1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TIME64_H #define _LINUX_TIME64_H #include <linux/math64.h> #include <vdso/time64.h> typedef __s64 time64_t; typedef __u64 timeu64_t; #include <uapi/linux/time.h> struct timespec64 { time64_t tv_sec; /* seconds */ long tv_nsec; /* nanoseconds */ }; struct itimerspec64 { struct timespec64 it_interval; struct timespec64 it_value; }; /* Located here for timespec[64]_valid_strict */ #define TIME64_MAX ((s64)~((u64)1 << 63)) #define TIME64_MIN (-TIME64_MAX - 1) #define KTIME_MAX ((s64)~((u64)1 << 63)) #define KTIME_SEC_MAX (KTIME_MAX / NSEC_PER_SEC) /* * Limits for settimeofday(): * * To prevent setting the time close to the wraparound point time setting * is limited so a reasonable uptime can be accomodated. Uptime of 30 years * should be really sufficient, which means the cutoff is 2232. At that * point the cutoff is just a small part of the larger problem. */ #define TIME_UPTIME_SEC_MAX (30LL * 365 * 24 *3600) #define TIME_SETTOD_SEC_MAX (KTIME_SEC_MAX - TIME_UPTIME_SEC_MAX) static inline int timespec64_equal(const struct timespec64 *a, const struct timespec64 *b) { return (a->tv_sec == b->tv_sec) && (a->tv_nsec == b->tv_nsec); } /* * lhs < rhs: return <0 * lhs == rhs: return 0 * lhs > rhs: return >0 */ static inline int timespec64_compare(const struct timespec64 *lhs, const struct timespec64 *rhs) { if (lhs->tv_sec < rhs->tv_sec) return -1; if (lhs->tv_sec > rhs->tv_sec) return 1; return lhs->tv_nsec - rhs->tv_nsec; } extern void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec); static inline struct timespec64 timespec64_add(struct timespec64 lhs, struct timespec64 rhs) { struct timespec64 ts_delta; set_normalized_timespec64(&ts_delta, lhs.tv_sec + rhs.tv_sec, lhs.tv_nsec + rhs.tv_nsec); return ts_delta; } /* * sub = lhs - rhs, in normalized form */ static inline struct timespec64 timespec64_sub(struct timespec64 lhs, struct timespec64 rhs) { struct timespec64 ts_delta; set_normalized_timespec64(&ts_delta, lhs.tv_sec - rhs.tv_sec, lhs.tv_nsec - rhs.tv_nsec); return ts_delta; } /* * Returns true if the timespec64 is norm, false if denorm: */ static inline bool timespec64_valid(const struct timespec64 *ts) { /* Dates before 1970 are bogus */ if (ts->tv_sec < 0) return false; /* Can't have more nanoseconds then a second */ if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) return false; return true; } static inline bool timespec64_valid_strict(const struct timespec64 *ts) { if (!timespec64_valid(ts)) return false; /* Disallow values that could overflow ktime_t */ if ((unsigned long long)ts->tv_sec >= KTIME_SEC_MAX) return false; return true; } static inline bool timespec64_valid_settod(const struct timespec64 *ts) { if (!timespec64_valid(ts)) return false; /* Disallow values which cause overflow issues vs. CLOCK_REALTIME */ if ((unsigned long long)ts->tv_sec >= TIME_SETTOD_SEC_MAX) return false; return true; } /** * timespec64_to_ns - Convert timespec64 to nanoseconds * @ts: pointer to the timespec64 variable to be converted * * Returns the scalar nanosecond representation of the timespec64 * parameter. */ static inline s64 timespec64_to_ns(const struct timespec64 *ts) { /* Prevent multiplication overflow */ if ((unsigned long long)ts->tv_sec >= KTIME_SEC_MAX) return KTIME_MAX; return ((s64) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec; } /** * ns_to_timespec64 - Convert nanoseconds to timespec64 * @nsec: the nanoseconds value to be converted * * Returns the timespec64 representation of the nsec parameter. */ extern struct timespec64 ns_to_timespec64(const s64 nsec); /** * timespec64_add_ns - Adds nanoseconds to a timespec64 * @a: pointer to timespec64 to be incremented * @ns: unsigned nanoseconds value to be added * * This must always be inlined because its used from the x86-64 vdso, * which cannot call other kernel functions. */ static __always_inline void timespec64_add_ns(struct timespec64 *a, u64 ns) { a->tv_sec += __iter_div_u64_rem(a->tv_nsec + ns, NSEC_PER_SEC, &ns); a->tv_nsec = ns; } /* * timespec64_add_safe assumes both values are positive and checks for * overflow. It will return TIME64_MAX in case of overflow. */ extern struct timespec64 timespec64_add_safe(const struct timespec64 lhs, const struct timespec64 rhs); #endif /* _LINUX_TIME64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/pagemap.h> #include <linux/blkdev.h> #include <linux/genhd.h> #include "../blk.h" /* * add_gd_partition adds a partitions details to the devices partition * description. */ struct parsed_partitions { struct block_device *bdev; char name[BDEVNAME_SIZE]; struct { sector_t from; sector_t size; int flags; bool has_info; struct partition_meta_info info; } *parts; int next; int limit; bool access_beyond_eod; char *pp_buf; }; typedef struct { struct page *v; } Sector; void *read_part_sector(struct parsed_partitions *state, sector_t n, Sector *p); static inline void put_dev_sector(Sector p) { put_page(p.v); } static inline void put_partition(struct parsed_partitions *p, int n, sector_t from, sector_t size) { if (n < p->limit) { char tmp[1 + BDEVNAME_SIZE + 10 + 1]; p->parts[n].from = from; p->parts[n].size = size; snprintf(tmp, sizeof(tmp), " %s%d", p->name, n); strlcat(p->pp_buf, tmp, PAGE_SIZE); } } /* detection routines go here in alphabetical order: */ int adfspart_check_ADFS(struct parsed_partitions *state); int adfspart_check_CUMANA(struct parsed_partitions *state); int adfspart_check_EESOX(struct parsed_partitions *state); int adfspart_check_ICS(struct parsed_partitions *state); int adfspart_check_POWERTEC(struct parsed_partitions *state); int aix_partition(struct parsed_partitions *state); int amiga_partition(struct parsed_partitions *state); int atari_partition(struct parsed_partitions *state); int cmdline_partition(struct parsed_partitions *state); int efi_partition(struct parsed_partitions *state); int ibm_partition(struct parsed_partitions *); int karma_partition(struct parsed_partitions *state); int ldm_partition(struct parsed_partitions *state); int mac_partition(struct parsed_partitions *state); int msdos_partition(struct parsed_partitions *state); int osf_partition(struct parsed_partitions *state); int sgi_partition(struct parsed_partitions *state); int sun_partition(struct parsed_partitions *state); int sysv68_partition(struct parsed_partitions *state); int ultrix_partition(struct parsed_partitions *state);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_LOCAL_H #define _ASM_X86_LOCAL_H #include <linux/percpu.h> #include <linux/atomic.h> #include <asm/asm.h> typedef struct { atomic_long_t a; } local_t; #define LOCAL_INIT(i) { ATOMIC_LONG_INIT(i) } #define local_read(l) atomic_long_read(&(l)->a) #define local_set(l, i) atomic_long_set(&(l)->a, (i)) static inline void local_inc(local_t *l) { asm volatile(_ASM_INC "%0" : "+m" (l->a.counter)); } static inline void local_dec(local_t *l) { asm volatile(_ASM_DEC "%0" : "+m" (l->a.counter)); } static inline void local_add(long i, local_t *l) { asm volatile(_ASM_ADD "%1,%0" : "+m" (l->a.counter) : "ir" (i)); } static inline void local_sub(long i, local_t *l) { asm volatile(_ASM_SUB "%1,%0" : "+m" (l->a.counter) : "ir" (i)); } /** * local_sub_and_test - subtract value from variable and test result * @i: integer value to subtract * @l: pointer to type local_t * * Atomically subtracts @i from @l and returns * true if the result is zero, or false for all * other cases. */ static inline bool local_sub_and_test(long i, local_t *l) { return GEN_BINARY_RMWcc(_ASM_SUB, l->a.counter, e, "er", i); } /** * local_dec_and_test - decrement and test * @l: pointer to type local_t * * Atomically decrements @l by 1 and * returns true if the result is 0, or false for all other * cases. */ static inline bool local_dec_and_test(local_t *l) { return GEN_UNARY_RMWcc(_ASM_DEC, l->a.counter, e); } /** * local_inc_and_test - increment and test * @l: pointer to type local_t * * Atomically increments @l by 1 * and returns true if the result is zero, or false for all * other cases. */ static inline bool local_inc_and_test(local_t *l) { return GEN_UNARY_RMWcc(_ASM_INC, l->a.counter, e); } /** * local_add_negative - add and test if negative * @i: integer value to add * @l: pointer to type local_t * * Atomically adds @i to @l and returns true * if the result is negative, or false when * result is greater than or equal to zero. */ static inline bool local_add_negative(long i, local_t *l) { return GEN_BINARY_RMWcc(_ASM_ADD, l->a.counter, s, "er", i); } /** * local_add_return - add and return * @i: integer value to add * @l: pointer to type local_t * * Atomically adds @i to @l and returns @i + @l */ static inline long local_add_return(long i, local_t *l) { long __i = i; asm volatile(_ASM_XADD "%0, %1;" : "+r" (i), "+m" (l->a.counter) : : "memory"); return i + __i; } static inline long local_sub_return(long i, local_t *l) { return local_add_return(-i, l); } #define local_inc_return(l) (local_add_return(1, l)) #define local_dec_return(l) (local_sub_return(1, l)) #define local_cmpxchg(l, o, n) \ (cmpxchg_local(&((l)->a.counter), (o), (n))) /* Always has a lock prefix */ #define local_xchg(l, n) (xchg(&((l)->a.counter), (n))) /** * local_add_unless - add unless the number is a given value * @l: pointer of type local_t * @a: the amount to add to l... * @u: ...unless l is equal to u. * * Atomically adds @a to @l, so long as it was not @u. * Returns non-zero if @l was not @u, and zero otherwise. */ #define local_add_unless(l, a, u) \ ({ \ long c, old; \ c = local_read((l)); \ for (;;) { \ if (unlikely(c == (u))) \ break; \ old = local_cmpxchg((l), c, c + (a)); \ if (likely(old == c)) \ break; \ c = old; \ } \ c != (u); \ }) #define local_inc_not_zero(l) local_add_unless((l), 1, 0) /* On x86_32, these are no better than the atomic variants. * On x86-64 these are better than the atomic variants on SMP kernels * because they dont use a lock prefix. */ #define __local_inc(l) local_inc(l) #define __local_dec(l) local_dec(l) #define __local_add(i, l) local_add((i), (l)) #define __local_sub(i, l) local_sub((i), (l)) #endif /* _ASM_X86_LOCAL_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1994 Linus Torvalds * * Pentium III FXSR, SSE support * General FPU state handling cleanups * Gareth Hughes <gareth@valinux.com>, May 2000 * x86-64 work by Andi Kleen 2002 */ #ifndef _ASM_X86_FPU_INTERNAL_H #define _ASM_X86_FPU_INTERNAL_H #include <linux/compat.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/mm.h> #include <asm/user.h> #include <asm/fpu/api.h> #include <asm/fpu/xstate.h> #include <asm/fpu/xcr.h> #include <asm/cpufeature.h> #include <asm/trace/fpu.h> /* * High level FPU state handling functions: */ extern void fpu__prepare_read(struct fpu *fpu); extern void fpu__prepare_write(struct fpu *fpu); extern void fpu__save(struct fpu *fpu); extern int fpu__restore_sig(void __user *buf, int ia32_frame); extern void fpu__drop(struct fpu *fpu); extern int fpu__copy(struct task_struct *dst, struct task_struct *src); extern void fpu__clear_user_states(struct fpu *fpu); extern void fpu__clear_all(struct fpu *fpu); extern int fpu__exception_code(struct fpu *fpu, int trap_nr); /* * Boot time FPU initialization functions: */ extern void fpu__init_cpu(void); extern void fpu__init_system_xstate(void); extern void fpu__init_cpu_xstate(void); extern void fpu__init_system(struct cpuinfo_x86 *c); extern void fpu__init_check_bugs(void); extern void fpu__resume_cpu(void); extern u64 fpu__get_supported_xfeatures_mask(void); /* * Debugging facility: */ #ifdef CONFIG_X86_DEBUG_FPU # define WARN_ON_FPU(x) WARN_ON_ONCE(x) #else # define WARN_ON_FPU(x) ({ (void)(x); 0; }) #endif /* * FPU related CPU feature flag helper routines: */ static __always_inline __pure bool use_xsaveopt(void) { return static_cpu_has(X86_FEATURE_XSAVEOPT); } static __always_inline __pure bool use_xsave(void) { return static_cpu_has(X86_FEATURE_XSAVE); } static __always_inline __pure bool use_fxsr(void) { return static_cpu_has(X86_FEATURE_FXSR); } /* * fpstate handling functions: */ extern union fpregs_state init_fpstate; extern void fpstate_init(union fpregs_state *state); #ifdef CONFIG_MATH_EMULATION extern void fpstate_init_soft(struct swregs_state *soft); #else static inline void fpstate_init_soft(struct swregs_state *soft) {} #endif static inline void fpstate_init_xstate(struct xregs_state *xsave) { /* * XRSTORS requires these bits set in xcomp_bv, or it will * trigger #GP: */ xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask_all; } static inline void fpstate_init_fxstate(struct fxregs_state *fx) { fx->cwd = 0x37f; fx->mxcsr = MXCSR_DEFAULT; } extern void fpstate_sanitize_xstate(struct fpu *fpu); /* Returns 0 or the negated trap number, which results in -EFAULT for #PF */ #define user_insn(insn, output, input...) \ ({ \ int err; \ \ might_fault(); \ \ asm volatile(ASM_STAC "\n" \ "1: " #insn "\n" \ "2: " ASM_CLAC "\n" \ ".section .fixup,\"ax\"\n" \ "3: negl %%eax\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE_FAULT(1b, 3b) \ : [err] "=a" (err), output \ : "0"(0), input); \ err; \ }) #define kernel_insn_err(insn, output, input...) \ ({ \ int err; \ asm volatile("1:" #insn "\n\t" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: movl $-1,%[err]\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 3b) \ : [err] "=r" (err), output \ : "0"(0), input); \ err; \ }) #define kernel_insn(insn, output, input...) \ asm volatile("1:" #insn "\n\t" \ "2:\n" \ _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_fprestore) \ : output : input) static inline int copy_fregs_to_user(struct fregs_state __user *fx) { return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx)); } static inline int copy_fxregs_to_user(struct fxregs_state __user *fx) { if (IS_ENABLED(CONFIG_X86_32)) return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); else return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); } static inline void copy_kernel_to_fxregs(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_kernel_to_fxregs_err(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) return kernel_insn_err(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else return kernel_insn_err(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_user_to_fxregs(struct fxregs_state __user *fx) { if (IS_ENABLED(CONFIG_X86_32)) return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline void copy_kernel_to_fregs(struct fregs_state *fx) { kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_kernel_to_fregs_err(struct fregs_state *fx) { return kernel_insn_err(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_user_to_fregs(struct fregs_state __user *fx) { return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline void copy_fxregs_to_kernel(struct fpu *fpu) { if (IS_ENABLED(CONFIG_X86_32)) asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave)); else asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave)); } static inline void fxsave(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) asm volatile( "fxsave %[fx]" : [fx] "=m" (*fx)); else asm volatile("fxsaveq %[fx]" : [fx] "=m" (*fx)); } /* These macros all use (%edi)/(%rdi) as the single memory argument. */ #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27" #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37" #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f" #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f" #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f" /* * After this @err contains 0 on success or the negated trap number when * the operation raises an exception. For faults this results in -EFAULT. */ #define XSTATE_OP(op, st, lmask, hmask, err) \ asm volatile("1:" op "\n\t" \ "xor %[err], %[err]\n" \ "2:\n\t" \ ".pushsection .fixup,\"ax\"\n\t" \ "3: negl %%eax\n\t" \ "jmp 2b\n\t" \ ".popsection\n\t" \ _ASM_EXTABLE_FAULT(1b, 3b) \ : [err] "=a" (err) \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact * format and supervisor states in addition to modified optimization in * XSAVEOPT. * * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT * supports modified optimization which is not supported by XSAVE. * * We use XSAVE as a fallback. * * The 661 label is defined in the ALTERNATIVE* macros as the address of the * original instruction which gets replaced. We need to use it here as the * address of the instruction where we might get an exception at. */ #define XSTATE_XSAVE(st, lmask, hmask, err) \ asm volatile(ALTERNATIVE_2(XSAVE, \ XSAVEOPT, X86_FEATURE_XSAVEOPT, \ XSAVES, X86_FEATURE_XSAVES) \ "\n" \ "xor %[err], %[err]\n" \ "3:\n" \ ".pushsection .fixup,\"ax\"\n" \ "4: movl $-2, %[err]\n" \ "jmp 3b\n" \ ".popsection\n" \ _ASM_EXTABLE(661b, 4b) \ : [err] "=r" (err) \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact * XSAVE area format. */ #define XSTATE_XRESTORE(st, lmask, hmask) \ asm volatile(ALTERNATIVE(XRSTOR, \ XRSTORS, X86_FEATURE_XSAVES) \ "\n" \ "3:\n" \ _ASM_EXTABLE_HANDLE(661b, 3b, ex_handler_fprestore)\ : \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * This function is called only during boot time when x86 caps are not set * up and alternative can not be used yet. */ static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate) { u64 mask = -1; u32 lmask = mask; u32 hmask = mask >> 32; int err; WARN_ON(system_state != SYSTEM_BOOTING); if (boot_cpu_has(X86_FEATURE_XSAVES)) XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); else XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); /* * We should never fault when copying from a kernel buffer, and the FPU * state we set at boot time should be valid. */ WARN_ON_FPU(err); } /* * Save processor xstate to xsave area. */ static inline void copy_xregs_to_kernel(struct xregs_state *xstate) { u64 mask = xfeatures_mask_all; u32 lmask = mask; u32 hmask = mask >> 32; int err; WARN_ON_FPU(!alternatives_patched); XSTATE_XSAVE(xstate, lmask, hmask, err); /* We should never fault when copying to a kernel buffer: */ WARN_ON_FPU(err); } /* * Restore processor xstate from xsave area. */ static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask) { u32 lmask = mask; u32 hmask = mask >> 32; XSTATE_XRESTORE(xstate, lmask, hmask); } /* * Save xstate to user space xsave area. * * We don't use modified optimization because xrstor/xrstors might track * a different application. * * We don't use compacted format xsave area for * backward compatibility for old applications which don't understand * compacted format of xsave area. */ static inline int copy_xregs_to_user(struct xregs_state __user *buf) { u64 mask = xfeatures_mask_user(); u32 lmask = mask; u32 hmask = mask >> 32; int err; /* * Clear the xsave header first, so that reserved fields are * initialized to zero. */ err = __clear_user(&buf->header, sizeof(buf->header)); if (unlikely(err)) return -EFAULT; stac(); XSTATE_OP(XSAVE, buf, lmask, hmask, err); clac(); return err; } /* * Restore xstate from user space xsave area. */ static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask) { struct xregs_state *xstate = ((__force struct xregs_state *)buf); u32 lmask = mask; u32 hmask = mask >> 32; int err; stac(); XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); clac(); return err; } /* * Restore xstate from kernel space xsave area, return an error code instead of * an exception. */ static inline int copy_kernel_to_xregs_err(struct xregs_state *xstate, u64 mask) { u32 lmask = mask; u32 hmask = mask >> 32; int err; if (static_cpu_has(X86_FEATURE_XSAVES)) XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); else XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); return err; } extern int copy_fpregs_to_fpstate(struct fpu *fpu); static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask) { if (use_xsave()) { copy_kernel_to_xregs(&fpstate->xsave, mask); } else { if (use_fxsr()) copy_kernel_to_fxregs(&fpstate->fxsave); else copy_kernel_to_fregs(&fpstate->fsave); } } static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate) { /* * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is * pending. Clear the x87 state here by setting it to fixed values. * "m" is a random variable that should be in L1. */ if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { asm volatile( "fnclex\n\t" "emms\n\t" "fildl %P[addr]" /* set F?P to defined value */ : : [addr] "m" (fpstate)); } __copy_kernel_to_fpregs(fpstate, -1); } extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size); /* * FPU context switch related helper methods: */ DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); /* * The in-register FPU state for an FPU context on a CPU is assumed to be * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx * matches the FPU. * * If the FPU register state is valid, the kernel can skip restoring the * FPU state from memory. * * Any code that clobbers the FPU registers or updates the in-memory * FPU state for a task MUST let the rest of the kernel know that the * FPU registers are no longer valid for this task. * * Either one of these invalidation functions is enough. Invalidate * a resource you control: CPU if using the CPU for something else * (with preemption disabled), FPU for the current task, or a task that * is prevented from running by the current task. */ static inline void __cpu_invalidate_fpregs_state(void) { __this_cpu_write(fpu_fpregs_owner_ctx, NULL); } static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu) { fpu->last_cpu = -1; } static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu) { return fpu == this_cpu_read(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu; } /* * These generally need preemption protection to work, * do try to avoid using these on their own: */ static inline void fpregs_deactivate(struct fpu *fpu) { this_cpu_write(fpu_fpregs_owner_ctx, NULL); trace_x86_fpu_regs_deactivated(fpu); } static inline void fpregs_activate(struct fpu *fpu) { this_cpu_write(fpu_fpregs_owner_ctx, fpu); trace_x86_fpu_regs_activated(fpu); } /* * Internal helper, do not use directly. Use switch_fpu_return() instead. */ static inline void __fpregs_load_activate(void) { struct fpu *fpu = &current->thread.fpu; int cpu = smp_processor_id(); if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) return; if (!fpregs_state_valid(fpu, cpu)) { copy_kernel_to_fpregs(&fpu->state); fpregs_activate(fpu); fpu->last_cpu = cpu; } clear_thread_flag(TIF_NEED_FPU_LOAD); } /* * FPU state switching for scheduling. * * This is a two-stage process: * * - switch_fpu_prepare() saves the old state. * This is done within the context of the old process. * * - switch_fpu_finish() sets TIF_NEED_FPU_LOAD; the floating point state * will get loaded on return to userspace, or when the kernel needs it. * * If TIF_NEED_FPU_LOAD is cleared then the CPU's FPU registers * are saved in the current thread's FPU register state. * * If TIF_NEED_FPU_LOAD is set then CPU's FPU registers may not * hold current()'s FPU registers. It is required to load the * registers before returning to userland or using the content * otherwise. * * The FPU context is only stored/restored for a user task and * PF_KTHREAD is used to distinguish between kernel and user threads. */ static inline void switch_fpu_prepare(struct fpu *old_fpu, int cpu) { if (static_cpu_has(X86_FEATURE_FPU) && !(current->flags & PF_KTHREAD)) { if (!copy_fpregs_to_fpstate(old_fpu)) old_fpu->last_cpu = -1; else old_fpu->last_cpu = cpu; /* But leave fpu_fpregs_owner_ctx! */ trace_x86_fpu_regs_deactivated(old_fpu); } } /* * Misc helper functions: */ /* * Load PKRU from the FPU context if available. Delay loading of the * complete FPU state until the return to userland. */ static inline void switch_fpu_finish(struct fpu *new_fpu) { u32 pkru_val = init_pkru_value; struct pkru_state *pk; if (!static_cpu_has(X86_FEATURE_FPU)) return; set_thread_flag(TIF_NEED_FPU_LOAD); if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return; /* * PKRU state is switched eagerly because it needs to be valid before we * return to userland e.g. for a copy_to_user() operation. */ if (!(current->flags & PF_KTHREAD)) { /* * If the PKRU bit in xsave.header.xfeatures is not set, * then the PKRU component was in init state, which means * XRSTOR will set PKRU to 0. If the bit is not set then * get_xsave_addr() will return NULL because the PKRU value * in memory is not valid. This means pkru_val has to be * set to 0 and not to init_pkru_value. */ pk = get_xsave_addr(&new_fpu->state.xsave, XFEATURE_PKRU); pkru_val = pk ? pk->pkru : 0; } __write_pkru(pkru_val); } #endif /* _ASM_X86_FPU_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Checksumming functions for IPv6 * * Authors: Jorge Cwik, <jorge@laser.satlink.net> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Borrows very liberally from tcp.c and ip.c, see those * files for more names. */ /* * Fixes: * * Ralf Baechle : generic ipv6 checksum * <ralf@waldorf-gmbh.de> */ #ifndef _CHECKSUM_IPV6_H #define _CHECKSUM_IPV6_H #include <asm/types.h> #include <asm/byteorder.h> #include <net/ip.h> #include <asm/checksum.h> #include <linux/in6.h> #include <linux/tcp.h> #include <linux/ipv6.h> #ifndef _HAVE_ARCH_IPV6_CSUM __sum16 csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __u32 len, __u8 proto, __wsum csum); #endif static inline __wsum ip6_compute_pseudo(struct sk_buff *skb, int proto) { return ~csum_unfold(csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, skb->len, proto, 0)); } static inline __wsum ip6_gro_compute_pseudo(struct sk_buff *skb, int proto) { const struct ipv6hdr *iph = skb_gro_network_header(skb); return ~csum_unfold(csum_ipv6_magic(&iph->saddr, &iph->daddr, skb_gro_len(skb), proto, 0)); } static __inline__ __sum16 tcp_v6_check(int len, const struct in6_addr *saddr, const struct in6_addr *daddr, __wsum base) { return csum_ipv6_magic(saddr, daddr, len, IPPROTO_TCP, base); } static inline void __tcp_v6_send_check(struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr) { struct tcphdr *th = tcp_hdr(skb); if (skb->ip_summed == CHECKSUM_PARTIAL) { th->check = ~tcp_v6_check(skb->len, saddr, daddr, 0); skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct tcphdr, check); } else { th->check = tcp_v6_check(skb->len, saddr, daddr, csum_partial(th, th->doff << 2, skb->csum)); } } static inline void tcp_v6_gso_csum_prep(struct sk_buff *skb) { struct ipv6hdr *ipv6h = ipv6_hdr(skb); struct tcphdr *th = tcp_hdr(skb); ipv6h->payload_len = 0; th->check = ~tcp_v6_check(0, &ipv6h->saddr, &ipv6h->daddr, 0); } static inline __sum16 udp_v6_check(int len, const struct in6_addr *saddr, const struct in6_addr *daddr, __wsum base) { return csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP, base); } void udp6_set_csum(bool nocheck, struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int len); int udp6_csum_init(struct sk_buff *skb, struct udphdr *uh, int proto); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 /* SPDX-License-Identifier: GPL-2.0 */ /* * NUMA memory policies for Linux. * Copyright 2003,2004 Andi Kleen SuSE Labs */ #ifndef _LINUX_MEMPOLICY_H #define _LINUX_MEMPOLICY_H 1 #include <linux/sched.h> #include <linux/mmzone.h> #include <linux/dax.h> #include <linux/slab.h> #include <linux/rbtree.h> #include <linux/spinlock.h> #include <linux/nodemask.h> #include <linux/pagemap.h> #include <uapi/linux/mempolicy.h> struct mm_struct; #ifdef CONFIG_NUMA /* * Describe a memory policy. * * A mempolicy can be either associated with a process or with a VMA. * For VMA related allocations the VMA policy is preferred, otherwise * the process policy is used. Interrupts ignore the memory policy * of the current process. * * Locking policy for interleave: * In process context there is no locking because only the process accesses * its own state. All vma manipulation is somewhat protected by a down_read on * mmap_lock. * * Freeing policy: * Mempolicy objects are reference counted. A mempolicy will be freed when * mpol_put() decrements the reference count to zero. * * Duplicating policy objects: * mpol_dup() allocates a new mempolicy and copies the specified mempolicy * to the new storage. The reference count of the new object is initialized * to 1, representing the caller of mpol_dup(). */ struct mempolicy { atomic_t refcnt; unsigned short mode; /* See MPOL_* above */ unsigned short flags; /* See set_mempolicy() MPOL_F_* above */ union { short preferred_node; /* preferred */ nodemask_t nodes; /* interleave/bind */ /* undefined for default */ } v; union { nodemask_t cpuset_mems_allowed; /* relative to these nodes */ nodemask_t user_nodemask; /* nodemask passed by user */ } w; }; /* * Support for managing mempolicy data objects (clone, copy, destroy) * The default fast path of a NULL MPOL_DEFAULT policy is always inlined. */ extern void __mpol_put(struct mempolicy *pol); static inline void mpol_put(struct mempolicy *pol) { if (pol) __mpol_put(pol); } /* * Does mempolicy pol need explicit unref after use? * Currently only needed for shared policies. */ static inline int mpol_needs_cond_ref(struct mempolicy *pol) { return (pol && (pol->flags & MPOL_F_SHARED)); } static inline void mpol_cond_put(struct mempolicy *pol) { if (mpol_needs_cond_ref(pol)) __mpol_put(pol); } extern struct mempolicy *__mpol_dup(struct mempolicy *pol); static inline struct mempolicy *mpol_dup(struct mempolicy *pol) { if (pol) pol = __mpol_dup(pol); return pol; } #define vma_policy(vma) ((vma)->vm_policy) static inline void mpol_get(struct mempolicy *pol) { if (pol) atomic_inc(&pol->refcnt); } extern bool __mpol_equal(struct mempolicy *a, struct mempolicy *b); static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b) { if (a == b) return true; return __mpol_equal(a, b); } /* * Tree of shared policies for a shared memory region. * Maintain the policies in a pseudo mm that contains vmas. The vmas * carry the policy. As a special twist the pseudo mm is indexed in pages, not * bytes, so that we can work with shared memory segments bigger than * unsigned long. */ struct sp_node { struct rb_node nd; unsigned long start, end; struct mempolicy *policy; }; struct shared_policy { struct rb_root root; rwlock_t lock; }; int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst); void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol); int mpol_set_shared_policy(struct shared_policy *info, struct vm_area_struct *vma, struct mempolicy *new); void mpol_free_shared_policy(struct shared_policy *p); struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx); struct mempolicy *get_task_policy(struct task_struct *p); struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, unsigned long addr); bool vma_policy_mof(struct vm_area_struct *vma); extern void numa_default_policy(void); extern void numa_policy_init(void); extern void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new); extern void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new); extern int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask); extern bool init_nodemask_of_mempolicy(nodemask_t *mask); extern bool mempolicy_nodemask_intersects(struct task_struct *tsk, const nodemask_t *mask); extern nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy); static inline nodemask_t *policy_nodemask_current(gfp_t gfp) { struct mempolicy *mpol = get_task_policy(current); return policy_nodemask(gfp, mpol); } extern unsigned int mempolicy_slab_node(void); extern enum zone_type policy_zone; static inline void check_highest_zone(enum zone_type k) { if (k > policy_zone && k != ZONE_MOVABLE) policy_zone = k; } int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags); #ifdef CONFIG_TMPFS extern int mpol_parse_str(char *str, struct mempolicy **mpol); #endif extern void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol); /* Check if a vma is migratable */ extern bool vma_migratable(struct vm_area_struct *vma); extern int mpol_misplaced(struct page *, struct vm_area_struct *, unsigned long); extern void mpol_put_task_policy(struct task_struct *); #else struct mempolicy {}; static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b) { return true; } static inline void mpol_put(struct mempolicy *p) { } static inline void mpol_cond_put(struct mempolicy *pol) { } static inline void mpol_get(struct mempolicy *pol) { } struct shared_policy {}; static inline void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) { } static inline void mpol_free_shared_policy(struct shared_policy *p) { } static inline struct mempolicy * mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) { return NULL; } #define vma_policy(vma) NULL static inline int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) { return 0; } static inline void numa_policy_init(void) { } static inline void numa_default_policy(void) { } static inline void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) { } static inline void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) { } static inline int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask) { *mpol = NULL; *nodemask = NULL; return 0; } static inline bool init_nodemask_of_mempolicy(nodemask_t *m) { return false; } static inline int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags) { return 0; } static inline void check_highest_zone(int k) { } #ifdef CONFIG_TMPFS static inline int mpol_parse_str(char *str, struct mempolicy **mpol) { return 1; /* error */ } #endif static inline int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long address) { return -1; /* no node preference */ } static inline void mpol_put_task_policy(struct task_struct *task) { } static inline nodemask_t *policy_nodemask_current(gfp_t gfp) { return NULL; } #endif /* CONFIG_NUMA */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/xattr.h Extended attributes handling. Copyright (C) 2001 by Andreas Gruenbacher <a.gruenbacher@computer.org> Copyright (c) 2001-2002 Silicon Graphics, Inc. All Rights Reserved. Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> */ #ifndef _LINUX_XATTR_H #define _LINUX_XATTR_H #include <linux/slab.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <uapi/linux/xattr.h> struct inode; struct dentry; /* * struct xattr_handler: When @name is set, match attributes with exactly that * name. When @prefix is set instead, match attributes with that prefix and * with a non-empty suffix. */ struct xattr_handler { const char *name; const char *prefix; int flags; /* fs private flags */ bool (*list)(struct dentry *dentry); int (*get)(const struct xattr_handler *, struct dentry *dentry, struct inode *inode, const char *name, void *buffer, size_t size); int (*set)(const struct xattr_handler *, struct dentry *dentry, struct inode *inode, const char *name, const void *buffer, size_t size, int flags); }; const char *xattr_full_name(const struct xattr_handler *, const char *); struct xattr { const char *name; void *value; size_t value_len; }; ssize_t __vfs_getxattr(struct dentry *, struct inode *, const char *, void *, size_t); ssize_t vfs_getxattr(struct dentry *, const char *, void *, size_t); ssize_t vfs_listxattr(struct dentry *d, char *list, size_t size); int __vfs_setxattr(struct dentry *, struct inode *, const char *, const void *, size_t, int); int __vfs_setxattr_noperm(struct dentry *, const char *, const void *, size_t, int); int __vfs_setxattr_locked(struct dentry *, const char *, const void *, size_t, int, struct inode **); int vfs_setxattr(struct dentry *, const char *, const void *, size_t, int); int __vfs_removexattr(struct dentry *, const char *); int __vfs_removexattr_locked(struct dentry *, const char *, struct inode **); int vfs_removexattr(struct dentry *, const char *); ssize_t generic_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size); ssize_t vfs_getxattr_alloc(struct dentry *dentry, const char *name, char **xattr_value, size_t size, gfp_t flags); int xattr_supported_namespace(struct inode *inode, const char *prefix); static inline const char *xattr_prefix(const struct xattr_handler *handler) { return handler->prefix ?: handler->name; } struct simple_xattrs { struct list_head head; spinlock_t lock; }; struct simple_xattr { struct list_head list; char *name; size_t size; char value[]; }; /* * initialize the simple_xattrs structure */ static inline void simple_xattrs_init(struct simple_xattrs *xattrs) { INIT_LIST_HEAD(&xattrs->head); spin_lock_init(&xattrs->lock); } /* * free all the xattrs */ static inline void simple_xattrs_free(struct simple_xattrs *xattrs) { struct simple_xattr *xattr, *node; list_for_each_entry_safe(xattr, node, &xattrs->head, list) { kfree(xattr->name); kvfree(xattr); } } struct simple_xattr *simple_xattr_alloc(const void *value, size_t size); int simple_xattr_get(struct simple_xattrs *xattrs, const char *name, void *buffer, size_t size); int simple_xattr_set(struct simple_xattrs *xattrs, const char *name, const void *value, size_t size, int flags, ssize_t *removed_size); ssize_t simple_xattr_list(struct inode *inode, struct simple_xattrs *xattrs, char *buffer, size_t size); void simple_xattr_list_add(struct simple_xattrs *xattrs, struct simple_xattr *new_xattr); #endif /* _LINUX_XATTR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 /* * DRBG based on NIST SP800-90A * * Copyright Stephan Mueller <smueller@chronox.de>, 2014 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, and the entire permission notice in its entirety, * including the disclaimer of warranties. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * ALTERNATIVELY, this product may be distributed under the terms of * the GNU General Public License, in which case the provisions of the GPL are * required INSTEAD OF the above restrictions. (This clause is * necessary due to a potential bad interaction between the GPL and * the restrictions contained in a BSD-style copyright.) * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ #ifndef _DRBG_H #define _DRBG_H #include <linux/random.h> #include <linux/scatterlist.h> #include <crypto/hash.h> #include <crypto/skcipher.h> #include <linux/module.h> #include <linux/crypto.h> #include <linux/slab.h> #include <crypto/internal/rng.h> #include <crypto/rng.h> #include <linux/fips.h> #include <linux/mutex.h> #include <linux/list.h> #include <linux/workqueue.h> /* * Concatenation Helper and string operation helper * * SP800-90A requires the concatenation of different data. To avoid copying * buffers around or allocate additional memory, the following data structure * is used to point to the original memory with its size. In addition, it * is used to build a linked list. The linked list defines the concatenation * of individual buffers. The order of memory block referenced in that * linked list determines the order of concatenation. */ struct drbg_string { const unsigned char *buf; size_t len; struct list_head list; }; static inline void drbg_string_fill(struct drbg_string *string, const unsigned char *buf, size_t len) { string->buf = buf; string->len = len; INIT_LIST_HEAD(&string->list); } struct drbg_state; typedef uint32_t drbg_flag_t; struct drbg_core { drbg_flag_t flags; /* flags for the cipher */ __u8 statelen; /* maximum state length */ __u8 blocklen_bytes; /* block size of output in bytes */ char cra_name[CRYPTO_MAX_ALG_NAME]; /* mapping to kernel crypto API */ /* kernel crypto API backend cipher name */ char backend_cra_name[CRYPTO_MAX_ALG_NAME]; }; struct drbg_state_ops { int (*update)(struct drbg_state *drbg, struct list_head *seed, int reseed); int (*generate)(struct drbg_state *drbg, unsigned char *buf, unsigned int buflen, struct list_head *addtl); int (*crypto_init)(struct drbg_state *drbg); int (*crypto_fini)(struct drbg_state *drbg); }; struct drbg_test_data { struct drbg_string *testentropy; /* TEST PARAMETER: test entropy */ }; struct drbg_state { struct mutex drbg_mutex; /* lock around DRBG */ unsigned char *V; /* internal state 10.1.1.1 1a) */ unsigned char *Vbuf; /* hash: static value 10.1.1.1 1b) hmac / ctr: key */ unsigned char *C; unsigned char *Cbuf; /* Number of RNG requests since last reseed -- 10.1.1.1 1c) */ size_t reseed_ctr; size_t reseed_threshold; /* some memory the DRBG can use for its operation */ unsigned char *scratchpad; unsigned char *scratchpadbuf; void *priv_data; /* Cipher handle */ struct crypto_skcipher *ctr_handle; /* CTR mode cipher handle */ struct skcipher_request *ctr_req; /* CTR mode request handle */ __u8 *outscratchpadbuf; /* CTR mode output scratchpad */ __u8 *outscratchpad; /* CTR mode aligned outbuf */ struct crypto_wait ctr_wait; /* CTR mode async wait obj */ struct scatterlist sg_in, sg_out; /* CTR mode SGLs */ bool seeded; /* DRBG fully seeded? */ bool pr; /* Prediction resistance enabled? */ bool fips_primed; /* Continuous test primed? */ unsigned char *prev; /* FIPS 140-2 continuous test value */ struct work_struct seed_work; /* asynchronous seeding support */ struct crypto_rng *jent; const struct drbg_state_ops *d_ops; const struct drbg_core *core; struct drbg_string test_data; struct random_ready_callback random_ready; }; static inline __u8 drbg_statelen(struct drbg_state *drbg) { if (drbg && drbg->core) return drbg->core->statelen; return 0; } static inline __u8 drbg_blocklen(struct drbg_state *drbg) { if (drbg && drbg->core) return drbg->core->blocklen_bytes; return 0; } static inline __u8 drbg_keylen(struct drbg_state *drbg) { if (drbg && drbg->core) return (drbg->core->statelen - drbg->core->blocklen_bytes); return 0; } static inline size_t drbg_max_request_bytes(struct drbg_state *drbg) { /* SP800-90A requires the limit 2**19 bits, but we return bytes */ return (1 << 16); } static inline size_t drbg_max_addtl(struct drbg_state *drbg) { /* SP800-90A requires 2**35 bytes additional info str / pers str */ #if (__BITS_PER_LONG == 32) /* * SP800-90A allows smaller maximum numbers to be returned -- we * return SIZE_MAX - 1 to allow the verification of the enforcement * of this value in drbg_healthcheck_sanity. */ return (SIZE_MAX - 1); #else return (1UL<<35); #endif } static inline size_t drbg_max_requests(struct drbg_state *drbg) { /* SP800-90A requires 2**48 maximum requests before reseeding */ return (1<<20); } /* * This is a wrapper to the kernel crypto API function of * crypto_rng_generate() to allow the caller to provide additional data. * * @drng DRBG handle -- see crypto_rng_get_bytes * @outbuf output buffer -- see crypto_rng_get_bytes * @outlen length of output buffer -- see crypto_rng_get_bytes * @addtl_input additional information string input buffer * @addtllen length of additional information string buffer * * return * see crypto_rng_get_bytes */ static inline int crypto_drbg_get_bytes_addtl(struct crypto_rng *drng, unsigned char *outbuf, unsigned int outlen, struct drbg_string *addtl) { return crypto_rng_generate(drng, addtl->buf, addtl->len, outbuf, outlen); } /* * TEST code * * This is a wrapper to the kernel crypto API function of * crypto_rng_generate() to allow the caller to provide additional data and * allow furnishing of test_data * * @drng DRBG handle -- see crypto_rng_get_bytes * @outbuf output buffer -- see crypto_rng_get_bytes * @outlen length of output buffer -- see crypto_rng_get_bytes * @addtl_input additional information string input buffer * @addtllen length of additional information string buffer * @test_data filled test data * * return * see crypto_rng_get_bytes */ static inline int crypto_drbg_get_bytes_addtl_test(struct crypto_rng *drng, unsigned char *outbuf, unsigned int outlen, struct drbg_string *addtl, struct drbg_test_data *test_data) { crypto_rng_set_entropy(drng, test_data->testentropy->buf, test_data->testentropy->len); return crypto_rng_generate(drng, addtl->buf, addtl->len, outbuf, outlen); } /* * TEST code * * This is a wrapper to the kernel crypto API function of * crypto_rng_reset() to allow the caller to provide test_data * * @drng DRBG handle -- see crypto_rng_reset * @pers personalization string input buffer * @perslen length of additional information string buffer * @test_data filled test data * * return * see crypto_rng_reset */ static inline int crypto_drbg_reset_test(struct crypto_rng *drng, struct drbg_string *pers, struct drbg_test_data *test_data) { crypto_rng_set_entropy(drng, test_data->testentropy->buf, test_data->testentropy->len); return crypto_rng_reset(drng, pers->buf, pers->len); } /* DRBG type flags */ #define DRBG_CTR ((drbg_flag_t)1<<0) #define DRBG_HMAC ((drbg_flag_t)1<<1) #define DRBG_HASH ((drbg_flag_t)1<<2) #define DRBG_TYPE_MASK (DRBG_CTR | DRBG_HMAC | DRBG_HASH) /* DRBG strength flags */ #define DRBG_STRENGTH128 ((drbg_flag_t)1<<3) #define DRBG_STRENGTH192 ((drbg_flag_t)1<<4) #define DRBG_STRENGTH256 ((drbg_flag_t)1<<5) #define DRBG_STRENGTH_MASK (DRBG_STRENGTH128 | DRBG_STRENGTH192 | \ DRBG_STRENGTH256) enum drbg_prefixes { DRBG_PREFIX0 = 0x00, DRBG_PREFIX1, DRBG_PREFIX2, DRBG_PREFIX3 }; #endif /* _DRBG_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_SEQLOCK_H #define __LINUX_SEQLOCK_H /* * seqcount_t / seqlock_t - a reader-writer consistency mechanism with * lockless readers (read-only retry loops), and no writer starvation. * * See Documentation/locking/seqlock.rst * * Copyrights: * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH */ #include <linux/compiler.h> #include <linux/kcsan-checks.h> #include <linux/lockdep.h> #include <linux/mutex.h> #include <linux/ww_mutex.h> #include <linux/preempt.h> #include <linux/spinlock.h> #include <asm/processor.h> /* * The seqlock seqcount_t interface does not prescribe a precise sequence of * read begin/retry/end. For readers, typically there is a call to * read_seqcount_begin() and read_seqcount_retry(), however, there are more * esoteric cases which do not follow this pattern. * * As a consequence, we take the following best-effort approach for raw usage * via seqcount_t under KCSAN: upon beginning a seq-reader critical section, * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as * atomics; if there is a matching read_seqcount_retry() call, no following * memory operations are considered atomic. Usage of the seqlock_t interface * is not affected. */ #define KCSAN_SEQLOCK_REGION_MAX 1000 /* * Sequence counters (seqcount_t) * * This is the raw counting mechanism, without any writer protection. * * Write side critical sections must be serialized and non-preemptible. * * If readers can be invoked from hardirq or softirq contexts, * interrupts or bottom halves must also be respectively disabled before * entering the write section. * * This mechanism can't be used if the protected data contains pointers, * as the writer can invalidate a pointer that a reader is following. * * If the write serialization mechanism is one of the common kernel * locking primitives, use a sequence counter with associated lock * (seqcount_LOCKNAME_t) instead. * * If it's desired to automatically handle the sequence counter writer * serialization and non-preemptibility requirements, use a sequential * lock (seqlock_t) instead. * * See Documentation/locking/seqlock.rst */ typedef struct seqcount { unsigned sequence; #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif } seqcount_t; static inline void __seqcount_init(seqcount_t *s, const char *name, struct lock_class_key *key) { /* * Make sure we are not reinitializing a held lock: */ lockdep_init_map(&s->dep_map, name, key, 0); s->sequence = 0; } #ifdef CONFIG_DEBUG_LOCK_ALLOC # define SEQCOUNT_DEP_MAP_INIT(lockname) \ .dep_map = { .name = #lockname } /** * seqcount_init() - runtime initializer for seqcount_t * @s: Pointer to the seqcount_t instance */ # define seqcount_init(s) \ do { \ static struct lock_class_key __key; \ __seqcount_init((s), #s, &__key); \ } while (0) static inline void seqcount_lockdep_reader_access(const seqcount_t *s) { seqcount_t *l = (seqcount_t *)s; unsigned long flags; local_irq_save(flags); seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_); seqcount_release(&l->dep_map, _RET_IP_); local_irq_restore(flags); } #else # define SEQCOUNT_DEP_MAP_INIT(lockname) # define seqcount_init(s) __seqcount_init(s, NULL, NULL) # define seqcount_lockdep_reader_access(x) #endif /** * SEQCNT_ZERO() - static initializer for seqcount_t * @name: Name of the seqcount_t instance */ #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) } /* * Sequence counters with associated locks (seqcount_LOCKNAME_t) * * A sequence counter which associates the lock used for writer * serialization at initialization time. This enables lockdep to validate * that the write side critical section is properly serialized. * * For associated locks which do not implicitly disable preemption, * preemption protection is enforced in the write side function. * * Lockdep is never used in any for the raw write variants. * * See Documentation/locking/seqlock.rst */ /* * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot * disable preemption. It can lead to higher latencies, and the write side * sections will not be able to acquire locks which become sleeping locks * (e.g. spinlock_t). * * To remain preemptible while avoiding a possible livelock caused by the * reader preempting the writer, use a different technique: let the reader * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the * case, acquire then release the associated LOCKNAME writer serialization * lock. This will allow any possibly-preempted writer to make progress * until the end of its writer serialization lock critical section. * * This lock-unlock technique must be implemented for all of PREEMPT_RT * sleeping locks. See Documentation/locking/locktypes.rst */ #if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT) #define __SEQ_LOCK(expr) expr #else #define __SEQ_LOCK(expr) #endif /* * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated * @seqcount: The real sequence counter * @lock: Pointer to the associated lock * * A plain sequence counter with external writer synchronization by * LOCKNAME @lock. The lock is associated to the sequence counter in the * static initializer or init function. This enables lockdep to validate * that the write side critical section is properly serialized. * * LOCKNAME: raw_spinlock, spinlock, rwlock, mutex, or ww_mutex. */ /* * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t * @s: Pointer to the seqcount_LOCKNAME_t instance * @lock: Pointer to the associated lock */ #define seqcount_LOCKNAME_init(s, _lock, lockname) \ do { \ seqcount_##lockname##_t *____s = (s); \ seqcount_init(&____s->seqcount); \ __SEQ_LOCK(____s->lock = (_lock)); \ } while (0) #define seqcount_raw_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, raw_spinlock) #define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock) #define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock); #define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex); #define seqcount_ww_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, ww_mutex); /* * SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t * * @lockname: "LOCKNAME" part of seqcount_LOCKNAME_t * @locktype: LOCKNAME canonical C data type * @preemptible: preemptibility of above locktype * @lockmember: argument for lockdep_assert_held() * @lockbase: associated lock release function (prefix only) * @lock_acquire: associated lock acquisition function (full call) */ #define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockmember, lockbase, lock_acquire) \ typedef struct seqcount_##lockname { \ seqcount_t seqcount; \ __SEQ_LOCK(locktype *lock); \ } seqcount_##lockname##_t; \ \ static __always_inline seqcount_t * \ __seqprop_##lockname##_ptr(seqcount_##lockname##_t *s) \ { \ return &s->seqcount; \ } \ \ static __always_inline unsigned \ __seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s) \ { \ unsigned seq = READ_ONCE(s->seqcount.sequence); \ \ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ return seq; \ \ if (preemptible && unlikely(seq & 1)) { \ __SEQ_LOCK(lock_acquire); \ __SEQ_LOCK(lockbase##_unlock(s->lock)); \ \ /* \ * Re-read the sequence counter since the (possibly \ * preempted) writer made progress. \ */ \ seq = READ_ONCE(s->seqcount.sequence); \ } \ \ return seq; \ } \ \ static __always_inline bool \ __seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s) \ { \ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ return preemptible; \ \ /* PREEMPT_RT relies on the above LOCK+UNLOCK */ \ return false; \ } \ \ static __always_inline void \ __seqprop_##lockname##_assert(const seqcount_##lockname##_t *s) \ { \ __SEQ_LOCK(lockdep_assert_held(lockmember)); \ } /* * __seqprop() for seqcount_t */ static inline seqcount_t *__seqprop_ptr(seqcount_t *s) { return s; } static inline unsigned __seqprop_sequence(const seqcount_t *s) { return READ_ONCE(s->sequence); } static inline bool __seqprop_preemptible(const seqcount_t *s) { return false; } static inline void __seqprop_assert(const seqcount_t *s) { lockdep_assert_preemption_disabled(); } #define __SEQ_RT IS_ENABLED(CONFIG_PREEMPT_RT) SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, s->lock, raw_spin, raw_spin_lock(s->lock)) SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, s->lock, spin, spin_lock(s->lock)) SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, s->lock, read, read_lock(s->lock)) SEQCOUNT_LOCKNAME(mutex, struct mutex, true, s->lock, mutex, mutex_lock(s->lock)) SEQCOUNT_LOCKNAME(ww_mutex, struct ww_mutex, true, &s->lock->base, ww_mutex, ww_mutex_lock(s->lock, NULL)) /* * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t * @name: Name of the seqcount_LOCKNAME_t instance * @lock: Pointer to the associated LOCKNAME */ #define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) { \ .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ __SEQ_LOCK(.lock = (assoc_lock)) \ } #define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define __seqprop_case(s, lockname, prop) \ seqcount_##lockname##_t: __seqprop_##lockname##_##prop((void *)(s)) #define __seqprop(s, prop) _Generic(*(s), \ seqcount_t: __seqprop_##prop((void *)(s)), \ __seqprop_case((s), raw_spinlock, prop), \ __seqprop_case((s), spinlock, prop), \ __seqprop_case((s), rwlock, prop), \ __seqprop_case((s), mutex, prop), \ __seqprop_case((s), ww_mutex, prop)) #define __seqcount_ptr(s) __seqprop(s, ptr) #define __seqcount_sequence(s) __seqprop(s, sequence) #define __seqcount_lock_preemptible(s) __seqprop(s, preemptible) #define __seqcount_assert_lock_held(s) __seqprop(s, assert) /** * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is * provided before actually loading any of the variables that are to be * protected in this critical section. * * Use carefully, only in critical code, and comment how the barrier is * provided. * * Return: count to be passed to read_seqcount_retry() */ #define __read_seqcount_begin(s) \ ({ \ unsigned seq; \ \ while ((seq = __seqcount_sequence(s)) & 1) \ cpu_relax(); \ \ kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ seq; \ }) /** * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Return: count to be passed to read_seqcount_retry() */ #define raw_read_seqcount_begin(s) \ ({ \ unsigned seq = __read_seqcount_begin(s); \ \ smp_rmb(); \ seq; \ }) /** * read_seqcount_begin() - begin a seqcount_t read critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Return: count to be passed to read_seqcount_retry() */ #define read_seqcount_begin(s) \ ({ \ seqcount_lockdep_reader_access(__seqcount_ptr(s)); \ raw_read_seqcount_begin(s); \ }) /** * raw_read_seqcount() - read the raw seqcount_t counter value * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * raw_read_seqcount opens a read critical section of the given * seqcount_t, without any lockdep checking, and without checking or * masking the sequence counter LSB. Calling code is responsible for * handling that. * * Return: count to be passed to read_seqcount_retry() */ #define raw_read_seqcount(s) \ ({ \ unsigned seq = __seqcount_sequence(s); \ \ smp_rmb(); \ kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ seq; \ }) /** * raw_seqcount_begin() - begin a seqcount_t read critical section w/o * lockdep and w/o counter stabilization * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * raw_seqcount_begin opens a read critical section of the given * seqcount_t. Unlike read_seqcount_begin(), this function will not wait * for the count to stabilize. If a writer is active when it begins, it * will fail the read_seqcount_retry() at the end of the read critical * section instead of stabilizing at the beginning of it. * * Use this only in special kernel hot paths where the read section is * small and has a high probability of success through other external * means. It will save a single branching instruction. * * Return: count to be passed to read_seqcount_retry() */ #define raw_seqcount_begin(s) \ ({ \ /* \ * If the counter is odd, let read_seqcount_retry() fail \ * by decrementing the counter. \ */ \ raw_read_seqcount(s) & ~1; \ }) /** * __read_seqcount_retry() - end a seqcount_t read section w/o barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @start: count, from read_seqcount_begin() * * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is * provided before actually loading any of the variables that are to be * protected in this critical section. * * Use carefully, only in critical code, and comment how the barrier is * provided. * * Return: true if a read section retry is required, else false */ #define __read_seqcount_retry(s, start) \ __read_seqcount_t_retry(__seqcount_ptr(s), start) static inline int __read_seqcount_t_retry(const seqcount_t *s, unsigned start) { kcsan_atomic_next(0); return unlikely(READ_ONCE(s->sequence) != start); } /** * read_seqcount_retry() - end a seqcount_t read critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @start: count, from read_seqcount_begin() * * read_seqcount_retry closes the read critical section of given * seqcount_t. If the critical section was invalid, it must be ignored * (and typically retried). * * Return: true if a read section retry is required, else false */ #define read_seqcount_retry(s, start) \ read_seqcount_t_retry(__seqcount_ptr(s), start) static inline int read_seqcount_t_retry(const seqcount_t *s, unsigned start) { smp_rmb(); return __read_seqcount_t_retry(s, start); } /** * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants */ #define raw_write_seqcount_begin(s) \ do { \ if (__seqcount_lock_preemptible(s)) \ preempt_disable(); \ \ raw_write_seqcount_t_begin(__seqcount_ptr(s)); \ } while (0) static inline void raw_write_seqcount_t_begin(seqcount_t *s) { kcsan_nestable_atomic_begin(); s->sequence++; smp_wmb(); } /** * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants */ #define raw_write_seqcount_end(s) \ do { \ raw_write_seqcount_t_end(__seqcount_ptr(s)); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_enable(); \ } while (0) static inline void raw_write_seqcount_t_end(seqcount_t *s) { smp_wmb(); s->sequence++; kcsan_nestable_atomic_end(); } /** * write_seqcount_begin_nested() - start a seqcount_t write section with * custom lockdep nesting level * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @subclass: lockdep nesting level * * See Documentation/locking/lockdep-design.rst */ #define write_seqcount_begin_nested(s, subclass) \ do { \ __seqcount_assert_lock_held(s); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_disable(); \ \ write_seqcount_t_begin_nested(__seqcount_ptr(s), subclass); \ } while (0) static inline void write_seqcount_t_begin_nested(seqcount_t *s, int subclass) { raw_write_seqcount_t_begin(s); seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_); } /** * write_seqcount_begin() - start a seqcount_t write side critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * write_seqcount_begin opens a write side critical section of the given * seqcount_t. * * Context: seqcount_t write side critical sections must be serialized and * non-preemptible. If readers can be invoked from hardirq or softirq * context, interrupts or bottom halves must be respectively disabled. */ #define write_seqcount_begin(s) \ do { \ __seqcount_assert_lock_held(s); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_disable(); \ \ write_seqcount_t_begin(__seqcount_ptr(s)); \ } while (0) static inline void write_seqcount_t_begin(seqcount_t *s) { write_seqcount_t_begin_nested(s, 0); } /** * write_seqcount_end() - end a seqcount_t write side critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * The write section must've been opened with write_seqcount_begin(). */ #define write_seqcount_end(s) \ do { \ write_seqcount_t_end(__seqcount_ptr(s)); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_enable(); \ } while (0) static inline void write_seqcount_t_end(seqcount_t *s) { seqcount_release(&s->dep_map, _RET_IP_); raw_write_seqcount_t_end(s); } /** * raw_write_seqcount_barrier() - do a seqcount_t write barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * This can be used to provide an ordering guarantee instead of the usual * consistency guarantee. It is one wmb cheaper, because it can collapse * the two back-to-back wmb()s. * * Note that writes surrounding the barrier should be declared atomic (e.g. * via WRITE_ONCE): a) to ensure the writes become visible to other threads * atomically, avoiding compiler optimizations; b) to document which writes are * meant to propagate to the reader critical section. This is necessary because * neither writes before and after the barrier are enclosed in a seq-writer * critical section that would ensure readers are aware of ongoing writes:: * * seqcount_t seq; * bool X = true, Y = false; * * void read(void) * { * bool x, y; * * do { * int s = read_seqcount_begin(&seq); * * x = X; y = Y; * * } while (read_seqcount_retry(&seq, s)); * * BUG_ON(!x && !y); * } * * void write(void) * { * WRITE_ONCE(Y, true); * * raw_write_seqcount_barrier(seq); * * WRITE_ONCE(X, false); * } */ #define raw_write_seqcount_barrier(s) \ raw_write_seqcount_t_barrier(__seqcount_ptr(s)) static inline void raw_write_seqcount_t_barrier(seqcount_t *s) { kcsan_nestable_atomic_begin(); s->sequence++; smp_wmb(); s->sequence++; kcsan_nestable_atomic_end(); } /** * write_seqcount_invalidate() - invalidate in-progress seqcount_t read * side operations * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * After write_seqcount_invalidate, no seqcount_t read side operations * will complete successfully and see data older than this. */ #define write_seqcount_invalidate(s) \ write_seqcount_t_invalidate(__seqcount_ptr(s)) static inline void write_seqcount_t_invalidate(seqcount_t *s) { smp_wmb(); kcsan_nestable_atomic_begin(); s->sequence+=2; kcsan_nestable_atomic_end(); } /* * Latch sequence counters (seqcount_latch_t) * * A sequence counter variant where the counter even/odd value is used to * switch between two copies of protected data. This allows the read path, * typically NMIs, to safely interrupt the write side critical section. * * As the write sections are fully preemptible, no special handling for * PREEMPT_RT is needed. */ typedef struct { seqcount_t seqcount; } seqcount_latch_t; /** * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t * @seq_name: Name of the seqcount_latch_t instance */ #define SEQCNT_LATCH_ZERO(seq_name) { \ .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ } /** * seqcount_latch_init() - runtime initializer for seqcount_latch_t * @s: Pointer to the seqcount_latch_t instance */ #define seqcount_latch_init(s) seqcount_init(&(s)->seqcount) /** * raw_read_seqcount_latch() - pick even/odd latch data copy * @s: Pointer to seqcount_latch_t * * See raw_write_seqcount_latch() for details and a full reader/writer * usage example. * * Return: sequence counter raw value. Use the lowest bit as an index for * picking which data copy to read. The full counter must then be checked * with read_seqcount_latch_retry(). */ static inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s) { /* * Pairs with the first smp_wmb() in raw_write_seqcount_latch(). * Due to the dependent load, a full smp_rmb() is not needed. */ return READ_ONCE(s->seqcount.sequence); } /** * read_seqcount_latch_retry() - end a seqcount_latch_t read section * @s: Pointer to seqcount_latch_t * @start: count, from raw_read_seqcount_latch() * * Return: true if a read section retry is required, else false */ static inline int read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) { return read_seqcount_retry(&s->seqcount, start); } /** * raw_write_seqcount_latch() - redirect latch readers to even/odd copy * @s: Pointer to seqcount_latch_t * * The latch technique is a multiversion concurrency control method that allows * queries during non-atomic modifications. If you can guarantee queries never * interrupt the modification -- e.g. the concurrency is strictly between CPUs * -- you most likely do not need this. * * Where the traditional RCU/lockless data structures rely on atomic * modifications to ensure queries observe either the old or the new state the * latch allows the same for non-atomic updates. The trade-off is doubling the * cost of storage; we have to maintain two copies of the entire data * structure. * * Very simply put: we first modify one copy and then the other. This ensures * there is always one copy in a stable state, ready to give us an answer. * * The basic form is a data structure like:: * * struct latch_struct { * seqcount_latch_t seq; * struct data_struct data[2]; * }; * * Where a modification, which is assumed to be externally serialized, does the * following:: * * void latch_modify(struct latch_struct *latch, ...) * { * smp_wmb(); // Ensure that the last data[1] update is visible * latch->seq.sequence++; * smp_wmb(); // Ensure that the seqcount update is visible * * modify(latch->data[0], ...); * * smp_wmb(); // Ensure that the data[0] update is visible * latch->seq.sequence++; * smp_wmb(); // Ensure that the seqcount update is visible * * modify(latch->data[1], ...); * } * * The query will have a form like:: * * struct entry *latch_query(struct latch_struct *latch, ...) * { * struct entry *entry; * unsigned seq, idx; * * do { * seq = raw_read_seqcount_latch(&latch->seq); * * idx = seq & 0x01; * entry = data_query(latch->data[idx], ...); * * // This includes needed smp_rmb() * } while (read_seqcount_latch_retry(&latch->seq, seq)); * * return entry; * } * * So during the modification, queries are first redirected to data[1]. Then we * modify data[0]. When that is complete, we redirect queries back to data[0] * and we can modify data[1]. * * NOTE: * * The non-requirement for atomic modifications does _NOT_ include * the publishing of new entries in the case where data is a dynamic * data structure. * * An iteration might start in data[0] and get suspended long enough * to miss an entire modification sequence, once it resumes it might * observe the new entry. * * NOTE2: * * When data is a dynamic data structure; one should use regular RCU * patterns to manage the lifetimes of the objects within. */ static inline void raw_write_seqcount_latch(seqcount_latch_t *s) { smp_wmb(); /* prior stores before incrementing "sequence" */ s->seqcount.sequence++; smp_wmb(); /* increment "sequence" before following stores */ } /* * Sequential locks (seqlock_t) * * Sequence counters with an embedded spinlock for writer serialization * and non-preemptibility. * * For more info, see: * - Comments on top of seqcount_t * - Documentation/locking/seqlock.rst */ typedef struct { /* * Make sure that readers don't starve writers on PREEMPT_RT: use * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK(). */ seqcount_spinlock_t seqcount; spinlock_t lock; } seqlock_t; #define __SEQLOCK_UNLOCKED(lockname) \ { \ .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \ .lock = __SPIN_LOCK_UNLOCKED(lockname) \ } /** * seqlock_init() - dynamic initializer for seqlock_t * @sl: Pointer to the seqlock_t instance */ #define seqlock_init(sl) \ do { \ spin_lock_init(&(sl)->lock); \ seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock); \ } while (0) /** * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t * @sl: Name of the seqlock_t instance */ #define DEFINE_SEQLOCK(sl) \ seqlock_t sl = __SEQLOCK_UNLOCKED(sl) /** * read_seqbegin() - start a seqlock_t read side critical section * @sl: Pointer to seqlock_t * * Return: count, to be passed to read_seqretry() */ static inline unsigned read_seqbegin(const seqlock_t *sl) { unsigned ret = read_seqcount_begin(&sl->seqcount); kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry() */ kcsan_flat_atomic_begin(); return ret; } /** * read_seqretry() - end a seqlock_t read side section * @sl: Pointer to seqlock_t * @start: count, from read_seqbegin() * * read_seqretry closes the read side critical section of given seqlock_t. * If the critical section was invalid, it must be ignored (and typically * retried). * * Return: true if a read section retry is required, else false */ static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) { /* * Assume not nested: read_seqretry() may be called multiple times when * completing read critical section. */ kcsan_flat_atomic_end(); return read_seqcount_retry(&sl->seqcount, start); } /* * For all seqlock_t write side functions, use write_seqcount_*t*_begin() * instead of the generic write_seqcount_begin(). This way, no redundant * lockdep_assert_held() checks are added. */ /** * write_seqlock() - start a seqlock_t write side critical section * @sl: Pointer to seqlock_t * * write_seqlock opens a write side critical section for the given * seqlock_t. It also implicitly acquires the spinlock_t embedded inside * that sequential lock. All seqlock_t write side sections are thus * automatically serialized and non-preemptible. * * Context: if the seqlock_t read section, or other write side critical * sections, can be invoked from hardirq or softirq contexts, use the * _irqsave or _bh variants of this function instead. */ static inline void write_seqlock(seqlock_t *sl) { spin_lock(&sl->lock); write_seqcount_t_begin(&sl->seqcount.seqcount); } /** * write_sequnlock() - end a seqlock_t write side critical section * @sl: Pointer to seqlock_t * * write_sequnlock closes the (serialized and non-preemptible) write side * critical section of given seqlock_t. */ static inline void write_sequnlock(seqlock_t *sl) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock(&sl->lock); } /** * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section * @sl: Pointer to seqlock_t * * _bh variant of write_seqlock(). Use only if the read side section, or * other write side sections, can be invoked from softirq contexts. */ static inline void write_seqlock_bh(seqlock_t *sl) { spin_lock_bh(&sl->lock); write_seqcount_t_begin(&sl->seqcount.seqcount); } /** * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section * @sl: Pointer to seqlock_t * * write_sequnlock_bh closes the serialized, non-preemptible, and * softirqs-disabled, seqlock_t write side critical section opened with * write_seqlock_bh(). */ static inline void write_sequnlock_bh(seqlock_t *sl) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock_bh(&sl->lock); } /** * write_seqlock_irq() - start a non-interruptible seqlock_t write section * @sl: Pointer to seqlock_t * * _irq variant of write_seqlock(). Use only if the read side section, or * other write sections, can be invoked from hardirq contexts. */ static inline void write_seqlock_irq(seqlock_t *sl) { spin_lock_irq(&sl->lock); write_seqcount_t_begin(&sl->seqcount.seqcount); } /** * write_sequnlock_irq() - end a non-interruptible seqlock_t write section * @sl: Pointer to seqlock_t * * write_sequnlock_irq closes the serialized and non-interruptible * seqlock_t write side section opened with write_seqlock_irq(). */ static inline void write_sequnlock_irq(seqlock_t *sl) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock_irq(&sl->lock); } static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) { unsigned long flags; spin_lock_irqsave(&sl->lock, flags); write_seqcount_t_begin(&sl->seqcount.seqcount); return flags; } /** * write_seqlock_irqsave() - start a non-interruptible seqlock_t write * section * @lock: Pointer to seqlock_t * @flags: Stack-allocated storage for saving caller's local interrupt * state, to be passed to write_sequnlock_irqrestore(). * * _irqsave variant of write_seqlock(). Use it only if the read side * section, or other write sections, can be invoked from hardirq context. */ #define write_seqlock_irqsave(lock, flags) \ do { flags = __write_seqlock_irqsave(lock); } while (0) /** * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write * section * @sl: Pointer to seqlock_t * @flags: Caller's saved interrupt state, from write_seqlock_irqsave() * * write_sequnlock_irqrestore closes the serialized and non-interruptible * seqlock_t write section previously opened with write_seqlock_irqsave(). */ static inline void write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock_irqrestore(&sl->lock, flags); } /** * read_seqlock_excl() - begin a seqlock_t locking reader section * @sl: Pointer to seqlock_t * * read_seqlock_excl opens a seqlock_t locking reader critical section. A * locking reader exclusively locks out *both* other writers *and* other * locking readers, but it does not update the embedded sequence number. * * Locking readers act like a normal spin_lock()/spin_unlock(). * * Context: if the seqlock_t write section, *or other read sections*, can * be invoked from hardirq or softirq contexts, use the _irqsave or _bh * variant of this function instead. * * The opened read section must be closed with read_sequnlock_excl(). */ static inline void read_seqlock_excl(seqlock_t *sl) { spin_lock(&sl->lock); } /** * read_sequnlock_excl() - end a seqlock_t locking reader critical section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl(seqlock_t *sl) { spin_unlock(&sl->lock); } /** * read_seqlock_excl_bh() - start a seqlock_t locking reader section with * softirqs disabled * @sl: Pointer to seqlock_t * * _bh variant of read_seqlock_excl(). Use this variant only if the * seqlock_t write side section, *or other read sections*, can be invoked * from softirq contexts. */ static inline void read_seqlock_excl_bh(seqlock_t *sl) { spin_lock_bh(&sl->lock); } /** * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking * reader section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl_bh(seqlock_t *sl) { spin_unlock_bh(&sl->lock); } /** * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking * reader section * @sl: Pointer to seqlock_t * * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t * write side section, *or other read sections*, can be invoked from a * hardirq context. */ static inline void read_seqlock_excl_irq(seqlock_t *sl) { spin_lock_irq(&sl->lock); } /** * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t * locking reader section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl_irq(seqlock_t *sl) { spin_unlock_irq(&sl->lock); } static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl) { unsigned long flags; spin_lock_irqsave(&sl->lock, flags); return flags; } /** * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t * locking reader section * @lock: Pointer to seqlock_t * @flags: Stack-allocated storage for saving caller's local interrupt * state, to be passed to read_sequnlock_excl_irqrestore(). * * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t * write side section, *or other read sections*, can be invoked from a * hardirq context. */ #define read_seqlock_excl_irqsave(lock, flags) \ do { flags = __read_seqlock_excl_irqsave(lock); } while (0) /** * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t * locking reader section * @sl: Pointer to seqlock_t * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave() */ static inline void read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags) { spin_unlock_irqrestore(&sl->lock, flags); } /** * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader * @lock: Pointer to seqlock_t * @seq : Marker and return parameter. If the passed value is even, the * reader will become a *lockless* seqlock_t reader as in read_seqbegin(). * If the passed value is odd, the reader will become a *locking* reader * as in read_seqlock_excl(). In the first call to this function, the * caller *must* initialize and pass an even value to @seq; this way, a * lockless read can be optimistically tried first. * * read_seqbegin_or_lock is an API designed to optimistically try a normal * lockless seqlock_t read section first. If an odd counter is found, the * lockless read trial has failed, and the next read iteration transforms * itself into a full seqlock_t locking reader. * * This is typically used to avoid seqlock_t lockless readers starvation * (too much retry loops) in the case of a sharp spike in write side * activity. * * Context: if the seqlock_t write section, *or other read sections*, can * be invoked from hardirq or softirq contexts, use the _irqsave or _bh * variant of this function instead. * * Check Documentation/locking/seqlock.rst for template example code. * * Return: the encountered sequence counter value, through the @seq * parameter, which is overloaded as a return parameter. This returned * value must be checked with need_seqretry(). If the read section need to * be retried, this returned value must also be passed as the @seq * parameter of the next read_seqbegin_or_lock() iteration. */ static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) { if (!(*seq & 1)) /* Even */ *seq = read_seqbegin(lock); else /* Odd */ read_seqlock_excl(lock); } /** * need_seqretry() - validate seqlock_t "locking or lockless" read section * @lock: Pointer to seqlock_t * @seq: sequence count, from read_seqbegin_or_lock() * * Return: true if a read section retry is required, false otherwise */ static inline int need_seqretry(seqlock_t *lock, int seq) { return !(seq & 1) && read_seqretry(lock, seq); } /** * done_seqretry() - end seqlock_t "locking or lockless" reader section * @lock: Pointer to seqlock_t * @seq: count, from read_seqbegin_or_lock() * * done_seqretry finishes the seqlock_t read side critical section started * with read_seqbegin_or_lock() and validated by need_seqretry(). */ static inline void done_seqretry(seqlock_t *lock, int seq) { if (seq & 1) read_sequnlock_excl(lock); } /** * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or * a non-interruptible locking reader * @lock: Pointer to seqlock_t * @seq: Marker and return parameter. Check read_seqbegin_or_lock(). * * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if * the seqlock_t write section, *or other read sections*, can be invoked * from hardirq context. * * Note: Interrupts will be disabled only for "locking reader" mode. * * Return: * * 1. The saved local interrupts state in case of a locking reader, to * be passed to done_seqretry_irqrestore(). * * 2. The encountered sequence counter value, returned through @seq * overloaded as a return parameter. Check read_seqbegin_or_lock(). */ static inline unsigned long read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq) { unsigned long flags = 0; if (!(*seq & 1)) /* Even */ *seq = read_seqbegin(lock); else /* Odd */ read_seqlock_excl_irqsave(lock, flags); return flags; } /** * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a * non-interruptible locking reader section * @lock: Pointer to seqlock_t * @seq: Count, from read_seqbegin_or_lock_irqsave() * @flags: Caller's saved local interrupt state in case of a locking * reader, also from read_seqbegin_or_lock_irqsave() * * This is the _irqrestore variant of done_seqretry(). The read section * must've been opened with read_seqbegin_or_lock_irqsave(), and validated * by need_seqretry(). */ static inline void done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags) { if (seq & 1) read_sequnlock_excl_irqrestore(lock, flags); } #endif /* __LINUX_SEQLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TIMENS_H #define _LINUX_TIMENS_H #include <linux/sched.h> #include <linux/kref.