __user *pages, const int __user *nodes, int __user *status, int flags); asmlinkage long compat_sys_rt_tgsigqueueinfo(compat_pid_t tgid, compat_pid_t pid, int sig, struct compat_siginfo __user *uinfo); asmlinkage long compat_sys_recvmmsg_time64(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags, struct __kernel_timespec __user *timeout); asmlinkage long compat_sys_recvmmsg_time32(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags, struct old_timespec32 __user *timeout); asmlinkage long compat_sys_wait4(compat_pid_t pid, compat_uint_t __user *stat_addr, int options, struct compat_rusage __user *ru); asmlinkage long compat_sys_fanotify_mark(int, unsigned int, __u32, __u32, int, const char __user *); asmlinkage long compat_sys_open_by_handle_at(int mountdirfd, struct file_handle __user *handle, int flags); asmlinkage long compat_sys_sendmmsg(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags); asmlinkage long compat_sys_execveat(int dfd, const char __user *filename, const compat_uptr_t __user *argv, const compat_uptr_t __user *envp, int flags); asmlinkage ssize_t compat_sys_preadv2(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high, rwf_t flags); asmlinkage ssize_t compat_sys_pwritev2(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high, rwf_t flags); #ifdef __ARCH_WANT_COMPAT_SYS_PREADV64V2 asmlinkage long compat_sys_preadv64v2(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos, rwf_t flags); #endif #ifdef __ARCH_WANT_COMPAT_SYS_PWRITEV64V2 asmlinkage long compat_sys_pwritev64v2(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos, rwf_t flags); #endif /* * Deprecated system calls which are still defined in * include/uapi/asm-generic/unistd.h and wanted by >= 1 arch */ /* __ARCH_WANT_SYSCALL_NO_AT */ asmlinkage long compat_sys_open(const char __user *filename, int flags, umode_t mode); /* __ARCH_WANT_SYSCALL_NO_FLAGS */ asmlinkage long compat_sys_signalfd(int ufd, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* __ARCH_WANT_SYSCALL_OFF_T */ asmlinkage long compat_sys_newstat(const char __user *filename, struct compat_stat __user *statbuf); asmlinkage long compat_sys_newlstat(const char __user *filename, struct compat_stat __user *statbuf); /* __ARCH_WANT_SYSCALL_DEPRECATED */ asmlinkage long compat_sys_select(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct old_timeval32 __user *tvp); asmlinkage long compat_sys_ustat(unsigned dev, struct compat_ustat __user *u32); asmlinkage long compat_sys_recv(int fd, void __user *buf, compat_size_t len, unsigned flags); /* obsolete: fs/readdir.c */ asmlinkage long compat_sys_old_readdir(unsigned int fd, struct compat_old_linux_dirent __user *, unsigned int count); /* obsolete: fs/select.c */ asmlinkage long compat_sys_old_select(struct compat_sel_arg_struct __user *arg); /* obsolete: ipc */ asmlinkage long compat_sys_ipc(u32, int, int, u32, compat_uptr_t, u32); /* obsolete: kernel/signal.c */ #ifdef __ARCH_WANT_SYS_SIGPENDING asmlinkage long compat_sys_sigpending(compat_old_sigset_t __user *set); #endif #ifdef __ARCH_WANT_SYS_SIGPROCMASK asmlinkage long compat_sys_sigprocmask(int how, compat_old_sigset_t __user *nset, compat_old_sigset_t __user *oset); #endif #ifdef CONFIG_COMPAT_OLD_SIGACTION asmlinkage long compat_sys_sigaction(int sig, const struct compat_old_sigaction __user *act, struct compat_old_sigaction __user *oact); #endif /* obsolete: net/socket.c */ asmlinkage long compat_sys_socketcall(int call, u32 __user *args); #endif /* CONFIG_ARCH_HAS_SYSCALL_WRAPPER */ /* * For most but not all architectures, "am I in a compat syscall?" and * "am I a compat task?" are the same question. For architectures on which * they aren't the same question, arch code can override in_compat_syscall. */ #ifndef in_compat_syscall static inline bool in_compat_syscall(void) { return is_compat_task(); } #endif /** * ns_to_old_timeval32 - Compat version of ns_to_timeval * @nsec: the nanoseconds value to be converted * * Returns the old_timeval32 representation of the nsec parameter. */ static inline struct old_timeval32 ns_to_old_timeval32(s64 nsec) { struct __kernel_old_timeval tv; struct old_timeval32 ctv; tv = ns_to_kernel_old_timeval(nsec); ctv.tv_sec = tv.tv_sec; ctv.tv_usec = tv.tv_usec; return ctv; } /* * Kernel code should not call compat syscalls (i.e., compat_sys_xyzyyz()) * directly. Instead, use one of the functions which work equivalently, such * as the kcompat_sys_xyzyyz() functions prototyped below. */ int kcompat_sys_statfs64(const char __user * pathname, compat_size_t sz, struct compat_statfs64 __user * buf); int kcompat_sys_fstatfs64(unsigned int fd, compat_size_t sz, struct compat_statfs64 __user * buf); #else /* !CONFIG_COMPAT */ #define is_compat_task() (0) /* Ensure no one redefines in_compat_syscall() under !CONFIG_COMPAT */ #define in_compat_syscall in_compat_syscall static inline bool in_compat_syscall(void) { return false; } #endif /* CONFIG_COMPAT */ /* * Some legacy ABIs like the i386 one use less than natural alignment for 64-bit * types, and will need special compat treatment for that. Most architectures * don't need that special handling even for compat syscalls. */ #ifndef compat_need_64bit_alignment_fixup #define compat_need_64bit_alignment_fixup() false #endif /* * A pointer passed in from user mode. This should not * be used for syscall parameters, just declare them * as pointers because the syscall entry code will have * appropriately converted them already. */ #ifndef compat_ptr static inline void __user *compat_ptr(compat_uptr_t uptr) { return (void __user *)(unsigned long)uptr; } #endif static inline compat_uptr_t ptr_to_compat(void __user *uptr) { return (u32)(unsigned long)uptr; } #endif /* _LINUX_COMPAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_RTNETLINK_H #define __NET_RTNETLINK_H #include <linux/rtnetlink.h> #include <net/netlink.h> typedef int (*rtnl_doit_func)(struct sk_buff *, struct nlmsghdr *, struct netlink_ext_ack *); typedef int (*rtnl_dumpit_func)(struct sk_buff *, struct netlink_callback *); enum rtnl_link_flags { RTNL_FLAG_DOIT_UNLOCKED = 1, }; void rtnl_register(int protocol, int msgtype, rtnl_doit_func, rtnl_dumpit_func, unsigned int flags); int rtnl_register_module(struct module *owner, int protocol, int msgtype, rtnl_doit_func, rtnl_dumpit_func, unsigned int flags); int rtnl_unregister(int protocol, int msgtype); void rtnl_unregister_all(int protocol); static inline int rtnl_msg_family(const struct nlmsghdr *nlh) { if (nlmsg_len(nlh) >= sizeof(struct rtgenmsg)) return ((struct rtgenmsg *) nlmsg_data(nlh))->rtgen_family; else return AF_UNSPEC; } /** * struct rtnl_link_ops - rtnetlink link operations * * @list: Used internally * @kind: Identifier * @netns_refund: Physical device, move to init_net on netns exit * @maxtype: Highest device specific netlink attribute number * @policy: Netlink policy for device specific attribute validation * @validate: Optional validation function for netlink/changelink parameters * @priv_size: sizeof net_device private space * @setup: net_device setup function * @newlink: Function for configuring and registering a new device * @changelink: Function for changing parameters of an existing device * @dellink: Function to remove a device * @get_size: Function to calculate required room for dumping device * specific netlink attributes * @fill_info: Function to dump device specific netlink attributes * @get_xstats_size: Function to calculate required room for dumping device * specific statistics * @fill_xstats: Function to dump device specific statistics * @get_num_tx_queues: Function to determine number of transmit queues * to create when creating a new device. * @get_num_rx_queues: Function to determine number of receive queues * to create when creating a new device. * @get_link_net: Function to get the i/o netns of the device * @get_linkxstats_size: Function to calculate the required room for * dumping device-specific extended link stats * @fill_linkxstats: Function to dump device-specific extended link stats */ struct rtnl_link_ops { struct list_head list; const char *kind; size_t priv_size; void (*setup)(struct net_device *dev); bool netns_refund; unsigned int maxtype; const struct nla_policy *policy; int (*validate)(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); int (*newlink)(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); int (*changelink)(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); void (*dellink)(struct net_device *dev, struct list_head *head); size_t (*get_size)(const struct net_device *dev); int (*fill_info)(struct sk_buff *skb, const struct net_device *dev); size_t (*get_xstats_size)(const struct net_device *dev); int (*fill_xstats)(struct sk_buff *skb, const struct net_device *dev); unsigned int (*get_num_tx_queues)(void); unsigned int (*get_num_rx_queues)(void); unsigned int slave_maxtype; const struct nla_policy *slave_policy; int (*slave_changelink)(struct net_device *dev, struct net_device *slave_dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); size_t (*get_slave_size)(const struct net_device *dev, const struct net_device *slave_dev); int (*fill_slave_info)(struct sk_buff *skb, const struct net_device *dev, const struct net_device *slave_dev); struct net *(*get_link_net)(const struct net_device *dev); size_t (*get_linkxstats_size)(const struct net_device *dev, int attr); int (*fill_linkxstats)(struct sk_buff *skb, const struct net_device *dev, int *prividx, int attr); }; int __rtnl_link_register(struct rtnl_link_ops *ops); void __rtnl_link_unregister(struct rtnl_link_ops *ops); int rtnl_link_register(struct rtnl_link_ops *ops); void rtnl_link_unregister(struct rtnl_link_ops *ops); /** * struct rtnl_af_ops - rtnetlink address family operations * * @list: Used internally * @family: Address family * @fill_link_af: Function to fill IFLA_AF_SPEC with address family * specific netlink attributes. * @get_link_af_size: Function to calculate size of address family specific * netlink attributes. * @validate_link_af: Validate a IFLA_AF_SPEC attribute, must check attr * for invalid configuration settings. * @set_link_af: Function to parse a IFLA_AF_SPEC attribute and modify * net_device accordingly. */ struct rtnl_af_ops { struct list_head list; int family; int (*fill_link_af)(struct sk_buff *skb, const struct net_device *dev, u32 ext_filter_mask); size_t (*get_link_af_size)(const struct net_device *dev, u32 ext_filter_mask); int (*validate_link_af)(const struct net_device *dev, const struct nlattr *attr); int (*set_link_af)(struct net_device *dev, const struct nlattr *attr); int (*fill_stats_af)(struct sk_buff *skb, const struct net_device *dev); size_t (*get_stats_af_size)(const struct net_device *dev); }; void rtnl_af_register(struct rtnl_af_ops *ops); void rtnl_af_unregister(struct rtnl_af_ops *ops); struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[]); struct net_device *rtnl_create_link(struct net *net, const char *ifname, unsigned char name_assign_type, const struct rtnl_link_ops *ops, struct nlattr *tb[], struct netlink_ext_ack *extack); int rtnl_delete_link(struct net_device *dev); int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm); int rtnl_nla_parse_ifla(struct nlattr **tb, const struct nlattr *head, int len, struct netlink_ext_ack *exterr); struct net *rtnl_get_net_ns_capable(struct sock *sk, int netnsid); #define MODULE_ALIAS_RTNL_LINK(kind) MODULE_ALIAS("rtnl-link-" kind) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NET Generic infrastructure for Network protocols. * * Definitions for request_sock * * Authors: Arnaldo Carvalho de Melo <acme@conectiva.com.br> * * From code originally in include/net/tcp.h */ #ifndef _REQUEST_SOCK_H #define _REQUEST_SOCK_H #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/bug.h> #include <linux/refcount.h> #include <net/sock.h> struct request_sock; struct sk_buff; struct dst_entry; struct proto; struct request_sock_ops { int family; unsigned int obj_size; struct kmem_cache *slab; char *slab_name; int (*rtx_syn_ack)(const struct sock *sk, struct request_sock *req); void (*send_ack)(const struct sock *sk, struct sk_buff *skb, struct request_sock *req); void (*send_reset)(const struct sock *sk, struct sk_buff *skb); void (*destructor)(struct request_sock *req); void (*syn_ack_timeout)(const struct request_sock *req); }; int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req); struct saved_syn { u32 mac_hdrlen; u32 network_hdrlen; u32 tcp_hdrlen; u8 data[]; }; /* struct request_sock - mini sock to represent a connection request */ struct request_sock { struct sock_common __req_common; #define rsk_refcnt __req_common.skc_refcnt #define rsk_hash __req_common.skc_hash #define rsk_listener __req_common.skc_listener #define rsk_window_clamp __req_common.skc_window_clamp #define rsk_rcv_wnd __req_common.skc_rcv_wnd struct request_sock *dl_next; u16 mss; u8 num_retrans; /* number of retransmits */ u8 syncookie:1; /* syncookie: encode tcpopts in timestamp */ u8 num_timeout:7; /* number of timeouts */ u32 ts_recent; struct timer_list rsk_timer; const struct request_sock_ops *rsk_ops; struct sock *sk; struct saved_syn *saved_syn; u32 secid; u32 peer_secid; }; static inline struct request_sock *inet_reqsk(const struct sock *sk) { return (struct request_sock *)sk; } static inline struct sock *req_to_sk(struct request_sock *req) { return (struct sock *)req; } static inline struct request_sock * reqsk_alloc(const struct request_sock_ops *ops, struct sock *sk_listener, bool attach_listener) { struct request_sock *req; req = kmem_cache_alloc(ops->slab, GFP_ATOMIC | __GFP_NOWARN); if (!req) return NULL; req->rsk_listener = NULL; if (attach_listener) { if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) { kmem_cache_free(ops->slab, req); return NULL; } req->rsk_listener = sk_listener; } req->rsk_ops = ops; req_to_sk(req)->sk_prot = sk_listener->sk_prot; sk_node_init(&req_to_sk(req)->sk_node); sk_tx_queue_clear(req_to_sk(req)); req->saved_syn = NULL; req->num_timeout = 0; req->num_retrans = 0; req->sk = NULL; refcount_set(&req->rsk_refcnt, 0); return req; } static inline void __reqsk_free(struct request_sock *req) { req->rsk_ops->destructor(req); if (req->rsk_listener) sock_put(req->rsk_listener); kfree(req->saved_syn); kmem_cache_free(req->rsk_ops->slab, req); } static inline void reqsk_free(struct request_sock *req) { WARN_ON_ONCE(refcount_read(&req->rsk_refcnt) != 0); __reqsk_free(req); } static inline void reqsk_put(struct request_sock *req) { if (refcount_dec_and_test(&req->rsk_refcnt)) reqsk_free(req); } /* * For a TCP Fast Open listener - * lock - protects the access to all the reqsk, which is co-owned by * the listener and the child socket. * qlen - pending TFO requests (still in TCP_SYN_RECV). * max_qlen - max TFO reqs allowed before TFO is disabled. * * XXX (TFO) - ideally these fields can be made as part of "listen_sock" * structure above. But there is some implementation difficulty due to * listen_sock being part of request_sock_queue hence will be freed when * a listener is stopped. But TFO related fields may continue to be * accessed even after a listener is closed, until its sk_refcnt drops * to 0 implying no more outstanding TFO reqs. One solution is to keep * listen_opt around until sk_refcnt drops to 0. But there is some other * complexity that needs to be resolved. E.g., a listener can be disabled * temporarily through shutdown()->tcp_disconnect(), and re-enabled later. */ struct fastopen_queue { struct request_sock *rskq_rst_head; /* Keep track of past TFO */ struct request_sock *rskq_rst_tail; /* requests that caused RST. * This is part of the defense * against spoofing attack. */ spinlock_t lock; int qlen; /* # of pending (TCP_SYN_RECV) reqs */ int max_qlen; /* != 0 iff TFO is currently enabled */ struct tcp_fastopen_context __rcu *ctx; /* cipher context for cookie */ }; /** struct request_sock_queue - queue of request_socks * * @rskq_accept_head - FIFO head of established children * @rskq_accept_tail - FIFO tail of established children * @rskq_defer_accept - User waits for some data after accept() * */ struct request_sock_queue { spinlock_t rskq_lock; u8 rskq_defer_accept; u32 synflood_warned; atomic_t qlen; atomic_t young; struct request_sock *rskq_accept_head; struct request_sock *rskq_accept_tail; struct fastopen_queue fastopenq; /* Check max_qlen != 0 to determine * if TFO is enabled. */ }; void reqsk_queue_alloc(struct request_sock_queue *queue); void reqsk_fastopen_remove(struct sock *sk, struct request_sock *req, bool reset); static inline bool reqsk_queue_empty(const struct request_sock_queue *queue) { return READ_ONCE(queue->rskq_accept_head) == NULL; } static inline struct request_sock *reqsk_queue_remove(struct request_sock_queue *queue, struct sock *parent) { struct request_sock *req; spin_lock_bh(&queue->rskq_lock); req = queue->rskq_accept_head; if (req) { sk_acceptq_removed(parent); WRITE_ONCE(queue->rskq_accept_head, req->dl_next); if (queue->rskq_accept_head == NULL) queue->rskq_accept_tail = NULL; } spin_unlock_bh(&queue->rskq_lock); return req; } static inline void reqsk_queue_removed(struct request_sock_queue *queue, const struct request_sock *req) { if (req->num_timeout == 0) atomic_dec(&queue->young); atomic_dec(&queue->qlen); } static inline void reqsk_queue_added(struct request_sock_queue *queue) { atomic_inc(&queue->young); atomic_inc(&queue->qlen); } static inline int reqsk_queue_len(const struct request_sock_queue *queue) { return atomic_read(&queue->qlen); } static inline int reqsk_queue_len_young(const struct request_sock_queue *queue) { return atomic_read(&queue->young); } #endif /* _REQUEST_SOCK_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 // SPDX-License-Identifier: GPL-2.0-or-later /* * SELinux NetLabel Support * * This file provides the necessary glue to tie NetLabel into the SELinux * subsystem. * * Author: Paul Moore <paul@paul-moore.com> */ /* * (c) Copyright Hewlett-Packard Development Company, L.P., 2007, 2008 */ #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/gfp.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <net/sock.h> #include <net/netlabel.h> #include <net/ip.h> #include <net/ipv6.h> #include "objsec.h" #include "security.h" #include "netlabel.h" /** * selinux_netlbl_sidlookup_cached - Cache a SID lookup * @skb: the packet * @secattr: the NetLabel security attributes * @sid: the SID * * Description: * Query the SELinux security server to lookup the correct SID for the given * security attributes. If the query is successful, cache the result to speed * up future lookups. Returns zero on success, negative values on failure. * */ static int selinux_netlbl_sidlookup_cached(struct sk_buff *skb, u16 family, struct netlbl_lsm_secattr *secattr, u32 *sid) { int rc; rc = security_netlbl_secattr_to_sid(&selinux_state, secattr, sid); if (rc == 0 && (secattr->flags & NETLBL_SECATTR_CACHEABLE) && (secattr->flags & NETLBL_SECATTR_CACHE)) netlbl_cache_add(skb, family, secattr); return rc; } /** * selinux_netlbl_sock_genattr - Generate the NetLabel socket secattr * @sk: the socket * * Description: * Generate the NetLabel security attributes for a socket, making full use of * the socket's attribute cache. Returns a pointer to the security attributes * on success, NULL on failure. * */ static struct netlbl_lsm_secattr *selinux_netlbl_sock_genattr(struct sock *sk) { int rc; struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr *secattr; if (sksec->nlbl_secattr != NULL) return sksec->nlbl_secattr; secattr = netlbl_secattr_alloc(GFP_ATOMIC); if (secattr == NULL) return NULL; rc = security_netlbl_sid_to_secattr(&selinux_state, sksec->sid, secattr); if (rc != 0) { netlbl_secattr_free(secattr); return NULL; } sksec->nlbl_secattr = secattr; return secattr; } /** * selinux_netlbl_sock_getattr - Get the cached NetLabel secattr * @sk: the socket * @sid: the SID * * Query the socket's cached secattr and if the SID matches the cached value * return the cache, otherwise return NULL. * */ static struct netlbl_lsm_secattr *selinux_netlbl_sock_getattr( const struct sock *sk, u32 sid) { struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr *secattr = sksec->nlbl_secattr; if (secattr == NULL) return NULL; if ((secattr->flags & NETLBL_SECATTR_SECID) && (secattr->attr.secid == sid)) return secattr; return NULL; } /** * selinux_netlbl_cache_invalidate - Invalidate the NetLabel cache * * Description: * Invalidate the NetLabel security attribute mapping cache. * */ void selinux_netlbl_cache_invalidate(void) { netlbl_cache_invalidate(); } /** * selinux_netlbl_err - Handle a NetLabel packet error * @skb: the packet * @error: the error code * @gateway: true if host is acting as a gateway, false otherwise * * Description: * When a packet is dropped due to a call to avc_has_perm() pass the error * code to the NetLabel subsystem so any protocol specific processing can be * done. This is safe to call even if you are unsure if NetLabel labeling is * present on the packet, NetLabel is smart enough to only act when it should. * */ void selinux_netlbl_err(struct sk_buff *skb, u16 family, int error, int gateway) { netlbl_skbuff_err(skb, family, error, gateway); } /** * selinux_netlbl_sk_security_free - Free the NetLabel fields * @sksec: the sk_security_struct * * Description: * Free all of the memory in the NetLabel fields of a sk_security_struct. * */ void selinux_netlbl_sk_security_free(struct sk_security_struct *sksec) { if (sksec->nlbl_secattr != NULL) netlbl_secattr_free(sksec->nlbl_secattr); } /** * selinux_netlbl_sk_security_reset - Reset the NetLabel fields * @sksec: the sk_security_struct * @family: the socket family * * Description: * Called when the NetLabel state of a sk_security_struct needs to be reset. * The caller is responsible for all the NetLabel sk_security_struct locking. * */ void selinux_netlbl_sk_security_reset(struct sk_security_struct *sksec) { sksec->nlbl_state = NLBL_UNSET; } /** * selinux_netlbl_skbuff_getsid - Get the sid of a packet using NetLabel * @skb: the packet * @family: protocol family * @type: NetLabel labeling protocol type * @sid: the SID * * Description: * Call the NetLabel mechanism to get the security attributes of the given * packet and use those attributes to determine the correct context/SID to * assign to the packet. Returns zero on success, negative values on failure. * */ int selinux_netlbl_skbuff_getsid(struct sk_buff *skb, u16 family, u32 *type, u32 *sid) { int rc; struct netlbl_lsm_secattr secattr; if (!netlbl_enabled()) { *sid = SECSID_NULL; return 0; } netlbl_secattr_init(&secattr); rc = netlbl_skbuff_getattr(skb, family, &secattr); if (rc == 0 && secattr.flags != NETLBL_SECATTR_NONE) rc = selinux_netlbl_sidlookup_cached(skb, family, &secattr, sid); else *sid = SECSID_NULL; *type = secattr.type; netlbl_secattr_destroy(&secattr); return rc; } /** * selinux_netlbl_skbuff_setsid - Set the NetLabel on a packet given a sid * @skb: the packet * @family: protocol family * @sid: the SID * * Description * Call the NetLabel mechanism to set the label of a packet using @sid. * Returns zero on success, negative values on failure. * */ int selinux_netlbl_skbuff_setsid(struct sk_buff *skb, u16 family, u32 sid) { int rc; struct netlbl_lsm_secattr secattr_storage; struct netlbl_lsm_secattr *secattr = NULL; struct sock *sk; /* if this is a locally generated packet check to see if it is already * being labeled by it's parent socket, if it is just exit */ sk = skb_to_full_sk(skb); if (sk != NULL) { struct sk_security_struct *sksec = sk->sk_security; if (sksec->nlbl_state != NLBL_REQSKB) return 0; secattr = selinux_netlbl_sock_getattr(sk, sid); } if (secattr == NULL) { secattr = &secattr_storage; netlbl_secattr_init(secattr); rc = security_netlbl_sid_to_secattr(&selinux_state, sid, secattr); if (rc != 0) goto skbuff_setsid_return; } rc = netlbl_skbuff_setattr(skb, family, secattr); skbuff_setsid_return: if (secattr == &secattr_storage) netlbl_secattr_destroy(secattr); return rc; } /** * selinux_netlbl_sctp_assoc_request - Label an incoming sctp association. * @ep: incoming association endpoint. * @skb: the packet. * * Description: * A new incoming connection is represented by @ep, ...... * Returns zero on success, negative values on failure. * */ int selinux_netlbl_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) { int rc; struct netlbl_lsm_secattr secattr; struct sk_security_struct *sksec = ep->base.sk->sk_security; struct sockaddr_in addr4; struct sockaddr_in6 addr6; if (ep->base.sk->sk_family != PF_INET && ep->base.sk->sk_family != PF_INET6) return 0; netlbl_secattr_init(&secattr); rc = security_netlbl_sid_to_secattr(&selinux_state, ep->secid, &secattr); if (rc != 0) goto assoc_request_return; /* Move skb hdr address info to a struct sockaddr and then call * netlbl_conn_setattr(). */ if (ip_hdr(skb)->version == 4) { addr4.sin_family = AF_INET; addr4.sin_addr.s_addr = ip_hdr(skb)->saddr; rc = netlbl_conn_setattr(ep->base.sk, (void *)&addr4, &secattr); } else if (IS_ENABLED(CONFIG_IPV6) && ip_hdr(skb)->version == 6) { addr6.sin6_family = AF_INET6; addr6.sin6_addr = ipv6_hdr(skb)->saddr; rc = netlbl_conn_setattr(ep->base.sk, (void *)&addr6, &secattr); } else { rc = -EAFNOSUPPORT; } if (rc == 0) sksec->nlbl_state = NLBL_LABELED; assoc_request_return: netlbl_secattr_destroy(&secattr); return rc; } /** * selinux_netlbl_inet_conn_request - Label an incoming stream connection * @req: incoming connection request socket * * Description: * A new incoming connection request is represented by @req, we need to label * the new request_sock here and the stack will ensure the on-the-wire label * will get preserved when a full sock is created once the connection handshake * is complete. Returns zero on success, negative values on failure. * */ int selinux_netlbl_inet_conn_request(struct request_sock *req, u16 family) { int rc; struct netlbl_lsm_secattr secattr; if (family != PF_INET && family != PF_INET6) return 0; netlbl_secattr_init(&secattr); rc = security_netlbl_sid_to_secattr(&selinux_state, req->secid, &secattr); if (rc != 0) goto inet_conn_request_return; rc = netlbl_req_setattr(req, &secattr); inet_conn_request_return: netlbl_secattr_destroy(&secattr); return rc; } /** * selinux_netlbl_inet_csk_clone - Initialize the newly created sock * @sk: the new sock * * Description: * A new connection has been established using @sk, we've already labeled the * socket via the request_sock struct in selinux_netlbl_inet_conn_request() but * we need to set the NetLabel state here since we now have a sock structure. * */ void selinux_netlbl_inet_csk_clone(struct sock *sk, u16 family) { struct sk_security_struct *sksec = sk->sk_security; if (family == PF_INET) sksec->nlbl_state = NLBL_LABELED; else sksec->nlbl_state = NLBL_UNSET; } /** * selinux_netlbl_sctp_sk_clone - Copy state to the newly created sock * @sk: current sock * @newsk: the new sock * * Description: * Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ void selinux_netlbl_sctp_sk_clone(struct sock *sk, struct sock *newsk) { struct sk_security_struct *sksec = sk->sk_security; struct sk_security_struct *newsksec = newsk->sk_security; newsksec->nlbl_state = sksec->nlbl_state; } /** * selinux_netlbl_socket_post_create - Label a socket using NetLabel * @sock: the socket to label * @family: protocol family * * Description: * Attempt to label a socket using the NetLabel mechanism using the given * SID. Returns zero values on success, negative values on failure. * */ int selinux_netlbl_socket_post_create(struct sock *sk, u16 family) { int rc; struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr *secattr; if (family != PF_INET && family != PF_INET6) return 0; secattr = selinux_netlbl_sock_genattr(sk); if (secattr == NULL) return -ENOMEM; rc = netlbl_sock_setattr(sk, family, secattr); switch (rc) { case 0: sksec->nlbl_state = NLBL_LABELED; break; case -EDESTADDRREQ: sksec->nlbl_state = NLBL_REQSKB; rc = 0; break; } return rc; } /** * selinux_netlbl_sock_rcv_skb - Do an inbound access check using NetLabel * @sksec: the sock's sk_security_struct * @skb: the packet * @family: protocol family * @ad: the audit data * * Description: * Fetch the NetLabel security attributes from @skb and perform an access check * against the receiving socket. Returns zero on success, negative values on * error. * */ int selinux_netlbl_sock_rcv_skb(struct sk_security_struct *sksec, struct sk_buff *skb, u16 family, struct common_audit_data *ad) { int rc; u32 nlbl_sid; u32 perm; struct netlbl_lsm_secattr secattr; if (!netlbl_enabled()) return 0; netlbl_secattr_init(&secattr); rc = netlbl_skbuff_getattr(skb, family, &secattr); if (rc == 0 && secattr.flags != NETLBL_SECATTR_NONE) rc = selinux_netlbl_sidlookup_cached(skb, family, &secattr, &nlbl_sid); else nlbl_sid = SECINITSID_UNLABELED; netlbl_secattr_destroy(&secattr); if (rc != 0) return rc; switch (sksec->sclass) { case SECCLASS_UDP_SOCKET: perm = UDP_SOCKET__RECVFROM; break; case SECCLASS_TCP_SOCKET: perm = TCP_SOCKET__RECVFROM; break; default: perm = RAWIP_SOCKET__RECVFROM; } rc = avc_has_perm(&selinux_state, sksec->sid, nlbl_sid, sksec->sclass, perm, ad); if (rc == 0) return 0; if (nlbl_sid != SECINITSID_UNLABELED) netlbl_skbuff_err(skb, family, rc, 0); return rc; } /** * selinux_netlbl_option - Is this a NetLabel option * @level: the socket level or protocol * @optname: the socket option name * * Description: * Returns true if @level and @optname refer to a NetLabel option. * Helper for selinux_netlbl_socket_setsockopt(). */ static inline int selinux_netlbl_option(int level, int optname) { return (level == IPPROTO_IP && optname == IP_OPTIONS) || (level == IPPROTO_IPV6 && optname == IPV6_HOPOPTS); } /** * selinux_netlbl_socket_setsockopt - Do not allow users to remove a NetLabel * @sock: the socket * @level: the socket level or protocol * @optname: the socket option name * * Description: * Check the setsockopt() call and if the user is trying to replace the IP * options on a socket and a NetLabel is in place for the socket deny the * access; otherwise allow the access. Returns zero when the access is * allowed, -EACCES when denied, and other negative values on error. * */ int selinux_netlbl_socket_setsockopt(struct socket *sock, int level, int optname) { int rc = 0; struct sock *sk = sock->sk; struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr secattr; if (selinux_netlbl_option(level, optname) && (sksec->nlbl_state == NLBL_LABELED || sksec->nlbl_state == NLBL_CONNLABELED)) { netlbl_secattr_init(&secattr); lock_sock(sk); /* call the netlabel function directly as we want to see the * on-the-wire label that is assigned via the socket's options * and not the cached netlabel/lsm attributes */ rc = netlbl_sock_getattr(sk, &secattr); release_sock(sk); if (rc == 0) rc = -EACCES; else if (rc == -ENOMSG) rc = 0; netlbl_secattr_destroy(&secattr); } return rc; } /** * selinux_netlbl_socket_connect_helper - Help label a client-side socket on * connect * @sk: the socket to label * @addr: the destination address * * Description: * Attempt to label a connected socket with NetLabel using the given address. * Returns zero values on success, negative values on failure. * */ static int selinux_netlbl_socket_connect_helper(struct sock *sk, struct sockaddr *addr) { int rc; struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr *secattr; /* connected sockets are allowed to disconnect when the address family * is set to AF_UNSPEC, if that is what is happening we want to reset * the socket */ if (addr->sa_family == AF_UNSPEC) { netlbl_sock_delattr(sk); sksec->nlbl_state = NLBL_REQSKB; rc = 0; return rc; } secattr = selinux_netlbl_sock_genattr(sk); if (secattr == NULL) { rc = -ENOMEM; return rc; } rc = netlbl_conn_setattr(sk, addr, secattr); if (rc == 0) sksec->nlbl_state = NLBL_CONNLABELED; return rc; } /** * selinux_netlbl_socket_connect_locked - Label a client-side socket on * connect * @sk: the socket to label * @addr: the destination address * * Description: * Attempt to label a connected socket that already has the socket locked * with NetLabel using the given address. * Returns zero values on success, negative values on failure. * */ int selinux_netlbl_socket_connect_locked(struct sock *sk, struct sockaddr *addr) { struct sk_security_struct *sksec = sk->sk_security; if (sksec->nlbl_state != NLBL_REQSKB && sksec->nlbl_state != NLBL_CONNLABELED) return 0; return selinux_netlbl_socket_connect_helper(sk, addr); } /** * selinux_netlbl_socket_connect - Label a client-side socket on connect * @sk: the socket to label * @addr: the destination address * * Description: * Attempt to label a connected socket with NetLabel using the given address. * Returns zero values on success, negative values on failure. * */ int selinux_netlbl_socket_connect(struct sock *sk, struct sockaddr *addr) { int rc; lock_sock(sk); rc = selinux_netlbl_socket_connect_locked(sk, addr); release_sock(sk); return rc; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef PM_TRACE_H #define PM_TRACE_H #include <linux/types.h> #ifdef CONFIG_PM_TRACE #include <asm/pm-trace.h> extern int pm_trace_enabled; extern bool pm_trace_rtc_abused; static inline bool pm_trace_rtc_valid(void) { return !pm_trace_rtc_abused; } static inline int pm_trace_is_enabled(void) { return pm_trace_enabled; } struct device; extern void set_trace_device(struct device *); extern void generate_pm_trace(const void *tracedata, unsigned int user); extern int show_trace_dev_match(char *buf, size_t size); #define TRACE_DEVICE(dev) do { \ if (pm_trace_enabled) \ set_trace_device(dev); \ } while(0) #else static inline bool pm_trace_rtc_valid(void) { return true; } static inline int pm_trace_is_enabled(void) { return 0; } #define TRACE_DEVICE(dev) do { } while (0) #define TRACE_RESUME(dev) do { } while (0) #define TRACE_SUSPEND(dev) do { } while (0) #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright 1997-1998 Transmeta Corporation - All Rights Reserved * Copyright 2005-2006 Ian Kent <raven@themaw.net> */ /* Internal header file for autofs */ #include <linux/auto_fs.h> #include <linux/auto_dev-ioctl.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/string.h> #include <linux/wait.h> #include <linux/sched.h> #include <linux/sched/signal.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/uaccess.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/list.h> #include <linux/completion.h> #include <linux/file.h> #include <linux/magic.h> /* This is the range of ioctl() numbers we claim as ours */ #define AUTOFS_IOC_FIRST AUTOFS_IOC_READY #define AUTOFS_IOC_COUNT 32 #define AUTOFS_DEV_IOCTL_IOC_FIRST (AUTOFS_DEV_IOCTL_VERSION) #define AUTOFS_DEV_IOCTL_IOC_COUNT \ (AUTOFS_DEV_IOCTL_ISMOUNTPOINT_CMD - AUTOFS_DEV_IOCTL_VERSION_CMD) #ifdef pr_fmt #undef pr_fmt #endif #define pr_fmt(fmt) KBUILD_MODNAME ":pid:%d:%s: " fmt, current->pid, __func__ extern struct file_system_type autofs_fs_type; /* * Unified info structure. This is pointed to by both the dentry and * inode structures. Each file in the filesystem has an instance of this * structure. It holds a reference to the dentry, so dentries are never * flushed while the file exists. All name lookups are dealt with at the * dentry level, although the filesystem can interfere in the validation * process. Readdir is implemented by traversing the dentry lists. */ struct autofs_info { struct dentry *dentry; struct inode *inode; int flags; struct completion expire_complete; struct list_head active; struct list_head expiring; struct autofs_sb_info *sbi; unsigned long last_used; int count; kuid_t uid; kgid_t gid; struct rcu_head rcu; }; #define AUTOFS_INF_EXPIRING (1<<0) /* dentry in the process of expiring */ #define AUTOFS_INF_WANT_EXPIRE (1<<1) /* the dentry is being considered * for expiry, so RCU_walk is * not permitted. If it progresses to * actual expiry attempt, the flag is * not cleared when EXPIRING is set - * in that case it gets cleared only * when it comes to clearing EXPIRING. */ #define AUTOFS_INF_PENDING (1<<2) /* dentry pending mount */ struct autofs_wait_queue { wait_queue_head_t queue; struct autofs_wait_queue *next; autofs_wqt_t wait_queue_token; /* We use the following to see what we are waiting for */ struct qstr name; u32 dev; u64 ino; kuid_t uid; kgid_t gid; pid_t pid; pid_t tgid; /* This is for status reporting upon return */ int status; unsigned int wait_ctr; }; #define AUTOFS_SBI_MAGIC 0x6d4a556d #define AUTOFS_SBI_CATATONIC 0x0001 #define AUTOFS_SBI_STRICTEXPIRE 0x0002 #define AUTOFS_SBI_IGNORE 0x0004 struct autofs_sb_info { u32 magic; int pipefd; struct file *pipe; struct pid *oz_pgrp; int version; int sub_version; int min_proto; int max_proto; unsigned int flags; unsigned long exp_timeout; unsigned int type; struct super_block *sb; struct mutex wq_mutex; struct mutex pipe_mutex; spinlock_t fs_lock; struct autofs_wait_queue *queues; /* Wait queue pointer */ spinlock_t lookup_lock; struct list_head active_list; struct list_head expiring_list; struct rcu_head rcu; }; static inline struct autofs_sb_info *autofs_sbi(struct super_block *sb) { return (struct autofs_sb_info *)(sb->s_fs_info); } static inline struct autofs_info *autofs_dentry_ino(struct dentry *dentry) { return (struct autofs_info *)(dentry->d_fsdata); } /* autofs_oz_mode(): do we see the man behind the curtain? (The * processes which do manipulations for us in user space sees the raw * filesystem without "magic".) */ static inline int autofs_oz_mode(struct autofs_sb_info *sbi) { return ((sbi->flags & AUTOFS_SBI_CATATONIC) || task_pgrp(current) == sbi->oz_pgrp); } struct inode *autofs_get_inode(struct super_block *, umode_t); void autofs_free_ino(struct autofs_info *); /* Expiration */ int is_autofs_dentry(struct dentry *); int autofs_expire_wait(const struct path *path, int rcu_walk); int autofs_expire_run(struct super_block *, struct vfsmount *, struct autofs_sb_info *, struct autofs_packet_expire __user *); int autofs_do_expire_multi(struct super_block *sb, struct vfsmount *mnt, struct autofs_sb_info *sbi, unsigned int how); int autofs_expire_multi(struct super_block *, struct vfsmount *, struct autofs_sb_info *, int __user *); /* Device node initialization */ int autofs_dev_ioctl_init(void); void autofs_dev_ioctl_exit(void); /* Operations structures */ extern const struct inode_operations autofs_symlink_inode_operations; extern const struct inode_operations autofs_dir_inode_operations; extern const struct file_operations autofs_dir_operations; extern const struct file_operations autofs_root_operations; extern const struct dentry_operations autofs_dentry_operations; /* VFS automount flags management functions */ static inline void __managed_dentry_set_managed(struct dentry *dentry) { dentry->d_flags |= (DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT); } static inline void managed_dentry_set_managed(struct dentry *dentry) { spin_lock(&dentry->d_lock); __managed_dentry_set_managed(dentry); spin_unlock(&dentry->d_lock); } static inline void __managed_dentry_clear_managed(struct dentry *dentry) { dentry->d_flags &= ~(DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT); } static inline void managed_dentry_clear_managed(struct dentry *dentry) { spin_lock(&dentry->d_lock); __managed_dentry_clear_managed(dentry); spin_unlock(&dentry->d_lock); } /* Initializing function */ int autofs_fill_super(struct super_block *, void *, int); struct autofs_info *autofs_new_ino(struct autofs_sb_info *); void autofs_clean_ino(struct autofs_info *); static inline int autofs_prepare_pipe(struct file *pipe) { if (!(pipe->f_mode & FMODE_CAN_WRITE)) return -EINVAL; if (!S_ISFIFO(file_inode(pipe)->i_mode)) return -EINVAL; /* We want a packet pipe */ pipe->f_flags |= O_DIRECT; /* We don't expect -EAGAIN */ pipe->f_flags &= ~O_NONBLOCK; return 0; } /* Queue management functions */ int autofs_wait(struct autofs_sb_info *, const struct path *, enum autofs_notify); int autofs_wait_release(struct autofs_sb_info *, autofs_wqt_t, int); void autofs_catatonic_mode(struct autofs_sb_info *); static inline u32 autofs_get_dev(struct autofs_sb_info *sbi) { return new_encode_dev(sbi->sb->s_dev); } static inline u64 autofs_get_ino(struct autofs_sb_info *sbi) { return d_inode(sbi->sb->s_root)->i_ino; } static inline void __autofs_add_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { if (list_empty(&ino->expiring)) list_add(&ino->expiring, &sbi->expiring_list); } } static inline void autofs_add_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { spin_lock(&sbi->lookup_lock); if (list_empty(&ino->expiring)) list_add(&ino->expiring, &sbi->expiring_list); spin_unlock(&sbi->lookup_lock); } } static inline void autofs_del_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { spin_lock(&sbi->lookup_lock); if (!list_empty(&ino->expiring)) list_del_init(&ino->expiring); spin_unlock(&sbi->lookup_lock); } } void autofs_kill_sb(struct super_block *);
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Checksumming functions for IP, TCP, UDP and so on * * Authors: Jorge Cwik, <jorge@laser.satlink.net> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Borrows very liberally from tcp.c and ip.c, see those * files for more names. */ #ifndef _CHECKSUM_H #define _CHECKSUM_H #include <linux/errno.h> #include <asm/types.h> #include <asm/byteorder.h> #include <linux/uaccess.h> #include <asm/checksum.h> #ifndef _HAVE_ARCH_COPY_AND_CSUM_FROM_USER static inline __wsum csum_and_copy_from_user (const void __user *src, void *dst, int len) { if (copy_from_user(dst, src, len)) return 0; return csum_partial(dst, len, ~0U); } #endif #ifndef HAVE_CSUM_COPY_USER static __inline__ __wsum csum_and_copy_to_user (const void *src, void __user *dst, int len) { __wsum sum = csum_partial(src, len, ~0U); if (copy_to_user(dst, src, len) == 0) return sum; return 0; } #endif #ifndef _HAVE_ARCH_CSUM_AND_COPY static inline __wsum csum_partial_copy_nocheck(const void *src, void *dst, int len) { memcpy(dst, src, len); return csum_partial(dst, len, 0); } #endif #ifndef HAVE_ARCH_CSUM_ADD static inline __wsum csum_add(__wsum csum, __wsum addend) { u32 res = (__force u32)csum; res += (__force u32)addend; return (__force __wsum)(res + (res < (__force u32)addend)); } #endif static inline __wsum csum_sub(__wsum csum, __wsum addend) { return csum_add(csum, ~addend); } static inline __sum16 csum16_add(__sum16 csum, __be16 addend) { u16 res = (__force u16)csum; res += (__force u16)addend; return (__force __sum16)(res + (res < (__force u16)addend)); } static inline __sum16 csum16_sub(__sum16 csum, __be16 addend) { return csum16_add(csum, ~addend); } static inline __wsum csum_block_add(__wsum csum, __wsum csum2, int offset) { u32 sum = (__force u32)csum2; /* rotate sum to align it with a 16b boundary */ if (offset & 1) sum = ror32(sum, 8); return csum_add(csum, (__force __wsum)sum); } static inline __wsum csum_block_add_ext(__wsum csum, __wsum csum2, int offset, int len) { return csum_block_add(csum, csum2, offset); } static inline __wsum csum_block_sub(__wsum csum, __wsum csum2, int offset) { return csum_block_add(csum, ~csum2, offset); } static inline __wsum csum_unfold(__sum16 n) { return (__force __wsum)n; } static inline __wsum csum_partial_ext(const void *buff, int len, __wsum sum) { return csum_partial(buff, len, sum); } #define CSUM_MANGLED_0 ((__force __sum16)0xffff) static inline void csum_replace_by_diff(__sum16 *sum, __wsum diff) { *sum = csum_fold(csum_add(diff, ~csum_unfold(*sum))); } static inline void csum_replace4(__sum16 *sum, __be32 from, __be32 to) { __wsum tmp = csum_sub(~csum_unfold(*sum), (__force __wsum)from); *sum = csum_fold(csum_add(tmp, (__force __wsum)to)); } /* Implements RFC 1624 (Incremental Internet Checksum) * 3. Discussion states : * HC' = ~(~HC + ~m + m') * m : old value of a 16bit field * m' : new value of a 16bit field */ static inline void csum_replace2(__sum16 *sum, __be16 old, __be16 new) { *sum = ~csum16_add(csum16_sub(~(*sum), old), new); } struct sk_buff; void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb, __be32 from, __be32 to, bool pseudohdr); void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb, const __be32 *from, const __be32 *to, bool pseudohdr); void inet_proto_csum_replace_by_diff(__sum16 *sum, struct sk_buff *skb, __wsum diff, bool pseudohdr); static inline void inet_proto_csum_replace2(__sum16 *sum, struct sk_buff *skb, __be16 from, __be16 to, bool pseudohdr) { inet_proto_csum_replace4(sum, skb, (__force __be32)from, (__force __be32)to, pseudohdr); } static inline __wsum remcsum_adjust(void *ptr, __wsum csum, int start, int offset) { __sum16 *psum = (__sum16 *)(ptr + offset); __wsum delta; /* Subtract out checksum up to start */ csum = csum_sub(csum, csum_partial(ptr, start, 0)); /* Set derived checksum in packet */ delta = csum_sub((__force __wsum)csum_fold(csum), (__force __wsum)*psum); *psum = csum_fold(csum); return delta; } static inline void remcsum_unadjust(__sum16 *psum, __wsum delta) { *psum = csum_fold(csum_sub(delta, (__force __wsum)*psum)); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM msr #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE msr-trace #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH asm/ #if !defined(_TRACE_MSR_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MSR_H #include <linux/tracepoint.h> /* * Tracing for x86 model specific registers. Directly maps to the * RDMSR/WRMSR instructions. */ DECLARE_EVENT_CLASS(msr_trace_class, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed), TP_STRUCT__entry( __field( unsigned, msr ) __field( u64, val ) __field( int, failed ) ), TP_fast_assign( __entry->msr = msr; __entry->val = val; __entry->failed = failed; ), TP_printk("%x, value %llx%s", __entry->msr, __entry->val, __entry->failed ? " #GP" : "") ); DEFINE_EVENT(msr_trace_class, read_msr, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed) ); DEFINE_EVENT(msr_trace_class, write_msr, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed) ); DEFINE_EVENT(msr_trace_class, rdpmc, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed) ); #endif /* _TRACE_MSR_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * ROUTE - implementation of the IP router. * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Alan Cox, <gw4pts@gw4pts.ampr.org> * Linus Torvalds, <Linus.Torvalds@helsinki.fi> * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * * Fixes: * Alan Cox : Verify area fixes. * Alan Cox : cli() protects routing changes * Rui Oliveira : ICMP routing table updates * (rco@di.uminho.pt) Routing table insertion and update * Linus Torvalds : Rewrote bits to be sensible * Alan Cox : Added BSD route gw semantics * Alan Cox : Super /proc >4K * Alan Cox : MTU in route table * Alan Cox : MSS actually. Also added the window * clamper. * Sam Lantinga : Fixed route matching in rt_del() * Alan Cox : Routing cache support. * Alan Cox : Removed compatibility cruft. * Alan Cox : RTF_REJECT support. * Alan Cox : TCP irtt support. * Jonathan Naylor : Added Metric support. * Miquel van Smoorenburg : BSD API fixes. * Miquel van Smoorenburg : Metrics. * Alan Cox : Use __u32 properly * Alan Cox : Aligned routing errors more closely with BSD * our system is still very different. * Alan Cox : Faster /proc handling * Alexey Kuznetsov : Massive rework to support tree based routing, * routing caches and better behaviour. * * Olaf Erb : irtt wasn't being copied right. * Bjorn Ekwall : Kerneld route support. * Alan Cox : Multicast fixed (I hope) * Pavel Krauz : Limited broadcast fixed * Mike McLagan : Routing by source * Alexey Kuznetsov : End of old history. Split to fib.c and * route.c and rewritten from scratch. * Andi Kleen : Load-limit warning messages. * Vitaly E. Lavrov : Transparent proxy revived after year coma. * Vitaly E. Lavrov : Race condition in ip_route_input_slow. * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow. * Vladimir V. Ivanov : IP rule info (flowid) is really useful. * Marc Boucher : routing by fwmark * Robert Olsson : Added rt_cache statistics * Arnaldo C. Melo : Convert proc stuff to seq_file * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes. * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect * Ilia Sotnikov : Removed TOS from hash calculations */ #define pr_fmt(fmt) "IPv4: " fmt #include <linux/module.h> #include <linux/uaccess.h> #include <linux/bitops.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/memblock.h> #include <linux/string.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/errno.h> #include <linux/in.