1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 /* * Resizable virtual memory filesystem for Linux. * * Copyright (C) 2000 Linus Torvalds. * 2000 Transmeta Corp. * 2000-2001 Christoph Rohland * 2000-2001 SAP AG * 2002 Red Hat Inc. * Copyright (C) 2002-2011 Hugh Dickins. * Copyright (C) 2011 Google Inc. * Copyright (C) 2002-2005 VERITAS Software Corporation. * Copyright (C) 2004 Andi Kleen, SuSE Labs * * Extended attribute support for tmpfs: * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> * * tiny-shmem: * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> * * This file is released under the GPL. */ #include <linux/fs.h> #include <linux/init.h> #include <linux/vfs.h> #include <linux/mount.h> #include <linux/ramfs.h> #include <linux/pagemap.h> #include <linux/file.h> #include <linux/mm.h> #include <linux/random.h> #include <linux/sched/signal.h> #include <linux/export.h> #include <linux/swap.h> #include <linux/uio.h> #include <linux/khugepaged.h> #include <linux/hugetlb.h> #include <linux/frontswap.h> #include <linux/fs_parser.h> #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ static struct vfsmount *shm_mnt; #ifdef CONFIG_SHMEM /* * This virtual memory filesystem is heavily based on the ramfs. It * extends ramfs by the ability to use swap and honor resource limits * which makes it a completely usable filesystem. */ #include <linux/xattr.h> #include <linux/exportfs.h> #include <linux/posix_acl.h> #include <linux/posix_acl_xattr.h> #include <linux/mman.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/backing-dev.h> #include <linux/shmem_fs.h> #include <linux/writeback.h> #include <linux/blkdev.h> #include <linux/pagevec.h> #include <linux/percpu_counter.h> #include <linux/falloc.h> #include <linux/splice.h> #include <linux/security.h> #include <linux/swapops.h> #include <linux/mempolicy.h> #include <linux/namei.h> #include <linux/ctype.h> #include <linux/migrate.h> #include <linux/highmem.h> #include <linux/seq_file.h> #include <linux/magic.h> #include <linux/syscalls.h> #include <linux/fcntl.h> #include <uapi/linux/memfd.h> #include <linux/userfaultfd_k.h> #include <linux/rmap.h> #include <linux/uuid.h> #include <linux/uaccess.h> #include "internal.h" #define BLOCKS_PER_PAGE (PAGE_SIZE/512) #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) /* Pretend that each entry is of this size in directory's i_size */ #define BOGO_DIRENT_SIZE 20 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ #define SHORT_SYMLINK_LEN 128 /* * shmem_fallocate communicates with shmem_fault or shmem_writepage via * inode->i_private (with i_mutex making sure that it has only one user at * a time): we would prefer not to enlarge the shmem inode just for that. */ struct shmem_falloc { wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ pgoff_t start; /* start of range currently being fallocated */ pgoff_t next; /* the next page offset to be fallocated */ pgoff_t nr_falloced; /* how many new pages have been fallocated */ pgoff_t nr_unswapped; /* how often writepage refused to swap out */ }; struct shmem_options { unsigned long long blocks; unsigned long long inodes; struct mempolicy *mpol; kuid_t uid; kgid_t gid; umode_t mode; bool full_inums; int huge; int seen; #define SHMEM_SEEN_BLOCKS 1 #define SHMEM_SEEN_INODES 2 #define SHMEM_SEEN_HUGE 4 #define SHMEM_SEEN_INUMS 8 }; #ifdef CONFIG_TMPFS static unsigned long shmem_default_max_blocks(void) { return totalram_pages() / 2; } static unsigned long shmem_default_max_inodes(void) { unsigned long nr_pages = totalram_pages(); return min(nr_pages - totalhigh_pages(), nr_pages / 2); } #endif static bool shmem_should_replace_page(struct page *page, gfp_t gfp); static int shmem_replace_page(struct page **pagep, gfp_t gfp, struct shmem_inode_info *info, pgoff_t index); static int shmem_swapin_page(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp, gfp_t gfp, struct vm_area_struct *vma, vm_fault_t *fault_type); static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp, gfp_t gfp, struct vm_area_struct *vma, struct vm_fault *vmf, vm_fault_t *fault_type); int shmem_getpage(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp) { return shmem_getpage_gfp(inode, index, pagep, sgp, mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); } static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) { return sb->s_fs_info; } /* * shmem_file_setup pre-accounts the whole fixed size of a VM object, * for shared memory and for shared anonymous (/dev/zero) mappings * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), * consistent with the pre-accounting of private mappings ... */ static inline int shmem_acct_size(unsigned long flags, loff_t size) { return (flags & VM_NORESERVE) ? 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); } static inline void shmem_unacct_size(unsigned long flags, loff_t size) { if (!(flags & VM_NORESERVE)) vm_unacct_memory(VM_ACCT(size)); } static inline int shmem_reacct_size(unsigned long flags, loff_t oldsize, loff_t newsize) { if (!(flags & VM_NORESERVE)) { if (VM_ACCT(newsize) > VM_ACCT(oldsize)) return security_vm_enough_memory_mm(current->mm, VM_ACCT(newsize) - VM_ACCT(oldsize)); else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); } return 0; } /* * ... whereas tmpfs objects are accounted incrementally as * pages are allocated, in order to allow large sparse files. * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. */ static inline int shmem_acct_block(unsigned long flags, long pages) { if (!(flags & VM_NORESERVE)) return 0; return security_vm_enough_memory_mm(current->mm, pages * VM_ACCT(PAGE_SIZE)); } static inline void shmem_unacct_blocks(unsigned long flags, long pages) { if (flags & VM_NORESERVE) vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); } static inline bool shmem_inode_acct_block(struct inode *inode, long pages) { struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); if (shmem_acct_block(info->flags, pages)) return false; if (sbinfo->max_blocks) { if (percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks - pages) > 0) goto unacct; percpu_counter_add(&sbinfo->used_blocks, pages); } return true; unacct: shmem_unacct_blocks(info->flags, pages); return false; } static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) { struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); if (sbinfo->max_blocks) percpu_counter_sub(&sbinfo->used_blocks, pages); shmem_unacct_blocks(info->flags, pages); } static const struct super_operations shmem_ops; static const struct address_space_operations shmem_aops; static const struct file_operations shmem_file_operations; static const struct inode_operations shmem_inode_operations; static const struct inode_operations shmem_dir_inode_operations; static const struct inode_operations shmem_special_inode_operations; static const struct vm_operations_struct shmem_vm_ops; static struct file_system_type shmem_fs_type; bool vma_is_shmem(struct vm_area_struct *vma) { return vma->vm_ops == &shmem_vm_ops; } static LIST_HEAD(shmem_swaplist); static DEFINE_MUTEX(shmem_swaplist_mutex); /* * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and * produces a novel ino for the newly allocated inode. * * It may also be called when making a hard link to permit the space needed by * each dentry. However, in that case, no new inode number is needed since that * internally draws from another pool of inode numbers (currently global * get_next_ino()). This case is indicated by passing NULL as inop. */ #define SHMEM_INO_BATCH 1024 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); ino_t ino; if (!(sb->s_flags & SB_KERNMOUNT)) { spin_lock(&sbinfo->stat_lock); if (sbinfo->max_inodes) { if (!sbinfo->free_inodes) { spin_unlock(&sbinfo->stat_lock); return -ENOSPC; } sbinfo->free_inodes--; } if (inop) { ino = sbinfo->next_ino++; if (unlikely(is_zero_ino(ino))) ino = sbinfo->next_ino++; if (unlikely(!sbinfo->full_inums && ino > UINT_MAX)) { /* * Emulate get_next_ino uint wraparound for * compatibility */ if (IS_ENABLED(CONFIG_64BIT)) pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", __func__, MINOR(sb->s_dev)); sbinfo->next_ino = 1; ino = sbinfo->next_ino++; } *inop = ino; } spin_unlock(&sbinfo->stat_lock); } else if (inop) { /* * __shmem_file_setup, one of our callers, is lock-free: it * doesn't hold stat_lock in shmem_reserve_inode since * max_inodes is always 0, and is called from potentially * unknown contexts. As such, use a per-cpu batched allocator * which doesn't require the per-sb stat_lock unless we are at * the batch boundary. * * We don't need to worry about inode{32,64} since SB_KERNMOUNT * shmem mounts are not exposed to userspace, so we don't need * to worry about things like glibc compatibility. */ ino_t *next_ino; next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); ino = *next_ino; if (unlikely(ino % SHMEM_INO_BATCH == 0)) { spin_lock(&sbinfo->stat_lock); ino = sbinfo->next_ino; sbinfo->next_ino += SHMEM_INO_BATCH; spin_unlock(&sbinfo->stat_lock); if (unlikely(is_zero_ino(ino))) ino++; } *inop = ino; *next_ino = ++ino; put_cpu(); } return 0; } static void shmem_free_inode(struct super_block *sb) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); if (sbinfo->max_inodes) { spin_lock(&sbinfo->stat_lock); sbinfo->free_inodes++; spin_unlock(&sbinfo->stat_lock); } } /** * shmem_recalc_inode - recalculate the block usage of an inode * @inode: inode to recalc * * We have to calculate the free blocks since the mm can drop * undirtied hole pages behind our back. * * But normally info->alloced == inode->i_mapping->nrpages + info->swapped * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) * * It has to be called with the spinlock held. */ static void shmem_recalc_inode(struct inode *inode) { struct shmem_inode_info *info = SHMEM_I(inode); long freed; freed = info->alloced - info->swapped - inode->i_mapping->nrpages; if (freed > 0) { info->alloced -= freed; inode->i_blocks -= freed * BLOCKS_PER_PAGE; shmem_inode_unacct_blocks(inode, freed); } } bool shmem_charge(struct inode *inode, long pages) { struct shmem_inode_info *info = SHMEM_I(inode); unsigned long flags; if (!shmem_inode_acct_block(inode, pages)) return false; /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ inode->i_mapping->nrpages += pages; spin_lock_irqsave(&info->lock, flags); info->alloced += pages; inode->i_blocks += pages * BLOCKS_PER_PAGE; shmem_recalc_inode(inode); spin_unlock_irqrestore(&info->lock, flags); return true; } void shmem_uncharge(struct inode *inode, long pages) { struct shmem_inode_info *info = SHMEM_I(inode); unsigned long flags; /* nrpages adjustment done by __delete_from_page_cache() or caller */ spin_lock_irqsave(&info->lock, flags); info->alloced -= pages; inode->i_blocks -= pages * BLOCKS_PER_PAGE; shmem_recalc_inode(inode); spin_unlock_irqrestore(&info->lock, flags); shmem_inode_unacct_blocks(inode, pages); } /* * Replace item expected in xarray by a new item, while holding xa_lock. */ static int shmem_replace_entry(struct address_space *mapping, pgoff_t index, void *expected, void *replacement) { XA_STATE(xas, &mapping->i_pages, index); void *item; VM_BUG_ON(!expected); VM_BUG_ON(!replacement); item = xas_load(&xas); if (item != expected) return -ENOENT; xas_store(&xas, replacement); return 0; } /* * Sometimes, before we decide whether to proceed or to fail, we must check * that an entry was not already brought back from swap by a racing thread. * * Checking page is not enough: by the time a SwapCache page is locked, it * might be reused, and again be SwapCache, using the same swap as before. */ static bool shmem_confirm_swap(struct address_space *mapping, pgoff_t index, swp_entry_t swap) { return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); } /* * Definitions for "huge tmpfs": tmpfs mounted with the huge= option * * SHMEM_HUGE_NEVER: * disables huge pages for the mount; * SHMEM_HUGE_ALWAYS: * enables huge pages for the mount; * SHMEM_HUGE_WITHIN_SIZE: * only allocate huge pages if the page will be fully within i_size, * also respect fadvise()/madvise() hints; * SHMEM_HUGE_ADVISE: * only allocate huge pages if requested with fadvise()/madvise(); */ #define SHMEM_HUGE_NEVER 0 #define SHMEM_HUGE_ALWAYS 1 #define SHMEM_HUGE_WITHIN_SIZE 2 #define SHMEM_HUGE_ADVISE 3 /* * Special values. * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: * * SHMEM_HUGE_DENY: * disables huge on shm_mnt and all mounts, for emergency use; * SHMEM_HUGE_FORCE: * enables huge on shm_mnt and all mounts, w/o needing option, for testing; * */ #define SHMEM_HUGE_DENY (-1) #define SHMEM_HUGE_FORCE (-2) #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* ifdef here to avoid bloating shmem.o when not necessary */ static int shmem_huge __read_mostly; #if defined(CONFIG_SYSFS) static int shmem_parse_huge(const char *str) { if (!strcmp(str, "never")) return SHMEM_HUGE_NEVER; if (!strcmp(str, "always")) return SHMEM_HUGE_ALWAYS; if (!strcmp(str, "within_size")) return SHMEM_HUGE_WITHIN_SIZE; if (!strcmp(str, "advise")) return SHMEM_HUGE_ADVISE; if (!strcmp(str, "deny")) return SHMEM_HUGE_DENY; if (!strcmp(str, "force")) return SHMEM_HUGE_FORCE; return -EINVAL; } #endif #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) static const char *shmem_format_huge(int huge) { switch (huge) { case SHMEM_HUGE_NEVER: return "never"; case SHMEM_HUGE_ALWAYS: return "always"; case SHMEM_HUGE_WITHIN_SIZE: return "within_size"; case SHMEM_HUGE_ADVISE: return "advise"; case SHMEM_HUGE_DENY: return "deny"; case SHMEM_HUGE_FORCE: return "force"; default: VM_BUG_ON(1); return "bad_val"; } } #endif static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, struct shrink_control *sc, unsigned long nr_to_split) { LIST_HEAD(list), *pos, *next; LIST_HEAD(to_remove); struct inode *inode; struct shmem_inode_info *info; struct page *page; unsigned long batch = sc ? sc->nr_to_scan : 128; int removed = 0, split = 0; if (list_empty(&sbinfo->shrinklist)) return SHRINK_STOP; spin_lock(&sbinfo->shrinklist_lock); list_for_each_safe(pos, next, &sbinfo->shrinklist) { info = list_entry(pos, struct shmem_inode_info, shrinklist); /* pin the inode */ inode = igrab(&info->vfs_inode); /* inode is about to be evicted */ if (!inode) { list_del_init(&info->shrinklist); removed++; goto next; } /* Check if there's anything to gain */ if (round_up(inode->i_size, PAGE_SIZE) == round_up(inode->i_size, HPAGE_PMD_SIZE)) { list_move(&info->shrinklist, &to_remove); removed++; goto next; } list_move(&info->shrinklist, &list); next: if (!--batch) break; } spin_unlock(&sbinfo->shrinklist_lock); list_for_each_safe(pos, next, &to_remove) { info = list_entry(pos, struct shmem_inode_info, shrinklist); inode = &info->vfs_inode; list_del_init(&info->shrinklist); iput(inode); } list_for_each_safe(pos, next, &list) { int ret; info = list_entry(pos, struct shmem_inode_info, shrinklist); inode = &info->vfs_inode; if (nr_to_split && split >= nr_to_split) goto leave; page = find_get_page(inode->i_mapping, (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); if (!page) goto drop; /* No huge page at the end of the file: nothing to split */ if (!PageTransHuge(page)) { put_page(page); goto drop; } /* * Leave the inode on the list if we failed to lock * the page at this time. * * Waiting for the lock may lead to deadlock in the * reclaim path. */ if (!trylock_page(page)) { put_page(page); goto leave; } ret = split_huge_page(page); unlock_page(page); put_page(page); /* If split failed leave the inode on the list */ if (ret) goto leave; split++; drop: list_del_init(&info->shrinklist); removed++; leave: iput(inode); } spin_lock(&sbinfo->shrinklist_lock); list_splice_tail(&list, &sbinfo->shrinklist); sbinfo->shrinklist_len -= removed; spin_unlock(&sbinfo->shrinklist_lock); return split; } static long shmem_unused_huge_scan(struct super_block *sb, struct shrink_control *sc) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); if (!READ_ONCE(sbinfo->shrinklist_len)) return SHRINK_STOP; return shmem_unused_huge_shrink(sbinfo, sc, 0); } static long shmem_unused_huge_count(struct super_block *sb, struct shrink_control *sc) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); return READ_ONCE(sbinfo->shrinklist_len); } #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ #define shmem_huge SHMEM_HUGE_DENY static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, struct shrink_control *sc, unsigned long nr_to_split) { return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) { if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && shmem_huge != SHMEM_HUGE_DENY) return true; return false; } /* * Like add_to_page_cache_locked, but error if expected item has gone. */ static int shmem_add_to_page_cache(struct page *page, struct address_space *mapping, pgoff_t index, void *expected, gfp_t gfp, struct mm_struct *charge_mm) { XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); unsigned long i = 0; unsigned long nr = compound_nr(page); int error; VM_BUG_ON_PAGE(PageTail(page), page); VM_BUG_ON_PAGE(index != round_down(index, nr), page); VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(!PageSwapBacked(page), page); VM_BUG_ON(expected && PageTransHuge(page)); page_ref_add(page, nr); page->mapping = mapping; page->index = index; if (!PageSwapCache(page)) { error = mem_cgroup_charge(page, charge_mm, gfp); if (error) { if (PageTransHuge(page)) { count_vm_event(THP_FILE_FALLBACK); count_vm_event(THP_FILE_FALLBACK_CHARGE); } goto error; } } cgroup_throttle_swaprate(page, gfp); do { void *entry; xas_lock_irq(&xas); entry = xas_find_conflict(&xas); if (entry != expected) xas_set_err(&xas, -EEXIST); xas_create_range(&xas); if (xas_error(&xas)) goto unlock; next: xas_store(&xas, page); if (++i < nr) { xas_next(&xas); goto next; } if (PageTransHuge(page)) { count_vm_event(THP_FILE_ALLOC); __inc_node_page_state(page, NR_SHMEM_THPS); } mapping->nrpages += nr; __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); __mod_lruvec_page_state(page, NR_SHMEM, nr); unlock: xas_unlock_irq(&xas); } while (xas_nomem(&xas, gfp)); if (xas_error(&xas)) { error = xas_error(&xas); goto error; } return 0; error: page->mapping = NULL; page_ref_sub(page, nr); return error; } /* * Like delete_from_page_cache, but substitutes swap for page. */ static void shmem_delete_from_page_cache(struct page *page, void *radswap) { struct address_space *mapping = page->mapping; int error; VM_BUG_ON_PAGE(PageCompound(page), page); xa_lock_irq(&mapping->i_pages); error = shmem_replace_entry(mapping, page->index, page, radswap); page->mapping = NULL; mapping->nrpages--; __dec_lruvec_page_state(page, NR_FILE_PAGES); __dec_lruvec_page_state(page, NR_SHMEM); xa_unlock_irq(&mapping->i_pages); put_page(page); BUG_ON(error); } /* * Remove swap entry from page cache, free the swap and its page cache. */ static int shmem_free_swap(struct address_space *mapping, pgoff_t index, void *radswap) { void *old; old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); if (old != radswap) return -ENOENT; free_swap_and_cache(radix_to_swp_entry(radswap)); return 0; } /* * Determine (in bytes) how many of the shmem object's pages mapped by the * given offsets are swapped out. * * This is safe to call without i_mutex or the i_pages lock thanks to RCU, * as long as the inode doesn't go away and racy results are not a problem. */ unsigned long shmem_partial_swap_usage(struct address_space *mapping, pgoff_t start, pgoff_t end) { XA_STATE(xas, &mapping->i_pages, start); struct page *page; unsigned long swapped = 0; rcu_read_lock(); xas_for_each(&xas, page, end - 1) { if (xas_retry(&xas, page)) continue; if (xa_is_value(page)) swapped++; if (need_resched()) { xas_pause(&xas); cond_resched_rcu(); } } rcu_read_unlock(); return swapped << PAGE_SHIFT; } /* * Determine (in bytes) how many of the shmem object's pages mapped by the * given vma is swapped out. * * This is safe to call without i_mutex or the i_pages lock thanks to RCU, * as long as the inode doesn't go away and racy results are not a problem. */ unsigned long shmem_swap_usage(struct vm_area_struct *vma) { struct inode *inode = file_inode(vma->vm_file); struct shmem_inode_info *info = SHMEM_I(inode); struct address_space *mapping = inode->i_mapping; unsigned long swapped; /* Be careful as we don't hold info->lock */ swapped = READ_ONCE(info->swapped); /* * The easier cases are when the shmem object has nothing in swap, or * the vma maps it whole. Then we can simply use the stats that we * already track. */ if (!swapped) return 0; if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) return swapped << PAGE_SHIFT; /* Here comes the more involved part */ return shmem_partial_swap_usage(mapping, linear_page_index(vma, vma->vm_start), linear_page_index(vma, vma->vm_end)); } /* * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. */ void shmem_unlock_mapping(struct address_space *mapping) { struct pagevec pvec; pgoff_t indices[PAGEVEC_SIZE]; pgoff_t index = 0; pagevec_init(&pvec); /* * Minor point, but we might as well stop if someone else SHM_LOCKs it. */ while (!mapping_unevictable(mapping)) { /* * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it * has finished, if it hits a row of PAGEVEC_SIZE swap entries. */ pvec.nr = find_get_entries(mapping, index, PAGEVEC_SIZE, pvec.pages, indices); if (!pvec.nr) break; index = indices[pvec.nr - 1] + 1; pagevec_remove_exceptionals(&pvec); check_move_unevictable_pages(&pvec); pagevec_release(&pvec); cond_resched(); } } /* * Check whether a hole-punch or truncation needs to split a huge page, * returning true if no split was required, or the split has been successful. * * Eviction (or truncation to 0 size) should never need to split a huge page; * but in rare cases might do so, if shmem_undo_range() failed to trylock on * head, and then succeeded to trylock on tail. * * A split can only succeed when there are no additional references on the * huge page: so the split below relies upon find_get_entries() having stopped * when it found a subpage of the huge page, without getting further references. */ static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) { if (!PageTransCompound(page)) return true; /* Just proceed to delete a huge page wholly within the range punched */ if (PageHead(page) && page->index >= start && page->index + HPAGE_PMD_NR <= end) return true; /* Try to split huge page, so we can truly punch the hole or truncate */ return split_huge_page(page) >= 0; } /* * Remove range of pages and swap entries from page cache, and free them. * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. */ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, bool unfalloc) { struct address_space *mapping = inode->i_mapping; struct shmem_inode_info *info = SHMEM_I(inode); pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; pgoff_t end = (lend + 1) >> PAGE_SHIFT; unsigned int partial_start = lstart & (PAGE_SIZE - 1); unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); struct pagevec pvec; pgoff_t indices[PAGEVEC_SIZE]; long nr_swaps_freed = 0; pgoff_t index; int i; if (lend == -1) end = -1; /* unsigned, so actually very big */ pagevec_init(&pvec); index = start; while (index < end) { pvec.nr = find_get_entries(mapping, index, min(end - index, (pgoff_t)PAGEVEC_SIZE), pvec.pages, indices); if (!pvec.nr) break; for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; index = indices[i]; if (index >= end) break; if (xa_is_value(page)) { if (unfalloc) continue; nr_swaps_freed += !shmem_free_swap(mapping, index, page); continue; } VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); if (!trylock_page(page)) continue; if ((!unfalloc || !PageUptodate(page)) && page_mapping(page) == mapping) { VM_BUG_ON_PAGE(PageWriteback(page), page); if (shmem_punch_compound(page, start, end)) truncate_inode_page(mapping, page); } unlock_page(page); } pagevec_remove_exceptionals(&pvec); pagevec_release(&pvec); cond_resched(); index++; } if (partial_start) { struct page *page = NULL; shmem_getpage(inode, start - 1, &page, SGP_READ); if (page) { unsigned int top = PAGE_SIZE; if (start > end) { top = partial_end; partial_end = 0; } zero_user_segment(page, partial_start, top); set_page_dirty(page); unlock_page(page); put_page(page); } } if (partial_end) { struct page *page = NULL; shmem_getpage(inode, end, &page, SGP_READ); if (page) { zero_user_segment(page, 0, partial_end); set_page_dirty(page); unlock_page(page); put_page(page); } } if (start >= end) return; index = start; while (index < end) { cond_resched(); pvec.nr = find_get_entries(mapping, index, min(end - index, (pgoff_t)PAGEVEC_SIZE), pvec.pages, indices); if (!pvec.nr) { /* If all gone or hole-punch or unfalloc, we're done */ if (index == start || end != -1) break; /* But if truncating, restart to make sure all gone */ index = start; continue; } for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; index = indices[i]; if (index >= end) break; if (xa_is_value(page)) { if (unfalloc) continue; if (shmem_free_swap(mapping, index, page)) { /* Swap was replaced by page: retry */ index--; break; } nr_swaps_freed++; continue; } lock_page(page); if (!unfalloc || !PageUptodate(page)) { if (page_mapping(page) != mapping) { /* Page was replaced by swap: retry */ unlock_page(page); index--; break; } VM_BUG_ON_PAGE(PageWriteback(page), page); if (shmem_punch_compound(page, start, end)) truncate_inode_page(mapping, page); else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { /* Wipe the page and don't get stuck */ clear_highpage(page); flush_dcache_page(page); set_page_dirty(page); if (index < round_up(start, HPAGE_PMD_NR)) start = index + 1; } } unlock_page(page); } pagevec_remove_exceptionals(&pvec); pagevec_release(&pvec); index++; } spin_lock_irq(&info->lock); info->swapped -= nr_swaps_freed; shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); } void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) { shmem_undo_range(inode, lstart, lend, false); inode->i_ctime = inode->i_mtime = current_time(inode); } EXPORT_SYMBOL_GPL(shmem_truncate_range); static int shmem_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = path->dentry->d_inode; struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); if (info->alloced - info->swapped != inode->i_mapping->nrpages) { spin_lock_irq(&info->lock); shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); } generic_fillattr(inode, stat); if (is_huge_enabled(sb_info)) stat->blksize = HPAGE_PMD_SIZE; return 0; } static int shmem_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); int error; error = setattr_prepare(dentry, attr); if (error) return error; if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { loff_t oldsize = inode->i_size; loff_t newsize = attr->ia_size; /* protected by i_mutex */ if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || (newsize > oldsize && (info->seals & F_SEAL_GROW))) return -EPERM; if (newsize != oldsize) { error = shmem_reacct_size(SHMEM_I(inode)->flags, oldsize, newsize); if (error) return error; i_size_write(inode, newsize); inode->i_ctime = inode->i_mtime = current_time(inode); } if (newsize <= oldsize) { loff_t holebegin = round_up(newsize, PAGE_SIZE); if (oldsize > holebegin) unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); if (info->alloced) shmem_truncate_range(inode, newsize, (loff_t)-1); /* unmap again to remove racily COWed private pages */ if (oldsize > holebegin) unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); /* * Part of the huge page can be beyond i_size: subject * to shrink under memory pressure. */ if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { spin_lock(&sbinfo->shrinklist_lock); /* * _careful to defend against unlocked access to * ->shrink_list in shmem_unused_huge_shrink() */ if (list_empty_careful(&info->shrinklist)) { list_add_tail(&info->shrinklist, &sbinfo->shrinklist); sbinfo->shrinklist_len++; } spin_unlock(&sbinfo->shrinklist_lock); } } } setattr_copy(inode, attr); if (attr->ia_valid & ATTR_MODE) error = posix_acl_chmod(inode, inode->i_mode); return error; } static void shmem_evict_inode(struct inode *inode) { struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); if (inode->i_mapping->a_ops == &shmem_aops) { shmem_unacct_size(info->flags, inode->i_size); inode->i_size = 0; shmem_truncate_range(inode, 0, (loff_t)-1); if (!list_empty(&info->shrinklist)) { spin_lock(&sbinfo->shrinklist_lock); if (!list_empty(&info->shrinklist)) { list_del_init(&info->shrinklist); sbinfo->shrinklist_len--; } spin_unlock(&sbinfo->shrinklist_lock); } while (!list_empty(&info->swaplist)) { /* Wait while shmem_unuse() is scanning this inode... */ wait_var_event(&info->stop_eviction, !atomic_read(&info->stop_eviction)); mutex_lock(&shmem_swaplist_mutex); /* ...but beware of the race if we peeked too early */ if (!atomic_read(&info->stop_eviction)) list_del_init(&info->swaplist); mutex_unlock(&shmem_swaplist_mutex); } } simple_xattrs_free(&info->xattrs); WARN_ON(inode->i_blocks); shmem_free_inode(inode->i_sb); clear_inode(inode); } extern struct swap_info_struct *swap_info[]; static int shmem_find_swap_entries(struct address_space *mapping, pgoff_t start, unsigned int nr_entries, struct page **entries, pgoff_t *indices, unsigned int type, bool frontswap) { XA_STATE(xas, &mapping->i_pages, start); struct page *page; swp_entry_t entry; unsigned int ret = 0; if (!nr_entries) return 0; rcu_read_lock(); xas_for_each(&xas, page, ULONG_MAX) { if (xas_retry(&xas, page)) continue; if (!xa_is_value(page)) continue; entry = radix_to_swp_entry(page); if (swp_type(entry) != type) continue; if (frontswap && !frontswap_test(swap_info[type], swp_offset(entry))) continue; indices[ret] = xas.xa_index; entries[ret] = page; if (need_resched()) { xas_pause(&xas); cond_resched_rcu(); } if (++ret == nr_entries) break; } rcu_read_unlock(); return ret; } /* * Move the swapped pages for an inode to page cache. Returns the count * of pages swapped in, or the error in case of failure. */ static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, pgoff_t *indices) { int i = 0; int ret = 0; int error = 0; struct address_space *mapping = inode->i_mapping; for (i = 0; i < pvec.nr; i++) { struct page *page = pvec.pages[i]; if (!xa_is_value(page)) continue; error = shmem_swapin_page(inode, indices[i], &page, SGP_CACHE, mapping_gfp_mask(mapping), NULL, NULL); if (error == 0) { unlock_page(page); put_page(page); ret++; } if (error == -ENOMEM) break; error = 0; } return error ? error : ret; } /* * If swap found in inode, free it and move page from swapcache to filecache. */ static int shmem_unuse_inode(struct inode *inode, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { struct address_space *mapping = inode->i_mapping; pgoff_t start = 0; struct pagevec pvec; pgoff_t indices[PAGEVEC_SIZE]; bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); int ret = 0; pagevec_init(&pvec); do { unsigned int nr_entries = PAGEVEC_SIZE; if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) nr_entries = *fs_pages_to_unuse; pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, pvec.pages, indices, type, frontswap); if (pvec.nr == 0) { ret = 0; break; } ret = shmem_unuse_swap_entries(inode, pvec, indices); if (ret < 0) break; if (frontswap_partial) { *fs_pages_to_unuse -= ret; if (*fs_pages_to_unuse == 0) { ret = FRONTSWAP_PAGES_UNUSED; break; } } start = indices[pvec.nr - 1]; } while (true); return ret; } /* * Read all the shared memory data that resides in the swap * device 'type' back into memory, so the swap device can be * unused. */ int shmem_unuse(unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { struct shmem_inode_info *info, *next; int error = 0; if (list_empty(&shmem_swaplist)) return 0; mutex_lock(&shmem_swaplist_mutex); list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { if (!info->swapped) { list_del_init(&info->swaplist); continue; } /* * Drop the swaplist mutex while searching the inode for swap; * but before doing so, make sure shmem_evict_inode() will not * remove placeholder inode from swaplist, nor let it be freed * (igrab() would protect from unlink, but not from unmount). */ atomic_inc(&info->stop_eviction); mutex_unlock(&shmem_swaplist_mutex); error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, fs_pages_to_unuse); cond_resched(); mutex_lock(&shmem_swaplist_mutex); next = list_next_entry(info, swaplist); if (!info->swapped) list_del_init(&info->swaplist); if (atomic_dec_and_test(&info->stop_eviction)) wake_up_var(&info->stop_eviction); if (error) break; } mutex_unlock(&shmem_swaplist_mutex); return error; } /* * Move the page from the page cache to the swap cache. */ static int shmem_writepage(struct page *page, struct writeback_control *wbc) { struct shmem_inode_info *info; struct address_space *mapping; struct inode *inode; swp_entry_t swap; pgoff_t index; VM_BUG_ON_PAGE(PageCompound(page), page); BUG_ON(!PageLocked(page)); mapping = page->mapping; index = page->index; inode = mapping->host; info = SHMEM_I(inode); if (info->flags & VM_LOCKED) goto redirty; if (!total_swap_pages) goto redirty; /* * Our capabilities prevent regular writeback or sync from ever calling * shmem_writepage; but a stacking filesystem might use ->writepage of * its underlying filesystem, in which case tmpfs should write out to * swap only in response to memory pressure, and not for the writeback * threads or sync. */ if (!wbc->for_reclaim) { WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ goto redirty; } /* * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC * value into swapfile.c, the only way we can correctly account for a * fallocated page arriving here is now to initialize it and write it. * * That's okay for a page already fallocated earlier, but if we have * not yet completed the fallocation, then (a) we want to keep track * of this page in case we have to undo it, and (b) it may not be a * good idea to continue anyway, once we're pushing into swap. So * reactivate the page, and let shmem_fallocate() quit when too many. */ if (!PageUptodate(page)) { if (inode->i_private) { struct shmem_falloc *shmem_falloc; spin_lock(&inode->i_lock); shmem_falloc = inode->i_private; if (shmem_falloc && !shmem_falloc->waitq && index >= shmem_falloc->start && index < shmem_falloc->next) shmem_falloc->nr_unswapped++; else shmem_falloc = NULL; spin_unlock(&inode->i_lock); if (shmem_falloc) goto redirty; } clear_highpage(page); flush_dcache_page(page); SetPageUptodate(page); } swap = get_swap_page(page); if (!swap.val) goto redirty; /* * Add inode to shmem_unuse()'s list of swapped-out inodes, * if it's not already there. Do it now before the page is * moved to swap cache, when its pagelock no longer protects * the inode from eviction. But don't unlock the mutex until * we've incremented swapped, because shmem_unuse_inode() will * prune a !swapped inode from the swaplist under this mutex. */ mutex_lock(&shmem_swaplist_mutex); if (list_empty(&info->swaplist)) list_add(&info->swaplist, &shmem_swaplist); if (add_to_swap_cache(page, swap, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, NULL) == 0) { spin_lock_irq(&info->lock); shmem_recalc_inode(inode); info->swapped++; spin_unlock_irq(&info->lock); swap_shmem_alloc(swap); shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); mutex_unlock(&shmem_swaplist_mutex); BUG_ON(page_mapped(page)); swap_writepage(page, wbc); return 0; } mutex_unlock(&shmem_swaplist_mutex); put_swap_page(page, swap); redirty: set_page_dirty(page); if (wbc->for_reclaim) return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ unlock_page(page); return 0; } #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) { char buffer[64]; if (!mpol || mpol->mode == MPOL_DEFAULT) return; /* show nothing */ mpol_to_str(buffer, sizeof(buffer), mpol); seq_printf(seq, ",mpol=%s", buffer); } static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) { struct mempolicy *mpol = NULL; if (sbinfo->mpol) { spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ mpol = sbinfo->mpol; mpol_get(mpol); spin_unlock(&sbinfo->stat_lock); } return mpol; } #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) { } static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) { return NULL; } #endif /* CONFIG_NUMA && CONFIG_TMPFS */ #ifndef CONFIG_NUMA #define vm_policy vm_private_data #endif static void shmem_pseudo_vma_init(struct vm_area_struct *vma, struct shmem_inode_info *info, pgoff_t index) { /* Create a pseudo vma that just contains the policy */ vma_init(vma, NULL); /* Bias interleave by inode number to distribute better across nodes */ vma->vm_pgoff = index + info->vfs_inode.i_ino; vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); } static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) { /* Drop reference taken by mpol_shared_policy_lookup() */ mpol_cond_put(vma->vm_policy); } static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, struct