1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NDISC_H #define _NDISC_H #include <net/ipv6_stubs.h> /* * ICMP codes for neighbour discovery messages */ #define NDISC_ROUTER_SOLICITATION 133 #define NDISC_ROUTER_ADVERTISEMENT 134 #define NDISC_NEIGHBOUR_SOLICITATION 135 #define NDISC_NEIGHBOUR_ADVERTISEMENT 136 #define NDISC_REDIRECT 137 /* * Router type: cross-layer information from link-layer to * IPv6 layer reported by certain link types (e.g., RFC4214). */ #define NDISC_NODETYPE_UNSPEC 0 /* unspecified (default) */ #define NDISC_NODETYPE_HOST 1 /* host or unauthorized router */ #define NDISC_NODETYPE_NODEFAULT 2 /* non-default router */ #define NDISC_NODETYPE_DEFAULT 3 /* default router */ /* * ndisc options */ enum { __ND_OPT_PREFIX_INFO_END = 0, ND_OPT_SOURCE_LL_ADDR = 1, /* RFC2461 */ ND_OPT_TARGET_LL_ADDR = 2, /* RFC2461 */ ND_OPT_PREFIX_INFO = 3, /* RFC2461 */ ND_OPT_REDIRECT_HDR = 4, /* RFC2461 */ ND_OPT_MTU = 5, /* RFC2461 */ ND_OPT_NONCE = 14, /* RFC7527 */ __ND_OPT_ARRAY_MAX, ND_OPT_ROUTE_INFO = 24, /* RFC4191 */ ND_OPT_RDNSS = 25, /* RFC5006 */ ND_OPT_DNSSL = 31, /* RFC6106 */ ND_OPT_6CO = 34, /* RFC6775 */ ND_OPT_CAPTIVE_PORTAL = 37, /* RFC7710 */ ND_OPT_PREF64 = 38, /* RFC8781 */ __ND_OPT_MAX }; #define MAX_RTR_SOLICITATION_DELAY HZ #define ND_REACHABLE_TIME (30*HZ) #define ND_RETRANS_TIMER HZ #include <linux/compiler.h> #include <linux/icmpv6.h> #include <linux/in6.h> #include <linux/types.h> #include <linux/if_arp.h> #include <linux/netdevice.h> #include <linux/hash.h> #include <net/neighbour.h> /* Set to 3 to get tracing... */ #define ND_DEBUG 1 #define ND_PRINTK(val, level, fmt, ...) \ do { \ if (val <= ND_DEBUG) \ net_##level##_ratelimited(fmt, ##__VA_ARGS__); \ } while (0) struct ctl_table; struct inet6_dev; struct net_device; struct net_proto_family; struct sk_buff; struct prefix_info; extern struct neigh_table nd_tbl; struct nd_msg { struct icmp6hdr icmph; struct in6_addr target; __u8 opt[]; }; struct rs_msg { struct icmp6hdr icmph; __u8 opt[]; }; struct ra_msg { struct icmp6hdr icmph; __be32 reachable_time; __be32 retrans_timer; }; struct rd_msg { struct icmp6hdr icmph; struct in6_addr target; struct in6_addr dest; __u8 opt[]; }; struct nd_opt_hdr { __u8 nd_opt_type; __u8 nd_opt_len; } __packed; /* ND options */ struct ndisc_options { struct nd_opt_hdr *nd_opt_array[__ND_OPT_ARRAY_MAX]; #ifdef CONFIG_IPV6_ROUTE_INFO struct nd_opt_hdr *nd_opts_ri; struct nd_opt_hdr *nd_opts_ri_end; #endif struct nd_opt_hdr *nd_useropts; struct nd_opt_hdr *nd_useropts_end; #if IS_ENABLED(CONFIG_IEEE802154_6LOWPAN) struct nd_opt_hdr *nd_802154_opt_array[ND_OPT_TARGET_LL_ADDR + 1]; #endif }; #define nd_opts_src_lladdr nd_opt_array[ND_OPT_SOURCE_LL_ADDR] #define nd_opts_tgt_lladdr nd_opt_array[ND_OPT_TARGET_LL_ADDR] #define nd_opts_pi nd_opt_array[ND_OPT_PREFIX_INFO] #define nd_opts_pi_end nd_opt_array[__ND_OPT_PREFIX_INFO_END] #define nd_opts_rh nd_opt_array[ND_OPT_REDIRECT_HDR] #define nd_opts_mtu nd_opt_array[ND_OPT_MTU] #define nd_opts_nonce nd_opt_array[ND_OPT_NONCE] #define nd_802154_opts_src_lladdr nd_802154_opt_array[ND_OPT_SOURCE_LL_ADDR] #define nd_802154_opts_tgt_lladdr nd_802154_opt_array[ND_OPT_TARGET_LL_ADDR] #define NDISC_OPT_SPACE(len) (((len)+2+7)&~7) struct ndisc_options *ndisc_parse_options(const struct net_device *dev, u8 *opt, int opt_len, struct ndisc_options *ndopts); void __ndisc_fill_addr_option(struct sk_buff *skb, int type, void *data, int data_len, int pad); #define NDISC_OPS_REDIRECT_DATA_SPACE 2 /* * This structure defines the hooks for IPv6 neighbour discovery. * The following hooks can be defined; unless noted otherwise, they are * optional and can be filled with a null pointer. * * int (*is_useropt)(u8 nd_opt_type): * This function is called when IPv6 decide RA userspace options. if * this function returns 1 then the option given by nd_opt_type will * be handled as userspace option additional to the IPv6 options. * * int (*parse_options)(const struct net_device *dev, * struct nd_opt_hdr *nd_opt, * struct ndisc_options *ndopts): * This function is called while parsing ndisc ops and put each position * as pointer into ndopts. If this function return unequal 0, then this * function took care about the ndisc option, if 0 then the IPv6 ndisc * option parser will take care about that option. * * void (*update)(const struct net_device *dev, struct neighbour *n, * u32 flags, u8 icmp6_type, * const struct ndisc_options *ndopts): * This function is called when IPv6 ndisc updates the neighbour cache * entry. Additional options which can be updated may be previously * parsed by parse_opts callback and accessible over ndopts parameter. * * int (*opt_addr_space)(const struct net_device *dev, u8 icmp6_type, * struct neighbour *neigh, u8 *ha_buf, * u8 **ha): * This function is called when the necessary option space will be * calculated before allocating a skb. The parameters neigh, ha_buf * abd ha are available on NDISC_REDIRECT messages only. * * void (*fill_addr_option)(const struct net_device *dev, * struct sk_buff *skb, u8 icmp6_type, * const u8 *ha): * This function is called when the skb will finally fill the option * fields inside skb. NOTE: this callback should fill the option * fields to the skb which are previously indicated by opt_space * parameter. That means the decision to add such option should * not lost between these two callbacks, e.g. protected by interface * up state. * * void (*prefix_rcv_add_addr)(struct net *net, struct net_device *dev, * const struct prefix_info *pinfo, * struct inet6_dev *in6_dev, * struct in6_addr *addr, * int addr_type, u32 addr_flags, * bool sllao, bool tokenized, * __u32 valid_lft, u32 prefered_lft, * bool dev_addr_generated): * This function is called when a RA messages is received with valid * PIO option fields and an IPv6 address will be added to the interface * for autoconfiguration. The parameter dev_addr_generated reports about * if the address was based on dev->dev_addr or not. This can be used * to add a second address if link-layer operates with two link layer * addresses. E.g. 802.15.4 6LoWPAN. */ struct ndisc_ops { int (*is_useropt)(u8 nd_opt_type); int (*parse_options)(const struct net_device *dev, struct nd_opt_hdr *nd_opt, struct ndisc_options *ndopts); void (*update)(const struct net_device *dev, struct neighbour *n, u32 flags, u8 icmp6_type, const struct ndisc_options *ndopts); int (*opt_addr_space)(const struct net_device *dev, u8 icmp6_type, struct neighbour *neigh, u8 *ha_buf, u8 **ha); void (*fill_addr_option)(const struct net_device *dev, struct sk_buff *skb, u8 icmp6_type, const u8 *ha); void (*prefix_rcv_add_addr)(struct net *net, struct net_device *dev, const struct prefix_info *pinfo, struct inet6_dev *in6_dev, struct in6_addr *addr, int addr_type, u32 addr_flags, bool sllao, bool tokenized, __u32 valid_lft, u32 prefered_lft, bool dev_addr_generated); }; #if IS_ENABLED(CONFIG_IPV6) static inline int ndisc_ops_is_useropt(const struct net_device *dev, u8 nd_opt_type) { if (dev->ndisc_ops && dev->ndisc_ops->is_useropt) return dev->ndisc_ops->is_useropt(nd_opt_type); else return 0; } static inline int ndisc_ops_parse_options(const struct net_device *dev, struct nd_opt_hdr *nd_opt, struct ndisc_options *ndopts) { if (dev->ndisc_ops && dev->ndisc_ops->parse_options) return dev->ndisc_ops->parse_options(dev, nd_opt, ndopts); else return 0; } static inline void ndisc_ops_update(const struct net_device *dev, struct neighbour *n, u32 flags, u8 icmp6_type, const struct ndisc_options *ndopts) { if (dev->ndisc_ops && dev->ndisc_ops->update) dev->ndisc_ops->update(dev, n, flags, icmp6_type, ndopts); } static inline int ndisc_ops_opt_addr_space(const struct net_device *dev, u8 icmp6_type) { if (dev->ndisc_ops && dev->ndisc_ops->opt_addr_space && icmp6_type != NDISC_REDIRECT) return dev->ndisc_ops->opt_addr_space(dev, icmp6_type, NULL, NULL, NULL); else return 0; } static inline int ndisc_ops_redirect_opt_addr_space(const struct net_device *dev, struct neighbour *neigh, u8 *ha_buf, u8 **ha) { if (dev->ndisc_ops && dev->ndisc_ops->opt_addr_space) return dev->ndisc_ops->opt_addr_space(dev, NDISC_REDIRECT, neigh, ha_buf, ha); else return 0; } static inline void ndisc_ops_fill_addr_option(const struct net_device *dev, struct sk_buff *skb, u8 icmp6_type) { if (dev->ndisc_ops && dev->ndisc_ops->fill_addr_option && icmp6_type != NDISC_REDIRECT) dev->ndisc_ops->fill_addr_option(dev, skb, icmp6_type, NULL); } static inline void ndisc_ops_fill_redirect_addr_option(const struct net_device *dev, struct sk_buff *skb, const u8 *ha) { if (dev->ndisc_ops && dev->ndisc_ops->fill_addr_option) dev->ndisc_ops->fill_addr_option(dev, skb, NDISC_REDIRECT, ha); } static inline void ndisc_ops_prefix_rcv_add_addr(struct net *net, struct net_device *dev, const struct prefix_info *pinfo, struct inet6_dev *in6_dev, struct in6_addr *addr, int addr_type, u32 addr_flags, bool sllao, bool tokenized, __u32 valid_lft, u32 prefered_lft, bool dev_addr_generated) { if (dev->ndisc_ops && dev->ndisc_ops->prefix_rcv_add_addr) dev->ndisc_ops->prefix_rcv_add_addr(net, dev, pinfo, in6_dev, addr, addr_type, addr_flags, sllao, tokenized, valid_lft, prefered_lft, dev_addr_generated); } #endif /* * Return the padding between the option length and the start of the * link addr. Currently only IP-over-InfiniBand needs this, although * if RFC 3831 IPv6-over-Fibre Channel is ever implemented it may * also need a pad of 2. */ static inline int ndisc_addr_option_pad(unsigned short type) { switch (type) { case ARPHRD_INFINIBAND: return 2; default: return 0; } } static inline int __ndisc_opt_addr_space(unsigned char addr_len, int pad) { return NDISC_OPT_SPACE(addr_len + pad); } #if IS_ENABLED(CONFIG_IPV6) static inline int ndisc_opt_addr_space(struct net_device *dev, u8 icmp6_type) { return __ndisc_opt_addr_space(dev->addr_len, ndisc_addr_option_pad(dev->type)) + ndisc_ops_opt_addr_space(dev, icmp6_type); } static inline int ndisc_redirect_opt_addr_space(struct net_device *dev, struct neighbour *neigh, u8 *ops_data_buf, u8 **ops_data) { return __ndisc_opt_addr_space(dev->addr_len, ndisc_addr_option_pad(dev->type)) + ndisc_ops_redirect_opt_addr_space(dev, neigh, ops_data_buf, ops_data); } #endif static inline u8 *__ndisc_opt_addr_data(struct nd_opt_hdr *p, unsigned char addr_len, int prepad) { u8 *lladdr = (u8 *)(p + 1); int lladdrlen = p->nd_opt_len << 3; if (lladdrlen != __ndisc_opt_addr_space(addr_len, prepad)) return NULL; return lladdr + prepad; } static inline u8 *ndisc_opt_addr_data(struct nd_opt_hdr *p, struct net_device *dev) { return __ndisc_opt_addr_data(p, dev->addr_len, ndisc_addr_option_pad(dev->type)); } static inline u32 ndisc_hashfn(const void *pkey, const struct net_device *dev, __u32 *hash_rnd) { const u32 *p32 = pkey; return (((p32[0] ^ hash32_ptr(dev)) * hash_rnd[0]) + (p32[1] * hash_rnd[1]) + (p32[2] * hash_rnd[2]) + (p32[3] * hash_rnd[3])); } static inline struct neighbour *__ipv6_neigh_lookup_noref(struct net_device *dev, const void *pkey) { return ___neigh_lookup_noref(&nd_tbl, neigh_key_eq128, ndisc_hashfn, pkey, dev); } static inline struct neighbour *__ipv6_neigh_lookup_noref_stub(struct net_device *dev, const void *pkey) { return ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128, ndisc_hashfn, pkey, dev); } static inline struct neighbour *__ipv6_neigh_lookup(struct net_device *dev, const void *pkey) { struct neighbour *n; rcu_read_lock_bh(); n = __ipv6_neigh_lookup_noref(dev, pkey); if (n && !refcount_inc_not_zero(&n->refcnt)) n = NULL; rcu_read_unlock_bh(); return n; } static inline void __ipv6_confirm_neigh(struct net_device *dev, const void *pkey) { struct neighbour *n; rcu_read_lock_bh(); n = __ipv6_neigh_lookup_noref(dev, pkey); if (n) { unsigned long now = jiffies; /* avoid dirtying neighbour */ if (READ_ONCE(n->confirmed) != now) WRITE_ONCE(n->confirmed, now); } rcu_read_unlock_bh(); } static inline void __ipv6_confirm_neigh_stub(struct net_device *dev, const void *pkey) { struct neighbour *n; rcu_read_lock_bh(); n = __ipv6_neigh_lookup_noref_stub(dev, pkey); if (n) { unsigned long now = jiffies; /* avoid dirtying neighbour */ if (READ_ONCE(n->confirmed) != now) WRITE_ONCE(n->confirmed, now); } rcu_read_unlock_bh(); } /* uses ipv6_stub and is meant for use outside of IPv6 core */ static inline struct neighbour *ip_neigh_gw6(struct net_device *dev, const void *addr) { struct neighbour *neigh; neigh = __ipv6_neigh_lookup_noref_stub(dev, addr); if (unlikely(!neigh)) neigh = __neigh_create(ipv6_stub->nd_tbl, addr, dev, false); return neigh; } int ndisc_init(void); int ndisc_late_init(void); void ndisc_late_cleanup(void); void ndisc_cleanup(void); int ndisc_rcv(struct sk_buff *skb); void ndisc_send_ns(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *daddr, const struct in6_addr *saddr, u64 nonce); void ndisc_send_rs(struct net_device *dev, const struct in6_addr *saddr, const struct in6_addr *daddr); void ndisc_send_na(struct net_device *dev, const struct in6_addr *daddr, const struct in6_addr *solicited_addr, bool router, bool solicited, bool override, bool inc_opt); void ndisc_send_redirect(struct sk_buff *skb, const struct in6_addr *target); int ndisc_mc_map(const struct in6_addr *addr, char *buf, struct net_device *dev, int dir); void ndisc_update(const struct net_device *dev, struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u8 icmp6_type, struct ndisc_options *ndopts); /* * IGMP */ int igmp6_init(void); int igmp6_late_init(void); void igmp6_cleanup(void); void igmp6_late_cleanup(void); int igmp6_event_query(struct sk_buff *skb); int igmp6_event_report(struct sk_buff *skb); #ifdef CONFIG_SYSCTL int ndisc_ifinfo_sysctl_change(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int ndisc_ifinfo_sysctl_strategy(struct ctl_table *ctl, void __user *oldval, size_t __user *oldlenp, void __user *newval, size_t newlen); #endif void inet6_ifinfo_notify(int event, struct inet6_dev *idev); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_MM_H #define _LINUX_SCHED_MM_H #include <linux/kernel.h> #include <linux/atomic.h> #include <linux/sched.h> #include <linux/mm_types.h> #include <linux/gfp.h> #include <linux/sync_core.h> /* * Routines for handling mm_structs */ extern struct mm_struct *mm_alloc(void); /** * mmgrab() - Pin a &struct mm_struct. * @mm: The &struct mm_struct to pin. * * Make sure that @mm will not get freed even after the owning task * exits. This doesn't guarantee that the associated address space * will still exist later on and mmget_not_zero() has to be used before * accessing it. * * This is a preferred way to pin @mm for a longer/unbounded amount * of time. * * Use mmdrop() to release the reference acquired by mmgrab(). * * See also <Documentation/vm/active_mm.rst> for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmgrab(struct mm_struct *mm) { atomic_inc(&mm->mm_count); } extern void __mmdrop(struct mm_struct *mm); static inline void mmdrop(struct mm_struct *mm) { /* * The implicit full barrier implied by atomic_dec_and_test() is * required by the membarrier system call before returning to * user-space, after storing to rq->curr. */ if (unlikely(atomic_dec_and_test(&mm->mm_count))) __mmdrop(mm); } /** * mmget() - Pin the address space associated with a &struct mm_struct. * @mm: The address space to pin. * * Make sure that the address space of the given &struct mm_struct doesn't * go away. This does not protect against parts of the address space being * modified or freed, however. * * Never use this function to pin this address space for an * unbounded/indefinite amount of time. * * Use mmput() to release the reference acquired by mmget(). * * See also <Documentation/vm/active_mm.rst> for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmget(struct mm_struct *mm) { atomic_inc(&mm->mm_users); } static inline bool mmget_not_zero(struct mm_struct *mm) { return atomic_inc_not_zero(&mm->mm_users); } /* mmput gets rid of the mappings and all user-space */ extern void mmput(struct mm_struct *); #ifdef CONFIG_MMU /* same as above but performs the slow path from the async context. Can * be called from the atomic context as well */ void mmput_async(struct mm_struct *); #endif /* Grab a reference to a task's mm, if it is not already going away */ extern struct mm_struct *get_task_mm(struct task_struct *task); /* * Grab a reference to a task's mm, if it is not already going away * and ptrace_may_access with the mode parameter passed to it * succeeds. */ extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); /* Remove the current tasks stale references to the old mm_struct on exit() */ extern void exit_mm_release(struct task_struct *, struct mm_struct *); /* Remove the current tasks stale references to the old mm_struct on exec() */ extern void exec_mm_release(struct task_struct *, struct mm_struct *); #ifdef CONFIG_MEMCG extern void mm_update_next_owner(struct mm_struct *mm); #else static inline void mm_update_next_owner(struct mm_struct *mm) { } #endif /* CONFIG_MEMCG */ #ifdef CONFIG_MMU extern void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack); extern unsigned long arch_get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); #else static inline void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) {} #endif static inline bool in_vfork(struct task_struct *tsk) { bool ret; /* * need RCU to access ->real_parent if CLONE_VM was used along with * CLONE_PARENT. * * We check real_parent->mm == tsk->mm because CLONE_VFORK does not * imply CLONE_VM * * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus * ->real_parent is not necessarily the task doing vfork(), so in * theory we can't rely on task_lock() if we want to dereference it. * * And in this case we can't trust the real_parent->mm == tsk->mm * check, it can be false negative. But we do not care, if init or * another oom-unkillable task does this it should blame itself. */ rcu_read_lock(); ret = tsk->vfork_done && rcu_dereference(tsk->real_parent)->mm == tsk->mm; rcu_read_unlock(); return ret; } /* * Applies per-task gfp context to the given allocation flags. * PF_MEMALLOC_NOIO implies GFP_NOIO * PF_MEMALLOC_NOFS implies GFP_NOFS */ static inline gfp_t current_gfp_context(gfp_t flags) { unsigned int pflags = READ_ONCE(current->flags); if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS))) { /* * NOIO implies both NOIO and NOFS and it is a weaker context * so always make sure it makes precedence */ if (pflags & PF_MEMALLOC_NOIO) flags &= ~(__GFP_IO | __GFP_FS); else if (pflags & PF_MEMALLOC_NOFS) flags &= ~__GFP_FS; } return flags; } #ifdef CONFIG_LOCKDEP extern void __fs_reclaim_acquire(void); extern void __fs_reclaim_release(void); extern void fs_reclaim_acquire(gfp_t gfp_mask); extern void fs_reclaim_release(gfp_t gfp_mask); #else static inline void __fs_reclaim_acquire(void) { } static inline void __fs_reclaim_release(void) { } static inline void fs_reclaim_acquire(gfp_t gfp_mask) { } static inline void fs_reclaim_release(gfp_t gfp_mask) { } #endif /** * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope. * * This functions marks the beginning of the GFP_NOIO allocation scope. * All further allocations will implicitly drop __GFP_IO flag and so * they are safe for the IO critical section from the allocation recursion * point of view. Use memalloc_noio_restore to end the scope with flags * returned by this function. * * This function is safe to be used from any context. */ static inline unsigned int memalloc_noio_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOIO; current->flags |= PF_MEMALLOC_NOIO; return flags; } /** * memalloc_noio_restore - Ends the implicit GFP_NOIO scope. * @flags: Flags to restore. * * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function. * Always make sure that the given flags is the return value from the * pairing memalloc_noio_save call. */ static inline void memalloc_noio_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; } /** * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope. * * This functions marks the beginning of the GFP_NOFS allocation scope. * All further allocations will implicitly drop __GFP_FS flag and so * they are safe for the FS critical section from the allocation recursion * point of view. Use memalloc_nofs_restore to end the scope with flags * returned by this function. * * This function is safe to be used from any context. */ static inline unsigned int memalloc_nofs_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOFS; current->flags |= PF_MEMALLOC_NOFS; return flags; } /** * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope. * @flags: Flags to restore. * * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function. * Always make sure that the given flags is the return value from the * pairing memalloc_nofs_save call. */ static inline void memalloc_nofs_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags; } static inline unsigned int memalloc_noreclaim_save(void) { unsigned int flags = current->flags & PF_MEMALLOC; current->flags |= PF_MEMALLOC; return flags; } static inline void memalloc_noreclaim_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC) | flags; } #ifdef CONFIG_CMA static inline unsigned int memalloc_nocma_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOCMA; current->flags |= PF_MEMALLOC_NOCMA; return flags; } static inline void memalloc_nocma_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags; } #else static inline unsigned int memalloc_nocma_save(void) { return 0; } static inline void memalloc_nocma_restore(unsigned int flags) { } #endif #ifdef CONFIG_MEMCG DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg); /** * set_active_memcg - Starts the remote memcg charging scope. * @memcg: memcg to charge. * * This function marks the beginning of the remote memcg charging scope. All the * __GFP_ACCOUNT allocations till the end of the scope will be charged to the * given memcg. * * NOTE: This function can nest. Users must save the return value and * reset the previous value after their own charging scope is over. */ static inline struct mem_cgroup * set_active_memcg(struct mem_cgroup *memcg) { struct mem_cgroup *old; if (in_interrupt()) { old = this_cpu_read(int_active_memcg); this_cpu_write(int_active_memcg, memcg); } else { old = current->active_memcg; current->active_memcg = memcg; } return old; } #else static inline struct mem_cgroup * set_active_memcg(struct mem_cgroup *memcg) { return NULL; } #endif #ifdef CONFIG_MEMBARRIER enum { MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0), MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1), MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2), MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3), MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4), MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5), MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY = (1U << 6), MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ = (1U << 7), }; enum { MEMBARRIER_FLAG_SYNC_CORE = (1U << 0), MEMBARRIER_FLAG_RSEQ = (1U << 1), }; #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS #include <asm/membarrier.h> #endif static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) { if (current->mm != mm) return; if (likely(!(atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE))) return; sync_core_before_usermode(); } extern void membarrier_exec_mmap(struct mm_struct *mm); #else #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS static inline void membarrier_arch_switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { } #endif static inline void membarrier_exec_mmap(struct mm_struct *mm) { } static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) { } #endif #endif /* _LINUX_SCHED_MM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_64_H #define _ASM_X86_PGTABLE_64_H #include <linux/const.h> #include <asm/pgtable_64_types.h> #ifndef __ASSEMBLY__ /* * This file contains the functions and defines necessary to modify and use * the x86-64 page table tree. */ #include <asm/processor.h> #include <linux/bitops.h> #include <linux/threads.h> #include <asm/fixmap.h> extern p4d_t level4_kernel_pgt[512]; extern p4d_t level4_ident_pgt[512]; extern pud_t level3_kernel_pgt[512]; extern pud_t level3_ident_pgt[512]; extern pmd_t level2_kernel_pgt[512]; extern pmd_t level2_fixmap_pgt[512]; extern pmd_t level2_ident_pgt[512]; extern pte_t level1_fixmap_pgt[512 * FIXMAP_PMD_NUM]; extern pgd_t init_top_pgt[]; #define swapper_pg_dir init_top_pgt extern void paging_init(void); static inline void sync_initial_page_table(void) { } #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pte_val(e)) #define pmd_ERROR(e) \ pr_err("%s:%d: bad pmd %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pmd_val(e)) #define pud_ERROR(e) \ pr_err("%s:%d: bad pud %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pud_val(e)) #if CONFIG_PGTABLE_LEVELS >= 5 #define p4d_ERROR(e) \ pr_err("%s:%d: bad p4d %p(%016lx)\n", \ __FILE__, __LINE__, &(e), p4d_val(e)) #endif #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pgd_val(e)) struct mm_struct; #define mm_p4d_folded mm_p4d_folded static inline bool mm_p4d_folded(struct mm_struct *mm) { return !pgtable_l5_enabled(); } void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte); void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte); static inline void native_set_pte(pte_t *ptep, pte_t pte) { WRITE_ONCE(*ptep, pte); } static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { native_set_pte(ptep, native_make_pte(0)); } static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte) { native_set_pte(ptep, pte); } static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd) { WRITE_ONCE(*pmdp, pmd); } static inline void native_pmd_clear(pmd_t *pmd) { native_set_pmd(pmd, native_make_pmd(0)); } static inline pte_t native_ptep_get_and_clear(pte_t *xp) { #ifdef CONFIG_SMP return native_make_pte(xchg(&xp->pte, 0)); #else /* native_local_ptep_get_and_clear, but duplicated because of cyclic dependency */ pte_t ret = *xp; native_pte_clear(NULL, 0, xp); return ret; #endif } static inline pmd_t native_pmdp_get_and_clear(pmd_t *xp) { #ifdef CONFIG_SMP return native_make_pmd(xchg(&xp->pmd, 0)); #else /* native_local_pmdp_get_and_clear, but duplicated because of cyclic dependency */ pmd_t ret = *xp; native_pmd_clear(xp); return ret; #endif } static inline void native_set_pud(pud_t *pudp, pud_t pud) { WRITE_ONCE(*pudp, pud); } static inline void native_pud_clear(pud_t *pud) { native_set_pud(pud, native_make_pud(0)); } static inline pud_t native_pudp_get_and_clear(pud_t *xp) { #ifdef CONFIG_SMP return native_make_pud(xchg(&xp->pud, 0)); #else /* native_local_pudp_get_and_clear, * but duplicated because of cyclic dependency */ pud_t ret = *xp; native_pud_clear(xp); return ret; #endif } static inline void native_set_p4d(p4d_t *p4dp, p4d_t p4d) { pgd_t pgd; if (pgtable_l5_enabled() || !IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) { WRITE_ONCE(*p4dp, p4d); return; } pgd = native_make_pgd(native_p4d_val(p4d)); pgd = pti_set_user_pgtbl((pgd_t *)p4dp, pgd); WRITE_ONCE(*p4dp, native_make_p4d(native_pgd_val(pgd))); } static inline void native_p4d_clear(p4d_t *p4d) { native_set_p4d(p4d, native_make_p4d(0)); } static inline void native_set_pgd(pgd_t *pgdp, pgd_t pgd) { WRITE_ONCE(*pgdp, pti_set_user_pgtbl(pgdp, pgd)); } static inline void native_pgd_clear(pgd_t *pgd) { native_set_pgd(pgd, native_make_pgd(0)); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ /* PGD - Level 4 access */ /* PUD - Level 3 access */ /* PMD - Level 2 access */ /* PTE - Level 1 access */ /* * Encode and de-code a swap entry * * | ... | 11| 10| 9|8|7|6|5| 4| 3|2| 1|0| <- bit number * | ... |SW3|SW2|SW1|G|L|D|A|CD|WT|U| W|P| <- bit names * | TYPE (59-63) | ~OFFSET (9-58) |0|0|X|X| X| X|F|SD|0| <- swp entry * * G (8) is aliased and used as a PROT_NONE indicator for * !present ptes. We need to start storing swap entries above * there. We also need to avoid using A and D because of an * erratum where they can be incorrectly set by hardware on * non-present PTEs. * * SD Bits 1-4 are not used in non-present format and available for * special use described below: * * SD (1) in swp entry is used to store soft dirty bit, which helps us * remember soft dirty over page migration * * F (2) in swp entry is used to record when a pagetable is * writeprotected by userfaultfd WP support. * * Bit 7 in swp entry should be 0 because pmd_present checks not only P, * but also L and G. * * The offset is inverted by a binary not operation to make the high * physical bits set. */ #define SWP_TYPE_BITS 5 #define SWP_OFFSET_FIRST_BIT (_PAGE_BIT_PROTNONE + 1) /* We always extract/encode the offset by shifting it all the way up, and then down again */ #define SWP_OFFSET_SHIFT (SWP_OFFSET_FIRST_BIT+SWP_TYPE_BITS) #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS) /* Extract the high bits for type */ #define __swp_type(x) ((x).val >> (64 - SWP_TYPE_BITS)) /* Shift up (to get rid of type), then down to get value */ #define __swp_offset(x) (~(x).val << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT) /* * Shift the offset up "too far" by TYPE bits, then down again * The offset is inverted by a binary not operation to make the high * physical bits set. */ #define __swp_entry(type, offset) ((swp_entry_t) { \ (~(unsigned long)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \ | ((unsigned long)(type) << (64-SWP_TYPE_BITS)) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) }) #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val((pmd)) }) #define __swp_entry_to_pte(x) ((pte_t) { .pte = (x).val }) #define __swp_entry_to_pmd(x) ((pmd_t) { .pmd = (x).val }) extern int kern_addr_valid(unsigned long addr); extern void cleanup_highmap(void); #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN #define PAGE_AGP PAGE_KERNEL_NOCACHE #define HAVE_PAGE_AGP 1 /* fs/proc/kcore.c */ #define kc_vaddr_to_offset(v) ((v) & __VIRTUAL_MASK) #define kc_offset_to_vaddr(o) ((o) | ~__VIRTUAL_MASK) #define __HAVE_ARCH_PTE_SAME #define vmemmap ((struct page *)VMEMMAP_START) extern void init_extra_mapping_uc(unsigned long phys, unsigned long size); extern void init_extra_mapping_wb(unsigned long phys, unsigned long size); #define gup_fast_permitted gup_fast_permitted static inline bool gup_fast_permitted(unsigned long start, unsigned long end) { if (end >> __VIRTUAL_MASK_SHIFT) return false; return true; } #include <asm/pgtable-invert.h> #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs */ #ifndef _ASM_X86_STACKTRACE_H #define _ASM_X86_STACKTRACE_H #include <linux/uaccess.h> #include <linux/ptrace.h> #include <asm/cpu_entry_area.h> #include <asm/switch_to.h> enum stack_type { STACK_TYPE_UNKNOWN, STACK_TYPE_TASK, STACK_TYPE_IRQ, STACK_TYPE_SOFTIRQ, STACK_TYPE_ENTRY, STACK_TYPE_EXCEPTION, STACK_TYPE_EXCEPTION_LAST = STACK_TYPE_EXCEPTION + N_EXCEPTION_STACKS-1, }; struct stack_info { enum stack_type type; unsigned long *begin, *end, *next_sp; }; bool in_task_stack(unsigned long *stack, struct task_struct *task, struct stack_info *info); bool in_entry_stack(unsigned long *stack, struct stack_info *info); int get_stack_info(unsigned long *stack, struct task_struct *task, struct stack_info *info, unsigned long *visit_mask); bool get_stack_info_noinstr(unsigned long *stack, struct task_struct *task, struct stack_info *info); const char *stack_type_name(enum stack_type type); static inline bool on_stack(struct stack_info *info, void *addr, size_t len) { void *begin = info->begin; void *end = info->end; return (info->type != STACK_TYPE_UNKNOWN && addr >= begin && addr < end && addr + len > begin && addr + len <= end); } #ifdef CONFIG_X86_32 #define STACKSLOTS_PER_LINE 8 #else #define STACKSLOTS_PER_LINE 4 #endif #ifdef CONFIG_FRAME_POINTER static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->bp; if (task == current) return __builtin_frame_address(0); return &((struct inactive_task_frame *)task->thread.sp)->bp; } #else static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { return NULL; } #endif /* CONFIG_FRAME_POINTER */ static inline unsigned long * get_stack_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->sp; if (task == current) return __builtin_frame_address(0); return (unsigned long *)task->thread.sp; } void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, unsigned long *stack, const char *log_lvl); /* The form of the top of the frame on the stack */ struct stack_frame { struct stack_frame *next_frame; unsigned long return_address; }; struct stack_frame_ia32 { u32 next_frame; u32 return_address; }; void show_opcodes(struct pt_regs *regs, const char *loglvl); void show_ip(struct pt_regs *regs, const char *loglvl); #endif /* _ASM_X86_STACKTRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KASAN_H #define _LINUX_KASAN_H #include <linux/types.h> struct kmem_cache; struct page; struct vm_struct; struct task_struct; #ifdef CONFIG_KASAN #include <linux/pgtable.h> #include <asm/kasan.h> /* kasan_data struct is used in KUnit tests for KASAN expected failures */ struct kunit_kasan_expectation { bool report_expected; bool report_found; }; extern unsigned char kasan_early_shadow_page[PAGE_SIZE]; extern pte_t kasan_early_shadow_pte[PTRS_PER_PTE]; extern pmd_t kasan_early_shadow_pmd[PTRS_PER_PMD]; extern pud_t kasan_early_shadow_pud[PTRS_PER_PUD]; extern p4d_t kasan_early_shadow_p4d[MAX_PTRS_PER_P4D]; int kasan_populate_early_shadow(const void *shadow_start, const void *shadow_end); static inline void *kasan_mem_to_shadow(const void *addr) { return (void *)((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET; } /* Enable reporting bugs after kasan_disable_current() */ extern void kasan_enable_current(void); /* Disable reporting bugs for current task */ extern void kasan_disable_current(void); void kasan_unpoison_shadow(const void *address, size_t size); void kasan_unpoison_task_stack(struct task_struct *task); void kasan_alloc_pages(struct page *page, unsigned int order); void kasan_free_pages(struct page *page, unsigned int order); void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, slab_flags_t *flags); void kasan_poison_slab(struct page *page); void kasan_unpoison_object_data(struct kmem_cache *cache, void *object); void kasan_poison_object_data(struct kmem_cache *cache, void *object); void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, const void *object); void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags); void kasan_kfree_large(void *ptr, unsigned long ip); void kasan_poison_kfree(void *ptr, unsigned long ip); void * __must_check kasan_kmalloc(struct kmem_cache *s, const void *object, size_t size, gfp_t flags); void * __must_check kasan_krealloc(const void *object, size_t new_size, gfp_t flags); void * __must_check kasan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags); bool kasan_slab_free(struct kmem_cache *s, void *object, unsigned long ip); struct kasan_cache { int alloc_meta_offset; int free_meta_offset; }; /* * These functions provide a special case to support backing module * allocations with real shadow memory. With KASAN vmalloc, the special * case is unnecessary, as the work is handled in the generic case. */ #ifndef CONFIG_KASAN_VMALLOC int kasan_module_alloc(void *addr, size_t size); void kasan_free_shadow(const struct vm_struct *vm); #else static inline int kasan_module_alloc(void *addr, size_t size) { return 0; } static inline void kasan_free_shadow(const struct vm_struct *vm) {} #endif int kasan_add_zero_shadow(void *start, unsigned long size); void kasan_remove_zero_shadow(void *start, unsigned long size); size_t __ksize(const void *); static inline void kasan_unpoison_slab(const void *ptr) { kasan_unpoison_shadow(ptr, __ksize(ptr)); } size_t kasan_metadata_size(struct kmem_cache *cache); bool kasan_save_enable_multi_shot(void); void kasan_restore_multi_shot(bool enabled); #else /* CONFIG_KASAN */ static inline void kasan_unpoison_shadow(const void *address, size_t size) {} static inline void kasan_unpoison_task_stack(struct task_struct *task) {} static inline void kasan_enable_current(void) {} static inline void kasan_disable_current(void) {} static inline void kasan_alloc_pages(struct page *page, unsigned int order) {} static inline void kasan_free_pages(struct page *page, unsigned int order) {} static inline void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, slab_flags_t *flags) {} static inline void kasan_poison_slab(struct page *page) {} static inline void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) {} static inline void kasan_poison_object_data(struct kmem_cache *cache, void *object) {} static inline void *kasan_init_slab_obj(struct kmem_cache *cache, const void *object) { return (void *)object; } static inline void *kasan_kmalloc_large(void *ptr, size_t size, gfp_t flags) { return ptr; } static inline void kasan_kfree_large(void *ptr, unsigned long ip) {} static inline void kasan_poison_kfree(void *ptr, unsigned long ip) {} static inline void *kasan_kmalloc(struct kmem_cache *s, const void *object, size_t size, gfp_t flags) { return (void *)object; } static inline void *kasan_krealloc(const void *object, size_t new_size, gfp_t flags) { return (void *)object; } static inline void *kasan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags) { return object; } static inline bool kasan_slab_free(struct kmem_cache *s, void *object, unsigned long ip) { return false; } static inline int kasan_module_alloc(void *addr, size_t size) { return 0; } static inline void kasan_free_shadow(const struct vm_struct *vm) {} static inline int kasan_add_zero_shadow(void *start, unsigned long size) { return 0; } static inline void kasan_remove_zero_shadow(void *start, unsigned long size) {} static inline void kasan_unpoison_slab(const void *ptr) { } static inline size_t kasan_metadata_size(struct kmem_cache *cache) { return 0; } #endif /* CONFIG_KASAN */ #ifdef CONFIG_KASAN_GENERIC #define KASAN_SHADOW_INIT 0 void kasan_cache_shrink(struct kmem_cache *cache); void kasan_cache_shutdown(struct kmem_cache *cache); void kasan_record_aux_stack(void *ptr); #else /* CONFIG_KASAN_GENERIC */ static inline void kasan_cache_shrink(struct kmem_cache *cache) {} static inline void kasan_cache_shutdown(struct kmem_cache *cache) {} static inline void kasan_record_aux_stack(void *ptr) {} #endif /* CONFIG_KASAN_GENERIC */ #ifdef CONFIG_KASAN_SW_TAGS #define KASAN_SHADOW_INIT 0xFF void kasan_init_tags(void); void *kasan_reset_tag(const void *addr); bool kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip); #else /* CONFIG_KASAN_SW_TAGS */ static inline void kasan_init_tags(void) { } static inline void *kasan_reset_tag(const void *addr) { return (void *)addr; } #endif /* CONFIG_KASAN_SW_TAGS */ #ifdef CONFIG_KASAN_VMALLOC int kasan_populate_vmalloc(unsigned long addr, unsigned long size); void kasan_poison_vmalloc(const void *start, unsigned long size); void kasan_unpoison_vmalloc(const void *start, unsigned long size); void kasan_release_vmalloc(unsigned long start, unsigned long end, unsigned long free_region_start, unsigned long free_region_end); #else static inline int kasan_populate_vmalloc(unsigned long start, unsigned long size) { return 0; } static inline void kasan_poison_vmalloc(const void *start, unsigned long size) { } static inline void kasan_unpoison_vmalloc(const void *start, unsigned long size) { } static inline void kasan_release_vmalloc(unsigned long start, unsigned long end, unsigned long free_region_start, unsigned long free_region_end) {} #endif #ifdef CONFIG_KASAN_INLINE void kasan_non_canonical_hook(unsigned long addr); #else /* CONFIG_KASAN_INLINE */ static inline void kasan_non_canonical_hook(unsigned long addr) { } #endif /* CONFIG_KASAN_INLINE */ #endif /* LINUX_KASAN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* * This file holds USB constants and structures that are needed for * USB device APIs. These are used by the USB device model, which is * defined in chapter 9 of the USB 2.0 specification and in the * Wireless USB 1.0 (spread around). Linux has several APIs in C that * need these: * * - the master/host side Linux-USB kernel driver API; * - the "usbfs" user space API; and * - the Linux "gadget" slave/device/peripheral side driver API. * * USB 2.0 adds an additional "On The Go" (OTG) mode, which lets systems * act either as a USB master/host or as a USB slave/device. That means * the master and slave side APIs benefit from working well together. * * There's also "Wireless USB", using low power short range radios for * peripheral interconnection but otherwise building on the USB framework. * * Note all descriptors are declared '__attribute__((packed))' so that: * * [a] they never get padded, either internally (USB spec writers * probably handled that) or externally; * * [b] so that accessing bigger-than-a-bytes fields will never * generate bus errors on any platform, even when the location of * its descriptor inside a bundle isn't "naturally aligned", and * * [c] for consistency, removing all doubt even when it appears to * someone that the two other points are non-issues for that * particular descriptor type. */ #ifndef _UAPI__LINUX_USB_CH9_H #define _UAPI__LINUX_USB_CH9_H #include <linux/types.h> /* __u8 etc */ #include <asm/byteorder.h> /* le16_to_cpu */ /*-------------------------------------------------------------------------*/ /* CONTROL REQUEST SUPPORT */ /* * USB directions * * This bit flag is used in endpoint descriptors' bEndpointAddress field. * It's also one of three fields in control requests bRequestType. */ #define USB_DIR_OUT 0 /* to device */ #define USB_DIR_IN 0x80 /* to host */ /* * USB types, the second of three bRequestType fields */ #define USB_TYPE_MASK (0x03 << 5) #define USB_TYPE_STANDARD (0x00 << 5) #define USB_TYPE_CLASS (0x01 << 5) #define USB_TYPE_VENDOR (0x02 << 5) #define USB_TYPE_RESERVED (0x03 << 5) /* * USB recipients, the third of three bRequestType fields */ #define USB_RECIP_MASK 0x1f #define USB_RECIP_DEVICE 0x00 #define USB_RECIP_INTERFACE 0x01 #define USB_RECIP_ENDPOINT 0x02 #define USB_RECIP_OTHER 0x03 /* From Wireless USB 1.0 */ #define USB_RECIP_PORT 0x04 #define USB_RECIP_RPIPE 0x05 /* * Standard requests, for the bRequest field of a SETUP packet. * * These are qualified by the bRequestType field, so that for example * TYPE_CLASS or TYPE_VENDOR specific feature flags could be retrieved * by a GET_STATUS request. */ #define USB_REQ_GET_STATUS 0x00 #define USB_REQ_CLEAR_FEATURE 0x01 #define USB_REQ_SET_FEATURE 0x03 #define USB_REQ_SET_ADDRESS 0x05 #define USB_REQ_GET_DESCRIPTOR 0x06 #define USB_REQ_SET_DESCRIPTOR 0x07 #define USB_REQ_GET_CONFIGURATION 0x08 #define USB_REQ_SET_CONFIGURATION 0x09 #define USB_REQ_GET_INTERFACE 0x0A #define USB_REQ_SET_INTERFACE 0x0B #define USB_REQ_SYNCH_FRAME 0x0C #define USB_REQ_SET_SEL 0x30 #define USB_REQ_SET_ISOCH_DELAY 0x31 #define USB_REQ_SET_ENCRYPTION 0x0D /* Wireless USB */ #define USB_REQ_GET_ENCRYPTION 0x0E #define USB_REQ_RPIPE_ABORT 0x0E #define USB_REQ_SET_HANDSHAKE 0x0F #define USB_REQ_RPIPE_RESET 0x0F #define USB_REQ_GET_HANDSHAKE 0x10 #define USB_REQ_SET_CONNECTION 0x11 #define USB_REQ_SET_SECURITY_DATA 0x12 #define USB_REQ_GET_SECURITY_DATA 0x13 #define USB_REQ_SET_WUSB_DATA 0x14 #define USB_REQ_LOOPBACK_DATA_WRITE 0x15 #define USB_REQ_LOOPBACK_DATA_READ 0x16 #define USB_REQ_SET_INTERFACE_DS 0x17 /* specific requests for USB Power Delivery */ #define USB_REQ_GET_PARTNER_PDO 20 #define USB_REQ_GET_BATTERY_STATUS 21 #define USB_REQ_SET_PDO 22 #define USB_REQ_GET_VDM 23 #define USB_REQ_SEND_VDM 24 /* The Link Power Management (LPM) ECN defines USB_REQ_TEST_AND_SET command, * used by hubs to put ports into a new L1 suspend state, except that it * forgot to define its number ... */ /* * USB feature flags are written using USB_REQ_{CLEAR,SET}_FEATURE, and * are read as a bit array returned by USB_REQ_GET_STATUS. (So there * are at most sixteen features of each type.) Hubs may also support a * new USB_REQ_TEST_AND_SET_FEATURE to put ports into L1 suspend. */ #define USB_DEVICE_SELF_POWERED 0 /* (read only) */ #define USB_DEVICE_REMOTE_WAKEUP 1 /* dev may initiate wakeup */ #define USB_DEVICE_TEST_MODE 2 /* (wired high speed only) */ #define USB_DEVICE_BATTERY 2 /* (wireless) */ #define USB_DEVICE_B_HNP_ENABLE 3 /* (otg) dev may initiate HNP */ #define USB_DEVICE_WUSB_DEVICE 3 /* (wireless)*/ #define USB_DEVICE_A_HNP_SUPPORT 4 /* (otg) RH port supports HNP */ #define USB_DEVICE_A_ALT_HNP_SUPPORT 5 /* (otg) other RH port does */ #define USB_DEVICE_DEBUG_MODE 6 /* (special devices only) */ /* * Test Mode Selectors * See USB 2.0 spec Table 9-7 */ #define USB_TEST_J 1 #define USB_TEST_K 2 #define USB_TEST_SE0_NAK 3 #define USB_TEST_PACKET 4 #define USB_TEST_FORCE_ENABLE 5 /* Status Type */ #define USB_STATUS_TYPE_STANDARD 0 #define USB_STATUS_TYPE_PTM 1 /* * New Feature Selectors as added by USB 3.0 * See USB 3.0 spec Table 9-7 */ #define USB_DEVICE_U1_ENABLE 48 /* dev may initiate U1 transition */ #define USB_DEVICE_U2_ENABLE 49 /* dev may initiate U2 transition */ #define USB_DEVICE_LTM_ENABLE 50 /* dev may send LTM */ #define USB_INTRF_FUNC_SUSPEND 0 /* function suspend */ #define USB_INTR_FUNC_SUSPEND_OPT_MASK 0xFF00 /* * Suspend Options, Table 9-8 USB 3.0 spec */ #define USB_INTRF_FUNC_SUSPEND_LP (1 << (8 + 0)) #define USB_INTRF_FUNC_SUSPEND_RW (1 << (8 + 1)) /* * Interface status, Figure 9-5 USB 3.0 spec */ #define USB_INTRF_STAT_FUNC_RW_CAP 1 #define USB_INTRF_STAT_FUNC_RW 2 #define USB_ENDPOINT_HALT 0 /* IN/OUT will STALL */ /* Bit array elements as returned by the USB_REQ_GET_STATUS request. */ #define USB_DEV_STAT_U1_ENABLED 2 /* transition into U1 state */ #define USB_DEV_STAT_U2_ENABLED 3 /* transition into U2 state */ #define USB_DEV_STAT_LTM_ENABLED 4 /* Latency tolerance messages */ /* * Feature selectors from Table 9-8 USB Power Delivery spec */ #define USB_DEVICE_BATTERY_WAKE_MASK 40 #define USB_DEVICE_OS_IS_PD_AWARE 41 #define USB_DEVICE_POLICY_MODE 42 #define USB_PORT_PR_SWAP 43 #define USB_PORT_GOTO_MIN 44 #define USB_PORT_RETURN_POWER 45 #define USB_PORT_ACCEPT_PD_REQUEST 46 #define USB_PORT_REJECT_PD_REQUEST 47 #define USB_PORT_PORT_PD_RESET 48 #define USB_PORT_C_PORT_PD_CHANGE 49 #define USB_PORT_CABLE_PD_RESET 50 #define USB_DEVICE_CHARGING_POLICY 54 /** * struct usb_ctrlrequest - SETUP data for a USB device control request * @bRequestType: matches the USB bmRequestType field * @bRequest: matches the USB bRequest field * @wValue: matches the USB wValue field (le16 byte order) * @wIndex: matches the USB wIndex field (le16 byte order) * @wLength: matches the USB wLength field (le16 byte order) * * This structure is used to send control requests to a USB device. It matches * the different fields of the USB 2.0 Spec section 9.3, table 9-2. See the * USB spec for a fuller description of the different fields, and what they are * used for. * * Note that the driver for any interface can issue control requests. * For most devices, interfaces don't coordinate with each other, so * such requests may be made at any time. */ struct usb_ctrlrequest { __u8 bRequestType; __u8 bRequest; __le16 wValue; __le16 wIndex; __le16 wLength; } __attribute__ ((packed)); /*-------------------------------------------------------------------------*/ /* * STANDARD DESCRIPTORS ... as returned by GET_DESCRIPTOR, or * (rarely) accepted by SET_DESCRIPTOR. * * Note that all multi-byte values here are encoded in little endian * byte order "on the wire". Within the kernel and when exposed * through the Linux-USB APIs, they are not converted to cpu byte * order; it is the responsibility of the client code to do this. * The single exception is when device and configuration descriptors (but * not other descriptors) are read from character devices * (i.e. /dev/bus/usb/BBB/DDD); * in this case the fields are converted to host endianness by the kernel. */ /* * Descriptor types ... USB 2.0 spec table 9.5 */ #define USB_DT_DEVICE 0x01 #define USB_DT_CONFIG 0x02 #define USB_DT_STRING 0x03 #define USB_DT_INTERFACE 0x04 #define USB_DT_ENDPOINT 0x05 #define USB_DT_DEVICE_QUALIFIER 0x06 #define USB_DT_OTHER_SPEED_CONFIG 0x07 #define USB_DT_INTERFACE_POWER 0x08 /* these are from a minor usb 2.0 revision (ECN) */ #define USB_DT_OTG 0x09 #define USB_DT_DEBUG 0x0a #define USB_DT_INTERFACE_ASSOCIATION 0x0b /* these are from the Wireless USB spec */ #define USB_DT_SECURITY 0x0c #define USB_DT_KEY 0x0d #define USB_DT_ENCRYPTION_TYPE 0x0e #define USB_DT_BOS 0x0f #define USB_DT_DEVICE_CAPABILITY 0x10 #define USB_DT_WIRELESS_ENDPOINT_COMP 0x11 #define USB_DT_WIRE_ADAPTER 0x21 #define USB_DT_RPIPE 0x22 #define USB_DT_CS_RADIO_CONTROL 0x23 /* From the T10 UAS specification */ #define USB_DT_PIPE_USAGE 0x24 /* From the USB 3.0 spec */ #define USB_DT_SS_ENDPOINT_COMP 0x30 /* From the USB 3.1 spec */ #define USB_DT_SSP_ISOC_ENDPOINT_COMP 0x31 /* Conventional codes for class-specific descriptors. The convention is * defined in the USB "Common Class" Spec (3.11). Individual class specs * are authoritative for their usage, not the "common class" writeup. */ #define USB_DT_CS_DEVICE (USB_TYPE_CLASS | USB_DT_DEVICE) #define USB_DT_CS_CONFIG (USB_TYPE_CLASS | USB_DT_CONFIG) #define USB_DT_CS_STRING (USB_TYPE_CLASS | USB_DT_STRING) #define USB_DT_CS_INTERFACE (USB_TYPE_CLASS | USB_DT_INTERFACE) #define USB_DT_CS_ENDPOINT (USB_TYPE_CLASS | USB_DT_ENDPOINT) /* All standard descriptors have these 2 fields at the beginning */ struct usb_descriptor_header { __u8 bLength; __u8 bDescriptorType; } __attribute__ ((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_DEVICE: Device descriptor */ struct usb_device_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 bcdUSB; __u8 bDeviceClass; __u8 bDeviceSubClass; __u8 bDeviceProtocol; __u8 bMaxPacketSize0; __le16 idVendor; __le16 idProduct; __le16 bcdDevice; __u8 iManufacturer; __u8 iProduct; __u8 iSerialNumber; __u8 bNumConfigurations; } __attribute__ ((packed)); #define USB_DT_DEVICE_SIZE 18 /* * Device and/or Interface Class codes * as found in bDeviceClass or bInterfaceClass * and defined by www.usb.org documents */ #define USB_CLASS_PER_INTERFACE 0 /* for DeviceClass */ #define USB_CLASS_AUDIO 1 #define USB_CLASS_COMM 2 #define USB_CLASS_HID 3 #define USB_CLASS_PHYSICAL 5 #define USB_CLASS_STILL_IMAGE 6 #define USB_CLASS_PRINTER 7 #define USB_CLASS_MASS_STORAGE 8 #define USB_CLASS_HUB 9 #define USB_CLASS_CDC_DATA 0x0a #define USB_CLASS_CSCID 0x0b /* chip+ smart card */ #define USB_CLASS_CONTENT_SEC 0x0d /* content security */ #define USB_CLASS_VIDEO 0x0e #define USB_CLASS_WIRELESS_CONTROLLER 0xe0 #define USB_CLASS_PERSONAL_HEALTHCARE 0x0f #define USB_CLASS_AUDIO_VIDEO 0x10 #define USB_CLASS_BILLBOARD 0x11 #define USB_CLASS_USB_TYPE_C_BRIDGE 0x12 #define USB_CLASS_MISC 0xef #define USB_CLASS_APP_SPEC 0xfe #define USB_CLASS_VENDOR_SPEC 0xff #define USB_SUBCLASS_VENDOR_SPEC 0xff /*-------------------------------------------------------------------------*/ /* USB_DT_CONFIG: Configuration descriptor information. * * USB_DT_OTHER_SPEED_CONFIG is the same descriptor, except that the * descriptor type is different. Highspeed-capable devices can look * different depending on what speed they're currently running. Only * devices with a USB_DT_DEVICE_QUALIFIER have any OTHER_SPEED_CONFIG * descriptors. */ struct usb_config_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wTotalLength; __u8 bNumInterfaces; __u8 bConfigurationValue; __u8 iConfiguration; __u8 bmAttributes; __u8 bMaxPower; } __attribute__ ((packed)); #define USB_DT_CONFIG_SIZE 9 /* from config descriptor bmAttributes */ #define USB_CONFIG_ATT_ONE (1 << 7) /* must be set */ #define USB_CONFIG_ATT_SELFPOWER (1 << 6) /* self powered */ #define USB_CONFIG_ATT_WAKEUP (1 << 5) /* can wakeup */ #define USB_CONFIG_ATT_BATTERY (1 << 4) /* battery powered */ /*-------------------------------------------------------------------------*/ /* USB String descriptors can contain at most 126 characters. */ #define USB_MAX_STRING_LEN 126 /* USB_DT_STRING: String descriptor */ struct usb_string_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wData[1]; /* UTF-16LE encoded */ } __attribute__ ((packed)); /* note that "string" zero is special, it holds language codes that * the device supports, not Unicode characters. */ /*-------------------------------------------------------------------------*/ /* USB_DT_INTERFACE: Interface descriptor */ struct usb_interface_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bInterfaceNumber; __u8 bAlternateSetting; __u8 bNumEndpoints; __u8 bInterfaceClass; __u8 bInterfaceSubClass; __u8 bInterfaceProtocol; __u8 iInterface; } __attribute__ ((packed)); #define USB_DT_INTERFACE_SIZE 9 /*-------------------------------------------------------------------------*/ /* USB_DT_ENDPOINT: Endpoint descriptor */ struct usb_endpoint_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bEndpointAddress; __u8 bmAttributes; __le16 wMaxPacketSize; __u8 bInterval; /* NOTE: these two are _only_ in audio endpoints. */ /* use USB_DT_ENDPOINT*_SIZE in bLength, not sizeof. */ __u8 bRefresh; __u8 bSynchAddress; } __attribute__ ((packed)); #define USB_DT_ENDPOINT_SIZE 7 #define USB_DT_ENDPOINT_AUDIO_SIZE 9 /* Audio extension */ /* * Endpoints */ #define USB_ENDPOINT_NUMBER_MASK 0x0f /* in bEndpointAddress */ #define USB_ENDPOINT_DIR_MASK 0x80 #define USB_ENDPOINT_XFERTYPE_MASK 0x03 /* in bmAttributes */ #define USB_ENDPOINT_XFER_CONTROL 0 #define USB_ENDPOINT_XFER_ISOC 1 #define USB_ENDPOINT_XFER_BULK 2 #define USB_ENDPOINT_XFER_INT 3 #define USB_ENDPOINT_MAX_ADJUSTABLE 0x80 #define USB_ENDPOINT_MAXP_MASK 0x07ff #define USB_EP_MAXP_MULT_SHIFT 11 #define USB_EP_MAXP_MULT_MASK (3 << USB_EP_MAXP_MULT_SHIFT) #define USB_EP_MAXP_MULT(m) \ (((m) & USB_EP_MAXP_MULT_MASK) >> USB_EP_MAXP_MULT_SHIFT) /* The USB 3.0 spec redefines bits 5:4 of bmAttributes as interrupt ep type. */ #define USB_ENDPOINT_INTRTYPE 0x30 #define USB_ENDPOINT_INTR_PERIODIC (0 << 4) #define USB_ENDPOINT_INTR_NOTIFICATION (1 << 4) #define USB_ENDPOINT_SYNCTYPE 0x0c #define USB_ENDPOINT_SYNC_NONE (0 << 2) #define USB_ENDPOINT_SYNC_ASYNC (1 << 2) #define USB_ENDPOINT_SYNC_ADAPTIVE (2 << 2) #define USB_ENDPOINT_SYNC_SYNC (3 << 2) #define USB_ENDPOINT_USAGE_MASK 0x30 #define USB_ENDPOINT_USAGE_DATA 0x00 #define USB_ENDPOINT_USAGE_FEEDBACK 0x10 #define USB_ENDPOINT_USAGE_IMPLICIT_FB 0x20 /* Implicit feedback Data endpoint */ /*-------------------------------------------------------------------------*/ /** * usb_endpoint_num - get the endpoint's number * @epd: endpoint to be checked * * Returns @epd's number: 0 to 15. */ static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd) { return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; } /** * usb_endpoint_type - get the endpoint's transfer type * @epd: endpoint to be checked * * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according * to @epd's transfer type. */ static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd) { return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; } /** * usb_endpoint_dir_in - check if the endpoint has IN direction * @epd: endpoint to be checked * * Returns true if the endpoint is of type IN, otherwise it returns false. */ static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) { return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); } /** * usb_endpoint_dir_out - check if the endpoint has OUT direction * @epd: endpoint to be checked * * Returns true if the endpoint is of type OUT, otherwise it returns false. */ static inline int usb_endpoint_dir_out( const struct usb_endpoint_descriptor *epd) { return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); } /** * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type bulk, otherwise it returns false. */ static inline int usb_endpoint_xfer_bulk( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK); } /** * usb_endpoint_xfer_control - check if the endpoint has control transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type control, otherwise it returns false. */ static inline int usb_endpoint_xfer_control( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_CONTROL); } /** * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type interrupt, otherwise it returns * false. */ static inline int usb_endpoint_xfer_int( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT); } /** * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type isochronous, otherwise it returns * false. */ static inline int usb_endpoint_xfer_isoc( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_ISOC); } /** * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN * @epd: endpoint to be checked * * Returns true if the endpoint has bulk transfer type and IN direction, * otherwise it returns false. */ static inline int usb_endpoint_is_bulk_in( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd); } /** * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT * @epd: endpoint to be checked * * Returns true if the endpoint has bulk transfer type and OUT direction, * otherwise it returns false. */ static inline int usb_endpoint_is_bulk_out( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd); } /** * usb_endpoint_is_int_in - check if the endpoint is interrupt IN * @epd: endpoint to be checked * * Returns true if the endpoint has interrupt transfer type and IN direction, * otherwise it returns false. */ static inline int usb_endpoint_is_int_in( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd); } /** * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT * @epd: endpoint to be checked * * Returns true if the endpoint has interrupt transfer type and OUT direction, * otherwise it returns false. */ static inline int usb_endpoint_is_int_out( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd); } /** * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN * @epd: endpoint to be checked * * Returns true if the endpoint has isochronous transfer type and IN direction, * otherwise it returns false. */ static inline int usb_endpoint_is_isoc_in( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd); } /** * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT * @epd: endpoint to be checked * * Returns true if the endpoint has isochronous transfer type and OUT direction, * otherwise it returns false. */ static inline int usb_endpoint_is_isoc_out( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd); } /** * usb_endpoint_maxp - get endpoint's max packet size * @epd: endpoint to be checked * * Returns @epd's max packet bits [10:0] */ static inline int usb_endpoint_maxp(const struct usb_endpoint_descriptor *epd) { return __le16_to_cpu(epd->wMaxPacketSize) & USB_ENDPOINT_MAXP_MASK; } /** * usb_endpoint_maxp_mult - get endpoint's transactional opportunities * @epd: endpoint to be checked * * Return @epd's wMaxPacketSize[12:11] + 1 */ static inline int usb_endpoint_maxp_mult(const struct usb_endpoint_descriptor *epd) { int maxp = __le16_to_cpu(epd->wMaxPacketSize); return USB_EP_MAXP_MULT(maxp) + 1; } static inline int usb_endpoint_interrupt_type( const struct usb_endpoint_descriptor *epd) { return epd->bmAttributes & USB_ENDPOINT_INTRTYPE; } /*-------------------------------------------------------------------------*/ /* USB_DT_SSP_ISOC_ENDPOINT_COMP: SuperSpeedPlus Isochronous Endpoint Companion * descriptor */ struct usb_ssp_isoc_ep_comp_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wReseved; __le32 dwBytesPerInterval; } __attribute__ ((packed)); #define USB_DT_SSP_ISOC_EP_COMP_SIZE 8 /*-------------------------------------------------------------------------*/ /* USB_DT_SS_ENDPOINT_COMP: SuperSpeed Endpoint Companion descriptor */ struct usb_ss_ep_comp_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bMaxBurst; __u8 bmAttributes; __le16 wBytesPerInterval; } __attribute__ ((packed)); #define USB_DT_SS_EP_COMP_SIZE 6 /* Bits 4:0 of bmAttributes if this is a bulk endpoint */ static inline int usb_ss_max_streams(const struct usb_ss_ep_comp_descriptor *comp) { int max_streams; if (!comp) return 0; max_streams = comp->bmAttributes & 0x1f; if (!max_streams) return 0; max_streams = 1 << max_streams; return max_streams; } /* Bits 1:0 of bmAttributes if this is an isoc endpoint */ #define USB_SS_MULT(p) (1 + ((p) & 0x3)) /* Bit 7 of bmAttributes if a SSP isoc endpoint companion descriptor exists */ #define USB_SS_SSP_ISOC_COMP(p) ((p) & (1 << 7)) /*-------------------------------------------------------------------------*/ /* USB_DT_DEVICE_QUALIFIER: Device Qualifier descriptor */ struct usb_qualifier_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 bcdUSB; __u8 bDeviceClass; __u8 bDeviceSubClass; __u8 bDeviceProtocol; __u8 bMaxPacketSize0; __u8 bNumConfigurations; __u8 bRESERVED; } __attribute__ ((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_OTG (from OTG 1.0a supplement) */ struct usb_otg_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bmAttributes; /* support for HNP, SRP, etc */ } __attribute__ ((packed)); /* USB_DT_OTG (from OTG 2.0 supplement) */ struct usb_otg20_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bmAttributes; /* support for HNP, SRP and ADP, etc */ __le16 bcdOTG; /* OTG and EH supplement release number * in binary-coded decimal(i.e. 2.0 is 0200H) */ } __attribute__ ((packed)); /* from usb_otg_descriptor.bmAttributes */ #define USB_OTG_SRP (1 << 0) #define USB_OTG_HNP (1 << 1) /* swap host/device roles */ #define USB_OTG_ADP (1 << 2) /* support ADP */ #define OTG_STS_SELECTOR 0xF000 /* OTG status selector */ /*-------------------------------------------------------------------------*/ /* USB_DT_DEBUG: for special highspeed devices, replacing serial console */ struct usb_debug_descriptor { __u8 bLength; __u8 bDescriptorType; /* bulk endpoints with 8 byte maxpacket */ __u8 bDebugInEndpoint; __u8 bDebugOutEndpoint; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_INTERFACE_ASSOCIATION: groups interfaces */ struct usb_interface_assoc_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bFirstInterface; __u8 bInterfaceCount; __u8 bFunctionClass; __u8 bFunctionSubClass; __u8 bFunctionProtocol; __u8 iFunction; } __attribute__ ((packed)); #define USB_DT_INTERFACE_ASSOCIATION_SIZE 8 /*-------------------------------------------------------------------------*/ /* USB_DT_SECURITY: group of wireless security descriptors, including * encryption types available for setting up a CC/association. */ struct usb_security_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wTotalLength; __u8 bNumEncryptionTypes; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_KEY: used with {GET,SET}_SECURITY_DATA; only public keys * may be retrieved. */ struct usb_key_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 tTKID[3]; __u8 bReserved; __u8 bKeyData[0]; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_ENCRYPTION_TYPE: bundled in DT_SECURITY groups */ struct usb_encryption_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bEncryptionType; #define USB_ENC_TYPE_UNSECURE 0 #define USB_ENC_TYPE_WIRED 1 /* non-wireless mode */ #define USB_ENC_TYPE_CCM_1 2 /* aes128/cbc session */ #define USB_ENC_TYPE_RSA_1 3 /* rsa3072/sha1 auth */ __u8 bEncryptionValue; /* use in SET_ENCRYPTION */ __u8 bAuthKeyIndex; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_BOS: group of device-level capabilities */ struct usb_bos_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wTotalLength; __u8 bNumDeviceCaps; } __attribute__((packed)); #define USB_DT_BOS_SIZE 5 /*-------------------------------------------------------------------------*/ /* USB_DT_DEVICE_CAPABILITY: grouped with BOS */ struct usb_dev_cap_header { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; } __attribute__((packed)); #define USB_CAP_TYPE_WIRELESS_USB 1 struct usb_wireless_cap_descriptor { /* Ultra Wide Band */ __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bmAttributes; #define USB_WIRELESS_P2P_DRD (1 << 1) #define USB_WIRELESS_BEACON_MASK (3 << 2) #define USB_WIRELESS_BEACON_SELF (1 << 2) #define USB_WIRELESS_BEACON_DIRECTED (2 << 2) #define USB_WIRELESS_BEACON_NONE (3 << 2) __le16 wPHYRates; /* bit rates, Mbps */ #define USB_WIRELESS_PHY_53 (1 << 0) /* always set */ #define USB_WIRELESS_PHY_80 (1 << 1) #define USB_WIRELESS_PHY_107 (1 << 2) /* always set */ #define USB_WIRELESS_PHY_160 (1 << 3) #define USB_WIRELESS_PHY_200 (1 << 4) /* always set */ #define USB_WIRELESS_PHY_320 (1 << 5) #define USB_WIRELESS_PHY_400 (1 << 6) #define USB_WIRELESS_PHY_480 (1 << 7) __u8 bmTFITXPowerInfo; /* TFI power levels */ __u8 bmFFITXPowerInfo; /* FFI power levels */ __le16 bmBandGroup; __u8 bReserved; } __attribute__((packed)); #define USB_DT_USB_WIRELESS_CAP_SIZE 11 /* USB 2.0 Extension descriptor */ #define USB_CAP_TYPE_EXT 2 struct usb_ext_cap_descriptor { /* Link Power Management */ __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __le32 bmAttributes; #define USB_LPM_SUPPORT (1 << 1) /* supports LPM */ #define USB_BESL_SUPPORT (1 << 2) /* supports BESL */ #define USB_BESL_BASELINE_VALID (1 << 3) /* Baseline BESL valid*/ #define USB_BESL_DEEP_VALID (1 << 4) /* Deep BESL valid */ #define USB_SET_BESL_BASELINE(p) (((p) & 0xf) << 8) #define USB_SET_BESL_DEEP(p) (((p) & 0xf) << 12) #define USB_GET_BESL_BASELINE(p) (((p) & (0xf << 8)) >> 8) #define USB_GET_BESL_DEEP(p) (((p) & (0xf << 12)) >> 12) } __attribute__((packed)); #define USB_DT_USB_EXT_CAP_SIZE 7 /* * SuperSpeed USB Capability descriptor: Defines the set of SuperSpeed USB * specific device level capabilities */ #define USB_SS_CAP_TYPE 3 struct usb_ss_cap_descriptor { /* Link Power Management */ __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bmAttributes; #define USB_LTM_SUPPORT (1 << 1) /* supports LTM */ __le16 wSpeedSupported; #define USB_LOW_SPEED_OPERATION (1) /* Low speed operation */ #define USB_FULL_SPEED_OPERATION (1 << 1) /* Full speed operation */ #define USB_HIGH_SPEED_OPERATION (1 << 2) /* High speed operation */ #define USB_5GBPS_OPERATION (1 << 3) /* Operation at 5Gbps */ __u8 bFunctionalitySupport; __u8 bU1devExitLat; __le16 bU2DevExitLat; } __attribute__((packed)); #define USB_DT_USB_SS_CAP_SIZE 10 /* * Container ID Capability descriptor: Defines the instance unique ID used to * identify the instance across all operating modes */ #define CONTAINER_ID_TYPE 4 struct usb_ss_container_id_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved; __u8 ContainerID[16]; /* 128-bit number */ } __attribute__((packed)); #define USB_DT_USB_SS_CONTN_ID_SIZE 20 /* * SuperSpeed Plus USB Capability descriptor: Defines the set of * SuperSpeed Plus USB specific device level capabilities */ #define USB_SSP_CAP_TYPE 0xa struct usb_ssp_cap_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved; __le32 bmAttributes; #define USB_SSP_SUBLINK_SPEED_ATTRIBS (0x1f << 0) /* sublink speed entries */ #define USB_SSP_SUBLINK_SPEED_IDS (0xf << 5) /* speed ID entries */ __le16 wFunctionalitySupport; #define USB_SSP_MIN_SUBLINK_SPEED_ATTRIBUTE_ID (0xf) #define USB_SSP_MIN_RX_LANE_COUNT (0xf << 8) #define USB_SSP_MIN_TX_LANE_COUNT (0xf << 12) __le16 wReserved; __le32 bmSublinkSpeedAttr[1]; /* list of sublink speed attrib entries */ #define USB_SSP_SUBLINK_SPEED_SSID (0xf) /* sublink speed ID */ #define USB_SSP_SUBLINK_SPEED_LSE (0x3 << 4) /* Lanespeed exponent */ #define USB_SSP_SUBLINK_SPEED_ST (0x3 << 6) /* Sublink type */ #define USB_SSP_SUBLINK_SPEED_RSVD (0x3f << 8) /* Reserved */ #define USB_SSP_SUBLINK_SPEED_LP (0x3 << 14) /* Link protocol */ #define USB_SSP_SUBLINK_SPEED_LSM (0xff << 16) /* Lanespeed mantissa */ } __attribute__((packed)); /* * USB Power Delivery Capability Descriptor: * Defines capabilities for PD */ /* Defines the various PD Capabilities of this device */ #define USB_PD_POWER_DELIVERY_CAPABILITY 0x06 /* Provides information on each battery supported by the device */ #define USB_PD_BATTERY_INFO_CAPABILITY 0x07 /* The Consumer characteristics of a Port on the device */ #define USB_PD_PD_CONSUMER_PORT_CAPABILITY 0x08 /* The provider characteristics of a Port on the device */ #define USB_PD_PD_PROVIDER_PORT_CAPABILITY 0x09 struct usb_pd_cap_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; /* set to USB_PD_POWER_DELIVERY_CAPABILITY */ __u8 bReserved; __le32 bmAttributes; #define USB_PD_CAP_BATTERY_CHARGING (1 << 1) /* supports Battery Charging specification */ #define USB_PD_CAP_USB_PD (1 << 2) /* supports USB Power Delivery specification */ #define USB_PD_CAP_PROVIDER (1 << 3) /* can provide power */ #define USB_PD_CAP_CONSUMER (1 << 4) /* can consume power */ #define USB_PD_CAP_CHARGING_POLICY (1 << 5) /* supports CHARGING_POLICY feature */ #define USB_PD_CAP_TYPE_C_CURRENT (1 << 6) /* supports power capabilities defined in the USB Type-C Specification */ #define USB_PD_CAP_PWR_AC (1 << 8) #define USB_PD_CAP_PWR_BAT (1 << 9) #define USB_PD_CAP_PWR_USE_V_BUS (1 << 14) __le16 bmProviderPorts; /* Bit zero refers to the UFP of the device */ __le16 bmConsumerPorts; __le16 bcdBCVersion; __le16 bcdPDVersion; __le16 bcdUSBTypeCVersion; } __attribute__((packed)); struct usb_pd_cap_battery_info_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; /* Index of string descriptor shall contain the user friendly name for this battery */ __u8 iBattery; /* Index of string descriptor shall contain the Serial Number String for this battery */ __u8 iSerial; __u8 iManufacturer; __u8 bBatteryId; /* uniquely identifies this battery in status Messages */ __u8 bReserved; /* * Shall contain the Battery Charge value above which this * battery is considered to be fully charged but not necessarily * “topped off.” */ __le32 dwChargedThreshold; /* in mWh */ /* * Shall contain the minimum charge level of this battery such * that above this threshold, a device can be assured of being * able to power up successfully (see Battery Charging 1.2). */ __le32 dwWeakThreshold; /* in mWh */ __le32 dwBatteryDesignCapacity; /* in mWh */ __le32 dwBatteryLastFullchargeCapacity; /* in mWh */ } __attribute__((packed)); struct usb_pd_cap_consumer_port_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved; __u8 bmCapabilities; /* port will oerate under: */ #define USB_PD_CAP_CONSUMER_BC (1 << 0) /* BC */ #define USB_PD_CAP_CONSUMER_PD (1 << 1) /* PD */ #define USB_PD_CAP_CONSUMER_TYPE_C (1 << 2) /* USB Type-C Current */ __le16 wMinVoltage; /* in 50mV units */ __le16 wMaxVoltage; /* in 50mV units */ __u16 wReserved; __le32 dwMaxOperatingPower; /* in 10 mW - operating at steady state */ __le32 dwMaxPeakPower; /* in 10mW units - operating at peak power */ __le32 dwMaxPeakPowerTime; /* in 100ms units - duration of peak */ #define USB_PD_CAP_CONSUMER_UNKNOWN_PEAK_POWER_TIME 0xffff } __attribute__((packed)); struct usb_pd_cap_provider_port_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved1; __u8 bmCapabilities; /* port will oerate under: */ #define USB_PD_CAP_PROVIDER_BC (1 << 0) /* BC */ #define USB_PD_CAP_PROVIDER_PD (1 << 1) /* PD */ #define USB_PD_CAP_PROVIDER_TYPE_C (1 << 2) /* USB Type-C Current */ __u8 bNumOfPDObjects; __u8 bReserved2; __le32 wPowerDataObject[]; } __attribute__((packed)); /* * Precision time measurement capability descriptor: advertised by devices and * hubs that support PTM */ #define USB_PTM_CAP_TYPE 0xb struct usb_ptm_cap_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; } __attribute__((packed)); #define USB_DT_USB_PTM_ID_SIZE 3 /* * The size of the descriptor for the Sublink Speed Attribute Count * (SSAC) specified in bmAttributes[4:0]. SSAC is zero-based */ #define USB_DT_USB_SSP_CAP_SIZE(ssac) (12 + (ssac + 1) * 4) /*-------------------------------------------------------------------------*/ /* USB_DT_WIRELESS_ENDPOINT_COMP: companion descriptor associated with * each endpoint descriptor for a wireless device */ struct usb_wireless_ep_comp_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bMaxBurst; __u8 bMaxSequence; __le16 wMaxStreamDelay; __le16 wOverTheAirPacketSize; __u8 bOverTheAirInterval; __u8 bmCompAttributes; #define USB_ENDPOINT_SWITCH_MASK 0x03 /* in bmCompAttributes */ #define USB_ENDPOINT_SWITCH_NO 0 #define USB_ENDPOINT_SWITCH_SWITCH 1 #define USB_ENDPOINT_SWITCH_SCALE 2 } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_REQ_SET_HANDSHAKE is a four-way handshake used between a wireless * host and a device for connection set up, mutual authentication, and * exchanging short lived session keys. The handshake depends on a CC. */ struct usb_handshake { __u8 bMessageNumber; __u8 bStatus; __u8 tTKID[3]; __u8 bReserved; __u8 CDID[16]; __u8 nonce[16]; __u8 MIC[8]; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_REQ_SET_CONNECTION modifies or revokes a connection context (CC). * A CC may also be set up using non-wireless secure channels (including * wired USB!), and some devices may support CCs with multiple hosts. */ struct usb_connection_context { __u8 CHID[16]; /* persistent host id */ __u8 CDID[16]; /* device id (unique w/in host context) */ __u8 CK[16]; /* connection key */ } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB 2.0 defines three speeds, here's how Linux identifies them */ enum usb_device_speed { USB_SPEED_UNKNOWN = 0, /* enumerating */ USB_SPEED_LOW, USB_SPEED_FULL, /* usb 1.1 */ USB_SPEED_HIGH, /* usb 2.0 */ USB_SPEED_WIRELESS, /* wireless (usb 2.5) */ USB_SPEED_SUPER, /* usb 3.0 */ USB_SPEED_SUPER_PLUS, /* usb 3.1 */ }; enum usb_device_state { /* NOTATTACHED isn't in the USB spec, and this state acts * the same as ATTACHED ... but it's clearer this way. */ USB_STATE_NOTATTACHED = 0, /* chapter 9 and authentication (wireless) device states */ USB_STATE_ATTACHED, USB_STATE_POWERED, /* wired */ USB_STATE_RECONNECTING, /* auth */ USB_STATE_UNAUTHENTICATED, /* auth */ USB_STATE_DEFAULT, /* limited function */ USB_STATE_ADDRESS, USB_STATE_CONFIGURED, /* most functions */ USB_STATE_SUSPENDED /* NOTE: there are actually four different SUSPENDED * states, returning to POWERED, DEFAULT, ADDRESS, or * CONFIGURED respectively when SOF tokens flow again. * At this level there's no difference between L1 and L2 * suspend states. (L2 being original USB 1.1 suspend.) */ }; enum usb3_link_state { USB3_LPM_U0 = 0, USB3_LPM_U1, USB3_LPM_U2, USB3_LPM_U3 }; /* * A U1 timeout of 0x0 means the parent hub will reject any transitions to U1. * 0xff means the parent hub will accept transitions to U1, but will not * initiate a transition. * * A U1 timeout of 0x1 to 0x7F also causes the hub to initiate a transition to * U1 after that many microseconds. Timeouts of 0x80 to 0xFE are reserved * values. * * A U2 timeout of 0x0 means the parent hub will reject any transitions to U2. * 0xff means the parent hub will accept transitions to U2, but will not * initiate a transition. * * A U2 timeout of 0x1 to 0xFE also causes the hub to initiate a transition to * U2 after N*256 microseconds. Therefore a U2 timeout value of 0x1 means a U2 * idle timer of 256 microseconds, 0x2 means 512 microseconds, 0xFE means * 65.024ms. */ #define USB3_LPM_DISABLED 0x0 #define USB3_LPM_U1_MAX_TIMEOUT 0x7F #define USB3_LPM_U2_MAX_TIMEOUT 0xFE #define USB3_LPM_DEVICE_INITIATED 0xFF struct usb_set_sel_req { __u8 u1_sel; __u8 u1_pel; __le16 u2_sel; __le16 u2_pel; } __attribute__ ((packed)); /* * The Set System Exit Latency control transfer provides one byte each for * U1 SEL and U1 PEL, so the max exit latency is 0xFF. U2 SEL and U2 PEL each * are two bytes long. */ #define USB3_LPM_MAX_U1_SEL_PEL 0xFF #define USB3_LPM_MAX_U2_SEL_PEL 0xFFFF /*-------------------------------------------------------------------------*/ /* * As per USB compliance update, a device that is actively drawing * more than 100mA from USB must report itself as bus-powered in * the GetStatus(DEVICE) call. * https://compliance.usb.org/index.asp?UpdateFile=Electrical&Format=Standard#34 */ #define USB_SELF_POWER_VBUS_MAX_DRAW 100 #endif /* _UAPI__LINUX_USB_CH9_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MM_H #define _LINUX_MM_H #include <linux/errno.h> #ifdef __KERNEL__ #include <linux/mmdebug.h> #include <linux/gfp.h> #include <linux/bug.h> #include <linux/list.h> #include <linux/mmzone.h> #include <linux/rbtree.h> #include <linux/atomic.h> #include <linux/debug_locks.h> #include <linux/mm_types.h> #include <linux/mmap_lock.h> #include <linux/range.h> #include <linux/pfn.h> #include <linux/percpu-refcount.h> #include <linux/bit_spinlock.h> #include <linux/shrinker.h> #include <linux/resource.h> #include <linux/page_ext.h> #include <linux/err.h> #include <linux/page-flags.h> #include <linux/page_ref.h> #include <linux/memremap.h> #include <linux/overflow.h> #include <linux/sizes.h> #include <linux/sched.h> #include <linux/pgtable.h> struct mempolicy; struct anon_vma; struct anon_vma_chain; struct file_ra_state; struct user_struct; struct writeback_control; struct bdi_writeback; struct pt_regs; extern int sysctl_page_lock_unfairness; void init_mm_internals(void); #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ extern unsigned long max_mapnr; static inline void set_max_mapnr(unsigned long limit) { max_mapnr = limit; } #else static inline void set_max_mapnr(unsigned long limit) { } #endif extern atomic_long_t _totalram_pages; static inline unsigned long totalram_pages(void) { return (unsigned long)atomic_long_read(&_totalram_pages); } static inline void totalram_pages_inc(void) { atomic_long_inc(&_totalram_pages); } static inline void totalram_pages_dec(void) { atomic_long_dec(&_totalram_pages); } static inline void totalram_pages_add(long count) { atomic_long_add(count, &_totalram_pages); } extern void * high_memory; extern int page_cluster; #ifdef CONFIG_SYSCTL extern int sysctl_legacy_va_layout; #else #define sysctl_legacy_va_layout 0 #endif #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS extern const int mmap_rnd_bits_min; extern const int mmap_rnd_bits_max; extern int mmap_rnd_bits __read_mostly; #endif #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS extern const int mmap_rnd_compat_bits_min; extern const int mmap_rnd_compat_bits_max; extern int mmap_rnd_compat_bits __read_mostly; #endif #include <asm/page.h> #include <asm/processor.h> /* * Architectures that support memory tagging (assigning tags to memory regions, * embedding these tags into addresses that point to these memory regions, and * checking that the memory and the pointer tags match on memory accesses) * redefine this macro to strip tags from pointers. * It's defined as noop for arcitectures that don't support memory tagging. */ #ifndef untagged_addr #define untagged_addr(addr) (addr) #endif #ifndef __pa_symbol #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) #endif #ifndef page_to_virt #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) #endif #ifndef lm_alias #define lm_alias(x) __va(__pa_symbol(x)) #endif /* * To prevent common memory management code establishing * a zero page mapping on a read fault. * This macro should be defined within <asm/pgtable.h>. * s390 does this to prevent multiplexing of hardware bits * related to the physical page in case of virtualization. */ #ifndef mm_forbids_zeropage #define mm_forbids_zeropage(X) (0) #endif /* * On some architectures it is expensive to call memset() for small sizes. * If an architecture decides to implement their own version of * mm_zero_struct_page they should wrap the defines below in a #ifndef and * define their own version of this macro in <asm/pgtable.h> */ #if BITS_PER_LONG == 64 /* This function must be updated when the size of struct page grows above 80 * or reduces below 56. The idea that compiler optimizes out switch() * statement, and only leaves move/store instructions. Also the compiler can * combine write statments if they are both assignments and can be reordered, * this can result in several of the writes here being dropped. */ #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) static inline void __mm_zero_struct_page(struct page *page) { unsigned long *_pp = (void *)page; /* Check that struct page is either 56, 64, 72, or 80 bytes */ BUILD_BUG_ON(sizeof(struct page) & 7); BUILD_BUG_ON(sizeof(struct page) < 56); BUILD_BUG_ON(sizeof(struct page) > 80); switch (sizeof(struct page)) { case 80: _pp[9] = 0; fallthrough; case 72: _pp[8] = 0; fallthrough; case 64: _pp[7] = 0; fallthrough; case 56: _pp[6] = 0; _pp[5] = 0; _pp[4] = 0; _pp[3] = 0; _pp[2] = 0; _pp[1] = 0; _pp[0] = 0; } } #else #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) #endif /* * Default maximum number of active map areas, this limits the number of vmas * per mm struct. Users can overwrite this number by sysctl but there is a * problem. * * When a program's coredump is generated as ELF format, a section is created * per a vma. In ELF, the number of sections is represented in unsigned short. * This means the number of sections should be smaller than 65535 at coredump. * Because the kernel adds some informative sections to a image of program at * generating coredump, we need some margin. The number of extra sections is * 1-3 now and depends on arch. We use "5" as safe margin, here. * * ELF extended numbering allows more than 65535 sections, so 16-bit bound is * not a hard limit any more. Although some userspace tools can be surprised by * that. */ #define MAPCOUNT_ELF_CORE_MARGIN (5) #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) extern int sysctl_max_map_count; extern unsigned long sysctl_user_reserve_kbytes; extern unsigned long sysctl_admin_reserve_kbytes; extern int sysctl_overcommit_memory; extern int sysctl_overcommit_ratio; extern unsigned long sysctl_overcommit_kbytes; int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, loff_t *); #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) /* to align the pointer to the (next) page boundary */ #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) /* * Linux kernel virtual memory manager primitives. * The idea being to have a "virtual" mm in the same way * we have a virtual fs - giving a cleaner interface to the * mm details, and allowing different kinds of memory mappings * (from shared memory to executable loading to arbitrary * mmap() functions). */ struct vm_area_struct *vm_area_alloc(struct mm_struct *); struct vm_area_struct *vm_area_dup(struct vm_area_struct *); void vm_area_free(struct vm_area_struct *); #ifndef CONFIG_MMU extern struct rb_root nommu_region_tree; extern struct rw_semaphore nommu_region_sem; extern unsigned int kobjsize(const void *objp); #endif /* * vm_flags in vm_area_struct, see mm_types.h. * When changing, update also include/trace/events/mmflags.h */ #define VM_NONE 0x00000000 #define VM_READ 0x00000001 /* currently active flags */ #define VM_WRITE 0x00000002 #define VM_EXEC 0x00000004 #define VM_SHARED 0x00000008 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ #define VM_MAYWRITE 0x00000020 #define VM_MAYEXEC 0x00000040 #define VM_MAYSHARE 0x00000080 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ #define VM_LOCKED 0x00002000 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ /* Used by sys_madvise() */ #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ #define VM_SYNC 0x00800000 /* Synchronous page faults */ #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ #ifdef CONFIG_MEM_SOFT_DIRTY # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ #else # define VM_SOFTDIRTY 0 #endif #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ #ifdef CONFIG_ARCH_HAS_PKEYS # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 #ifdef CONFIG_PPC # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 #else # define VM_PKEY_BIT4 0 #endif #endif /* CONFIG_ARCH_HAS_PKEYS */ #if defined(CONFIG_X86) # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ #elif defined(CONFIG_PPC) # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ #elif defined(CONFIG_PARISC) # define VM_GROWSUP VM_ARCH_1 #elif defined(CONFIG_IA64) # define VM_GROWSUP VM_ARCH_1 #elif defined(CONFIG_SPARC64) # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ # define VM_ARCH_CLEAR VM_SPARC_ADI #elif defined(CONFIG_ARM64) # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ # define VM_ARCH_CLEAR VM_ARM64_BTI #elif !defined(CONFIG_MMU) # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ #endif #if defined(CONFIG_ARM64_MTE) # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ #else # define VM_MTE VM_NONE # define VM_MTE_ALLOWED VM_NONE #endif #ifndef VM_GROWSUP # define VM_GROWSUP VM_NONE #endif /* Bits set in the VMA until the stack is in its final location */ #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) /* Common data flag combinations */ #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ VM_MAYWRITE | VM_MAYEXEC) #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC #endif #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS #endif #ifdef CONFIG_STACK_GROWSUP #define VM_STACK VM_GROWSUP #else #define VM_STACK VM_GROWSDOWN #endif #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) /* VMA basic access permission flags */ #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) /* * Special vmas that are non-mergable, non-mlock()able. */ #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) /* This mask prevents VMA from being scanned with khugepaged */ #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) /* This mask defines which mm->def_flags a process can inherit its parent */ #define VM_INIT_DEF_MASK VM_NOHUGEPAGE /* This mask is used to clear all the VMA flags used by mlock */ #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) /* Arch-specific flags to clear when updating VM flags on protection change */ #ifndef VM_ARCH_CLEAR # define VM_ARCH_CLEAR VM_NONE #endif #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) /* * mapping from the currently active vm_flags protection bits (the * low four bits) to a page protection mask.. */ extern pgprot_t protection_map[16]; /** * Fault flag definitions. * * @FAULT_FLAG_WRITE: Fault was a write fault. * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. * @FAULT_FLAG_TRIED: The fault has been tried once. * @FAULT_FLAG_USER: The fault originated in userspace. * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. * * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify * whether we would allow page faults to retry by specifying these two * fault flags correctly. Currently there can be three legal combinations: * * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and * this is the first try * * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and * we've already tried at least once * * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry * * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never * be used. Note that page faults can be allowed to retry for multiple times, * in which case we'll have an initial fault with flags (a) then later on * continuous faults with flags (b). We should always try to detect pending * signals before a retry to make sure the continuous page faults can still be * interrupted if necessary. */ #define FAULT_FLAG_WRITE 0x01 #define FAULT_FLAG_MKWRITE 0x02 #define FAULT_FLAG_ALLOW_RETRY 0x04 #define FAULT_FLAG_RETRY_NOWAIT 0x08 #define FAULT_FLAG_KILLABLE 0x10 #define FAULT_FLAG_TRIED 0x20 #define FAULT_FLAG_USER 0x40 #define FAULT_FLAG_REMOTE 0x80 #define FAULT_FLAG_INSTRUCTION 0x100 #define FAULT_FLAG_INTERRUPTIBLE 0x200 /* * The default fault flags that should be used by most of the * arch-specific page fault handlers. */ #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ FAULT_FLAG_KILLABLE | \ FAULT_FLAG_INTERRUPTIBLE) /** * fault_flag_allow_retry_first - check ALLOW_RETRY the first time * * This is mostly used for places where we want to try to avoid taking * the mmap_lock for too long a time when waiting for another condition * to change, in which case we can try to be polite to release the * mmap_lock in the first round to avoid potential starvation of other * processes that would also want the mmap_lock. * * Return: true if the page fault allows retry and this is the first * attempt of the fault handling; false otherwise. */ static inline bool fault_flag_allow_retry_first(unsigned int flags) { return (flags & FAULT_FLAG_ALLOW_RETRY) && (!