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/proc_fs.h> #include <linux/init.h> #include <linux/skbuff.h> #include <linux/inetdevice.h> #include <linux/igmp.h> #include <linux/pkt_sched.h> #include <linux/mroute.h> #include <linux/netfilter_ipv4.h> #include <linux/random.h> #include <linux/rcupdate.h> #include <linux/times.h> #include <linux/slab.h> #include <linux/jhash.h> #include <net/dst.h> #include <net/dst_metadata.h> #include <net/net_namespace.h> #include <net/protocol.h> #include <net/ip.h> #include <net/route.h> #include <net/inetpeer.h> #include <net/sock.h> #include <net/ip_fib.h> #include <net/nexthop.h> #include <net/arp.h> #include <net/tcp.h> #include <net/icmp.h> #include <net/xfrm.h> #include <net/lwtunnel.h> #include <net/netevent.h> #include <net/rtnetlink.h> #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #include <net/secure_seq.h> #include <net/ip_tunnels.h> #include <net/l3mdev.h> #include "fib_lookup.h" #define RT_FL_TOS(oldflp4) \ ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK)) #define RT_GC_TIMEOUT (300*HZ) static int ip_rt_max_size; static int ip_rt_redirect_number __read_mostly = 9; static int ip_rt_redirect_load __read_mostly = HZ / 50; static int ip_rt_redirect_silence __read_mostly = ((HZ / 50) << (9 + 1)); static int ip_rt_error_cost __read_mostly = HZ; static int ip_rt_error_burst __read_mostly = 5 * HZ; static int ip_rt_mtu_expires __read_mostly = 10 * 60 * HZ; static u32 ip_rt_min_pmtu __read_mostly = 512 + 20 + 20; static int ip_rt_min_advmss __read_mostly = 256; static int ip_rt_gc_timeout __read_mostly = RT_GC_TIMEOUT; /* * Interface to generic destination cache. */ static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie); static unsigned int ipv4_default_advmss(const struct dst_entry *dst); static unsigned int ipv4_mtu(const struct dst_entry *dst); static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst); static void ipv4_link_failure(struct sk_buff *skb); static void ip_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb, u32 mtu, bool confirm_neigh); static void ip_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb); static void ipv4_dst_destroy(struct dst_entry *dst); static u32 *ipv4_cow_metrics(struct dst_entry *dst, unsigned long old) { WARN_ON(1); return NULL; } static struct neighbour *ipv4_neigh_lookup(const struct dst_entry *dst, struct sk_buff *skb, const void *daddr); static void ipv4_confirm_neigh(const struct dst_entry *dst, const void *daddr); static struct dst_ops ipv4_dst_ops = { .family = AF_INET, .check = ipv4_dst_check, .default_advmss = ipv4_default_advmss, .mtu = ipv4_mtu, .cow_metrics = ipv4_cow_metrics, .destroy = ipv4_dst_destroy, .negative_advice = ipv4_negative_advice, .link_failure = ipv4_link_failure, .update_pmtu = ip_rt_update_pmtu, .redirect = ip_do_redirect, .local_out = __ip_local_out, .neigh_lookup = ipv4_neigh_lookup, .confirm_neigh = ipv4_confirm_neigh, }; #define ECN_OR_COST(class) TC_PRIO_##class const __u8 ip_tos2prio[16] = { TC_PRIO_BESTEFFORT, ECN_OR_COST(BESTEFFORT), TC_PRIO_BESTEFFORT, ECN_OR_COST(BESTEFFORT), TC_PRIO_BULK, ECN_OR_COST(BULK), TC_PRIO_BULK, ECN_OR_COST(BULK), TC_PRIO_INTERACTIVE, ECN_OR_COST(INTERACTIVE), TC_PRIO_INTERACTIVE, ECN_OR_COST(INTERACTIVE), TC_PRIO_INTERACTIVE_BULK, ECN_OR_COST(INTERACTIVE_BULK), TC_PRIO_INTERACTIVE_BULK, ECN_OR_COST(INTERACTIVE_BULK) }; EXPORT_SYMBOL(ip_tos2prio); static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat); #define RT_CACHE_STAT_INC(field) raw_cpu_inc(rt_cache_stat.field) #ifdef CONFIG_PROC_FS static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos) { if (*pos) return NULL; return SEQ_START_TOKEN; } static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos) { ++*pos; return NULL; } static void rt_cache_seq_stop(struct seq_file *seq, void *v) { } static int rt_cache_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t" "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t" "HHUptod\tSpecDst"); return 0; } static const struct seq_operations rt_cache_seq_ops = { .start = rt_cache_seq_start, .next = rt_cache_seq_next, .stop = rt_cache_seq_stop, .show = rt_cache_seq_show, }; static int rt_cache_seq_open(struct inode *inode, struct file *file) { return seq_open(file, &rt_cache_seq_ops); } static const struct proc_ops rt_cache_proc_ops = { .proc_open = rt_cache_seq_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = seq_release, }; static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos) { int cpu; if (*pos == 0) return SEQ_START_TOKEN; for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { if (!cpu_possible(cpu)) continue; *pos = cpu+1; return &per_cpu(rt_cache_stat, cpu); } return NULL; } static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos) { int cpu; for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { if (!cpu_possible(cpu)) continue; *pos = cpu+1; return &per_cpu(rt_cache_stat, cpu); } (*pos)++; return NULL; } static void rt_cpu_seq_stop(struct seq_file *seq, void *v) { } static int rt_cpu_seq_show(struct seq_file *seq, void *v) { struct rt_cache_stat *st = v; if (v == SEQ_START_TOKEN) { seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n"); return 0; } seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x " " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n", dst_entries_get_slow(&ipv4_dst_ops), 0, /* st->in_hit */ st->in_slow_tot, st->in_slow_mc, st->in_no_route, st->in_brd, st->in_martian_dst, st->in_martian_src, 0, /* st->out_hit */ st->out_slow_tot, st->out_slow_mc, 0, /* st->gc_total */ 0, /* st->gc_ignored */ 0, /* st->gc_goal_miss */ 0, /* st->gc_dst_overflow */ 0, /* st->in_hlist_search */ 0 /* st->out_hlist_search */ ); return 0; } static const struct seq_operations rt_cpu_seq_ops = { .start = rt_cpu_seq_start, .next = rt_cpu_seq_next, .stop = rt_cpu_seq_stop, .show = rt_cpu_seq_show, }; static int rt_cpu_seq_open(struct inode *inode, struct file *file) { return seq_open(file, &rt_cpu_seq_ops); } static const struct proc_ops rt_cpu_proc_ops = { .proc_open = rt_cpu_seq_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = seq_release, }; #ifdef CONFIG_IP_ROUTE_CLASSID static int rt_acct_proc_show(struct seq_file *m, void *v) { struct ip_rt_acct *dst, *src; unsigned int i, j; dst = kcalloc(256, sizeof(struct ip_rt_acct), GFP_KERNEL); if (!dst) return -ENOMEM; for_each_possible_cpu(i) { src = (struct ip_rt_acct *)per_cpu_ptr(ip_rt_acct, i); for (j = 0; j < 256; j++) { dst[j].o_bytes += src[j].o_bytes; dst[j].o_packets += src[j].o_packets; dst[j].i_bytes += src[j].i_bytes; dst[j].i_packets += src[j].i_packets; } } seq_write(m, dst, 256 * sizeof(struct ip_rt_acct)); kfree(dst); return 0; } #endif static int __net_init ip_rt_do_proc_init(struct net *net) { struct proc_dir_entry *pde; pde = proc_create("rt_cache", 0444, net->proc_net, &rt_cache_proc_ops); if (!pde) goto err1; pde = proc_create("rt_cache", 0444, net->proc_net_stat, &rt_cpu_proc_ops); if (!pde) goto err2; #ifdef CONFIG_IP_ROUTE_CLASSID pde = proc_create_single("rt_acct", 0, net->proc_net, rt_acct_proc_show); if (!pde) goto err3; #endif return 0; #ifdef CONFIG_IP_ROUTE_CLASSID err3: remove_proc_entry("rt_cache", net->proc_net_stat); #endif err2: remove_proc_entry("rt_cache", net->proc_net); err1: return -ENOMEM; } static void __net_exit ip_rt_do_proc_exit(struct net *net) { remove_proc_entry("rt_cache", net->proc_net_stat); remove_proc_entry("rt_cache", net->proc_net); #ifdef CONFIG_IP_ROUTE_CLASSID remove_proc_entry("rt_acct", net->proc_net); #endif } static struct pernet_operations ip_rt_proc_ops __net_initdata = { .init = ip_rt_do_proc_init, .exit = ip_rt_do_proc_exit, }; static int __init ip_rt_proc_init(void) { return register_pernet_subsys(&ip_rt_proc_ops); } #else static inline int ip_rt_proc_init(void) { return 0; } #endif /* CONFIG_PROC_FS */ static inline bool rt_is_expired(const struct rtable *rth) { return rth->rt_genid != rt_genid_ipv4(dev_net(rth->dst.dev)); } void rt_cache_flush(struct net *net) { rt_genid_bump_ipv4(net); } static struct neighbour *ipv4_neigh_lookup(const struct dst_entry *dst, struct sk_buff *skb, const void *daddr) { const struct rtable *rt = container_of(dst, struct rtable, dst); struct net_device *dev = dst->dev; struct neighbour *n; rcu_read_lock_bh(); if (likely(rt->rt_gw_family == AF_INET)) { n = ip_neigh_gw4(dev, rt->rt_gw4); } else if (rt->rt_gw_family == AF_INET6) { n = ip_neigh_gw6(dev, &rt->rt_gw6); } else { __be32 pkey; pkey = skb ? ip_hdr(skb)->daddr : *((__be32 *) daddr); n = ip_neigh_gw4(dev, pkey); } if (!IS_ERR(n) && !refcount_inc_not_zero(&n->refcnt)) n = NULL; rcu_read_unlock_bh(); return n; } static void ipv4_confirm_neigh(const struct dst_entry *dst, const void *daddr) { const struct rtable *rt = container_of(dst, struct rtable, dst); struct net_device *dev = dst->dev; const __be32 *pkey = daddr; if (rt->rt_gw_family == AF_INET) { pkey = (const __be32 *)&rt->rt_gw4; } else if (rt->rt_gw_family == AF_INET6) { return __ipv6_confirm_neigh_stub(dev, &rt->rt_gw6); } else if (!daddr || (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST | RTCF_LOCAL))) { return; } __ipv4_confirm_neigh(dev, *(__force u32 *)pkey); } /* Hash tables of size 2048..262144 depending on RAM size. * Each bucket uses 8 bytes. */ static u32 ip_idents_mask __read_mostly; static atomic_t *ip_idents __read_mostly; static u32 *ip_tstamps __read_mostly; /* In order to protect privacy, we add a perturbation to identifiers * if one generator is seldom used. This makes hard for an attacker * to infer how many packets were sent between two points in time. */ u32 ip_idents_reserve(u32 hash, int segs) { u32 bucket, old, now = (u32)jiffies; atomic_t *p_id; u32 *p_tstamp; u32 delta = 0; bucket = hash & ip_idents_mask; p_tstamp = ip_tstamps + bucket; p_id = ip_idents + bucket; old = READ_ONCE(*p_tstamp); if (old != now && cmpxchg(p_tstamp, old, now) == old) delta = prandom_u32_max(now - old); /* If UBSAN reports an error there, please make sure your compiler * supports -fno-strict-overflow before reporting it that was a bug * in UBSAN, and it has been fixed in GCC-8. */ return atomic_add_return(segs + delta, p_id) - segs; } EXPORT_SYMBOL(ip_idents_reserve); void __ip_select_ident(struct net *net, struct iphdr *iph, int segs) { u32 hash, id; /* Note the following code is not safe, but this is okay. */ if (unlikely(siphash_key_is_zero(&net->ipv4.ip_id_key))) get_random_bytes(&net->ipv4.ip_id_key, sizeof(net->ipv4.ip_id_key)); hash = siphash_3u32((__force u32)iph->daddr, (__force u32)iph->saddr, iph->protocol, &net->ipv4.ip_id_key); id = ip_idents_reserve(hash, segs); iph->id = htons(id); } EXPORT_SYMBOL(__ip_select_ident); static void __build_flow_key(const struct net *net, struct flowi4 *fl4, const struct sock *sk, const struct iphdr *iph, int oif, u8 tos, u8 prot, u32 mark, int flow_flags) { if (sk) { const struct inet_sock *inet = inet_sk(sk); oif = sk->sk_bound_dev_if; mark = sk->sk_mark; tos = RT_CONN_FLAGS(sk); prot = inet->hdrincl ? IPPROTO_RAW : sk->sk_protocol; } flowi4_init_output(fl4, oif, mark, tos, RT_SCOPE_UNIVERSE, prot, flow_flags, iph->daddr, iph->saddr, 0, 0, sock_net_uid(net, sk)); } static void build_skb_flow_key(struct flowi4 *fl4, const struct sk_buff *skb, const struct sock *sk) { const struct net *net = dev_net(skb->dev); const struct iphdr *iph = ip_hdr(skb); int oif = skb->dev->ifindex; u8 tos = RT_TOS(iph->tos); u8 prot = iph->protocol; u32 mark = skb->mark; __build_flow_key(net, fl4, sk, iph, oif, tos, prot, mark, 0); } static void build_sk_flow_key(struct flowi4 *fl4, const struct sock *sk) { const struct inet_sock *inet = inet_sk(sk); const struct ip_options_rcu *inet_opt; __be32 daddr = inet->inet_daddr; rcu_read_lock(); inet_opt = rcu_dereference(inet->inet_opt); if (inet_opt && inet_opt->opt.srr) daddr = inet_opt->opt.faddr; flowi4_init_output(fl4, sk->sk_bound_dev_if, sk->sk_mark, RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, inet->hdrincl ? IPPROTO_RAW : sk->sk_protocol, inet_sk_flowi_flags(sk), daddr, inet->inet_saddr, 0, 0, sk->sk_uid); rcu_read_unlock(); } static void ip_rt_build_flow_key(struct flowi4 *fl4, const struct sock *sk, const struct sk_buff *skb) { if (skb) build_skb_flow_key(fl4, skb, sk); else build_sk_flow_key(fl4, sk); } static DEFINE_SPINLOCK(fnhe_lock); static void fnhe_flush_routes(struct fib_nh_exception *fnhe) { struct rtable *rt; rt = rcu_dereference(fnhe->fnhe_rth_input); if (rt) { RCU_INIT_POINTER(fnhe->fnhe_rth_input, NULL); dst_dev_put(&rt->dst); dst_release(&rt->dst); } rt = rcu_dereference(fnhe->fnhe_rth_output); if (rt) { RCU_INIT_POINTER(fnhe->fnhe_rth_output, NULL); dst_dev_put(&rt->dst); dst_release(&rt->dst); } } static void fnhe_remove_oldest(struct fnhe_hash_bucket *hash) { struct fib_nh_exception __rcu **fnhe_p, **oldest_p; struct fib_nh_exception *fnhe, *oldest = NULL; for (fnhe_p = &hash->chain; ; fnhe_p = &fnhe->fnhe_next) { fnhe = rcu_dereference_protected(*fnhe_p, lockdep_is_held(&fnhe_lock)); if (!fnhe) break; if (!oldest || time_before(fnhe->fnhe_stamp, oldest->fnhe_stamp)) { oldest = fnhe; oldest_p = fnhe_p; } } fnhe_flush_routes(oldest); *oldest_p = oldest->fnhe_next; kfree_rcu(oldest, rcu); } static u32 fnhe_hashfun(__be32 daddr) { static siphash_key_t fnhe_hash_key __read_mostly; u64 hval; net_get_random_once(&fnhe_hash_key, sizeof(fnhe_hash_key)); hval = siphash_1u32((__force u32)daddr, &fnhe_hash_key); return hash_64(hval, FNHE_HASH_SHIFT); } static void fill_route_from_fnhe(struct rtable *rt, struct fib_nh_exception *fnhe) { rt->rt_pmtu = fnhe->fnhe_pmtu; rt->rt_mtu_locked = fnhe->fnhe_mtu_locked; rt->dst.expires = fnhe->fnhe_expires; if (fnhe->fnhe_gw) { rt->rt_flags |= RTCF_REDIRECTED; rt->rt_uses_gateway = 1; rt->rt_gw_family = AF_INET; rt->rt_gw4 = fnhe->fnhe_gw; } } static void update_or_create_fnhe(struct fib_nh_common *nhc, __be32 daddr, __be32 gw, u32 pmtu, bool lock, unsigned long expires) { struct fnhe_hash_bucket *hash; struct fib_nh_exception *fnhe; struct rtable *rt; u32 genid, hval; unsigned int i; int depth; genid = fnhe_genid(dev_net(nhc->nhc_dev)); hval = fnhe_hashfun(daddr); spin_lock_bh(&fnhe_lock); hash = rcu_dereference(nhc->nhc_exceptions); if (!hash) { hash = kcalloc(FNHE_HASH_SIZE, sizeof(*hash), GFP_ATOMIC); if (!hash) goto out_unlock; rcu_assign_pointer(nhc->nhc_exceptions, hash); } hash += hval; depth = 0; for (fnhe = rcu_dereference(hash->chain); fnhe; fnhe = rcu_dereference(fnhe->fnhe_next)) { if (fnhe->fnhe_daddr == daddr) break; depth++; } if (fnhe) { if (fnhe->fnhe_genid != genid) fnhe->fnhe_genid = genid; if (gw) fnhe->fnhe_gw = gw; if (pmtu) { fnhe->fnhe_pmtu = pmtu; fnhe->fnhe_mtu_locked = lock; } fnhe->fnhe_expires = max(1UL, expires); /* Update all cached dsts too */ rt = rcu_dereference(fnhe->fnhe_rth_input); if (rt) fill_route_from_fnhe(rt, fnhe); rt = rcu_dereference(fnhe->fnhe_rth_output); if (rt) fill_route_from_fnhe(rt, fnhe); } else { /* Randomize max depth to avoid some side channels attacks. */ int max_depth = FNHE_RECLAIM_DEPTH + prandom_u32_max(FNHE_RECLAIM_DEPTH); while (depth > max_depth) { fnhe_remove_oldest(hash); depth--; } fnhe = kzalloc(sizeof(*fnhe), GFP_ATOMIC); if (!fnhe) goto out_unlock; fnhe->fnhe_next = hash->chain; fnhe->fnhe_genid = genid; fnhe->fnhe_daddr = daddr; fnhe->fnhe_gw = gw; fnhe->fnhe_pmtu = pmtu; fnhe->fnhe_mtu_locked = lock; fnhe->fnhe_expires = max(1UL, expires); rcu_assign_pointer(hash->chain, fnhe); /* Exception created; mark the cached routes for the nexthop * stale, so anyone caching it rechecks if this exception * applies to them. */ rt = rcu_dereference(nhc->nhc_rth_input); if (rt) rt->dst.obsolete = DST_OBSOLETE_KILL; for_each_possible_cpu(i) { struct rtable __rcu **prt; prt = per_cpu_ptr(nhc->nhc_pcpu_rth_output, i); rt = rcu_dereference(*prt); if (rt) rt->dst.obsolete = DST_OBSOLETE_KILL; } } fnhe->fnhe_stamp = jiffies; out_unlock: spin_unlock_bh(&fnhe_lock); } static void __ip_do_redirect(struct rtable *rt, struct sk_buff *skb, struct flowi4 *fl4, bool kill_route) { __be32 new_gw = icmp_hdr(skb)->un.gateway; __be32 old_gw = ip_hdr(skb)->saddr; struct net_device *dev = skb->dev; struct in_device *in_dev; struct fib_result res; struct neighbour *n; struct net *net; switch (icmp_hdr(skb)->code & 7) { case ICMP_REDIR_NET: case ICMP_REDIR_NETTOS: case ICMP_REDIR_HOST: case ICMP_REDIR_HOSTTOS: break; default: return; } if (rt->rt_gw_family != AF_INET || rt->rt_gw4 != old_gw) return; in_dev = __in_dev_get_rcu(dev); if (!in_dev) return; net = dev_net(dev); if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev) || ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw) || ipv4_is_zeronet(new_gw)) goto reject_redirect; if (!IN_DEV_SHARED_MEDIA(in_dev)) { if (!inet_addr_onlink(in_dev, new_gw, old_gw)) goto reject_redirect; if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev)) goto reject_redirect; } else { if (inet_addr_type(net, new_gw) != RTN_UNICAST) goto reject_redirect; } n = __ipv4_neigh_lookup(rt->dst.dev, new_gw); if (!n) n = neigh_create(&arp_tbl, &new_gw, rt->dst.dev); if (!IS_ERR(n)) { if (!(n->nud_state & NUD_VALID)) { neigh_event_send(n, NULL); } else { if (fib_lookup(net, fl4, &res, 0) == 0) { struct fib_nh_common *nhc; fib_select_path(net, &res, fl4, skb); nhc = FIB_RES_NHC(res); update_or_create_fnhe(nhc, fl4->daddr, new_gw, 0, false, jiffies + ip_rt_gc_timeout); } if (kill_route) rt->dst.obsolete = DST_OBSOLETE_KILL; call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, n); } neigh_release(n); } return; reject_redirect: #ifdef CONFIG_IP_ROUTE_VERBOSE if (IN_DEV_LOG_MARTIANS(in_dev)) { const struct iphdr *iph = (const struct iphdr *) skb->data; __be32 daddr = iph->daddr; __be32 saddr = iph->saddr; net_info_ratelimited("Redirect from %pI4 on %s about %pI4 ignored\n" " Advised path = %pI4 -> %pI4\n", &old_gw, dev->name, &new_gw, &saddr, &daddr); } #endif ; } static void ip_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb) { struct rtable *rt; struct flowi4 fl4; const struct iphdr *iph = (const struct iphdr *) skb->data; struct net *net = dev_net(skb->dev); int oif = skb->dev->ifindex; u8 tos = RT_TOS(iph->tos); u8 prot = iph->protocol; u32 mark = skb->mark; rt = (struct rtable *) dst; __build_flow_key(net, &fl4, sk, iph, oif, tos, prot, mark, 0); __ip_do_redirect(rt, skb, &fl4, true); } static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst) { struct rtable *rt = (struct rtable *)dst; struct dst_entry *ret = dst; if (rt) { if (dst->obsolete > 0) { ip_rt_put(rt); ret = NULL; } else if ((rt->rt_flags & RTCF_REDIRECTED) || rt->dst.expires) { ip_rt_put(rt); ret = NULL; } } return ret; } /* * Algorithm: * 1. The first ip_rt_redirect_number redirects are sent * with exponential backoff, then we stop sending them at all, * assuming that the host ignores our redirects. * 2. If we did not see packets requiring redirects * during ip_rt_redirect_silence, we assume that the host * forgot redirected route and start to send redirects again. * * This algorithm is much cheaper and more intelligent than dumb load limiting * in icmp.c. * * NOTE. Do not forget to inhibit load limiting for redirects (redundant) * and "frag. need" (breaks PMTU discovery) in icmp.c. */ void ip_rt_send_redirect(struct sk_buff *skb) { struct rtable *rt = skb_rtable(skb); struct in_device *in_dev; struct inet_peer *peer; struct net *net; int log_martians; int vif; rcu_read_lock(); in_dev = __in_dev_get_rcu(rt->dst.dev); if (!in_dev || !IN_DEV_TX_REDIRECTS(in_dev)) { rcu_read_unlock(); return; } log_martians = IN_DEV_LOG_MARTIANS(in_dev); vif = l3mdev_master_ifindex_rcu(rt->dst.dev); rcu_read_unlock(); net = dev_net(rt->dst.dev); peer = inet_getpeer_v4(net->ipv4.peers, ip_hdr(skb)->saddr, vif, 1); if (!peer) { icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt_nexthop(rt, ip_hdr(skb)->daddr)); return; } /* No redirected packets during ip_rt_redirect_silence; * reset the algorithm. */ if (time_after(jiffies, peer->rate_last + ip_rt_redirect_silence)) { peer->rate_tokens = 0; peer->n_redirects = 0; } /* Too many ignored redirects; do not send anything * set dst.rate_last to the last seen redirected packet. */ if (peer->n_redirects >= ip_rt_redirect_number) { peer->rate_last = jiffies; goto out_put_peer; } /* Check for load limit; set rate_last to the latest sent * redirect. */ if (peer->n_redirects == 0 || time_after(jiffies, (peer->rate_last + (ip_rt_redirect_load << peer->n_redirects)))) { __be32 gw = rt_nexthop(rt, ip_hdr(skb)->daddr); icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, gw); peer->rate_last = jiffies; ++peer->n_redirects; #ifdef CONFIG_IP_ROUTE_VERBOSE if (log_martians && peer->n_redirects == ip_rt_redirect_number) net_warn_ratelimited("host %pI4/if%d ignores redirects for %pI4 to %pI4\n", &ip_hdr(skb)->saddr, inet_iif(skb), &ip_hdr(skb)->daddr, &gw); #endif } out_put_peer: inet_putpeer(peer); } static int ip_error(struct sk_buff *skb) { struct rtable *rt = skb_rtable(skb); struct net_device *dev = skb->dev; struct in_device *in_dev; struct inet_peer *peer; unsigned long now; struct net *net; bool send; int code; if (netif_is_l3_master(skb->dev)) { dev = __dev_get_by_index(dev_net(skb->dev), IPCB(skb)->iif); if (!dev) goto out; } in_dev = __in_dev_get_rcu(dev); /* IP on this device is disabled. */ if (!in_dev) goto out; net = dev_net(rt->dst.dev); if (!IN_DEV_FORWARD(in_dev)) { switch (rt->dst.error) { case EHOSTUNREACH: __IP_INC_STATS(net, IPSTATS_MIB_INADDRERRORS); break; case ENETUNREACH: __IP_INC_STATS(net, IPSTATS_MIB_INNOROUTES); break; } goto out; } switch (rt->dst.error) { case EINVAL: default: goto out; case EHOSTUNREACH: code = ICMP_HOST_UNREACH; break; case ENETUNREACH: code = ICMP_NET_UNREACH; __IP_INC_STATS(net, IPSTATS_MIB_INNOROUTES); break; case EACCES: code = ICMP_PKT_FILTERED; break; } peer = inet_getpeer_v4(net->ipv4.peers, ip_hdr(skb)->saddr, l3mdev_master_ifindex(skb->dev), 1); send = true; if (peer) { now = jiffies; peer->rate_tokens += now - peer->rate_last; if (peer->rate_tokens > ip_rt_error_burst) peer->rate_tokens = ip_rt_error_burst; peer->rate_last = now; if (peer->rate_tokens >= ip_rt_error_cost) peer->rate_tokens -= ip_rt_error_cost; else send = false; inet_putpeer(peer); } if (send) icmp_send(skb, ICMP_DEST_UNREACH, code, 0); out: kfree_skb(skb); return 0; } static void __ip_rt_update_pmtu(struct rtable *rt, struct flowi4 *fl4, u32 mtu) { struct dst_entry *dst = &rt->dst; struct net *net = dev_net(dst->dev); struct fib_result res; bool lock = false; u32 old_mtu; if (ip_mtu_locked(dst)) return; old_mtu = ipv4_mtu(dst); if (old_mtu < mtu) return; if (mtu < ip_rt_min_pmtu) { lock = true; mtu = min(old_mtu, ip_rt_min_pmtu); } if (rt->rt_pmtu == mtu && !lock && time_before(jiffies, dst->expires - ip_rt_mtu_expires / 2)) return; rcu_read_lock(); if (fib_lookup(net, fl4, &res, 0) == 0) { struct fib_nh_common *nhc; fib_select_path(net, &res, fl4, NULL); nhc = FIB_RES_NHC(res); update_or_create_fnhe(nhc, fl4->daddr, 0, mtu, lock, jiffies + ip_rt_mtu_expires); } rcu_read_unlock(); } static void ip_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb, u32 mtu, bool confirm_neigh) { struct rtable *rt = (struct rtable *) dst; struct flowi4 fl4; ip_rt_build_flow_key(&fl4, sk, skb); /* Don't make lookup fail for bridged encapsulations */ if (skb && netif_is_any_bridge_port(skb->dev)) fl4.flowi4_oif = 0; __ip_rt_update_pmtu(rt, &fl4, mtu); } void ipv4_update_pmtu(struct sk_buff *skb, struct net *net, u32 mtu, int oif, u8 protocol) { const struct iphdr *iph = (const struct iphdr *)skb->data; struct flowi4 fl4; struct rtable *rt; u32 mark = IP4_REPLY_MARK(net, skb->mark); __build_flow_key(net, &fl4, NULL, iph, oif, RT_TOS(iph->tos), protocol, mark, 0); rt = __ip_route_output_key(net, &fl4); if (!IS_ERR(rt)) { __ip_rt_update_pmtu(rt, &fl4, mtu); ip_rt_put(rt); } } EXPORT_SYMBOL_GPL(ipv4_update_pmtu); static void __ipv4_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, u32 mtu) { const struct iphdr *iph = (const struct iphdr *)skb->data; struct flowi4 fl4; struct rtable *rt; __build_flow_key(sock_net(sk), &fl4, sk, iph, 0, 0, 0, 0, 0); if (!fl4.flowi4_mark) fl4.flowi4_mark = IP4_REPLY_MARK(sock_net(sk), skb->mark); rt = __ip_route_output_key(sock_net(sk), &fl4); if (!IS_ERR(rt)) { __ip_rt_update_pmtu(rt, &fl4, mtu); ip_rt_put(rt); } } void ipv4_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, u32 mtu) { const struct iphdr *iph = (const struct iphdr *)skb->data; struct flowi4 fl4; struct rtable *rt; struct dst_entry *odst = NULL; bool new = false; struct net *net = sock_net(sk); bh_lock_sock(sk); if (!ip_sk_accept_pmtu(sk)) goto out; odst = sk_dst_get(sk); if (sock_owned_by_user(sk) || !odst) { __ipv4_sk_update_pmtu(skb, sk, mtu); goto out; } __build_flow_key(net, &fl4, sk, iph, 0, 0, 0, 0, 0); rt = (struct rtable *)odst; if (odst->obsolete && !odst->ops->check(odst, 0)) { rt = ip_route_output_flow(sock_net(sk), &fl4, sk); if (IS_ERR(rt)) goto out; new = true; } __ip_rt_update_pmtu((struct rtable *)xfrm_dst_path(&rt->dst), &fl4, mtu); if (!dst_check(&rt->dst, 0)) { if (new) dst_release(&rt->dst); rt = ip_route_output_flow(sock_net(sk), &fl4, sk); if (IS_ERR(rt)) goto out; new = true; } if (new) sk_dst_set(sk, &rt->dst); out: bh_unlock_sock(sk); dst_release(odst); } EXPORT_SYMBOL_GPL(ipv4_sk_update_pmtu); void ipv4_redirect(struct sk_buff *skb, struct net *net, int oif, u8 protocol) { const struct iphdr *iph = (const struct iphdr *)skb->data; struct flowi4 fl4; struct rtable *rt; __build_flow_key(net, &fl4, NULL, iph, oif, RT_TOS(iph->tos), protocol, 0, 0); rt = __ip_route_output_key(net, &fl4); if (!IS_ERR(rt)) { __ip_do_redirect(rt, skb, &fl4, false); ip_rt_put(rt); } } EXPORT_SYMBOL_GPL(ipv4_redirect); void ipv4_sk_redirect(struct sk_buff *skb, struct sock *sk) { const struct iphdr *iph = (const struct iphdr *)skb->data; struct flowi4 fl4; struct rtable *rt; struct net *net = sock_net(sk); __build_flow_key(net, &fl4, sk, iph, 0, 0, 0, 0, 0); rt = __ip_route_output_key(net, &fl4); if (!IS_ERR(rt)) { __ip_do_redirect(rt, skb, &fl4, false); ip_rt_put(rt); } } EXPORT_SYMBOL_GPL(ipv4_sk_redirect); static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie) { struct rtable *rt = (struct rtable *) dst; /* All IPV4 dsts are created with ->obsolete set to the value * DST_OBSOLETE_FORCE_CHK which forces validation calls down * into this function always. * * When a PMTU/redirect information update invalidates a route, * this is indicated by setting obsolete to DST_OBSOLETE_KILL or * DST_OBSOLETE_DEAD. */ if (dst->obsolete != DST_OBSOLETE_FORCE_CHK || rt_is_expired(rt)) return NULL; return dst; } static void ipv4_send_dest_unreach(struct sk_buff *skb) { struct ip_options opt; int res; /* Recompile ip options since IPCB may not be valid anymore. * Also check we have a reasonable ipv4 header. */ if (!pskb_network_may_pull(skb, sizeof(struct iphdr)) || ip_hdr(skb)->version != 4 || ip_hdr(skb)->ihl < 5) return; memset(&opt, 0, sizeof(opt)); if (ip_hdr(skb)->ihl > 5) { if (!pskb_network_may_pull(skb, ip_hdr(skb)->ihl * 4)) return; opt.optlen = ip_hdr(skb)->ihl * 4 - sizeof(struct iphdr); rcu_read_lock(); res = __ip_options_compile(dev_net(skb->dev), &opt, skb, NULL); rcu_read_unlock(); if (res) return; } __icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0, &opt); } static void ipv4_link_failure(struct sk_buff *skb) { struct rtable *rt; ipv4_send_dest_unreach(skb); rt = skb_rtable(skb); if (rt) dst_set_expires(&rt->dst, 0); } static int ip_rt_bug(struct net *net, struct sock *sk, struct sk_buff *skb) { pr_debug("%s: %pI4 -> %pI4, %s\n", __func__, &ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr, skb->dev ? skb->dev->name : "?"); kfree_skb(skb); WARN_ON(1); return 0; } /* We do not cache source address of outgoing interface, because it is used only by IP RR, TS and SRR options, so that it out of fast path. BTW remember: "addr" is allowed to be not aligned in IP options! */ void ip_rt_get_source(u8 *addr, struct sk_buff *skb, struct rtable *rt) { __be32 src; if (rt_is_output_route(rt)) src = ip_hdr(skb)->saddr; else { struct fib_result res; struct iphdr *iph = ip_hdr(skb); struct flowi4 fl4 = { .daddr = iph->daddr, .saddr = iph->saddr, .flowi4_tos = RT_TOS(iph->tos), .flowi4_oif = rt->dst.dev->ifindex, .flowi4_iif = skb->dev->ifindex, .flowi4_mark = skb->mark, }; rcu_read_lock(); if (fib_lookup(dev_net(rt->dst.dev), &fl4, &res, 0) == 0) src = fib_result_prefsrc(dev_net(rt->dst.dev), &res); else src = inet_select_addr(rt->dst.dev, rt_nexthop(rt, iph->daddr), RT_SCOPE_UNIVERSE); rcu_read_unlock(); } memcpy(addr, &src, 4); } #ifdef CONFIG_IP_ROUTE_CLASSID static void set_class_tag(struct rtable *rt, u32 tag) { if (!