shmem_inode_info *info, pgoff_t index) { struct vm_area_struct pvma; struct page *page; struct vm_fault vmf; shmem_pseudo_vma_init(&pvma, info, index); vmf.vma = &pvma; vmf.address = 0; page = swap_cluster_readahead(swap, gfp, &vmf); shmem_pseudo_vma_destroy(&pvma); return page; } static struct page *shmem_alloc_hugepage(gfp_t gfp, struct shmem_inode_info *info, pgoff_t index) { struct vm_area_struct pvma; struct address_space *mapping = info->vfs_inode.i_mapping; pgoff_t hindex; struct page *page; hindex = round_down(index, HPAGE_PMD_NR); if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, XA_PRESENT)) return NULL; shmem_pseudo_vma_init(&pvma, info, hindex); page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); shmem_pseudo_vma_destroy(&pvma); if (page) prep_transhuge_page(page); else count_vm_event(THP_FILE_FALLBACK); return page; } static struct page *shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info, pgoff_t index) { struct vm_area_struct pvma; struct page *page; shmem_pseudo_vma_init(&pvma, info, index); page = alloc_page_vma(gfp, &pvma, 0); shmem_pseudo_vma_destroy(&pvma); return page; } static struct page *shmem_alloc_and_acct_page(gfp_t gfp, struct inode *inode, pgoff_t index, bool huge) { struct shmem_inode_info *info = SHMEM_I(inode); struct page *page; int nr; int err = -ENOSPC; if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) huge = false; nr = huge ? HPAGE_PMD_NR : 1; if (!shmem_inode_acct_block(inode, nr)) goto failed; if (huge) page = shmem_alloc_hugepage(gfp, info, index); else page = shmem_alloc_page(gfp, info, index); if (page) { __SetPageLocked(page); __SetPageSwapBacked(page); return page; } err = -ENOMEM; shmem_inode_unacct_blocks(inode, nr); failed: return ERR_PTR(err); } /* * When a page is moved from swapcache to shmem filecache (either by the * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of * shmem_unuse_inode()), it may have been read in earlier from swap, in * ignorance of the mapping it belongs to. If that mapping has special * constraints (like the gma500 GEM driver, which requires RAM below 4GB), * we may need to copy to a suitable page before moving to filecache. * * In a future release, this may well be extended to respect cpuset and * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); * but for now it is a simple matter of zone. */ static bool shmem_should_replace_page(struct page *page, gfp_t gfp) { return page_zonenum(page) > gfp_zone(gfp); } static int shmem_replace_page(struct page **pagep, gfp_t gfp, struct shmem_inode_info *info, pgoff_t index) { struct page *oldpage, *newpage; struct address_space *swap_mapping; swp_entry_t entry; pgoff_t swap_index; int error; oldpage = *pagep; entry.val = page_private(oldpage); swap_index = swp_offset(entry); swap_mapping = page_mapping(oldpage); /* * We have arrived here because our zones are constrained, so don't * limit chance of success by further cpuset and node constraints. */ gfp &= ~GFP_CONSTRAINT_MASK; newpage = shmem_alloc_page(gfp, info, index); if (!newpage) return -ENOMEM; get_page(newpage); copy_highpage(newpage, oldpage); flush_dcache_page(newpage); __SetPageLocked(newpage); __SetPageSwapBacked(newpage); SetPageUptodate(newpage); set_page_private(newpage, entry.val); SetPageSwapCache(newpage); /* * Our caller will very soon move newpage out of swapcache, but it's * a nice clean interface for us to replace oldpage by newpage there. */ xa_lock_irq(&swap_mapping->i_pages); error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); if (!error) { mem_cgroup_migrate(oldpage, newpage); __inc_lruvec_page_state(newpage, NR_FILE_PAGES); __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); } xa_unlock_irq(&swap_mapping->i_pages); if (unlikely(error)) { /* * Is this possible? I think not, now that our callers check * both PageSwapCache and page_private after getting page lock; * but be defensive. Reverse old to newpage for clear and free. */ oldpage = newpage; } else { lru_cache_add(newpage); *pagep = newpage; } ClearPageSwapCache(oldpage); set_page_private(oldpage, 0); unlock_page(oldpage); put_page(oldpage); put_page(oldpage); return error; } /* * Swap in the page pointed to by *pagep. * Caller has to make sure that *pagep contains a valid swapped page. * Returns 0 and the page in pagep if success. On failure, returns the * error code and NULL in *pagep. */ static int shmem_swapin_page(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp, gfp_t gfp, struct vm_area_struct *vma, vm_fault_t *fault_type) { struct address_space *mapping = inode->i_mapping; struct shmem_inode_info *info = SHMEM_I(inode); struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; struct page *page; swp_entry_t swap; int error; VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); swap = radix_to_swp_entry(*pagep); *pagep = NULL; /* Look it up and read it in.. */ page = lookup_swap_cache(swap, NULL, 0); if (!page) { /* Or update major stats only when swapin succeeds?? */ if (fault_type) { *fault_type |= VM_FAULT_MAJOR; count_vm_event(PGMAJFAULT); count_memcg_event_mm(charge_mm, PGMAJFAULT); } /* Here we actually start the io */ page = shmem_swapin(swap, gfp, info, index); if (!page) { error = -ENOMEM; goto failed; } } /* We have to do this with page locked to prevent races */ lock_page(page); if (!PageSwapCache(page) || page_private(page) != swap.val || !shmem_confirm_swap(mapping, index, swap)) { error = -EEXIST; goto unlock; } if (!PageUptodate(page)) { error = -EIO; goto failed; } wait_on_page_writeback(page); /* * Some architectures may have to restore extra metadata to the * physical page after reading from swap. */ arch_swap_restore(swap, page); if (shmem_should_replace_page(page, gfp)) { error = shmem_replace_page(&page, gfp, info, index); if (error) goto failed; } error = shmem_add_to_page_cache(page, mapping, index, swp_to_radix_entry(swap), gfp, charge_mm); if (error) goto failed; spin_lock_irq(&info->lock); info->swapped--; shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); if (sgp == SGP_WRITE) mark_page_accessed(page); delete_from_swap_cache(page); set_page_dirty(page); swap_free(swap); *pagep = page; return 0; failed: if (!shmem_confirm_swap(mapping, index, swap)) error = -EEXIST; unlock: if (page) { unlock_page(page); put_page(page); } return error; } /* * shmem_getpage_gfp - find page in cache, or get from swap, or allocate * * If we allocate a new one we do not mark it dirty. That's up to the * vm. If we swap it in we mark it dirty since we also free the swap * entry since a page cannot live in both the swap and page cache. * * vmf and fault_type are only supplied by shmem_fault: * otherwise they are NULL. */ static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp, gfp_t gfp, struct vm_area_struct *vma, struct vm_fault *vmf, vm_fault_t *fault_type) { struct address_space *mapping = inode->i_mapping; struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo; struct mm_struct *charge_mm; struct page *page; enum sgp_type sgp_huge = sgp; pgoff_t hindex = index; int error; int once = 0; int alloced = 0; if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) return -EFBIG; if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) sgp = SGP_CACHE; repeat: if (sgp <= SGP_CACHE && ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { return -EINVAL; } sbinfo = SHMEM_SB(inode->i_sb); charge_mm = vma ? vma->vm_mm : current->mm; page = find_lock_entry(mapping, index); if (xa_is_value(page)) { error = shmem_swapin_page(inode, index, &page, sgp, gfp, vma, fault_type); if (error == -EEXIST) goto repeat; *pagep = page; return error; } if (page) hindex = page->index; if (page && sgp == SGP_WRITE) mark_page_accessed(page); /* fallocated page? */ if (page && !PageUptodate(page)) { if (sgp != SGP_READ) goto clear; unlock_page(page); put_page(page); page = NULL; hindex = index; } if (page || sgp == SGP_READ) goto out; /* * Fast cache lookup did not find it: * bring it back from swap or allocate. */ if (vma && userfaultfd_missing(vma)) { *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); return 0; } /* shmem_symlink() */ if (mapping->a_ops != &shmem_aops) goto alloc_nohuge; if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) goto alloc_nohuge; if (shmem_huge == SHMEM_HUGE_FORCE) goto alloc_huge; switch (sbinfo->huge) { case SHMEM_HUGE_NEVER: goto alloc_nohuge; case SHMEM_HUGE_WITHIN_SIZE: { loff_t i_size; pgoff_t off; off = round_up(index, HPAGE_PMD_NR); i_size = round_up(i_size_read(inode), PAGE_SIZE); if (i_size >= HPAGE_PMD_SIZE && i_size >> PAGE_SHIFT >= off) goto alloc_huge; fallthrough; } case SHMEM_HUGE_ADVISE: if (sgp_huge == SGP_HUGE) goto alloc_huge; /* TODO: implement fadvise() hints */ goto alloc_nohuge; } alloc_huge: page = shmem_alloc_and_acct_page(gfp, inode, index, true); if (IS_ERR(page)) { alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode, index, false); } if (IS_ERR(page)) { int retry = 5; error = PTR_ERR(page); page = NULL; if (error != -ENOSPC) goto unlock; /* * Try to reclaim some space by splitting a huge page * beyond i_size on the filesystem. */ while (retry--) { int ret; ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); if (ret == SHRINK_STOP) break; if (ret) goto alloc_nohuge; } goto unlock; } if (PageTransHuge(page)) hindex = round_down(index, HPAGE_PMD_NR); else hindex = index; if (sgp == SGP_WRITE) __SetPageReferenced(page); error = shmem_add_to_page_cache(page, mapping, hindex, NULL, gfp & GFP_RECLAIM_MASK, charge_mm); if (error) goto unacct; lru_cache_add(page); spin_lock_irq(&info->lock); info->alloced += compound_nr(page); inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); alloced = true; if (PageTransHuge(page) && DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < hindex + HPAGE_PMD_NR - 1) { /* * Part of the huge page is beyond i_size: subject * to shrink under memory pressure. */ spin_lock(&sbinfo->shrinklist_lock); /* * _careful to defend against unlocked access to * ->shrink_list in shmem_unused_huge_shrink() */ if (list_empty_careful(&info->shrinklist)) { list_add_tail(&info->shrinklist, &sbinfo->shrinklist); sbinfo->shrinklist_len++; } spin_unlock(&sbinfo->shrinklist_lock); } /* * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. */ if (sgp == SGP_FALLOC) sgp = SGP_WRITE; clear: /* * Let SGP_WRITE caller clear ends if write does not fill page; * but SGP_FALLOC on a page fallocated earlier must initialize * it now, lest undo on failure cancel our earlier guarantee. */ if (sgp != SGP_WRITE && !PageUptodate(page)) { int i; for (i = 0; i < compound_nr(page); i++) { clear_highpage(page + i); flush_dcache_page(page + i); } SetPageUptodate(page); } /* Perhaps the file has been truncated since we checked */ if (sgp <= SGP_CACHE && ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { if (alloced) { ClearPageDirty(page); delete_from_page_cache(page); spin_lock_irq(&info->lock); shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); } error = -EINVAL; goto unlock; } out: *pagep = page + index - hindex; return 0; /* * Error recovery. */ unacct: shmem_inode_unacct_blocks(inode, compound_nr(page)); if (PageTransHuge(page)) { unlock_page(page); put_page(page); goto alloc_nohuge; } unlock: if (page) { unlock_page(page); put_page(page); } if (error == -ENOSPC && !once++) { spin_lock_irq(&info->lock); shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); goto repeat; } if (error == -EEXIST) goto repeat; return error; } /* * This is like autoremove_wake_function, but it removes the wait queue * entry unconditionally - even if something else had already woken the * target. */ static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) { int ret = default_wake_function(wait, mode, sync, key); list_del_init(&wait->entry); return ret; } static vm_fault_t shmem_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct inode *inode = file_inode(vma->vm_file); gfp_t gfp = mapping_gfp_mask(inode->i_mapping); enum sgp_type sgp; int err; vm_fault_t ret = VM_FAULT_LOCKED; /* * Trinity finds that probing a hole which tmpfs is punching can * prevent the hole-punch from ever completing: which in turn * locks writers out with its hold on i_mutex. So refrain from * faulting pages into the hole while it's being punched. Although * shmem_undo_range() does remove the additions, it may be unable to * keep up, as each new page needs its own unmap_mapping_range() call, * and the i_mmap tree grows ever slower to scan if new vmas are added. * * It does not matter if we sometimes reach this check just before the * hole-punch begins, so that one fault then races with the punch: * we just need to make racing faults a rare case. * * The implementation below would be much simpler if we just used a * standard mutex or completion: but we cannot take i_mutex in fault, * and bloating every shmem inode for this unlikely case would be sad. */ if (unlikely(inode->i_private)) { struct shmem_falloc *shmem_falloc; spin_lock(&inode->i_lock); shmem_falloc = inode->i_private; if (shmem_falloc && shmem_falloc->waitq && vmf->pgoff >= shmem_falloc->start && vmf->pgoff < shmem_falloc->next) { struct file *fpin; wait_queue_head_t *shmem_falloc_waitq; DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); ret = VM_FAULT_NOPAGE; fpin = maybe_unlock_mmap_for_io(vmf, NULL); if (fpin) ret = VM_FAULT_RETRY; shmem_falloc_waitq = shmem_falloc->waitq; prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, TASK_UNINTERRUPTIBLE); spin_unlock(&inode->i_lock); schedule(); /* * shmem_falloc_waitq points into the shmem_fallocate() * stack of the hole-punching task: shmem_falloc_waitq * is usually invalid by the time we reach here, but * finish_wait() does not dereference it in that case; * though i_lock needed lest racing with wake_up_all(). */ spin_lock(&inode->i_lock); finish_wait(shmem_falloc_waitq, &shmem_fault_wait); spin_unlock(&inode->i_lock); if (fpin) fput(fpin); return ret; } spin_unlock(&inode->i_lock); } sgp = SGP_CACHE; if ((vma->vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) sgp = SGP_NOHUGE; else if (vma->vm_flags & VM_HUGEPAGE) sgp = SGP_HUGE; err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, gfp, vma, vmf, &ret); if (err) return vmf_error(err); return ret; } unsigned long shmem_get_unmapped_area(struct file *file, unsigned long uaddr, unsigned long len, unsigned long pgoff, unsigned long flags) { unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); unsigned long addr; unsigned long offset; unsigned long inflated_len; unsigned long inflated_addr; unsigned long inflated_offset; if (len > TASK_SIZE) return -ENOMEM; get_area = current->mm->get_unmapped_area; addr = get_area(file, uaddr, len, pgoff, flags); if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) return addr; if (IS_ERR_VALUE(addr)) return addr; if (addr & ~PAGE_MASK) return addr; if (addr > TASK_SIZE - len) return addr; if (shmem_huge == SHMEM_HUGE_DENY) return addr; if (len < HPAGE_PMD_SIZE) return addr; if (flags & MAP_FIXED) return addr; /* * Our priority is to support MAP_SHARED mapped hugely; * and support MAP_PRIVATE mapped hugely too, until it is COWed. * But if caller specified an address hint and we allocated area there * successfully, respect that as before. */ if (uaddr == addr) return addr; if (shmem_huge != SHMEM_HUGE_FORCE) { struct super_block *sb; if (file) { VM_BUG_ON(file->f_op != &shmem_file_operations); sb = file_inode(file)->i_sb; } else { /* * Called directly from mm/mmap.c, or drivers/char/mem.c * for "/dev/zero", to create a shared anonymous object. */ if (IS_ERR(shm_mnt)) return addr; sb = shm_mnt->mnt_sb; } if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) return addr; } offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); if (offset && offset + len < 2 * HPAGE_PMD_SIZE) return addr; if ((addr & (HPAGE_PMD_SIZE-1)) == offset) return addr; inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; if (inflated_len > TASK_SIZE) return addr; if (inflated_len < len) return addr; inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); if (IS_ERR_VALUE(inflated_addr)) return addr; if (inflated_addr & ~PAGE_MASK) return addr; inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); inflated_addr += offset - inflated_offset; if (inflated_offset > offset) inflated_addr += HPAGE_PMD_SIZE; if (inflated_addr > TASK_SIZE - len) return addr; return inflated_addr; } #ifdef CONFIG_NUMA static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) { struct inode *inode = file_inode(vma->vm_file); return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); } static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, unsigned long addr) { struct inode *inode = file_inode(vma->vm_file); pgoff_t index; index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); } #endif int shmem_lock(struct file *file, int lock, struct user_struct *user) { struct inode *inode = file_inode(file); struct shmem_inode_info *info = SHMEM_I(inode); int retval = -ENOMEM; /* * What serializes the accesses to info->flags? * ipc_lock_object() when called from shmctl_do_lock(), * no serialization needed when called from shm_destroy(). */ if (lock && !(info->flags & VM_LOCKED)) { if (!user_shm_lock(inode->i_size, user)) goto out_nomem; info->flags |= VM_LOCKED; mapping_set_unevictable(file->f_mapping); } if (!lock && (info->flags & VM_LOCKED) && user) { user_shm_unlock(inode->i_size, user); info->flags &= ~VM_LOCKED; mapping_clear_unevictable(file->f_mapping); } retval = 0; out_nomem: return retval; } static int shmem_mmap(struct file *file, struct vm_area_struct *vma) { struct shmem_inode_info *info = SHMEM_I(file_inode(file)); int ret; ret = seal_check_future_write(info->seals, vma); if (ret) return ret; /* arm64 - allow memory tagging on RAM-based files */ vma->vm_flags |= VM_MTE_ALLOWED; file_accessed(file); vma->vm_ops = &shmem_vm_ops; if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < (vma->vm_end & HPAGE_PMD_MASK)) { khugepaged_enter(vma, vma->vm_flags); } return 0; } static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, umode_t mode, dev_t dev, unsigned long flags) { struct inode *inode; struct shmem_inode_info *info; struct shmem_sb_info *sbinfo = SHMEM_SB(sb); ino_t ino; if (shmem_reserve_inode(sb, &ino)) return NULL; inode = new_inode(sb); if (inode) { inode->i_ino = ino; inode_init_owner(inode, dir, mode); inode->i_blocks = 0; inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); inode->i_generation = prandom_u32(); info = SHMEM_I(inode); memset(info, 0, (char *)inode - (char *)info); spin_lock_init(&info->lock); atomic_set(&info->stop_eviction, 0); info->seals = F_SEAL_SEAL; info->flags = flags & VM_NORESERVE; INIT_LIST_HEAD(&info->shrinklist); INIT_LIST_HEAD(&info->swaplist); simple_xattrs_init(&info->xattrs); cache_no_acl(inode); switch (mode & S_IFMT) { default: inode->i_op = &shmem_special_inode_operations; init_special_inode(inode, mode, dev); break; case S_IFREG: inode->i_mapping->a_ops = &shmem_aops; inode->i_op = &shmem_inode_operations; inode->i_fop = &shmem_file_operations; mpol_shared_policy_init(&info->policy, shmem_get_sbmpol(sbinfo)); break; case S_IFDIR: inc_nlink(inode); /* Some things misbehave if size == 0 on a directory */ inode->i_size = 2 * BOGO_DIRENT_SIZE; inode->i_op = &shmem_dir_inode_operations; inode->i_fop = &simple_dir_operations; break; case S_IFLNK: /* * Must not load anything in the rbtree, * mpol_free_shared_policy will not be called. */ mpol_shared_policy_init(&info->policy, NULL); break; } lockdep_annotate_inode_mutex_key(inode); } else shmem_free_inode(sb); return inode; } bool shmem_mapping(struct address_space *mapping) { return mapping->a_ops == &shmem_aops; } static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, pmd_t *dst_pmd, struct vm_area_struct *dst_vma, unsigned long dst_addr, unsigned long src_addr, bool zeropage, struct page **pagep) { struct inode *inode = file_inode(dst_vma->vm_file); struct shmem_inode_info *info = SHMEM_I(inode); struct address_space *mapping = inode->i_mapping; gfp_t gfp = mapping_gfp_mask(mapping); pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); spinlock_t *ptl; void *page_kaddr; struct page *page; pte_t _dst_pte, *dst_pte; int ret; pgoff_t offset, max_off; ret = -ENOMEM; if (!shmem_inode_acct_block(inode, 1)) { /* * We may have got a page, returned -ENOENT triggering a retry, * and now we find ourselves with -ENOMEM. Release the page, to * avoid a BUG_ON in our caller. */ if (unlikely(*pagep)) { put_page(*pagep); *pagep = NULL; } goto out; } if (!*pagep) { page = shmem_alloc_page(gfp, info, pgoff); if (!page) goto out_unacct_blocks; if (!zeropage) { /* mcopy_atomic */ page_kaddr = kmap_atomic(page); ret = copy_from_user(page_kaddr, (const void __user *)src_addr, PAGE_SIZE); kunmap_atomic(page_kaddr); /* fallback to copy_from_user outside mmap_lock */ if (unlikely(ret)) { *pagep = page; shmem_inode_unacct_blocks(inode, 1); /* don't free the page */ return -ENOENT; } } else { /* mfill_zeropage_atomic */ clear_highpage(page); } } else { page = *pagep; *pagep = NULL; } VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); __SetPageLocked(page); __SetPageSwapBacked(page); __SetPageUptodate(page); ret = -EFAULT; offset = linear_page_index(dst_vma, dst_addr); max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); if (unlikely(offset >= max_off)) goto out_release; ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, gfp & GFP_RECLAIM_MASK, dst_mm); if (ret) goto out_release; _dst_pte = mk_pte(page, dst_vma->vm_page_prot); if (dst_vma->vm_flags & VM_WRITE) _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); else { /* * We don't set the pte dirty if the vma has no * VM_WRITE permission, so mark the page dirty or it * could be freed from under us. We could do it * unconditionally before unlock_page(), but doing it * only if VM_WRITE is not set is faster. */ set_page_dirty(page); } dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); ret = -EFAULT; max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); if (unlikely(offset >= max_off)) goto out_release_unlock; ret = -EEXIST; if (!pte_none(*dst_pte)) goto out_release_unlock; lru_cache_add(page); spin_lock_irq(&info->lock); info->alloced++; inode->i_blocks += BLOCKS_PER_PAGE; shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); inc_mm_counter(dst_mm, mm_counter_file(page)); page_add_file_rmap(page, false); set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); /* No need to invalidate - it was non-present before */ update_mmu_cache(dst_vma, dst_addr, dst_pte); pte_unmap_unlock(dst_pte, ptl); unlock_page(page); ret = 0; out: return ret; out_release_unlock: pte_unmap_unlock(dst_pte, ptl); ClearPageDirty(page); delete_from_page_cache(page); out_release: unlock_page(page); put_page(page); out_unacct_blocks: shmem_inode_unacct_blocks(inode, 1); goto out; } int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, pmd_t *dst_pmd, struct vm_area_struct *dst_vma, unsigned long dst_addr, unsigned long src_addr, struct page **pagep) { return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, dst_addr, src_addr, false, pagep); } int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, pmd_t *dst_pmd, struct vm_area_struct *dst_vma, unsigned long dst_addr) { struct page *page = NULL; return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 0, true, &page); } #ifdef CONFIG_TMPFS static const struct inode_operations shmem_symlink_inode_operations; static const struct inode_operations shmem_short_symlink_operations; #ifdef CONFIG_TMPFS_XATTR static int shmem_initxattrs(struct inode *, const struct xattr *, void *); #else #define shmem_initxattrs NULL #endif static int shmem_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { struct inode *inode = mapping->host; struct shmem_inode_info *info = SHMEM_I(inode); pgoff_t index = pos >> PAGE_SHIFT; /* i_mutex is held by caller */ if (unlikely(info->seals & (F_SEAL_GROW | F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) return -EPERM; if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) return -EPERM; } return shmem_getpage(inode, index, pagep, SGP_WRITE); } static int shmem_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct inode *inode = mapping->host; if (pos + copied > inode->i_size) i_size_write(inode, pos + copied); if (!PageUptodate(page)) { struct page *head = compound_head(page); if (PageTransCompound(page)) { int i; for (i = 0; i < HPAGE_PMD_NR; i++) { if (head + i == page) continue; clear_highpage(head + i); flush_dcache_page(head + i); } } if (copied < PAGE_SIZE) { unsigned from = pos & (PAGE_SIZE - 1); zero_user_segments(page, 0, from, from + copied, PAGE_SIZE); } SetPageUptodate(head); } set_page_dirty(page); unlock_page(page); put_page(page); return copied; } static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); struct address_space *mapping = inode->i_mapping; pgoff_t index; unsigned long offset; enum sgp_type sgp = SGP_READ; int error = 0; ssize_t retval = 0; loff_t *ppos = &iocb->ki_pos; /* * Might this read be for a stacking filesystem? Then when reading * holes of a sparse file, we actually need to allocate those pages, * and even mark them dirty, so it cannot exceed the max_blocks limit. */ if (!iter_is_iovec(to)) sgp = SGP_CACHE; index = *ppos >> PAGE_SHIFT; offset = *ppos & ~PAGE_MASK; for (;;) { struct page *page = NULL; pgoff_t end_index; unsigned long nr, ret; loff_t i_size = i_size_read(inode); end_index = i_size >> PAGE_SHIFT; if (index > end_index) break; if (index == end_index) { nr = i_size & ~PAGE_MASK; if (nr <= offset) break; } error = shmem_getpage(inode, index, &page, sgp); if (error) { if (error == -EINVAL) error = 0; break; } if (page) { if (sgp == SGP_CACHE) set_page_dirty(page); unlock_page(page); } /* * We must evaluate after, since reads (unlike writes) * are called without i_mutex protection against truncate */ nr = PAGE_SIZE; i_size = i_size_read(inode); end_index = i_size >> PAGE_SHIFT; if (index == end_index) { nr = i_size & ~PAGE_MASK; if (nr <= offset) { if (page) put_page(page); break; } } nr -= offset; if (page) { /* * If users can be writing to this page using arbitrary * virtual addresses, take care about potential aliasing * before reading the page on the kernel side. */ if (mapping_writably_mapped(mapping)) flush_dcache_page(page); /* * Mark the page accessed if we read the beginning. */ if (!offset) mark_page_accessed(page); } else { page = ZERO_PAGE(0); get_page(page); } /* * Ok, we have the page, and it's up-to-date, so * now we can copy it to user space... */ ret = copy_page_to_iter(page, offset, nr, to); retval += ret; offset += ret; index += offset >> PAGE_SHIFT; offset &= ~PAGE_MASK; put_page(page); if (!iov_iter_count(to)) break; if (ret < nr) { error = -EFAULT; break; } cond_resched(); } *ppos = ((loff_t) index << PAGE_SHIFT) + offset; file_accessed(file); return retval ? retval : error; } /* * llseek SEEK_DATA or SEEK_HOLE through the page cache. */ static pgoff_t shmem_seek_hole_data(struct address_space *mapping, pgoff_t index, pgoff_t end, int whence) { struct page *page; struct pagevec pvec; pgoff_t indices[PAGEVEC_SIZE]; bool done = false; int i; pagevec_init(&pvec); pvec.nr = 1; /* start small: we may be there already */ while (!done) { pvec.nr = find_get_entries(mapping, index, pvec.nr, pvec.pages, indices); if (!pvec.nr) { if (whence == SEEK_DATA) index = end; break; } for (i = 0; i < pvec.nr; i++, index++) { if (index < indices[i]) { if (whence == SEEK_HOLE) { done = true; break; } index = indices[i]; } page = pvec.pages[i]; if (page && !xa_is_value(page)) { if (!PageUptodate(page)) page = NULL; } if (index >= end || (page && whence == SEEK_DATA) || (!page && whence == SEEK_HOLE)) { done = true; break; } } pagevec_remove_exceptionals(&pvec); pagevec_release(&pvec); pvec.nr = PAGEVEC_SIZE; cond_resched(); } return index; } static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) { struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; pgoff_t start, end; loff_t new_offset; if (whence != SEEK_DATA && whence != SEEK_HOLE) return generic_file_llseek_size(file, offset, whence, MAX_LFS_FILESIZE, i_size_read(inode)); inode_lock(inode); /* We're holding i_mutex so we can access i_size directly */ if (offset < 0 || offset >= inode->i_size) offset = -ENXIO; else { start = offset >> PAGE_SHIFT; end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; new_offset = shmem_seek_hole_data(mapping, start, end, whence); new_offset <<= PAGE_SHIFT; if (new_offset > offset) { if (new_offset < inode->i_size) offset = new_offset; else if (whence == SEEK_DATA) offset = -ENXIO; else offset = inode->i_size; } } if (offset >= 0) offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); inode_unlock(inode); return offset; } static long shmem_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file_inode(file); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_falloc shmem_falloc; pgoff_t start, index, end; int error; if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) return -EOPNOTSUPP; inode_lock(inode); if (mode & FALLOC_FL_PUNCH_HOLE) { struct address_space *mapping = file->f_mapping; loff_t unmap_start = round_up(offset, PAGE_SIZE); loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); /* protected by i_mutex */ if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { error = -EPERM; goto out; } shmem_falloc.waitq = &shmem_falloc_waitq; shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; spin_lock(&inode->i_lock); inode->i_private = &shmem_falloc; spin_unlock(&inode->i_lock); if ((u64)unmap_end > (u64)unmap_start) unmap_mapping_range(mapping, unmap_start, 1 + unmap_end - unmap_start, 0); shmem_truncate_range(inode, offset, offset + len - 1); /* No need to unmap again: hole-punching leaves COWed pages */ spin_lock(&inode->i_lock); inode->i_private = NULL; wake_up_all(&shmem_falloc_waitq); WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); spin_unlock(&inode->i_lock); error = 0; goto out; } /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ error = inode_newsize_ok(inode, offset + len); if (error) goto out; if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { error = -EPERM; goto out; } start = offset >> PAGE_SHIFT; end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Try to avoid a swapstorm if len is impossible to satisfy */ if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { error = -ENOSPC; goto out; } shmem_falloc.waitq = NULL; shmem_falloc.start = start; shmem_falloc.next = start; shmem_falloc.nr_falloced = 0; shmem_falloc.nr_unswapped = 0; spin_lock(&inode->i_lock); inode->i_private = &shmem_falloc; spin_unlock(&inode->i_lock); for (index = start; index < end; index++) { struct page *page; /* * Good, the fallocate(2) manpage permits EINTR: we may have * been interrupted because we are using up too much memory. */ if (signal_pending(current)) error = -EINTR; else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) error = -ENOMEM; else error = shmem_getpage(inode, index, &page, SGP_FALLOC); if (error) { /* Remove the !PageUptodate pages we added */ if (index > start) { shmem_undo_range(inode, (loff_t)start << PAGE_SHIFT, ((loff_t)index << PAGE_SHIFT) - 1, true); } goto undone; } /* * Inform shmem_writepage() how far we have reached. * No need for lock or barrier: we have the page lock. */ shmem_falloc.next++; if (!PageUptodate(page)) shmem_falloc.nr_falloced++; /* * If !PageUptodate, leave it that way so that freeable pages * can be recognized if we need to rollback on error later. * But set_page_dirty so that memory pressure will swap rather * than free the pages we are allocating (and SGP_CACHE pages * might still be clean: we now need to mark those dirty too). */ set_page_dirty(page); unlock_page(page); put_page(page); cond_resched(); } if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) i_size_write(inode, offset + len); inode->i_ctime = current_time(inode); undone: spin_lock(&inode->i_lock); inode->i_private = NULL; spin_unlock(&inode->i_lock); out: inode_unlock(inode); return error; } static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) { struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); buf->f_type = TMPFS_MAGIC; buf->f_bsize = PAGE_SIZE; buf->f_namelen = NAME_MAX; if (sbinfo->max_blocks) { buf->f_blocks = sbinfo->max_blocks; buf->f_bavail = buf->f_bfree = sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks); } if (sbinfo->max_inodes) { buf->f_files = sbinfo->max_inodes; buf->f_ffree = sbinfo->free_inodes; } /* else leave those fields 0 like simple_statfs */ return 0; } /* * File creation. Allocate an inode, and we're done.. */ static int shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) { struct inode *inode; int error = -ENOSPC; inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); if (inode) { error = simple_acl_create(dir, inode); if (error) goto out_iput; error = security_inode_init_security(inode, dir, &dentry->d_name, shmem_initxattrs, NULL); if (error && error != -EOPNOTSUPP) goto out_iput; error = 0; dir->i_size += BOGO_DIRENT_SIZE; dir->i_ctime = dir->i_mtime = current_time(dir); d_instantiate(dentry, inode); dget(dentry); /* Extra count - pin the dentry in core */ } return error; out_iput: iput(inode); return error; } static int shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) { struct inode *inode; int error = -ENOSPC; inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); if (inode) { error = security_inode_init_security(inode, dir, NULL, shmem_initxattrs, NULL); if (error && error != -EOPNOTSUPP) goto out_iput; error = simple_acl_create(dir, inode); if (error) goto out_iput; d_tmpfile(dentry, inode); } return error; out_iput: iput(inode); return error; } static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) { int error; if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) return error; inc_nlink(dir); return 0; } static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) { return shmem_mknod(dir, dentry, mode | S_IFREG, 0); } /* * Link a file.. */ static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(old_dentry); int ret = 0; /* * No ordinary (disk based) filesystem counts links as inodes; * but each new link needs a new dentry, pinning lowmem, and * tmpfs dentries cannot be pruned until they are unlinked. * But if an O_TMPFILE file is linked into the tmpfs, the * first link must skip that, to get the accounting right. */ if (inode->i_nlink) { ret = shmem_reserve_inode(inode->i_sb, NULL); if (ret) goto out; } dir->i_size += BOGO_DIRENT_SIZE; inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); inc_nlink(inode); ihold(inode); /* New dentry reference */ dget(dentry); /* Extra pinning count for the created dentry */ d_instantiate(dentry, inode); out: return ret; } static int shmem_unlink(struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(dentry); if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) shmem_free_inode(inode->i_sb); dir->i_size -= BOGO_DIRENT_SIZE; inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); drop_nlink(inode); dput(dentry); /* Undo the count from "create" - this does all the work */ return 0; } static int shmem_rmdir(struct inode *dir, struct dentry *dentry) { if (!simple_empty(dentry)) return -ENOTEMPTY; drop_nlink(d_inode(dentry)); drop_nlink(dir); return shmem_unlink(dir, dentry); } static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { bool old_is_dir = d_is_dir(old_dentry); bool new_is_dir = d_is_dir(new_dentry); if (old_dir != new_dir && old_is_dir != new_is_dir) { if (old_is_dir) { drop_nlink(old_dir); inc_nlink(new_dir); } else { drop_nlink(new_dir); inc_nlink(old_dir); } } old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = new_dir->i_mtime = d_inode(old_dentry)->i_ctime = d_inode(new_dentry)->i_ctime = current_time(old_dir); return 0; } static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) { struct dentry *whiteout; int error; whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); if (!whiteout) return -ENOMEM; error = shmem_mknod(old_dir, whiteout, S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); dput(whiteout); if (error) return error; /* * Cheat and hash the whiteout while the old dentry is still in * place, instead of playing games with FS_RENAME_DOES_D_MOVE. * * d_lookup() will consistently find one of them at this point, * not sure which one, but that isn't even important. */ d_rehash(whiteout); return 0; } /* * The VFS layer already does all the dentry stuff for rename, * we just have to decrement the usage count for the target if * it exists so that the VFS layer correctly free's it when it * gets overwritten. */ static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { struct inode *inode = d_inode(old_dentry); int they_are_dirs = S_ISDIR(inode->i_mode); if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) return -EINVAL; if (flags & RENAME_EXCHANGE) return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); if (!simple_empty(new_dentry)) return -ENOTEMPTY; if (flags & RENAME_WHITEOUT) { int error; error = shmem_whiteout(old_dir, old_dentry); if (error) return error; } if (d_really_is_positive(new_dentry)) { (void) shmem_unlink(new_dir, new_dentry); if (they_are_dirs) { drop_nlink(d_inode(new_dentry)); drop_nlink(old_dir); } } else if (they_are_dirs) { drop_nlink(old_dir); inc_nlink(new_dir); } old_dir->i_size -= BOGO_DIRENT_SIZE; new_dir->i_size += BOGO_DIRENT_SIZE; old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = new_dir->i_mtime = inode->i_ctime = current_time(old_dir); return 0; } static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) { int error; int len; struct inode *inode; struct page *page; len = strlen(symname) + 1; if (len > PAGE_SIZE) return -ENAMETOOLONG; inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, VM_NORESERVE); if (!inode) return -ENOSPC; error = security_inode_init_security(inode, dir, &dentry->d_name, shmem_initxattrs, NULL); if (error && error != -EOPNOTSUPP) { iput(inode); return error; } inode->i_size = len-1; if (len <= SHORT_SYMLINK_LEN) { inode->i_link = kmemdup(symname, len, GFP_KERNEL); if (!inode->i_link) { iput(inode); return -ENOMEM; } inode->i_op = &shmem_short_symlink_operations; } else { inode_nohighmem(inode); error = shmem_getpage(inode, 0, &page, SGP_WRITE); if (error) { iput(inode); return error; } inode->i_mapping->a_ops = &shmem_aops; inode->i_op = &shmem_symlink_inode_operations; memcpy(page_address(page), symname, len); SetPageUptodate(page); set_page_dirty(page); unlock_page(page); put_page(page); } dir->i_size += BOGO_DIRENT_SIZE; dir->i_ctime = dir->i_mtime = current_time(dir); d_instantiate(dentry, inode); dget(dentry); return 0; } static void shmem_put_link(void *arg) { mark_page_accessed(arg); put_page(arg); } static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *done) { struct page *page = NULL; int error; if (!dentry) { page = find_get_page(inode->i_mapping, 0); if (!page) return ERR_PTR(-ECHILD); if (!PageUptodate(page)) { put_page(page); return ERR_PTR(-ECHILD); } } else { error = shmem_getpage(inode, 0, &page, SGP_READ); if (error) return ERR_PTR(error); unlock_page(page); } set_delayed_call(done, shmem_put_link, page); return page_address(page); } #ifdef CONFIG_TMPFS_XATTR /* * Superblocks without xattr inode operations may get some security.