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/err.h> struct user_namespace; extern struct user_namespace init_user_ns; struct timens_offsets { struct timespec64 monotonic; struct timespec64 boottime; }; struct time_namespace { struct kref kref; struct user_namespace *user_ns; struct ucounts *ucounts; struct ns_common ns; struct timens_offsets offsets; struct page *vvar_page; /* If set prevents changing offsets after any task joined namespace. */ bool frozen_offsets; } __randomize_layout; extern struct time_namespace init_time_ns; #ifdef CONFIG_TIME_NS extern int vdso_join_timens(struct task_struct *task, struct time_namespace *ns); extern void timens_commit(struct task_struct *tsk, struct time_namespace *ns); static inline struct time_namespace *get_time_ns(struct time_namespace *ns) { kref_get(&ns->kref); return ns; } struct time_namespace *copy_time_ns(unsigned long flags, struct user_namespace *user_ns, struct time_namespace *old_ns); void free_time_ns(struct kref *kref); int timens_on_fork(struct nsproxy *nsproxy, struct task_struct *tsk); struct vdso_data *arch_get_vdso_data(void *vvar_page); static inline void put_time_ns(struct time_namespace *ns) { kref_put(&ns->kref, free_time_ns); } void proc_timens_show_offsets(struct task_struct *p, struct seq_file *m); struct proc_timens_offset { int clockid; struct timespec64 val; }; int proc_timens_set_offset(struct file *file, struct task_struct *p, struct proc_timens_offset *offsets, int n); static inline void timens_add_monotonic(struct timespec64 *ts) { struct timens_offsets *ns_offsets = &current->nsproxy->time_ns->offsets; *ts = timespec64_add(*ts, ns_offsets->monotonic); } static inline void timens_add_boottime(struct timespec64 *ts) { struct timens_offsets *ns_offsets = &current->nsproxy->time_ns->offsets; *ts = timespec64_add(*ts, ns_offsets->boottime); } ktime_t do_timens_ktime_to_host(clockid_t clockid, ktime_t tim, struct timens_offsets *offsets); static inline ktime_t timens_ktime_to_host(clockid_t clockid, ktime_t tim) { struct time_namespace *ns = current->nsproxy->time_ns; if (likely(ns == &init_time_ns)) return tim; return do_timens_ktime_to_host(clockid, tim, &ns->offsets); } #else static inline int vdso_join_timens(struct task_struct *task, struct time_namespace *ns) { return 0; } static inline void timens_commit(struct task_struct *tsk, struct time_namespace *ns) { } static inline struct time_namespace *get_time_ns(struct time_namespace *ns) { return NULL; } static inline void put_time_ns(struct time_namespace *ns) { } static inline struct time_namespace *copy_time_ns(unsigned long flags, struct user_namespace *user_ns, struct time_namespace *old_ns) { if (flags & CLONE_NEWTIME) return ERR_PTR(-EINVAL); return old_ns; } static inline int timens_on_fork(struct nsproxy *nsproxy, struct task_struct *tsk) { return 0; } static inline void timens_add_monotonic(struct timespec64 *ts) { } static inline void timens_add_boottime(struct timespec64 *ts) { } static inline ktime_t timens_ktime_to_host(clockid_t clockid, ktime_t tim) { return tim; } #endif #endif /* _LINUX_TIMENS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ #ifndef _UAPI_LINUX_SWAB_H #define _UAPI_LINUX_SWAB_H #include <linux/types.h> #include <linux/compiler.h> #include <asm/bitsperlong.h> #include <asm/swab.h> /* * casts are necessary for constants, because we never know how for sure * how U/UL/ULL map to __u16, __u32, __u64. At least not in a portable way. */ #define ___constant_swab16(x) ((__u16)( \ (((__u16)(x) & (__u16)0x00ffU) << 8) | \ (((__u16)(x) & (__u16)0xff00U) >> 8))) #define ___constant_swab32(x) ((__u32)( \ (((__u32)(x) & (__u32)0x000000ffUL) << 24) | \ (((__u32)(x) & (__u32)0x0000ff00UL) << 8) | \ (((__u32)(x) & (__u32)0x00ff0000UL) >> 8) | \ (((__u32)(x) & (__u32)0xff000000UL) >> 24))) #define ___constant_swab64(x) ((__u64)( \ (((__u64)(x) & (__u64)0x00000000000000ffULL) << 56) | \ (((__u64)(x) & (__u64)0x000000000000ff00ULL) << 40) | \ (((__u64)(x) & (__u64)0x0000000000ff0000ULL) << 24) | \ (((__u64)(x) & (__u64)0x00000000ff000000ULL) << 8) | \ (((__u64)(x) & (__u64)0x000000ff00000000ULL) >> 8) | \ (((__u64)(x) & (__u64)0x0000ff0000000000ULL) >> 24) | \ (((__u64)(x) & (__u64)0x00ff000000000000ULL) >> 40) | \ (((__u64)(x) & (__u64)0xff00000000000000ULL) >> 56))) #define ___constant_swahw32(x) ((__u32)( \ (((__u32)(x) & (__u32)0x0000ffffUL) << 16) | \ (((__u32)(x) & (__u32)0xffff0000UL) >> 16))) #define ___constant_swahb32(x) ((__u32)( \ (((__u32)(x) & (__u32)0x00ff00ffUL) << 8) | \ (((__u32)(x) & (__u32)0xff00ff00UL) >> 8))) /* * Implement the following as inlines, but define the interface using * macros to allow constant folding when possible: * ___swab16, ___swab32, ___swab64, ___swahw32, ___swahb32 */ static inline __attribute_const__ __u16 __fswab16(__u16 val) { #if defined (__arch_swab16) return __arch_swab16(val); #else return ___constant_swab16(val); #endif } static inline __attribute_const__ __u32 __fswab32(__u32 val) { #if defined(__arch_swab32) return __arch_swab32(val); #else return ___constant_swab32(val); #endif } static inline __attribute_const__ __u64 __fswab64(__u64 val) { #if defined (__arch_swab64) return __arch_swab64(val); #elif defined(__SWAB_64_THRU_32__) __u32 h = val >> 32; __u32 l = val & ((1ULL << 32) - 1); return (((__u64)__fswab32(l)) << 32) | ((__u64)(__fswab32(h))); #else return ___constant_swab64(val); #endif } static inline __attribute_const__ __u32 __fswahw32(__u32 val) { #ifdef __arch_swahw32 return __arch_swahw32(val); #else return ___constant_swahw32(val); #endif } static inline __attribute_const__ __u32 __fswahb32(__u32 val) { #ifdef __arch_swahb32 return __arch_swahb32(val); #else return ___constant_swahb32(val); #endif } /** * __swab16 - return a byteswapped 16-bit value * @x: value to byteswap */ #ifdef __HAVE_BUILTIN_BSWAP16__ #define __swab16(x) (__u16)__builtin_bswap16((__u16)(x)) #else #define __swab16(x) \ (__builtin_constant_p((__u16)(x)) ? \ ___constant_swab16(x) : \ __fswab16(x)) #endif /** * __swab32 - return a byteswapped 32-bit value * @x: value to byteswap */ #ifdef __HAVE_BUILTIN_BSWAP32__ #define __swab32(x) (__u32)__builtin_bswap32((__u32)(x)) #else #define __swab32(x) \ (__builtin_constant_p((__u32)(x)) ? \ ___constant_swab32(x) : \ __fswab32(x)) #endif /** * __swab64 - return a byteswapped 64-bit value * @x: value to byteswap */ #ifdef __HAVE_BUILTIN_BSWAP64__ #define __swab64(x) (__u64)__builtin_bswap64((__u64)(x)) #else #define __swab64(x) \ (__builtin_constant_p((__u64)(x)) ? \ ___constant_swab64(x) : \ __fswab64(x)) #endif static __always_inline unsigned long __swab(const unsigned long y) { #if __BITS_PER_LONG == 64 return __swab64(y); #else /* __BITS_PER_LONG == 32 */ return __swab32(y); #endif } /** * __swahw32 - return a word-swapped 32-bit value * @x: value to wordswap * * __swahw32(0x12340000) is 0x00001234 */ #define __swahw32(x) \ (__builtin_constant_p((__u32)(x)) ? \ ___constant_swahw32(x) : \ __fswahw32(x)) /** * __swahb32 - return a high and low byte-swapped 32-bit value * @x: value to byteswap * * __swahb32(0x12345678) is 0x34127856 */ #define __swahb32(x) \ (__builtin_constant_p((__u32)(x)) ? \ ___constant_swahb32(x) : \ __fswahb32(x)) /** * __swab16p - return a byteswapped 16-bit value from a pointer * @p: pointer to a naturally-aligned 16-bit value */ static __always_inline __u16 __swab16p(const __u16 *p) { #ifdef __arch_swab16p return __arch_swab16p(p); #else return __swab16(*p); #endif } /** * __swab32p - return a byteswapped 32-bit value from a pointer * @p: pointer to a naturally-aligned 32-bit value */ static __always_inline __u32 __swab32p(const __u32 *p) { #ifdef __arch_swab32p return __arch_swab32p(p); #else return __swab32(*p); #endif } /** * __swab64p - return a byteswapped 64-bit value from a pointer * @p: pointer to a naturally-aligned 64-bit value */ static __always_inline __u64 __swab64p(const __u64 *p) { #ifdef __arch_swab64p return __arch_swab64p(p); #else return __swab64(*p); #endif } /** * __swahw32p - return a wordswapped 32-bit value from a pointer * @p: pointer to a naturally-aligned 32-bit value * * See __swahw32() for details of wordswapping. */ static inline __u32 __swahw32p(const __u32 *p) { #ifdef __arch_swahw32p return __arch_swahw32p(p); #else return __swahw32(*p); #endif } /** * __swahb32p - return a high and low byteswapped 32-bit value from a pointer * @p: pointer to a naturally-aligned 32-bit value * * See __swahb32() for details of high/low byteswapping. */ static inline __u32 __swahb32p(const __u32 *p) { #ifdef __arch_swahb32p return __arch_swahb32p(p); #else return __swahb32(*p); #endif } /** * __swab16s - byteswap a 16-bit value in-place * @p: pointer to a naturally-aligned 16-bit value */ static inline void __swab16s(__u16 *p) { #ifdef __arch_swab16s __arch_swab16s(p); #else *p = __swab16p(p); #endif } /** * __swab32s - byteswap a 32-bit value in-place * @p: pointer to a naturally-aligned 32-bit value */ static __always_inline void __swab32s(__u32 *p) { #ifdef __arch_swab32s __arch_swab32s(p); #else *p = __swab32p(p); #endif } /** * __swab64s - byteswap a 64-bit value in-place * @p: pointer to a naturally-aligned 64-bit value */ static __always_inline void __swab64s(__u64 *p) { #ifdef __arch_swab64s __arch_swab64s(p); #else *p = __swab64p(p); #endif } /** * __swahw32s - wordswap a 32-bit value in-place * @p: pointer to a naturally-aligned 32-bit value * * See __swahw32() for details of wordswapping */ static inline void __swahw32s(__u32 *p) { #ifdef __arch_swahw32s __arch_swahw32s(p); #else *p = __swahw32p(p); #endif } /** * __swahb32s - high and low byteswap a 32-bit value in-place * @p: pointer to a naturally-aligned 32-bit value * * See __swahb32() for details of high and low byte swapping */ static inline void __swahb32s(__u32 *p) { #ifdef __arch_swahb32s __arch_swahb32s(p); #else *p = __swahb32p(p); #endif } #endif /* _UAPI_LINUX_SWAB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Red Black Trees (C) 1999 Andrea Arcangeli <andrea@suse.de> linux/include/linux/rbtree.h To use rbtrees you'll have to implement your own insert and search cores. This will avoid us to use callbacks and to drop drammatically performances. I know it's not the cleaner way, but in C (not in C++) to get performances and genericity... See Documentation/core-api/rbtree.rst for documentation and samples. */ #ifndef _LINUX_RBTREE_H #define _LINUX_RBTREE_H #include <linux/kernel.h> #include <linux/stddef.h> #include <linux/rcupdate.h> struct rb_node { unsigned long __rb_parent_color; struct rb_node *rb_right; struct rb_node *rb_left; } __attribute__((aligned(sizeof(long)))); /* The alignment might seem pointless, but allegedly CRIS needs it */ struct rb_root { struct rb_node *rb_node; }; #define rb_parent(r) ((struct rb_node *)((r)->__rb_parent_color & ~3)) #define RB_ROOT (struct rb_root) { NULL, } #define rb_entry(ptr, type, member) container_of(ptr, type, member) #define RB_EMPTY_ROOT(root) (READ_ONCE((root)->rb_node) == NULL) /* 'empty' nodes are nodes that are known not to be inserted in an rbtree */ #define RB_EMPTY_NODE(node) \ ((node)->__rb_parent_color == (unsigned long)(node)) #define RB_CLEAR_NODE(node) \ ((node)->__rb_parent_color = (unsigned long)(node)) extern void rb_insert_color(struct rb_node *, struct rb_root *); extern void rb_erase(struct rb_node *, struct rb_root *); /* Find logical next and previous nodes in a tree */ extern struct rb_node *rb_next(const struct rb_node *); extern struct rb_node *rb_prev(const struct rb_node *); extern struct rb_node *rb_first(const struct rb_root *); extern struct rb_node *rb_last(const struct rb_root *); /* Postorder iteration - always visit the parent after its children */ extern struct rb_node *rb_first_postorder(const struct rb_root *); extern struct rb_node *rb_next_postorder(const struct rb_node *); /* Fast replacement of a single node without remove/rebalance/add/rebalance */ extern void rb_replace_node(struct rb_node *victim, struct rb_node *new, struct rb_root *root); extern void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new, struct rb_root *root); static inline void rb_link_node(struct rb_node *node, struct rb_node *parent, struct rb_node **rb_link) { node->__rb_parent_color = (unsigned long)parent; node->rb_left = node->rb_right = NULL; *rb_link = node; } static inline void rb_link_node_rcu(struct rb_node *node, struct rb_node *parent, struct rb_node **rb_link) { node->__rb_parent_color = (unsigned long)parent; node->rb_left = node->rb_right = NULL; rcu_assign_pointer(*rb_link, node); } #define rb_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ ____ptr ? rb_entry(____ptr, type, member) : NULL; \ }) /** * rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of * given type allowing the backing memory of @pos to be invalidated * * @pos: the 'type *' to use as a loop cursor. * @n: another 'type *' to use as temporary storage * @root: 'rb_root *' of the rbtree. * @field: the name of the rb_node field within 'type'. * * rbtree_postorder_for_each_entry_safe() provides a similar guarantee as * list_for_each_entry_safe() and allows the iteration to continue independent * of changes to @pos by the body of the loop. * * Note, however, that it cannot handle other modifications that re-order the * rbtree it is iterating over. This includes calling rb_erase() on @pos, as * rb_erase() may rebalance the tree, causing us to miss some nodes. */ #define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \ for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \ pos && ({ n = rb_entry_safe(rb_next_postorder(&pos->field), \ typeof(*pos), field); 1; }); \ pos = n) /* * Leftmost-cached rbtrees. * * We do not cache the rightmost node based on footprint * size vs number of potential users that could benefit * from O(1) rb_last(). Just not worth it, users that want * this feature can always implement the logic explicitly. * Furthermore, users that want to cache both pointers may * find it a bit asymmetric, but that's ok. */ struct rb_root_cached { struct rb_root rb_root; struct rb_node *rb_leftmost; }; #define RB_ROOT_CACHED (struct rb_root_cached) { {NULL, }, NULL } /* Same as rb_first(), but O(1) */ #define rb_first_cached(root) (root)->rb_leftmost static inline void rb_insert_color_cached(struct rb_node *node, struct rb_root_cached *root, bool leftmost) { if (leftmost) root->rb_leftmost = node; rb_insert_color(node, &root->rb_root); } static inline void rb_erase_cached(struct rb_node *node, struct rb_root_cached *root) { if (root->rb_leftmost == node) root->rb_leftmost = rb_next(node); rb_erase(node, &root->rb_root); } static inline void rb_replace_node_cached(struct rb_node *victim, struct rb_node *new, struct rb_root_cached *root) { if (root->rb_leftmost == victim) root->rb_leftmost = new; rb_replace_node(victim, new, &root->rb_root); } #endif /* _LINUX_RBTREE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __VDSO_HELPERS_H #define __VDSO_HELPERS_H #ifndef __ASSEMBLY__ #include <vdso/datapage.h> static __always_inline u32 vdso_read_begin(const struct vdso_data *vd) { u32 seq; while (unlikely((seq = READ_ONCE(vd->seq)) & 1)) cpu_relax(); smp_rmb(); return seq; } static __always_inline u32 vdso_read_retry(const struct vdso_data *vd, u32 start) { u32 seq; smp_rmb(); seq = READ_ONCE(vd->seq); return seq != start; } static __always_inline void vdso_write_begin(struct vdso_data *vd) { /* * WRITE_ONCE it is required otherwise the compiler can validly tear * updates to vd[x].seq and it is possible that the value seen by the * reader it is inconsistent. */ WRITE_ONCE(vd[CS_HRES_COARSE].seq, vd[CS_HRES_COARSE].seq + 1); WRITE_ONCE(vd[CS_RAW].seq, vd[CS_RAW].seq + 1); smp_wmb(); } static __always_inline void vdso_write_end(struct vdso_data *vd) { smp_wmb(); /* * WRITE_ONCE it is required otherwise the compiler can validly tear * updates to vd[x].seq and it is possible that the value seen by the * reader it is inconsistent. */ WRITE_ONCE(vd[CS_HRES_COARSE].seq, vd[CS_HRES_COARSE].seq + 1); WRITE_ONCE(vd[CS_RAW].seq, vd[CS_RAW].seq + 1); } #endif /* !__ASSEMBLY__ */ #endif /* __VDSO_HELPERS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NetLabel System * * The NetLabel system manages static and dynamic label mappings for network * protocols such as CIPSO and RIPSO. * * Author: Paul Moore <paul@paul-moore.com> */ /* * (c) Copyright Hewlett-Packard Development Company, L.P., 2006, 2008 */ #ifndef _NETLABEL_H #define _NETLABEL_H #include <linux/types.h> #include <linux/slab.h> #include <linux/net.h> #include <linux/skbuff.h> #include <linux/in.h> #include <linux/in6.h> #include <net/netlink.h> #include <net/request_sock.h> #include <linux/refcount.h> struct cipso_v4_doi; struct calipso_doi; /* * NetLabel - A management interface for maintaining network packet label * mapping tables for explicit packet labling protocols. * * Network protocols such as CIPSO and RIPSO require a label translation layer * to convert the label on the packet into something meaningful on the host * machine. In the current Linux implementation these mapping tables live * inside the kernel; NetLabel provides a mechanism for user space applications * to manage these mapping tables. * * NetLabel makes use of the Generic NETLINK mechanism as a transport layer to * send messages between kernel and user space. The general format of a * NetLabel message is shown below: * * +-----------------+-------------------+--------- --- -- - * | struct nlmsghdr | struct genlmsghdr | payload * +-----------------+-------------------+--------- --- -- - * * The 'nlmsghdr' and 'genlmsghdr' structs should be dealt with like normal. * The payload is dependent on the subsystem specified in the * 'nlmsghdr->nlmsg_type' and should be defined below, supporting functions * should be defined in the corresponding net/netlabel/netlabel_<subsys>.h|c * file. All of the fields in the NetLabel payload are NETLINK attributes, see * the include/net/netlink.h file for more information on NETLINK attributes. * */ /* * NetLabel NETLINK protocol */ /* NetLabel NETLINK protocol version * 1: initial version * 2: added static labels for unlabeled connections * 3: network selectors added to the NetLabel/LSM domain mapping and the * CIPSO_V4_MAP_LOCAL CIPSO mapping was added */ #define NETLBL_PROTO_VERSION 3 /* NetLabel NETLINK types/families */ #define NETLBL_NLTYPE_NONE 0 #define NETLBL_NLTYPE_MGMT 1 #define NETLBL_NLTYPE_MGMT_NAME "NLBL_MGMT" #define NETLBL_NLTYPE_RIPSO 2 #define NETLBL_NLTYPE_RIPSO_NAME "NLBL_RIPSO" #define NETLBL_NLTYPE_CIPSOV4 3 #define NETLBL_NLTYPE_CIPSOV4_NAME "NLBL_CIPSOv4" #define NETLBL_NLTYPE_CIPSOV6 4 #define NETLBL_NLTYPE_CIPSOV6_NAME "NLBL_CIPSOv6" #define NETLBL_NLTYPE_UNLABELED 5 #define NETLBL_NLTYPE_UNLABELED_NAME "NLBL_UNLBL" #define NETLBL_NLTYPE_ADDRSELECT 6 #define NETLBL_NLTYPE_ADDRSELECT_NAME "NLBL_ADRSEL" #define NETLBL_NLTYPE_CALIPSO 7 #define NETLBL_NLTYPE_CALIPSO_NAME "NLBL_CALIPSO" /* * NetLabel - Kernel API for accessing the network packet label mappings. * * The following functions are provided for use by other kernel modules, * specifically kernel LSM modules, to provide a consistent, transparent API * for dealing with explicit packet labeling protocols such as CIPSO and * RIPSO. The functions defined here are implemented in the * net/netlabel/netlabel_kapi.c file. * */ /* NetLabel audit information */ struct netlbl_audit { u32 secid; kuid_t loginuid; unsigned int sessionid; }; /* * LSM security attributes */ /** * struct netlbl_lsm_cache - NetLabel LSM security attribute cache * @refcount: atomic reference counter * @free: LSM supplied function to free the cache data * @data: LSM supplied cache data * * Description: * This structure is provided for LSMs which wish to make use of the NetLabel * caching mechanism to store LSM specific data/attributes in the NetLabel * cache. If the LSM has to perform a lot of translation from the NetLabel * security attributes into it's own internal representation then the cache * mechanism can provide a way to eliminate some or all of that translation * overhead on a cache hit. * */ struct netlbl_lsm_cache { refcount_t refcount; void (*free) (const void *data); void *data; }; /** * struct netlbl_lsm_catmap - NetLabel LSM secattr category bitmap * @startbit: the value of the lowest order bit in the bitmap * @bitmap: the category bitmap * @next: pointer to the next bitmap "node" or NULL * * Description: * This structure is used to represent category bitmaps. Due to the large * number of categories supported by most labeling protocols it is not * practical to transfer a full bitmap internally so NetLabel adopts a sparse * bitmap structure modeled after SELinux's ebitmap structure. * The catmap bitmap field MUST be a power of two in length and large * enough to hold at least 240 bits. Special care (i.e. check the code!) * should be used when changing these values as the LSM implementation * probably has functions which rely on the sizes of these types to speed * processing. * */ #define NETLBL_CATMAP_MAPTYPE u64 #define NETLBL_CATMAP_MAPCNT 4 #define NETLBL_CATMAP_MAPSIZE (sizeof(NETLBL_CATMAP_MAPTYPE) * 8) #define NETLBL_CATMAP_SIZE (NETLBL_CATMAP_MAPSIZE * \ NETLBL_CATMAP_MAPCNT) #define NETLBL_CATMAP_BIT (NETLBL_CATMAP_MAPTYPE)0x01 struct netlbl_lsm_catmap { u32 startbit; NETLBL_CATMAP_MAPTYPE bitmap[NETLBL_CATMAP_MAPCNT]; struct netlbl_lsm_catmap *next; }; /** * struct netlbl_lsm_secattr - NetLabel LSM security attributes * @flags: indicate structure attributes, see NETLBL_SECATTR_* * @type: indicate the NLTYPE of the attributes * @domain: the NetLabel LSM domain * @cache: NetLabel LSM specific cache * @attr.mls: MLS sensitivity label * @attr.mls.cat: MLS category bitmap * @attr.mls.lvl: MLS sensitivity level * @attr.secid: LSM specific secid token * * Description: * This structure is used to pass security attributes between NetLabel and the * LSM modules. The flags field is used to specify which fields within the * struct are valid and valid values can be created by bitwise OR'ing the * NETLBL_SECATTR_* defines. The domain field is typically set by the LSM to * specify domain specific configuration settings and is not usually used by * NetLabel itself when returning security attributes to the LSM. * */ struct netlbl_lsm_secattr { u32 flags; /* bitmap values for 'flags' */ #define NETLBL_SECATTR_NONE 0x00000000 #define NETLBL_SECATTR_DOMAIN 0x00000001 #define NETLBL_SECATTR_DOMAIN_CPY (NETLBL_SECATTR_DOMAIN | \ NETLBL_SECATTR_FREE_DOMAIN) #define NETLBL_SECATTR_CACHE 0x00000002 #define NETLBL_SECATTR_MLS_LVL 0x00000004 #define NETLBL_SECATTR_MLS_CAT 0x00000008 #define NETLBL_SECATTR_SECID 0x00000010 /* bitmap meta-values for 'flags' */ #define NETLBL_SECATTR_FREE_DOMAIN 0x01000000 #define NETLBL_SECATTR_CACHEABLE (NETLBL_SECATTR_MLS_LVL | \ NETLBL_SECATTR_MLS_CAT | \ NETLBL_SECATTR_SECID) u32 type; char *domain; struct netlbl_lsm_cache *cache; struct { struct { struct netlbl_lsm_catmap *cat; u32 lvl; } mls; u32 secid; } attr; }; /** * struct netlbl_calipso_ops - NetLabel CALIPSO operations * @doi_add: add a CALIPSO DOI * @doi_free: free a CALIPSO DOI * @doi_getdef: returns a reference to a DOI * @doi_putdef: releases a reference of a DOI * @doi_walk: enumerate the DOI list * @sock_getattr: retrieve the socket's attr * @sock_setattr: set the socket's attr * @sock_delattr: remove the socket's attr * @req_setattr: set the req socket's attr * @req_delattr: remove the req socket's attr * @opt_getattr: retrieve attr from memory block * @skbuff_optptr: find option in packet * @skbuff_setattr: set the skbuff's attr * @skbuff_delattr: remove the skbuff's attr * @cache_invalidate: invalidate cache * @cache_add: add cache entry * * Description: * This structure is filled out by the CALIPSO engine and passed * to the NetLabel core via a call to netlbl_calipso_ops_register(). * It enables the CALIPSO engine (and hence IPv6) to be compiled * as a module. */ struct netlbl_calipso_ops { int (*doi_add)(struct calipso_doi *doi_def, struct netlbl_audit *audit_info); void (*doi_free)(struct calipso_doi *doi_def); int (*doi_remove)(u32 doi, struct netlbl_audit *audit_info); struct calipso_doi *(*doi_getdef)(u32 doi); void (*doi_putdef)(struct calipso_doi *doi_def); int (*doi_walk)(u32 *skip_cnt, int (*callback)(struct calipso_doi *doi_def, void *arg), void *cb_arg); int (*sock_getattr)(struct sock *sk, struct netlbl_lsm_secattr *secattr); int (*sock_setattr)(struct sock *sk, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); void (*sock_delattr)(struct sock *sk); int (*req_setattr)(struct request_sock *req, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); void (*req_delattr)(struct request_sock *req); int (*opt_getattr)(const unsigned char *calipso, struct netlbl_lsm_secattr *secattr); unsigned char *(*skbuff_optptr)(const struct sk_buff *skb); int (*skbuff_setattr)(struct sk_buff *skb, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr); int (*skbuff_delattr)(struct sk_buff *skb); void (*cache_invalidate)(void); int (*cache_add)(const unsigned char *calipso_ptr, const struct netlbl_lsm_secattr *secattr); }; /* * LSM security attribute operations (inline) */ /** * netlbl_secattr_cache_alloc - Allocate and initialize a secattr cache * @flags: the memory allocation flags * * Description: * Allocate and initialize a netlbl_lsm_cache structure. Returns a pointer * on success, NULL on failure. * */ static inline struct netlbl_lsm_cache *netlbl_secattr_cache_alloc(gfp_t flags) { struct netlbl_lsm_cache *cache; cache = kzalloc(sizeof(*cache), flags); if (cache) refcount_set(&cache->refcount, 1); return cache; } /** * netlbl_secattr_cache_free - Frees a netlbl_lsm_cache struct * @cache: the struct to free * * Description: * Frees @secattr including all of the internal buffers. * */ static inline void netlbl_secattr_cache_free(struct netlbl_lsm_cache *cache) { if (!refcount_dec_and_test(&cache->refcount)) return; if (cache->free) cache->free(cache->data); kfree(cache); } /** * netlbl_catmap_alloc - Allocate a LSM secattr catmap * @flags: memory allocation flags * * Description: * Allocate memory for a LSM secattr catmap, returns a pointer on success, NULL * on failure. * */ static inline struct netlbl_lsm_catmap *netlbl_catmap_alloc(gfp_t flags) { return kzalloc(sizeof(struct netlbl_lsm_catmap), flags); } /** * netlbl_catmap_free - Free a LSM secattr catmap * @catmap: the category bitmap * * Description: * Free a LSM secattr catmap. * */ static inline void netlbl_catmap_free(struct netlbl_lsm_catmap *catmap) { struct netlbl_lsm_catmap *iter; while (catmap) { iter = catmap; catmap = catmap->next; kfree(iter); } } /** * netlbl_secattr_init - Initialize a netlbl_lsm_secattr struct * @secattr: the struct to initialize * * Description: * Initialize an already allocated netlbl_lsm_secattr struct. * */ static inline void netlbl_secattr_init(struct netlbl_lsm_secattr *secattr) { memset(secattr, 0, sizeof(*secattr)); } /** * netlbl_secattr_destroy - Clears a netlbl_lsm_secattr struct * @secattr: the struct to clear * * Description: * Destroys the @secattr struct, including freeing all of the internal buffers. * The struct must be reset with a call to netlbl_secattr_init() before reuse. * */ static inline void netlbl_secattr_destroy(struct netlbl_lsm_secattr *secattr) { if (secattr->flags & NETLBL_SECATTR_FREE_DOMAIN) kfree(secattr->domain); if (secattr->flags & NETLBL_SECATTR_CACHE) netlbl_secattr_cache_free(secattr->cache); if (secattr->flags & NETLBL_SECATTR_MLS_CAT) netlbl_catmap_free(secattr->attr.mls.cat); } /** * netlbl_secattr_alloc - Allocate and initialize a netlbl_lsm_secattr struct * @flags: the memory allocation flags * * Description: * Allocate and initialize a netlbl_lsm_secattr struct. Returns a valid * pointer on success, or NULL on failure. * */ static inline struct netlbl_lsm_secattr *netlbl_secattr_alloc(gfp_t flags) { return kzalloc(sizeof(struct netlbl_lsm_secattr), flags); } /** * netlbl_secattr_free - Frees a netlbl_lsm_secattr struct * @secattr: the struct to free * * Description: * Frees @secattr including all of the internal buffers. * */ static inline void netlbl_secattr_free(struct netlbl_lsm_secattr *secattr) { netlbl_secattr_destroy(secattr); kfree(secattr); } #ifdef CONFIG_NETLABEL /* * LSM configuration operations */ int netlbl_cfg_map_del(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_map_add(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_static_add(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, u32 secid, struct netlbl_audit *audit_info); int netlbl_cfg_unlbl_static_del(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, struct netlbl_audit *audit_info); int netlbl_cfg_cipsov4_add(struct cipso_v4_doi *doi_def, struct netlbl_audit *audit_info); void netlbl_cfg_cipsov4_del(u32 doi, struct netlbl_audit *audit_info); int netlbl_cfg_cipsov4_map_add(u32 doi, const char *domain, const struct in_addr *addr, const struct in_addr *mask, struct netlbl_audit *audit_info); int netlbl_cfg_calipso_add(struct calipso_doi *doi_def, struct netlbl_audit *audit_info); void netlbl_cfg_calipso_del(u32 doi, struct netlbl_audit *audit_info); int netlbl_cfg_calipso_map_add(u32 doi, const char *domain, const struct in6_addr *addr, const struct in6_addr *mask, struct netlbl_audit *audit_info); /* * LSM security attribute operations */ int netlbl_catmap_walk(struct netlbl_lsm_catmap *catmap, u32 offset); int netlbl_catmap_walkrng(struct netlbl_lsm_catmap *catmap, u32 offset); int netlbl_catmap_getlong(struct netlbl_lsm_catmap *catmap, u32 *offset, unsigned long *bitmap); int netlbl_catmap_setbit(struct netlbl_lsm_catmap **catmap, u32 bit, gfp_t flags); int netlbl_catmap_setrng(struct netlbl_lsm_catmap **catmap, u32 start, u32 end, gfp_t flags); int netlbl_catmap_setlong(struct netlbl_lsm_catmap **catmap, u32 offset, unsigned long bitmap, gfp_t flags); /* Bitmap functions */ int netlbl_bitmap_walk(const unsigned char *bitmap, u32 bitmap_len, u32 offset, u8 state); void netlbl_bitmap_setbit(unsigned char *bitmap, u32 bit, u8 state); /* * LSM protocol operations (NetLabel LSM/kernel API) */ int netlbl_enabled(void); int netlbl_sock_setattr(struct sock *sk, u16 family, const struct netlbl_lsm_secattr *secattr); void netlbl_sock_delattr(struct sock *sk); int netlbl_sock_getattr(struct sock *sk, struct netlbl_lsm_secattr *secattr); int netlbl_conn_setattr(struct sock *sk, struct sockaddr *addr, const struct netlbl_lsm_secattr *secattr); int netlbl_req_setattr(struct request_sock *req, const struct netlbl_lsm_secattr *secattr); void netlbl_req_delattr(struct request_sock *req); int netlbl_skbuff_setattr(struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr); int netlbl_skbuff_getattr(const struct sk_buff *skb, u16 family, struct netlbl_lsm_secattr *secattr); void netlbl_skbuff_err(struct sk_buff *skb, u16 family, int error, int gateway); /* * LSM label mapping cache operations */ void netlbl_cache_invalidate(void); int netlbl_cache_add(const struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr); /* * Protocol engine operations */ struct audit_buffer *netlbl_audit_start(int type, struct netlbl_audit *audit_info); #else static inline int netlbl_cfg_map_del(const char *domain, u16 family, const void *addr, const void *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_map_add(const char *domain, u16 family, void *addr, void *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_static_add(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, u32 secid, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_unlbl_static_del(struct net *net, const char *dev_name, const void *addr, const void *mask, u16 family, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_cipsov4_add(struct cipso_v4_doi *doi_def, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline void netlbl_cfg_cipsov4_del(u32 doi, struct netlbl_audit *audit_info) { return; } static inline int netlbl_cfg_cipsov4_map_add(u32 doi, const char *domain, const struct in_addr *addr, const struct in_addr *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_cfg_calipso_add(struct calipso_doi *doi_def, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline void netlbl_cfg_calipso_del(u32 doi, struct netlbl_audit *audit_info) { return; } static inline int netlbl_cfg_calipso_map_add(u32 doi, const char *domain, const struct in6_addr *addr, const struct in6_addr *mask, struct netlbl_audit *audit_info) { return -ENOSYS; } static inline int netlbl_catmap_walk(struct netlbl_lsm_catmap *catmap, u32 offset) { return -ENOENT; } static inline int netlbl_catmap_walkrng(struct netlbl_lsm_catmap *catmap, u32 offset) { return -ENOENT; } static inline int netlbl_catmap_getlong(struct netlbl_lsm_catmap *catmap, u32 *offset, unsigned long *bitmap) { return 0; } static inline int netlbl_catmap_setbit(struct netlbl_lsm_catmap **catmap, u32 bit, gfp_t flags) { return 0; } static inline int netlbl_catmap_setrng(struct netlbl_lsm_catmap **catmap, u32 start, u32 end, gfp_t flags) { return 0; } static inline int netlbl_catmap_setlong(struct netlbl_lsm_catmap **catmap, u32 offset, unsigned long bitmap, gfp_t flags) { return 0; } static inline int netlbl_enabled(void) { return 0; } static inline int netlbl_sock_setattr(struct sock *sk, u16 family, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_sock_delattr(struct sock *sk) { } static inline int netlbl_sock_getattr(struct sock *sk, struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_conn_setattr(struct sock *sk, struct sockaddr *addr, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_req_setattr(struct request_sock *req, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_req_delattr(struct request_sock *req) { return; } static inline int netlbl_skbuff_setattr(struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline int netlbl_skbuff_getattr(const struct sk_buff *skb, u16 family, struct netlbl_lsm_secattr *secattr) { return -ENOSYS; } static inline void netlbl_skbuff_err(struct sk_buff *skb, int error, int gateway) { return; } static inline void netlbl_cache_invalidate(void) { return; } static inline int netlbl_cache_add(const struct sk_buff *skb, u16 family, const struct netlbl_lsm_secattr *secattr) { return 0; } static inline struct audit_buffer *netlbl_audit_start(int type, struct netlbl_audit *audit_info) { return NULL; } #endif /* CONFIG_NETLABEL */ const struct netlbl_calipso_ops * netlbl_calipso_ops_register(const struct netlbl_calipso_ops *ops); #endif /* _NETLABEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _FIB_LOOKUP_H #define _FIB_LOOKUP_H #include <linux/types.h> #include <linux/list.h> #include <net/ip_fib.h> #include <net/nexthop.h> struct fib_alias { struct hlist_node fa_list; struct fib_info *fa_info; u8 fa_tos; u8 fa_type; u8 fa_state; u8 fa_slen; u32 tb_id; s16 fa_default; u8 offload:1, trap:1, unused:6; struct rcu_head rcu; }; #define FA_S_ACCESSED 0x01 /* Dont write on fa_state unless needed, to keep it shared on all cpus */ static inline void fib_alias_accessed(struct fib_alias *fa) { if (!(fa->fa_state & FA_S_ACCESSED)) fa->fa_state |= FA_S_ACCESSED; } /* Exported by fib_semantics.c */ void fib_release_info(struct fib_info *); struct fib_info *fib_create_info(struct fib_config *cfg, struct netlink_ext_ack *extack); int fib_nh_match(struct net *net, struct fib_config *cfg, struct fib_info *fi, struct netlink_ext_ack *extack); bool fib_metrics_match(struct fib_config *cfg, struct fib_info *fi); int fib_dump_info(struct sk_buff *skb, u32 pid, u32 seq, int event, struct fib_rt_info *fri, unsigned int flags); void rtmsg_fib(int event, __be32 key, struct fib_alias *fa, int dst_len, u32 tb_id, const struct nl_info *info, unsigned int nlm_flags); static inline void fib_result_assign(struct fib_result *res, struct fib_info *fi) { /* we used to play games with refcounts, but we now use RCU */ res->fi = fi; res->nhc = fib_info_nhc(fi, 0); } struct fib_prop { int error; u8 scope; }; extern const struct fib_prop fib_props[RTN_MAX + 1]; #endif /* _FIB_LOOKUP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _MM_PERCPU_INTERNAL_H #define _MM_PERCPU_INTERNAL_H #include <linux/types.h> #include <linux/percpu.h> /* * There are two chunk types: root and memcg-aware. * Chunks of each type have separate slots list. * * Memcg-aware chunks have an attached vector of obj_cgroup pointers, which is * used to store memcg membership data of a percpu object. Obj_cgroups are * ref-counted pointers to a memory cgroup with an ability to switch dynamically * to the parent memory cgroup. This allows to reclaim a deleted memory cgroup * without reclaiming of all outstanding objects, which hold a reference at it. */ enum pcpu_chunk_type { PCPU_CHUNK_ROOT, #ifdef CONFIG_MEMCG_KMEM PCPU_CHUNK_MEMCG, #endif PCPU_NR_CHUNK_TYPES, PCPU_FAIL_ALLOC = PCPU_NR_CHUNK_TYPES }; /* * pcpu_block_md is the metadata block struct. * Each chunk's bitmap is split into a number of full blocks. * All units are in terms of bits. * * The scan hint is the largest known contiguous area before the contig hint. * It is not necessarily the actual largest contig hint though. There is an * invariant that the scan_hint_start > contig_hint_start iff * scan_hint == contig_hint. This is necessary because when scanning forward, * we don't know if a new contig hint would be better than the current one. */ struct pcpu_block_md { int scan_hint; /* scan hint for block */ int scan_hint_start; /* block relative starting position of the scan hint */ int contig_hint; /* contig hint for block */ int contig_hint_start; /* block relative starting position of the contig hint */ int left_free; /* size of free space along the left side of the block */ int right_free; /* size of free space along the right side of the block */ int first_free; /* block position of first free */ int nr_bits; /* total bits responsible for */ }; struct pcpu_chunk { #ifdef CONFIG_PERCPU_STATS int nr_alloc; /* # of allocations */ size_t max_alloc_size; /* largest allocation size */ #endif struct list_head list; /* linked to pcpu_slot lists */ int free_bytes; /* free bytes in the chunk */ struct pcpu_block_md chunk_md; void *base_addr; /* base address of this chunk */ unsigned long *alloc_map; /* allocation map */ unsigned long *bound_map; /* boundary map */ struct pcpu_block_md *md_blocks; /* metadata blocks */ void *data; /* chunk data */ bool immutable; /* no [de]population allowed */ int start_offset; /* the overlap with the previous region to have a page aligned base_addr */ int end_offset; /* additional area required to have the region end page aligned */ #ifdef CONFIG_MEMCG_KMEM struct obj_cgroup **obj_cgroups; /* vector of object cgroups */ #endif int nr_pages; /* # of pages served by this chunk */ int nr_populated; /* # of populated pages */ int nr_empty_pop_pages; /* # of empty populated pages */ unsigned long populated[]; /* populated bitmap */ }; extern spinlock_t pcpu_lock; extern struct list_head *pcpu_chunk_lists; extern int pcpu_nr_slots; extern int pcpu_nr_empty_pop_pages[]; extern struct pcpu_chunk *pcpu_first_chunk; extern struct pcpu_chunk *pcpu_reserved_chunk; /** * pcpu_chunk_nr_blocks - converts nr_pages to # of md_blocks * @chunk: chunk of interest * * This conversion is from the number of physical pages that the chunk * serves to the number of bitmap blocks used. */ static inline int pcpu_chunk_nr_blocks(struct pcpu_chunk *chunk) { return chunk->nr_pages * PAGE_SIZE / PCPU_BITMAP_BLOCK_SIZE; } /** * pcpu_nr_pages_to_map_bits - converts the pages to size of bitmap * @pages: number of physical pages * * This conversion is from physical pages to the number of bits * required in the bitmap. */ static inline int pcpu_nr_pages_to_map_bits(int pages) { return pages * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; } /** * pcpu_chunk_map_bits - helper to convert nr_pages to size of bitmap * @chunk: chunk of interest * * This conversion is from the number of physical pages that the chunk * serves to the number of bits in the bitmap. */ static inline int pcpu_chunk_map_bits(struct pcpu_chunk *chunk) { return pcpu_nr_pages_to_map_bits(chunk->nr_pages); } #ifdef CONFIG_MEMCG_KMEM static inline enum pcpu_chunk_type pcpu_chunk_type(struct pcpu_chunk *chunk) { if (chunk->obj_cgroups) return PCPU_CHUNK_MEMCG; return PCPU_CHUNK_ROOT; } static inline bool pcpu_is_memcg_chunk(enum pcpu_chunk_type chunk_type) { return chunk_type == PCPU_CHUNK_MEMCG; } #else static inline enum pcpu_chunk_type pcpu_chunk_type(struct pcpu_chunk *chunk) { return PCPU_CHUNK_ROOT; } static inline bool pcpu_is_memcg_chunk(enum pcpu_chunk_type chunk_type) { return false; } #endif static inline struct list_head *pcpu_chunk_list(enum pcpu_chunk_type chunk_type) { return &pcpu_chunk_lists[pcpu_nr_slots * pcpu_is_memcg_chunk(chunk_type)]; } #ifdef CONFIG_PERCPU_STATS #include <linux/spinlock.h> struct percpu_stats { u64 nr_alloc; /* lifetime # of allocations */ u64 nr_dealloc; /* lifetime # of deallocations */ u64 nr_cur_alloc; /* current # of allocations */ u64 nr_max_alloc; /* max # of live allocations */ u32 nr_chunks; /* current # of live chunks */ u32 nr_max_chunks; /* max # of live chunks */ size_t min_alloc_size; /* min allocaiton size */ size_t max_alloc_size; /* max allocation size */ }; extern struct percpu_stats pcpu_stats; extern struct pcpu_alloc_info pcpu_stats_ai; /* * For debug purposes. We don't care about the flexible array. */ static inline void pcpu_stats_save_ai(const struct pcpu_alloc_info *ai) { memcpy(&pcpu_stats_ai, ai, sizeof(struct pcpu_alloc_info)); /* initialize min_alloc_size to unit_size */ pcpu_stats.min_alloc_size = pcpu_stats_ai.unit_size; } /* * pcpu_stats_area_alloc - increment area allocation stats * @chunk: the location of the area being allocated * @size: size of area to allocate in bytes * * CONTEXT: * pcpu_lock. */ static inline void pcpu_stats_area_alloc(struct pcpu_chunk *chunk, size_t size) { lockdep_assert_held(&pcpu_lock); pcpu_stats.nr_alloc++; pcpu_stats.nr_cur_alloc++; pcpu_stats.nr_max_alloc = max(pcpu_stats.nr_max_alloc, pcpu_stats.nr_cur_alloc); pcpu_stats.min_alloc_size = min(pcpu_stats.min_alloc_size, size); pcpu_stats.max_alloc_size = max(pcpu_stats.max_alloc_size, size); chunk->nr_alloc++; chunk->max_alloc_size = max(chunk->max_alloc_size, size); } /* * pcpu_stats_area_dealloc - decrement allocation stats * @chunk: the location of the area being deallocated * * CONTEXT: * pcpu_lock. */ static inline void pcpu_stats_area_dealloc(struct pcpu_chunk *chunk) { lockdep_assert_held(&pcpu_lock); pcpu_stats.nr_dealloc++; pcpu_stats.nr_cur_alloc--; chunk->nr_alloc--; } /* * pcpu_stats_chunk_alloc - increment chunk stats */ static inline void pcpu_stats_chunk_alloc(void) { unsigned long flags; spin_lock_irqsave(&pcpu_lock, flags); pcpu_stats.nr_chunks++; pcpu_stats.nr_max_chunks = max(pcpu_stats.nr_max_chunks, pcpu_stats.nr_chunks); spin_unlock_irqrestore(&pcpu_lock, flags); } /* * pcpu_stats_chunk_dealloc - decrement chunk stats */ static inline void pcpu_stats_chunk_dealloc(void) { unsigned long flags; spin_lock_irqsave(&pcpu_lock, flags); pcpu_stats.nr_chunks--; spin_unlock_irqrestore(&pcpu_lock, flags); } #else static inline void pcpu_stats_save_ai(const struct pcpu_alloc_info *ai) { } static inline void pcpu_stats_area_alloc(struct pcpu_chunk *chunk, size_t size) { } static inline void pcpu_stats_area_dealloc(struct pcpu_chunk *chunk) { } static inline void pcpu_stats_chunk_alloc(void) { } static inline void pcpu_stats_chunk_dealloc(void) { } #endif /* !CONFIG_PERCPU_STATS */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the RAW-IP module. * * Version: @(#)raw.h 1.0.2 05/07/93 * * Author: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _RAW_H #define _RAW_H #include <net/inet_sock.h> #include <net/protocol.h> #include <linux/icmp.h> extern struct proto raw_prot; extern struct raw_hashinfo