(rt->dst.tclassid & 0xFFFF)) rt->dst.tclassid |= tag & 0xFFFF; if (!(rt->dst.tclassid & 0xFFFF0000)) rt->dst.tclassid |= tag & 0xFFFF0000; } #endif static unsigned int ipv4_default_advmss(const struct dst_entry *dst) { unsigned int header_size = sizeof(struct tcphdr) + sizeof(struct iphdr); unsigned int advmss = max_t(unsigned int, ipv4_mtu(dst) - header_size, ip_rt_min_advmss); return min(advmss, IPV4_MAX_PMTU - header_size); } static unsigned int ipv4_mtu(const struct dst_entry *dst) { const struct rtable *rt = (const struct rtable *)dst; unsigned int mtu = rt->rt_pmtu; if (!mtu || time_after_eq(jiffies, rt->dst.expires)) mtu = dst_metric_raw(dst, RTAX_MTU); if (mtu) goto out; mtu = READ_ONCE(dst->dev->mtu); if (unlikely(ip_mtu_locked(dst))) { if (rt->rt_uses_gateway && mtu > 576) mtu = 576; } out: mtu = min_t(unsigned int, mtu, IP_MAX_MTU); return mtu - lwtunnel_headroom(dst->lwtstate, mtu); } static void ip_del_fnhe(struct fib_nh_common *nhc, __be32 daddr) { struct fnhe_hash_bucket *hash; struct fib_nh_exception *fnhe, __rcu **fnhe_p; u32 hval = fnhe_hashfun(daddr); spin_lock_bh(&fnhe_lock); hash = rcu_dereference_protected(nhc->nhc_exceptions, lockdep_is_held(&fnhe_lock)); hash += hval; fnhe_p = &hash->chain; fnhe = rcu_dereference_protected(*fnhe_p, lockdep_is_held(&fnhe_lock)); while (fnhe) { if (fnhe->fnhe_daddr == daddr) { rcu_assign_pointer(*fnhe_p, rcu_dereference_protected( fnhe->fnhe_next, lockdep_is_held(&fnhe_lock))); /* set fnhe_daddr to 0 to ensure it won't bind with * new dsts in rt_bind_exception(). */ fnhe->fnhe_daddr = 0; fnhe_flush_routes(fnhe); kfree_rcu(fnhe, rcu); break; } fnhe_p = &fnhe->fnhe_next; fnhe = rcu_dereference_protected(fnhe->fnhe_next, lockdep_is_held(&fnhe_lock)); } spin_unlock_bh(&fnhe_lock); } static struct fib_nh_exception *find_exception(struct fib_nh_common *nhc, __be32 daddr) { struct fnhe_hash_bucket *hash = rcu_dereference(nhc->nhc_exceptions); struct fib_nh_exception *fnhe; u32 hval; if (!hash) return NULL; hval = fnhe_hashfun(daddr); for (fnhe = rcu_dereference(hash[hval].chain); fnhe; fnhe = rcu_dereference(fnhe->fnhe_next)) { if (fnhe->fnhe_daddr == daddr) { if (fnhe->fnhe_expires && time_after(jiffies, fnhe->fnhe_expires)) { ip_del_fnhe(nhc, daddr); break; } return fnhe; } } return NULL; } /* MTU selection: * 1. mtu on route is locked - use it * 2. mtu from nexthop exception * 3. mtu from egress device */ u32 ip_mtu_from_fib_result(struct fib_result *res, __be32 daddr) { struct fib_nh_common *nhc = res->nhc; struct net_device *dev = nhc->nhc_dev; struct fib_info *fi = res->fi; u32 mtu = 0; if (dev_net(dev)->ipv4.sysctl_ip_fwd_use_pmtu || fi->fib_metrics->metrics[RTAX_LOCK - 1] & (1 << RTAX_MTU)) mtu = fi->fib_mtu; if (likely(!mtu)) { struct fib_nh_exception *fnhe; fnhe = find_exception(nhc, daddr); if (fnhe && !time_after_eq(jiffies, fnhe->fnhe_expires)) mtu = fnhe->fnhe_pmtu; } if (likely(!mtu)) mtu = min(READ_ONCE(dev->mtu), IP_MAX_MTU); return mtu - lwtunnel_headroom(nhc->nhc_lwtstate, mtu); } static bool rt_bind_exception(struct rtable *rt, struct fib_nh_exception *fnhe, __be32 daddr, const bool do_cache) { bool ret = false; spin_lock_bh(&fnhe_lock); if (daddr == fnhe->fnhe_daddr) { struct rtable __rcu **porig; struct rtable *orig; int genid = fnhe_genid(dev_net(rt->dst.dev)); if (rt_is_input_route(rt)) porig = &fnhe->fnhe_rth_input; else porig = &fnhe->fnhe_rth_output; orig = rcu_dereference(*porig); if (fnhe->fnhe_genid != genid) { fnhe->fnhe_genid = genid; fnhe->fnhe_gw = 0; fnhe->fnhe_pmtu = 0; fnhe->fnhe_expires = 0; fnhe->fnhe_mtu_locked = false; fnhe_flush_routes(fnhe); orig = NULL; } fill_route_from_fnhe(rt, fnhe); if (!rt->rt_gw4) { rt->rt_gw4 = daddr; rt->rt_gw_family = AF_INET; } if (do_cache) { dst_hold(&rt->dst); rcu_assign_pointer(*porig, rt); if (orig) { dst_dev_put(&orig->dst); dst_release(&orig->dst); } ret = true; } fnhe->fnhe_stamp = jiffies; } spin_unlock_bh(&fnhe_lock); return ret; } static bool rt_cache_route(struct fib_nh_common *nhc, struct rtable *rt) { struct rtable *orig, *prev, **p; bool ret = true; if (rt_is_input_route(rt)) { p = (struct rtable **)&nhc->nhc_rth_input; } else { p = (struct rtable **)raw_cpu_ptr(nhc->nhc_pcpu_rth_output); } orig = *p; /* hold dst before doing cmpxchg() to avoid race condition * on this dst */ dst_hold(&rt->dst); prev = cmpxchg(p, orig, rt); if (prev == orig) { if (orig) { rt_add_uncached_list(orig); dst_release(&orig->dst); } } else { dst_release(&rt->dst); ret = false; } return ret; } struct uncached_list { spinlock_t lock; struct list_head head; }; static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt_uncached_list); void rt_add_uncached_list(struct rtable *rt) { struct uncached_list *ul = raw_cpu_ptr(&rt_uncached_list); rt->rt_uncached_list = ul; spin_lock_bh(&ul->lock); list_add_tail(&rt->rt_uncached, &ul->head); spin_unlock_bh(&ul->lock); } void rt_del_uncached_list(struct rtable *rt) { if (!list_empty(&rt->rt_uncached)) { struct uncached_list *ul = rt->rt_uncached_list; spin_lock_bh(&ul->lock); list_del(&rt->rt_uncached); spin_unlock_bh(&ul->lock); } } static void ipv4_dst_destroy(struct dst_entry *dst) { struct rtable *rt = (struct rtable *)dst; ip_dst_metrics_put(dst); rt_del_uncached_list(rt); } void rt_flush_dev(struct net_device *dev) { struct rtable *rt; int cpu; for_each_possible_cpu(cpu) { struct uncached_list *ul = &per_cpu(rt_uncached_list, cpu); spin_lock_bh(&ul->lock); list_for_each_entry(rt, &ul->head, rt_uncached) { if (rt->dst.dev != dev) continue; rt->dst.dev = blackhole_netdev; dev_hold(rt->dst.dev); dev_put(dev); } spin_unlock_bh(&ul->lock); } } static bool rt_cache_valid(const struct rtable *rt) { return rt && rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK && !rt_is_expired(rt); } static void rt_set_nexthop(struct rtable *rt, __be32 daddr, const struct fib_result *res, struct fib_nh_exception *fnhe, struct fib_info *fi, u16 type, u32 itag, const bool do_cache) { bool cached = false; if (fi) { struct fib_nh_common *nhc = FIB_RES_NHC(*res); if (nhc->nhc_gw_family && nhc->nhc_scope == RT_SCOPE_LINK) { rt->rt_uses_gateway = 1; rt->rt_gw_family = nhc->nhc_gw_family; /* only INET and INET6 are supported */ if (likely(nhc->nhc_gw_family == AF_INET)) rt->rt_gw4 = nhc->nhc_gw.ipv4; else rt->rt_gw6 = nhc->nhc_gw.ipv6; } ip_dst_init_metrics(&rt->dst, fi->fib_metrics); #ifdef CONFIG_IP_ROUTE_CLASSID if (nhc->nhc_family == AF_INET) { struct fib_nh *nh; nh = container_of(nhc, struct fib_nh, nh_common); rt->dst.tclassid = nh->nh_tclassid; } #endif rt->dst.lwtstate = lwtstate_get(nhc->nhc_lwtstate); if (unlikely(fnhe)) cached = rt_bind_exception(rt, fnhe, daddr, do_cache); else if (do_cache) cached = rt_cache_route(nhc, rt); if (unlikely(!cached)) { /* Routes we intend to cache in nexthop exception or * FIB nexthop have the DST_NOCACHE bit clear. * However, if we are unsuccessful at storing this * route into the cache we really need to set it. */ if (!rt->rt_gw4) { rt->rt_gw_family = AF_INET; rt->rt_gw4 = daddr; } rt_add_uncached_list(rt); } } else rt_add_uncached_list(rt); #ifdef CONFIG_IP_ROUTE_CLASSID #ifdef CONFIG_IP_MULTIPLE_TABLES set_class_tag(rt, res->tclassid); #endif set_class_tag(rt, itag); #endif } struct rtable *rt_dst_alloc(struct net_device *dev, unsigned int flags, u16 type, bool nopolicy, bool noxfrm) { struct rtable *rt; rt = dst_alloc(&ipv4_dst_ops, dev, 1, DST_OBSOLETE_FORCE_CHK, (nopolicy ? DST_NOPOLICY : 0) | (noxfrm ? DST_NOXFRM : 0)); if (rt) { rt->rt_genid = rt_genid_ipv4(dev_net(dev)); rt->rt_flags = flags; rt->rt_type = type; rt->rt_is_input = 0; rt->rt_iif = 0; rt->rt_pmtu = 0; rt->rt_mtu_locked = 0; rt->rt_uses_gateway = 0; rt->rt_gw_family = 0; rt->rt_gw4 = 0; INIT_LIST_HEAD(&rt->rt_uncached); rt->dst.output = ip_output; if (flags & RTCF_LOCAL) rt->dst.input = ip_local_deliver; } return rt; } EXPORT_SYMBOL(rt_dst_alloc); struct rtable *rt_dst_clone(struct net_device *dev, struct rtable *rt) { struct rtable *new_rt; new_rt = dst_alloc(&ipv4_dst_ops, dev, 1, DST_OBSOLETE_FORCE_CHK, rt->dst.flags); if (new_rt) { new_rt->rt_genid = rt_genid_ipv4(dev_net(dev)); new_rt->rt_flags = rt->rt_flags; new_rt->rt_type = rt->rt_type; new_rt->rt_is_input = rt->rt_is_input; new_rt->rt_iif = rt->rt_iif; new_rt->rt_pmtu = rt->rt_pmtu; new_rt->rt_mtu_locked = rt->rt_mtu_locked; new_rt->rt_gw_family = rt->rt_gw_family; if (rt->rt_gw_family == AF_INET) new_rt->rt_gw4 = rt->rt_gw4; else if (rt->rt_gw_family == AF_INET6) new_rt->rt_gw6 = rt->rt_gw6; INIT_LIST_HEAD(&new_rt->rt_uncached); new_rt->dst.input = rt->dst.input; new_rt->dst.output = rt->dst.output; new_rt->dst.error = rt->dst.error; new_rt->dst.lastuse = jiffies; new_rt->dst.lwtstate = lwtstate_get(rt->dst.lwtstate); } return new_rt; } EXPORT_SYMBOL(rt_dst_clone); /* called in rcu_read_lock() section */ int ip_mc_validate_source(struct sk_buff *skb, __be32 daddr, __be32 saddr, u8 tos, struct net_device *dev, struct in_device *in_dev, u32 *itag) { int err; /* Primary sanity checks. */ if (!in_dev) return -EINVAL; if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || skb->protocol != htons(ETH_P_IP)) return -EINVAL; if (ipv4_is_loopback(saddr) && !IN_DEV_ROUTE_LOCALNET(in_dev)) return -EINVAL; if (ipv4_is_zeronet(saddr)) { if (!ipv4_is_local_multicast(daddr) && ip_hdr(skb)->protocol != IPPROTO_IGMP) return -EINVAL; } else { err = fib_validate_source(skb, saddr, 0, tos, 0, dev, in_dev, itag); if (err < 0) return err; } return 0; } /* called in rcu_read_lock() section */ static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr, u8 tos, struct net_device *dev, int our) { struct in_device *in_dev = __in_dev_get_rcu(dev); unsigned int flags = RTCF_MULTICAST; struct rtable *rth; u32 itag = 0; int err; err = ip_mc_validate_source(skb, daddr, saddr, tos, dev, in_dev, &itag); if (err) return err; if (our) flags |= RTCF_LOCAL; rth = rt_dst_alloc(dev_net(dev)->loopback_dev, flags, RTN_MULTICAST, IN_DEV_CONF_GET(in_dev, NOPOLICY), false); if (!rth) return -ENOBUFS; #ifdef CONFIG_IP_ROUTE_CLASSID rth->dst.tclassid = itag; #endif rth->dst.output = ip_rt_bug; rth->rt_is_input= 1; #ifdef CONFIG_IP_MROUTE if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev)) rth->dst.input = ip_mr_input; #endif RT_CACHE_STAT_INC(in_slow_mc); skb_dst_set(skb, &rth->dst); return 0; } static void ip_handle_martian_source(struct net_device *dev, struct in_device *in_dev, struct sk_buff *skb, __be32 daddr, __be32 saddr) { RT_CACHE_STAT_INC(in_martian_src); #ifdef CONFIG_IP_ROUTE_VERBOSE if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) { /* * RFC1812 recommendation, if source is martian, * the only hint is MAC header. */ pr_warn("martian source %pI4 from %pI4, on dev %s\n", &daddr, &saddr, dev->name); if (dev->hard_header_len && skb_mac_header_was_set(skb)) { print_hex_dump(KERN_WARNING, "ll header: ", DUMP_PREFIX_OFFSET, 16, 1, skb_mac_header(skb), dev->hard_header_len, false); } } #endif } /* called in rcu_read_lock() section */ static int __mkroute_input(struct sk_buff *skb, const struct fib_result *res, struct in_device *in_dev, __be32 daddr, __be32 saddr, u32 tos) { struct fib_nh_common *nhc = FIB_RES_NHC(*res); struct net_device *dev = nhc->nhc_dev; struct fib_nh_exception *fnhe; struct rtable *rth; int err; struct in_device *out_dev; bool do_cache; u32 itag = 0; /* get a working reference to the output device */ out_dev = __in_dev_get_rcu(dev); if (!out_dev) { net_crit_ratelimited("Bug in ip_route_input_slow(). Please report.\n"); return -EINVAL; } err = fib_validate_source(skb, saddr, daddr, tos, FIB_RES_OIF(*res), in_dev->dev, in_dev, &itag); if (err < 0) { ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr, saddr); goto cleanup; } do_cache = res->fi && !itag; if (out_dev == in_dev && err && IN_DEV_TX_REDIRECTS(out_dev) && skb->protocol == htons(ETH_P_IP)) { __be32 gw; gw = nhc->nhc_gw_family == AF_INET ? nhc->nhc_gw.ipv4 : 0; if (IN_DEV_SHARED_MEDIA(out_dev) || inet_addr_onlink(out_dev, saddr, gw)) IPCB(skb)->flags |= IPSKB_DOREDIRECT; } if (skb->protocol != htons(ETH_P_IP)) { /* Not IP (i.e. ARP). Do not create route, if it is * invalid for proxy arp. DNAT routes are always valid. * * Proxy arp feature have been extended to allow, ARP * replies back to the same interface, to support * Private VLAN switch technologies. See arp.c. */ if (out_dev == in_dev && IN_DEV_PROXY_ARP_PVLAN(in_dev) == 0) { err = -EINVAL; goto cleanup; } } fnhe = find_exception(nhc, daddr); if (do_cache) { if (fnhe) rth = rcu_dereference(fnhe->fnhe_rth_input); else rth = rcu_dereference(nhc->nhc_rth_input); if (rt_cache_valid(rth)) { skb_dst_set_noref(skb, &rth->dst); goto out; } } rth = rt_dst_alloc(out_dev->dev, 0, res->type, IN_DEV_CONF_GET(in_dev, NOPOLICY), IN_DEV_CONF_GET(out_dev, NOXFRM)); if (!rth) { err = -ENOBUFS; goto cleanup; } rth->rt_is_input = 1; RT_CACHE_STAT_INC(in_slow_tot); rth->dst.input = ip_forward; rt_set_nexthop(rth, daddr, res, fnhe, res->fi, res->type, itag, do_cache); lwtunnel_set_redirect(&rth->dst); skb_dst_set(skb, &rth->dst); out: err = 0; cleanup: return err; } #ifdef CONFIG_IP_ROUTE_MULTIPATH /* To make ICMP packets follow the right flow, the multipath hash is * calculated from the inner IP addresses. */ static void ip_multipath_l3_keys(const struct sk_buff *skb, struct flow_keys *hash_keys) { const struct iphdr *outer_iph = ip_hdr(skb); const struct iphdr *key_iph = outer_iph; const struct iphdr *inner_iph; const struct icmphdr *icmph; struct iphdr _inner_iph; struct icmphdr _icmph; if (likely(outer_iph->protocol != IPPROTO_ICMP)) goto out; if (unlikely((outer_iph->frag_off & htons(IP_OFFSET)) != 0)) goto out; icmph = skb_header_pointer(skb, outer_iph->ihl * 4, sizeof(_icmph), &_icmph); if (!icmph) goto out; if (!icmp_is_err(icmph->type)) goto out; inner_iph = skb_header_pointer(skb, outer_iph->ihl * 4 + sizeof(_icmph), sizeof(_inner_iph), &_inner_iph); if (!inner_iph) goto out; key_iph = inner_iph; out: hash_keys->addrs.v4addrs.src = key_iph->saddr; hash_keys->addrs.v4addrs.dst = key_iph->daddr; } /* if skb is set it will be used and fl4 can be NULL */ int fib_multipath_hash(const struct net *net, const struct flowi4 *fl4, const struct sk_buff *skb, struct flow_keys *flkeys) { u32 multipath_hash = fl4 ? fl4->flowi4_multipath_hash : 0; struct flow_keys hash_keys; u32 mhash; switch (net->ipv4.sysctl_fib_multipath_hash_policy) { case 0: memset(&hash_keys, 0, sizeof(hash_keys)); hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; if (skb) { ip_multipath_l3_keys(skb, &hash_keys); } else { hash_keys.addrs.v4addrs.src = fl4->saddr; hash_keys.addrs.v4addrs.dst = fl4->daddr; } break; case 1: /* skb is currently provided only when forwarding */ if (skb) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; struct flow_keys keys; /* short-circuit if we already have L4 hash present */ if (skb->l4_hash) return skb_get_hash_raw(skb) >> 1; memset(&hash_keys, 0, sizeof(hash_keys)); if (!flkeys) { skb_flow_dissect_flow_keys(skb, &keys, flag); flkeys = &keys; } hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; hash_keys.addrs.v4addrs.src = flkeys->addrs.v4addrs.src; hash_keys.addrs.v4addrs.dst = flkeys->addrs.v4addrs.dst; hash_keys.ports.src = flkeys->ports.src; hash_keys.ports.dst = flkeys->ports.dst; hash_keys.basic.ip_proto = flkeys->basic.ip_proto; } else { memset(&hash_keys, 0, sizeof(hash_keys)); hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; hash_keys.addrs.v4addrs.src = fl4->saddr; hash_keys.addrs.v4addrs.dst = fl4->daddr; hash_keys.ports.src = fl4->fl4_sport; hash_keys.ports.dst = fl4->fl4_dport; hash_keys.basic.ip_proto = fl4->flowi4_proto; } break; case 2: memset(&hash_keys, 0, sizeof(hash_keys)); /* skb is currently provided only when forwarding */ if (skb) { struct flow_keys keys; skb_flow_dissect_flow_keys(skb, &keys, 0); /* Inner can be v4 or v6 */ if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; hash_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src; hash_keys.addrs.v4addrs.dst = keys.addrs.v4addrs.dst; } else if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst; hash_keys.tags.flow_label = keys.tags.flow_label; hash_keys.basic.ip_proto = keys.basic.ip_proto; } else { /* Same as case 0 */ hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; ip_multipath_l3_keys(skb, &hash_keys); } } else { /* Same as case 0 */ hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; hash_keys.addrs.v4addrs.src = fl4->saddr; hash_keys.addrs.v4addrs.dst = fl4->daddr; } break; } mhash = flow_hash_from_keys(&hash_keys); if (multipath_hash) mhash = jhash_2words(mhash, multipath_hash, 0); return mhash >> 1; } #endif /* CONFIG_IP_ROUTE_MULTIPATH */ static int ip_mkroute_input(struct sk_buff *skb, struct fib_result *res, struct in_device *in_dev, __be32 daddr, __be32 saddr, u32 tos, struct flow_keys *hkeys) { #ifdef CONFIG_IP_ROUTE_MULTIPATH if (res->fi && fib_info_num_path(res->fi) > 1) { int h = fib_multipath_hash(res->fi->fib_net, NULL, skb, hkeys); fib_select_multipath(res, h); } #endif /* create a routing cache entry */ return __mkroute_input(skb, res, in_dev, daddr, saddr, tos); } /* Implements all the saddr-related checks as ip_route_input_slow(), * assuming daddr is valid and the destination is not a local broadcast one. * Uses the provided hint instead of performing a route lookup. */ int ip_route_use_hint(struct sk_buff *skb, __be32 daddr, __be32 saddr, u8 tos, struct net_device *dev, const struct sk_buff *hint) { struct in_device *in_dev = __in_dev_get_rcu(dev); struct rtable *rt = skb_rtable(hint); struct net *net = dev_net(dev); int err = -EINVAL; u32 tag = 0; if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr)) goto martian_source; if (ipv4_is_zeronet(saddr)) goto martian_source; if (ipv4_is_loopback(saddr) && !IN_DEV_NET_ROUTE_LOCALNET(in_dev, net)) goto martian_source; if (rt->rt_type != RTN_LOCAL) goto skip_validate_source; tos &= IPTOS_RT_MASK; err = fib_validate_source(skb, saddr, daddr, tos, 0, dev, in_dev, &tag); if (err < 0) goto martian_source; skip_validate_source: skb_dst_copy(skb, hint); return 0; martian_source: ip_handle_martian_source(dev, in_dev, skb, daddr, saddr); return err; } /* get device for dst_alloc with local routes */ static struct net_device *ip_rt_get_dev(struct net *net, const struct fib_result *res) { struct fib_nh_common *nhc = res->fi ? res->nhc : NULL; struct net_device *dev = NULL; if (nhc) dev = l3mdev_master_dev_rcu(nhc->nhc_dev); return dev ? : net->loopback_dev; } /* * NOTE. We drop all the packets that has local source * addresses, because every properly looped back packet * must have correct destination already attached by output routine. * Changes in the enforced policies must be applied also to * ip_route_use_hint(). * * Such approach solves two big problems: * 1. Not simplex devices are handled properly. * 2. IP spoofing attempts are filtered with 100% of guarantee. * called with rcu_read_lock() */ static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr, u8 tos, struct net_device *dev, struct fib_result *res) { struct in_device *in_dev = __in_dev_get_rcu(dev); struct flow_keys *flkeys = NULL, _flkeys; struct net *net = dev_net(dev); struct ip_tunnel_info *tun_info; int err = -EINVAL; unsigned int flags = 0; u32 itag = 0; struct rtable *rth; struct flowi4 fl4; bool do_cache = true; /* IP on this device is disabled. */ if (!in_dev) goto out; /* Check for the most weird martians, which can be not detected by fib_lookup. */ tun_info = skb_tunnel_info(skb); if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX)) fl4.flowi4_tun_key.tun_id = tun_info->key.tun_id; else fl4.flowi4_tun_key.tun_id = 0; skb_dst_drop(skb); if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr)) goto martian_source; res->fi = NULL; res->table = NULL; if (ipv4_is_lbcast(daddr) || (saddr == 0 && daddr == 0)) goto brd_input; /* Accept zero addresses only to limited broadcast; * I even do not know to fix it or not. Waiting for complains :-) */ if (ipv4_is_zeronet(saddr)) goto martian_source; if (ipv4_is_zeronet(daddr)) goto martian_destination; /* Following code try to avoid calling IN_DEV_NET_ROUTE_LOCALNET(), * and call it once if daddr or/and saddr are loopback addresses */ if (ipv4_is_loopback(daddr)) { if (!IN_DEV_NET_ROUTE_LOCALNET(in_dev, net)) goto martian_destination; } else if (ipv4_is_loopback(saddr)) { if (!IN_DEV_NET_ROUTE_LOCALNET(in_dev, net)) goto martian_source; } /* * Now we are ready to route packet. */ fl4.flowi4_oif = 0; fl4.flowi4_iif = dev->ifindex; fl4.flowi4_mark = skb->mark; fl4.flowi4_tos = tos; fl4.flowi4_scope = RT_SCOPE_UNIVERSE; fl4.flowi4_flags = 0; fl4.daddr = daddr; fl4.saddr = saddr; fl4.flowi4_uid = sock_net_uid(net, NULL); fl4.flowi4_multipath_hash = 0; if (fib4_rules_early_flow_dissect(net, skb, &fl4, &_flkeys)) { flkeys = &_flkeys; } else { fl4.flowi4_proto = 0; fl4.fl4_sport = 0; fl4.fl4_dport = 0; } err = fib_lookup(net, &fl4, res, 0); if (err != 0) { if (!IN_DEV_FORWARD(in_dev)) err = -EHOSTUNREACH; goto no_route; } if (res->type == RTN_BROADCAST) { if (IN_DEV_BFORWARD(in_dev)) goto make_route; /* not do cache if bc_forwarding is enabled */ if (IPV4_DEVCONF_ALL(net, BC_FORWARDING)) do_cache = false; goto brd_input; } if (res->type == RTN_LOCAL) { err = fib_validate_source(skb, saddr, daddr, tos, 0, dev, in_dev, &itag); if (err < 0) goto martian_source; goto local_input; } if (!IN_DEV_FORWARD(in_dev)) { err = -EHOSTUNREACH; goto no_route; } if (res->type != RTN_UNICAST) goto martian_destination; make_route: err = ip_mkroute_input(skb, res, in_dev, daddr, saddr, tos, flkeys); out: return err; brd_input: if (skb->protocol != htons(ETH_P_IP)) goto