1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 /* SPDX-License-Identifier: GPL-2.0 */ /* * Wireless configuration interface internals. * * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright (C) 2018-2020 Intel Corporation */ #ifndef __NET_WIRELESS_CORE_H #define __NET_WIRELESS_CORE_H #include <linux/list.h> #include <linux/netdevice.h> #include <linux/rbtree.h> #include <linux/debugfs.h> #include <linux/rfkill.h> #include <linux/workqueue.h> #include <linux/rtnetlink.h> #include <net/genetlink.h> #include <net/cfg80211.h> #include "reg.h" #define WIPHY_IDX_INVALID -1 struct cfg80211_registered_device { const struct cfg80211_ops *ops; struct list_head list; /* rfkill support */ struct rfkill_ops rfkill_ops; struct rfkill *rfkill; struct work_struct rfkill_block; /* ISO / IEC 3166 alpha2 for which this device is receiving * country IEs on, this can help disregard country IEs from APs * on the same alpha2 quickly. The alpha2 may differ from * cfg80211_regdomain's alpha2 when an intersection has occurred. * If the AP is reconfigured this can also be used to tell us if * the country on the country IE changed. */ char country_ie_alpha2[2]; /* * the driver requests the regulatory core to set this regulatory * domain as the wiphy's. Only used for %REGULATORY_WIPHY_SELF_MANAGED * devices using the regulatory_set_wiphy_regd() API */ const struct ieee80211_regdomain *requested_regd; /* If a Country IE has been received this tells us the environment * which its telling us its in. This defaults to ENVIRON_ANY */ enum environment_cap env; /* wiphy index, internal only */ int wiphy_idx; /* protected by RTNL */ int devlist_generation, wdev_id; int opencount; wait_queue_head_t dev_wait; struct list_head beacon_registrations; spinlock_t beacon_registrations_lock; /* protected by RTNL only */ int num_running_ifaces; int num_running_monitor_ifaces; u64 cookie_counter; /* BSSes/scanning */ spinlock_t bss_lock; struct list_head bss_list; struct rb_root bss_tree; u32 bss_generation; u32 bss_entries; struct cfg80211_scan_request *scan_req; /* protected by RTNL */ struct cfg80211_scan_request *int_scan_req; struct sk_buff *scan_msg; struct list_head sched_scan_req_list; time64_t suspend_at; struct work_struct scan_done_wk; struct genl_info *cur_cmd_info; struct work_struct conn_work; struct work_struct event_work; struct delayed_work dfs_update_channels_wk; /* netlink port which started critical protocol (0 means not started) */ u32 crit_proto_nlportid; struct cfg80211_coalesce *coalesce; struct work_struct destroy_work; struct work_struct sched_scan_stop_wk; struct work_struct sched_scan_res_wk; struct cfg80211_chan_def radar_chandef; struct work_struct propagate_radar_detect_wk; struct cfg80211_chan_def cac_done_chandef; struct work_struct propagate_cac_done_wk; struct work_struct mgmt_registrations_update_wk; /* lock for all wdev lists */ spinlock_t mgmt_registrations_lock; /* must be last because of the way we do wiphy_priv(), * and it should at least be aligned to NETDEV_ALIGN */ struct wiphy wiphy __aligned(NETDEV_ALIGN); }; static inline struct cfg80211_registered_device *wiphy_to_rdev(struct wiphy *wiphy) { BUG_ON(!wiphy); return container_of(wiphy, struct cfg80211_registered_device, wiphy); } static inline void cfg80211_rdev_free_wowlan(struct cfg80211_registered_device *rdev) { #ifdef CONFIG_PM int i; if (!rdev->wiphy.wowlan_config) return; for (i = 0; i < rdev->wiphy.wowlan_config->n_patterns; i++) kfree(rdev->wiphy.wowlan_config->patterns[i].mask); kfree(rdev->wiphy.wowlan_config->patterns); if (rdev->wiphy.wowlan_config->tcp && rdev->wiphy.wowlan_config->tcp->sock) sock_release(rdev->wiphy.wowlan_config->tcp->sock); kfree(rdev->wiphy.wowlan_config->tcp); kfree(rdev->wiphy.wowlan_config->nd_config); kfree(rdev->wiphy.wowlan_config); #endif } static inline u64 cfg80211_assign_cookie(struct cfg80211_registered_device *rdev) { u64 r = ++rdev->cookie_counter; if (WARN_ON(r == 0)) r = ++rdev->cookie_counter; return r; } extern struct workqueue_struct *cfg80211_wq; extern struct list_head cfg80211_rdev_list; extern int cfg80211_rdev_list_generation; struct cfg80211_internal_bss { struct list_head list; struct list_head hidden_list; struct rb_node rbn; u64 ts_boottime; unsigned long ts; unsigned long refcount; atomic_t hold; /* time at the start of the reception of the first octet of the * timestamp field of the last beacon/probe received for this BSS. * The time is the TSF of the BSS specified by %parent_bssid. */ u64 parent_tsf; /* the BSS according to which %parent_tsf is set. This is set to * the BSS that the interface that requested the scan was connected to * when the beacon/probe was received. */ u8 parent_bssid[ETH_ALEN] __aligned(2); /* must be last because of priv member */ struct cfg80211_bss pub; }; static inline struct cfg80211_internal_bss *bss_from_pub(struct cfg80211_bss *pub) { return container_of(pub, struct cfg80211_internal_bss, pub); } static inline void cfg80211_hold_bss(struct cfg80211_internal_bss *bss) { atomic_inc(&bss->hold); if (bss->pub.transmitted_bss) { bss = container_of(bss->pub.transmitted_bss, struct cfg80211_internal_bss, pub); atomic_inc(&bss->hold); } } static inline void cfg80211_unhold_bss(struct cfg80211_internal_bss *bss) { int r = atomic_dec_return(&bss->hold); WARN_ON(r < 0); if (bss->pub.transmitted_bss) { bss = container_of(bss->pub.transmitted_bss, struct cfg80211_internal_bss, pub); r = atomic_dec_return(&bss->hold); WARN_ON(r < 0); } } struct cfg80211_registered_device *cfg80211_rdev_by_wiphy_idx(int wiphy_idx); int get_wiphy_idx(struct wiphy *wiphy); struct wiphy *wiphy_idx_to_wiphy(int wiphy_idx); int cfg80211_switch_netns(struct cfg80211_registered_device *rdev, struct net *net); void cfg80211_init_wdev(struct wireless_dev *wdev); void cfg80211_register_wdev(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); static inline void wdev_lock(struct wireless_dev *wdev) __acquires(wdev) { mutex_lock(&wdev->mtx); __acquire(wdev->mtx); } static inline void wdev_unlock(struct wireless_dev *wdev) __releases(wdev) { __release(wdev->mtx); mutex_unlock(&wdev->mtx); } #define ASSERT_WDEV_LOCK(wdev) lockdep_assert_held(&(wdev)->mtx) static inline bool cfg80211_has_monitors_only(struct cfg80211_registered_device *rdev) { ASSERT_RTNL(); return rdev->num_running_ifaces == rdev->num_running_monitor_ifaces && rdev->num_running_ifaces > 0; } enum cfg80211_event_type { EVENT_CONNECT_RESULT, EVENT_ROAMED, EVENT_DISCONNECTED, EVENT_IBSS_JOINED, EVENT_STOPPED, EVENT_PORT_AUTHORIZED, }; struct cfg80211_event { struct list_head list; enum cfg80211_event_type type; union { struct cfg80211_connect_resp_params cr; struct cfg80211_roam_info rm; struct { const u8 *ie; size_t ie_len; u16 reason; bool locally_generated; } dc; struct { u8 bssid[ETH_ALEN]; struct ieee80211_channel *channel; } ij; struct { u8 bssid[ETH_ALEN]; } pa; }; }; struct cfg80211_cached_keys { struct key_params params[CFG80211_MAX_WEP_KEYS]; u8 data[CFG80211_MAX_WEP_KEYS][WLAN_KEY_LEN_WEP104]; int def; }; enum cfg80211_chan_mode { CHAN_MODE_UNDEFINED, CHAN_MODE_SHARED, CHAN_MODE_EXCLUSIVE, }; struct cfg80211_beacon_registration { struct list_head list; u32 nlportid; }; struct cfg80211_cqm_config { u32 rssi_hyst; s32 last_rssi_event_value; int n_rssi_thresholds; s32 rssi_thresholds[]; }; void cfg80211_destroy_ifaces(struct cfg80211_registered_device *rdev); /* free object */ void cfg80211_dev_free(struct cfg80211_registered_device *rdev); int cfg80211_dev_rename(struct cfg80211_registered_device *rdev, char *newname); void ieee80211_set_bitrate_flags(struct wiphy *wiphy); void cfg80211_bss_expire(struct cfg80211_registered_device *rdev); void cfg80211_bss_age(struct cfg80211_registered_device *rdev, unsigned long age_secs); void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, struct ieee80211_channel *channel); /* IBSS */ int __cfg80211_join_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ibss_params *params, struct cfg80211_cached_keys *connkeys); void cfg80211_clear_ibss(struct net_device *dev, bool nowext); int __cfg80211_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, bool nowext); int cfg80211_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, bool nowext); void __cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid, struct ieee80211_channel *channel); int cfg80211_ibss_wext_join(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); /* mesh */ extern const struct mesh_config default_mesh_config; extern const struct mesh_setup default_mesh_setup; int __cfg80211_join_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev, struct mesh_setup *setup, const struct mesh_config *conf); int __cfg80211_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_set_mesh_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef); /* OCB */ int __cfg80211_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup); int cfg80211_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup); int __cfg80211_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev); /* AP */ int __cfg80211_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, bool notify); int cfg80211_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, bool notify); /* MLME */ int cfg80211_mlme_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan, enum nl80211_auth_type auth_type, const u8 *bssid, const u8 *ssid, int ssid_len, const u8 *ie, int ie_len, const u8 *key, int key_len, int key_idx, const u8 *auth_data, int auth_data_len); int cfg80211_mlme_assoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan, const u8 *bssid, const u8 *ssid, int ssid_len, struct cfg80211_assoc_request *req); int cfg80211_mlme_deauth(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *bssid, const u8 *ie, int ie_len, u16 reason, bool local_state_change); int cfg80211_mlme_disassoc(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *bssid, const u8 *ie, int ie_len, u16 reason, bool local_state_change); void cfg80211_mlme_down(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_mlme_register_mgmt(struct wireless_dev *wdev, u32 snd_pid, u16 frame_type, const u8 *match_data, int match_len, bool multicast_rx, struct netlink_ext_ack *extack); void cfg80211_mgmt_registrations_update_wk(struct work_struct *wk); void cfg80211_mlme_unregister_socket(struct wireless_dev *wdev, u32 nlpid); void cfg80211_mlme_purge_registrations(struct wireless_dev *wdev); int cfg80211_mlme_mgmt_tx(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie); void cfg80211_oper_and_ht_capa(struct ieee80211_ht_cap *ht_capa, const struct ieee80211_ht_cap *ht_capa_mask); void cfg80211_oper_and_vht_capa(struct ieee80211_vht_cap *vht_capa, const struct ieee80211_vht_cap *vht_capa_mask); /* SME events */ int cfg80211_connect(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *connect, struct cfg80211_cached_keys *connkeys, const u8 *prev_bssid); void __cfg80211_connect_result(struct net_device *dev, struct cfg80211_connect_resp_params *params, bool wextev); void __cfg80211_disconnected(struct net_device *dev, const u8 *ie, size_t ie_len, u16 reason, bool from_ap); int cfg80211_disconnect(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 reason, bool wextev); void __cfg80211_roamed(struct wireless_dev *wdev, struct cfg80211_roam_info *info); void __cfg80211_port_authorized(struct wireless_dev *wdev, const u8 *bssid); int cfg80211_mgd_wext_connect(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_autodisconnect_wk(struct work_struct *work); /* SME implementation */ void cfg80211_conn_work(struct work_struct *work); void cfg80211_sme_scan_done(struct net_device *dev); bool cfg80211_sme_rx_assoc_resp(struct wireless_dev *wdev, u16 status); void cfg80211_sme_rx_auth(struct wireless_dev *wdev, const u8 *buf, size_t len); void cfg80211_sme_disassoc(struct wireless_dev *wdev); void cfg80211_sme_deauth(struct wireless_dev *wdev); void cfg80211_sme_auth_timeout(struct wireless_dev *wdev); void cfg80211_sme_assoc_timeout(struct wireless_dev *wdev); void cfg80211_sme_abandon_assoc(struct wireless_dev *wdev); /* internal helpers */ bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher); bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, int key_idx, bool pairwise); int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, struct key_params *params, int key_idx, bool pairwise, const u8 *mac_addr); void __cfg80211_scan_done(struct work_struct *wk); void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, bool send_message); void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req); int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, bool want_multi); void cfg80211_sched_scan_results_wk(struct work_struct *work); int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req, bool driver_initiated); int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, u64 reqid, bool driver_initiated); void cfg80211_upload_connect_keys(struct wireless_dev *wdev); int cfg80211_change_iface(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype ntype, struct vif_params *params); void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev); void cfg80211_process_wdev_events(struct wireless_dev *wdev); bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, u32 center_freq_khz, u32 bw_khz); int cfg80211_scan(struct cfg80211_registered_device *rdev); extern struct work_struct cfg80211_disconnect_work; /** * cfg80211_chandef_dfs_usable - checks if chandef is DFS usable * @wiphy: the wiphy to validate against * @chandef: the channel definition to check * * Checks if chandef is usable and we can/need start CAC on such channel. * * Return: true if all channels available and at least * one channel requires CAC (NL80211_DFS_USABLE) */ bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef); void cfg80211_set_dfs_state(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, enum nl80211_dfs_state dfs_state); void cfg80211_dfs_channels_update_work(struct work_struct *work); unsigned int cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef); void cfg80211_sched_dfs_chan_update(struct cfg80211_registered_device *rdev); bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy, struct ieee80211_channel *chan); bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev); bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef, struct ieee80211_channel *chan); static inline unsigned int elapsed_jiffies_msecs(unsigned long start) { unsigned long end = jiffies; if (end >= start) return jiffies_to_msecs(end - start); return jiffies_to_msecs(end + (ULONG_MAX - start) + 1); } void cfg80211_get_chan_state(struct wireless_dev *wdev, struct ieee80211_channel **chan, enum cfg80211_chan_mode *chanmode, u8 *radar_detect); int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev, struct cfg80211_chan_def *chandef); int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, const u8 *rates, unsigned int n_rates, u32 *mask); int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, u32 beacon_int); void cfg80211_update_iface_num(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, int num); void __cfg80211_leave(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_leave(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_stop_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_stop_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); struct cfg80211_internal_bss * cfg80211_bss_update(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *tmp, bool signal_valid, unsigned long ts); #ifdef CONFIG_CFG80211_DEVELOPER_WARNINGS #define CFG80211_DEV_WARN_ON(cond) WARN_ON(cond) #else /* * Trick to enable using it as a condition, * and also not give a warning when it's * not used that way. */ #define CFG80211_DEV_WARN_ON(cond) ({bool __r = (cond); __r; }) #endif void cfg80211_cqm_config_free(struct wireless_dev *wdev); void cfg80211_release_pmsr(struct wireless_dev *wdev, u32 portid); void cfg80211_pmsr_wdev_down(struct wireless_dev *wdev); void cfg80211_pmsr_free_wk(struct work_struct *work); #endif /* __NET_WIRELESS_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the TCP module. * * Version: @(#)tcp.h 1.0.5 05/23/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _TCP_H #define _TCP_H #define FASTRETRANS_DEBUG 1 #include <linux/list.h> #include <linux/tcp.h> #include <linux/bug.h> #include <linux/slab.h> #include <linux/cache.h> #include <linux/percpu.h> #include <linux/skbuff.h> #include <linux/kref.h> #include <linux/ktime.h> #include <linux/indirect_call_wrapper.h> #include <net/inet_connection_sock.h> #include <net/inet_timewait_sock.h> #include <net/inet_hashtables.h> #include <net/checksum.h> #include <net/request_sock.h> #include <net/sock_reuseport.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ip.h> #include <net/tcp_states.h> #include <net/inet_ecn.h> #include <net/dst.h> #include <net/mptcp.h> #include <linux/seq_file.h> #include <linux/memcontrol.h> #include <linux/bpf-cgroup.h> #include <linux/siphash.h> extern struct inet_hashinfo tcp_hashinfo; DECLARE_PER_CPU(unsigned int, tcp_orphan_count); int tcp_orphan_count_sum(void); void tcp_time_wait(struct sock *sk, int state, int timeo); #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) #define MAX_TCP_OPTION_SPACE 40 #define TCP_MIN_SND_MSS 48 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) /* * Never offer a window over 32767 without using window scaling. Some * poor stacks do signed 16bit maths! */ #define MAX_TCP_WINDOW 32767U /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ #define TCP_MIN_MSS 88U /* The initial MTU to use for probing */ #define TCP_BASE_MSS 1024 /* probing interval, default to 10 minutes as per RFC4821 */ #define TCP_PROBE_INTERVAL 600 /* Specify interval when tcp mtu probing will stop */ #define TCP_PROBE_THRESHOLD 8 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ #define TCP_FASTRETRANS_THRESH 3 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ #define TCP_MAX_QUICKACKS 16U /* Maximal number of window scale according to RFC1323 */ #define TCP_MAX_WSCALE 14U /* urg_data states */ #define TCP_URG_VALID 0x0100 #define TCP_URG_NOTYET 0x0200 #define TCP_URG_READ 0x0400 #define TCP_RETR1 3 /* * This is how many retries it does before it * tries to figure out if the gateway is * down. Minimal RFC value is 3; it corresponds * to ~3sec-8min depending on RTO. */ #define TCP_RETR2 15 /* * This should take at least * 90 minutes to time out. * RFC1122 says that the limit is 100 sec. * 15 is ~13-30min depending on RTO. */ #define TCP_SYN_RETRIES 6 /* This is how many retries are done * when active opening a connection. * RFC1122 says the minimum retry MUST * be at least 180secs. Nevertheless * this value is corresponding to * 63secs of retransmission with the * current initial RTO. */ #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done * when passive opening a connection. * This is corresponding to 31secs of * retransmission with the current * initial RTO. */ #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT * state, about 60 seconds */ #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN /* BSD style FIN_WAIT2 deadlock breaker. * It used to be 3min, new value is 60sec, * to combine FIN-WAIT-2 timeout with * TIME-WAIT timer. */ #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ #if HZ >= 100 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ #define TCP_ATO_MIN ((unsigned)(HZ/25)) #else #define TCP_DELACK_MIN 4U #define TCP_ATO_MIN 4U #endif #define TCP_RTO_MAX ((unsigned)(120*HZ)) #define TCP_RTO_MIN ((unsigned)(HZ/5)) #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now * used as a fallback RTO for the * initial data transmission if no * valid RTT sample has been acquired, * most likely due to retrans in 3WHS. */ #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes * for local resources. */ #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ #define TCP_KEEPALIVE_INTVL (75*HZ) #define MAX_TCP_KEEPIDLE 32767 #define MAX_TCP_KEEPINTVL 32767 #define MAX_TCP_KEEPCNT 127 #define MAX_TCP_SYNCNT 127 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */ #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24) #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated * after this time. It should be equal * (or greater than) TCP_TIMEWAIT_LEN * to provide reliability equal to one * provided by timewait state. */ #define TCP_PAWS_WINDOW 1 /* Replay window for per-host * timestamps. It must be less than * minimal timewait lifetime. */ /* * TCP option */ #define TCPOPT_NOP 1 /* Padding */ #define TCPOPT_EOL 0 /* End of options */ #define TCPOPT_MSS 2 /* Segment size negotiating */ #define TCPOPT_WINDOW 3 /* Window scaling */ #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ #define TCPOPT_SACK 5 /* SACK Block */ #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ #define TCPOPT_EXP 254 /* Experimental */ /* Magic number to be after the option value for sharing TCP * experimental options. See draft-ietf-tcpm-experimental-options-00.txt */ #define TCPOPT_FASTOPEN_MAGIC 0xF989 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 /* * TCP option lengths */ #define TCPOLEN_MSS 4 #define TCPOLEN_WINDOW 3 #define TCPOLEN_SACK_PERM 2 #define TCPOLEN_TIMESTAMP 10 #define TCPOLEN_MD5SIG 18 #define TCPOLEN_FASTOPEN_BASE 2 #define TCPOLEN_EXP_FASTOPEN_BASE 4 #define TCPOLEN_EXP_SMC_BASE 6 /* But this is what stacks really send out. */ #define TCPOLEN_TSTAMP_ALIGNED 12 #define TCPOLEN_WSCALE_ALIGNED 4 #define TCPOLEN_SACKPERM_ALIGNED 4 #define TCPOLEN_SACK_BASE 2 #define TCPOLEN_SACK_BASE_ALIGNED 4 #define TCPOLEN_SACK_PERBLOCK 8 #define TCPOLEN_MD5SIG_ALIGNED 20 #define TCPOLEN_MSS_ALIGNED 4 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 /* Flags in tp->nonagle */ #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ #define TCP_NAGLE_CORK 2 /* Socket is corked */ #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ /* TCP thin-stream limits */ #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ /* TCP initial congestion window as per rfc6928 */ #define TCP_INIT_CWND 10 /* Bit Flags for sysctl_tcp_fastopen */ #define TFO_CLIENT_ENABLE 1 #define TFO_SERVER_ENABLE 2 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ /* Accept SYN data w/o any cookie option */ #define TFO_SERVER_COOKIE_NOT_REQD 0x200 /* Force enable TFO on all listeners, i.e., not requiring the * TCP_FASTOPEN socket option. */ #define TFO_SERVER_WO_SOCKOPT1 0x400 /* sysctl variables for tcp */ extern int sysctl_tcp_max_orphans; extern long sysctl_tcp_mem[3]; #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ extern atomic_long_t tcp_memory_allocated; extern struct percpu_counter tcp_sockets_allocated; extern unsigned long tcp_memory_pressure; /* optimized version of sk_under_memory_pressure() for TCP sockets */ static inline bool tcp_under_memory_pressure(const struct sock *sk) { if (mem_cgroup_sockets_enabled && sk->sk_memcg && mem_cgroup_under_socket_pressure(sk->sk_memcg)) return true; return READ_ONCE(tcp_memory_pressure); } /* * The next routines deal with comparing 32 bit unsigned ints * and worry about wraparound (automatic with unsigned arithmetic). */ static inline bool before(__u32 seq1, __u32 seq2) { return (__s32)(seq1-seq2) < 0; } #define after(seq2, seq1) before(seq1, seq2) /* is s2<=s1<=s3 ? */ static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) { return seq3 - seq2 >= seq1 - seq2; } static inline bool tcp_out_of_memory(struct sock *sk) { if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) return true; return false; } void sk_forced_mem_schedule(struct sock *sk, int size); bool tcp_check_oom(struct sock *sk, int shift); extern struct proto tcp_prot; #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) void tcp_tasklet_init(void); int tcp_v4_err(struct sk_buff *skb, u32); void tcp_shutdown(struct sock *sk, int how); int tcp_v4_early_demux(struct sk_buff *skb); int tcp_v4_rcv(struct sk_buff *skb); int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw); int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags); int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags); ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, size_t size, int flags); int tcp_send_mss(struct sock *sk, int *size_goal, int flags); void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, int size_goal); void tcp_release_cb(struct sock *sk); void tcp_wfree(struct sk_buff *skb); void tcp_write_timer_handler(struct sock *sk); void tcp_delack_timer_handler(struct sock *sk); int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg); int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); void tcp_rcv_space_adjust(struct sock *sk); int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); void tcp_twsk_destructor(struct sock *sk); ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks); static inline void tcp_dec_quickack_mode(struct sock *sk, const unsigned int pkts) { struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ack.quick) { if (pkts >= icsk->icsk_ack.quick) { icsk->icsk_ack.quick = 0; /* Leaving quickack mode we deflate ATO. */ icsk->icsk_ack.ato = TCP_ATO_MIN; } else icsk->icsk_ack.quick -= pkts; } } #define TCP_ECN_OK 1 #define TCP_ECN_QUEUE_CWR 2 #define TCP_ECN_DEMAND_CWR 4 #define TCP_ECN_SEEN 8 enum tcp_tw_status { TCP_TW_SUCCESS = 0, TCP_TW_RST = 1, TCP_TW_ACK = 2, TCP_TW_SYN = 3 }; enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb, const struct tcphdr *th); struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, struct request_sock *req, bool fastopen, bool *lost_race); int tcp_child_process(struct sock *parent, struct sock *child, struct sk_buff *skb); void tcp_enter_loss(struct sock *sk); void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag); void tcp_clear_retrans(struct tcp_sock *tp); void tcp_update_metrics(struct sock *sk); void tcp_init_metrics(struct sock *sk); void tcp_metrics_init(void); bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); void tcp_close(struct sock *sk, long timeout); void tcp_init_sock(struct sock *sk); void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); __poll_t