raw_v4_hashinfo; struct sock *__raw_v4_lookup(struct net *net, struct sock *sk, unsigned short num, __be32 raddr, __be32 laddr, int dif, int sdif); int raw_abort(struct sock *sk, int err); void raw_icmp_error(struct sk_buff *, int, u32); int raw_local_deliver(struct sk_buff *, int); int raw_rcv(struct sock *, struct sk_buff *); #define RAW_HTABLE_SIZE MAX_INET_PROTOS struct raw_hashinfo { rwlock_t lock; struct hlist_head ht[RAW_HTABLE_SIZE]; }; #ifdef CONFIG_PROC_FS int raw_proc_init(void); void raw_proc_exit(void); struct raw_iter_state { struct seq_net_private p; int bucket; }; static inline struct raw_iter_state *raw_seq_private(struct seq_file *seq) { return seq->private; } void *raw_seq_start(struct seq_file *seq, loff_t *pos); void *raw_seq_next(struct seq_file *seq, void *v, loff_t *pos); void raw_seq_stop(struct seq_file *seq, void *v); #endif int raw_hash_sk(struct sock *sk); void raw_unhash_sk(struct sock *sk); void raw_init(void); struct raw_sock { /* inet_sock has to be the first member */ struct inet_sock inet; struct icmp_filter filter; u32 ipmr_table; }; static inline struct raw_sock *raw_sk(const struct sock *sk) { return (struct raw_sock *)sk; } static inline bool raw_sk_bound_dev_eq(struct net *net, int bound_dev_if, int dif, int sdif) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) return inet_bound_dev_eq(!!net->ipv4.sysctl_raw_l3mdev_accept, bound_dev_if, dif, sdif); #else return inet_bound_dev_eq(true, bound_dev_if, dif, sdif); #endif } #endif /* _RAW_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SOCKET_H #define _LINUX_SOCKET_H #include <asm/socket.h> /* arch-dependent defines */ #include <linux/sockios.h> /* the SIOCxxx I/O controls */ #include <linux/uio.h> /* iovec support */ #include <linux/types.h> /* pid_t */ #include <linux/compiler.h> /* __user */ #include <uapi/linux/socket.h> struct file; struct pid; struct cred; struct socket; #define __sockaddr_check_size(size) \ BUILD_BUG_ON(((size) > sizeof(struct __kernel_sockaddr_storage))) #ifdef CONFIG_PROC_FS struct seq_file; extern void socket_seq_show(struct seq_file *seq); #endif typedef __kernel_sa_family_t sa_family_t; /* * 1003.1g requires sa_family_t and that sa_data is char. */ struct sockaddr { sa_family_t sa_family; /* address family, AF_xxx */ char sa_data[14]; /* 14 bytes of protocol address */ }; struct linger { int l_onoff; /* Linger active */ int l_linger; /* How long to linger for */ }; #define sockaddr_storage __kernel_sockaddr_storage /* * As we do 4.4BSD message passing we use a 4.4BSD message passing * system, not 4.3. Thus msg_accrights(len) are now missing. They * belong in an obscure libc emulation or the bin. */ struct msghdr { void *msg_name; /* ptr to socket address structure */ int msg_namelen; /* size of socket address structure */ struct iov_iter msg_iter; /* data */ /* * Ancillary data. msg_control_user is the user buffer used for the * recv* side when msg_control_is_user is set, msg_control is the kernel * buffer used for all other cases. */ union { void *msg_control; void __user *msg_control_user; }; bool msg_control_is_user : 1; __kernel_size_t msg_controllen; /* ancillary data buffer length */ unsigned int msg_flags; /* flags on received message */ struct kiocb *msg_iocb; /* ptr to iocb for async requests */ }; struct user_msghdr { void __user *msg_name; /* ptr to socket address structure */ int msg_namelen; /* size of socket address structure */ struct iovec __user *msg_iov; /* scatter/gather array */ __kernel_size_t msg_iovlen; /* # elements in msg_iov */ void __user *msg_control; /* ancillary data */ __kernel_size_t msg_controllen; /* ancillary data buffer length */ unsigned int msg_flags; /* flags on received message */ }; /* For recvmmsg/sendmmsg */ struct mmsghdr { struct user_msghdr msg_hdr; unsigned int msg_len; }; /* * POSIX 1003.1g - ancillary data object information * Ancillary data consits of a sequence of pairs of * (cmsghdr, cmsg_data[]) */ struct cmsghdr { __kernel_size_t cmsg_len; /* data byte count, including hdr */ int cmsg_level; /* originating protocol */ int cmsg_type; /* protocol-specific type */ }; /* * Ancillary data object information MACROS * Table 5-14 of POSIX 1003.1g */ #define __CMSG_NXTHDR(ctl, len, cmsg) __cmsg_nxthdr((ctl),(len),(cmsg)) #define CMSG_NXTHDR(mhdr, cmsg) cmsg_nxthdr((mhdr), (cmsg)) #define CMSG_ALIGN(len) ( ((len)+sizeof(long)-1) & ~(sizeof(long)-1) ) #define CMSG_DATA(cmsg) \ ((void *)(cmsg) + sizeof(struct cmsghdr)) #define CMSG_USER_DATA(cmsg) \ ((void __user *)(cmsg) + sizeof(struct cmsghdr)) #define CMSG_SPACE(len) (sizeof(struct cmsghdr) + CMSG_ALIGN(len)) #define CMSG_LEN(len) (sizeof(struct cmsghdr) + (len)) #define __CMSG_FIRSTHDR(ctl,len) ((len) >= sizeof(struct cmsghdr) ? \ (struct cmsghdr *)(ctl) : \ (struct cmsghdr *)NULL) #define CMSG_FIRSTHDR(msg) __CMSG_FIRSTHDR((msg)->msg_control, (msg)->msg_controllen) #define CMSG_OK(mhdr, cmsg) ((cmsg)->cmsg_len >= sizeof(struct cmsghdr) && \ (cmsg)->cmsg_len <= (unsigned long) \ ((mhdr)->msg_controllen - \ ((char *)(cmsg) - (char *)(mhdr)->msg_control))) #define for_each_cmsghdr(cmsg, msg) \ for (cmsg = CMSG_FIRSTHDR(msg); \ cmsg; \ cmsg = CMSG_NXTHDR(msg, cmsg)) /* * Get the next cmsg header * * PLEASE, do not touch this function. If you think, that it is * incorrect, grep kernel sources and think about consequences * before trying to improve it. * * Now it always returns valid, not truncated ancillary object * HEADER. But caller still MUST check, that cmsg->cmsg_len is * inside range, given by msg->msg_controllen before using * ancillary object DATA. --ANK (980731) */ static inline struct cmsghdr * __cmsg_nxthdr(void *__ctl, __kernel_size_t __size, struct cmsghdr *__cmsg) { struct cmsghdr * __ptr; __ptr = (struct cmsghdr*)(((unsigned char *) __cmsg) + CMSG_ALIGN(__cmsg->cmsg_len)); if ((unsigned long)((char*)(__ptr+1) - (char *) __ctl) > __size) return (struct cmsghdr *)0; return __ptr; } static inline struct cmsghdr * cmsg_nxthdr (struct msghdr *__msg, struct cmsghdr *__cmsg) { return __cmsg_nxthdr(__msg->msg_control, __msg->msg_controllen, __cmsg); } static inline size_t msg_data_left(struct msghdr *msg) { return iov_iter_count(&msg->msg_iter); } /* "Socket"-level control message types: */ #define SCM_RIGHTS 0x01 /* rw: access rights (array of int) */ #define SCM_CREDENTIALS 0x02 /* rw: struct ucred */ #define SCM_SECURITY 0x03 /* rw: security label */ struct ucred { __u32 pid; __u32 uid; __u32 gid; }; /* Supported address families. */ #define AF_UNSPEC 0 #define AF_UNIX 1 /* Unix domain sockets */ #define AF_LOCAL 1 /* POSIX name for AF_UNIX */ #define AF_INET 2 /* Internet IP Protocol */ #define AF_AX25 3 /* Amateur Radio AX.25 */ #define AF_IPX 4 /* Novell IPX */ #define AF_APPLETALK 5 /* AppleTalk DDP */ #define AF_NETROM 6 /* Amateur Radio NET/ROM */ #define AF_BRIDGE 7 /* Multiprotocol bridge */ #define AF_ATMPVC 8 /* ATM PVCs */ #define AF_X25 9 /* Reserved for X.25 project */ #define AF_INET6 10 /* IP version 6 */ #define AF_ROSE 11 /* Amateur Radio X.25 PLP */ #define AF_DECnet 12 /* Reserved for DECnet project */ #define AF_NETBEUI 13 /* Reserved for 802.2LLC project*/ #define AF_SECURITY 14 /* Security callback pseudo AF */ #define AF_KEY 15 /* PF_KEY key management API */ #define AF_NETLINK 16 #define AF_ROUTE AF_NETLINK /* Alias to emulate 4.4BSD */ #define AF_PACKET 17 /* Packet family */ #define AF_ASH 18 /* Ash */ #define AF_ECONET 19 /* Acorn Econet */ #define AF_ATMSVC 20 /* ATM SVCs */ #define AF_RDS 21 /* RDS sockets */ #define AF_SNA 22 /* Linux SNA Project (nutters!) */ #define AF_IRDA 23 /* IRDA sockets */ #define AF_PPPOX 24 /* PPPoX sockets */ #define AF_WANPIPE 25 /* Wanpipe API Sockets */ #define AF_LLC 26 /* Linux LLC */ #define AF_IB 27 /* Native InfiniBand address */ #define AF_MPLS 28 /* MPLS */ #define AF_CAN 29 /* Controller Area Network */ #define AF_TIPC 30 /* TIPC sockets */ #define AF_BLUETOOTH 31 /* Bluetooth sockets */ #define AF_IUCV 32 /* IUCV sockets */ #define AF_RXRPC 33 /* RxRPC sockets */ #define AF_ISDN 34 /* mISDN sockets */ #define AF_PHONET 35 /* Phonet sockets */ #define AF_IEEE802154 36 /* IEEE802154 sockets */ #define AF_CAIF 37 /* CAIF sockets */ #define AF_ALG 38 /* Algorithm sockets */ #define AF_NFC 39 /* NFC sockets */ #define AF_VSOCK 40 /* vSockets */ #define AF_KCM 41 /* Kernel Connection Multiplexor*/ #define AF_QIPCRTR 42 /* Qualcomm IPC Router */ #define AF_SMC 43 /* smc sockets: reserve number for * PF_SMC protocol family that * reuses AF_INET address family */ #define AF_XDP 44 /* XDP sockets */ #define AF_MAX 45 /* For now.. */ /* Protocol families, same as address families. */ #define PF_UNSPEC AF_UNSPEC #define PF_UNIX AF_UNIX #define PF_LOCAL AF_LOCAL #define PF_INET AF_INET #define PF_AX25 AF_AX25 #define PF_IPX AF_IPX #define PF_APPLETALK AF_APPLETALK #define PF_NETROM AF_NETROM #define PF_BRIDGE AF_BRIDGE #define PF_ATMPVC AF_ATMPVC #define PF_X25 AF_X25 #define PF_INET6 AF_INET6 #define PF_ROSE AF_ROSE #define PF_DECnet AF_DECnet #define PF_NETBEUI AF_NETBEUI #define PF_SECURITY AF_SECURITY #define PF_KEY AF_KEY #define PF_NETLINK AF_NETLINK #define PF_ROUTE AF_ROUTE #define PF_PACKET AF_PACKET #define PF_ASH AF_ASH #define PF_ECONET AF_ECONET #define PF_ATMSVC AF_ATMSVC #define PF_RDS AF_RDS #define PF_SNA AF_SNA #define PF_IRDA AF_IRDA #define PF_PPPOX AF_PPPOX #define PF_WANPIPE AF_WANPIPE #define PF_LLC AF_LLC #define PF_IB AF_IB #define PF_MPLS AF_MPLS #define PF_CAN AF_CAN #define PF_TIPC AF_TIPC #define PF_BLUETOOTH AF_BLUETOOTH #define PF_IUCV AF_IUCV #define PF_RXRPC AF_RXRPC #define PF_ISDN AF_ISDN #define PF_PHONET AF_PHONET #define PF_IEEE802154 AF_IEEE802154 #define PF_CAIF AF_CAIF #define PF_ALG AF_ALG #define PF_NFC AF_NFC #define PF_VSOCK AF_VSOCK #define PF_KCM AF_KCM #define PF_QIPCRTR AF_QIPCRTR #define PF_SMC AF_SMC #define PF_XDP AF_XDP #define PF_MAX AF_MAX /* Maximum queue length specifiable by listen. */ #define SOMAXCONN 4096 /* Flags we can use with send/ and recv. Added those for 1003.1g not all are supported yet */ #define MSG_OOB 1 #define MSG_PEEK 2 #define MSG_DONTROUTE 4 #define MSG_TRYHARD 4 /* Synonym for MSG_DONTROUTE for DECnet */ #define MSG_CTRUNC 8 #define MSG_PROBE 0x10 /* Do not send. Only probe path f.e. for MTU */ #define MSG_TRUNC 0x20 #define MSG_DONTWAIT 0x40 /* Nonblocking io */ #define MSG_EOR 0x80 /* End of record */ #define MSG_WAITALL 0x100 /* Wait for a full request */ #define MSG_FIN 0x200 #define MSG_SYN 0x400 #define MSG_CONFIRM 0x800 /* Confirm path validity */ #define MSG_RST 0x1000 #define MSG_ERRQUEUE 0x2000 /* Fetch message from error queue */ #define MSG_NOSIGNAL 0x4000 /* Do not generate SIGPIPE */ #define MSG_MORE 0x8000 /* Sender will send more */ #define MSG_WAITFORONE 0x10000 /* recvmmsg(): block until 1+ packets avail */ #define MSG_SENDPAGE_NOPOLICY 0x10000 /* sendpage() internal : do no apply policy */ #define MSG_SENDPAGE_NOTLAST 0x20000 /* sendpage() internal : not the last page */ #define MSG_BATCH 0x40000 /* sendmmsg(): more messages coming */ #define MSG_EOF MSG_FIN #define MSG_NO_SHARED_FRAGS 0x80000 /* sendpage() internal : page frags are not shared */ #define MSG_SENDPAGE_DECRYPTED 0x100000 /* sendpage() internal : page may carry * plain text and require encryption */ #define MSG_ZEROCOPY 0x4000000 /* Use user data in kernel path */ #define MSG_FASTOPEN 0x20000000 /* Send data in TCP SYN */ #define MSG_CMSG_CLOEXEC 0x40000000 /* Set close_on_exec for file descriptor received through SCM_RIGHTS */ #if defined(CONFIG_COMPAT) #define MSG_CMSG_COMPAT 0x80000000 /* This message needs 32 bit fixups */ #else #define MSG_CMSG_COMPAT 0 /* We never have 32 bit fixups */ #endif /* Setsockoptions(2) level. Thanks to BSD these must match IPPROTO_xxx */ #define SOL_IP 0 /* #define SOL_ICMP 1 No-no-no! Due to Linux :-) we cannot use SOL_ICMP=1 */ #define SOL_TCP 6 #define SOL_UDP 17 #define SOL_IPV6 41 #define SOL_ICMPV6 58 #define SOL_SCTP 132 #define SOL_UDPLITE 136 /* UDP-Lite (RFC 3828) */ #define SOL_RAW 255 #define SOL_IPX 256 #define SOL_AX25 257 #define SOL_ATALK 258 #define SOL_NETROM 259 #define SOL_ROSE 260 #define SOL_DECNET 261 #define SOL_X25 262 #define SOL_PACKET 263 #define SOL_ATM 264 /* ATM layer (cell level) */ #define SOL_AAL 265 /* ATM Adaption Layer (packet level) */ #define SOL_IRDA 266 #define SOL_NETBEUI 267 #define SOL_LLC 268 #define SOL_DCCP 269 #define SOL_NETLINK 270 #define SOL_TIPC 271 #define SOL_RXRPC 272 #define SOL_PPPOL2TP 273 #define SOL_BLUETOOTH 274 #define SOL_PNPIPE 275 #define SOL_RDS 276 #define SOL_IUCV 277 #define SOL_CAIF 278 #define SOL_ALG 279 #define SOL_NFC 280 #define SOL_KCM 281 #define SOL_TLS 282 #define SOL_XDP 283 /* IPX options */ #define IPX_TYPE 1 extern int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr); extern int put_cmsg(struct msghdr*, int level, int type, int len, void *data); struct timespec64; struct __kernel_timespec; struct old_timespec32; struct scm_timestamping_internal { struct timespec64 ts[3]; }; extern void put_cmsg_scm_timestamping64(struct msghdr *msg, struct scm_timestamping_internal *tss); extern void put_cmsg_scm_timestamping(struct msghdr *msg, struct scm_timestamping_internal *tss); /* The __sys_...msg variants allow MSG_CMSG_COMPAT iff * forbid_cmsg_compat==false */ extern long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, bool forbid_cmsg_compat); extern long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, bool forbid_cmsg_compat); extern int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, struct __kernel_timespec __user *timeout, struct old_timespec32 __user *timeout32); extern int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, bool forbid_cmsg_compat); extern long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, unsigned int flags); extern long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, struct user_msghdr __user *umsg, struct sockaddr __user *uaddr, unsigned int flags); extern int sendmsg_copy_msghdr(struct msghdr *msg, struct user_msghdr __user *umsg, unsigned flags, struct iovec **iov); extern int recvmsg_copy_msghdr(struct msghdr *msg, struct user_msghdr __user *umsg, unsigned flags, struct sockaddr __user **uaddr, struct iovec **iov); extern int __copy_msghdr_from_user(struct msghdr *kmsg, struct user_msghdr __user *umsg, struct sockaddr __user **save_addr, struct iovec __user **uiov, size_t *nsegs); /* helpers which do the actual work for syscalls */ extern int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, struct sockaddr __user *addr, int __user *addr_len); extern int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, struct sockaddr __user *addr, int addr_len); extern int __sys_accept4_file(struct file *file, unsigned file_flags, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags, unsigned long nofile); extern int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags); extern int __sys_socket(int family, int type, int protocol); extern int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen); extern int __sys_connect_file(struct file *file, struct sockaddr_storage *addr, int addrlen, int file_flags); extern int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen); extern int __sys_listen(int fd, int backlog); extern int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len); extern int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len); extern int __sys_socketpair(int family, int type, int protocol, int __user *usockvec); extern int __sys_shutdown(int fd, int how); #endif /* _LINUX_SOCKET_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 /* SPDX-License-Identifier: GPL-2.0 */ /* * ioport.h Definitions of routines for detecting, reserving and * allocating system resources. * * Authors: Linus Torvalds */ #ifndef _LINUX_IOPORT_H #define _LINUX_IOPORT_H #ifndef __ASSEMBLY__ #include <linux/compiler.h> #include <linux/types.h> #include <linux/bits.h> /* * Resources are tree-like, allowing * nesting etc.. */ struct resource { resource_size_t start; resource_size_t end; const char *name; unsigned long flags; unsigned long desc; struct resource *parent, *sibling, *child; }; /* * IO resources have these defined flags. * * PCI devices expose these flags to userspace in the "resource" sysfs file, * so don't move them. */ #define IORESOURCE_BITS 0x000000ff /* Bus-specific bits */ #define IORESOURCE_TYPE_BITS 0x00001f00 /* Resource type */ #define IORESOURCE_IO 0x00000100 /* PCI/ISA I/O ports */ #define IORESOURCE_MEM 0x00000200 #define IORESOURCE_REG 0x00000300 /* Register offsets */ #define IORESOURCE_IRQ 0x00000400 #define IORESOURCE_DMA 0x00000800 #define IORESOURCE_BUS 0x00001000 #define IORESOURCE_PREFETCH 0x00002000 /* No side effects */ #define IORESOURCE_READONLY 0x00004000 #define IORESOURCE_CACHEABLE 0x00008000 #define IORESOURCE_RANGELENGTH 0x00010000 #define IORESOURCE_SHADOWABLE 0x00020000 #define IORESOURCE_SIZEALIGN 0x00040000 /* size indicates alignment */ #define IORESOURCE_STARTALIGN 0x00080000 /* start field is alignment */ #define IORESOURCE_MEM_64 0x00100000 #define IORESOURCE_WINDOW 0x00200000 /* forwarded by bridge */ #define IORESOURCE_MUXED 0x00400000 /* Resource is software muxed */ #define IORESOURCE_EXT_TYPE_BITS 0x01000000 /* Resource extended types */ #define IORESOURCE_SYSRAM 0x01000000 /* System RAM (modifier) */ /* IORESOURCE_SYSRAM specific bits. */ #define IORESOURCE_SYSRAM_DRIVER_MANAGED 0x02000000 /* Always detected via a driver. */ #define IORESOURCE_SYSRAM_MERGEABLE 0x04000000 /* Resource can be merged. */ #define IORESOURCE_EXCLUSIVE 0x08000000 /* Userland may not map this resource */ #define IORESOURCE_DISABLED 0x10000000 #define IORESOURCE_UNSET 0x20000000 /* No address assigned yet */ #define IORESOURCE_AUTO 0x40000000 #define IORESOURCE_BUSY 0x80000000 /* Driver has marked this resource busy */ /* I/O resource extended types */ #define IORESOURCE_SYSTEM_RAM (IORESOURCE_MEM|IORESOURCE_SYSRAM) /* PnP IRQ specific bits (IORESOURCE_BITS) */ #define IORESOURCE_IRQ_HIGHEDGE (1<<0) #define IORESOURCE_IRQ_LOWEDGE (1<<1) #define IORESOURCE_IRQ_HIGHLEVEL (1<<2) #define IORESOURCE_IRQ_LOWLEVEL (1<<3) #define IORESOURCE_IRQ_SHAREABLE (1<<4) #define IORESOURCE_IRQ_OPTIONAL (1<<5) /* PnP DMA specific bits (IORESOURCE_BITS) */ #define IORESOURCE_DMA_TYPE_MASK (3<<0) #define IORESOURCE_DMA_8BIT (0<<0) #define IORESOURCE_DMA_8AND16BIT (1<<0) #define IORESOURCE_DMA_16BIT (2<<0) #define IORESOURCE_DMA_MASTER (1<<2) #define IORESOURCE_DMA_BYTE (1<<3) #define IORESOURCE_DMA_WORD (1<<4) #define IORESOURCE_DMA_SPEED_MASK (3<<6) #define IORESOURCE_DMA_COMPATIBLE (0<<6) #define IORESOURCE_DMA_TYPEA (1<<6) #define IORESOURCE_DMA_TYPEB (2<<6) #define IORESOURCE_DMA_TYPEF (3<<6) /* PnP memory I/O specific bits (IORESOURCE_BITS) */ #define IORESOURCE_MEM_WRITEABLE (1<<0) /* dup: IORESOURCE_READONLY */ #define IORESOURCE_MEM_CACHEABLE (1<<1) /* dup: IORESOURCE_CACHEABLE */ #define IORESOURCE_MEM_RANGELENGTH (1<<2) /* dup: IORESOURCE_RANGELENGTH */ #define IORESOURCE_MEM_TYPE_MASK (3<<3) #define IORESOURCE_MEM_8BIT (0<<3) #define IORESOURCE_MEM_16BIT (1<<3) #define IORESOURCE_MEM_8AND16BIT (2<<3) #define IORESOURCE_MEM_32BIT (3<<3) #define IORESOURCE_MEM_SHADOWABLE (1<<5) /* dup: IORESOURCE_SHADOWABLE */ #define IORESOURCE_MEM_EXPANSIONROM (1<<6) /* PnP I/O specific bits (IORESOURCE_BITS) */ #define IORESOURCE_IO_16BIT_ADDR (1<<0) #define IORESOURCE_IO_FIXED (1<<1) #define IORESOURCE_IO_SPARSE (1<<2) /* PCI ROM control bits (IORESOURCE_BITS) */ #define IORESOURCE_ROM_ENABLE (1<<0) /* ROM is enabled, same as PCI_ROM_ADDRESS_ENABLE */ #define IORESOURCE_ROM_SHADOW (1<<1) /* Use RAM image, not ROM BAR */ /* PCI control bits. Shares IORESOURCE_BITS with above PCI ROM. */ #define IORESOURCE_PCI_FIXED (1<<4) /* Do not move resource */ #define IORESOURCE_PCI_EA_BEI (1<<5) /* BAR Equivalent Indicator */ /* * I/O Resource Descriptors * * Descriptors are used by walk_iomem_res_desc() and region_intersects() * for searching a specific resource range in the iomem table. Assign * a new descriptor when a resource range supports the search interfaces. * Otherwise, resource.desc must be set to IORES_DESC_NONE (0). */ enum { IORES_DESC_NONE = 0, IORES_DESC_CRASH_KERNEL = 1, IORES_DESC_ACPI_TABLES = 2, IORES_DESC_ACPI_NV_STORAGE = 3, IORES_DESC_PERSISTENT_MEMORY = 4, IORES_DESC_PERSISTENT_MEMORY_LEGACY = 5, IORES_DESC_DEVICE_PRIVATE_MEMORY = 6, IORES_DESC_RESERVED = 7, IORES_DESC_SOFT_RESERVED = 8, }; /* * Flags controlling ioremap() behavior. */ enum { IORES_MAP_SYSTEM_RAM = BIT(0), IORES_MAP_ENCRYPTED = BIT(1), }; /* helpers to define resources */ #define DEFINE_RES_NAMED(_start, _size, _name, _flags) \ { \ .start = (_start), \ .end = (_start) + (_size) - 1, \ .name = (_name), \ .flags = (_flags), \ .desc = IORES_DESC_NONE, \ } #define DEFINE_RES_IO_NAMED(_start, _size, _name) \ DEFINE_RES_NAMED((_start), (_size), (_name), IORESOURCE_IO) #define DEFINE_RES_IO(_start, _size) \ DEFINE_RES_IO_NAMED((_start), (_size), NULL) #define DEFINE_RES_MEM_NAMED(_start, _size, _name) \ DEFINE_RES_NAMED((_start), (_size), (_name), IORESOURCE_MEM) #define DEFINE_RES_MEM(_start, _size) \ DEFINE_RES_MEM_NAMED((_start), (_size), NULL) #define DEFINE_RES_IRQ_NAMED(_irq, _name) \ DEFINE_RES_NAMED((_irq), 1, (_name), IORESOURCE_IRQ) #define DEFINE_RES_IRQ(_irq) \ DEFINE_RES_IRQ_NAMED((_irq), NULL) #define DEFINE_RES_DMA_NAMED(_dma, _name) \ DEFINE_RES_NAMED((_dma), 1, (_name), IORESOURCE_DMA) #define DEFINE_RES_DMA(_dma) \ DEFINE_RES_DMA_NAMED((_dma), NULL) /* PC/ISA/whatever - the normal PC address spaces: IO and memory */ extern struct resource ioport_resource; extern struct resource iomem_resource; extern struct resource *request_resource_conflict(struct resource *root, struct resource *new); extern int request_resource(struct resource *root, struct resource *new); extern int release_resource(struct resource *new); void release_child_resources(struct resource *new); extern void reserve_region_with_split(struct resource *root, resource_size_t start, resource_size_t end, const char *name); extern struct resource *insert_resource_conflict(struct resource *parent, struct resource *new); extern int insert_resource(struct resource *parent, struct resource *new); extern void insert_resource_expand_to_fit(struct resource *root, struct resource *new); extern int remove_resource(struct resource *old); extern void arch_remove_reservations(struct resource *avail); extern int allocate_resource(struct resource *root, struct resource *new, resource_size_t size, resource_size_t min, resource_size_t max, resource_size_t align, resource_size_t (*alignf)(void *, const struct resource *, resource_size_t, resource_size_t), void *alignf_data); struct resource *lookup_resource(struct resource *root, resource_size_t start); int adjust_resource(struct resource *res, resource_size_t start, resource_size_t size); resource_size_t resource_alignment(struct resource *res); static inline resource_size_t resource_size(const struct resource *res) { return res->end - res->start + 1; } static inline unsigned long resource_type(const struct resource *res) { return res->flags & IORESOURCE_TYPE_BITS; } static inline unsigned long resource_ext_type(const struct resource *res) { return res->flags & IORESOURCE_EXT_TYPE_BITS; } /* True iff r1 completely contains r2 */ static inline bool resource_contains(struct resource *r1, struct resource *r2) { if (resource_type(r1) != resource_type(r2)) return false; if (r1->flags & IORESOURCE_UNSET || r2->flags & IORESOURCE_UNSET) return false; return r1->start <= r2->start && r1->end >= r2->end; } /* Convenience shorthand with allocation */ #define request_region(start,n,name) __request_region(&ioport_resource, (start), (n), (name), 0) #define request_muxed_region(start,n,name) __request_region(&ioport_resource, (start), (n), (name), IORESOURCE_MUXED) #define __request_mem_region(start,n,name, excl) __request_region(&iomem_resource, (start), (n), (name), excl) #define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name), 0) #define request_mem_region_exclusive(start,n,name) \ __request_region(&iomem_resource, (start), (n), (name), IORESOURCE_EXCLUSIVE) #define rename_region(region, newname) do { (region)->name = (newname); } while (0) extern struct resource * __request_region(struct resource *, resource_size_t start, resource_size_t n, const char *name, int flags); /* Compatibility cruft */ #define release_region(start,n) __release_region(&ioport_resource, (start), (n)) #define release_mem_region(start,n) __release_region(&iomem_resource, (start), (n)) extern void __release_region(struct resource *, resource_size_t, resource_size_t); #ifdef CONFIG_MEMORY_HOTREMOVE extern void release_mem_region_adjustable(resource_size_t, resource_size_t); #endif #ifdef CONFIG_MEMORY_HOTPLUG extern void merge_system_ram_resource(struct resource *res); #endif /* Wrappers for managed devices */ struct device; extern int devm_request_resource(struct device *dev, struct resource *root, struct resource *new); extern void devm_release_resource(struct device *dev, struct resource *new); #define devm_request_region(dev,start,n,name) \ __devm_request_region(dev, &ioport_resource, (start), (n), (name)) #define devm_request_mem_region(dev,start,n,name) \ __devm_request_region(dev, &iomem_resource, (start), (n), (name)) extern struct resource * __devm_request_region(struct device *dev, struct resource *parent, resource_size_t start, resource_size_t n, const char *name); #define devm_release_region(dev, start, n) \ __devm_release_region(dev, &ioport_resource, (start), (n)) #define devm_release_mem_region(dev, start, n) \ __devm_release_region(dev, &iomem_resource, (start), (n)) extern void __devm_release_region(struct device *dev, struct resource *parent, resource_size_t start, resource_size_t n); extern int iomem_map_sanity_check(resource_size_t addr, unsigned long size); extern bool iomem_is_exclusive(u64 addr); extern int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, void *arg, int (*func)(unsigned long, unsigned long, void *)); extern int walk_mem_res(u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); extern int walk_system_ram_res(u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); extern int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); /* True if any part of r1 overlaps r2 */ static inline bool resource_overlaps(struct resource *r1, struct resource *r2) { return (r1->start <= r2->end && r1->end >= r2->start); } struct resource *devm_request_free_mem_region(struct device *dev, struct resource *base, unsigned long size); struct resource *request_free_mem_region(struct resource *base, unsigned long size, const char *name); #ifdef CONFIG_IO_STRICT_DEVMEM void revoke_devmem(struct resource *res); #else static inline void revoke_devmem(struct resource *res) { }; #endif #endif /* __ASSEMBLY__ */ #endif /* _LINUX_IOPORT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef __SOUND_CORE_H #define __SOUND_CORE_H /* * Main header file for the ALSA driver * Copyright (c) 1994-2001 by Jaroslav Kysela <perex@perex.cz> */ #include <linux/device.h> #include <linux/sched.h> /* wake_up() */ #include <linux/mutex.h> /* struct mutex */ #include <linux/rwsem.h> /* struct rw_semaphore */ #include <linux/pm.h> /* pm_message_t */ #include <linux/stringify.h> #include <linux/printk.h> /* number of supported soundcards */ #ifdef CONFIG_SND_DYNAMIC_MINORS #define SNDRV_CARDS CONFIG_SND_MAX_CARDS #else #define SNDRV_CARDS 8 /* don't change - minor numbers */ #endif #define CONFIG_SND_MAJOR 116 /* standard configuration */ /* forward declarations */ struct pci_dev; struct module; struct completion; /* device allocation stuff */ /* type of the object used in snd_device_*() * this also defines the calling order */ enum snd_device_type { SNDRV_DEV_LOWLEVEL, SNDRV_DEV_INFO, SNDRV_DEV_BUS, SNDRV_DEV_CODEC, SNDRV_DEV_PCM, SNDRV_DEV_COMPRESS, SNDRV_DEV_RAWMIDI, SNDRV_DEV_TIMER, SNDRV_DEV_SEQUENCER, SNDRV_DEV_HWDEP, SNDRV_DEV_JACK, SNDRV_DEV_CONTROL, /* NOTE: this must be the last one */ }; enum snd_device_state { SNDRV_DEV_BUILD, SNDRV_DEV_REGISTERED, SNDRV_DEV_DISCONNECTED, }; struct snd_device; struct snd_device_ops { int (*dev_free)(struct snd_device *dev); int (*dev_register)(struct snd_device *dev); int (*dev_disconnect)(struct snd_device *dev); }; struct snd_device { struct list_head list; /* list of registered devices */ struct snd_card *card; /* card which holds this device */ enum snd_device_state state; /* state of the device */ enum snd_device_type type; /* device type */ void *device_data; /* device structure */ const struct snd_device_ops *ops; /* operations */ }; #define snd_device(n) list_entry(n, struct snd_device, list) /* main structure for soundcard */ struct snd_card { int number; /* number of soundcard (index to snd_cards) */ char id[16]; /* id string of this card */ char driver[16]; /* driver name */ char shortname[32]; /* short name of this soundcard */ char longname[80]; /* name of this soundcard */ char irq_descr[32]; /* Interrupt description */ char mixername[80]; /* mixer name */ char components[128]; /* card components delimited with space */ struct module *module; /* top-level module */ void *private_data; /* private data for soundcard */ void (*private_free) (struct snd_card *card); /* callback for freeing of private data */ struct list_head devices; /* devices */ struct device ctl_dev; /* control device */ unsigned int last_numid; /* last used numeric ID */ struct rw_semaphore controls_rwsem; /* controls list lock */ rwlock_t ctl_files_rwlock; /* ctl_files list lock */ int controls_count; /* count of all controls */ int user_ctl_count; /* count of all user controls */ struct list_head controls; /* all controls for this card */ struct list_head ctl_files; /* active control files */ struct snd_info_entry *proc_root; /* root for soundcard specific files */ struct proc_dir_entry *proc_root_link; /* number link to real id */ struct list_head files_list; /* all files associated to this card */ struct snd_shutdown_f_ops *s_f_ops; /* file operations in the shutdown state */ spinlock_t files_lock; /* lock the files for this card */ int shutdown; /* this card is going down */ struct completion *release_completion; struct device *dev; /* device assigned to this card */ struct device card_dev; /* cardX object for sysfs */ const struct attribute_group *dev_groups[4]; /* assigned sysfs attr */ bool registered; /* card_dev is registered? */ int sync_irq; /* assigned irq, used for PCM sync */ wait_queue_head_t remove_sleep; size_t total_pcm_alloc_bytes; /* total amount of allocated buffers */ struct mutex memory_mutex; /* protection for the above */ #ifdef CONFIG_PM unsigned int power_state; /* power state */ wait_queue_head_t power_sleep; #endif #if IS_ENABLED(CONFIG_SND_MIXER_OSS) struct snd_mixer_oss *mixer_oss; int mixer_oss_change_count; #endif }; #define dev_to_snd_card(p) container_of(p, struct snd_card, card_dev) #ifdef CONFIG_PM static inline unsigned int snd_power_get_state(struct snd_card *card) { return card->power_state; } static inline void snd_power_change_state(struct snd_card *card, unsigned int state) { card->power_state = state; wake_up(&card->power_sleep); } /* init.c */ int snd_power_wait(struct snd_card *card, unsigned int power_state); #else /* ! CONFIG_PM */ static inline int snd_power_wait(struct snd_card *card, unsigned int state) { return 0; } #define snd_power_get_state(card) ({ (void)(card); SNDRV_CTL_POWER_D0; }) #define snd_power_change_state(card, state) do { (void)(card); } while (0) #endif /* CONFIG_PM */ struct snd_minor { int type; /* SNDRV_DEVICE_TYPE_XXX */ int card; /* card number */ int device; /* device number */ const struct file_operations *f_ops; /* file operations */ void *private_data; /* private data for f_ops->open */ struct device *dev; /* device for sysfs */ struct snd_card *card_ptr; /* assigned card instance */ }; /* return a device pointer linked to each sound device as a parent */ static inline struct device *snd_card_get_device_link(struct snd_card *card) { return card ? &card->card_dev : NULL; } /* sound.c */ extern int snd_major; extern int snd_ecards_limit; extern struct class *sound_class; void snd_request_card(int card); void snd_device_initialize(struct device *dev, struct snd_card *card); int snd_register_device(int type, struct snd_card *card, int dev, const struct file_operations *f_ops, void *private_data, struct device *device); int snd_unregister_device(struct device *dev); void *snd_lookup_minor_data(unsigned int minor, int type); #ifdef CONFIG_SND_OSSEMUL int snd_register_oss_device(int type, struct snd_card *card, int dev, const struct file_operations *f_ops, void *private_data); int snd_unregister_oss_device(int type, struct snd_card *card, int dev); void *snd_lookup_oss_minor_data(unsigned int minor, int type); #endif int snd_minor_info_init(void); /* sound_oss.c */ #ifdef CONFIG_SND_OSSEMUL int snd_minor_info_oss_init(void); #else static inline int snd_minor_info_oss_init(void) { return 0; } #endif /* memory.c */ int copy_to_user_fromio(void __user *dst, const volatile void __iomem *src, size_t count); int copy_from_user_toio(volatile void __iomem *dst, const void __user *src, size_t count); /* init.c */ int snd_card_locked(int card); #if IS_ENABLED(CONFIG_SND_MIXER_OSS) #define SND_MIXER_OSS_NOTIFY_REGISTER 0 #define SND_MIXER_OSS_NOTIFY_DISCONNECT 1 #define SND_MIXER_OSS_NOTIFY_FREE 2 extern int (*snd_mixer_oss_notify_callback)(struct snd_card *card, int cmd); #endif int snd_card_new(struct device *parent, int idx, const char *xid, struct module *module, int extra_size, struct snd_card **card_ret); int snd_card_disconnect(struct snd_card *card); void snd_card_disconnect_sync(struct snd_card *card); int snd_card_free(struct snd_card *card); int snd_card_free_when_closed(struct snd_card *card); void snd_card_set_id(struct snd_card *card, const char *id); int snd_card_register(struct snd_card *card); int snd_card_info_init(void); int snd_card_add_dev_attr(struct snd_card *card, const struct attribute_group *group); int snd_component_add(struct snd_card *card, const char *component); int snd_card_file_add(struct snd_card *card, struct file *file); int snd_card_file_remove(struct snd_card *card, struct file *file); struct snd_card *snd_card_ref(int card); /** * snd_card_unref - Unreference the card object * @card: the card object to unreference * * Call this function for the card object that was obtained via snd_card_ref() * or snd_lookup_minor_data(). */ static inline void snd_card_unref(struct snd_card *card) { put_device(&card->card_dev); } #define snd_card_set_dev(card, devptr) ((card)->dev = (devptr)) /* device.c */ int snd_device_new(struct snd_card *card, enum snd_device_type type, void *device_data, const struct snd_device_ops *ops); int snd_device_register(struct snd_card *card, void *device_data); int snd_device_register_all(struct snd_card *card); void snd_device_disconnect(struct snd_card *card, void *device_data); void snd_device_disconnect_all(struct snd_card *card); void snd_device_free(struct snd_card *card, void *device_data); void snd_device_free_all(struct snd_card *card); int snd_device_get_state(struct snd_card *card, void *device_data); /* isadma.c */ #ifdef CONFIG_ISA_DMA_API #define DMA_MODE_NO_ENABLE 0x0100 void snd_dma_program(unsigned long dma, unsigned long addr, unsigned int size, unsigned short mode); void snd_dma_disable(unsigned long dma); unsigned int snd_dma_pointer(unsigned long dma, unsigned int size); #endif /* misc.c */ struct resource; void release_and_free_resource(struct resource *res); /* --- */ /* sound printk debug levels */ enum { SND_PR_ALWAYS, SND_PR_DEBUG, SND_PR_VERBOSE, }; #if defined(CONFIG_SND_DEBUG) || defined(CONFIG_SND_VERBOSE_PRINTK) __printf(4, 5) void __snd_printk(unsigned int level, const char *file, int line, const char *format, ...); #else #define __snd_printk(level, file, line, format, ...) \ printk(format, ##__VA_ARGS__) #endif /** * snd_printk - printk wrapper * @fmt: format string * * Works like printk() but prints the file and the line of the caller * when configured with CONFIG_SND_VERBOSE_PRINTK. */ #define snd_printk(fmt, ...) \ __snd_printk(0, __FILE__, __LINE__, fmt, ##__VA_ARGS__) #ifdef CONFIG_SND_DEBUG /** * snd_printd - debug printk * @fmt: format string * * Works like snd_printk() for debugging purposes. * Ignored when CONFIG_SND_DEBUG is not set. */ #define snd_printd(fmt, ...) \ __snd_printk(1, __FILE__, __LINE__, fmt, ##__VA_ARGS__) #define _snd_printd(level, fmt, ...) \ __snd_printk(level, __FILE__, __LINE__, fmt, ##__VA_ARGS__) /** * snd_BUG - give a BUG warning message and stack trace * * Calls WARN() if CONFIG_SND_DEBUG is set. * Ignored when CONFIG_SND_DEBUG is not set. */ #define snd_BUG() WARN(1, "BUG?\n") /** * snd_printd_ratelimit - Suppress high rates of output when * CONFIG_SND_DEBUG is enabled. */ #define snd_printd_ratelimit() printk_ratelimit() /** * snd_BUG_ON - debugging check macro * @cond: condition to evaluate * * Has the same behavior as WARN_ON when CONFIG_SND_DEBUG is set, * otherwise just evaluates the conditional and returns the value. */ #define snd_BUG_ON(cond) WARN_ON((cond)) #else /* !CONFIG_SND_DEBUG */ __printf(1, 2) static inline void snd_printd(const char *format, ...) {} __printf(2, 3) static inline void _snd_printd(int level, const char *format, ...) {} #define snd_BUG() do { } while (0) #define snd_BUG_ON(condition) ({ \ int __ret_warn_on = !!