(flags & FAULT_FLAG_TRIED)); } #define FAULT_FLAG_TRACE \ { FAULT_FLAG_WRITE, "WRITE" }, \ { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ { FAULT_FLAG_TRIED, "TRIED" }, \ { FAULT_FLAG_USER, "USER" }, \ { FAULT_FLAG_REMOTE, "REMOTE" }, \ { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } /* * vm_fault is filled by the pagefault handler and passed to the vma's * ->fault function. The vma's ->fault is responsible for returning a bitmask * of VM_FAULT_xxx flags that give details about how the fault was handled. * * MM layer fills up gfp_mask for page allocations but fault handler might * alter it if its implementation requires a different allocation context. * * pgoff should be used in favour of virtual_address, if possible. */ struct vm_fault { struct vm_area_struct *vma; /* Target VMA */ unsigned int flags; /* FAULT_FLAG_xxx flags */ gfp_t gfp_mask; /* gfp mask to be used for allocations */ pgoff_t pgoff; /* Logical page offset based on vma */ unsigned long address; /* Faulting virtual address */ pmd_t *pmd; /* Pointer to pmd entry matching * the 'address' */ pud_t *pud; /* Pointer to pud entry matching * the 'address' */ pte_t orig_pte; /* Value of PTE at the time of fault */ struct page *cow_page; /* Page handler may use for COW fault */ struct page *page; /* ->fault handlers should return a * page here, unless VM_FAULT_NOPAGE * is set (which is also implied by * VM_FAULT_ERROR). */ /* These three entries are valid only while holding ptl lock */ pte_t *pte; /* Pointer to pte entry matching * the 'address'. NULL if the page * table hasn't been allocated. */ spinlock_t *ptl; /* Page table lock. * Protects pte page table if 'pte' * is not NULL, otherwise pmd. */ pgtable_t prealloc_pte; /* Pre-allocated pte page table. * vm_ops->map_pages() calls * alloc_set_pte() from atomic context. * do_fault_around() pre-allocates * page table to avoid allocation from * atomic context. */ }; /* page entry size for vm->huge_fault() */ enum page_entry_size { PE_SIZE_PTE = 0, PE_SIZE_PMD, PE_SIZE_PUD, }; /* * These are the virtual MM functions - opening of an area, closing and * unmapping it (needed to keep files on disk up-to-date etc), pointer * to the functions called when a no-page or a wp-page exception occurs. */ struct vm_operations_struct { void (*open)(struct vm_area_struct * area); void (*close)(struct vm_area_struct * area); int (*split)(struct vm_area_struct * area, unsigned long addr); int (*mremap)(struct vm_area_struct * area); vm_fault_t (*fault)(struct vm_fault *vmf); vm_fault_t (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); void (*map_pages)(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff); unsigned long (*pagesize)(struct vm_area_struct * area); /* notification that a previously read-only page is about to become * writable, if an error is returned it will cause a SIGBUS */ vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); /* called by access_process_vm when get_user_pages() fails, typically * for use by special VMAs that can switch between memory and hardware */ int (*access)(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write); /* Called by the /proc/PID/maps code to ask the vma whether it * has a special name. Returning non-NULL will also cause this * vma to be dumped unconditionally. */ const char *(*name)(struct vm_area_struct *vma); #ifdef CONFIG_NUMA /* * set_policy() op must add a reference to any non-NULL @new mempolicy * to hold the policy upon return. Caller should pass NULL @new to * remove a policy and fall back to surrounding context--i.e. do not * install a MPOL_DEFAULT policy, nor the task or system default * mempolicy. */ int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); /* * get_policy() op must add reference [mpol_get()] to any policy at * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure * in mm/mempolicy.c will do this automatically. * get_policy() must NOT add a ref if the policy at (vma,addr) is not * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. * If no [shared/vma] mempolicy exists at the addr, get_policy() op * must return NULL--i.e., do not "fallback" to task or system default * policy. */ struct mempolicy *(*get_policy)(struct vm_area_struct *vma, unsigned long addr); #endif /* * Called by vm_normal_page() for special PTEs to find the * page for @addr. This is useful if the default behavior * (using pte_page()) would not find the correct page. */ struct page *(*find_special_page)(struct vm_area_struct *vma, unsigned long addr); }; static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) { static const struct vm_operations_struct dummy_vm_ops = {}; memset(vma, 0, sizeof(*vma)); vma->vm_mm = mm; vma->vm_ops = &dummy_vm_ops; INIT_LIST_HEAD(&vma->anon_vma_chain); } static inline void vma_set_anonymous(struct vm_area_struct *vma) { vma->vm_ops = NULL; } static inline bool vma_is_anonymous(struct vm_area_struct *vma) { return !vma->vm_ops; } static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) { int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); if (!maybe_stack) return false; if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == VM_STACK_INCOMPLETE_SETUP) return true; return false; } static inline bool vma_is_foreign(struct vm_area_struct *vma) { if (!current->mm) return true; if (current->mm != vma->vm_mm) return true; return false; } static inline bool vma_is_accessible(struct vm_area_struct *vma) { return vma->vm_flags & VM_ACCESS_FLAGS; } #ifdef CONFIG_SHMEM /* * The vma_is_shmem is not inline because it is used only by slow * paths in userfault. */ bool vma_is_shmem(struct vm_area_struct *vma); #else static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } #endif int vma_is_stack_for_current(struct vm_area_struct *vma); /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } struct mmu_gather; struct inode; #include <linux/huge_mm.h> /* * Methods to modify the page usage count. * * What counts for a page usage: * - cache mapping (page->mapping) * - private data (page->private) * - page mapped in a task's page tables, each mapping * is counted separately * * Also, many kernel routines increase the page count before a critical * routine so they can be sure the page doesn't go away from under them. */ /* * Drop a ref, return true if the refcount fell to zero (the page has no users) */ static inline int put_page_testzero(struct page *page) { VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); return page_ref_dec_and_test(page); } /* * Try to grab a ref unless the page has a refcount of zero, return false if * that is the case. * This can be called when MMU is off so it must not access * any of the virtual mappings. */ static inline int get_page_unless_zero(struct page *page) { return page_ref_add_unless(page, 1, 0); } extern int page_is_ram(unsigned long pfn); enum { REGION_INTERSECTS, REGION_DISJOINT, REGION_MIXED, }; int region_intersects(resource_size_t offset, size_t size, unsigned long flags, unsigned long desc); /* Support for virtually mapped pages */ struct page *vmalloc_to_page(const void *addr); unsigned long vmalloc_to_pfn(const void *addr); /* * Determine if an address is within the vmalloc range * * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there * is no special casing required. */ #ifndef is_ioremap_addr #define is_ioremap_addr(x) is_vmalloc_addr(x) #endif #ifdef CONFIG_MMU extern bool is_vmalloc_addr(const void *x); extern int is_vmalloc_or_module_addr(const void *x); #else static inline bool is_vmalloc_addr(const void *x) { return false; } static inline int is_vmalloc_or_module_addr(const void *x) { return 0; } #endif extern void *kvmalloc_node(size_t size, gfp_t flags, int node); static inline void *kvmalloc(size_t size, gfp_t flags) { return kvmalloc_node(size, flags, NUMA_NO_NODE); } static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) { return kvmalloc_node(size, flags | __GFP_ZERO, node); } static inline void *kvzalloc(size_t size, gfp_t flags) { return kvmalloc(size, flags | __GFP_ZERO); } static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; return kvmalloc(bytes, flags); } static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) { return kvmalloc_array(n, size, flags | __GFP_ZERO); } extern void kvfree(const void *addr); extern void kvfree_sensitive(const void *addr, size_t len); static inline int head_compound_mapcount(struct page *head) { return atomic_read(compound_mapcount_ptr(head)) + 1; } /* * Mapcount of compound page as a whole, does not include mapped sub-pages. * * Must be called only for compound pages or any their tail sub-pages. */ static inline int compound_mapcount(struct page *page) { VM_BUG_ON_PAGE(!PageCompound(page), page); page = compound_head(page); return head_compound_mapcount(page); } /* * The atomic page->_mapcount, starts from -1: so that transitions * both from it and to it can be tracked, using atomic_inc_and_test * and atomic_add_negative(-1). */ static inline void page_mapcount_reset(struct page *page) { atomic_set(&(page)->_mapcount, -1); } int __page_mapcount(struct page *page); /* * Mapcount of 0-order page; when compound sub-page, includes * compound_mapcount(). * * Result is undefined for pages which cannot be mapped into userspace. * For example SLAB or special types of pages. See function page_has_type(). * They use this place in struct page differently. */ static inline int page_mapcount(struct page *page) { if (unlikely(PageCompound(page))) return __page_mapcount(page); return atomic_read(&page->_mapcount) + 1; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE int total_mapcount(struct page *page); int page_trans_huge_mapcount(struct page *page, int *total_mapcount); #else static inline int total_mapcount(struct page *page) { return page_mapcount(page); } static inline int page_trans_huge_mapcount(struct page *page, int *total_mapcount) { int mapcount = page_mapcount(page); if (total_mapcount) *total_mapcount = mapcount; return mapcount; } #endif static inline struct page *virt_to_head_page(const void *x) { struct page *page = virt_to_page(x); return compound_head(page); } void __put_page(struct page *page); void put_pages_list(struct list_head *pages); void split_page(struct page *page, unsigned int order); /* * Compound pages have a destructor function. Provide a * prototype for that function and accessor functions. * These are _only_ valid on the head of a compound page. */ typedef void compound_page_dtor(struct page *); /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ enum compound_dtor_id { NULL_COMPOUND_DTOR, COMPOUND_PAGE_DTOR, #ifdef CONFIG_HUGETLB_PAGE HUGETLB_PAGE_DTOR, #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE TRANSHUGE_PAGE_DTOR, #endif NR_COMPOUND_DTORS, }; extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; static inline void set_compound_page_dtor(struct page *page, enum compound_dtor_id compound_dtor) { VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); page[1].compound_dtor = compound_dtor; } static inline void destroy_compound_page(struct page *page) { VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); compound_page_dtors[page[1].compound_dtor](page); } static inline unsigned int compound_order(struct page *page) { if (!PageHead(page)) return 0; return page[1].compound_order; } static inline bool hpage_pincount_available(struct page *page) { /* * Can the page->hpage_pinned_refcount field be used? That field is in * the 3rd page of the compound page, so the smallest (2-page) compound * pages cannot support it. */ page = compound_head(page); return PageCompound(page) && compound_order(page) > 1; } static inline int head_compound_pincount(struct page *head) { return atomic_read(compound_pincount_ptr(head)); } static inline int compound_pincount(struct page *page) { VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); page = compound_head(page); return head_compound_pincount(page); } static inline void set_compound_order(struct page *page, unsigned int order) { page[1].compound_order = order; page[1].compound_nr = 1U << order; } /* Returns the number of pages in this potentially compound page. */ static inline unsigned long compound_nr(struct page *page) { if (!PageHead(page)) return 1; return page[1].compound_nr; } /* Returns the number of bytes in this potentially compound page. */ static inline unsigned long page_size(struct page *page) { return PAGE_SIZE << compound_order(page); } /* Returns the number of bits needed for the number of bytes in a page */ static inline unsigned int page_shift(struct page *page) { return PAGE_SHIFT + compound_order(page); } void free_compound_page(struct page *page); #ifdef CONFIG_MMU /* * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when * servicing faults for write access. In the normal case, do always want * pte_mkwrite. But get_user_pages can cause write faults for mappings * that do not have writing enabled, when used by access_process_vm. */ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) { if (likely(vma->vm_flags & VM_WRITE)) pte = pte_mkwrite(pte); return pte; } vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); vm_fault_t finish_fault(struct vm_fault *vmf); vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); #endif /* * Multiple processes may "see" the same page. E.g. for untouched * mappings of /dev/null, all processes see the same page full of * zeroes, and text pages of executables and shared libraries have * only one copy in memory, at most, normally. * * For the non-reserved pages, page_count(page) denotes a reference count. * page_count() == 0 means the page is free. page->lru is then used for * freelist management in the buddy allocator. * page_count() > 0 means the page has been allocated. * * Pages are allocated by the slab allocator in order to provide memory * to kmalloc and kmem_cache_alloc. In this case, the management of the * page, and the fields in 'struct page' are the responsibility of mm/slab.c * unless a particular usage is carefully commented. (the responsibility of * freeing the kmalloc memory is the caller's, of course). * * A page may be used by anyone else who does a __get_free_page(). * In this case, page_count still tracks the references, and should only * be used through the normal accessor functions. The top bits of page->flags * and page->virtual store page management information, but all other fields * are unused and could be used privately, carefully. The management of this * page is the responsibility of the one who allocated it, and those who have * subsequently been given references to it. * * The other pages (we may call them "pagecache pages") are completely * managed by the Linux memory manager: I/O, buffers, swapping etc. * The following discussion applies only to them. * * A pagecache page contains an opaque `private' member, which belongs to the * page's address_space. Usually, this is the address of a circular list of * the page's disk buffers. PG_private must be set to tell the VM to call * into the filesystem to release these pages. * * A page may belong to an inode's memory mapping. In this case, page->mapping * is the pointer to the inode, and page->index is the file offset of the page, * in units of PAGE_SIZE. * * If pagecache pages are not associated with an inode, they are said to be * anonymous pages. These may become associated with the swapcache, and in that * case PG_swapcache is set, and page->private is an offset into the swapcache. * * In either case (swapcache or inode backed), the pagecache itself holds one * reference to the page. Setting PG_private should also increment the * refcount. The each user mapping also has a reference to the page. * * The pagecache pages are stored in a per-mapping radix tree, which is * rooted at mapping->i_pages, and indexed by offset. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space * lists, we instead now tag pages as dirty/writeback in the radix tree. * * All pagecache pages may be subject to I/O: * - inode pages may need to be read from disk, * - inode pages which have been modified and are MAP_SHARED may need * to be written back to the inode on disk, * - anonymous pages (including MAP_PRIVATE file mappings) which have been * modified may need to be swapped out to swap space and (later) to be read * back into memory. */ /* * The zone field is never updated after free_area_init_core() * sets it, so none of the operations on it need to be atomic. */ /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) /* * Define the bit shifts to access each section. For non-existent * sections we define the shift as 0; that plus a 0 mask ensures * the compiler will optimise away reference to them. */ #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ #ifdef NODE_NOT_IN_PAGE_FLAGS #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ SECTIONS_PGOFF : ZONES_PGOFF) #else #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ NODES_PGOFF : ZONES_PGOFF) #endif #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) #define NODES_MASK ((1UL << NODES_WIDTH) - 1) #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) static inline enum zone_type page_zonenum(const struct page *page) { ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; } #ifdef CONFIG_ZONE_DEVICE static inline bool is_zone_device_page(const struct page *page) { return page_zonenum(page) == ZONE_DEVICE; } extern void memmap_init_zone_device(struct zone *, unsigned long, unsigned long, struct dev_pagemap *); #else static inline bool is_zone_device_page(const struct page *page) { return false; } #endif #ifdef CONFIG_DEV_PAGEMAP_OPS void free_devmap_managed_page(struct page *page); DECLARE_STATIC_KEY_FALSE(devmap_managed_key); static inline bool page_is_devmap_managed(struct page *page) { if (!static_branch_unlikely(&devmap_managed_key)) return false; if (!is_zone_device_page(page)) return false; switch (page->pgmap->type) { case MEMORY_DEVICE_PRIVATE: case MEMORY_DEVICE_FS_DAX: return true; default: break; } return false; } void put_devmap_managed_page(struct page *page); #else /* CONFIG_DEV_PAGEMAP_OPS */ static inline bool page_is_devmap_managed(struct page *page) { return false; } static inline void put_devmap_managed_page(struct page *page) { } #endif /* CONFIG_DEV_PAGEMAP_OPS */ static inline bool is_device_private_page(const struct page *page) { return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && IS_ENABLED(CONFIG_DEVICE_PRIVATE) && is_zone_device_page(page) && page->pgmap->type == MEMORY_DEVICE_PRIVATE; } static inline bool is_pci_p2pdma_page(const struct page *page) { return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && IS_ENABLED(CONFIG_PCI_P2PDMA) && is_zone_device_page(page) && page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; } /* 127: arbitrary random number, small enough to assemble well */ #define page_ref_zero_or_close_to_overflow(page) \ ((unsigned int) page_ref_count(page) + 127u <= 127u) static inline void get_page(struct page *page) { page = compound_head(page); /* * Getting a normal page or the head of a compound page * requires to already have an elevated page->_refcount. */ VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); page_ref_inc(page); } bool __must_check try_grab_page(struct page *page, unsigned int flags); static inline __must_check bool try_get_page(struct page *page) { page = compound_head(page); if (WARN_ON_ONCE(page_ref_count(page) <= 0)) return false; page_ref_inc(page); return true; } static inline void put_page(struct page *page) { page = compound_head(page); /* * For devmap managed pages we need to catch refcount transition from * 2 to 1, when refcount reach one it means the page is free and we * need to inform the device driver through callback. See * include/linux/memremap.h and HMM for details. */ if (page_is_devmap_managed(page)) { put_devmap_managed_page(page); return; } if (put_page_testzero(page)) __put_page(page); } /* * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload * the page's refcount so that two separate items are tracked: the original page * reference count, and also a new count of how many pin_user_pages() calls were * made against the page. ("gup-pinned" is another term for the latter). * * With this scheme, pin_user_pages() becomes special: such pages are marked as * distinct from normal pages. As such, the unpin_user_page() call (and its * variants) must be used in order to release gup-pinned pages. * * Choice of value: * * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference * counts with respect to pin_user_pages() and unpin_user_page() becomes * simpler, due to the fact that adding an even power of two to the page * refcount has the effect of using only the upper N bits, for the code that * counts up using the bias value. This means that the lower bits are left for * the exclusive use of the original code that increments and decrements by one * (or at least, by much smaller values than the bias value). * * Of course, once the lower bits overflow into the upper bits (and this is * OK, because subtraction recovers the original values), then visual inspection * no longer suffices to directly view the separate counts. However, for normal * applications that don't have huge page reference counts, this won't be an * issue. * * Locking: the lockless algorithm described in page_cache_get_speculative() * and page_cache_gup_pin_speculative() provides safe operation for * get_user_pages and page_mkclean and other calls that race to set up page * table entries. */ #define GUP_PIN_COUNTING_BIAS (1U << 10) void unpin_user_page(struct page *page); void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, bool make_dirty); void unpin_user_pages(struct page **pages, unsigned long npages); /** * page_maybe_dma_pinned() - report if a page is pinned for DMA. * * This function checks if a page has been pinned via a call to * pin_user_pages*(). * * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, * because it means "definitely not pinned for DMA", but true means "probably * pinned for DMA, but possibly a false positive due to having at least * GUP_PIN_COUNTING_BIAS worth of normal page references". * * False positives are OK, because: a) it's unlikely for a page to get that many * refcounts, and b) all the callers of this routine are expected to be able to * deal gracefully with a false positive. * * For huge pages, the result will be exactly correct. That's because we have * more tracking data available: the 3rd struct page in the compound page is * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS * scheme). * * For more information, please see Documentation/core-api/pin_user_pages.rst. * * @page: pointer to page to be queried. * @Return: True, if it is likely that the page has been "dma-pinned". * False, if the page is definitely not dma-pinned. */ static inline bool page_maybe_dma_pinned(struct page *page) { if (hpage_pincount_available(page)) return compound_pincount(page) > 0; /* * page_ref_count() is signed. If that refcount overflows, then * page_ref_count() returns a negative value, and callers will avoid * further incrementing the refcount. * * Here, for that overflow case, use the signed bit to count a little * bit higher via unsigned math, and thus still get an accurate result. */ return ((unsigned int)page_ref_count(compound_head(page))) >= GUP_PIN_COUNTING_BIAS; } #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) #define SECTION_IN_PAGE_FLAGS #endif /* * The identification function is mainly used by the buddy allocator for * determining if two pages could be buddies. We are not really identifying * the zone since we could be using the section number id if we do not have * node id available in page flags. * We only guarantee that it will return the same value for two combinable * pages in a zone. */ static inline int page_zone_id(struct page *page) { return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; } #ifdef NODE_NOT_IN_PAGE_FLAGS extern int page_to_nid(const struct page *page); #else static inline int page_to_nid(const struct page *page) { struct page *p = (struct page *)page; return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; } #endif #ifdef CONFIG_NUMA_BALANCING static inline int cpu_pid_to_cpupid(int cpu, int pid) { return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); } static inline int cpupid_to_pid(int cpupid) { return cpupid & LAST__PID_MASK; } static inline int cpupid_to_cpu(int cpupid) { return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; } static inline int cpupid_to_nid(int cpupid) { return cpu_to_node(cpupid_to_cpu(cpupid)); } static inline bool cpupid_pid_unset(int cpupid) { return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); } static inline bool cpupid_cpu_unset(int cpupid) { return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); } static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) { return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); } #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS static inline int page_cpupid_xchg_last(struct page *page, int cpupid) { return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); } static inline int page_cpupid_last(struct page *page) { return page->_last_cpupid; } static inline void page_cpupid_reset_last(struct page *page) { page->_last_cpupid = -1 & LAST_CPUPID_MASK; } #else static inline int page_cpupid_last(struct page *page) { return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; } extern int page_cpupid_xchg_last(struct page *page, int cpupid); static inline void page_cpupid_reset_last(struct page *page) { page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; } #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ #else /* !CONFIG_NUMA_BALANCING */ static inline int page_cpupid_xchg_last(struct page *page, int cpupid) { return page_to_nid(page); /* XXX */ } static inline int page_cpupid_last(struct page *page) { return page_to_nid(page); /* XXX */ } static inline int cpupid_to_nid(int cpupid) { return -1; } static inline int cpupid_to_pid(int cpupid) { return -1; } static inline int cpupid_to_cpu(int cpupid) { return -1; } static inline int cpu_pid_to_cpupid(int nid, int pid) { return -1; } static inline bool cpupid_pid_unset(int cpupid) { return true; } static inline void page_cpupid_reset_last(struct page *page) { } static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) { return false; } #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_KASAN_SW_TAGS /* * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid * setting tags for all pages to native kernel tag value 0xff, as the default * value 0x00 maps to 0xff. */ static inline u8 page_kasan_tag(const struct page *page) { u8 tag; tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; tag ^= 0xff; return tag; } static inline void page_kasan_tag_set(struct page *page, u8 tag) { tag ^= 0xff; page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; } static inline void page_kasan_tag_reset(struct page *page) { page_kasan_tag_set(page, 0xff); } #else static inline u8 page_kasan_tag(const struct page *page) { return 0xff; } static inline void page_kasan_tag_set(struct page *page, u8 tag) { } static inline void page_kasan_tag_reset(struct page *page) { } #endif static inline struct zone *page_zone(const struct page *page) { return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; } static inline pg_data_t *page_pgdat(const struct page *page) { return NODE_DATA(page_to_nid(page)); } #ifdef SECTION_IN_PAGE_FLAGS static inline void set_page_section(struct page *page, unsigned long section) { page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; } static inline unsigned long page_to_section(const struct page *page) { return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; } #endif static inline void set_page_zone(struct page *page, enum zone_type zone) { page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; } static inline void set_page_node(struct page *page, unsigned long node) { page->flags &= ~(NODES_MASK << NODES_PGSHIFT); page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; } static inline void set_page_links(struct page *page, enum zone_type zone, unsigned long node, unsigned long pfn) { set_page_zone(page, zone); set_page_node(page, node); #ifdef SECTION_IN_PAGE_FLAGS set_page_section(page, pfn_to_section_nr(pfn)); #endif } #ifdef CONFIG_MEMCG static inline struct mem_cgroup *page_memcg(struct page *page) { return page->mem_cgroup; } static inline struct mem_cgroup *page_memcg_rcu(struct page *page) { WARN_ON_ONCE(!rcu_read_lock_held()); return READ_ONCE(page->mem_cgroup); } #else static inline struct mem_cgroup *page_memcg(struct page *page) { return NULL; } static inline struct mem_cgroup *page_memcg_rcu(struct page *page) { WARN_ON_ONCE(!rcu_read_lock_held()); return NULL; } #endif /* * Some inline functions in vmstat.h depend on page_zone() */ #include <linux/vmstat.h> static __always_inline void *lowmem_page_address(const struct page *page) { return page_to_virt(page); } #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) #define HASHED_PAGE_VIRTUAL #endif #if defined(WANT_PAGE_VIRTUAL) static inline void *page_address(const struct page *page) { return page->virtual; } static inline void set_page_address(struct page *page, void *address) { page->virtual = address; } #define page_address_init() do { } while(0) #endif #if defined(HASHED_PAGE_VIRTUAL) void *page_address(const struct page *page); void set_page_address(struct page *page, void *virtual); void page_address_init(void); #endif #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) #define page_address(page) lowmem_page_address(page) #define set_page_address(page, address) do { } while(0) #define page_address_init() do { } while(0) #endif extern void *page_rmapping(struct page *page); extern struct anon_vma *page_anon_vma(struct page *page); extern struct address_space *page_mapping(struct page *page); extern struct address_space *__page_file_mapping(struct page *); static inline struct address_space *page_file_mapping(struct page *page) { if (unlikely(PageSwapCache(page))) return __page_file_mapping(page); return page->mapping; } extern pgoff_t __page_file_index(struct page *page); /* * Return the pagecache index of the passed page. Regular pagecache pages * use ->index whereas swapcache pages use swp_offset(->private) */ static inline pgoff_t page_index(struct page *page) { if (unlikely(PageSwapCache(page))) return __page_file_index(page); return page->index; } bool page_mapped(struct page *page); struct address_space *page_mapping(struct page *page); struct address_space *page_mapping_file(struct page *page); /* * Return true only if the page has been allocated with * ALLOC_NO_WATERMARKS and the low watermark was not * met implying that the system is under some pressure. */ static inline bool page_is_pfmemalloc(struct page *page) { /* * Page index cannot be this large so this must be * a pfmemalloc page. */ return page->index == -1UL; } /* * Only to be called by the page allocator on a freshly allocated * page. */ static inline void set_page_pfmemalloc(struct page *page) { page->index = -1UL; } static inline void clear_page_pfmemalloc(struct page *page) { page->index = 0; } /* * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. */ extern void pagefault_out_of_memory(void); #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) /* * Flags passed to show_mem() and show_free_areas() to suppress output in * various contexts. */ #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); #ifdef CONFIG_MMU extern bool can_do_mlock(void); #else static inline bool can_do_mlock(void) { return false; } #endif extern int user_shm_lock(size_t, struct user_struct *); extern void user_shm_unlock(size_t, struct user_struct *); /* * Parameter block passed down to zap_pte_range in exceptional cases. */ struct zap_details { struct address_space *check_mapping; /* Check page->mapping if set */ pgoff_t first_index; /* Lowest page->index to unmap */ pgoff_t last_index; /* Highest page->index to unmap */ struct page *single_page; /* Locked page to be unmapped */ }; struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte); struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd); void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size); void zap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size); void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, unsigned long start, unsigned long end); struct mmu_notifier_range; void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling); int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp); int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn); int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys); int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write); extern void truncate_pagecache(struct inode *inode, loff_t new); extern void truncate_setsize(struct inode *inode, loff_t newsize); void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); int truncate_inode_page(struct address_space *mapping, struct page *page); int generic_error_remove_page(struct address_space *mapping, struct page *page); int invalidate_inode_page(struct page *page); #ifdef CONFIG_MMU extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs); extern int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags, bool *unlocked); void unmap_mapping_page(struct page *page); void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows); void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows); #else static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs) { /* should never happen if there's no MMU */ BUG(); return VM_FAULT_SIGBUS; } static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags, bool *unlocked) { /* should never happen if there's no MMU */ BUG(); return -EFAULT; } static inline void unmap_mapping_page(struct page *page) { } static inline void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows) { } static inline void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) { } #endif static inline void unmap_shared_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen) { unmap_mapping_range(mapping, holebegin, holelen, 0); } extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags); extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags); extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags); long get_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas, int *locked); long pin_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas, int *locked); long get_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas); long pin_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas); long get_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, int *locked); long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, int *locked); long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags); long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags); int get_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int pin_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, struct task_struct *task, bool bypass_rlim); /* Container for pinned pfns / pages */ struct frame_vector { unsigned int nr_allocated; /* Number of frames we have space for */ unsigned int nr_frames; /* Number of frames stored in ptrs array */ bool got_ref; /* Did we pin pages by getting page ref? */ bool is_pfns; /* Does array contain pages or pfns? */ void *ptrs[]; /* Array of pinned pfns / pages. Use * pfns_vector_pages() or pfns_vector_pfns() * for access */ }; struct frame_vector *frame_vector_create(unsigned int nr_frames); void frame_vector_destroy(struct frame_vector *vec); int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, unsigned int gup_flags, struct frame_vector *vec); void put_vaddr_frames(struct frame_vector *vec); int frame_vector_to_pages(struct frame_vector *vec); void frame_vector_to_pfns(struct frame_vector *vec); static inline unsigned int frame_vector_count(struct frame_vector *vec) { return vec->nr_frames; } static inline struct page **frame_vector_pages(struct frame_vector *vec) { if (vec->is_pfns) { int err = frame_vector_to_pages(vec); if (err) return ERR_PTR(err); } return (struct page **)(vec->ptrs); } static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) { if (!vec->is_pfns) frame_vector_to_pfns(vec); return (unsigned long *)(vec->ptrs); } struct kvec; int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, struct page **pages); int get_kernel_page(unsigned long start, int write, struct page **pages); struct page *get_dump_page(unsigned long addr); extern int try_to_release_page(struct page * page, gfp_t gfp_mask); extern void do_invalidatepage(struct page *page, unsigned int offset, unsigned int length); void __set_page_dirty(struct page *, struct address_space *, int warn); int __set_page_dirty_nobuffers(struct page *page); int __set_page_dirty_no_writeback(struct page *page); int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page); void account_page_dirtied(struct page *page, struct address_space *mapping); void account_page_cleaned(struct page *page, struct address_space *mapping, struct bdi_writeback *wb); int set_page_dirty(struct page *page); int set_page_dirty_lock(struct page *page); void __cancel_dirty_page(struct page *page); static inline void cancel_dirty_page(struct page *page) { /* Avoid atomic ops, locking, etc. when not actually needed. */ if (PageDirty(page)) __cancel_dirty_page(page); } int clear_page_dirty_for_io(struct page *page); int get_cmdline(struct task_struct *task, char *buffer, int buflen); extern unsigned long move_page_tables(struct vm_area_struct *vma, unsigned long old_addr, struct vm_area_struct *new_vma, unsigned long new_addr, unsigned long len, bool need_rmap_locks); /* * Flags used by change_protection(). For now we make it a bitmap so * that we can pass in multiple flags just like parameters. However * for now all the callers are only use one of the flags at the same * time. */ /* Whether we should allow dirty bit accounting */ #define MM_CP_DIRTY_ACCT (1UL << 0) /* Whether this protection change is for NUMA hints */ #define MM_CP_PROT_NUMA (1UL << 1) /* Whether this change is for write protecting */ #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ MM_CP_UFFD_WP_RESOLVE) extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgprot_t newprot, unsigned long cp_flags); extern int mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, unsigned long start, unsigned long end, unsigned long newflags); /* * doesn't attempt to fault and will return short. */ int get_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int pin_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); static inline bool get_user_page_fast_only(unsigned long addr, unsigned int gup_flags, struct page **pagep) { return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; } /* * per-process(per-mm_struct) statistics. */ static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) { long val = atomic_long_read(&mm->rss_stat.count[member]); #ifdef SPLIT_RSS_COUNTING /* * counter is updated in asynchronous manner and may go to minus. * But it's never be expected number for users. */ if (val < 0) val = 0; #endif return (unsigned long)val; } void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); static inline void add_mm_counter(struct mm_struct *mm, int member, long value) { long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } static inline void inc_mm_counter(struct mm_struct *mm, int member) { long count = atomic_long_inc_return(&mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } static inline void dec_mm_counter(struct mm_struct *mm, int member) { long count = atomic_long_dec_return(&mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } /* Optimized variant when page is already known not to be PageAnon */ static inline int mm_counter_file(struct page *page) { if (PageSwapBacked(page)) return MM_SHMEMPAGES; return MM_FILEPAGES; } static inline int mm_counter(struct page *page) { if (PageAnon(page)) return MM_ANONPAGES; return mm_counter_file(page); } static inline unsigned long get_mm_rss(struct mm_struct *mm) { return get_mm_counter(mm, MM_FILEPAGES) + get_mm_counter(mm, MM_ANONPAGES) + get_mm_counter(mm, MM_SHMEMPAGES); } static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) { return max(mm->hiwater_rss, get_mm_rss(mm)); } static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) { return max(mm->hiwater_vm, mm->total_vm); } static inline void update_hiwater_rss(struct mm_struct *mm) { unsigned long _rss = get_mm_rss(mm); if ((mm)->hiwater_rss < _rss) (mm)->hiwater_rss = _rss; } static inline void update_hiwater_vm(struct mm_struct *mm) { if (mm->hiwater_vm < mm->total_vm) mm->hiwater_vm = mm->total_vm; } static inline void reset_mm_hiwater_rss(struct mm_struct *mm) { mm->hiwater_rss = get_mm_rss(mm); } static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, struct mm_struct *mm) { unsigned long hiwater_rss = get_mm_hiwater_rss(mm); if (*maxrss < hiwater_rss) *maxrss = hiwater_rss; } #if defined(SPLIT_RSS_COUNTING) void sync_mm_rss(struct mm_struct *mm); #else static inline void sync_mm_rss(struct mm_struct *mm) { } #endif #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL static inline int pte_special(pte_t pte) { return 0; } static inline pte_t pte_mkspecial(pte_t pte) { return pte; } #endif #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pte_devmap(pte_t pte) { return 0; } #endif int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pte_t *ptep; __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); return ptep; } #ifdef __PAGETABLE_P4D_FOLDED static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { return 0; } #else int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); #endif #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { return 0; } static inline void mm_inc_nr_puds(struct mm_struct *mm) {} static inline void mm_dec_nr_puds(struct mm_struct *mm) {} #else int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); static inline void mm_inc_nr_puds(struct mm_struct *mm) { if (mm_pud_folded(mm)) return; atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); } static inline void mm_dec_nr_puds(struct mm_struct *mm) { if (mm_pud_folded(mm)) return; atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); } #endif #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { return 0; } static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} #else int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); static inline void mm_inc_nr_pmds(struct mm_struct *mm) { if (mm_pmd_folded(mm)) return; atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); } static inline void mm_dec_nr_pmds(struct mm_struct *mm) { if (mm_pmd_folded(mm)) return; atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); } #endif #ifdef CONFIG_MMU static inline void mm_pgtables_bytes_init(struct mm_struct *mm) { atomic_long_set(&mm->pgtables_bytes, 0); } static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) { return atomic_long_read(&mm->pgtables_bytes); } static inline void mm_inc_nr_ptes(struct mm_struct *mm) { atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); } static inline void mm_dec_nr_ptes(struct mm_struct *mm) { atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); } #else static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) { return 0; } static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} #endif int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); int __pte_alloc_kernel(pmd_t *pmd); #if defined(CONFIG_MMU) static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? NULL : p4d_offset(pgd, address); } static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? NULL : pud_offset(p4d, address); } static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? NULL: pmd_offset(pud, address); } #endif /* CONFIG_MMU */ #if USE_SPLIT_PTE_PTLOCKS #if ALLOC_SPLIT_PTLOCKS void __init ptlock_cache_init(void); extern bool ptlock_alloc(struct page *page); extern void ptlock_free(struct page *page); static inline spinlock_t *ptlock_ptr(struct page *page) { return page->ptl; } #else /* ALLOC_SPLIT_PTLOCKS */ static inline void ptlock_cache_init(void) { } static inline bool ptlock_alloc(struct page *page) { return true; } static inline void ptlock_free(struct page *page) { } static inline spinlock_t *ptlock_ptr(struct page *page) { return &page->ptl; } #endif /* ALLOC_SPLIT_PTLOCKS */ static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) { return ptlock_ptr(pmd_page(*pmd)); } static inline bool ptlock_init(struct page *page) { /* * prep_new_page() initialize page->private (and therefore page->ptl) * with 0. Make sure nobody took it in use in between. * * It can happen if arch try to use slab for page table allocation: * slab code uses page->slab_cache, which share storage with page->ptl. */ VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); if (!ptlock_alloc(page)) return false; spin_lock_init(ptlock_ptr(page)); return true; } #else /* !USE_SPLIT_PTE_PTLOCKS */ /* * We use mm->page_table_lock to guard all pagetable pages of the mm. */ static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) { return &mm->page_table_lock; } static inline void ptlock_cache_init(void) {} static inline bool ptlock_init(struct page *page) { return true; } static inline void ptlock_free(struct page *page) {} #endif /* USE_SPLIT_PTE_PTLOCKS */ static inline void pgtable_init(void) { ptlock_cache_init(); pgtable_cache_init(); } static inline bool pgtable_pte_page_ctor(struct page *page) { if (!ptlock_init(page)) return false; __SetPageTable(page); inc_zone_page_state(page, NR_PAGETABLE); return