tcp_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait); int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); void tcp_set_keepalive(struct sock *sk, int val); void tcp_syn_ack_timeout(const struct request_sock *req); int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len); int tcp_set_rcvlowat(struct sock *sk, int val); void tcp_data_ready(struct sock *sk); #ifdef CONFIG_MMU int tcp_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma); #endif void tcp_parse_options(const struct net *net, const struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab, struct tcp_fastopen_cookie *foc); const u8 *tcp_parse_md5sig_option(const struct tcphdr *th); /* * BPF SKB-less helpers */ u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, struct tcphdr *th, u32 *cookie); u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, struct tcphdr *th, u32 *cookie); u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, const struct tcp_request_sock_ops *af_ops, struct sock *sk, struct tcphdr *th); /* * TCP v4 functions exported for the inet6 API */ void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); void tcp_v4_mtu_reduced(struct sock *sk); void tcp_req_err(struct sock *sk, u32 seq, bool abort); void tcp_ld_RTO_revert(struct sock *sk, u32 seq); int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); struct sock *tcp_create_openreq_child(const struct sock *sk, struct request_sock *req, struct sk_buff *skb); void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req); int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); int tcp_connect(struct sock *sk); enum tcp_synack_type { TCP_SYNACK_NORMAL, TCP_SYNACK_FASTOPEN, TCP_SYNACK_COOKIE, }; struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, struct request_sock *req, struct tcp_fastopen_cookie *foc, enum tcp_synack_type synack_type, struct sk_buff *syn_skb); int tcp_disconnect(struct sock *sk, int flags); void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); /* From syncookies.c */ struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, u32 tsoff); int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, u32 cookie); struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, struct sock *sk, struct sk_buff *skb); #ifdef CONFIG_SYN_COOKIES /* Syncookies use a monotonic timer which increments every 60 seconds. * This counter is used both as a hash input and partially encoded into * the cookie value. A cookie is only validated further if the delta * between the current counter value and the encoded one is less than this, * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if * the counter advances immediately after a cookie is generated). */ #define MAX_SYNCOOKIE_AGE 2 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) /* syncookies: remember time of last synqueue overflow * But do not dirty this field too often (once per second is enough) * It is racy as we do not hold a lock, but race is very minor. */ static inline void tcp_synq_overflow(const struct sock *sk) { unsigned int last_overflow; unsigned int now = jiffies; if (sk->sk_reuseport) { struct sock_reuseport *reuse; reuse = rcu_dereference(sk->sk_reuseport_cb); if (likely(reuse)) { last_overflow = READ_ONCE(reuse->synq_overflow_ts); if (!time_between32(now, last_overflow, last_overflow + HZ)) WRITE_ONCE(reuse->synq_overflow_ts, now); return; } } last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); if (!time_between32(now, last_overflow, last_overflow + HZ)) WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now); } /* syncookies: no recent synqueue overflow on this listening socket? */ static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) { unsigned int last_overflow; unsigned int now = jiffies; if (sk->sk_reuseport) { struct sock_reuseport *reuse; reuse = rcu_dereference(sk->sk_reuseport_cb); if (likely(reuse)) { last_overflow = READ_ONCE(reuse->synq_overflow_ts); return !time_between32(now, last_overflow - HZ, last_overflow + TCP_SYNCOOKIE_VALID); } } last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, * then we're under synflood. However, we have to use * 'last_overflow - HZ' as lower bound. That's because a concurrent * tcp_synq_overflow() could update .ts_recent_stamp after we read * jiffies but before we store .ts_recent_stamp into last_overflow, * which could lead to rejecting a valid syncookie. */ return !time_between32(now, last_overflow - HZ, last_overflow + TCP_SYNCOOKIE_VALID); } static inline u32 tcp_cookie_time(void) { u64 val = get_jiffies_64(); do_div(val, TCP_SYNCOOKIE_PERIOD); return val; } u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, u16 *mssp); __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); u64 cookie_init_timestamp(struct request_sock *req, u64 now); bool cookie_timestamp_decode(const struct net *net, struct tcp_options_received *opt); bool cookie_ecn_ok(const struct tcp_options_received *opt, const struct net *net, const struct dst_entry *dst); /* From net/ipv6/syncookies.c */ int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th, u32 cookie); struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, const struct tcphdr *th, u16 *mssp); __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); #endif /* tcp_output.c */ void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, int nonagle); int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); void tcp_retransmit_timer(struct sock *sk); void tcp_xmit_retransmit_queue(struct sock *); void tcp_simple_retransmit(struct sock *); void tcp_enter_recovery(struct sock *sk, bool ece_ack); int tcp_trim_head(struct sock *, struct sk_buff *, u32); enum tcp_queue { TCP_FRAG_IN_WRITE_QUEUE, TCP_FRAG_IN_RTX_QUEUE, }; int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, struct sk_buff *skb, u32 len, unsigned int mss_now, gfp_t gfp); void tcp_send_probe0(struct sock *); void tcp_send_partial(struct sock *); int tcp_write_wakeup(struct sock *, int mib); void tcp_send_fin(struct sock *sk); void tcp_send_active_reset(struct sock *sk, gfp_t priority); int tcp_send_synack(struct sock *); void tcp_push_one(struct sock *, unsigned int mss_now); void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); void tcp_send_ack(struct sock *sk); void tcp_send_delayed_ack(struct sock *sk); void tcp_send_loss_probe(struct sock *sk); bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); void tcp_skb_collapse_tstamp(struct sk_buff *skb, const struct sk_buff *next_skb); /* tcp_input.c */ void tcp_rearm_rto(struct sock *sk); void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); void tcp_reset(struct sock *sk); void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb); void tcp_fin(struct sock *sk); /* tcp_timer.c */ void tcp_init_xmit_timers(struct sock *); static inline void tcp_clear_xmit_timers(struct sock *sk) { if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) __sock_put(sk); if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) __sock_put(sk); inet_csk_clear_xmit_timers(sk); } unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); unsigned int tcp_current_mss(struct sock *sk); u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); /* Bound MSS / TSO packet size with the half of the window */ static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) { int cutoff; /* When peer uses tiny windows, there is no use in packetizing * to sub-MSS pieces for the sake of SWS or making sure there * are enough packets in the pipe for fast recovery. * * On the other hand, for extremely large MSS devices, handling * smaller than MSS windows in this way does make sense. */ if (tp->max_window > TCP_MSS_DEFAULT) cutoff = (tp->max_window >> 1); else cutoff = tp->max_window; if (cutoff && pktsize > cutoff) return max_t(int, cutoff, 68U - tp->tcp_header_len); else return pktsize; } /* tcp.c */ void tcp_get_info(struct sock *, struct tcp_info *); /* Read 'sendfile()'-style from a TCP socket */ int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t recv_actor); void tcp_initialize_rcv_mss(struct sock *sk); int tcp_mtu_to_mss(struct sock *sk, int pmtu); int tcp_mss_to_mtu(struct sock *sk, int mss); void tcp_mtup_init(struct sock *sk); static inline void tcp_bound_rto(const struct sock *sk) { if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) inet_csk(sk)->icsk_rto = TCP_RTO_MAX; } static inline u32 __tcp_set_rto(const struct tcp_sock *tp) { return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); } static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) { /* mptcp hooks are only on the slow path */ if (sk_is_mptcp((struct sock *)tp)) return; tp->pred_flags = htonl((tp->tcp_header_len << 26) | ntohl(TCP_FLAG_ACK) | snd_wnd); } static inline void tcp_fast_path_on(struct tcp_sock *tp) { __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); } static inline void tcp_fast_path_check(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && tp->rcv_wnd && atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && !tp->urg_data) tcp_fast_path_on(tp); } /* Compute the actual rto_min value */ static inline u32 tcp_rto_min(struct sock *sk) { const struct dst_entry *dst = __sk_dst_get(sk); u32 rto_min = inet_csk(sk)->icsk_rto_min; if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); return rto_min; } static inline u32 tcp_rto_min_us(struct sock *sk) { return jiffies_to_usecs(tcp_rto_min(sk)); } static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) { return dst_metric_locked(dst, RTAX_CC_ALGO); } /* Minimum RTT in usec. ~0 means not available. */ static inline u32 tcp_min_rtt(const struct tcp_sock *tp) { return minmax_get(&tp->rtt_min); } /* Compute the actual receive window we are currently advertising. * Rcv_nxt can be after the window if our peer push more data * than the offered window. */ static inline u32 tcp_receive_window(const struct tcp_sock *tp) { s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; if (win < 0) win = 0; return (u32) win; } /* Choose a new window, without checks for shrinking, and without * scaling applied to the result. The caller does these things * if necessary. This is a "raw" window selection. */ u32 __tcp_select_window(struct sock *sk); void tcp_send_window_probe(struct sock *sk); /* TCP uses 32bit jiffies to save some space. * Note that this is different from tcp_time_stamp, which * historically has been the same until linux-4.13. */ #define tcp_jiffies32 ((u32)jiffies) /* * Deliver a 32bit value for TCP timestamp option (RFC 7323) * It is no longer tied to jiffies, but to 1 ms clock. * Note: double check if you want to use tcp_jiffies32 instead of this. */ #define TCP_TS_HZ 1000 static inline u64 tcp_clock_ns(void) { return ktime_get_ns(); } static inline u64 tcp_clock_us(void) { return div_u64(tcp_clock_ns(), NSEC_PER_USEC); } /* This should only be used in contexts where tp->tcp_mstamp is up to date */ static inline u32 tcp_time_stamp(const struct tcp_sock *tp) { return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ); } /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */ static inline u32 tcp_ns_to_ts(u64 ns) { return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ); } /* Could use tcp_clock_us() / 1000, but this version uses a single divide */ static inline u32 tcp_time_stamp_raw(void) { return tcp_ns_to_ts(tcp_clock_ns()); } void tcp_mstamp_refresh(struct tcp_sock *tp); static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) { return max_t(s64, t1 - t0, 0); } static inline u32 tcp_skb_timestamp(const struct sk_buff *skb) { return tcp_ns_to_ts(skb->skb_mstamp_ns); } /* provide the departure time in us unit */ static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) { return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); } #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) #define TCPHDR_FIN 0x01 #define TCPHDR_SYN 0x02 #define TCPHDR_RST 0x04 #define TCPHDR_PSH 0x08 #define TCPHDR_ACK 0x10 #define TCPHDR_URG 0x20 #define TCPHDR_ECE 0x40 #define TCPHDR_CWR 0x80 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) /* This is what the send packet queuing engine uses to pass * TCP per-packet control information to the transmission code. * We also store the host-order sequence numbers in here too. * This is 44 bytes if IPV6 is enabled. * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. */ struct tcp_skb_cb { __u32 seq; /* Starting sequence number */ __u32 end_seq; /* SEQ + FIN + SYN + datalen */ union { /* Note : tcp_tw_isn is used in input path only * (isn chosen by tcp_timewait_state_process()) * * tcp_gso_segs/size are used in write queue only, * cf tcp_skb_pcount()/tcp_skb_mss() */ __u32 tcp_tw_isn; struct { u16 tcp_gso_segs; u16 tcp_gso_size; }; }; __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ __u8 sacked; /* State flags for SACK. */ #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */ #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */ #define TCPCB_LOST 0x04 /* SKB is lost */ #define TCPCB_TAGBITS 0x07 /* All tag bits */ #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */ #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */ #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \ TCPCB_REPAIRED) __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ eor:1, /* Is skb MSG_EOR marked? */ has_rxtstamp:1, /* SKB has a RX timestamp */ unused:5; __u32 ack_seq; /* Sequence number ACK'd */ union { struct { /* There is space for up to 24 bytes */ __u32 in_flight:30,/* Bytes in flight at transmit */ is_app_limited:1, /* cwnd not fully used? */ unused:1; /* pkts S/ACKed so far upon tx of skb, incl retrans: */ __u32 delivered; /* start of send pipeline phase */ u64 first_tx_mstamp; /* when we reached the "delivered" count */ u64 delivered_mstamp; } tx; /* only used for outgoing skbs */ union { struct inet_skb_parm h4; #if IS_ENABLED(CONFIG_IPV6) struct inet6_skb_parm h6; #endif } header; /* For incoming skbs */ struct { __u32 flags; struct sock *sk_redir; void *data_end; } bpf; }; }; #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb) { TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb); } static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb) { return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS; } static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb) { return TCP_SKB_CB(skb)->bpf.sk_redir; } static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb) { TCP_SKB_CB(skb)->bpf.sk_redir = NULL; } extern const struct inet_connection_sock_af_ops ipv4_specific; #if IS_ENABLED(CONFIG_IPV6) /* This is the variant of inet6_iif() that must be used by TCP, * as TCP moves IP6CB into a different location in skb->cb[] */ static inline int tcp_v6_iif(const struct sk_buff *skb) { return TCP_SKB_CB(skb)->header.h6.iif; } static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) { bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; } /* TCP_SKB_CB reference means this can not be used from early demux */ static inline int tcp_v6_sdif(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) return TCP_SKB_CB(skb)->header.h6.iif; #endif return 0; } extern const struct inet_connection_sock_af_ops ipv6_specific; INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb)); #endif /* TCP_SKB_CB reference means this can not be used from early demux */ static inline int tcp_v4_sdif(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) return TCP_SKB_CB(skb)->header.h4.iif; #endif return 0; } /* Due to TSO, an SKB can be composed of multiple actual * packets. To keep these tracked properly, we use this. */ static inline int tcp_skb_pcount(const struct sk_buff *skb) { return TCP_SKB_CB(skb)->tcp_gso_segs; } static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) { TCP_SKB_CB(skb)->tcp_gso_segs = segs; } static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) { TCP_SKB_CB(skb)->tcp_gso_segs += segs; } /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ static inline int tcp_skb_mss(const struct sk_buff *skb) { return TCP_SKB_CB(skb)->tcp_gso_size; } static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) { return likely(!TCP_SKB_CB(skb)->eor); } static inline bool tcp_skb_can_collapse(const struct sk_buff *to, const struct sk_buff *from) { return likely(tcp_skb_can_collapse_to(to) && mptcp_skb_can_collapse(to, from)); } /* Events passed to congestion control interface */ enum tcp_ca_event { CA_EVENT_TX_START, /* first transmit when no packets in flight */ CA_EVENT_CWND_RESTART, /* congestion window restart */ CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ CA_EVENT_LOSS, /* loss timeout */ CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ }; /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ enum tcp_ca_ack_event_flags { CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ }; /* * Interface for adding new TCP congestion control handlers */ #define TCP_CA_NAME_MAX 16 #define TCP_CA_MAX 128 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) #define TCP_CA_UNSPEC 0 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ #define TCP_CONG_NON_RESTRICTED 0x1 /* Requires ECN/ECT set on all packets */ #define TCP_CONG_NEEDS_ECN 0x2 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) union tcp_cc_info; struct ack_sample { u32 pkts_acked; s32 rtt_us; u32 in_flight; }; /* A rate sample measures the number of (original/retransmitted) data * packets delivered "delivered" over an interval of time "interval_us". * The tcp_rate.c code fills in the rate sample, and congestion * control modules that define a cong_control function to run at the end * of ACK processing can optionally chose to consult this sample when * setting cwnd and pacing rate. * A sample is invalid if "delivered" or "interval_us" is negative. */ struct rate_sample { u64 prior_mstamp; /* starting timestamp for interval */ u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ s32 delivered; /* number of packets delivered over interval */ long interval_us; /* time for tp->delivered to incr "delivered" */ u32 snd_interval_us; /* snd interval for delivered packets */ u32 rcv_interval_us; /* rcv interval for delivered packets */ long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ int losses; /* number of packets marked lost upon ACK */ u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ u32 prior_in_flight; /* in flight before this ACK */ bool is_app_limited; /* is sample from packet with bubble in pipe? */ bool is_retrans; /* is sample from retransmission? */ bool is_ack_delayed; /* is this (likely) a delayed ACK? */ }; struct tcp_congestion_ops { struct list_head list; u32 key; u32 flags; /* initialize private data (optional) */ void (*init)(struct sock *sk); /* cleanup private data (optional) */ void (*release)(struct sock *sk); /* return slow start threshold (required) */ u32 (*ssthresh)(struct sock *sk); /* do new cwnd calculation (required) */ void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); /* call before changing ca_state (optional) */ void (*set_state)(struct sock *sk, u8 new_state); /* call when cwnd event occurs (optional) */ void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); /* call when ack arrives (optional) */ void (*in_ack_event)(struct sock *sk, u32 flags); /* new value of cwnd after loss (required) */ u32 (*undo_cwnd)(struct sock *sk); /* hook for packet ack accounting (optional) */ void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); /* override sysctl_tcp_min_tso_segs */ u32 (*min_tso_segs)(struct sock *sk); /* returns the multiplier used in tcp_sndbuf_expand (optional) */ u32 (*sndbuf_expand)(struct sock *sk); /* call when packets are delivered to update cwnd and pacing rate, * after all the ca_state processing. (optional) */ void (*cong_control)(struct sock *sk, const struct rate_sample *rs); /* get info for inet_diag (optional) */ size_t (*get_info)(struct sock *sk, u32 ext, int *attr, union tcp_cc_info *info); char name[TCP_CA_NAME_MAX]; struct module *owner; }; int tcp_register_congestion_control(struct tcp_congestion_ops *type); void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); void tcp_assign_congestion_control(struct sock *sk); void tcp_init_congestion_control(struct sock *sk); void tcp_cleanup_congestion_control(struct sock *sk); int tcp_set_default_congestion_control(struct net *net, const char *name); void tcp_get_default_congestion_control(struct net *net, char *name); void tcp_get_available_congestion_control(char *buf, size_t len); void tcp_get_allowed_congestion_control(char *buf, size_t len); int tcp_set_allowed_congestion_control(char *allowed); int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool cap_net_admin); u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); u32 tcp_reno_ssthresh(struct sock *sk); u32 tcp_reno_undo_cwnd(struct sock *sk); void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); extern struct tcp_congestion_ops tcp_reno; struct tcp_congestion_ops *tcp_ca_find(const char *name); struct tcp_congestion_ops *tcp_ca_find_key(u32 key); u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); #ifdef CONFIG_INET char *tcp_ca_get_name_by_key(u32 key, char *buffer); #else static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) { return NULL; } #endif static inline bool tcp_ca_needs_ecn(const struct sock *sk) { const struct inet_connection_sock *icsk = inet_csk(sk); return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; } static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state) { struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ca_ops->set_state) icsk->icsk_ca_ops->set_state(sk, ca_state); icsk->icsk_ca_state = ca_state; } static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) { const struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ca_ops->cwnd_event) icsk->icsk_ca_ops->cwnd_event(sk, event); } /* From tcp_rate.c */ void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, struct rate_sample *rs); void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, bool is_sack_reneg, struct rate_sample *rs); void tcp_rate_check_app_limited(struct sock *sk); /* These functions determine how the current flow behaves in respect of SACK * handling. SACK is negotiated with the peer, and therefore it can vary * between different flows. * * tcp_is_sack - SACK enabled * tcp_is_reno - No SACK */ static inline int tcp_is_sack(const struct tcp_sock *tp) { return likely(tp->rx_opt.sack_ok); } static inline bool tcp_is_reno(const struct tcp_sock *tp) { return !tcp_is_sack(tp); } static inline unsigned int tcp_left_out(const struct tcp_sock *tp) { return tp->sacked_out + tp->lost_out; } /* This determines how many packets are "in the network" to the best * of our knowledge. In many cases it is conservative, but where * detailed information is available from the receiver (via SACK * blocks etc.) we can make more aggressive calculations. * * Use this for decisions involving congestion control, use just * tp->packets_out to determine if the send queue is empty or not. * * Read this equation as: * * "Packets sent once on transmission queue" MINUS * "Packets left network, but not honestly ACKed yet" PLUS * "Packets fast retransmitted" */ static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) { return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; } #define TCP_INFINITE_SSTHRESH 0x7fffffff static inline bool tcp_in_slow_start(const struct tcp_sock *tp) { return tp->snd_cwnd < tp->snd_ssthresh; } static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) { return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; } static inline bool tcp_in_cwnd_reduction(const struct sock *sk) { return (TCPF_CA_CWR | TCPF_CA_Recovery) & (1 << inet_csk(sk)->icsk_ca_state); } /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. * The exception is cwnd reduction phase, when cwnd is decreasing towards * ssthresh. */ static inline __u32 tcp_current_ssthresh(const struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); if (tcp_in_cwnd_reduction(sk)) return tp->snd_ssthresh; else return max(tp->snd_ssthresh, ((tp->snd_cwnd >> 1) + (tp->snd_cwnd >> 2))); } /* Use define here intentionally to get WARN_ON location shown at the caller */ #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) void tcp_enter_cwr(struct sock *sk); __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); /* The maximum number of MSS of available cwnd for which TSO defers * sending if not using sysctl_tcp_tso_win_divisor. */ static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) { return 3; } /* Returns end sequence number of the receiver's advertised window */ static inline u32 tcp_wnd_end(const struct tcp_sock *tp) { return tp->snd_una + tp->snd_wnd; } /* We follow the spirit of RFC2861 to validate cwnd but implement a more * flexible approach. The RFC suggests cwnd should not be raised unless * it was fully used previously. And that's exactly what we do in * congestion avoidance mode. But in slow start we allow cwnd to grow * as long as the application has used half the cwnd. * Example : * cwnd is 10 (IW10), but application sends 9 frames. * We allow cwnd to reach 18 when all frames are ACKed. * This check is safe because it's as aggressive as slow start which already * risks 100% overshoot. The advantage is that we discourage application to * either send more filler packets or data to artificially blow up the cwnd * usage, and allow application-limited process to probe bw more aggressively. */ static inline bool tcp_is_cwnd_limited(const struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); /* If in slow start, ensure cwnd grows to twice what was ACKed. */ if (tcp_in_slow_start(tp)) return tp->snd_cwnd < 2 * tp->max_packets_out; return tp->is_cwnd_limited; } /* BBR congestion control needs pacing. * Same remark for SO_MAX_PACING_RATE. * sch_fq packet scheduler is efficiently handling pacing, * but is not always installed/used. * Return true if TCP stack should pace packets itself. */ static inline bool tcp_needs_internal_pacing(const struct sock *sk) { return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; } /* Estimates in how many jiffies