(condition); \ unlikely(__ret_warn_on); \ }) static inline bool snd_printd_ratelimit(void) { return false; } #endif /* CONFIG_SND_DEBUG */ #ifdef CONFIG_SND_DEBUG_VERBOSE /** * snd_printdd - debug printk * @format: format string * * Works like snd_printk() for debugging purposes. * Ignored when CONFIG_SND_DEBUG_VERBOSE is not set. */ #define snd_printdd(format, ...) \ __snd_printk(2, __FILE__, __LINE__, format, ##__VA_ARGS__) #else __printf(1, 2) static inline void snd_printdd(const char *format, ...) {} #endif #define SNDRV_OSS_VERSION ((3<<16)|(8<<8)|(1<<4)|(0)) /* 3.8.1a */ /* for easier backward-porting */ #if IS_ENABLED(CONFIG_GAMEPORT) #define gameport_set_dev_parent(gp,xdev) ((gp)->dev.parent = (xdev)) #define gameport_set_port_data(gp,r) ((gp)->port_data = (r)) #define gameport_get_port_data(gp) (gp)->port_data #endif /* PCI quirk list helper */ struct snd_pci_quirk { unsigned short subvendor; /* PCI subvendor ID */ unsigned short subdevice; /* PCI subdevice ID */ unsigned short subdevice_mask; /* bitmask to match */ int value; /* value */ #ifdef CONFIG_SND_DEBUG_VERBOSE const char *name; /* name of the device (optional) */ #endif }; #define _SND_PCI_QUIRK_ID_MASK(vend, mask, dev) \ .subvendor = (vend), .subdevice = (dev), .subdevice_mask = (mask) #define _SND_PCI_QUIRK_ID(vend, dev) \ _SND_PCI_QUIRK_ID_MASK(vend, 0xffff, dev) #define SND_PCI_QUIRK_ID(vend,dev) {_SND_PCI_QUIRK_ID(vend, dev)} #ifdef CONFIG_SND_DEBUG_VERBOSE #define SND_PCI_QUIRK(vend,dev,xname,val) \ {_SND_PCI_QUIRK_ID(vend, dev), .value = (val), .name = (xname)} #define SND_PCI_QUIRK_VENDOR(vend, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, 0, 0), .value = (val), .name = (xname)} #define SND_PCI_QUIRK_MASK(vend, mask, dev, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, mask, dev), \ .value = (val), .name = (xname)} #define snd_pci_quirk_name(q) ((q)->name) #else #define SND_PCI_QUIRK(vend,dev,xname,val) \ {_SND_PCI_QUIRK_ID(vend, dev), .value = (val)} #define SND_PCI_QUIRK_MASK(vend, mask, dev, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, mask, dev), .value = (val)} #define SND_PCI_QUIRK_VENDOR(vend, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, 0, 0), .value = (val)} #define snd_pci_quirk_name(q) "" #endif #ifdef CONFIG_PCI const struct snd_pci_quirk * snd_pci_quirk_lookup(struct pci_dev *pci, const struct snd_pci_quirk *list); const struct snd_pci_quirk * snd_pci_quirk_lookup_id(u16 vendor, u16 device, const struct snd_pci_quirk *list); #else static inline const struct snd_pci_quirk * snd_pci_quirk_lookup(struct pci_dev *pci, const struct snd_pci_quirk *list) { return NULL; } static inline const struct snd_pci_quirk * snd_pci_quirk_lookup_id(u16 vendor, u16 device, const struct snd_pci_quirk *list) { return NULL; } #endif #endif /* __SOUND_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 #ifndef _LINUX_SCHED_ISOLATION_H #define _LINUX_SCHED_ISOLATION_H #include <linux/cpumask.h> #include <linux/init.h> #include <linux/tick.h> enum hk_flags { HK_FLAG_TIMER = 1, HK_FLAG_RCU = (1 << 1), HK_FLAG_MISC = (1 << 2), HK_FLAG_SCHED = (1 << 3), HK_FLAG_TICK = (1 << 4), HK_FLAG_DOMAIN = (1 << 5), HK_FLAG_WQ = (1 << 6), HK_FLAG_MANAGED_IRQ = (1 << 7), HK_FLAG_KTHREAD = (1 << 8), }; #ifdef CONFIG_CPU_ISOLATION DECLARE_STATIC_KEY_FALSE(housekeeping_overridden); extern int housekeeping_any_cpu(enum hk_flags flags); extern const struct cpumask *housekeeping_cpumask(enum hk_flags flags); extern bool housekeeping_enabled(enum hk_flags flags); extern void housekeeping_affine(struct task_struct *t, enum hk_flags flags); extern bool housekeeping_test_cpu(int cpu, enum hk_flags flags); extern void __init housekeeping_init(void); #else static inline int housekeeping_any_cpu(enum hk_flags flags) { return smp_processor_id(); } static inline const struct cpumask *housekeeping_cpumask(enum hk_flags flags) { return cpu_possible_mask; } static inline bool housekeeping_enabled(enum hk_flags flags) { return false; } static inline void housekeeping_affine(struct task_struct *t, enum hk_flags flags) { } static inline void housekeeping_init(void) { } #endif /* CONFIG_CPU_ISOLATION */ static inline bool housekeeping_cpu(int cpu, enum hk_flags flags) { #ifdef CONFIG_CPU_ISOLATION if (static_branch_unlikely(&housekeeping_overridden)) return housekeeping_test_cpu(cpu, flags); #endif return true; } #endif /* _LINUX_SCHED_ISOLATION_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_UIDGID_H #define _LINUX_UIDGID_H /* * A set of types for the internal kernel types representing uids and gids. * * The types defined in this header allow distinguishing which uids and gids in * the kernel are values used by userspace and which uid and gid values are * the internal kernel values. With the addition of user namespaces the values * can be different. Using the type system makes it possible for the compiler * to detect when we overlook these differences. * */ #include <linux/types.h> #include <linux/highuid.h> struct user_namespace; extern struct user_namespace init_user_ns; typedef struct { uid_t val; } kuid_t; typedef struct { gid_t val; } kgid_t; #define KUIDT_INIT(value) (kuid_t){ value } #define KGIDT_INIT(value) (kgid_t){ value } #ifdef CONFIG_MULTIUSER static inline uid_t __kuid_val(kuid_t uid) { return uid.val; } static inline gid_t __kgid_val(kgid_t gid) { return gid.val; } #else static inline uid_t __kuid_val(kuid_t uid) { return 0; } static inline gid_t __kgid_val(kgid_t gid) { return 0; } #endif #define GLOBAL_ROOT_UID KUIDT_INIT(0) #define GLOBAL_ROOT_GID KGIDT_INIT(0) #define INVALID_UID KUIDT_INIT(-1) #define INVALID_GID KGIDT_INIT(-1) static inline bool uid_eq(kuid_t left, kuid_t right) { return __kuid_val(left) == __kuid_val(right); } static inline bool gid_eq(kgid_t left, kgid_t right) { return __kgid_val(left) == __kgid_val(right); } static inline bool uid_gt(kuid_t left, kuid_t right) { return __kuid_val(left) > __kuid_val(right); } static inline bool gid_gt(kgid_t left, kgid_t right) { return __kgid_val(left) > __kgid_val(right); } static inline bool uid_gte(kuid_t left, kuid_t right) { return __kuid_val(left) >= __kuid_val(right); } static inline bool gid_gte(kgid_t left, kgid_t right) { return __kgid_val(left) >= __kgid_val(right); } static inline bool uid_lt(kuid_t left, kuid_t right) { return __kuid_val(left) < __kuid_val(right); } static inline bool gid_lt(kgid_t left, kgid_t right) { return __kgid_val(left) < __kgid_val(right); } static inline bool uid_lte(kuid_t left, kuid_t right) { return __kuid_val(left) <= __kuid_val(right); } static inline bool gid_lte(kgid_t left, kgid_t right) { return __kgid_val(left) <= __kgid_val(right); } static inline bool uid_valid(kuid_t uid) { return __kuid_val(uid) != (uid_t) -1; } static inline bool gid_valid(kgid_t gid) { return __kgid_val(gid) != (gid_t) -1; } #ifdef CONFIG_USER_NS extern kuid_t make_kuid(struct user_namespace *from, uid_t uid); extern kgid_t make_kgid(struct user_namespace *from, gid_t gid); extern uid_t from_kuid(struct user_namespace *to, kuid_t uid); extern gid_t from_kgid(struct user_namespace *to, kgid_t gid); extern uid_t from_kuid_munged(struct user_namespace *to, kuid_t uid); extern gid_t from_kgid_munged(struct user_namespace *to, kgid_t gid); static inline bool kuid_has_mapping(struct user_namespace *ns, kuid_t uid) { return from_kuid(ns, uid) != (uid_t) -1; } static inline bool kgid_has_mapping(struct user_namespace *ns, kgid_t gid) { return from_kgid(ns, gid) != (gid_t) -1; } #else static inline kuid_t make_kuid(struct user_namespace *from, uid_t uid) { return KUIDT_INIT(uid); } static inline kgid_t make_kgid(struct user_namespace *from, gid_t gid) { return KGIDT_INIT(gid); } static inline uid_t from_kuid(struct user_namespace *to, kuid_t kuid) { return __kuid_val(kuid); } static inline gid_t from_kgid(struct user_namespace *to, kgid_t kgid) { return __kgid_val(kgid); } static inline uid_t from_kuid_munged(struct user_namespace *to, kuid_t kuid) { uid_t uid = from_kuid(to, kuid); if (uid == (uid_t)-1) uid = overflowuid; return uid; } static inline gid_t from_kgid_munged(struct user_namespace *to, kgid_t kgid) { gid_t gid = from_kgid(to, kgid); if (gid == (gid_t)-1) gid = overflowgid; return gid; } static inline bool kuid_has_mapping(struct user_namespace *ns, kuid_t uid) { return uid_valid(uid); } static inline bool kgid_has_mapping(struct user_namespace *ns, kgid_t gid) { return gid_valid(gid); } #endif /* CONFIG_USER_NS */ #endif /* _LINUX_UIDGID_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_DELAY_H #define _LINUX_DELAY_H /* * Copyright (C) 1993 Linus Torvalds * * Delay routines, using a pre-computed "loops_per_jiffy" value. * * Please note that ndelay(), udelay() and mdelay() may return early for * several reasons: * 1. computed loops_per_jiffy too low (due to the time taken to * execute the timer interrupt.) * 2. cache behaviour affecting the time it takes to execute the * loop function. * 3. CPU clock rate changes. * * Please see this thread: * https://lists.openwall.net/linux-kernel/2011/01/09/56 */ #include <linux/kernel.h> extern unsigned long loops_per_jiffy; #include <asm/delay.h> /* * Using udelay() for intervals greater than a few milliseconds can * risk overflow for high loops_per_jiffy (high bogomips) machines. The * mdelay() provides a wrapper to prevent this. For delays greater * than MAX_UDELAY_MS milliseconds, the wrapper is used. Architecture * specific values can be defined in asm-???/delay.h as an override. * The 2nd mdelay() definition ensures GCC will optimize away the * while loop for the common cases where n <= MAX_UDELAY_MS -- Paul G. */ #ifndef MAX_UDELAY_MS #define MAX_UDELAY_MS 5 #endif #ifndef mdelay #define mdelay(n) (\ (__builtin_constant_p(n) && (n)<=MAX_UDELAY_MS) ? udelay((n)*1000) : \ ({unsigned long __ms=(n); while (__ms--) udelay(1000);})) #endif #ifndef ndelay static inline void ndelay(unsigned long x) { udelay(DIV_ROUND_UP(x, 1000)); } #define ndelay(x) ndelay(x) #endif extern unsigned long lpj_fine; void calibrate_delay(void); void __attribute__((weak)) calibration_delay_done(void); void msleep(unsigned int msecs); unsigned long msleep_interruptible(unsigned int msecs); void usleep_range(unsigned long min, unsigned long max); static inline void ssleep(unsigned int seconds) { msleep(seconds * 1000); } /* see Documentation/timers/timers-howto.rst for the thresholds */ static inline void fsleep(unsigned long usecs) { if (usecs <= 10) udelay(usecs); else if (usecs <= 20000) usleep_range(usecs, 2 * usecs); else msleep(DIV_ROUND_UP(usecs, 1000)); } #endif /* defined(_LINUX_DELAY_H) */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_BL_H #define _LINUX_LIST_BL_H #include <linux/list.h> #include <linux/bit_spinlock.h> /* * Special version of lists, where head of the list has a lock in the lowest * bit. This is useful for scalable hash tables without increasing memory * footprint overhead. * * For modification operations, the 0 bit of hlist_bl_head->first * pointer must be set. * * With some small modifications, this can easily be adapted to store several * arbitrary bits (not just a single lock bit), if the need arises to store * some fast and compact auxiliary data. */ #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) #define LIST_BL_LOCKMASK 1UL #else #define LIST_BL_LOCKMASK 0UL #endif #ifdef CONFIG_DEBUG_LIST #define LIST_BL_BUG_ON(x) BUG_ON(x) #else #define LIST_BL_BUG_ON(x) #endif struct hlist_bl_head { struct hlist_bl_node *first; }; struct hlist_bl_node { struct hlist_bl_node *next, **pprev; }; #define INIT_HLIST_BL_HEAD(ptr) \ ((ptr)->first = NULL) static inline void INIT_HLIST_BL_NODE(struct hlist_bl_node *h) { h->next = NULL; h->pprev = NULL; } #define hlist_bl_entry(ptr, type, member) container_of(ptr,type,member) static inline bool hlist_bl_unhashed(const struct hlist_bl_node *h) { return !h->pprev; } static inline struct hlist_bl_node *hlist_bl_first(struct hlist_bl_head *h) { return (struct hlist_bl_node *) ((unsigned long)h->first & ~LIST_BL_LOCKMASK); } static inline void hlist_bl_set_first(struct hlist_bl_head *h, struct hlist_bl_node *n) { LIST_BL_BUG_ON((unsigned long)n & LIST_BL_LOCKMASK); LIST_BL_BUG_ON(((unsigned long)h->first & LIST_BL_LOCKMASK) != LIST_BL_LOCKMASK); h->first = (struct hlist_bl_node *)((unsigned long)n | LIST_BL_LOCKMASK); } static inline bool hlist_bl_empty(const struct hlist_bl_head *h) { return !((unsigned long)READ_ONCE(h->first) & ~LIST_BL_LOCKMASK); } static inline void hlist_bl_add_head(struct hlist_bl_node *n, struct hlist_bl_head *h) { struct hlist_bl_node *first = hlist_bl_first(h); n->next = first; if (first) first->pprev = &n->next; n->pprev = &h->first; hlist_bl_set_first(h, n); } static inline void hlist_bl_add_before(struct hlist_bl_node *n, struct hlist_bl_node *next) { struct hlist_bl_node **pprev = next->pprev; n->pprev = pprev; n->next = next; next->pprev = &n->next; /* pprev may be `first`, so be careful not to lose the lock bit */ WRITE_ONCE(*pprev, (struct hlist_bl_node *) ((uintptr_t)n | ((uintptr_t)*pprev & LIST_BL_LOCKMASK))); } static inline void hlist_bl_add_behind(struct hlist_bl_node *n, struct hlist_bl_node *prev) { n->next = prev->next; n->pprev = &prev->next; prev->next = n; if (n->next) n->next->pprev = &n->next; } static inline void __hlist_bl_del(struct hlist_bl_node *n) { struct hlist_bl_node *next = n->next; struct hlist_bl_node **pprev = n->pprev; LIST_BL_BUG_ON((unsigned long)n & LIST_BL_LOCKMASK); /* pprev may be `first`, so be careful not to lose the lock bit */ WRITE_ONCE(*pprev, (struct hlist_bl_node *) ((unsigned long)next | ((unsigned long)*pprev & LIST_BL_LOCKMASK))); if (next) next->pprev = pprev; } static inline void hlist_bl_del(struct hlist_bl_node *n) { __hlist_bl_del(n); n->next = LIST_POISON1; n->pprev = LIST_POISON2; } static inline void hlist_bl_del_init(struct hlist_bl_node *n) { if (!hlist_bl_unhashed(n)) { __hlist_bl_del(n); INIT_HLIST_BL_NODE(n); } } static inline void hlist_bl_lock(struct hlist_bl_head *b) { bit_spin_lock(0, (unsigned long *)b); } static inline void hlist_bl_unlock(struct hlist_bl_head *b) { __bit_spin_unlock(0, (unsigned long *)b); } static inline bool hlist_bl_is_locked(struct hlist_bl_head *b) { return bit_spin_is_locked(0, (unsigned long *)b); } /** * hlist_bl_for_each_entry - iterate over list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * */ #define hlist_bl_for_each_entry(tpos, pos, head, member) \ for (pos = hlist_bl_first(head); \ pos && \ ({ tpos = hlist_bl_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) /** * hlist_bl_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @n: another &struct hlist_node to use as temporary storage * @head: the head for your list. * @member: the name of the hlist_node within the struct. */ #define hlist_bl_for_each_entry_safe(tpos, pos, n, head, member) \ for (pos = hlist_bl_first(head); \ pos && ({ n = pos->next; 1; }) && \ ({ tpos = hlist_bl_entry(pos, typeof(*tpos), member); 1;}); \ pos = n) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NETFILTER_INGRESS_H_ #define _NETFILTER_INGRESS_H_ #include <linux/netfilter.h> #include <linux/netdevice.h> #ifdef CONFIG_NETFILTER_INGRESS static inline bool nf_hook_ingress_active(const struct sk_buff *skb) { #ifdef CONFIG_JUMP_LABEL if (!static_key_false(&nf_hooks_needed[NFPROTO_NETDEV][NF_NETDEV_INGRESS])) return false; #endif return rcu_access_pointer(skb->dev->nf_hooks_ingress); } /* caller must hold rcu_read_lock */ static inline int nf_hook_ingress(struct sk_buff *skb) { struct nf_hook_entries *e = rcu_dereference(skb->dev->nf_hooks_ingress); struct nf_hook_state state; int ret; /* Must recheck the ingress hook head, in the event it became NULL * after the check in nf_hook_ingress_active evaluated to true. */ if (unlikely(!e)) return 0; nf_hook_state_init(&state, NF_NETDEV_INGRESS, NFPROTO_NETDEV, skb->dev, NULL, NULL, dev_net(skb->dev), NULL); ret = nf_hook_slow(skb, &state, e, 0); if (ret == 0) return -1; return ret; } static inline void nf_hook_ingress_init(struct net_device *dev) { RCU_INIT_POINTER(dev->nf_hooks_ingress, NULL); } #else /* CONFIG_NETFILTER_INGRESS */ static inline int nf_hook_ingress_active(struct sk_buff *skb) { return 0; } static inline int nf_hook_ingress(struct sk_buff *skb) { return 0; } static inline void nf_hook_ingress_init(struct net_device *dev) {} #endif /* CONFIG_NETFILTER_INGRESS */ #endif /* _NETFILTER_INGRESS_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _linux_POSIX_TIMERS_H #define _linux_POSIX_TIMERS_H #include <linux/spinlock.h> #include <linux/list.h> #include <linux/alarmtimer.h> #include <linux/timerqueue.h> #include <linux/task_work.h> struct kernel_siginfo; struct task_struct; /* * Bit fields within a clockid: * * The most significant 29 bits hold either a pid or a file descriptor. * * Bit 2 indicates whether a cpu clock refers to a thread or a process. * * Bits 1 and 0 give the type: PROF=0, VIRT=1, SCHED=2, or FD=3. * * A clockid is invalid if bits 2, 1, and 0 are all set. */ #define CPUCLOCK_PID(clock) ((pid_t) ~((clock) >> 3)) #define CPUCLOCK_PERTHREAD(clock) \ (((clock) & (clockid_t) CPUCLOCK_PERTHREAD_MASK) != 0) #define CPUCLOCK_PERTHREAD_MASK 4 #define CPUCLOCK_WHICH(clock) ((clock) & (clockid_t) CPUCLOCK_CLOCK_MASK) #define CPUCLOCK_CLOCK_MASK 3 #define CPUCLOCK_PROF 0 #define CPUCLOCK_VIRT 1 #define CPUCLOCK_SCHED 2 #define CPUCLOCK_MAX 3 #define CLOCKFD CPUCLOCK_MAX #define CLOCKFD_MASK (CPUCLOCK_PERTHREAD_MASK|CPUCLOCK_CLOCK_MASK) static inline clockid_t make_process_cpuclock(const unsigned int pid, const clockid_t clock) { return ((~pid) << 3) | clock; } static inline clockid_t make_thread_cpuclock(const unsigned int tid, const clockid_t clock) { return make_process_cpuclock(tid, clock | CPUCLOCK_PERTHREAD_MASK); } static inline clockid_t fd_to_clockid(const int fd) { return make_process_cpuclock((unsigned int) fd, CLOCKFD); } static inline int clockid_to_fd(const clockid_t clk) { return ~(clk >> 3); } #ifdef CONFIG_POSIX_TIMERS /** * cpu_timer - Posix CPU timer representation for k_itimer * @node: timerqueue node to queue in the task/sig * @head: timerqueue head on which this timer is queued * @task: Pointer to target task * @elist: List head for the expiry list * @firing: Timer is currently firing */ struct cpu_timer { struct timerqueue_node node; struct timerqueue_head *head; struct pid *pid; struct list_head elist; int firing; }; static inline bool cpu_timer_enqueue(struct timerqueue_head *head, struct cpu_timer *ctmr) { ctmr->head = head; return timerqueue_add(head, &ctmr->node); } static inline void cpu_timer_dequeue(struct cpu_timer *ctmr) { if (ctmr->head) { timerqueue_del(ctmr->head, &ctmr->node); ctmr->head = NULL; } } static inline u64 cpu_timer_getexpires(struct cpu_timer *ctmr) { return ctmr->node.expires; } static inline void cpu_timer_setexpires(struct cpu_timer *ctmr, u64 exp) { ctmr->node.expires = exp; } /** * posix_cputimer_base - Container per posix CPU clock * @nextevt: Earliest-expiration cache * @tqhead: timerqueue head for cpu_timers */ struct posix_cputimer_base { u64 nextevt; struct timerqueue_head tqhead; }; /** * posix_cputimers - Container for posix CPU timer related data * @bases: Base container for posix CPU clocks * @timers_active: Timers are queued. * @expiry_active: Timer expiry is active. Used for * process wide timers to avoid multiple * task trying to handle expiry concurrently * * Used in task_struct and signal_struct */ struct posix_cputimers { struct posix_cputimer_base bases[CPUCLOCK_MAX]; unsigned int timers_active; unsigned int expiry_active; }; /** * posix_cputimers_work - Container for task work based posix CPU timer expiry * @work: The task work to be scheduled * @scheduled: @work has been scheduled already, no further processing */ struct posix_cputimers_work { struct callback_head work; unsigned int scheduled; }; static inline void posix_cputimers_init(struct posix_cputimers *pct) { memset(pct, 0, sizeof(*pct)); pct->bases[0].nextevt = U64_MAX; pct->bases[1].nextevt = U64_MAX; pct->bases[2].nextevt = U64_MAX; } void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit); static inline void posix_cputimers_rt_watchdog(struct posix_cputimers *pct, u64 runtime) { pct->bases[CPUCLOCK_SCHED].nextevt = runtime; } /* Init task static initializer */ #define INIT_CPU_TIMERBASE(b) { \ .nextevt = U64_MAX, \ } #define INIT_CPU_TIMERBASES(b) { \ INIT_CPU_TIMERBASE(b[0]), \ INIT_CPU_TIMERBASE(b[1]), \ INIT_CPU_TIMERBASE(b[2]), \ } #define INIT_CPU_TIMERS(s) \ .posix_cputimers = { \ .bases = INIT_CPU_TIMERBASES(s.posix_cputimers.bases), \ }, #else struct posix_cputimers { }; struct cpu_timer { }; #define INIT_CPU_TIMERS(s) static inline void posix_cputimers_init(struct posix_cputimers *pct) { } static inline void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) { } #endif #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK void clear_posix_cputimers_work(struct task_struct *p); void posix_cputimers_init_work(void); #else static inline void clear_posix_cputimers_work(struct task_struct *p) { } static inline void posix_cputimers_init_work(void) { } #endif #define REQUEUE_PENDING 1 /** * struct k_itimer - POSIX.1b interval timer structure. * @list: List head for binding the timer to signals->posix_timers * @t_hash: Entry in the posix timer hash table * @it_lock: Lock protecting the timer * @kclock: Pointer to the k_clock struct handling this timer * @it_clock: The posix timer clock id * @it_id: The posix timer id for identifying the timer * @it_active: Marker that timer is active * @it_overrun: The overrun counter for pending signals * @it_overrun_last: The overrun at the time of the last delivered signal * @it_requeue_pending: Indicator that timer waits for being requeued on * signal delivery * @it_sigev_notify: The notify word of sigevent struct for signal delivery * @it_interval: The interval for periodic timers * @it_signal: Pointer to the creators signal struct * @it_pid: The pid of the process/task targeted by the signal * @it_process: The task to wakeup on clock_nanosleep (CPU timers) * @sigq: Pointer to preallocated sigqueue * @it: Union representing the various posix timer type * internals. * @rcu: RCU head for freeing the timer. */ struct k_itimer { struct list_head list; struct hlist_node t_hash; spinlock_t it_lock; const struct k_clock *kclock; clockid_t it_clock; timer_t it_id; int it_active; s64 it_overrun; s64 it_overrun_last; int it_requeue_pending; int it_sigev_notify; ktime_t it_interval; struct signal_struct *it_signal; union { struct pid *it_pid; struct task_struct *it_process; }; struct sigqueue *sigq; union { struct { struct hrtimer timer; } real; struct cpu_timer cpu; struct { struct alarm alarmtimer; } alarm; } it; struct rcu_head rcu; }; void run_posix_cpu_timers(void); void posix_cpu_timers_exit(struct task_struct *task); void posix_cpu_timers_exit_group(struct task_struct *task); void set_process_cpu_timer(struct task_struct *task, unsigned int clock_idx, u64 *newval, u64 *oldval); void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new); void posixtimer_rearm(struct kernel_siginfo *info); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_COMPLETION_H #define __LINUX_COMPLETION_H /* * (C) Copyright 2001 Linus Torvalds * * Atomic wait-for-completion handler data structures. * See kernel/sched/completion.c for details. */ #include <linux/swait.h> /* * struct completion - structure used to maintain state for a "completion" * * This is the opaque structure used to maintain the state for a "completion". * Completions currently use a FIFO to queue threads that have to wait for * the "completion" event. * * See also: complete(), wait_for_completion() (and friends _timeout, * _interruptible, _interruptible_timeout, and _killable), init_completion(), * reinit_completion(), and macros DECLARE_COMPLETION(), * DECLARE_COMPLETION_ONSTACK(). */ struct completion { unsigned int done; struct swait_queue_head wait; }; #define init_completion_map(x, m) __init_completion(x) #define init_completion(x) __init_completion(x) static inline void complete_acquire(struct completion *x) {} static inline void complete_release(struct completion *x) {} #define COMPLETION_INITIALIZER(work) \ { 0, __SWAIT_QUEUE_HEAD_INITIALIZER((work).wait) } #define COMPLETION_INITIALIZER_ONSTACK_MAP(work, map) \ (*({ init_completion_map(&(work), &(map)); &(work); })) #define COMPLETION_INITIALIZER_ONSTACK(work) \ (*({ init_completion(&work); &work; })) /** * DECLARE_COMPLETION - declare and initialize a completion structure * @work: identifier for the completion structure * * This macro declares and initializes a completion structure. Generally used * for static declarations. You should use the _ONSTACK variant for automatic * variables. */ #define DECLARE_COMPLETION(work) \ struct completion work = COMPLETION_INITIALIZER(work) /* * Lockdep needs to run a non-constant initializer for on-stack * completions - so we use the _ONSTACK() variant for those that * are on the kernel stack: */ /** * DECLARE_COMPLETION_ONSTACK - declare and initialize a completion structure * @work: identifier for the completion structure * * This macro declares and initializes a completion structure on the kernel * stack. */ #ifdef CONFIG_LOCKDEP # define DECLARE_COMPLETION_ONSTACK(work) \ struct completion work = COMPLETION_INITIALIZER_ONSTACK(work) # define DECLARE_COMPLETION_ONSTACK_MAP(work, map) \ struct completion work = COMPLETION_INITIALIZER_ONSTACK_MAP(work, map) #else # define DECLARE_COMPLETION_ONSTACK(work) DECLARE_COMPLETION(work) # define DECLARE_COMPLETION_ONSTACK_MAP(work, map) DECLARE_COMPLETION(work) #endif /** * init_completion - Initialize a dynamically allocated completion * @x: pointer to completion structure that is to be initialized * * This inline function will initialize a dynamically created completion * structure. */ static inline void __init_completion(struct completion *x) { x->done = 0; init_swait_queue_head(&x->wait); } /** * reinit_completion - reinitialize a completion structure * @x: pointer to completion structure that is to be reinitialized * * This inline function should be used to reinitialize a completion structure so it can * be reused. This is especially important after complete_all() is used. */ static inline void reinit_completion(struct completion *x) { x->done = 0; } extern void wait_for_completion(struct completion *); extern void wait_for_completion_io(struct completion *); extern int wait_for_completion_interruptible(struct completion *x); extern int wait_for_completion_killable(struct completion *x); extern unsigned long wait_for_completion_timeout(struct completion *x, unsigned long timeout); extern unsigned long wait_for_completion_io_timeout(struct completion *x, unsigned long timeout); extern long wait_for_completion_interruptible_timeout( struct completion *x, unsigned long timeout); extern long wait_for_completion_killable_timeout( struct completion *x, unsigned long timeout); extern bool try_wait_for_completion(struct completion *x); extern bool completion_done(struct completion *x); extern void complete(struct completion *); extern void complete_all(struct completion *); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_DISK_H #define _SCSI_DISK_H /* * More than enough for everybody ;) The huge number of majors * is a leftover from 16bit dev_t days, we don't really need that * much numberspace. */ #define SD_MAJORS 16 /* * Time out in seconds for disks and Magneto-opticals (which are slower). */ #define SD_TIMEOUT (30 * HZ) #define SD_MOD_TIMEOUT (75 * HZ) /* * Flush timeout is a multiplier over the standard device timeout which is * user modifiable via sysfs but initially set to SD_TIMEOUT */ #define SD_FLUSH_TIMEOUT_MULTIPLIER 2 #define SD_WRITE_SAME_TIMEOUT (120 * HZ) /* * Number of allowed retries */ #define SD_MAX_RETRIES 5 #define SD_PASSTHROUGH_RETRIES 1 #define SD_MAX_MEDIUM_TIMEOUTS 2 /* * Size of the initial data buffer for mode and read capacity data */ #define SD_BUF_SIZE 512 /* * Number of sectors at the end of the device to avoid multi-sector * accesses to in the case of last_sector_bug */ #define SD_LAST_BUGGY_SECTORS 8 enum { SD_EXT_CDB_SIZE = 32, /* Extended CDB size */ SD_MEMPOOL_SIZE = 2, /* CDB pool size */ }; enum { SD_DEF_XFER_BLOCKS = 0xffff, SD_MAX_XFER_BLOCKS = 0xffffffff, SD_MAX_WS10_BLOCKS = 0xffff, SD_MAX_WS16_BLOCKS = 0x7fffff, }; enum { SD_LBP_FULL = 0, /* Full logical block provisioning */ SD_LBP_UNMAP, /* Use UNMAP command */ SD_LBP_WS16, /* Use WRITE SAME(16) with UNMAP bit */ SD_LBP_WS10, /* Use WRITE SAME(10) with UNMAP bit */ SD_LBP_ZERO, /* Use WRITE SAME(10) with zero payload */ SD_LBP_DISABLE, /* Discard disabled due to failed cmd */ }; enum { SD_ZERO_WRITE = 0, /* Use WRITE(10/16) command */ SD_ZERO_WS, /* Use WRITE SAME(10/16) command */ SD_ZERO_WS16_UNMAP, /* Use WRITE SAME(16) with UNMAP */ SD_ZERO_WS10_UNMAP, /* Use WRITE SAME(10) with UNMAP */ }; struct scsi_disk { struct scsi_driver *driver; /* always &sd_template */ struct scsi_device *device; struct device dev; struct gendisk *disk; struct opal_dev *opal_dev; #ifdef CONFIG_BLK_DEV_ZONED u32 nr_zones; u32 rev_nr_zones; u32 zone_blocks; u32 rev_zone_blocks; u32 zones_optimal_open; u32 zones_optimal_nonseq; u32 zones_max_open; u32 *zones_wp_offset; spinlock_t zones_wp_offset_lock; u32 *rev_wp_offset; struct mutex rev_mutex; struct work_struct zone_wp_offset_work; char *zone_wp_update_buf; #endif atomic_t openers; sector_t capacity; /* size in logical blocks */ int max_retries; u32 max_xfer_blocks; u32 opt_xfer_blocks; u32 max_ws_blocks; u32 max_unmap_blocks; u32 unmap_granularity; u32 unmap_alignment; u32 index; unsigned int physical_block_size; unsigned int max_medium_access_timeouts; unsigned int medium_access_timed_out; u8 media_present; u8 write_prot; u8 protection_type;/* Data Integrity Field */ u8 provisioning_mode; u8 zeroing_mode; unsigned ATO : 1; /* state of disk ATO bit */ unsigned cache_override : 1; /* temp override of WCE,RCD */ unsigned WCE : 1; /* state of disk WCE bit */ unsigned RCD : 1; /* state of disk RCD bit, unused */ unsigned DPOFUA : 1; /* state of disk DPOFUA bit */ unsigned first_scan : 1; unsigned lbpme : 1; unsigned lbprz : 1; unsigned lbpu : 1; unsigned lbpws : 1; unsigned lbpws10 : 1; unsigned lbpvpd : 1; unsigned ws10 : 1; unsigned ws16 : 1; unsigned rc_basis: 2; unsigned zoned: 2; unsigned urswrz : 1; unsigned security : 1; unsigned ignore_medium_access_errors : 1; }; #define to_scsi_disk(obj) container_of(obj,struct scsi_disk,dev) static inline struct scsi_disk *scsi_disk(struct gendisk *disk) { return container_of(disk->private_data, struct scsi_disk, driver); } #define sd_printk(prefix, sdsk, fmt, a...) \ (sdsk)->disk ? \ sdev_prefix_printk(prefix, (sdsk)->device, \ (sdsk)->disk->disk_name, fmt, ##a) : \ sdev_printk(prefix, (sdsk)->device, fmt, ##a) #define sd_first_printk(prefix, sdsk, fmt, a...) \ do { \ if ((sdsk)->first_scan) \ sd_printk(prefix, sdsk, fmt, ##a); \ } while (0) static inline int scsi_medium_access_command(struct scsi_cmnd *scmd) { switch (scmd->cmnd[0]) { case READ_6: case READ_10: case READ_12: case READ_16: case SYNCHRONIZE_CACHE: case VERIFY: case VERIFY_12: case VERIFY_16: case WRITE_6: case WRITE_10: case WRITE_12: case WRITE_16: case WRITE_SAME: case WRITE_SAME_16: case UNMAP: return 1; case VARIABLE_LENGTH_CMD: switch (scmd->cmnd[9]) { case READ_32: case VERIFY_32: case WRITE_32: case WRITE_SAME_32: return 1; } } return 0; } static inline sector_t logical_to_sectors(struct scsi_device *sdev, sector_t blocks) { return blocks << (ilog2(sdev->sector_size) - 9); } static inline unsigned int logical_to_bytes(struct scsi_device *sdev, sector_t blocks) { return blocks * sdev->sector_size; } static inline sector_t bytes_to_logical(struct scsi_device *sdev, unsigned int bytes) { return bytes >> ilog2(sdev->sector_size); } static inline sector_t sectors_to_logical(struct scsi_device *sdev, sector_t sector) { return sector >> (ilog2(sdev->sector_size) - 9); } #ifdef CONFIG_BLK_DEV_INTEGRITY extern void sd_dif_config_host(struct scsi_disk *); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline void sd_dif_config_host(struct scsi_disk *disk) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ static inline int sd_is_zoned(struct scsi_disk *sdkp) { return sdkp->zoned == 1 || sdkp->device->type == TYPE_ZBC; } #ifdef CONFIG_BLK_DEV_ZONED void sd_zbc_release_disk(struct scsi_disk *sdkp); int sd_zbc_read_zones(struct scsi_disk *sdkp, unsigned char *buffer); int sd_zbc_revalidate_zones(struct scsi_disk *sdkp); blk_status_t sd_zbc_setup_zone_mgmt_cmnd(struct scsi_cmnd *cmd, unsigned char op, bool all); unsigned int sd_zbc_complete(struct scsi_cmnd *cmd, unsigned int good_bytes, struct scsi_sense_hdr *sshdr); int sd_zbc_report_zones(struct gendisk *disk, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); blk_status_t sd_zbc_prepare_zone_append(struct scsi_cmnd *cmd, sector_t *lba, unsigned int nr_blocks); #else /* CONFIG_BLK_DEV_ZONED */ static inline void sd_zbc_release_disk(struct scsi_disk *sdkp) {} static inline int sd_zbc_read_zones(struct scsi_disk *sdkp, unsigned char *buf) { return 0; } static inline int sd_zbc_revalidate_zones(struct scsi_disk *sdkp) { return 0; } static inline blk_status_t sd_zbc_setup_zone_mgmt_cmnd(struct scsi_cmnd *cmd, unsigned char op, bool all) { return BLK_STS_TARGET; } static inline unsigned int sd_zbc_complete(struct scsi_cmnd *cmd, unsigned int good_bytes, struct scsi_sense_hdr *sshdr) { return good_bytes; } static inline blk_status_t sd_zbc_prepare_zone_append(struct scsi_cmnd *cmd, sector_t *lba, unsigned int nr_blocks) { return BLK_STS_TARGET; } #define sd_zbc_report_zones NULL #endif /* CONFIG_BLK_DEV_ZONED */ void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr); void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result); #endif /* _SCSI_DISK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CFG80211_RDEV_OPS #define __CFG80211_RDEV_OPS #include <linux/rtnetlink.h> #include <net/cfg80211.h> #include "core.h" #include "trace.h" static inline int rdev_suspend(struct cfg80211_registered_device *rdev, struct cfg80211_wowlan *wowlan) { int ret; trace_rdev_suspend(&rdev->wiphy, wowlan); ret = rdev->ops->suspend(&rdev->wiphy, wowlan); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_resume(struct cfg80211_registered_device *rdev) { int ret; trace_rdev_resume(&rdev->wiphy); ret = rdev->ops->resume(&rdev->wiphy); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_set_wakeup(struct cfg80211_registered_device *rdev, bool enabled) { trace_rdev_set_wakeup(&rdev->wiphy, enabled); rdev->ops->set_wakeup(&rdev->wiphy, enabled); trace_rdev_return_void(&rdev->wiphy); } static inline struct wireless_dev *rdev_add_virtual_intf(struct cfg80211_registered_device *rdev, char *name, unsigned char name_assign_type, enum nl80211_iftype type, struct vif_params *params) { struct wireless_dev *ret; trace_rdev_add_virtual_intf(&rdev->wiphy, name, type); ret = rdev->ops->add_virtual_intf(&rdev->wiphy, name, name_assign_type, type, params); trace_rdev_return_wdev(&rdev->wiphy, ret); return ret; } static inline int rdev_del_virtual_intf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { int ret; trace_rdev_del_virtual_intf(&rdev->wiphy, wdev); ret = rdev->ops->del_virtual_intf(&rdev->wiphy, wdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_virtual_intf(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype type, struct vif_params *params) { int ret; trace_rdev_change_virtual_intf(&rdev->wiphy, dev, type); ret = rdev->ops->change_virtual_intf(&rdev->wiphy, dev, type, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, struct key_params *params) { int ret; trace_rdev_add_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, params->mode); ret = rdev->ops->add_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback)(void *cookie, struct key_params*)) { int ret; trace_rdev_get_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); ret = rdev->ops->get_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, cookie, callback); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr) { int ret; trace_rdev_del_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); ret = rdev->ops->del_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool unicast, bool multicast) { int ret; trace_rdev_set_default_key(&rdev->wiphy, netdev, key_index, unicast, multicast); ret = rdev->ops->set_default_key(&rdev->wiphy, netdev, key_index, unicast, multicast); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_mgmt_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index) { int ret; trace_rdev_set_default_mgmt_key(&rdev->wiphy, netdev, key_index); ret = rdev->ops->set_default_mgmt_key(&rdev->wiphy, netdev, key_index); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_beacon_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index) { int ret; trace_rdev_set_default_beacon_key(&rdev->wiphy, netdev, key_index); ret = rdev->ops->set_default_beacon_key(&rdev->wiphy, netdev, key_index); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_start_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ap_settings *settings) { int ret; trace_rdev_start_ap(&rdev->wiphy, dev, settings); ret = rdev->ops->start_ap(&rdev->wiphy, dev, settings); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_beacon(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_beacon_data *info) { int ret; trace_rdev_change_beacon(&rdev->wiphy, dev, info); ret = rdev->ops->change_beacon(&rdev->wiphy, dev, info); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_stop_ap(&rdev->wiphy, dev); ret = rdev->ops->stop_ap(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_station(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *mac, struct station_parameters *params) { int ret; trace_rdev_add_station(&rdev->wiphy, dev, mac, params); ret = rdev->ops->add_station(&rdev->wiphy, dev, mac, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_station(struct cfg80211_registered_device *rdev, struct net_device *dev, struct station_del_parameters *params) { int ret; trace_rdev_del_station(&rdev->wiphy, dev, params); ret = rdev->ops->del_station(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_station(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *mac, struct station_parameters *params) { int ret; trace_rdev_change_station(&rdev->wiphy, dev, mac, params); ret = rdev->ops->change_station(&rdev->wiphy, dev, mac, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_station(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *mac, struct station_info *sinfo) { int ret; trace_rdev_get_station(&rdev->wiphy, dev, mac); ret = rdev->ops->get_station(&rdev->wiphy, dev, mac, sinfo); trace_rdev_return_int_station_info(&rdev->wiphy, ret, sinfo); return ret; } static inline int rdev_dump_station(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *mac, struct station_info *sinfo) { int ret; trace_rdev_dump_station(&rdev->wiphy, dev, idx, mac); ret = rdev->ops->dump_station(&rdev->wiphy, dev, idx, mac, sinfo); trace_rdev_return_int_station_info(&rdev->wiphy, ret, sinfo); return ret; } static inline int rdev_add_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop) { int ret; trace_rdev_add_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->add_mpath(&rdev->wiphy, dev, dst, next_hop); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst) { int ret; trace_rdev_del_mpath(&rdev->wiphy, dev, dst); ret = rdev->ops->del_mpath(&rdev->wiphy, dev, dst); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop) { int ret; trace_rdev_change_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->change_mpath(&rdev->wiphy, dev, dst, next_hop); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { int ret; trace_rdev_get_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->get_mpath(&rdev->wiphy, dev, dst, next_hop, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_get_mpp(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *mpp, struct mpath_info *pinfo) { int ret; trace_rdev_get_mpp(&rdev->wiphy, dev, dst, mpp); ret = rdev->ops->get_mpp(&rdev->wiphy, dev, dst, mpp, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_dump_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { int ret; trace_rdev_dump_mpath(&rdev->wiphy, dev, idx, dst, next_hop); ret = rdev->ops->dump_mpath(&rdev->wiphy, dev, idx, dst, next_hop, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_dump_mpp(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *dst, u8 *mpp, struct mpath_info *pinfo) { int ret; trace_rdev_dump_mpp(&rdev->wiphy, dev, idx, dst, mpp); ret = rdev->ops->dump_mpp(&rdev->wiphy, dev, idx, dst, mpp, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_get_mesh_config(struct cfg80211_registered_device *rdev, struct net_device *dev, struct mesh_config *conf) { int ret; trace_rdev_get_mesh_config(&rdev->wiphy, dev); ret = rdev->ops->get_mesh_config(&rdev->wiphy, dev, conf); trace_rdev_return_int_mesh_config(&rdev->wiphy, ret, conf); return ret; } static inline int rdev_update_mesh_config(struct cfg80211_registered_device *rdev, struct net_device *dev, u32 mask, const struct mesh_config *nconf) { int ret; trace_rdev_update_mesh_config(&rdev->wiphy, dev, mask, nconf); ret = rdev->ops->update_mesh_config(&rdev->wiphy, dev, mask, nconf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev, const struct mesh_config *conf, const struct mesh_setup *setup) { int ret; trace_rdev_join_mesh(&rdev->wiphy, dev, conf, setup); ret = rdev->ops->join_mesh(&rdev->wiphy, dev, conf, setup); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_mesh(&rdev->wiphy, dev); ret = rdev->ops->leave_mesh(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup) { int ret; trace_rdev_join_ocb(&rdev->wiphy, dev, setup); ret = rdev->ops->join_ocb(&rdev->wiphy, dev, setup); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_ocb(&rdev->wiphy, dev); ret = rdev->ops->leave_ocb(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_bss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct bss_parameters *params) { int ret; trace_rdev_change_bss(&rdev->wiphy, dev, params); ret = rdev->ops->change_bss(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_txq_params(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_txq_params *params) { int ret; trace_rdev_set_txq_params(&rdev->wiphy, dev, params); ret = rdev->ops->set_txq_params(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_libertas_set_mesh_channel(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan) { int ret; trace_rdev_libertas_set_mesh_channel(&rdev->wiphy, dev, chan); ret = rdev->ops->libertas_set_mesh_channel(&rdev->wiphy, dev, chan); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_monitor_channel(struct cfg80211_registered_device *rdev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_set_monitor_channel(&rdev->wiphy, chandef); ret = rdev->ops->set_monitor_channel(&rdev->wiphy, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_scan(struct cfg80211_registered_device *rdev, struct cfg80211_scan_request *request) { int ret; trace_rdev_scan(&rdev->wiphy, request); ret = rdev->ops->scan(&rdev->wiphy, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_abort_scan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_abort_scan(&rdev->wiphy, wdev); rdev->ops->abort_scan(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_auth_request *req) { int ret; trace_rdev_auth(&rdev->wiphy, dev, req); ret = rdev->ops->auth(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_assoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_assoc_request *req) { int ret; trace_rdev_assoc(&rdev->wiphy, dev, req); ret = rdev->ops->assoc(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_deauth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_deauth_request *req) { int ret; trace_rdev_deauth(&rdev->wiphy, dev, req); ret = rdev->ops->deauth(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_disassoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_disassoc_request *req) { int ret; trace_rdev_disassoc(&rdev->wiphy, dev, req); ret = rdev->ops->disassoc(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_connect(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *sme) { int ret; trace_rdev_connect(&rdev->wiphy, dev, sme); ret = rdev->ops->connect(&rdev->wiphy, dev, sme); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_update_connect_params(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *sme, u32 changed) { int ret; trace_rdev_update_connect_params(&rdev->wiphy, dev, sme, changed); ret = rdev->ops->update_connect_params(&rdev->wiphy, dev, sme, changed); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_disconnect(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 reason_code) { int ret; trace_rdev_disconnect(&rdev->wiphy, dev, reason_code); ret = rdev->ops->disconnect(&rdev->wiphy, dev, reason_code); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ibss_params *params) { int ret; trace_rdev_join_ibss(&rdev->wiphy, dev, params); ret = rdev->ops->join_ibss(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_ibss(&rdev->wiphy, dev); ret = rdev->ops->leave_ibss(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_wiphy_params(struct cfg80211_registered_device *rdev, u32 changed) { int ret; if (!rdev->ops->set_wiphy_params) return -EOPNOTSUPP; trace_rdev_set_wiphy_params(&rdev->wiphy, changed); ret = rdev->ops->set_wiphy_params(&rdev->wiphy, changed); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_tx_power(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, int mbm) { int ret; trace_rdev_set_tx_power(&rdev->wiphy, wdev, type, mbm); ret = rdev->ops->set_tx_power(&rdev->wiphy, wdev, type, mbm); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_tx_power(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, int *dbm) { int ret; trace_rdev_get_tx_power(&rdev->wiphy, wdev); ret = rdev->ops->get_tx_power(&rdev->wiphy, wdev, dbm); trace_rdev_return_int_int(&rdev->wiphy, ret, *dbm); return ret; } static inline int rdev_set_wds_peer(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr) { int ret; trace_rdev_set_wds_peer(&rdev->wiphy, dev, addr); ret = rdev->ops->set_wds_peer(&rdev->wiphy, dev, addr); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_multicast_to_unicast(struct cfg80211_registered_device *rdev, struct net_device *dev, const bool enabled) { int ret; trace_rdev_set_multicast_to_unicast(&rdev->wiphy, dev, enabled); ret = rdev->ops->set_multicast_to_unicast(&rdev->wiphy, dev, enabled); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_txq_stats(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_txq_stats *txqstats) { int ret; trace_rdev_get_txq_stats(&rdev->wiphy, wdev); ret = rdev->ops->get_txq_stats(&rdev->wiphy, wdev, txqstats); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_rfkill_poll(struct cfg80211_registered_device *rdev) { trace_rdev_rfkill_poll(&rdev->wiphy); rdev->ops->rfkill_poll(&rdev->wiphy); trace_rdev_return_void(&rdev->wiphy); } #ifdef CONFIG_NL80211_TESTMODE static inline int rdev_testmode_cmd(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, void *data, int len) { int ret; trace_rdev_testmode_cmd(&rdev->wiphy, wdev); ret = rdev->ops->testmode_cmd(&rdev->wiphy, wdev, data, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_testmode_dump(struct cfg80211_registered_device *rdev, struct sk_buff *skb, struct netlink_callback *cb, void *data, int len) { int ret; trace_rdev_testmode_dump(&rdev->wiphy); ret = rdev->ops->testmode_dump(&rdev->wiphy, skb, cb, data, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } #endif static inline int rdev_set_bitrate_mask(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, const struct cfg80211_bitrate_mask *mask) { int ret; trace_rdev_set_bitrate_mask(&rdev->wiphy, dev, peer, mask); ret = rdev->ops->set_bitrate_mask(&rdev->wiphy, dev, peer, mask); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_dump_survey(struct cfg80211_registered_device *rdev, struct net_device *netdev, int idx, struct survey_info *info) { int ret; trace_rdev_dump_survey(&rdev->wiphy, netdev, idx); ret = rdev->ops->dump_survey(&rdev->wiphy, netdev, idx, info); if (ret < 0) trace_rdev_return_int(&rdev->wiphy, ret); else trace_rdev_return_int_survey_info(&rdev->wiphy, ret, info); return ret; } static inline int rdev_set_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { int ret; trace_rdev_set_pmksa(&rdev->wiphy, netdev, pmksa); ret = rdev->ops->set_pmksa(&rdev->wiphy, netdev, pmksa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { int ret; trace_rdev_del_pmksa(&rdev->wiphy, netdev, pmksa); ret = rdev->ops->del_pmksa(&rdev->wiphy, netdev, pmksa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_flush_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev) { int ret; trace_rdev_flush_pmksa(&rdev->wiphy, netdev); ret = rdev->ops->flush_pmksa(&rdev->wiphy, netdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_remain_on_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration, u64 *cookie) { int ret; trace_rdev_remain_on_channel(&rdev->wiphy, wdev, chan, duration); ret = rdev->ops->remain_on_channel(&rdev->wiphy, wdev, chan, duration, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_cancel_remain_on_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { int ret; trace_rdev_cancel_remain_on_channel(&rdev->wiphy, wdev, cookie); ret = rdev->ops->cancel_remain_on_channel(&rdev->wiphy, wdev, cookie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_mgmt_tx(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie) { int ret; trace_rdev_mgmt_tx(&rdev->wiphy, wdev, params); ret = rdev->ops->mgmt_tx(&rdev->wiphy, wdev, params, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_tx_control_port(struct cfg80211_registered_device *rdev, struct net_device *dev, const void *buf, size_t len, const u8 *dest, __be16 proto, const bool noencrypt, u64 *cookie) { int ret; trace_rdev_tx_control_port(&rdev->wiphy, dev, buf, len, dest, proto, noencrypt); ret = rdev->ops->tx_control_port(&rdev->wiphy, dev, buf, len, dest, proto, noencrypt, cookie); if (cookie) trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); else trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_mgmt_tx_cancel_wait(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { int ret; trace_rdev_mgmt_tx_cancel_wait(&rdev->wiphy, wdev, cookie); ret = rdev->ops->mgmt_tx_cancel_wait(&rdev->wiphy, wdev, cookie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_power_mgmt(struct cfg80211_registered_device *rdev, struct net_device *dev, bool enabled, int timeout) { int ret; trace_rdev_set_power_mgmt(&rdev->wiphy, dev, enabled, timeout); ret = rdev->ops->set_power_mgmt(&rdev->wiphy, dev, enabled, timeout); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_rssi_config(struct cfg80211_registered_device *rdev, struct net_device *dev, s32 rssi_thold, u32 rssi_hyst) { int ret; trace_rdev_set_cqm_rssi_config(&rdev->wiphy, dev, rssi_thold, rssi_hyst); ret = rdev->ops->set_cqm_rssi_config(&rdev->wiphy, dev, rssi_thold, rssi_hyst); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_rssi_range_config(struct cfg80211_registered_device *rdev, struct net_device *dev, s32 low, s32 high) { int ret; trace_rdev_set_cqm_rssi_range_config(&rdev->wiphy, dev, low, high); ret = rdev->ops->set_cqm_rssi_range_config(&rdev->wiphy, dev, low, high); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_txe_config(struct cfg80211_registered_device *rdev, struct net_device *dev, u32 rate, u32 pkts, u32 intvl) { int ret; trace_rdev_set_cqm_txe_config(&rdev->wiphy, dev, rate, pkts, intvl); ret = rdev->ops->set_cqm_txe_config(&rdev->wiphy, dev, rate, pkts, intvl); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_update_mgmt_frame_registrations(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct mgmt_frame_regs *upd) { might_sleep(); trace_rdev_update_mgmt_frame_registrations(&rdev->wiphy, wdev, upd); if (rdev->ops->update_mgmt_frame_registrations) rdev->ops->update_mgmt_frame_registrations(&rdev->wiphy, wdev, upd); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_set_antenna(struct cfg80211_registered_device *rdev, u32 tx_ant, u32 rx_ant) { int ret; trace_rdev_set_antenna(&rdev->wiphy, tx_ant, rx_ant); ret = rdev->ops->set_antenna(&rdev->wiphy, tx_ant, rx_ant); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_antenna(struct cfg80211_registered_device *rdev, u32 *tx_ant, u32 *rx_ant) { int ret; trace_rdev_get_antenna(&rdev->wiphy); ret = rdev->ops->get_antenna(&rdev->wiphy, tx_ant, rx_ant); if (ret) trace_rdev_return_int(&rdev->wiphy, ret); else trace_rdev_return_int_tx_rx(&rdev->wiphy, ret, *tx_ant, *rx_ant); return ret; } static inline int rdev_sched_scan_start(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_sched_scan_request *request) { int ret; trace_rdev_sched_scan_start(&rdev->wiphy, dev, request->reqid); ret = rdev->ops->sched_scan_start(&rdev->wiphy, dev, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_sched_scan_stop(struct cfg80211_registered_device *rdev, struct net_device *dev, u64 reqid) { int ret; trace_rdev_sched_scan_stop(&rdev->wiphy, dev, reqid); ret = rdev->ops->sched_scan_stop(&rdev->wiphy, dev, reqid); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_rekey_data(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_gtk_rekey_data *data) { int ret; trace_rdev_set_rekey_data(&rdev->wiphy, dev); ret = rdev->ops->set_rekey_data(&rdev->wiphy, dev, data); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_mgmt(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *peer, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, bool initiator, const u8 *buf, size_t len) { int ret; trace_rdev_tdls_mgmt(&rdev->wiphy, dev, peer, action_code, dialog_token, status_code, peer_capability, initiator, buf, len); ret = rdev->ops->tdls_mgmt(&rdev->wiphy, dev, peer, action_code, dialog_token, status_code, peer_capability, initiator, buf, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_oper(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *peer, enum nl80211_tdls_operation oper) { int ret; trace_rdev_tdls_oper(&rdev->wiphy, dev, peer, oper); ret = rdev->ops->tdls_oper(&rdev->wiphy, dev, peer, oper); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_probe_client(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, u64 *cookie) { int ret; trace_rdev_probe_client(&rdev->wiphy, dev, peer); ret = rdev->ops->probe_client(&rdev->wiphy, dev, peer, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_set_noack_map(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 noack_map) { int ret; trace_rdev_set_noack_map(&rdev->wiphy, dev, noack_map); ret = rdev->ops->set_noack_map(&rdev->wiphy, dev, noack_map); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_get_channel(&rdev->wiphy, wdev); ret = rdev->ops->get_channel(&rdev->wiphy, wdev, chandef); trace_rdev_return_chandef(&rdev->wiphy, ret, chandef); return ret; } static inline int rdev_start_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { int ret; trace_rdev_start_p2p_device(&rdev->wiphy, wdev); ret = rdev->ops->start_p2p_device(&rdev->wiphy, wdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_stop_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_stop_p2p_device(&rdev->wiphy, wdev); rdev->ops->stop_p2p_device(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_start_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf) { int ret; trace_rdev_start_nan(&rdev->wiphy, wdev, conf); ret = rdev->ops->start_nan(&rdev->wiphy, wdev, conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_stop_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_stop_nan(&rdev->wiphy, wdev); rdev->ops->stop_nan(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_add_nan_func(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_func *nan_func) { int ret; trace_rdev_add_nan_func(&rdev->wiphy, wdev, nan_func); ret = rdev->ops->add_nan_func(&rdev->wiphy, wdev, nan_func); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_del_nan_func(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { trace_rdev_del_nan_func(&rdev->wiphy, wdev, cookie); rdev->ops->del_nan_func(&rdev->wiphy, wdev, cookie); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_nan_change_conf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf, u32 changes) { int ret; trace_rdev_nan_change_conf(&rdev->wiphy, wdev, conf, changes); if (rdev->ops->nan_change_conf) ret = rdev->ops->nan_change_conf(&rdev->wiphy, wdev, conf, changes); else ret = -ENOTSUPP; trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_mac_acl(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_acl_data *params) { int ret; trace_rdev_set_mac_acl(&rdev->wiphy, dev, params); ret = rdev->ops->set_mac_acl(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_update_ft_ies(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_update_ft_ies_params *ftie) { int ret; trace_rdev_update_ft_ies(&rdev->wiphy, dev, ftie); ret = rdev->ops->update_ft_ies(&rdev->wiphy, dev, ftie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_crit_proto_start(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_crit_proto_id protocol, u16 duration) { int ret; trace_rdev_crit_proto_start(&rdev->wiphy, wdev, protocol, duration); ret = rdev->ops->crit_proto_start(&rdev->wiphy, wdev, protocol, duration); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_crit_proto_stop(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_crit_proto_stop(&rdev->wiphy, wdev); rdev->ops->crit_proto_stop(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_csa_settings *params) { int ret; trace_rdev_channel_switch(&rdev->wiphy, dev, params); ret = rdev->ops->channel_switch(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_qos_map(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_qos_map *qos_map) { int ret = -EOPNOTSUPP; if (rdev->ops->set_qos_map) { trace_rdev_set_qos_map(&rdev->wiphy, dev, qos_map); ret = rdev->ops->set_qos_map(&rdev->wiphy, dev, qos_map); trace_rdev_return_int(&rdev->wiphy, ret); } return ret; } static inline int rdev_set_ap_chanwidth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_set_ap_chanwidth(&rdev->wiphy, dev, chandef); ret = rdev->ops->set_ap_chanwidth(&rdev->wiphy, dev, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_tx_ts(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 tsid, const u8 *peer, u8 user_prio, u16 admitted_time) { int ret = -EOPNOTSUPP; trace_rdev_add_tx_ts(&rdev->wiphy, dev, tsid, peer, user_prio, admitted_time); if (rdev->ops->add_tx_ts) ret = rdev->ops->add_tx_ts(&rdev->wiphy, dev, tsid, peer, user_prio, admitted_time); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_tx_ts(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 tsid, const u8 *peer) { int ret = -EOPNOTSUPP; trace_rdev_del_tx_ts(&rdev->wiphy, dev, tsid, peer); if (rdev->ops->del_tx_ts) ret = rdev->ops->del_tx_ts(&rdev->wiphy, dev, tsid, peer); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr, u8 oper_class, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_tdls_channel_switch(&rdev->wiphy, dev, addr, oper_class, chandef); ret = rdev->ops->tdls_channel_switch(&rdev->wiphy, dev, addr, oper_class, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_tdls_cancel_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr) { trace_rdev_tdls_cancel_channel_switch(&rdev->wiphy, dev, addr); rdev->ops->tdls_cancel_channel_switch(&rdev->wiphy, dev, addr); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_start_radar_detection(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_chan_def *chandef, u32 cac_time_ms) { int ret = -ENOTSUPP; trace_rdev_start_radar_detection(&rdev->wiphy, dev, chandef, cac_time_ms); if (rdev->ops->start_radar_detection) ret = rdev->ops->start_radar_detection(&rdev->wiphy, dev, chandef, cac_time_ms); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_end_cac(struct cfg80211_registered_device *rdev, struct net_device *dev) { trace_rdev_end_cac(&rdev->wiphy, dev); if (rdev->ops->end_cac) rdev->ops->end_cac(&rdev->wiphy, dev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_set_mcast_rate(struct cfg80211_registered_device *rdev, struct net_device *dev, int mcast_rate[NUM_NL80211_BANDS]) { int ret = -ENOTSUPP; trace_rdev_set_mcast_rate(&rdev->wiphy, dev, mcast_rate); if (rdev->ops->set_mcast_rate) ret = rdev->ops->set_mcast_rate(&rdev->wiphy, dev, mcast_rate); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_coalesce(struct cfg80211_registered_device *rdev, struct cfg80211_coalesce *coalesce) { int ret = -ENOTSUPP; trace_rdev_set_coalesce(&rdev->wiphy, coalesce); if (rdev->ops->set_coalesce) ret = rdev->ops->set_coalesce(&rdev->wiphy, coalesce); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_pmk(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_pmk_conf *pmk_conf) { int ret = -EOPNOTSUPP; trace_rdev_set_pmk(&rdev->wiphy, dev, pmk_conf); if (rdev->ops->set_pmk) ret = rdev->ops->set_pmk(&rdev->wiphy, dev, pmk_conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_pmk(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *aa) { int ret = -EOPNOTSUPP; trace_rdev_del_pmk(&rdev->wiphy, dev, aa); if (rdev->ops->del_pmk) ret = rdev->ops->del_pmk(&rdev->wiphy, dev, aa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_external_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_external_auth_params *params) { int ret = -EOPNOTSUPP; trace_rdev_external_auth(&rdev->wiphy, dev, params); if (rdev->ops->external_auth) ret = rdev->ops->external_auth(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_ftm_responder_stats(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ftm_responder_stats *ftm_stats) { int ret = -EOPNOTSUPP; trace_rdev_get_ftm_responder_stats(&rdev->wiphy, dev, ftm_stats); if (rdev->ops->get_ftm_responder_stats) ret = rdev->ops->get_ftm_responder_stats(&rdev->wiphy, dev, ftm_stats); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_start_pmsr(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_pmsr_request *request) { int ret = -EOPNOTSUPP; trace_rdev_start_pmsr(&rdev->wiphy, wdev, request->cookie); if (rdev->ops->start_pmsr) ret = rdev->ops->start_pmsr(&rdev->wiphy, wdev, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_abort_pmsr(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_pmsr_request *request) { trace_rdev_abort_pmsr(&rdev->wiphy, wdev, request->cookie); if (rdev->ops->abort_pmsr) rdev->ops->abort_pmsr(&rdev->wiphy, wdev, request); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_update_owe_info(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_update_owe_info *oweinfo) { int ret = -EOPNOTSUPP; trace_rdev_update_owe_info(&rdev->wiphy, dev, oweinfo); if (rdev->ops->update_owe_info) ret = rdev->ops->update_owe_info(&rdev->wiphy, dev, oweinfo); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_probe_mesh_link(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *dest, const void *buf, size_t len) { int ret; trace_rdev_probe_mesh_link(&rdev->wiphy, dev, dest, buf, len); ret = rdev->ops->probe_mesh_link(&rdev->wiphy, dev, buf, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_tid_config(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_tid_config *tid_conf) { int ret; trace_rdev_set_tid_config(&rdev->wiphy, dev, tid_conf); ret = rdev->ops->set_tid_config(&rdev->wiphy, dev, tid_conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_reset_tid_config(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, u8 tids) { int ret; trace_rdev_reset_tid_config(&rdev->wiphy, dev, peer, tids); ret = rdev->ops->reset_tid_config(&rdev->wiphy, dev, peer, tids); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } #endif /* __CFG80211_RDEV_OPS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1994 Linus Torvalds * * Pentium III FXSR, SSE support * General FPU state handling cleanups * Gareth Hughes <gareth@valinux.com>, May 2000 */ #include <asm/fpu/internal.h> #include <asm/fpu/regset.h> #include <asm/fpu/signal.h> #include <asm/fpu/types.h> #include <asm/traps.h> #include <asm/irq_regs.h> #include <linux/hardirq.h> #include <linux/pkeys.h> #define CREATE_TRACE_POINTS #include <asm/trace/fpu.h> /* * Represents the initial FPU state. It's mostly (but not completely) zeroes, * depending on the FPU hardware format: */ union fpregs_state init_fpstate __read_mostly; /* * Track whether the kernel is using the FPU state * currently. * * This flag is used: * * - by IRQ context code to potentially use the FPU * if it's unused. * * - to debug kernel_fpu_begin()/end() correctness */ static DEFINE_PER_CPU(bool, in_kernel_fpu); /* * Track which context is using the FPU on the CPU: */ DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); static bool kernel_fpu_disabled(void) { return this_cpu_read(in_kernel_fpu); } static bool interrupted_kernel_fpu_idle(void) { return !kernel_fpu_disabled(); } /* * Were we in user mode (or vm86 mode) when we were * interrupted? * * Doing kernel_fpu_begin/end() is ok if we are running * in an interrupt context from user mode - we'll just * save the FPU state as required. */ static bool interrupted_user_mode(void) { struct pt_regs *regs = get_irq_regs(); return regs && user_mode(regs); } /* * Can we use the FPU in kernel mode with the * whole "kernel_fpu_begin/end()" sequence? * * It's always ok in process context (ie "not interrupt") * but it is sometimes ok even from an irq. */ bool irq_fpu_usable(void) { return !in_interrupt() || interrupted_user_mode() || interrupted_kernel_fpu_idle(); } EXPORT_SYMBOL(irq_fpu_usable); /* * These must be called with preempt disabled. Returns * 'true' if the FPU state is still intact and we can * keep registers active. * * The legacy FNSAVE instruction cleared all FPU state * unconditionally, so registers are essentially destroyed. * Modern FPU state can be kept in registers, if there are * no pending FP exceptions. */ int copy_fpregs_to_fpstate(struct fpu *fpu) { if (likely(use_xsave())) { copy_xregs_to_kernel(&fpu->state.xsave); /* * AVX512 state is tracked here because its use is * known to slow the max clock speed of the core. */ if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512) fpu->avx512_timestamp = jiffies; return 1; } if (likely(use_fxsr())) { copy_fxregs_to_kernel(fpu); return 1; } /* * Legacy FPU register saving, FNSAVE always clears FPU registers, * so we have to mark them inactive: */ asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave)); return 0; } EXPORT_SYMBOL(copy_fpregs_to_fpstate); void kernel_fpu_begin_mask(unsigned int kfpu_mask) { preempt_disable(); WARN_ON_FPU(!irq_fpu_usable()); WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); this_cpu_write(in_kernel_fpu, true); if (!(current->flags & PF_KTHREAD) && !test_thread_flag(TIF_NEED_FPU_LOAD)) { set_thread_flag(TIF_NEED_FPU_LOAD); /* * Ignore return value -- we don't care if reg state * is clobbered. */ copy_fpregs_to_fpstate(&current->thread.fpu); } __cpu_invalidate_fpregs_state(); /* Put sane initial values into the control registers. */ if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM)) ldmxcsr(MXCSR_DEFAULT); if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU)) asm volatile ("fninit"); } EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask); void kernel_fpu_end(void) { WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); this_cpu_write(in_kernel_fpu, false); preempt_enable(); } EXPORT_SYMBOL_GPL(kernel_fpu_end); /* * Save the FPU state (mark it for reload if necessary): * * This only ever gets called for the current task. */ void fpu__save(struct fpu *fpu) { WARN_ON_FPU(fpu != &current->thread.fpu); fpregs_lock(); trace_x86_fpu_before_save(fpu); if (!test_thread_flag(TIF_NEED_FPU_LOAD)) { if (!copy_fpregs_to_fpstate(fpu)) { copy_kernel_to_fpregs(&fpu->state); } } trace_x86_fpu_after_save(fpu); fpregs_unlock(); } /* * Legacy x87 fpstate state init: */ static inline void fpstate_init_fstate(struct fregs_state *fp) { fp->cwd = 0xffff037fu; fp->swd = 0xffff0000u; fp->twd = 0xffffffffu; fp->fos = 0xffff0000u; } void fpstate_init(union fpregs_state *state) { if (!static_cpu_has(X86_FEATURE_FPU)) { fpstate_init_soft(&state->soft); return; } memset(state, 0, fpu_kernel_xstate_size); if (static_cpu_has(X86_FEATURE_XSAVES)) fpstate_init_xstate(&state->xsave); if (static_cpu_has(X86_FEATURE_FXSR)) fpstate_init_fxstate(&state->fxsave); else fpstate_init_fstate(&state->fsave); } EXPORT_SYMBOL_GPL(fpstate_init); int fpu__copy(struct task_struct *dst, struct task_struct *src) { struct fpu *dst_fpu = &dst->thread.fpu; struct fpu *src_fpu = &src->thread.fpu; dst_fpu->last_cpu = -1; if (!static_cpu_has(X86_FEATURE_FPU)) return 0; WARN_ON_FPU(src_fpu != &current->thread.fpu); /* * Don't let 'init optimized' areas of the XSAVE area * leak into the child task: */ memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size); /* * If the FPU registers are not current just memcpy() the state. * Otherwise save current FPU registers directly into the child's FPU * context, without any memory-to-memory copying. * * ( The function 'fails' in the FNSAVE case, which destroys * register contents so we have to load them back. ) */ fpregs_lock(); if (test_thread_flag(TIF_NEED_FPU_LOAD)) memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size); else if (!copy_fpregs_to_fpstate(dst_fpu)) copy_kernel_to_fpregs(&dst_fpu->state); fpregs_unlock(); set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); trace_x86_fpu_copy_src(src_fpu); trace_x86_fpu_copy_dst(dst_fpu); return 0; } /* * Activate the current task's in-memory FPU context, * if it has not been used before: */ static void fpu__initialize(struct fpu *fpu) { WARN_ON_FPU(fpu != &current->thread.fpu); set_thread_flag(TIF_NEED_FPU_LOAD); fpstate_init(&fpu->state); trace_x86_fpu_init_state(fpu); } /* * This function must be called before we read a task's fpstate. * * There's two cases where this gets called: * * - for the current task (when coredumping), in which case we have * to save the latest FPU registers into the fpstate, * * - or it's called for stopped tasks (ptrace), in which case the * registers were already saved by the context-switch code when * the task scheduled out. * * If the task has used the FPU before then save it. */ void fpu__prepare_read(struct fpu *fpu) { if (fpu == &current->thread.fpu) fpu__save(fpu); } /* * This function must be called before we write a task's fpstate. * * Invalidate any cached FPU registers. * * After this function call, after registers in the fpstate are * modified and the child task has woken up, the child task will * restore the modified FPU state from the modified context. If we * didn't clear its cached status here then the cached in-registers * state pending on its former CPU could be restored, corrupting * the modifications. */ void fpu__prepare_write(struct fpu *fpu) { /* * Only stopped child tasks can be used to modify the FPU * state in the fpstate buffer: */ WARN_ON_FPU(fpu == &current->thread.fpu); /* Invalidate any cached state: */ __fpu_invalidate_fpregs_state(fpu); } /* * Drops current FPU state: deactivates the fpregs and * the fpstate. NOTE: it still leaves previous contents * in the fpregs in the eager-FPU case. * * This function can be used in cases where we know that * a state-restore is coming: either an explicit one, * or a reschedule. */ void fpu__drop(struct fpu *fpu) { preempt_disable(); if (fpu == &current->thread.fpu) { /* Ignore delayed exceptions from user space */ asm volatile("1: fwait\n" "2:\n" _ASM_EXTABLE(1b, 2b)); fpregs_deactivate(fpu); } trace_x86_fpu_dropped(fpu); preempt_enable(); } /* * Clear FPU registers by setting them up from the init fpstate. * Caller must do fpregs_[un]lock() around it. */ static inline void copy_init_fpstate_to_fpregs(u64 features_mask) { if (use_xsave()) copy_kernel_to_xregs(&init_fpstate.xsave, features_mask); else if (static_cpu_has(X86_FEATURE_FXSR)) copy_kernel_to_fxregs(&init_fpstate.fxsave); else copy_kernel_to_fregs(&init_fpstate.fsave); if (boot_cpu_has(X86_FEATURE_OSPKE)) copy_init_pkru_to_fpregs(); } /* * Clear the FPU state back to init state. * * Called by sys_execve(), by the signal handler code and by various * error paths. */ static void fpu__clear(struct fpu *fpu, bool user_only) { WARN_ON_FPU(fpu != &current->thread.fpu); if (!static_cpu_has(X86_FEATURE_FPU)) { fpu__drop(fpu); fpu__initialize(fpu); return; } fpregs_lock(); if (user_only) { if (!fpregs_state_valid(fpu, smp_processor_id()) && xfeatures_mask_supervisor()) copy_kernel_to_xregs(&fpu->state.xsave, xfeatures_mask_supervisor()); copy_init_fpstate_to_fpregs(xfeatures_mask_user()); } else { copy_init_fpstate_to_fpregs(xfeatures_mask_all); } fpregs_mark_activate(); fpregs_unlock(); } void fpu__clear_user_states(struct fpu *fpu) { fpu__clear(fpu, true); } void fpu__clear_all(struct fpu *fpu) { fpu__clear(fpu, false); } /* * Load FPU context before returning to userspace. */ void switch_fpu_return(void) { if (!static_cpu_has(X86_FEATURE_FPU)) return; __fpregs_load_activate(); } EXPORT_SYMBOL_GPL(switch_fpu_return); #ifdef CONFIG_X86_DEBUG_FPU /* * If current FPU state according to its tracking (loaded FPU context on this * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is * loaded on return to userland. */ void fpregs_assert_state_consistent(void) { struct fpu *fpu = &current->thread.fpu; if (test_thread_flag(TIF_NEED_FPU_LOAD)) return; WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); } EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent); #endif void fpregs_mark_activate(void) { struct fpu *fpu = &current->thread.fpu; fpregs_activate(fpu); fpu->last_cpu = smp_processor_id(); clear_thread_flag(TIF_NEED_FPU_LOAD); } EXPORT_SYMBOL_GPL(fpregs_mark_activate); /* * x87 math exception handling: */ int fpu__exception_code(struct fpu *fpu, int trap_nr) { int err; if (trap_nr == X86_TRAP_MF) { unsigned short cwd, swd; /* * (~cwd & swd) will mask out exceptions that are not set to unmasked * status. 0x3f is the exception bits in these regs, 0x200 is the * C1 reg you need in case of a stack fault, 0x040 is the stack * fault bit. We should only be taking one exception at a time, * so if this combination doesn't produce any single exception, * then we have a bad program that isn't synchronizing its FPU usage * and it will suffer the consequences since we won't be able to * fully reproduce the context of the exception. */ if (boot_cpu_has(X86_FEATURE_FXSR)) { cwd = fpu->state.fxsave.cwd; swd = fpu->state.fxsave.swd; } else { cwd = (unsigned short)fpu->state.fsave.cwd; swd = (unsigned short)fpu->state.fsave.swd; } err = swd & ~cwd; } else { /* * The SIMD FPU exceptions are handled a little differently, as there * is only a single status/control register. Thus, to determine which * unmasked exception was caught we must mask the exception mask bits * at 0x1f80, and then use these to mask the exception bits at 0x3f. */ unsigned short mxcsr = MXCSR_DEFAULT; if (boot_cpu_has(X86_FEATURE_XMM)) mxcsr = fpu->state.fxsave.mxcsr; err = ~(mxcsr >> 7) & mxcsr; } if (err & 0x001) { /* Invalid op */ /* * swd & 0x240 == 0x040: Stack Underflow * swd & 0x240 == 0x240: Stack Overflow * User must clear the SF bit (0x40) if set */ return FPE_FLTINV; } else if (err & 0x004) { /* Divide by Zero */ return FPE_FLTDIV; } else if (err & 0x008) { /* Overflow */ return FPE_FLTOVF; } else if (err & 0x012) { /* Denormal, Underflow */ return FPE_FLTUND; } else if (err & 0x020) { /* Precision */ return FPE_FLTRES; } /* * If we're using IRQ 13, or supposedly even some trap * X86_TRAP_MF implementations, it's possible * we get a spurious trap, which is not an error. */ return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM 9p #if !defined(_TRACE_9P_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_9P_H #include <linux/tracepoint.h> #define P9_MSG_T \ EM( P9_TLERROR, "P9_TLERROR" ) \ EM( P9_RLERROR, "P9_RLERROR" ) \ EM( P9_TSTATFS, "P9_TSTATFS" ) \ EM( P9_RSTATFS, "P9_RSTATFS" ) \ EM( P9_TLOPEN, "P9_TLOPEN" ) \ EM( P9_RLOPEN, "P9_RLOPEN" ) \ EM( P9_TLCREATE, "P9_TLCREATE" ) \ EM( P9_RLCREATE, "P9_RLCREATE" ) \ EM( P9_TSYMLINK, "P9_TSYMLINK" ) \ EM( P9_RSYMLINK, "P9_RSYMLINK" ) \ EM( P9_TMKNOD, "P9_TMKNOD" ) \ EM( P9_RMKNOD, "P9_RMKNOD" ) \ EM( P9_TRENAME, "P9_TRENAME" ) \ EM( P9_RRENAME, "P9_RRENAME" ) \ EM( P9_TREADLINK, "P9_TREADLINK" ) \ EM( P9_RREADLINK, "P9_RREADLINK" ) \ EM( P9_TGETATTR, "P9_TGETATTR" ) \ EM( P9_RGETATTR, "P9_RGETATTR" ) \ EM( P9_TSETATTR, "P9_TSETATTR" ) \ EM( P9_RSETATTR, "P9_RSETATTR" ) \ EM( P9_TXATTRWALK, "P9_TXATTRWALK" ) \ EM( P9_RXATTRWALK, "P9_RXATTRWALK" ) \ EM( P9_TXATTRCREATE, "P9_TXATTRCREATE" ) \ EM( P9_RXATTRCREATE, "P9_RXATTRCREATE" ) \ EM( P9_TREADDIR, "P9_TREADDIR" ) \ EM( P9_RREADDIR, "P9_RREADDIR" ) \ EM( P9_TFSYNC, "P9_TFSYNC" ) \ EM( P9_RFSYNC, "P9_RFSYNC" ) \ EM( P9_TLOCK, "P9_TLOCK" ) \ EM( P9_RLOCK, "P9_RLOCK" ) \ EM( P9_TGETLOCK, "P9_TGETLOCK" ) \ EM( P9_RGETLOCK, "P9_RGETLOCK" ) \ EM( P9_TLINK, "P9_TLINK" ) \ EM( P9_RLINK, "P9_RLINK" ) \ EM( P9_TMKDIR, "P9_TMKDIR" ) \ EM( P9_RMKDIR, "P9_RMKDIR" ) \ EM( P9_TRENAMEAT, "P9_TRENAMEAT" ) \ EM( P9_RRENAMEAT, "P9_RRENAMEAT" ) \ EM( P9_TUNLINKAT, "P9_TUNLINKAT" ) \ EM( P9_RUNLINKAT, "P9_RUNLINKAT" ) \ EM( P9_TVERSION, "P9_TVERSION" ) \ EM( P9_RVERSION, "P9_RVERSION" ) \ EM( P9_TAUTH, "P9_TAUTH" ) \ EM( P9_RAUTH, "P9_RAUTH" ) \ EM( P9_TATTACH, "P9_TATTACH" ) \ EM( P9_RATTACH, "P9_RATTACH" ) \ EM( P9_TERROR, "P9_TERROR" ) \ EM( P9_RERROR, "P9_RERROR" ) \ EM( P9_TFLUSH, "P9_TFLUSH" ) \ EM( P9_RFLUSH, "P9_RFLUSH" ) \ EM( P9_TWALK, "P9_TWALK" ) \ EM( P9_RWALK, "P9_RWALK" ) \ EM( P9_TOPEN, "P9_TOPEN" ) \ EM( P9_ROPEN, "P9_ROPEN" ) \ EM( P9_TCREATE, "P9_TCREATE" ) \ EM( P9_RCREATE, "P9_RCREATE" ) \ EM( P9_TREAD, "P9_TREAD" ) \ EM( P9_RREAD, "P9_RREAD" ) \ EM( P9_TWRITE, "P9_TWRITE" ) \ EM( P9_RWRITE, "P9_RWRITE" ) \ EM( P9_TCLUNK, "P9_TCLUNK" ) \ EM( P9_RCLUNK, "P9_RCLUNK" ) \ EM( P9_TREMOVE, "P9_TREMOVE" ) \ EM( P9_RREMOVE, "P9_RREMOVE" ) \ EM( P9_TSTAT, "P9_TSTAT" ) \ EM( P9_RSTAT, "P9_RSTAT" ) \ EM( P9_TWSTAT, "P9_TWSTAT" ) \ EMe(P9_RWSTAT, "P9_RWSTAT" ) /* Define EM() to export the enums to userspace via TRACE_DEFINE_ENUM() */ #undef EM #undef EMe #define EM(a, b) TRACE_DEFINE_ENUM(a); #define EMe(a, b) TRACE_DEFINE_ENUM(a); P9_MSG_T /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a, b) { a, b }, #define EMe(a, b) { a, b } #define show_9p_op(type) \ __print_symbolic(type, P9_MSG_T) TRACE_EVENT(9p_client_req, TP_PROTO(struct p9_client *clnt, int8_t type, int tag), TP_ARGS(clnt, type, tag), TP_STRUCT__entry( __field( void *, clnt ) __field( __u8, type ) __field( __u32, tag ) ), TP_fast_assign( __entry->clnt = clnt; __entry->type = type; __entry->tag = tag; ), TP_printk("client %lu request %s tag %d", (long)__entry->clnt, show_9p_op(__entry->type), __entry->tag) ); TRACE_EVENT(9p_client_res, TP_PROTO(struct p9_client *clnt, int8_t type, int tag, int err), TP_ARGS(clnt, type, tag, err), TP_STRUCT__entry( __field( void *, clnt ) __field( __u8, type ) __field( __u32, tag ) __field( __u32, err ) ), TP_fast_assign( __entry->clnt = clnt; __entry->type = type; __entry->tag = tag; __entry->err = err; ), TP_printk("client %lu response %s tag %d err %d", (long)__entry->clnt, show_9p_op(__entry->type), __entry->tag, __entry->err) ); /* dump 32 bytes of protocol data */ #define P9_PROTO_DUMP_SZ 32 TRACE_EVENT(9p_protocol_dump, TP_PROTO(struct p9_client *clnt, struct p9_fcall *pdu), TP_ARGS(clnt, pdu), TP_STRUCT__entry( __field( void *, clnt ) __field( __u8, type ) __field( __u16, tag ) __array( unsigned char, line, P9_PROTO_DUMP_SZ ) ), TP_fast_assign( __entry->clnt = clnt; __entry->type = pdu->id; __entry->tag = pdu->tag; memcpy(__entry->line, pdu->sdata, P9_PROTO_DUMP_SZ); ), TP_printk("clnt %lu %s(tag = %d)\n%.3x: %16ph\n%.3x: %16ph\n", (unsigned long)__entry->clnt, show_9p_op(__entry->type), __entry->tag, 0, __entry->line, 16, __entry->line + 16) ); #endif /* _TRACE_9P_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_PGTABLE_INVERT_H #define _ASM_PGTABLE_INVERT_H 1 #ifndef __ASSEMBLY__ /* * A clear pte value is special, and doesn't get inverted. * * Note that even users that only pass a pgprot_t (rather * than a full pte) won't trigger the special zero case, * because even PAGE_NONE has _PAGE_PROTNONE | _PAGE_ACCESSED * set. So the all zero case really is limited to just the * cleared page table entry case. */ static inline bool __pte_needs_invert(u64 val) { return val && !(val & _PAGE_PRESENT); } /* Get a mask to xor with the page table entry to get the correct pfn. */ static inline u64 protnone_mask(u64 val) { return __pte_needs_invert(val) ? ~0ull : 0; } static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask) { /* * When a PTE transitions from NONE to !NONE or vice-versa * invert the PFN part to stop speculation. * pte_pfn undoes this when needed. */ if (__pte_needs_invert(oldval) != __pte_needs_invert(val)) val = (val & ~mask) | (~val & mask); return val; } #endif /* __ASSEMBLY__ */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 /* gf128mul.h - GF(2^128) multiplication functions * * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org> * * Based on Dr Brian Gladman's (GPL'd) work published at * http://fp.gladman.plus.com/cryptography_technology/index.htm * See the original copyright notice below. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. */ /* --------------------------------------------------------------------------- Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. LICENSE TERMS The free distribution and use of this software in both source and binary form is allowed (with or without changes) provided that: 1. distributions of this source code include the above copyright notice, this list of conditions and the following disclaimer; 2. distributions in binary form include the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other associated materials; 3. the copyright holder's name is not used to endorse products built using this software without specific written permission. ALTERNATIVELY, provided that this notice is retained in full, this product may be distributed under the terms of the GNU General Public License (GPL), in which case the provisions of the GPL apply INSTEAD OF those given above. DISCLAIMER This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not limited to, correctness and/or fitness for purpose. --------------------------------------------------------------------------- Issue Date: 31/01/2006 An implementation of field multiplication in Galois Field GF(2^128) */ #ifndef _CRYPTO_GF128MUL_H #define _CRYPTO_GF128MUL_H #include <asm/byteorder.h> #include <crypto/b128ops.h> #include <linux/slab.h> /* Comment by Rik: * * For some background on GF(2^128) see for example: * http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf * * The elements of GF(2^128) := GF(2)[X]/(X^128-X^7-X^2-X^1-1) can * be mapped to computer memory in a variety of ways. Let's examine * three common cases. * * Take a look at the 16 binary octets below in memory order. The msb's * are left and the lsb's are right. char b[16] is an array and b[0] is * the first octet. * * 10000000 00000000 00000000 00000000 .... 00000000 00000000 00000000 * b[0] b[1] b[2] b[3] b[13] b[14] b[15] * * Every bit is a coefficient of some power of X. We can store the bits * in every byte in little-endian order and the bytes themselves also in * little endian order. I will call this lle (little-little-endian). * The above buffer represents the polynomial 1, and X^7+X^2+X^1+1 looks * like 11100001 00000000 .... 00000000 = { 0xE1, 0x00, }. * This format was originally implemented in gf128mul and is used * in GCM (Galois/Counter mode) and in ABL (Arbitrary Block Length). * * Another convention says: store the bits in bigendian order and the * bytes also. This is bbe (big-big-endian). Now the buffer above * represents X^127. X^7+X^2+X^1+1 looks like 00000000 .... 