* xattr * support from the LSM "for free". As soon as we have any other xattrs * like ACLs, we also need to implement the security.* handlers at * filesystem level, though. */ /* * Callback for security_inode_init_security() for acquiring xattrs. */ static int shmem_initxattrs(struct inode *inode, const struct xattr *xattr_array, void *fs_info) { struct shmem_inode_info *info = SHMEM_I(inode); const struct xattr *xattr; struct simple_xattr *new_xattr; size_t len; for (xattr = xattr_array; xattr->name != NULL; xattr++) { new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); if (!new_xattr) return -ENOMEM; len = strlen(xattr->name) + 1; new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, GFP_KERNEL); if (!new_xattr->name) { kvfree(new_xattr); return -ENOMEM; } memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN); memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, xattr->name, len); simple_xattr_list_add(&info->xattrs, new_xattr); } return 0; } static int shmem_xattr_handler_get(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *name, void *buffer, size_t size) { struct shmem_inode_info *info = SHMEM_I(inode); name = xattr_full_name(handler, name); return simple_xattr_get(&info->xattrs, name, buffer, size); } static int shmem_xattr_handler_set(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *name, const void *value, size_t size, int flags) { struct shmem_inode_info *info = SHMEM_I(inode); name = xattr_full_name(handler, name); return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); } static const struct xattr_handler shmem_security_xattr_handler = { .prefix = XATTR_SECURITY_PREFIX, .get = shmem_xattr_handler_get, .set = shmem_xattr_handler_set, }; static const struct xattr_handler shmem_trusted_xattr_handler = { .prefix = XATTR_TRUSTED_PREFIX, .get = shmem_xattr_handler_get, .set = shmem_xattr_handler_set, }; static const struct xattr_handler *shmem_xattr_handlers[] = { #ifdef CONFIG_TMPFS_POSIX_ACL &posix_acl_access_xattr_handler, &posix_acl_default_xattr_handler, #endif &shmem_security_xattr_handler, &shmem_trusted_xattr_handler, NULL }; static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) { struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); } #endif /* CONFIG_TMPFS_XATTR */ static const struct inode_operations shmem_short_symlink_operations = { .get_link = simple_get_link, #ifdef CONFIG_TMPFS_XATTR .listxattr = shmem_listxattr, #endif }; static const struct inode_operations shmem_symlink_inode_operations = { .get_link = shmem_get_link, #ifdef CONFIG_TMPFS_XATTR .listxattr = shmem_listxattr, #endif }; static struct dentry *shmem_get_parent(struct dentry *child) { return ERR_PTR(-ESTALE); } static int shmem_match(struct inode *ino, void *vfh) { __u32 *fh = vfh; __u64 inum = fh[2]; inum = (inum << 32) | fh[1]; return ino->i_ino == inum && fh[0] == ino->i_generation; } /* Find any alias of inode, but prefer a hashed alias */ static struct dentry *shmem_find_alias(struct inode *inode) { struct dentry *alias = d_find_alias(inode); return alias ?: d_find_any_alias(inode); } static struct dentry *shmem_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { struct inode *inode; struct dentry *dentry = NULL; u64 inum; if (fh_len < 3) return NULL; inum = fid->raw[2]; inum = (inum << 32) | fid->raw[1]; inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), shmem_match, fid->raw); if (inode) { dentry = shmem_find_alias(inode); iput(inode); } return dentry; } static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, struct inode *parent) { if (*len < 3) { *len = 3; return FILEID_INVALID; } if (inode_unhashed(inode)) { /* Unfortunately insert_inode_hash is not idempotent, * so as we hash inodes here rather than at creation * time, we need a lock to ensure we only try * to do it once */ static DEFINE_SPINLOCK(lock); spin_lock(&lock); if (inode_unhashed(inode)) __insert_inode_hash(inode, inode->i_ino + inode->i_generation); spin_unlock(&lock); } fh[0] = inode->i_generation; fh[1] = inode->i_ino; fh[2] = ((__u64)inode->i_ino) >> 32; *len = 3; return 1; } static const struct export_operations shmem_export_ops = { .get_parent = shmem_get_parent, .encode_fh = shmem_encode_fh, .fh_to_dentry = shmem_fh_to_dentry, }; enum shmem_param { Opt_gid, Opt_huge, Opt_mode, Opt_mpol, Opt_nr_blocks, Opt_nr_inodes, Opt_size, Opt_uid, Opt_inode32, Opt_inode64, }; static const struct constant_table shmem_param_enums_huge[] = { {"never", SHMEM_HUGE_NEVER }, {"always", SHMEM_HUGE_ALWAYS }, {"within_size", SHMEM_HUGE_WITHIN_SIZE }, {"advise", SHMEM_HUGE_ADVISE }, {} }; const struct fs_parameter_spec shmem_fs_parameters[] = { fsparam_u32 ("gid", Opt_gid), fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), fsparam_u32oct("mode", Opt_mode), fsparam_string("mpol", Opt_mpol), fsparam_string("nr_blocks", Opt_nr_blocks), fsparam_string("nr_inodes", Opt_nr_inodes), fsparam_string("size", Opt_size), fsparam_u32 ("uid", Opt_uid), fsparam_flag ("inode32", Opt_inode32), fsparam_flag ("inode64", Opt_inode64), {} }; static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) { struct shmem_options *ctx = fc->fs_private; struct fs_parse_result result; unsigned long long size; char *rest; int opt; opt = fs_parse(fc, shmem_fs_parameters, param, &result); if (opt < 0) return opt; switch (opt) { case Opt_size: size = memparse(param->string, &rest); if (*rest == '%') { size <<= PAGE_SHIFT; size *= totalram_pages(); do_div(size, 100); rest++; } if (*rest) goto bad_value; ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); ctx->seen |= SHMEM_SEEN_BLOCKS; break; case Opt_nr_blocks: ctx->blocks = memparse(param->string, &rest); if (*rest) goto bad_value; ctx->seen |= SHMEM_SEEN_BLOCKS; break; case Opt_nr_inodes: ctx->inodes = memparse(param->string, &rest); if (*rest) goto bad_value; ctx->seen |= SHMEM_SEEN_INODES; break; case Opt_mode: ctx->mode = result.uint_32 & 07777; break; case Opt_uid: ctx->uid = make_kuid(current_user_ns(), result.uint_32); if (!uid_valid(ctx->uid)) goto bad_value; break; case Opt_gid: ctx->gid = make_kgid(current_user_ns(), result.uint_32); if (!gid_valid(ctx->gid)) goto bad_value; break; case Opt_huge: ctx->huge = result.uint_32; if (ctx->huge != SHMEM_HUGE_NEVER && !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && has_transparent_hugepage())) goto unsupported_parameter; ctx->seen |= SHMEM_SEEN_HUGE; break; case Opt_mpol: if (IS_ENABLED(CONFIG_NUMA)) { mpol_put(ctx->mpol); ctx->mpol = NULL; if (mpol_parse_str(param->string, &ctx->mpol)) goto bad_value; break; } goto unsupported_parameter; case Opt_inode32: ctx->full_inums = false; ctx->seen |= SHMEM_SEEN_INUMS; break; case Opt_inode64: if (sizeof(ino_t) < 8) { return invalfc(fc, "Cannot use inode64 with <64bit inums in kernel\n"); } ctx->full_inums = true; ctx->seen |= SHMEM_SEEN_INUMS; break; } return 0; unsupported_parameter: return invalfc(fc, "Unsupported parameter '%s'", param->key); bad_value: return invalfc(fc, "Bad value for '%s'", param->key); } static int shmem_parse_options(struct fs_context *fc, void *data) { char *options = data; if (options) { int err = security_sb_eat_lsm_opts(options, &fc->security); if (err) return err; } while (options != NULL) { char *this_char = options; for (;;) { /* * NUL-terminate this option: unfortunately, * mount options form a comma-separated list, * but mpol's nodelist may also contain commas. */ options = strchr(options, ','); if (options == NULL) break; options++; if (!isdigit(*options)) { options[-1] = '\0'; break; } } if (*this_char) { char *value = strchr(this_char,'='); size_t len = 0; int err; if (value) { *value++ = '\0'; len = strlen(value); } err = vfs_parse_fs_string(fc, this_char, value, len); if (err < 0) return err; } } return 0; } /* * Reconfigure a shmem filesystem. * * Note that we disallow change from limited->unlimited blocks/inodes while any * are in use; but we must separately disallow unlimited->limited, because in * that case we have no record of how much is already in use. */ static int shmem_reconfigure(struct fs_context *fc) { struct shmem_options *ctx = fc->fs_private; struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); unsigned long inodes; const char *err; spin_lock(&sbinfo->stat_lock); inodes = sbinfo->max_inodes - sbinfo->free_inodes; if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { if (!sbinfo->max_blocks) { err = "Cannot retroactively limit size"; goto out; } if (percpu_counter_compare(&sbinfo->used_blocks, ctx->blocks) > 0) { err = "Too small a size for current use"; goto out; } } if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { if (!sbinfo->max_inodes) { err = "Cannot retroactively limit inodes"; goto out; } if (ctx->inodes < inodes) { err = "Too few inodes for current use"; goto out; } } if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && sbinfo->next_ino > UINT_MAX) { err = "Current inum too high to switch to 32-bit inums"; goto out; } if (ctx->seen & SHMEM_SEEN_HUGE) sbinfo->huge = ctx->huge; if (ctx->seen & SHMEM_SEEN_INUMS) sbinfo->full_inums = ctx->full_inums; if (ctx->seen & SHMEM_SEEN_BLOCKS) sbinfo->max_blocks = ctx->blocks; if (ctx->seen & SHMEM_SEEN_INODES) { sbinfo->max_inodes = ctx->inodes; sbinfo->free_inodes = ctx->inodes - inodes; } /* * Preserve previous mempolicy unless mpol remount option was specified. */ if (ctx->mpol) { mpol_put(sbinfo->mpol); sbinfo->mpol = ctx->mpol; /* transfers initial ref */ ctx->mpol = NULL; } spin_unlock(&sbinfo->stat_lock); return 0; out: spin_unlock(&sbinfo->stat_lock); return invalfc(fc, "%s", err); } static int shmem_show_options(struct seq_file *seq, struct dentry *root) { struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); if (sbinfo->max_blocks != shmem_default_max_blocks()) seq_printf(seq, ",size=%luk", sbinfo->max_blocks << (PAGE_SHIFT - 10)); if (sbinfo->max_inodes != shmem_default_max_inodes()) seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); if (sbinfo->mode != (0777 | S_ISVTX)) seq_printf(seq, ",mode=%03ho", sbinfo->mode); if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) seq_printf(seq, ",uid=%u", from_kuid_munged(&init_user_ns, sbinfo->uid)); if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) seq_printf(seq, ",gid=%u", from_kgid_munged(&init_user_ns, sbinfo->gid)); /* * Showing inode{64,32} might be useful even if it's the system default, * since then people don't have to resort to checking both here and * /proc/config.gz to confirm 64-bit inums were successfully applied * (which may not even exist if IKCONFIG_PROC isn't enabled). * * We hide it when inode64 isn't the default and we are using 32-bit * inodes, since that probably just means the feature isn't even under * consideration. * * As such: * * +-----------------+-----------------+ * | TMPFS_INODE64=y | TMPFS_INODE64=n | * +------------------+-----------------+-----------------+ * | full_inums=true | show | show | * | full_inums=false | show | hide | * +------------------+-----------------+-----------------+ * */ if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ if (sbinfo->huge) seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); #endif shmem_show_mpol(seq, sbinfo->mpol); return 0; } #endif /* CONFIG_TMPFS */ static void shmem_put_super(struct super_block *sb) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); free_percpu(sbinfo->ino_batch); percpu_counter_destroy(&sbinfo->used_blocks); mpol_put(sbinfo->mpol); kfree(sbinfo); sb->s_fs_info = NULL; } static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) { struct shmem_options *ctx = fc->fs_private; struct inode *inode; struct shmem_sb_info *sbinfo; int err = -ENOMEM; /* Round up to L1_CACHE_BYTES to resist false sharing */ sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), L1_CACHE_BYTES), GFP_KERNEL); if (!sbinfo) return -ENOMEM; sb->s_fs_info = sbinfo; #ifdef CONFIG_TMPFS /* * Per default we only allow half of the physical ram per * tmpfs instance, limiting inodes to one per page of lowmem; * but the internal instance is left unlimited. */ if (!(sb->s_flags & SB_KERNMOUNT)) { if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) ctx->blocks = shmem_default_max_blocks(); if (!(ctx->seen & SHMEM_SEEN_INODES)) ctx->inodes = shmem_default_max_inodes(); if (!(ctx->seen & SHMEM_SEEN_INUMS)) ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); } else { sb->s_flags |= SB_NOUSER; } sb->s_export_op = &shmem_export_ops; sb->s_flags |= SB_NOSEC; #else sb->s_flags |= SB_NOUSER; #endif sbinfo->max_blocks = ctx->blocks; sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; if (sb->s_flags & SB_KERNMOUNT) { sbinfo->ino_batch = alloc_percpu(ino_t); if (!sbinfo->ino_batch) goto failed; } sbinfo->uid = ctx->uid; sbinfo->gid = ctx->gid; sbinfo->full_inums = ctx->full_inums; sbinfo->mode = ctx->mode; sbinfo->huge = ctx->huge; sbinfo->mpol = ctx->mpol; ctx->mpol = NULL; spin_lock_init(&sbinfo->stat_lock); if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) goto failed; spin_lock_init(&sbinfo->shrinklist_lock); INIT_LIST_HEAD(&sbinfo->shrinklist); sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_blocksize = PAGE_SIZE; sb->s_blocksize_bits = PAGE_SHIFT; sb->s_magic = TMPFS_MAGIC; sb->s_op = &shmem_ops; sb->s_time_gran = 1; #ifdef CONFIG_TMPFS_XATTR sb->s_xattr = shmem_xattr_handlers; #endif #ifdef CONFIG_TMPFS_POSIX_ACL sb->s_flags |= SB_POSIXACL; #endif uuid_gen(&sb->s_uuid); inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); if (!inode) goto failed; inode->i_uid = sbinfo->uid; inode->i_gid = sbinfo->gid; sb->s_root = d_make_root(inode); if (!sb->s_root) goto failed; return 0; failed: shmem_put_super(sb); return err; } static int shmem_get_tree(struct fs_context *fc) { return get_tree_nodev(fc, shmem_fill_super); } static void shmem_free_fc(struct fs_context *fc) { struct shmem_options *ctx = fc->fs_private; if (ctx) { mpol_put(ctx->mpol); kfree(ctx); } } static const struct fs_context_operations shmem_fs_context_ops = { .free = shmem_free_fc, .get_tree = shmem_get_tree, #ifdef CONFIG_TMPFS .parse_monolithic = shmem_parse_options, .parse_param = shmem_parse_one, .reconfigure = shmem_reconfigure, #endif }; static struct kmem_cache *shmem_inode_cachep; static struct inode *shmem_alloc_inode(struct super_block *sb) { struct shmem_inode_info *info; info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); if (!info) return NULL; return &info->vfs_inode; } static void shmem_free_in_core_inode(struct inode *inode) { if (S_ISLNK(inode->i_mode)) kfree(inode->i_link); kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); } static void shmem_destroy_inode(struct inode *inode) { if (S_ISREG(inode->i_mode)) mpol_free_shared_policy(&SHMEM_I(inode)->policy); } static void shmem_init_inode(void *foo) { struct shmem_inode_info *info = foo; inode_init_once(&info->vfs_inode); } static void shmem_init_inodecache(void) { shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", sizeof(struct shmem_inode_info), 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); } static void shmem_destroy_inodecache(void) { kmem_cache_destroy(shmem_inode_cachep); } static const struct address_space_operations shmem_aops = { .writepage = shmem_writepage, .set_page_dirty = __set_page_dirty_no_writeback, #ifdef CONFIG_TMPFS .write_begin = shmem_write_begin, .write_end = shmem_write_end, #endif #ifdef CONFIG_MIGRATION .migratepage = migrate_page, #endif .error_remove_page = generic_error_remove_page, }; static const struct file_operations shmem_file_operations = { .mmap = shmem_mmap, .get_unmapped_area = shmem_get_unmapped_area, #ifdef CONFIG_TMPFS .llseek = shmem_file_llseek, .read_iter = shmem_file_read_iter, .write_iter = generic_file_write_iter, .fsync = noop_fsync, .splice_read = generic_file_splice_read, .splice_write = iter_file_splice_write, .fallocate = shmem_fallocate, #endif }; static const struct inode_operations shmem_inode_operations = { .getattr = shmem_getattr, .setattr = shmem_setattr, #ifdef CONFIG_TMPFS_XATTR .listxattr = shmem_listxattr, .set_acl = simple_set_acl, #endif }; static const struct inode_operations shmem_dir_inode_operations = { #ifdef CONFIG_TMPFS .create = shmem_create, .lookup = simple_lookup, .link = shmem_link, .unlink = shmem_unlink, .symlink = shmem_symlink, .mkdir = shmem_mkdir, .rmdir = shmem_rmdir, .mknod = shmem_mknod, .rename = shmem_rename2, .tmpfile = shmem_tmpfile, #endif #ifdef CONFIG_TMPFS_XATTR .listxattr = shmem_listxattr, #endif #ifdef CONFIG_TMPFS_POSIX_ACL .setattr = shmem_setattr, .set_acl = simple_set_acl, #endif }; static const struct inode_operations shmem_special_inode_operations = { #ifdef CONFIG_TMPFS_XATTR .listxattr = shmem_listxattr, #endif #ifdef CONFIG_TMPFS_POSIX_ACL .setattr = shmem_setattr, .set_acl = simple_set_acl, #endif }; static const struct super_operations shmem_ops = { .alloc_inode = shmem_alloc_inode, .free_inode = shmem_free_in_core_inode, .destroy_inode = shmem_destroy_inode, #ifdef CONFIG_TMPFS .statfs = shmem_statfs, .show_options = shmem_show_options, #endif .evict_inode = shmem_evict_inode, .drop_inode = generic_delete_inode, .put_super = shmem_put_super, #ifdef CONFIG_TRANSPARENT_HUGEPAGE .nr_cached_objects = shmem_unused_huge_count, .free_cached_objects = shmem_unused_huge_scan, #endif }; static const struct vm_operations_struct shmem_vm_ops = { .fault = shmem_fault, .map_pages = filemap_map_pages, #ifdef CONFIG_NUMA .set_policy = shmem_set_policy, .get_policy = shmem_get_policy, #endif }; int shmem_init_fs_context(struct fs_context *fc) { struct shmem_options *ctx; ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->mode = 0777 | S_ISVTX; ctx->uid = current_fsuid(); ctx->gid = current_fsgid(); fc->fs_private = ctx; fc->ops = &shmem_fs_context_ops; return 0; } static struct file_system_type shmem_fs_type = { .owner = THIS_MODULE, .name = "tmpfs", .init_fs_context = shmem_init_fs_context, #ifdef CONFIG_TMPFS .parameters = shmem_fs_parameters, #endif .kill_sb = kill_litter_super, .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT, }; int __init shmem_init(void) { int error; shmem_init_inodecache(); error = register_filesystem(&shmem_fs_type); if (error) { pr_err("Could not register tmpfs\n"); goto out2; } shm_mnt = kern_mount(&shmem_fs_type); if (IS_ERR(shm_mnt)) { error = PTR_ERR(shm_mnt); pr_err("Could not kern_mount tmpfs\n"); goto out1; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; else shmem_huge = 0; /* just in case it was patched */ #endif return 0; out1: unregister_filesystem(&shmem_fs_type); out2: shmem_destroy_inodecache(); shm_mnt = ERR_PTR(error); return error; } #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) static ssize_t shmem_enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { static const int values[] = { SHMEM_HUGE_ALWAYS, SHMEM_HUGE_WITHIN_SIZE, SHMEM_HUGE_ADVISE, SHMEM_HUGE_NEVER, SHMEM_HUGE_DENY, SHMEM_HUGE_FORCE, }; int i, count; for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; count += sprintf(buf + count, fmt, shmem_format_huge(values[i])); } buf[count - 1] = '\n'; return count; } static ssize_t shmem_enabled_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { char tmp[16]; int huge; if (count + 1 > sizeof(tmp)) return -EINVAL; memcpy(tmp, buf, count); tmp[count] = '\0'; if (count && tmp[count - 1] == '\n') tmp[count - 1] = '\0'; huge = shmem_parse_huge(tmp); if (huge == -EINVAL) return -EINVAL; if (!has_transparent_hugepage() && huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) return -EINVAL; shmem_huge = huge; if (shmem_huge > SHMEM_HUGE_DENY) SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; return count; } struct kobj_attribute shmem_enabled_attr = __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE bool shmem_huge_enabled(struct vm_area_struct *vma) { struct inode *inode = file_inode(vma->vm_file); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); loff_t i_size; pgoff_t off; if (!transhuge_vma_enabled(vma, vma->vm_flags)) return false; if (shmem_huge == SHMEM_HUGE_FORCE) return true; if (shmem_huge == SHMEM_HUGE_DENY) return false; switch (sbinfo->huge) { case SHMEM_HUGE_NEVER: return false; case SHMEM_HUGE_ALWAYS: return true; case SHMEM_HUGE_WITHIN_SIZE: off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); i_size = round_up(i_size_read(inode), PAGE_SIZE); if (i_size >= HPAGE_PMD_SIZE && i_size >> PAGE_SHIFT >= off) return true; fallthrough; case SHMEM_HUGE_ADVISE: /* TODO: implement fadvise() hints */ return (vma->vm_flags & VM_HUGEPAGE); default: VM_BUG_ON(1); return false; } } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #else /* !CONFIG_SHMEM */ /* * tiny-shmem: simple shmemfs and tmpfs using ramfs code * * This is intended for small system where the benefits of the full * shmem code (swap-backed and resource-limited) are outweighed by * their complexity. On systems without swap this code should be * effectively equivalent, but much lighter weight. */ static struct file_system_type shmem_fs_type = { .name = "tmpfs", .init_fs_context = ramfs_init_fs_context, .parameters = ramfs_fs_parameters, .kill_sb = kill_litter_super, .fs_flags = FS_USERNS_MOUNT, }; int __init shmem_init(void) { BUG_ON(register_filesystem(&shmem_fs_type) != 0); shm_mnt = kern_mount(&shmem_fs_type); BUG_ON(IS_ERR(shm_mnt)); return 0; } int shmem_unuse(unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { return 0; } int shmem_lock(struct file *file, int lock, struct user_struct *user) { return 0; } void shmem_unlock_mapping(struct address_space *mapping) { } #ifdef CONFIG_MMU unsigned long shmem_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); } #endif void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) { truncate_inode_pages_range(inode->i_mapping, lstart, lend); } EXPORT_SYMBOL_GPL(shmem_truncate_range); #define shmem_vm_ops generic_file_vm_ops #define shmem_file_operations ramfs_file_operations #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) #define shmem_acct_size(flags, size) 0 #define shmem_unacct_size(flags, size) do {} while (0) #endif /* CONFIG_SHMEM */ /* common code */ static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, unsigned long flags, unsigned int i_flags) { struct inode *inode; struct file *res; if (IS_ERR(mnt)) return ERR_CAST(mnt); if (size < 0 || size > MAX_LFS_FILESIZE) return ERR_PTR(-EINVAL); if (shmem_acct_size(flags, size)) return ERR_PTR(-ENOMEM); inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); if (unlikely(!inode)) { shmem_unacct_size(flags, size); return ERR_PTR(-ENOSPC); } inode->i_flags |= i_flags; inode->i_size = size; clear_nlink(inode); /* It is unlinked */ res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); if (!IS_ERR(res)) res = alloc_file_pseudo(inode, mnt, name, O_RDWR, &shmem_file_operations); if (IS_ERR(res)) iput(inode); return res; } /** * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be * kernel internal. There will be NO LSM permission checks against the * underlying inode. So users of this interface must do LSM checks at a * higher layer. The users are the big_key and shm implementations. LSM * checks are provided at the key or shm level rather than the inode. * @name: name for dentry (to be seen in /proc/<pid>/maps * @size: size to be set for the file * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size */ struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) { return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); } /** * shmem_file_setup - get an unlinked file living in tmpfs * @name: name for dentry (to be seen in /proc/<pid>/maps * @size: size to be set for the file * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size */ struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) { return __shmem_file_setup(shm_mnt, name, size, flags, 0); } EXPORT_SYMBOL_GPL(shmem_file_setup); /** * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs * @mnt: the tmpfs mount where the file will be created * @name: name for dentry (to be seen in /proc/<pid>/maps * @size: size to be set for the file * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size */ struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, loff_t size, unsigned long flags) { return __shmem_file_setup(mnt, name, size, flags, 0); } EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); /** * shmem_zero_setup - setup a shared anonymous mapping * @vma: the vma to be mmapped is prepared by do_mmap */ int shmem_zero_setup(struct vm_area_struct *vma) { struct file *file; loff_t size = vma->vm_end - vma->vm_start; /* * Cloning a new file under mmap_lock leads to a lock ordering conflict * between XFS directory reading and selinux: since this file is only * accessible to the user through its mapping, use S_PRIVATE flag to * bypass file security, in the same way as shmem_kernel_file_setup(). */ file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); if (IS_ERR(file)) return PTR_ERR(file); if (vma->vm_file) fput(vma->vm_file); vma->vm_file = file; vma->vm_ops = &shmem_vm_ops; if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < (vma->vm_end & HPAGE_PMD_MASK)) { khugepaged_enter(vma, vma->vm_flags); } return 0; } /** * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. * @mapping: the page's address_space * @index: the page index * @gfp: the page allocator flags to use if allocating * * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", * with any new page allocations done using the specified allocation flags. * But read_cache_page_gfp() uses the ->readpage() method: which does not * suit tmpfs, since it may have pages in swapcache, and needs to find those * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. * * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. */ struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, pgoff_t index, gfp_t gfp) { #ifdef CONFIG_SHMEM struct inode *inode = mapping->host; struct page *page; int error; BUG_ON(mapping->a_ops != &shmem_aops); error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL, NULL, NULL); if (error) page = ERR_PTR(error); else unlock_page(page); return page; #else /* * The tiny !SHMEM case uses ramfs without swap */ return read_cache_page_gfp(mapping, index, gfp); #endif } EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM exceptions #if !defined(_TRACE_PAGE_FAULT_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PAGE_FAULT_H #include <linux/tracepoint.h> #include <asm/trace/common.h> extern int trace_pagefault_reg(void); extern void trace_pagefault_unreg(void); DECLARE_EVENT_CLASS(x86_exceptions, TP_PROTO(unsigned long address, struct pt_regs *regs, unsigned long error_code), TP_ARGS(address, regs, error_code), TP_STRUCT__entry( __field( unsigned long, address ) __field( unsigned long, ip ) __field( unsigned long, error_code ) ), TP_fast_assign( __entry->address = address; __entry->ip = regs->ip; __entry->error_code = error_code; ), TP_printk("address=%ps ip=%ps error_code=0x%lx", (void *)__entry->address, (void *)__entry->ip, __entry->error_code) ); #define DEFINE_PAGE_FAULT_EVENT(name) \ DEFINE_EVENT_FN(x86_exceptions, name, \ TP_PROTO(unsigned long address, struct pt_regs *regs, \ unsigned long error_code), \ TP_ARGS(address, regs, error_code), \ trace_pagefault_reg, trace_pagefault_unreg); DEFINE_PAGE_FAULT_EVENT(page_fault_user); DEFINE_PAGE_FAULT_EVENT(page_fault_kernel); #undef TRACE_INCLUDE_PATH #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_PATH . #define TRACE_INCLUDE_FILE exceptions #endif /* _TRACE_PAGE_FAULT_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 #undef TRACE_SYSTEM #define TRACE_SYSTEM neigh #if !defined(_TRACE_NEIGH_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_NEIGH_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/tracepoint.h> #include <net/neighbour.h> #define neigh_state_str(state) \ __print_symbolic(state, \ { NUD_INCOMPLETE, "incomplete" }, \ { NUD_REACHABLE, "reachable" }, \ { NUD_STALE, "stale" }, \ { NUD_DELAY, "delay" }, \ { NUD_PROBE, "probe" }, \ { NUD_FAILED, "failed" }, \ { NUD_NOARP, "noarp" }, \ { NUD_PERMANENT, "permanent"}) TRACE_EVENT(neigh_create, TP_PROTO(struct neigh_table *tbl, struct net_device *dev, const void *pkey, const struct neighbour *n, bool exempt_from_gc), TP_ARGS(tbl, dev, pkey, n, exempt_from_gc), TP_STRUCT__entry( __field(u32, family) __dynamic_array(char, dev, IFNAMSIZ ) __field(int, entries) __field(u8, created) __field(u8, gc_exempt) __array(u8, primary_key4, 4) __array(u8, primary_key6, 16) ), TP_fast_assign( struct in6_addr *pin6; __be32 *p32; __entry->family = tbl->family; __assign_str(dev, (dev ? dev->name : "NULL")); __entry->entries = atomic_read(&tbl->gc_entries); __entry->created = n != NULL; __entry->gc_exempt = exempt_from_gc; pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (tbl->family == AF_INET) *p32 = *(__be32 *)pkey; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)pkey; } #endif ), TP_printk("family %d dev %s entries %d primary_key4 %pI4 primary_key6 %pI6c created %d gc_exempt %d", __entry->family, __get_str(dev), __entry->entries, __entry->primary_key4, __entry->primary_key6, __entry->created, __entry->gc_exempt) ); TRACE_EVENT(neigh_update, TP_PROTO(struct neighbour *n, const u8 *lladdr, u8 new, u32 flags, u32 nlmsg_pid), TP_ARGS(n, lladdr, new, flags, nlmsg_pid), TP_STRUCT__entry( __field(u32, family) __string(dev, (n->dev ? n->dev->name : "NULL")) __array(u8, lladdr, MAX_ADDR_LEN) __field(u8, lladdr_len) __field(u8, flags) __field(u8, nud_state) __field(u8, type) __field(u8, dead) __field(int, refcnt) __array(__u8, primary_key4, 4) __array(__u8, primary_key6, 16) __field(unsigned long, confirmed) __field(unsigned long, updated) __field(unsigned long, used) __array(u8, new_lladdr, MAX_ADDR_LEN) __field(u8, new_state) __field(u32, update_flags) __field(u32, pid) ), TP_fast_assign( int lladdr_len = (n->dev ? n->dev->addr_len : MAX_ADDR_LEN); struct in6_addr *pin6; __be32 *p32; __entry->family = n->tbl->family; __assign_str(dev, (n->dev ? n->dev->name : "NULL")); __entry->lladdr_len = lladdr_len; memcpy(__entry->lladdr, n->ha, lladdr_len); __entry->flags = n->flags; __entry->nud_state = n->nud_state; __entry->type = n->type; __entry->dead = n->dead; __entry->refcnt = refcount_read(&n->refcnt); pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (n->tbl->family == AF_INET) *p32 = *(__be32 *)n->primary_key; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (n->tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)n->primary_key; } else #endif { ipv6_addr_set_v4mapped(*p32, pin6); } __entry->confirmed = n->confirmed; __entry->updated = n->updated; __entry->used = n->used; if (lladdr) memcpy(__entry->new_lladdr, lladdr, lladdr_len); __entry->new_state = new; __entry->update_flags = flags; __entry->pid = nlmsg_pid; ), TP_printk("family %d dev %s lladdr %s flags %02x nud_state %s type %02x " "dead %d refcnt %d primary_key4 %pI4 primary_key6 %pI6c " "confirmed %lu updated %lu used %lu new_lladdr %s " "new_state %s update_flags %02x pid %d", __entry->family, __get_str(dev), __print_hex_str(__entry->lladdr, __entry->lladdr_len), __entry->flags, neigh_state_str(__entry->nud_state), __entry->type, __entry->dead, __entry->refcnt, __entry->primary_key4, __entry->primary_key6, __entry->confirmed, __entry->updated, __entry->used, __print_hex_str(__entry->new_lladdr, __entry->lladdr_len), neigh_state_str(__entry->new_state), __entry->update_flags, __entry->pid) ); DECLARE_EVENT_CLASS(neigh__update, TP_PROTO(struct neighbour *n, int err), TP_ARGS(n, err), TP_STRUCT__entry( __field(u32, family) __string(dev, (n->dev ? n->dev->name : "NULL")) __array(u8, lladdr, MAX_ADDR_LEN) __field(u8, lladdr_len) __field(u8, flags) __field(u8, nud_state) __field(u8, type) __field(u8, dead) __field(int, refcnt) __array(__u8, primary_key4, 4) __array(__u8, primary_key6, 16) __field(unsigned long, confirmed) __field(unsigned long, updated) __field(unsigned long, used) __field(u32, err) ), TP_fast_assign( int lladdr_len = (n->dev ? n->dev->addr_len : MAX_ADDR_LEN); struct in6_addr *pin6; __be32 *p32; __entry->family = n->tbl->family; __assign_str(dev, (n->dev ? n->dev->name : "NULL")); __entry->lladdr_len = lladdr_len; memcpy(__entry->lladdr, n->ha, lladdr_len); __entry->flags = n->flags; __entry->nud_state = n->nud_state; __entry->type = n->type; __entry->dead = n->dead; __entry->refcnt = refcount_read(&n->refcnt); pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (n->tbl->family == AF_INET) *p32 = *(__be32 *)n->primary_key; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (n->tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)n->primary_key; } else #endif { ipv6_addr_set_v4mapped(*p32, pin6); } __entry->confirmed = n->confirmed; __entry->updated = n->updated; __entry->used = n->used; __entry->err = err; ), TP_printk("family %d dev %s lladdr %s flags %02x nud_state %s type %02x " "dead %d refcnt %d primary_key4 %pI4 primary_key6 %pI6c " "confirmed %lu updated %lu used %lu err %d", __entry->family, __get_str(dev), __print_hex_str(__entry->lladdr, __entry->lladdr_len), __entry->flags, neigh_state_str(__entry->nud_state), __entry->type, __entry->dead, __entry->refcnt, __entry->primary_key4, __entry->primary_key6, __entry->confirmed, __entry->updated, __entry->used, __entry->err) ); DEFINE_EVENT(neigh__update, neigh_update_done, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_timer_handler, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_event_send_done, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_event_send_dead, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_cleanup_and_release, TP_PROTO(struct neighbour *neigh, int rc), TP_ARGS(neigh, rc) ); #endif /* _TRACE_NEIGH_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_DESC_H #define _ASM_X86_DESC_H #include <asm/desc_defs.h> #include <asm/ldt.h> #include <asm/mmu.h> #include <asm/fixmap.h> #include <asm/irq_vectors.h> #include <asm/cpu_entry_area.h> #include <linux/smp.h> #include <linux/percpu.h> static inline void fill_ldt(struct desc_struct *desc, const struct user_desc *info) { desc->limit0 = info->limit & 0x0ffff; desc->base0 = (info->base_addr & 0x0000ffff); desc->base1 = (info->base_addr & 0x00ff0000) >> 16; desc->type = (info->read_exec_only ^ 1) << 1; desc->type |= info->contents << 2; /* Set the ACCESS bit so it can be mapped RO */ desc->type |= 1; desc->s = 1; desc->dpl = 0x3; desc->p = info->seg_not_present ^ 1; desc->limit1 = (info->limit & 0xf0000) >> 16; desc->avl = info->useable; desc->d = info->seg_32bit; desc->g = info->limit_in_pages; desc->base2 = (info->base_addr & 0xff000000) >> 24; /* * Don't allow setting of the lm bit. It would confuse * user_64bit_mode and would get overridden by sysret anyway. */ desc->l = 0; } struct gdt_page { struct desc_struct gdt[GDT_ENTRIES]; } __attribute__((aligned(PAGE_SIZE))); DECLARE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page); /* Provide the original GDT */ static inline struct desc_struct *get_cpu_gdt_rw(unsigned int cpu) { return per_cpu(gdt_page, cpu).gdt; } /* Provide the current original GDT */ static inline struct desc_struct *get_current_gdt_rw(void) { return this_cpu_ptr(&gdt_page)->gdt; } /* Provide the fixmap address of the remapped GDT */ static inline struct desc_struct *get_cpu_gdt_ro(int cpu) { return (struct desc_struct *)&get_cpu_entry_area(cpu)->gdt; } /* Provide the current read-only GDT */ static inline struct desc_struct *get_current_gdt_ro(void) { return get_cpu_gdt_ro(smp_processor_id()); } /* Provide the physical address of the GDT page. */ static inline phys_addr_t get_cpu_gdt_paddr(unsigned int cpu) { return per_cpu_ptr_to_phys(get_cpu_gdt_rw(cpu)); } static inline void pack_gate(gate_desc *gate, unsigned type, unsigned long func, unsigned dpl, unsigned ist, unsigned seg) { gate->offset_low = (u16) func; gate->bits.p = 1; gate->bits.dpl = dpl; gate->bits.zero = 0; gate->bits.type = type; gate->offset_middle = (u16) (func >> 16); #ifdef CONFIG_X86_64 gate->segment = __KERNEL_CS; gate->bits.ist = ist; gate->reserved = 0; gate->offset_high = (u32) (func >> 32); #else gate->segment = seg; gate->bits.ist = 0; #endif } static inline int desc_empty(const void *ptr) { const u32 *desc = ptr; return !