true; } static inline void pgtable_pte_page_dtor(struct page *page) { ptlock_free(page); __ClearPageTable(page); dec_zone_page_state(page, NR_PAGETABLE); } #define pte_offset_map_lock(mm, pmd, address, ptlp) \ ({ \ spinlock_t *__ptl = pte_lockptr(mm, pmd); \ pte_t *__pte = pte_offset_map(pmd, address); \ *(ptlp) = __ptl; \ spin_lock(__ptl); \ __pte; \ }) #define pte_unmap_unlock(pte, ptl) do { \ spin_unlock(ptl); \ pte_unmap(pte); \ } while (0) #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) #define pte_alloc_map(mm, pmd, address) \ (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ (pte_alloc(mm, pmd) ? \ NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) #define pte_alloc_kernel(pmd, address) \ ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ NULL: pte_offset_kernel(pmd, address)) #if USE_SPLIT_PMD_PTLOCKS static struct page *pmd_to_page(pmd_t *pmd) { unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); return virt_to_page((void *)((unsigned long) pmd & mask)); } static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) { return ptlock_ptr(pmd_to_page(pmd)); } static inline bool pmd_ptlock_init(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE page->pmd_huge_pte = NULL; #endif return ptlock_init(page); } static inline void pmd_ptlock_free(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE VM_BUG_ON_PAGE(page->pmd_huge_pte, page); #endif ptlock_free(page); } #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) #else static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) { return &mm->page_table_lock; } static inline bool pmd_ptlock_init(struct page *page) { return true; } static inline void pmd_ptlock_free(struct page *page) {} #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) #endif static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) { spinlock_t *ptl = pmd_lockptr(mm, pmd); spin_lock(ptl); return ptl; } static inline bool pgtable_pmd_page_ctor(struct page *page) { if (!pmd_ptlock_init(page)) return false; __SetPageTable(page); inc_zone_page_state(page, NR_PAGETABLE); return true; } static inline void pgtable_pmd_page_dtor(struct page *page) { pmd_ptlock_free(page); __ClearPageTable(page); dec_zone_page_state(page, NR_PAGETABLE); } /* * No scalability reason to split PUD locks yet, but follow the same pattern * as the PMD locks to make it easier if we decide to. The VM should not be * considered ready to switch to split PUD locks yet; there may be places * which need to be converted from page_table_lock. */ static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) { return &mm->page_table_lock; } static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) { spinlock_t *ptl = pud_lockptr(mm, pud); spin_lock(ptl); return ptl; } extern void __init pagecache_init(void); extern void __init free_area_init_memoryless_node(int nid); extern void free_initmem(void); /* * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) * into the buddy system. The freed pages will be poisoned with pattern * "poison" if it's within range [0, UCHAR_MAX]. * Return pages freed into the buddy system. */ extern unsigned long free_reserved_area(void *start, void *end, int poison, const char *s); #ifdef CONFIG_HIGHMEM /* * Free a highmem page into the buddy system, adjusting totalhigh_pages * and totalram_pages. */ extern void free_highmem_page(struct page *page); #endif extern void adjust_managed_page_count(struct page *page, long count); extern void mem_init_print_info(const char *str); extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); /* Free the reserved page into the buddy system, so it gets managed. */ static inline void __free_reserved_page(struct page *page) { ClearPageReserved(page); init_page_count(page); __free_page(page); } static inline void free_reserved_page(struct page *page) { __free_reserved_page(page); adjust_managed_page_count(page, 1); } static inline void mark_page_reserved(struct page *page) { SetPageReserved(page); adjust_managed_page_count(page, -1); } /* * Default method to free all the __init memory into the buddy system. * The freed pages will be poisoned with pattern "poison" if it's within * range [0, UCHAR_MAX]. * Return pages freed into the buddy system. */ static inline unsigned long free_initmem_default(int poison) { extern char __init_begin[], __init_end[]; return free_reserved_area(&__init_begin, &__init_end, poison, "unused kernel"); } static inline unsigned long get_num_physpages(void) { int nid; unsigned long phys_pages = 0; for_each_online_node(nid) phys_pages += node_present_pages(nid); return phys_pages; } /* * Using memblock node mappings, an architecture may initialise its * zones, allocate the backing mem_map and account for memory holes in an * architecture independent manner. * * An architecture is expected to register range of page frames backed by * physical memory with memblock_add[_node]() before calling * free_area_init() passing in the PFN each zone ends at. At a basic * usage, an architecture is expected to do something like * * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, * max_highmem_pfn}; * for_each_valid_physical_page_range() * memblock_add_node(base, size, nid) * free_area_init(max_zone_pfns); */ void free_area_init(unsigned long *max_zone_pfn); unsigned long node_map_pfn_alignment(void); unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, unsigned long end_pfn); extern unsigned long absent_pages_in_range(unsigned long start_pfn, unsigned long end_pfn); extern void get_pfn_range_for_nid(unsigned int nid, unsigned long *start_pfn, unsigned long *end_pfn); extern unsigned long find_min_pfn_with_active_regions(void); #ifndef CONFIG_NEED_MULTIPLE_NODES static inline int early_pfn_to_nid(unsigned long pfn) { return 0; } #else /* please see mm/page_alloc.c */ extern int __meminit early_pfn_to_nid(unsigned long pfn); /* there is a per-arch backend function. */ extern int __meminit __early_pfn_to_nid(unsigned long pfn, struct mminit_pfnnid_cache *state); #endif extern void set_dma_reserve(unsigned long new_dma_reserve); extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, unsigned long, enum meminit_context, struct vmem_altmap *, int migratetype); extern void setup_per_zone_wmarks(void); extern int __meminit init_per_zone_wmark_min(void); extern void mem_init(void); extern void __init mmap_init(void); extern void show_mem(unsigned int flags, nodemask_t *nodemask); extern long si_mem_available(void); extern void si_meminfo(struct sysinfo * val); extern void si_meminfo_node(struct sysinfo *val, int nid); #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES extern unsigned long arch_reserved_kernel_pages(void); #endif extern __printf(3, 4) void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); extern void setup_per_cpu_pageset(void); /* page_alloc.c */ extern int min_free_kbytes; extern int watermark_boost_factor; extern int watermark_scale_factor; extern bool arch_has_descending_max_zone_pfns(void); /* nommu.c */ extern atomic_long_t mmap_pages_allocated; extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); /* interval_tree.c */ void vma_interval_tree_insert(struct vm_area_struct *node, struct rb_root_cached *root); void vma_interval_tree_insert_after(struct vm_area_struct *node, struct vm_area_struct *prev, struct rb_root_cached *root); void vma_interval_tree_remove(struct vm_area_struct *node, struct rb_root_cached *root); struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long start, unsigned long last); struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, unsigned long start, unsigned long last); #define vma_interval_tree_foreach(vma, root, start, last) \ for (vma = vma_interval_tree_iter_first(root, start, last); \ vma; vma = vma_interval_tree_iter_next(vma, start, last)) void anon_vma_interval_tree_insert(struct anon_vma_chain *node, struct rb_root_cached *root); void anon_vma_interval_tree_remove(struct anon_vma_chain *node, struct rb_root_cached *root); struct anon_vma_chain * anon_vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long start, unsigned long last); struct anon_vma_chain *anon_vma_interval_tree_iter_next( struct anon_vma_chain *node, unsigned long start, unsigned long last); #ifdef CONFIG_DEBUG_VM_RB void anon_vma_interval_tree_verify(struct anon_vma_chain *node); #endif #define anon_vma_interval_tree_foreach(avc, root, start, last) \ for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) /* mmap.c */ extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, struct vm_area_struct *expand); static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) { return __vma_adjust(vma, start, end, pgoff, insert, NULL); } extern struct vm_area_struct *vma_merge(struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, unsigned long end, unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx); extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); extern int __split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below); extern int split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below); extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, struct rb_node **, struct rb_node *); extern void unlink_file_vma(struct vm_area_struct *); extern struct vm_area_struct *copy_vma(struct vm_area_struct **, unsigned long addr, unsigned long len, pgoff_t pgoff, bool *need_rmap_locks); extern void exit_mmap(struct mm_struct *); static inline int check_data_rlimit(unsigned long rlim, unsigned long new, unsigned long start, unsigned long end_data, unsigned long start_data) { if (rlim < RLIM_INFINITY) { if (((new - start) + (end_data - start_data)) > rlim) return -ENOSPC; } return 0; } extern int mm_take_all_locks(struct mm_struct *mm); extern void mm_drop_all_locks(struct mm_struct *mm); extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); extern struct file *get_mm_exe_file(struct mm_struct *mm); extern struct file *get_task_exe_file(struct task_struct *task); extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); extern bool vma_is_special_mapping(const struct vm_area_struct *vma, const struct vm_special_mapping *sm); extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long flags, const struct vm_special_mapping *spec); /* This is an obsolete alternative to _install_special_mapping. */ extern int install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long flags, struct page **pages); unsigned long randomize_stack_top(unsigned long stack_top); extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long mmap_region(struct file *file, unsigned long addr, unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, struct list_head *uf); extern unsigned long do_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, unsigned long pgoff, unsigned long *populate, struct list_head *uf); extern int __do_munmap(struct mm_struct *, unsigned long, size_t, struct list_head *uf, bool downgrade); extern int do_munmap(struct mm_struct *, unsigned long, size_t, struct list_head *uf); extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); #ifdef CONFIG_MMU extern int __mm_populate(unsigned long addr, unsigned long len, int ignore_errors); static inline void mm_populate(unsigned long addr, unsigned long len) { /* Ignore errors */ (void) __mm_populate(addr, len, 1); } #else static inline void mm_populate(unsigned long addr, unsigned long len) {} #endif /* These take the mm semaphore themselves */ extern int __must_check vm_brk(unsigned long, unsigned long); extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); extern int vm_munmap(unsigned long, size_t); extern unsigned long __must_check vm_mmap(struct file *, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long); struct vm_unmapped_area_info { #define VM_UNMAPPED_AREA_TOPDOWN 1 unsigned long flags; unsigned long length; unsigned long low_limit; unsigned long high_limit; unsigned long align_mask; unsigned long align_offset; }; extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); /* truncate.c */ extern void truncate_inode_pages(struct address_space *, loff_t); extern void truncate_inode_pages_range(struct address_space *, loff_t lstart, loff_t lend); extern void truncate_inode_pages_final(struct address_space *); /* generic vm_area_ops exported for stackable file systems */ extern vm_fault_t filemap_fault(struct vm_fault *vmf); extern void filemap_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff); extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); /* mm/page-writeback.c */ int __must_check write_one_page(struct page *page); void task_dirty_inc(struct task_struct *tsk); extern unsigned long stack_guard_gap; /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ extern int expand_stack(struct vm_area_struct *vma, unsigned long address); /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ extern int expand_downwards(struct vm_area_struct *vma, unsigned long address); #if VM_GROWSUP extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); #else #define expand_upwards(vma, address) (0) #endif /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, struct vm_area_struct **pprev); /* Look up the first VMA which intersects the interval start_addr..end_addr-1, NULL if none. Assume start_addr < end_addr. */ static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) { struct vm_area_struct * vma = find_vma(mm,start_addr); if (vma && end_addr <= vma->vm_start) vma = NULL; return vma; } static inline unsigned long vm_start_gap(struct vm_area_struct *vma) { unsigned long vm_start = vma->vm_start; if (vma->vm_flags & VM_GROWSDOWN) { vm_start -= stack_guard_gap; if (vm_start > vma->vm_start) vm_start = 0; } return vm_start; } static inline unsigned long vm_end_gap(struct vm_area_struct *vma) { unsigned long vm_end = vma->vm_end; if (vma->vm_flags & VM_GROWSUP) { vm_end += stack_guard_gap; if (vm_end < vma->vm_end) vm_end = -PAGE_SIZE; } return vm_end; } static inline unsigned long vma_pages(struct vm_area_struct *vma) { return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; } /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, unsigned long vm_start, unsigned long vm_end) { struct vm_area_struct *vma = find_vma(mm, vm_start); if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) vma = NULL; return vma; } static inline bool range_in_vma(struct vm_area_struct *vma, unsigned long start, unsigned long end) { return (vma && vma->vm_start <= start && end <= vma->vm_end); } #ifdef CONFIG_MMU pgprot_t vm_get_page_prot(unsigned long vm_flags); void vma_set_page_prot(struct vm_area_struct *vma); #else static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) { return __pgprot(0); } static inline void vma_set_page_prot(struct vm_area_struct *vma) { vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); } #endif #ifdef CONFIG_NUMA_BALANCING unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long start, unsigned long end); #endif struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); int remap_pfn_range(struct vm_area_struct *, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t); int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num); int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num); int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num); vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn); vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot); vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn); vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot); vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn); int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) { int err = vm_insert_page(vma, addr, page); if (err == -ENOMEM) return VM_FAULT_OOM; if (err < 0 && err != -EBUSY) return VM_FAULT_SIGBUS; return VM_FAULT_NOPAGE; } #ifndef io_remap_pfn_range static inline int io_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); } #endif static inline vm_fault_t vmf_error(int err) { if (err == -ENOMEM) return VM_FAULT_OOM; return VM_FAULT_SIGBUS; } struct page *follow_page(struct vm_area_struct *vma, unsigned long address, unsigned int foll_flags); #define FOLL_WRITE 0x01 /* check pte is writable */ #define FOLL_TOUCH 0x02 /* mark page accessed */ #define FOLL_GET 0x04 /* do get_page on page */ #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO * and return without waiting upon it */ #define FOLL_POPULATE 0x40 /* fault in page */ #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ #define FOLL_MLOCK 0x1000 /* lock present pages */ #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ #define FOLL_COW 0x4000 /* internal GUP flag */ #define FOLL_ANON 0x8000 /* don't do file mappings */ #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ /* * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each * other. Here is what they mean, and how to use them: * * FOLL_LONGTERM indicates that the page will be held for an indefinite time * period _often_ under userspace control. This is in contrast to * iov_iter_get_pages(), whose usages are transient. * * FIXME: For pages which are part of a filesystem, mappings are subject to the * lifetime enforced by the filesystem and we need guarantees that longterm * users like RDMA and V4L2 only establish mappings which coordinate usage with * the filesystem. Ideas for this coordination include revoking the longterm * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was * added after the problem with filesystems was found FS DAX VMAs are * specifically failed. Filesystem pages are still subject to bugs and use of * FOLL_LONGTERM should be avoided on those pages. * * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. * Currently only get_user_pages() and get_user_pages_fast() support this flag * and calls to get_user_pages_[un]locked are specifically not allowed. This * is due to an incompatibility with the FS DAX check and * FAULT_FLAG_ALLOW_RETRY. * * In the CMA case: long term pins in a CMA region would unnecessarily fragment * that region. And so, CMA attempts to migrate the page before pinning, when * FOLL_LONGTERM is specified. * * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, * but an additional pin counting system) will be invoked. This is intended for * anything that gets a page reference and then touches page data (for example, * Direct IO). This lets the filesystem know that some non-file-system entity is * potentially changing the pages' data. In contrast to FOLL_GET (whose pages * are released via put_page()), FOLL_PIN pages must be released, ultimately, by * a call to unpin_user_page(). * * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different * and separate refcounting mechanisms, however, and that means that each has * its own acquire and release mechanisms: * * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. * * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. * * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based * calls applied to them, and that's perfectly OK. This is a constraint on the * callers, not on the pages.) * * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never * directly by the caller. That's in order to help avoid mismatches when * releasing pages: get_user_pages*() pages must be released via put_page(), * while pin_user_pages*() pages must be released via unpin_user_page(). * * Please see Documentation/core-api/pin_user_pages.rst for more information. */ static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) { if (vm_fault & VM_FAULT_OOM) return -ENOMEM; if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) return -EFAULT; return 0; } typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn, void *data); extern int apply_to_existing_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn, void *data); #ifdef CONFIG_PAGE_POISONING extern bool page_poisoning_enabled(void); extern void kernel_poison_pages(struct page *page, int numpages, int enable); #else static inline bool page_poisoning_enabled(void) { return false; } static inline void kernel_poison_pages(struct page *page, int numpages, int enable) { } #endif #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON DECLARE_STATIC_KEY_TRUE(init_on_alloc); #else DECLARE_STATIC_KEY_FALSE(init_on_alloc); #endif static inline bool want_init_on_alloc(gfp_t flags) { if (static_branch_unlikely(&init_on_alloc) && !page_poisoning_enabled()) return true; return flags & __GFP_ZERO; } #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON DECLARE_STATIC_KEY_TRUE(init_on_free); #else DECLARE_STATIC_KEY_FALSE(init_on_free); #endif static inline bool want_init_on_free(void) { return static_branch_unlikely(&init_on_free) && !page_poisoning_enabled(); } #ifdef CONFIG_DEBUG_PAGEALLOC extern void init_debug_pagealloc(void); #else static inline void init_debug_pagealloc(void) {} #endif extern bool _debug_pagealloc_enabled_early; DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); static inline bool debug_pagealloc_enabled(void) { return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled_early; } /* * For use in fast paths after init_debug_pagealloc() has run, or when a * false negative result is not harmful when called too early. */ static inline bool debug_pagealloc_enabled_static(void) { if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) return false; return static_branch_unlikely(&_debug_pagealloc_enabled); } #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) extern void __kernel_map_pages(struct page *page, int numpages, int enable); /* * When called in DEBUG_PAGEALLOC context, the call should most likely be * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() */ static inline void kernel_map_pages(struct page *page, int numpages, int enable) { __kernel_map_pages(page, numpages, enable); } #ifdef CONFIG_HIBERNATION extern bool kernel_page_present(struct page *page); #endif /* CONFIG_HIBERNATION */ #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ static inline void kernel_map_pages(struct page *page, int numpages, int enable) {} #ifdef CONFIG_HIBERNATION static inline bool kernel_page_present(struct page *page) { return true; } #endif /* CONFIG_HIBERNATION */ #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ #ifdef __HAVE_ARCH_GATE_AREA extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); extern int in_gate_area_no_mm(unsigned long addr); extern int in_gate_area(struct mm_struct *mm, unsigned long addr); #else static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) { return NULL; } static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) { return 0; } #endif /* __HAVE_ARCH_GATE_AREA */ extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); #ifdef CONFIG_SYSCTL extern int sysctl_drop_caches; int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *); #endif void drop_slab(void); void drop_slab_node(int nid); #ifndef CONFIG_MMU #define randomize_va_space 0 #else extern int randomize_va_space; #endif const char * arch_vma_name(struct vm_area_struct *vma); #ifdef CONFIG_MMU void print_vma_addr(char *prefix, unsigned long rip); #else static inline void print_vma_addr(char *prefix, unsigned long rip) { } #endif void *sparse_buffer_alloc(unsigned long size); struct page * __populate_section_memmap(unsigned long pfn, unsigned long nr_pages, int nid, struct vmem_altmap *altmap); pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, struct vmem_altmap *altmap); void *vmemmap_alloc_block(unsigned long size, int node); struct vmem_altmap; void *vmemmap_alloc_block_buf(unsigned long size, int node, struct vmem_altmap *altmap); void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); int vmemmap_populate_basepages(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap); int vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap); void vmemmap_populate_print_last(void); #ifdef CONFIG_MEMORY_HOTPLUG void vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap); #endif void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, unsigned long nr_pages); enum mf_flags { MF_COUNT_INCREASED = 1 << 0, MF_ACTION_REQUIRED = 1 << 1, MF_MUST_KILL = 1 << 2, MF_SOFT_OFFLINE = 1 << 3, }; extern int memory_failure(unsigned long pfn, int flags); extern void memory_failure_queue(unsigned long pfn, int flags); extern void memory_failure_queue_kick(int cpu); extern int unpoison_memory(unsigned long pfn); extern int sysctl_memory_failure_early_kill; extern int sysctl_memory_failure_recovery; extern void shake_page(struct page *p, int access); extern atomic_long_t num_poisoned_pages __read_mostly; extern int soft_offline_page(unsigned long pfn, int flags); /* * Error handlers for various types of pages. */ enum mf_result { MF_IGNORED, /* Error: cannot be handled */ MF_FAILED, /* Error: handling failed */ MF_DELAYED, /* Will be handled later */ MF_RECOVERED, /* Successfully recovered */ }; enum mf_action_page_type { MF_MSG_KERNEL, MF_MSG_KERNEL_HIGH_ORDER, MF_MSG_SLAB, MF_MSG_DIFFERENT_COMPOUND, MF_MSG_POISONED_HUGE, MF_MSG_HUGE, MF_MSG_FREE_HUGE, MF_MSG_NON_PMD_HUGE, MF_MSG_UNMAP_FAILED, MF_MSG_DIRTY_SWAPCACHE, MF_MSG_CLEAN_SWAPCACHE, MF_MSG_DIRTY_MLOCKED_LRU, MF_MSG_CLEAN_MLOCKED_LRU, MF_MSG_DIRTY_UNEVICTABLE_LRU, MF_MSG_CLEAN_UNEVICTABLE_LRU, MF_MSG_DIRTY_LRU, MF_MSG_CLEAN_LRU, MF_MSG_TRUNCATED_LRU, MF_MSG_BUDDY, MF_MSG_BUDDY_2ND, MF_MSG_DAX, MF_MSG_UNSPLIT_THP, MF_MSG_UNKNOWN, }; #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) extern void clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page); extern void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr_hint, struct vm_area_struct *vma, unsigned int pages_per_huge_page); extern long copy_huge_page_from_user(struct page *dst_page, const void __user *usr_src, unsigned int pages_per_huge_page, bool allow_pagefault); /** * vma_is_special_huge - Are transhuge page-table entries considered special? * @vma: Pointer to the struct vm_area_struct to consider * * Whether transhuge page-table entries are considered "special" following * the definition in vm_normal_page(). * * Return: true if transhuge page-table entries should be considered special, * false otherwise. */ static inline bool vma_is_special_huge(const struct vm_area_struct *vma) { return vma_is_dax(vma) || (vma->vm_file && (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ #ifdef CONFIG_DEBUG_PAGEALLOC extern unsigned int _debug_guardpage_minorder; DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); static inline unsigned int debug_guardpage_minorder(void) { return _debug_guardpage_minorder; } static inline bool debug_guardpage_enabled(void) { return static_branch_unlikely(&_debug_guardpage_enabled); } static inline bool page_is_guard(struct page *page) { if (!debug_guardpage_enabled()) return false; return PageGuard(page); } #else static inline unsigned int debug_guardpage_minorder(void) { return 0; } static inline bool debug_guardpage_enabled(void) { return false; } static inline bool page_is_guard(struct page *page) { return false; } #endif /* CONFIG_DEBUG_PAGEALLOC */ #if MAX_NUMNODES > 1 void __init setup_nr_node_ids(void); #else static inline void setup_nr_node_ids(void) {} #endif extern int memcmp_pages(struct page *page1, struct page *page2); static inline int pages_identical(struct page *page1, struct page *page2) { return !memcmp_pages(page1, page2); } #ifdef CONFIG_MAPPING_DIRTY_HELPERS unsigned long clean_record_shared_mapping_range(struct address_space *mapping, pgoff_t first_index, pgoff_t nr, pgoff_t bitmap_pgoff, unsigned long *bitmap, pgoff_t *start, pgoff_t *end); unsigned long wp_shared_mapping_range(struct address_space *mapping, pgoff_t first_index, pgoff_t nr); #endif extern int sysctl_nr_trim_pages; /** * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it * @seals: the seals to check * @vma: the vma to operate on * * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on * the vma flags. Return 0 if check pass, or <0 for errors. */ static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) { if (seals & F_SEAL_FUTURE_WRITE) { /* * New PROT_WRITE and MAP_SHARED mmaps are not allowed when * "future write" seal active. */ if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) return -EPERM; /* * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as * MAP_SHARED and read-only, take care to not allow mprotect to * revert protections on such mappings. Do this only for shared * mappings. For private mappings, don't need to mask * VM_MAYWRITE as we still want them to be COW-writable. */ if (vma->vm_flags & VM_SHARED) vma->vm_flags &= ~(VM_MAYWRITE); } return 0; } #endif /* __KERNEL__ */ #endif /* _LINUX_MM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PVCLOCK_H #define _ASM_X86_PVCLOCK_H #include <asm/clocksource.h> #include <asm/pvclock-abi.h> /* some helper functions for xen and kvm pv clock sources */ u64 pvclock_clocksource_read(struct pvclock_vcpu_time_info *src); u8 pvclock_read_flags(struct pvclock_vcpu_time_info *src); void pvclock_set_flags(u8 flags); unsigned long pvclock_tsc_khz(struct pvclock_vcpu_time_info *src); void pvclock_read_wallclock(struct pvclock_wall_clock *wall, struct pvclock_vcpu_time_info *vcpu, struct timespec64 *ts); void pvclock_resume(void); void pvclock_touch_watchdogs(void); static __always_inline unsigned pvclock_read_begin(const struct pvclock_vcpu_time_info *src) { unsigned version = src->version & ~1; /* Make sure that the version is read before the data. */ virt_rmb(); return version; } static __always_inline bool pvclock_read_retry(const struct pvclock_vcpu_time_info *src, unsigned version) { /* Make sure that the version is re-read after the data. */ virt_rmb(); return unlikely(version != src->version); } /* * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction, * yielding a 64-bit result. */ static inline u64 pvclock_scale_delta(u64 delta, u32 mul_frac, int shift) { u64 product; #ifdef __i386__ u32 tmp1, tmp2; #else ulong tmp; #endif if (shift < 0) delta >>= -shift; else delta <<= shift; #ifdef __i386__ __asm__ ( "mul %5 ; " "mov %4,%%eax ; " "mov %%edx,%4 ; " "mul %5 ; " "xor %5,%5 ; " "add %4,%%eax ; " "adc %5,%%edx ; " : "=A" (product), "=r" (tmp1), "=r" (tmp2) : "a" ((u32)delta), "1" ((u32)(delta >> 32)), "2" (mul_frac) ); #elif defined(__x86_64__) __asm__ ( "mulq %[mul_frac] ; shrd $32, %[hi], %[lo]" : [lo]"=a"(product), [hi]"=d"(tmp) : "0"(delta), [mul_frac]"rm"((u64)mul_frac)); #else #error implement me! #endif return product; } static __always_inline u64 __pvclock_read_cycles(const struct pvclock_vcpu_time_info *src, u64 tsc) { u64 delta = tsc - src->tsc_timestamp; u64 offset = pvclock_scale_delta(delta, src->tsc_to_system_mul, src->tsc_shift); return src->system_time + offset; } struct pvclock_vsyscall_time_info { struct pvclock_vcpu_time_info pvti; } __attribute__((__aligned__(SMP_CACHE_BYTES))); #define PVTI_SIZE sizeof(struct pvclock_vsyscall_time_info) #ifdef CONFIG_PARAVIRT_CLOCK void pvclock_set_pvti_cpu0_va(struct pvclock_vsyscall_time_info *pvti); struct pvclock_vsyscall_time_info *pvclock_get_pvti_cpu0_va(void); #else static inline struct pvclock_vsyscall_time_info *pvclock_get_pvti_cpu0_va(void) { return NULL; } #endif #endif /* _ASM_X86_PVCLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/include/linux/sunrpc/addr.h * * Various routines for copying and comparing sockaddrs and for * converting them to and from presentation format. */ #ifndef _LINUX_SUNRPC_ADDR_H #define _LINUX_SUNRPC_ADDR_H #include <linux/socket.h> #include <linux/in.h> #include <linux/in6.h> #include <net/ipv6.h> size_t rpc_ntop(const struct sockaddr *, char *, const size_t); size_t rpc_pton(struct net *, const char *, const size_t, struct sockaddr *, const size_t); char * rpc_sockaddr2uaddr(const struct sockaddr *, gfp_t); size_t rpc_uaddr2sockaddr(struct net *, const char *, const size_t, struct sockaddr *, const size_t); static inline unsigned short rpc_get_port(const struct sockaddr *sap) { switch (sap->sa_family) { case AF_INET: return ntohs(((struct sockaddr_in *)sap)->sin_port); case AF_INET6: return ntohs(((struct sockaddr_in6 *)sap)->sin6_port); } return 0; } static inline void rpc_set_port(struct sockaddr *sap, const unsigned short port) { switch (sap->sa_family) { case AF_INET: ((struct sockaddr_in *)sap)->sin_port = htons(port); break; case AF_INET6: ((struct sockaddr_in6 *)sap)->sin6_port = htons(port); break; } } #define IPV6_SCOPE_DELIMITER '%' #define IPV6_SCOPE_ID_LEN sizeof("%nnnnnnnnnn") static inline bool rpc_cmp_addr4(const struct sockaddr *sap1, const struct sockaddr *sap2) { const struct sockaddr_in *sin1 = (const struct sockaddr_in *)sap1; const struct sockaddr_in *sin2 = (const struct sockaddr_in *)sap2; return sin1->sin_addr.s_addr == sin2->sin_addr.s_addr; } static inline bool __rpc_copy_addr4(struct sockaddr *dst, const struct sockaddr *src) { const struct sockaddr_in *ssin = (struct sockaddr_in *) src; struct sockaddr_in *dsin = (struct sockaddr_in *) dst; dsin->sin_family = ssin->sin_family; dsin->sin_addr.s_addr = ssin->sin_addr.s_addr; return true; } #if IS_ENABLED(CONFIG_IPV6) static inline bool rpc_cmp_addr6(const struct sockaddr *sap1, const struct sockaddr *sap2) { const struct sockaddr_in6 *sin1 = (const struct sockaddr_in6 *)sap1; const struct sockaddr_in6 *sin2 = (const struct sockaddr_in6 *)sap2; if (!ipv6_addr_equal(&sin1->sin6_addr, &sin2->sin6_addr)) return false; else if (ipv6_addr_type(&sin1->sin6_addr) & IPV6_ADDR_LINKLOCAL) return sin1->sin6_scope_id == sin2->sin6_scope_id; return true; } static inline bool __rpc_copy_addr6(struct sockaddr *dst, const struct sockaddr *src) { const struct sockaddr_in6 *ssin6 = (const struct sockaddr_in6 *) src; struct sockaddr_in6 *dsin6 = (struct sockaddr_in6 *) dst; dsin6->sin6_family = ssin6->sin6_family; dsin6->sin6_addr = ssin6->sin6_addr; dsin6->sin6_scope_id = ssin6->sin6_scope_id; return true; } #else /* !(IS_ENABLED(CONFIG_IPV6) */ static inline bool rpc_cmp_addr6(const struct sockaddr *sap1, const struct sockaddr *sap2) { return false; } static inline bool __rpc_copy_addr6(struct sockaddr *dst, const struct sockaddr *src) { return false; } #endif /* !(IS_ENABLED(CONFIG_IPV6) */ /** * rpc_cmp_addr - compare the address portion of two sockaddrs. * @sap1: first sockaddr * @sap2: second sockaddr * * Just compares the family and address portion. Ignores port, but * compares the scope if it's a link-local address. * * Returns true if the addrs are equal, false if they aren't. */ static inline bool rpc_cmp_addr(const struct sockaddr *sap1, const struct sockaddr *sap2) { if (sap1->sa_family == sap2->sa_family) { switch (sap1->sa_family) { case AF_INET: return rpc_cmp_addr4(sap1, sap2); case AF_INET6: return rpc_cmp_addr6(sap1, sap2); } } return false; } /** * rpc_cmp_addr_port - compare the address and port number of two sockaddrs. * @sap1: first sockaddr * @sap2: second sockaddr */ static inline bool rpc_cmp_addr_port(const struct sockaddr *sap1, const struct sockaddr *sap2) { if (!rpc_cmp_addr(sap1, sap2)) return false; return rpc_get_port(sap1) == rpc_get_port(sap2); } /** * rpc_copy_addr - copy the address portion of one sockaddr to another * @dst: destination sockaddr * @src: source sockaddr * * Just copies the address portion and family. Ignores port, scope, etc. * Caller is responsible for making certain that dst is large enough to hold * the address in src. Returns true if address family is supported. Returns * false otherwise. */ static inline bool rpc_copy_addr(struct sockaddr *dst, const struct sockaddr *src) { switch (src->sa_family) { case AF_INET: return __rpc_copy_addr4(dst, src); case AF_INET6: return __rpc_copy_addr6(dst, src); } return false; } /** * rpc_get_scope_id - return scopeid for a given sockaddr * @sa: sockaddr to get scopeid from * * Returns the value of the sin6_scope_id for AF_INET6 addrs, or 0 if * not an AF_INET6 address. */ static inline u32 rpc_get_scope_id(const struct sockaddr *sa) { if (sa->sa_family != AF_INET6) return 0; return ((struct sockaddr_in6 *) sa)->sin6_scope_id; } #endif /* _LINUX_SUNRPC_ADDR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PAGE_64_H #define _ASM_X86_PAGE_64_H #include <asm/page_64_types.h> #ifndef __ASSEMBLY__ #include <asm/alternative.h> /* duplicated to the one in bootmem.h */ extern unsigned long max_pfn; extern unsigned long phys_base; extern unsigned long page_offset_base; extern unsigned long vmalloc_base; extern unsigned long vmemmap_base; static inline unsigned long __phys_addr_nodebug(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* use the carry flag to determine if x was < __START_KERNEL_map */ x = y + ((x > y) ? phys_base : (__START_KERNEL_map - PAGE_OFFSET)); return x; } #ifdef CONFIG_DEBUG_VIRTUAL extern unsigned long __phys_addr(unsigned long); extern unsigned long __phys_addr_symbol(unsigned long); #else #define __phys_addr(x) __phys_addr_nodebug(x) #define __phys_addr_symbol(x) \ ((unsigned long)(x) - __START_KERNEL_map + phys_base) #endif #define __phys_reloc_hide(x) (x) #ifdef CONFIG_FLATMEM #define pfn_valid(pfn) ((pfn) < max_pfn) #endif void clear_page_orig(void *page); void clear_page_rep(void *page); void clear_page_erms(void *page); static inline void clear_page(void *page) { alternative_call_2(clear_page_orig, clear_page_rep, X86_FEATURE_REP_GOOD, clear_page_erms, X86_FEATURE_ERMS, "=D" (page), "0" (page) : "cc", "memory", "rax", "rcx"); } void copy_page(void *to, void *from); #endif /* !__ASSEMBLY__ */ #ifdef CONFIG_X86_VSYSCALL_EMULATION # define __HAVE_ARCH_GATE_AREA 1 #endif #endif /* _ASM_X86_PAGE_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM sched #if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SCHED_H #include <linux/sched/numa_balancing.h> #include <linux/tracepoint.h> #include <linux/binfmts.h> /* * Tracepoint for calling kthread_stop, performed to end a kthread: */ TRACE_EVENT(sched_kthread_stop, TP_PROTO(struct task_struct *t), TP_ARGS(t), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) ), TP_fast_assign( memcpy(__entry->comm, t->comm, TASK_COMM_LEN); __entry->pid = t->pid; ), TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid) ); /* * Tracepoint for the return value of the kthread stopping: */ TRACE_EVENT(sched_kthread_stop_ret, TP_PROTO(int ret), TP_ARGS(ret), TP_STRUCT__entry( __field( int, ret ) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret=%d", __entry->ret) ); /* * Tracepoint for waking up a task: */ DECLARE_EVENT_CLASS(sched_wakeup_template, TP_PROTO(struct task_struct *p), TP_ARGS(__perf_task(p)), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field( int, success ) __field( int, target_cpu ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ __entry->success = 1; /* rudiment, kill when possible */ __entry->target_cpu = task_cpu(p); ), TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d", __entry->comm, __entry->pid, __entry->prio, __entry->target_cpu) ); /* * Tracepoint called when waking a task; this tracepoint is guaranteed to be * called from the waking context. */ DEFINE_EVENT(sched_wakeup_template, sched_waking, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint called when the task is actually woken; p->state == TASK_RUNNNG. * It is not always called from the waking context. */ DEFINE_EVENT(sched_wakeup_template, sched_wakeup, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for waking up a new task: */ DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new, TP_PROTO(struct task_struct *p), TP_ARGS(p)); #ifdef CREATE_TRACE_POINTS static inline long __trace_sched_switch_state(bool preempt, struct task_struct *p) { unsigned int state; #ifdef CONFIG_SCHED_DEBUG BUG_ON(p != current); #endif /* CONFIG_SCHED_DEBUG */ /* * Preemption ignores task state, therefore preempted tasks are always * RUNNING (we will not have dequeued if state != RUNNING). */ if (preempt) return TASK_REPORT_MAX; /* * task_state_index() uses fls() and returns a value from 0-8 range. * Decrement it by 1 (except TASK_RUNNING state i.e 0) before using * it for left shift operation to get the correct task->state * mapping. */ state = task_state_index(p); return state ? (1 << (state - 1)) : state; } #endif /* CREATE_TRACE_POINTS */ /* * Tracepoint for task switches, performed by the scheduler: */ TRACE_EVENT(sched_switch, TP_PROTO(bool preempt, struct task_struct *prev, struct task_struct *next), TP_ARGS(preempt, prev, next), TP_STRUCT__entry( __array( char, prev_comm, TASK_COMM_LEN ) __field( pid_t, prev_pid ) __field( int, prev_prio ) __field( long, prev_state ) __array( char, next_comm, TASK_COMM_LEN ) __field( pid_t, next_pid ) __field( int, next_prio ) ), TP_fast_assign( memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN); __entry->prev_pid = prev->pid; __entry->prev_prio = prev->prio; __entry->prev_state = __trace_sched_switch_state(preempt, prev); memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN); __entry->next_pid = next->pid; __entry->next_prio = next->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d", __entry->prev_comm, __entry->prev_pid, __entry->prev_prio, (__entry->prev_state & (TASK_REPORT_MAX - 1)) ? __print_flags(__entry->prev_state & (TASK_REPORT_MAX - 1), "|", { TASK_INTERRUPTIBLE, "S" }, { TASK_UNINTERRUPTIBLE, "D" }, { __TASK_STOPPED, "T" }, { __TASK_TRACED, "t" }, { EXIT_DEAD, "X" }, { EXIT_ZOMBIE, "Z" }, { TASK_PARKED, "P" }, { TASK_DEAD, "I" }) : "R", __entry->prev_state & TASK_REPORT_MAX ? "+" : "", __entry->next_comm, __entry->next_pid, __entry->next_prio) ); /* * Tracepoint for a task being migrated: */ TRACE_EVENT(sched_migrate_task, TP_PROTO(struct task_struct *p, int dest_cpu), TP_ARGS(p, dest_cpu), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field( int, orig_cpu ) __field( int, dest_cpu ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ __entry->orig_cpu = task_cpu(p); __entry->dest_cpu = dest_cpu; ), TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d", __entry->comm, __entry->pid, __entry->prio, __entry->orig_cpu, __entry->dest_cpu) ); DECLARE_EVENT_CLASS(sched_process_template, TP_PROTO(struct task_struct *p), TP_ARGS(p), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("comm=%s pid=%d prio=%d", __entry->comm, __entry->pid, __entry->prio) ); /* * Tracepoint for freeing a task: */ DEFINE_EVENT(sched_process_template, sched_process_free, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for a task exiting: */ DEFINE_EVENT(sched_process_template, sched_process_exit, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for waiting on task to unschedule: */ DEFINE_EVENT(sched_process_template, sched_wait_task, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for a waiting task: */ TRACE_EVENT(sched_process_wait, TP_PROTO(struct pid *pid), TP_ARGS(pid), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) ), TP_fast_assign( memcpy(__entry->comm, current->comm, TASK_COMM_LEN); __entry->pid = pid_nr(pid); __entry->prio = current->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("comm=%s pid=%d prio=%d", __entry->comm, __entry->pid, __entry->prio) ); /* * Tracepoint for do_fork: */ TRACE_EVENT(sched_process_fork, TP_PROTO(struct task_struct *parent, struct task_struct *child), TP_ARGS(parent, child), TP_STRUCT__entry( __array( char, parent_comm, TASK_COMM_LEN ) __field( pid_t, parent_pid ) __array( char, child_comm, TASK_COMM_LEN ) __field( pid_t, child_pid ) ), TP_fast_assign( memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN); __entry->parent_pid = parent->pid; memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN); __entry->child_pid = child->pid; ), TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d", __entry->parent_comm, __entry->parent_pid, __entry->child_comm, __entry->child_pid) ); /* * Tracepoint for exec: */ TRACE_EVENT(sched_process_exec, TP_PROTO(struct task_struct *p, pid_t old_pid, struct linux_binprm *bprm), TP_ARGS(p, old_pid, bprm), TP_STRUCT__entry( __string( filename, bprm->filename ) __field( pid_t, pid ) __field( pid_t, old_pid ) ), TP_fast_assign( __assign_str(filename, bprm->filename); __entry->pid = p->pid; __entry->old_pid = old_pid; ), TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename), __entry->pid, __entry->old_pid) ); #ifdef CONFIG_SCHEDSTATS #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS #else #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT_NOP #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS_NOP #endif /* * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE * adding sched_stat support to SCHED_FIFO/RR would be welcome. */ DECLARE_EVENT_CLASS_SCHEDSTAT(sched_stat_template, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(__perf_task(tsk), __perf_count(delay)), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( u64, delay ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->delay = delay; ), TP_printk("comm=%s pid=%d delay=%Lu [ns]", __entry->comm, __entry->pid, (unsigned long long)__entry->delay) ); /* * Tracepoint for accounting wait time (time the task is runnable * but not actually running due to scheduler contention). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_wait, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting sleep time (time the task is not runnable, * including iowait, see below). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_sleep, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting iowait time (time the task is not runnable * due to waiting on IO to complete). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_iowait, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting blocked time (time the task is in uninterruptible). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_blocked, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting runtime (time the task is executing * on a CPU). */ DECLARE_EVENT_CLASS(sched_stat_runtime, TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime), TP_ARGS(tsk, __perf_count(runtime), vruntime), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( u64, runtime ) __field( u64, vruntime ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->runtime = runtime; __entry->vruntime = vruntime; ), TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]", __entry->comm, __entry->pid, (unsigned long long)__entry->runtime, (unsigned long long)__entry->vruntime) ); DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime, TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime), TP_ARGS(tsk, runtime, vruntime)); /* * Tracepoint for showing priority inheritance modifying a tasks * priority. */ TRACE_EVENT(sched_pi_setprio, TP_PROTO(struct task_struct *tsk, struct task_struct *pi_task), TP_ARGS(tsk, pi_task), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, oldprio ) __field( int, newprio ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->oldprio = tsk->prio; __entry->newprio = pi_task ? min(tsk->normal_prio, pi_task->prio) : tsk->normal_prio; /* XXX SCHED_DEADLINE bits missing */ ), TP_printk("comm=%s pid=%d oldprio=%d newprio=%d", __entry->comm, __entry->pid, __entry->oldprio, __entry->newprio) ); #ifdef CONFIG_DETECT_HUNG_TASK TRACE_EVENT(sched_process_hang, TP_PROTO(struct task_struct *tsk), TP_ARGS(tsk), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; ), TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid) ); #endif /* CONFIG_DETECT_HUNG_TASK */ /* * Tracks migration of tasks from one runqueue to another. Can be used to * detect if automatic NUMA balancing is bouncing between nodes. */ TRACE_EVENT(sched_move_numa, TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu), TP_ARGS(tsk, src_cpu, dst_cpu), TP_STRUCT__entry( __field( pid_t, pid ) __field( pid_t, tgid ) __field( pid_t, ngid ) __field( int, src_cpu ) __field( int, src_nid ) __field( int, dst_cpu ) __field( int, dst_nid ) ), TP_fast_assign( __entry->pid = task_pid_nr(tsk); __entry->tgid = task_tgid_nr(tsk); __entry->ngid = task_numa_group_id(tsk); __entry->src_cpu = src_cpu; __entry->src_nid = cpu_to_node(src_cpu); __entry->dst_cpu = dst_cpu; __entry->dst_nid = cpu_to_node(dst_cpu); ), TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d", __entry->pid, __entry->tgid, __entry->ngid, __entry->src_cpu, __entry->src_nid, __entry->dst_cpu, __entry->dst_nid) ); DECLARE_EVENT_CLASS(sched_numa_pair_template, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu), TP_STRUCT__entry( __field( pid_t, src_pid ) __field( pid_t, src_tgid ) __field( pid_t, src_ngid ) __field( int, src_cpu ) __field( int, src_nid ) __field( pid_t, dst_pid ) __field( pid_t, dst_tgid ) __field( pid_t, dst_ngid ) __field( int, dst_cpu ) __field( int, dst_nid ) ), TP_fast_assign( __entry->src_pid = task_pid_nr(src_tsk); __entry->src_tgid = task_tgid_nr(src_tsk); __entry->src_ngid = task_numa_group_id(src_tsk); __entry->src_cpu = src_cpu; __entry->src_nid = cpu_to_node(src_cpu); __entry->dst_pid = dst_tsk ? task_pid_nr(dst_tsk) : 0; __entry->dst_tgid = dst_tsk ? task_tgid_nr(dst_tsk) : 0; __entry->dst_ngid = dst_tsk ? task_numa_group_id(dst_tsk) : 0; __entry->dst_cpu = dst_cpu; __entry->dst_nid = dst_cpu >= 0 ? cpu_to_node(dst_cpu) : -1; ), TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d", __entry->src_pid, __entry->src_tgid, __entry->src_ngid, __entry->src_cpu, __entry->src_nid, __entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid, __entry->dst_cpu, __entry->dst_nid) ); DEFINE_EVENT(sched_numa_pair_template, sched_stick_numa, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu) ); DEFINE_EVENT(sched_numa_pair_template, sched_swap_numa, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu) ); /* * Tracepoint for waking a polling cpu without an IPI. */ TRACE_EVENT(sched_wake_idle_without_ipi, TP_PROTO(int cpu), TP_ARGS(cpu), TP_STRUCT__entry( __field( int, cpu ) ), TP_fast_assign( __entry->cpu = cpu; ), TP_printk("cpu=%d", __entry->cpu) ); /* * Following tracepoints are not exported in tracefs and provide hooking * mechanisms only for testing and debugging purposes. * * Postfixed with _tp to make them easily identifiable in the code. */ DECLARE_TRACE(pelt_cfs_tp, TP_PROTO(struct cfs_rq *cfs_rq), TP_ARGS(cfs_rq)); DECLARE_TRACE(pelt_rt_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_dl_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_thermal_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_irq_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_se_tp, TP_PROTO(struct sched_entity *se), TP_ARGS(se)); DECLARE_TRACE(sched_cpu_capacity_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(sched_overutilized_tp, TP_PROTO(struct root_domain *rd, bool overutilized), TP_ARGS(rd, overutilized)); DECLARE_TRACE(sched_util_est_cfs_tp, TP_PROTO(struct cfs_rq *cfs_rq), TP_ARGS(cfs_rq)); DECLARE_TRACE(sched_util_est_se_tp, TP_PROTO(struct sched_entity *se), TP_ARGS(se)); DECLARE_TRACE(sched_update_nr_running_tp, TP_PROTO(struct rq *rq, int change), TP_ARGS(rq, change)); #endif /* _TRACE_SCHED_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_NULLS_H #define _LINUX_LIST_NULLS_H #include <linux/poison.h> #include <linux/const.h> /* * Special version of lists, where end of list is not a NULL pointer, * but a 'nulls' marker, which can have many different values. * (up to 2^31 different values guaranteed on all platforms) * * In the standard hlist, termination of a list is the NULL pointer. * In this special 'nulls' variant, we use the fact that objects stored in * a list are aligned on a word (4 or 8 bytes alignment). * We therefore use the last significant bit of 'ptr' : * Set to 1 : This is a 'nulls' end-of-list marker (ptr >> 1) * Set to 0 : This is a pointer to some object (ptr) */ struct hlist_nulls_head { struct hlist_nulls_node *first; }; struct hlist_nulls_node { struct hlist_nulls_node *next, **pprev; }; #define NULLS_MARKER(value) (1UL | (((long)value) << 1)) #define INIT_HLIST_NULLS_HEAD(ptr, nulls) \ ((ptr)->first = (struct hlist_nulls_node *) NULLS_MARKER(nulls)) #define hlist_nulls_entry(ptr, type, member) container_of(ptr,type,member) #define hlist_nulls_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ !is_a_nulls(____ptr) ? hlist_nulls_entry(____ptr, type, member) : NULL; \ }) /** * ptr_is_a_nulls - Test if a ptr is a nulls * @ptr: ptr to be tested * */ static inline int is_a_nulls(const struct hlist_nulls_node *ptr) { return ((unsigned long)ptr & 1); } /** * get_nulls_value - Get the 'nulls' value of the end of chain * @ptr: end of chain * * Should be called only if is_a_nulls(ptr); */ static inline unsigned long get_nulls_value(const struct hlist_nulls_node *ptr) { return ((unsigned long)ptr) >> 1; } /** * hlist_nulls_unhashed - Has node been removed and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed state. * For example, hlist_del_init_rcu() leaves the node in unhashed state, * but hlist_nulls_del() does not. */ static inline int hlist_nulls_unhashed(const struct hlist_nulls_node *h) { return !h->pprev; } /** * hlist_nulls_unhashed_lockless - Has node been removed and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed state. * For example, hlist_del_init_rcu() leaves the node in unhashed state, * but hlist_nulls_del() does not. Unlike hlist_nulls_unhashed(), this * function may be used locklessly. */ static inline int hlist_nulls_unhashed_lockless(const struct hlist_nulls_node *h) { return !READ_ONCE(h->pprev); } static inline int hlist_nulls_empty(const struct hlist_nulls_head *h) { return is_a_nulls(READ_ONCE(h->first)); } static inline void hlist_nulls_add_head(struct hlist_nulls_node *n, struct hlist_nulls_head *h) { struct hlist_nulls_node *first = h->first; n->next = first; WRITE_ONCE(n->pprev, &h->first); h->first = n; if (!is_a_nulls(first)) WRITE_ONCE(first->pprev, &n->next); } static inline void __hlist_nulls_del(struct hlist_nulls_node *n) { struct hlist_nulls_node *next = n->next; struct hlist_nulls_node **pprev = n->pprev; WRITE_ONCE(*pprev, next); if (!is_a_nulls(next)) WRITE_ONCE(next->pprev, pprev); } static inline void hlist_nulls_del(struct hlist_nulls_node *n) { __hlist_nulls_del(n); WRITE_ONCE(n->pprev, LIST_POISON2); } /** * hlist_nulls_for_each_entry - iterate over list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * */ #define hlist_nulls_for_each_entry(tpos, pos, head, member) \ for (pos = (head)->first; \ (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) /** * hlist_nulls_for_each_entry_from - iterate over a hlist continuing from current point * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @member: the name of the hlist_node within the struct. * */ #define hlist_nulls_for_each_entry_from(tpos, pos, member) \ for (; (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_COOKIE_H #define __LINUX_COOKIE_H #include <linux/atomic.h> #include <linux/percpu.h> #include <asm/local.h> struct pcpu_gen_cookie { local_t nesting; u64 last; } __aligned(16); struct gen_cookie { struct pcpu_gen_cookie __percpu *local; atomic64_t forward_last ____cacheline_aligned_in_smp; atomic64_t reverse_last; }; #define COOKIE_LOCAL_BATCH 4096 #define DEFINE_COOKIE(name) \ static DEFINE_PER_CPU(struct pcpu_gen_cookie, __##name); \ static struct gen_cookie name = { \ .local = &__##name, \ .forward_last = ATOMIC64_INIT(0), \ .reverse_last = ATOMIC64_INIT(0), \ } static __always_inline u64 gen_cookie_next(struct gen_cookie *gc) { struct pcpu_gen_cookie *local = this_cpu_ptr(gc->local); u64 val; if (likely(local_inc_return(&local->nesting) == 1)) { val = local->last; if (__is_defined(CONFIG_SMP) && unlikely((val & (COOKIE_LOCAL_BATCH - 1)) == 0)) { s64 next = atomic64_add_return(COOKIE_LOCAL_BATCH, &gc->forward_last); val = next - COOKIE_LOCAL_BATCH; } local->last = ++val; } else { val = atomic64_dec_return(&gc->reverse_last); } local_dec(&local->nesting); return val; } #endif /* __LINUX_COOKIE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 /* SPDX-License-Identifier: GPL-2.0 */ /* * Connection state tracking for netfilter. This is separated from, * but required by, the (future) NAT layer; it can also be used by an iptables * extension. * * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp> * - generalize L3 protocol dependent part. * * Derived from include/linux/netfiter_ipv4/ip_conntrack.h */ #ifndef _NF_CONNTRACK_H #define _NF_CONNTRACK_H #include <linux/bitops.h> #include <linux/compiler.h> #include <linux/netfilter/nf_conntrack_common.h> #include <linux/netfilter/nf_conntrack_tcp.h> #include <linux/netfilter/nf_conntrack_dccp.h> #include <linux/netfilter/nf_conntrack_sctp.h> #include <linux/netfilter/nf_conntrack_proto_gre.h> #include <net/netfilter/nf_conntrack_tuple.h> struct nf_ct_udp { unsigned long stream_ts; }; /* per conntrack: protocol private data */ union nf_conntrack_proto { /* insert conntrack proto private data here */ struct nf_ct_dccp dccp; struct ip_ct_sctp sctp; struct ip_ct_tcp tcp; struct nf_ct_udp udp; struct nf_ct_gre gre; unsigned int tmpl_padto; }; union nf_conntrack_expect_proto { /* insert expect proto private data here */ }; struct nf_conntrack_net { unsigned int users4; unsigned int users6; unsigned int users_bridge; }; #include <linux/types.h> #include <linux/skbuff.h> #include <net/netfilter/ipv4/nf_conntrack_ipv4.h> #include <net/netfilter/ipv6/nf_conntrack_ipv6.h> struct nf_conn { /* Usage count in here is 1 for hash table, 1 per skb, * plus 1 for any connection(s) we are `master' for * * Hint, SKB address this struct and refcnt via skb->_nfct and * helpers nf_conntrack_get() and nf_conntrack_put(). * Helper nf_ct_put() equals nf_conntrack_put() by dec refcnt, * beware nf_ct_get() is different and don't inc refcnt. */ struct nf_conntrack ct_general; spinlock_t lock; /* jiffies32 when this ct is considered dead */ u32 timeout; #ifdef CONFIG_NF_CONNTRACK_ZONES struct nf_conntrack_zone zone; #endif /* XXX should I move this to the tail ? - Y.K */ /* These are my tuples; original and reply */ struct nf_conntrack_tuple_hash tuplehash[IP_CT_DIR_MAX]; /* Have we seen traffic both ways yet? (bitset) */ unsigned long status; u16 cpu; possible_net_t ct_net; #if IS_ENABLED(CONFIG_NF_NAT) struct hlist_node nat_bysource; #endif /* all members below initialized via memset */ struct { } __nfct_init_offset; /* If we were expected by an expectation, this will be it */ struct nf_conn *master; #if defined(CONFIG_NF_CONNTRACK_MARK) u_int32_t mark; #endif #ifdef CONFIG_NF_CONNTRACK_SECMARK u_int32_t secmark; #endif /* Extensions */ struct nf_ct_ext *ext; /* Storage reserved for other modules, must be the last member */ union nf_conntrack_proto proto; }; static inline struct nf_conn * nf_ct_tuplehash_to_ctrack(const struct nf_conntrack_tuple_hash *hash) { return container_of(hash, struct nf_conn, tuplehash[hash->tuple.dst.dir]); } static inline u_int16_t nf_ct_l3num(const struct nf_conn *ct) { return ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.l3num; } static inline u_int8_t nf_ct_protonum(const struct nf_conn *ct) { return ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.protonum; } #define nf_ct_tuple(ct, dir) (&(ct)->tuplehash[dir].tuple) /* get master conntrack via master expectation */ #define master_ct(conntr) (conntr->master) extern struct net init_net; static inline struct net *nf_ct_net(const struct nf_conn *ct) { return read_pnet(&ct->ct_net); } /* Alter reply tuple (maybe alter helper). */ void nf_conntrack_alter_reply(struct nf_conn *ct, const struct nf_conntrack_tuple *newreply); /* Is this tuple taken? (ignoring any belonging to the given conntrack). */ int nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple, const struct nf_conn *ignored_conntrack); /* Return conntrack_info and tuple hash for given skb. */ static inline struct nf_conn * nf_ct_get(const struct sk_buff *skb, enum ip_conntrack_info *ctinfo) { unsigned long nfct = skb_get_nfct(skb); *ctinfo = nfct & NFCT_INFOMASK; return (struct nf_conn *)(nfct & NFCT_PTRMASK); } /* decrement reference count on a conntrack */ static inline void nf_ct_put(struct nf_conn *ct) { WARN_ON(!ct); nf_conntrack_put(&ct->ct_general); } /* Protocol module loading */ int nf_ct_l3proto_try_module_get(unsigned short l3proto); void nf_ct_l3proto_module_put(unsigned short l3proto); /* load module; enable/disable conntrack in this namespace */ int nf_ct_netns_get(struct net *net, u8 nfproto); void nf_ct_netns_put(struct net *net, u8 nfproto); /* * Allocate a hashtable of hlist_head (if nulls == 0), * or hlist_nulls_head (if nulls == 1) */ void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls); int nf_conntrack_hash_check_insert(struct nf_conn *ct); bool nf_ct_delete(struct nf_conn *ct, u32 pid, int report); bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff, u_int16_t l3num, struct net *net, struct nf_conntrack_tuple *tuple); void __nf_ct_refresh_acct(struct nf_conn *ct, enum ip_conntrack_info ctinfo, const struct sk_buff *skb, u32 extra_jiffies, bool do_acct); /* Refresh conntrack for this many jiffies and do accounting */ static inline void nf_ct_refresh_acct(struct nf_conn *ct, enum ip_conntrack_info ctinfo, const struct sk_buff *skb, u32 extra_jiffies) { __nf_ct_refresh_acct(ct, ctinfo, skb, extra_jiffies, true); } /* Refresh conntrack for this many jiffies */ static inline void nf_ct_refresh(struct nf_conn *ct, const struct sk_buff *skb, u32 extra_jiffies) { __nf_ct_refresh_acct(ct, 0, skb, extra_jiffies, false); } /* kill conntrack and do accounting */ bool nf_ct_kill_acct(struct nf_conn *ct, enum ip_conntrack_info ctinfo, const struct sk_buff *skb); /* kill conntrack without accounting */ static inline bool nf_ct_kill(struct nf_conn *ct) { return nf_ct_delete(ct, 0, 0); } /* Set all unconfirmed conntrack as dying */ void nf_ct_unconfirmed_destroy(struct net *); /* Iterate over all conntracks: if iter returns true, it's deleted. */ void nf_ct_iterate_cleanup_net(struct net *net, int (*iter)(struct nf_conn *i, void *data), void *data, u32 portid, int report); /* also set unconfirmed conntracks as dying. Only use in module exit path. */ void nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data); struct nf_conntrack_zone; void nf_conntrack_free(struct nf_conn *ct); struct nf_conn *nf_conntrack_alloc(struct net *net, const struct nf_conntrack_zone *zone, const struct nf_conntrack_tuple *orig, const struct nf_conntrack_tuple *repl, gfp_t gfp); static inline int nf_ct_is_template(const struct nf_conn *ct) { return test_bit(IPS_TEMPLATE_BIT, &ct->status); } /* It's confirmed if it is, or has been in the hash table. */ static inline int nf_ct_is_confirmed(const struct nf_conn *ct) { return test_bit(IPS_CONFIRMED_BIT, &ct->status); } static inline int nf_ct_is_dying(const struct nf_conn *ct) { return test_bit(IPS_DYING_BIT, &ct->status); } /* Packet is received from loopback */ static inline bool nf_is_loopback_packet(const struct sk_buff *skb) { return skb->dev && skb->skb_iif && skb->dev->flags & IFF_LOOPBACK; } #define nfct_time_stamp ((u32)(jiffies)) /* jiffies until ct expires, 0 if already expired */ static inline unsigned long nf_ct_expires(const struct nf_conn *ct) { s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp; return timeout > 0 ? timeout : 0; } static inline bool nf_ct_is_expired(const struct nf_conn *ct) { return (__s32)(READ_ONCE(ct->timeout) - nfct_time_stamp) <= 0; } /* use after obtaining a reference count */ static inline bool nf_ct_should_gc(const struct nf_conn *ct) { return nf_ct_is_expired(ct) && nf_ct_is_confirmed(ct) && !nf_ct_is_dying(ct); } #define NF_CT_DAY (86400 * HZ) /* Set an arbitrary timeout large enough not to ever expire, this save * us a check for the IPS_OFFLOAD_BIT from the packet path via * nf_ct_is_expired(). */ static inline void nf_ct_offload_timeout(struct nf_conn *ct) { if (nf_ct_expires(ct) < NF_CT_DAY / 2) WRITE_ONCE(ct->timeout, nfct_time_stamp + NF_CT_DAY); } struct kernel_param; int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp); int nf_conntrack_hash_resize(unsigned int hashsize); extern struct hlist_nulls_head *nf_conntrack_hash; extern unsigned int nf_conntrack_htable_size; extern seqcount_spinlock_t nf_conntrack_generation; extern unsigned int nf_conntrack_max; /* must be called with rcu read lock held */ static inline void nf_conntrack_get_ht(struct hlist_nulls_head **hash, unsigned int *hsize) { struct hlist_nulls_head *hptr; unsigned int sequence, hsz; do { sequence = read_seqcount_begin(&nf_conntrack_generation); hsz = nf_conntrack_htable_size; hptr = nf_conntrack_hash; } while (read_seqcount_retry(&nf_conntrack_generation, sequence)); *hash = hptr; *hsize = hsz; } struct nf_conn *nf_ct_tmpl_alloc(struct net *net, const struct nf_conntrack_zone *zone, gfp_t flags); void nf_ct_tmpl_free(struct nf_conn *tmpl); u32 nf_ct_get_id(const struct nf_conn *ct); static inline void nf_ct_set(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info info) { skb_set_nfct(skb, (unsigned long)ct | info); } #define NF_CT_STAT_INC(net, count) __this_cpu_inc((net)->ct.stat->count) #define NF_CT_STAT_INC_ATOMIC(net, count) this_cpu_inc((net)->ct.stat->count) #define NF_CT_STAT_ADD_ATOMIC(net, count, v) this_cpu_add((net)->ct.stat->count, (v)) #define MODULE_ALIAS_NFCT_HELPER(helper) \ MODULE_ALIAS("nfct-helper-" helper) #endif /* _NF_CONNTRACK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* audit.h -- Auditing support * * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. * All Rights Reserved. * * Written by Rickard E. (Rik) Faith <faith@redhat.com> */ #ifndef _LINUX_AUDIT_H_ #define _LINUX_AUDIT_H_ #include <linux/sched.h> #include <linux/ptrace.h> #include <uapi/linux/audit.h> #include <uapi/linux/netfilter/nf_tables.h> #define AUDIT_INO_UNSET ((unsigned long)-1) #define AUDIT_DEV_UNSET ((dev_t)-1) struct audit_sig_info { uid_t uid; pid_t pid; char ctx[]; }; struct audit_buffer; struct audit_context; struct inode; struct netlink_skb_parms; struct path; struct linux_binprm; struct mq_attr; struct mqstat; struct audit_watch; struct audit_tree; struct sk_buff; struct audit_krule { u32 pflags; u32 flags; u32 listnr; u32 action; u32 mask[AUDIT_BITMASK_SIZE]; u32 buflen; /* for data alloc on list rules */ u32 field_count; char *filterkey; /* ties events to rules */ struct audit_field *fields; struct audit_field *arch_f; /* quick access to arch field */ struct audit_field *inode_f; /* quick access to an inode field */ struct audit_watch *watch; /* associated watch */ struct audit_tree *tree; /* associated watched tree */ struct audit_fsnotify_mark *exe; struct list_head rlist; /* entry in audit_{watch,tree}.rules list */ struct list_head list; /* for AUDIT_LIST* purposes only */ u64 prio; }; /* Flag to indicate legacy AUDIT_LOGINUID unset usage */ #define AUDIT_LOGINUID_LEGACY 0x1 struct audit_field { u32 type; union { u32 val; kuid_t uid; kgid_t gid; struct { char *lsm_str; void *lsm_rule; }; }; u32 op; }; enum audit_ntp_type { AUDIT_NTP_OFFSET, AUDIT_NTP_FREQ, AUDIT_NTP_STATUS, AUDIT_NTP_TAI, AUDIT_NTP_TICK, AUDIT_NTP_ADJUST, AUDIT_NTP_NVALS /* count */ }; #ifdef CONFIG_AUDITSYSCALL struct audit_ntp_val { long long oldval, newval; }; struct audit_ntp_data { struct audit_ntp_val vals[AUDIT_NTP_NVALS]; }; #else struct audit_ntp_data {}; #endif enum audit_nfcfgop { AUDIT_XT_OP_REGISTER, AUDIT_XT_OP_REPLACE, AUDIT_XT_OP_UNREGISTER, AUDIT_NFT_OP_TABLE_REGISTER, AUDIT_NFT_OP_TABLE_UNREGISTER, AUDIT_NFT_OP_CHAIN_REGISTER, AUDIT_NFT_OP_CHAIN_UNREGISTER, AUDIT_NFT_OP_RULE_REGISTER, AUDIT_NFT_OP_RULE_UNREGISTER, AUDIT_NFT_OP_SET_REGISTER, AUDIT_NFT_OP_SET_UNREGISTER, AUDIT_NFT_OP_SETELEM_REGISTER, AUDIT_NFT_OP_SETELEM_UNREGISTER, AUDIT_NFT_OP_GEN_REGISTER, AUDIT_NFT_OP_OBJ_REGISTER, AUDIT_NFT_OP_OBJ_UNREGISTER, AUDIT_NFT_OP_OBJ_RESET, AUDIT_NFT_OP_FLOWTABLE_REGISTER, AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, AUDIT_NFT_OP_INVALID, }; extern int is_audit_feature_set(int which); extern int __init audit_register_class(int class, unsigned *list); extern int audit_classify_syscall(int abi, unsigned syscall); extern int audit_classify_arch(int arch); /* only for compat system calls */ extern unsigned compat_write_class[]; extern unsigned compat_read_class[]; extern unsigned compat_dir_class[]; extern unsigned compat_chattr_class[]; extern unsigned compat_signal_class[]; extern int audit_classify_compat_syscall(int abi, unsigned syscall); /* audit_names->type values */ #define AUDIT_TYPE_UNKNOWN 0 /* we don't know yet */ #define AUDIT_TYPE_NORMAL 1 /* a "normal" audit record */ #define AUDIT_TYPE_PARENT 2 /* a parent audit record */ #define AUDIT_TYPE_CHILD_DELETE 3 /* a child being deleted */ #define AUDIT_TYPE_CHILD_CREATE 4 /* a child being created */ /* maximized args number that audit_socketcall can process */ #define AUDITSC_ARGS 6 /* bit values for ->signal->audit_tty */ #define AUDIT_TTY_ENABLE BIT(0) #define AUDIT_TTY_LOG_PASSWD BIT(1) struct filename; #define AUDIT_OFF 0 #define AUDIT_ON 1 #define AUDIT_LOCKED 2 #ifdef CONFIG_AUDIT /* These are defined in audit.c */ /* Public API */ extern __printf(4, 5) void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...); extern struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type); extern __printf(2, 3) void audit_log_format(struct audit_buffer *ab, const char *fmt, ...); extern void audit_log_end(struct audit_buffer *ab); extern bool audit_string_contains_control(const char *string, size_t len); extern void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len); extern void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n); extern void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n); extern void audit_log_untrustedstring(struct audit_buffer *ab, const char *string); extern void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path); extern void audit_log_key(struct audit_buffer *ab, char *key); extern void audit_log_path_denied(int type, const char *operation); extern void audit_log_lost(const char *message); extern int audit_log_task_context(struct audit_buffer *ab); extern void audit_log_task_info(struct audit_buffer *ab); extern int audit_update_lsm_rules(void); /* Private API (for audit.c only) */ extern int audit_rule_change(int type, int seq, void *data, size_t datasz); extern int audit_list_rules_send(struct sk_buff *request_skb, int seq); extern int audit_set_loginuid(kuid_t loginuid); static inline kuid_t audit_get_loginuid(struct task_struct *tsk) { return tsk->loginuid; } static inline unsigned int audit_get_sessionid(struct task_struct *tsk) { return tsk->sessionid; } extern u32 audit_enabled; extern int audit_signal_info(int sig, struct task_struct *t); #else /* CONFIG_AUDIT */ static inline __printf(4, 5) void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...) { } static inline struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type) { return NULL; } static inline __printf(2, 3) void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) { } static inline void audit_log_end(struct audit_buffer *ab) { } static inline void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len) { } static inline void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n) { } static inline void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n) { } static inline void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) { } static inline void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path) { } static inline void audit_log_key(struct audit_buffer *ab, char *key) { } static inline void audit_log_path_denied(int type, const char *operation) { } static inline int audit_log_task_context(struct audit_buffer *ab) { return 0; } static inline void audit_log_task_info(struct audit_buffer *ab) { } static inline kuid_t audit_get_loginuid(struct task_struct *tsk) { return INVALID_UID; } static inline unsigned int audit_get_sessionid(struct task_struct *tsk) { return AUDIT_SID_UNSET; } #define audit_enabled AUDIT_OFF static inline int audit_signal_info(int sig, struct task_struct *t) { return 0; } #endif /* CONFIG_AUDIT */ #ifdef CONFIG_AUDIT_COMPAT_GENERIC #define audit_is_compat(arch) (!((arch) & __AUDIT_ARCH_64BIT)) #else #define audit_is_compat(arch) false #endif #define AUDIT_INODE_PARENT 1 /* dentry represents the parent */ #define AUDIT_INODE_HIDDEN 2 /* audit record should be hidden */ #define AUDIT_INODE_NOEVAL 4 /* audit record incomplete */ #ifdef CONFIG_AUDITSYSCALL #include <asm/syscall.h> /* for syscall_get_arch() */ /* These are defined in auditsc.c */ /* Public API */ extern int audit_alloc(struct task_struct *task); extern void __audit_free(struct task_struct *task); extern void __audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3); extern void __audit_syscall_exit(int ret_success, long ret_value); extern struct filename *__audit_reusename(const __user char *uptr); extern void __audit_getname(struct filename *name); extern void __audit_getcwd(void); extern void __audit_inode(struct filename *name, const struct dentry *dentry, unsigned int flags); extern void __audit_file(const struct file *); extern void __audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type); extern void audit_seccomp(unsigned long syscall, long signr, int code); extern void audit_seccomp_actions_logged(const char *names, const char *old_names, int res); extern void __audit_ptrace(struct task_struct *t); static inline void audit_set_context(struct task_struct *task, struct audit_context *ctx) { task->audit_context = ctx; } static inline struct audit_context *audit_context(void) { return current->audit_context; } static inline bool audit_dummy_context(void) { void *p = audit_context(); return !p || *(int *)p; } static inline void audit_free(struct task_struct *task) { if (unlikely(task->audit_context)) __audit_free(task); } static inline void audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3) { if (unlikely(audit_context())) __audit_syscall_entry(major, a0, a1, a2, a3); } static inline void audit_syscall_exit(void *pt_regs) { if (unlikely(audit_context())) { int success = is_syscall_success(pt_regs); long return_code = regs_return_value(pt_regs); __audit_syscall_exit(success, return_code); } } static inline struct filename *audit_reusename(const __user char *name) { if (unlikely(!audit_dummy_context())) return __audit_reusename(name); return NULL; } static inline void audit_getname(struct filename *name) { if (unlikely(!audit_dummy_context())) __audit_getname(name); } static inline void audit_getcwd(void) { if (unlikely(audit_context())) __audit_getcwd(); } static inline void audit_inode(struct filename *name, const struct dentry *dentry, unsigned int aflags) { if (unlikely(!audit_dummy_context())) __audit_inode(name, dentry, aflags); } static inline void audit_file(struct file *file) { if (unlikely(!audit_dummy_context())) __audit_file(file); } static inline void audit_inode_parent_hidden(struct filename *name, const struct dentry *dentry) { if (unlikely(!audit_dummy_context())) __audit_inode(name, dentry, AUDIT_INODE_PARENT | AUDIT_INODE_HIDDEN); } static inline void audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { if (unlikely(!audit_dummy_context())) __audit_inode_child(parent, dentry, type); } void audit_core_dumps(long signr); static inline void audit_ptrace(struct task_struct *t) { if (unlikely(!audit_dummy_context())) __audit_ptrace(t); } /* Private API (for audit.c only) */ extern void __audit_ipc_obj(struct kern_ipc_perm *ipcp); extern void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode); extern void __audit_bprm(struct linux_binprm *bprm); extern int __audit_socketcall(int nargs, unsigned long *args); extern int __audit_sockaddr(int len, void *addr); extern void __audit_fd_pair(int fd1, int fd2); extern void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr); extern void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout); extern void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification); extern void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat); extern int __audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old); extern void __audit_log_capset(const struct cred *new, const struct cred *old); extern void __audit_mmap_fd(int fd, int flags); extern void __audit_log_kern_module(char *name); extern void __audit_fanotify(unsigned int response); extern void __audit_tk_injoffset(struct timespec64 offset); extern void __audit_ntp_log(const struct audit_ntp_data *ad); extern void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp); static inline void audit_ipc_obj(struct kern_ipc_perm *ipcp) { if (unlikely(!audit_dummy_context())) __audit_ipc_obj(ipcp); } static inline void audit_fd_pair(int fd1, int fd2) { if (unlikely(!audit_dummy_context())) __audit_fd_pair(fd1, fd2); } static inline void audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { if (unlikely(!audit_dummy_context())) __audit_ipc_set_perm(qbytes, uid, gid, mode); } static inline void audit_bprm(struct linux_binprm *bprm) { if (unlikely(!audit_dummy_context())) __audit_bprm(bprm); } static inline int audit_socketcall(int nargs, unsigned long *args) { if (unlikely(!audit_dummy_context())) return __audit_socketcall(nargs, args); return 0; } static inline int audit_socketcall_compat(int nargs, u32 *args) { unsigned long a[AUDITSC_ARGS]; int i; if (audit_dummy_context()) return 0; for (i = 0; i < nargs; i++) a[i] = (unsigned long)args[i]; return __audit_socketcall(nargs, a); } static inline int audit_sockaddr(int len, void *addr) { if (unlikely(!audit_dummy_context())) return __audit_sockaddr(len, addr); return 0; } static inline void audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { if (unlikely(!audit_dummy_context())) __audit_mq_open(oflag, mode, attr); } static inline void audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { if (unlikely(!audit_dummy_context())) __audit_mq_sendrecv(mqdes, msg_len, msg_prio, abs_timeout); } static inline void audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { if (unlikely(!audit_dummy_context())) __audit_mq_notify(mqdes, notification); } static inline void audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { if (unlikely(!audit_dummy_context())) __audit_mq_getsetattr(mqdes, mqstat); } static inline int audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { if (unlikely(!audit_dummy_context())) return __audit_log_bprm_fcaps(bprm, new, old); return 0; } static inline void audit_log_capset(const struct cred *new, const struct cred *old) { if (unlikely(!audit_dummy_context())) __audit_log_capset(new, old); } static inline void audit_mmap_fd(int fd, int flags) { if (unlikely(!audit_dummy_context())) __audit_mmap_fd(fd, flags); } static inline void audit_log_kern_module(char *name) { if (!audit_dummy_context()) __audit_log_kern_module(name); } static inline void audit_fanotify(unsigned int response) { if (!audit_dummy_context()) __audit_fanotify(response); } static inline void audit_tk_injoffset(struct timespec64 offset) { /* ignore no-op events */ if (offset.tv_sec == 0 && offset.tv_nsec == 0) return; if (!audit_dummy_context()) __audit_tk_injoffset(offset); } static inline void audit_ntp_init(struct audit_ntp_data *ad) { memset(ad, 0, sizeof(*ad)); } static inline void audit_ntp_set_old(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { ad->vals[type].oldval = val; } static inline void audit_ntp_set_new(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { ad->vals[type].newval = val; } static inline void audit_ntp_log(const struct audit_ntp_data *ad) { if (!audit_dummy_context()) __audit_ntp_log(ad); } static inline void audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { if (audit_enabled) __audit_log_nfcfg(name, af, nentries, op, gfp); } extern int audit_n_rules; extern int audit_signals; #else /* CONFIG_AUDITSYSCALL */ static inline int audit_alloc(struct task_struct *task) { return 0; } static inline void audit_free(struct task_struct *task) { } static inline void audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3) { } static inline void audit_syscall_exit(void *pt_regs) { } static inline bool audit_dummy_context(void) { return true; } static inline void audit_set_context(struct task_struct *task, struct audit_context *ctx) { } static inline struct audit_context *audit_context(void) { return NULL; } static inline struct filename *audit_reusename(const __user char *name) { return NULL; } static inline void audit_getname(struct filename *name) { } static inline void audit_getcwd(void) { } static inline void audit_inode(struct filename *name, const struct dentry *dentry, unsigned int aflags) { } static inline void audit_file(struct file *file) { } static inline void audit_inode_parent_hidden(struct filename *name, const struct dentry *dentry) { } static inline void audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { } static inline void audit_core_dumps(long signr) { } static inline void audit_seccomp(unsigned long syscall, long signr, int code) { } static inline void audit_seccomp_actions_logged(const char *names, const char *old_names, int res) { } static inline void audit_ipc_obj(struct kern_ipc_perm *ipcp) { } static inline void audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { } static inline void audit_bprm(struct linux_binprm *bprm) { } static inline int audit_socketcall(int nargs, unsigned long *args) { return 0; } static inline int audit_socketcall_compat(int nargs, u32 *args) { return 0; } static inline void audit_fd_pair(int fd1, int fd2) { } static inline int audit_sockaddr(int len, void *addr) { return 0; } static inline void audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { } static inline void audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { } static inline void audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { } static inline void audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { } static inline int audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { return 0; } static inline void audit_log_capset(const struct cred *new, const struct cred *old) { } static inline void audit_mmap_fd(int fd, int flags) { } static inline void audit_log_kern_module(char *name) { } static inline void audit_fanotify(unsigned int response) { } static inline void audit_tk_injoffset(struct timespec64 offset) { } static inline void audit_ntp_init(struct audit_ntp_data *ad) { } static inline void audit_ntp_set_old(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { } static inline void audit_ntp_set_new(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { } static inline void audit_ntp_log(const struct audit_ntp_data *ad) { } static inline void audit_ptrace(struct task_struct *t) { } static inline void audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { } #define audit_n_rules 0 #define audit_signals 0 #endif /* CONFIG_AUDITSYSCALL */ static inline bool audit_loginuid_set(struct task_struct *tsk) { return uid_valid(audit_get_loginuid(tsk)); } #endif