next packet for this flow can be sent. * Scheduling a retransmit timer too early would be silly. */ static inline unsigned long tcp_pacing_delay(const struct sock *sk) { s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; return delay > 0 ? nsecs_to_jiffies(delay) : 0; } static inline void tcp_reset_xmit_timer(struct sock *sk, const int what, unsigned long when, const unsigned long max_when) { inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), max_when); } /* Something is really bad, we could not queue an additional packet, * because qdisc is full or receiver sent a 0 window, or we are paced. * We do not want to add fuel to the fire, or abort too early, * so make sure the timer we arm now is at least 200ms in the future, * regardless of current icsk_rto value (as it could be ~2ms) */ static inline unsigned long tcp_probe0_base(const struct sock *sk) { return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); } /* Variant of inet_csk_rto_backoff() used for zero window probes */ static inline unsigned long tcp_probe0_when(const struct sock *sk, unsigned long max_when) { u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff; return (unsigned long)min_t(u64, when, max_when); } static inline void tcp_check_probe_timer(struct sock *sk) { if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, tcp_probe0_base(sk), TCP_RTO_MAX); } static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) { tp->snd_wl1 = seq; } static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) { tp->snd_wl1 = seq; } /* * Calculate(/check) TCP checksum */ static inline __sum16 tcp_v4_check(int len, __be32 saddr, __be32 daddr, __wsum base) { return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); } static inline bool tcp_checksum_complete(struct sk_buff *skb) { return !skb_csum_unnecessary(skb) && __skb_checksum_complete(skb); } bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb); int tcp_filter(struct sock *sk, struct sk_buff *skb); void tcp_set_state(struct sock *sk, int state); void tcp_done(struct sock *sk); int tcp_abort(struct sock *sk, int err); static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) { rx_opt->dsack = 0; rx_opt->num_sacks = 0; } void tcp_cwnd_restart(struct sock *sk, s32 delta); static inline void tcp_slow_start_after_idle_check(struct sock *sk) { const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; struct tcp_sock *tp = tcp_sk(sk); s32 delta; if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out || ca_ops->cong_control) return; delta = tcp_jiffies32 - tp->lsndtime; if (delta > inet_csk(sk)->icsk_rto) tcp_cwnd_restart(sk, delta); } /* Determine a window scaling and initial window to offer. */ void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, __u32 *rcv_wnd, __u32 *window_clamp, int wscale_ok, __u8 *rcv_wscale, __u32 init_rcv_wnd); static inline int tcp_win_from_space(const struct sock *sk, int space) { int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale; return tcp_adv_win_scale <= 0 ? (space>>(-tcp_adv_win_scale)) : space - (space>>tcp_adv_win_scale); } /* Note: caller must be prepared to deal with negative returns */ static inline int tcp_space(const struct sock *sk) { return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - READ_ONCE(sk->sk_backlog.len) - atomic_read(&sk->sk_rmem_alloc)); } static inline int tcp_full_space(const struct sock *sk) { return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); } void tcp_cleanup_rbuf(struct sock *sk, int copied); /* We provision sk_rcvbuf around 200% of sk_rcvlowat. * If 87.5 % (7/8) of the space has been consumed, we want to override * SO_RCVLOWAT constraint, since we are receiving skbs with too small * len/truesize ratio. */ static inline bool tcp_rmem_pressure(const struct sock *sk) { int rcvbuf, threshold; if (tcp_under_memory_pressure(sk)) return true; rcvbuf = READ_ONCE(sk->sk_rcvbuf); threshold = rcvbuf - (rcvbuf >> 3); return atomic_read(&sk->sk_rmem_alloc) > threshold; } extern void tcp_openreq_init_rwin(struct request_sock *req, const struct sock *sk_listener, const struct dst_entry *dst); void tcp_enter_memory_pressure(struct sock *sk); void tcp_leave_memory_pressure(struct sock *sk); static inline int keepalive_intvl_when(const struct tcp_sock *tp) { struct net *net = sock_net((struct sock *)tp); return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl; } static inline int keepalive_time_when(const struct tcp_sock *tp) { struct net *net = sock_net((struct sock *)tp); return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time; } static inline int keepalive_probes(const struct tcp_sock *tp) { struct net *net = sock_net((struct sock *)tp); return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes; } static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) { const struct inet_connection_sock *icsk = &tp->inet_conn; return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, tcp_jiffies32 - tp->rcv_tstamp); } static inline int tcp_fin_time(const struct sock *sk) { int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout; const int rto = inet_csk(sk)->icsk_rto; if (fin_timeout < (rto << 2) - (rto >> 1)) fin_timeout = (rto << 2) - (rto >> 1); return fin_timeout; } static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, int paws_win) { if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) return true; if (unlikely(!time_before32(ktime_get_seconds(), rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))) return true; /* * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, * then following tcp messages have valid values. Ignore 0 value, * or else 'negative' tsval might forbid us to accept their packets. */ if (!rx_opt->ts_recent) return true; return false; } static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, int rst) { if (tcp_paws_check(rx_opt, 0)) return false; /* RST segments are not recommended to carry timestamp, and, if they do, it is recommended to ignore PAWS because "their cleanup function should take precedence over timestamps." Certainly, it is mistake. It is necessary to understand the reasons of this constraint to relax it: if peer reboots, clock may go out-of-sync and half-open connections will not be reset. Actually, the problem would be not existing if all the implementations followed draft about maintaining clock via reboots. Linux-2.2 DOES NOT! However, we can relax time bounds for RST segments to MSL. */ if (rst && !time_before32(ktime_get_seconds(), rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) return false; return true; } bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, int mib_idx, u32 *last_oow_ack_time); static inline void tcp_mib_init(struct net *net) { /* See RFC 2012 */ TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); } /* from STCP */ static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) { tp->lost_skb_hint = NULL; } static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) { tcp_clear_retrans_hints_partial(tp); tp->retransmit_skb_hint = NULL; } union tcp_md5_addr { struct in_addr a4; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr a6; #endif }; /* - key database */ struct tcp_md5sig_key { struct hlist_node node; u8 keylen; u8 family; /* AF_INET or AF_INET6 */ u8 prefixlen; union tcp_md5_addr addr; int l3index; /* set if key added with L3 scope */ u8 key[TCP_MD5SIG_MAXKEYLEN]; struct rcu_head rcu; }; /* - sock block */ struct tcp_md5sig_info { struct hlist_head head; struct rcu_head rcu; }; /* - pseudo header */ struct tcp4_pseudohdr { __be32 saddr; __be32 daddr; __u8 pad; __u8 protocol; __be16 len; }; struct tcp6_pseudohdr { struct in6_addr saddr; struct in6_addr daddr; __be32 len; __be32 protocol; /* including padding */ }; union tcp_md5sum_block { struct tcp4_pseudohdr ip4; #if IS_ENABLED(CONFIG_IPV6) struct tcp6_pseudohdr ip6; #endif }; /* - pool: digest algorithm, hash description and scratch buffer */ struct tcp_md5sig_pool { struct ahash_request *md5_req; void *scratch; }; /* - functions */ int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, const struct sock *sk, const struct sk_buff *skb); int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, int family, u8 prefixlen, int l3index, const u8 *newkey, u8 newkeylen, gfp_t gfp); int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, u8 prefixlen, int l3index); struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, const struct sock *addr_sk); #ifdef CONFIG_TCP_MD5SIG #include <linux/jump_label.h> extern struct static_key_false tcp_md5_needed; struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, const union tcp_md5_addr *addr, int family); static inline struct tcp_md5sig_key * tcp_md5_do_lookup(const struct sock *sk, int l3index, const union tcp_md5_addr *addr, int family) { if (!static_branch_unlikely(&tcp_md5_needed)) return NULL; return __tcp_md5_do_lookup(sk, l3index, addr, family); } #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) #else static inline struct tcp_md5sig_key * tcp_md5_do_lookup(const struct sock *sk, int l3index, const union tcp_md5_addr *addr, int family) { return NULL; } #define tcp_twsk_md5_key(twsk) NULL #endif bool tcp_alloc_md5sig_pool(void); struct tcp_md5sig_pool *tcp_get_md5sig_pool(void); static inline void tcp_put_md5sig_pool(void) { local_bh_enable(); } int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *, unsigned int header_len); int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key); /* From tcp_fastopen.c */ void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, struct tcp_fastopen_cookie *cookie); void tcp_fastopen_cache_set(struct sock *sk, u16 mss, struct tcp_fastopen_cookie *cookie, bool syn_lost, u16 try_exp); struct tcp_fastopen_request { /* Fast Open cookie. Size 0 means a cookie request */ struct tcp_fastopen_cookie cookie; struct msghdr *data; /* data in MSG_FASTOPEN */ size_t size; int copied; /* queued in tcp_connect() */ struct ubuf_info *uarg; }; void tcp_free_fastopen_req(struct tcp_sock *tp); void tcp_fastopen_destroy_cipher(struct sock *sk); void tcp_fastopen_ctx_destroy(struct net *net); int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, void *primary_key, void *backup_key); int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, u64 *key); void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct tcp_fastopen_cookie *foc, const struct dst_entry *dst); void tcp_fastopen_init_key_once(struct net *net); bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, struct tcp_fastopen_cookie *cookie); bool tcp_fastopen_defer_connect(struct sock *sk, int *err); #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) #define TCP_FASTOPEN_KEY_MAX 2 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) /* Fastopen key context */ struct tcp_fastopen_context { siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; int num; struct rcu_head rcu; }; extern unsigned int sysctl_tcp_fastopen_blackhole_timeout; void tcp_fastopen_active_disable(struct sock *sk); bool tcp_fastopen_active_should_disable(struct sock *sk); void tcp_fastopen_active_disable_ofo_check(struct sock *sk); void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); /* Caller needs to wrap with rcu_read_(un)lock() */ static inline struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) { struct tcp_fastopen_context *ctx; ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); if (!ctx) ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); return ctx; } static inline bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, const struct tcp_fastopen_cookie *orig) { if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && orig->len == foc->len && !memcmp(orig->val, foc->val, foc->len)) return true; return false; } static inline int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) { return ctx->num; } /* Latencies incurred by various limits for a sender. They are * chronograph-like stats that are mutually exclusive. */ enum tcp_chrono { TCP_CHRONO_UNSPEC, TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ __TCP_CHRONO_MAX, }; void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); /* This helper is needed, because skb->tcp_tsorted_anchor uses * the same memory storage than skb->destructor/_skb_refdst */ static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) { skb->destructor = NULL; skb->_skb_refdst = 0UL; } #define tcp_skb_tsorted_save(skb) { \ unsigned long _save = skb->_skb_refdst; \ skb->_skb_refdst = 0UL; #define tcp_skb_tsorted_restore(skb) \ skb->_skb_refdst = _save; \ } void tcp_write_queue_purge(struct sock *sk); static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) { return skb_rb_first(&sk->tcp_rtx_queue); } static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) { return skb_rb_last(&sk->tcp_rtx_queue); } static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk) { return skb_peek(&sk->sk_write_queue); } static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) { return skb_peek_tail(&sk->sk_write_queue); } #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) static inline struct sk_buff *tcp_send_head(const struct sock *sk) { return skb_peek(&sk->sk_write_queue); } static inline bool tcp_skb_is_last(const struct sock *sk, const struct sk_buff *skb) { return skb_queue_is_last(&sk->sk_write_queue, skb); } /** * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue * @sk: socket * * Since the write queue can have a temporary empty skb in it, * we must not use "return skb_queue_empty(&sk->sk_write_queue)" */ static inline bool tcp_write_queue_empty(const struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); return tp->write_seq == tp->snd_nxt; } static inline bool tcp_rtx_queue_empty(const struct sock *sk) { return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); } static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) { return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); } static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) { __skb_queue_tail(&sk->sk_write_queue, skb); /* Queue it, remembering where we must start sending. */ if (sk->sk_write_queue.next == skb) tcp_chrono_start(sk, TCP_CHRONO_BUSY); } /* Insert new before skb on the write queue of sk. */ static inline void tcp_insert_write_queue_before(struct sk_buff *new, struct sk_buff *skb, struct sock *sk) { __skb_queue_before(&sk->sk_write_queue, skb, new); } static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) { tcp_skb_tsorted_anchor_cleanup(skb); __skb_unlink(skb, &sk->sk_write_queue); } void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) { tcp_skb_tsorted_anchor_cleanup(skb); rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); } static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) { list_del(&skb->tcp_tsorted_anchor); tcp_rtx_queue_unlink(skb, sk); sk_wmem_free_skb(sk, skb); } static inline void tcp_push_pending_frames(struct sock *sk) { if (tcp_send_head(sk)) { struct tcp_sock *tp = tcp_sk(sk); __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); } } /* Start sequence of the skb just after the highest skb with SACKed * bit, valid only if sacked_out > 0 or when the caller has ensured * validity by itself. */ static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) { if (!tp->sacked_out) return tp->snd_una; if (tp->highest_sack == NULL) return tp->snd_nxt; return TCP_SKB_CB(tp->highest_sack)->seq; } static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) { tcp_sk(sk)->highest_sack = skb_rb_next(skb); } static inline struct sk_buff *tcp_highest_sack(struct sock *sk) { return tcp_sk(sk)->highest_sack; } static inline void tcp_highest_sack_reset(struct sock *sk) { tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); } /* Called when old skb is about to be deleted and replaced by new skb */ static inline void tcp_highest_sack_replace(struct sock *sk, struct sk_buff *old, struct sk_buff *new) { if (old == tcp_highest_sack(sk)) tcp_sk(sk)->highest_sack = new; } /* This helper checks if socket has IP_TRANSPARENT set */ static inline bool inet_sk_transparent(const struct sock *sk) { switch (sk->sk_state) { case TCP_TIME_WAIT: return inet_twsk(sk)->tw_transparent; case TCP_NEW_SYN_RECV: return inet_rsk(inet_reqsk(sk))->no_srccheck; } return inet_sk(sk)->transparent; } /* Determines whether this is a thin stream (which may suffer from * increased latency). Used to trigger latency-reducing mechanisms. */ static inline bool tcp_stream_is_thin(struct tcp_sock *tp) { return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); } /* /proc */ enum tcp_seq_states { TCP_SEQ_STATE_LISTENING, TCP_SEQ_STATE_ESTABLISHED, }; void *tcp_seq_start(struct seq_file *seq, loff_t *pos); void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); void tcp_seq_stop(struct seq_file *seq, void *v); struct tcp_seq_afinfo { sa_family_t family; }; struct tcp_iter_state { struct seq_net_private p; enum tcp_seq_states state; struct sock *syn_wait_sk; struct tcp_seq_afinfo *bpf_seq_afinfo; int bucket, offset, sbucket, num; loff_t last_pos; }; extern struct request_sock_ops tcp_request_sock_ops; extern struct request_sock_ops tcp6_request_sock_ops; void tcp_v4_destroy_sock(struct sock *sk); struct sk_buff *tcp_gso_segment(struct sk_buff *skb, netdev_features_t features); struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); int tcp_gro_complete(struct sk_buff *skb); void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) { struct net *net = sock_net((struct sock *)tp); return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat; } /* @wake is one when sk_stream_write_space() calls us. * This sends EPOLLOUT only if notsent_bytes is half the limit. * This mimics the strategy used in sock_def_write_space(). */ static inline bool tcp_stream_memory_free(const struct sock *sk, int wake) { const struct tcp_sock *tp = tcp_sk(sk); u32 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt); return (notsent_bytes << wake) < tcp_notsent_lowat(tp); } #ifdef CONFIG_PROC_FS int tcp4_proc_init(void); void tcp4_proc_exit(void); #endif int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); int tcp_conn_request(struct request_sock_ops *rsk_ops, const struct tcp_request_sock_ops *af_ops, struct sock *sk, struct sk_buff *skb); /* TCP af-specific functions */ struct tcp_sock_af_ops { #ifdef CONFIG_TCP_MD5SIG struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, const struct sock *addr_sk); int (*calc_md5_hash)(char *location, const struct tcp_md5sig_key *md5, const struct sock *sk, const struct sk_buff *skb); int (*md5_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); #endif }; struct tcp_request_sock_ops { u16 mss_clamp; #ifdef CONFIG_TCP_MD5SIG struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, const struct sock *addr_sk); int (*calc_md5_hash) (char *location, const struct tcp_md5sig_key *md5, const struct sock *sk, const struct sk_buff *skb); #endif void (*init_req)(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb); #ifdef CONFIG_SYN_COOKIES __u32 (*cookie_init_seq)(const struct sk_buff *skb, __u16 *mss); #endif struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl, const struct request_sock *req); u32 (*init_seq)(const struct sk_buff *skb); u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); int (*send_synack)(const struct sock *sk, struct dst_entry *dst, struct flowi *fl, struct request_sock *req, struct tcp_fastopen_cookie *foc, enum tcp_synack_type synack_type, struct sk_buff *syn_skb); }; extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; #if IS_ENABLED(CONFIG_IPV6) extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; #endif #ifdef CONFIG_SYN_COOKIES static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, const struct sock *sk, struct sk_buff *skb, __u16 *mss) { tcp_synq_overflow(sk); __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); return ops->cookie_init_seq(skb, mss); } #else static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, const struct sock *sk, struct sk_buff *skb, __u16 *mss) { return 0; } #endif int tcpv4_offload_init(void); void tcp_v4_init(void); void tcp_init(void); /* tcp_recovery.c */ void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, u32 reo_wnd); extern bool tcp_rack_mark_lost(struct sock *sk); extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, u64 xmit_time); extern void tcp_rack_reo_timeout(struct sock *sk); extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); /* At how many usecs into the future should the RTO fire? */ static inline s64 tcp_rto_delta_us(const struct sock *sk) { const struct sk_buff *skb = tcp_rtx_queue_head(sk); u32 rto = inet_csk(sk)->icsk_rto; u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; } /* * Save and compile IPv4 options, return a pointer to it */ static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, struct sk_buff *skb) { const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; struct ip_options_rcu *dopt = NULL; if (opt->optlen) { int opt_size = sizeof(*dopt) + opt->optlen; dopt = kmalloc(opt_size, GFP_ATOMIC); if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { kfree(dopt); dopt = NULL; } } return dopt; } /* locally generated TCP pure ACKs have skb->truesize == 2 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) * This is much faster than dissecting the packet to find out. * (Think of GRE encapsulations, IPv4, IPv6, ...) */ static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) { return skb->truesize == 2; } static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) { skb->truesize = 2; } static inline int tcp_inq(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); int answ; if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { answ = 0; } else if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || before(tp->urg_seq, tp->copied_seq) || !before(tp->urg_seq, tp->rcv_nxt)) { answ = tp->rcv_nxt - tp->copied_seq; /* Subtract 1, if FIN was received */ if (answ && sock_flag(sk, SOCK_DONE)) answ--; } else { answ = tp->urg_seq - tp->copied_seq; } return answ; } int tcp_peek_len(struct socket *sock); static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) { u16 segs_in; segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); tp->segs_in += segs_in; if (skb->len > tcp_hdrlen(skb)) tp->data_segs_in += segs_in; } /* * TCP listen path runs lockless. * We forced "struct sock" to be const qualified to make sure * we don't modify one of its field by mistake. * Here, we increment sk_drops which is an atomic_t, so we can safely * make sock writable again. */ static inline void tcp_listendrop(const struct sock *sk) { atomic_inc(&((struct sock *)sk)->sk_drops); __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); } enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); /* * Interface for adding Upper Level Protocols over TCP */ #define TCP_ULP_NAME_MAX 16 #define TCP_ULP_MAX 128 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) struct tcp_ulp_ops { struct list_head list; /* initialize ulp */ int (*init)(struct sock *sk); /* update ulp */ void (*update)(struct sock *sk, struct proto *p, void (*write_space)(struct sock *sk)); /* cleanup ulp */ void (*release)(struct sock *sk); /* diagnostic */ int (*get_info)(const struct sock *sk, struct sk_buff *skb); size_t (*get_info_size)(const struct sock *sk); /* clone ulp */ void (*clone)(const struct request_sock *req, struct sock *newsk, const gfp_t priority); char name[TCP_ULP_NAME_MAX]; struct module *owner; }; int tcp_register_ulp(struct tcp_ulp_ops *type); void tcp_unregister_ulp(struct tcp_ulp_ops *type); int tcp_set_ulp(struct sock *sk, const char *name); void tcp_get_available_ulp(char *buf, size_t len); void tcp_cleanup_ulp(struct sock *sk); void tcp_update_ulp(struct sock *sk, struct proto *p, void (*write_space)(struct sock *sk)); #define MODULE_ALIAS_TCP_ULP(name) \ __MODULE_INFO(alias, alias_userspace, name); \ __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) struct sk_msg; struct sk_psock; #ifdef CONFIG_BPF_STREAM_PARSER struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); #else static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) { } #endif /* CONFIG_BPF_STREAM_PARSER */ #ifdef CONFIG_NET_SOCK_MSG int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes, int flags); int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg, int len, int flags); #endif /* CONFIG_NET_SOCK_MSG */ #ifdef CONFIG_CGROUP_BPF static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, struct sk_buff *skb, unsigned int end_offset) { skops->skb = skb; skops->skb_data_end = skb->data + end_offset; } #else static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, struct sk_buff *skb, unsigned int end_offset) { } #endif /* Call BPF_SOCK_OPS program that returns an int. If the return value * is < 0, then the BPF op failed (for example if the loaded BPF * program does not support the chosen operation or there is no BPF * program loaded). */ #ifdef CONFIG_BPF static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) { struct bpf_sock_ops_kern sock_ops; int ret; memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); if (sk_fullsock(sk)) { sock_ops.is_fullsock = 1; sock_owned_by_me(sk); } sock_ops.sk = sk; sock_ops.op = op; if (nargs > 0) memcpy(sock_ops.args, args, nargs * sizeof(*args)); ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); if (ret == 0) ret = sock_ops.reply; else ret = -1; return ret; } static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) { u32 args[2] = {arg1, arg2}; return tcp_call_bpf(sk, op, 2, args); } static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, u32 arg3) { u32 args[3] = {arg1, arg2, arg3}; return tcp_call_bpf(sk, op, 3, args); } #else static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) { return -EPERM; } static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) { return -EPERM; } static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, u32 arg3) { return -EPERM; } #endif static inline u32 tcp_timeout_init(struct sock *sk) { int timeout; timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); if (timeout <= 0) timeout = TCP_TIMEOUT_INIT; return timeout; } static inline u32 tcp_rwnd_init_bpf(struct sock *sk) { int rwnd; rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); if (rwnd < 0) rwnd = 0; return rwnd; } static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) { return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); } static inline void tcp_bpf_rtt(struct sock *sk) { if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); } #if IS_ENABLED(CONFIG_SMC) extern struct static_key_false tcp_have_smc; #endif #if IS_ENABLED(CONFIG_TLS_DEVICE) void clean_acked_data_enable(struct inet_connection_sock *icsk, void (*cad)(struct sock *sk, u32 ack_seq)); void clean_acked_data_disable(struct inet_connection_sock *icsk); void clean_acked_data_flush(void); #endif DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); static inline void tcp_add_tx_delay(struct sk_buff *skb, const struct tcp_sock *tp) { if (static_branch_unlikely(&tcp_tx_delay_enabled)) skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; } /* Compute Earliest Departure Time for some control packets * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. */ static inline u64 tcp_transmit_time(const struct sock *sk) { if (static_branch_unlikely(&tcp_tx_delay_enabled)) { u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; } return 0; } #endif /* _TCP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PAGE_64_H #define _ASM_X86_PAGE_64_H #include <asm/page_64_types.h> #ifndef __ASSEMBLY__ #include <asm/alternative.h> /* duplicated to the one in bootmem.h */ extern unsigned long max_pfn; extern unsigned long phys_base; extern unsigned long page_offset_base; extern unsigned long vmalloc_base; extern unsigned long vmemmap_base; static inline unsigned long __phys_addr_nodebug(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* use the carry flag to determine if x was < __START_KERNEL_map */ x = y + ((x > y) ? phys_base : (__START_KERNEL_map - PAGE_OFFSET)); return x; } #ifdef CONFIG_DEBUG_VIRTUAL extern unsigned long __phys_addr(unsigned long); extern unsigned long __phys_addr_symbol(unsigned long); #else #define __phys_addr(x) __phys_addr_nodebug(x) #define __phys_addr_symbol(x) \ ((unsigned long)(x) - __START_KERNEL_map + phys_base) #endif #define __phys_reloc_hide(x) (x) #ifdef CONFIG_FLATMEM #define pfn_valid(pfn) ((pfn) < max_pfn) #endif void clear_page_orig(void *page); void clear_page_rep(void *page); void clear_page_erms(void *page); static inline void clear_page(void *page) { alternative_call_2(clear_page_orig, clear_page_rep, X86_FEATURE_REP_GOOD, clear_page_erms, X86_FEATURE_ERMS, "=D" (page), "0" (page) : "cc", "memory", "rax", "rcx"); } void copy_page(void *to, void *from); #endif /* !