(desc[0] | desc[1]); } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #define load_TR_desc() native_load_tr_desc() #define load_gdt(dtr) native_load_gdt(dtr) #define load_idt(dtr) native_load_idt(dtr) #define load_tr(tr) asm volatile("ltr %0"::"m" (tr)) #define load_ldt(ldt) asm volatile("lldt %0"::"m" (ldt)) #define store_gdt(dtr) native_store_gdt(dtr) #define store_tr(tr) (tr = native_store_tr()) #define load_TLS(t, cpu) native_load_tls(t, cpu) #define set_ldt native_set_ldt #define write_ldt_entry(dt, entry, desc) native_write_ldt_entry(dt, entry, desc) #define write_gdt_entry(dt, entry, desc, type) native_write_gdt_entry(dt, entry, desc, type) #define write_idt_entry(dt, entry, g) native_write_idt_entry(dt, entry, g) static inline void paravirt_alloc_ldt(struct desc_struct *ldt, unsigned entries) { } static inline void paravirt_free_ldt(struct desc_struct *ldt, unsigned entries) { } #endif /* CONFIG_PARAVIRT_XXL */ #define store_ldt(ldt) asm("sldt %0" : "=m"(ldt)) static inline void native_write_idt_entry(gate_desc *idt, int entry, const gate_desc *gate) { memcpy(&idt[entry], gate, sizeof(*gate)); } static inline void native_write_ldt_entry(struct desc_struct *ldt, int entry, const void *desc) { memcpy(&ldt[entry], desc, 8); } static inline void native_write_gdt_entry(struct desc_struct *gdt, int entry, const void *desc, int type) { unsigned int size; switch (type) { case DESC_TSS: size = sizeof(tss_desc); break; case DESC_LDT: size = sizeof(ldt_desc); break; default: size = sizeof(*gdt); break; } memcpy(&gdt[entry], desc, size); } static inline void set_tssldt_descriptor(void *d, unsigned long addr, unsigned type, unsigned size) { struct ldttss_desc *desc = d; memset(desc, 0, sizeof(*desc)); desc->limit0 = (u16) size; desc->base0 = (u16) addr; desc->base1 = (addr >> 16) & 0xFF; desc->type = type; desc->p = 1; desc->limit1 = (size >> 16) & 0xF; desc->base2 = (addr >> 24) & 0xFF; #ifdef CONFIG_X86_64 desc->base3 = (u32) (addr >> 32); #endif } static inline void __set_tss_desc(unsigned cpu, unsigned int entry, struct x86_hw_tss *addr) { struct desc_struct *d = get_cpu_gdt_rw(cpu); tss_desc tss; set_tssldt_descriptor(&tss, (unsigned long)addr, DESC_TSS, __KERNEL_TSS_LIMIT); write_gdt_entry(d, entry, &tss, DESC_TSS); } #define set_tss_desc(cpu, addr) __set_tss_desc(cpu, GDT_ENTRY_TSS, addr) static inline void native_set_ldt(const void *addr, unsigned int entries) { if (likely(entries == 0)) asm volatile("lldt %w0"::"q" (0)); else { unsigned cpu = smp_processor_id(); ldt_desc ldt; set_tssldt_descriptor(&ldt, (unsigned long)addr, DESC_LDT, entries * LDT_ENTRY_SIZE - 1); write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_LDT, &ldt, DESC_LDT); asm volatile("lldt %w0"::"q" (GDT_ENTRY_LDT*8)); } } static inline void native_load_gdt(const struct desc_ptr *dtr) { asm volatile("lgdt %0"::"m" (*dtr)); } static __always_inline void native_load_idt(const struct desc_ptr *dtr) { asm volatile("lidt %0"::"m" (*dtr)); } static inline void native_store_gdt(struct desc_ptr *dtr) { asm volatile("sgdt %0":"=m" (*dtr)); } static inline void store_idt(struct desc_ptr *dtr) { asm volatile("sidt %0":"=m" (*dtr)); } /* * The LTR instruction marks the TSS GDT entry as busy. On 64-bit, the GDT is * a read-only remapping. To prevent a page fault, the GDT is switched to the * original writeable version when needed. */ #ifdef CONFIG_X86_64 static inline void native_load_tr_desc(void) { struct desc_ptr gdt; int cpu = raw_smp_processor_id(); bool restore = 0; struct desc_struct *fixmap_gdt; native_store_gdt(&gdt); fixmap_gdt = get_cpu_gdt_ro(cpu); /* * If the current GDT is the read-only fixmap, swap to the original * writeable version. Swap back at the end. */ if (gdt.address == (unsigned long)fixmap_gdt) { load_direct_gdt(cpu); restore = 1; } asm volatile("ltr %w0"::"q" (GDT_ENTRY_TSS*8)); if (restore) load_fixmap_gdt(cpu); } #else static inline void native_load_tr_desc(void) { asm volatile("ltr %w0"::"q" (GDT_ENTRY_TSS*8)); } #endif static inline unsigned long native_store_tr(void) { unsigned long tr; asm volatile("str %0":"=r" (tr)); return tr; } static inline void native_load_tls(struct thread_struct *t, unsigned int cpu) { struct desc_struct *gdt = get_cpu_gdt_rw(cpu); unsigned int i; for (i = 0; i < GDT_ENTRY_TLS_ENTRIES; i++) gdt[GDT_ENTRY_TLS_MIN + i] = t->tls_array[i]; } DECLARE_PER_CPU(bool, __tss_limit_invalid); static inline void force_reload_TR(void) { struct desc_struct *d = get_current_gdt_rw(); tss_desc tss; memcpy(&tss, &d[GDT_ENTRY_TSS], sizeof(tss_desc)); /* * LTR requires an available TSS, and the TSS is currently * busy. Make it be available so that LTR will work. */ tss.type = DESC_TSS; write_gdt_entry(d, GDT_ENTRY_TSS, &tss, DESC_TSS); load_TR_desc(); this_cpu_write(__tss_limit_invalid, false); } /* * Call this if you need the TSS limit to be correct, which should be the case * if and only if you have TIF_IO_BITMAP set or you're switching to a task * with TIF_IO_BITMAP set. */ static inline void refresh_tss_limit(void) { DEBUG_LOCKS_WARN_ON(preemptible()); if (unlikely(this_cpu_read(__tss_limit_invalid))) force_reload_TR(); } /* * If you do something evil that corrupts the cached TSS limit (I'm looking * at you, VMX exits), call this function. * * The optimization here is that the TSS limit only matters for Linux if the * IO bitmap is in use. If the TSS limit gets forced to its minimum value, * everything works except that IO bitmap will be ignored and all CPL 3 IO * instructions will #GP, which is exactly what we want for normal tasks. */ static inline void invalidate_tss_limit(void) { DEBUG_LOCKS_WARN_ON(preemptible()); if (unlikely(test_thread_flag(TIF_IO_BITMAP))) force_reload_TR(); else this_cpu_write(__tss_limit_invalid, true); } /* This intentionally ignores lm, since 32-bit apps don't have that field. */ #define LDT_empty(info) \ ((info)->base_addr == 0 && \ (info)->limit == 0 && \ (info)->contents == 0 && \ (info)->read_exec_only == 1 && \ (info)->seg_32bit == 0 && \ (info)->limit_in_pages == 0 && \ (info)->seg_not_present == 1 && \ (info)->useable == 0) /* Lots of programs expect an all-zero user_desc to mean "no segment at all". */ static inline bool LDT_zero(const struct user_desc *info) { return (info->base_addr == 0 && info->limit == 0 && info->contents == 0 && info->read_exec_only == 0 && info->seg_32bit == 0 && info->limit_in_pages == 0 && info->seg_not_present == 0 && info->useable == 0); } static inline void clear_LDT(void) { set_ldt(NULL, 0); } static inline unsigned long get_desc_base(const struct desc_struct *desc) { return (unsigned)(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); } static inline void set_desc_base(struct desc_struct *desc, unsigned long base) { desc->base0 = base & 0xffff; desc->base1 = (base >> 16) & 0xff; desc->base2 = (base >> 24) & 0xff; } static inline unsigned long get_desc_limit(const struct desc_struct *desc) { return desc->limit0 | (desc->limit1 << 16); } static inline void set_desc_limit(struct desc_struct *desc, unsigned long limit) { desc->limit0 = limit & 0xffff; desc->limit1 = (limit >> 16) & 0xf; } void alloc_intr_gate(unsigned int n, const void *addr); static inline void init_idt_data(struct idt_data *data, unsigned int n, const void *addr) { BUG_ON(n > 0xFF); memset(data, 0, sizeof(*data)); data->vector = n; data->addr = addr; data->segment = __KERNEL_CS; data->bits.type = GATE_INTERRUPT; data->bits.p = 1; } static inline void idt_init_desc(gate_desc *gate, const struct idt_data *d) { unsigned long addr = (unsigned long) d->addr; gate->offset_low = (u16) addr; gate->segment = (u16) d->segment; gate->bits = d->bits; gate->offset_middle = (u16) (addr >> 16); #ifdef CONFIG_X86_64 gate->offset_high = (u32) (addr >> 32); gate->reserved = 0; #endif } extern unsigned long system_vectors[]; extern void load_current_idt(void); extern void idt_setup_early_handler(void); extern void idt_setup_early_traps(void); extern void idt_setup_traps(void); extern void idt_setup_apic_and_irq_gates(void); extern bool idt_is_f00f_address(unsigned long address); #ifdef CONFIG_X86_64 extern void idt_setup_early_pf(void); extern void idt_setup_ist_traps(void); #else static inline void idt_setup_early_pf(void) { } static inline void idt_setup_ist_traps(void) { } #endif extern void idt_invalidate(void *addr); #endif /* _ASM_X86_DESC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_COREDUMP_H #define _LINUX_SCHED_COREDUMP_H #include <linux/mm_types.h> #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ #define SUID_DUMP_USER 1 /* Dump as user of process */ #define SUID_DUMP_ROOT 2 /* Dump as root */ /* mm flags */ /* for SUID_DUMP_* above */ #define MMF_DUMPABLE_BITS 2 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) extern void set_dumpable(struct mm_struct *mm, int value); /* * This returns the actual value of the suid_dumpable flag. For things * that are using this for checking for privilege transitions, it must * test against SUID_DUMP_USER rather than treating it as a boolean * value. */ static inline int __get_dumpable(unsigned long mm_flags) { return mm_flags & MMF_DUMPABLE_MASK; } static inline int get_dumpable(struct mm_struct *mm) { return __get_dumpable(mm->flags); } /* coredump filter bits */ #define MMF_DUMP_ANON_PRIVATE 2 #define MMF_DUMP_ANON_SHARED 3 #define MMF_DUMP_MAPPED_PRIVATE 4 #define MMF_DUMP_MAPPED_SHARED 5 #define MMF_DUMP_ELF_HEADERS 6 #define MMF_DUMP_HUGETLB_PRIVATE 7 #define MMF_DUMP_HUGETLB_SHARED 8 #define MMF_DUMP_DAX_PRIVATE 9 #define MMF_DUMP_DAX_SHARED 10 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS #define MMF_DUMP_FILTER_BITS 9 #define MMF_DUMP_FILTER_MASK \ (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) #define MMF_DUMP_FILTER_DEFAULT \ ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) #else # define MMF_DUMP_MASK_DEFAULT_ELF 0 #endif /* leave room for more dump flags */ #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ /* * This one-shot flag is dropped due to necessity of changing exe once again * on NFS restore */ //#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ #define MMF_HAS_UPROBES 19 /* has uprobes */ #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ #define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */ #define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */ #define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */ #define MMF_DISABLE_THP 24 /* disable THP for all VMAs */ #define MMF_OOM_VICTIM 25 /* mm is the oom victim */ #define MMF_OOM_REAP_QUEUED 26 /* mm was queued for oom_reaper */ #define MMF_MULTIPROCESS 27 /* mm is shared between processes */ #define MMF_DISABLE_THP_MASK (1 << MMF_DISABLE_THP) #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK |\ MMF_DISABLE_THP_MASK) #endif /* _LINUX_SCHED_COREDUMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_DST_METADATA_H #define __NET_DST_METADATA_H 1 #include <linux/skbuff.h> #include <net/ip_tunnels.h> #include <net/dst.h> enum metadata_type { METADATA_IP_TUNNEL, METADATA_HW_PORT_MUX, }; struct hw_port_info { struct net_device *lower_dev; u32 port_id; }; struct metadata_dst { struct dst_entry dst; enum metadata_type type; union { struct ip_tunnel_info tun_info; struct hw_port_info port_info; } u; }; static inline struct metadata_dst *skb_metadata_dst(const struct sk_buff *skb) { struct metadata_dst *md_dst = (struct metadata_dst *) skb_dst(skb); if (md_dst && md_dst->dst.flags & DST_METADATA) return md_dst; return NULL; } static inline struct ip_tunnel_info * skb_tunnel_info(const struct sk_buff *skb) { struct metadata_dst *md_dst = skb_metadata_dst(skb); struct dst_entry *dst; if (md_dst && md_dst->type == METADATA_IP_TUNNEL) return &md_dst->u.tun_info; dst = skb_dst(skb); if (dst && dst->lwtstate && (dst->lwtstate->type == LWTUNNEL_ENCAP_IP || dst->lwtstate->type == LWTUNNEL_ENCAP_IP6)) return lwt_tun_info(dst->lwtstate); return NULL; } static inline bool skb_valid_dst(const struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); return dst && !(dst->flags & DST_METADATA); } static inline int skb_metadata_dst_cmp(const struct sk_buff *skb_a, const struct sk_buff *skb_b) { const struct metadata_dst *a, *b; if (!(skb_a->_skb_refdst | skb_b->_skb_refdst)) return 0; a = (const struct metadata_dst *) skb_dst(skb_a); b = (const struct metadata_dst *) skb_dst(skb_b); if (!a != !b || a->type != b->type) return 1; switch (a->type) { case METADATA_HW_PORT_MUX: return memcmp(&a->u.port_info, &b->u.port_info, sizeof(a->u.port_info)); case METADATA_IP_TUNNEL: return memcmp(&a->u.tun_info, &b->u.tun_info, sizeof(a->u.tun_info) + a->u.tun_info.options_len); default: return 1; } } void metadata_dst_free(struct metadata_dst *); struct metadata_dst *metadata_dst_alloc(u8 optslen, enum metadata_type type, gfp_t flags); void metadata_dst_free_percpu(struct metadata_dst __percpu *md_dst); struct metadata_dst __percpu * metadata_dst_alloc_percpu(u8 optslen, enum metadata_type type, gfp_t flags); static inline struct metadata_dst *tun_rx_dst(int md_size) { struct metadata_dst *tun_dst; tun_dst = metadata_dst_alloc(md_size, METADATA_IP_TUNNEL, GFP_ATOMIC); if (!tun_dst) return NULL; tun_dst->u.tun_info.options_len = 0; tun_dst->u.tun_info.mode = 0; return tun_dst; } static inline struct metadata_dst *tun_dst_unclone(struct sk_buff *skb) { struct metadata_dst *md_dst = skb_metadata_dst(skb); int md_size; struct metadata_dst *new_md; if (!md_dst || md_dst->type != METADATA_IP_TUNNEL) return ERR_PTR(-EINVAL); md_size = md_dst->u.tun_info.options_len; new_md = metadata_dst_alloc(md_size, METADATA_IP_TUNNEL, GFP_ATOMIC); if (!new_md) return ERR_PTR(-ENOMEM); memcpy(&new_md->u.tun_info, &md_dst->u.tun_info, sizeof(struct ip_tunnel_info) + md_size); skb_dst_drop(skb); dst_hold(&new_md->dst); skb_dst_set(skb, &new_md->dst); return new_md; } static inline struct ip_tunnel_info *skb_tunnel_info_unclone(struct sk_buff *skb) { struct metadata_dst *dst; dst = tun_dst_unclone(skb); if (IS_ERR(dst)) return NULL; return &dst->u.tun_info; } static inline struct metadata_dst *__ip_tun_set_dst(__be32 saddr, __be32 daddr, __u8 tos, __u8 ttl, __be16 tp_dst, __be16 flags, __be64 tunnel_id, int md_size) { struct metadata_dst *tun_dst; tun_dst = tun_rx_dst(md_size); if (!tun_dst) return NULL; ip_tunnel_key_init(&tun_dst->u.tun_info.key, saddr, daddr, tos, ttl, 0, 0, tp_dst, tunnel_id, flags); return tun_dst; } static inline struct metadata_dst *ip_tun_rx_dst(struct sk_buff *skb, __be16 flags, __be64 tunnel_id, int md_size) { const struct iphdr *iph = ip_hdr(skb); return __ip_tun_set_dst(iph->saddr, iph->daddr, iph->tos, iph->ttl, 0, flags, tunnel_id, md_size); } static inline struct metadata_dst *__ipv6_tun_set_dst(const struct in6_addr *saddr, const struct in6_addr *daddr, __u8 tos, __u8 ttl, __be16 tp_dst, __be32 label, __be16 flags, __be64 tunnel_id, int md_size) { struct metadata_dst *tun_dst; struct ip_tunnel_info *info; tun_dst = tun_rx_dst(md_size); if (!tun_dst) return NULL; info = &tun_dst->u.tun_info; info->mode = IP_TUNNEL_INFO_IPV6; info->key.tun_flags = flags; info->key.tun_id = tunnel_id; info->key.tp_src = 0; info->key.tp_dst = tp_dst; info->key.u.ipv6.src = *saddr; info->key.u.ipv6.dst = *daddr; info->key.tos = tos; info->key.ttl = ttl; info->key.label = label; return tun_dst; } static inline struct metadata_dst *ipv6_tun_rx_dst(struct sk_buff *skb, __be16 flags, __be64 tunnel_id, int md_size) { const struct ipv6hdr *ip6h = ipv6_hdr(skb); return __ipv6_tun_set_dst(&ip6h->saddr, &ip6h->daddr, ipv6_get_dsfield(ip6h), ip6h->hop_limit, 0, ip6_flowlabel(ip6h), flags, tunnel_id, md_size); } #endif /* __NET_DST_METADATA_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Checksumming functions for IP, TCP, UDP and so on * * Authors: Jorge Cwik, <jorge@laser.satlink.net> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Borrows very liberally from tcp.c and ip.c, see those * files for more names. */ #ifndef _CHECKSUM_H #define _CHECKSUM_H #include <linux/errno.h> #include <asm/types.h> #include <asm/byteorder.h> #include <linux/uaccess.h> #include <asm/checksum.h> #ifndef _HAVE_ARCH_COPY_AND_CSUM_FROM_USER static inline __wsum csum_and_copy_from_user (const void __user *src, void *dst, int len) { if (copy_from_user(dst, src, len)) return 0; return csum_partial(dst, len, ~0U); } #endif #ifndef HAVE_CSUM_COPY_USER static __inline__ __wsum csum_and_copy_to_user (const void *src, void __user *dst, int len) { __wsum sum = csum_partial(src, len, ~0U); if (copy_to_user(dst, src, len) == 0) return sum; return 0; } #endif #ifndef _HAVE_ARCH_CSUM_AND_COPY static inline __wsum csum_partial_copy_nocheck(const void *src, void *dst, int len) { memcpy(dst, src, len); return csum_partial(dst, len, 0); } #endif #ifndef HAVE_ARCH_CSUM_ADD static inline __wsum csum_add(__wsum csum, __wsum addend) { u32 res = (__force u32)csum; res += (__force u32)addend; return (__force __wsum)(res + (res < (__force u32)addend)); } #endif static inline __wsum csum_sub(__wsum csum, __wsum addend) { return csum_add(csum, ~addend); } static inline __sum16 csum16_add(__sum16 csum, __be16 addend) { u16 res = (__force u16)csum; res += (__force u16)addend; return (__force __sum16)(res + (res < (__force u16)addend)); } static inline __sum16 csum16_sub(__sum16 csum, __be16 addend) { return csum16_add(csum, ~addend); } static inline __wsum csum_block_add(__wsum csum, __wsum csum2, int offset) { u32 sum = (__force u32)csum2; /* rotate sum to align it with a 16b boundary */ if (offset & 1) sum = ror32(sum, 8); return csum_add(csum, (__force __wsum)sum); } static inline __wsum csum_block_add_ext(__wsum csum, __wsum csum2, int offset, int len) { return csum_block_add(csum, csum2, offset); } static inline __wsum csum_block_sub(__wsum csum, __wsum csum2, int offset) { return csum_block_add(csum, ~csum2, offset); } static inline __wsum csum_unfold(__sum16 n) { return (__force __wsum)n; } static inline __wsum csum_partial_ext(const void *buff, int len, __wsum sum) { return csum_partial(buff, len, sum); } #define CSUM_MANGLED_0 ((__force __sum16)0xffff) static inline void csum_replace_by_diff(__sum16 *sum, __wsum diff) { *sum = csum_fold(csum_add(diff, ~csum_unfold(*sum))); } static inline void csum_replace4(__sum16 *sum, __be32 from, __be32 to) { __wsum tmp = csum_sub(~csum_unfold(*sum), (__force __wsum)from); *sum = csum_fold(csum_add(tmp, (__force __wsum)to)); } /* Implements RFC 1624 (Incremental Internet Checksum) * 3. Discussion states : * HC' = ~(~HC + ~m + m') * m : old value of a 16bit field * m' : new value of a 16bit field */ static inline void csum_replace2(__sum16 *sum, __be16 old, __be16 new) { *sum = ~csum16_add(csum16_sub(~(*sum), old), new); } struct sk_buff; void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb, __be32 from, __be32 to, bool pseudohdr); void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb, const __be32 *from, const __be32 *to, bool pseudohdr); void inet_proto_csum_replace_by_diff(__sum16 *sum, struct sk_buff *skb, __wsum diff, bool pseudohdr); static inline void inet_proto_csum_replace2(__sum16 *sum, struct sk_buff *skb, __be16 from, __be16 to, bool pseudohdr) { inet_proto_csum_replace4(sum, skb, (__force __be32)from, (__force __be32)to, pseudohdr); } static inline __wsum remcsum_adjust(void *ptr, __wsum csum, int start, int offset) { __sum16 *psum = (__sum16 *)(ptr + offset); __wsum delta; /* Subtract out checksum up to start */ csum = csum_sub(csum, csum_partial(ptr, start, 0)); /* Set derived checksum in packet */ delta = csum_sub((__force __wsum)csum_fold(csum), (__force __wsum)*psum); *psum = csum_fold(csum); return delta; } static inline void remcsum_unadjust(__sum16 *psum, __wsum delta) { *psum = csum_fold(csum_sub(delta, (__force __wsum)*psum)); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the TCP protocol. * * Version: @(#)tcp.h 1.0.2 04/28/93 * * Author: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _LINUX_TCP_H #define _LINUX_TCP_H #include <linux/skbuff.h> #include <linux/win_minmax.h> #include <net/sock.h> #include <net/inet_connection_sock.h> #include <net/inet_timewait_sock.h> #include <uapi/linux/tcp.h> static inline struct tcphdr *tcp_hdr(const struct sk_buff *skb) { return (struct tcphdr *)skb_transport_header(skb); } static inline unsigned int __tcp_hdrlen(const struct tcphdr *th) { return th->doff * 4; } static inline unsigned int tcp_hdrlen(const struct sk_buff *skb) { return __tcp_hdrlen(tcp_hdr(skb)); } static inline struct tcphdr *inner_tcp_hdr(const struct sk_buff *skb) { return (struct tcphdr *)skb_inner_transport_header(skb); } static inline unsigned int inner_tcp_hdrlen(const struct sk_buff *skb) { return inner_tcp_hdr(skb)->doff * 4; } static inline unsigned int tcp_optlen(const struct sk_buff *skb) { return (tcp_hdr(skb)->doff - 5) * 4; } /* TCP Fast Open */ #define TCP_FASTOPEN_COOKIE_MIN 4 /* Min Fast Open Cookie size in bytes */ #define TCP_FASTOPEN_COOKIE_MAX 16 /* Max Fast Open Cookie size in bytes */ #define TCP_FASTOPEN_COOKIE_SIZE 8 /* the size employed by this impl. */ /* TCP Fast Open Cookie as stored in memory */ struct tcp_fastopen_cookie { __le64 val[DIV_ROUND_UP(TCP_FASTOPEN_COOKIE_MAX, sizeof(u64))]; s8 len; bool exp; /* In RFC6994 experimental option format */ }; /* This defines a selective acknowledgement block. */ struct tcp_sack_block_wire { __be32 start_seq; __be32 end_seq; }; struct tcp_sack_block { u32 start_seq; u32 end_seq; }; /*These are used to set the sack_ok field in struct tcp_options_received */ #define TCP_SACK_SEEN (1 << 0) /*1 = peer is SACK capable, */ #define TCP_DSACK_SEEN (1 << 2) /*1 = DSACK was received from peer*/ struct tcp_options_received { /* PAWS/RTTM data */ int ts_recent_stamp;/* Time we stored ts_recent (for aging) */ u32 ts_recent; /* Time stamp to echo next */ u32 rcv_tsval; /* Time stamp value */ u32 rcv_tsecr; /* Time stamp echo reply */ u16 saw_tstamp : 1, /* Saw TIMESTAMP on last packet */ tstamp_ok : 1, /* TIMESTAMP seen on SYN packet */ dsack : 1, /* D-SACK is scheduled */ wscale_ok : 1, /* Wscale seen on SYN packet */ sack_ok : 3, /* SACK seen on SYN packet */ smc_ok : 1, /* SMC seen on SYN packet */ snd_wscale : 4, /* Window scaling received from sender */ rcv_wscale : 4; /* Window scaling to send to receiver */ u8 saw_unknown:1, /* Received unknown option */ unused:7; u8 num_sacks; /* Number of SACK blocks */ u16 user_mss; /* mss requested by user in ioctl */ u16 mss_clamp; /* Maximal mss, negotiated at connection setup */ }; static inline void tcp_clear_options(struct tcp_options_received *rx_opt) { rx_opt->tstamp_ok = rx_opt->sack_ok = 0; rx_opt->wscale_ok = rx_opt->snd_wscale = 0; #if IS_ENABLED(CONFIG_SMC) rx_opt->smc_ok = 0; #endif } /* This is the max number of SACKS that we'll generate and process. It's safe * to increase this, although since: * size = TCPOLEN_SACK_BASE_ALIGNED (4) + n * TCPOLEN_SACK_PERBLOCK (8) * only four options will fit in a standard TCP header */ #define TCP_NUM_SACKS 4 struct tcp_request_sock_ops; struct tcp_request_sock { struct inet_request_sock req; const struct tcp_request_sock_ops *af_specific; u64 snt_synack; /* first SYNACK sent time */ bool tfo_listener; bool is_mptcp; #if IS_ENABLED(CONFIG_MPTCP) bool drop_req; #endif u32 txhash; u32 rcv_isn; u32 snt_isn; u32 ts_off; u32 last_oow_ack_time; /* last SYNACK */ u32 rcv_nxt; /* the ack # by SYNACK. For * FastOpen it's the seq# * after data-in-SYN. */ u8 syn_tos; }; static inline struct tcp_request_sock *tcp_rsk(const struct request_sock *req) { return (struct tcp_request_sock *)req; } struct tcp_sock { /* inet_connection_sock has to be the first member of tcp_sock */ struct inet_connection_sock inet_conn; u16 tcp_header_len; /* Bytes of tcp header to send */ u16 gso_segs; /* Max number of segs per GSO packet */ /* * Header prediction flags * 0x5?10 << 16 + snd_wnd in net byte order */ __be32 pred_flags; /* * RFC793 variables by their proper names. This means you can * read the code and the spec side by side (and laugh ...) * See RFC793 and RFC1122. The RFC writes these in capitals. */ u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived * sum(delta(rcv_nxt)), or how many bytes * were acked. */ u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn * total number of segments in. */ u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn * total number of data segments in. */ u32 rcv_nxt; /* What we want to receive next */ u32 copied_seq; /* Head of yet unread data */ u32 rcv_wup; /* rcv_nxt on last window update sent */ u32 snd_nxt; /* Next sequence we send */ u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut * The total number of segments sent. */ u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut * total number of data segments sent. */ u64 bytes_sent; /* RFC4898 tcpEStatsPerfHCDataOctetsOut * total number of data bytes sent. */ u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked * sum(delta(snd_una)), or how many bytes * were acked. */ u32 dsack_dups; /* RFC4898 tcpEStatsStackDSACKDups * total number of DSACK blocks received */ u32 snd_una; /* First byte we want an ack for */ u32 snd_sml; /* Last byte of the most recently transmitted small packet */ u32 rcv_tstamp; /* timestamp of last received ACK (for keepalives) */ u32 lsndtime; /* timestamp of last sent data packet (for restart window) */ u32 last_oow_ack_time; /* timestamp of last out-of-window ACK */ u32 compressed_ack_rcv_nxt; u32 tsoffset; /* timestamp offset */ struct list_head tsq_node; /* anchor in tsq_tasklet.head list */ struct list_head tsorted_sent_queue; /* time-sorted sent but un-SACKed skbs */ u32 snd_wl1; /* Sequence for window update */ u32 snd_wnd; /* The window we expect to receive */ u32 max_window; /* Maximal window ever seen from peer */ u32 mss_cache; /* Cached effective mss, not including SACKS */ u32 window_clamp; /* Maximal window to advertise */ u32 rcv_ssthresh; /* Current window clamp */ /* Information of the most recently (s)acked skb */ struct tcp_rack { u64 mstamp; /* (Re)sent time of the skb */ u32 rtt_us; /* Associated RTT */ u32 end_seq; /* Ending TCP sequence of the skb */ u32 last_delivered; /* tp->delivered at last reo_wnd adj */ u8 reo_wnd_steps; /* Allowed reordering window */ #define TCP_RACK_RECOVERY_THRESH 16 u8 reo_wnd_persist:5, /* No. of recovery since last adj */ dsack_seen:1, /* Whether DSACK seen after last adj */ advanced:1; /* mstamp advanced since last lost marking */ } rack; u16 advmss; /* Advertised MSS */ u8 compressed_ack; u8 dup_ack_counter:2, tlp_retrans:1, /* TLP is a retransmission */ unused:5; u32 chrono_start; /* Start time in jiffies of a TCP chrono */ u32 chrono_stat[3]; /* Time in jiffies for chrono_stat stats */ u8 chrono_type:2, /* current chronograph type */ rate_app_limited:1, /* rate_{delivered,interval_us} limited? */ fastopen_connect:1, /* FASTOPEN_CONNECT sockopt */ fastopen_no_cookie:1, /* Allow send/recv SYN+data without a cookie */ is_sack_reneg:1, /* in recovery from loss with SACK reneg? */ fastopen_client_fail:2; /* reason why fastopen failed */ u8 nonagle : 4,/* Disable Nagle algorithm? */ thin_lto : 1,/* Use linear timeouts for thin streams */ recvmsg_inq : 1,/* Indicate # of bytes in queue upon recvmsg */ repair : 1, frto : 1;/* F-RTO (RFC5682) activated in CA_Loss */ u8 repair_queue; u8 save_syn:2, /* Save headers of SYN packet */ syn_data:1, /* SYN includes data */ syn_fastopen:1, /* SYN includes Fast Open option */ syn_fastopen_exp:1,/* SYN includes Fast Open exp. option */ syn_fastopen_ch:1, /* Active TFO re-enabling probe */ syn_data_acked:1,/* data in SYN is acked by SYN-ACK */ is_cwnd_limited:1;/* forward progress limited by snd_cwnd? */ u32 tlp_high_seq; /* snd_nxt at the time of TLP */ u32 tcp_tx_delay; /* delay (in usec) added to TX packets */ u64 tcp_wstamp_ns; /* departure time for next sent data packet */ u64 tcp_clock_cache; /* cache last tcp_clock_ns() (see tcp_mstamp_refresh()) */ /* RTT measurement */ u64 tcp_mstamp; /* most recent packet received/sent */ u32 srtt_us; /* smoothed round trip time << 3 in usecs */ u32 mdev_us; /* medium deviation */ u32 mdev_max_us; /* maximal mdev for the last rtt period */ u32 rttvar_us; /* smoothed mdev_max */ u32 rtt_seq; /* sequence number to update rttvar */ struct minmax rtt_min; u32 packets_out; /* Packets which are "in flight" */ u32 retrans_out; /* Retransmitted packets out */ u32 max_packets_out; /* max packets_out in last window */ u32 max_packets_seq; /* right edge of max_packets_out flight */ u16 urg_data; /* Saved octet of OOB data and control flags */ u8 ecn_flags; /* ECN status bits. */ u8 keepalive_probes; /* num of allowed keep alive probes */ u32 reordering; /* Packet reordering metric. */ u32 reord_seen; /* number of data packet reordering events */ u32 snd_up; /* Urgent pointer */ /* * Options received (usually on last packet, some only on SYN packets). */ struct tcp_options_received rx_opt; /* * Slow start and congestion control (see also Nagle, and Karn & Partridge) */ u32 snd_ssthresh; /* Slow start size threshold */ u32 snd_cwnd; /* Sending congestion window */ u32 snd_cwnd_cnt; /* Linear increase counter */ u32 snd_cwnd_clamp; /* Do not allow snd_cwnd to grow above this */ u32 snd_cwnd_used; u32 snd_cwnd_stamp; u32 prior_cwnd; /* cwnd right before starting loss recovery */ u32 prr_delivered; /* Number of newly delivered packets to * receiver in Recovery. */ u32 prr_out; /* Total number of pkts sent during Recovery. */ u32 delivered; /* Total data packets delivered incl. rexmits */ u32 delivered_ce; /* Like the above but only ECE marked packets */ u32 lost; /* Total data packets lost incl. rexmits */ u32 app_limited; /* limited until "delivered" reaches this val */ u64 first_tx_mstamp; /* start of window send phase */ u64 delivered_mstamp; /* time we reached "delivered" */ u32 rate_delivered; /* saved rate sample: packets delivered */ u32 rate_interval_us; /* saved rate sample: time elapsed */ u32 rcv_wnd; /* Current receiver window */ u32 write_seq; /* Tail(+1) of data held in tcp send buffer */ u32 notsent_lowat; /* TCP_NOTSENT_LOWAT */ u32 pushed_seq; /* Last pushed seq, required to talk to windows */ u32 lost_out; /* Lost packets */ u32 sacked_out; /* SACK'd packets */ struct hrtimer pacing_timer; struct hrtimer compressed_ack_timer; /* from STCP, retrans queue hinting */ struct sk_buff* lost_skb_hint; struct sk_buff *retransmit_skb_hint; /* OOO segments go in this rbtree. Socket lock must be held. */ struct rb_root out_of_order_queue; struct sk_buff *ooo_last_skb; /* cache rb_last(out_of_order_queue) */ /* SACKs data, these 2 need to be together (see tcp_options_write) */ struct tcp_sack_block duplicate_sack[1]; /* D-SACK block */ struct tcp_sack_block selective_acks[4]; /* The SACKS themselves*/ struct tcp_sack_block recv_sack_cache[4]; struct sk_buff *highest_sack; /* skb just after the highest * skb with SACKed bit set * (validity guaranteed only if * sacked_out > 0) */ int lost_cnt_hint; u32 prior_ssthresh; /* ssthresh saved at recovery start */ u32 high_seq; /* snd_nxt at onset of congestion */ u32 retrans_stamp; /* Timestamp of the last retransmit, * also used in SYN-SENT to remember stamp of * the first SYN. */ u32 undo_marker; /* snd_una upon a new recovery episode. */ int undo_retrans; /* number of undoable retransmissions. */ u64 bytes_retrans; /* RFC4898 tcpEStatsPerfOctetsRetrans * Total data bytes retransmitted */ u32 total_retrans; /* Total retransmits for entire connection */ u32 urg_seq; /* Seq of received urgent pointer */ unsigned int keepalive_time; /* time before keep alive takes place */ unsigned int keepalive_intvl; /* time interval between keep alive probes */ int linger2; /* Sock_ops bpf program related variables */ #ifdef CONFIG_BPF u8 bpf_sock_ops_cb_flags; /* Control calling BPF programs * values defined in uapi/linux/tcp.h */ #define BPF_SOCK_OPS_TEST_FLAG(TP, ARG) (TP->bpf_sock_ops_cb_flags & ARG) #else #define BPF_SOCK_OPS_TEST_FLAG(TP, ARG) 0 #endif u16 timeout_rehash; /* Timeout-triggered rehash attempts */ u32 rcv_ooopack; /* Received out-of-order packets, for tcpinfo */ /* Receiver side RTT estimation */ u32 rcv_rtt_last_tsecr; struct { u32 rtt_us; u32 seq; u64 time; } rcv_rtt_est; /* Receiver queue space */ struct { u32 space; u32 seq; u64 time; } rcvq_space; /* TCP-specific MTU probe information. */ struct { u32 probe_seq_start; u32 probe_seq_end; } mtu_probe; u32 mtu_info; /* We received an ICMP_FRAG_NEEDED / ICMPV6_PKT_TOOBIG * while socket was owned by user. */ #if IS_ENABLED(CONFIG_MPTCP) bool is_mptcp; #endif #if IS_ENABLED(CONFIG_SMC) bool syn_smc; /* SYN includes SMC */ #endif #ifdef CONFIG_TCP_MD5SIG /* TCP AF-Specific parts; only used by MD5 Signature support so far */ const struct tcp_sock_af_ops *af_specific; /* TCP MD5 Signature Option information */ struct tcp_md5sig_info __rcu *md5sig_info; #endif /* TCP fastopen related information */ struct tcp_fastopen_request *fastopen_req; /* fastopen_rsk points to request_sock that resulted in this big * socket. Used to retransmit SYNACKs etc. */ struct request_sock __rcu *fastopen_rsk; struct saved_syn *saved_syn; }; enum tsq_enum { TSQ_THROTTLED, TSQ_QUEUED, TCP_TSQ_DEFERRED, /* tcp_tasklet_func() found socket was owned */ TCP_WRITE_TIMER_DEFERRED, /* tcp_write_timer() found socket was owned */ TCP_DELACK_TIMER_DEFERRED, /* tcp_delack_timer() found socket was owned */ TCP_MTU_REDUCED_DEFERRED, /* tcp_v{4|6}_err() could not call * tcp_v{4|6}_mtu_reduced() */ }; enum tsq_flags { TSQF_THROTTLED = (1UL << TSQ_THROTTLED), TSQF_QUEUED = (1UL << TSQ_QUEUED), TCPF_TSQ_DEFERRED = (1UL << TCP_TSQ_DEFERRED), TCPF_WRITE_TIMER_DEFERRED = (1UL << TCP_WRITE_TIMER_DEFERRED), TCPF_DELACK_TIMER_DEFERRED = (1UL << TCP_DELACK_TIMER_DEFERRED), TCPF_MTU_REDUCED_DEFERRED = (1UL << TCP_MTU_REDUCED_DEFERRED), }; static inline struct tcp_sock *tcp_sk(const struct sock *sk) { return (struct tcp_sock *)sk; } struct tcp_timewait_sock { struct inet_timewait_sock tw_sk; #define tw_rcv_nxt tw_sk.__tw_common.skc_tw_rcv_nxt #define tw_snd_nxt tw_sk.