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_UACCESS_H #define _ASM_X86_UACCESS_H /* * User space memory access functions */ #include <linux/compiler.h> #include <linux/kasan-checks.h> #include <linux/string.h> #include <asm/asm.h> #include <asm/page.h> #include <asm/smap.h> #include <asm/extable.h> /* * Test whether a block of memory is a valid user space address. * Returns 0 if the range is valid, nonzero otherwise. */ static inline bool __chk_range_not_ok(unsigned long addr, unsigned long size, unsigned long limit) { /* * If we have used "sizeof()" for the size, * we know it won't overflow the limit (but * it might overflow the 'addr', so it's * important to subtract the size from the * limit, not add it to the address). */ if (__builtin_constant_p(size)) return unlikely(addr > limit - size); /* Arbitrary sizes? Be careful about overflow */ addr += size; if (unlikely(addr < size)) return true; return unlikely(addr > limit); } #define __range_not_ok(addr, size, limit) \ ({ \ __chk_user_ptr(addr); \ __chk_range_not_ok((unsigned long __force)(addr), size, limit); \ }) #ifdef CONFIG_DEBUG_ATOMIC_SLEEP static inline bool pagefault_disabled(void); # define WARN_ON_IN_IRQ() \ WARN_ON_ONCE(!in_task() && !pagefault_disabled()) #else # define WARN_ON_IN_IRQ() #endif /** * access_ok - Checks if a user space pointer is valid * @addr: User space pointer to start of block to check * @size: Size of block to check * * Context: User context only. This function may sleep if pagefaults are * enabled. * * Checks if a pointer to a block of memory in user space is valid. * * Note that, depending on architecture, this function probably just * checks that the pointer is in the user space range - after calling * this function, memory access functions may still return -EFAULT. * * Return: true (nonzero) if the memory block may be valid, false (zero) * if it is definitely invalid. */ #define access_ok(addr, size) \ ({ \ WARN_ON_IN_IRQ(); \ likely(!__range_not_ok(addr, size, TASK_SIZE_MAX)); \ }) extern int __get_user_1(void); extern int __get_user_2(void); extern int __get_user_4(void); extern int __get_user_8(void); extern int __get_user_nocheck_1(void); extern int __get_user_nocheck_2(void); extern int __get_user_nocheck_4(void); extern int __get_user_nocheck_8(void); extern int __get_user_bad(void); #define __uaccess_begin() stac() #define __uaccess_end() clac() #define __uaccess_begin_nospec() \ ({ \ stac(); \ barrier_nospec(); \ }) /* * This is the smallest unsigned integer type that can fit a value * (up to 'long long') */ #define __inttype(x) __typeof__( \ __typefits(x,char, \ __typefits(x,short, \ __typefits(x,int, \ __typefits(x,long,0ULL))))) #define __typefits(x,type,not) \ __builtin_choose_expr(sizeof(x)<=sizeof(type),(unsigned type)0,not) /* * This is used for both get_user() and __get_user() to expand to * the proper special function call that has odd calling conventions * due to returning both a value and an error, and that depends on * the size of the pointer passed in. * * Careful: we have to cast the result to the type of the pointer * for sign reasons. * * The use of _ASM_DX as the register specifier is a bit of a * simplification, as gcc only cares about it as the starting point * and not size: for a 64-bit value it will use %ecx:%edx on 32 bits * (%ecx being the next register in gcc's x86 register sequence), and * %rdx on 64 bits. * * Clang/LLVM cares about the size of the register, but still wants * the base register for something that ends up being a pair. */ #define do_get_user_call(fn,x,ptr) \ ({ \ int __ret_gu; \ register __inttype(*(ptr)) __val_gu asm("%"_ASM_DX); \ __chk_user_ptr(ptr); \ asm volatile("call __" #fn "_%P4" \ : "=a" (__ret_gu), "=r" (__val_gu), \ ASM_CALL_CONSTRAINT \ : "0" (ptr), "i" (sizeof(*(ptr)))); \ (x) = (__force __typeof__(*(ptr))) __val_gu; \ __builtin_expect(__ret_gu, 0); \ }) /** * get_user - Get a simple variable from user space. * @x: Variable to store result. * @ptr: Source address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple variable from user space to kernel * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and the result of * dereferencing @ptr must be assignable to @x without a cast. * * Return: zero on success, or -EFAULT on error. * On error, the variable @x is set to zero. */ #define get_user(x,ptr) ({ might_fault(); do_get_user_call(get_user,x,ptr); }) /** * __get_user - Get a simple variable from user space, with less checking. * @x: Variable to store result. * @ptr: Source address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple variable from user space to kernel * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and the result of * dereferencing @ptr must be assignable to @x without a cast. * * Caller must check the pointer with access_ok() before calling this * function. * * Return: zero on success, or -EFAULT on error. * On error, the variable @x is set to zero. */ #define __get_user(x,ptr) do_get_user_call(get_user_nocheck,x,ptr) #ifdef CONFIG_X86_32 #define __put_user_goto_u64(x, addr, label) \ asm_volatile_goto("\n" \ "1: movl %%eax,0(%1)\n" \ "2: movl %%edx,4(%1)\n" \ _ASM_EXTABLE_UA(1b, %l2) \ _ASM_EXTABLE_UA(2b, %l2) \ : : "A" (x), "r" (addr) \ : : label) #else #define __put_user_goto_u64(x, ptr, label) \ __put_user_goto(x, ptr, "q", "er", label) #endif extern void __put_user_bad(void); /* * Strange magic calling convention: pointer in %ecx, * value in %eax(:%edx), return value in %ecx. clobbers %rbx */ extern void __put_user_1(void); extern void __put_user_2(void); extern void __put_user_4(void); extern void __put_user_8(void); extern void __put_user_nocheck_1(void); extern void __put_user_nocheck_2(void); extern void __put_user_nocheck_4(void); extern void __put_user_nocheck_8(void); /* * ptr must be evaluated and assigned to the temporary __ptr_pu before * the assignment of x to __val_pu, to avoid any function calls * involved in the ptr expression (possibly implicitly generated due * to KASAN) from clobbering %ax. */ #define do_put_user_call(fn,x,ptr) \ ({ \ int __ret_pu; \ void __user *__ptr_pu; \ register __typeof__(*(ptr)) __val_pu asm("%"_ASM_AX); \ __chk_user_ptr(ptr); \ __ptr_pu = (ptr); \ __val_pu = (x); \ asm volatile("call __" #fn "_%P[size]" \ : "=c" (__ret_pu), \ ASM_CALL_CONSTRAINT \ : "0" (__ptr_pu), \ "r" (__val_pu), \ [size] "i" (sizeof(*(ptr))) \ :"ebx"); \ __builtin_expect(__ret_pu, 0); \ }) /** * put_user - Write a simple value into user space. * @x: Value to copy to user space. * @ptr: Destination address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple value from kernel space to user * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and @x must be assignable * to the result of dereferencing @ptr. * * Return: zero on success, or -EFAULT on error. */ #define put_user(x, ptr) ({ might_fault(); do_put_user_call(put_user,x,ptr); }) /** * __put_user - Write a simple value into user space, with less checking. * @x: Value to copy to user space. * @ptr: Destination address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple value from kernel space to user * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and @x must be assignable * to the result of dereferencing @ptr. * * Caller must check the pointer with access_ok() before calling this * function. * * Return: zero on success, or -EFAULT on error. */ #define __put_user(x, ptr) do_put_user_call(put_user_nocheck,x,ptr) #define __put_user_size(x, ptr, size, label) \ do { \ __chk_user_ptr(ptr); \ switch (size) { \ case 1: \ __put_user_goto(x, ptr, "b", "iq", label); \ break; \ case 2: \ __put_user_goto(x, ptr, "w", "ir", label); \ break; \ case 4: \ __put_user_goto(x, ptr, "l", "ir", label); \ break; \ case 8: \ __put_user_goto_u64(x, ptr, label); \ break; \ default: \ __put_user_bad(); \ } \ } while (0) #ifdef CONFIG_CC_HAS_ASM_GOTO_OUTPUT #ifdef CONFIG_X86_32 #define __get_user_asm_u64(x, ptr, label) do { \ unsigned int __gu_low, __gu_high; \ const unsigned int __user *__gu_ptr; \ __gu_ptr = (const void __user *)(ptr); \ __get_user_asm(__gu_low, __gu_ptr, "l", "=r", label); \ __get_user_asm(__gu_high, __gu_ptr+1, "l", "=r", label); \ (x) = ((unsigned long long)__gu_high << 32) | __gu_low; \ } while (0) #else #define __get_user_asm_u64(x, ptr, label) \ __get_user_asm(x, ptr, "q", "=r", label) #endif #define __get_user_size(x, ptr, size, label) \ do { \ __chk_user_ptr(ptr); \ switch (size) { \ unsigned char x_u8__; \ case 1: \ __get_user_asm(x_u8__, ptr, "b", "=q", label); \ (x) = x_u8__; \ break; \ case 2: \ __get_user_asm(x, ptr, "w", "=r", label); \ break; \ case 4: \ __get_user_asm(x, ptr, "l", "=r", label); \ break; \ case 8: \ __get_user_asm_u64(x, ptr, label); \ break; \ default: \ (x) = __get_user_bad(); \ } \ } while (0) #define __get_user_asm(x, addr, itype, ltype, label) \ asm_volatile_goto("\n" \ "1: mov"itype" %[umem],%[output]\n" \ _ASM_EXTABLE_UA(1b, %l2) \ : [output] ltype(x) \ : [umem] "m" (__m(addr)) \ : : label) #else // !CONFIG_CC_HAS_ASM_GOTO_OUTPUT #ifdef CONFIG_X86_32 #define __get_user_asm_u64(x, ptr, retval) \ ({ \ __typeof__(ptr) __ptr = (ptr); \ asm volatile("\n" \ "1: movl %[lowbits],%%eax\n" \ "2: movl %[highbits],%%edx\n" \ "3:\n" \ ".section .fixup,\"ax\"\n" \ "4: mov %[efault],%[errout]\n" \ " xorl %%eax,%%eax\n" \ " xorl %%edx,%%edx\n" \ " jmp 3b\n" \ ".previous\n" \ _ASM_EXTABLE_UA(1b, 4b) \ _ASM_EXTABLE_UA(2b, 4b) \ : [errout] "=r" (retval), \ [output] "=&A"(x) \ : [lowbits] "m" (__m(__ptr)), \ [highbits] "m" __m(((u32 __user *)(__ptr)) + 1), \ [efault] "i" (-EFAULT), "0" (retval)); \ }) #else #define __get_user_asm_u64(x, ptr, retval) \ __get_user_asm(x, ptr, retval, "q", "=r") #endif #define __get_user_size(x, ptr, size, retval) \ do { \ unsigned char x_u8__; \ \ retval = 0; \ __chk_user_ptr(ptr); \ switch (size) { \ case 1: \ __get_user_asm(x_u8__, ptr, retval, "b", "=q"); \ (x) = x_u8__; \ break; \ case 2: \ __get_user_asm(x, ptr, retval, "w", "=r"); \ break; \ case 4: \ __get_user_asm(x, ptr, retval, "l", "=r"); \ break; \ case 8: \ __get_user_asm_u64(x, ptr, retval); \ break; \ default: \ (x) = __get_user_bad(); \ } \ } while (0) #define __get_user_asm(x, addr, err, itype, ltype) \ asm volatile("\n" \ "1: mov"itype" %[umem],%[output]\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: mov %[efault],%[errout]\n" \ " xorl %k[output],%k[output]\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE_UA(1b, 3b) \ : [errout] "=r" (err), \ [output] ltype(x) \ : [umem] "m" (__m(addr)), \ [efault] "i" (-EFAULT), "0" (err)) #endif // CONFIG_CC_ASM_GOTO_OUTPUT /* FIXME: this hack is definitely wrong -AK */ struct __large_struct { unsigned long buf[100]; }; #define __m(x) (*(struct __large_struct __user *)(x)) /* * Tell gcc we read from memory instead of writing: this is because * we do not write to any memory gcc knows about, so there are no * aliasing issues. */ #define __put_user_goto(x, addr, itype, ltype, label) \ asm_volatile_goto("\n" \ "1: mov"itype" %0,%1\n" \ _ASM_EXTABLE_UA(1b, %l2) \ : : ltype(x), "m" (__m(addr)) \ : : label) extern unsigned long copy_from_user_nmi(void *to, const void __user *from, unsigned long n); extern __must_check long strncpy_from_user(char *dst, const char __user *src, long count); extern __must_check long strnlen_user(const char __user *str, long n); unsigned long __must_check clear_user(void __user *mem, unsigned long len); unsigned long __must_check __clear_user(void __user *mem, unsigned long len); #ifdef CONFIG_ARCH_HAS_COPY_MC unsigned long __must_check copy_mc_to_kernel(void *to, const void *from, unsigned len); #define copy_mc_to_kernel copy_mc_to_kernel unsigned long __must_check copy_mc_to_user(void *to, const void *from, unsigned len); #endif /* * movsl can be slow when source and dest are not both 8-byte aligned */ #ifdef CONFIG_X86_INTEL_USERCOPY extern struct movsl_mask { int mask; } ____cacheline_aligned_in_smp movsl_mask; #endif #define ARCH_HAS_NOCACHE_UACCESS 1 #ifdef CONFIG_X86_32 # include <asm/uaccess_32.h> #else # include <asm/uaccess_64.h> #endif /* * The "unsafe" user accesses aren't really "unsafe", but the naming * is a big fat warning: you have to not only do the access_ok() * checking before using them, but you have to surround them with the * user_access_begin/end() pair. */ static __must_check __always_inline bool user_access_begin(const void __user *ptr, size_t len) { if (unlikely(!access_ok(ptr,len))) return 0; __uaccess_begin_nospec(); return 1; } #define user_access_begin(a,b) user_access_begin(a,b) #define user_access_end() __uaccess_end() #define user_access_save() smap_save() #define user_access_restore(x) smap_restore(x) #define unsafe_put_user(x, ptr, label) \ __put_user_size((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)), label) #ifdef CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define unsafe_get_user(x, ptr, err_label) \ do { \ __inttype(*(ptr)) __gu_val; \ __get_user_size(__gu_val, (ptr), sizeof(*(ptr)), err_label); \ (x) = (__force __typeof__(*(ptr)))__gu_val; \ } while (0) #else // !CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define unsafe_get_user(x, ptr, err_label) \ do { \ int __gu_err; \ __inttype(*(ptr)) __gu_val; \ __get_user_size(__gu_val, (ptr), sizeof(*(ptr)), __gu_err); \ (x) = (__force __typeof__(*(ptr)))__gu_val; \ if (unlikely(__gu_err)) goto err_label; \ } while (0) #endif // CONFIG_CC_HAS_ASM_GOTO_OUTPUT /* * We want the unsafe accessors to always be inlined and use * the error labels - thus the macro games. */ #define unsafe_copy_loop(dst, src, len, type, label) \ while (len >= sizeof(type)) { \ unsafe_put_user(*(type *)(src),(type __user *)(dst),label); \ dst += sizeof(type); \ src += sizeof(type); \ len -= sizeof(type); \ } #define unsafe_copy_to_user(_dst,_src,_len,label) \ do { \ char __user *__ucu_dst = (_dst); \ const char *__ucu_src = (_src); \ size_t __ucu_len = (_len); \ unsafe_copy_loop(__ucu_dst, __ucu_src, __ucu_len, u64, label); \ unsafe_copy_loop(__ucu_dst, __ucu_src, __ucu_len, u32, label); \ unsafe_copy_loop(__ucu_dst, __ucu_src, __ucu_len, u16, label); \ unsafe_copy_loop(__ucu_dst, __ucu_src, __ucu_len, u8, label); \ } while (0) #define HAVE_GET_KERNEL_NOFAULT #ifdef CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define __get_kernel_nofault(dst, src, type, err_label) \ __get_user_size(*((type *)(dst)), (__force type __user *)(src), \ sizeof(type), err_label) #else // !CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define __get_kernel_nofault(dst, src, type, err_label) \ do { \ int __kr_err; \ \ __get_user_size(*((type *)(dst)), (__force type __user *)(src), \ sizeof(type), __kr_err); \ if (unlikely(__kr_err)) \ goto err_label; \ } while (0) #endif // CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define __put_kernel_nofault(dst, src, type, err_label) \ __put_user_size(*((type *)(src)), (__force type __user *)(dst), \ sizeof(type), err_label) #endif /* _ASM_X86_UACCESS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 /* SPDX-License-Identifier: GPL-2.0 */ /* * Statically sized hash table implementation * (C) 2012 Sasha Levin <levinsasha928@gmail.com> */ #ifndef _LINUX_HASHTABLE_H #define _LINUX_HASHTABLE_H #include <linux/list.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/hash.h> #include <linux/rculist.h> #define DEFINE_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] = \ { [0 ... ((1 << (bits)) - 1)] = HLIST_HEAD_INIT } #define DEFINE_READ_MOSTLY_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] __read_mostly = \ { [0 ... ((1 << (bits)) - 1)] = HLIST_HEAD_INIT } #define DECLARE_HASHTABLE(name, bits) \ struct hlist_head name[1 << (bits)] #define HASH_SIZE(name) (ARRAY_SIZE(name)) #define HASH_BITS(name) ilog2(HASH_SIZE(name)) /* Use hash_32 when possible to allow for fast 32bit hashing in 64bit kernels. */ #define hash_min(val, bits) \ (sizeof(val) <= 4 ? hash_32(val, bits) : hash_long(val, bits)) static inline void __hash_init(struct hlist_head *ht, unsigned int sz) { unsigned int i; for (i = 0; i < sz; i++) INIT_HLIST_HEAD(&ht[i]); } /** * hash_init - initialize a hash table * @hashtable: hashtable to be initialized * * Calculates the size of the hashtable from the given parameter, otherwise * same as hash_init_size. * * This has to be a macro since HASH_BITS() will not work on pointers since * it calculates the size during preprocessing. */ #define hash_init(hashtable) __hash_init(hashtable, HASH_SIZE(hashtable)) /** * hash_add - add an object to a hashtable * @hashtable: hashtable to add to * @node: the &struct hlist_node of the object to be added * @key: the key of the object to be added */ #define hash_add(hashtable, node, key) \ hlist_add_head(node, &hashtable[hash_min(key, HASH_BITS(hashtable))]) /** * hash_add_rcu - add an object to a rcu enabled hashtable * @hashtable: hashtable to add to * @node: the &struct hlist_node of the object to be added * @key: the key of the object to be added */ #define hash_add_rcu(hashtable, node, key) \ hlist_add_head_rcu(node, &hashtable[hash_min(key, HASH_BITS(hashtable))]) /** * hash_hashed - check whether an object is in any hashtable * @node: the &struct hlist_node of the object to be checked */ static inline bool hash_hashed(struct hlist_node *node) { return !hlist_unhashed(node); } static inline bool __hash_empty(struct hlist_head *ht, unsigned int sz) { unsigned int i; for (i = 0; i < sz; i++) if (!hlist_empty(&ht[i])) return false; return true; } /** * hash_empty - check whether a hashtable is empty * @hashtable: hashtable to check * * This has to be a macro since HASH_BITS() will not work on pointers since * it calculates the size during preprocessing. */ #define hash_empty(hashtable) __hash_empty(hashtable, HASH_SIZE(hashtable)) /** * hash_del - remove an object from a hashtable * @node: &struct hlist_node of the object to remove */ static inline void hash_del(struct hlist_node *node) { hlist_del_init(node); } /** * hash_del_rcu - remove an object from a rcu enabled hashtable * @node: &struct hlist_node of the object to remove */ static inline void hash_del_rcu(struct hlist_node *node) { hlist_del_init_rcu(node); } /** * hash_for_each - iterate over a hashtable * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each(name, bkt, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry(obj, &name[bkt], member) /** * hash_for_each_rcu - iterate over a rcu enabled hashtable * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each_rcu(name, bkt, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry_rcu(obj, &name[bkt], member) /** * hash_for_each_safe - iterate over a hashtable safe against removal of * hash entry * @name: hashtable to iterate * @bkt: integer to use as bucket loop cursor * @tmp: a &struct hlist_node used for temporary storage * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct */ #define hash_for_each_safe(name, bkt, tmp, obj, member) \ for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\ (bkt)++)\ hlist_for_each_entry_safe(obj, tmp, &name[bkt], member) /** * hash_for_each_possible - iterate over all possible objects hashing to the * same bucket * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible(name, obj, member, key) \ hlist_for_each_entry(obj, &name[hash_min(key, HASH_BITS(name))], member) /** * hash_for_each_possible_rcu - iterate over all possible objects hashing to the * same bucket in an rcu enabled hashtable * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible_rcu(name, obj, member, key, cond...) \ hlist_for_each_entry_rcu(obj, &name[hash_min(key, HASH_BITS(name))],\ member, ## cond) /** * hash_for_each_possible_rcu_notrace - iterate over all possible objects hashing * to the same bucket in an rcu enabled hashtable in a rcu enabled hashtable * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over * * This is the same as hash_for_each_possible_rcu() except that it does * not do any RCU debugging or tracing. */ #define hash_for_each_possible_rcu_notrace(name, obj, member, key) \ hlist_for_each_entry_rcu_notrace(obj, \ &name[hash_min(key, HASH_BITS(name))], member) /** * hash_for_each_possible_safe - iterate over all possible objects hashing to the * same bucket safe against removals * @name: hashtable to iterate * @obj: the type * to use as a loop cursor for each entry * @tmp: a &struct hlist_node used for temporary storage * @member: the name of the hlist_node within the struct * @key: the key of the objects to iterate over */ #define hash_for_each_possible_safe(name, obj, tmp, member, key) \ hlist_for_each_entry_safe(obj, tmp,\ &name[hash_min(key, HASH_BITS(name))], member) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NETFILTER_H #define __LINUX_NETFILTER_H #include <linux/init.h> #include <linux/skbuff.h> #include <linux/net.h> #include <linux/if.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/wait.h> #include <linux/list.h> #include <linux/static_key.h> #include <linux/netfilter_defs.h> #include <linux/netdevice.h> #include <linux/sockptr.h> #include <net/net_namespace.h> static inline int NF_DROP_GETERR(int verdict) { return -(verdict >> NF_VERDICT_QBITS); } static inline int nf_inet_addr_cmp(const union nf_inet_addr *a1, const union nf_inet_addr *a2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const unsigned long *ul1 = (const unsigned long *)a1; const unsigned long *ul2 = (const unsigned long *)a2; return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL; #else return a1->all[0] == a2->all[0] && a1->all[1] == a2->all[1] && a1->all[2] == a2->all[2] && a1->all[3] == a2->all[3]; #endif } static inline void nf_inet_addr_mask(const union nf_inet_addr *a1, union nf_inet_addr *result, const union nf_inet_addr *mask) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const unsigned long *ua = (const unsigned long *)a1; unsigned long *ur = (unsigned long *)result; const unsigned long *um = (const unsigned long *)mask; ur[0] = ua[0] & um[0]; ur[1] = ua[1] & um[1]; #else result->all[0] = a1->all[0] & mask->all[0]; result->all[1] = a1->all[1] & mask->all[1]; result->all[2] = a1->all[2] & mask->all[2]; result->all[3] = a1->all[3] & mask->all[3]; #endif } int netfilter_init(void); struct sk_buff; struct nf_hook_ops; struct sock; struct nf_hook_state { unsigned int hook; u_int8_t pf; struct net_device *in; struct net_device *out; struct sock *sk; struct net *net; int (*okfn)(struct net *, struct sock *, struct sk_buff *); }; typedef unsigned int nf_hookfn(void *priv, struct sk_buff *skb, const struct nf_hook_state *state); struct nf_hook_ops { /* User fills in from here down. */ nf_hookfn *hook; struct net_device *dev; void *priv; u_int8_t pf; unsigned int hooknum; /* Hooks are ordered in ascending priority. */ int priority; }; struct nf_hook_entry { nf_hookfn *hook; void *priv; }; struct nf_hook_entries_rcu_head { struct rcu_head head; void *allocation; }; struct nf_hook_entries { u16 num_hook_entries; /* padding */ struct nf_hook_entry hooks[]; /* trailer: pointers to original orig_ops of each hook, * followed by rcu_head and scratch space used for freeing * the structure via call_rcu. * * This is not part of struct nf_hook_entry since its only * needed in slow path (hook register/unregister): * const struct nf_hook_ops *orig_ops[] * * For the same reason, we store this at end -- its * only needed when a hook is deleted, not during * packet path processing: * struct nf_hook_entries_rcu_head head */ }; #ifdef CONFIG_NETFILTER static inline struct nf_hook_ops **nf_hook_entries_get_hook_ops(const struct nf_hook_entries *e) { unsigned int n = e->num_hook_entries; const void *hook_end; hook_end = &e->hooks[n]; /* this is *past* ->hooks[]! */ return (struct nf_hook_ops **)hook_end; } static inline int nf_hook_entry_hookfn(const struct nf_hook_entry *entry, struct sk_buff *skb, struct nf_hook_state *state) { return entry->hook(entry->priv, skb, state); } static inline void nf_hook_state_init(struct nf_hook_state *p, unsigned int hook, u_int8_t pf, struct net_device *indev, struct net_device *outdev, struct sock *sk, struct net *net, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { p->hook = hook; p->pf = pf; p->in = indev; p->out = outdev; p->sk = sk; p->net = net; p->okfn = okfn; } struct nf_sockopt_ops { struct list_head list; u_int8_t pf; /* Non-inclusive ranges: use 0/0/NULL to never get called. */ int set_optmin; int set_optmax; int (*set)(struct sock *sk, int optval, sockptr_t arg, unsigned int len); int get_optmin; int get_optmax; int (*get)(struct sock *sk, int optval, void __user *user, int *len); /* Use the module struct to lock set/get code in place */ struct module *owner; }; /* Function to register/unregister hook points. */ int nf_register_net_hook(struct net *net, const struct nf_hook_ops *ops); void nf_unregister_net_hook(struct net *net, const struct nf_hook_ops *ops); int nf_register_net_hooks(struct net *net, const struct nf_hook_ops *reg, unsigned int n); void nf_unregister_net_hooks(struct net *net, const struct nf_hook_ops *reg, unsigned int n); /* Functions to register get/setsockopt ranges (non-inclusive). You need to check permissions yourself! */ int nf_register_sockopt(struct nf_sockopt_ops *reg); void nf_unregister_sockopt(struct nf_sockopt_ops *reg); #ifdef CONFIG_JUMP_LABEL extern struct static_key nf_hooks_needed[NFPROTO_NUMPROTO][NF_MAX_HOOKS]; #endif int nf_hook_slow(struct sk_buff *skb, struct nf_hook_state *state, const struct nf_hook_entries *e, unsigned int i); void nf_hook_slow_list(struct list_head *head, struct nf_hook_state *state, const struct nf_hook_entries *e); /** * nf_hook - call a netfilter hook * * Returns 1 if the hook has allowed the packet to pass. The function * okfn must be invoked by the caller in this case. Any other return * value indicates the packet has been consumed by the hook. */ static inline int nf_hook(u_int8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *indev, struct net_device *outdev, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { struct nf_hook_entries *hook_head = NULL; int ret = 1; #ifdef CONFIG_JUMP_LABEL if (__builtin_constant_p(pf) && __builtin_constant_p(hook) && !static_key_false(&nf_hooks_needed[pf][hook])) return 1; #endif rcu_read_lock(); switch (pf) { case NFPROTO_IPV4: hook_head = rcu_dereference(net->nf.hooks_ipv4[hook]); break; case NFPROTO_IPV6: hook_head = rcu_dereference(net->nf.hooks_ipv6[hook]); break; case NFPROTO_ARP: #ifdef CONFIG_NETFILTER_FAMILY_ARP if (WARN_ON_ONCE(hook >= ARRAY_SIZE(net->nf.hooks_arp))) break; hook_head = rcu_dereference(net->nf.hooks_arp[hook]); #endif break; case NFPROTO_BRIDGE: #ifdef CONFIG_NETFILTER_FAMILY_BRIDGE hook_head = rcu_dereference(net->nf.hooks_bridge[hook]); #endif break; #if IS_ENABLED(CONFIG_DECNET) case NFPROTO_DECNET: hook_head = rcu_dereference(net->nf.hooks_decnet[hook]); break; #endif default: WARN_ON_ONCE(1); break; } if (hook_head) { struct nf_hook_state state; nf_hook_state_init(&state, hook, pf, indev, outdev, sk, net, okfn); ret = nf_hook_slow(skb, &state, hook_head, 0); } rcu_read_unlock(); return ret; } /* Activate hook; either okfn or kfree_skb called, unless a hook returns NF_STOLEN (in which case, it's up to the hook to deal with the consequences). Returns -ERRNO if packet dropped. Zero means queued, stolen or accepted. */ /* RR: > I don't want nf_hook to return anything because people might forget > about async and trust the return value to mean "packet was ok". AK: Just document it clearly, then you can expect some sense from kernel coders :) */ static inline int NF_HOOK_COND(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *), bool cond) { int ret; if (!cond || ((ret = nf_hook(pf, hook, net, sk, skb, in, out, okfn)) == 1)) ret = okfn(net, sk, skb); return ret; } static inline int NF_HOOK(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { int ret = nf_hook(pf, hook, net, sk, skb, in, out, okfn); if (ret == 1) ret = okfn(net, sk, skb); return ret; } static inline void NF_HOOK_LIST(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct list_head *head, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { struct nf_hook_entries *hook_head = NULL; #ifdef CONFIG_JUMP_LABEL if (__builtin_constant_p(pf) && __builtin_constant_p(hook) && !static_key_false(&nf_hooks_needed[pf][hook])) return; #endif rcu_read_lock(); switch (pf) { case NFPROTO_IPV4: hook_head = rcu_dereference(net->nf.hooks_ipv4[hook]); break; case NFPROTO_IPV6: hook_head = rcu_dereference(net->nf.hooks_ipv6[hook]); break; default: WARN_ON_ONCE(1); break; } if (hook_head) { struct nf_hook_state state; nf_hook_state_init(&state, hook, pf, in, out, sk, net, okfn); nf_hook_slow_list(head, &state, hook_head); } rcu_read_unlock(); } /* Call setsockopt() */ int nf_setsockopt(struct sock *sk, u_int8_t pf, int optval, sockptr_t opt, unsigned int len); int nf_getsockopt(struct sock *sk, u_int8_t pf, int optval, char __user *opt, int *len); struct flowi; struct nf_queue_entry; __sum16 nf_checksum(struct sk_buff *skb, unsigned int hook, unsigned int dataoff, u_int8_t protocol, unsigned short family); __sum16 nf_checksum_partial(struct sk_buff *skb, unsigned int hook, unsigned int dataoff, unsigned int len, u_int8_t protocol, unsigned short family); int nf_route(struct net *net, struct dst_entry **dst, struct flowi *fl, bool strict, unsigned short family); int nf_reroute(struct sk_buff *skb, struct nf_queue_entry *entry); #include <net/flow.h> struct nf_conn; enum nf_nat_manip_type; struct nlattr; enum ip_conntrack_dir; struct nf_nat_hook { int (*parse_nat_setup)(struct nf_conn *ct, enum nf_nat_manip_type manip, const struct nlattr *attr); void (*decode_session)(struct sk_buff *skb, struct flowi *fl); unsigned int (*manip_pkt)(struct sk_buff *skb, struct nf_conn *ct, enum nf_nat_manip_type mtype, enum ip_conntrack_dir dir); }; extern struct nf_nat_hook __rcu *nf_nat_hook; static inline void nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl, u_int8_t family) { #if IS_ENABLED(CONFIG_NF_NAT) struct nf_nat_hook *nat_hook; rcu_read_lock(); nat_hook = rcu_dereference(nf_nat_hook); if (nat_hook && nat_hook->decode_session) nat_hook->decode_session(skb, fl); rcu_read_unlock(); #endif } #else /* !CONFIG_NETFILTER */ static inline int NF_HOOK_COND(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *), bool cond) { return okfn(net, sk, skb); } static inline int NF_HOOK(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { return okfn(net, sk, skb); } static inline void NF_HOOK_LIST(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct list_head *head, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { /* nothing to do */ } static inline int nf_hook(u_int8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *indev, struct net_device *outdev, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { return 1; } struct flowi; static inline void nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl, u_int8_t family) { } #endif /*CONFIG_NETFILTER*/ #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <linux/netfilter/nf_conntrack_zones_common.h> extern void (*ip_ct_attach)(struct sk_buff *, const struct sk_buff *) __rcu; void nf_ct_attach(struct sk_buff *, const struct sk_buff *); struct nf_conntrack_tuple; bool nf_ct_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple, const struct sk_buff *skb); #else static inline void nf_ct_attach(struct sk_buff *new, struct sk_buff *skb) {} struct nf_conntrack_tuple; static inline bool nf_ct_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple, const struct sk_buff *skb) { return false; } #endif struct nf_conn; enum ip_conntrack_info; struct nf_ct_hook { int (*update)(struct net *net, struct sk_buff *skb); void (*destroy)(struct nf_conntrack *); bool (*get_tuple_skb)(struct nf_conntrack_tuple *, const struct sk_buff *); }; extern struct nf_ct_hook __rcu *nf_ct_hook; struct nlattr; struct nfnl_ct_hook { struct nf_conn *(*get_ct)(const struct sk_buff *skb, enum ip_conntrack_info *ctinfo); size_t (*build_size)(const struct nf_conn *ct); int (*build)(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo, u_int16_t ct_attr, u_int16_t ct_info_attr); int (*parse)(const struct nlattr *attr, struct nf_conn *ct); int (*attach_expect)(const struct nlattr *attr, struct nf_conn *ct, u32 portid, u32 report); void (*seq_adjust)(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo, s32 off); }; extern struct nfnl_ct_hook __rcu *nfnl_ct_hook; /** * nf_skb_duplicated - TEE target has sent a packet * * When a xtables target sends a packet, the OUTPUT and POSTROUTING * hooks are traversed again, i.e. nft and xtables are invoked recursively. * * This is used by xtables TEE target to prevent the duplicated skb from * being duplicated again. */ DECLARE_PER_CPU(bool, nf_skb_duplicated); #endif /*__LINUX_NETFILTER_H*/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* include/asm-generic/tlb.h * * Generic TLB shootdown code * * Copyright 2001 Red Hat, Inc. * Based on code from mm/memory.c Copyright Linus Torvalds and others. * * Copyright 2011 Red Hat, Inc., Peter Zijlstra */ #ifndef _ASM_GENERIC__TLB_H #define _ASM_GENERIC__TLB_H #include <linux/mmu_notifier.h> #include <linux/swap.h> #include <linux/hugetlb_inline.h> #include <asm/tlbflush.h> #include <asm/cacheflush.h> /* * Blindly accessing user memory from NMI context can be dangerous * if we're in the middle of switching the current user task or switching * the loaded mm. */ #ifndef nmi_uaccess_okay # define nmi_uaccess_okay() true #endif #ifdef CONFIG_MMU /* * Generic MMU-gather implementation. * * The mmu_gather data structure is used by the mm code to implement the * correct and efficient ordering of freeing pages and TLB invalidations. * * This correct ordering is: * * 1) unhook page * 2) TLB invalidate page * 3) free page * * That is, we must never free a page before we have ensured there are no live * translations left to it. Otherwise it might be possible to observe (or * worse, change) the page content after it has been reused. * * The mmu_gather API consists of: * * - tlb_gather_mmu() / tlb_finish_mmu(); start and finish a mmu_gather * * Finish in particular will issue a (final) TLB invalidate and free * all (remaining) queued pages. * * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA * * Defaults to flushing at tlb_end_vma() to reset the range; helps when * there's large holes between the VMAs. * * - tlb_remove_table() * * tlb_remove_table() is the basic primitive to free page-table directories * (__p*_free_tlb()). In it's most primitive form it is an alias for * tlb_remove_page() below, for when page directories are pages and have no * additional constraints. * * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE. * * - tlb_remove_page() / __tlb_remove_page() * - tlb_remove_page_size() / __tlb_remove_page_size() * * __tlb_remove_page_size() is the basic primitive that queues a page for * freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a * boolean indicating if the queue is (now) full and a call to * tlb_flush_mmu() is required. * * tlb_remove_page() and tlb_remove_page_size() imply the call to * tlb_flush_mmu() when required and has no return value. * * - tlb_change_page_size() * * call before __tlb_remove_page*() to set the current page-size; implies a * possible tlb_flush_mmu() call. * * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly() * * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets * related state, like the range) * * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees * whatever pages are still batched. * * - mmu_gather::fullmm * * A flag set by tlb_gather_mmu() to indicate we're going to free * the entire mm; this allows a number of optimizations. * * - We can ignore tlb_{start,end}_vma(); because we don't * care about ranges. Everything will be shot down. * * - (RISC) architectures that use ASIDs can cycle to a new ASID * and delay the invalidation until ASID space runs out. * * - mmu_gather::need_flush_all * * A flag that can be set by the arch code if it wants to force * flush the entire TLB irrespective of the range. For instance * x86-PAE needs this when changing top-level entries. * * And allows the architecture to provide and implement tlb_flush(): * * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make * use of: * * - mmu_gather::start / mmu_gather::end * * which provides the range that needs to be flushed to cover the pages to * be freed. * * - mmu_gather::freed_tables * * set when we freed page table pages * * - tlb_get_unmap_shift() / tlb_get_unmap_size() * * returns the smallest TLB entry size unmapped in this range. * * If an architecture does not provide tlb_flush() a default implementation * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is * specified, in which case we'll default to flush_tlb_mm(). * * Additionally there are a few opt-in features: * * MMU_GATHER_PAGE_SIZE * * This ensures we call tlb_flush() every time tlb_change_page_size() actually * changes the size and provides mmu_gather::page_size to tlb_flush(). * * This might be useful if your architecture has size specific TLB * invalidation instructions. * * MMU_GATHER_TABLE_FREE * * This provides tlb_remove_table(), to be used instead of tlb_remove_page() * for page directores (__p*_free_tlb()). * * Useful if your architecture has non-page page directories. * * When used, an architecture is expected to provide __tlb_remove_table() * which does the actual freeing of these pages. * * MMU_GATHER_RCU_TABLE_FREE * * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see * comment below). * * Useful if your architecture doesn't use IPIs for remote TLB invalidates * and therefore doesn't naturally serialize with software page-table walkers. * * MMU_GATHER_NO_RANGE * * Use this if your architecture lacks an efficient flush_tlb_range(). * * MMU_GATHER_NO_GATHER * * If the option is set the mmu_gather will not track individual pages for * delayed page free anymore. A platform that enables the option needs to * provide its own implementation of the __tlb_remove_page_size() function to * free pages. * * This is useful if your architecture already flushes TLB entries in the * various ptep_get_and_clear() functions. */ #ifdef CONFIG_MMU_GATHER_TABLE_FREE struct mmu_table_batch { #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE struct rcu_head rcu; #endif unsigned int nr; void *tables[0]; }; #define MAX_TABLE_BATCH \ ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *)) extern void tlb_remove_table(struct mmu_gather *tlb, void *table); #else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */ /* * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based * page directories and we can use the normal page batching to free them. */ #define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page)) #endif /* CONFIG_MMU_GATHER_TABLE_FREE */ #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE /* * This allows an architecture that does not use the linux page-tables for * hardware to skip the TLBI when freeing page tables. */ #ifndef tlb_needs_table_invalidate #define tlb_needs_table_invalidate() (true) #endif #else #ifdef tlb_needs_table_invalidate #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE #endif #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */ #ifndef CONFIG_MMU_GATHER_NO_GATHER /* * If we can't allocate a page to make a big batch of page pointers * to work on, then just handle a few from the on-stack structure. */ #define MMU_GATHER_BUNDLE 8 struct mmu_gather_batch { struct mmu_gather_batch *next; unsigned int nr; unsigned int max; struct page *pages[0]; }; #define MAX_GATHER_BATCH \ ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *)) /* * Limit the maximum number of mmu_gather batches to reduce a risk of soft * lockups for non-preemptible kernels on huge machines when a lot of memory * is zapped during unmapping. * 10K pages freed at once should be safe even without a preemption point. */ #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH) extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size); #endif /* * struct mmu_gather is an opaque type used by the mm code for passing around * any data needed by arch specific code for tlb_remove_page. */ struct mmu_gather { struct mm_struct *mm; #ifdef CONFIG_MMU_GATHER_TABLE_FREE struct mmu_table_batch *batch; #endif unsigned long start; unsigned long end; /* * we are in the middle of an operation to clear * a full mm and can make some optimizations */ unsigned int fullmm : 1; /* * we have performed an operation which * requires a complete flush of the tlb */ unsigned int need_flush_all : 1; /* * we have removed page directories */ unsigned int freed_tables : 1; /* * at which levels have we cleared entries? */ unsigned int cleared_ptes : 1; unsigned int cleared_pmds : 1; unsigned int cleared_puds : 1; unsigned int cleared_p4ds : 1; /* * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma */ unsigned int vma_exec : 1; unsigned int vma_huge : 1; unsigned int batch_count; #ifndef CONFIG_MMU_GATHER_NO_GATHER struct mmu_gather_batch *active; struct mmu_gather_batch local; struct page *__pages[MMU_GATHER_BUNDLE]; #ifdef CONFIG_MMU_GATHER_PAGE_SIZE unsigned int page_size; #endif #endif }; void tlb_flush_mmu(struct mmu_gather *tlb); static inline void __tlb_adjust_range(struct mmu_gather *tlb, unsigned long address, unsigned int range_size) { tlb->start = min(tlb->start, address); tlb->end = max(tlb->end, address + range_size); } static inline void __tlb_reset_range(struct mmu_gather *tlb) { if (tlb->fullmm) { tlb->start = tlb->end = ~0; } else { tlb->start = TASK_SIZE; tlb->end = 0; } tlb->freed_tables = 0; tlb->cleared_ptes = 0; tlb->cleared_pmds = 0; tlb->cleared_puds = 0; tlb->cleared_p4ds = 0; /* * Do not reset mmu_gather::vma_* fields here, we do not * call into tlb_start_vma() again to set them if there is an * intermediate flush. */ } #ifdef CONFIG_MMU_GATHER_NO_RANGE #if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma) #error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma() #endif /* * When an architecture does not have efficient means of range flushing TLBs * there is no point in doing intermediate flushes on tlb_end_vma() to keep the * range small. We equally don't have to worry about page granularity or other * things. * * All we need to do is issue a full flush for any !0 range. */ static inline void tlb_flush(struct mmu_gather *tlb) { if (tlb->end) flush_tlb_mm(tlb->mm); } static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #define tlb_end_vma tlb_end_vma static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #else /* CONFIG_MMU_GATHER_NO_RANGE */ #ifndef tlb_flush #if defined(tlb_start_vma) || defined(tlb_end_vma) #error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma() #endif /* * When an architecture does not provide its own tlb_flush() implementation * but does have a reasonably efficient flush_vma_range() implementation * use that. */ static inline void tlb_flush(struct mmu_gather *tlb) { if (tlb->fullmm || tlb->need_flush_all) { flush_tlb_mm(tlb->mm); } else if (tlb->end) { struct vm_area_struct vma = { .vm_mm = tlb->mm, .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) | (tlb->vma_huge ? VM_HUGETLB : 0), }; flush_tlb_range(&vma, tlb->start, tlb->end); } } static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { /* * flush_tlb_range() implementations that look at VM_HUGETLB (tile, * mips-4k) flush only large pages. * * flush_tlb_range() implementations that flush I-TLB also flush D-TLB * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing * range. * * We rely on tlb_end_vma() to issue a flush, such that when we reset * these values the batch is empty. */ tlb->vma_huge = is_vm_hugetlb_page(vma); tlb->vma_exec = !!(vma->vm_flags & VM_EXEC); } #else static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #endif #endif /* CONFIG_MMU_GATHER_NO_RANGE */ static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) { /* * Anything calling __tlb_adjust_range() also sets at least one of * these bits. */ if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds || tlb->cleared_puds || tlb->cleared_p4ds)) return; tlb_flush(tlb); mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); __tlb_reset_range(tlb); } static inline void tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) { if (__tlb_remove_page_size(tlb, page, page_size)) tlb_flush_mmu(tlb); } static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page) { return __tlb_remove_page_size(tlb, page, PAGE_SIZE); } /* tlb_remove_page * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when * required. */ static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page) { return tlb_remove_page_size(tlb, page, PAGE_SIZE); } static inline void tlb_change_page_size(struct mmu_gather *tlb, unsigned int page_size) { #ifdef CONFIG_MMU_GATHER_PAGE_SIZE if (tlb->page_size && tlb->page_size != page_size) { if (!tlb->fullmm && !tlb->need_flush_all) tlb_flush_mmu(tlb); } tlb->page_size = page_size; #endif } static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb) { if (tlb->cleared_ptes) return PAGE_SHIFT; if (tlb->cleared_pmds) return PMD_SHIFT; if (tlb->cleared_puds) return PUD_SHIFT; if (tlb->cleared_p4ds) return P4D_SHIFT; return PAGE_SHIFT; } static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb) { return 1UL << tlb_get_unmap_shift(tlb); } /* * In the case of tlb vma handling, we can optimise these away in the * case where we're doing a full MM flush. When we're doing a munmap, * the vmas are adjusted to only cover the region to be torn down. */ #ifndef tlb_start_vma static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { if (tlb->fullmm) return; tlb_update_vma_flags(tlb, vma); flush_cache_range(vma, vma->vm_start, vma->vm_end); } #endif #ifndef tlb_end_vma static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { if (tlb->fullmm) return; /* * Do a TLB flush and reset the range at VMA boundaries; this avoids * the ranges growing with the unused space between consecutive VMAs, * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on * this. */ tlb_flush_mmu_tlbonly(tlb); } #endif /* * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end, * and set corresponding cleared_*. */ static inline void tlb_flush_pte_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_ptes = 1; } static inline void tlb_flush_pmd_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_pmds = 1; } static inline void tlb_flush_pud_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_puds = 1; } static inline void tlb_flush_p4d_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_p4ds = 1; } #ifndef __tlb_remove_tlb_entry #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0) #endif /** * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation. * * Record the fact that pte's were really unmapped by updating the range, * so we can later optimise away the tlb invalidate. This helps when * userspace is unmapping already-unmapped pages, which happens quite a lot. */ #define tlb_remove_tlb_entry(tlb, ptep, address) \ do { \ tlb_flush_pte_range(tlb, address, PAGE_SIZE); \ __tlb_remove_tlb_entry(tlb, ptep, address); \ } while (0) #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \ do { \ unsigned long _sz = huge_page_size(h); \ if (_sz == PMD_SIZE) \ tlb_flush_pmd_range(tlb, address, _sz); \ else if (_sz == PUD_SIZE) \ tlb_flush_pud_range(tlb, address, _sz); \ __tlb_remove_tlb_entry(tlb, ptep, address); \ } while (0) /** * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation * This is a nop so far, because only x86 needs it. */ #ifndef __tlb_remove_pmd_tlb_entry #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0) #endif #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \ do { \ tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \ __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \ } while (0) /** * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb * invalidation. This is a nop so far, because only x86 needs it. */ #ifndef __tlb_remove_pud_tlb_entry #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0) #endif #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \ do { \ tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \ __tlb_remove_pud_tlb_entry(tlb, pudp, address); \ } while (0) /* * For things like page tables caches (ie caching addresses "inside" the * page tables, like x86 does), for legacy reasons, flushing an * individual page had better flush the page table caches behind it. This * is definitely how x86 works, for example. And if you have an * architected non-legacy page table cache (which I'm not aware of * anybody actually doing), you're going to have some architecturally * explicit flushing for that, likely *separate* from a regular TLB entry * flush, and thus you'd need more than just some range expansion.. * * So if we ever find an architecture * that would want something that odd, I think it is up to that * architecture to do its own odd thing, not cause pain for others * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com * * For now w.r.t page table cache, mark the range_size as PAGE_SIZE */ #ifndef pte_free_tlb #define pte_free_tlb(tlb, ptep, address) \ do { \ tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pte_free_tlb(tlb, ptep, address); \ } while (0) #endif #ifndef pmd_free_tlb #define pmd_free_tlb(tlb, pmdp, address) \ do { \ tlb_flush_pud_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pmd_free_tlb(tlb, pmdp, address); \ } while (0) #endif #ifndef pud_free_tlb #define pud_free_tlb(tlb, pudp, address) \ do { \ tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pud_free_tlb(tlb, pudp, address); \ } while (0) #endif #ifndef p4d_free_tlb #define p4d_free_tlb(tlb, pudp, address) \ do { \ __tlb_adjust_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __p4d_free_tlb(tlb, pudp, address); \ } while (0) #endif #endif /* CONFIG_MMU */ #endif /* _ASM_GENERIC__TLB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Cryptographic API for algorithms (i.e., low-level API). * * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_ALGAPI_H #define _CRYPTO_ALGAPI_H #include <linux/crypto.h> #include <linux/list.h> #include <linux/kernel.h> /* * Maximum values for blocksize and alignmask, used to allocate * static buffers that are big enough for any combination of * algs and architectures. Ciphers have a lower maximum size. */ #define MAX_ALGAPI_BLOCKSIZE 160 #define MAX_ALGAPI_ALIGNMASK 63 #define MAX_CIPHER_BLOCKSIZE 16 #define MAX_CIPHER_ALIGNMASK 15 struct crypto_aead; struct crypto_instance; struct module; struct rtattr; struct seq_file; struct sk_buff; struct crypto_type { unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask); unsigned int (*extsize)(struct crypto_alg *alg); int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask); int (*init_tfm)(struct crypto_tfm *tfm); void (*show)(struct seq_file *m, struct crypto_alg *alg); int (*report)(struct sk_buff *skb, struct crypto_alg *alg); void (*free)(struct crypto_instance *inst); unsigned int type; unsigned int maskclear; unsigned int maskset; unsigned int tfmsize; }; struct crypto_instance { struct crypto_alg alg; struct crypto_template *tmpl; union { /* Node in list of instances after registration. */ struct hlist_node list; /* List of attached spawns before registration. */ struct crypto_spawn *spawns; }; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; struct crypto_template { struct list_head list; struct hlist_head instances; struct module *module; int (*create)(struct crypto_template *tmpl, struct rtattr **tb); char name[CRYPTO_MAX_ALG_NAME]; }; struct crypto_spawn { struct list_head list; struct crypto_alg *alg; union { /* Back pointer to instance after registration.