__ASSEMBLY__ */ #ifdef CONFIG_X86_VSYSCALL_EMULATION # define __HAVE_ARCH_GATE_AREA 1 #endif #endif /* _ASM_X86_PAGE_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM exceptions #if !defined(_TRACE_PAGE_FAULT_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PAGE_FAULT_H #include <linux/tracepoint.h> #include <asm/trace/common.h> extern int trace_pagefault_reg(void); extern void trace_pagefault_unreg(void); DECLARE_EVENT_CLASS(x86_exceptions, TP_PROTO(unsigned long address, struct pt_regs *regs, unsigned long error_code), TP_ARGS(address, regs, error_code), TP_STRUCT__entry( __field( unsigned long, address ) __field( unsigned long, ip ) __field( unsigned long, error_code ) ), TP_fast_assign( __entry->address = address; __entry->ip = regs->ip; __entry->error_code = error_code; ), TP_printk("address=%ps ip=%ps error_code=0x%lx", (void *)__entry->address, (void *)__entry->ip, __entry->error_code) ); #define DEFINE_PAGE_FAULT_EVENT(name) \ DEFINE_EVENT_FN(x86_exceptions, name, \ TP_PROTO(unsigned long address, struct pt_regs *regs, \ unsigned long error_code), \ TP_ARGS(address, regs, error_code), \ trace_pagefault_reg, trace_pagefault_unreg); DEFINE_PAGE_FAULT_EVENT(page_fault_user); DEFINE_PAGE_FAULT_EVENT(page_fault_kernel); #undef TRACE_INCLUDE_PATH #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_PATH . #define TRACE_INCLUDE_FILE exceptions #endif /* _TRACE_PAGE_FAULT_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_BIT_SPINLOCK_H #define __LINUX_BIT_SPINLOCK_H #include <linux/kernel.h> #include <linux/preempt.h> #include <linux/atomic.h> #include <linux/bug.h> /* * bit-based spin_lock() * * Don't use this unless you really need to: spin_lock() and spin_unlock() * are significantly faster. */ static inline void bit_spin_lock(int bitnum, unsigned long *addr) { /* * Assuming the lock is uncontended, this never enters * the body of the outer loop. If it is contended, then * within the inner loop a non-atomic test is used to * busywait with less bus contention for a good time to * attempt to acquire the lock bit. */ preempt_disable(); #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) while (unlikely(test_and_set_bit_lock(bitnum, addr))) { preempt_enable(); do { cpu_relax(); } while (test_bit(bitnum, addr)); preempt_disable(); } #endif __acquire(bitlock); } /* * Return true if it was acquired */ static inline int bit_spin_trylock(int bitnum, unsigned long *addr) { preempt_disable(); #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) if (unlikely(test_and_set_bit_lock(bitnum, addr))) { preempt_enable(); return 0; } #endif __acquire(bitlock); return 1; } /* * bit-based spin_unlock() */ static inline void bit_spin_unlock(int bitnum, unsigned long *addr) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(!test_bit(bitnum, addr)); #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) clear_bit_unlock(bitnum, addr); #endif preempt_enable(); __release(bitlock); } /* * bit-based spin_unlock() * non-atomic version, which can be used eg. if the bit lock itself is * protecting the rest of the flags in the word. */ static inline void __bit_spin_unlock(int bitnum, unsigned long *addr) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(!test_bit(bitnum, addr)); #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) __clear_bit_unlock(bitnum, addr); #endif preempt_enable(); __release(bitlock); } /* * Return true if the lock is held. */ static inline int bit_spin_is_locked(int bitnum, unsigned long *addr) { #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) return test_bit(bitnum, addr); #elif defined CONFIG_PREEMPT_COUNT return preempt_count(); #else return 1; #endif } #endif /* __LINUX_BIT_SPINLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Descending-priority-sorted double-linked list * * (C) 2002-2003 Intel Corp * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>. * * 2001-2005 (c) MontaVista Software, Inc. * Daniel Walker <dwalker@mvista.com> * * (C) 2005 Thomas Gleixner <tglx@linutronix.de> * * Simplifications of the original code by * Oleg Nesterov <oleg@tv-sign.ru> * * Based on simple lists (include/linux/list.h). * * This is a priority-sorted list of nodes; each node has a * priority from INT_MIN (highest) to INT_MAX (lowest). * * Addition is O(K), removal is O(1), change of priority of a node is * O(K) and K is the number of RT priority levels used in the system. * (1 <= K <= 99) * * This list is really a list of lists: * * - The tier 1 list is the prio_list, different priority nodes. * * - The tier 2 list is the node_list, serialized nodes. * * Simple ASCII art explanation: * * pl:prio_list (only for plist_node) * nl:node_list * HEAD| NODE(S) * | * ||------------------------------------| * ||->|pl|<->|pl|<--------------->|pl|<-| * | |10| |21| |21| |21| |40| (prio) * | | | | | | | | | | | * | | | | | | | | | | | * |->|nl|<->|nl|<->|nl|<->|nl|<->|nl|<->|nl|<-| * |-------------------------------------------| * * The nodes on the prio_list list are sorted by priority to simplify * the insertion of new nodes. There are no nodes with duplicate * priorites on the list. * * The nodes on the node_list are ordered by priority and can contain * entries which have the same priority. Those entries are ordered * FIFO * * Addition means: look for the prio_list node in the prio_list * for the priority of the node and insert it before the node_list * entry of the next prio_list node. If it is the first node of * that priority, add it to the prio_list in the right position and * insert it into the serialized node_list list * * Removal means remove it from the node_list and remove it from * the prio_list if the node_list list_head is non empty. In case * of removal from the prio_list it must be checked whether other * entries of the same priority are on the list or not. If there * is another entry of the same priority then this entry has to * replace the removed entry on the prio_list. If the entry which * is removed is the only entry of this priority then a simple * remove from both list is sufficient. * * INT_MIN is the highest priority, 0 is the medium highest, INT_MAX * is lowest priority. * * No locking is done, up to the caller. */ #ifndef _LINUX_PLIST_H_ #define _LINUX_PLIST_H_ #include <linux/kernel.h> #include <linux/list.h> struct plist_head { struct list_head node_list; }; struct plist_node { int prio; struct list_head prio_list; struct list_head node_list; }; /** * PLIST_HEAD_INIT - static struct plist_head initializer * @head: struct plist_head variable name */ #define PLIST_HEAD_INIT(head) \ { \ .node_list = LIST_HEAD_INIT((head).node_list) \ } /** * PLIST_HEAD - declare and init plist_head * @head: name for struct plist_head variable */ #define PLIST_HEAD(head) \ struct plist_head head = PLIST_HEAD_INIT(head) /** * PLIST_NODE_INIT - static struct plist_node initializer * @node: struct plist_node variable name * @__prio: initial node priority */ #define PLIST_NODE_INIT(node, __prio) \ { \ .prio = (__prio), \ .prio_list = LIST_HEAD_INIT((node).prio_list), \ .node_list = LIST_HEAD_INIT((node).node_list), \ } /** * plist_head_init - dynamic struct plist_head initializer * @head: &struct plist_head pointer */ static inline void plist_head_init(struct plist_head *head) { INIT_LIST_HEAD(&head->node_list); } /** * plist_node_init - Dynamic struct plist_node initializer * @node: &struct plist_node pointer * @prio: initial node priority */ static inline void plist_node_init(struct plist_node *node, int prio) { node->prio = prio; INIT_LIST_HEAD(&node->prio_list); INIT_LIST_HEAD(&node->node_list); } extern void plist_add(struct plist_node *node, struct plist_head *head); extern void plist_del(struct plist_node *node, struct plist_head *head); extern void plist_requeue(struct plist_node *node, struct plist_head *head); /** * plist_for_each - iterate over the plist * @pos: the type * to use as a loop counter * @head: the head for your list */ #define plist_for_each(pos, head) \ list_for_each_entry(pos, &(head)->node_list, node_list) /** * plist_for_each_continue - continue iteration over the plist * @pos: the type * to use as a loop cursor * @head: the head for your list * * Continue to iterate over plist, continuing after the current position. */ #define plist_for_each_continue(pos, head) \ list_for_each_entry_continue(pos, &(head)->node_list, node_list) /** * plist_for_each_safe - iterate safely over a plist of given type * @pos: the type * to use as a loop counter * @n: another type * to use as temporary storage * @head: the head for your list * * Iterate over a plist of given type, safe against removal of list entry. */ #define plist_for_each_safe(pos, n, head) \ list_for_each_entry_safe(pos, n, &(head)->node_list, node_list) /** * plist_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop counter * @head: the head for your list * @mem: the name of the list_head within the struct */ #define plist_for_each_entry(pos, head, mem) \ list_for_each_entry(pos, &(head)->node_list, mem.node_list) /** * plist_for_each_entry_continue - continue iteration over list of given type * @pos: the type * to use as a loop cursor * @head: the head for your list * @m: the name of the list_head within the struct * * Continue to iterate over list of given type, continuing after * the current position. */ #define plist_for_each_entry_continue(pos, head, m) \ list_for_each_entry_continue(pos, &(head)->node_list, m.node_list) /** * plist_for_each_entry_safe - iterate safely over list of given type * @pos: the type * to use as a loop counter * @n: another type * to use as temporary storage * @head: the head for your list * @m: the name of the list_head within the struct * * Iterate over list of given type, safe against removal of list entry. */ #define plist_for_each_entry_safe(pos, n, head, m) \ list_for_each_entry_safe(pos, n, &(head)->node_list, m.node_list) /** * plist_head_empty - return !0 if a plist_head is empty * @head: &struct plist_head pointer */ static inline int plist_head_empty(const struct plist_head *head) { return list_empty(&head->node_list); } /** * plist_node_empty - return !0 if plist_node is not on a list * @node: &struct plist_node pointer */ static inline int plist_node_empty(const struct plist_node *node) { return list_empty(&node->node_list); } /* All functions below assume the plist_head is not empty. */ /** * plist_first_entry - get the struct for the first entry * @head: the &struct plist_head pointer * @type: the type of the struct this is embedded in * @member: the name of the list_head within the struct */ #ifdef CONFIG_DEBUG_PLIST # define plist_first_entry(head, type, member) \ ({ \ WARN_ON(plist_head_empty(head)); \ container_of(plist_first(head), type, member); \ }) #else # define plist_first_entry(head, type, member) \ container_of(plist_first(head), type, member) #endif /** * plist_last_entry - get the struct for the last entry * @head: the &struct plist_head pointer * @type: the type of the struct this is embedded in * @member: the name of the list_head within the struct */ #ifdef CONFIG_DEBUG_PLIST # define plist_last_entry(head, type, member) \ ({ \ WARN_ON(plist_head_empty(head)); \ container_of(plist_last(head), type, member); \ }) #else # define plist_last_entry(head, type, member) \ container_of(plist_last(head), type, member) #endif /** * plist_next - get the next entry in list * @pos: the type * to cursor */ #define plist_next(pos) \ list_next_entry(pos, node_list) /** * plist_prev - get the prev entry in list * @pos: the type * to cursor */ #define plist_prev(pos) \ list_prev_entry(pos, node_list) /** * plist_first - return the first node (and thus, highest priority) * @head: the &struct plist_head pointer * * Assumes the plist is _not_ empty. */ static inline struct plist_node *plist_first(const struct plist_head *head) { return list_entry(head->node_list.next, struct plist_node, node_list); } /** * plist_last - return the last node (and thus, lowest priority) * @head: the &struct plist_head pointer * * Assumes the plist is _not_ empty. */ static inline struct plist_node *plist_last(const struct plist_head *head) { return list_entry(head->node_list.prev, struct plist_node, node_list); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_RTNETLINK_H #define __NET_RTNETLINK_H #include <linux/rtnetlink.h> #include <net/netlink.h> typedef int (*rtnl_doit_func)(struct sk_buff *, struct nlmsghdr *, struct netlink_ext_ack *); typedef int (*rtnl_dumpit_func)(struct sk_buff *, struct netlink_callback *); enum rtnl_link_flags { RTNL_FLAG_DOIT_UNLOCKED = 1, }; void rtnl_register(int protocol, int msgtype, rtnl_doit_func, rtnl_dumpit_func, unsigned int flags); int rtnl_register_module(struct module *owner, int protocol, int msgtype, rtnl_doit_func, rtnl_dumpit_func, unsigned int flags); int rtnl_unregister(int protocol, int msgtype); void rtnl_unregister_all(int protocol); static inline int rtnl_msg_family(const struct nlmsghdr *nlh) { if (nlmsg_len(nlh) >= sizeof(struct rtgenmsg)) return ((struct rtgenmsg *) nlmsg_data(nlh))->rtgen_family; else return AF_UNSPEC; } /** * struct rtnl_link_ops - rtnetlink link operations * * @list: Used internally * @kind: Identifier * @netns_refund: Physical device, move to init_net on netns exit * @maxtype: Highest device specific netlink attribute number * @policy: Netlink policy for device specific attribute validation * @validate: Optional validation function for netlink/changelink parameters * @priv_size: sizeof net_device private space * @setup: net_device setup function * @newlink: Function for configuring and registering a new device * @changelink: Function for changing parameters of an existing device * @dellink: Function to remove a device * @get_size: Function to calculate required room for dumping device * specific netlink attributes * @fill_info: Function to dump device specific netlink attributes * @get_xstats_size: Function to calculate required room for dumping device * specific statistics * @fill_xstats: Function to dump device specific statistics * @get_num_tx_queues: Function to determine number of transmit queues * to create when creating a new device. * @get_num_rx_queues: Function to determine number of receive queues * to create when creating a new device. * @get_link_net: Function to get the i/o netns of the device * @get_linkxstats_size: Function to calculate the required room for * dumping device-specific extended link stats * @fill_linkxstats: Function to dump device-specific extended link stats */ struct rtnl_link_ops { struct list_head list; const char *kind; size_t priv_size; void (*setup)(struct net_device *dev); bool netns_refund; unsigned int maxtype; const struct nla_policy *policy; int (*validate)(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); int (*newlink)(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); int (*changelink)(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); void (*dellink)(struct net_device *dev, struct list_head *head); size_t (*get_size)(const struct net_device *dev); int (*fill_info)(struct sk_buff *skb, const struct net_device *dev); size_t (*get_xstats_size)(const struct net_device *dev); int (*fill_xstats)(struct sk_buff *skb, const struct net_device *dev); unsigned int (*get_num_tx_queues)(void); unsigned int (*get_num_rx_queues)(void); unsigned int slave_maxtype; const struct nla_policy *slave_policy; int (*slave_changelink)(struct net_device *dev, struct net_device *slave_dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); size_t (*get_slave_size)(const struct net_device *dev, const struct net_device *slave_dev); int (*fill_slave_info)(struct sk_buff *skb, const struct net_device *dev, const struct net_device *slave_dev); struct net *(*get_link_net)(const struct net_device *dev); size_t (*get_linkxstats_size)(const struct net_device *dev, int attr); int (*fill_linkxstats)(struct sk_buff *skb, const struct net_device *dev, int *prividx, int attr); }; int __rtnl_link_register(struct rtnl_link_ops *ops); void __rtnl_link_unregister(struct rtnl_link_ops *ops); int rtnl_link_register(struct rtnl_link_ops *ops); void rtnl_link_unregister(struct rtnl_link_ops *ops); /** * struct rtnl_af_ops - rtnetlink address family operations * * @list: Used internally * @family: Address family * @fill_link_af: Function to fill IFLA_AF_SPEC with address family * specific netlink attributes. * @get_link_af_size: Function to calculate size of address family specific * netlink attributes. * @validate_link_af: Validate a IFLA_AF_SPEC attribute, must check attr * for invalid configuration settings. * @set_link_af: Function to parse a IFLA_AF_SPEC attribute and modify * net_device accordingly. */ struct rtnl_af_ops { struct list_head list; int family; int (*fill_link_af)(struct sk_buff *skb, const struct net_device *dev, u32 ext_filter_mask); size_t (*get_link_af_size)(const struct net_device *dev, u32 ext_filter_mask); int (*validate_link_af)(const struct net_device *dev, const struct nlattr *attr); int (*set_link_af)(struct net_device *dev, const struct nlattr *attr); int (*fill_stats_af)(struct sk_buff *skb, const struct net_device *dev); size_t (*get_stats_af_size)(const struct net_device *dev); }; void rtnl_af_register(struct rtnl_af_ops *ops); void rtnl_af_unregister(struct rtnl_af_ops *ops); struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[]); struct net_device *rtnl_create_link(struct net *net, const char *ifname, unsigned char name_assign_type, const struct rtnl_link_ops *ops, struct nlattr *tb[], struct netlink_ext_ack *extack); int rtnl_delete_link(struct net_device *dev); int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm); int rtnl_nla_parse_ifla(struct nlattr **tb, const struct nlattr *head, int len, struct netlink_ext_ack *exterr); struct net *rtnl_get_net_ns_capable(struct sock *sk, int netnsid); #define MODULE_ALIAS_RTNL_LINK(kind) MODULE_ALIAS("rtnl-link-" kind) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 /* SPDX-License-Identifier: GPL-2.0 */ /* * Common values for SHA algorithms */ #ifndef _CRYPTO_SHA_H #define _CRYPTO_SHA_H #include <linux/types.h> #define SHA1_DIGEST_SIZE 20 #define SHA1_BLOCK_SIZE 64 #define SHA224_DIGEST_SIZE 28 #define SHA224_BLOCK_SIZE 64 #define SHA256_DIGEST_SIZE 32 #define SHA256_BLOCK_SIZE 64 #define SHA384_DIGEST_SIZE 48 #define SHA384_BLOCK_SIZE 128 #define SHA512_DIGEST_SIZE 64 #define SHA512_BLOCK_SIZE 128 #define SHA1_H0 0x67452301UL #define SHA1_H1 0xefcdab89UL #define SHA1_H2 0x98badcfeUL #define SHA1_H3 0x10325476UL #define SHA1_H4 0xc3d2e1f0UL #define SHA224_H0 0xc1059ed8UL #define SHA224_H1 0x367cd507UL #define SHA224_H2 0x3070dd17UL #define SHA224_H3 0xf70e5939UL #define SHA224_H4 0xffc00b31UL #define SHA224_H5 0x68581511UL #define SHA224_H6 0x64f98fa7UL #define SHA224_H7 0xbefa4fa4UL #define SHA256_H0 0x6a09e667UL #define SHA256_H1 0xbb67ae85UL #define SHA256_H2 0x3c6ef372UL #define SHA256_H3 0xa54ff53aUL #define SHA256_H4 0x510e527fUL #define SHA256_H5 0x9b05688cUL #define SHA256_H6 0x1f83d9abUL #define SHA256_H7 0x5be0cd19UL #define SHA384_H0 0xcbbb9d5dc1059ed8ULL #define SHA384_H1 0x629a292a367cd507ULL #define SHA384_H2 0x9159015a3070dd17ULL #define SHA384_H3 0x152fecd8f70e5939ULL #define SHA384_H4 0x67332667ffc00b31ULL #define SHA384_H5 0x8eb44a8768581511ULL #define SHA384_H6 0xdb0c2e0d64f98fa7ULL #define SHA384_H7 0x47b5481dbefa4fa4ULL #define SHA512_H0 0x6a09e667f3bcc908ULL #define SHA512_H1 0xbb67ae8584caa73bULL #define SHA512_H2 0x3c6ef372fe94f82bULL #define SHA512_H3 0xa54ff53a5f1d36f1ULL #define SHA512_H4 0x510e527fade682d1ULL #define SHA512_H5 0x9b05688c2b3e6c1fULL #define SHA512_H6 0x1f83d9abfb41bd6bULL #define SHA512_H7 0x5be0cd19137e2179ULL extern const u8 sha1_zero_message_hash[SHA1_DIGEST_SIZE]; extern const u8 sha224_zero_message_hash[SHA224_DIGEST_SIZE]; extern const u8 sha256_zero_message_hash[SHA256_DIGEST_SIZE]; extern const u8 sha384_zero_message_hash[SHA384_DIGEST_SIZE]; extern const u8 sha512_zero_message_hash[SHA512_DIGEST_SIZE]; struct sha1_state { u32 state[SHA1_DIGEST_SIZE / 4]; u64 count; u8 buffer[SHA1_BLOCK_SIZE]; }; struct sha256_state { u32 state[SHA256_DIGEST_SIZE / 4]; u64 count; u8 buf[SHA256_BLOCK_SIZE]; }; struct sha512_state { u64 state[SHA512_DIGEST_SIZE / 8]; u64 count[2]; u8 buf[SHA512_BLOCK_SIZE]; }; struct shash_desc; extern int crypto_sha1_update(struct shash_desc *desc, const u8 *data, unsigned int len); extern int crypto_sha1_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *hash); extern int crypto_sha256_update(struct shash_desc *desc, const u8 *data, unsigned int len); extern int crypto_sha256_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *hash); extern int crypto_sha512_update(struct shash_desc *desc, const u8 *data, unsigned int len); extern int crypto_sha512_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *hash); /* * An implementation of SHA-1's compression function. Don't use in new code! * You shouldn't be using SHA-1, and even if you *have* to use SHA-1, this isn't * the correct way to hash something with SHA-1 (use crypto_shash instead). */ #define SHA1_DIGEST_WORDS (SHA1_DIGEST_SIZE / 4) #define SHA1_WORKSPACE_WORDS 16 void sha1_init(__u32 *buf); void sha1_transform(__u32 *digest, const char *data, __u32 *W); /* * Stand-alone implementation of the SHA256 algorithm. It is designed to * have as little dependencies as possible so it can be used in the * kexec_file purgatory. In other cases you should generally use the * hash APIs from include/crypto/hash.h. Especially when hashing large * amounts of data as those APIs may be hw-accelerated. * * For details see lib/crypto/sha256.c */ static inline void sha256_init(struct sha256_state *sctx) { sctx->state[0] = SHA256_H0; sctx->state[1] = SHA256_H1; sctx->state[2] = SHA256_H2; sctx->state[3] = SHA256_H3; sctx->state[4] = SHA256_H4; sctx->state[5] = SHA256_H5; sctx->state[6] = SHA256_H6; sctx->state[7] = SHA256_H7; sctx->count = 0; } void sha256_update(struct sha256_state *sctx, const u8 *data, unsigned int len); void sha256_final(struct sha256_state *sctx, u8 *out); void sha256(const u8 *data, unsigned int len, u8 *out); static inline void sha224_init(struct sha256_state *sctx) { sctx->state[0] = SHA224_H0; sctx->state[1] = SHA224_H1; sctx->state[2] = SHA224_H2; sctx->state[3] = SHA224_H3; sctx->state[4] = SHA224_H4; sctx->state[5] = SHA224_H5; sctx->state[6] = SHA224_H6; sctx->state[7] = SHA224_H7; sctx->count = 0; } void sha224_update(struct sha256_state *sctx, const u8 *data, unsigned int len); void sha224_final(struct sha256_state *sctx, u8 *out); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 /* SPDX-License-Identifier: GPL-2.0 */ /* * NUMA memory policies for Linux. * Copyright 2003,2004 Andi Kleen SuSE Labs */ #ifndef _LINUX_MEMPOLICY_H #define _LINUX_MEMPOLICY_H 1 #include <linux/sched.h> #include <linux/mmzone.h> #include <linux/dax.h> #include <linux/slab.h> #include <linux/rbtree.h> #include <linux/spinlock.h> #include <linux/nodemask.h> #include <linux/pagemap.h> #include <uapi/linux/mempolicy.h> struct mm_struct; #ifdef CONFIG_NUMA /* * Describe a memory policy. * * A mempolicy can be either associated with a process or with a VMA. * For VMA related allocations the VMA policy is preferred, otherwise * the process policy is used. Interrupts ignore the memory policy * of the current process. * * Locking policy for interleave: * In process context there is no locking because only