10000111, * b[15] = 0x87 and the rest is 0. LRW uses this convention and bbe * is partly implemented. * * Both of the above formats are easy to implement on big-endian * machines. * * XTS and EME (the latter of which is patent encumbered) use the ble * format (bits are stored in big endian order and the bytes in little * endian). The above buffer represents X^7 in this case and the * primitive polynomial is b[0] = 0x87. * * The common machine word-size is smaller than 128 bits, so to make * an efficient implementation we must split into machine word sizes. * This implementation uses 64-bit words for the moment. Machine * endianness comes into play. The lle format in relation to machine * endianness is discussed below by the original author of gf128mul Dr * Brian Gladman. * * Let's look at the bbe and ble format on a little endian machine. * * bbe on a little endian machine u32 x[4]: * * MS x[0] LS MS x[1] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 103..96 111.104 119.112 127.120 71...64 79...72 87...80 95...88 * * MS x[2] LS MS x[3] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 39...32 47...40 55...48 63...56 07...00 15...08 23...16 31...24 * * ble on a little endian machine * * MS x[0] LS MS x[1] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 31...24 23...16 15...08 07...00 63...56 55...48 47...40 39...32 * * MS x[2] LS MS x[3] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 95...88 87...80 79...72 71...64 127.120 199.112 111.104 103..96 * * Multiplications in GF(2^128) are mostly bit-shifts, so you see why * ble (and lbe also) are easier to implement on a little-endian * machine than on a big-endian machine. The converse holds for bbe * and lle. * * Note: to have good alignment, it seems to me that it is sufficient * to keep elements of GF(2^128) in type u64[2]. On 32-bit wordsize * machines this will automatically aligned to wordsize and on a 64-bit * machine also. */ /* Multiply a GF(2^128) field element by x. Field elements are held in arrays of bytes in which field bits 8n..8n + 7 are held in byte[n], with lower indexed bits placed in the more numerically significant bit positions within bytes. On little endian machines the bit indexes translate into the bit positions within four 32-bit words in the following way MS x[0] LS MS x[1] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 24...31 16...23 08...15 00...07 56...63 48...55 40...47 32...39 MS x[2] LS MS x[3] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 88...95 80...87 72...79 64...71 120.127 112.119 104.111 96..103 On big endian machines the bit indexes translate into the bit positions within four 32-bit words in the following way MS x[0] LS MS x[1] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 00...07 08...15 16...23 24...31 32...39 40...47 48...55 56...63 MS x[2] LS MS x[3] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 64...71 72...79 80...87 88...95 96..103 104.111 112.119 120.127 */ /* A slow generic version of gf_mul, implemented for lle and bbe * It multiplies a and b and puts the result in a */ void gf128mul_lle(be128 *a, const be128 *b); void gf128mul_bbe(be128 *a, const be128 *b); /* * The following functions multiply a field element by x in * the polynomial field representation. They use 64-bit word operations * to gain speed but compensate for machine endianness and hence work * correctly on both styles of machine. * * They are defined here for performance. */ static inline u64 gf128mul_mask_from_bit(u64 x, int which) { /* a constant-time version of 'x & ((u64)1 << which) ? (u64)-1 : 0' */ return ((s64)(x << (63 - which)) >> 63); } static inline void gf128mul_x_lle(be128 *r, const be128 *x) { u64 a = be64_to_cpu(x->a); u64 b = be64_to_cpu(x->b); /* equivalent to gf128mul_table_le[(b << 7) & 0xff] << 48 * (see crypto/gf128mul.c): */ u64 _tt = gf128mul_mask_from_bit(b, 0) & ((u64)0xe1 << 56); r->b = cpu_to_be64((b >> 1) | (a << 63)); r->a = cpu_to_be64((a >> 1) ^ _tt); } static inline void gf128mul_x_bbe(be128 *r, const be128 *x) { u64 a = be64_to_cpu(x->a); u64 b = be64_to_cpu(x->b); /* equivalent to gf128mul_table_be[a >> 63] (see crypto/gf128mul.c): */ u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87; r->a = cpu_to_be64((a << 1) | (b >> 63)); r->b = cpu_to_be64((b << 1) ^ _tt); } /* needed by XTS */ static inline void gf128mul_x_ble(le128 *r, const le128 *x) { u64 a = le64_to_cpu(x->a); u64 b = le64_to_cpu(x->b); /* equivalent to gf128mul_table_be[b >> 63] (see crypto/gf128mul.c): */ u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87; r->a = cpu_to_le64((a << 1) | (b >> 63)); r->b = cpu_to_le64((b << 1) ^ _tt); } /* 4k table optimization */ struct gf128mul_4k { be128 t[256]; }; struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g); struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g); void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t); void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t); void gf128mul_x8_ble(le128 *r, const le128 *x); static inline void gf128mul_free_4k(struct gf128mul_4k *t) { kfree_sensitive(t); } /* 64k table optimization, implemented for bbe */ struct gf128mul_64k { struct gf128mul_4k *t[16]; }; /* First initialize with the constant factor with which you * want to multiply and then call gf128mul_64k_bbe with the other * factor in the first argument, and the table in the second. * Afterwards, the result is stored in *a. */ struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g); void gf128mul_free_64k(struct gf128mul_64k *t); void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t); #endif /* _CRYPTO_GF128MUL_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 // SPDX-License-Identifier: GPL-2.0-or-later /* * SELinux NetLabel Support * * This file provides the necessary glue to tie NetLabel into the SELinux * subsystem. * * Author: Paul Moore <paul@paul-moore.com> */ /* * (c) Copyright Hewlett-Packard Development Company, L.P., 2007, 2008 */ #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/gfp.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <net/sock.h> #include <net/netlabel.h> #include <net/ip.h> #include <net/ipv6.h> #include "objsec.h" #include "security.h" #include "netlabel.h" /** * selinux_netlbl_sidlookup_cached - Cache a SID lookup * @skb: the packet * @secattr: the NetLabel security attributes * @sid: the SID * * Description: * Query the SELinux security server to lookup the correct SID for the given * security attributes. If the query is successful, cache the result to speed * up future lookups. Returns zero on success, negative values on failure. * */ static int selinux_netlbl_sidlookup_cached(struct sk_buff *skb, u16 family, struct netlbl_lsm_secattr *secattr, u32 *sid) { int rc; rc = security_netlbl_secattr_to_sid(&selinux_state, secattr, sid); if (rc == 0 && (secattr->flags & NETLBL_SECATTR_CACHEABLE) && (secattr->flags & NETLBL_SECATTR_CACHE)) netlbl_cache_add(skb, family, secattr); return rc; } /** * selinux_netlbl_sock_genattr - Generate the NetLabel socket secattr * @sk: the socket * * Description: * Generate the NetLabel security attributes for a socket, making full use of * the socket's attribute cache. Returns a pointer to the security attributes * on success, NULL on failure. * */ static struct netlbl_lsm_secattr *selinux_netlbl_sock_genattr(struct sock *sk) { int rc; struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr *secattr; if (sksec->nlbl_secattr != NULL) return sksec->nlbl_secattr; secattr = netlbl_secattr_alloc(GFP_ATOMIC); if (secattr == NULL) return NULL; rc = security_netlbl_sid_to_secattr(&selinux_state, sksec->sid, secattr); if (rc != 0) { netlbl_secattr_free(secattr); return NULL; } sksec->nlbl_secattr = secattr; return secattr; } /** * selinux_netlbl_sock_getattr - Get the cached NetLabel secattr * @sk: the socket * @sid: the SID * * Query the socket's cached secattr and if the SID matches the cached value * return the cache, otherwise return NULL. * */ static struct netlbl_lsm_secattr *selinux_netlbl_sock_getattr( const struct sock *sk, u32 sid) { struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr *secattr = sksec->nlbl_secattr; if (secattr == NULL) return NULL; if ((secattr->flags & NETLBL_SECATTR_SECID) && (secattr->attr.secid == sid)) return secattr; return NULL; } /** * selinux_netlbl_cache_invalidate - Invalidate the NetLabel cache * * Description: * Invalidate the NetLabel security attribute mapping cache. * */ void selinux_netlbl_cache_invalidate(void) { netlbl_cache_invalidate(); } /** * selinux_netlbl_err - Handle a NetLabel packet error * @skb: the packet * @error: the error code * @gateway: true if host is acting as a gateway, false otherwise * * Description: * When a packet is dropped due to a call to avc_has_perm() pass the error * code to the NetLabel subsystem so any protocol specific processing can be * done. This is safe to call even if you are unsure if NetLabel labeling is * present on the packet, NetLabel is smart enough to only act when it should. * */ void selinux_netlbl_err(struct sk_buff *skb, u16 family, int error, int gateway) { netlbl_skbuff_err(skb, family, error, gateway); } /** * selinux_netlbl_sk_security_free - Free the NetLabel fields * @sksec: the sk_security_struct * * Description: * Free all of the memory in the NetLabel fields of a sk_security_struct. * */ void selinux_netlbl_sk_security_free(struct sk_security_struct *sksec) { if (sksec->nlbl_secattr != NULL) netlbl_secattr_free(sksec->nlbl_secattr); } /** * selinux_netlbl_sk_security_reset - Reset the NetLabel fields * @sksec: the sk_security_struct * @family: the socket family * * Description: * Called when the NetLabel state of a sk_security_struct needs to be reset. * The caller is responsible for all the NetLabel sk_security_struct locking. * */ void selinux_netlbl_sk_security_reset(struct sk_security_struct *sksec) { sksec->nlbl_state = NLBL_UNSET; } /** * selinux_netlbl_skbuff_getsid - Get the sid of a packet using NetLabel * @skb: the packet * @family: protocol family * @type: NetLabel labeling protocol type * @sid: the SID * * Description: * Call the NetLabel mechanism to get the security attributes of the given * packet and use those attributes to determine the correct context/SID to * assign to the packet. Returns zero on success, negative values on failure. * */ int selinux_netlbl_skbuff_getsid(struct sk_buff *skb, u16 family, u32 *type, u32 *sid) { int rc; struct netlbl_lsm_secattr secattr; if (!netlbl_enabled()) { *sid = SECSID_NULL; return 0; } netlbl_secattr_init(&secattr); rc = netlbl_skbuff_getattr(skb, family, &secattr); if (rc == 0 && secattr.flags != NETLBL_SECATTR_NONE) rc = selinux_netlbl_sidlookup_cached(skb, family, &secattr, sid); else *sid = SECSID_NULL; *type = secattr.type; netlbl_secattr_destroy(&secattr); return rc; } /** * selinux_netlbl_skbuff_setsid - Set the NetLabel on a packet given a sid * @skb: the packet * @family: protocol family * @sid: the SID * * Description * Call the NetLabel mechanism to set the label of a packet using @sid. * Returns zero on success, negative values on failure. * */ int selinux_netlbl_skbuff_setsid(struct sk_buff *skb, u16 family, u32 sid) { int rc; struct netlbl_lsm_secattr secattr_storage; struct netlbl_lsm_secattr *secattr = NULL; struct sock *sk; /* if this is a locally generated packet check to see if it is already * being labeled by it's parent socket, if it is just exit */ sk = skb_to_full_sk(skb); if (sk != NULL) { struct sk_security_struct *sksec = sk->sk_security; if (sksec->nlbl_state != NLBL_REQSKB) return 0; secattr = selinux_netlbl_sock_getattr(sk, sid); } if (secattr == NULL) { secattr = &secattr_storage; netlbl_secattr_init(secattr); rc = security_netlbl_sid_to_secattr(&selinux_state, sid, secattr); if (rc != 0) goto skbuff_setsid_return; } rc = netlbl_skbuff_setattr(skb, family, secattr); skbuff_setsid_return: if (secattr == &secattr_storage) netlbl_secattr_destroy(secattr); return rc; } /** * selinux_netlbl_sctp_assoc_request - Label an incoming sctp association. * @ep: incoming association endpoint. * @skb: the packet. * * Description: * A new incoming connection is represented by @ep, ...... * Returns zero on success, negative values on failure. * */ int selinux_netlbl_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) { int rc; struct netlbl_lsm_secattr secattr; struct sk_security_struct *sksec = ep->base.sk->sk_security; struct sockaddr_in addr4; struct sockaddr_in6 addr6; if (ep->base.sk->sk_family != PF_INET && ep->base.sk->sk_family != PF_INET6) return 0; netlbl_secattr_init(&secattr); rc = security_netlbl_sid_to_secattr(&selinux_state, ep->secid, &secattr); if (rc != 0) goto assoc_request_return; /* Move skb hdr address info to a struct sockaddr and then call * netlbl_conn_setattr(). */ if (ip_hdr(skb)->version == 4) { addr4.sin_family = AF_INET; addr4.sin_addr.s_addr = ip_hdr(skb)->saddr; rc = netlbl_conn_setattr(ep->base.sk, (void *)&addr4, &secattr); } else if (IS_ENABLED(CONFIG_IPV6) && ip_hdr(skb)->version == 6) { addr6.sin6_family = AF_INET6; addr6.sin6_addr = ipv6_hdr(skb)->saddr; rc = netlbl_conn_setattr(ep->base.sk, (void *)&addr6, &secattr); } else { rc = -EAFNOSUPPORT; } if (rc == 0) sksec->nlbl_state = NLBL_LABELED; assoc_request_return: netlbl_secattr_destroy(&secattr); return rc; } /** * selinux_netlbl_inet_conn_request - Label an incoming stream connection * @req: incoming connection request socket * * Description: * A new incoming connection request is represented by @req, we need to label * the new request_sock here and the stack will ensure the on-the-wire label * will get preserved when a full sock is created once the connection handshake * is complete. Returns zero on success, negative values on failure. * */ int selinux_netlbl_inet_conn_request(struct request_sock *req, u16 family) { int rc; struct netlbl_lsm_secattr secattr; if (family != PF_INET && family != PF_INET6) return 0; netlbl_secattr_init(&secattr); rc = security_netlbl_sid_to_secattr(&selinux_state, req->secid, &secattr); if (rc != 0) goto inet_conn_request_return; rc = netlbl_req_setattr(req, &secattr); inet_conn_request_return: netlbl_secattr_destroy(&secattr); return rc; } /** * selinux_netlbl_inet_csk_clone - Initialize the newly created sock * @sk: the new sock * * Description: * A new connection has been established using @sk, we've already labeled the * socket via the request_sock struct in selinux_netlbl_inet_conn_request() but * we need to set the NetLabel state here since we now have a sock structure. * */ void selinux_netlbl_inet_csk_clone(struct sock *sk, u16 family) { struct sk_security_struct *sksec = sk->sk_security; if (family == PF_INET) sksec->nlbl_state = NLBL_LABELED; else sksec->nlbl_state = NLBL_UNSET; } /** * selinux_netlbl_sctp_sk_clone - Copy state to the newly created sock * @sk: current sock * @newsk: the new sock * * Description: * Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ void selinux_netlbl_sctp_sk_clone(struct sock *sk, struct sock *newsk) { struct sk_security_struct *sksec = sk->sk_security; struct sk_security_struct *newsksec = newsk->sk_security; newsksec->nlbl_state = sksec->nlbl_state; } /** * selinux_netlbl_socket_post_create - Label a socket using NetLabel * @sock: the socket to label * @family: protocol family * * Description: * Attempt to label a socket using the NetLabel mechanism using the given * SID. Returns zero values on success, negative values on failure. * */ int selinux_netlbl_socket_post_create(struct sock *sk, u16 family) { int rc; struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr *secattr; if (family != PF_INET && family != PF_INET6) return 0; secattr = selinux_netlbl_sock_genattr(sk); if (secattr == NULL) return -ENOMEM; rc = netlbl_sock_setattr(sk, family, secattr); switch (rc) { case 0: sksec->nlbl_state = NLBL_LABELED; break; case -EDESTADDRREQ: sksec->nlbl_state = NLBL_REQSKB; rc = 0; break; } return rc; } /** * selinux_netlbl_sock_rcv_skb - Do an inbound access check using NetLabel * @sksec: the sock's sk_security_struct * @skb: the packet * @family: protocol family * @ad: the audit data * * Description: * Fetch the NetLabel security attributes from @skb and perform an access check * against the receiving socket. Returns zero on success, negative values on * error. * */ int selinux_netlbl_sock_rcv_skb(struct sk_security_struct *sksec, struct sk_buff *skb, u16 family, struct common_audit_data *ad) { int rc; u32 nlbl_sid; u32 perm; struct netlbl_lsm_secattr secattr; if (!netlbl_enabled()) return 0; netlbl_secattr_init(&secattr); rc = netlbl_skbuff_getattr(skb, family, &secattr); if (rc == 0 && secattr.flags != NETLBL_SECATTR_NONE) rc = selinux_netlbl_sidlookup_cached(skb, family, &secattr, &nlbl_sid); else nlbl_sid = SECINITSID_UNLABELED; netlbl_secattr_destroy(&secattr); if (rc != 0) return rc; switch (sksec->sclass) { case SECCLASS_UDP_SOCKET: perm = UDP_SOCKET__RECVFROM; break; case SECCLASS_TCP_SOCKET: perm = TCP_SOCKET__RECVFROM; break; default: perm = RAWIP_SOCKET__RECVFROM; } rc = avc_has_perm(&selinux_state, sksec->sid, nlbl_sid, sksec->sclass, perm, ad); if (rc == 0) return 0; if (nlbl_sid != SECINITSID_UNLABELED) netlbl_skbuff_err(skb, family, rc, 0); return rc; } /** * selinux_netlbl_option - Is this a NetLabel option * @level: the socket level or protocol * @optname: the socket option name * * Description: * Returns true if @level and @optname refer to a NetLabel option. * Helper for selinux_netlbl_socket_setsockopt(). */ static inline int selinux_netlbl_option(int level, int optname) { return (level == IPPROTO_IP && optname == IP_OPTIONS) || (level == IPPROTO_IPV6 && optname == IPV6_HOPOPTS); } /** * selinux_netlbl_socket_setsockopt - Do not allow users to remove a NetLabel * @sock: the socket * @level: the socket level or protocol * @optname: the socket option name * * Description: * Check the setsockopt() call and if the user is trying to replace the IP * options on a socket and a NetLabel is in place for the socket deny the * access; otherwise allow the access. Returns zero when the access is * allowed, -EACCES when denied, and other negative values on error. * */ int selinux_netlbl_socket_setsockopt(struct socket *sock, int level, int optname) { int rc = 0; struct sock *sk = sock->sk; struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr secattr; if (selinux_netlbl_option(level, optname) && (sksec->nlbl_state == NLBL_LABELED || sksec->nlbl_state == NLBL_CONNLABELED)) { netlbl_secattr_init(&secattr); lock_sock(sk); /* call the netlabel function directly as we want to see the * on-the-wire label that is assigned via the socket's options * and not the cached netlabel/lsm attributes */ rc = netlbl_sock_getattr(sk, &secattr); release_sock(sk); if (rc == 0) rc = -EACCES; else if (rc == -ENOMSG) rc = 0; netlbl_secattr_destroy(&secattr); } return rc; } /** * selinux_netlbl_socket_connect_helper - Help label a client-side socket on * connect * @sk: the socket to label * @addr: the destination address * * Description: * Attempt to label a connected socket with NetLabel using the given address. * Returns zero values on success, negative values on failure. * */ static int selinux_netlbl_socket_connect_helper(struct sock *sk, struct sockaddr *addr) { int rc; struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr *secattr; /* connected sockets are allowed to disconnect when the address family * is set to AF_UNSPEC, if that is what is happening we want to reset * the socket */ if (addr->sa_family == AF_UNSPEC) { netlbl_sock_delattr(sk); sksec->nlbl_state = NLBL_REQSKB; rc = 0; return rc; } secattr = selinux_netlbl_sock_genattr(sk); if (secattr == NULL) { rc = -ENOMEM; return rc; } rc = netlbl_conn_setattr(sk, addr, secattr); if (rc == 0) sksec->nlbl_state = NLBL_CONNLABELED; return rc; } /** * selinux_netlbl_socket_connect_locked - Label a client-side socket on * connect * @sk: the socket to label * @addr: the destination address * * Description: * Attempt to label a connected socket that already has the socket locked * with NetLabel using the given address. * Returns zero values on success, negative values on failure. * */ int selinux_netlbl_socket_connect_locked(struct sock *sk, struct sockaddr *addr) { struct sk_security_struct *sksec = sk->sk_security; if (sksec->nlbl_state != NLBL_REQSKB && sksec->nlbl_state != NLBL_CONNLABELED) return 0; return selinux_netlbl_socket_connect_helper(sk, addr); } /** * selinux_netlbl_socket_connect - Label a client-side socket on connect * @sk: the socket to label * @addr: the destination address * * Description: * Attempt to label a connected socket with NetLabel using the given address. * Returns zero values on success, negative values on failure. * */ int selinux_netlbl_socket_connect(struct sock *sk, struct sockaddr *addr) { int rc; lock_sock(sk); rc = selinux_netlbl_socket_connect_locked(sk, addr); release_sock(sk); return rc; }
1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Implementation of the Transmission Control Protocol(TCP). * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Mark Evans, <evansmp@uhura.aston.ac.uk> * Corey Minyard <wf-rch!minyard@relay.EU.net> * Florian La Roche, <flla@stud.uni-sb.de> * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> * Linus Torvalds, <torvalds@cs.helsinki.fi> * Alan Cox, <gw4pts@gw4pts.ampr.org> * Matthew Dillon, <dillon@apollo.west.oic.com> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Jorge Cwik, <jorge@laser.satlink.net> * * Fixes: * Alan Cox : Numerous verify_area() calls * Alan Cox : Set the ACK bit on a reset * Alan Cox : Stopped it crashing if it closed while * sk->inuse=1 and was trying to connect * (tcp_err()). * Alan Cox : All icmp error handling was broken * pointers passed where wrong and the * socket was looked up backwards. Nobody * tested any icmp error code obviously. * Alan Cox : tcp_err() now handled properly. It * wakes people on errors. poll * behaves and the icmp error race * has gone by moving it into sock.c * Alan Cox : tcp_send_reset() fixed to work for * everything not just packets for * unknown sockets. * Alan Cox : tcp option processing. * Alan Cox : Reset tweaked (still not 100%) [Had * syn rule wrong] * Herp Rosmanith : More reset fixes * Alan Cox : No longer acks invalid rst frames. * Acking any kind of RST is right out. * Alan Cox : Sets an ignore me flag on an rst * receive otherwise odd bits of prattle * escape still * Alan Cox : Fixed another acking RST frame bug. * Should stop LAN workplace lockups. * Alan Cox : Some tidyups using the new skb list * facilities * Alan Cox : sk->keepopen now seems to work * Alan Cox : Pulls options out correctly on accepts * Alan Cox : Fixed assorted sk->rqueue->next errors * Alan Cox : PSH doesn't end a TCP read. Switched a * bit to skb ops. * Alan Cox : Tidied tcp_data to avoid a potential * nasty. * Alan Cox : Added some better commenting, as the * tcp is hard to follow * Alan Cox : Removed incorrect check for 20 * psh * Michael O'Reilly : ack < copied bug fix. * Johannes Stille : Misc tcp fixes (not all in yet). * Alan Cox : FIN with no memory -> CRASH * Alan Cox : Added socket option proto entries. * Also added awareness of them to accept. * Alan Cox : Added TCP options (SOL_TCP) * Alan Cox : Switched wakeup calls to callbacks, * so the kernel can layer network * sockets. * Alan Cox : Use ip_tos/ip_ttl settings. * Alan Cox : Handle FIN (more) properly (we hope). * Alan Cox : RST frames sent on unsynchronised * state ack error. * Alan Cox : Put in missing check for SYN bit. * Alan Cox : Added tcp_select_window() aka NET2E * window non shrink trick. * Alan Cox : Added a couple of small NET2E timer * fixes * Charles Hedrick : TCP fixes * Toomas Tamm : TCP window fixes * Alan Cox : Small URG fix to rlogin ^C ack fight * Charles Hedrick : Rewrote most of it to actually work * Linus : Rewrote tcp_read() and URG handling * completely * Gerhard Koerting: Fixed some missing timer handling * Matthew Dillon : Reworked TCP machine states as per RFC * Gerhard Koerting: PC/TCP workarounds * Adam Caldwell : Assorted timer/timing errors * Matthew Dillon : Fixed another RST bug * Alan Cox : Move to kernel side addressing changes. * Alan Cox : Beginning work on TCP fastpathing * (not yet usable) * Arnt Gulbrandsen: Turbocharged tcp_check() routine. * Alan Cox : TCP fast path debugging * Alan Cox : Window clamping * Michael Riepe : Bug in tcp_check() * Matt Dillon : More TCP improvements and RST bug fixes * Matt Dillon : Yet more small nasties remove from the * TCP code (Be very nice to this man if * tcp finally works 100%) 8) * Alan Cox : BSD accept semantics. * Alan Cox : Reset on closedown bug. * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). * Michael Pall : Handle poll() after URG properly in * all cases. * Michael Pall : Undo the last fix in tcp_read_urg() * (multi URG PUSH broke rlogin). * Michael Pall : Fix the multi URG PUSH problem in * tcp_readable(), poll() after URG * works now. * Michael Pall : recv(...,MSG_OOB) never blocks in the * BSD api. * Alan Cox : Changed the semantics of sk->socket to * fix a race and a signal problem with * accept() and async I/O. * Alan Cox : Relaxed the rules on tcp_sendto(). * Yury Shevchuk : Really fixed accept() blocking problem. * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for * clients/servers which listen in on * fixed ports. * Alan Cox : Cleaned the above up and shrank it to * a sensible code size. * Alan Cox : Self connect lockup fix. * Alan Cox : No connect to multicast. * Ross Biro : Close unaccepted children on master * socket close. * Alan Cox : Reset tracing code. * Alan Cox : Spurious resets on shutdown. * Alan Cox : Giant 15 minute/60 second timer error * Alan Cox : Small whoops in polling before an * accept. * Alan Cox : Kept the state trace facility since * it's handy for debugging. * Alan Cox : More reset handler fixes. * Alan Cox : Started rewriting the code based on * the RFC's for other useful protocol * references see: Comer, KA9Q NOS, and * for a reference on the difference * between specifications and how BSD * works see the 4.4lite source. * A.N.Kuznetsov : Don't time wait on completion of tidy * close. * Linus Torvalds : Fin/Shutdown & copied_seq changes. * Linus Torvalds : Fixed BSD port reuse to work first syn * Alan Cox : Reimplemented timers as per the RFC * and using multiple timers for sanity. * Alan Cox : Small bug fixes, and a lot of new * comments. * Alan Cox : Fixed dual reader crash by locking * the buffers (much like datagram.c) * Alan Cox : Fixed stuck sockets in probe. A probe * now gets fed up of retrying without * (even a no space) answer. * Alan Cox : Extracted closing code better * Alan Cox : Fixed the closing state machine to * resemble the RFC. * Alan Cox : More 'per spec' fixes. * Jorge Cwik : Even faster checksumming. * Alan Cox : tcp_data() doesn't ack illegal PSH * only frames. At least one pc tcp stack * generates them. * Alan Cox : Cache last socket. * Alan Cox : Per route irtt. * Matt Day : poll()->select() match BSD precisely on error * Alan Cox : New buffers * Marc Tamsky : Various sk->prot->retransmits and * sk->retransmits misupdating fixed. * Fixed tcp_write_timeout: stuck close, * and TCP syn retries gets used now. * Mark Yarvis : In tcp_read_wakeup(), don't send an * ack if state is TCP_CLOSED. * Alan Cox : Look up device on a retransmit - routes may * change. Doesn't yet cope with MSS shrink right * but it's a start! * Marc Tamsky : Closing in closing fixes. * Mike Shaver : RFC1122 verifications. * Alan Cox : rcv_saddr errors. * Alan Cox : Block double connect(). * Alan Cox : Small hooks for enSKIP. * Alexey Kuznetsov: Path MTU discovery. * Alan Cox : Support soft errors. * Alan Cox : Fix MTU discovery pathological case * when the remote claims no mtu! * Marc Tamsky : TCP_CLOSE fix. * Colin (G3TNE) : Send a reset on syn ack replies in * window but wrong (fixes NT lpd problems) * Pedro Roque : Better TCP window handling, delayed ack. * Joerg Reuter : No modification of locked buffers in * tcp_do_retransmit() * Eric Schenk : Changed receiver side silly window * avoidance algorithm to BSD style * algorithm. This doubles throughput * against machines running Solaris, * and seems to result in general * improvement. * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD * Willy Konynenberg : Transparent proxying support. * Mike McLagan : Routing by source * Keith Owens : Do proper merging with partial SKB's in * tcp_do_sendmsg to avoid burstiness. * Eric Schenk : Fix fast close down bug with * shutdown() followed by close(). * Andi Kleen : Make poll agree with SIGIO * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and * lingertime == 0 (RFC 793 ABORT Call) * Hirokazu Takahashi : Use copy_from_user() instead of * csum_and_copy_from_user() if possible. * * Description of States: * * TCP_SYN_SENT sent a connection request, waiting for ack * * TCP_SYN_RECV received a connection request, sent ack, * waiting for final ack in three-way handshake. * * TCP_ESTABLISHED connection established * * TCP_FIN_WAIT1 our side has shutdown, waiting to complete * transmission of remaining buffered data * * TCP_FIN_WAIT2 all buffered data sent, waiting for remote * to shutdown * * TCP_CLOSING both sides have shutdown but we still have * data we have to finish sending * * TCP_TIME_WAIT timeout to catch resent junk before entering * closed, can only be entered from FIN_WAIT2 * or CLOSING. Required because the other end * may not have gotten our last ACK causing it * to retransmit the data packet (which we ignore) * * TCP_CLOSE_WAIT remote side has shutdown and is waiting for * us to finish writing our data and to shutdown * (we have to close() to move on to LAST_ACK) * * TCP_LAST_ACK out side has shutdown after remote has * shutdown. There may still be data in our * buffer that we have to finish sending * * TCP_CLOSE socket is finished */ #define pr_fmt(fmt) "TCP: " fmt #include <crypto/hash.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/poll.h> #include <linux/inet_diag.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/skbuff.h> #include <linux/scatterlist.h> #include <linux/splice.h> #include <linux/net.h> #include <linux/socket.h> #include <linux/random.h> #include <linux/memblock.h> #include <linux/highmem.h> #include <linux/swap.h> #include <linux/cache.h> #include <linux/err.h> #include <linux/time.h> #include <linux/slab.h> #include <linux/errqueue.h> #include <linux/static_key.h> #include <net/icmp.h> #include <net/inet_common.h> #include <net/tcp.h> #include <net/mptcp.h> #include <net/xfrm.h> #include <net/ip.h> #include <net/sock.h> #include <linux/uaccess.h> #include <asm/ioctls.h> #include <net/busy_poll.h> DEFINE_PER_CPU(unsigned int, tcp_orphan_count); EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); long sysctl_tcp_mem[3] __read_mostly; EXPORT_SYMBOL(sysctl_tcp_mem); atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ EXPORT_SYMBOL(tcp_memory_allocated); #if IS_ENABLED(CONFIG_SMC) DEFINE_STATIC_KEY_FALSE(tcp_have_smc); EXPORT_SYMBOL(tcp_have_smc); #endif /* * Current number of TCP sockets. */ struct percpu_counter tcp_sockets_allocated; EXPORT_SYMBOL(tcp_sockets_allocated); /* * TCP splice context */ struct tcp_splice_state { struct pipe_inode_info *pipe; size_t len; unsigned int flags; }; /* * Pressure flag: try to collapse. * Technical note: it is used by multiple contexts non atomically. * All the __sk_mem_schedule() is of this nature: accounting * is strict, actions are advisory and have some latency. */ unsigned long tcp_memory_pressure __read_mostly; EXPORT_SYMBOL_GPL(tcp_memory_pressure); DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); EXPORT_SYMBOL(tcp_rx_skb_cache_key); DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); void tcp_enter_memory_pressure(struct sock *sk) { unsigned long val; if (READ_ONCE(tcp_memory_pressure)) return; val = jiffies; if (!val) val--; if (!cmpxchg(&tcp_memory_pressure, 0, val)) NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); } EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); void tcp_leave_memory_pressure(struct sock *sk) { unsigned long val; if (!READ_ONCE(tcp_memory_pressure)) return; val = xchg(&tcp_memory_pressure, 0); if (val) NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, jiffies_to_msecs(jiffies - val)); } EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); /* Convert seconds to retransmits based on initial and max timeout */ static u8 secs_to_retrans(int seconds, int timeout, int rto_max) { u8 res = 0; if (seconds > 0) { int period = timeout; res = 1; while (seconds > period && res < 255) { res++; timeout <<= 1; if (timeout > rto_max) timeout = rto_max; period += timeout; } } return res; } /* Convert retransmits to seconds based on initial and max timeout */ static int retrans_to_secs(u8 retrans, int timeout, int rto_max) { int period = 0; if (retrans > 0) { period = timeout; while (--retrans) { timeout <<= 1; if (timeout > rto_max) timeout = rto_max; period += timeout; } } return period; } static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) { u32 rate = READ_ONCE(tp->rate_delivered); u32 intv = READ_ONCE(tp->rate_interval_us); u64 rate64 = 0; if (rate && intv) { rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; do_div(rate64, intv); } return rate64; } /* Address-family independent initialization for a tcp_sock. * * NOTE: A lot of things set to zero explicitly by call to * sk_alloc() so need not be done here. */ void tcp_init_sock(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); tp->out_of_order_queue = RB_ROOT; sk->tcp_rtx_queue = RB_ROOT; tcp_init_xmit_timers(sk); INIT_LIST_HEAD(&tp->tsq_node); INIT_LIST_HEAD(&tp->tsorted_sent_queue); icsk->icsk_rto = TCP_TIMEOUT_INIT; icsk->icsk_rto_min = TCP_RTO_MIN; icsk->icsk_delack_max = TCP_DELACK_MAX; tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); /* So many TCP implementations out there (incorrectly) count the * initial SYN frame in their delayed-ACK and congestion control * algorithms that we must have the following bandaid to talk * efficiently to them. -DaveM */ tp->snd_cwnd = TCP_INIT_CWND; /* There's a bubble in the pipe until at least the first ACK. */ tp->app_limited = ~0U; /* See draft-stevens-tcpca-spec-01 for discussion of the * initialization of these values. */ tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; tp->snd_cwnd_clamp = ~0; tp->mss_cache = TCP_MSS_DEFAULT; tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; tcp_assign_congestion_control(sk); tp->tsoffset = 0; tp->rack.reo_wnd_steps = 1; sk->sk_write_space = sk_stream_write_space; sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); icsk->icsk_sync_mss = tcp_sync_mss; WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); sk_sockets_allocated_inc(sk); sk->sk_route_forced_caps = NETIF_F_GSO; } EXPORT_SYMBOL(tcp_init_sock); static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) { struct sk_buff *skb = tcp_write_queue_tail(sk); if (tsflags && skb) { struct skb_shared_info *shinfo = skb_shinfo(skb); struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); if (tsflags & SOF_TIMESTAMPING_TX_ACK) tcb->txstamp_ack = 1; if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; } } static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, int target, struct sock *sk) { int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); if (avail > 0) { if (avail >= target) return true; if (tcp_rmem_pressure(sk)) return true; if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss) return true; } if (sk->sk_prot->stream_memory_read) return sk->sk_prot->stream_memory_read(sk); return false; } /* * Wait for a TCP event. * * Note that we don't need to lock the socket, as the upper poll layers * take care of normal races (between the test and the event) and we don't * go look at any of the socket buffers directly. */ __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) { __poll_t mask; struct sock *sk = sock->sk; const struct tcp_sock *tp = tcp_sk(sk); int state; sock_poll_wait(file, sock, wait); state = inet_sk_state_load(sk); if (state == TCP_LISTEN) return inet_csk_listen_poll(sk); /* Socket is not locked. We are protected from async events * by poll logic and correct handling of state changes * made by other threads is impossible in any case. */ mask = 0; /* * EPOLLHUP is certainly not done right. But poll() doesn't * have a notion of HUP in just one direction, and for a * socket the read side is more interesting. * * Some poll() documentation says that EPOLLHUP is incompatible * with the EPOLLOUT/POLLWR flags, so somebody should check this * all. But careful, it tends to be safer to return too many * bits than too few, and you can easily break real applications * if you don't tell them that something has hung up! * * Check-me. * * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and * our fs/select.c). It means that after we received EOF, * poll always returns immediately, making impossible poll() on write() * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP * if and only if shutdown has been made in both directions. * Actually, it is interesting to look how Solaris and DUX * solve this dilemma. I would prefer, if EPOLLHUP were maskable, * then we could set it on SND_SHUTDOWN. BTW examples given * in Stevens' books assume exactly this behaviour, it explains * why EPOLLHUP is incompatible with EPOLLOUT. --ANK * * NOTE. Check for TCP_CLOSE is added. The goal is to prevent * blocking on fresh not-connected or disconnected socket. --ANK */ if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) mask |= EPOLLHUP; if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; /* Connected or passive Fast Open socket? */ if (state != TCP_SYN_SENT && (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { int target = sock_rcvlowat(sk, 0, INT_MAX); if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && !sock_flag(sk, SOCK_URGINLINE) && tp->urg_data) target++; if (tcp_stream_is_readable(tp, target, sk)) mask |= EPOLLIN | EPOLLRDNORM; if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { if (__sk_stream_is_writeable(sk, 1)) { mask |= EPOLLOUT | EPOLLWRNORM; } else { /* send SIGIO later */ sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); /* Race breaker. If space is freed after * wspace test but before the flags are set, * IO signal will be lost. Memory barrier * pairs with the input side. */ smp_mb__after_atomic(); if (__sk_stream_is_writeable(sk, 1)) mask |= EPOLLOUT | EPOLLWRNORM; } } else mask |= EPOLLOUT | EPOLLWRNORM; if (tp->urg_data & TCP_URG_VALID) mask |= EPOLLPRI; } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { /* Active TCP fastopen socket with defer_connect * Return EPOLLOUT so application can call write() * in order for kernel to generate SYN+data */ mask |= EPOLLOUT | EPOLLWRNORM; } /* This barrier is coupled with smp_wmb() in tcp_reset() */ smp_rmb(); if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) mask |= EPOLLERR; return mask; } EXPORT_SYMBOL(tcp_poll); int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) { struct tcp_sock *tp = tcp_sk(sk); int answ; bool slow; switch (cmd) { case SIOCINQ: if (sk->sk_state == TCP_LISTEN) return -EINVAL; slow = lock_sock_fast(sk); answ = tcp_inq(sk); unlock_sock_fast(sk, slow); break; case SIOCATMARK: answ = tp->urg_data && READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); break; case SIOCOUTQ: if (sk->sk_state == TCP_LISTEN) return -EINVAL; if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) answ = 0; else answ = READ_ONCE(tp->write_seq) - tp->snd_una; break; case SIOCOUTQNSD: if (sk->sk_state == TCP_LISTEN) return -EINVAL; if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) answ = 0; else answ = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt); break; default: return -ENOIOCTLCMD; } return put_user(answ, (int __user *)arg); } EXPORT_SYMBOL(tcp_ioctl); static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) { TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; tp->pushed_seq = tp->write_seq; } static inline bool forced_push(const struct tcp_sock *tp) { return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); } static void skb_entail(struct sock *sk, struct sk_buff *skb) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); skb->csum = 0; tcb->seq = tcb->end_seq = tp->write_seq; tcb->tcp_flags = TCPHDR_ACK; tcb->sacked = 0; __skb_header_release(skb); tcp_add_write_queue_tail(sk, skb); sk_wmem_queued_add(sk, skb->truesize); sk_mem_charge(sk, skb->truesize); if (tp->nonagle & TCP_NAGLE_PUSH) tp->nonagle &= ~TCP_NAGLE_PUSH; tcp_slow_start_after_idle_check(sk); } static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) { if (flags & MSG_OOB) tp->snd_up = tp->write_seq; } /* If a not yet filled skb is pushed, do not send it if * we have data packets in Qdisc or NIC queues : * Because TX completion will happen shortly, it gives a chance * to coalesce future sendmsg() payload into this skb, without * need for a timer, and with no latency trade off. * As packets containing data payload have a bigger truesize * than pure acks (dataless) packets, the last checks prevent * autocorking if we only have an ACK in Qdisc/NIC queues, * or if TX completion was delayed after we processed ACK packet. */ static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, int size_goal) { return skb->len < size_goal && sock_net(sk)->ipv4.sysctl_tcp_autocorking && !tcp_rtx_queue_empty(sk) && refcount_read(&sk->sk_wmem_alloc) > skb->truesize; } void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, int size_goal) { struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *skb; skb = tcp_write_queue_tail(sk); if (!skb) return; if (!