__tw_common.skc_tw_snd_nxt u32 tw_rcv_wnd; u32 tw_ts_offset; u32 tw_ts_recent; /* The time we sent the last out-of-window ACK: */ u32 tw_last_oow_ack_time; int tw_ts_recent_stamp; u32 tw_tx_delay; #ifdef CONFIG_TCP_MD5SIG struct tcp_md5sig_key *tw_md5_key; #endif }; static inline struct tcp_timewait_sock *tcp_twsk(const struct sock *sk) { return (struct tcp_timewait_sock *)sk; } static inline bool tcp_passive_fastopen(const struct sock *sk) { return sk->sk_state == TCP_SYN_RECV && rcu_access_pointer(tcp_sk(sk)->fastopen_rsk) != NULL; } static inline void fastopen_queue_tune(struct sock *sk, int backlog) { struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; int somaxconn = READ_ONCE(sock_net(sk)->core.sysctl_somaxconn); queue->fastopenq.max_qlen = min_t(unsigned int, backlog, somaxconn); } static inline void tcp_move_syn(struct tcp_sock *tp, struct request_sock *req) { tp->saved_syn = req->saved_syn; req->saved_syn = NULL; } static inline void tcp_saved_syn_free(struct tcp_sock *tp) { kfree(tp->saved_syn); tp->saved_syn = NULL; } static inline u32 tcp_saved_syn_len(const struct saved_syn *saved_syn) { return saved_syn->mac_hdrlen + saved_syn->network_hdrlen + saved_syn->tcp_hdrlen; } struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, const struct sk_buff *orig_skb); static inline u16 tcp_mss_clamp(const struct tcp_sock *tp, u16 mss) { /* We use READ_ONCE() here because socket might not be locked. * This happens for listeners. */ u16 user_mss = READ_ONCE(tp->rx_opt.user_mss); return (user_mss && user_mss < mss) ? user_mss : mss; } int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, int pcount, int shiftlen); void tcp_sock_set_cork(struct sock *sk, bool on); int tcp_sock_set_keepcnt(struct sock *sk, int val); int tcp_sock_set_keepidle_locked(struct sock *sk, int val); int tcp_sock_set_keepidle(struct sock *sk, int val); int tcp_sock_set_keepintvl(struct sock *sk, int val); void tcp_sock_set_nodelay(struct sock *sk); void tcp_sock_set_quickack(struct sock *sk, int val); int tcp_sock_set_syncnt(struct sock *sk, int val); void tcp_sock_set_user_timeout(struct sock *sk, u32 val); #endif /* _LINUX_TCP_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_WORD_AT_A_TIME_H #define _ASM_WORD_AT_A_TIME_H #include <linux/kernel.h> /* * This is largely generic for little-endian machines, but the * optimal byte mask counting is probably going to be something * that is architecture-specific. If you have a reliably fast * bit count instruction, that might be better than the multiply * and shift, for example. */ struct word_at_a_time { const unsigned long one_bits, high_bits; }; #define WORD_AT_A_TIME_CONSTANTS { REPEAT_BYTE(0x01), REPEAT_BYTE(0x80) } #ifdef CONFIG_64BIT /* * Jan Achrenius on G+: microoptimized version of * the simpler "(mask & ONEBYTES) * ONEBYTES >> 56" * that works for the bytemasks without having to * mask them first. */ static inline long count_masked_bytes(unsigned long mask) { return mask*0x0001020304050608ul >> 56; } #else /* 32-bit case */ /* Carl Chatfield / Jan Achrenius G+ version for 32-bit */ static inline long count_masked_bytes(long mask) { /* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */ long a = (0x0ff0001+mask) >> 23; /* Fix the 1 for 00 case */ return a & mask; } #endif /* Return nonzero if it has a zero */ static inline unsigned long has_zero(unsigned long a, unsigned long *bits, const struct word_at_a_time *c) { unsigned long mask = ((a - c->one_bits) & ~a) & c->high_bits; *bits = mask; return mask; } static inline unsigned long prep_zero_mask(unsigned long a, unsigned long bits, const struct word_at_a_time *c) { return bits; } static inline unsigned long create_zero_mask(unsigned long bits) { bits = (bits - 1) & ~bits; return bits >> 7; } /* The mask we created is directly usable as a bytemask */ #define zero_bytemask(mask) (mask) static inline unsigned long find_zero(unsigned long mask) { return count_masked_bytes(mask); } /* * Load an unaligned word from kernel space. * * In the (very unlikely) case of the word being a page-crosser * and the next page not being mapped, take the exception and * return zeroes in the non-existing part. */ static inline unsigned long load_unaligned_zeropad(const void *addr) { unsigned long ret, dummy; asm( "1:\tmov %2,%0\n" "2:\n" ".section .fixup,\"ax\"\n" "3:\t" "lea %2,%1\n\t" "and %3,%1\n\t" "mov (%1),%0\n\t" "leal %2,%%ecx\n\t" "andl %4,%%ecx\n\t" "shll $3,%%ecx\n\t" "shr %%cl,%0\n\t" "jmp 2b\n" ".previous\n" _ASM_EXTABLE(1b, 3b) :"=&r" (ret),"=&c" (dummy) :"m" (*(unsigned long *)addr), "i" (-sizeof(unsigned long)), "i" (sizeof(unsigned long)-1)); return ret; } #endif /* _ASM_WORD_AT_A_TIME_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Red Black Trees (C) 1999 Andrea Arcangeli <andrea@suse.de> (C) 2002 David Woodhouse <dwmw2@infradead.org> (C) 2012 Michel Lespinasse <walken@google.com> linux/include/linux/rbtree_augmented.h */ #ifndef _LINUX_RBTREE_AUGMENTED_H #define _LINUX_RBTREE_AUGMENTED_H #include <linux/compiler.h> #include <linux/rbtree.h> #include <linux/rcupdate.h> /* * Please note - only struct rb_augment_callbacks and the prototypes for * rb_insert_augmented() and rb_erase_augmented() are intended to be public. * The rest are implementation details you are not expected to depend on. * * See Documentation/core-api/rbtree.rst for documentation and samples. */ struct rb_augment_callbacks { void (*propagate)(struct rb_node *node, struct rb_node *stop); void (*copy)(struct rb_node *old, struct rb_node *new); void (*rotate)(struct rb_node *old, struct rb_node *new); }; extern void __rb_insert_augmented(struct rb_node *node, struct rb_root *root, void (*augment_rotate)(struct rb_node *old, struct rb_node *new)); /* * Fixup the rbtree and update the augmented information when rebalancing. * * On insertion, the user must update the augmented information on the path * leading to the inserted node, then call rb_link_node() as usual and * rb_insert_augmented() instead of the usual rb_insert_color() call. * If rb_insert_augmented() rebalances the rbtree, it will callback into * a user provided function to update the augmented information on the * affected subtrees. */ static inline void rb_insert_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { __rb_insert_augmented(node, root, augment->rotate); } static inline void rb_insert_augmented_cached(struct rb_node *node, struct rb_root_cached *root, bool newleft, const struct rb_augment_callbacks *augment) { if (newleft) root->rb_leftmost = node; rb_insert_augmented(node, &root->rb_root, augment); } /* * Template for declaring augmented rbtree callbacks (generic case) * * RBSTATIC: 'static' or empty * RBNAME: name of the rb_augment_callbacks structure * RBSTRUCT: struct type of the tree nodes * RBFIELD: name of struct rb_node field within RBSTRUCT * RBAUGMENTED: name of field within RBSTRUCT holding data for subtree * RBCOMPUTE: name of function that recomputes the RBAUGMENTED data */ #define RB_DECLARE_CALLBACKS(RBSTATIC, RBNAME, \ RBSTRUCT, RBFIELD, RBAUGMENTED, RBCOMPUTE) \ static inline void \ RBNAME ## _propagate(struct rb_node *rb, struct rb_node *stop) \ { \ while (rb != stop) { \ RBSTRUCT *node = rb_entry(rb, RBSTRUCT, RBFIELD); \ if (RBCOMPUTE(node, true)) \ break; \ rb = rb_parent(&node->RBFIELD); \ } \ } \ static inline void \ RBNAME ## _copy(struct rb_node *rb_old, struct rb_node *rb_new) \ { \ RBSTRUCT *old = rb_entry(rb_old, RBSTRUCT, RBFIELD); \ RBSTRUCT *new = rb_entry(rb_new, RBSTRUCT, RBFIELD); \ new->RBAUGMENTED = old->RBAUGMENTED; \ } \ static void \ RBNAME ## _rotate(struct rb_node *rb_old, struct rb_node *rb_new) \ { \ RBSTRUCT *old = rb_entry(rb_old, RBSTRUCT, RBFIELD); \ RBSTRUCT *new = rb_entry(rb_new, RBSTRUCT, RBFIELD); \ new->RBAUGMENTED = old->RBAUGMENTED; \ RBCOMPUTE(old, false); \ } \ RBSTATIC const struct rb_augment_callbacks RBNAME = { \ .propagate = RBNAME ## _propagate, \ .copy = RBNAME ## _copy, \ .rotate = RBNAME ## _rotate \ }; /* * Template for declaring augmented rbtree callbacks, * computing RBAUGMENTED scalar as max(RBCOMPUTE(node)) for all subtree nodes. * * RBSTATIC: 'static' or empty * RBNAME: name of the rb_augment_callbacks structure * RBSTRUCT: struct type of the tree nodes * RBFIELD: name of struct rb_node field within RBSTRUCT * RBTYPE: type of the RBAUGMENTED field * RBAUGMENTED: name of RBTYPE field within RBSTRUCT holding data for subtree * RBCOMPUTE: name of function that returns the per-node RBTYPE scalar */ #define RB_DECLARE_CALLBACKS_MAX(RBSTATIC, RBNAME, RBSTRUCT, RBFIELD, \ RBTYPE, RBAUGMENTED, RBCOMPUTE) \ static inline bool RBNAME ## _compute_max(RBSTRUCT *node, bool exit) \ { \ RBSTRUCT *child; \ RBTYPE max = RBCOMPUTE(node); \ if (node->RBFIELD.rb_left) { \ child = rb_entry(node->RBFIELD.rb_left, RBSTRUCT, RBFIELD); \ if (child->RBAUGMENTED > max) \ max = child->RBAUGMENTED; \ } \ if (node->RBFIELD.rb_right) { \ child = rb_entry(node->RBFIELD.rb_right, RBSTRUCT, RBFIELD); \ if (child->RBAUGMENTED > max) \ max = child->RBAUGMENTED; \ } \ if (exit && node->RBAUGMENTED == max) \ return true; \ node->RBAUGMENTED = max; \ return false; \ } \ RB_DECLARE_CALLBACKS(RBSTATIC, RBNAME, \ RBSTRUCT, RBFIELD, RBAUGMENTED, RBNAME ## _compute_max) #define RB_RED 0 #define RB_BLACK 1 #define __rb_parent(pc) ((struct rb_node *)(pc & ~3)) #define __rb_color(pc) ((pc) & 1) #define __rb_is_black(pc) __rb_color(pc) #define __rb_is_red(pc) (!__rb_color(pc)) #define rb_color(rb) __rb_color((rb)->__rb_parent_color) #define rb_is_red(rb) __rb_is_red((rb)->__rb_parent_color) #define rb_is_black(rb) __rb_is_black((rb)->__rb_parent_color) static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p) { rb->__rb_parent_color = rb_color(rb) | (unsigned long)p; } static inline void rb_set_parent_color(struct rb_node *rb, struct rb_node *p, int color) { rb->__rb_parent_color = (unsigned long)p | color; } static inline void __rb_change_child(struct rb_node *old, struct rb_node *new, struct rb_node *parent, struct rb_root *root) { if (parent) { if (parent->rb_left == old) WRITE_ONCE(parent->rb_left, new); else WRITE_ONCE(parent->rb_right, new); } else WRITE_ONCE(root->rb_node, new); } static inline void __rb_change_child_rcu(struct rb_node *old, struct rb_node *new, struct rb_node *parent, struct rb_root *root) { if (parent) { if (parent->rb_left == old) rcu_assign_pointer(parent->rb_left, new); else rcu_assign_pointer(parent->rb_right, new); } else rcu_assign_pointer(root->rb_node, new); } extern void __rb_erase_color(struct rb_node *parent, struct rb_root *root, void (*augment_rotate)(struct rb_node *old, struct rb_node *new)); static __always_inline struct rb_node * __rb_erase_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { struct rb_node *child = node->rb_right; struct rb_node *tmp = node->rb_left; struct rb_node *parent, *rebalance; unsigned long pc; if (!tmp) { /* * Case 1: node to erase has no more than 1 child (easy!) * * Note that if there is one child it must be red due to 5) * and node must be black due to 4). We adjust colors locally * so as to bypass __rb_erase_color() later on. */ pc = node->__rb_parent_color; parent = __rb_parent(pc); __rb_change_child(node, child, parent, root); if (child) { child->__rb_parent_color = pc; rebalance = NULL; } else rebalance = __rb_is_black(pc) ? parent : NULL; tmp = parent; } else if (!child) { /* Still case 1, but this time the child is node->rb_left */ tmp->__rb_parent_color = pc = node->__rb_parent_color; parent = __rb_parent(pc); __rb_change_child(node, tmp, parent, root); rebalance = NULL; tmp = parent; } else { struct rb_node *successor = child, *child2; tmp = child->rb_left; if (!tmp) { /* * Case 2: node's successor is its right child * * (n) (s) * / \ / \ * (x) (s) -> (x) (c) * \ * (c) */ parent = successor; child2 = successor->rb_right; augment->copy(node, successor); } else { /* * Case 3: node's successor is leftmost under * node's right child subtree * * (n) (s) * / \ / \ * (x) (y) -> (x) (y) * / / * (p) (p) * / / * (s) (c) * \ * (c) */ do { parent = successor; successor = tmp; tmp = tmp->rb_left; } while (tmp); child2 = successor->rb_right; WRITE_ONCE(parent->rb_left, child2); WRITE_ONCE(successor->rb_right, child); rb_set_parent(child, successor); augment->copy(node, successor); augment->propagate(parent, successor); } tmp = node->rb_left; WRITE_ONCE(successor->rb_left, tmp); rb_set_parent(tmp, successor); pc = node->__rb_parent_color; tmp = __rb_parent(pc); __rb_change_child(node, successor, tmp, root); if (child2) { rb_set_parent_color(child2, parent, RB_BLACK); rebalance = NULL; } else { rebalance = rb_is_black(successor) ? parent : NULL; } successor->__rb_parent_color = pc; tmp = successor; } augment->propagate(tmp, NULL); return rebalance; } static __always_inline void rb_erase_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { struct rb_node *rebalance = __rb_erase_augmented(node, root, augment); if (rebalance) __rb_erase_color(rebalance, root, augment->rotate); } static __always_inline void rb_erase_augmented_cached(struct rb_node *node, struct rb_root_cached *root, const struct rb_augment_callbacks *augment) { if (root->rb_leftmost == node) root->rb_leftmost = rb_next(node); rb_erase_augmented(node, &root->rb_root, augment); } #endif /* _LINUX_RBTREE_AUGMENTED_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 // SPDX-License-Identifier: GPL-2.0-only /* * (C) 1997 Linus Torvalds * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) */ #include <linux/export.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/backing-dev.h> #include <linux/hash.h> #include <linux/swap.h> #include <linux/security.h> #include <linux/cdev.h> #include <linux/memblock.h> #include <linux/fscrypt.h> #include <linux/fsnotify.h> #include <linux/mount.h> #include <linux/posix_acl.h> #include <linux/prefetch.h> #include <linux/buffer_head.h> /* for inode_has_buffers */ #include <linux/ratelimit.h> #include <linux/list_lru.h> #include <linux/iversion.h> #include <trace/events/writeback.h> #include "internal.h" /* * Inode locking rules: * * inode->i_lock protects: * inode->i_state, inode->i_hash, __iget() * Inode LRU list locks protect: * inode->i_sb->s_inode_lru, inode->i_lru * inode->i_sb->s_inode_list_lock protects: * inode->i_sb->s_inodes, inode->i_sb_list * bdi->wb.list_lock protects: * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list * inode_hash_lock protects: * inode_hashtable, inode->i_hash * * Lock ordering: * * inode->i_sb->s_inode_list_lock * inode->i_lock * Inode LRU list locks * * bdi->wb.list_lock * inode->i_lock * * inode_hash_lock * inode->i_sb->s_inode_list_lock * inode->i_lock * * iunique_lock * inode_hash_lock */ static unsigned int i_hash_mask __read_mostly; static unsigned int i_hash_shift __read_mostly; static struct hlist_head *inode_hashtable __read_mostly; static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); /* * Empty aops. Can be used for the cases where the user does not * define any of the address_space operations. */ const struct address_space_operations empty_aops = { }; EXPORT_SYMBOL(empty_aops); /* * Statistics gathering.. */ struct inodes_stat_t inodes_stat; static DEFINE_PER_CPU(unsigned long, nr_inodes); static DEFINE_PER_CPU(unsigned long, nr_unused); static struct kmem_cache *inode_cachep __read_mostly; static long get_nr_inodes(void) { int i; long sum = 0; for_each_possible_cpu(i) sum += per_cpu(nr_inodes, i); return sum < 0 ? 0 : sum; } static inline long get_nr_inodes_unused(void) { int i; long sum = 0; for_each_possible_cpu(i) sum += per_cpu(nr_unused, i); return sum < 0 ? 0 : sum; } long get_nr_dirty_inodes(void) { /* not actually dirty inodes, but a wild approximation */ long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); return nr_dirty > 0 ? nr_dirty : 0; } /* * Handle nr_inode sysctl */ #ifdef CONFIG_SYSCTL int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { inodes_stat.nr_inodes = get_nr_inodes(); inodes_stat.nr_unused = get_nr_inodes_unused(); return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); } #endif static int no_open(struct inode *inode, struct file *file) { return -ENXIO; } /** * inode_init_always - perform inode structure initialisation * @sb: superblock inode belongs to * @inode: inode to initialise * * These are initializations that need to be done on every inode * allocation as the fields are not initialised by slab allocation. */ int inode_init_always(struct super_block *sb, struct inode *inode) { static const struct inode_operations empty_iops; static const struct file_operations no_open_fops = {.open = no_open}; struct address_space *const mapping = &inode->i_data; inode->i_sb = sb; inode->i_blkbits = sb->s_blocksize_bits; inode->i_flags = 0; atomic64_set(&inode->i_sequence, 0); atomic_set(&inode->i_count, 1); inode->i_op = &empty_iops; inode->i_fop = &no_open_fops; inode->__i_nlink = 1; inode->i_opflags = 0; if (sb->s_xattr) inode->i_opflags |= IOP_XATTR; i_uid_write(inode, 0); i_gid_write(inode, 0); atomic_set(&inode->i_writecount, 0); inode->i_size = 0; inode->i_write_hint = WRITE_LIFE_NOT_SET; inode->i_blocks = 0; inode->i_bytes = 0; inode->i_generation = 0; inode->i_pipe = NULL; inode->i_bdev = NULL; inode->i_cdev = NULL; inode->i_link = NULL; inode->i_dir_seq = 0; inode->i_rdev = 0; inode->dirtied_when = 0; #ifdef CONFIG_CGROUP_WRITEBACK inode->i_wb_frn_winner = 0; inode->i_wb_frn_avg_time = 0; inode->i_wb_frn_history = 0; #endif if (security_inode_alloc(inode)) goto out; spin_lock_init(&inode->i_lock); lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); init_rwsem(&inode->i_rwsem); lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); atomic_set(&inode->i_dio_count, 0); mapping->a_ops = &empty_aops; mapping->host = inode; mapping->flags = 0; if (sb->s_type->fs_flags & FS_THP_SUPPORT) __set_bit(AS_THP_SUPPORT, &mapping->flags); mapping->wb_err = 0; atomic_set(&mapping->i_mmap_writable, 0); #ifdef CONFIG_READ_ONLY_THP_FOR_FS atomic_set(&mapping->nr_thps, 0); #endif mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); mapping->private_data = NULL; mapping->writeback_index = 0; inode->i_private = NULL; inode->i_mapping = mapping; INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ #ifdef CONFIG_FS_POSIX_ACL inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; #endif #ifdef CONFIG_FSNOTIFY inode->i_fsnotify_mask = 0; #endif inode->i_flctx = NULL; this_cpu_inc(nr_inodes); return 0; out: return -ENOMEM; } EXPORT_SYMBOL(inode_init_always); void free_inode_nonrcu(struct inode *inode) { kmem_cache_free(inode_cachep, inode); } EXPORT_SYMBOL(free_inode_nonrcu); static void i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); if (inode->free_inode) inode->free_inode(inode); else free_inode_nonrcu(inode); } static struct inode *alloc_inode(struct super_block *sb) { const struct super_operations *ops = sb->s_op; struct inode *inode; if (ops->alloc_inode) inode = ops->alloc_inode(sb); else inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); if (!inode) return NULL; if (unlikely(inode_init_always(sb, inode))) { if (ops->destroy_inode) { ops->destroy_inode(inode); if (!ops->free_inode) return NULL; } inode->free_inode = ops->free_inode; i_callback(&inode->i_rcu); return NULL; } return inode; } void __destroy_inode(struct inode *inode) { BUG_ON(inode_has_buffers(inode)); inode_detach_wb(inode); security_inode_free(inode); fsnotify_inode_delete(inode); locks_free_lock_context(inode); if (!inode->i_nlink) { WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); atomic_long_dec(&inode->i_sb->s_remove_count); } #ifdef CONFIG_FS_POSIX_ACL if (inode->i_acl && !is_uncached_acl(inode->i_acl)) posix_acl_release(inode->i_acl); if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) posix_acl_release(inode->i_default_acl); #endif this_cpu_dec(nr_inodes); } EXPORT_SYMBOL(__destroy_inode); static void destroy_inode(struct inode *inode) { const struct super_operations *ops = inode->i_sb->s_op; BUG_ON(!list_empty(&inode->i_lru)); __destroy_inode(inode); if (ops->destroy_inode) { ops->destroy_inode(inode); if (!ops->free_inode) return; } inode->free_inode = ops->free_inode; call_rcu(&inode->i_rcu, i_callback); } /** * drop_nlink - directly drop an inode's link count * @inode: inode * * This is a low-level filesystem helper to replace any * direct filesystem manipulation of i_nlink. In cases * where we are attempting to track writes to the * filesystem, a decrement to zero means an imminent * write when the file is truncated and actually unlinked * on the filesystem. */ void drop_nlink(struct inode *inode) { WARN_ON(inode->i_nlink == 0); inode->__i_nlink--; if (!inode->i_nlink) atomic_long_inc(&inode->i_sb->s_remove_count); } EXPORT_SYMBOL(drop_nlink); /** * clear_nlink - directly zero an inode's link count * @inode: inode * * This is a low-level filesystem helper to replace any * direct filesystem manipulation of i_nlink. See * drop_nlink() for why we care about i_nlink hitting zero. */ void clear_nlink(struct inode *inode) { if (inode->i_nlink) { inode->__i_nlink = 0; atomic_long_inc(&inode->i_sb->s_remove_count); } } EXPORT_SYMBOL(clear_nlink); /** * set_nlink - directly set an inode's link count * @inode: inode * @nlink: new nlink (should be non-zero) * * This is a low-level filesystem helper to replace any * direct filesystem manipulation of i_nlink. */ void set_nlink(struct inode *inode, unsigned int nlink) { if (!nlink) { clear_nlink(inode); } else { /* Yes, some filesystems do change nlink from zero to one */ if (inode->i_nlink == 0) atomic_long_dec(&inode->i_sb->s_remove_count); inode->__i_nlink = nlink; } } EXPORT_SYMBOL(set_nlink); /** * inc_nlink - directly increment an inode's link count * @inode: inode * * This is a low-level filesystem helper to replace any * direct filesystem manipulation of i_nlink. Currently, * it is only here for parity with dec_nlink(). */ void inc_nlink(struct inode *inode) { if (unlikely(inode->i_nlink == 0)) { WARN_ON(!(inode->i_state & I_LINKABLE)); atomic_long_dec(&inode->i_sb->s_remove_count); } inode->__i_nlink++; } EXPORT_SYMBOL(inc_nlink); static void __address_space_init_once(struct address_space *mapping) { xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); init_rwsem(&mapping->i_mmap_rwsem); INIT_LIST_HEAD(&mapping->private_list); spin_lock_init(&mapping->private_lock); mapping->i_mmap = RB_ROOT_CACHED; } void address_space_init_once(struct address_space *mapping) { memset(mapping, 0, sizeof(*mapping)); __address_space_init_once(mapping); } EXPORT_SYMBOL(address_space_init_once); /* * These are initializations that only need to be done * once, because the fields are idempotent across use * of the inode, so let the slab aware of that. */ void inode_init_once(struct inode *inode) { memset(inode, 0, sizeof(*inode)); INIT_HLIST_NODE(&inode->i_hash); INIT_LIST_HEAD(&inode->i_devices); INIT_LIST_HEAD(&inode->i_io_list); INIT_LIST_HEAD(&inode->i_wb_list); INIT_LIST_HEAD(&inode->i_lru); __address_space_init_once(&inode->i_data); i_size_ordered_init(inode); } EXPORT_SYMBOL(inode_init_once); static void init_once(void *foo) { struct inode *inode = (struct inode *) foo; inode_init_once(inode); } /* * inode->i_lock must be held */ void __iget(struct inode *inode) { atomic_inc(&inode->i_count); } /* * get additional reference to inode; caller must already hold one. */ void ihold(struct inode *inode) { WARN_ON(atomic_inc_return(&inode->i_count) < 2); } EXPORT_SYMBOL(ihold); static void inode_lru_list_add(struct inode *inode) { if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) this_cpu_inc(nr_unused); else inode->i_state |= I_REFERENCED; } /* * Add inode to LRU if needed (inode is unused and clean). * * Needs inode->i_lock held. */ void inode_add_lru(struct inode *inode) { if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) && !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE) inode_lru_list_add(inode); } static void inode_lru_list_del(struct inode *inode) { if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) this_cpu_dec(nr_unused); } /** * inode_sb_list_add - add inode to the superblock list of inodes * @inode: inode to add */ void inode_sb_list_add(struct inode *inode) { spin_lock(&inode->i_sb->s_inode_list_lock); list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); spin_unlock(&inode->i_sb->s_inode_list_lock); } EXPORT_SYMBOL_GPL(inode_sb_list_add); static inline void inode_sb_list_del(struct inode *inode) { if (!list_empty(&inode->i_sb_list)) { spin_lock(&inode->i_sb->s_inode_list_lock); list_del_init(&inode->i_sb_list); spin_unlock(&inode->i_sb->s_inode_list_lock); } } static unsigned long hash(struct super_block *sb, unsigned long hashval) { unsigned long tmp; tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / L1_CACHE_BYTES; tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); return tmp & i_hash_mask; } /** * __insert_inode_hash - hash an inode * @inode: unhashed inode * @hashval: unsigned long value used to locate this object in the * inode_hashtable. * * Add an inode to the inode hash for this superblock. */ void __insert_inode_hash(struct inode *inode, unsigned long hashval) { struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); spin_lock(&inode_hash_lock); spin_lock(&inode->i_lock); hlist_add_head_rcu(&inode->i_hash, b); spin_unlock(&inode->i_lock); spin_unlock(&inode_hash_lock); } EXPORT_SYMBOL(__insert_inode_hash); /** * __remove_inode_hash - remove an inode from the hash * @inode: inode to unhash * * Remove an inode from the superblock. */ void __remove_inode_hash(struct inode *inode) { spin_lock(&inode_hash_lock); spin_lock(&inode->i_lock); hlist_del_init_rcu(&inode->i_hash); spin_unlock(&inode->i_lock); spin_unlock(&inode_hash_lock); } EXPORT_SYMBOL(__remove_inode_hash); void clear_inode(struct inode *inode) { /* * We have to cycle the i_pages lock here because reclaim can be in the * process of removing the last page (in __delete_from_page_cache()) * and we must not free the mapping under it. */ xa_lock_irq(&inode->i_data.i_pages); BUG_ON(inode->i_data.nrpages); BUG_ON(inode->i_data.nrexceptional); xa_unlock_irq(&inode->i_data.i_pages); BUG_ON(!list_empty(&inode->i_data.private_list)); BUG_ON(!(inode->i_state & I_FREEING)); BUG_ON(inode->i_state & I_CLEAR); BUG_ON(!list_empty(&inode->i_wb_list)); /* don't need i_lock here, no concurrent mods to i_state */ inode->i_state = I_FREEING | I_CLEAR; } EXPORT_SYMBOL(clear_inode); /* * Free the inode passed in, removing it from the lists it is still connected * to. We remove any pages still attached to the inode and wait for any IO that * is still in progress before finally destroying the inode. * * An inode must already be marked I_FREEING so that we avoid the inode being * moved back onto lists if we race with other code that manipulates the lists * (e.g. writeback_single_inode). The caller is responsible for setting this. * * An inode must already be removed from the LRU list before being evicted from * the cache. This should occur atomically with setting the I_FREEING state * flag, so no inodes here should ever be on the LRU when being evicted. */ static void evict(struct inode *inode) { const struct super_operations *op = inode->i_sb->s_op; BUG_ON(!(inode->i_state & I_FREEING)); BUG_ON(!list_empty(&inode->i_lru)); if (!list_empty(&inode->i_io_list)) inode_io_list_del(inode); inode_sb_list_del(inode); /* * Wait for flusher thread to be done with the inode so that filesystem * does not start destroying it while writeback is still running. Since * the inode has I_FREEING set, flusher thread won't start new work on * the inode. We just have to wait for running writeback to finish. */ inode_wait_for_writeback(inode); if (op->evict_inode) { op->evict_inode(inode); } else { truncate_inode_pages_final(&inode->i_data); clear_inode(inode); } if (S_ISBLK(inode->i_mode) && inode->i_bdev) bd_forget(inode); if (S_ISCHR(inode->i_mode) && inode->i_cdev) cd_forget(inode); remove_inode_hash(inode); spin_lock(&inode->i_lock); wake_up_bit(&inode->i_state, __I_NEW); BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); spin_unlock(&inode->i_lock); destroy_inode(inode); } /* * dispose_list - dispose of the contents of a local list * @head: the head of the list to free * * Dispose-list gets a local list with local inodes in it, so it doesn't * need to worry about list corruption and SMP locks. */ static void dispose_list(struct list_head *head) { while (!list_empty(head)) { struct inode *inode; inode = list_first_entry(head, struct inode, i_lru); list_del_init(&inode->i_lru); evict(inode); cond_resched(); } } /** * evict_inodes - evict all evictable inodes for a superblock * @sb: superblock to operate on * * Make sure that no inodes with zero refcount are retained. This is * called by superblock shutdown after having SB_ACTIVE flag removed, * so any inode reaching zero refcount during or after that call will * be immediately evicted. */ void evict_inodes(struct super_block *sb) { struct inode *inode, *next; LIST_HEAD(dispose); again: spin_lock(&sb->s_inode_list_lock); list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { if (atomic_read(&inode->i_count)) continue; spin_lock(&inode->i_lock); if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { spin_unlock(&inode->i_lock); continue; } inode->i_state |= I_FREEING; inode_lru_list_del(inode); spin_unlock(&inode->i_lock); list_add(&inode->i_lru, &dispose); /* * We can have a ton of inodes to evict at unmount time given * enough memory, check to see if we need to go to sleep for a * bit so we don't livelock. */ if (need_resched()) { spin_unlock(&sb->s_inode_list_lock); cond_resched(); dispose_list(&dispose); goto again; } } spin_unlock(&sb->s_inode_list_lock); dispose_list(&dispose); } EXPORT_SYMBOL_GPL(evict_inodes); /** * invalidate_inodes - attempt to free all inodes on a superblock * @sb: superblock to operate on * @kill_dirty: flag to guide handling of dirty inodes * * Attempts to free all inodes for a given superblock. If there were any * busy inodes return a non-zero value, else zero. * If @kill_dirty is set, discard dirty inodes too, otherwise treat * them as busy. */ int invalidate_inodes(struct super_block *sb, bool kill_dirty) { int busy = 0; struct inode *inode, *next; LIST_HEAD(dispose); again: spin_lock(&sb->s_inode_list_lock); list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { spin_lock(&inode->i_lock); if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { spin_unlock(&inode->i_lock); continue; } if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { spin_unlock(&inode->i_lock); busy = 1; continue; } if (atomic_read(&inode->i_count)) { spin_unlock(&inode->i_lock); busy = 1; continue; } inode->i_state |= I_FREEING; inode_lru_list_del(inode); spin_unlock(&inode->i_lock); list_add(&inode->i_lru, &dispose); if (need_resched()) { spin_unlock(&sb->s_inode_list_lock); cond_resched(); dispose_list(&dispose); goto again; } } spin_unlock(&sb->s_inode_list_lock); dispose_list(&dispose); return busy; } /* * Isolate the inode from the LRU in preparation for freeing it. * * Any inodes which are pinned purely because of attached pagecache have their * pagecache removed. If the inode has metadata buffers attached to * mapping->private_list then try to remove them. * * If the inode has the I_REFERENCED flag set, then it means that it has been * used recently - the flag is set in iput_final(). When we encounter such an * inode, clear the flag and move it to the back of the LRU so it gets another * pass through the LRU before it gets reclaimed. This is necessary because of * the fact we are doing lazy LRU updates to minimise lock contention so the * LRU does not have strict ordering. Hence we don't want to reclaim inodes * with this flag set because they are the inodes that are out of order. */ static enum lru_status inode_lru_isolate(struct list_head *item, struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) { struct list_head *freeable = arg; struct inode *inode = container_of(item, struct inode, i_lru); /* * we are inverting the lru lock/inode->i_lock here, so use a trylock. * If we fail to get the lock, just skip it. */ if (!spin_trylock(&inode->i_lock)) return LRU_SKIP; /* * Referenced or dirty inodes are still in use. Give them another pass * through the LRU as we canot reclaim them now. */ if (atomic_read(&inode->i_count) || (inode->i_state & ~I_REFERENCED)) { list_lru_isolate(lru, &inode->i_lru); spin_unlock(&inode->i_lock); this_cpu_dec(nr_unused); return LRU_REMOVED; } /* recently referenced inodes get one more pass */ if (inode->i_state & I_REFERENCED) { inode->i_state &= ~I_REFERENCED; spin_unlock(&inode->i_lock); return LRU_ROTATE; } if (inode_has_buffers(inode) || inode->i_data.nrpages) { __iget(inode); spin_unlock(&inode->i_lock); spin_unlock(lru_lock); if (remove_inode_buffers(inode)) { unsigned long reap; reap = invalidate_mapping_pages(&inode->i_data, 0, -1); if (current_is_kswapd()) __count_vm_events(KSWAPD_INODESTEAL, reap); else __count_vm_events(PGINODESTEAL, reap); if (current->reclaim_state) current->reclaim_state->reclaimed_slab += reap; } iput(inode); spin_lock(lru_lock); return LRU_RETRY; } WARN_ON(inode->i_state & I_NEW); inode->i_state |= I_FREEING; list_lru_isolate_move(lru, &inode->i_lru, freeable); spin_unlock(&inode->i_lock); this_cpu_dec(nr_unused); return LRU_REMOVED; } /* * Walk the superblock inode LRU for freeable inodes and attempt to free them. * This is called from the superblock shrinker function with a number of inodes * to trim from the LRU. Inodes to be freed are moved to a temporary list and * then are freed outside inode_lock by dispose_list(). */ long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) { LIST_HEAD(freeable); long freed; freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, inode_lru_isolate, &freeable); dispose_list(&freeable); return freed; } static void __wait_on_freeing_inode(struct inode *inode); /* * Called with the inode lock held. */ static struct inode *find_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) { struct inode *inode = NULL; repeat: hlist_for_each_entry(inode, head, i_hash) { if (inode->i_sb != sb) continue; if (!test(inode, data)) continue; spin_lock(&inode->i_lock); if (inode->i_state & (I_FREEING|I_WILL_FREE)) { __wait_on_freeing_inode(inode); goto repeat; } if (unlikely(inode->i_state & I_CREATING)) { spin_unlock(&inode->i_lock); return ERR_PTR(-ESTALE); } __iget(inode); spin_unlock(&inode->i_lock); return inode; } return NULL; } /* * find_inode_fast is the fast path version of find_inode, see the comment at * iget_locked for details. */ static struct inode *find_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) { struct inode *inode = NULL; repeat: hlist_for_each_entry(inode, head, i_hash) { if (inode->i_ino != ino) continue; if (inode->i_sb != sb) continue; spin_lock(&inode->i_lock); if (inode->i_state & (I_FREEING|I_WILL_FREE)) { __wait_on_freeing_inode(inode); goto repeat; } if (unlikely(inode->i_state & I_CREATING)) { spin_unlock(&inode->i_lock); return ERR_PTR(-ESTALE); } __iget(inode); spin_unlock(&inode->i_lock); return inode; } return NULL; } /* * Each cpu owns a range of LAST_INO_BATCH numbers. * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, * to renew the exhausted range. * * This does not significantly increase overflow rate because every CPU can * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the * 2^32 range, and is a worst-case. Even a 50% wastage would only increase * overflow rate by 2x, which does not seem too significant. * * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW * error if st_ino won't fit in target struct field. Use 32bit counter * here to attempt to avoid that. */ #define LAST_INO_BATCH 1024 static DEFINE_PER_CPU(unsigned int, last_ino); unsigned int get_next_ino(void) { unsigned int *p = &get_cpu_var(last_ino); unsigned int res = *p; #ifdef CONFIG_SMP if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { static atomic_t shared_last_ino; int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); res = next - LAST_INO_BATCH; } #endif res++; /* get_next_ino should not provide a 0 inode number */ if (unlikely(!res)) res++; *p = res; put_cpu_var(last_ino); return res; } EXPORT_SYMBOL(get_next_ino); /** * new_inode_pseudo - obtain an inode * @sb: superblock * * Allocates a new inode for given superblock. * Inode wont be chained in superblock s_inodes list * This means : * - fs can't be unmount * - quotas, fsnotify, writeback can't work */ struct inode *new_inode_pseudo(struct super_block *sb) { struct inode *inode = alloc_inode(sb); if (inode) { spin_lock(&inode->i_lock); inode->i_state = 0; spin_unlock(&inode->i_lock); INIT_LIST_HEAD(&inode->i_sb_list); } return inode; } /** * new_inode - obtain an inode * @sb: superblock * * Allocates a new inode for given superblock. The default gfp_mask * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. * If HIGHMEM pages are unsuitable or it is known that pages allocated * for the page cache are not reclaimable or migratable, * mapping_set_gfp_mask() must be called with suitable flags on the * newly created inode's mapping * */ struct inode *new_inode(struct super_block *sb) { struct inode *inode; spin_lock_prefetch(&sb->s_inode_list_lock); inode = new_inode_pseudo(sb); if (inode) inode_sb_list_add(inode); return inode; } EXPORT_SYMBOL(new_inode); #ifdef CONFIG_DEBUG_LOCK_ALLOC void lockdep_annotate_inode_mutex_key(struct inode *inode) { if (S_ISDIR(inode->i_mode)) { struct file_system_type *type = inode->i_sb->s_type; /* Set new key only if filesystem hasn't already changed it */ if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { /* * ensure nobody is actually holding i_mutex */ // mutex_destroy(&inode->i_mutex); init_rwsem(&inode->i_rwsem); lockdep_set_class(&inode->i_rwsem, &type->i_mutex_dir_key); } } } EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); #endif /** * unlock_new_inode - clear the I_NEW state and wake up any waiters * @inode: new inode to unlock * * Called when the inode is fully initialised to clear the new state of the * inode and wake up anyone waiting for the inode to finish initialisation. */ void unlock_new_inode(struct inode *inode) { lockdep_annotate_inode_mutex_key(inode); spin_lock(&inode->i_lock); WARN_ON(!