*/ struct crypto_instance *inst; /* Spawn list pointer prior to registration. */ struct crypto_spawn *next; }; const struct crypto_type *frontend; u32 mask; bool dead; bool registered; }; struct crypto_queue { struct list_head list; struct list_head *backlog; unsigned int qlen; unsigned int max_qlen; }; struct scatter_walk { struct scatterlist *sg; unsigned int offset; }; void crypto_mod_put(struct crypto_alg *alg); int crypto_register_template(struct crypto_template *tmpl); int crypto_register_templates(struct crypto_template *tmpls, int count); void crypto_unregister_template(struct crypto_template *tmpl); void crypto_unregister_templates(struct crypto_template *tmpls, int count); struct crypto_template *crypto_lookup_template(const char *name); int crypto_register_instance(struct crypto_template *tmpl, struct crypto_instance *inst); void crypto_unregister_instance(struct crypto_instance *inst); int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); void crypto_drop_spawn(struct crypto_spawn *spawn); struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type, u32 mask); void *crypto_spawn_tfm2(struct crypto_spawn *spawn); struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb); int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret); const char *crypto_attr_alg_name(struct rtattr *rta); int crypto_attr_u32(struct rtattr *rta, u32 *num); int crypto_inst_setname(struct crypto_instance *inst, const char *name, struct crypto_alg *alg); void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen); int crypto_enqueue_request(struct crypto_queue *queue, struct crypto_async_request *request); void crypto_enqueue_request_head(struct crypto_queue *queue, struct crypto_async_request *request); struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue); static inline unsigned int crypto_queue_len(struct crypto_queue *queue) { return queue->qlen; } void crypto_inc(u8 *a, unsigned int size); void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size); static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && __builtin_constant_p(size) && (size % sizeof(unsigned long)) == 0) { unsigned long *d = (unsigned long *)dst; unsigned long *s = (unsigned long *)src; while (size > 0) { *d++ ^= *s++; size -= sizeof(unsigned long); } } else { __crypto_xor(dst, dst, src, size); } } static inline void crypto_xor_cpy(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && __builtin_constant_p(size) && (size % sizeof(unsigned long)) == 0) { unsigned long *d = (unsigned long *)dst; unsigned long *s1 = (unsigned long *)src1; unsigned long *s2 = (unsigned long *)src2; while (size > 0) { *d++ = *s1++ ^ *s2++; size -= sizeof(unsigned long); } } else { __crypto_xor(dst, src1, src2, size); } } static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm) { return PTR_ALIGN(crypto_tfm_ctx(tfm), crypto_tfm_alg_alignmask(tfm) + 1); } static inline struct crypto_instance *crypto_tfm_alg_instance( struct crypto_tfm *tfm) { return container_of(tfm->__crt_alg, struct crypto_instance, alg); } static inline void *crypto_instance_ctx(struct crypto_instance *inst) { return inst->__ctx; } struct crypto_cipher_spawn { struct crypto_spawn base; }; static inline int crypto_grab_cipher(struct crypto_cipher_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_CIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_grab_spawn(&spawn->base, inst, name, type, mask); } static inline void crypto_drop_cipher(struct crypto_cipher_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct crypto_alg *crypto_spawn_cipher_alg( struct crypto_cipher_spawn *spawn) { return spawn->base.alg; } static inline struct crypto_cipher *crypto_spawn_cipher( struct crypto_cipher_spawn *spawn) { u32 type = CRYPTO_ALG_TYPE_CIPHER; u32 mask = CRYPTO_ALG_TYPE_MASK; return __crypto_cipher_cast(crypto_spawn_tfm(&spawn->base, type, mask)); } static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm) { return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher; } static inline struct crypto_async_request *crypto_get_backlog( struct crypto_queue *queue) { return queue->backlog == &queue->list ? NULL : container_of(queue->backlog, struct crypto_async_request, list); } static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off) { return (algt->type ^ off) & algt->mask & off; } /* * When an algorithm uses another algorithm (e.g., if it's an instance of a * template), these are the flags that should always be set on the "outer" * algorithm if any "inner" algorithm has them set. */ #define CRYPTO_ALG_INHERITED_FLAGS \ (CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | \ CRYPTO_ALG_ALLOCATES_MEMORY) /* * Given the type and mask that specify the flags restrictions on a template * instance being created, return the mask that should be passed to * crypto_grab_*() (along with type=0) to honor any request the user made to * have any of the CRYPTO_ALG_INHERITED_FLAGS clear. */ static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt) { return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS); } noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size); /** * crypto_memneq - Compare two areas of memory without leaking * timing information. * * @a: One area of memory * @b: Another area of memory * @size: The size of the area. * * Returns 0 when data is equal, 1 otherwise. */ static inline int crypto_memneq(const void *a, const void *b, size_t size) { return __crypto_memneq(a, b, size) != 0UL ? 1 : 0; } int crypto_register_notifier(struct notifier_block *nb); int crypto_unregister_notifier(struct notifier_block *nb); /* Crypto notification events. */ enum { CRYPTO_MSG_ALG_REQUEST, CRYPTO_MSG_ALG_REGISTER, CRYPTO_MSG_ALG_LOADED, }; #endif /* _CRYPTO_ALGAPI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM percpu #if !defined(_TRACE_PERCPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PERCPU_H #include <linux/tracepoint.h> TRACE_EVENT(percpu_alloc_percpu, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align, void *base_addr, int off, void __percpu *ptr), TP_ARGS(reserved, is_atomic, size, align, base_addr, off, ptr), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu base_addr=%p off=%d ptr=%p", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align, __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_free_percpu, TP_PROTO(void *base_addr, int off, void __percpu *ptr), TP_ARGS(base_addr, off, ptr), TP_STRUCT__entry( __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("base_addr=%p off=%d ptr=%p", __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_alloc_percpu_fail, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align), TP_ARGS(reserved, is_atomic, size, align), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align) ); TRACE_EVENT(percpu_create_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); TRACE_EVENT(percpu_destroy_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); #endif /* _TRACE_PERCPU_H */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CPUHOTPLUG_H #define __CPUHOTPLUG_H #include <linux/types.h> /* * CPU-up CPU-down * * BP AP BP AP * * OFFLINE OFFLINE * | ^ * v | * BRINGUP_CPU->AP_OFFLINE BRINGUP_CPU <- AP_IDLE_DEAD (idle thread/play_dead) * | AP_OFFLINE * v (IRQ-off) ,---------------^ * AP_ONLNE | (stop_machine) * | TEARDOWN_CPU <- AP_ONLINE_IDLE * | ^ * v | * AP_ACTIVE AP_ACTIVE */ enum cpuhp_state { CPUHP_INVALID = -1, CPUHP_OFFLINE = 0, CPUHP_CREATE_THREADS, CPUHP_PERF_PREPARE, CPUHP_PERF_X86_PREPARE, CPUHP_PERF_X86_AMD_UNCORE_PREP, CPUHP_PERF_POWER, CPUHP_PERF_SUPERH, CPUHP_X86_HPET_DEAD, CPUHP_X86_APB_DEAD, CPUHP_X86_MCE_DEAD, CPUHP_VIRT_NET_DEAD, CPUHP_SLUB_DEAD, CPUHP_DEBUG_OBJ_DEAD, CPUHP_MM_WRITEBACK_DEAD, CPUHP_MM_VMSTAT_DEAD, CPUHP_SOFTIRQ_DEAD, CPUHP_NET_MVNETA_DEAD, CPUHP_CPUIDLE_DEAD, CPUHP_ARM64_FPSIMD_DEAD, CPUHP_ARM_OMAP_WAKE_DEAD, CPUHP_IRQ_POLL_DEAD, CPUHP_BLOCK_SOFTIRQ_DEAD, CPUHP_ACPI_CPUDRV_DEAD, CPUHP_S390_PFAULT_DEAD, CPUHP_BLK_MQ_DEAD, CPUHP_FS_BUFF_DEAD, CPUHP_PRINTK_DEAD, CPUHP_MM_MEMCQ_DEAD, CPUHP_PERCPU_CNT_DEAD, CPUHP_RADIX_DEAD, CPUHP_PAGE_ALLOC_DEAD, CPUHP_NET_DEV_DEAD, CPUHP_PCI_XGENE_DEAD, CPUHP_IOMMU_INTEL_DEAD, CPUHP_LUSTRE_CFS_DEAD, CPUHP_AP_ARM_CACHE_B15_RAC_DEAD, CPUHP_PADATA_DEAD, CPUHP_WORKQUEUE_PREP, CPUHP_POWER_NUMA_PREPARE, CPUHP_HRTIMERS_PREPARE, CPUHP_PROFILE_PREPARE, CPUHP_X2APIC_PREPARE, CPUHP_SMPCFD_PREPARE, CPUHP_RELAY_PREPARE, CPUHP_SLAB_PREPARE, CPUHP_MD_RAID5_PREPARE, CPUHP_RCUTREE_PREP, CPUHP_CPUIDLE_COUPLED_PREPARE, CPUHP_POWERPC_PMAC_PREPARE, CPUHP_POWERPC_MMU_CTX_PREPARE, CPUHP_XEN_PREPARE, CPUHP_XEN_EVTCHN_PREPARE, CPUHP_ARM_SHMOBILE_SCU_PREPARE, CPUHP_SH_SH3X_PREPARE, CPUHP_NET_FLOW_PREPARE, CPUHP_TOPOLOGY_PREPARE, CPUHP_NET_IUCV_PREPARE, CPUHP_ARM_BL_PREPARE, CPUHP_TRACE_RB_PREPARE, CPUHP_MM_ZS_PREPARE, CPUHP_MM_ZSWP_MEM_PREPARE, CPUHP_MM_ZSWP_POOL_PREPARE, CPUHP_KVM_PPC_BOOK3S_PREPARE, CPUHP_ZCOMP_PREPARE, CPUHP_TIMERS_PREPARE, CPUHP_MIPS_SOC_PREPARE, CPUHP_BP_PREPARE_DYN, CPUHP_BP_PREPARE_DYN_END = CPUHP_BP_PREPARE_DYN + 20, CPUHP_BRINGUP_CPU, CPUHP_AP_IDLE_DEAD, CPUHP_AP_OFFLINE, CPUHP_AP_SCHED_STARTING, CPUHP_AP_RCUTREE_DYING, CPUHP_AP_CPU_PM_STARTING, CPUHP_AP_IRQ_GIC_STARTING, CPUHP_AP_IRQ_HIP04_STARTING, CPUHP_AP_IRQ_ARMADA_XP_STARTING, CPUHP_AP_IRQ_BCM2836_STARTING, CPUHP_AP_IRQ_MIPS_GIC_STARTING, CPUHP_AP_IRQ_RISCV_STARTING, CPUHP_AP_IRQ_SIFIVE_PLIC_STARTING, CPUHP_AP_ARM_MVEBU_COHERENCY, CPUHP_AP_MICROCODE_LOADER, CPUHP_AP_PERF_X86_AMD_UNCORE_STARTING, CPUHP_AP_PERF_X86_STARTING, CPUHP_AP_PERF_X86_AMD_IBS_STARTING, CPUHP_AP_PERF_X86_CQM_STARTING, CPUHP_AP_PERF_X86_CSTATE_STARTING, CPUHP_AP_PERF_XTENSA_STARTING, CPUHP_AP_MIPS_OP_LOONGSON3_STARTING, CPUHP_AP_ARM_SDEI_STARTING, CPUHP_AP_ARM_VFP_STARTING, CPUHP_AP_ARM64_DEBUG_MONITORS_STARTING, CPUHP_AP_PERF_ARM_HW_BREAKPOINT_STARTING, CPUHP_AP_PERF_ARM_ACPI_STARTING, CPUHP_AP_PERF_ARM_STARTING, CPUHP_AP_ARM_L2X0_STARTING, CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING, CPUHP_AP_ARM_ARCH_TIMER_STARTING, CPUHP_AP_ARM_GLOBAL_TIMER_STARTING, CPUHP_AP_JCORE_TIMER_STARTING, CPUHP_AP_ARM_TWD_STARTING, CPUHP_AP_QCOM_TIMER_STARTING, CPUHP_AP_TEGRA_TIMER_STARTING, CPUHP_AP_ARMADA_TIMER_STARTING, CPUHP_AP_MARCO_TIMER_STARTING, CPUHP_AP_MIPS_GIC_TIMER_STARTING, CPUHP_AP_ARC_TIMER_STARTING, CPUHP_AP_RISCV_TIMER_STARTING, CPUHP_AP_CLINT_TIMER_STARTING, CPUHP_AP_CSKY_TIMER_STARTING, CPUHP_AP_TI_GP_TIMER_STARTING, CPUHP_AP_HYPERV_TIMER_STARTING, CPUHP_AP_KVM_STARTING, CPUHP_AP_KVM_ARM_VGIC_INIT_STARTING, CPUHP_AP_KVM_ARM_VGIC_STARTING, CPUHP_AP_KVM_ARM_TIMER_STARTING, /* Must be the last timer callback */ CPUHP_AP_DUMMY_TIMER_STARTING, CPUHP_AP_ARM_XEN_STARTING, CPUHP_AP_ARM_CORESIGHT_STARTING, CPUHP_AP_ARM_CORESIGHT_CTI_STARTING, CPUHP_AP_ARM64_ISNDEP_STARTING, CPUHP_AP_SMPCFD_DYING, CPUHP_AP_X86_TBOOT_DYING, CPUHP_AP_ARM_CACHE_B15_RAC_DYING, CPUHP_AP_ONLINE, CPUHP_TEARDOWN_CPU, CPUHP_AP_ONLINE_IDLE, CPUHP_AP_SMPBOOT_THREADS, CPUHP_AP_X86_VDSO_VMA_ONLINE, CPUHP_AP_IRQ_AFFINITY_ONLINE, CPUHP_AP_BLK_MQ_ONLINE, CPUHP_AP_ARM_MVEBU_SYNC_CLOCKS, CPUHP_AP_X86_INTEL_EPB_ONLINE, CPUHP_AP_PERF_ONLINE, CPUHP_AP_PERF_X86_ONLINE, CPUHP_AP_PERF_X86_UNCORE_ONLINE, CPUHP_AP_PERF_X86_AMD_UNCORE_ONLINE, CPUHP_AP_PERF_X86_AMD_POWER_ONLINE, CPUHP_AP_PERF_X86_RAPL_ONLINE, CPUHP_AP_PERF_X86_CQM_ONLINE, CPUHP_AP_PERF_X86_CSTATE_ONLINE, CPUHP_AP_PERF_S390_CF_ONLINE, CPUHP_AP_PERF_S390_SF_ONLINE, CPUHP_AP_PERF_ARM_CCI_ONLINE, CPUHP_AP_PERF_ARM_CCN_ONLINE, CPUHP_AP_PERF_ARM_HISI_DDRC_ONLINE, CPUHP_AP_PERF_ARM_HISI_HHA_ONLINE, CPUHP_AP_PERF_ARM_HISI_L3_ONLINE, CPUHP_AP_PERF_ARM_L2X0_ONLINE, CPUHP_AP_PERF_ARM_QCOM_L2_ONLINE, CPUHP_AP_PERF_ARM_QCOM_L3_ONLINE, CPUHP_AP_PERF_ARM_APM_XGENE_ONLINE, CPUHP_AP_PERF_ARM_CAVIUM_TX2_UNCORE_ONLINE, CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE, CPUHP_AP_PERF_POWERPC_HV_24x7_ONLINE, CPUHP_AP_PERF_POWERPC_HV_GPCI_ONLINE, CPUHP_AP_WATCHDOG_ONLINE, CPUHP_AP_WORKQUEUE_ONLINE, CPUHP_AP_RCUTREE_ONLINE, CPUHP_AP_BASE_CACHEINFO_ONLINE, CPUHP_AP_ONLINE_DYN, CPUHP_AP_ONLINE_DYN_END = CPUHP_AP_ONLINE_DYN + 30, CPUHP_AP_X86_HPET_ONLINE, CPUHP_AP_X86_KVM_CLK_ONLINE, CPUHP_AP_ACTIVE, CPUHP_ONLINE, }; int __cpuhp_setup_state(enum cpuhp_state state, const char *name, bool invoke, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu), bool multi_instance); int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, const char *name, bool invoke, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu), bool multi_instance); /** * cpuhp_setup_state - Setup hotplug state callbacks with calling the callbacks * @state: The state for which the calls are installed * @name: Name of the callback (will be used in debug output) * @startup: startup callback function * @teardown: teardown callback function * * Installs the callback functions and invokes the startup callback on * the present cpus which have already reached the @state. */ static inline int cpuhp_setup_state(enum cpuhp_state state, const char *name, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu)) { return __cpuhp_setup_state(state, name, true, startup, teardown, false); } static inline int cpuhp_setup_state_cpuslocked(enum cpuhp_state state, const char *name, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu)) { return __cpuhp_setup_state_cpuslocked(state, name, true, startup, teardown, false); } /** * cpuhp_setup_state_nocalls - Setup hotplug state callbacks without calling the * callbacks * @state: The state for which the calls are installed * @name: Name of the callback. * @startup: startup callback function * @teardown: teardown callback function * * Same as @cpuhp_setup_state except that no calls are executed are invoked * during installation of this callback. NOP if SMP=n or HOTPLUG_CPU=n. */ static inline int cpuhp_setup_state_nocalls(enum cpuhp_state state, const char *name, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu)) { return __cpuhp_setup_state(state, name, false, startup, teardown, false); } static inline int cpuhp_setup_state_nocalls_cpuslocked(enum cpuhp_state state, const char *name, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu)) { return __cpuhp_setup_state_cpuslocked(state, name, false, startup, teardown, false); } /** * cpuhp_setup_state_multi - Add callbacks for multi state * @state: The state for which the calls are installed * @name: Name of the callback. * @startup: startup callback function * @teardown: teardown callback function * * Sets the internal multi_instance flag and prepares a state to work as a multi * instance callback. No callbacks are invoked at this point. The callbacks are * invoked once an instance for this state are registered via * @cpuhp_state_add_instance or @cpuhp_state_add_instance_nocalls. */ static inline int cpuhp_setup_state_multi(enum cpuhp_state state, const char *name, int (*startup)(unsigned int cpu, struct hlist_node *node), int (*teardown)(unsigned int cpu, struct hlist_node *node)) { return __cpuhp_setup_state(state, name, false, (void *) startup, (void *) teardown, true); } int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, bool invoke); int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, struct hlist_node *node, bool invoke); /** * cpuhp_state_add_instance - Add an instance for a state and invoke startup * callback. * @state: The state for which the instance is installed * @node: The node for this individual state. * * Installs the instance for the @state and invokes the startup callback on * the present cpus which have already reached the @state. The @state must have * been earlier marked as multi-instance by @cpuhp_setup_state_multi. */ static inline int cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node) { return __cpuhp_state_add_instance(state, node, true); } /** * cpuhp_state_add_instance_nocalls - Add an instance for a state without * invoking the startup callback. * @state: The state for which the instance is installed * @node: The node for this individual state. * * Installs the instance for the @state The @state must have been earlier * marked as multi-instance by @cpuhp_setup_state_multi. */ static inline int cpuhp_state_add_instance_nocalls(enum cpuhp_state state, struct hlist_node *node) { return __cpuhp_state_add_instance(state, node, false); } static inline int cpuhp_state_add_instance_nocalls_cpuslocked(enum cpuhp_state state, struct hlist_node *node) { return __cpuhp_state_add_instance_cpuslocked(state, node, false); } void __cpuhp_remove_state(enum cpuhp_state state, bool invoke); void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke); /** * cpuhp_remove_state - Remove hotplug state callbacks and invoke the teardown * @state: The state for which the calls are removed * * Removes the callback functions and invokes the teardown callback on * the present cpus which have already reached the @state. */ static inline void cpuhp_remove_state(enum cpuhp_state state) { __cpuhp_remove_state(state, true); } /** * cpuhp_remove_state_nocalls - Remove hotplug state callbacks without invoking * teardown * @state: The state for which the calls are removed */ static inline void cpuhp_remove_state_nocalls(enum cpuhp_state state) { __cpuhp_remove_state(state, false); } static inline void cpuhp_remove_state_nocalls_cpuslocked(enum cpuhp_state state) { __cpuhp_remove_state_cpuslocked(state, false); } /** * cpuhp_remove_multi_state - Remove hotplug multi state callback * @state: The state for which the calls are removed * * Removes the callback functions from a multi state. This is the reverse of * cpuhp_setup_state_multi(). All instances should have been removed before * invoking this function. */ static inline void cpuhp_remove_multi_state(enum cpuhp_state state) { __cpuhp_remove_state(state, false); } int __cpuhp_state_remove_instance(enum cpuhp_state state, struct hlist_node *node, bool invoke); /** * cpuhp_state_remove_instance - Remove hotplug instance from state and invoke * the teardown callback * @state: The state from which the instance is removed * @node: The node for this individual state. * * Removes the instance and invokes the teardown callback on the present cpus * which have already reached the @state. */ static inline int cpuhp_state_remove_instance(enum cpuhp_state state, struct hlist_node *node) { return __cpuhp_state_remove_instance(state, node, true); } /** * cpuhp_state_remove_instance_nocalls - Remove hotplug instance from state * without invoking the reatdown callback * @state: The state from which the instance is removed * @node: The node for this individual state. * * Removes the instance without invoking the teardown callback. */ static inline int cpuhp_state_remove_instance_nocalls(enum cpuhp_state state, struct hlist_node *node) { return __cpuhp_state_remove_instance(state, node, false); } #ifdef CONFIG_SMP void cpuhp_online_idle(enum cpuhp_state state); #else static inline void cpuhp_online_idle(enum cpuhp_state state) { } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM writeback #if !defined(_TRACE_WRITEBACK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_WRITEBACK_H #include <linux/tracepoint.h> #include <linux/backing-dev.h> #include <linux/writeback.h> #define show_inode_state(state) \ __print_flags(state, "|", \ {I_DIRTY_SYNC, "I_DIRTY_SYNC"}, \ {I_DIRTY_DATASYNC, "I_DIRTY_DATASYNC"}, \ {I_DIRTY_PAGES, "I_DIRTY_PAGES"}, \ {I_NEW, "I_NEW"}, \ {I_WILL_FREE, "I_WILL_FREE"}, \ {I_FREEING, "I_FREEING"}, \ {I_CLEAR, "I_CLEAR"}, \ {I_SYNC, "I_SYNC"}, \ {I_DIRTY_TIME, "I_DIRTY_TIME"}, \ {I_REFERENCED, "I_REFERENCED"} \ ) /* enums need to be exported to user space */ #undef EM #undef EMe #define EM(a,b) TRACE_DEFINE_ENUM(a); #define EMe(a,b) TRACE_DEFINE_ENUM(a); #define WB_WORK_REASON \ EM( WB_REASON_BACKGROUND, "background") \ EM( WB_REASON_VMSCAN, "vmscan") \ EM( WB_REASON_SYNC, "sync") \ EM( WB_REASON_PERIODIC, "periodic") \ EM( WB_REASON_LAPTOP_TIMER, "laptop_timer") \ EM( WB_REASON_FS_FREE_SPACE, "fs_free_space") \ EMe(WB_REASON_FORKER_THREAD, "forker_thread") WB_WORK_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a,b) { a, b }, #define EMe(a,b) { a, b } struct wb_writeback_work; DECLARE_EVENT_CLASS(writeback_page_template, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(pgoff_t, index) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(mapping ? inode_to_bdi(mapping->host) : NULL), 32); __entry->ino = mapping ? mapping->host->i_ino : 0; __entry->index = page->index; ), TP_printk("bdi %s: ino=%lu index=%lu", __entry->name, (unsigned long)__entry->ino, __entry->index ) ); DEFINE_EVENT(writeback_page_template, writeback_dirty_page, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DEFINE_EVENT(writeback_page_template, wait_on_page_writeback, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DECLARE_EVENT_CLASS(writeback_dirty_inode_template, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, flags) ), TP_fast_assign( struct backing_dev_info *bdi = inode_to_bdi(inode); /* may be called for files on pseudo FSes w/ unregistered bdi */ strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->flags = flags; ), TP_printk("bdi %s: ino=%lu state=%s flags=%s", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), show_inode_state(__entry->flags) ) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_mark_inode_dirty, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode_start, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); #ifdef CREATE_TRACE_POINTS #ifdef CONFIG_CGROUP_WRITEBACK static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return cgroup_ino(wb->memcg_css->cgroup); } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { if (wbc->wb) return __trace_wb_assign_cgroup(wbc->wb); else return 1; } #else /* CONFIG_CGROUP_WRITEBACK */ static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return 1; } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { return 1; } #endif /* CONFIG_CGROUP_WRITEBACK */ #endif /* CREATE_TRACE_POINTS */ #ifdef CONFIG_CGROUP_WRITEBACK TRACE_EVENT(inode_foreign_history, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned int history), TP_ARGS(inode, wbc, history), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, cgroup_ino) __field(unsigned int, history) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); __entry->history = history; ), TP_printk("bdi %s: ino=%lu cgroup_ino=%lu history=0x%x", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->cgroup_ino, __entry->history ) ); TRACE_EVENT(inode_switch_wbs, TP_PROTO(struct inode *inode, struct bdi_writeback *old_wb, struct bdi_writeback *new_wb), TP_ARGS(inode, old_wb, new_wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, old_cgroup_ino) __field(ino_t, new_cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(old_wb->bdi), 32); __entry->ino = inode->i_ino; __entry->old_cgroup_ino = __trace_wb_assign_cgroup(old_wb); __entry->new_cgroup_ino = __trace_wb_assign_cgroup(new_wb); ), TP_printk("bdi %s: ino=%lu old_cgroup_ino=%lu new_cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->old_cgroup_ino, (unsigned long)__entry->new_cgroup_ino ) ); TRACE_EVENT(track_foreign_dirty, TP_PROTO(struct page *page, struct bdi_writeback *wb), TP_ARGS(page, wb), TP_STRUCT__entry( __array(char, name, 32) __field(u64, bdi_id) __field(ino_t, ino) __field(unsigned int, memcg_id) __field(ino_t, cgroup_ino) __field(ino_t, page_cgroup_ino) ), TP_fast_assign( struct address_space *mapping = page_mapping(page); struct inode *inode = mapping ? mapping->host : NULL; strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->bdi_id = wb->bdi->id; __entry->ino = inode ? inode->i_ino : 0; __entry->memcg_id = wb->memcg_css->id; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->page_cgroup_ino = cgroup_ino(page->mem_cgroup->css.cgroup); ), TP_printk("bdi %s[%llu]: ino=%lu memcg_id=%u cgroup_ino=%lu page_cgroup_ino=%lu", __entry->name, __entry->bdi_id, (unsigned long)__entry->ino, __entry->memcg_id, (unsigned long)__entry->cgroup_ino, (unsigned long)__entry->page_cgroup_ino ) ); TRACE_EVENT(flush_foreign, TP_PROTO(struct bdi_writeback *wb, unsigned int frn_bdi_id, unsigned int frn_memcg_id), TP_ARGS(wb, frn_bdi_id, frn_memcg_id), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) __field(unsigned int, frn_bdi_id) __field(unsigned int, frn_memcg_id) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->frn_bdi_id = frn_bdi_id; __entry->frn_memcg_id = frn_memcg_id; ), TP_printk("bdi %s: cgroup_ino=%lu frn_bdi_id=%u frn_memcg_id=%u", __entry->name, (unsigned long)__entry->cgroup_ino, __entry->frn_bdi_id, __entry->frn_memcg_id ) ); #endif DECLARE_EVENT_CLASS(writeback_write_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(int, sync_mode) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->sync_mode = wbc->sync_mode; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu sync_mode=%d cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, __entry->sync_mode, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DECLARE_EVENT_CLASS(writeback_work_class, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), TP_ARGS(wb, work), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_pages) __field(dev_t, sb_dev) __field(int, sync_mode) __field(int, for_kupdate) __field(int, range_cyclic) __field(int, for_background) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->nr_pages = work->nr_pages; __entry->sb_dev = work->sb ? work->sb->s_dev : 0; __entry->sync_mode = work->sync_mode; __entry->for_kupdate = work->for_kupdate; __entry->range_cyclic = work->range_cyclic; __entry->for_background = work->for_background; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: sb_dev %d:%d nr_pages=%ld sync_mode=%d " "kupdate=%d range_cyclic=%d background=%d reason=%s cgroup_ino=%lu", __entry->name, MAJOR(__entry->sb_dev), MINOR(__entry->sb_dev), __entry->nr_pages, __entry->sync_mode, __entry->for_kupdate, __entry->range_cyclic, __entry->for_background, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_WORK_EVENT(name) \ DEFINE_EVENT(writeback_work_class, name, \ TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), \ TP_ARGS(wb, work)) DEFINE_WRITEBACK_WORK_EVENT(writeback_queue); DEFINE_WRITEBACK_WORK_EVENT(writeback_exec); DEFINE_WRITEBACK_WORK_EVENT(writeback_start); DEFINE_WRITEBACK_WORK_EVENT(writeback_written); DEFINE_WRITEBACK_WORK_EVENT(writeback_wait); TRACE_EVENT(writeback_pages_written, TP_PROTO(long pages_written), TP_ARGS(pages_written), TP_STRUCT__entry( __field(long, pages) ), TP_fast_assign( __entry->pages = pages_written; ), TP_printk("%ld", __entry->pages) ); DECLARE_EVENT_CLASS(writeback_class, TP_PROTO(struct bdi_writeback *wb), TP_ARGS(wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: cgroup_ino=%lu", __entry->name, (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_EVENT(name) \ DEFINE_EVENT(writeback_class, name, \ TP_PROTO(struct bdi_writeback *wb), \ TP_ARGS(wb)) DEFINE_WRITEBACK_EVENT(writeback_wake_background); TRACE_EVENT(writeback_bdi_register, TP_PROTO(struct backing_dev_info *bdi), TP_ARGS(bdi), TP_STRUCT__entry( __array(char, name, 32) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); ), TP_printk("bdi %s", __entry->name ) ); DECLARE_EVENT_CLASS(wbc_class, TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), TP_ARGS(wbc, bdi), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_to_write) __field(long, pages_skipped) __field(int, sync_mode) __field(int, for_kupdate) __field(int, for_background) __field(int, for_reclaim) __field(int, range_cyclic) __field(long, range_start) __field(long, range_end) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->nr_to_write = wbc->nr_to_write; __entry->pages_skipped = wbc->pages_skipped; __entry->sync_mode = wbc->sync_mode; __entry->for_kupdate = wbc->for_kupdate; __entry->for_background = wbc->for_background; __entry->for_reclaim = wbc->for_reclaim; __entry->range_cyclic = wbc->range_cyclic; __entry->range_start = (long)wbc->range_start; __entry->range_end = (long)wbc->range_end; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: towrt=%ld skip=%ld mode=%d kupd=%d " "bgrd=%d reclm=%d cyclic=%d " "start=0x%lx end=0x%lx cgroup_ino=%lu", __entry->name, __entry->nr_to_write, __entry->pages_skipped, __entry->sync_mode, __entry->for_kupdate, __entry->for_background, __entry->for_reclaim, __entry->range_cyclic, __entry->range_start, __entry->range_end, (unsigned long)__entry->cgroup_ino ) ) #define DEFINE_WBC_EVENT(name) \ DEFINE_EVENT(wbc_class, name, \ TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), \ TP_ARGS(wbc, bdi)) DEFINE_WBC_EVENT(wbc_writepage); TRACE_EVENT(writeback_queue_io, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work, unsigned long dirtied_before, int moved), TP_ARGS(wb, work, dirtied_before, moved), TP_STRUCT__entry( __array(char, name, 32) __field(unsigned long, older) __field(long, age) __field(int, moved) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->older = dirtied_before; __entry->age = (jiffies - dirtied_before) * 1000 / HZ; __entry->moved = moved; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: older=%lu age=%ld enqueue=%d reason=%s cgroup_ino=%lu", __entry->name, __entry->older, /* dirtied_before in jiffies */ __entry->age, /* dirtied_before in relative milliseconds */ __entry->moved, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(global_dirty_state, TP_PROTO(unsigned long background_thresh, unsigned long dirty_thresh ), TP_ARGS(background_thresh, dirty_thresh ), TP_STRUCT__entry( __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, background_thresh) __field(unsigned long, dirty_thresh) __field(unsigned long, dirty_limit) __field(unsigned long, nr_dirtied) __field(unsigned long, nr_written) ), TP_fast_assign( __entry->nr_dirty = global_node_page_state(NR_FILE_DIRTY); __entry->nr_writeback = global_node_page_state(NR_WRITEBACK); __entry->nr_dirtied = global_node_page_state(NR_DIRTIED); __entry->nr_written = global_node_page_state(NR_WRITTEN); __entry->background_thresh = background_thresh; __entry->dirty_thresh = dirty_thresh; __entry->dirty_limit = global_wb_domain.dirty_limit; ), TP_printk("dirty=%lu writeback=%lu " "bg_thresh=%lu thresh=%lu limit=%lu " "dirtied=%lu written=%lu", __entry->nr_dirty, __entry->nr_writeback, __entry->background_thresh, __entry->dirty_thresh, __entry->dirty_limit, __entry->nr_dirtied, __entry->nr_written ) ); #define KBps(x) ((x) << (PAGE_SHIFT - 10)) TRACE_EVENT(bdi_dirty_ratelimit, TP_PROTO(struct bdi_writeback *wb, unsigned long dirty_rate, unsigned long task_ratelimit), TP_ARGS(wb, dirty_rate, task_ratelimit), TP_STRUCT__entry( __array(char, bdi, 32) __field(unsigned long, write_bw) __field(unsigned long, avg_write_bw) __field(unsigned long, dirty_rate) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned long, balanced_dirty_ratelimit) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->write_bw = KBps(wb->write_bandwidth); __entry->avg_write_bw = KBps(wb->avg_write_bandwidth); __entry->dirty_rate = KBps(dirty_rate); __entry->dirty_ratelimit = KBps(wb->dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->balanced_dirty_ratelimit = KBps(wb->balanced_dirty_ratelimit); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "write_bw=%lu awrite_bw=%lu dirty_rate=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "balanced_dirty_ratelimit=%lu cgroup_ino=%lu", __entry->bdi, __entry->write_bw, /* write bandwidth */ __entry->avg_write_bw, /* avg write bandwidth */ __entry->dirty_rate, /* bdi dirty rate */ __entry->dirty_ratelimit, /* base ratelimit */ __entry->task_ratelimit, /* ratelimit with position control */ __entry->balanced_dirty_ratelimit, /* the balanced ratelimit */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(balance_dirty_pages, TP_PROTO(struct bdi_writeback *wb, unsigned long thresh, unsigned long bg_thresh, unsigned long dirty, unsigned long bdi_thresh, unsigned long bdi_dirty, unsigned long dirty_ratelimit, unsigned long task_ratelimit, unsigned long dirtied, unsigned long period, long pause, unsigned long start_time), TP_ARGS(wb, thresh, bg_thresh, dirty, bdi_thresh, bdi_dirty, dirty_ratelimit, task_ratelimit, dirtied, period, pause, start_time), TP_STRUCT__entry( __array( char, bdi, 32) __field(unsigned long, limit) __field(unsigned long, setpoint) __field(unsigned long, dirty) __field(unsigned long, bdi_setpoint) __field(unsigned long, bdi_dirty) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned int, dirtied) __field(unsigned int, dirtied_pause) __field(unsigned long, paused) __field( long, pause) __field(unsigned long, period) __field( long, think) __field(ino_t, cgroup_ino) ), TP_fast_assign( unsigned long freerun = (thresh + bg_thresh) / 2; strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->limit = global_wb_domain.dirty_limit; __entry->setpoint = (global_wb_domain.dirty_limit + freerun) / 2; __entry->dirty = dirty; __entry->bdi_setpoint = __entry->setpoint * bdi_thresh / (thresh + 1); __entry->bdi_dirty = bdi_dirty; __entry->dirty_ratelimit = KBps(dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->dirtied = dirtied; __entry->dirtied_pause = current->nr_dirtied_pause; __entry->think = current->dirty_paused_when == 0 ? 0 : (long)(jiffies - current->dirty_paused_when) * 1000/HZ; __entry->period = period * 1000 / HZ; __entry->pause = pause * 1000 / HZ; __entry->paused = (jiffies - start_time) * 1000 / HZ; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "limit=%lu setpoint=%lu dirty=%lu " "bdi_setpoint=%lu bdi_dirty=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "dirtied=%u dirtied_pause=%u " "paused=%lu pause=%ld period=%lu think=%ld cgroup_ino=%lu", __entry->bdi, __entry->limit, __entry->setpoint, __entry->dirty, __entry->bdi_setpoint, __entry->bdi_dirty, __entry->dirty_ratelimit, __entry->task_ratelimit, __entry->dirtied, __entry->dirtied_pause, __entry->paused, /* ms */ __entry->pause, /* ms */ __entry->period, /* ms */ __entry->think, /* ms */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(writeback_sb_inodes_requeue, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->cgroup_ino = __trace_wb_assign_cgroup(inode_to_wb(inode)); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, (unsigned long)__entry->cgroup_ino ) ); DECLARE_EVENT_CLASS(writeback_congest_waited_template, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed), TP_STRUCT__entry( __field( unsigned int, usec_timeout ) __field( unsigned int, usec_delayed ) ), TP_fast_assign( __entry->usec_timeout = usec_timeout; __entry->usec_delayed = usec_delayed; ), TP_printk("usec_timeout=%u usec_delayed=%u", __entry->usec_timeout, __entry->usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_congestion_wait, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_wait_iff_congested, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DECLARE_EVENT_CLASS(writeback_single_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write ), TP_ARGS(inode, wbc, nr_to_write), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(unsigned long, writeback_index) __field(long, nr_to_write) __field(unsigned long, wrote) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->writeback_index = inode->i_mapping->writeback_index; __entry->nr_to_write = nr_to_write; __entry->wrote = nr_to_write - wbc->nr_to_write; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu " "index=%lu to_write=%ld wrote=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, __entry->writeback_index, __entry->nr_to_write, __entry->wrote, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DECLARE_EVENT_CLASS(writeback_inode_template, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field(unsigned long, state ) __field( __u16, mode ) __field(unsigned long, dirtied_when ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->mode = inode->i_mode; __entry->dirtied_when = inode->dirtied_when; ), TP_printk("dev %d,%d ino %lu dirtied %lu state %s mode 0%o", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long)__entry->ino, __entry->dirtied_when, show_inode_state(__entry->state), __entry->mode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime_iput, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_dirty_inode_enqueue, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); /* * Inode writeback list tracking. */ DEFINE_EVENT(writeback_inode_template, sb_mark_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, sb_clear_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); #endif /* _TRACE_WRITEBACK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PAGEMAP_H #define _LINUX_PAGEMAP_H /* * Copyright 1995 Linus Torvalds */ #include <linux/mm.h> #include <linux/fs.h> #include <linux/list.h> #include <linux/highmem.h> #include <linux/compiler.h> #include <linux/uaccess.h> #include <linux/gfp.h> #include <linux/bitops.h> #include <linux/hardirq.h> /* for in_interrupt() */ #include <linux/hugetlb_inline.h> struct pagevec; /* * Bits in mapping->flags. */ enum mapping_flags { AS_EIO = 0, /* IO error on async write */ AS_ENOSPC = 1, /* ENOSPC on async write */ AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ AS_EXITING = 4, /* final truncate in progress */ /* writeback related tags are not used */ AS_NO_WRITEBACK_TAGS = 5, AS_THP_SUPPORT = 6, /* THPs supported */ }; /** * mapping_set_error - record a writeback error in the address_space * @mapping: the mapping in which an error should be set * @error: the error to set in the mapping * * When writeback fails in some way, we must record that error so that * userspace can be informed when fsync and the like are called. We endeavor * to report errors on any file that was open at the time of the error. Some * internal callers also need to know when writeback errors have occurred. * * When a writeback error occurs, most filesystems will want to call * mapping_set_error to record the error in the mapping so that it can be * reported when the application calls fsync(2). */ static inline void mapping_set_error(struct address_space *mapping, int error) { if (likely(!error)) return; /* Record in wb_err for checkers using errseq_t based tracking */ __filemap_set_wb_err(mapping, error); /* Record it in superblock */ if (mapping->host) errseq_set(&mapping->host->i_sb->s_wb_err, error); /* Record it in flags for now, for legacy callers */ if (error == -ENOSPC) set_bit(AS_ENOSPC, &mapping->flags); else set_bit(AS_EIO, &mapping->flags); } static inline void mapping_set_unevictable(struct address_space *mapping) { set_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_clear_unevictable(struct address_space *mapping) { clear_bit(AS_UNEVICTABLE, &mapping->flags); } static inline bool mapping_unevictable(struct address_space *mapping) { return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_set_exiting(struct address_space *mapping) { set_bit(AS_EXITING, &mapping->flags); } static inline int mapping_exiting(struct address_space *mapping) { return test_bit(AS_EXITING, &mapping->flags); } static inline void mapping_set_no_writeback_tags(struct address_space *mapping) { set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline int mapping_use_writeback_tags(struct address_space *mapping) { return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline gfp_t mapping_gfp_mask(struct address_space * mapping) { return mapping->gfp_mask; } /* Restricts the given gfp_mask to what the mapping allows. */ static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, gfp_t gfp_mask) { return mapping_gfp_mask(mapping) & gfp_mask; } /* * This is non-atomic. Only to be used before the mapping is activated. * Probably needs a barrier... */ static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) { m->gfp_mask = mask; } static inline bool mapping_thp_support(struct address_space *mapping) { return test_bit(AS_THP_SUPPORT, &mapping->flags); } static inline int filemap_nr_thps(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS return atomic_read(&mapping->nr_thps); #else return 0; #endif } static inline void filemap_nr_thps_inc(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_thp_support(mapping)) atomic_inc(&mapping->nr_thps); #else WARN_ON_ONCE(1); #endif } static inline void filemap_nr_thps_dec(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_thp_support(mapping)) atomic_dec(&mapping->nr_thps); #else WARN_ON_ONCE(1); #endif } void release_pages(struct page **pages, int nr); /* * speculatively take a reference to a page. * If the page is free (_refcount == 0), then _refcount is untouched, and 0 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. * * This function must be called inside the same rcu_read_lock() section as has * been used to lookup the page in the pagecache radix-tree (or page table): * this allows allocators to use a synchronize_rcu() to stabilize _refcount. * * Unless an RCU grace period has passed, the count of all pages coming out * of the allocator must be considered unstable. page_count may return higher * than expected, and put_page must be able to do the right thing when the * page has been finished with, no matter what it is subsequently allocated * for (because put_page is what is used here to drop an invalid speculative * reference). * * This is the interesting part of the lockless pagecache (and lockless * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) * has the following pattern: * 1. find page in radix tree * 2. conditionally increment refcount * 3. check the page is still in pagecache (if no, goto 1) * * Remove-side that cares about stability of _refcount (eg. reclaim) has the * following (with the i_pages lock held): * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) * B. remove page from pagecache * C. free the page * * There are 2 critical interleavings that matter: * - 2 runs before A: in this case, A sees elevated refcount and bails out * - A runs before 2: in this case, 2 sees zero refcount and retries; * subsequently, B will complete and 1 will find no page, causing the * lookup to return NULL. * * It is possible that between 1 and 2, the page is removed then the exact same * page is inserted into the same position in pagecache. That's OK: the * old find_get_page using a lock could equally have run before or after * such a re-insertion, depending on order that locks are granted. * * Lookups racing against pagecache insertion isn't a big problem: either 1 * will find the page or it will not. Likewise, the old find_get_page could run * either before the insertion or afterwards, depending on timing. */ static inline int __page_cache_add_speculative(struct page *page, int count) { #ifdef CONFIG_TINY_RCU # ifdef CONFIG_PREEMPT_COUNT VM_BUG_ON(!in_atomic() && !irqs_disabled()); # endif /* * Preempt must be disabled here - we rely on rcu_read_lock doing * this for us. * * Pagecache won't be truncated from interrupt context, so if we have * found a page in the radix tree here, we have pinned its refcount by * disabling preempt, and hence no need for the "speculative get" that * SMP requires. */ VM_BUG_ON_PAGE(page_count(page) == 0, page); page_ref_add(page, count); #else if (unlikely(!page_ref_add_unless(page, count, 0))) { /* * Either the page has been freed, or will be freed. * In either case, retry here and the caller should * do the right thing (see comments above). */ return 0; } #endif VM_BUG_ON_PAGE(PageTail(page), page); return 1; } static inline int page_cache_get_speculative(struct page *page) { return __page_cache_add_speculative(page, 1); } static inline int page_cache_add_speculative(struct page *page, int count) { return __page_cache_add_speculative(page, count); } /** * attach_page_private - Attach private data to a page. * @page: Page to attach data to. * @data: Data to attach to page. * * Attaching private data to a page increments the page's reference count. * The data must be detached before the page will be freed. */ static inline void attach_page_private(struct page *page, void *data) { get_page(page); set_page_private(page, (unsigned long)data); SetPagePrivate(page); } /** * detach_page_private - Detach private data from a page. * @page: Page to detach data from. * * Removes the data that was previously attached to the page and decrements * the refcount on the page. * * Return: Data that was attached to the page. */ static inline void *detach_page_private(struct page *page) { void *data = (void *)page_private(page); if (!PagePrivate(page)) return