(flags & MSG_MORE) || forced_push(tp)) tcp_mark_push(tp, skb); tcp_mark_urg(tp, flags); if (tcp_should_autocork(sk, skb, size_goal)) { /* avoid atomic op if TSQ_THROTTLED bit is already set */ if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); } /* It is possible TX completion already happened * before we set TSQ_THROTTLED. */ if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) return; } if (flags & MSG_MORE) nonagle = TCP_NAGLE_CORK; __tcp_push_pending_frames(sk, mss_now, nonagle); } static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int offset, size_t len) { struct tcp_splice_state *tss = rd_desc->arg.data; int ret; ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, min(rd_desc->count, len), tss->flags); if (ret > 0) rd_desc->count -= ret; return ret; } static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) { /* Store TCP splice context information in read_descriptor_t. */ read_descriptor_t rd_desc = { .arg.data = tss, .count = tss->len, }; return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); } /** * tcp_splice_read - splice data from TCP socket to a pipe * @sock: socket to splice from * @ppos: position (not valid) * @pipe: pipe to splice to * @len: number of bytes to splice * @flags: splice modifier flags * * Description: * Will read pages from given socket and fill them into a pipe. * **/ ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct sock *sk = sock->sk; struct tcp_splice_state tss = { .pipe = pipe, .len = len, .flags = flags, }; long timeo; ssize_t spliced; int ret; sock_rps_record_flow(sk); /* * We can't seek on a socket input */ if (unlikely(*ppos)) return -ESPIPE; ret = spliced = 0; lock_sock(sk); timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); while (tss.len) { ret = __tcp_splice_read(sk, &tss); if (ret < 0) break; else if (!ret) { if (spliced) break; if (sock_flag(sk, SOCK_DONE)) break; if (sk->sk_err) { ret = sock_error(sk); break; } if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_state == TCP_CLOSE) { /* * This occurs when user tries to read * from never connected socket. */ ret = -ENOTCONN; break; } if (!timeo) { ret = -EAGAIN; break; } /* if __tcp_splice_read() got nothing while we have * an skb in receive queue, we do not want to loop. * This might happen with URG data. */ if (!skb_queue_empty(&sk->sk_receive_queue)) break; sk_wait_data(sk, &timeo, NULL); if (signal_pending(current)) { ret = sock_intr_errno(timeo); break; } continue; } tss.len -= ret; spliced += ret; if (!timeo) break; release_sock(sk); lock_sock(sk); if (sk->sk_err || sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN) || signal_pending(current)) break; } release_sock(sk); if (spliced) return spliced; return ret; } EXPORT_SYMBOL(tcp_splice_read); struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, bool force_schedule) { struct sk_buff *skb; if (likely(!size)) { skb = sk->sk_tx_skb_cache; if (skb) { skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); sk->sk_tx_skb_cache = NULL; pskb_trim(skb, 0); INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); skb_shinfo(skb)->tx_flags = 0; memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); return skb; } } /* The TCP header must be at least 32-bit aligned. */ size = ALIGN(size, 4); if (unlikely(tcp_under_memory_pressure(sk))) sk_mem_reclaim_partial(sk); skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); if (likely(skb)) { bool mem_scheduled; if (force_schedule) { mem_scheduled = true; sk_forced_mem_schedule(sk, skb->truesize); } else { mem_scheduled = sk_wmem_schedule(sk, skb->truesize); } if (likely(mem_scheduled)) { skb_reserve(skb, sk->sk_prot->max_header); /* * Make sure that we have exactly size bytes * available to the caller, no more, no less. */ skb->reserved_tailroom = skb->end - skb->tail - size; INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); return skb; } __kfree_skb(skb); } else { sk->sk_prot->enter_memory_pressure(sk); sk_stream_moderate_sndbuf(sk); } return NULL; } static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, int large_allowed) { struct tcp_sock *tp = tcp_sk(sk); u32 new_size_goal, size_goal; if (!large_allowed) return mss_now; /* Note : tcp_tso_autosize() will eventually split this later */ new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); /* We try hard to avoid divides here */ size_goal = tp->gso_segs * mss_now; if (unlikely(new_size_goal < size_goal || new_size_goal >= size_goal + mss_now)) { tp->gso_segs = min_t(u16, new_size_goal / mss_now, sk->sk_gso_max_segs); size_goal = tp->gso_segs * mss_now; } return max(size_goal, mss_now); } int tcp_send_mss(struct sock *sk, int *size_goal, int flags) { int mss_now; mss_now = tcp_current_mss(sk); *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); return mss_now; } /* In some cases, both sendpage() and sendmsg() could have added * an skb to the write queue, but failed adding payload on it. * We need to remove it to consume less memory, but more * importantly be able to generate EPOLLOUT for Edge Trigger epoll() * users. */ static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) { if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { tcp_unlink_write_queue(skb, sk); if (tcp_write_queue_empty(sk)) tcp_chrono_stop(sk, TCP_CHRONO_BUSY); sk_wmem_free_skb(sk, skb); } } ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, size_t size, int flags) { struct tcp_sock *tp = tcp_sk(sk); int mss_now, size_goal; int err; ssize_t copied; long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); if (IS_ENABLED(CONFIG_DEBUG_VM) && WARN_ONCE(!sendpage_ok(page), "page must not be a Slab one and have page_count > 0")) return -EINVAL; /* Wait for a connection to finish. One exception is TCP Fast Open * (passive side) where data is allowed to be sent before a connection * is fully established. */ if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && !tcp_passive_fastopen(sk)) { err = sk_stream_wait_connect(sk, &timeo); if (err != 0) goto out_err; } sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); mss_now = tcp_send_mss(sk, &size_goal, flags); copied = 0; err = -EPIPE; if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) goto out_err; while (size > 0) { struct sk_buff *skb = tcp_write_queue_tail(sk); int copy, i; bool can_coalesce; if (!skb || (copy = size_goal - skb->len) <= 0 || !tcp_skb_can_collapse_to(skb)) { new_segment: if (!sk_stream_memory_free(sk)) goto wait_for_space; skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, tcp_rtx_and_write_queues_empty(sk)); if (!skb) goto wait_for_space; #ifdef CONFIG_TLS_DEVICE skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); #endif skb_entail(sk, skb); copy = size_goal; } if (copy > size) copy = size; i = skb_shinfo(skb)->nr_frags; can_coalesce = skb_can_coalesce(skb, i, page, offset); if (!can_coalesce && i >= sysctl_max_skb_frags) { tcp_mark_push(tp, skb); goto new_segment; } if (!sk_wmem_schedule(sk, copy)) goto wait_for_space; if (can_coalesce) { skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); } else { get_page(page); skb_fill_page_desc(skb, i, page, offset, copy); } if (!(flags & MSG_NO_SHARED_FRAGS)) skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; skb->len += copy; skb->data_len += copy; skb->truesize += copy; sk_wmem_queued_add(sk, copy); sk_mem_charge(sk, copy); skb->ip_summed = CHECKSUM_PARTIAL; WRITE_ONCE(tp->write_seq, tp->write_seq + copy); TCP_SKB_CB(skb)->end_seq += copy; tcp_skb_pcount_set(skb, 0); if (!copied) TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; copied += copy; offset += copy; size -= copy; if (!size) goto out; if (skb->len < size_goal || (flags & MSG_OOB)) continue; if (forced_push(tp)) { tcp_mark_push(tp, skb); __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); } else if (skb == tcp_send_head(sk)) tcp_push_one(sk, mss_now); continue; wait_for_space: set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH, size_goal); err = sk_stream_wait_memory(sk, &timeo); if (err != 0) goto do_error; mss_now = tcp_send_mss(sk, &size_goal, flags); } out: if (copied) { tcp_tx_timestamp(sk, sk->sk_tsflags); if (!(flags & MSG_SENDPAGE_NOTLAST)) tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); } return copied; do_error: tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); if (copied) goto out; out_err: /* make sure we wake any epoll edge trigger waiter */ if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { sk->sk_write_space(sk); tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); } return sk_stream_error(sk, flags, err); } EXPORT_SYMBOL_GPL(do_tcp_sendpages); int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags) { if (!(sk->sk_route_caps & NETIF_F_SG)) return sock_no_sendpage_locked(sk, page, offset, size, flags); tcp_rate_check_app_limited(sk); /* is sending application-limited? */ return do_tcp_sendpages(sk, page, offset, size, flags); } EXPORT_SYMBOL_GPL(tcp_sendpage_locked); int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags) { int ret; lock_sock(sk); ret = tcp_sendpage_locked(sk, page, offset, size, flags); release_sock(sk); return ret; } EXPORT_SYMBOL(tcp_sendpage); void tcp_free_fastopen_req(struct tcp_sock *tp) { if (tp->fastopen_req) { kfree(tp->fastopen_req); tp->fastopen_req = NULL; } } static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, size_t size, struct ubuf_info *uarg) { struct tcp_sock *tp = tcp_sk(sk); struct inet_sock *inet = inet_sk(sk); struct sockaddr *uaddr = msg->msg_name; int err, flags; if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && uaddr->sa_family == AF_UNSPEC)) return -EOPNOTSUPP; if (tp->fastopen_req) return -EALREADY; /* Another Fast Open is in progress */ tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), sk->sk_allocation); if (unlikely(!tp->fastopen_req)) return -ENOBUFS; tp->fastopen_req->data = msg; tp->fastopen_req->size = size; tp->fastopen_req->uarg = uarg; if (inet->defer_connect) { err = tcp_connect(sk); /* Same failure procedure as in tcp_v4/6_connect */ if (err) { tcp_set_state(sk, TCP_CLOSE); inet->inet_dport = 0; sk->sk_route_caps = 0; } } flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; err = __inet_stream_connect(sk->sk_socket, uaddr, msg->msg_namelen, flags, 1); /* fastopen_req could already be freed in __inet_stream_connect * if the connection times out or gets rst */ if (tp->fastopen_req) { *copied = tp->fastopen_req->copied; tcp_free_fastopen_req(tp); inet->defer_connect = 0; } return err; } int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) { struct tcp_sock *tp = tcp_sk(sk); struct ubuf_info *uarg = NULL; struct sk_buff *skb; struct sockcm_cookie sockc; int flags, err, copied = 0; int mss_now = 0, size_goal, copied_syn = 0; int process_backlog = 0; bool zc = false; long timeo; flags = msg->msg_flags; if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { skb = tcp_write_queue_tail(sk); uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); if (!uarg) { err = -ENOBUFS; goto out_err; } zc = sk->sk_route_caps & NETIF_F_SG; if (!zc) uarg->zerocopy = 0; } if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && !tp->repair) { err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); if (err == -EINPROGRESS && copied_syn > 0) goto out; else if (err) goto out_err; } timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); tcp_rate_check_app_limited(sk); /* is sending application-limited? */ /* Wait for a connection to finish. One exception is TCP Fast Open * (passive side) where data is allowed to be sent before a connection * is fully established. */ if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && !tcp_passive_fastopen(sk)) { err = sk_stream_wait_connect(sk, &timeo); if (err != 0) goto do_error; } if (unlikely(tp->repair)) { if (tp->repair_queue == TCP_RECV_QUEUE) { copied = tcp_send_rcvq(sk, msg, size); goto out_nopush; } err = -EINVAL; if (tp->repair_queue == TCP_NO_QUEUE) goto out_err; /* 'common' sending to sendq */ } sockcm_init(&sockc, sk); if (msg->msg_controllen) { err = sock_cmsg_send(sk, msg, &sockc); if (unlikely(err)) { err = -EINVAL; goto out_err; } } /* This should be in poll */ sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); /* Ok commence sending. */ copied = 0; restart: mss_now = tcp_send_mss(sk, &size_goal, flags); err = -EPIPE; if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) goto do_error; while (msg_data_left(msg)) { int copy = 0; skb = tcp_write_queue_tail(sk); if (skb) copy = size_goal - skb->len; if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { bool first_skb; new_segment: if (!sk_stream_memory_free(sk)) goto wait_for_space; if (unlikely(process_backlog >= 16)) { process_backlog = 0; if (sk_flush_backlog(sk)) goto restart; } first_skb = tcp_rtx_and_write_queues_empty(sk); skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, first_skb); if (!skb) goto wait_for_space; process_backlog++; skb->ip_summed = CHECKSUM_PARTIAL; skb_entail(sk, skb); copy = size_goal; /* All packets are restored as if they have * already been sent. skb_mstamp_ns isn't set to * avoid wrong rtt estimation. */ if (tp->repair) TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; } /* Try to append data to the end of skb. */ if (copy > msg_data_left(msg)) copy = msg_data_left(msg); /* Where to copy to? */ if (skb_availroom(skb) > 0 && !zc) { /* We have some space in skb head. Superb! */ copy = min_t(int, copy, skb_availroom(skb)); err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); if (err) goto do_fault; } else if (!zc) { bool merge = true; int i = skb_shinfo(skb)->nr_frags; struct page_frag *pfrag = sk_page_frag(sk); if (!sk_page_frag_refill(sk, pfrag)) goto wait_for_space; if (!skb_can_coalesce(skb, i, pfrag->page, pfrag->offset)) { if (i >= sysctl_max_skb_frags) { tcp_mark_push(tp, skb); goto new_segment; } merge = false; } copy = min_t(int, copy, pfrag->size - pfrag->offset); if (!sk_wmem_schedule(sk, copy)) goto wait_for_space; err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, pfrag->page, pfrag->offset, copy); if (err) goto do_error; /* Update the skb. */ if (merge) { skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); } else { skb_fill_page_desc(skb, i, pfrag->page, pfrag->offset, copy); page_ref_inc(pfrag->page); } pfrag->offset += copy; } else { if (!sk_wmem_schedule(sk, copy)) goto wait_for_space; err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); if (err == -EMSGSIZE || err == -EEXIST) { tcp_mark_push(tp, skb); goto new_segment; } if (err < 0) goto do_error; copy = err; } if (!copied) TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; WRITE_ONCE(tp->write_seq, tp->write_seq + copy); TCP_SKB_CB(skb)->end_seq += copy; tcp_skb_pcount_set(skb, 0); copied += copy; if (!msg_data_left(msg)) { if (unlikely(flags & MSG_EOR)) TCP_SKB_CB(skb)->eor = 1; goto out; } if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) continue; if (forced_push(tp)) { tcp_mark_push(tp, skb); __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); } else if (skb == tcp_send_head(sk)) tcp_push_one(sk, mss_now); continue; wait_for_space: set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); if (copied) tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH, size_goal); err = sk_stream_wait_memory(sk, &timeo); if (err != 0) goto do_error; mss_now = tcp_send_mss(sk, &size_goal, flags); } out: if (copied) { tcp_tx_timestamp(sk, sockc.tsflags); tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); } out_nopush: sock_zerocopy_put(uarg); return copied + copied_syn; do_error: skb = tcp_write_queue_tail(sk); do_fault: tcp_remove_empty_skb(sk, skb); if (copied + copied_syn) goto out; out_err: sock_zerocopy_put_abort(uarg, true); err = sk_stream_error(sk, flags, err); /* make sure we wake any epoll edge trigger waiter */ if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { sk->sk_write_space(sk); tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); } return err; } EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) { int ret; lock_sock(sk); ret = tcp_sendmsg_locked(sk, msg, size); release_sock(sk); return ret; } EXPORT_SYMBOL(tcp_sendmsg); /* * Handle reading urgent data. BSD has very simple semantics for * this, no blocking and very strange errors 8) */ static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) { struct tcp_sock *tp = tcp_sk(sk); /* No URG data to read. */ if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || tp->urg_data == TCP_URG_READ) return -EINVAL; /* Yes this is right ! */ if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) return -ENOTCONN; if (tp->urg_data & TCP_URG_VALID) { int err = 0; char c = tp->urg_data; if (!(flags & MSG_PEEK)) tp->urg_data = TCP_URG_READ; /* Read urgent data. */ msg->msg_flags |= MSG_OOB; if (len > 0) { if (!(flags & MSG_TRUNC)) err = memcpy_to_msg(msg, &c, 1); len = 1; } else msg->msg_flags |= MSG_TRUNC; return err ? -EFAULT : len; } if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) return 0; /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and * the available implementations agree in this case: * this call should never block, independent of the * blocking state of the socket. * Mike <pall@rz.uni-karlsruhe.de> */ return -EAGAIN; } static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) { struct sk_buff *skb; int copied = 0, err = 0; /* XXX -- need to support SO_PEEK_OFF */ skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { err = skb_copy_datagram_msg(skb, 0, msg, skb->len); if (err) return err; copied += skb->len; } skb_queue_walk(&sk->sk_write_queue, skb) { err = skb_copy_datagram_msg(skb, 0, msg, skb->len); if (err) break; copied += skb->len; } return err ?: copied; } /* Clean up the receive buffer for full frames taken by the user, * then send an ACK if necessary. COPIED is the number of bytes * tcp_recvmsg has given to the user so far, it speeds up the * calculation of whether or not we must ACK for the sake of * a window update. */ void tcp_cleanup_rbuf(struct sock *sk, int copied) { struct tcp_sock *tp = tcp_sk(sk); bool time_to_ack = false; struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); if (inet_csk_ack_scheduled(sk)) { const struct inet_connection_sock *icsk = inet_csk(sk); if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || /* * If this read emptied read buffer, we send ACK, if * connection is not bidirectional, user drained * receive buffer and there was a small segment * in queue. */ (copied > 0 && ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && !inet_csk_in_pingpong_mode(sk))) && !atomic_read(&sk->sk_rmem_alloc))) time_to_ack = true; } /* We send an ACK if we can now advertise a non-zero window * which has been raised "significantly". * * Even if window raised up to infinity, do not send window open ACK * in states, where we will not receive more. It is useless. */ if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { __u32 rcv_window_now = tcp_receive_window(tp); /* Optimize, __tcp_select_window() is not cheap. */ if (2*rcv_window_now <= tp->window_clamp) { __u32 new_window = __tcp_select_window(sk); /* Send ACK now, if this read freed lots of space * in our buffer. Certainly, new_window is new window. * We can advertise it now, if it is not less than current one. * "Lots" means "at least twice" here. */ if (new_window && new_window >= 2 * rcv_window_now) time_to_ack = true; } } if (time_to_ack) tcp_send_ack(sk); } static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) { struct sk_buff *skb; u32 offset; while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { offset = seq - TCP_SKB_CB(skb)->seq; if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { pr_err_once("%s: found a SYN, please report !\n", __func__); offset--; } if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { *off = offset; return skb; } /* This looks weird, but this can happen if TCP collapsing * splitted a fat GRO packet, while we released socket lock * in skb_splice_bits() */ sk_eat_skb(sk, skb); } return NULL; } /* * This routine provides an alternative to tcp_recvmsg() for routines * that would like to handle copying from skbuffs directly in 'sendfile' * fashion. * Note: * - It is assumed that the socket was locked by the caller. * - The routine does not block. * - At present, there is no support for reading OOB data * or for 'peeking' the socket using this routine * (although both would be easy to implement). */ int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t recv_actor) { struct sk_buff *skb; struct tcp_sock *tp = tcp_sk(sk); u32 seq = tp->copied_seq; u32 offset; int copied = 0; if (sk->sk_state == TCP_LISTEN) return -ENOTCONN; while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { if (offset < skb->len) { int used; size_t len; len = skb->len - offset; /* Stop reading if we hit a patch of urgent data */ if (tp->urg_data) { u32 urg_offset = tp->urg_seq - seq; if (urg_offset < len) len = urg_offset; if (!len) break; } used = recv_actor(desc, skb, offset, len); if (used <= 0) { if (!copied) copied = used; break; } else if (used <= len) { seq += used; copied += used; offset += used; } /* If recv_actor drops the lock (e.g. TCP splice * receive) the skb pointer might be invalid when * getting here: tcp_collapse might have deleted it * while aggregating skbs from the socket queue. */ skb = tcp_recv_skb(sk, seq - 1, &offset); if (!skb) break; /* TCP coalescing might have appended data to the skb. * Try to splice more frags */ if (offset + 1 != skb->len) continue; } if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { sk_eat_skb(sk, skb); ++seq; break; } sk_eat_skb(sk, skb); if (!desc->count) break; WRITE_ONCE(tp->copied_seq, seq); } WRITE_ONCE(tp->copied_seq, seq); tcp_rcv_space_adjust(sk); /* Clean up data we have read: This will do ACK frames. */ if (copied > 0) { tcp_recv_skb(sk, seq, &offset); tcp_cleanup_rbuf(sk, copied); } return copied; } EXPORT_SYMBOL(tcp_read_sock); int tcp_peek_len(struct socket *sock) { return tcp_inq(sock->sk); } EXPORT_SYMBOL(tcp_peek_len); /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ int tcp_set_rcvlowat(struct sock *sk, int val) { int cap; if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) cap = sk->sk_rcvbuf >> 1; else cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; val = min(val, cap); WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); /* Check if we need to signal EPOLLIN right now */ tcp_data_ready(sk); if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) return 0; val <<= 1; if (val > sk->sk_rcvbuf) { WRITE_ONCE(sk->sk_rcvbuf, val); tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); } return 0; } EXPORT_SYMBOL(tcp_set_rcvlowat); #ifdef CONFIG_MMU static const struct vm_operations_struct tcp_vm_ops = { }; int tcp_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) { if (vma->vm_flags & (VM_WRITE | VM_EXEC)) return -EPERM; vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ vma->vm_flags |= VM_MIXEDMAP; vma->vm_ops = &tcp_vm_ops; return 0; } EXPORT_SYMBOL(tcp_mmap); static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, u32 *offset_frag) { skb_frag_t *frag; if (unlikely(offset_skb >= skb->len)) return NULL; offset_skb -= skb_headlen(skb); if ((int)offset_skb < 0 || skb_has_frag_list(skb)) return NULL; frag = skb_shinfo(skb)->frags; while (offset_skb) { if (skb_frag_size(frag) > offset_skb) { *offset_frag = offset_skb; return frag; } offset_skb -= skb_frag_size(frag); ++frag; } *offset_frag = 0; return frag; } static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, struct sk_buff *skb, u32 copylen, u32 *offset, u32 *seq) { unsigned long copy_address = (unsigned long)zc->copybuf_address; struct msghdr msg = {}; struct iovec iov; int err; if (copy_address != zc->copybuf_address) return -EINVAL; err = import_single_range(READ, (void __user *)copy_address, copylen, &iov, &msg.msg_iter); if (err) return err; err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); if (err) return err; zc->recv_skip_hint -= copylen; *offset += copylen; *seq += copylen; return (__s32)copylen; } static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc, struct sock *sk, struct sk_buff *skb, u32 *seq, s32 copybuf_len) { u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); if (!copylen) return 0; /* skb is null if inq < PAGE_SIZE. */ if (skb) offset = *seq - TCP_SKB_CB(skb)->seq; else skb = tcp_recv_skb(sk, *seq, &offset); zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, seq); return zc->copybuf_len < 0 ? 0 : copylen; } static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, struct page **pages, unsigned long pages_to_map, unsigned long *insert_addr, u32 *length_with_pending, u32 *seq, struct tcp_zerocopy_receive *zc) { unsigned long pages_remaining = pages_to_map; int bytes_mapped; int ret; ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining); bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining); /* Even if vm_insert_pages fails, it may have partially succeeded in * mapping (some but not all of the pages). */ *seq += bytes_mapped; *insert_addr += bytes_mapped; if (ret) { /* But if vm_insert_pages did fail, we have to unroll some state * we speculatively touched before. */ const int bytes_not_mapped = PAGE_SIZE * pages_remaining; *length_with_pending -= bytes_not_mapped; zc->recv_skip_hint += bytes_not_mapped; } return ret; } static int tcp_zerocopy_receive(struct sock *sk, struct tcp_zerocopy_receive *zc) { u32 length = 0, offset, vma_len, avail_len, aligned_len, copylen = 0; unsigned long address = (unsigned long)zc->address; s32 copybuf_len = zc->copybuf_len; struct tcp_sock *tp = tcp_sk(sk); #define PAGE_BATCH_SIZE 8 struct page *pages[PAGE_BATCH_SIZE]; const skb_frag_t *frags = NULL; struct vm_area_struct *vma; struct sk_buff *skb = NULL; unsigned long pg_idx = 0; unsigned long curr_addr; u32 seq = tp->copied_seq; int inq = tcp_inq(sk); int ret; zc->copybuf_len = 0; if (address & (PAGE_SIZE - 1) || address != zc->address) return -EINVAL; if (sk->sk_state == TCP_LISTEN) return -ENOTCONN; sock_rps_record_flow(sk); mmap_read_lock(current->mm); vma = find_vma(current->mm, address); if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) { mmap_read_unlock(current->mm); return -EINVAL; } vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); avail_len = min_t(u32, vma_len, inq); aligned_len = avail_len & ~(PAGE_SIZE - 1); if (aligned_len) { zap_page_range(vma, address, aligned_len); zc->length = aligned_len; zc->recv_skip_hint = 0; } else { zc->length = avail_len; zc->recv_skip_hint = avail_len; } ret = 0; curr_addr = address; while (length + PAGE_SIZE <= zc->length) { if (zc->recv_skip_hint < PAGE_SIZE) { u32 offset_frag; /* If we're here, finish the current batch. */ if (pg_idx) { ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx, &curr_addr, &length, &seq, zc); if (ret) goto out; pg_idx = 0; } if (skb) { if (zc->recv_skip_hint > 0) break; skb = skb->next; offset = seq - TCP_SKB_CB(skb)->seq; } else { skb = tcp_recv_skb(sk, seq, &offset); } zc->recv_skip_hint = skb->len - offset; frags = skb_advance_to_frag(skb, offset, &offset_frag); if (!frags || offset_frag) break; } if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) { int remaining = zc->recv_skip_hint; while (remaining && (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags))) { remaining -= skb_frag_size(frags); frags++; } zc->recv_skip_hint -= remaining; break; } pages[pg_idx] = skb_frag_page(frags); pg_idx++; length += PAGE_SIZE; zc->recv_skip_hint -= PAGE_SIZE; frags++; if (pg_idx == PAGE_BATCH_SIZE) { ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx, &curr_addr, &length, &seq, zc); if (ret) goto out; pg_idx = 0; } } if (pg_idx) { ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx, &curr_addr, &length, &seq, zc); } out: mmap_read_unlock(current->mm); /* Try to copy straggler data. */ if (!ret) copylen = tcp_zerocopy_handle_leftover_data(zc, sk, skb, &seq, copybuf_len); if (length + copylen) { WRITE_ONCE(tp->copied_seq, seq); tcp_rcv_space_adjust(sk); /* Clean up data we have read: This will do ACK frames. */ tcp_recv_skb(sk, seq, &offset); tcp_cleanup_rbuf(sk, length + copylen); ret = 0; if (length == zc->length) zc->recv_skip_hint = 0; } else { if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) ret = -EIO; } zc->length = length; return ret; } #endif static void tcp_update_recv_tstamps(struct sk_buff *skb, struct scm_timestamping_internal *tss) { if (skb->tstamp) tss->ts[0] = ktime_to_timespec64(skb->tstamp); else tss->ts[0] = (struct timespec64) {0}; if (skb_hwtstamps(skb)->hwtstamp) tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); else tss->ts[2] = (struct timespec64) {0}; } /* Similar to __sock_recv_timestamp, but does not require an skb */ static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, struct scm_timestamping_internal *tss) { int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); bool has_timestamping = false; if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { if (sock_flag(sk, SOCK_RCVTSTAMP)) { if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { if (new_tstamp) { struct __kernel_timespec kts = { .tv_sec = tss->ts[0].tv_sec, .tv_nsec = tss->ts[0].tv_nsec, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, sizeof(kts), &kts); } else { struct __kernel_old_timespec ts_old = { .tv_sec = tss->ts[0].tv_sec, .tv_nsec = tss->ts[0].tv_nsec, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, sizeof(ts_old), &ts_old); } } else { if (new_tstamp) { struct __kernel_sock_timeval stv = { .tv_sec = tss->ts[0].tv_sec, .tv_usec = tss->ts[0].tv_nsec / 1000, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, sizeof(stv), &stv); } else { struct __kernel_old_timeval tv = { .tv_sec = tss->ts[0].tv_sec, .tv_usec = tss->ts[0].tv_nsec / 1000, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, sizeof(tv), &tv); } } } if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) has_timestamping = true; else tss->ts[0] = (struct timespec64) {0}; } if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) has_timestamping = true; else tss->ts[2] = (struct timespec64) {0}; } if (has_timestamping) { tss->ts[1] = (struct timespec64) {0}; if (sock_flag(sk, SOCK_TSTAMP_NEW)) put_cmsg_scm_timestamping64(msg, tss); else put_cmsg_scm_timestamping(msg, tss); } } static int tcp_inq_hint(struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); u32 copied_seq = READ_ONCE(tp->copied_seq); u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); int inq; inq = rcv_nxt - copied_seq; if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { lock_sock(sk); inq = tp->rcv_nxt - tp->copied_seq; release_sock(sk); } /* After receiving a FIN, tell the user-space to continue reading * by returning a non-zero inq. */ if (inq == 0 && sock_flag(sk, SOCK_DONE)) inq = 1; return inq; } /* * This routine copies from a sock struct into the user buffer. * * Technical note: in 2.3 we work on _locked_ socket, so that * tricks with *seq access order and skb->users are not required. * Probably, code can be easily improved even more. */ int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len) { struct tcp_sock *tp = tcp_sk(sk); int copied = 0; u32 peek_seq; u32 *seq; unsigned long used; int err, inq; int target; /* Read at least this many bytes */ long timeo; struct sk_buff *skb, *last; u32 urg_hole = 0; struct scm_timestamping_internal tss; int cmsg_flags; if (unlikely(flags & MSG_ERRQUEUE)) return inet_recv_error(sk, msg, len, addr_len); if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) && (sk->sk_state == TCP_ESTABLISHED)) sk_busy_loop(sk, nonblock); lock_sock(sk); err = -ENOTCONN; if (sk->sk_state == TCP_LISTEN) goto out; cmsg_flags = tp->recvmsg_inq ? 1 : 0; timeo = sock_rcvtimeo(sk, nonblock); /* Urgent data needs to be handled specially. */ if (flags & MSG_OOB) goto recv_urg; if (unlikely(tp->repair)) { err = -EPERM; if (!(flags & MSG_PEEK)) goto out; if (tp->repair_queue == TCP_SEND_QUEUE) goto recv_sndq; err = -EINVAL; if (tp->repair_queue == TCP_NO_QUEUE) goto out; /* 'common' recv queue MSG_PEEK-ing */ } seq = &tp->copied_seq; if (flags & MSG_PEEK) { peek_seq = tp->copied_seq; seq = &peek_seq; } target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); do { u32 offset; /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ if (tp->urg_data && tp->urg_seq == *seq) { if (copied) break; if (signal_pending(current)) { copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; break; } } /* Next get a buffer. */ last = skb_peek_tail(&sk->sk_receive_queue); skb_queue_walk(&sk->sk_receive_queue, skb) { last = skb; /* Now that we have two receive queues this * shouldn't happen. */ if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags)) break; offset = *seq - TCP_SKB_CB(skb)->seq; if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { pr_err_once("%s: found a SYN, please report !\n", __func__); offset--; } if (offset < skb->len) goto found_ok_skb; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) goto found_fin_ok; WARN(!(flags & MSG_PEEK), "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); } /* Well, if we have backlog, try to process it now yet. */ if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) break; if (copied) { if (sk->sk_err || sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo || signal_pending(current)) break; } else { if (sock_flag(sk, SOCK_DONE)) break; if (sk->sk_err) { copied = sock_error(sk); break; } if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_state == TCP_CLOSE) { /* This occurs when user tries to read * from never connected socket. */ copied = -ENOTCONN; break; } if (!timeo) { copied = -EAGAIN; break; } if (signal_pending(current)) { copied = sock_intr_errno(timeo); break; } } tcp_cleanup_rbuf(sk, copied); if (copied >= target) { /* Do not sleep, just process backlog. */ release_sock(sk); lock_sock(sk); } else { sk_wait_data(sk, &timeo, last); } if ((flags & MSG_PEEK) && (peek_seq - copied - urg_hole != tp->copied_seq)) { net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", current->comm, task_pid_nr(current)); peek_seq = tp->copied_seq; } continue; found_ok_skb: /* Ok so how much can we use? */ used = skb->len - offset; if (len < used) used = len; /* Do we have urgent data here? */ if (tp->urg_data) { u32 urg_offset = tp->urg_seq - *seq; if (urg_offset < used) { if (!urg_offset) { if (!sock_flag(sk, SOCK_URGINLINE)) { WRITE_ONCE(*seq, *seq + 1); urg_hole++; offset++; used--; if (!used) goto skip_copy; } } else used = urg_offset; } } if (!(flags & MSG_TRUNC)) { err = skb_copy_datagram_msg(skb, offset, msg, used); if (err) { /* Exception. Bailout! */ if (!copied) copied = -EFAULT; break; } } WRITE_ONCE(*seq, *seq + used); copied += used; len -= used; tcp_rcv_space_adjust(sk); skip_copy: if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { tp->urg_data = 0; tcp_fast_path_check(sk); } if (TCP_SKB_CB(skb)->has_rxtstamp) { tcp_update_recv_tstamps(skb, &tss); cmsg_flags |= 2; } if (used + offset < skb->len) continue; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) goto found_fin_ok; if (!(flags & MSG_PEEK)) sk_eat_skb(sk, skb); continue; found_fin_ok: /* Process the FIN. */ WRITE_ONCE(*seq, *seq + 1); if (!(flags & MSG_PEEK)) sk_eat_skb(sk, skb); break; } while (len > 0); /* According to UNIX98, msg_name/msg_namelen are ignored * on connected socket. I was just happy when found this 8) --ANK */ /* Clean up data we have read: This will do ACK frames. */ tcp_cleanup_rbuf(sk, copied); release_sock(sk); if (cmsg_flags) { if (cmsg_flags & 2) tcp_recv_timestamp(msg, sk, &tss); if (cmsg_flags & 1) { inq = tcp_inq_hint(sk); put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); } } return copied; out: release_sock(sk); return err; recv_urg: err = tcp_recv_urg(sk, msg, len, flags); goto out; recv_sndq: err = tcp_peek_sndq(sk, msg, len); goto out; } EXPORT_SYMBOL(tcp_recvmsg); void tcp_set_state(struct sock *sk, int state) { int oldstate = sk->sk_state; /* We defined a new enum for TCP states that are exported in BPF * so as not force the internal TCP states to be frozen. The * following checks will detect if an internal state value ever * differs from the BPF value. If this ever happens, then we will * need to remap the internal value to the BPF value before calling * tcp_call_bpf_2arg. */ BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); switch (state) { case TCP_ESTABLISHED: if (oldstate != TCP_ESTABLISHED) TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); break; case TCP_CLOSE: if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); sk->sk_prot->unhash(sk); if (inet_csk(sk)->icsk_bind_hash && !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) inet_put_port(sk); fallthrough; default: if (oldstate == TCP_ESTABLISHED) TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); } /* Change state AFTER socket is unhashed to avoid closed * socket sitting in hash tables. */ inet_sk_state_store(sk, state); } EXPORT_SYMBOL_GPL(tcp_set_state); /* * State processing on a close. This implements the state shift for * sending our FIN frame. Note that we only send a FIN for some * states. A shutdown() may have already sent the FIN, or we may be * closed. */ static const unsigned char new_state[16] = { /* current state: new state: action: */ [0 /* (Invalid) */] = TCP_CLOSE, [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, [TCP_SYN_SENT] = TCP_CLOSE, [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, [TCP_TIME_WAIT] = TCP_CLOSE, [TCP_CLOSE] = TCP_CLOSE, [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, [TCP_LAST_ACK] = TCP_LAST_ACK, [TCP_LISTEN] = TCP_CLOSE, [TCP_CLOSING] = TCP_CLOSING, [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ }; static int tcp_close_state(struct sock *sk) { int next = (int)new_state[sk->sk_state]; int ns = next & TCP_STATE_MASK; tcp_set_state(sk, ns); return next & TCP_ACTION_FIN; } /* * Shutdown the sending side of a connection. Much like close except * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). */ void tcp_shutdown(struct sock *sk, int how) { /* We need to grab some memory, and put together a FIN, * and then put it into the queue to be sent. * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. */ if (!(how & SEND_SHUTDOWN)) return; /* If we've already sent a FIN, or it's a closed state, skip this. */ if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { /* Clear out any half completed packets. FIN if needed. */ if (tcp_close_state(sk)) tcp_send_fin(sk); } } EXPORT_SYMBOL(tcp_shutdown); int tcp_orphan_count_sum(void) { int i, total = 0; for_each_possible_cpu(i) total += per_cpu(tcp_orphan_count, i); return max(total, 0); } static int tcp_orphan_cache; static struct timer_list tcp_orphan_timer; #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) static void tcp_orphan_update(struct timer_list *unused) { WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); } static bool tcp_too_many_orphans(int shift) { return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; } bool tcp_check_oom(struct sock *sk, int shift) { bool too_many_orphans, out_of_socket_memory; too_many_orphans = tcp_too_many_orphans(shift); out_of_socket_memory = tcp_out_of_memory(sk); if (too_many_orphans) net_info_ratelimited("too many orphaned sockets\n"); if (out_of_socket_memory) net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); return too_many_orphans || out_of_socket_memory; } void tcp_close(struct sock *sk, long timeout) { struct sk_buff *skb; int data_was_unread = 0; int state; lock_sock(sk); sk->sk_shutdown = SHUTDOWN_MASK; if (sk->sk_state == TCP_LISTEN) { tcp_set_state(sk, TCP_CLOSE); /* Special case. */ inet_csk_listen_stop(sk); goto adjudge_to_death; } /* We need to flush the recv. buffs. We do this only on the * descriptor close, not protocol-sourced closes, because the * reader process may not have drained the data yet! */ while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) len--; data_was_unread += len; __kfree_skb(skb); } sk_mem_reclaim(sk); /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ if (sk->sk_state == TCP_CLOSE) goto adjudge_to_death; /* As outlined in RFC 2525, section 2.17, we send a RST here because * data was lost. To witness the awful effects of the old behavior of * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk * GET in an FTP client, suspend the process, wait for the client to * advertise a zero window, then kill -9 the FTP client, wheee... * Note: timeout is always zero in such a case. */ if (unlikely(tcp_sk(sk)->repair)) { sk->sk_prot->disconnect(sk, 0); } else if (data_was_unread) { /* Unread data was tossed, zap the connection. */ NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); tcp_set_state(sk, TCP_CLOSE); tcp_send_active_reset(sk, sk->sk_allocation); } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { /* Check zero linger _after_ checking for unread data. */ sk->sk_prot->disconnect(sk, 0); NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); } else if (tcp_close_state(sk)) { /* We FIN if the application ate all the data before * zapping the connection. */ /* RED-PEN. Formally speaking, we have broken TCP state * machine. State transitions: * * TCP_ESTABLISHED -> TCP_FIN_WAIT1 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) * TCP_CLOSE_WAIT -> TCP_LAST_ACK * * are legal only when FIN has been sent (i.e. in window), * rather than queued out of window. Purists blame. * * F.e. "RFC state" is ESTABLISHED, * if Linux state is FIN-WAIT-1, but FIN is still not sent. * * The visible declinations are that sometimes * we enter time-wait state, when it is not required really * (harmless), do not send active resets, when they are * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when * they look as CLOSING or LAST_ACK for Linux) * Probably, I missed some more holelets. * --ANK * XXX (TFO) - To start off we don't support SYN+ACK+FIN * in a single packet! (May consider it later but will * probably need API support or TCP_CORK SYN-ACK until * data is written and socket is closed.) */ tcp_send_fin(sk); } sk_stream_wait_close(sk, timeout); adjudge_to_death: state = sk->sk_state; sock_hold(sk); sock_orphan(sk); local_bh_disable(); bh_lock_sock(sk); /* remove backlog if any, without releasing ownership. */ __release_sock(sk); this_cpu_inc(tcp_orphan_count); /* Have we already been destroyed by a softirq or backlog? */ if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) goto out; /* This is a (useful) BSD violating of the RFC. There is a * problem with TCP as specified in that the other end could * keep a socket open forever with no application left this end. * We use a 1 minute timeout (about the same as BSD) then kill * our end. If they send after that then tough - BUT: long enough * that we won't make the old 4*rto = almost no time - whoops * reset mistake. * * Nope, it was not mistake. It is really desired behaviour * f.e. on http servers, when such sockets are useless, but * consume significant resources. Let's do it with special * linger2 option. --ANK */ if (sk->sk_state == TCP_FIN_WAIT2) { struct tcp_sock *tp = tcp_sk(sk); if (tp->linger2 < 0) { tcp_set_state(sk, TCP_CLOSE); tcp_send_active_reset(sk, GFP_ATOMIC); __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONLINGER); } else { const int tmo = tcp_fin_time(sk); if (tmo > TCP_TIMEWAIT_LEN) {