e_inval; if (!ipv4_is_zeronet(saddr)) { err = fib_validate_source(skb, saddr, 0, tos, 0, dev, in_dev, &itag); if (err < 0) goto martian_source; } flags |= RTCF_BROADCAST; res->type = RTN_BROADCAST; RT_CACHE_STAT_INC(in_brd); local_input: do_cache &= res->fi && !itag; if (do_cache) { struct fib_nh_common *nhc = FIB_RES_NHC(*res); rth = rcu_dereference(nhc->nhc_rth_input); if (rt_cache_valid(rth)) { skb_dst_set_noref(skb, &rth->dst); err = 0; goto out; } } rth = rt_dst_alloc(ip_rt_get_dev(net, res), flags | RTCF_LOCAL, res->type, IN_DEV_CONF_GET(in_dev, NOPOLICY), false); if (!rth) goto e_nobufs; rth->dst.output= ip_rt_bug; #ifdef CONFIG_IP_ROUTE_CLASSID rth->dst.tclassid = itag; #endif rth->rt_is_input = 1; RT_CACHE_STAT_INC(in_slow_tot); if (res->type == RTN_UNREACHABLE) { rth->dst.input= ip_error; rth->dst.error= -err; rth->rt_flags &= ~RTCF_LOCAL; } if (do_cache) { struct fib_nh_common *nhc = FIB_RES_NHC(*res); rth->dst.lwtstate = lwtstate_get(nhc->nhc_lwtstate); if (lwtunnel_input_redirect(rth->dst.lwtstate)) { WARN_ON(rth->dst.input == lwtunnel_input); rth->dst.lwtstate->orig_input = rth->dst.input; rth->dst.input = lwtunnel_input; } if (unlikely(!rt_cache_route(nhc, rth))) rt_add_uncached_list(rth); } skb_dst_set(skb, &rth->dst); err = 0; goto out; no_route: RT_CACHE_STAT_INC(in_no_route); res->type = RTN_UNREACHABLE; res->fi = NULL; res->table = NULL; goto local_input; /* * Do not cache martian addresses: they should be logged (RFC1812) */ martian_destination: RT_CACHE_STAT_INC(in_martian_dst); #ifdef CONFIG_IP_ROUTE_VERBOSE if (IN_DEV_LOG_MARTIANS(in_dev)) net_warn_ratelimited("martian destination %pI4 from %pI4, dev %s\n", &daddr, &saddr, dev->name); #endif e_inval: err = -EINVAL; goto out; e_nobufs: err = -ENOBUFS; goto out; martian_source: ip_handle_martian_source(dev, in_dev, skb, daddr, saddr); goto out; } int ip_route_input_noref(struct sk_buff *skb, __be32 daddr, __be32 saddr, u8 tos, struct net_device *dev) { struct fib_result res; int err; tos &= IPTOS_RT_MASK; rcu_read_lock(); err = ip_route_input_rcu(skb, daddr, saddr, tos, dev, &res); rcu_read_unlock(); return err; } EXPORT_SYMBOL(ip_route_input_noref); /* called with rcu_read_lock held */ int ip_route_input_rcu(struct sk_buff *skb, __be32 daddr, __be32 saddr, u8 tos, struct net_device *dev, struct fib_result *res) { /* Multicast recognition logic is moved from route cache to here. The problem was that too many Ethernet cards have broken/missing hardware multicast filters :-( As result the host on multicasting network acquires a lot of useless route cache entries, sort of SDR messages from all the world. Now we try to get rid of them. Really, provided software IP multicast filter is organized reasonably (at least, hashed), it does not result in a slowdown comparing with route cache reject entries. Note, that multicast routers are not affected, because route cache entry is created eventually. */ if (ipv4_is_multicast(daddr)) { struct in_device *in_dev = __in_dev_get_rcu(dev); int our = 0; int err = -EINVAL; if (!in_dev) return err; our = ip_check_mc_rcu(in_dev, daddr, saddr, ip_hdr(skb)->protocol); /* check l3 master if no match yet */ if (!our && netif_is_l3_slave(dev)) { struct in_device *l3_in_dev; l3_in_dev = __in_dev_get_rcu(skb->dev); if (l3_in_dev) our = ip_check_mc_rcu(l3_in_dev, daddr, saddr, ip_hdr(skb)->protocol); } if (our #ifdef CONFIG_IP_MROUTE || (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev)) #endif ) { err = ip_route_input_mc(skb, daddr, saddr, tos, dev, our); } return err; } return ip_route_input_slow(skb, daddr, saddr, tos, dev, res); } /* called with rcu_read_lock() */ static struct rtable *__mkroute_output(const struct fib_result *res, const struct flowi4 *fl4, int orig_oif, struct net_device *dev_out, unsigned int flags) { struct fib_info *fi = res->fi; struct fib_nh_exception *fnhe; struct in_device *in_dev; u16 type = res->type; struct rtable *rth; bool do_cache; in_dev = __in_dev_get_rcu(dev_out); if (!in_dev) return ERR_PTR(-EINVAL); if (likely(!IN_DEV_ROUTE_LOCALNET(in_dev))) if (ipv4_is_loopback(fl4->saddr) && !(dev_out->flags & IFF_LOOPBACK) && !netif_is_l3_master(dev_out)) return ERR_PTR(-EINVAL); if (ipv4_is_lbcast(fl4->daddr)) type = RTN_BROADCAST; else if (ipv4_is_multicast(fl4->daddr)) type = RTN_MULTICAST; else if (ipv4_is_zeronet(fl4->daddr)) return ERR_PTR(-EINVAL); if (dev_out->flags & IFF_LOOPBACK) flags |= RTCF_LOCAL; do_cache = true; if (type == RTN_BROADCAST) { flags |= RTCF_BROADCAST | RTCF_LOCAL; fi = NULL; } else if (type == RTN_MULTICAST) { flags |= RTCF_MULTICAST | RTCF_LOCAL; if (!ip_check_mc_rcu(in_dev, fl4->daddr, fl4->saddr, fl4->flowi4_proto)) flags &= ~RTCF_LOCAL; else do_cache = false; /* If multicast route do not exist use * default one, but do not gateway in this case. * Yes, it is hack. */ if (fi && res->prefixlen < 4) fi = NULL; } else if ((type == RTN_LOCAL) && (orig_oif != 0) && (orig_oif != dev_out->ifindex)) { /* For local routes that require a particular output interface * we do not want to cache the result. Caching the result * causes incorrect behaviour when there are multiple source * addresses on the interface, the end result being that if the * intended recipient is waiting on that interface for the * packet he won't receive it because it will be delivered on * the loopback interface and the IP_PKTINFO ipi_ifindex will * be set to the loopback interface as well. */ do_cache = false; } fnhe = NULL; do_cache &= fi != NULL; if (fi) { struct fib_nh_common *nhc = FIB_RES_NHC(*res); struct rtable __rcu **prth; fnhe = find_exception(nhc, fl4->daddr); if (!do_cache) goto add; if (fnhe) { prth = &fnhe->fnhe_rth_output; } else { if (unlikely(fl4->flowi4_flags & FLOWI_FLAG_KNOWN_NH && !(nhc->nhc_gw_family && nhc->nhc_scope == RT_SCOPE_LINK))) { do_cache = false; goto add; } prth = raw_cpu_ptr(nhc->nhc_pcpu_rth_output); } rth = rcu_dereference(*prth); if (rt_cache_valid(rth) && dst_hold_safe(&rth->dst)) return rth; } add: rth = rt_dst_alloc(dev_out, flags, type, IN_DEV_CONF_GET(in_dev, NOPOLICY), IN_DEV_CONF_GET(in_dev, NOXFRM)); if (!rth) return ERR_PTR(-ENOBUFS); rth->rt_iif = orig_oif; RT_CACHE_STAT_INC(out_slow_tot); if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) { if (flags & RTCF_LOCAL && !(dev_out->flags & IFF_LOOPBACK)) { rth->dst.output = ip_mc_output; RT_CACHE_STAT_INC(out_slow_mc); } #ifdef CONFIG_IP_MROUTE if (type == RTN_MULTICAST) { if (IN_DEV_MFORWARD(in_dev) && !ipv4_is_local_multicast(fl4->daddr)) { rth->dst.input = ip_mr_input; rth->dst.output = ip_mc_output; } } #endif } rt_set_nexthop(rth, fl4->daddr, res, fnhe, fi, type, 0, do_cache); lwtunnel_set_redirect(&rth->dst); return rth; } /* * Major route resolver routine. */ struct rtable *ip_route_output_key_hash(struct net *net, struct flowi4 *fl4, const struct sk_buff *skb) { __u8 tos = RT_FL_TOS(fl4); struct fib_result res = { .type = RTN_UNSPEC, .fi = NULL, .table = NULL, .tclassid = 0, }; struct rtable *rth; fl4->flowi4_iif = LOOPBACK_IFINDEX; fl4->flowi4_tos = tos & IPTOS_RT_MASK; fl4->flowi4_scope = ((tos & RTO_ONLINK) ? RT_SCOPE_LINK : RT_SCOPE_UNIVERSE); rcu_read_lock(); rth = ip_route_output_key_hash_rcu(net, fl4, &res, skb); rcu_read_unlock(); return rth; } EXPORT_SYMBOL_GPL(ip_route_output_key_hash); struct rtable *ip_route_output_key_hash_rcu(struct net *net, struct flowi4 *fl4, struct fib_result *res, const struct sk_buff *skb) { struct net_device *dev_out = NULL; int orig_oif = fl4->flowi4_oif; unsigned int flags = 0; struct rtable *rth; int err; if (fl4->saddr) { if (ipv4_is_multicast(fl4->saddr) || ipv4_is_lbcast(fl4->saddr) || ipv4_is_zeronet(fl4->saddr)) { rth = ERR_PTR(-EINVAL); goto out; } rth = ERR_PTR(-ENETUNREACH); /* I removed check for oif == dev_out->oif here. It was wrong for two reasons: 1. ip_dev_find(net, saddr) can return wrong iface, if saddr is assigned to multiple interfaces. 2. Moreover, we are allowed to send packets with saddr of another iface. --ANK */ if (fl4->flowi4_oif == 0 && (ipv4_is_multicast(fl4->daddr) || ipv4_is_lbcast(fl4->daddr))) { /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */ dev_out = __ip_dev_find(net, fl4->saddr, false); if (!dev_out) goto out; /* Special hack: user can direct multicasts and limited broadcast via necessary interface without fiddling with IP_MULTICAST_IF or IP_PKTINFO. This hack is not just for fun, it allows vic,vat and friends to work. They bind socket to loopback, set ttl to zero and expect that it will work. From the viewpoint of routing cache they are broken, because we are not allowed to build multicast path with loopback source addr (look, routing cache cannot know, that ttl is zero, so that packet will not leave this host and route is valid). Luckily, this hack is good workaround. */ fl4->flowi4_oif = dev_out->ifindex; goto make_route; } if (!(fl4->flowi4_flags & FLOWI_FLAG_ANYSRC)) { /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */ if (!__ip_dev_find(net, fl4->saddr, false)) goto out; } } if (fl4->flowi4_oif) { dev_out = dev_get_by_index_rcu(net, fl4->flowi4_oif); rth = ERR_PTR(-ENODEV); if (!dev_out) goto out; /* RACE: Check return value of inet_select_addr instead. */ if (!(dev_out->flags & IFF_UP) || !__in_dev_get_rcu(dev_out)) { rth = ERR_PTR(-ENETUNREACH); goto out; } if (ipv4_is_local_multicast(fl4->daddr) || ipv4_is_lbcast(fl4->daddr) || fl4->flowi4_proto == IPPROTO_IGMP) { if (!fl4->saddr) fl4->saddr = inet_select_addr(dev_out, 0, RT_SCOPE_LINK); goto make_route; } if (!fl4->saddr) { if (ipv4_is_multicast(fl4->daddr)) fl4->saddr = inet_select_addr(dev_out, 0, fl4->flowi4_scope); else if (!fl4->daddr) fl4->saddr = inet_select_addr(dev_out, 0, RT_SCOPE_HOST); } } if (!fl4->daddr) { fl4->daddr = fl4->saddr; if (!fl4->daddr) fl4->daddr = fl4->saddr = htonl(INADDR_LOOPBACK); dev_out = net->loopback_dev; fl4->flowi4_oif = LOOPBACK_IFINDEX; res->type = RTN_LOCAL; flags |= RTCF_LOCAL; goto make_route; } err = fib_lookup(net, fl4, res, 0); if (err) { res->fi = NULL; res->table = NULL; if (fl4->flowi4_oif && (ipv4_is_multicast(fl4->daddr) || !netif_index_is_l3_master(net, fl4->flowi4_oif))) { /* Apparently, routing tables are wrong. Assume, that the destination is on link. WHY? DW. Because we are allowed to send to iface even if it has NO routes and NO assigned addresses. When oif is specified, routing tables are looked up with only one purpose: to catch if destination is gatewayed, rather than direct. Moreover, if MSG_DONTROUTE is set, we send packet, ignoring both routing tables and ifaddr state. --ANK We could make it even if oif is unknown, likely IPv6, but we do not. */ if (fl4->saddr == 0) fl4->saddr = inet_select_addr(dev_out, 0, RT_SCOPE_LINK); res->type = RTN_UNICAST; goto make_route; } rth = ERR_PTR(err); goto out; } if (res->type == RTN_LOCAL) { if (!fl4->saddr) { if (res->fi->fib_prefsrc) fl4->saddr = res->fi->fib_prefsrc; else fl4->saddr = fl4->daddr; } /* L3 master device is the loopback for that domain */ dev_out = l3mdev_master_dev_rcu(FIB_RES_DEV(*res)) ? : net->loopback_dev; /* make sure orig_oif points to fib result device even * though packet rx/tx happens over loopback or l3mdev */ orig_oif = FIB_RES_OIF(*res); fl4->flowi4_oif = dev_out->ifindex; flags |= RTCF_LOCAL; goto make_route; } fib_select_path(net, res, fl4, skb); dev_out = FIB_RES_DEV(*res); make_route: rth = __mkroute_output(res, fl4, orig_oif, dev_out, flags); out: return rth; } static struct dst_ops ipv4_dst_blackhole_ops = { .family = AF_INET, .default_advmss = ipv4_default_advmss, .neigh_lookup = ipv4_neigh_lookup, .check = dst_blackhole_check, .cow_metrics = dst_blackhole_cow_metrics, .update_pmtu = dst_blackhole_update_pmtu, .redirect = dst_blackhole_redirect, .mtu = dst_blackhole_mtu, }; struct dst_entry *ipv4_blackhole_route(struct net *net, struct dst_entry *dst_orig) { struct rtable *ort = (struct rtable *) dst_orig; struct rtable *rt; rt = dst_alloc(&ipv4_dst_blackhole_ops, NULL, 1, DST_OBSOLETE_DEAD, 0); if (rt) { struct dst_entry *new = &rt->dst; new->__use = 1; new->input = dst_discard; new->output = dst_discard_out; new->dev = net->loopback_dev; if (new->dev) dev_hold(new->dev); rt->rt_is_input = ort->rt_is_input; rt->rt_iif = ort->rt_iif; rt->rt_pmtu = ort->rt_pmtu; rt->rt_mtu_locked = ort->rt_mtu_locked; rt->rt_genid = rt_genid_ipv4(net); rt->rt_flags = ort->rt_flags; rt->rt_type = ort->rt_type; rt->rt_uses_gateway = ort->rt_uses_gateway; rt->rt_gw_family = ort->rt_gw_family; if (rt->rt_gw_family == AF_INET) rt->rt_gw4 = ort->rt_gw4; else if (rt->rt_gw_family == AF_INET6) rt->rt_gw6 = ort->rt_gw6; INIT_LIST_HEAD(&rt->rt_uncached); } dst_release(dst_orig); return rt ? &rt->dst : ERR_PTR(-ENOMEM); } struct rtable *ip_route_output_flow(struct net *net, struct flowi4 *flp4, const struct sock *sk) { struct rtable *rt = __ip_route_output_key(net, flp4); if (IS_ERR(rt)) return rt; if (flp4->flowi4_proto) { flp4->flowi4_oif = rt->dst.dev->ifindex; rt = (struct rtable *)xfrm_lookup_route(net, &rt->dst, flowi4_to_flowi(flp4), sk, 0); } return rt; } EXPORT_SYMBOL_GPL(ip_route_output_flow); struct rtable *ip_route_output_tunnel(struct sk_buff *skb, struct net_device *dev, struct net *net, __be32 *saddr, const struct ip_tunnel_info *info, u8 protocol, bool use_cache) { #ifdef CONFIG_DST_CACHE struct dst_cache *dst_cache; #endif struct rtable *rt = NULL; struct flowi4 fl4; __u8 tos; #ifdef CONFIG_DST_CACHE dst_cache = (struct dst_cache *)&info->dst_cache; if (use_cache) { rt = dst_cache_get_ip4(dst_cache, saddr); if (rt) return rt; } #endif memset(&fl4, 0, sizeof(fl4)); fl4.flowi4_mark = skb->mark; fl4.flowi4_proto = protocol; fl4.daddr = info->key.u.ipv4.dst; fl4.saddr = info->key.u.ipv4.src; tos = info->key.tos; fl4.flowi4_tos = RT_TOS(tos); rt = ip_route_output_key(net, &fl4); if (IS_ERR(rt)) { netdev_dbg(dev, "no route to %pI4\n", &fl4.daddr); return ERR_PTR(-ENETUNREACH); } if (rt->dst.dev == dev) { /* is this necessary? */ netdev_dbg(dev, "circular route to %pI4\n", &fl4.daddr); ip_rt_put(rt); return ERR_PTR(-ELOOP); } #ifdef CONFIG_DST_CACHE if (use_cache) dst_cache_set_ip4(dst_cache, &rt->dst, fl4.saddr); #endif *saddr = fl4.saddr; return rt; } EXPORT_SYMBOL_GPL(ip_route_output_tunnel); /* called with rcu_read_lock held */ static int rt_fill_info(struct net *net, __be32 dst, __be32 src, struct rtable *rt, u32 table_id, struct flowi4 *fl4, struct sk_buff *skb, u32 portid, u32 seq, unsigned int flags) { struct rtmsg *r; struct nlmsghdr *nlh; unsigned long expires = 0; u32 error; u32 metrics[RTAX_MAX]; nlh = nlmsg_put(skb, portid, seq, RTM_NEWROUTE, sizeof(*r), flags); if (!nlh) return -EMSGSIZE; r = nlmsg_data(nlh); r->rtm_family = AF_INET; r->rtm_dst_len = 32; r->rtm_src_len = 0; r->rtm_tos = fl4 ? fl4->flowi4_tos : 0; r->rtm_table = table_id < 256 ? table_id : RT_TABLE_COMPAT; if (nla_put_u32(skb, RTA_TABLE, table_id)) goto nla_put_failure; r->rtm_type = rt->rt_type; r->rtm_scope = RT_SCOPE_UNIVERSE; r->rtm_protocol = RTPROT_UNSPEC; r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED; if (rt->rt_flags & RTCF_NOTIFY) r->rtm_flags |= RTM_F_NOTIFY; if (IPCB(skb)->flags & IPSKB_DOREDIRECT) r->rtm_flags |= RTCF_DOREDIRECT; if (nla_put_in_addr(skb, RTA_DST, dst)) goto nla_put_failure; if (src) { r->rtm_src_len = 32; if (nla_put_in_addr(skb, RTA_SRC, src)) goto nla_put_failure; } if (rt->dst.dev && nla_put_u32(skb, RTA_OIF, rt->dst.dev->ifindex)) goto nla_put_failure; #ifdef CONFIG_IP_ROUTE_CLASSID if (rt->dst.tclassid && nla_put_u32(skb, RTA_FLOW, rt->dst.tclassid)) goto nla_put_failure; #endif if (fl4 && !rt_is_input_route(rt) && fl4->saddr != src) { if (nla_put_in_addr(skb, RTA_PREFSRC, fl4->saddr)) goto nla_put_failure; } if (rt->rt_uses_gateway) { if (rt->rt_gw_family == AF_INET && nla_put_in_addr(skb, RTA_GATEWAY, rt->rt_gw4)) { goto nla_put_failure; } else if (rt->rt_gw_family == AF_INET6) { int alen = sizeof(struct in6_addr); struct nlattr *nla; struct rtvia *via; nla = nla_reserve(skb, RTA_VIA, alen + 2); if (!nla) goto nla_put_failure; via = nla_data(nla); via->rtvia_family = AF_INET6; memcpy(via->rtvia_addr, &rt->rt_gw6, alen); } } expires = rt->dst.expires; if (expires) { unsigned long now = jiffies; if (time_before(now, expires)) expires -= now; else expires = 0; } memcpy(metrics, dst_metrics_ptr(&rt->dst), sizeof(metrics)); if (rt->rt_pmtu && expires) metrics[RTAX_MTU - 1] = rt->rt_pmtu; if (rt->rt_mtu_locked && expires) metrics[RTAX_LOCK - 1] |= BIT(RTAX_MTU); if (rtnetlink_put_metrics(skb, metrics) < 0) goto nla_put_failure; if (fl4) { if (fl4->flowi4_mark && nla_put_u32(skb, RTA_MARK, fl4->flowi4_mark)) goto nla_put_failure; if (!uid_eq(fl4->flowi4_uid, INVALID_UID) && nla_put_u32(skb, RTA_UID, from_kuid_munged(current_user_ns(), fl4->flowi4_uid))) goto nla_put_failure; if (rt_is_input_route(rt)) { #ifdef CONFIG_IP_MROUTE if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) && IPV4_DEVCONF_ALL(net, MC_FORWARDING)) { int err = ipmr_get_route(net, skb, fl4->saddr, fl4->daddr, r, portid); if (err <= 0) { if (err == 0) return 0; goto nla_put_failure; } } else #endif if (nla_put_u32(skb, RTA_IIF, fl4->flowi4_iif)) goto nla_put_failure; } } error = rt->dst.error; if (rtnl_put_cacheinfo(skb, &rt->dst, 0, expires, error) < 0) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int fnhe_dump_bucket(struct net *net, struct sk_buff *skb, struct netlink_callback *cb, u32 table_id, struct fnhe_hash_bucket *bucket, int genid, int *fa_index, int fa_start, unsigned int flags) { int i; for (i = 0; i < FNHE_HASH_SIZE; i++) { struct fib_nh_exception *fnhe; for (fnhe = rcu_dereference(bucket[i].chain); fnhe; fnhe = rcu_dereference(fnhe->fnhe_next)) { struct rtable *rt; int err; if (*fa_index < fa_start) goto next; if (fnhe->fnhe_genid != genid) goto next; if (fnhe->fnhe_expires && time_after(jiffies, fnhe->fnhe_expires)) goto next; rt = rcu_dereference(fnhe->fnhe_rth_input); if (!rt) rt = rcu_dereference(fnhe->fnhe_rth_output); if (!rt) goto next; err = rt_fill_info(net, fnhe->fnhe_daddr, 0, rt, table_id, NULL, skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags); if (err) return err; next: (*fa_index)++; } } return 0; } int fib_dump_info_fnhe(struct sk_buff *skb, struct netlink_callback *cb, u32 table_id, struct fib_info *fi, int *fa_index, int fa_start, unsigned int flags) { struct net *net = sock_net(cb->skb->sk); int nhsel, genid = fnhe_genid(net); for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) { struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel); struct fnhe_hash_bucket *bucket; int err; if (nhc->nhc_flags & RTNH_F_DEAD) continue; rcu_read_lock(); bucket = rcu_dereference(nhc->nhc_exceptions); err = 0; if (bucket) err = fnhe_dump_bucket(net, skb, cb, table_id, bucket, genid, fa_index, fa_start, flags); rcu_read_unlock(); if (err) return err; } return 0; } static struct sk_buff *inet_rtm_getroute_build_skb(__be32 src, __be32 dst, u8 ip_proto, __be16 sport, __be16 dport) { struct sk_buff *skb; struct iphdr *iph; skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) return NULL; /* Reserve room for dummy headers, this skb can pass * through good chunk of routing engine. */ skb_reset_mac_header(skb); skb_reset_network_header(skb); skb->protocol = htons(ETH_P_IP); iph = skb_put(skb, sizeof(struct iphdr)); iph->protocol = ip_proto; iph->saddr = src; iph->daddr = dst; iph->version = 0x4; iph->frag_off = 0; iph->ihl = 0x5; skb_set_transport_header(skb, skb->len); switch (iph->protocol) { case IPPROTO_UDP: { struct udphdr *udph; udph = skb_put_zero(skb, sizeof(struct udphdr)); udph->source = sport; udph->dest = dport; udph->len = htons(sizeof(struct udphdr)); udph->check = 0; break; } case IPPROTO_TCP: { struct tcphdr *tcph; tcph = skb_put_zero(skb, sizeof(struct tcphdr)); tcph->source = sport; tcph->dest = dport; tcph->doff = sizeof(struct tcphdr) / 4; tcph->rst = 1; tcph->check = ~tcp_v4_check(sizeof(struct tcphdr), src, dst, 0); break; } case IPPROTO_ICMP: { struct icmphdr *icmph; icmph = skb_put_zero(skb, sizeof(struct icmphdr)); icmph->type = ICMP_ECHO; icmph->code = 0; } } return skb; } static int inet_rtm_valid_getroute_req(struct sk_buff *skb, const struct nlmsghdr *nlh, struct nlattr **tb, struct netlink_ext_ack *extack) { struct rtmsg *rtm; int i, err; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { NL_SET_ERR_MSG(extack, "ipv4: Invalid header for route get request"); return -EINVAL; } if (!netlink_strict_get_check(skb)) return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy, extack); rtm = nlmsg_data(nlh); if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) || (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) || rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope || rtm->rtm_type) { NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for route get request"); return -EINVAL; } if (rtm->rtm_flags & ~(RTM_F_NOTIFY | RTM_F_LOOKUP_TABLE | RTM_F_FIB_MATCH)) { NL_SET_ERR_MSG(extack, "ipv4: Unsupported rtm_flags for route get request"); return -EINVAL; } err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy, extack); if (err) return err; if ((tb[RTA_SRC] && !rtm->rtm_src_len) || (tb[RTA_DST] && !rtm->rtm_dst_len)) { NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4"); return -EINVAL; } for (i = 0; i <= RTA_MAX; i++) { if (!tb[i]) continue; switch (i) { case RTA_IIF: case RTA_OIF: case RTA_SRC: case RTA_DST: case RTA_IP_PROTO: case RTA_SPORT: case RTA_DPORT: case RTA_MARK: case RTA_UID: break; default: NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in route get request"); return -EINVAL; } } return 0; } static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(in_skb->sk); struct nlattr *tb[RTA_MAX+1]; u32 table_id = RT_TABLE_MAIN; __be16 sport = 0, dport = 0; struct fib_result res = {}; u8 ip_proto = IPPROTO_UDP; struct rtable *rt = NULL; struct sk_buff *skb; struct rtmsg *rtm; struct flowi4 fl4 = {}; __be32 dst = 0; __be32 src = 0; kuid_t uid; u32 iif; int err; int mark; err = inet_rtm_valid_getroute_req(in_skb, nlh, tb, extack); if (err < 0) return err; rtm = nlmsg_data(nlh); src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0; dst = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0; iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0; mark = tb[RTA_MARK] ? nla_get_u32(tb[RTA_MARK]) : 0; if (tb[RTA_UID]) uid = make_kuid(current_user_ns(), nla_get_u32(tb[RTA_UID])); else uid = (iif ? INVALID_UID : current_uid()); if (tb[RTA_IP_PROTO]) { err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO], &ip_proto, AF_INET, extack); if (err) return err; } if (tb[RTA_SPORT]) sport = nla_get_be16(tb[RTA_SPORT]); if (tb[RTA_DPORT]) dport = nla_get_be16(tb[RTA_DPORT]); skb = inet_rtm_getroute_build_skb(src, dst, ip_proto, sport, dport); if (!skb) return -ENOBUFS; fl4.daddr = dst; fl4.saddr = src; fl4.flowi4_tos = rtm->rtm_tos & IPTOS_RT_MASK; fl4.flowi4_oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0; fl4.flowi4_mark = mark; fl4.flowi4_uid = uid; if (sport) fl4.fl4_sport = sport; if (dport) fl4.fl4_dport = dport; fl4.flowi4_proto = ip_proto; rcu_read_lock(); if (iif) { struct net_device *dev; dev = dev_get_by_index_rcu(net, iif); if (!dev) { err = -ENODEV; goto errout_rcu; } fl4.flowi4_iif = iif; /* for rt_fill_info */ skb->dev = dev; skb->mark = mark; err = ip_route_input_rcu(skb, dst, src, rtm->rtm_tos & IPTOS_RT_MASK, dev, &res); rt = skb_rtable(skb); if (err == 0 && rt->dst.error) err = -rt->dst.error; } else { fl4.flowi4_iif = LOOPBACK_IFINDEX; skb->dev = net->loopback_dev; rt = ip_route_output_key_hash_rcu(net, &fl4, &res, skb); err = 0; if (IS_ERR(rt)) err = PTR_ERR(rt); else skb_dst_set(skb, &rt->dst); } if (err) goto errout_rcu; if (rtm->rtm_flags & RTM_F_NOTIFY) rt->rt_flags |= RTCF_NOTIFY; if (rtm->rtm_flags & RTM_F_LOOKUP_TABLE) table_id = res.table ? res.table->tb_id : 0; /* reset skb for netlink reply msg */ skb_trim(skb, 0); skb_reset_network_header(skb); skb_reset_transport_header(skb); skb_reset_mac_header(skb); if (rtm->rtm_flags & RTM_F_FIB_MATCH) { struct fib_rt_info fri; if (!res.fi) { err = fib_props[res.type].error; if (!err) err = -EHOSTUNREACH; goto errout_rcu; } fri.fi = res.fi; fri.tb_id = table_id; fri.dst = res.prefix; fri.dst_len = res.prefixlen; fri.tos = fl4.flowi4_tos; fri.type = rt->rt_type; fri.offload = 0; fri.trap = 0; if (res.fa_head) { struct fib_alias *fa; hlist_for_each_entry_rcu(fa, res.fa_head, fa_list) { u8 slen = 32 - fri.dst_len; if (fa->fa_slen == slen && fa->tb_id == fri.tb_id && fa->fa_tos == fri.tos && fa->fa_info == res.fi && fa->fa_type == fri.type) { fri.offload = fa->offload; fri.trap = fa->trap; break; } } } err = fib_dump_info(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, RTM_NEWROUTE, &fri, 0); } else { err = rt_fill_info(net, dst, src, rt, table_id, &fl4, skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 0); } if (err < 0) goto errout_rcu; rcu_read_unlock(); err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); errout_free: return err; errout_rcu: rcu_read_unlock(); kfree_skb(skb); goto errout_free; } void ip_rt_multicast_event(struct in_device *in_dev) { rt_cache_flush(dev_net(in_dev->dev)); } #ifdef CONFIG_SYSCTL static int ip_rt_gc_interval __read_mostly = 60 * HZ; static int ip_rt_gc_min_interval __read_mostly = HZ / 2; static int ip_rt_gc_elasticity __read_mostly = 8; static int ip_min_valid_pmtu __read_mostly = IPV4_MIN_MTU; static int ipv4_sysctl_rtcache_flush(struct ctl_table *__ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net *net = (struct net *)__ctl->extra1; if (write) { rt_cache_flush(net); fnhe_genid_bump(net); return 0; } return -EINVAL; } static struct ctl_table ipv4_route_table[] = { { .procname = "gc_thresh", .data = &ipv4_dst_ops.gc_thresh, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "max_size", .data = &ip_rt_max_size, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { /* Deprecated. Use gc_min_interval_ms */ .procname = "gc_min_interval", .data = &ip_rt_gc_min_interval, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "gc_min_interval_ms", .data = &ip_rt_gc_min_interval, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_ms_jiffies, }, { .procname = "gc_timeout", .data = &ip_rt_gc_timeout, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "gc_interval", .data = &ip_rt_gc_interval, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "redirect_load", .data = &ip_rt_redirect_load, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "redirect_number", .data = &ip_rt_redirect_number, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "redirect_silence", .data = &ip_rt_redirect_silence, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "error_cost", .data = &ip_rt_error_cost, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "error_burst", .data = &ip_rt_error_burst, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "gc_elasticity", .data = &ip_rt_gc_elasticity, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "mtu_expires", .data = &ip_rt_mtu_expires, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "min_pmtu", .data = &ip_rt_min_pmtu, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = &ip_min_valid_pmtu, }, { .procname = "min_adv_mss", .data = &ip_rt_min_advmss, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { } }; static const char ipv4_route_flush_procname[] = "flush"; static struct ctl_table ipv4_route_flush_table[] = { { .procname = ipv4_route_flush_procname, .maxlen = sizeof(int), .mode = 0200, .proc_handler = ipv4_sysctl_rtcache_flush, }, { }, }; static __net_init int sysctl_route_net_init(struct net *net) { struct ctl_table *tbl; tbl = ipv4_route_flush_table; if (!net_eq(net, &init_net)) { tbl = kmemdup(tbl, sizeof(ipv4_route_flush_table), GFP_KERNEL); if (!tbl) goto err_dup; /* Don't export non-whitelisted sysctls to unprivileged users */ if (net->user_ns != &init_user_ns) { if (tbl[0].procname != ipv4_route_flush_procname) tbl[0].procname = NULL; } } tbl[0].extra1 = net; net->ipv4.route_hdr = register_net_sysctl(net, "net/ipv4/route", tbl); if (!net->ipv4.route_hdr) goto err_reg; return 0; err_reg: if (tbl != ipv4_route_flush_table) kfree(tbl); err_dup: return -ENOMEM; } static __net_exit void sysctl_route_net_exit(struct net *net) { struct ctl_table *tbl; tbl = net->ipv4.route_hdr->ctl_table_arg; unregister_net_sysctl_table(net->ipv4.route_hdr); BUG_ON(tbl == ipv4_route_flush_table); kfree(tbl); } static __net_initdata struct pernet_operations sysctl_route_ops = { .init = sysctl_route_net_init, .exit = sysctl_route_net_exit, }; #endif static __net_init int rt_genid_init(struct net *net) { atomic_set(&net->ipv4.rt_genid, 0); atomic_set(&net->fnhe_genid, 0); atomic_set(&net->ipv4.dev_addr_genid, get_random_int()); return 0; } static __net_initdata struct pernet_operations rt_genid_ops = { .init = rt_genid_init, }; static int __net_init ipv4_inetpeer_init(struct net *net) { struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL); if (!bp) return -ENOMEM; inet_peer_base_init(bp); net->ipv4.peers = bp; return 0; } static void __net_exit ipv4_inetpeer_exit(struct net *net) { struct inet_peer_base *bp = net->ipv4.peers; net->ipv4.peers = NULL; inetpeer_invalidate_tree(bp); kfree(bp); } static __net_initdata struct pernet_operations ipv4_inetpeer_ops = { .init = ipv4_inetpeer_init, .exit = ipv4_inetpeer_exit, }; #ifdef CONFIG_IP_ROUTE_CLASSID struct ip_rt_acct __percpu *ip_rt_acct __read_mostly; #endif /* CONFIG_IP_ROUTE_CLASSID */ int __init ip_rt_init(void) { void *idents_hash; int cpu; /* For modern hosts, this will use 2 MB of memory */ idents_hash = alloc_large_system_hash("IP idents", sizeof(*ip_idents) + sizeof(*ip_tstamps), 0, 16, /* one bucket per 64 KB */ HASH_ZERO, NULL, &ip_idents_mask, 2048, 256*1024); ip_idents = idents_hash; prandom_bytes(ip_idents, (ip_idents_mask + 1) * sizeof(*ip_idents)); ip_tstamps = idents_hash + (ip_idents_mask + 1) * sizeof(*ip_idents); for_each_possible_cpu(cpu) { struct uncached_list *ul = &per_cpu(rt_uncached_list, cpu); INIT_LIST_HEAD(&ul->head); spin_lock_init(&ul->lock); } #ifdef CONFIG_IP_ROUTE_CLASSID ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct), __alignof__(struct ip_rt_acct)); if (!ip_rt_acct) panic("IP: failed to allocate ip_rt_acct\n"); #endif ipv4_dst_ops.kmem_cachep = kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep; if (dst_entries_init(&ipv4_dst_ops) < 0) panic("IP: failed to allocate ipv4_dst_ops counter\n"); if (dst_entries_init(&ipv4_dst_blackhole_ops) < 0) panic("IP: failed to allocate ipv4_dst_blackhole_ops counter\n"); ipv4_dst_ops.gc_thresh = ~0; ip_rt_max_size = INT_MAX; devinet_init(); ip_fib_init(); if (ip_rt_proc_init()) pr_err("Unable to create route proc files\n"); #ifdef CONFIG_XFRM xfrm_init(); xfrm4_init(); #endif rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL, RTNL_FLAG_DOIT_UNLOCKED); #ifdef CONFIG_SYSCTL register_pernet_subsys(&sysctl_route_ops); #endif register_pernet_subsys(&rt_genid_ops); register_pernet_subsys(&ipv4_inetpeer_ops); return 0; } #ifdef CONFIG_SYSCTL /* * We really need to sanitize the damn ipv4 init order, then all * this nonsense will go away. */ void __init ip_static_sysctl_init(void) { register_net_sysctl(&init_net, "net/ipv4/route", ipv4_route_table); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _INET_ECN_H_ #define _INET_ECN_H_ #include <linux/ip.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #include <net/inet_sock.h> #include <net/dsfield.h> enum { INET_ECN_NOT_ECT = 0, INET_ECN_ECT_1 = 1, INET_ECN_ECT_0 = 2, INET_ECN_CE = 3, INET_ECN_MASK = 3, }; extern int sysctl_tunnel_ecn_log; static inline int INET_ECN_is_ce(__u8 dsfield) { return (dsfield & INET_ECN_MASK) == INET_ECN_CE; } static inline int INET_ECN_is_not_ect(__u8 dsfield) { return (dsfield & INET_ECN_MASK) == INET_ECN_NOT_ECT; } static inline int INET_ECN_is_capable(__u8 dsfield) { return dsfield & INET_ECN_ECT_0; } /* * RFC 3168 9.1.1 * The full-functionality option for ECN encapsulation is to copy the * ECN codepoint of the inside header to the outside header on * encapsulation if the inside header is not-ECT or ECT, and to set the * ECN codepoint of the outside header to ECT(0) if the ECN codepoint of * the inside header is CE. */ static inline __u8 INET_ECN_encapsulate(__u8 outer, __u8 inner) { outer &= ~INET_ECN_MASK; outer |= !INET_ECN_is_ce(inner) ? (inner & INET_ECN_MASK) : INET_ECN_ECT_0; return outer; } static inline void INET_ECN_xmit(struct sock *sk) { inet_sk(sk)->tos |= INET_ECN_ECT_0; if (inet6_sk(sk) != NULL) inet6_sk(sk)->tclass |= INET_ECN_ECT_0; } static inline void INET_ECN_dontxmit(struct sock *sk) { inet_sk(sk)->tos &= ~INET_ECN_MASK; if (inet6_sk(sk) != NULL) inet6_sk(sk)->tclass &= ~INET_ECN_MASK; } #define IP6_ECN_flow_init(label) do { \ (label) &= ~htonl(INET_ECN_MASK << 20); \ } while (0) #define IP6_ECN_flow_xmit(sk, label) do { \ if (INET_ECN_is_capable(inet6_sk(sk)->tclass)) \ (label) |= htonl(INET_ECN_ECT_0 << 20); \ } while (0) static inline int IP_ECN_set_ce(struct iphdr *iph) { u32 check = (__force u32)iph->check; u32 ecn = (iph->tos + 1) & INET_ECN_MASK; /* * After the last operation we have (in binary): * INET_ECN_NOT_ECT => 01 * INET_ECN_ECT_1 => 10 * INET_ECN_ECT_0 => 11 * INET_ECN_CE => 00 */ if (!(ecn & 2)) return !ecn; /* * The following gives us: * INET_ECN_ECT_1 => check += htons(0xFFFD) * INET_ECN_ECT_0 => check += htons(0xFFFE) */ check += (__force u16)htons(0xFFFB) + (__force u16)htons(ecn); iph->check = (__force __sum16)(check + (check>=0xFFFF)); iph->tos |= INET_ECN_CE; return 1; } static inline int IP_ECN_set_ect1(struct iphdr *iph) { u32 check = (__force u32)iph->check; if ((iph->tos & INET_ECN_MASK) != INET_ECN_ECT_0) return 0; check += (__force u16)htons(0x1); iph->check = (__force __sum16)(check + (check>=0xFFFF)); iph->tos ^= INET_ECN_MASK; return 1; } static inline void IP_ECN_clear(struct iphdr *iph) { iph->tos &= ~INET_ECN_MASK; } static inline void ipv4_copy_dscp(unsigned int dscp, struct iphdr *inner) { dscp &= ~INET_ECN_MASK; ipv4_change_dsfield(inner, INET_ECN_MASK, dscp); } struct ipv6hdr; /* Note: * IP_ECN_set_ce() has to tweak IPV4 checksum when setting CE, * meaning both changes have no effect on skb->csum if/when CHECKSUM_COMPLETE * In IPv6 case, no checksum compensates the change in IPv6 header, * so we have to update skb->csum. */ static inline int IP6_ECN_set_ce(struct sk_buff *skb, struct ipv6hdr *iph) { __be32 from, to; if (INET_ECN_is_not_ect(ipv6_get_dsfield(iph))) return 0; from = *(__be32 *)iph; to = from | htonl(INET_ECN_CE << 20); *(__be32 *)iph = to; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(csum_sub(skb->csum, (__force __wsum)from), (__force __wsum)to); return 1; } static inline int IP6_ECN_set_ect1(struct sk_buff *skb, struct ipv6hdr *iph) { __be32 from, to; if ((ipv6_get_dsfield(iph) & INET_ECN_MASK) != INET_ECN_ECT_0) return 0; from = *(__be32 *)iph; to = from ^ htonl(INET_ECN_MASK << 20); *(__be32 *)iph = to; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(csum_sub(skb->csum, (__force __wsum)from), (__force __wsum)to); return 1; } static inline void ipv6_copy_dscp(unsigned int dscp, struct ipv6hdr *inner) { dscp &= ~INET_ECN_MASK; ipv6_change_dsfield(inner, INET_ECN_MASK, dscp); } static inline int INET_ECN_set_ce(struct sk_buff *skb) { switch (skb_protocol(skb, true)) { case cpu_to_be16(ETH_P_IP): if (skb_network_header(skb) + sizeof(struct iphdr) <= skb_tail_pointer(skb)) return IP_ECN_set_ce(ip_hdr(skb)); break; case cpu_to_be16(ETH_P_IPV6): if (skb_network_header(skb) + sizeof(struct ipv6hdr) <= skb_tail_pointer(skb)) return IP6_ECN_set_ce(skb, ipv6_hdr(skb)); break; } return 0; } static inline int INET_ECN_set_ect1(struct sk_buff *skb) { switch (skb_protocol(skb, true)) { case cpu_to_be16(ETH_P_IP): if (skb_network_header(skb) + sizeof(struct iphdr) <= skb_tail_pointer(skb)) return IP_ECN_set_ect1(ip_hdr(skb)); break; case cpu_to_be16(ETH_P_IPV6): if (skb_network_header(skb) + sizeof(struct ipv6hdr) <= skb_tail_pointer(skb)) return IP6_ECN_set_ect1(skb, ipv6_hdr(skb)); break; } return 0; } /* * RFC 6040 4.2 * To decapsulate the inner header at the tunnel egress, a compliant * tunnel egress MUST set the outgoing ECN field to the codepoint at the * intersection of the appropriate arriving inner header (row) and outer * header (column) in Figure 4 * * +---------+------------------------------------------------+ * |Arriving | Arriving Outer Header | * | Inner +---------+------------+------------+------------+ * | Header | Not-ECT | ECT(0) | ECT(1) | CE | * +---------+---------+------------+------------+------------+ * | Not-ECT | Not-ECT |Not-ECT(!!!)|Not-ECT(!!!)| <drop>(!!!)| * | ECT(0) | ECT(0) | ECT(0) | ECT(1) | CE | * | ECT(1) | ECT(1) | ECT(1) (!) | ECT(1) | CE | * | CE | CE | CE | CE(!!!)| CE | * +---------+---------+------------+------------+------------+ * * Figure 4: New IP in IP Decapsulation Behaviour * * returns 0 on success * 1 if something is broken and should be logged (!!! above) * 2 if packet should be dropped */ static inline int __INET_ECN_decapsulate(__u8 outer, __u8 inner, bool *set_ce) { if (INET_ECN_is_not_ect(inner)) { switch (outer & INET_ECN_MASK) { case INET_ECN_NOT_ECT: return 0; case INET_ECN_ECT_0: case INET_ECN_ECT_1: return 1; case INET_ECN_CE: return 2; } } *set_ce = INET_ECN_is_ce(outer); return 0; } static inline int INET_ECN_decapsulate(struct sk_buff *skb, __u8 outer, __u8 inner) { bool set_ce = false; int rc; rc = __INET_ECN_decapsulate(outer, inner, &set_ce); if (!rc) { if (set_ce) INET_ECN_set_ce(skb); else if ((outer & INET_ECN_MASK) == INET_ECN_ECT_1) INET_ECN_set_ect1(skb); } return rc; } static inline int IP_ECN_decapsulate(const struct iphdr *oiph, struct sk_buff *skb) { __u8 inner; switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): inner = ip_hdr(skb)->tos; break; case htons(ETH_P_IPV6): inner = ipv6_get_dsfield(ipv6_hdr(skb)); break; default: return 0; } return INET_ECN_decapsulate(skb, oiph->tos, inner); } static inline int IP6_ECN_decapsulate(const struct ipv6hdr *oipv6h, struct sk_buff *skb) { __u8 inner; switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): inner = ip_hdr(skb)->tos; break; case htons(ETH_P_IPV6): inner = ipv6_get_dsfield(ipv6_hdr(skb)); break; default: return 0; } return INET_ECN_decapsulate(skb, ipv6_get_dsfield(oipv6h), inner); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 /* * include/linux/ktime.h * * ktime_t - nanosecond-resolution time format. * * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar * * data type definitions, declarations, prototypes and macros. * * Started by: Thomas Gleixner and Ingo Molnar * * Credits: * * Roman Zippel provided the ideas and primary code snippets of * the ktime_t union and further simplifications of the original * code. * * For licencing details see kernel-base/COPYING */ #ifndef _LINUX_KTIME_H #define _LINUX_KTIME_H #include <linux/time.h> #include <linux/jiffies.h> #include <asm/bug.h> /* Nanosecond scalar representation for kernel time values */ typedef s64 ktime_t; /** * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value * @secs: seconds to set * @nsecs: nanoseconds to set * * Return: The ktime_t representation of the value. */ static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs) { if (unlikely(secs >= KTIME_SEC_MAX)) return KTIME_MAX; return secs * NSEC_PER_SEC + (s64)nsecs; } /* Subtract two ktime_t variables. rem = lhs -rhs: */ #define ktime_sub(lhs, rhs) ((lhs) - (rhs)) /* Add two ktime_t variables. res = lhs + rhs: */ #define ktime_add(lhs, rhs) ((lhs) + (rhs)) /* * Same as ktime_add(), but avoids undefined behaviour on overflow; however, * this means that you must check the result for overflow yourself. */ #define ktime_add_unsafe(lhs, rhs) ((u64) (lhs) + (rhs)) /* * Add a ktime_t variable and a scalar nanosecond value. * res = kt + nsval: */ #define ktime_add_ns(kt, nsval) ((kt) + (nsval)) /* * Subtract a scalar nanosecod from a ktime_t variable * res = kt - nsval: */ #define ktime_sub_ns(kt, nsval) ((kt) - (nsval)) /* convert a timespec64 to ktime_t format: */ static inline ktime_t timespec64_to_ktime(struct timespec64 ts) { return ktime_set(ts.tv_sec, ts.tv_nsec); } /* Map the ktime_t to timespec conversion to ns_to_timespec function */ #define ktime_to_timespec64(kt) ns_to_timespec64((kt)) /* Convert ktime_t to nanoseconds */ static inline s64 ktime_to_ns(const ktime_t kt) { return kt; } /** * ktime_compare - Compares two ktime_t variables for less, greater or equal * @cmp1: comparable1 * @cmp2: comparable2 * * Return: ... * cmp1 < cmp2: return <0 * cmp1 == cmp2: return 0 * cmp1 > cmp2: return >0 */ static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2) { if (cmp1 < cmp2) return -1; if (cmp1 > cmp2) return 1; return 0; } /** * ktime_after - Compare if a ktime_t value is bigger than another one. * @cmp1: comparable1 * @cmp2: comparable2 * * Return: true if cmp1 happened after cmp2. */ static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2) { return ktime_compare(cmp1, cmp2) > 0; } /** * ktime_before - Compare if a ktime_t value is smaller than another one. * @cmp1: comparable1 * @cmp2: comparable2 * * Return: true if cmp1 happened before cmp2. */ static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2) { return ktime_compare(cmp1, cmp2) < 0; } #if BITS_PER_LONG < 64 extern s64 __ktime_divns(const ktime_t kt, s64 div); static inline s64 ktime_divns(const ktime_t kt, s64 div) { /* * Negative divisors could cause an inf loop, * so bug out here. */ BUG_ON(div < 0); if (__builtin_constant_p(div) && !(div >> 32)) { s64 ns = kt; u64 tmp = ns < 0 ? -ns : ns; do_div(tmp, div); return ns < 0 ? -tmp : tmp; } else { return __ktime_divns(kt, div); } } #else /* BITS_PER_LONG < 64 */ static inline s64 ktime_divns(const ktime_t kt, s64 div) { /* * 32-bit implementation cannot handle negative divisors, * so catch them on 64bit as well. */ WARN_ON(div < 0); return kt / div; } #endif static inline s64 ktime_to_us(const ktime_t kt) { return ktime_divns(kt, NSEC_PER_USEC); } static inline s64 ktime_to_ms(const ktime_t kt) { return ktime_divns(kt, NSEC_PER_MSEC); } static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier) { return ktime_to_us(ktime_sub(later, earlier)); } static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier) { return ktime_to_ms(ktime_sub(later, earlier)); } static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec) { return ktime_add_ns(kt, usec * NSEC_PER_USEC); } static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec) { return ktime_add_ns(kt, msec * NSEC_PER_MSEC); } static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec) { return ktime_sub_ns(kt, usec * NSEC_PER_USEC); } static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec) { return ktime_sub_ns(kt, msec * NSEC_PER_MSEC); } extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs); /** * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64 * format only if the variable contains data * @kt: the ktime_t variable to convert * @ts: the timespec variable to store the result in * * Return: %true if there was a successful conversion, %false if kt was 0. */ static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt, struct timespec64 *ts) { if (kt) { *ts = ktime_to_timespec64(kt); return true; } else { return false; } } #include <vdso/ktime.h> static inline ktime_t ns_to_ktime(u64 ns) { return ns; } static inline ktime_t ms_to_ktime(u64 ms) { return ms * NSEC_PER_MSEC; } # include <linux/timekeeping.h> # include <linux/timekeeping32.h> #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 /* SPDX-License-Identifier: GPL-2.0 */ /* Freezer declarations */ #ifndef FREEZER_H_INCLUDED #define FREEZER_H_INCLUDED #include <linux/debug_locks.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/atomic.h> #ifdef CONFIG_FREEZER extern atomic_t system_freezing_cnt; /* nr of freezing conds in effect */ extern bool pm_freezing; /* PM freezing in effect */ extern bool pm_nosig_freezing; /* PM nosig freezing in effect */ /* * Timeout for stopping processes */ extern unsigned int freeze_timeout_msecs; /* * Check if a process has been frozen */ static inline bool frozen(struct task_struct *p) { return p->flags & PF_FROZEN; } extern bool freezing_slow_path(struct task_struct *p); /* * Check if there is a request to freeze a process */ static inline bool freezing(struct task_struct *p) { if (likely(!atomic_read(&system_freezing_cnt))) return false; return freezing_slow_path(p); } /* Takes and releases task alloc lock using task_lock() */ extern void __thaw_task(struct task_struct *t); extern bool __refrigerator(bool check_kthr_stop); extern int freeze_processes(void); extern int freeze_kernel_threads(void); extern void thaw_processes(void); extern void thaw_kernel_threads(void); /* * DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION * If try_to_freeze causes a lockdep warning it means the caller may deadlock */ static inline bool try_to_freeze_unsafe(void) { might_sleep(); if (likely(!freezing(current))) return false; return __refrigerator(false); } static inline bool try_to_freeze(void) { if (!(current->flags & PF_NOFREEZE)) debug_check_no_locks_held(); return try_to_freeze_unsafe(); } extern bool freeze_task(struct task_struct *p); extern bool set_freezable(void); #ifdef CONFIG_CGROUP_FREEZER extern bool cgroup_freezing(struct task_struct *task); #else /* !CONFIG_CGROUP_FREEZER */ static inline bool cgroup_freezing(struct task_struct *task) { return false; } #endif /* !CONFIG_CGROUP_FREEZER */ /* * The PF_FREEZER_SKIP flag should be set by a vfork parent right before it * calls wait_for_completion(&vfork) and reset right after it returns from this * function. Next, the parent should call try_to_freeze() to freeze itself * appropriately in case the child has exited before the freezing of tasks is * complete. However, we don't want kernel threads to be frozen in unexpected * places, so we allow them to block freeze_processes() instead or to set * PF_NOFREEZE if needed. Fortunately, in the ____call_usermodehelper() case the * parent won't really block freeze_processes(), since ____call_usermodehelper() * (the child) does a little before exec/exit and it can't be frozen before * waking up the parent. */ /** * freezer_do_not_count - tell freezer to ignore %current * * Tell freezers to ignore the current task when determining whether the * target frozen state is reached. IOW, the current task will be * considered frozen enough by freezers. * * The caller shouldn't do anything which isn't allowed for a frozen task * until freezer_cont() is called. Usually, freezer[_do_not]_count() pair * wrap a scheduling operation and nothing much else. */ static inline void freezer_do_not_count(void) { current->flags |= PF_FREEZER_SKIP; } /** * freezer_count - tell freezer to stop ignoring %current * * Undo freezer_do_not_count(). It tells freezers that %current should be * considered again and tries to freeze if freezing condition is already in * effect. */ static inline void freezer_count(void) { current->flags &= ~PF_FREEZER_SKIP; /* * If freezing is in progress, the following paired with smp_mb() * in freezer_should_skip() ensures that either we see %true * freezing() or freezer_should_skip() sees !PF_FREEZER_SKIP. */ smp_mb(); try_to_freeze(); } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline void freezer_count_unsafe(void) { current->flags &= ~PF_FREEZER_SKIP; smp_mb(); try_to_freeze_unsafe(); } /** * freezer_should_skip - whether to skip a task when determining frozen * state is reached * @p: task in quesion * * This function is used by freezers after establishing %true freezing() to * test whether a task should be skipped when determining the target frozen * state is reached. IOW, if this function returns %true, @p is considered * frozen enough. */ static inline bool freezer_should_skip(struct task_struct *p) { /* * The following smp_mb() paired with the one in freezer_count() * ensures that either freezer_count() sees %true freezing() or we * see cleared %PF_FREEZER_SKIP and return %false. This makes it * impossible for a task to slip frozen state testing after * clearing %PF_FREEZER_SKIP. */ smp_mb(); return p->flags & PF_FREEZER_SKIP; } /* * These functions are intended to be used whenever you want allow a sleeping * task to be frozen. Note that neither return any clear indication of * whether a freeze event happened while in this function. */ /* Like schedule(), but should not block the freezer. */ static inline void freezable_schedule(void) { freezer_do_not_count(); schedule(); freezer_count(); } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline void freezable_schedule_unsafe(void) { freezer_do_not_count(); schedule(); freezer_count_unsafe(); } /* * Like schedule_timeout(), but should not block the freezer. Do not * call this with locks held. */ static inline long freezable_schedule_timeout(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout(timeout); freezer_count(); return __retval; } /* * Like schedule_timeout_interruptible(), but should not block the freezer. Do not * call this with locks held. */ static inline long freezable_schedule_timeout_interruptible(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_interruptible(timeout); freezer_count(); return __retval; } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline long freezable_schedule_timeout_interruptible_unsafe(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_interruptible(timeout); freezer_count_unsafe(); return __retval; } /* Like schedule_timeout_killable(), but should not block the freezer. */ static inline long freezable_schedule_timeout_killable(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_killable(timeout); freezer_count(); return __retval; } /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ static inline long freezable_schedule_timeout_killable_unsafe(long timeout) { long __retval; freezer_do_not_count(); __retval = schedule_timeout_killable(timeout); freezer_count_unsafe(); return __retval; } /* * Like schedule_hrtimeout_range(), but should not block the freezer. Do not * call this with locks held. */ static inline int freezable_schedule_hrtimeout_range(ktime_t *expires, u64 delta, const enum hrtimer_mode mode) { int __retval; freezer_do_not_count(); __retval = schedule_hrtimeout_range(expires, delta, mode); freezer_count(); return __retval; } /* * Freezer-friendly wrappers around wait_event_interruptible(), * wait_event_killable() and wait_event_interruptible_timeout(), originally * defined in <linux/wait.h> */ /* DO NOT ADD ANY NEW CALLERS OF THIS FUNCTION */ #define wait_event_freezekillable_unsafe(wq, condition) \ ({ \ int __retval; \ freezer_do_not_count(); \ __retval = wait_event_killable(wq, (condition)); \ freezer_count_unsafe(); \ __retval; \ }) #else /* !CONFIG_FREEZER */ static inline bool frozen(struct task_struct *p) { return false; } static inline bool freezing(struct task_struct *p) { return false; } static inline void __thaw_task(struct task_struct *t) {} static inline bool __refrigerator(bool check_kthr_stop) { return false; } static inline int freeze_processes(void) { return -ENOSYS; } static inline int freeze_kernel_threads(void) { return -ENOSYS; } static inline void thaw_processes(void) {} static inline void thaw_kernel_threads(void) {} static inline bool try_to_freeze_nowarn(void) { return false; } static inline bool try_to_freeze(void) { return false; } static inline void freezer_do_not_count(void) {} static inline void freezer_count(void) {} static inline int freezer_should_skip(struct task_struct *p) { return 0; } static inline void set_freezable(void) {} #define freezable_schedule() schedule() #define freezable_schedule_unsafe() schedule() #define freezable_schedule_timeout(timeout) schedule_timeout(timeout) #define freezable_schedule_timeout_interruptible(timeout) \ schedule_timeout_interruptible(timeout) #define freezable_schedule_timeout_interruptible_unsafe(timeout) \ schedule_timeout_interruptible(timeout) #define freezable_schedule_timeout_killable(timeout) \ schedule_timeout_killable(timeout) #define freezable_schedule_timeout_killable_unsafe(timeout) \ schedule_timeout_killable(timeout) #define freezable_schedule_hrtimeout_range(expires, delta, mode) \ schedule_hrtimeout_range(expires, delta, mode) #define wait_event_freezekillable_unsafe(wq, condition) \ wait_event_killable(wq, condition) #endif /* !CONFIG_FREEZER */ #endif /* FREEZER_H_INCLUDED */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 /* SPDX-License-Identifier: GPL-2.0-only */ /* * User-mode machine state access * * Copyright (C) 2007 Red Hat, Inc. All rights reserved. * * Red Hat Author: Roland McGrath. */ #ifndef _LINUX_REGSET_H #define _LINUX_REGSET_H 1 #include <linux/compiler.h> #include <linux/types.h> #include <linux/bug.h> #include <linux/uaccess.h> struct task_struct; struct user_regset; struct membuf { void *p; size_t left; }; static inline int membuf_zero(struct membuf *s, size_t size) { if (s->left) { if (size > s->left) size = s->left; memset(s->p, 0, size); s->p += size; s->left -= size; } return s->left; } static inline int membuf_write(struct membuf *s, const void *v, size_t size) { if (s->left) { if (size > s->left) size = s->left; memcpy(s->p, v, size); s->p += size; s->left -= size; } return s->left; } /* current s->p must be aligned for v; v must be a scalar */ #define membuf_store(s, v) \ ({ \ struct membuf *__s = (s); \ if (__s->left) { \ typeof(v) __v = (v); \ size_t __size = sizeof(__v); \ if (unlikely(__size > __s->left)) { \ __size = __s->left; \ memcpy(__s->p, &__v, __size); \ } else { \ *(typeof(__v + 0) *)__s->p = __v; \ } \ __s->p += __size; \ __s->left -= __size; \ } \ __s->left;}) /** * user_regset_active_fn - type of @active function in &struct user_regset * @target: thread being examined * @regset: regset being examined * * Return -%ENODEV if not available on the hardware found. * Return %0 if no interesting state in this thread. * Return >%0 number of @size units of interesting state. * Any get call fetching state beyond that number will * see the default initialization state for this data, * so a caller that knows what the default state is need * not copy it all out. * This call is optional; the pointer is %NULL if there * is no inexpensive check to yield a value < @n. */ typedef int user_regset_active_fn(struct task_struct *target, const struct user_regset *regset); typedef int user_regset_get2_fn(struct task_struct *target, const struct user_regset *regset, struct membuf to); /** * user_regset_set_fn - type of @set function in &struct user_regset * @target: thread being examined * @regset: regset being examined * @pos: offset into the regset data to access, in bytes * @count: amount of data to copy, in bytes * @kbuf: if not %NULL, a kernel-space pointer to copy from * @ubuf: if @kbuf is %NULL, a user-space pointer to copy from * * Store register values. Return %0 on success; -%EIO or -%ENODEV * are usual failure returns. The @pos and @count values are in * bytes, but must be properly aligned. If @kbuf is non-null, that * buffer is used and @ubuf is ignored. If @kbuf is %NULL, then * ubuf gives a userland pointer to access directly, and an -%EFAULT * return value is possible. */ typedef int user_regset_set_fn(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf); /** * user_regset_writeback_fn - type of @writeback function in &struct user_regset * @target: thread being examined * @regset: regset being examined * @immediate: zero if writeback at completion of next context switch is OK * * This call is optional; usually the pointer is %NULL. When * provided, there is some user memory associated with this regset's * hardware, such as memory backing cached register data on register * window machines; the regset's data controls what user memory is * used (e.g. via the stack pointer value). * * Write register data back to user memory. If the @immediate flag * is nonzero, it must be written to the user memory so uaccess or * access_process_vm() can see it when this call returns; if zero, * then it must be written back by the time the task completes a * context switch (as synchronized with wait_task_inactive()). * Return %0 on success or if there was nothing to do, -%EFAULT for * a memory problem (bad stack pointer or whatever), or -%EIO for a * hardware problem. */ typedef int user_regset_writeback_fn(struct task_struct *target, const struct user_regset *regset, int immediate); /** * struct user_regset - accessible thread CPU state * @n: Number of slots (registers). * @size: Size in bytes of a slot (register). * @align: Required alignment, in bytes. * @bias: Bias from natural indexing. * @core_note_type: ELF note @n_type value used in core dumps. * @get: Function to fetch values. * @set: Function to store values. * @active: Function to report if regset is active, or %NULL. * @writeback: Function to write data back to user memory, or %NULL. * * This data structure describes a machine resource we call a register set. * This is part of the state of an individual thread, not necessarily * actual CPU registers per se. A register set consists of a number of * similar slots, given by @n. Each slot is @size bytes, and aligned to * @align bytes (which is at least @size). For dynamically-sized * regsets, @n must contain the maximum possible number of slots for the * regset. * * For backward compatibility, the @get and @set methods must pad to, or * accept, @n * @size bytes, even if the current regset size is smaller. * The precise semantics of these operations depend on the regset being * accessed. * * The functions to which &struct user_regset members point must be * called only on the current thread or on a thread that is in * %TASK_STOPPED or %TASK_TRACED state, that we are guaranteed will not * be woken up and return to user mode, and that we have called * wait_task_inactive() on. (The target thread always might wake up for * SIGKILL while these functions are working, in which case that * thread's user_regset state might be scrambled.) * * The @pos argument must be aligned according to @align; the @count * argument must be a multiple of @size. These functions are not * responsible for checking for invalid arguments. * * When there is a natural value to use as an index, @bias gives the * difference between the natural index and the slot index for the * register set. For example, x86 GDT segment descriptors form a regset; * the segment selector produces a natural index, but only a subset of * that index space is available as a regset (the TLS slots); subtracting * @bias from a segment selector index value computes the regset slot. * * If nonzero, @core_note_type gives the n_type field (NT_* value) * of the core file note in which this regset's data appears. * NT_PRSTATUS is a special case in that the regset data starts at * offsetof(struct elf_prstatus, pr_reg) into the note data; that is * part of the per-machine ELF formats userland knows about. In * other cases, the core file note contains exactly the whole regset * (@n * @size) and nothing else. The core file note is normally * omitted when there is an @active function and it returns zero. */ struct user_regset { user_regset_get2_fn *regset_get; user_regset_set_fn *set; user_regset_active_fn *active; user_regset_writeback_fn *writeback; unsigned int n; unsigned int size; unsigned int align; unsigned int bias; unsigned int core_note_type; }; /** * struct user_regset_view - available regsets * @name: Identifier, e.g. UTS_MACHINE string. * @regsets: Array of @n regsets available in this view. * @n: Number of elements in @regsets. * @e_machine: ELF header @e_machine %EM_* value written in core dumps. * @e_flags: ELF header @e_flags value written in core dumps. * @ei_osabi: ELF header @e_ident[%EI_OSABI] value written in core dumps. * * A regset view is a collection of regsets (&struct user_regset, * above). This describes all the state of a thread that can be seen * from a given architecture/ABI environment. More than one view might * refer to the same &struct user_regset, or more than one regset * might refer to the same machine-specific state in the thread. For * example, a 32-bit thread's state could be examined from the 32-bit * view or from the 64-bit view. Either method reaches the same thread * register state, doing appropriate widening or truncation. */ struct user_regset_view { const char *name; const struct user_regset *regsets; unsigned int n; u32 e_flags; u16 e_machine; u8 ei_osabi; }; /* * This is documented here rather than at the definition sites because its * implementation is machine-dependent but its interface is universal. */ /** * task_user_regset_view - Return the process's native regset view. * @tsk: a thread of the process in question * * Return the &struct user_regset_view that is native for the given process. * For example, what it would access when it called ptrace(). * Throughout the life of the process, this only changes at exec. */ const struct user_regset_view *task_user_regset_view(struct task_struct *tsk); static inline int user_regset_copyin(unsigned int *pos, unsigned int *count, const void **kbuf, const void __user **ubuf, void *data, const int start_pos, const int end_pos) { if (*count == 0) return 0; BUG_ON(*pos < start_pos); if (end_pos < 0 || *pos < end_pos) { unsigned int copy = (end_pos < 0 ? *count : min(*count, end_pos - *pos)); data += *pos - start_pos; if (*kbuf) { memcpy(data, *kbuf, copy); *kbuf += copy; } else if (__copy_from_user(data, *ubuf, copy)) return -EFAULT; else *ubuf += copy; *pos += copy; *count -= copy; } return 0; } static inline int user_regset_copyin_ignore(unsigned int *pos, unsigned int *count, const void **kbuf, const void __user **ubuf, const int start_pos, const int end_pos) { if (*count == 0) return 0; BUG_ON(*pos < start_pos); if (end_pos < 0 || *pos < end_pos) { unsigned int copy = (end_pos < 0 ? *count : min(*count, end_pos - *pos)); if (*kbuf) *kbuf += copy; else *ubuf += copy; *pos += copy; *count -= copy; } return 0; } extern int regset_get(struct task_struct *target, const struct user_regset *regset, unsigned int size, void *data); extern int regset_get_alloc(struct task_struct *target, const struct user_regset *regset, unsigned int size, void **data); extern int copy_regset_to_user(struct task_struct *target, const struct user_regset_view *view, unsigned int setno, unsigned int offset, unsigned int size, void __user *data); /** * copy_regset_from_user - store into thread's user_regset data from user memory * @target: thread to be examined * @view: &struct user_regset_view describing user thread machine state * @setno: index in @view->regsets * @offset: offset into the regset data, in bytes * @size: amount of data to copy, in bytes * @data: user-mode pointer to copy from */ static inline int copy_regset_from_user(struct task_struct *target, const struct user_regset_view *view, unsigned int setno, unsigned int offset, unsigned int size, const void __user *data) { const struct user_regset *regset = &view->regsets[setno]; if (!regset->set) return -EOPNOTSUPP; if (!access_ok(data, size)) return -EFAULT; return regset->set(target, regset, offset, size, NULL, data); } #endif /* <linux/regset.h> */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TASK_WORK_H #define _LINUX_TASK_WORK_H #include <linux/list.h> #include <linux/sched.h> typedef void (*task_work_func_t)(struct callback_head *); static inline void init_task_work(struct callback_head *twork, task_work_func_t func) { twork->func = func; } enum task_work_notify_mode { TWA_NONE, TWA_RESUME, TWA_SIGNAL, }; int task_work_add(struct task_struct *task, struct callback_head *twork, enum task_work_notify_mode mode); struct callback_head *task_work_cancel(struct task_struct *, task_work_func_t); void task_work_run(void); static inline void exit_task_work(struct task_struct *task) { task_work_run(); } #endif /* _LINUX_TASK_WORK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 /* gf128mul.h - GF(2^128) multiplication functions * * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org> * * Based on Dr Brian Gladman's (GPL'd) work published at * http://fp.gladman.plus.com/cryptography_technology/index.htm * See the original copyright notice below. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. */ /* --------------------------------------------------------------------------- Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. LICENSE TERMS The free distribution and use of this software in both source and binary form is allowed (with or without changes) provided that: 1. distributions of this source code include the above copyright notice, this list of conditions and the following disclaimer; 2. distributions in binary form include the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other associated materials; 3. the copyright holder's name is not used to endorse products built using this software without specific written permission. ALTERNATIVELY, provided that this notice is retained in full, this product may be distributed under the terms of the GNU General Public License (GPL), in which case the provisions of the GPL apply INSTEAD OF those given above. DISCLAIMER This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not limited to, correctness and/or fitness for purpose. --------------------------------------------------------------------------- Issue Date: 31/01/2006 An implementation of field multiplication in Galois Field GF(2^128) */ #ifndef _CRYPTO_GF128MUL_H #define _CRYPTO_GF128MUL_H #include <asm/byteorder.h> #include <crypto/b128ops.h> #include <linux/slab.h> /* Comment by Rik: * * For some background on GF(2^128) see for example: * http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf * * The elements of GF(2^128) := GF(2)[X]/(X^128-X^7-X^2-X^1-1) can * be mapped to computer memory in a variety of ways. Let's examine * three common cases. * * Take a look at the 16 binary octets below in memory order. The msb's * are left and the lsb's are right. char b[16] is an array and b[0] is * the first octet. * * 10000000 00000000 00000000 00000000 .... 00000000 00000000 00000000 * b[0] b[1] b[2] b[3] b[13] b[14] b[15] * * Every bit is a coefficient of some power of X. We can store the bits * in every byte in little-endian order and the bytes themselves also in * little endian order. I will call this lle (little-little-endian). * The above buffer represents the polynomial 1, and X^7+X^2+X^1+1 looks * like 11100001 00000000 .... 00000000 = { 0xE1, 0x00, }. * This format was originally implemented in gf128mul and is used * in GCM (Galois/Counter mode) and in ABL (Arbitrary Block Length). * * Another convention says: store the bits in bigendian order and the * bytes also. This is bbe (big-big-endian). Now the buffer above * represents X^127. X^7+X^2+X^1+1 looks like 00000000 .... 10000111, * b[15] = 0x87 and the rest is 0. LRW uses this convention and bbe * is partly implemented. * * Both of the above formats are easy to implement on big-endian * machines. * * XTS and EME (the latter of which is patent encumbered) use the ble * format (bits are stored in big endian order and the bytes in little * endian). The above buffer represents X^7 in this case and the * primitive polynomial is b[0] = 0x87. * * The common machine word-size is smaller than 128 bits, so to make * an efficient implementation we must split into machine word sizes. * This implementation uses 64-bit words for the moment. Machine * endianness comes into play. The lle format in relation to machine * endianness is discussed below by the original author of gf128mul Dr * Brian Gladman. * * Let's look at the bbe and ble format on a little endian machine. * * bbe on a little endian machine u32 x[4]: * * MS x[0] LS MS x[1] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 103..96 111.104 119.112 127.120 71...64 79...72 87...80 95...88 * * MS x[2] LS MS x[3] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 39...32 47...40 55...48 63...56 07...00 15...08 23...16 31...24 * * ble on a little endian machine * * MS x[0] LS MS x[1] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 31...24 23...16 15...08 07...00 63...56 55...48 47...40 39...32 * * MS x[2] LS MS x[3] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 95...88 87...80 79...72 71...64 127.120 199.112 111.104 103..96 * * Multiplications in GF(2^128) are mostly bit-shifts, so you see why * ble (and lbe also) are easier to implement on a little-endian * machine than on a big-endian machine. The converse holds for bbe * and lle. * * Note: to have good alignment, it seems to me that it is sufficient * to keep elements of GF(2^128) in type u64[2]. On 32-bit wordsize * machines this will automatically aligned to wordsize and on a 64-bit * machine also. */ /* Multiply a GF(2^128) field element by x. Field elements are held in arrays of bytes in which field bits 8n..8n + 7 are held in byte[n], with lower indexed bits placed in the more numerically significant bit positions within bytes. On little endian machines the bit indexes translate into the bit positions within four 32-bit words in the following way MS x[0] LS MS x[1] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 24...31 16...23 08...15 00...07 56...63 48...55 40...47 32...39 MS x[2] LS MS x[3] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 88...95 80...87 72...79 64...71 120.127 112.119 104.111 96..103 On big endian machines the bit indexes translate into the bit positions within four 32-bit words in the following way MS x[0] LS MS x[1] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 00...07 08...15 16...23 24...31 32...39 40...47 48...55 56...63 MS x[2] LS MS x[3] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 64...71 72...79 80...87 88...95 96..103 104.111 112.119 120.127 */ /* A slow generic version of gf_mul, implemented for lle and bbe * It multiplies a and b and puts the result in a */ void gf128mul_lle(be128 *a, const be128 *b); void gf128mul_bbe(be128 *a, const be128 *b); /* * The following functions multiply a field element by x in * the polynomial field representation. They use 64-bit word operations * to gain speed but compensate for machine endianness and hence work * correctly on both styles of machine. * * They are defined here for performance. */ static inline u64 gf128mul_mask_from_bit(u64 x, int which) { /* a constant-time version of 'x & ((u64)1 << which) ? (u64)-1 : 0' */ return ((s64)(x << (63 - which)) >> 63); } static inline void gf128mul_x_lle(be128 *r, const be128 *x) { u64 a = be64_to_cpu(x->a); u64 b = be64_to_cpu(x->b); /* equivalent to gf128mul_table_le[(b << 7) & 0xff] << 48 * (see crypto/gf128mul.c): */ u64 _tt = gf128mul_mask_from_bit(b, 0) & ((u64)0xe1 << 56); r->b = cpu_to_be64((b >> 1) | (a << 63)); r->a = cpu_to_be64((a >> 1) ^ _tt); } static inline void gf128mul_x_bbe(be128 *r, const be128 *x) { u64 a = be64_to_cpu(x->a); u64 b = be64_to_cpu(x->b); /* equivalent to gf128mul_table_be[a >> 63] (see crypto/gf128mul.c): */ u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87; r->a = cpu_to_be64((a << 1) | (b >> 63)); r->b = cpu_to_be64((b << 1) ^ _tt); } /* needed by XTS */ static inline void gf128mul_x_ble(le128 *r, const le128 *x) { u64 a = le64_to_cpu(x->a); u64 b = le64_to_cpu(x->b); /* equivalent to gf128mul_table_be[b >> 63] (see crypto/gf128mul.c): */ u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87; r->a = cpu_to_le64((a << 1) | (b >> 63)); r->b = cpu_to_le64((b << 1) ^ _tt); } /* 4k table optimization */ struct gf128mul_4k { be128 t[256]; }; struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g); struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g); void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t); void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t); void gf128mul_x8_ble(le128 *r, const le128 *x); static inline void gf128mul_free_4k(struct gf128mul_4k *t) { kfree_sensitive(t); } /* 64k table optimization, implemented for bbe */ struct gf128mul_64k { struct gf128mul_4k *t[16]; }; /* First initialize with the constant factor with which you * want to multiply and then call gf128mul_64k_bbe with the other * factor in the first argument, and the table in the second. * Afterwards, the result is stored in *a. */ struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g); void gf128mul_free_64k(struct gf128mul_64k *t); void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t); #endif /* _CRYPTO_GF128MUL_H */