NULL; ClearPagePrivate(page); set_page_private(page, 0); put_page(page); return data; } #ifdef CONFIG_NUMA extern struct page *__page_cache_alloc(gfp_t gfp); #else static inline struct page *__page_cache_alloc(gfp_t gfp) { return alloc_pages(gfp, 0); } #endif static inline struct page *page_cache_alloc(struct address_space *x) { return __page_cache_alloc(mapping_gfp_mask(x)); } static inline gfp_t readahead_gfp_mask(struct address_space *x) { return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; } typedef int filler_t(void *, struct page *); pgoff_t page_cache_next_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); pgoff_t page_cache_prev_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); #define FGP_ACCESSED 0x00000001 #define FGP_LOCK 0x00000002 #define FGP_CREAT 0x00000004 #define FGP_WRITE 0x00000008 #define FGP_NOFS 0x00000010 #define FGP_NOWAIT 0x00000020 #define FGP_FOR_MMAP 0x00000040 #define FGP_HEAD 0x00000080 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, int fgp_flags, gfp_t cache_gfp_mask); /** * find_get_page - find and get a page reference * @mapping: the address_space to search * @offset: the page index * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned with an increased refcount. * * Otherwise, %NULL is returned. */ static inline struct page *find_get_page(struct address_space *mapping, pgoff_t offset) { return pagecache_get_page(mapping, offset, 0, 0); } static inline struct page *find_get_page_flags(struct address_space *mapping, pgoff_t offset, int fgp_flags) { return pagecache_get_page(mapping, offset, fgp_flags, 0); } /** * find_lock_page - locate, pin and lock a pagecache page * @mapping: the address_space to search * @index: the page index * * Looks up the page cache entry at @mapping & @index. If there is a * page cache page, it is returned locked and with an increased * refcount. * * Context: May sleep. * Return: A struct page or %NULL if there is no page in the cache for this * index. */ static inline struct page *find_lock_page(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK, 0); } /** * find_lock_head - Locate, pin and lock a pagecache page. * @mapping: The address_space to search. * @index: The page index. * * Looks up the page cache entry at @mapping & @index. If there is a * page cache page, its head page is returned locked and with an increased * refcount. * * Context: May sleep. * Return: A struct page which is !PageTail, or %NULL if there is no page * in the cache for this index. */ static inline struct page *find_lock_head(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0); } /** * find_or_create_page - locate or add a pagecache page * @mapping: the page's address_space * @index: the page's index into the mapping * @gfp_mask: page allocation mode * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned locked and with an increased * refcount. * * If the page is not present, a new page is allocated using @gfp_mask * and added to the page cache and the VM's LRU list. The page is * returned locked and with an increased refcount. * * On memory exhaustion, %NULL is returned. * * find_or_create_page() may sleep, even if @gfp_flags specifies an * atomic allocation! */ static inline struct page *find_or_create_page(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask) { return pagecache_get_page(mapping, index, FGP_LOCK|FGP_ACCESSED|FGP_CREAT, gfp_mask); } /** * grab_cache_page_nowait - returns locked page at given index in given cache * @mapping: target address_space * @index: the page index * * Same as grab_cache_page(), but do not wait if the page is unavailable. * This is intended for speculative data generators, where the data can * be regenerated if the page couldn't be grabbed. This routine should * be safe to call while holding the lock for another page. * * Clear __GFP_FS when allocating the page to avoid recursion into the fs * and deadlock against the caller's locked page. */ static inline struct page *grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, mapping_gfp_mask(mapping)); } /* Does this page contain this index? */ static inline bool thp_contains(struct page *head, pgoff_t index) { /* HugeTLBfs indexes the page cache in units of hpage_size */ if (PageHuge(head)) return head->index == index; return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL)); } /* * Given the page we found in the page cache, return the page corresponding * to this index in the file */ static inline struct page *find_subpage(struct page *head, pgoff_t index) { /* HugeTLBfs wants the head page regardless */ if (PageHuge(head)) return head; return head + (index & (thp_nr_pages(head) - 1)); } unsigned find_get_entries(struct address_space *mapping, pgoff_t start, unsigned int nr_entries, struct page **entries, pgoff_t *indices); unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, pgoff_t end, unsigned int nr_pages, struct page **pages); static inline unsigned find_get_pages(struct address_space *mapping, pgoff_t *start, unsigned int nr_pages, struct page **pages) { return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, pages); } unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, unsigned int nr_pages, struct page **pages); unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag, unsigned int nr_pages, struct page **pages); static inline unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, struct page **pages) { return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, nr_pages, pages); } struct page *grab_cache_page_write_begin(struct address_space *mapping, pgoff_t index, unsigned flags); /* * Returns locked page at given index in given cache, creating it if needed. */ static inline struct page *grab_cache_page(struct address_space *mapping, pgoff_t index) { return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); } extern struct page * read_cache_page(struct address_space *mapping, pgoff_t index, filler_t *filler, void *data); extern struct page * read_cache_page_gfp(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); extern int read_cache_pages(struct address_space *mapping, struct list_head *pages, filler_t *filler, void *data); static inline struct page *read_mapping_page(struct address_space *mapping, pgoff_t index, void *data) { return read_cache_page(mapping, index, NULL, data); } /* * Get index of the page within radix-tree (but not for hugetlb pages). * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) */ static inline pgoff_t page_to_index(struct page *page) { pgoff_t pgoff; if (likely(!PageTransTail(page))) return page->index; /* * We don't initialize ->index for tail pages: calculate based on * head page */ pgoff = compound_head(page)->index; pgoff += page - compound_head(page); return pgoff; } extern pgoff_t hugetlb_basepage_index(struct page *page); /* * Get the offset in PAGE_SIZE (even for hugetlb pages). * (TODO: hugetlb pages should have ->index in PAGE_SIZE) */ static inline pgoff_t page_to_pgoff(struct page *page) { if (unlikely(PageHuge(page))) return hugetlb_basepage_index(page); return page_to_index(page); } /* * Return byte-offset into filesystem object for page. */ static inline loff_t page_offset(struct page *page) { return ((loff_t)page->index) << PAGE_SHIFT; } static inline loff_t page_file_offset(struct page *page) { return ((loff_t)page_index(page)) << PAGE_SHIFT; } extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, unsigned long address); static inline pgoff_t linear_page_index(struct vm_area_struct *vma, unsigned long address) { pgoff_t pgoff; if (unlikely(is_vm_hugetlb_page(vma))) return linear_hugepage_index(vma, address); pgoff = (address - vma->vm_start) >> PAGE_SHIFT; pgoff += vma->vm_pgoff; return pgoff; } struct wait_page_key { struct page *page; int bit_nr; int page_match; }; struct wait_page_queue { struct page *page; int bit_nr; wait_queue_entry_t wait; }; static inline bool wake_page_match(struct wait_page_queue *wait_page, struct wait_page_key *key) { if (wait_page->page != key->page) return false; key->page_match = 1; if (wait_page->bit_nr != key->bit_nr) return false; return true; } extern void __lock_page(struct page *page); extern int __lock_page_killable(struct page *page); extern int __lock_page_async(struct page *page, struct wait_page_queue *wait); extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, unsigned int flags); extern void unlock_page(struct page *page); /* * Return true if the page was successfully locked */ static inline int trylock_page(struct page *page) { page = compound_head(page); return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); } /* * lock_page may only be called if we have the page's inode pinned. */ static inline void lock_page(struct page *page) { might_sleep(); if (!trylock_page(page)) __lock_page(page); } /* * lock_page_killable is like lock_page but can be interrupted by fatal * signals. It returns 0 if it locked the page and -EINTR if it was * killed while waiting. */ static inline int lock_page_killable(struct page *page) { might_sleep(); if (!trylock_page(page)) return __lock_page_killable(page); return 0; } /* * lock_page_async - Lock the page, unless this would block. If the page * is already locked, then queue a callback when the page becomes unlocked. * This callback can then retry the operation. * * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page * was already locked and the callback defined in 'wait' was queued. */ static inline int lock_page_async(struct page *page, struct wait_page_queue *wait) { if (!trylock_page(page)) return __lock_page_async(page, wait); return 0; } /* * lock_page_or_retry - Lock the page, unless this would block and the * caller indicated that it can handle a retry. * * Return value and mmap_lock implications depend on flags; see * __lock_page_or_retry(). */ static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, unsigned int flags) { might_sleep(); return trylock_page(page) || __lock_page_or_retry(page, mm, flags); } /* * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., * and should not be used directly. */ extern void wait_on_page_bit(struct page *page, int bit_nr); extern int wait_on_page_bit_killable(struct page *page, int bit_nr); /* * Wait for a page to be unlocked. * * This must be called with the caller "holding" the page, * ie with increased "page->count" so that the page won't * go away during the wait.. */ static inline void wait_on_page_locked(struct page *page) { if (PageLocked(page)) wait_on_page_bit(compound_head(page), PG_locked); } static inline int wait_on_page_locked_killable(struct page *page) { if (!PageLocked(page)) return 0; return wait_on_page_bit_killable(compound_head(page), PG_locked); } extern void put_and_wait_on_page_locked(struct page *page); void wait_on_page_writeback(struct page *page); extern void end_page_writeback(struct page *page); void wait_for_stable_page(struct page *page); void page_endio(struct page *page, bool is_write, int err); /* * Add an arbitrary waiter to a page's wait queue */ extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); /* * Fault everything in given userspace address range in. */ static inline int fault_in_pages_writeable(char __user *uaddr, int size) { char __user *end = uaddr + size - 1; if (unlikely(size == 0)) return 0; if (unlikely(uaddr > end)) return -EFAULT; /* * Writing zeroes into userspace here is OK, because we know that if * the zero gets there, we'll be overwriting it. */ do { if (unlikely(__put_user(0, uaddr) != 0)) return -EFAULT; uaddr += PAGE_SIZE; } while (uaddr <= end); /* Check whether the range spilled into the next page. */ if (((unsigned long)uaddr & PAGE_MASK) == ((unsigned long)end & PAGE_MASK)) return __put_user(0, end); return 0; } static inline int fault_in_pages_readable(const char __user *uaddr, int size) { volatile char c; const char __user *end = uaddr + size - 1; if (unlikely(size == 0)) return 0; if (unlikely(uaddr > end)) return -EFAULT; do { if (unlikely(__get_user(c, uaddr) != 0)) return -EFAULT; uaddr += PAGE_SIZE; } while (uaddr <= end); /* Check whether the range spilled into the next page. */ if (((unsigned long)uaddr & PAGE_MASK) == ((unsigned long)end & PAGE_MASK)) { return __get_user(c, end); } (void)c; return 0; } int add_to_page_cache_locked(struct page *page, struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); int add_to_page_cache_lru(struct page *page, struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); extern void delete_from_page_cache(struct page *page); extern void __delete_from_page_cache(struct page *page, void *shadow); int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); void delete_from_page_cache_batch(struct address_space *mapping, struct pagevec *pvec); /* * Like add_to_page_cache_locked, but used to add newly allocated pages: * the page is new, so we can just run __SetPageLocked() against it. */ static inline int add_to_page_cache(struct page *page, struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) { int error; __SetPageLocked(page); error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); if (unlikely(error)) __ClearPageLocked(page); return error; } /** * struct readahead_control - Describes a readahead request. * * A readahead request is for consecutive pages. Filesystems which * implement the ->readahead method should call readahead_page() or * readahead_page_batch() in a loop and attempt to start I/O against * each page in the request. * * Most of the fields in this struct are private and should be accessed * by the functions below. * * @file: The file, used primarily by network filesystems for authentication. * May be NULL if invoked internally by the filesystem. * @mapping: Readahead this filesystem object. */ struct readahead_control { struct file *file; struct address_space *mapping; /* private: use the readahead_* accessors instead */ pgoff_t _index; unsigned int _nr_pages; unsigned int _batch_count; }; #define DEFINE_READAHEAD(rac, f, m, i) \ struct readahead_control rac = { \ .file = f, \ .mapping = m, \ ._index = i, \ } #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) void page_cache_ra_unbounded(struct readahead_control *, unsigned long nr_to_read, unsigned long lookahead_count); void page_cache_sync_ra(struct readahead_control *, struct file_ra_state *, unsigned long req_count); void page_cache_async_ra(struct readahead_control *, struct file_ra_state *, struct page *, unsigned long req_count); /** * page_cache_sync_readahead - generic file readahead * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @file: Used by the filesystem for authentication. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_sync_readahead() should be called when a cache miss happened: * it will submit the read. The readahead logic may decide to piggyback more * pages onto the read request if access patterns suggest it will improve * performance. */ static inline void page_cache_sync_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, pgoff_t index, unsigned long req_count) { DEFINE_READAHEAD(ractl, file, mapping, index); page_cache_sync_ra(&ractl, ra, req_count); } /** * page_cache_async_readahead - file readahead for marked pages * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @file: Used by the filesystem for authentication. * @page: The page at @index which triggered the readahead call. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_async_readahead() should be called when a page is used which * is marked as PageReadahead; this is a marker to suggest that the application * has used up enough of the readahead window that we should start pulling in * more pages. */ static inline void page_cache_async_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, struct page *page, pgoff_t index, unsigned long req_count) { DEFINE_READAHEAD(ractl, file, mapping, index); page_cache_async_ra(&ractl, ra, page, req_count); } /** * readahead_page - Get the next page to read. * @rac: The current readahead request. * * Context: The page is locked and has an elevated refcount. The caller * should decreases the refcount once the page has been submitted for I/O * and unlock the page once all I/O to that page has completed. * Return: A pointer to the next page, or %NULL if we are done. */ static inline struct page *readahead_page(struct readahead_control *rac) { struct page *page; BUG_ON(rac->_batch_count > rac->_nr_pages); rac->_nr_pages -= rac->_batch_count; rac->_index += rac->_batch_count; if (!rac->_nr_pages) { rac->_batch_count = 0; return NULL; } page = xa_load(&rac->mapping->i_pages, rac->_index); VM_BUG_ON_PAGE(!PageLocked(page), page); rac->_batch_count = thp_nr_pages(page); return page; } static inline unsigned int __readahead_batch(struct readahead_control *rac, struct page **array, unsigned int array_sz) { unsigned int i = 0; XA_STATE(xas, &rac->mapping->i_pages, 0); struct page *page; BUG_ON(rac->_batch_count > rac->_nr_pages); rac->_nr_pages -= rac->_batch_count; rac->_index += rac->_batch_count; rac->_batch_count = 0; xas_set(&xas, rac->_index); rcu_read_lock(); xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { if (xas_retry(&xas, page)) continue; VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(PageTail(page), page); array[i++] = page; rac->_batch_count += thp_nr_pages(page); /* * The page cache isn't using multi-index entries yet, * so the xas cursor needs to be manually moved to the * next index. This can be removed once the page cache * is converted. */ if (PageHead(page)) xas_set(&xas, rac->_index + rac->_batch_count); if (i == array_sz) break; } rcu_read_unlock(); return i; } /** * readahead_page_batch - Get a batch of pages to read. * @rac: The current readahead request. * @array: An array of pointers to struct page. * * Context: The pages are locked and have an elevated refcount. The caller * should decreases the refcount once the page has been submitted for I/O * and unlock the page once all I/O to that page has completed. * Return: The number of pages placed in the array. 0 indicates the request * is complete. */ #define readahead_page_batch(rac, array) \ __readahead_batch(rac, array, ARRAY_SIZE(array)) /** * readahead_pos - The byte offset into the file of this readahead request. * @rac: The readahead request. */ static inline loff_t readahead_pos(struct readahead_control *rac) { return (loff_t)rac->_index * PAGE_SIZE; } /** * readahead_length - The number of bytes in this readahead request. * @rac: The readahead request. */ static inline loff_t readahead_length(struct readahead_control *rac) { return (loff_t)rac->_nr_pages * PAGE_SIZE; } /** * readahead_index - The index of the first page in this readahead request. * @rac: The readahead request. */ static inline pgoff_t readahead_index(struct readahead_control *rac) { return rac->_index; } /** * readahead_count - The number of pages in this readahead request. * @rac: The readahead request. */ static inline unsigned int readahead_count(struct readahead_control *rac) { return rac->_nr_pages; } static inline unsigned long dir_pages(struct inode *inode) { return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; } /** * page_mkwrite_check_truncate - check if page was truncated * @page: the page to check * @inode: the inode to check the page against * * Returns the number of bytes in the page up to EOF, * or -EFAULT if the page was truncated. */ static inline int page_mkwrite_check_truncate(struct page *page, struct inode *inode) { loff_t size = i_size_read(inode); pgoff_t index = size >> PAGE_SHIFT; int offset = offset_in_page(size); if (page->mapping != inode->i_mapping) return -EFAULT; /* page is wholly inside EOF */ if (page->index < index) return PAGE_SIZE; /* page is wholly past EOF */ if (page->index > index || !offset) return -EFAULT; /* page is partially inside EOF */ return offset; } /** * i_blocks_per_page - How many blocks fit in this page. * @inode: The inode which contains the blocks. * @page: The page (head page if the page is a THP). * * If the block size is larger than the size of this page, return zero. * * Context: The caller should hold a refcount on the page to prevent it * from being split. * Return: The number of filesystem blocks covered by this page. */ static inline unsigned int i_blocks_per_page(struct inode *inode, struct page *page) { return thp_size(page) >> inode->i_blkbits; } #endif /* _LINUX_PAGEMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SEQ_FILE_H #define _LINUX_SEQ_FILE_H #include <linux/types.h> #include <linux/string.h> #include <linux/bug.h> #include <linux/mutex.h> #include <linux/cpumask.h> #include <linux/nodemask.h> #include <linux/fs.h> #include <linux/cred.h> struct seq_operations; struct seq_file { char *buf; size_t size; size_t from; size_t count; size_t pad_until; loff_t index; loff_t read_pos; struct mutex lock; const struct seq_operations *op; int poll_event; const struct file *file; void *private; }; struct seq_operations { void * (*start) (struct seq_file *m, loff_t *pos); void (*stop) (struct seq_file *m, void *v); void * (*next) (struct seq_file *m, void *v, loff_t *pos); int (*show) (struct seq_file *m, void *v); }; #define SEQ_SKIP 1 /** * seq_has_overflowed - check if the buffer has overflowed * @m: the seq_file handle * * seq_files have a buffer which may overflow. When this happens a larger * buffer is reallocated and all the data will be printed again. * The overflow state is true when m->count == m->size. * * Returns true if the buffer received more than it can hold. */ static inline bool seq_has_overflowed(struct seq_file *m) { return m->count == m->size; } /** * seq_get_buf - get buffer to write arbitrary data to * @m: the seq_file handle * @bufp: the beginning of the buffer is stored here * * Return the number of bytes available in the buffer, or zero if * there's no space. */ static inline size_t seq_get_buf(struct seq_file *m, char **bufp) { BUG_ON(m->count > m->size); if (m->count < m->size) *bufp = m->buf + m->count; else *bufp = NULL; return m->size - m->count; } /** * seq_commit - commit data to the buffer * @m: the seq_file handle * @num: the number of bytes to commit * * Commit @num bytes of data written to a buffer previously acquired * by seq_buf_get. To signal an error condition, or that the data * didn't fit in the available space, pass a negative @num value. */ static inline void seq_commit(struct seq_file *m, int num) { if (num < 0) { m->count = m->size; } else { BUG_ON(m->count + num > m->size); m->count += num; } } /** * seq_setwidth - set padding width * @m: the seq_file handle * @size: the max number of bytes to pad. * * Call seq_setwidth() for setting max width, then call seq_printf() etc. and * finally call seq_pad() to pad the remaining bytes. */ static inline void seq_setwidth(struct seq_file *m, size_t size) { m->pad_until = m->count + size; } void seq_pad(struct seq_file *m, char c); char *mangle_path(char *s, const char *p, const char *esc); int seq_open(struct file *, const struct seq_operations *); ssize_t seq_read(struct file *, char __user *, size_t, loff_t *); ssize_t seq_read_iter(struct kiocb *iocb, struct iov_iter *iter); loff_t seq_lseek(struct file *, loff_t, int); int seq_release(struct inode *, struct file *); int seq_write(struct seq_file *seq, const void *data, size_t len); __printf(2, 0) void seq_vprintf(struct seq_file *m, const char *fmt, va_list args); __printf(2, 3) void seq_printf(struct seq_file *m, const char *fmt, ...); void seq_putc(struct seq_file *m, char c); void seq_puts(struct seq_file *m, const char *s); void seq_put_decimal_ull_width(struct seq_file *m, const char *delimiter, unsigned long long num, unsigned int width); void seq_put_decimal_ull(struct seq_file *m, const char *delimiter, unsigned long long num); void seq_put_decimal_ll(struct seq_file *m, const char *delimiter, long long num); void seq_put_hex_ll(struct seq_file *m, const char *delimiter, unsigned long long v, unsigned int width); void seq_escape(struct seq_file *m, const char *s, const char *esc); void seq_escape_mem_ascii(struct seq_file *m, const char *src, size_t isz); void seq_hex_dump(struct seq_file *m, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii); int seq_path(struct seq_file *, const struct path *, const char *); int seq_file_path(struct seq_file *, struct file *, const char *); int seq_dentry(struct seq_file *, struct dentry *, const char *); int seq_path_root(struct seq_file *m, const struct path *path, const struct path *root, const char *esc); int single_open(struct file *, int (*)(struct seq_file *, void *), void *); int single_open_size(struct file *, int (*)(struct seq_file *, void *), void *, size_t); int single_release(struct inode *, struct file *); void *__seq_open_private(struct file *, const struct seq_operations *, int); int seq_open_private(struct file *, const struct seq_operations *, int); int seq_release_private(struct inode *, struct file *); #define DEFINE_SEQ_ATTRIBUTE(__name) \ static int __name ## _open(struct inode *inode, struct file *file) \ { \ int ret = seq_open(file, &__name ## _sops); \ if (!ret && inode->i_private) { \ struct seq_file *seq_f = file->private_data; \ seq_f->private = inode->i_private; \ } \ return ret; \ } \ \ static const struct file_operations __name ## _fops = { \ .owner = THIS_MODULE, \ .open = __name ## _open, \ .read = seq_read, \ .llseek = seq_lseek, \ .release = seq_release, \ } #define DEFINE_SHOW_ATTRIBUTE(__name) \ static int __name ## _open(struct inode *inode, struct file *file) \ { \ return single_open(file, __name ## _show, inode->i_private); \ } \ \ static const struct file_operations __name ## _fops = { \ .owner = THIS_MODULE, \ .open = __name ## _open, \ .read = seq_read, \ .llseek = seq_lseek, \ .release = single_release, \ } #define DEFINE_PROC_SHOW_ATTRIBUTE(__name) \ static int __name ## _open(struct inode *inode, struct file *file) \ { \ return single_open(file, __name ## _show, PDE_DATA(inode)); \ } \ \ static const struct proc_ops __name ## _proc_ops = { \ .proc_open = __name ## _open, \ .proc_read = seq_read, \ .proc_lseek = seq_lseek, \ .proc_release = single_release, \ } static inline struct user_namespace *seq_user_ns(struct seq_file *seq) { #ifdef CONFIG_USER_NS return seq->file->f_cred->user_ns; #else extern struct user_namespace init_user_ns; return &init_user_ns; #endif } /** * seq_show_options - display mount options with appropriate escapes. * @m: the seq_file handle * @name: the mount option name * @value: the mount option name's value, can be NULL */ static inline void seq_show_option(struct seq_file *m, const char *name, const char *value) { seq_putc(m, ','); seq_escape(m, name, ",= \t\n\\"); if (value) { seq_putc(m, '='); seq_escape(m, value, ", \t\n\\"); } } /** * seq_show_option_n - display mount options with appropriate escapes * where @value must be a specific length. * @m: the seq_file handle * @name: the mount option name * @value: the mount option name's value, cannot be NULL * @length: the length of @value to display * * This is a macro since this uses "length" to define the size of the * stack buffer. */ #define seq_show_option_n(m, name, value, length) { \ char val_buf[length + 1]; \ strncpy(val_buf, value, length); \ val_buf[length] = '\0'; \ seq_show_option(m, name, val_buf); \ } #define SEQ_START_TOKEN ((void *)1) /* * Helpers for iteration over list_head-s in seq_files */ extern struct list_head *seq_list_start(struct list_head *head, loff_t pos); extern struct list_head *seq_list_start_head(struct list_head *head, loff_t pos); extern struct list_head *seq_list_next(void *v, struct list_head *head, loff_t *ppos); /* * Helpers for iteration over hlist_head-s in seq_files */ extern struct hlist_node *seq_hlist_start(struct hlist_head *head, loff_t pos); extern struct hlist_node *seq_hlist_start_head(struct hlist_head *head, loff_t pos); extern struct hlist_node *seq_hlist_next(void *v, struct hlist_head *head, loff_t *ppos); extern struct hlist_node *seq_hlist_start_rcu(struct hlist_head *head, loff_t pos); extern struct hlist_node *seq_hlist_start_head_rcu(struct hlist_head *head, loff_t pos); extern struct hlist_node *seq_hlist_next_rcu(void *v, struct hlist_head *head, loff_t *ppos); /* Helpers for iterating over per-cpu hlist_head-s in seq_files */ extern struct hlist_node *seq_hlist_start_percpu(struct hlist_head __percpu *head, int *cpu, loff_t pos); extern struct hlist_node *seq_hlist_next_percpu(void *v, struct hlist_head __percpu *head, int *cpu, loff_t *pos); void seq_file_init(void); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Queued spinlock * * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P. * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP * * Authors: Waiman Long <waiman.long@hpe.com> */ #ifndef __ASM_GENERIC_QSPINLOCK_H #define __ASM_GENERIC_QSPINLOCK_H #include <asm-generic/qspinlock_types.h> #include <linux/atomic.h> #ifndef queued_spin_is_locked /** * queued_spin_is_locked - is the spinlock locked? * @lock: Pointer to queued spinlock structure * Return: 1 if it is locked, 0 otherwise */ static __always_inline int queued_spin_is_locked(struct qspinlock *lock) { /* * Any !0 state indicates it is locked, even if _Q_LOCKED_VAL * isn't immediately observable. */ return atomic_read(&lock->val); } #endif /** * queued_spin_value_unlocked - is the spinlock structure unlocked? * @lock: queued spinlock structure * Return: 1 if it is unlocked, 0 otherwise * * N.B. Whenever there are tasks waiting for the lock, it is considered * locked wrt the lockref code to avoid lock stealing by the lockref * code and change things underneath the lock. This also allows some * optimizations to be applied without conflict with lockref. */ static __always_inline int queued_spin_value_unlocked(struct qspinlock lock) { return !atomic_read(&lock.val); } /** * queued_spin_is_contended - check if the lock is contended * @lock : Pointer to queued spinlock structure * Return: 1 if lock contended, 0 otherwise */ static __always_inline int queued_spin_is_contended(struct qspinlock *lock) { return atomic_read(&lock->val) & ~_Q_LOCKED_MASK; } /** * queued_spin_trylock - try to acquire the queued spinlock * @lock : Pointer to queued spinlock structure * Return: 1 if lock acquired, 0 if failed */ static __always_inline int queued_spin_trylock(struct qspinlock *lock) { u32 val = atomic_read(&lock->val); if (unlikely(val)) return 0; return likely(atomic_try_cmpxchg_acquire(&lock->val, &val, _Q_LOCKED_VAL)); } extern void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val); #ifndef queued_spin_lock /** * queued_spin_lock - acquire a queued spinlock * @lock: Pointer to queued spinlock structure */ static __always_inline void queued_spin_lock(struct qspinlock *lock) { u32 val = 0; if (likely(atomic_try_cmpxchg_acquire(&lock->val, &val, _Q_LOCKED_VAL))) return; queued_spin_lock_slowpath(lock, val); } #endif #ifndef queued_spin_unlock /** * queued_spin_unlock - release a queued spinlock * @lock : Pointer to queued spinlock structure */ static __always_inline void queued_spin_unlock(struct qspinlock *lock) { /* * unlock() needs release semantics: */ smp_store_release(&lock->locked, 0); } #endif #ifndef virt_spin_lock static __always_inline bool virt_spin_lock(struct qspinlock *lock) { return false; } #endif /* * Remapping spinlock architecture specific functions to the corresponding * queued spinlock functions. */ #define arch_spin_is_locked(l) queued_spin_is_locked(l) #define arch_spin_is_contended(l) queued_spin_is_contended(l) #define arch_spin_value_unlocked(l) queued_spin_value_unlocked(l) #define arch_spin_lock(l) queued_spin_lock(l) #define arch_spin_trylock(l) queued_spin_trylock(l) #define arch_spin_unlock(l) queued_spin_unlock(l) #endif /* __ASM_GENERIC_QSPINLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM libata #if !defined(_TRACE_LIBATA_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_LIBATA_H #include <linux/ata.h> #include <linux/libata.h> #include <linux/tracepoint.h> #include <linux/trace_seq.h> #define ata_opcode_name(opcode) { opcode, #opcode } #define show_opcode_name(val) \ __print_symbolic(val, \ ata_opcode_name(ATA_CMD_DEV_RESET), \ ata_opcode_name(ATA_CMD_CHK_POWER), \ ata_opcode_name(ATA_CMD_STANDBY), \ ata_opcode_name(ATA_CMD_IDLE), \ ata_opcode_name(ATA_CMD_EDD), \ ata_opcode_name(ATA_CMD_DOWNLOAD_MICRO), \ ata_opcode_name(ATA_CMD_DOWNLOAD_MICRO_DMA), \ ata_opcode_name(ATA_CMD_NOP), \ ata_opcode_name(ATA_CMD_FLUSH), \ ata_opcode_name(ATA_CMD_FLUSH_EXT), \ ata_opcode_name(ATA_CMD_ID_ATA), \ ata_opcode_name(ATA_CMD_ID_ATAPI), \ ata_opcode_name(ATA_CMD_SERVICE), \ ata_opcode_name(ATA_CMD_READ), \ ata_opcode_name(ATA_CMD_READ_EXT), \ ata_opcode_name(ATA_CMD_READ_QUEUED), \ ata_opcode_name(ATA_CMD_READ_STREAM_EXT), \ ata_opcode_name(ATA_CMD_READ_STREAM_DMA_EXT), \ ata_opcode_name(ATA_CMD_WRITE), \ ata_opcode_name(ATA_CMD_WRITE_EXT), \ ata_opcode_name(ATA_CMD_WRITE_QUEUED), \ ata_opcode_name(ATA_CMD_WRITE_STREAM_EXT), \ ata_opcode_name(ATA_CMD_WRITE_STREAM_DMA_EXT), \ ata_opcode_name(ATA_CMD_WRITE_FUA_EXT), \ ata_opcode_name(ATA_CMD_WRITE_QUEUED_FUA_EXT), \ ata_opcode_name(ATA_CMD_FPDMA_READ), \ ata_opcode_name(ATA_CMD_FPDMA_WRITE), \ ata_opcode_name(ATA_CMD_NCQ_NON_DATA), \ ata_opcode_name(ATA_CMD_FPDMA_SEND), \ ata_opcode_name(ATA_CMD_FPDMA_RECV), \ ata_opcode_name(ATA_CMD_PIO_READ), \ ata_opcode_name(ATA_CMD_PIO_READ_EXT), \ ata_opcode_name(ATA_CMD_PIO_WRITE), \ ata_opcode_name(ATA_CMD_PIO_WRITE_EXT), \ ata_opcode_name(ATA_CMD_READ_MULTI), \ ata_opcode_name(ATA_CMD_READ_MULTI_EXT), \ ata_opcode_name(ATA_CMD_WRITE_MULTI), \ ata_opcode_name(ATA_CMD_WRITE_MULTI_EXT), \ ata_opcode_name(ATA_CMD_WRITE_MULTI_FUA_EXT), \ ata_opcode_name(ATA_CMD_SET_FEATURES), \ ata_opcode_name(ATA_CMD_SET_MULTI), \ ata_opcode_name(ATA_CMD_PACKET), \ ata_opcode_name(ATA_CMD_VERIFY), \ ata_opcode_name(ATA_CMD_VERIFY_EXT), \ ata_opcode_name(ATA_CMD_WRITE_UNCORR_EXT), \ ata_opcode_name(ATA_CMD_STANDBYNOW1), \ ata_opcode_name(ATA_CMD_IDLEIMMEDIATE), \ ata_opcode_name(ATA_CMD_SLEEP), \ ata_opcode_name(ATA_CMD_INIT_DEV_PARAMS), \ ata_opcode_name(ATA_CMD_READ_NATIVE_MAX), \ ata_opcode_name(ATA_CMD_READ_NATIVE_MAX_EXT), \ ata_opcode_name(ATA_CMD_SET_MAX), \ ata_opcode_name(ATA_CMD_SET_MAX_EXT), \ ata_opcode_name(ATA_CMD_READ_LOG_EXT), \ ata_opcode_name(ATA_CMD_WRITE_LOG_EXT), \ ata_opcode_name(ATA_CMD_READ_LOG_DMA_EXT), \ ata_opcode_name(ATA_CMD_WRITE_LOG_DMA_EXT), \ ata_opcode_name(ATA_CMD_TRUSTED_NONDATA), \ ata_opcode_name(ATA_CMD_TRUSTED_RCV), \ ata_opcode_name(ATA_CMD_TRUSTED_RCV_DMA), \ ata_opcode_name(ATA_CMD_TRUSTED_SND), \ ata_opcode_name(ATA_CMD_TRUSTED_SND_DMA), \ ata_opcode_name(ATA_CMD_PMP_READ), \ ata_opcode_name(ATA_CMD_PMP_READ_DMA), \ ata_opcode_name(ATA_CMD_PMP_WRITE), \ ata_opcode_name(ATA_CMD_PMP_WRITE_DMA), \ ata_opcode_name(ATA_CMD_CONF_OVERLAY), \ ata_opcode_name(ATA_CMD_SEC_SET_PASS), \ ata_opcode_name(ATA_CMD_SEC_UNLOCK), \ ata_opcode_name(ATA_CMD_SEC_ERASE_PREP), \ ata_opcode_name(ATA_CMD_SEC_ERASE_UNIT), \ ata_opcode_name(ATA_CMD_SEC_FREEZE_LOCK), \ ata_opcode_name(ATA_CMD_SEC_DISABLE_PASS), \ ata_opcode_name(ATA_CMD_CONFIG_STREAM), \ ata_opcode_name(ATA_CMD_SMART), \ ata_opcode_name(ATA_CMD_MEDIA_LOCK), \ ata_opcode_name(ATA_CMD_MEDIA_UNLOCK), \ ata_opcode_name(ATA_CMD_DSM), \ ata_opcode_name(ATA_CMD_CHK_MED_CRD_TYP), \ ata_opcode_name(ATA_CMD_CFA_REQ_EXT_ERR), \ ata_opcode_name(ATA_CMD_CFA_WRITE_NE), \ ata_opcode_name(ATA_CMD_CFA_TRANS_SECT), \ ata_opcode_name(ATA_CMD_CFA_ERASE), \ ata_opcode_name(ATA_CMD_CFA_WRITE_MULT_NE), \ ata_opcode_name(ATA_CMD_REQ_SENSE_DATA), \ ata_opcode_name(ATA_CMD_SANITIZE_DEVICE), \ ata_opcode_name(ATA_CMD_ZAC_MGMT_IN), \ ata_opcode_name(ATA_CMD_ZAC_MGMT_OUT), \ ata_opcode_name(ATA_CMD_RESTORE), \ ata_opcode_name(ATA_CMD_READ_LONG), \ ata_opcode_name(ATA_CMD_READ_LONG_ONCE), \ ata_opcode_name(ATA_CMD_WRITE_LONG), \ ata_opcode_name(ATA_CMD_WRITE_LONG_ONCE)) #define ata_error_name(result) { result, #result } #define show_error_name(val) \ __print_symbolic(val, \ ata_error_name(ATA_ICRC), \ ata_error_name(ATA_UNC), \ ata_error_name(ATA_MC), \ ata_error_name(ATA_IDNF), \ ata_error_name(ATA_MCR), \ ata_error_name(ATA_ABORTED), \ ata_error_name(ATA_TRK0NF), \ ata_error_name(ATA_AMNF)) #define ata_protocol_name(proto) { proto, #proto } #define show_protocol_name(val) \ __print_symbolic(val, \ ata_protocol_name(ATA_PROT_UNKNOWN), \ ata_protocol_name(ATA_PROT_NODATA), \ ata_protocol_name(ATA_PROT_PIO), \ ata_protocol_name(ATA_PROT_DMA), \ ata_protocol_name(ATA_PROT_NCQ), \ ata_protocol_name(ATA_PROT_NCQ_NODATA), \ ata_protocol_name(ATAPI_PROT_NODATA), \ ata_protocol_name(ATAPI_PROT_PIO), \ ata_protocol_name(ATAPI_PROT_DMA)) const char *libata_trace_parse_status(struct trace_seq*, unsigned char); #define __parse_status(s) libata_trace_parse_status(p, s) const char *libata_trace_parse_eh_action(struct trace_seq *, unsigned int); #define __parse_eh_action(a) libata_trace_parse_eh_action(p, a) const char *libata_trace_parse_eh_err_mask(struct trace_seq *, unsigned int); #define __parse_eh_err_mask(m) libata_trace_parse_eh_err_mask(p, m) const char *libata_trace_parse_qc_flags(struct trace_seq *, unsigned int); #define __parse_qc_flags(f) libata_trace_parse_qc_flags(p, f) const char *libata_trace_parse_subcmd(struct trace_seq *, unsigned char, unsigned char, unsigned char); #define __parse_subcmd(c,f,h) libata_trace_parse_subcmd(p, c, f, h) TRACE_EVENT(ata_qc_issue, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc), TP_STRUCT__entry( __field( unsigned int, ata_port ) __field( unsigned int, ata_dev ) __field( unsigned int, tag ) __field( unsigned char, cmd ) __field( unsigned char, dev ) __field( unsigned char, lbal ) __field( unsigned char, lbam ) __field( unsigned char, lbah ) __field( unsigned char, nsect ) __field( unsigned char, feature ) __field( unsigned char, hob_lbal ) __field( unsigned char, hob_lbam ) __field( unsigned char, hob_lbah ) __field( unsigned char, hob_nsect ) __field( unsigned char, hob_feature ) __field( unsigned char, ctl ) __field( unsigned char, proto ) __field( unsigned long, flags ) ), TP_fast_assign( __entry->ata_port = qc->ap->print_id; __entry->ata_dev = qc->dev->link->pmp + qc->dev->devno; __entry->tag = qc->tag; __entry->proto = qc->tf.protocol; __entry->cmd = qc->tf.command; __entry->dev = qc->tf.device; __entry->lbal = qc->tf.lbal; __entry->lbam = qc->tf.lbam; __entry->lbah = qc->tf.lbah; __entry->hob_lbal = qc->tf.hob_lbal; __entry->hob_lbam = qc->tf.hob_lbam; __entry->hob_lbah = qc->tf.hob_lbah; __entry->feature = qc->tf.feature; __entry->hob_feature = qc->tf.hob_feature; __entry->nsect = qc->tf.nsect; __entry->hob_nsect = qc->tf.hob_nsect; ), TP_printk("ata_port=%u ata_dev=%u tag=%d proto=%s cmd=%s%s " \ " tf=(%02x/%02x:%02x:%02x:%02x:%02x/%02x:%02x:%02x:%02x:%02x/%02x)", __entry->ata_port, __entry->ata_dev, __entry->tag, show_protocol_name(__entry->proto), show_opcode_name(__entry->cmd), __parse_subcmd(__entry->cmd, __entry->feature, __entry->hob_nsect), __entry->cmd, __entry->feature, __entry->nsect, __entry->lbal, __entry->lbam, __entry->lbah, __entry->hob_feature, __entry->hob_nsect, __entry->hob_lbal, __entry->hob_lbam, __entry->hob_lbah, __entry->dev) ); DECLARE_EVENT_CLASS(ata_qc_complete_template, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc), TP_STRUCT__entry( __field( unsigned int, ata_port ) __field( unsigned int, ata_dev ) __field( unsigned int, tag ) __field( unsigned char, status ) __field( unsigned char, dev ) __field( unsigned char, lbal ) __field( unsigned char, lbam ) __field( unsigned char, lbah ) __field( unsigned char, nsect ) __field( unsigned char, error ) __field( unsigned char, hob_lbal ) __field( unsigned char, hob_lbam ) __field( unsigned char, hob_lbah ) __field( unsigned char, hob_nsect ) __field( unsigned char, hob_feature ) __field( unsigned char, ctl ) __field( unsigned long, flags ) ), TP_fast_assign( __entry->ata_port = qc->ap->print_id; __entry->ata_dev = qc->dev->link->pmp + qc->dev->devno; __entry->tag = qc->tag; __entry->status = qc->result_tf.command; __entry->dev = qc->result_tf.device; __entry->lbal = qc->result_tf.lbal; __entry->lbam = qc->result_tf.lbam; __entry->lbah = qc->result_tf.lbah; __entry->hob_lbal = qc->result_tf.hob_lbal; __entry->hob_lbam = qc->result_tf.hob_lbam; __entry->hob_lbah = qc->result_tf.hob_lbah; __entry->error = qc->result_tf.feature; __entry->hob_feature = qc->result_tf.hob_feature; __entry->nsect = qc->result_tf.nsect; __entry->hob_nsect = qc->result_tf.hob_nsect; ), TP_printk("ata_port=%u ata_dev=%u tag=%d flags=%s status=%s " \ " res=(%02x/%02x:%02x:%02x:%02x:%02x/%02x:%02x:%02x:%02x:%02x/%02x)", __entry->ata_port, __entry->ata_dev, __entry->tag, __parse_qc_flags(__entry->flags), __parse_status(__entry->status), __entry->status, __entry->error, __entry->nsect, __entry->lbal, __entry->lbam, __entry->lbah, __entry->hob_feature, __entry->hob_nsect, __entry->hob_lbal, __entry->hob_lbam, __entry->hob_lbah, __entry->dev) ); DEFINE_EVENT(ata_qc_complete_template, ata_qc_complete_internal, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc)); DEFINE_EVENT(ata_qc_complete_template, ata_qc_complete_failed, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc)); DEFINE_EVENT(ata_qc_complete_template, ata_qc_complete_done, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc)); TRACE_EVENT(ata_eh_link_autopsy, TP_PROTO(struct ata_device *dev, unsigned int eh_action, unsigned int eh_err_mask), TP_ARGS(dev, eh_action, eh_err_mask), TP_STRUCT__entry( __field( unsigned int, ata_port ) __field( unsigned int, ata_dev ) __field( unsigned int, eh_action ) __field( unsigned int, eh_err_mask) ), TP_fast_assign( __entry->ata_port = dev->link->ap->print_id; __entry->ata_dev = dev->link->pmp + dev->devno; __entry->eh_action = eh_action; __entry->eh_err_mask = eh_err_mask; ), TP_printk("ata_port=%u ata_dev=%u eh_action=%s err_mask=%s", __entry->ata_port, __entry->ata_dev, __parse_eh_action(__entry->eh_action), __parse_eh_err_mask(__entry->eh_err_mask)) ); TRACE_EVENT(ata_eh_link_autopsy_qc, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc), TP_STRUCT__entry( __field( unsigned int, ata_port ) __field( unsigned int, ata_dev ) __field( unsigned int, tag ) __field( unsigned int, qc_flags ) __field( unsigned int, eh_err_mask) ), TP_fast_assign( __entry->ata_port = qc->ap->print_id; __entry->ata_dev = qc->dev->link->pmp + qc->dev->devno; __entry->tag = qc->tag; __entry->qc_flags = qc->flags; __entry->eh_err_mask = qc->err_mask; ), TP_printk("ata_port=%u ata_dev=%u tag=%d flags=%s err_mask=%s", __entry->ata_port, __entry->ata_dev, __entry->tag, __parse_qc_flags(__entry->qc_flags), __parse_eh_err_mask(__entry->eh_err_mask)) ); #endif /* _TRACE_LIBATA_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PERCPU_RWSEM_H #define _LINUX_PERCPU_RWSEM_H #include <linux/atomic.h> #include <linux/percpu.h> #include <linux/rcuwait.h> #include <linux/wait.h> #include <linux/rcu_sync.h> #include <linux/lockdep.h> struct percpu_rw_semaphore { struct rcu_sync rss; unsigned int __percpu *read_count; struct rcuwait writer; wait_queue_head_t waiters; atomic_t block; #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif }; #ifdef CONFIG_DEBUG_LOCK_ALLOC #define __PERCPU_RWSEM_DEP_MAP_INIT(lockname) .dep_map = { .name = #lockname }, #else #define __PERCPU_RWSEM_DEP_MAP_INIT(lockname) #endif #define __DEFINE_PERCPU_RWSEM(name, is_static) \ static DEFINE_PER_CPU(unsigned int, __percpu_rwsem_rc_##name); \ is_static struct percpu_rw_semaphore name = { \ .rss = __RCU_SYNC_INITIALIZER(name.rss), \ .read_count = &__percpu_rwsem_rc_##name, \ .writer = __RCUWAIT_INITIALIZER(name.writer), \ .waiters = __WAIT_QUEUE_HEAD_INITIALIZER(name.waiters), \ .block = ATOMIC_INIT(0), \ __PERCPU_RWSEM_DEP_MAP_INIT(name) \ } #define DEFINE_PERCPU_RWSEM(name) \ __DEFINE_PERCPU_RWSEM(name, /* not static */) #define DEFINE_STATIC_PERCPU_RWSEM(name) \ __DEFINE_PERCPU_RWSEM(name, static) extern bool __percpu_down_read(struct percpu_rw_semaphore *, bool); static inline void percpu_down_read(struct percpu_rw_semaphore *sem) { might_sleep(); rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); preempt_disable(); /* * We are in an RCU-sched read-side critical section, so the writer * cannot both change sem->state from readers_fast and start checking * counters while we are here. So if we see !sem->state, we know that * the writer won't be checking until we're past the preempt_enable() * and that once the synchronize_rcu() is done, the writer will see * anything we did within this RCU-sched read-size critical section. */ if (likely(rcu_sync_is_idle(&sem->rss))) this_cpu_inc(*sem->read_count); else __percpu_down_read(se