(inode->i_state & I_NEW)); inode->i_state &= ~I_NEW & ~I_CREATING; smp_mb(); wake_up_bit(&inode->i_state, __I_NEW); spin_unlock(&inode->i_lock); } EXPORT_SYMBOL(unlock_new_inode); void discard_new_inode(struct inode *inode) { lockdep_annotate_inode_mutex_key(inode); spin_lock(&inode->i_lock); WARN_ON(!(inode->i_state & I_NEW)); inode->i_state &= ~I_NEW; smp_mb(); wake_up_bit(&inode->i_state, __I_NEW); spin_unlock(&inode->i_lock); iput(inode); } EXPORT_SYMBOL(discard_new_inode); /** * lock_two_nondirectories - take two i_mutexes on non-directory objects * * Lock any non-NULL argument that is not a directory. * Zero, one or two objects may be locked by this function. * * @inode1: first inode to lock * @inode2: second inode to lock */ void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) { if (inode1 > inode2) swap(inode1, inode2); if (inode1 && !S_ISDIR(inode1->i_mode)) inode_lock(inode1); if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) inode_lock_nested(inode2, I_MUTEX_NONDIR2); } EXPORT_SYMBOL(lock_two_nondirectories); /** * unlock_two_nondirectories - release locks from lock_two_nondirectories() * @inode1: first inode to unlock * @inode2: second inode to unlock */ void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) { if (inode1 && !S_ISDIR(inode1->i_mode)) inode_unlock(inode1); if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) inode_unlock(inode2); } EXPORT_SYMBOL(unlock_two_nondirectories); /** * inode_insert5 - obtain an inode from a mounted file system * @inode: pre-allocated inode to use for insert to cache * @hashval: hash value (usually inode number) to get * @test: callback used for comparisons between inodes * @set: callback used to initialize a new struct inode * @data: opaque data pointer to pass to @test and @set * * Search for the inode specified by @hashval and @data in the inode cache, * and if present it is return it with an increased reference count. This is * a variant of iget5_locked() for callers that don't want to fail on memory * allocation of inode. * * If the inode is not in cache, insert the pre-allocated inode to cache and * return it locked, hashed, and with the I_NEW flag set. The file system gets * to fill it in before unlocking it via unlock_new_inode(). * * Note both @test and @set are called with the inode_hash_lock held, so can't * sleep. */ struct inode *inode_insert5(struct inode *inode, unsigned long hashval, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) { struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); struct inode *old; bool creating = inode->i_state & I_CREATING; again: spin_lock(&inode_hash_lock); old = find_inode(inode->i_sb, head, test, data); if (unlikely(old)) { /* * Uhhuh, somebody else created the same inode under us. * Use the old inode instead of the preallocated one. */ spin_unlock(&inode_hash_lock); if (IS_ERR(old)) return NULL; wait_on_inode(old); if (unlikely(inode_unhashed(old))) { iput(old); goto again; } return old; } if (set && unlikely(set(inode, data))) { inode = NULL; goto unlock; } /* * Return the locked inode with I_NEW set, the * caller is responsible for filling in the contents */ spin_lock(&inode->i_lock); inode->i_state |= I_NEW; hlist_add_head_rcu(&inode->i_hash, head); spin_unlock(&inode->i_lock); if (!creating) inode_sb_list_add(inode); unlock: spin_unlock(&inode_hash_lock); return inode; } EXPORT_SYMBOL(inode_insert5); /** * iget5_locked - obtain an inode from a mounted file system * @sb: super block of file system * @hashval: hash value (usually inode number) to get * @test: callback used for comparisons between inodes * @set: callback used to initialize a new struct inode * @data: opaque data pointer to pass to @test and @set * * Search for the inode specified by @hashval and @data in the inode cache, * and if present it is return it with an increased reference count. This is * a generalized version of iget_locked() for file systems where the inode * number is not sufficient for unique identification of an inode. * * If the inode is not in cache, allocate a new inode and return it locked, * hashed, and with the I_NEW flag set. The file system gets to fill it in * before unlocking it via unlock_new_inode(). * * Note both @test and @set are called with the inode_hash_lock held, so can't * sleep. */ struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) { struct inode *inode = ilookup5(sb, hashval, test, data); if (!inode) { struct inode *new = alloc_inode(sb); if (new) { new->i_state = 0; inode = inode_insert5(new, hashval, test, set, data); if (unlikely(inode != new)) destroy_inode(new); } } return inode; } EXPORT_SYMBOL(iget5_locked); /** * iget_locked - obtain an inode from a mounted file system * @sb: super block of file system * @ino: inode number to get * * Search for the inode specified by @ino in the inode cache and if present * return it with an increased reference count. This is for file systems * where the inode number is sufficient for unique identification of an inode. * * If the inode is not in cache, allocate a new inode and return it locked, * hashed, and with the I_NEW flag set. The file system gets to fill it in * before unlocking it via unlock_new_inode(). */ struct inode *iget_locked(struct super_block *sb, unsigned long ino) { struct hlist_head *head = inode_hashtable + hash(sb, ino); struct inode *inode; again: spin_lock(&inode_hash_lock); inode = find_inode_fast(sb, head, ino); spin_unlock(&inode_hash_lock); if (inode) { if (IS_ERR(inode)) return NULL; wait_on_inode(inode); if (unlikely(inode_unhashed(inode))) { iput(inode); goto again; } return inode; } inode = alloc_inode(sb); if (inode) { struct inode *old; spin_lock(&inode_hash_lock); /* We released the lock, so.. */ old = find_inode_fast(sb, head, ino); if (!old) { inode->i_ino = ino; spin_lock(&inode->i_lock); inode->i_state = I_NEW; hlist_add_head_rcu(&inode->i_hash, head); spin_unlock(&inode->i_lock); inode_sb_list_add(inode); spin_unlock(&inode_hash_lock); /* Return the locked inode with I_NEW set, the * caller is responsible for filling in the contents */ return inode; } /* * Uhhuh, somebody else created the same inode under * us. Use the old inode instead of the one we just * allocated. */ spin_unlock(&inode_hash_lock); destroy_inode(inode); if (IS_ERR(old)) return NULL; inode = old; wait_on_inode(inode); if (unlikely(inode_unhashed(inode))) { iput(inode); goto again; } } return inode; } EXPORT_SYMBOL(iget_locked); /* * search the inode cache for a matching inode number. * If we find one, then the inode number we are trying to * allocate is not unique and so we should not use it. * * Returns 1 if the inode number is unique, 0 if it is not. */ static int test_inode_iunique(struct super_block *sb, unsigned long ino) { struct hlist_head *b = inode_hashtable + hash(sb, ino); struct inode *inode; hlist_for_each_entry_rcu(inode, b, i_hash) { if (inode->i_ino == ino && inode->i_sb == sb) return 0; } return 1; } /** * iunique - get a unique inode number * @sb: superblock * @max_reserved: highest reserved inode number * * Obtain an inode number that is unique on the system for a given * superblock. This is used by file systems that have no natural * permanent inode numbering system. An inode number is returned that * is higher than the reserved limit but unique. * * BUGS: * With a large number of inodes live on the file system this function * currently becomes quite slow. */ ino_t iunique(struct super_block *sb, ino_t max_reserved) { /* * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW * error if st_ino won't fit in target struct field. Use 32bit counter * here to attempt to avoid that. */ static DEFINE_SPINLOCK(iunique_lock); static unsigned int counter; ino_t res; rcu_read_lock(); spin_lock(&iunique_lock); do { if (counter <= max_reserved) counter = max_reserved + 1; res = counter++; } while (!test_inode_iunique(sb, res)); spin_unlock(&iunique_lock); rcu_read_unlock(); return res; } EXPORT_SYMBOL(iunique); struct inode *igrab(struct inode *inode) { spin_lock(&inode->i_lock); if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { __iget(inode); spin_unlock(&inode->i_lock); } else { spin_unlock(&inode->i_lock); /* * Handle the case where s_op->clear_inode is not been * called yet, and somebody is calling igrab * while the inode is getting freed. */ inode = NULL; } return inode; } EXPORT_SYMBOL(igrab); /** * ilookup5_nowait - search for an inode in the inode cache * @sb: super block of file system to search * @hashval: hash value (usually inode number) to search for * @test: callback used for comparisons between inodes * @data: opaque data pointer to pass to @test * * Search for the inode specified by @hashval and @data in the inode cache. * If the inode is in the cache, the inode is returned with an incremented * reference count. * * Note: I_NEW is not waited upon so you have to be very careful what you do * with the returned inode. You probably should be using ilookup5() instead. * * Note2: @test is called with the inode_hash_lock held, so can't sleep. */ struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data) { struct hlist_head *head = inode_hashtable + hash(sb, hashval); struct inode *inode; spin_lock(&inode_hash_lock); inode = find_inode(sb, head, test, data); spin_unlock(&inode_hash_lock); return IS_ERR(inode) ? NULL : inode; } EXPORT_SYMBOL(ilookup5_nowait); /** * ilookup5 - search for an inode in the inode cache * @sb: super block of file system to search * @hashval: hash value (usually inode number) to search for * @test: callback used for comparisons between inodes * @data: opaque data pointer to pass to @test * * Search for the inode specified by @hashval and @data in the inode cache, * and if the inode is in the cache, return the inode with an incremented * reference count. Waits on I_NEW before returning the inode. * returned with an incremented reference count. * * This is a generalized version of ilookup() for file systems where the * inode number is not sufficient for unique identification of an inode. * * Note: @test is called with the inode_hash_lock held, so can't sleep. */ struct inode *ilookup5(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data) { struct inode *inode; again: inode = ilookup5_nowait(sb, hashval, test, data); if (inode) { wait_on_inode(inode); if (unlikely(inode_unhashed(inode))) { iput(inode); goto again; } } return inode; } EXPORT_SYMBOL(ilookup5); /** * ilookup - search for an inode in the inode cache * @sb: super block of file system to search * @ino: inode number to search for * * Search for the inode @ino in the inode cache, and if the inode is in the * cache, the inode is returned with an incremented reference count. */ struct inode *ilookup(struct super_block *sb, unsigned long ino) { struct hlist_head *head = inode_hashtable + hash(sb, ino); struct inode *inode; again: spin_lock(&inode_hash_lock); inode = find_inode_fast(sb, head, ino); spin_unlock(&inode_hash_lock); if (inode) { if (IS_ERR(inode)) return NULL; wait_on_inode(inode); if (unlikely(inode_unhashed(inode))) { iput(inode); goto again; } } return inode; } EXPORT_SYMBOL(ilookup); /** * find_inode_nowait - find an inode in the inode cache * @sb: super block of file system to search * @hashval: hash value (usually inode number) to search for * @match: callback used for comparisons between inodes * @data: opaque data pointer to pass to @match * * Search for the inode specified by @hashval and @data in the inode * cache, where the helper function @match will return 0 if the inode * does not match, 1 if the inode does match, and -1 if the search * should be stopped. The @match function must be responsible for * taking the i_lock spin_lock and checking i_state for an inode being * freed or being initialized, and incrementing the reference count * before returning 1. It also must not sleep, since it is called with * the inode_hash_lock spinlock held. * * This is a even more generalized version of ilookup5() when the * function must never block --- find_inode() can block in * __wait_on_freeing_inode() --- or when the caller can not increment * the reference count because the resulting iput() might cause an * inode eviction. The tradeoff is that the @match funtion must be * very carefully implemented. */ struct inode *find_inode_nowait(struct super_block *sb, unsigned long hashval, int (*match)(struct inode *, unsigned long, void *), void *data) { struct hlist_head *head = inode_hashtable + hash(sb, hashval); struct inode *inode, *ret_inode = NULL; int mval; spin_lock(&inode_hash_lock); hlist_for_each_entry(inode, head, i_hash) { if (inode->i_sb != sb) continue; mval = match(inode, hashval, data); if (mval == 0) continue; if (mval == 1) ret_inode = inode; goto out; } out: spin_unlock(&inode_hash_lock); return ret_inode; } EXPORT_SYMBOL(find_inode_nowait); /** * find_inode_rcu - find an inode in the inode cache * @sb: Super block of file system to search * @hashval: Key to hash * @test: Function to test match on an inode * @data: Data for test function * * Search for the inode specified by @hashval and @data in the inode cache, * where the helper function @test will return 0 if the inode does not match * and 1 if it does. The @test function must be responsible for taking the * i_lock spin_lock and checking i_state for an inode being freed or being * initialized. * * If successful, this will return the inode for which the @test function * returned 1 and NULL otherwise. * * The @test function is not permitted to take a ref on any inode presented. * It is also not permitted to sleep. * * The caller must hold the RCU read lock. */ struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data) { struct hlist_head *head = inode_hashtable + hash(sb, hashval); struct inode *inode; RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "suspicious find_inode_rcu() usage"); hlist_for_each_entry_rcu(inode, head, i_hash) { if (inode->i_sb == sb && !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && test(inode, data)) return inode; } return NULL; } EXPORT_SYMBOL(find_inode_rcu); /** * find_inode_by_rcu - Find an inode in the inode cache * @sb: Super block of file system to search * @ino: The inode number to match * * Search for the inode specified by @hashval and @data in the inode cache, * where the helper function @test will return 0 if the inode does not match * and 1 if it does. The @test function must be responsible for taking the * i_lock spin_lock and checking i_state for an inode being freed or being * initialized. * * If successful, this will return the inode for which the @test function * returned 1 and NULL otherwise. * * The @test function is not permitted to take a ref on any inode presented. * It is also not permitted to sleep. * * The caller must hold the RCU read lock. */ struct inode *find_inode_by_ino_rcu(struct super_block *sb, unsigned long ino) { struct hlist_head *head = inode_hashtable + hash(sb, ino); struct inode *inode; RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "suspicious find_inode_by_ino_rcu() usage"); hlist_for_each_entry_rcu(inode, head, i_hash) { if (inode->i_ino == ino && inode->i_sb == sb && !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) return inode; } return NULL; } EXPORT_SYMBOL(find_inode_by_ino_rcu); int insert_inode_locked(struct inode *inode) { struct super_block *sb = inode->i_sb; ino_t ino = inode->i_ino; struct hlist_head *head = inode_hashtable + hash(sb, ino); while (1) { struct inode *old = NULL; spin_lock(&inode_hash_lock); hlist_for_each_entry(old, head, i_hash) { if (old->i_ino != ino) continue; if (old->i_sb != sb) continue; spin_lock(&old->i_lock); if (old->i_state & (I_FREEING|I_WILL_FREE)) { spin_unlock(&old->i_lock); continue; } break; } if (likely(!old)) { spin_lock(&inode->i_lock); inode->i_state |= I_NEW | I_CREATING; hlist_add_head_rcu(&inode->i_hash, head); spin_unlock(&inode->i_lock); spin_unlock(&inode_hash_lock); return 0; } if (unlikely(old->i_state & I_CREATING)) { spin_unlock(&old->i_lock); spin_unlock(&inode_hash_lock); return -EBUSY; } __iget(old); spin_unlock(&old->i_lock); spin_unlock(&inode_hash_lock); wait_on_inode(old); if (unlikely(!inode_unhashed(old))) { iput(old); return -EBUSY; } iput(old); } } EXPORT_SYMBOL(insert_inode_locked); int insert_inode_locked4(struct inode *inode, unsigned long hashval, int (*test)(struct inode *, void *), void *data) { struct inode *old; inode->i_state |= I_CREATING; old = inode_insert5(inode, hashval, test, NULL, data); if (old != inode) { iput(old); return -EBUSY; } return 0; } EXPORT_SYMBOL(insert_inode_locked4); int generic_delete_inode(struct inode *inode) { return 1; } EXPORT_SYMBOL(generic_delete_inode); /* * Called when we're dropping the last reference * to an inode. * * Call the FS "drop_inode()" function, defaulting to * the legacy UNIX filesystem behaviour. If it tells * us to evict inode, do so. Otherwise, retain inode * in cache if fs is alive, sync and evict if fs is * shutting down. */ static void iput_final(struct inode *inode) { struct super_block *sb = inode->i_sb; const struct super_operations *op = inode->i_sb->s_op; unsigned long state; int drop; WARN_ON(inode->i_state & I_NEW); if (op->drop_inode) drop = op->drop_inode(inode); else drop = generic_drop_inode(inode); if (!drop && !(inode->i_state & I_DONTCACHE) && (sb->s_flags & SB_ACTIVE)) { inode_add_lru(inode); spin_unlock(&inode->i_lock); return; } state = inode->i_state; if (!drop) { WRITE_ONCE(inode->i_state, state | I_WILL_FREE); spin_unlock(&inode->i_lock); write_inode_now(inode, 1); spin_lock(&inode->i_lock); state = inode->i_state; WARN_ON(state & I_NEW); state &= ~I_WILL_FREE; } WRITE_ONCE(inode->i_state, state | I_FREEING); if (!list_empty(&inode->i_lru)) inode_lru_list_del(inode); spin_unlock(&inode->i_lock); evict(inode); } /** * iput - put an inode * @inode: inode to put * * Puts an inode, dropping its usage count. If the inode use count hits * zero, the inode is then freed and may also be destroyed. * * Consequently, iput() can sleep. */ void iput(struct inode *inode) { if (!inode) return; BUG_ON(inode->i_state & I_CLEAR); retry: if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { atomic_inc(&inode->i_count); spin_unlock(&inode->i_lock); trace_writeback_lazytime_iput(inode); mark_inode_dirty_sync(inode); goto retry; } iput_final(inode); } } EXPORT_SYMBOL(iput); #ifdef CONFIG_BLOCK /** * bmap - find a block number in a file * @inode: inode owning the block number being requested * @block: pointer containing the block to find * * Replaces the value in ``*block`` with the block number on the device holding * corresponding to the requested block number in the file. * That is, asked for block 4 of inode 1 the function will replace the * 4 in ``*block``, with disk block relative to the disk start that holds that * block of the file. * * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a * hole, returns 0 and ``*block`` is also set to 0. */ int bmap(struct inode *inode, sector_t *block) { if (!inode->i_mapping->a_ops->bmap) return -EINVAL; *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); return 0; } EXPORT_SYMBOL(bmap); #endif /* * With relative atime, only update atime if the previous atime is * earlier than either the ctime or mtime or if at least a day has * passed since the last atime update. */ static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, struct timespec64 now) { if (!(mnt->mnt_flags & MNT_RELATIME)) return 1; /* * Is mtime younger than atime? If yes, update atime: */ if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) return 1; /* * Is ctime younger than atime? If yes, update atime: */ if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) return 1; /* * Is the previous atime value older than a day? If yes, * update atime: */ if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) return 1; /* * Good, we can skip the atime update: */ return 0; } int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) { int iflags = I_DIRTY_TIME; bool dirty = false; if (flags & S_ATIME) inode->i_atime = *time; if (flags & S_VERSION) dirty = inode_maybe_inc_iversion(inode, false); if (flags & S_CTIME) inode->i_ctime = *time; if (flags & S_MTIME) inode->i_mtime = *time; if ((flags & (S_ATIME | S_CTIME | S_MTIME)) && !(inode->i_sb->s_flags & SB_LAZYTIME)) dirty = true; if (dirty) iflags |= I_DIRTY_SYNC; __mark_inode_dirty(inode, iflags); return 0; } EXPORT_SYMBOL(generic_update_time); /* * This does the actual work of updating an inodes time or version. Must have * had called mnt_want_write() before calling this. */ int inode_update_time(struct inode *inode, struct timespec64 *time, int flags) { if (inode->i_op->update_time) return inode->i_op->update_time(inode, time, flags); return generic_update_time(inode, time, flags); } EXPORT_SYMBOL(inode_update_time); /** * touch_atime - update the access time * @path: the &struct path to update * @inode: inode to update * * Update the accessed time on an inode and mark it for writeback. * This function automatically handles read only file systems and media, * as well as the "noatime" flag and inode specific "noatime" markers. */ bool atime_needs_update(const struct path *path, struct inode *inode) { struct vfsmount *mnt = path->mnt; struct timespec64 now; if (inode->i_flags & S_NOATIME) return false; /* Atime updates will likely cause i_uid and i_gid to be written * back improprely if their true value is unknown to the vfs. */ if (HAS_UNMAPPED_ID(inode)) return false; if (IS_NOATIME(inode)) return false; if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) return false; if (mnt->mnt_flags & MNT_NOATIME) return false; if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) return false; now = current_time(inode); if (!relatime_need_update(mnt, inode, now)) return false; if (timespec64_equal(&inode->i_atime, &now)) return false; return true; } void touch_atime(const struct path *path) { struct vfsmount *mnt = path->mnt; struct inode *inode = d_inode(path->dentry); struct timespec64 now; if (!atime_needs_update(path, inode)) return; if (!sb_start_write_trylock(inode->i_sb)) return; if (__mnt_want_write(mnt) != 0) goto skip_update; /* * File systems can error out when updating inodes if they need to * allocate new space to modify an inode (such is the case for * Btrfs), but since we touch atime while walking down the path we * really don't care if we failed to update the atime of the file, * so just ignore the return value. * We may also fail on filesystems that have the ability to make parts * of the fs read only, e.g. subvolumes in Btrfs. */ now = current_time(inode); inode_update_time(inode, &now, S_ATIME); __mnt_drop_write(mnt); skip_update: sb_end_write(inode->i_sb); } EXPORT_SYMBOL(touch_atime); /* * The logic we want is * * if suid or (sgid and xgrp) * remove privs */ int should_remove_suid(struct dentry *dentry) { umode_t mode = d_inode(dentry)->i_mode; int kill = 0; /* suid always must be killed */ if (unlikely(mode & S_ISUID)) kill = ATTR_KILL_SUID; /* * sgid without any exec bits is just a mandatory locking mark; leave * it alone. If some exec bits are set, it's a real sgid; kill it. */ if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) kill |= ATTR_KILL_SGID; if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) return kill; return 0; } EXPORT_SYMBOL(should_remove_suid); /* * Return mask of changes for notify_change() that need to be done as a * response to write or truncate. Return 0 if nothing has to be changed. * Negative value on error (change should be denied). */ int dentry_needs_remove_privs(struct dentry *dentry) { struct inode *inode = d_inode(dentry); int mask = 0; int ret; if (IS_NOSEC(inode)) return 0; mask = should_remove_suid(dentry); ret = security_inode_need_killpriv(dentry); if (ret < 0) return ret; if (ret) mask |= ATTR_KILL_PRIV; return mask; } static int __remove_privs(struct dentry *dentry, int kill) { struct iattr newattrs; newattrs.ia_valid = ATTR_FORCE | kill; /* * Note we call this on write, so notify_change will not * encounter any conflicting delegations: */ return notify_change(dentry, &newattrs, NULL); } /* * Remove special file priviledges (suid, capabilities) when file is written * to or truncated. */ int file_remove_privs(struct file *file) { struct dentry *dentry = file_dentry(file); struct inode *inode = file_inode(file); int kill; int error = 0; /* * Fast path for nothing security related. * As well for non-regular files, e.g. blkdev inodes. * For example, blkdev_write_iter() might get here * trying to remove privs which it is not allowed to. */ if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) return 0; kill = dentry_needs_remove_privs(dentry); if (kill < 0) return kill; if (kill) error = __remove_privs(dentry, kill); if (!error) inode_has_no_xattr(inode); return error; } EXPORT_SYMBOL(file_remove_privs); /** * file_update_time - update mtime and ctime time * @file: file accessed * * Update the mtime and ctime members of an inode and mark the inode * for writeback. Note that this function is meant exclusively for * usage in the file write path of filesystems, and filesystems may * choose to explicitly ignore update via this function with the * S_NOCMTIME inode flag, e.g. for network filesystem where these * timestamps are handled by the server. This can return an error for * file systems who need to allocate space in order to update an inode. */ int file_update_time(struct file *file) { struct inode *inode = file_inode(file); struct timespec64 now; int sync_it = 0; int ret; /* First try to exhaust all avenues to not sync */ if (IS_NOCMTIME(inode)) return 0; now = current_time(inode); if (!timespec64_equal(&inode->i_mtime, &now)) sync_it = S_MTIME; if (!timespec64_equal(&inode->i_ctime, &now)) sync_it |= S_CTIME; if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) sync_it |= S_VERSION; if (!sync_it) return 0; /* Finally allowed to write? Takes lock. */ if (__mnt_want_write_file(file)) return 0; ret = inode_update_time(inode, &now, sync_it); __mnt_drop_write_file(file); return ret; } EXPORT_SYMBOL(file_update_time); /* Caller must hold the file's inode lock */ int file_modified(struct file *file) { int err; /* * Clear the security bits if the process is not being run by root. * This keeps people from modifying setuid and setgid binaries. */ err = file_remove_privs(file); if (err) return err; if (unlikely(file->f_mode & FMODE_NOCMTIME)) return 0; return file_update_time(file); } EXPORT_SYMBOL(file_modified); int inode_needs_sync(struct inode *inode) { if (IS_SYNC(inode)) return 1; if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) return 1; return 0; } EXPORT_SYMBOL(inode_needs_sync); /* * If we try to find an inode in the inode hash while it is being * deleted, we have to wait until the filesystem completes its * deletion before reporting that it isn't found. This function waits * until the deletion _might_ have completed. Callers are responsible * to recheck inode state. * * It doesn't matter if I_NEW is not set initially, a call to * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list * will DTRT. */ static void __wait_on_freeing_inode(struct inode *inode) { wait_queue_head_t *wq; DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); wq = bit_waitqueue(&inode->i_state, __I_NEW); prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); spin_unlock(&inode->i_lock); spin_unlock(&inode_hash_lock); schedule(); finish_wait(wq, &wait.wq_entry); spin_lock(&inode_hash_lock); } static __initdata unsigned long ihash_entries; static int __init set_ihash_entries(char *str) { if (!str) return 0; ihash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("ihash_entries=", set_ihash_entries); /* * Initialize the waitqueues and inode hash table. */ void __init inode_init_early(void) { /* If hashes are distributed across NUMA nodes, defer * hash allocation until vmalloc space is available. */ if (hashdist) return; inode_hashtable = alloc_large_system_hash("Inode-cache", sizeof(struct hlist_head), ihash_entries, 14, HASH_EARLY | HASH_ZERO, &i_hash_shift, &i_hash_mask, 0, 0); } void __init inode_init(void) { /* inode slab cache */ inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode), 0, (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| SLAB_MEM_SPREAD|SLAB_ACCOUNT), init_once); /* Hash may have been set up in inode_init_early */ if (!hashdist) return; inode_hashtable = alloc_large_system_hash("Inode-cache", sizeof(struct hlist_head), ihash_entries, 14, HASH_ZERO, &i_hash_shift, &i_hash_mask, 0, 0); } void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) { inode->i_mode = mode; if (S_ISCHR(mode)) { inode->i_fop = &def_chr_fops; inode->i_rdev = rdev; } else if (S_ISBLK(mode)) { inode->i_fop = &def_blk_fops; inode->i_rdev = rdev; } else if (S_ISFIFO(mode)) inode->i_fop = &pipefifo_fops; else if (S_ISSOCK(mode)) ; /* leave it no_open_fops */ else printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" " inode %s:%lu\n", mode, inode->i_sb->s_id, inode->i_ino); } EXPORT_SYMBOL(init_special_inode); /** * inode_init_owner - Init uid,gid,mode for new inode according to posix standards * @inode: New inode * @dir: Directory inode * @mode: mode of the new inode */ void inode_init_owner(struct inode *inode, const struct inode *dir, umode_t mode) { inode->i_uid = current_fsuid(); if (dir && dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; /* Directories are special, and always inherit S_ISGID */ if (S_ISDIR(mode)) mode |= S_ISGID; else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) && !in_group_p(inode->i_gid) && !capable_wrt_inode_uidgid(dir, CAP_FSETID)) mode &= ~S_ISGID; } else inode->i_gid = current_fsgid(); inode->i_mode = mode; } EXPORT_SYMBOL(inode_init_owner); /** * inode_owner_or_capable - check current task permissions to inode * @inode: inode being checked * * Return true if current either has CAP_FOWNER in a namespace with the * inode owner uid mapped, or owns the file. */ bool inode_owner_or_capable(const struct inode *inode) { struct user_namespace *ns; if (uid_eq(current_fsuid(), inode->i_uid)) return true; ns = current_user_ns(); if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER)) return true; return false; } EXPORT_SYMBOL(inode_owner_or_capable); /* * Direct i/o helper functions */ static void __inode_dio_wait(struct inode *inode) { wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); do { prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); if (atomic_read(&inode->i_dio_count)) schedule(); } while (atomic_read(&inode->i_dio_count)); finish_wait(wq, &q.wq_entry); } /** * inode_dio_wait - wait for outstanding DIO requests to finish * @inode: inode to wait for * * Waits for all pending direct I/O requests to finish so that we can * proceed with a truncate or equivalent operation. * * Must be called under a lock that serializes taking new references * to i_dio_count, usually by inode->i_mutex. */ void inode_dio_wait(struct inode *inode) { if (atomic_read(&inode->i_dio_count)) __inode_dio_wait(inode); } EXPORT_SYMBOL(inode_dio_wait); /* * inode_set_flags - atomically set some inode flags * * Note: the caller should be holding i_mutex, or else be sure that * they have exclusive access to the inode structure (i.e., while the * inode is being instantiated). The reason for the cmpxchg() loop * --- which wouldn't be necessary if all code paths which modify * i_flags actually followed this rule, is that there is at least one * code path which doesn't today so we use cmpxchg() out of an abundance * of caution. * * In the long run, i_mutex is overkill, and we should probably look * at using the i_lock spinlock to protect i_flags, and then make sure * it is so documented in include/linux/fs.h and that all code follows * the locking convention!! */ void inode_set_flags(struct inode *inode, unsigned int flags, unsigned int mask) { WARN_ON_ONCE(flags & ~mask); set_mask_bits(&inode->i_flags, mask, flags); } EXPORT_SYMBOL(inode_set_flags); void inode_nohighmem(struct inode *inode) { mapping_set_gfp_mask(inode->i_mapping, GFP_USER); } EXPORT_SYMBOL(inode_nohighmem); /** * timestamp_truncate - Truncate timespec to a granularity * @t: Timespec * @inode: inode being updated * * Truncate a timespec to the granularity supported by the fs * containing the inode. Always rounds down. gran must * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). */ struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) { struct super_block *sb = inode->i_sb; unsigned int gran = sb->s_time_gran; t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) t.tv_nsec = 0; /* Avoid division in the common cases 1 ns and 1 s. */ if (gran == 1) ; /* nothing */ else if (gran == NSEC_PER_SEC) t.tv_nsec = 0; else if (gran > 1 && gran < NSEC_PER_SEC) t.tv_nsec -= t.tv_nsec % gran; else WARN(1, "invalid file time granularity: %u", gran); return t; } EXPORT_SYMBOL(timestamp_truncate); /** * current_time - Return FS time * @inode: inode. * * Return the current time truncated to the time granularity supported by * the fs. * * Note that inode and inode->sb cannot be NULL. * Otherwise, the function warns and returns time without truncation. */ struct timespec64 current_time(struct inode *inode) { struct timespec64 now; ktime_get_coarse_real_ts64(&now); if (unlikely(!inode->i_sb)) { WARN(1, "current_time() called with uninitialized super_block in the inode"); return now; } return timestamp_truncate(now, inode); } EXPORT_SYMBOL(current_time); /* * Generic function to check FS_IOC_SETFLAGS values and reject any invalid * configurations. * * Note: the caller should be holding i_mutex, or else be sure that they have * exclusive access to the inode structure. */ int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags, unsigned int flags) { /* * The IMMUTABLE and APPEND_ONLY flags can only be changed by * the relevant capability. * * This test looks nicer. Thanks to Pauline Middelink */ if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) && !capable(CAP_LINUX_IMMUTABLE)) return -EPERM; return fscrypt_prepare_setflags(inode, oldflags, flags); } EXPORT_SYMBOL(vfs_ioc_setflags_prepare); /* * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid * configurations. * * Note: the caller should be holding i_mutex, or else be sure that they have * exclusive access to the inode structure. */ int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa, struct fsxattr *fa) { /* * Can't modify an immutable/append-only file unless we have * appropriate permission. */ if ((old_fa->fsx_xflags ^ fa->fsx_xflags) & (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) && !capable(CAP_LINUX_IMMUTABLE)) return -EPERM; /* * Project Quota ID state is only allowed to change from within the init * namespace. Enforce that restriction only if we are trying to change * the quota ID state. Everything else is allowed in user namespaces. */ if (current_user_ns() != &init_user_ns) { if (old_fa->fsx_projid != fa->fsx_projid) return -EINVAL; if ((old_fa->fsx_xflags ^ fa->fsx_xflags) & FS_XFLAG_PROJINHERIT) return -EINVAL; } /* Check extent size hints. */ if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode)) return -EINVAL; if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) && !S_ISDIR(inode->i_mode)) return -EINVAL; if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) && !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) return -EINVAL; /* * It is only valid to set the DAX flag on regular files and * directories on filesystems. */ if ((fa->fsx_xflags & FS_XFLAG_DAX) && !