the process accesses * its own state. All vma manipulation is somewhat protected by a down_read on * mmap_lock. * * Freeing policy: * Mempolicy objects are reference counted. A mempolicy will be freed when * mpol_put() decrements the reference count to zero. * * Duplicating policy objects: * mpol_dup() allocates a new mempolicy and copies the specified mempolicy * to the new storage. The reference count of the new object is initialized * to 1, representing the caller of mpol_dup(). */ struct mempolicy { atomic_t refcnt; unsigned short mode; /* See MPOL_* above */ unsigned short flags; /* See set_mempolicy() MPOL_F_* above */ union { short preferred_node; /* preferred */ nodemask_t nodes; /* interleave/bind */ /* undefined for default */ } v; union { nodemask_t cpuset_mems_allowed; /* relative to these nodes */ nodemask_t user_nodemask; /* nodemask passed by user */ } w; }; /* * Support for managing mempolicy data objects (clone, copy, destroy) * The default fast path of a NULL MPOL_DEFAULT policy is always inlined. */ extern void __mpol_put(struct mempolicy *pol); static inline void mpol_put(struct mempolicy *pol) { if (pol) __mpol_put(pol); } /* * Does mempolicy pol need explicit unref after use? * Currently only needed for shared policies. */ static inline int mpol_needs_cond_ref(struct mempolicy *pol) { return (pol && (pol->flags & MPOL_F_SHARED)); } static inline void mpol_cond_put(struct mempolicy *pol) { if (mpol_needs_cond_ref(pol)) __mpol_put(pol); } extern struct mempolicy *__mpol_dup(struct mempolicy *pol); static inline struct mempolicy *mpol_dup(struct mempolicy *pol) { if (pol) pol = __mpol_dup(pol); return pol; } #define vma_policy(vma) ((vma)->vm_policy) static inline void mpol_get(struct mempolicy *pol) { if (pol) atomic_inc(&pol->refcnt); } extern bool __mpol_equal(struct mempolicy *a, struct mempolicy *b); static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b) { if (a == b) return true; return __mpol_equal(a, b); } /* * Tree of shared policies for a shared memory region. * Maintain the policies in a pseudo mm that contains vmas. The vmas * carry the policy. As a special twist the pseudo mm is indexed in pages, not * bytes, so that we can work with shared memory segments bigger than * unsigned long. */ struct sp_node { struct rb_node nd; unsigned long start, end; struct mempolicy *policy; }; struct shared_policy { struct rb_root root; rwlock_t lock; }; int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst); void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol); int mpol_set_shared_policy(struct shared_policy *info, struct vm_area_struct *vma, struct mempolicy *new); void mpol_free_shared_policy(struct shared_policy *p); struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx); struct mempolicy *get_task_policy(struct task_struct *p); struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, unsigned long addr); bool vma_policy_mof(struct vm_area_struct *vma); extern void numa_default_policy(void); extern void numa_policy_init(void); extern void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new); extern void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new); extern int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask); extern bool init_nodemask_of_mempolicy(nodemask_t *mask); extern bool mempolicy_nodemask_intersects(struct task_struct *tsk, const nodemask_t *mask); extern nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy); static inline nodemask_t *policy_nodemask_current(gfp_t gfp) { struct mempolicy *mpol = get_task_policy(current); return policy_nodemask(gfp, mpol); } extern unsigned int mempolicy_slab_node(void); extern enum zone_type policy_zone; static inline void check_highest_zone(enum zone_type k) { if (k > policy_zone && k != ZONE_MOVABLE) policy_zone = k; } int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags); #ifdef CONFIG_TMPFS extern int mpol_parse_str(char *str, struct mempolicy **mpol); #endif extern void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol); /* Check if a vma is migratable */ extern bool vma_migratable(struct vm_area_struct *vma); extern int mpol_misplaced(struct page *, struct vm_area_struct *, unsigned long); extern void mpol_put_task_policy(struct task_struct *); #else struct mempolicy {}; static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b) { return true; } static inline void mpol_put(struct mempolicy *p) { } static inline void mpol_cond_put(struct mempolicy *pol) { } static inline void mpol_get(struct mempolicy *pol) { } struct shared_policy {}; static inline void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) { } static inline void mpol_free_shared_policy(struct shared_policy *p) { } static inline struct mempolicy * mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) { return NULL; } #define vma_policy(vma) NULL static inline int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) { return 0; } static inline void numa_policy_init(void) { } static inline void numa_default_policy(void) { } static inline void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) { } static inline void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) { } static inline int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask) { *mpol = NULL; *nodemask = NULL; return 0; } static inline bool init_nodemask_of_mempolicy(nodemask_t *m) { return false; } static inline int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags) { return 0; } static inline void check_highest_zone(int k) { } #ifdef CONFIG_TMPFS static inline int mpol_parse_str(char *str, struct mempolicy **mpol) { return 1; /* error */ } #endif static inline int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long address) { return -1; /* no node preference */ } static inline void mpol_put_task_policy(struct task_struct *task) { } static inline nodemask_t *policy_nodemask_current(gfp_t gfp) { return NULL; } #endif /* CONFIG_NUMA */ #endif
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_SEQLOCK_H #define __LINUX_SEQLOCK_H /* * seqcount_t / seqlock_t - a reader-writer consistency mechanism with * lockless readers (read-only retry loops), and no writer starvation. * * See Documentation/locking/seqlock.rst * * Copyrights: * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH */ #include <linux/compiler.h> #include <linux/kcsan-checks.h> #include <linux/lockdep.h> #include <linux/mutex.h> #include <linux/ww_mutex.h> #include <linux/preempt.h> #include <linux/spinlock.h> #include <asm/processor.h> /* * The seqlock seqcount_t interface does not prescribe a precise sequence of * read begin/retry/end. For readers, typically there is a call to * read_seqcount_begin() and read_seqcount_retry(), however, there are more * esoteric cases which do not follow this pattern. * * As a consequence, we take the following best-effort approach for raw usage * via seqcount_t under KCSAN: upon beginning a seq-reader critical section, * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as * atomics; if there is a matching read_seqcount_retry() call, no following * memory operations are considered atomic. Usage of the seqlock_t interface * is not affected. */ #define KCSAN_SEQLOCK_REGION_MAX 1000 /* * Sequence counters (seqcount_t) * * This is the raw counting mechanism, without any writer protection. * * Write side critical sections must be serialized and non-preemptible. * * If readers can be invoked from hardirq or softirq contexts, * interrupts or bottom halves must also be respectively disabled before * entering the write section. * * This mechanism can't be used if the protected data contains pointers, * as the writer can invalidate a pointer that a reader is following. * * If the write serialization mechanism is one of the common kernel * locking primitives, use a sequence counter with associated lock * (seqcount_LOCKNAME_t) instead. * * If it's desired to automatically handle the sequence counter writer * serialization and non-preemptibility requirements, use a sequential * lock (seqlock_t) instead. * * See Documentation/locking/seqlock.rst */ typedef struct seqcount { unsigned sequence; #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif } seqcount_t; static inline void __seqcount_init(seqcount_t *s, const char *name, struct lock_class_key *key) { /* * Make sure we are not reinitializing a held lock: */ lockdep_init_map(&s->dep_map, name, key, 0); s->sequence = 0; } #ifdef CONFIG_DEBUG_LOCK_ALLOC # define SEQCOUNT_DEP_MAP_INIT(lockname) \ .dep_map = { .name = #lockname } /** * seqcount_init() - runtime initializer for seqcount_t * @s: Pointer to the seqcount_t instance */ # define seqcount_init(s) \ do { \ static struct lock_class_key __key; \ __seqcount_init((s), #s, &__key); \ } while (0) static inline void seqcount_lockdep_reader_access(const seqcount_t *s) { seqcount_t *l = (seqcount_t *)s; unsigned long flags; local_irq_save(flags); seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_); seqcount_release(&l->dep_map, _RET_IP_); local_irq_restore(flags); } #else # define SEQCOUNT_DEP_MAP_INIT(lockname) # define seqcount_init(s) __seqcount_init(s, NULL, NULL) # define seqcount_lockdep_reader_access(x) #endif /** * SEQCNT_ZERO() - static initializer for seqcount_t * @name: Name of the seqcount_t instance */ #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) } /* * Sequence counters with associated locks (seqcount_LOCKNAME_t) * * A sequence counter which associates the lock used for writer * serialization at initialization time. This enables lockdep to validate * that the write side critical section is properly serialized. * * For associated locks which do not implicitly disable preemption, * preemption protection is enforced in the write side function. * * Lockdep is never used in any for the raw write variants. * * See Documentation/locking/seqlock.rst */ /* * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot * disable preemption. It can lead to higher latencies, and the write side * sections will not be able to acquire locks which become sleeping locks * (e.g. spinlock_t). * * To remain preemptible while avoiding a possible livelock caused by the * reader preempting the writer, use a different technique: let the reader * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the * case, acquire then release the associated LOCKNAME writer serialization * lock. This will allow any possibly-preempted writer to make progress * until the end of its writer serialization lock critical section. * * This lock-unlock technique must be implemented for all of PREEMPT_RT * sleeping locks. See Documentation/locking/locktypes.rst */ #if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT) #define __SEQ_LOCK(expr) expr #else #define __SEQ_LOCK(expr) #endif /* * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated * @seqcount: The real sequence counter * @lock: Pointer to the associated lock * * A plain sequence counter with external writer synchronization by * LOCKNAME @lock. The lock is associated to the sequence counter in the * static initializer or init function. This enables lockdep to validate * that the write side critical section is properly serialized. * * LOCKNAME: raw_spinlock, spinlock, rwlock, mutex, or ww_mutex. */ /* * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t * @s: Pointer to the seqcount_LOCKNAME_t instance * @lock: Pointer to the associated lock */ #define seqcount_LOCKNAME_init(s, _lock, lockname) \ do { \ seqcount_##lockname##_t *____s = (s); \ seqcount_init(&____s->seqcount); \ __SEQ_LOCK(____s->lock = (_lock)); \ } while (0) #define seqcount_raw_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, raw_spinlock) #define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock) #define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock); #define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex); #define seqcount_ww_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, ww_mutex); /* * SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t * * @lockname: "LOCKNAME" part of seqcount_LOCKNAME_t * @locktype: LOCKNAME canonical C data type * @preemptible: preemptibility of above locktype * @lockmember: argument for lockdep_assert_held() * @lockbase: associated lock release function (prefix only) * @lock_acquire: associated lock acquisition function (full call) */ #define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockmember, lockbase, lock_acquire) \ typedef struct seqcount_##lockname { \ seqcount_t seqcount; \ __SEQ_LOCK(locktype *lock); \ } seqcount_##lockname##_t; \ \ static __always_inline seqcount_t * \ __seqprop_##lockname##_ptr(seqcount_##lockname##_t *s) \ { \ return &s->seqcount; \ } \ \ static __always_inline unsigned \ __seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s) \ { \ unsigned seq = READ_ONCE(s->seqcount.sequence); \ \ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ return seq; \ \ if (preemptible && unlikely(seq & 1)) { \ __SEQ_LOCK(lock_acquire); \ __SEQ_LOCK(lockbase##_unlock(s->lock)); \ \ /* \ * Re-read the sequence counter since the (possibly \ * preempted) writer made progress. \ */ \ seq = READ_ONCE(s->seqcount.sequence); \ } \ \ return seq; \ } \ \ static __always_inline bool \ __seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s) \ { \ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ return preemptible; \ \ /* PREEMPT_RT relies on the above LOCK+UNLOCK */ \ return false; \ } \ \ static __always_inline void \ __seqprop_##lockname##_assert(const seqcount_##lockname##_t *s) \ { \ __SEQ_LOCK(lockdep_assert_held(lockmember)); \ } /* * __seqprop() for seqcount_t */ static inline seqcount_t *__seqprop_ptr(seqcount_t *s) { return s; } static inline unsigned __seqprop_sequence(const seqcount_t *s) { return READ_ONCE(s->sequence); } static inline bool __seqprop_preemptible(const seqcount_t *s) { return false; } static inline void __seqprop_assert(const seqcount_t *s) { lockdep_assert_preemption_disabled(); } #define __SEQ_RT IS_ENABLED(CONFIG_PREEMPT_RT) SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, s->lock, raw_spin, raw_spin_lock(s->lock)) SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, s->lock, spin, spin_lock(s->lock)) SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, s->lock, read, read_lock(s->lock)) SEQCOUNT_LOCKNAME(mutex, struct mutex, true, s->lock, mutex, mutex_lock(s->lock)) SEQCOUNT_LOCKNAME(ww_mutex, struct ww_mutex, true, &s->lock->base, ww_mutex, ww_mutex_lock(s->lock, NULL)) /* * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t * @name: Name of the seqcount_LOCKNAME_t instance * @lock: Pointer to the associated LOCKNAME */ #define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) { \ .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ __SEQ_LOCK(.lock = (assoc_lock)) \ } #define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define __seqprop_case(s, lockname, prop) \ seqcount_##lockname##_t: __seqprop_##lockname##_##prop((void *)(s)) #define __seqprop(s, prop) _Generic(*(s), \ seqcount_t: __seqprop_##prop((void *)(s)), \ __seqprop_case((s), raw_spinlock, prop), \ __seqprop_case((s), spinlock, prop), \ __seqprop_case((s), rwlock, prop), \ __seqprop_case((s), mutex, prop), \ __seqprop_case((s), ww_mutex, prop)) #define __seqcount_ptr(s) __seqprop(s, ptr) #define __seqcount_sequence(s) __seqprop(s, sequence) #define __seqcount_lock_preemptible(s) __seqprop(s, preemptible) #define __seqcount_assert_lock_held(s) __seqprop(s, assert) /** * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is * provided before actually loading any of the variables that are to be * protected in this critical section. * * Use carefully, only in critical code, and comment how the barrier is * provided. * * Return: count to be passed to read_seqcount_retry() */ #define __read_seqcount_begin(s) \ ({ \ unsigned seq; \ \ while ((seq = __seqcount_sequence(s)) & 1) \ cpu_relax(); \ \ kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ seq; \ }) /** * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Return: count to be passed to read_seqcount_retry() */ #define raw_read_seqcount_begin(s) \ ({ \ unsigned seq = __read_seqcount_begin(s); \ \ smp_rmb(); \ seq; \ }) /** * read_seqcount_begin() - begin a seqcount_t read critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Return: count to be passed to read_seqcount_retry() */ #define read_seqcount_begin(s) \ ({ \ seqcount_lockdep_reader_access(__seqcount_ptr(s)); \ raw_read_seqcount_begin(s); \ }) /** * raw_read_seqcount() - read the raw seqcount_t counter value * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * raw_read_seqcount opens a read critical section of the given * seqcount_t, without any lockdep checking, and without checking or * masking the sequence counter LSB. Calling code is responsible for * handling that. * * Return: count to be passed to read_seqcount_retry() */ #define raw_read_seqcount(s) \ ({ \ unsigned seq = __seqcount_sequence(s); \ \ smp_rmb(); \ kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ seq; \ }) /** * raw_seqcount_begin() - begin a seqcount_t read critical section w/o * lockdep and w/o counter stabilization * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * raw_seqcount_begin opens a read critical section of the given * seqcount_t. Unlike read_seqcount_begin(), this function will not wait * for the count to stabilize. If a writer is active when it begins, it * will fail the read_seqcount_retry() at the end of the read critical * section instead of stabilizing at the beginning of it. * * Use this only in special kernel hot paths where the read section is * small and has a high probability of success through other external * means. It will save a single branching instruction. * * Return: count to be passed to read_seqcount_retry() */ #define raw_seqcount_begin(s) \ ({ \ /* \ * If the counter is odd, let read_seqcount_retry() fail \ * by decrementing the counter. \ */ \ raw_read_seqcount(s) & ~1; \ }) /** * __read_seqcount_retry() - end a seqcount_t read section w/o barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @start: count, from read_seqcount_begin() * * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is * provided before actually loading any of the variables that are to be * protected in this critical section. * * Use carefully, only in critical code, and comment how the barrier is * provided. * * Return: true if a read section retry is required, else false */ #define __read_seqcount_retry(s, start) \ __read_seqcount_t_retry(__seqcount_ptr(s), start) static inline int __read_seqcount_t_retry(const seqcount_t *s, unsigned start) { kcsan_atomic_next(0); return unlikely(READ_ONCE(s->sequence) != start); } /** * read_seqcount_retry() - end a seqcount_t read critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @start: count, from read_seqcount_begin() * * read_seqcount_retry closes the read critical section of given * seqcount_t. If the critical section was invalid, it must be ignored * (and typically retried). * * Return: true if a read section retry is required, else false */ #define read_seqcount_retry(s, start) \ read_seqcount_t_retry(__seqcount_ptr(s), start) static inline int read_seqcount_t_retry(const seqcount_t *s, unsigned start) { smp_rmb(); return __read_seqcount_t_retry(s, start); } /** * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants */ #define raw_write_seqcount_begin(s) \ do { \ if (__seqcount_lock_preemptible(s)) \ preempt_disable(); \ \ raw_write_seqcount_t_begin(__seqcount_ptr(s)); \ } while (0) static inline void raw_write_seqcount_t_begin(seqcount_t *s) { kcsan_nestable_atomic_begin(); s->sequence++; smp_wmb(); } /** * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants */ #define raw_write_seqcount_end(s) \ do { \ raw_write_seqcount_t_end(__seqcount_ptr(s)); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_enable(); \ } while (0) static inline void raw_write_seqcount_t_end(seqcount_t *s) { smp_wmb(); s->sequence++; kcsan_nestable_atomic_end(); } /** * write_seqcount_begin_nested() - start a seqcount_t write section with * custom lockdep nesting level * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @subclass: lockdep nesting level * * See Documentation/locking/lockdep-design.rst */ #define write_seqcount_begin_nested(s, subclass) \ do { \ __seqcount_assert_lock_held(s); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_disable(); \ \ write_seqcount_t_begin_nested(__seqcount_ptr(s), subclass); \ } while (0) static inline void write_seqcount_t_begin_nested(seqcount_t *s, int subclass) { raw_write_seqcount_t_begin(s); seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_); } /** * write_seqcount_begin() - start a seqcount_t write side critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * write_seqcount_begin opens a write side critical section of the given * seqcount_t. * * Context: seqcount_t write side critical sections must be serialized and * non-preemptible. If readers can be invoked from hardirq or softirq * context, interrupts or bottom halves must be respectively disabled. */ #define write_seqcount_begin(s) \ do { \ __seqcount_assert_lock_held(s); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_disable(); \ \ write_seqcount_t_begin(__seqcount_ptr(s)); \ } while (0) static inline void write_seqcount_t_begin(seqcount_t *s) { write_seqcount_t_begin_nested(s, 0); } /** * write_seqcount_end() - end a seqcount_t write side critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * The write section must've been opened with write_seqcount_begin(). */ #define write_seqcount_end(s) \ do { \ write_seqcount_t_end(__seqcount_ptr(s)); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_enable(); \ } while (0) static inline void write_seqcount_t_end(seqcount_t *s) { seqcount_release(&s->dep_map, _RET_IP_); raw_write_seqcount_t_end(s); } /** * raw_write_seqcount_barrier() - do a seqcount_t write barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * This can be used to provide an ordering guarantee instead of the usual * consistency guarantee. It is one wmb cheaper, because it can collapse * the two back-to-back wmb()s. * * Note that writes surrounding the barrier should be declared atomic (e.g. * via WRITE_ONCE): a) to ensure the writes become visible to other threads * atomically, avoiding compiler optimizations; b) to document which writes are * meant to propagate to the reader critical section. This is necessary because * neither writes before and after the barrier are enclosed in a seq-writer * critical section that would ensure readers are aware of ongoing writes:: * * seqcount_t seq; * bool X = true, Y = false; * * void read(void) * { * bool x, y; * * do { * int s = read_seqcount_begin(&seq); * * x = X; y = Y; * * } while (read_seqcount_retry(&seq, s)); * * BUG_ON(!x && !y); * } * * void write(void) * { * WRITE_ONCE(Y, true); * * raw_write_seqcount_barrier(seq); * * WRITE_ONCE(X, false); * } */ #define raw_write_seqcount_barrier(s) \ raw_write_seqcount_t_barrier(__seqcount_ptr(s)) static inline void raw_write_seqcount_t_barrier(seqcount_t *s) { kcsan_nestable_atomic_begin(); s->sequence++; smp_wmb(); s->sequence++; kcsan_nestable_atomic_end(); } /** * write_seqcount_invalidate() - invalidate in-progress seqcount_t read * side operations * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * After write_seqcount_invalidate, no seqcount_t read side operations * will complete successfully and see data older than this. */ #define write_seqcount_invalidate(s) \ write_seqcount_t_invalidate(__seqcount_ptr(s)) static inline void write_seqcount_t_invalidate(seqcount_t *s) { smp_wmb(); kcsan_nestable_atomic_begin(); s->sequence+=2; kcsan_nestable_atomic_end(); } /* * Latch sequence counters (seqcount_latch_t) * * A sequence counter variant where the counter even/odd value is used to * switch between two copies of protected data. This allows the read path, * typically NMIs, to safely interrupt the write side critical section. * * As the write sections are fully preemptible, no special handling for * PREEMPT_RT is needed. */ typedef struct { seqcount_t seqcount; } seqcount_latch_t; /** * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t * @seq_name: Name of the seqcount_latch_t instance */ #define SEQCNT_LATCH_ZERO(seq_name) { \ .