1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 // SPDX-License-Identifier: GPL-2.0-or-later /* * UDP over IPv6 * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * * Based on linux/ipv4/udp.c * * Fixes: * Hideaki YOSHIFUJI : sin6_scope_id support * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind * a single port at the same time. * Kazunori MIYAZAWA @USAGI: change process style to use ip6_append_data * YOSHIFUJI Hideaki @USAGI: convert /proc/net/udp6 to seq_file. */ #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/init.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/indirect_call_wrapper.h> #include <net/addrconf.h> #include <net/ndisc.h> #include <net/protocol.h> #include <net/transp_v6.h> #include <net/ip6_route.h> #include <net/raw.h> #include <net/tcp_states.h> #include <net/ip6_checksum.h> #include <net/ip6_tunnel.h> #include <net/xfrm.h> #include <net/inet_hashtables.h> #include <net/inet6_hashtables.h> #include <net/busy_poll.h> #include <net/sock_reuseport.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <trace/events/skb.h> #include "udp_impl.h" static u32 udp6_ehashfn(const struct net *net, const struct in6_addr *laddr, const u16 lport, const struct in6_addr *faddr, const __be16 fport) { static u32 udp6_ehash_secret __read_mostly; static u32 udp_ipv6_hash_secret __read_mostly; u32 lhash, fhash; net_get_random_once(&udp6_ehash_secret, sizeof(udp6_ehash_secret)); net_get_random_once(&udp_ipv6_hash_secret, sizeof(udp_ipv6_hash_secret)); lhash = (__force u32)laddr->s6_addr32[3]; fhash = __ipv6_addr_jhash(faddr, udp_ipv6_hash_secret); return __inet6_ehashfn(lhash, lport, fhash, fport, udp_ipv6_hash_secret + net_hash_mix(net)); } int udp_v6_get_port(struct sock *sk, unsigned short snum) { unsigned int hash2_nulladdr = ipv6_portaddr_hash(sock_net(sk), &in6addr_any, snum); unsigned int hash2_partial = ipv6_portaddr_hash(sock_net(sk), &sk->sk_v6_rcv_saddr, 0); /* precompute partial secondary hash */ udp_sk(sk)->udp_portaddr_hash = hash2_partial; return udp_lib_get_port(sk, snum, hash2_nulladdr); } void udp_v6_rehash(struct sock *sk) { u16 new_hash = ipv6_portaddr_hash(sock_net(sk), &sk->sk_v6_rcv_saddr, inet_sk(sk)->inet_num); udp_lib_rehash(sk, new_hash); } static int compute_score(struct sock *sk, struct net *net, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, unsigned short hnum, int dif, int sdif) { int score; struct inet_sock *inet; bool dev_match; if (!net_eq(sock_net(sk), net) || udp_sk(sk)->udp_port_hash != hnum || sk->sk_family != PF_INET6) return -1; if (!ipv6_addr_equal(&sk->sk_v6_rcv_saddr, daddr)) return -1; score = 0; inet = inet_sk(sk); if (inet->inet_dport) { if (inet->inet_dport != sport) return -1; score++; } if (!ipv6_addr_any(&sk->sk_v6_daddr)) { if (!ipv6_addr_equal(&sk->sk_v6_daddr, saddr)) return -1; score++; } dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif); if (!dev_match) return -1; if (sk->sk_bound_dev_if) score++; if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) score++; return score; } static struct sock *lookup_reuseport(struct net *net, struct sock *sk, struct sk_buff *skb, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, unsigned int hnum) { struct sock *reuse_sk = NULL; u32 hash; if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) { hash = udp6_ehashfn(net, daddr, hnum, saddr, sport); reuse_sk = reuseport_select_sock(sk, hash, skb, sizeof(struct udphdr)); } return reuse_sk; } /* called with rcu_read_lock() */ static struct sock *udp6_lib_lookup2(struct net *net, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, unsigned int hnum, int dif, int sdif, struct udp_hslot *hslot2, struct sk_buff *skb) { struct sock *sk, *result; int score, badness; result = NULL; badness = -1; udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { score = compute_score(sk, net, saddr, sport, daddr, hnum, dif, sdif); if (score > badness) { result = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum); /* Fall back to scoring if group has connections */ if (result && !reuseport_has_conns(sk, false)) return result; result = result ? : sk; badness = score; } } return result; } static inline struct sock *udp6_lookup_run_bpf(struct net *net, struct udp_table *udptable, struct sk_buff *skb, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, u16 hnum) { struct sock *sk, *reuse_sk; bool no_reuseport; if (udptable != &udp_table) return NULL; /* only UDP is supported */ no_reuseport = bpf_sk_lookup_run_v6(net, IPPROTO_UDP, saddr, sport, daddr, hnum, &sk); if (no_reuseport || IS_ERR_OR_NULL(sk)) return sk; reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum); if (reuse_sk) sk = reuse_sk; return sk; } /* rcu_read_lock() must be held */ struct sock *__udp6_lib_lookup(struct net *net, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, __be16 dport, int dif, int sdif, struct udp_table *udptable, struct sk_buff *skb) { unsigned short hnum = ntohs(dport); unsigned int hash2, slot2; struct udp_hslot *hslot2; struct sock *result, *sk; hash2 = ipv6_portaddr_hash(net, daddr, hnum); slot2 = hash2 & udptable->mask; hslot2 = &udptable->hash2[slot2]; /* Lookup connected or non-wildcard sockets */ result = udp6_lib_lookup2(net, saddr, sport, daddr, hnum, dif, sdif, hslot2, skb); if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) goto done; /* Lookup redirect from BPF */ if (static_branch_unlikely(&bpf_sk_lookup_enabled)) { sk = udp6_lookup_run_bpf(net, udptable, skb, saddr, sport, daddr, hnum); if (sk) { result = sk; goto done; } } /* Got non-wildcard socket or error on first lookup */ if (result) goto done; /* Lookup wildcard sockets */ hash2 = ipv6_portaddr_hash(net, &in6addr_any, hnum); slot2 = hash2 & udptable->mask; hslot2 = &udptable->hash2[slot2]; result = udp6_lib_lookup2(net, saddr, sport, &in6addr_any, hnum, dif, sdif, hslot2, skb); done: if (IS_ERR(result)) return NULL; return result; } EXPORT_SYMBOL_GPL(__udp6_lib_lookup); static struct sock *__udp6_lib_lookup_skb(struct sk_buff *skb, __be16 sport, __be16 dport, struct udp_table *udptable) { const struct ipv6hdr *iph = ipv6_hdr(skb); return __udp6_lib_lookup(dev_net(skb->dev), &iph->saddr, sport, &iph->daddr, dport, inet6_iif(skb), inet6_sdif(skb), udptable, skb); } struct sock *udp6_lib_lookup_skb(struct sk_buff *skb, __be16 sport, __be16 dport) { const struct ipv6hdr *iph = ipv6_hdr(skb); return __udp6_lib_lookup(dev_net(skb->dev), &iph->saddr, sport, &iph->daddr, dport, inet6_iif(skb), inet6_sdif(skb), &udp_table, NULL); } EXPORT_SYMBOL_GPL(udp6_lib_lookup_skb); /* Must be called under rcu_read_lock(). * Does increment socket refcount. */ #if IS_ENABLED(CONFIG_NF_TPROXY_IPV6) || IS_ENABLED(CONFIG_NF_SOCKET_IPV6) struct sock *udp6_lib_lookup(struct net *net, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, __be16 dport, int dif) { struct sock *sk; sk = __udp6_lib_lookup(net, saddr, sport, daddr, dport, dif, 0, &udp_table, NULL); if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) sk = NULL; return sk; } EXPORT_SYMBOL_GPL(udp6_lib_lookup); #endif /* do not use the scratch area len for jumbogram: their length execeeds the * scratch area space; note that the IP6CB flags is still in the first * cacheline, so checking for jumbograms is cheap */ static int udp6_skb_len(struct sk_buff *skb) { return unlikely(inet6_is_jumbogram(skb)) ? skb->len : udp_skb_len(skb); } /* * This should be easy, if there is something there we * return it, otherwise we block. */ int udpv6_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len) { struct ipv6_pinfo *np = inet6_sk(sk); struct inet_sock *inet = inet_sk(sk); struct sk_buff *skb; unsigned int ulen, copied; int off, err, peeking = flags & MSG_PEEK; int is_udplite = IS_UDPLITE(sk); struct udp_mib __percpu *mib; bool checksum_valid = false; int is_udp4; if (flags & MSG_ERRQUEUE) return ipv6_recv_error(sk, msg, len, addr_len); if (np->rxpmtu && np->rxopt.bits.rxpmtu) return ipv6_recv_rxpmtu(sk, msg, len, addr_len); try_again: off = sk_peek_offset(sk, flags); skb = __skb_recv_udp(sk, flags, noblock, &off, &err); if (!skb) return err; ulen = udp6_skb_len(skb); copied = len; if (copied > ulen - off) copied = ulen - off; else if (copied < ulen) msg->msg_flags |= MSG_TRUNC; is_udp4 = (skb->protocol == htons(ETH_P_IP)); mib = __UDPX_MIB(sk, is_udp4); /* * If checksum is needed at all, try to do it while copying the * data. If the data is truncated, or if we only want a partial * coverage checksum (UDP-Lite), do it before the copy. */ if (copied < ulen || peeking || (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { checksum_valid = udp_skb_csum_unnecessary(skb) || !__udp_lib_checksum_complete(skb); if (!checksum_valid) goto csum_copy_err; } if (checksum_valid || udp_skb_csum_unnecessary(skb)) { if (udp_skb_is_linear(skb)) err = copy_linear_skb(skb, copied, off, &msg->msg_iter); else err = skb_copy_datagram_msg(skb, off, msg, copied); } else { err = skb_copy_and_csum_datagram_msg(skb, off, msg); if (err == -EINVAL) goto csum_copy_err; } if (unlikely(err)) { if (!peeking) { atomic_inc(&sk->sk_drops); SNMP_INC_STATS(mib, UDP_MIB_INERRORS); } kfree_skb(skb); return err; } if (!peeking) SNMP_INC_STATS(mib, UDP_MIB_INDATAGRAMS); sock_recv_ts_and_drops(msg, sk, skb); /* Copy the address. */ if (msg->msg_name) { DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); sin6->sin6_family = AF_INET6; sin6->sin6_port = udp_hdr(skb)->source; sin6->sin6_flowinfo = 0; if (is_udp4) { ipv6_addr_set_v4mapped(ip_hdr(skb)->saddr, &sin6->sin6_addr); sin6->sin6_scope_id = 0; } else { sin6->sin6_addr = ipv6_hdr(skb)->saddr; sin6->sin6_scope_id = ipv6_iface_scope_id(&sin6->sin6_addr, inet6_iif(skb)); } *addr_len = sizeof(*sin6); if (cgroup_bpf_enabled) BPF_CGROUP_RUN_PROG_UDP6_RECVMSG_LOCK(sk, (struct sockaddr *)sin6); } if (udp_sk(sk)->gro_enabled) udp_cmsg_recv(msg, sk, skb); if (np->rxopt.all) ip6_datagram_recv_common_ctl(sk, msg, skb); if (is_udp4) { if (inet->cmsg_flags) ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); } else { if (np->rxopt.all) ip6_datagram_recv_specific_ctl(sk, msg, skb); } err = copied; if (flags & MSG_TRUNC) err = ulen; skb_consume_udp(sk, skb, peeking ? -err : err); return err; csum_copy_err: if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, udp_skb_destructor)) { SNMP_INC_STATS(mib, UDP_MIB_CSUMERRORS); SNMP_INC_STATS(mib, UDP_MIB_INERRORS); } kfree_skb(skb); /* starting over for a new packet, but check if we need to yield */ cond_resched(); msg->msg_flags &= ~MSG_TRUNC; goto try_again; } DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); void udpv6_encap_enable(void) { static_branch_inc(&udpv6_encap_needed_key); } EXPORT_SYMBOL(udpv6_encap_enable); /* Handler for tunnels with arbitrary destination ports: no socket lookup, go * through error handlers in encapsulations looking for a match. */ static int __udp6_lib_err_encap_no_sk(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { int i; for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { int (*handler)(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info); const struct ip6_tnl_encap_ops *encap; encap = rcu_dereference(ip6tun_encaps[i]); if (!encap) continue; handler = encap->err_handler; if (handler && !handler(skb, opt, type, code, offset, info)) return 0; } return -ENOENT; } /* Try to match ICMP errors to UDP tunnels by looking up a socket without * reversing source and destination port: this will match tunnels that force the * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that * lwtunnels might actually break this assumption by being configured with * different destination ports on endpoints, in this case we won't be able to * trace ICMP messages back to them. * * If this doesn't match any socket, probe tunnels with arbitrary destination * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port * we've sent packets to won't necessarily match the local destination port. * * Then ask the tunnel implementation to match the error against a valid * association. * * Return an error if we can't find a match, the socket if we need further * processing, zero otherwise. */ static struct sock *__udp6_lib_err_encap(struct net *net, const struct ipv6hdr *hdr, int offset, struct udphdr *uh, struct udp_table *udptable, struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, __be32 info) { int network_offset, transport_offset; struct sock *sk; network_offset = skb_network_offset(skb); transport_offset = skb_transport_offset(skb); /* Network header needs to point to the outer IPv6 header inside ICMP */ skb_reset_network_header(skb); /* Transport header needs to point to the UDP header */ skb_set_transport_header(skb, offset); sk = __udp6_lib_lookup(net, &hdr->daddr, uh->source, &hdr->saddr, uh->dest, inet6_iif(skb), 0, udptable, skb); if (sk) { int (*lookup)(struct sock *sk, struct sk_buff *skb); struct udp_sock *up = udp_sk(sk); lookup = READ_ONCE(up->encap_err_lookup); if (!lookup || lookup(sk, skb)) sk = NULL; } if (!sk) { sk = ERR_PTR(__udp6_lib_err_encap_no_sk(skb, opt, type, code, offset, info)); } skb_set_transport_header(skb, transport_offset); skb_set_network_header(skb, network_offset); return sk; } int __udp6_lib_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info, struct udp_table *udptable) { struct ipv6_pinfo *np; const struct ipv6hdr *hdr = (const struct ipv6hdr *)skb->data; const struct in6_addr *saddr = &hdr->saddr; const struct in6_addr *daddr = &hdr->daddr; struct udphdr *uh = (struct udphdr *)(skb->data+offset); bool tunnel = false; struct sock *sk; int harderr; int err; struct net *net = dev_net(skb->dev); sk = __udp6_lib_lookup(net, daddr, uh->dest, saddr, uh->source, inet6_iif(skb), inet6_sdif(skb), udptable, NULL); if (!sk) { /* No socket for error: try tunnels before discarding */ sk = ERR_PTR(-ENOENT); if (static_branch_unlikely(&udpv6_encap_needed_key)) { sk = __udp6_lib_err_encap(net, hdr, offset, uh, udptable, skb, opt, type, code, info); if (!sk) return 0; } if (IS_ERR(sk)) { __ICMP6_INC_STATS(net, __in6_dev_get(skb->dev), ICMP6_MIB_INERRORS); return PTR_ERR(sk); } tunnel = true; } harderr = icmpv6_err_convert(type, code, &err); np = inet6_sk(sk); if (type == ICMPV6_PKT_TOOBIG) { if (!ip6_sk_accept_pmtu(sk)) goto out; ip6_sk_update_pmtu(skb, sk, info); if (np->pmtudisc != IPV6_PMTUDISC_DONT) harderr = 1; } if (type == NDISC_REDIRECT) { if (tunnel) { ip6_redirect(skb, sock_net(sk), inet6_iif(skb), sk->sk_mark, sk->sk_uid); } else { ip6_sk_redirect(skb, sk); } goto out; } /* Tunnels don't have an application socket: don't pass errors back */ if (tunnel) goto out; if (!np->recverr) { if (!harderr || sk->sk_state != TCP_ESTABLISHED) goto out; } else { ipv6_icmp_error(sk, skb, err, uh->dest, ntohl(info), (u8 *)(uh+1)); } sk->sk_err = err; sk->sk_error_report(sk); out: return 0; } static int __udpv6_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { int rc; if (!ipv6_addr_any(&sk->sk_v6_daddr)) { sock_rps_save_rxhash(sk, skb); sk_mark_napi_id(sk, skb); sk_incoming_cpu_update(sk); } else { sk_mark_napi_id_once(sk, skb); } rc = __udp_enqueue_schedule_skb(sk, skb); if (rc < 0) { int is_udplite = IS_UDPLITE(sk); /* Note that an ENOMEM error is charged twice */ if (rc == -ENOMEM) UDP6_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, is_udplite); UDP6_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); kfree_skb(skb); return -1; } return 0; } static __inline__ int udpv6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { return __udp6_lib_err(skb, opt, type, code, offset, info, &udp_table); } static int udpv6_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) { struct udp_sock *up = udp_sk(sk); int is_udplite = IS_UDPLITE(sk); if (!xfrm6_policy_check(sk, XFRM_POLICY_IN, skb)) goto drop; if (static_branch_unlikely(&udpv6_encap_needed_key) && up->encap_type) { int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); /* * This is an encapsulation socket so pass the skb to * the socket's udp_encap_rcv() hook. Otherwise, just * fall through and pass this up the UDP socket. * up->encap_rcv() returns the following value: * =0 if skb was successfully passed to the encap * handler or was discarded by it. * >0 if skb should be passed on to UDP. * <0 if skb should be resubmitted as proto -N */ /* if we're overly short, let UDP handle it */ encap_rcv = READ_ONCE(up->encap_rcv); if (encap_rcv) { int ret; /* Verify checksum before giving to encap */ if (udp_lib_checksum_complete(skb)) goto csum_error; ret = encap_rcv(sk, skb); if (ret <= 0) { __UDP_INC_STATS(sock_net(sk), UDP_MIB_INDATAGRAMS, is_udplite); return -ret; } } /* FALLTHROUGH -- it's a UDP Packet */ } /* * UDP-Lite specific tests, ignored on UDP sockets (see net/ipv4/udp.c). */ if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { if (up->pcrlen == 0) { /* full coverage was set */ net_dbg_ratelimited("UDPLITE6: partial coverage %d while full coverage %d requested\n", UDP_SKB_CB(skb)->cscov, skb->len); goto drop; } if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { net_dbg_ratelimited("UDPLITE6: coverage %d too small, need min %d\n", UDP_SKB_CB(skb)->cscov, up->pcrlen); goto drop; } } prefetch(&sk->sk_rmem_alloc); if (rcu_access_pointer(sk->sk_filter) && udp_lib_checksum_complete(skb)) goto csum_error; if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) goto drop; udp_csum_pull_header(skb); skb_dst_drop(skb); return __udpv6_queue_rcv_skb(sk, skb); csum_error: __UDP6_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); drop: __UDP6_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); atomic_inc(&sk->sk_drops); kfree_skb(skb); return -1; } static int udpv6_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { struct sk_buff *next, *segs; int ret; if (likely(!udp_unexpected_gso(sk, skb))) return udpv6_queue_rcv_one_skb(sk, skb); __skb_push(skb, -skb_mac_offset(skb)); segs = udp_rcv_segment(sk, skb, false); skb_list_walk_safe(segs, skb, next) { __skb_pull(skb, skb_transport_offset(skb)); ret = udpv6_queue_rcv_one_skb(sk, skb); if (ret > 0) ip6_protocol_deliver_rcu(dev_net(skb->dev), skb, ret, true); } return 0; } static bool __udp_v6_is_mcast_sock(struct net *net, struct sock *sk, __be16 loc_port, const struct in6_addr *loc_addr, __be16 rmt_port, const struct in6_addr *rmt_addr, int dif, int sdif, unsigned short hnum) { struct inet_sock *inet = inet_sk(sk); if (!net_eq(sock_net(sk), net)) return false; if (udp_sk(sk)->udp_port_hash != hnum || sk->sk_family != PF_INET6 || (inet->inet_dport && inet->inet_dport != rmt_port) || (!ipv6_addr_any(&sk->sk_v6_daddr) && !ipv6_addr_equal(&sk->sk_v6_daddr, rmt_addr)) || !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif) || (!ipv6_addr_any(&sk->sk_v6_rcv_saddr) && !ipv6_addr_equal(&sk->sk_v6_rcv_saddr, loc_addr))) return false; if (!inet6_mc_check(sk, loc_addr, rmt_addr)) return false; return true; } static void udp6_csum_zero_error(struct sk_buff *skb) { /* RFC 2460 section 8.1 says that we SHOULD log * this error. Well, it is reasonable. */ net_dbg_ratelimited("IPv6: udp checksum is 0 for [%pI6c]:%u->[%pI6c]:%u\n", &ipv6_hdr(skb)->saddr, ntohs(udp_hdr(skb)->source), &ipv6_hdr(skb)->daddr, ntohs(udp_hdr(skb)->dest)); } /* * Note: called only from the BH handler context, * so we don't need to lock the hashes. */ static int __udp6_lib_mcast_deliver(struct net *net, struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, struct udp_table *udptable, int proto) { struct sock *sk, *first = NULL; const struct udphdr *uh = udp_hdr(skb); unsigned short hnum = ntohs(uh->dest); struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); unsigned int offset = offsetof(typeof(*sk), sk_node); unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); int dif = inet6_iif(skb); int sdif = inet6_sdif(skb); struct hlist_node *node; struct sk_buff *nskb; if (use_hash2) { hash2_any = ipv6_portaddr_hash(net, &in6addr_any, hnum) & udptable->mask; hash2 = ipv6_portaddr_hash(net, daddr, hnum) & udptable->mask; start_lookup: hslot = &udptable->hash2[hash2]; offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); } sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { if (!__udp_v6_is_mcast_sock(net, sk, uh->dest, daddr, uh->source, saddr, dif, sdif, hnum)) continue; /* If zero checksum and no_check is not on for * the socket then skip it. */ if (!uh->check && !udp_sk(sk)->no_check6_rx) continue; if (!first) { first = sk; continue; } nskb = skb_clone(skb, GFP_ATOMIC); if (unlikely(!nskb)) { atomic_inc(&sk->sk_drops); __UDP6_INC_STATS(net, UDP_MIB_RCVBUFERRORS, IS_UDPLITE(sk)); __UDP6_INC_STATS(net, UDP_MIB_INERRORS, IS_UDPLITE(sk)); continue; } if (udpv6_queue_rcv_skb(sk, nskb) > 0) consume_skb(nskb); } /* Also lookup *:port if we are using hash2 and haven't done so yet. */ if (use_hash2 && hash2 != hash2_any) { hash2 = hash2_any; goto start_lookup; } if (first) { if (udpv6_queue_rcv_skb(first, skb) > 0) consume_skb(skb); } else { kfree_skb(skb); __UDP6_INC_STATS(net, UDP_MIB_IGNOREDMULTI, proto == IPPROTO_UDPLITE); } return 0; } static void udp6_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) { if (udp_sk_rx_dst_set(sk, dst)) { const struct rt6_info *rt = (const struct rt6_info *)dst; inet6_sk(sk)->rx_dst_cookie = rt6_get_cookie(rt); } } /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and * return code conversion for ip layer consumption */ static int udp6_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, struct udphdr *uh) { int ret; if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) skb_checksum_try_convert(skb, IPPROTO_UDP, ip6_compute_pseudo); ret = udpv6_queue_rcv_skb(sk, skb); /* a return value > 0 means to resubmit the input */ if (ret > 0) return ret; return 0; } int __udp6_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, int proto) { const struct in6_addr *saddr, *daddr; struct net *net = dev_net(skb->dev); struct udphdr *uh; struct sock *sk; bool refcounted; u32 ulen = 0; if (!pskb_may_pull(skb, sizeof(struct udphdr))) goto discard; saddr = &ipv6_hdr(skb)->saddr; daddr = &ipv6_hdr(skb)->daddr; uh = udp_hdr(skb); ulen = ntohs(uh->len); if (ulen > skb->len) goto short_packet; if (proto == IPPROTO_UDP) { /* UDP validates ulen. */ /* Check for jumbo payload */ if (ulen == 0) ulen = skb->len; if (ulen < sizeof(*uh)) goto short_packet; if (ulen < skb->len) { if (pskb_trim_rcsum(skb, ulen)) goto short_packet; saddr = &ipv6_hdr(skb)->saddr; daddr = &ipv6_hdr(skb)->daddr; uh = udp_hdr(skb); } } if (udp6_csum_init(skb, uh, proto)) goto csum_error; /* Check if the socket is already available, e.g. due to early demux */ sk = skb_steal_sock(skb, &refcounted); if (sk) { struct dst_entry *dst = skb_dst(skb); int ret; if (unlikely(sk->sk_rx_dst != dst)) udp6_sk_rx_dst_set(sk, dst); if (!uh->check && !udp_sk(sk)->no_check6_rx) { if (refcounted) sock_put(sk); goto report_csum_error; } ret = udp6_unicast_rcv_skb(sk, skb, uh); if (refcounted) sock_put(sk); return ret; } /* * Multicast receive code */ if (ipv6_addr_is_multicast(daddr)) return __udp6_lib_mcast_deliver(net, skb, saddr, daddr, udptable, proto); /* Unicast */ sk = __udp6_lib_lookup_skb(skb, uh->source, uh->dest, udptable); if (sk) { if (!uh->check && !udp_sk(sk)->no_check6_rx) goto report_csum_error; return udp6_unicast_rcv_skb(sk, skb, uh); } if (!uh->check) goto report_csum_error; if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) goto discard; if (udp_lib_checksum_complete(skb)) goto csum_error; __UDP6_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); kfree_skb(skb); return 0; short_packet: net_dbg_ratelimited("UDP%sv6: short packet: From [%pI6c]:%u %d/%d to [%pI6c]:%u\n", proto == IPPROTO_UDPLITE ? "-Lite" : "", saddr, ntohs(uh->source), ulen, skb->len, daddr, ntohs(uh->dest)); goto discard; report_csum_error: udp6_csum_zero_error(skb); csum_error: __UDP6_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); discard: __UDP6_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); kfree_skb(skb); return 0; } static struct sock *__udp6_lib_demux_lookup(struct net *net, __be16 loc_port, const struct in6_addr *loc_addr, __be16 rmt_port, const struct in6_addr *rmt_addr, int dif, int sdif) { unsigned short hnum = ntohs(loc_port); unsigned int hash2 = ipv6_portaddr_hash(net, loc_addr, hnum); unsigned int slot2 = hash2 & udp_table.mask; struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); struct sock *sk; udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { if (sk->sk_state == TCP_ESTABLISHED && INET6_MATCH(sk, net, rmt_addr, loc_addr, ports, dif, sdif)) return sk; /* Only check first socket in chain */ break; } return NULL; } INDIRECT_CALLABLE_SCOPE void udp_v6_early_demux(struct sk_buff *skb) { struct net *net = dev_net(skb->dev); const struct udphdr *uh; struct sock *sk; struct dst_entry *dst; int dif = skb->dev->ifindex; int sdif = inet6_sdif(skb); if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) return; uh = udp_hdr(skb); if (skb->pkt_type == PACKET_HOST) sk = __udp6_lib_demux_lookup(net, uh->dest, &ipv6_hdr(skb)->daddr, uh->source, &ipv6_hdr(skb)->saddr, dif, sdif); else return; if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) return; skb->sk = sk; skb->destructor = sock_efree; dst = READ_ONCE(sk->sk_rx_dst); if (dst) dst = dst_check(dst, inet6_sk(sk)->rx_dst_cookie); if (dst) { /* set noref for now. * any place which wants to hold dst has to call * dst_hold_safe() */ skb_dst_set_noref(skb, dst); } } INDIRECT_CALLABLE_SCOPE int udpv6_rcv(struct sk_buff *skb) { return __udp6_lib_rcv(skb, &udp_table, IPPROTO_UDP); } /* * Throw away all pending data and cancel the corking. Socket is locked. */ static void udp_v6_flush_pending_frames(struct sock *sk) { struct udp_sock *up = udp_sk(sk); if (up->pending == AF_INET) udp_flush_pending_frames(sk); else if (up->pending) { up->len = 0; up->pending = 0; ip6_flush_pending_frames(sk); } } static int udpv6_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { if (addr_len < offsetofend(struct sockaddr, sa_family)) return -EINVAL; /* The following checks are replicated from __ip6_datagram_connect() * and intended to prevent BPF program called below from accessing * bytes that are out of the bound specified by user in addr_len. */ if (uaddr->sa_family == AF_INET) { if (__ipv6_only_sock(sk)) return -EAFNOSUPPORT; return udp_pre_connect(sk, uaddr, addr_len); } if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; return BPF_CGROUP_RUN_PROG_INET6_CONNECT_LOCK(sk,