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) return -EINVAL; /* Extent size hints of zero turn off the flags. */ if (fa->fsx_extsize == 0) fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT); if (fa->fsx_cowextsize == 0) fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE; return 0; } EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 /* SPDX-License-Identifier: GPL-2.0 */ /* * Variant of atomic_t specialized for reference counts. * * The interface matches the atomic_t interface (to aid in porting) but only * provides the few functions one should use for reference counting. * * Saturation semantics * ==================== * * refcount_t differs from atomic_t in that the counter saturates at * REFCOUNT_SATURATED and will not move once there. This avoids wrapping the * counter and causing 'spurious' use-after-free issues. In order to avoid the * cost associated with introducing cmpxchg() loops into all of the saturating * operations, we temporarily allow the counter to take on an unchecked value * and then explicitly set it to REFCOUNT_SATURATED on detecting that underflow * or overflow has occurred. Although this is racy when multiple threads * access the refcount concurrently, by placing REFCOUNT_SATURATED roughly * equidistant from 0 and INT_MAX we minimise the scope for error: * * INT_MAX REFCOUNT_SATURATED UINT_MAX * 0 (0x7fff_ffff) (0xc000_0000) (0xffff_ffff) * +--------------------------------+----------------+----------------+ * <---------- bad value! ----------> * * (in a signed view of the world, the "bad value" range corresponds to * a negative counter value). * * As an example, consider a refcount_inc() operation that causes the counter * to overflow: * * int old = atomic_fetch_add_relaxed(r); * // old is INT_MAX, refcount now INT_MIN (0x8000_0000) * if (old < 0) * atomic_set(r, REFCOUNT_SATURATED); * * If another thread also performs a refcount_inc() operation between the two * atomic operations, then the count will continue to edge closer to 0. If it * reaches a value of 1 before /any/ of the threads reset it to the saturated * value, then a concurrent refcount_dec_and_test() may erroneously free the * underlying object. * Linux limits the maximum number of tasks to PID_MAX_LIMIT, which is currently * 0x400000 (and can't easily be raised in the future beyond FUTEX_TID_MASK). * With the current PID limit, if no batched refcounting operations are used and * the attacker can't repeatedly trigger kernel oopses in the middle of refcount * operations, this makes it impossible for a saturated refcount to leave the * saturation range, even if it is possible for multiple uses of the same * refcount to nest in the context of a single task: * * (UINT_MAX+1-REFCOUNT_SATURATED) / PID_MAX_LIMIT = * 0x40000000 / 0x400000 = 0x100 = 256 * * If hundreds of references are added/removed with a single refcounting * operation, it may potentially be possible to leave the saturation range; but * given the precise timing details involved with the round-robin scheduling of * each thread manipulating the refcount and the need to hit the race multiple * times in succession, there doesn't appear to be a practical avenue of attack * even if using refcount_add() operations with larger increments. * * Memory ordering * =============== * * Memory ordering rules are slightly relaxed wrt regular atomic_t functions * and provide only what is strictly required for refcounts. * * The increments are fully relaxed; these will not provide ordering. The * rationale is that whatever is used to obtain the object we're increasing the * reference count on will provide the ordering. For locked data structures, * its the lock acquire, for RCU/lockless data structures its the dependent * load. * * Do note that inc_not_zero() provides a control dependency which will order * future stores against the inc, this ensures we'll never modify the object * if we did not in fact acquire a reference. * * The decrements will provide release order, such that all the prior loads and * stores will be issued before, it also provides a control dependency, which * will order us against the subsequent free(). * * The control dependency is against the load of the cmpxchg (ll/sc) that * succeeded. This means the stores aren't fully ordered, but this is fine * because the 1->0 transition indicates no concurrency. * * Note that the allocator is responsible for ordering things between free() * and alloc(). * * The decrements dec_and_test() and sub_and_test() also provide acquire * ordering on success. * */ #ifndef _LINUX_REFCOUNT_H #define _LINUX_REFCOUNT_H #include <linux/atomic.h> #include <linux/bug.h> #include <linux/compiler.h> #include <linux/limits.h> #include <linux/spinlock_types.h> struct mutex; /** * struct refcount_t - variant of atomic_t specialized for reference counts * @refs: atomic_t counter field * * The counter saturates at REFCOUNT_SATURATED and will not move once * there. This avoids wrapping the counter and causing 'spurious' * use-after-free bugs. */ typedef struct refcount_struct { atomic_t refs; } refcount_t; #define REFCOUNT_INIT(n) { .refs = ATOMIC_INIT(n), } #define REFCOUNT_MAX INT_MAX #define REFCOUNT_SATURATED (INT_MIN / 2) enum refcount_saturation_type { REFCOUNT_ADD_NOT_ZERO_OVF, REFCOUNT_ADD_OVF, REFCOUNT_ADD_UAF, REFCOUNT_SUB_UAF, REFCOUNT_DEC_LEAK, }; void refcount_warn_saturate(refcount_t *r, enum refcount_saturation_type t); /** * refcount_set - set a refcount's value * @r: the refcount * @n: value to which the refcount will be set */ static inline void refcount_set(refcount_t *r, int n) { atomic_set(&r->refs, n); } /** * refcount_read - get a refcount's value * @r: the refcount * * Return: the refcount's value */ static inline unsigned int refcount_read(const refcount_t *r) { return atomic_read(&r->refs); } static inline __must_check bool __refcount_add_not_zero(int i, refcount_t *r, int *oldp) { int old = refcount_read(r); do { if (!old) break; } while (!atomic_try_cmpxchg_relaxed(&r->refs, &old, old + i)); if (oldp) *oldp = old; if (unlikely(old < 0 || old + i < 0)) refcount_warn_saturate(r, REFCOUNT_ADD_NOT_ZERO_OVF); return old; } /** * refcount_add_not_zero - add a value to a refcount unless it is 0 * @i: the value to add to the refcount * @r: the refcount * * Will saturate at REFCOUNT_SATURATED and WARN. * * Provides no memory ordering, it is assumed the caller has guaranteed the * object memory to be stable (RCU, etc.). It does provide a control dependency * and thereby orders future stores. See the comment on top. * * Use of this function is not recommended for the normal reference counting * use case in which references are taken and released one at a time. In these * cases, refcount_inc(), or one of its variants, should instead be used to * increment a reference count. * * Return: false if the passed refcount is 0, true otherwise */ static inline __must_check bool refcount_add_not_zero(int i, refcount_t *r) { return __refcount_add_not_zero(i, r, NULL); } static inline void __refcount_add(int i, refcount_t *r, int *oldp) { int old = atomic_fetch_add_relaxed(i, &r->refs); if (oldp) *oldp = old; if (unlikely(!old)) refcount_warn_saturate(r, REFCOUNT_ADD_UAF); else if (unlikely(old < 0 || old + i < 0)) refcount_warn_saturate(r, REFCOUNT_ADD_OVF); } /** * refcount_add - add a value to a refcount * @i: the value to add to the refcount * @r: the refcount * * Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN. * * Provides no memory ordering, it is assumed the caller has guaranteed the * object memory to be stable (RCU, etc.). It does provide a control dependency * and thereby orders future stores. See the comment on top. * * Use of this function is not recommended for the normal reference counting * use case in which references are taken and released one at a time. In these * cases, refcount_inc(), or one of its variants, should instead be used to * increment a reference count. */ static inline void refcount_add(int i, refcount_t *r) { __refcount_add(i, r, NULL); } static inline __must_check bool __refcount_inc_not_zero(refcount_t *r, int *oldp) { return __refcount_add_not_zero(1, r, oldp); } /** * refcount_inc_not_zero - increment a refcount unless it is 0 * @r: the refcount to increment * * Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED * and WARN. * * Provides no memory ordering, it is assumed the caller has guaranteed the * object memory to be stable (RCU, etc.). It does provide a control dependency * and thereby orders future stores. See the comment on top. * * Return: true if the increment was successful, false otherwise */ static inline __must_check bool refcount_inc_not_zero(refcount_t *r) { return __refcount_inc_not_zero(r, NULL); } static inline void __refcount_inc(refcount_t *r, int *oldp) { __refcount_add(1, r, oldp); } /** * refcount_inc - increment a refcount * @r: the refcount to increment * * Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN. * * Provides no memory ordering, it is assumed the caller already has a * reference on the object. * * Will WARN if the refcount is 0, as this represents a possible use-after-free * condition. */ static inline void refcount_inc(refcount_t *r) { __refcount_inc(r, NULL); } static inline __must_check bool __refcount_sub_and_test(int i, refcount_t *r, int *oldp) { int old = atomic_fetch_sub_release(i, &r->refs); if (oldp) *oldp = old; if (old == i) { smp_acquire__after_ctrl_dep(); return true; } if (unlikely(old < 0 || old - i < 0)) refcount_warn_saturate(r, REFCOUNT_SUB_UAF); return false; } /** * refcount_sub_and_test - subtract from a refcount and test if it is 0 * @i: amount to subtract from the refcount * @r: the refcount * * Similar to atomic_dec_and_test(), but it will WARN, return false and * ultimately leak on underflow and will fail to decrement when saturated * at REFCOUNT_SATURATED. * * Provides release memory ordering, such that prior loads and stores are done * before, and provides an acquire ordering on success such that free() * must come after. * * Use of this function is not recommended for the normal reference counting * use case in which references are taken and released one at a time. In these * cases, refcount_dec(), or one of its variants, should instead be used to * decrement a reference count. * * Return: true if the resulting refcount is 0, false otherwise */ static inline __must_check bool refcount_sub_and_test(int i, refcount_t *r) { return __refcount_sub_and_test(i, r, NULL); } static inline __must_check bool __refcount_dec_and_test(refcount_t *r, int *oldp) { return __refcount_sub_and_test(1, r, oldp); } /** * refcount_dec_and_test - decrement a refcount and test if it is 0 * @r: the refcount * * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to * decrement when saturated at REFCOUNT_SATURATED. * * Provides release memory ordering, such that prior loads and stores are done * before, and provides an acquire ordering on success such that free() * must come after. * * Return: true if the resulting refcount is 0, false otherwise */ static inline __must_check bool refcount_dec_and_test(refcount_t *r) { return __refcount_dec_and_test(r, NULL); } static inline void __refcount_dec(refcount_t *r, int *oldp) { int old = atomic_fetch_sub_release(1, &r->refs); if (oldp) *oldp = old; if (unlikely(old <= 1)) refcount_warn_saturate(r, REFCOUNT_DEC_LEAK); } /** * refcount_dec - decrement a refcount * @r: the refcount * * Similar to atomic_dec(), it will WARN on underflow and fail to decrement * when saturated at REFCOUNT_SATURATED. * * Provides release memory ordering, such that prior loads and stores are done * before. */ static inline void refcount_dec(refcount_t *r) { __refcount_dec(r, NULL); } extern __must_check bool refcount_dec_if_one(refcount_t *r); extern __must_check bool refcount_dec_not_one(refcount_t *r); extern __must_check bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock); extern __must_check bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock); extern __must_check bool refcount_dec_and_lock_irqsave(refcount_t *r, spinlock_t *lock, unsigned long *flags); #endif /* _LINUX_REFCOUNT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_COMPACTION_H #define _LINUX_COMPACTION_H /* * Determines how hard direct compaction should try to succeed. * Lower value means higher priority, analogically to reclaim priority. */ enum compact_priority { COMPACT_PRIO_SYNC_FULL, MIN_COMPACT_PRIORITY = COMPACT_PRIO_SYNC_FULL, COMPACT_PRIO_SYNC_LIGHT, MIN_COMPACT_COSTLY_PRIORITY = COMPACT_PRIO_SYNC_LIGHT, DEF_COMPACT_PRIORITY = COMPACT_PRIO_SYNC_LIGHT, COMPACT_PRIO_ASYNC, INIT_COMPACT_PRIORITY = COMPACT_PRIO_ASYNC }; /* Return values for compact_zone() and try_to_compact_pages() */ /* When adding new states, please adjust include/trace/events/compaction.h */ enum compact_result { /* For more detailed tracepoint output - internal to compaction */ COMPACT_NOT_SUITABLE_ZONE, /* * compaction didn't start as it was not possible or direct reclaim * was more suitable */ COMPACT_SKIPPED, /* compaction didn't start as it was deferred due to past failures */ COMPACT_DEFERRED, /* For more detailed tracepoint output - internal to compaction */ COMPACT_NO_SUITABLE_PAGE, /* compaction should continue to another pageblock */ COMPACT_CONTINUE, /* * The full zone was compacted scanned but wasn't successfull to compact * suitable pages. */ COMPACT_COMPLETE, /* * direct compaction has scanned part of the zone but wasn't successfull * to compact suitable pages. */ COMPACT_PARTIAL_SKIPPED, /* compaction terminated prematurely due to lock contentions */ COMPACT_CONTENDED, /* * direct compaction terminated after concluding that the allocation * should now succeed */ COMPACT_SUCCESS, }; struct alloc_context; /* in mm/internal.h */ /* * Number of free order-0 pages that should be available above given watermark * to make sure compaction has reasonable chance of not running out of free * pages that it needs to isolate as migration target during its work. */ static inline unsigned long compact_gap(unsigned int order) { /* * Although all the isolations for migration are temporary, compaction * free scanner may have up to 1 << order pages on its list and then * try to split an (order - 1) free page. At that point, a gap of * 1 << order might not be enough, so it's safer to require twice that * amount. Note that the number of pages on the list is also * effectively limited by COMPACT_CLUSTER_MAX, as that's the maximum * that the migrate scanner can have isolated on migrate list, and free * scanner is only invoked when the number of isolated free pages is * lower than that. But it's not worth to complicate the formula here * as a bigger gap for higher orders than strictly necessary can also * improve chances of compaction success. */ return 2UL << order; } #ifdef CONFIG_COMPACTION extern int sysctl_compact_memory; extern unsigned int sysctl_compaction_proactiveness; extern int sysctl_compaction_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos); extern int sysctl_extfrag_threshold; extern int sysctl_compact_unevictable_allowed; extern unsigned int extfrag_for_order(struct zone *zone, unsigned int order); extern int fragmentation_index(struct zone *zone, unsigned int order); extern enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, unsigned int alloc_flags, const struct alloc_context *ac, enum compact_priority prio, struct page **page); extern void reset_isolation_suitable(pg_data_t *pgdat); extern enum compact_result compaction_suitable(struct zone *zone, int order, unsigned int alloc_flags, int highest_zoneidx); extern void defer_compaction(struct zone *zone, int order); extern bool compaction_deferred(struct zone *zone, int order); extern void compaction_defer_reset(struct zone *zone, int order, bool alloc_success); extern bool compaction_restarting(struct zone *zone, int order); /* Compaction has made some progress and retrying makes sense */ static inline bool compaction_made_progress(enum compact_result result) { /* * Even though this might sound confusing this in fact tells us * that the compaction successfully isolated and migrated some * pageblocks. */ if (result == COMPACT_SUCCESS) return true; return false; } /* Compaction has failed and it doesn't make much sense to keep retrying. */ static inline bool compaction_failed(enum compact_result result) { /* All zones were scanned completely and still not result. */ if (result == COMPACT_COMPLETE) return true; return false; } /* Compaction needs reclaim to be performed first, so it can continue. */ static inline bool compaction_needs_reclaim(enum compact_result result) { /* * Compaction backed off due to watermark checks for order-0 * so the regular reclaim has to try harder and reclaim something. */ if (result == COMPACT_SKIPPED) return true; return false; } /* * Compaction has backed off for some reason after doing some work or none * at all. It might be throttling or lock contention. Retrying might be still * worthwhile, but with a higher priority if allowed. */ static inline bool compaction_withdrawn(enum compact_result result) { /* * If compaction is deferred for high-order allocations, it is * because sync compaction recently failed. If this is the case * and the caller requested a THP allocation, we do not want * to heavily disrupt the system, so we fail the allocation * instead of entering direct reclaim. */ if (result == COMPACT_DEFERRED) return true; /* * If compaction in async mode encounters contention or blocks higher * priority task we back off early rather than cause stalls. */ if (result == COMPACT_CONTENDED) return true; /* * Page scanners have met but we haven't scanned full zones so this * is a back off in fact. */ if (result == COMPACT_PARTIAL_SKIPPED) return true; return false; } bool compaction_zonelist_suitable(struct alloc_context *ac, int order, int alloc_flags); extern int kcompactd_run(int nid); extern void kcompactd_stop(int nid); extern void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx); #else static inline void reset_isolation_suitable(pg_data_t *pgdat) { } static inline enum compact_result compaction_suitable(struct zone *zone, int order, int alloc_flags, int highest_zoneidx) { return COMPACT_SKIPPED; } static inline void defer_compaction(struct zone *zone, int order) { } static inline bool compaction_deferred(struct zone *zone, int order) { return true; } static inline bool compaction_made_progress(enum compact_result result) { return false; } static inline bool compaction_failed(enum compact_result result) { return false; } static inline bool compaction_needs_reclaim(enum compact_result result) { return false; } static inline bool compaction_withdrawn(enum compact_result result) { return true; } static inline int kcompactd_run(int nid) { return 0; } static inline void kcompactd_stop(int nid) { } static inline void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) { } #endif /* CONFIG_COMPACTION */ struct node; #if defined(CONFIG_COMPACTION) && defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) extern int compaction_register_node(struct node *node); extern void compaction_unregister_node(struct node *node); #else static inline int compaction_register_node(struct node *node) { return 0; } static inline void compaction_unregister_node(struct node *node) { } #endif /* CONFIG_COMPACTION && CONFIG_SYSFS && CONFIG_NUMA */ #endif /* _LINUX_COMPACTION_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HUGE_MM_H #define _LINUX_HUGE_MM_H #include <linux/sched/coredump.h> #include <linux/mm_types.h> #include <linux/fs.h> /* only for vma_is_dax() */ vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf); int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd); int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, pud_t *dst_pud, pud_t *src_pud, unsigned long addr, struct vm_area_struct *vma); #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud); #else static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) { } #endif vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd); struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, unsigned int flags); bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long next); int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr); int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, unsigned long addr); bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd); int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, pgprot_t newprot, unsigned long cp_flags); vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, pgprot_t pgprot, bool write); /** * vmf_insert_pfn_pmd - insert a pmd size pfn * @vmf: Structure describing the fault * @pfn: pfn to insert * @pgprot: page protection to use * @write: whether it's a write fault * * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. * * Return: vm_fault_t value. */ static inline vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) { return vmf_insert_pfn_pmd_prot(vmf, pfn, vmf->vma->vm_page_prot, write); } vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, pgprot_t pgprot, bool write); /** * vmf_insert_pfn_pud - insert a pud size pfn * @vmf: Structure describing the fault * @pfn: pfn to insert * @pgprot: page protection to use * @write: whether it's a write fault * * Insert a pud size pfn. See vmf_insert_pfn() for additional info. * * Return: vm_fault_t value. */ static inline vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) { return vmf_insert_pfn_pud_prot(vmf, pfn, vmf->vma->vm_page_prot, write); } enum transparent_hugepage_flag { TRANSPARENT_HUGEPAGE_NEVER_DAX, TRANSPARENT_HUGEPAGE_FLAG, TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG, TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG, #ifdef CONFIG_DEBUG_VM TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG, #endif }; struct kobject; struct kobj_attribute; ssize_t single_hugepage_flag_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count, enum transparent_hugepage_flag flag); ssize_t single_hugepage_flag_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf, enum transparent_hugepage_flag flag); extern struct kobj_attribute shmem_enabled_attr; #define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT) #define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER) #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define HPAGE_PMD_SHIFT PMD_SHIFT #define HPAGE_PMD_SIZE ((1UL) << HPAGE_PMD_SHIFT) #define HPAGE_PMD_MASK (~(HPAGE_PMD_SIZE - 1)) #define HPAGE_PUD_SHIFT PUD_SHIFT #define HPAGE_PUD_SIZE ((1UL) << HPAGE_PUD_SHIFT) #define HPAGE_PUD_MASK (~(HPAGE_PUD_SIZE - 1)) extern unsigned long transparent_hugepage_flags; static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, unsigned long haddr) { /* Don't have to check pgoff for anonymous vma */ if (!vma_is_anonymous(vma)) { if (!IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, HPAGE_PMD_NR)) return false; } if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) return false; return true; } static inline bool transhuge_vma_enabled(struct vm_area_struct *vma, unsigned long vm_flags) { /* Explicitly disabled through madvise. */ if ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) return false; return true; } /* * to be used on vmas which are known to support THP. * Use transparent_hugepage_active otherwise */ static inline bool __transparent_hugepage_enabled(struct vm_area_struct *vma) { /* * If the hardware/firmware marked hugepage support disabled. */ if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX)) return false; if (!transhuge_vma_enabled(vma, vma->vm_flags)) return false; if (vma_is_temporary_stack(vma)) return false; if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_FLAG)) return true; if (vma_is_dax(vma)) return true; if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)) return !!(vma->vm_flags & VM_HUGEPAGE); return false; } bool transparent_hugepage_active(struct vm_area_struct *vma); #define transparent_hugepage_use_zero_page() \ (transparent_hugepage_flags & \ (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG)) unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); void prep_transhuge_page(struct page *page); void free_transhuge_page(struct page *page); bool is_transparent_hugepage(struct page *page); bool can_split_huge_page(struct page *page, int *pextra_pins); int split_huge_page_to_list(struct page *page, struct list_head *list); static inline int split_huge_page(struct page *page) { return split_huge_page_to_list(page, NULL); } void deferred_split_huge_page(struct page *page); void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, unsigned long address, bool freeze, struct page *page); #define split_huge_pmd(__vma, __pmd, __address) \ do { \ pmd_t *____pmd = (__pmd); \ if (is_swap_pmd(*____pmd) || pmd_trans_huge(*____pmd) \ || pmd_devmap(*____pmd)) \ __split_huge_pmd(__vma, __pmd, __address, \ false, NULL); \ } while (0) void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, bool freeze, struct page *page); void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, unsigned long address); #define split_huge_pud(__vma, __pud, __address) \ do { \ pud_t *____pud = (__pud); \ if (pud_trans_huge(*____pud) \ || pud_devmap(*____pud)) \ __split_huge_pud(__vma, __pud, __address); \ } while (0) int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags, int advice); void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start, unsigned long end, long adjust_next); spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma); spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma); static inline int is_swap_pmd(pmd_t pmd) { return !pmd_none(pmd) && !pmd_present(pmd); } /* mmap_lock must be held on entry */ static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) { if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) return __pmd_trans_huge_lock(pmd, vma); else return NULL; } static inline spinlock_t *pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) { if (pud_trans_huge(*pud) || pud_devmap(*pud)) return __pud_trans_huge_lock(pud, vma); else return NULL; } /** * thp_head - Head page of a transparent huge page. * @page: Any page (tail, head or regular) found in the page cache. */ static inline struct page *thp_head(struct page *page) { return compound_head(page); } /** * thp_order - Order of a transparent huge page. * @page: Head page of a transparent huge page. */ static inline unsigned int thp_order(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); if (PageHead(page)) return HPAGE_PMD_ORDER; return 0; } /** * thp_nr_pages - The number of regular pages in this huge page. * @page: The head page of a huge page. */ static inline int thp_nr_pages(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); if (PageHead(page)) return HPAGE_PMD_NR; return 1; } struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, int flags, struct dev_pagemap **pgmap); struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud, int flags, struct dev_pagemap **pgmap); vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t orig_pmd); extern struct page *huge_zero_page; extern unsigned long huge_zero_pfn; static inline bool is_huge_zero_page(struct page *page) { return READ_ONCE(huge_zero_page) == page; } static inline bool is_huge_zero_pmd(pmd_t pmd) { return READ_ONCE(huge_zero_pfn) == pmd_pfn(pmd) && pmd_present(pmd); } static inline bool is_huge_zero_pud(pud_t pud) { return false; } struct page *mm_get_huge_zero_page(struct mm_struct *mm); void mm_put_huge_zero_page(struct mm_struct *mm); #define mk_huge_pmd(page, prot) pmd_mkhuge(mk_pmd(page, prot)) static inline bool thp_migration_supported(void) { return IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION); } static inline struct list_head *page_deferred_list(struct page *page) { /* * Global or memcg deferred list in the second tail pages is * occupied by compound_head. */ return &page[2].deferred_list; } #else /* CONFIG_TRANSPARENT_HUGEPAGE */ #define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; }) #define HPAGE_PMD_MASK ({ BUILD_BUG(); 0; }) #define HPAGE_PMD_SIZE ({ BUILD_BUG(); 0; }) #define HPAGE_PUD_SHIFT ({ BUILD_BUG(); 0; }) #define HPAGE_PUD_MASK ({ BUILD_BUG(); 0; }) #define HPAGE_PUD_SIZE ({ BUILD_BUG(); 0; }) static inline struct page *thp_head(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); return page; } static inline unsigned int thp_order(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); return 0; } static inline int thp_nr_pages(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); return 1; } static inline bool __transparent_hugepage_enabled(struct vm_area_struct *vma) { return false; } static inline bool transparent_hugepage_active(struct vm_area_struct *vma) { return false; } static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, unsigned long haddr) { return false; } static inline bool transhuge_vma_enabled(struct vm_area_struct *vma, unsigned long vm_flags) { return false; } static inline void prep_transhuge_page(struct page *page) {} static inline bool is_transparent_hugepage(struct page *page) { return false; } #define transparent_hugepage_flags 0UL #define thp_get_unmapped_area NULL static inline bool can_split_huge_page(struct page *page, int *pextra_pins) { BUILD_BUG(); return false; } static inline int split_huge_page_to_list(struct page *page, struct list_head *list) { return 0; } static inline int split_huge_page(struct page *page) { return 0; } static inline void deferred_split_huge_page(struct page *page) {} #define split_huge_pmd(__vma, __pmd, __address) \ do { } while (0) static inline void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, unsigned long address, bool freeze, struct page *page) {} static inline void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, bool freeze, struct page *page) {} #define split_huge_pud(__vma, __pmd, __address) \ do { } while (0) static inline int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags, int advice) { BUG(); return 0; } static inline void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start, unsigned long end, long adjust_next) { } static inline int is_swap_pmd(pmd_t pmd) { return 0; } static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) { return NULL; } static inline spinlock_t *pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) { return NULL; } static inline vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t orig_pmd) { return 0; } static inline bool is_huge_zero_page(struct page *page) { return false; } static inline bool is_huge_zero_pmd(pmd_t pmd) { return false; } static inline bool is_huge_zero_pud(pud_t pud) { return false; } static inline void mm_put_huge_zero_page(struct mm_struct *mm) { return; } static inline struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, int flags, struct dev_pagemap **pgmap) { return NULL; } static inline struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud, int flags, struct dev_pagemap **pgmap) { return NULL; } static inline bool thp_migration_supported(void) { return false; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /** * thp_size - Size of a transparent huge page. * @page: Head page of a transparent huge page. * * Return: Number of bytes in this page. */ static inline unsigned long thp_size(struct page *page) { return PAGE_SIZE << thp_order(page); } #endif /* _LINUX_HUGE_MM_H */
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 // SPDX-License-Identifier: GPL-2.0-or-later /* * Derived from arch/ppc/mm/extable.c and arch/i386/mm/extable.c. * * Copyright (C) 2004 Paul Mackerras, IBM Corp. */ #include <linux/bsearch.h> #include <linux/module.h> #include <linux/init.h> #include <linux/sort.h> #include <linux/uaccess.h> #include <linux/extable.h> #ifndef ARCH_HAS_RELATIVE_EXTABLE #define ex_to_insn(x) ((x)->insn) #else static inline unsigned long ex_to_insn(const struct exception_table_entry *x) { return (unsigned long)&x->insn + x->insn; } #endif #ifndef ARCH_HAS_SORT_EXTABLE #ifndef ARCH_HAS_RELATIVE_EXTABLE #define swap_ex NULL #else static void swap_ex(void *a, void *b, int size) { struct exception_table_entry *x = a, *y = b, tmp; int delta = b - a; tmp = *x; x->insn = y->insn + delta; y->insn = tmp.insn - delta; #ifdef swap_ex_entry_fixup swap_ex_entry_fixup(x, y, tmp, delta); #else x->fixup = y->fixup + delta; y->fixup = tmp.fixup - delta; #endif } #endif /* ARCH_HAS_RELATIVE_EXTABLE */ /* * The exception table needs to be sorted so that the binary * search that we use to find entries in it works properly. * This is used both for the kernel exception table and for * the exception tables of modules that get loaded. */ static int cmp_ex_sort(const void *a, const void *b) { const struct exception_table_entry *x = a, *y = b; /* avoid overflow */ if (ex_to_insn(x) > ex_to_insn(y)) return 1; if (ex_to_insn(x) < ex_to_insn(y)) return -1; return 0; } void sort_extable(struct exception_table_entry *start, struct exception_table_entry *finish) { sort(start, finish - start, sizeof(struct exception_table_entry), cmp_ex_sort, swap_ex); } #ifdef CONFIG_MODULES /* * If the exception table is sorted, any referring to the module init * will be at the beginning or the end. */ void trim_init_extable(struct module *m) { /*trim the beginning*/ while (m->num_exentries && within_module_init(ex_to_insn(&m->extable[0]), m)) { m->extable++; m->num_exentries--; } /*trim the end*/ while (m->num_exentries && within_module_init(ex_to_insn(&m->extable[m->num_exentries - 1]), m)) m->num_exentries--; } #endif /* CONFIG_MODULES */ #endif /* !ARCH_HAS_SORT_EXTABLE */ #ifndef ARCH_HAS_SEARCH_EXTABLE static int cmp_ex_search(const void *key, const void *elt) { const struct exception_table_entry *_elt = elt; unsigned long _key = *(unsigned long *)key; /* avoid overflow */ if (_key > ex_to_insn(_elt)) return 1; if (_key < ex_to_insn(_elt)) return -1; return 0; } /* * Search one exception table for an entry corresponding to the * given instruction address, and return the address of the entry, * or NULL if none is found. * We use a binary search, and thus we assume that the table is * already sorted. */ const struct exception_table_entry * search_extable(const struct exception_table_entry *base, const size_t num, unsigned long value) { return bsearch(&value, base, num, sizeof(struct exception_table_entry), cmp_ex_search); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 /* Copyright (C) 2016 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. * * This file is provided under a dual BSD/GPLv2 license. * * SipHash: a fast short-input PRF * https://131002.net/siphash/ * * This implementation is specifically for SipHash2-4 for a secure PRF * and HalfSipHash1-3/SipHash1-3 for an insecure PRF only suitable for * hashtables. */ #ifndef _LINUX_SIPHASH_H #define _LINUX_SIPHASH_H #include <linux/types.h> #include <linux/kernel.h> #define SIPHASH_ALIGNMENT __alignof__(u64) typedef struct { u64 key[2]; } siphash_key_t; static inline bool siphash_key_is_zero(const siphash_key_t *key) { return !