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ } /** * seqcount_latch_init() - runtime initializer for seqcount_latch_t * @s: Pointer to the seqcount_latch_t instance */ #define seqcount_latch_init(s) seqcount_init(&(s)->seqcount) /** * raw_read_seqcount_latch() - pick even/odd latch data copy * @s: Pointer to seqcount_latch_t * * See raw_write_seqcount_latch() for details and a full reader/writer * usage example. * * Return: sequence counter raw value. Use the lowest bit as an index for * picking which data copy to read. The full counter must then be checked * with read_seqcount_latch_retry(). */ static inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s) { /* * Pairs with the first smp_wmb() in raw_write_seqcount_latch(). * Due to the dependent load, a full smp_rmb() is not needed. */ return READ_ONCE(s->seqcount.sequence); } /** * read_seqcount_latch_retry() - end a seqcount_latch_t read section * @s: Pointer to seqcount_latch_t * @start: count, from raw_read_seqcount_latch() * * Return: true if a read section retry is required, else false */ static inline int read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) { return read_seqcount_retry(&s->seqcount, start); } /** * raw_write_seqcount_latch() - redirect latch readers to even/odd copy * @s: Pointer to seqcount_latch_t * * The latch technique is a multiversion concurrency control method that allows * queries during non-atomic modifications. If you can guarantee queries never * interrupt the modification -- e.g. the concurrency is strictly between CPUs * -- you most likely do not need this. * * Where the traditional RCU/lockless data structures rely on atomic * modifications to ensure queries observe either the old or the new state the * latch allows the same for non-atomic updates. The trade-off is doubling the * cost of storage; we have to maintain two copies of the entire data * structure. * * Very simply put: we first modify one copy and then the other. This ensures * there is always one copy in a stable state, ready to give us an answer. * * The basic form is a data structure like:: * * struct latch_struct { * seqcount_latch_t seq; * struct data_struct data[2]; * }; * * Where a modification, which is assumed to be externally serialized, does the * following:: * * void latch_modify(struct latch_struct *latch, ...) * { * smp_wmb(); // Ensure that the last data[1] update is visible * latch->seq.sequence++; * smp_wmb(); // Ensure that the seqcount update is visible * * modify(latch->data[0], ...); * * smp_wmb(); // Ensure that the data[0] update is visible * latch->seq.sequence++; * smp_wmb(); // Ensure that the seqcount update is visible * * modify(latch->data[1], ...); * } * * The query will have a form like:: * * struct entry *latch_query(struct latch_struct *latch, ...) * { * struct entry *entry; * unsigned seq, idx; * * do { * seq = raw_read_seqcount_latch(&latch->seq); * * idx = seq & 0x01; * entry = data_query(latch->data[idx], ...); * * // This includes needed smp_rmb() * } while (read_seqcount_latch_retry(&latch->seq, seq)); * * return entry; * } * * So during the modification, queries are first redirected to data[1]. Then we * modify data[0]. When that is complete, we redirect queries back to data[0] * and we can modify data[1]. * * NOTE: * * The non-requirement for atomic modifications does _NOT_ include * the publishing of new entries in the case where data is a dynamic * data structure. * * An iteration might start in data[0] and get suspended long enough * to miss an entire modification sequence, once it resumes it might * observe the new entry. * * NOTE2: * * When data is a dynamic data structure; one should use regular RCU * patterns to manage the lifetimes of the objects within. */ static inline void raw_write_seqcount_latch(seqcount_latch_t *s) { smp_wmb(); /* prior stores before incrementing "sequence" */ s->seqcount.sequence++; smp_wmb(); /* increment "sequence" before following stores */ } /* * Sequential locks (seqlock_t) * * Sequence counters with an embedded spinlock for writer serialization * and non-preemptibility. * * For more info, see: * - Comments on top of seqcount_t * - Documentation/locking/seqlock.rst */ typedef struct { /* * Make sure that readers don't starve writers on PREEMPT_RT: use * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK(). */ seqcount_spinlock_t seqcount; spinlock_t lock; } seqlock_t; #define __SEQLOCK_UNLOCKED(lockname) \ { \ .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \ .lock = __SPIN_LOCK_UNLOCKED(lockname) \ } /** * seqlock_init() - dynamic initializer for seqlock_t * @sl: Pointer to the seqlock_t instance */ #define seqlock_init(sl) \ do { \ spin_lock_init(&(sl)->lock); \ seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock); \ } while (0) /** * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t * @sl: Name of the seqlock_t instance */ #define DEFINE_SEQLOCK(sl) \ seqlock_t sl = __SEQLOCK_UNLOCKED(sl) /** * read_seqbegin() - start a seqlock_t read side critical section * @sl: Pointer to seqlock_t * * Return: count, to be passed to read_seqretry() */ static inline unsigned read_seqbegin(const seqlock_t *sl) { unsigned ret = read_seqcount_begin(&sl->seqcount); kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry() */ kcsan_flat_atomic_begin(); return ret; } /** * read_seqretry() - end a seqlock_t read side section * @sl: Pointer to seqlock_t * @start: count, from read_seqbegin() * * read_seqretry closes the read side critical section of given seqlock_t. * If the critical section was invalid, it must be ignored (and typically * retried). * * Return: true if a read section retry is required, else false */ static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) { /* * Assume not nested: read_seqretry() may be called multiple times when * completing read critical section. */ kcsan_flat_atomic_end(); return read_seqcount_retry(&sl->seqcount, start); } /* * For all seqlock_t write side functions, use write_seqcount_*t*_begin() * instead of the generic write_seqcount_begin(). This way, no redundant * lockdep_assert_held() checks are added. */ /** * write_seqlock() - start a seqlock_t write side critical section * @sl: Pointer to seqlock_t * * write_seqlock opens a write side critical section for the given * seqlock_t. It also implicitly acquires the spinlock_t embedded inside * that sequential lock. All seqlock_t write side sections are thus * automatically serialized and non-preemptible. * * Context: if the seqlock_t read section, or other write side critical * sections, can be invoked from hardirq or softirq contexts, use the * _irqsave or _bh variants of this function instead. */ static inline void write_seqlock(seqlock_t *sl) { spin_lock(&sl->lock); write_seqcount_t_begin(&sl->seqcount.seqcount); } /** * write_sequnlock() - end a seqlock_t write side critical section * @sl: Pointer to seqlock_t * * write_sequnlock closes the (serialized and non-preemptible) write side * critical section of given seqlock_t. */ static inline void write_sequnlock(seqlock_t *sl) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock(&sl->lock); } /** * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section * @sl: Pointer to seqlock_t * * _bh variant of write_seqlock(). Use only if the read side section, or * other write side sections, can be invoked from softirq contexts. */ static inline void write_seqlock_bh(seqlock_t *sl) { spin_lock_bh(&sl->lock); write_seqcount_t_begin(&sl->seqcount.seqcount); } /** * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section * @sl: Pointer to seqlock_t * * write_sequnlock_bh closes the serialized, non-preemptible, and * softirqs-disabled, seqlock_t write side critical section opened with * write_seqlock_bh(). */ static inline void write_sequnlock_bh(seqlock_t *sl) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock_bh(&sl->lock); } /** * write_seqlock_irq() - start a non-interruptible seqlock_t write section * @sl: Pointer to seqlock_t * * _irq variant of write_seqlock(). Use only if the read side section, or * other write sections, can be invoked from hardirq contexts. */ static inline void write_seqlock_irq(seqlock_t *sl) { spin_lock_irq(&sl->lock); write_seqcount_t_begin(&sl->seqcount.seqcount); } /** * write_sequnlock_irq() - end a non-interruptible seqlock_t write section * @sl: Pointer to seqlock_t * * write_sequnlock_irq closes the serialized and non-interruptible * seqlock_t write side section opened with write_seqlock_irq(). */ static inline void write_sequnlock_irq(seqlock_t *sl) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock_irq(&sl->lock); } static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) { unsigned long flags; spin_lock_irqsave(&sl->lock, flags); write_seqcount_t_begin(&sl->seqcount.seqcount); return flags; } /** * write_seqlock_irqsave() - start a non-interruptible seqlock_t write * section * @lock: Pointer to seqlock_t * @flags: Stack-allocated storage for saving caller's local interrupt * state, to be passed to write_sequnlock_irqrestore(). * * _irqsave variant of write_seqlock(). Use it only if the read side * section, or other write sections, can be invoked from hardirq context. */ #define write_seqlock_irqsave(lock, flags) \ do { flags = __write_seqlock_irqsave(lock); } while (0) /** * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write * section * @sl: Pointer to seqlock_t * @flags: Caller's saved interrupt state, from write_seqlock_irqsave() * * write_sequnlock_irqrestore closes the serialized and non-interruptible * seqlock_t write section previously opened with write_seqlock_irqsave(). */ static inline void write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock_irqrestore(&sl->lock, flags); } /** * read_seqlock_excl() - begin a seqlock_t locking reader section * @sl: Pointer to seqlock_t * * read_seqlock_excl opens a seqlock_t locking reader critical section. A * locking reader exclusively locks out *both* other writers *and* other * locking readers, but it does not update the embedded sequence number. * * Locking readers act like a normal spin_lock()/spin_unlock(). * * Context: if the seqlock_t write section, *or other read sections*, can * be invoked from hardirq or softirq contexts, use the _irqsave or _bh * variant of this function instead. * * The opened read section must be closed with read_sequnlock_excl(). */ static inline void read_seqlock_excl(seqlock_t *sl) { spin_lock(&sl->lock); } /** * read_sequnlock_excl() - end a seqlock_t locking reader critical section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl(seqlock_t *sl) { spin_unlock(&sl->lock); } /** * read_seqlock_excl_bh() - start a seqlock_t locking reader section with * softirqs disabled * @sl: Pointer to seqlock_t * * _bh variant of read_seqlock_excl(). Use this variant only if the * seqlock_t write side section, *or other read sections*, can be invoked * from softirq contexts. */ static inline void read_seqlock_excl_bh(seqlock_t *sl) { spin_lock_bh(&sl->lock); } /** * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking * reader section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl_bh(seqlock_t *sl) { spin_unlock_bh(&sl->lock); } /** * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking * reader section * @sl: Pointer to seqlock_t * * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t * write side section, *or other read sections*, can be invoked from a * hardirq context. */ static inline void read_seqlock_excl_irq(seqlock_t *sl) { spin_lock_irq(&sl->lock); } /** * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t * locking reader section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl_irq(seqlock_t *sl) { spin_unlock_irq(&sl->lock); } static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl) { unsigned long flags; spin_lock_irqsave(&sl->lock, flags); return flags; } /** * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t * locking reader section * @lock: Pointer to seqlock_t * @flags: Stack-allocated storage for saving caller's local interrupt * state, to be passed to read_sequnlock_excl_irqrestore(). * * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t * write side section, *or other read sections*, can be invoked from a * hardirq context. */ #define read_seqlock_excl_irqsave(lock, flags) \ do { flags = __read_seqlock_excl_irqsave(lock); } while (0) /** * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t * locking reader section * @sl: Pointer to seqlock_t * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave() */ static inline void read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags) { spin_unlock_irqrestore(&sl->lock, flags); } /** * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader * @lock: Pointer to seqlock_t * @seq : Marker and return parameter. If the passed value is even, the * reader will become a *lockless* seqlock_t reader as in read_seqbegin(). * If the passed value is odd, the reader will become a *locking* reader * as in read_seqlock_excl(). In the first call to this function, the * caller *must* initialize and pass an even value to @seq; this way, a * lockless read can be optimistically tried first. * * read_seqbegin_or_lock is an API designed to optimistically try a normal * lockless seqlock_t read section first. If an odd counter is found, the * lockless read trial has failed, and the next read iteration transforms * itself into a full seqlock_t locking reader. * * This is typically used to avoid seqlock_t lockless readers starvation * (too much retry loops) in the case of a sharp spike in write side * activity. * * Context: if the seqlock_t write section, *or other read sections*, can * be invoked from hardirq or softirq contexts, use the _irqsave or _bh * variant of this function instead. * * Check Documentation/locking/seqlock.rst for template example code. * * Return: the encountered sequence counter value, through the @seq * parameter, which is overloaded as a return parameter. This returned * value must be checked with need_seqretry(). If the read section need to * be retried, this returned value must also be passed as the @seq * parameter of the next read_seqbegin_or_lock() iteration. */ static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) { if (!(*seq & 1)) /* Even */ *seq = read_seqbegin(lock); else /* Odd */ read_seqlock_excl(lock); } /** * need_seqretry() - validate seqlock_t "locking or lockless" read section * @lock: Pointer to seqlock_t * @seq: sequence count, from read_seqbegin_or_lock() * * Return: true if a read section retry is required, false otherwise */ static inline int need_seqretry(seqlock_t *lock, int seq) { return !(seq & 1) && read_seqretry(lock, seq); } /** * done_seqretry() - end seqlock_t "locking or lockless" reader section * @lock: Pointer to seqlock_t * @seq: count, from read_seqbegin_or_lock() * * done_seqretry finishes the seqlock_t read side critical section started * with read_seqbegin_or_lock() and validated by need_seqretry(). */ static inline void done_seqretry(seqlock_t *lock, int seq) { if (seq & 1) read_sequnlock_excl(lock); } /** * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or * a non-interruptible locking reader * @lock: Pointer to seqlock_t * @seq: Marker and return parameter. Check read_seqbegin_or_lock(). * * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if * the seqlock_t write section, *or other read sections*, can be invoked * from hardirq context. * * Note: Interrupts will be disabled only for "locking reader" mode. * * Return: * * 1. The saved local interrupts state in case of a locking reader, to * be passed to done_seqretry_irqrestore(). * * 2. The encountered sequence counter value, returned through @seq * overloaded as a return parameter. Check read_seqbegin_or_lock(). */ static inline unsigned long read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq) { unsigned long flags = 0; if (!(*seq & 1)) /* Even */ *seq = read_seqbegin(lock); else /* Odd */ read_seqlock_excl_irqsave(lock, flags); return flags; } /** * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a * non-interruptible locking reader section * @lock: Pointer to seqlock_t * @seq: Count, from read_seqbegin_or_lock_irqsave() * @flags: Caller's saved local interrupt state in case of a locking * reader, also from read_seqbegin_or_lock_irqsave() * * This is the _irqrestore variant of done_seqretry(). The read section * must've been opened with read_seqbegin_or_lock_irqsave(), and validated * by need_seqretry(). */ static inline void done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags) { if (seq & 1) read_sequnlock_excl_irqrestore(lock, flags); } #endif /* __LINUX_SEQLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __MAC802154_DRIVER_OPS #define __MAC802154_DRIVER_OPS #include <linux/types.h> #include <linux/rtnetlink.h> #include <net/mac802154.h> #include "ieee802154_i.h" #include "trace.h" static inline int drv_xmit_async(struct ieee802154_local *local, struct sk_buff *skb) { return local->ops->xmit_async(&local->hw, skb); } static inline int drv_xmit_sync(struct ieee802154_local *local, struct sk_buff *skb) { might_sleep(); return local->ops->xmit_sync(&local->hw, skb); } static inline int drv_start(struct ieee802154_local *local) { int ret; might_sleep(); trace_802154_drv_start(local); local->started = true; smp_mb(); ret = local->ops->start(&local->hw); trace_802154_drv_return_int(local, ret); return ret; } static inline void drv_stop(struct ieee802154_local *local) { might_sleep(); trace_802154_drv_stop(local); local->ops->stop(&local->hw); trace_802154_drv_return_void(local); /* sync away all work on the tasklet before clearing started */ tasklet_disable(&local->tasklet); tasklet_enable(&local->tasklet); barrier(); local->started = false; } static inline int drv_set_channel(struct ieee802154_local *local, u8 page, u8 channel) { int ret; might_sleep(); trace_802154_drv_set_channel(local, page, channel); ret = local->ops->set_channel(&local->hw, page, channel); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_tx_power(struct ieee802154_local *local, s32 mbm) { int ret; might_sleep(); if (!local->ops->set_txpower) { WARN_ON(1); return -EOPNOTSUPP; } trace_802154_drv_set_tx_power(local, mbm); ret = local->ops->set_txpower(&local->hw, mbm); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_cca_mode(struct ieee802154_local *local, const struct wpan_phy_cca *cca) { int ret; might_sleep(); if (!local->ops->set_cca_mode) { WARN_ON(1); return -EOPNOTSUPP; } trace_802154_drv_set_cca_mode(local, cca); ret = local->ops->set_cca_mode(&local->hw, cca); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_lbt_mode(struct ieee802154_local *local, bool mode) { int ret; might_sleep(); if (!local->ops->set_lbt) { WARN_ON(1); return -EOPNOTSUPP; } trace_802154_drv_set_lbt_mode(local, mode); ret = local->ops->set_lbt(&local->hw, mode); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_cca_ed_level(struct ieee802154_local *local, s32 mbm) { int ret; might_sleep(); if (!local->ops->set_cca_ed_level) { WARN_ON(1); return -EOPNOTSUPP; } trace_802154_drv_set_cca_ed_level(local, mbm); ret = local->ops->set_cca_ed_level(&local->hw, mbm); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_pan_id(struct ieee802154_local *local, __le16 pan_id) { struct ieee802154_hw_addr_filt filt; int ret; might_sleep(); if (!local->ops->set_hw_addr_filt) { WARN_ON(1); return -EOPNOTSUPP; } filt.pan_id = pan_id; trace_802154_drv_set_pan_id(local, pan_id); ret = local->ops->set_hw_addr_filt(&local->hw, &filt, IEEE802154_AFILT_PANID_CHANGED); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_extended_addr(struct ieee802154_local *local, __le64 extended_addr) { struct ieee802154_hw_addr_filt filt; int ret; might_sleep(); if (!local->ops->set_hw_addr_filt) { WARN_ON(1); return -EOPNOTSUPP; } filt.ieee_addr = extended_addr; trace_802154_drv_set_extended_addr(local, extended_addr); ret = local->ops->set_hw_addr_filt(&local->hw, &filt, IEEE802154_AFILT_IEEEADDR_CHANGED); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_short_addr(struct ieee802154_local *local, __le16 short_addr) { struct ieee802154_hw_addr_filt filt; int ret; might_sleep(); if (!local->ops->set_hw_addr_filt) { WARN_ON(1); return -EOPNOTSUPP; } filt.short_addr = short_addr; trace_802154_drv_set_short_addr(local, short_addr); ret = local->ops->set_hw_addr_filt(&local->hw, &filt, IEEE802154_AFILT_SADDR_CHANGED); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_pan_coord(struct ieee802154_local *local, bool is_coord) { struct ieee802154_hw_addr_filt filt; int ret; might_sleep(); if (!local->ops->set_hw_addr_filt) { WARN_ON(1); return -EOPNOTSUPP; } filt.pan_coord = is_coord; trace_802154_drv_set_pan_coord(local, is_coord); ret = local->ops->set_hw_addr_filt(&local->hw, &filt, IEEE802154_AFILT_PANC_CHANGED); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_csma_params(struct ieee802154_local *local, u8 min_be, u8 max_be, u8 max_csma_backoffs) { int ret; might_sleep(); if (!local->ops->set_csma_params) { WARN_ON(1); return -EOPNOTSUPP; } trace_802154_drv_set_csma_params(local, min_be, max_be, max_csma_backoffs); ret = local->ops->set_csma_params(&local->hw, min_be, max_be, max_csma_backoffs); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_max_frame_retries(struct ieee802154_local *local, s8 max_frame_retries) { int ret; might_sleep(); if (!local->ops->set_frame_retries) { WARN_ON(1); return -EOPNOTSUPP; } trace_802154_drv_set_max_frame_retries(local, max_frame_retries); ret = local->ops->set_frame_retries(&local->hw, max_frame_retries); trace_802154_drv_return_int(local, ret); return ret; } static inline int drv_set_promiscuous_mode(struct ieee802154_local *local, bool on) { int ret; might_sleep(); if (!local->ops->set_promiscuous_mode) { WARN_ON(1); return -EOPNOTSUPP; } trace_802154_drv_set_promiscuous_mode(local, on); ret = local->ops->set_promiscuous_mode(&local->hw, on); trace_802154_drv_return_int(local, ret); return ret; } #endif /* __MAC802154_DRIVER_OPS */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_IVERSION_H #define _LINUX_IVERSION_H #include <linux/fs.h> /* * The inode->i_version field: * --------------------------- * The change attribute (i_version) is mandated by NFSv4 and is mostly for * knfsd, but is also used for other purposes (e.g. IMA). The i_version must * appear different to observers if there was a change to the inode's data or * metadata since it was last queried. * * Observers see the i_version as a 64-bit number that never decreases. If it * remains the same since it was last checked, then nothing has changed in the * inode. If it's different then something has changed. Observers cannot infer * anything about the nature or magnitude of the changes from the value, only * that the inode has changed in some fashion. * * Not all filesystems properly implement the i_version counter. Subsystems that * want to use i_version field on an inode should first check whether the * filesystem sets the SB_I_VERSION flag (usually via the IS_I_VERSION macro). * * Those that set SB_I_VERSION will automatically have their i_version counter * incremented on writes to normal files. If the SB_I_VERSION is not set, then * the VFS will not touch it on writes, and the filesystem can use it how it * wishes. Note that the filesystem is always responsible for updating the * i_version on namespace changes in directories (mkdir, rmdir, unlink, etc.). * We consider these sorts of filesystems to have a kernel-managed i_version. * * It may be impractical for filesystems to keep i_version updates atomic with * respect to the changes that cause them. They should, however, guarantee * that i_version updates are never visible before the changes that caused * them. Also, i_version updates should never be delayed longer than it takes * the original change to reach disk. * * This implementation uses the low bit in the i_version field as a flag to * track when the value has been queried. If it has not been queried since it * was last incremented, we can skip the increment in most cases. * * In the event that we're updating the ctime, we will usually go ahead and * bump the i_version anyway. Since that has to go to stable storage in some * fashion, we might as well increment it as well. * * With this implementation, the value should always appear to observers to * increase over time if the file has changed. It's recommended to use * inode_eq_iversion() helper to compare values. * * Note that some filesystems (e.g. NFS and AFS) just use the field to store * a server-provided value (for the most part). For that reason, those * filesystems do not set SB_I_VERSION. These filesystems are considered to * have a self-managed i_version. * * Persistently storing the i_version * ---------------------------------- * Queries of the i_version field are not gated on them hitting the backing * store. It's always possible that the host could crash after allowing * a query of the value but before it has made it to disk. * * To mitigate this problem, filesystems should always use * inode_set_iversion_queried when loading an existing inode from disk. This * ensures that the next attempted inode increment will result in the value * changing. * * Storing the value to disk therefore does not count as a query, so those * filesystems should use inode_peek_iversion to grab the value to be stored. * There is no need to flag the value as having been queried in that case. */ /* * We borrow the lowest bit in the i_version to use as a flag to tell whether * it has been queried since we last incremented it. If it has, then we must * increment it on the next change. After that, we can clear the flag and * avoid incrementing it again until it has again been queried. */ #define I_VERSION_QUERIED_SHIFT (1) #define I_VERSION_QUERIED (1ULL << (I_VERSION_QUERIED_SHIFT - 1)) #define I_VERSION_INCREMENT (1ULL << I_VERSION_QUERIED_SHIFT) /** * inode_set_iversion_raw - set i_version to the specified raw value * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val. This function is for use by * filesystems that self-manage the i_version. * * For example, the NFS client stores its NFSv4 change attribute in this way, * and the AFS client stores the data_version from the server here. */ static inline void inode_set_iversion_raw(struct inode *inode, u64 val) { atomic64_set(&inode->i_version, val); } /** * inode_peek_iversion_raw - grab a "raw" iversion value * @inode: inode from which i_version should be read * * Grab a "raw" inode->i_version value and return it. The i_version is not * flagged or converted in any way. This is mostly used to access a self-managed * i_version. * * With those filesystems, we want to treat the i_version as an entirely * opaque value. */ static inline u64 inode_peek_iversion_raw(const struct inode *inode) { return atomic64_read(&inode->i_version); } /** * inode_set_max_iversion_raw - update i_version new value is larger * @inode: inode to set * @val: new i_version to set * * Some self-managed filesystems (e.g Ceph) will only update the i_version * value if the new value is larger than the one we already have. */ static inline void inode_set_max_iversion_raw(struct inode *inode, u64 val) { u64 cur, old; cur = inode_peek_iversion_raw(inode); for (;;) { if (cur > val) break; old = atomic64_cmpxchg(&inode->i_version, cur, val); if (likely(old == cur)) break; cur = old; } } /** * inode_set_iversion - set i_version to a particular value * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val. This function is for filesystems with * a kernel-managed i_version, for initializing a newly-created inode from * scratch. * * In this case, we do not set the QUERIED flag since we know that this value * has never been queried. */ static inline void inode_set_iversion(struct inode *inode, u64 val) { inode_set_iversion_raw(inode, val << I_VERSION_QUERIED_SHIFT); } /** * inode_set_iversion_queried - set i_version to a particular value as quereied * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val, and flag it for increment on the next * change. * * Filesystems that persistently store the i_version on disk should use this * when loading an existing inode from disk. * * When loading in an i_version value from a backing store, we can't be certain * that it wasn't previously viewed before being stored. Thus, we must assume * that it was, to ensure that we don't end up handing out the same value for * different versions of the same inode. */ static inline void inode_set_iversion_queried(struct inode *inode, u64 val) { inode_set_iversion_raw(inode, (val << I_VERSION_QUERIED_SHIFT) | I_VERSION_QUERIED); } /** * inode_maybe_inc_iversion - increments i_version * @inode: inode with the i_version that should be updated * @force: increment the counter even if it's not necessary? * * Every time the inode is modified, the i_version field must be seen to have * changed by any observer. * * If "force" is set or the QUERIED flag is set, then ensure that we increment * the value, and clear the queried flag. * * In the common case where neither is set, then we can return "false" without * updating i_version. * * If this function returns false, and no other metadata has changed, then we * can avoid logging the metadata. */ static inline bool inode_maybe_inc_iversion(struct inode *inode, bool force) { u64 cur, old, new; /* * The i_version field is not strictly ordered with any other inode * information, but the legacy inode_inc_iversion code used a spinlock * to serialize increments. * * Here, we add full memory barriers to ensure that any de-facto * ordering with other info is preserved. * * This barrier pairs with the barrier in inode_query_iversion() */ smp_mb(); cur = inode_peek_iversion_raw(inode); for (;;) { /* If flag is clear then we needn't do anything */ if (!force && !