(key->key[0] | key->key[1]); } u64 __siphash_aligned(const void *data, size_t len, const siphash_key_t *key); u64 __siphash_unaligned(const void *data, size_t len, const siphash_key_t *key); u64 siphash_1u64(const u64 a, const siphash_key_t *key); u64 siphash_2u64(const u64 a, const u64 b, const siphash_key_t *key); u64 siphash_3u64(const u64 a, const u64 b, const u64 c, const siphash_key_t *key); u64 siphash_4u64(const u64 a, const u64 b, const u64 c, const u64 d, const siphash_key_t *key); u64 siphash_1u32(const u32 a, const siphash_key_t *key); u64 siphash_3u32(const u32 a, const u32 b, const u32 c, const siphash_key_t *key); static inline u64 siphash_2u32(const u32 a, const u32 b, const siphash_key_t *key) { return siphash_1u64((u64)b << 32 | a, key); } static inline u64 siphash_4u32(const u32 a, const u32 b, const u32 c, const u32 d, const siphash_key_t *key) { return siphash_2u64((u64)b << 32 | a, (u64)d << 32 | c, key); } static inline u64 ___siphash_aligned(const __le64 *data, size_t len, const siphash_key_t *key) { if (__builtin_constant_p(len) && len == 4) return siphash_1u32(le32_to_cpup((const __le32 *)data), key); if (__builtin_constant_p(len) && len == 8) return siphash_1u64(le64_to_cpu(data[0]), key); if (__builtin_constant_p(len) && len == 16) return siphash_2u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), key); if (__builtin_constant_p(len) && len == 24) return siphash_3u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), le64_to_cpu(data[2]), key); if (__builtin_constant_p(len) && len == 32) return siphash_4u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), le64_to_cpu(data[2]), le64_to_cpu(data[3]), key); return __siphash_aligned(data, len, key); } /** * siphash - compute 64-bit siphash PRF value * @data: buffer to hash * @size: size of @data * @key: the siphash key */ static inline u64 siphash(const void *data, size_t len, const siphash_key_t *key) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || !IS_ALIGNED((unsigned long)data, SIPHASH_ALIGNMENT)) return __siphash_unaligned(data, len, key); return ___siphash_aligned(data, len, key); } #define HSIPHASH_ALIGNMENT __alignof__(unsigned long) typedef struct { unsigned long key[2]; } hsiphash_key_t; u32 __hsiphash_aligned(const void *data, size_t len, const hsiphash_key_t *key); u32 __hsiphash_unaligned(const void *data, size_t len, const hsiphash_key_t *key); u32 hsiphash_1u32(const u32 a, const hsiphash_key_t *key); u32 hsiphash_2u32(const u32 a, const u32 b, const hsiphash_key_t *key); u32 hsiphash_3u32(const u32 a, const u32 b, const u32 c, const hsiphash_key_t *key); u32 hsiphash_4u32(const u32 a, const u32 b, const u32 c, const u32 d, const hsiphash_key_t *key); static inline u32 ___hsiphash_aligned(const __le32 *data, size_t len, const hsiphash_key_t *key) { if (__builtin_constant_p(len) && len == 4) return hsiphash_1u32(le32_to_cpu(data[0]), key); if (__builtin_constant_p(len) && len == 8) return hsiphash_2u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), key); if (__builtin_constant_p(len) && len == 12) return hsiphash_3u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), le32_to_cpu(data[2]), key); if (__builtin_constant_p(len) && len == 16) return hsiphash_4u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), le32_to_cpu(data[2]), le32_to_cpu(data[3]), key); return __hsiphash_aligned(data, len, key); } /** * hsiphash - compute 32-bit hsiphash PRF value * @data: buffer to hash * @size: size of @data * @key: the hsiphash key */ static inline u32 hsiphash(const void *data, size_t len, const hsiphash_key_t *key) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || !IS_ALIGNED((unsigned long)data, HSIPHASH_ALIGNMENT)) return __hsiphash_unaligned(data, len, key); return ___hsiphash_aligned(data, len, key); } #endif /* _LINUX_SIPHASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM ext4 #if !defined(_TRACE_EXT4_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_EXT4_H #include <linux/writeback.h> #include <linux/tracepoint.h> struct ext4_allocation_context; struct ext4_allocation_request; struct ext4_extent; struct ext4_prealloc_space; struct ext4_inode_info; struct mpage_da_data; struct ext4_map_blocks; struct extent_status; struct ext4_fsmap; struct partial_cluster; #define EXT4_I(inode) (container_of(inode, struct ext4_inode_info, vfs_inode)) #define show_mballoc_flags(flags) __print_flags(flags, "|", \ { EXT4_MB_HINT_MERGE, "HINT_MERGE" }, \ { EXT4_MB_HINT_RESERVED, "HINT_RESV" }, \ { EXT4_MB_HINT_METADATA, "HINT_MDATA" }, \ { EXT4_MB_HINT_FIRST, "HINT_FIRST" }, \ { EXT4_MB_HINT_BEST, "HINT_BEST" }, \ { EXT4_MB_HINT_DATA, "HINT_DATA" }, \ { EXT4_MB_HINT_NOPREALLOC, "HINT_NOPREALLOC" }, \ { EXT4_MB_HINT_GROUP_ALLOC, "HINT_GRP_ALLOC" }, \ { EXT4_MB_HINT_GOAL_ONLY, "HINT_GOAL_ONLY" }, \ { EXT4_MB_HINT_TRY_GOAL, "HINT_TRY_GOAL" }, \ { EXT4_MB_DELALLOC_RESERVED, "DELALLOC_RESV" }, \ { EXT4_MB_STREAM_ALLOC, "STREAM_ALLOC" }, \ { EXT4_MB_USE_ROOT_BLOCKS, "USE_ROOT_BLKS" }, \ { EXT4_MB_USE_RESERVED, "USE_RESV" }, \ { EXT4_MB_STRICT_CHECK, "STRICT_CHECK" }) #define show_map_flags(flags) __print_flags(flags, "|", \ { EXT4_GET_BLOCKS_CREATE, "CREATE" }, \ { EXT4_GET_BLOCKS_UNWRIT_EXT, "UNWRIT" }, \ { EXT4_GET_BLOCKS_DELALLOC_RESERVE, "DELALLOC" }, \ { EXT4_GET_BLOCKS_PRE_IO, "PRE_IO" }, \ { EXT4_GET_BLOCKS_CONVERT, "CONVERT" }, \ { EXT4_GET_BLOCKS_METADATA_NOFAIL, "METADATA_NOFAIL" }, \ { EXT4_GET_BLOCKS_NO_NORMALIZE, "NO_NORMALIZE" }, \ { EXT4_GET_BLOCKS_CONVERT_UNWRITTEN, "CONVERT_UNWRITTEN" }, \ { EXT4_GET_BLOCKS_ZERO, "ZERO" }, \ { EXT4_GET_BLOCKS_IO_SUBMIT, "IO_SUBMIT" }, \ { EXT4_EX_NOCACHE, "EX_NOCACHE" }) /* * __print_flags() requires that all enum values be wrapped in the * TRACE_DEFINE_ENUM macro so that the enum value can be encoded in the ftrace * ring buffer. */ TRACE_DEFINE_ENUM(BH_New); TRACE_DEFINE_ENUM(BH_Mapped); TRACE_DEFINE_ENUM(BH_Unwritten); TRACE_DEFINE_ENUM(BH_Boundary); #define show_mflags(flags) __print_flags(flags, "", \ { EXT4_MAP_NEW, "N" }, \ { EXT4_MAP_MAPPED, "M" }, \ { EXT4_MAP_UNWRITTEN, "U" }, \ { EXT4_MAP_BOUNDARY, "B" }) #define show_free_flags(flags) __print_flags(flags, "|", \ { EXT4_FREE_BLOCKS_METADATA, "METADATA" }, \ { EXT4_FREE_BLOCKS_FORGET, "FORGET" }, \ { EXT4_FREE_BLOCKS_VALIDATED, "VALIDATED" }, \ { EXT4_FREE_BLOCKS_NO_QUOT_UPDATE, "NO_QUOTA" }, \ { EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER,"1ST_CLUSTER" },\ { EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER, "LAST_CLUSTER" }) TRACE_DEFINE_ENUM(ES_WRITTEN_B); TRACE_DEFINE_ENUM(ES_UNWRITTEN_B); TRACE_DEFINE_ENUM(ES_DELAYED_B); TRACE_DEFINE_ENUM(ES_HOLE_B); TRACE_DEFINE_ENUM(ES_REFERENCED_B); #define show_extent_status(status) __print_flags(status, "", \ { EXTENT_STATUS_WRITTEN, "W" }, \ { EXTENT_STATUS_UNWRITTEN, "U" }, \ { EXTENT_STATUS_DELAYED, "D" }, \ { EXTENT_STATUS_HOLE, "H" }, \ { EXTENT_STATUS_REFERENCED, "R" }) #define show_falloc_mode(mode) __print_flags(mode, "|", \ { FALLOC_FL_KEEP_SIZE, "KEEP_SIZE"}, \ { FALLOC_FL_PUNCH_HOLE, "PUNCH_HOLE"}, \ { FALLOC_FL_NO_HIDE_STALE, "NO_HIDE_STALE"}, \ { FALLOC_FL_COLLAPSE_RANGE, "COLLAPSE_RANGE"}, \ { FALLOC_FL_ZERO_RANGE, "ZERO_RANGE"}) #define show_fc_reason(reason) \ __print_symbolic(reason, \ { EXT4_FC_REASON_XATTR, "XATTR"}, \ { EXT4_FC_REASON_CROSS_RENAME, "CROSS_RENAME"}, \ { EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, "JOURNAL_FLAG_CHANGE"}, \ { EXT4_FC_REASON_NOMEM, "NO_MEM"}, \ { EXT4_FC_REASON_SWAP_BOOT, "SWAP_BOOT"}, \ { EXT4_FC_REASON_RESIZE, "RESIZE"}, \ { EXT4_FC_REASON_RENAME_DIR, "RENAME_DIR"}, \ { EXT4_FC_REASON_FALLOC_RANGE, "FALLOC_RANGE"}, \ { EXT4_FC_REASON_INODE_JOURNAL_DATA, "INODE_JOURNAL_DATA"}) TRACE_EVENT(ext4_other_inode_update_time, TP_PROTO(struct inode *inode, ino_t orig_ino), TP_ARGS(inode, orig_ino), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ino_t, orig_ino ) __field( uid_t, uid ) __field( gid_t, gid ) __field( __u16, mode ) ), TP_fast_assign( __entry->orig_ino = orig_ino; __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->uid = i_uid_read(inode); __entry->gid = i_gid_read(inode); __entry->mode = inode->i_mode; ), TP_printk("dev %d,%d orig_ino %lu ino %lu mode 0%o uid %u gid %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->orig_ino, (unsigned long) __entry->ino, __entry->mode, __entry->uid, __entry->gid) ); TRACE_EVENT(ext4_free_inode, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( uid_t, uid ) __field( gid_t, gid ) __field( __u64, blocks ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->uid = i_uid_read(inode); __entry->gid = i_gid_read(inode); __entry->blocks = inode->i_blocks; __entry->mode = inode->i_mode; ), TP_printk("dev %d,%d ino %lu mode 0%o uid %u gid %u blocks %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->mode, __entry->uid, __entry->gid, __entry->blocks) ); TRACE_EVENT(ext4_request_inode, TP_PROTO(struct inode *dir, int mode), TP_ARGS(dir, mode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, dir ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = dir->i_sb->s_dev; __entry->dir = dir->i_ino; __entry->mode = mode; ), TP_printk("dev %d,%d dir %lu mode 0%o", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->dir, __entry->mode) ); TRACE_EVENT(ext4_allocate_inode, TP_PROTO(struct inode *inode, struct inode *dir, int mode), TP_ARGS(inode, dir, mode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ino_t, dir ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->dir = dir->i_ino; __entry->mode = mode; ), TP_printk("dev %d,%d ino %lu dir %lu mode 0%o", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned long) __entry->dir, __entry->mode) ); TRACE_EVENT(ext4_evict_inode, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( int, nlink ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->nlink = inode->i_nlink; ), TP_printk("dev %d,%d ino %lu nlink %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->nlink) ); TRACE_EVENT(ext4_drop_inode, TP_PROTO(struct inode *inode, int drop), TP_ARGS(inode, drop), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( int, drop ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->drop = drop; ), TP_printk("dev %d,%d ino %lu drop %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->drop) ); TRACE_EVENT(ext4_nfs_commit_metadata, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; ), TP_printk("dev %d,%d ino %lu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino) ); TRACE_EVENT(ext4_mark_inode_dirty, TP_PROTO(struct inode *inode, unsigned long IP), TP_ARGS(inode, IP), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field(unsigned long, ip ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->ip = IP; ), TP_printk("dev %d,%d ino %lu caller %pS", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (void *)__entry->ip) ); TRACE_EVENT(ext4_begin_ordered_truncate, TP_PROTO(struct inode *inode, loff_t new_size), TP_ARGS(inode, new_size), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, new_size ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->new_size = new_size; ), TP_printk("dev %d,%d ino %lu new_size %lld", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->new_size) ); DECLARE_EVENT_CLASS(ext4__write_begin, TP_PROTO(struct inode *inode, loff_t pos, unsigned int len, unsigned int flags), TP_ARGS(inode, pos, len, flags), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, pos ) __field( unsigned int, len ) __field( unsigned int, flags ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pos = pos; __entry->len = len; __entry->flags = flags; ), TP_printk("dev %d,%d ino %lu pos %lld len %u flags %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->pos, __entry->len, __entry->flags) ); DEFINE_EVENT(ext4__write_begin, ext4_write_begin, TP_PROTO(struct inode *inode, loff_t pos, unsigned int len, unsigned int flags), TP_ARGS(inode, pos, len, flags) ); DEFINE_EVENT(ext4__write_begin, ext4_da_write_begin, TP_PROTO(struct inode *inode, loff_t pos, unsigned int len, unsigned int flags), TP_ARGS(inode, pos, len, flags) ); DECLARE_EVENT_CLASS(ext4__write_end, TP_PROTO(struct inode *inode, loff_t pos, unsigned int len, unsigned int copied), TP_ARGS(inode, pos, len, copied), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, pos ) __field( unsigned int, len ) __field( unsigned int, copied ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pos = pos; __entry->len = len; __entry->copied = copied; ), TP_printk("dev %d,%d ino %lu pos %lld len %u copied %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->pos, __entry->len, __entry->copied) ); DEFINE_EVENT(ext4__write_end, ext4_write_end, TP_PROTO(struct inode *inode, loff_t pos, unsigned int len, unsigned int copied), TP_ARGS(inode, pos, len, copied) ); DEFINE_EVENT(ext4__write_end, ext4_journalled_write_end, TP_PROTO(struct inode *inode, loff_t pos, unsigned int len, unsigned int copied), TP_ARGS(inode, pos, len, copied) ); DEFINE_EVENT(ext4__write_end, ext4_da_write_end, TP_PROTO(struct inode *inode, loff_t pos, unsigned int len, unsigned int copied), TP_ARGS(inode, pos, len, copied) ); TRACE_EVENT(ext4_writepages, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( long, nr_to_write ) __field( long, pages_skipped ) __field( loff_t, range_start ) __field( loff_t, range_end ) __field( pgoff_t, writeback_index ) __field( int, sync_mode ) __field( char, for_kupdate ) __field( char, range_cyclic ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->nr_to_write = wbc->nr_to_write; __entry->pages_skipped = wbc->pages_skipped; __entry->range_start = wbc->range_start; __entry->range_end = wbc->range_end; __entry->writeback_index = inode->i_mapping->writeback_index; __entry->sync_mode = wbc->sync_mode; __entry->for_kupdate = wbc->for_kupdate; __entry->range_cyclic = wbc->range_cyclic; ), TP_printk("dev %d,%d ino %lu nr_to_write %ld pages_skipped %ld " "range_start %lld range_end %lld sync_mode %d " "for_kupdate %d range_cyclic %d writeback_index %lu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->nr_to_write, __entry->pages_skipped, __entry->range_start, __entry->range_end, __entry->sync_mode, __entry->for_kupdate, __entry->range_cyclic, (unsigned long) __entry->writeback_index) ); TRACE_EVENT(ext4_da_write_pages, TP_PROTO(struct inode *inode, pgoff_t first_page, struct writeback_control *wbc), TP_ARGS(inode, first_page, wbc), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( pgoff_t, first_page ) __field( long, nr_to_write ) __field( int, sync_mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->first_page = first_page; __entry->nr_to_write = wbc->nr_to_write; __entry->sync_mode = wbc->sync_mode; ), TP_printk("dev %d,%d ino %lu first_page %lu nr_to_write %ld " "sync_mode %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->first_page, __entry->nr_to_write, __entry->sync_mode) ); TRACE_EVENT(ext4_da_write_pages_extent, TP_PROTO(struct inode *inode, struct ext4_map_blocks *map), TP_ARGS(inode, map), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, lblk ) __field( __u32, len ) __field( __u32, flags ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->lblk = map->m_lblk; __entry->len = map->m_len; __entry->flags = map->m_flags; ), TP_printk("dev %d,%d ino %lu lblk %llu len %u flags %s", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->lblk, __entry->len, show_mflags(__entry->flags)) ); TRACE_EVENT(ext4_writepages_result, TP_PROTO(struct inode *inode, struct writeback_control *wbc, int ret, int pages_written), TP_ARGS(inode, wbc, ret, pages_written), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( int, ret ) __field( int, pages_written ) __field( long, pages_skipped ) __field( pgoff_t, writeback_index ) __field( int, sync_mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->ret = ret; __entry->pages_written = pages_written; __entry->pages_skipped = wbc->pages_skipped; __entry->writeback_index = inode->i_mapping->writeback_index; __entry->sync_mode = wbc->sync_mode; ), TP_printk("dev %d,%d ino %lu ret %d pages_written %d pages_skipped %ld " "sync_mode %d writeback_index %lu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->ret, __entry->pages_written, __entry->pages_skipped, __entry->sync_mode, (unsigned long) __entry->writeback_index) ); DECLARE_EVENT_CLASS(ext4__page_op, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( pgoff_t, index ) ), TP_fast_assign( __entry->dev = page->mapping->host->i_sb->s_dev; __entry->ino = page->mapping->host->i_ino; __entry->index = page->index; ), TP_printk("dev %d,%d ino %lu page_index %lu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned long) __entry->index) ); DEFINE_EVENT(ext4__page_op, ext4_writepage, TP_PROTO(struct page *page), TP_ARGS(page) ); DEFINE_EVENT(ext4__page_op, ext4_readpage, TP_PROTO(struct page *page), TP_ARGS(page) ); DEFINE_EVENT(ext4__page_op, ext4_releasepage, TP_PROTO(struct page *page), TP_ARGS(page) ); DECLARE_EVENT_CLASS(ext4_invalidatepage_op, TP_PROTO(struct page *page, unsigned int offset, unsigned int length), TP_ARGS(page, offset, length), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( pgoff_t, index ) __field( unsigned int, offset ) __field( unsigned int, length ) ), TP_fast_assign( __entry->dev = page->mapping->host->i_sb->s_dev; __entry->ino = page->mapping->host->i_ino; __entry->index = page->index; __entry->offset = offset; __entry->length = length; ), TP_printk("dev %d,%d ino %lu page_index %lu offset %u length %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned long) __entry->index, __entry->offset, __entry->length) ); DEFINE_EVENT(ext4_invalidatepage_op, ext4_invalidatepage, TP_PROTO(struct page *page, unsigned int offset, unsigned int length), TP_ARGS(page, offset, length) ); DEFINE_EVENT(ext4_invalidatepage_op, ext4_journalled_invalidatepage, TP_PROTO(struct page *page, unsigned int offset, unsigned int length), TP_ARGS(page, offset, length) ); TRACE_EVENT(ext4_discard_blocks, TP_PROTO(struct super_block *sb, unsigned long long blk, unsigned long long count), TP_ARGS(sb, blk, count), TP_STRUCT__entry( __field( dev_t, dev ) __field( __u64, blk ) __field( __u64, count ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->blk = blk; __entry->count = count; ), TP_printk("dev %d,%d blk %llu count %llu", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->blk, __entry->count) ); DECLARE_EVENT_CLASS(ext4__mb_new_pa, TP_PROTO(struct ext4_allocation_context *ac, struct ext4_prealloc_space *pa), TP_ARGS(ac, pa), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, pa_pstart ) __field( __u64, pa_lstart ) __field( __u32, pa_len ) ), TP_fast_assign( __entry->dev = ac->ac_sb->s_dev; __entry->ino = ac->ac_inode->i_ino; __entry->pa_pstart = pa->pa_pstart; __entry->pa_lstart = pa->pa_lstart; __entry->pa_len = pa->pa_len; ), TP_printk("dev %d,%d ino %lu pstart %llu len %u lstart %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->pa_pstart, __entry->pa_len, __entry->pa_lstart) ); DEFINE_EVENT(ext4__mb_new_pa, ext4_mb_new_inode_pa, TP_PROTO(struct ext4_allocation_context *ac, struct ext4_prealloc_space *pa), TP_ARGS(ac, pa) ); DEFINE_EVENT(ext4__mb_new_pa, ext4_mb_new_group_pa, TP_PROTO(struct ext4_allocation_context *ac, struct ext4_prealloc_space *pa), TP_ARGS(ac, pa) ); TRACE_EVENT(ext4_mb_release_inode_pa, TP_PROTO(struct ext4_prealloc_space *pa, unsigned long long block, unsigned int count), TP_ARGS(pa, block, count), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, block ) __field( __u32, count ) ), TP_fast_assign( __entry->dev = pa->pa_inode->i_sb->s_dev; __entry->ino = pa->pa_inode->i_ino; __entry->block = block; __entry->count = count; ), TP_printk("dev %d,%d ino %lu block %llu count %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->block, __entry->count) ); TRACE_EVENT(ext4_mb_release_group_pa, TP_PROTO(struct super_block *sb, struct ext4_prealloc_space *pa), TP_ARGS(sb, pa), TP_STRUCT__entry( __field( dev_t, dev ) __field( __u64, pa_pstart ) __field( __u32, pa_len ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->pa_pstart = pa->pa_pstart; __entry->pa_len = pa->pa_len; ), TP_printk("dev %d,%d pstart %llu len %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->pa_pstart, __entry->pa_len) ); TRACE_EVENT(ext4_discard_preallocations, TP_PROTO(struct inode *inode, unsigned int len, unsigned int needed), TP_ARGS(inode, len, needed), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( unsigned int, len ) __field( unsigned int, needed ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->len = len; __entry->needed = needed; ), TP_printk("dev %d,%d ino %lu len: %u needed %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->len, __entry->needed) ); TRACE_EVENT(ext4_mb_discard_preallocations, TP_PROTO(struct super_block *sb, int needed), TP_ARGS(sb, needed), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, needed ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->needed = needed; ), TP_printk("dev %d,%d needed %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->needed) ); TRACE_EVENT(ext4_request_blocks, TP_PROTO(struct ext4_allocation_request *ar), TP_ARGS(ar), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( unsigned int, len ) __field( __u32, logical ) __field( __u32, lleft ) __field( __u32, lright ) __field( __u64, goal ) __field( __u64, pleft ) __field( __u64, pright ) __field( unsigned int, flags ) ), TP_fast_assign( __entry->dev = ar->inode->i_sb->s_dev; __entry->ino = ar->inode->i_ino; __entry->len = ar->len; __entry->logical = ar->logical; __entry->goal = ar->goal; __entry->lleft = ar->lleft; __entry->lright = ar->lright; __entry->pleft = ar->pleft; __entry->pright = ar->pright; __entry->flags = ar->flags; ), TP_printk("dev %d,%d ino %lu flags %s len %u lblk %u goal %llu " "lleft %u lright %u pleft %llu pright %llu ", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, show_mballoc_flags(__entry->flags), __entry->len, __entry->logical, __entry->goal, __entry->lleft, __entry->lright, __entry->pleft, __entry->pright) ); TRACE_EVENT(ext4_allocate_blocks, TP_PROTO(struct ext4_allocation_request *ar, unsigned long long block), TP_ARGS(ar, block), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, block ) __field( unsigned int, len ) __field( __u32, logical ) __field( __u32, lleft ) __field( __u32, lright ) __field( __u64, goal ) __field( __u64, pleft ) __field( __u64, pright ) __field( unsigned int, flags ) ), TP_fast_assign( __entry->dev = ar->inode->i_sb->s_dev; __entry->ino = ar->inode->i_ino; __entry->block = block; __entry->len = ar->len; __entry->logical = ar->logical; __entry->goal = ar->goal; __entry->lleft = ar->lleft; __entry->lright = ar->lright; __entry->pleft = ar->pleft; __entry->pright = ar->pright; __entry->flags = ar->flags; ), TP_printk("dev %d,%d ino %lu flags %s len %u block %llu lblk %u " "goal %llu lleft %u lright %u pleft %llu pright %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, show_mballoc_flags(__entry->flags), __entry->len, __entry->block, __entry->logical, __entry->goal, __entry->lleft, __entry->lright, __entry->pleft, __entry->pright) ); TRACE_EVENT(ext4_free_blocks, TP_PROTO(struct inode *inode, __u64 block, unsigned long count, int flags), TP_ARGS(inode, block, count, flags), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, block ) __field( unsigned long, count ) __field( int, flags ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->block = block; __entry->count = count; __entry->flags = flags; __entry->mode = inode->i_mode; ), TP_printk("dev %d,%d ino %lu mode 0%o block %llu count %lu flags %s", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->mode, __entry->block, __entry->count, show_free_flags(__entry->flags)) ); TRACE_EVENT(ext4_sync_file_enter, TP_PROTO(struct file *file, int datasync), TP_ARGS(file, datasync), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ino_t, parent ) __field( int, datasync ) ), TP_fast_assign( struct dentry *dentry = file->f_path.dentry; __entry->dev = dentry->d_sb->s_dev; __entry->ino = d_inode(dentry)->i_ino; __entry->datasync = datasync; __entry->parent = d_inode(dentry->d_parent)->i_ino; ), TP_printk("dev %d,%d ino %lu parent %lu datasync %d ", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, (unsigned long) __entry->parent, __entry->datasync) ); TRACE_EVENT(ext4_sync_file_exit, TP_PROTO(struct inode *inode, int ret), TP_ARGS(inode, ret), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( int, ret ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->ret = ret; ), TP_printk("dev %d,%d ino %lu ret %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->ret) ); TRACE_EVENT(ext4_sync_fs, TP_PROTO(struct super_block *sb, int wait), TP_ARGS(sb, wait), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, wait ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->wait = wait; ), TP_printk("dev %d,%d wait %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->wait) ); TRACE_EVENT(ext4_alloc_da_blocks, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( unsigned int, data_blocks ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->data_blocks = EXT4_I(inode)->i_reserved_data_blocks; ), TP_printk("dev %d,%d ino %lu reserved_data_blocks %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->data_blocks) ); TRACE_EVENT(ext4_mballoc_alloc, TP_PROTO(struct ext4_allocation_context *ac), TP_ARGS(ac), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u32, orig_logical ) __field( int, orig_start ) __field( __u32, orig_group ) __field( int, orig_len ) __field( __u32, goal_logical ) __field( int, goal_start ) __field( __u32, goal_group ) __field( int, goal_len ) __field( __u32, result_logical ) __field( int, result_start ) __field( __u32, result_group ) __field( int, result_len ) __field( __u16, found ) __field( __u16, groups ) __field( __u16, buddy ) __field( __u16, flags ) __field( __u16, tail ) __field( __u8, cr ) ), TP_fast_assign( __entry->dev = ac->ac_inode->i_sb->s_dev; __entry->ino = ac->ac_inode->i_ino; __entry->orig_logical = ac->ac_o_ex.fe_logical; __entry->orig_start = ac->ac_o_ex.fe_start; __entry->orig_group = ac->ac_o_ex.fe_group; __entry->orig_len = ac->ac_o_ex.fe_len; __entry->goal_logical = ac->ac_g_ex.fe_logical; __entry->goal_start = ac->ac_g_ex.fe_start; __entry->goal_group = ac->ac_g_ex.fe_group; __entry->goal_len = ac->ac_g_ex.fe_len; __entry->result_logical = ac->ac_f_ex.fe_logical; __entry->result_start = ac->ac_f_ex.fe_start; __entry->result_group = ac->ac_f_ex.fe_group; __entry->result_len = ac->ac_f_ex.fe_len; __entry->found = ac->ac_found; __entry->flags = ac->ac_flags; __entry->groups = ac->ac_groups_scanned; __entry->buddy = ac->ac_buddy; __entry->tail = ac->ac_tail; __entry->cr = ac->ac_criteria; ), TP_printk("dev %d,%d inode %lu orig %u/%d/%u@%u goal %u/%d/%u@%u " "result %u/%d/%u@%u blks %u grps %u cr %u flags %s " "tail %u broken %u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->orig_group, __entry->orig_start, __entry->orig_len, __entry->orig_logical, __entry->goal_group, __entry->goal_start, __entry->goal_len, __entry->goal_logical, __entry->result_group, __entry->result_start, __entry->result_len, __entry->result_logical, __entry->found, __entry->groups, __entry->cr, show_mballoc_flags(__entry->flags), __entry->tail, __entry->buddy ? 1 << __entry->buddy : 0) ); TRACE_EVENT(ext4_mballoc_prealloc, TP_PROTO(struct ext4_allocation_context *ac), TP_ARGS(ac), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u32, orig_logical ) __field( int, orig_start ) __field( __u32, orig_group ) __field( int, orig_len ) __field( __u32, result_logical ) __field( int, result_start ) __field( __u32, result_group ) __field( int, result_len ) ), TP_fast_assign( __entry->dev = ac->ac_inode->i_sb->s_dev; __entry->ino = ac->ac_inode->i_ino; __entry->orig_logical = ac->ac_o_ex.fe_logical; __entry->orig_start = ac->ac_o_ex.fe_start; __entry->orig_group = ac->ac_o_ex.fe_group; __entry->orig_len = ac->ac_o_ex.fe_len; __entry->result_logical = ac->ac_b_ex.fe_logical; __entry->result_start = ac->ac_b_ex.fe_start; __entry->result_group = ac->ac_b_ex.fe_group; __entry->result_len = ac->ac_b_ex.fe_len; ), TP_printk("dev %d,%d inode %lu orig %u/%d/%u@%u result %u/%d/%u@%u", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->orig_group, __entry->orig_start, __entry->orig_len, __entry->orig_logical, __entry->result_group, __entry->result_start, __entry->result_len, __entry->result_logical) ); DECLARE_EVENT_CLASS(ext4__mballoc, TP_PROTO(struct super_block *sb, struct inode *inode, ext4_group_t group, ext4_grpblk_t start, ext4_grpblk_t len), TP_ARGS(sb, inode, group, start, len), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( int, result_start ) __field( __u32, result_group ) __field( int, result_len ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->ino = inode ? inode->i_ino : 0; __entry->result_start = start; __entry->result_group = group; __entry->result_len = len; ), TP_printk("dev %d,%d inode %lu extent %u/%d/%d ", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->result_group, __entry->result_start, __entry->result_len) ); DEFINE_EVENT(ext4__mballoc, ext4_mballoc_discard, TP_PROTO(struct super_block *sb, struct inode *inode, ext4_group_t group, ext4_grpblk_t start, ext4_grpblk_t len), TP_ARGS(sb, inode, group, start, len) ); DEFINE_EVENT(ext4__mballoc, ext4_mballoc_free, TP_PROTO(struct super_block *sb, struct inode *inode, ext4_group_t group, ext4_grpblk_t start, ext4_grpblk_t len), TP_ARGS(sb, inode, group, start, len) ); TRACE_EVENT(ext4_forget, TP_PROTO(struct inode *inode, int is_metadata, __u64 block), TP_ARGS(inode, is_metadata, block), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, block ) __field( int, is_metadata ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->block = block; __entry->is_metadata = is_metadata; __entry->mode = inode->i_mode; ), TP_printk("dev %d,%d ino %lu mode 0%o is_metadata %d block %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->mode, __entry->is_metadata, __entry->block) ); TRACE_EVENT(ext4_da_update_reserve_space, TP_PROTO(struct inode *inode, int used_blocks, int quota_claim), TP_ARGS(inode, used_blocks, quota_claim), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, i_blocks ) __field( int, used_blocks ) __field( int, reserved_data_blocks ) __field( int, quota_claim ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->i_blocks = inode->i_blocks; __entry->used_blocks = used_blocks; __entry->reserved_data_blocks = EXT4_I(inode)->i_reserved_data_blocks; __entry->quota_claim = quota_claim; __entry->mode = inode->i_mode; ), TP_printk("dev %d,%d ino %lu mode 0%o i_blocks %llu used_blocks %d " "reserved_data_blocks %d quota_claim %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->mode, __entry->i_blocks, __entry->used_blocks, __entry->reserved_data_blocks, __entry->quota_claim) ); TRACE_EVENT(ext4_da_reserve_space, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, i_blocks ) __field( int, reserved_data_blocks ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->i_blocks = inode->i_blocks; __entry->reserved_data_blocks = EXT4_I(inode)->i_reserved_data_blocks; __entry->mode = inode->i_mode; ), TP_printk("dev %d,%d ino %lu mode 0%o i_blocks %llu " "reserved_data_blocks %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->mode, __entry->i_blocks, __entry->reserved_data_blocks) ); TRACE_EVENT(ext4_da_release_space, TP_PROTO(struct inode *inode, int freed_blocks), TP_ARGS(inode, freed_blocks), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, i_blocks ) __field( int, freed_blocks ) __field( int, reserved_data_blocks ) __field( __u16, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->i_blocks = inode->i_blocks; __entry->freed_blocks = freed_blocks; __entry->reserved_data_blocks = EXT4_I(inode)->i_reserved_data_blocks; __entry->mode = inode->i_mode; ), TP_printk("dev %d,%d ino %lu mode 0%o i_blocks %llu freed_blocks %d " "reserved_data_blocks %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->mode, __entry->i_blocks, __entry->freed_blocks, __entry->reserved_data_blocks) ); DECLARE_EVENT_CLASS(ext4__bitmap_load, TP_PROTO(struct super_block *sb, unsigned long group), TP_ARGS(sb, group), TP_STRUCT__entry( __field( dev_t, dev ) __field( __u32, group ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->group = group; ), TP_printk("dev %d,%d group %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->group) ); DEFINE_EVENT(ext4__bitmap_load, ext4_mb_bitmap_load, TP_PROTO(struct super_block *sb, unsigned long group), TP_ARGS(sb, group) ); DEFINE_EVENT(ext4__bitmap_load, ext4_mb_buddy_bitmap_load, TP_PROTO(struct super_block *sb, unsigned long group), TP_ARGS(sb, group) ); DEFINE_EVENT(ext4__bitmap_load, ext4_load_inode_bitmap, TP_PROTO(struct super_block *sb, unsigned long group), TP_ARGS(sb, group) ); TRACE_EVENT(ext4_read_block_bitmap_load, TP_PROTO(struct super_block *sb, unsigned long group, bool prefetch), TP_ARGS(sb, group, prefetch), TP_STRUCT__entry( __field( dev_t, dev ) __field( __u32, group ) __field( bool, prefetch ) ), TP_fast_assign( __entry->dev = sb->s_dev; __entry->group = group; __entry->prefetch = prefetch; ), TP_printk("dev %d,%d group %u prefetch %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->group, __entry->prefetch) ); TRACE_EVENT(ext4_direct_IO_enter, TP_PROTO(struct inode *inode, loff_t offset, unsigned long len, int rw), TP_ARGS(inode, offset, len, rw), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, pos ) __field( unsigned long, len ) __field( int, rw ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pos = offset; __entry->len = len; __entry->rw = rw; ), TP_printk("dev %d,%d ino %lu pos %lld len %lu rw %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->pos, __entry->len, __entry->rw) ); TRACE_EVENT(ext4_direct_IO_exit, TP_PROTO(struct inode *inode, loff_t offset, unsigned long len, int rw, int ret), TP_ARGS(inode, offset, len, rw, ret), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, pos ) __field( unsigned long, len ) __field( int, rw ) __field( int, ret ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pos = offset; __entry->len = len; __entry->rw = rw; __entry->ret = ret; ), TP_printk("dev %d,%d ino %lu pos %lld len %lu rw %d ret %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->pos, __entry->len, __entry->rw, __entry->ret) ); DECLARE_EVENT_CLASS(ext4__fallocate_mode, TP_PROTO(struct inode *inode, loff_t offset, loff_t len, int mode), TP_ARGS(inode, offset, len, mode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, offset ) __field( loff_t, len ) __field( int, mode ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->offset = offset; __entry->len = len; __entry->mode = mode; ), TP_printk("dev %d,%d ino %lu offset %lld len %lld mode %s", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->offset, __entry->len, show_falloc_mode(__entry->mode)) ); DEFINE_EVENT(ext4__fallocate_mode, ext4_fallocate_enter, TP_PROTO(struct inode *inode, loff_t offset, loff_t len, int mode), TP_ARGS(inode, offset, len, mode) ); DEFINE_EVENT(ext4__fallocate_mode, ext4_punch_hole, TP_PROTO(struct inode *inode, loff_t offset, loff_t len, int mode), TP_ARGS(inode, offset, len, mode) ); DEFINE_EVENT(ext4__fallocate_mode, ext4_zero_range, TP_PROTO(struct inode *inode, loff_t offset, loff_t len, int mode), TP_ARGS(inode, offset, len, mode) ); TRACE_EVENT(ext4_fallocate_exit, TP_PROTO(struct inode *inode, loff_t offset, unsigned int max_blocks, int ret), TP_ARGS(inode, offset, max_blocks, ret), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( loff_t, pos ) __field( unsigned int, blocks ) __field( int, ret ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pos = offset; __entry->blocks = max_blocks; __entry->ret = ret; ), TP_printk("dev %d,%d ino %lu pos %lld blocks %u ret %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->pos, __entry->blocks, __entry->ret) ); TRACE_EVENT(ext4_unlink_enter, TP_PROTO(struct inode *parent, struct dentry *dentry), TP_ARGS(parent, dentry), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ino_t, parent ) __field( loff_t, size ) ), TP_fast_assign( __entry->dev = dentry->d_sb->s_dev; __entry->ino = d_inode(dentry)->i_ino; __entry->parent = parent->i_ino; __entry->size = d_inode(dentry)->i_size; ), TP_printk("dev %d,%d ino %lu size %lld parent %lu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->size, (unsigned long) __entry->parent) ); TRACE_EVENT(ext4_unlink_exit, TP_PROTO(struct dentry *dentry, int ret), TP_ARGS(dentry, ret), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( int, ret ) ), TP_fast_assign( __entry->dev = dentry->d_sb->s_dev; __entry->ino = d_inode(dentry)->i_ino; __entry->ret = ret; ), TP_printk("dev %d,%d ino %lu ret %d", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->ret) ); DECLARE_EVENT_CLASS(ext4__truncate, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( __u64, blocks ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->blocks = inode->i_blocks; ), TP_printk("dev %d,%d ino %lu blocks %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->blocks) ); DEFINE_EVENT(ext4__truncate, ext4_truncate_enter, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(ext4__truncate, ext4_truncate_exit, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); /* 'ux' is the unwritten extent. */ TRACE_EVENT(ext4_ext_convert_to_initialized_enter, TP_PROTO(struct inode *inode, struct ext4_map_blocks *map, struct ext4_extent *ux), TP_ARGS(inode, map, ux), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, m_lblk ) __field( unsigned, m_len ) __field( ext4_lblk_t, u_lblk ) __field( unsigned, u_len ) __field( ext4_fsblk_t, u_pblk ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->m_lblk = map->m_lblk; __entry->m_len = map->m_len; __entry->u_lblk = le32_to_cpu(ux->ee_block); __entry->u_len = ext4_ext_get_actual_len(ux); __entry->u_pblk = ext4_ext_pblock(ux); ), TP_printk("dev %d,%d ino %lu m_lblk %u m_len %u u_lblk %u u_len %u " "u_pblk %llu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->m_lblk, __entry->m_len, __entry->u_lblk, __entry->u_len, __entry->u_pblk) ); /* * 'ux' is the unwritten extent. * 'ix' is the initialized extent to which blocks are transferred. */ TRACE_EVENT(ext4_ext_convert_to_initialized_fastpath, TP_PROTO(struct inode *inode, struct ext4_map_blocks *map, struct ext4_extent *ux, struct ext4_extent *ix), TP_ARGS(inode, map, ux, ix), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, m_lblk ) __field( unsigned, m_len ) __field( ext4_lblk_t, u_lblk ) __field( unsigned, u_len ) __field( ext4_fsblk_t, u_pblk ) __field( ext4_lblk_t, i_lblk ) __field( unsigned, i_len ) __field( ext4_fsblk_t, i_pblk ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->m_lblk = map->m_lblk; __entry->m_len = map->m_len; __entry->u_lblk = le32_to_cpu(ux->ee_block); __entry->u_len = ext4_ext_get_actual_len(ux); __entry->u_pblk = ext4_ext_pblock(ux); __entry->i_lblk = le32_to_cpu(ix->ee_block); __entry->i_len = ext4_ext_get_actual_len(ix); __entry->i_pblk = ext4_ext_pblock(ix); ), TP_printk("dev %d,%d ino %lu m_lblk %u m_len %u " "u_lblk %u u_len %u u_pblk %llu " "i_lblk %u i_len %u i_pblk %llu ", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->m_lblk, __entry->m_len, __entry->u_lblk, __entry->u_len, __entry->u_pblk, __entry->i_lblk, __entry->i_len, __entry->i_pblk) ); DECLARE_EVENT_CLASS(ext4__map_blocks_enter, TP_PROTO(struct inode *inode, ext4_lblk_t lblk, unsigned int len, unsigned int flags), TP_ARGS(inode, lblk, len, flags), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field( ext4_lblk_t, lblk ) __field( unsigned int, len ) __field( unsigned int, flags ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->lblk = lblk; __entry->len = len; __entry->flags = flags; ), TP_printk("dev %d,%d ino %lu lblk %u len %u flags %s", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino, __entry->lblk, __entry->len, show_map_flags(__entry->flags)) );