(cur & I_VERSION_QUERIED)) return false; /* Since lowest bit is flag, add 2 to avoid it */ new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; old = atomic64_cmpxchg(&inode->i_version, cur, new); if (likely(old == cur)) break; cur = old; } return true; } /** * inode_inc_iversion - forcibly increment i_version * @inode: inode that needs to be updated * * Forcbily increment the i_version field. This always results in a change to * the observable value. */ static inline void inode_inc_iversion(struct inode *inode) { inode_maybe_inc_iversion(inode, true); } /** * inode_iversion_need_inc - is the i_version in need of being incremented? * @inode: inode to check * * Returns whether the inode->i_version counter needs incrementing on the next * change. Just fetch the value and check the QUERIED flag. */ static inline bool inode_iversion_need_inc(struct inode *inode) { return inode_peek_iversion_raw(inode) & I_VERSION_QUERIED; } /** * inode_inc_iversion_raw - forcibly increment raw i_version * @inode: inode that needs to be updated * * Forcbily increment the raw i_version field. This always results in a change * to the raw value. * * NFS will use the i_version field to store the value from the server. It * mostly treats it as opaque, but in the case where it holds a write * delegation, it must increment the value itself. This function does that. */ static inline void inode_inc_iversion_raw(struct inode *inode) { atomic64_inc(&inode->i_version); } /** * inode_peek_iversion - read i_version without flagging it to be incremented * @inode: inode from which i_version should be read * * Read the inode i_version counter for an inode without registering it as a * query. * * This is typically used by local filesystems that need to store an i_version * on disk. In that situation, it's not necessary to flag it as having been * viewed, as the result won't be used to gauge changes from that point. */ static inline u64 inode_peek_iversion(const struct inode *inode) { return inode_peek_iversion_raw(inode) >> I_VERSION_QUERIED_SHIFT; } /** * inode_query_iversion - read i_version for later use * @inode: inode from which i_version should be read * * Read the inode i_version counter. This should be used by callers that wish * to store the returned i_version for later comparison. This will guarantee * that a later query of the i_version will result in a different value if * anything has changed. * * In this implementation, we fetch the current value, set the QUERIED flag and * then try to swap it into place with a cmpxchg, if it wasn't already set. If * that fails, we try again with the newly fetched value from the cmpxchg. */ static inline u64 inode_query_iversion(struct inode *inode) { u64 cur, old, new; cur = inode_peek_iversion_raw(inode); for (;;) { /* If flag is already set, then no need to swap */ if (cur & I_VERSION_QUERIED) { /* * This barrier (and the implicit barrier in the * cmpxchg below) pairs with the barrier in * inode_maybe_inc_iversion(). */ smp_mb(); break; } new = cur | I_VERSION_QUERIED; old = atomic64_cmpxchg(&inode->i_version, cur, new); if (likely(old == cur)) break; cur = old; } return cur >> I_VERSION_QUERIED_SHIFT; } /** * inode_eq_iversion_raw - check whether the raw i_version counter has changed * @inode: inode to check * @old: old value to check against its i_version * * Compare the current raw i_version counter with a previous one. Returns true * if they are the same or false if they are different. */ static inline bool inode_eq_iversion_raw(const struct inode *inode, u64 old) { return inode_peek_iversion_raw(inode) == old; } /** * inode_eq_iversion - check whether the i_version counter has changed * @inode: inode to check * @old: old value to check against its i_version * * Compare an i_version counter with a previous one. Returns true if they are * the same, and false if they are different. * * Note that we don't need to set the QUERIED flag in this case, as the value * in the inode is not being recorded for later use. */ static inline bool inode_eq_iversion(const struct inode *inode, u64 old) { return inode_peek_iversion(inode) == old; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PATH_H #define _LINUX_PATH_H struct dentry; struct vfsmount; struct path { struct vfsmount *mnt; struct dentry *dentry; } __randomize_layout; extern void path_get(const struct path *); extern void path_put(const struct path *); static inline int path_equal(const struct path *path1, const struct path *path2) { return path1->mnt == path2->mnt && path1->dentry == path2->dentry; } static inline void path_put_init(struct path *path) { path_put(path); *path = (struct path) { }; } #endif /* _LINUX_PATH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2007, 2008, 2009 Siemens AG * * Written by: * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> */ #ifndef __NET_CFG802154_H #define __NET_CFG802154_H #include <linux/ieee802154.h> #include <linux/netdevice.h> #include <linux/mutex.h> #include <linux/bug.h> #include <net/nl802154.h> struct wpan_phy; struct wpan_phy_cca; #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL struct ieee802154_llsec_device_key; struct ieee802154_llsec_seclevel; struct ieee802154_llsec_params; struct ieee802154_llsec_device; struct ieee802154_llsec_table; struct ieee802154_llsec_key_id; struct ieee802154_llsec_key; #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ struct cfg802154_ops { struct net_device * (*add_virtual_intf_deprecated)(struct wpan_phy *wpan_phy, const char *name, unsigned char name_assign_type, int type); void (*del_virtual_intf_deprecated)(struct wpan_phy *wpan_phy, struct net_device *dev); int (*suspend)(struct wpan_phy *wpan_phy); int (*resume)(struct wpan_phy *wpan_phy); int (*add_virtual_intf)(struct wpan_phy *wpan_phy, const char *name, unsigned char name_assign_type, enum nl802154_iftype type, __le64 extended_addr); int (*del_virtual_intf)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev); int (*set_channel)(struct wpan_phy *wpan_phy, u8 page, u8 channel); int (*set_cca_mode)(struct wpan_phy *wpan_phy, const struct wpan_phy_cca *cca); int (*set_cca_ed_level)(struct wpan_phy *wpan_phy, s32 ed_level); int (*set_tx_power)(struct wpan_phy *wpan_phy, s32 power); int (*set_pan_id)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le16 pan_id); int (*set_short_addr)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le16 short_addr); int (*set_backoff_exponent)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, u8 min_be, u8 max_be); int (*set_max_csma_backoffs)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, u8 max_csma_backoffs); int (*set_max_frame_retries)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, s8 max_frame_retries); int (*set_lbt_mode)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, bool mode); int (*set_ackreq_default)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, bool ackreq); #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL void (*get_llsec_table)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, struct ieee802154_llsec_table **table); void (*lock_llsec_table)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev); void (*unlock_llsec_table)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev); /* TODO remove locking/get table callbacks, this is part of the * nl802154 interface and should be accessible from ieee802154 layer. */ int (*get_llsec_params)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, struct ieee802154_llsec_params *params); int (*set_llsec_params)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_params *params, int changed); int (*add_llsec_key)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id, const struct ieee802154_llsec_key *key); int (*del_llsec_key)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id); int (*add_seclevel)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl); int (*del_seclevel)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl); int (*add_device)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_device *dev); int (*del_device)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le64 extended_addr); int (*add_devkey)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *key); int (*del_devkey)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *key); #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ }; static inline bool wpan_phy_supported_bool(bool b, enum nl802154_supported_bool_states st) { switch (st) { case NL802154_SUPPORTED_BOOL_TRUE: return b; case NL802154_SUPPORTED_BOOL_FALSE: return !b; case NL802154_SUPPORTED_BOOL_BOTH: return true; default: WARN_ON(1); } return false; } struct wpan_phy_supported { u32 channels[IEEE802154_MAX_PAGE + 1], cca_modes, cca_opts, iftypes; enum nl802154_supported_bool_states lbt; u8 min_minbe, max_minbe, min_maxbe, max_maxbe, min_csma_backoffs, max_csma_backoffs; s8 min_frame_retries, max_frame_retries; size_t tx_powers_size, cca_ed_levels_size; const s32 *tx_powers, *cca_ed_levels; }; struct wpan_phy_cca { enum nl802154_cca_modes mode; enum nl802154_cca_opts opt; }; static inline bool wpan_phy_cca_cmp(const struct wpan_phy_cca *a, const struct wpan_phy_cca *b) { if (a->mode != b->mode) return false; if (a->mode == NL802154_CCA_ENERGY_CARRIER) return a->opt == b->opt; return true; } /** * @WPAN_PHY_FLAG_TRANSMIT_POWER: Indicates that transceiver will support * transmit power setting. * @WPAN_PHY_FLAG_CCA_ED_LEVEL: Indicates that transceiver will support cca ed * level setting. * @WPAN_PHY_FLAG_CCA_MODE: Indicates that transceiver will support cca mode * setting. */ enum wpan_phy_flags { WPAN_PHY_FLAG_TXPOWER = BIT(1), WPAN_PHY_FLAG_CCA_ED_LEVEL = BIT(2), WPAN_PHY_FLAG_CCA_MODE = BIT(3), }; struct wpan_phy { /* If multiple wpan_phys are registered and you're handed e.g. * a regular netdev with assigned ieee802154_ptr, you won't * know whether it points to a wpan_phy your driver has registered * or not. Assign this to something global to your driver to * help determine whether you own this wpan_phy or not. */ const void *privid; u32 flags; /* * This is a PIB according to 802.15.4-2011. * We do not provide timing-related variables, as they * aren't used outside of driver */ u8 current_channel; u8 current_page; struct wpan_phy_supported supported; /* current transmit_power in mBm */ s32 transmit_power; struct wpan_phy_cca cca; __le64 perm_extended_addr; /* current cca ed threshold in mBm */ s32 cca_ed_level; /* PHY depended MAC PIB values */ /* 802.15.4 acronym: Tdsym in usec */ u8 symbol_duration; /* lifs and sifs periods timing */ u16 lifs_period; u16 sifs_period; struct device dev; /* the network namespace this phy lives in currently */ possible_net_t _net; char priv[] __aligned(NETDEV_ALIGN); }; static inline struct net *wpan_phy_net(struct wpan_phy *wpan_phy) { return read_pnet(&wpan_phy->_net); } static inline void wpan_phy_net_set(struct wpan_phy *wpan_phy, struct net *net) { write_pnet(&wpan_phy->_net, net); } struct ieee802154_addr { u8 mode; __le16 pan_id; union { __le16 short_addr; __le64 extended_addr; }; }; struct ieee802154_llsec_key_id { u8 mode; u8 id; union { struct ieee802154_addr device_addr; __le32 short_source; __le64 extended_source; }; }; #define IEEE802154_LLSEC_KEY_SIZE 16 struct ieee802154_llsec_key { u8 frame_types; u32 cmd_frame_ids; /* TODO replace with NL802154_KEY_SIZE */ u8 key[IEEE802154_LLSEC_KEY_SIZE]; }; struct ieee802154_llsec_key_entry { struct list_head list; struct ieee802154_llsec_key_id id; struct ieee802154_llsec_key *key; }; struct ieee802154_llsec_params { bool enabled; __be32 frame_counter; u8 out_level; struct ieee802154_llsec_key_id out_key; __le64 default_key_source; __le16 pan_id; __le64 hwaddr; __le64 coord_hwaddr; __le16 coord_shortaddr; }; struct ieee802154_llsec_table { struct list_head keys; struct list_head devices; struct list_head security_levels; }; struct ieee802154_llsec_seclevel { struct list_head list; u8 frame_type; u8 cmd_frame_id; bool device_override; u32 sec_levels; }; struct ieee802154_llsec_device { struct list_head list; __le16 pan_id; __le16 short_addr; __le64 hwaddr; u32 frame_counter; bool seclevel_exempt; u8 key_mode; struct list_head keys; }; struct ieee802154_llsec_device_key { struct list_head list; struct ieee802154_llsec_key_id key_id; u32 frame_counter; }; struct wpan_dev_header_ops { /* TODO create callback currently assumes ieee802154_mac_cb inside * skb->cb. This should be changed to give these information as * parameter. */ int (*create)(struct sk_buff *skb, struct net_device *dev, const struct ieee802154_addr *daddr, const struct ieee802154_addr *saddr, unsigned int len); }; struct wpan_dev { struct wpan_phy *wpan_phy; int iftype; /* the remainder of this struct should be private to cfg802154 */ struct list_head list; struct net_device *netdev; const struct wpan_dev_header_ops *header_ops; /* lowpan interface, set when the wpan_dev belongs to one lowpan_dev */ struct net_device *lowpan_dev; u32 identifier; /* MAC PIB */ __le16 pan_id; __le16 short_addr; __le64 extended_addr; /* MAC BSN field */ atomic_t bsn; /* MAC DSN field */ atomic_t dsn; u8 min_be; u8 max_be; u8 csma_retries; s8 frame_retries; bool lbt; bool promiscuous_mode; /* fallback for acknowledgment bit setting */ bool ackreq; }; #define to_phy(_dev) container_of(_dev, struct wpan_phy, dev) static inline int wpan_dev_hard_header(struct sk_buff *skb, struct net_device *dev, const struct ieee802154_addr *daddr, const struct ieee802154_addr *saddr, unsigned int len) { struct wpan_dev *wpan_dev = dev->ieee802154_ptr; return wpan_dev->header_ops->create(skb, dev, daddr, saddr, len); } struct wpan_phy * wpan_phy_new(const struct cfg802154_ops *ops, size_t priv_size); static inline void wpan_phy_set_dev(struct wpan_phy *phy, struct device *dev) { phy->dev.parent = dev; } int wpan_phy_register(struct wpan_phy *phy); void wpan_phy_unregister(struct wpan_phy *phy); void wpan_phy_free(struct wpan_phy *phy); /* Same semantics as for class_for_each_device */ int wpan_phy_for_each(int (*fn)(struct wpan_phy *phy, void *data), void *data); static inline void *wpan_phy_priv(struct wpan_phy *phy) { BUG_ON(!phy); return &phy->priv; } struct wpan_phy *wpan_phy_find(const char *str); static inline void wpan_phy_put(struct wpan_phy *phy) { put_device(&phy->dev); } static inline const char *wpan_phy_name(struct wpan_phy *phy) { return dev_name(&phy->dev); } #endif /* __NET_CFG802154_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 /* * Copyright (c) 1982, 1986 Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Robert Elz at The University of Melbourne. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef _LINUX_QUOTA_ #define _LINUX_QUOTA_ #include <linux/list.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/spinlock.h> #include <linux/wait.h> #include <linux/percpu_counter.h> #include <linux/dqblk_xfs.h> #include <linux/dqblk_v1.h> #include <linux/dqblk_v2.h> #include <linux/atomic.h> #include <linux/uidgid.h> #include <linux/projid.h> #include <uapi/linux/quota.h> #undef USRQUOTA #undef GRPQUOTA #undef PRJQUOTA enum quota_type { USRQUOTA = 0, /* element used for user quotas */ GRPQUOTA = 1, /* element used for group quotas */ PRJQUOTA = 2, /* element used for project quotas */ }; /* Masks for quota types when used as a bitmask */ #define QTYPE_MASK_USR (1 << USRQUOTA) #define QTYPE_MASK_GRP (1 << GRPQUOTA) #define QTYPE_MASK_PRJ (1 << PRJQUOTA) typedef __kernel_uid32_t qid_t; /* Type in which we store ids in memory */ typedef long long qsize_t; /* Type in which we store sizes */ struct kqid { /* Type in which we store the quota identifier */ union { kuid_t uid; kgid_t gid; kprojid_t projid; }; enum quota_type type; /* USRQUOTA (uid) or GRPQUOTA (gid) or PRJQUOTA (projid) */ }; extern bool qid_eq(struct kqid left, struct kqid right); extern bool qid_lt(struct kqid left, struct kqid right); extern qid_t from_kqid(struct user_namespace *to, struct kqid qid); extern qid_t from_kqid_munged(struct user_namespace *to, struct kqid qid); extern bool qid_valid(struct kqid qid); /** * make_kqid - Map a user-namespace, type, qid tuple into a kqid. * @from: User namespace that the qid is in * @type: The type of quota * @qid: Quota identifier * * Maps a user-namespace, type qid tuple into a kernel internal * kqid, and returns that kqid. * * When there is no mapping defined for the user-namespace, type, * qid tuple an invalid kqid is returned. Callers are expected to * test for and handle handle invalid kqids being returned. * Invalid kqids may be tested for using qid_valid(). */ static inline struct kqid make_kqid(struct user_namespace *from, enum quota_type type, qid_t qid) { struct kqid kqid; kqid.type = type; switch (type) { case USRQUOTA: kqid.uid = make_kuid(from, qid); break; case GRPQUOTA: kqid.gid = make_kgid(from, qid); break; case PRJQUOTA: kqid.projid = make_kprojid(from, qid); break; default: BUG(); } return kqid; } /** * make_kqid_invalid - Explicitly make an invalid kqid * @type: The type of quota identifier * * Returns an invalid kqid with the specified type. */ static inline struct kqid make_kqid_invalid(enum quota_type type) { struct kqid kqid; kqid.type = type; switch (type) { case USRQUOTA: kqid.uid = INVALID_UID; break; case GRPQUOTA: kqid.gid = INVALID_GID; break; case PRJQUOTA: kqid.projid = INVALID_PROJID; break; default: BUG(); } return kqid; } /** * make_kqid_uid - Make a kqid from a kuid * @uid: The kuid to make the quota identifier from */ static inline struct kqid make_kqid_uid(kuid_t uid) { struct kqid kqid; kqid.type = USRQUOTA; kqid.uid = uid; return kqid; } /** * make_kqid_gid - Make a kqid from a kgid * @gid: The kgid to make the quota identifier from */ static inline struct kqid make_kqid_gid(kgid_t gid) { struct kqid kqid; kqid.type = GRPQUOTA; kqid.gid = gid; return kqid; } /** * make_kqid_projid - Make a kqid from a projid * @projid: The kprojid to make the quota identifier from */ static inline struct kqid make_kqid_projid(kprojid_t projid) { struct kqid kqid; kqid.type = PRJQUOTA; kqid.projid = projid; return kqid; } /** * qid_has_mapping - Report if a qid maps into a user namespace. * @ns: The user namespace to see if a value maps into. * @qid: The kernel internal quota identifier to test. */ static inline bool qid_has_mapping(struct user_namespace *ns, struct kqid qid) { return from_kqid(ns, qid) != (qid_t) -1; } extern spinlock_t dq_data_lock; /* Maximal numbers of writes for quota operation (insert/delete/update) * (over VFS all formats) */ #define DQUOT_INIT_ALLOC max(V1_INIT_ALLOC, V2_INIT_ALLOC) #define DQUOT_INIT_REWRITE max(V1_INIT_REWRITE, V2_INIT_REWRITE) #define DQUOT_DEL_ALLOC max(V1_DEL_ALLOC, V2_DEL_ALLOC) #define DQUOT_DEL_REWRITE max(V1_DEL_REWRITE, V2_DEL_REWRITE) /* * Data for one user/group kept in memory */ struct mem_dqblk { qsize_t dqb_bhardlimit; /* absolute limit on disk blks alloc */ qsize_t dqb_bsoftlimit; /* preferred limit on disk blks */ qsize_t dqb_curspace; /* current used space */ qsize_t dqb_rsvspace; /* current reserved space for delalloc*/ qsize_t dqb_ihardlimit; /* absolute limit on allocated inodes */ qsize_t dqb_isoftlimit; /* preferred inode limit */ qsize_t dqb_curinodes; /* current # allocated inodes */ time64_t dqb_btime; /* time limit for excessive disk use */ time64_t dqb_itime; /* time limit for excessive inode use */ }; /* * Data for one quotafile kept in memory */ struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format; int dqi_fmt_id; /* Id of the dqi_format - used when turning * quotas on after remount RW */ struct list_head dqi_dirty_list; /* List of dirty dquots [dq_list_lock] */ unsigned long dqi_flags; /* DFQ_ flags [dq_data_lock] */ unsigned int dqi_bgrace; /* Space grace time [dq_data_lock] */ unsigned int dqi_igrace; /* Inode grace time [dq_data_lock] */ qsize_t dqi_max_spc_limit; /* Maximum space limit [static] */ qsize_t dqi_max_ino_limit; /* Maximum inode limit [static] */ void *dqi_priv; }; struct super_block; /* Mask for flags passed to userspace */ #define DQF_GETINFO_MASK (DQF_ROOT_SQUASH | DQF_SYS_FILE) /* Mask for flags modifiable from userspace */ #define DQF_SETINFO_MASK DQF_ROOT_SQUASH enum { DQF_INFO_DIRTY_B = DQF_PRIVATE, }; #define DQF_INFO_DIRTY (1 << DQF_INFO_DIRTY_B) /* Is info dirty? */ extern void mark_info_dirty(struct super_block *sb, int type); static inline int info_dirty(struct mem_dqinfo *info) { return test_bit(DQF_INFO_DIRTY_B, &info->dqi_flags); } enum { DQST_LOOKUPS, DQST_DROPS, DQST_READS, DQST_WRITES, DQST_CACHE_HITS, DQST_ALLOC_DQUOTS, DQST_FREE_DQUOTS, DQST_SYNCS, _DQST_DQSTAT_LAST }; struct dqstats { unsigned long stat[_DQST_DQSTAT_LAST]; struct percpu_counter counter[_DQST_DQSTAT_LAST]; }; extern struct dqstats dqstats; static inline void dqstats_inc(unsigned int type) { percpu_counter_inc(&dqstats.counter[type]); } static inline void dqstats_dec(unsigned int type) { percpu_counter_dec(&dqstats.counter[type]); } #define DQ_MOD_B 0 /* dquot modified since read */ #define DQ_BLKS_B 1 /* uid/gid has been warned about blk limit */ #define DQ_INODES_B 2 /* uid/gid has been warned about inode limit */ #define DQ_FAKE_B 3 /* no limits only usage */ #define DQ_READ_B 4 /* dquot was read into memory */ #define DQ_ACTIVE_B 5 /* dquot is active (dquot_release not called) */ #define DQ_LASTSET_B 6 /* Following 6 bits (see QIF_) are reserved\ * for the mask of entries set via SETQUOTA\ * quotactl. They are set under dq_data_lock\ * and the quota format handling dquot can\ * clear them when it sees fit. */ struct dquot { struct hlist_node dq_hash; /* Hash list in memory [dq_list_lock] */ struct list_head dq_inuse; /* List of all quotas [dq_list_lock] */ struct list_head dq_free; /* Free list element [dq_list_lock] */ struct list_head dq_dirty; /* List of dirty dquots [dq_list_lock] */ struct mutex dq_lock; /* dquot IO lock */ spinlock_t dq_dqb_lock; /* Lock protecting dq_dqb changes */ atomic_t dq_count; /* Use count */ struct super_block *dq_sb; /* superblock this applies to */ struct kqid dq_id; /* ID this applies to (uid, gid, projid) */ loff_t dq_off; /* Offset of dquot on disk [dq_lock, stable once set] */ unsigned long dq_flags; /* See DQ_* */ struct mem_dqblk dq_dqb; /* Diskquota usage [dq_dqb_lock] */ }; /* Operations which must be implemented by each quota format */ struct quota_format_ops { int (*check_quota_file)(struct super_block *sb, int type); /* Detect whether file is in our format */ int (*read_file_info)(struct super_block *sb, int type); /* Read main info about file - called on quotaon() */ int (*write_file_info)(struct super_block *sb, int type); /* Write main info about file */ int (*free_file_info)(struct super_block *sb, int type); /* Called on quotaoff() */ int (*read_dqblk)(struct dquot *dquot); /* Read structure for one user */ int (*commit_dqblk)(struct dquot *dquot); /* Write structure for one user */ int (*release_dqblk)(struct dquot *dquot); /* Called when last reference to dquot is being dropped */ int (*get_next_id)(struct super_block *sb, struct kqid *qid); /* Get next ID with existing structure in the quota file */ }; /* Operations working with dquots */ struct dquot_operations { int (*write_dquot) (struct dquot *); /* Ordinary dquot write */ struct dquot *(*alloc_dquot)(struct super_block *, int); /* Allocate memory for new dquot */ void (*destroy_dquot)(struct dquot *); /* Free memory for dquot */ int (*acquire_dquot) (struct dquot *); /* Quota is going to be created on disk */ int (*release_dquot) (struct dquot *); /* Quota is going to be deleted from disk */ int (*mark_dirty) (struct dquot *); /* Dquot is marked dirty */ int (*write_info) (struct super_block *, int); /* Write of quota "superblock" */ /* get reserved quota for delayed alloc, value returned is managed by * quota code only */ qsize_t *(*get_reserved_space) (struct inode *); int (*get_projid) (struct inode *, kprojid_t *);/* Get project ID */ /* Get number of inodes that were charged for a given inode */ int (*get_inode_usage) (struct inode *, qsize_t *); /* Get next ID with active quota structure */ int (*get_next_id) (struct super_block *sb, struct kqid *qid); }; struct path; /* Structure for communicating via ->get_dqblk() & ->set_dqblk() */ struct qc_dqblk { int d_fieldmask; /* mask of fields to change in ->set_dqblk() */ u64 d_spc_hardlimit; /* absolute limit on used space */ u64 d_spc_softlimit; /* preferred limit on used space */ u64 d_ino_hardlimit; /* maximum # allocated inodes */ u64 d_ino_softlimit; /* preferred inode limit */ u64 d_space; /* Space owned by the user */ u64 d_ino_count; /* # inodes owned by the user */ s64 d_ino_timer; /* zero if within inode limits */ /* if not, we refuse service */ s64 d_spc_timer; /* similar to above; for space */ int d_ino_warns; /* # warnings issued wrt num inodes */ int d_spc_warns; /* # warnings issued wrt used space */ u64 d_rt_spc_hardlimit; /* absolute limit on realtime space */ u64 d_rt_spc_softlimit; /* preferred limit on RT space */ u64 d_rt_space; /* realtime space owned */ s64 d_rt_spc_timer; /* similar to above; for RT space */ int d_rt_spc_warns; /* # warnings issued wrt RT space */ }; /* * Field specifiers for ->set_dqblk() in struct qc_dqblk and also for * ->set_info() in struct qc_info */ #define QC_INO_SOFT (1<<0) #define QC_INO_HARD (1<<1) #define QC_SPC_SOFT (1<<2) #define QC_SPC_HARD (1<<3) #define QC_RT_SPC_SOFT (1<<4) #define QC_RT_SPC_HARD (1<<5) #define QC_LIMIT_MASK (QC_INO_SOFT | QC_INO_HARD | QC_SPC_SOFT | QC_SPC_HARD | \ QC_RT_SPC_SOFT | QC_RT_SPC_HARD) #define QC_SPC_TIMER (1<<6) #define QC_INO_TIMER (1<<7) #define QC_RT_SPC_TIMER (1<<8) #define QC_TIMER_MASK (QC_SPC_TIMER | QC_INO_TIMER | QC_RT_SPC_TIMER) #define QC_SPC_WARNS (1<<9) #define QC_INO_WARNS (1<<10) #define QC_RT_SPC_WARNS (1<<11) #define QC_WARNS_MASK (QC_SPC_WARNS | QC_INO_WARNS | QC_RT_SPC_WARNS) #define QC_SPACE (1<<12) #define QC_INO_COUNT (1<<13) #define QC_RT_SPACE (1<<14) #define QC_ACCT_MASK (QC_SPACE | QC_INO_COUNT | QC_RT_SPACE) #define QC_FLAGS (1<<15) #define QCI_SYSFILE (1 << 0) /* Quota file is hidden from userspace */ #define QCI_ROOT_SQUASH (1 << 1) /* Root squash turned on */ #define QCI_ACCT_ENABLED (1 << 2) /* Quota accounting enabled */ #define QCI_LIMITS_ENFORCED (1 << 3) /* Quota limits enforced */ /* Structures for communicating via ->get_state */ struct qc_type_state { unsigned int flags; /* Flags QCI_* */ unsigned int spc_timelimit; /* Time after which space softlimit is * enforced */ unsigned int ino_timelimit; /* Ditto for inode softlimit */ unsigned int rt_spc_timelimit; /* Ditto for real-time space */ unsigned int spc_warnlimit; /* Limit for number of space warnings */ unsigned int ino_warnlimit; /* Ditto for inodes */ unsigned int rt_spc_warnlimit; /* Ditto for real-time space */ unsigned long long ino; /* Inode number of quota file */ blkcnt_t blocks; /* Number of 512-byte blocks in the file */ blkcnt_t nextents; /* Number of extents in the file */ }; struct qc_state { unsigned int s_incoredqs; /* Number of dquots in core */ struct qc_type_state s_state[MAXQUOTAS]; /* Per quota type information */ }; /* Structure for communicating via ->set_info */ struct qc_info { int i_fieldmask; /* mask of fields to change in ->set_info() */ unsigned int i_flags; /* Flags QCI_* */ unsigned int i_spc_timelimit; /* Time after which space softlimit is * enforced */ unsigned int i_ino_timelimit; /* Ditto for inode softlimit */ unsigned int i_rt_spc_timelimit;/* Ditto for real-time space */ unsigned int i_spc_warnlimit; /* Limit for number of space warnings */ unsigned int i_ino_warnlimit; /* Limit for number of inode warnings */ unsigned int i_rt_spc_warnlimit; /* Ditto for real-time space */ }; /* Operations handling requests from userspace */ struct quotactl_ops { int (*quota_on)(struct super_block *, int, int, const struct path *); int (*quota_off)(struct super_block *, int); int (*quota_enable)(struct super_block *, unsigned int); int (*quota_disable)(struct super_block *, unsigned int); int (*quota_sync)(struct super_block *, int); int (*set_info)(struct super_block *, int, struct qc_info *); int (*get_dqblk)(struct super_block *, struct kqid, struct qc_dqblk *); int (*get_nextdqblk)(struct super_block *, struct kqid *, struct qc_dqblk *); int (*set_dqblk)(struct super_block *, struct kqid, struct qc_dqblk *); int (*get_state)(struct super_block *, struct qc_state *); int (*rm_xquota)(struct super_block *, unsigned int); }; struct quota_format_type { int qf_fmt_id; /* Quota format id */ const struct quota_format_ops *qf_ops; /* Operations of format */ struct module *qf_owner; /* Module implementing quota format */ struct quota_format_type *qf_next; }; /** * Quota state flags - they actually come in two flavors - for users and groups. * * Actual typed flags layout: * USRQUOTA GRPQUOTA * DQUOT_USAGE_ENABLED 0x0001 0x0002 * DQUOT_LIMITS_ENABLED 0x0004 0x0008 * DQUOT_SUSPENDED 0x0010 0x0020 * * Following bits are used for non-typed flags: * DQUOT_QUOTA_SYS_FILE 0x0040 * DQUOT_NEGATIVE_USAGE 0x0080 */ enum { _DQUOT_USAGE_ENABLED = 0, /* Track disk usage for users */ _DQUOT_LIMITS_ENABLED, /* Enforce quota limits for users */ _DQUOT_SUSPENDED, /* User diskquotas are off, but * we have necessary info in * memory to turn them on */ _DQUOT_STATE_FLAGS }; #define DQUOT_USAGE_ENABLED (1 << _DQUOT_USAGE_ENABLED * MAXQUOTAS) #define DQUOT_LIMITS_ENABLED (1 << _DQUOT_LIMITS_ENABLED * MAXQUOTAS) #define DQUOT_SUSPENDED (1 << _DQUOT_SUSPENDED * MAXQUOTAS) #define DQUOT_STATE_FLAGS (DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED | \ DQUOT_SUSPENDED) /* Other quota flags */ #define DQUOT_STATE_LAST (_DQUOT_STATE_FLAGS * MAXQUOTAS) #define DQUOT_QUOTA_SYS_FILE (1 << DQUOT_STATE_LAST) /* Quota file is a special * system file and user cannot * touch it. Filesystem is * responsible for setting * S_NOQUOTA, S_NOATIME flags */ #define DQUOT_NEGATIVE_USAGE (1 << (DQUOT_STATE_LAST + 1)) /* Allow negative quota usage */ /* Do not track dirty dquots in a list */ #define DQUOT_NOLIST_DIRTY (1 << (DQUOT_STATE_LAST + 2)) static inline unsigned int dquot_state_flag(unsigned int flags, int type) { return flags << type; } static inline unsigned int dquot_generic_flag(unsigned int flags, int type) { return (flags >> type) & DQUOT_STATE_FLAGS; } /* Bitmap of quota types where flag is set in flags */ static __always_inline unsigned dquot_state_types(unsigned flags, unsigned flag) { BUILD_BUG_ON_NOT_POWER_OF_2(flag); return (flags / flag) & ((1 << MAXQUOTAS) - 1); } #ifdef CONFIG_QUOTA_NETLINK_INTERFACE extern void quota_send_warning(struct kqid qid, dev_t dev, const char warntype); #else static inline void quota_send_warning(struct kqid qid, dev_t dev, const char warntype) { return; } #endif /* CONFIG_QUOTA_NETLINK_INTERFACE */ struct quota_info { unsigned int flags; /* Flags for diskquotas on this device */ struct rw_semaphore dqio_sem; /* Lock quota file while I/O in progress */ struct inode *files[MAXQUOTAS]; /* inodes of quotafiles */ struct mem_dqinfo info[MAXQUOTAS]; /* Information for each quota type */ const struct quota_format_ops *ops[MAXQUOTAS]; /* Operations for each type */ }; int register_quota_format(struct quota_format_type *fmt); void unregister_quota_format(struct quota_format_type *fmt); struct quota_module_name { int qm_fmt_id; char *qm_mod_name; }; #define INIT_QUOTA_MODULE_NAMES {\ {QFMT_VFS_OLD, "quota_v1"},\ {QFMT_VFS_V0, "quota_v2"},\ {QFMT_VFS_V1, "quota_v2"},\ {0, NULL}} #endif /* _QUOTA_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 /* SPDX-License-Identifier: GPL-2.0 */ /* * This header file contains public constants and structures used by * the SCSI initiator code. */ #ifndef _SCSI_SCSI_H #define _SCSI_SCSI_H #include <linux/types.h> #include <linux/scatterlist.h> #include <linux/kernel.h> #include <scsi/scsi_common.h> #include <scsi/scsi_proto.h> struct scsi_cmnd; enum scsi_timeouts { SCSI_DEFAULT_EH_TIMEOUT = 10 * HZ, }; /* * DIX-capable adapters effectively support infinite chaining for the * protection information scatterlist */ #define SCSI_MAX_PROT_SG_SEGMENTS 0xFFFF /* * Special value for scanning to specify scanning or rescanning of all * possible channels, (target) ids, or luns on a given shost. */ #define SCAN_WILD_CARD ~0 /** scsi_status_is_good - check the status return. * * @status: the status passed up from the driver (including host and * driver components) * * This returns true for known good conditions that may be treated as * command completed normally */ static inline int scsi_status_is_good(int status) { /* * FIXME: bit0 is listed as reserved in SCSI-2, but is * significant in SCSI-3. For now, we follow the SCSI-2 * behaviour and ignore reserved bits. */ status &= 0xfe; return ((status == SAM_STAT_GOOD) || (status == SAM_STAT_CONDITION_MET) || /* Next two "intermediate" statuses are obsolete in SAM-4 */ (status == SAM_STAT_INTERMEDIATE) || (status == SAM_STAT_INTERMEDIATE_CONDITION_MET) || /* FIXME: this is obsolete in SAM-3 */ (status == SAM_STAT_COMMAND_TERMINATED)); } /* * standard mode-select header prepended to all mode-select commands */ struct ccs_modesel_head { __u8 _r1; /* reserved */ __u8 medium; /* device-specific medium type */ __u8 _r2; /* reserved */ __u8 block_desc_length; /* block descriptor length */ __u8 density; /* device-specific density code */ __u8 number_blocks_hi; /* number of blocks in this block desc */ __u8 number_blocks_med; __u8 number_blocks_lo; __u8 _r3; __u8 block_length_hi; /* block length for blocks in this desc */ __u8 block_length_med; __u8 block_length_lo; }; /* * The Well Known LUNS (SAM-3) in our int representation of a LUN */ #define SCSI_W_LUN_BASE 0xc100 #define SCSI_W_LUN_REPORT_LUNS (SCSI_W_LUN_BASE + 1) #define SCSI_W_LUN_ACCESS_CONTROL (SCSI_W_LUN_BASE + 2) #define SCSI_W_LUN_TARGET_LOG_PAGE (SCSI_W_LUN_BASE + 3) static inline int scsi_is_wlun(u64 lun) { return (lun & 0xff00) == SCSI_W_LUN_BASE; } /* * MESSAGE CODES */ #define COMMAND_COMPLETE 0x00 #define EXTENDED_MESSAGE 0x01 #define EXTENDED_MODIFY_DATA_POINTER 0x00 #define EXTENDED_SDTR 0x01 #define EXTENDED_EXTENDED_IDENTIFY 0x02 /* SCSI-I only */ #define EXTENDED_WDTR 0x03 #define EXTENDED_PPR 0x04 #define EXTENDED_MODIFY_BIDI_DATA_PTR 0x05 #define SAVE_POINTERS 0x02 #define RESTORE_POINTERS 0x03 #define DISCONNECT 0x04 #define INITIATOR_ERROR 0x05 #define ABORT_TASK_SET 0x06 #define MESSAGE_REJECT 0x07 #define NOP 0x08 #define MSG_PARITY_ERROR 0x09 #define LINKED_CMD_COMPLETE 0x0a #define LINKED_FLG_CMD_COMPLETE 0x0b #define TARGET_RESET 0x0c #define ABORT_TASK 0x0d #define CLEAR_TASK_SET 0x0e #define INITIATE_RECOVERY 0x0f /* SCSI-II only */ #define RELEASE_RECOVERY 0x10 /* SCSI-II only */ #define CLEAR_ACA 0x16 #define LOGICAL_UNIT_RESET 0x17 #define SIMPLE_QUEUE_TAG 0x20 #define HEAD_OF_QUEUE_TAG 0x21 #define ORDERED_QUEUE_TAG 0x22 #define IGNORE_WIDE_RESIDUE 0x23 #define ACA 0x24 #define QAS_REQUEST 0x55 /* Old SCSI2 names, don't use in new code */ #define BUS_DEVICE_RESET TARGET_RESET #define ABORT ABORT_TASK_SET /* * Host byte codes */ #define DID_OK 0x00 /* NO error */ #define DID_NO_CONNECT 0x01 /* Couldn't connect before timeout period */ #define DID_BUS_BUSY 0x02 /* BUS stayed busy through time out period */ #define DID_TIME_OUT 0x03 /* TIMED OUT for other reason */ #define DID_BAD_TARGET 0x04 /* BAD target. */ #define DID_ABORT 0x05 /* Told to abort for some other reason */ #define DID_PARITY 0x06 /* Parity error */ #define DID_ERROR 0x07 /* Internal error */ #define DID_RESET 0x08 /* Reset by somebody. */ #define DID_BAD_INTR 0x09 /* Got an interrupt we weren't expecting. */ #define DID_PASSTHROUGH 0x0a /* Force command past mid-layer */ #define DID_SOFT_ERROR 0x0b /* The low level driver just wish a retry */ #define DID_IMM_RETRY 0x0c /* Retry without decrementing retry count */ #define DID_REQUEUE 0x0d /* Requeue command (no immediate retry) also * without decrementing the retry count */ #define DID_TRANSPORT_DISRUPTED 0x0e /* Transport error disrupted execution * and the driver blocked the port to * recover the link. Transport class will * retry or fail IO */ #define DID_TRANSPORT_FAILFAST 0x0f /* Transport class fastfailed the io */ #define DID_TARGET_FAILURE 0x10 /* Permanent target failure, do not retry on * other paths */ #define DID_NEXUS_FAILURE 0x11 /* Permanent nexus failure, retry on other * paths might yield different results */ #define DID_ALLOC_FAILURE 0x12 /* Space allocation on the device failed */ #define DID_MEDIUM_ERROR 0x13 /* Medium error */ #define DRIVER_OK 0x00 /* Driver status */ /* * These indicate the error that occurred, and what is available. */ #define DRIVER_BUSY 0x01 #define DRIVER_SOFT 0x02 #define DRIVER_MEDIA 0x03 #define DRIVER_ERROR 0x04 #define DRIVER_INVALID 0x05 #define DRIVER_TIMEOUT 0x06 #define DRIVER_HARD 0x07 #define DRIVER_SENSE 0x08 /* * Internal return values. */ #define NEEDS_RETRY 0x2001 #define SUCCESS 0x2002 #define FAILED 0x2003 #define QUEUED 0x2004 #define SOFT_ERROR 0x2005 #define ADD_TO_MLQUEUE 0x2006 #define TIMEOUT_ERROR 0x2007 #define SCSI_RETURN_NOT_HANDLED 0x2008 #define FAST_IO_FAIL 0x2009 /* * Midlevel queue return values. */ #define SCSI_MLQUEUE_HOST_BUSY 0x1055 #define SCSI_MLQUEUE_DEVICE_BUSY 0x1056 #define SCSI_MLQUEUE_EH_RETRY 0x1057 #define SCSI_MLQUEUE_TARGET_BUSY 0x1058 /* * Use these to separate status msg and our bytes * * These are set by: * * status byte = set from target device * msg_byte = return status from host adapter itself. * host_byte = set by low-level driver to indicate status. * driver_byte = set by mid-level. */ #define status_byte(result) (((result) >> 1) & 0x7f) #define msg_byte(result) (((result) >> 8) & 0xff) #define host_byte(result) (((result) >> 16) & 0xff) #define driver_byte(result) (((result) >> 24) & 0xff) #define sense_class(sense) (((sense) >> 4) & 0x7) #define sense_error(sense) ((sense) & 0xf) #define sense_valid(sense) ((sense) & 0x80) /* * default timeouts */ #define FORMAT_UNIT_TIMEOUT (2 * 60 * 60 * HZ) #define START_STOP_TIMEOUT (60 * HZ) #define MOVE_MEDIUM_TIMEOUT (5 * 60 * HZ) #define READ_ELEMENT_STATUS_TIMEOUT (5 * 60 * HZ) #define READ_DEFECT_DATA_TIMEOUT (60 * HZ ) #define IDENTIFY_BASE 0x80 #define IDENTIFY(can_disconnect, lun) (IDENTIFY_BASE |\ ((can_disconnect) ? 0x40 : 0) |\ ((lun) & 0x07)) /* * struct scsi_device::scsi_level values. For SCSI devices other than those * prior to SCSI-2 (i.e. over 12 years old) this value is (resp[2] + 1) * where "resp" is a byte array of the response to an INQUIRY. The scsi_level * variable is visible to the user via sysfs. */ #define SCSI_UNKNOWN 0 #define SCSI_1 1 #define SCSI_1_CCS 2 #define SCSI_2 3 #define SCSI_3 4 /* SPC */ #define SCSI_SPC_2 5 #define SCSI_SPC_3 6 /* * INQ PERIPHERAL QUALIFIERS */ #define SCSI_INQ_PQ_CON 0x00 #define SCSI_INQ_PQ_NOT_CON 0x01 #define SCSI_INQ_PQ_NOT_CAP 0x03 /* * Here are some scsi specific ioctl commands which are sometimes useful. * * Note that include/linux/cdrom.h also defines IOCTL 0x5300 - 0x5395 */ /* Used to obtain PUN and LUN info. Conflicts with CDROMAUDIOBUFSIZ */ #define SCSI_IOCTL_GET_IDLUN 0x5382 /* 0x5383 and 0x5384 were used for SCSI_IOCTL_TAGGED_{ENABLE,DISABLE} */ /* Used to obtain the host number of a device. */ #define SCSI_IOCTL_PROBE_HOST 0x5385 /* Used to obtain the bus number for a device */ #define SCSI_IOCTL_GET_BUS_NUMBER 0x5386 /* Used to obtain the PCI location of a device */ #define SCSI_IOCTL_GET_PCI 0x5387 #endif /* _SCSI_SCSI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 #ifndef _LINUX_PSI_H #define _LINUX_PSI_H #include <linux/jump_label.h> #include <linux/psi_types.h> #include <linux/sched.h> #include <linux/poll.h> struct seq_file; struct css_set; #ifdef CONFIG_PSI extern struct static_key_false psi_disabled; extern struct psi_group psi_system; void psi_init(void); void psi_task_change(struct task_struct *task, int clear, int set); void psi_task_switch(struct task_struct *prev, struct task_struct *next, bool sleep); void psi_memstall_tick(struct task_struct *task, int cpu); void psi_memstall_enter(unsigned long *flags); void psi_memstall_leave(unsigned long *flags); int psi_show(struct seq_file *s, struct psi_group *group, enum psi_res res); #ifdef CONFIG_CGROUPS int psi_cgroup_alloc(struct cgroup *cgrp); void psi_cgroup_free(struct cgroup *cgrp); void cgroup_move_task(struct task_struct *p, struct css_set *to); struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf, size_t nbytes, enum psi_res res); void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *t); __poll_t psi_trigger_poll(void **trigger_ptr, struct file *file, poll_table *wait); #endif #else /* CONFIG_PSI */ static inline void psi_init(void) {} static inline void psi_memstall_enter(unsigned long *flags) {} static inline void psi_memstall_leave(unsigned long *flags) {} #ifdef CONFIG_CGROUPS static inline int psi_cgroup_alloc(struct cgroup *cgrp) { return 0; } static inline void psi_cgroup_free(struct cgroup *cgrp) { } static inline void cgroup_move_task(struct task_struct *p, struct css_set *to) { rcu_assign_pointer(p->cgroups, to); } #endif #endif /* CONFIG_PSI */ #endif /* _LINUX_PSI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> */ #ifndef _NET_IPV6_H #define _NET_IPV6_H #include <linux/ipv6.h> #include <linux/hardirq.h> #include <linux/jhash.h> #include <linux/refcount.h> #include <linux/jump_label_ratelimit.h> #include <net/if_inet6.h> #include <net/ndisc.h> #include <net/flow.h> #include <net/flow_dissector.h> #include <net/snmp.h> #include <net/netns/hash.h> #define SIN6_LEN_RFC2133 24 #define IPV6_MAXPLEN 65535 /* * NextHeader field of IPv6 header */ #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */ #define NEXTHDR_TCP 6 /* TCP segment. */ #define NEXTHDR_UDP 17 /* UDP message. */ #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */ #define NEXTHDR_ROUTING 43 /* Routing header. */ #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */ #define NEXTHDR_GRE 47 /* GRE header. */ #define NEXTHDR_ESP 50 /* Encapsulating security payload. */ #define NEXTHDR_AUTH 51 /* Authentication header. */ #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */ #define NEXTHDR_NONE 59 /* No next header */ #define NEXTHDR_DEST 60 /* Destination options header. */ #define NEXTHDR_SCTP 132 /* SCTP message. */ #define NEXTHDR_MOBILITY 135 /* Mobility header. */ #define NEXTHDR_MAX 255 #define IPV6_DEFAULT_HOPLIMIT 64 #define IPV6_DEFAULT_MCASTHOPS 1 /* Limits on Hop-by-Hop and Destination options. * * Per RFC8200 there is no limit on the maximum number or lengths of options in * Hop-by-Hop or Destination options other then the packet must fit in an MTU. * We allow configurable limits in order to mitigate potential denial of * service attacks. * * There are three limits that may be set: * - Limit the number of options in a Hop-by-Hop or Destination options * extension header * - Limit the byte length of a Hop-by-Hop or Destination options extension * header * - Disallow unknown options * * The limits are expressed in corresponding sysctls: * * ipv6.sysctl.max_dst_opts_cnt * ipv6.sysctl.max_hbh_opts_cnt * ipv6.sysctl.max_dst_opts_len * ipv6.sysctl.max_hbh_opts_len * * max_*_opts_cnt is the number of TLVs that are allowed for Destination * options or Hop-by-Hop options. If the number is less than zero then unknown * TLVs are disallowed and the number of known options that are allowed is the * absolute value. Setting the value to INT_MAX indicates no limit. * * max_*_opts_len is the length limit in bytes of a Destination or * Hop-by-Hop options extension header. Setting the value to INT_MAX * indicates no length limit. * * If a limit is exceeded when processing an extension header the packet is * silently discarded. */ /* Default limits for Hop-by-Hop and Destination options */ #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8 #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */ #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */ /* * Addr type * * type - unicast | multicast * scope - local | site | global * v4 - compat * v4mapped * any * loopback */ #define IPV6_ADDR_ANY 0x0000U #define IPV6_ADDR_UNICAST 0x0001U #define IPV6_ADDR_MULTICAST 0x0002U #define IPV6_ADDR_LOOPBACK 0x0010U #define IPV6_ADDR_LINKLOCAL 0x0020U #define IPV6_ADDR_SITELOCAL 0x0040U #define IPV6_ADDR_COMPATv4 0x0080U #define IPV6_ADDR_SCOPE_MASK 0x00f0U #define IPV6_ADDR_MAPPED 0x1000U /* * Addr scopes */ #define IPV6_ADDR_MC_SCOPE(a) \ ((a)->s6_addr[1] & 0x0f) /* nonstandard */ #define __IPV6_ADDR_SCOPE_INVALID -1 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e /* * Addr flags */ #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \ ((a)->s6_addr[1] & 0x10) #define IPV6_ADDR_MC_FLAG_PREFIX(a) \ ((a)->s6_addr[1] & 0x20) #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \ ((a)->s6_addr[1] & 0x40) /* * fragmentation header */ struct frag_hdr { __u8 nexthdr; __u8 reserved; __be16 frag_off; __be32 identification; }; #define IP6_MF 0x0001 #define IP6_OFFSET 0xFFF8 struct ip6_fraglist_iter { struct ipv6hdr *tmp_hdr; struct sk_buff *frag; int offset; unsigned int hlen; __be32 frag_id; u8 nexthdr; }; int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr, u8 nexthdr, __be32 frag_id, struct ip6_fraglist_iter *iter); void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter); static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter) { struct sk_buff *skb = iter->frag; iter->frag = skb->next; skb_mark_not_on_list(skb); return skb; } struct ip6_frag_state { u8 *prevhdr; unsigned int hlen; unsigned int mtu; unsigned int left; int offset; int ptr; int hroom; int troom; __be32 frag_id; u8 nexthdr; }; void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu, unsigned short needed_tailroom, int hdr_room, u8 *prevhdr, u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state); struct sk_buff *ip6_frag_next(struct sk_buff *skb, struct ip6_frag_state *state); #define IP6_REPLY_MARK(net, mark) \ ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0) #include <net/sock.h> /* sysctls */ extern int sysctl_mld_max_msf; extern int sysctl_mld_qrv; #define _DEVINC(net, statname, mod, idev, field) \ ({ \ struct inet6_dev *_idev = (idev); \ if (likely(_idev != NULL)) \ mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\ mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\ }) /* per device counters are atomic_long_t */ #define _DEVINCATOMIC(net, statname, mod, idev, field) \ ({ \ struct inet6_dev *_idev = (idev); \ if (likely(_idev != NULL)) \ SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\ }) /* per device and per net counters are atomic_long_t */ #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \ ({ \ struct inet6_dev *_idev = (idev); \ if (likely(_idev != NULL)) \ SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \ SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\ }) #define _DEVADD(net, statname, mod, idev, field, val) \ ({ \ struct inet6_dev *_idev = (idev); \ if (likely(_idev != NULL)) \ mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \ mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\ }) #define _DEVUPD(net, statname, mod, idev, field, val) \ ({ \ struct inet6_dev *_idev = (idev); \ if (likely(_idev != NULL)) \ mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \ mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\ }) /* MIBs */ #define IP6_INC_STATS(net, idev,field) \ _DEVINC(net, ipv6, , idev, field) #define __IP6_INC_STATS(net, idev,field) \ _DEVINC(net, ipv6, __, idev, field) #define IP6_ADD_STATS(net, idev,field,val) \ _DEVADD(net, ipv6, , idev, field, val) #define __IP6_ADD_STATS(net, idev,field,val) \ _DEVADD(net, ipv6, __, idev, field, val) #define IP6_UPD_PO_STATS(net, idev,field,val) \ _DEVUPD(net, ipv6, , idev, field, val) #define __IP6_UPD_PO_STATS(net, idev,field,val) \ _DEVUPD(net, ipv6, __, idev, field, val) #define ICMP6_INC_STATS(net, idev, field) \ _DEVINCATOMIC(net, icmpv6, , idev, field) #define __ICMP6_INC_STATS(net, idev, field) \ _DEVINCATOMIC(net, icmpv6, __, idev, field) #define ICMP6MSGOUT_INC_STATS(net, idev, field) \ _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256) #define ICMP6MSGIN_INC_STATS(net, idev, field) \ _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field) struct ip6_ra_chain { struct ip6_ra_chain *next; struct sock *sk; int sel; void (*destructor)(struct sock *); }; extern struct ip6_ra_chain *ip6_ra_chain; extern rwlock_t ip6_ra_lock; /* This structure is prepared by protocol, when parsing ancillary data and passed to IPv6. */ struct ipv6_txoptions { refcount_t refcnt; /* Length of this structure */ int tot_len; /* length of extension headers */ __u16 opt_flen; /* after fragment hdr */ __u16 opt_nflen; /* before fragment hdr */ struct ipv6_opt_hdr *hopopt; struct ipv6_opt_hdr *dst0opt; struct ipv6_rt_hdr *srcrt; /* Routing Header */ struct ipv6_opt_hdr *dst1opt; struct rcu_head rcu; /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */ }; /* flowlabel_reflect sysctl values */ enum flowlabel_reflect { FLOWLABEL_REFLECT_ESTABLISHED = 1, FLOWLABEL_REFLECT_TCP_RESET = 2, FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4, }; struct ip6_flowlabel { struct ip6_flowlabel __rcu *next; __be32 label; atomic_t users; struct in6_addr dst; struct ipv6_txoptions *opt; unsigned long linger; struct rcu_head rcu; u8 share; union { struct pid *pid; kuid_t uid; } owner; unsigned long lastuse; unsigned long expires; struct net *fl_net; }; #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF) #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF) #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000) #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK) #define IPV6_TCLASS_SHIFT 20 struct ipv6_fl_socklist { struct ipv6_fl_socklist __rcu *next; struct ip6_flowlabel *fl; struct rcu_head rcu; }; struct ipcm6_cookie { struct sockcm_cookie sockc; __s16 hlimit; __s16 tclass; __s8 dontfrag; struct ipv6_txoptions *opt; __u16 gso_size; }; static inline void ipcm6_init(struct ipcm6_cookie *ipc6) { *ipc6 = (struct ipcm6_cookie) { .hlimit = -1, .tclass = -1, .dontfrag = -1, }; } static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6, const struct ipv6_pinfo *np) { *ipc6 = (struct ipcm6_cookie) { .hlimit = -1, .tclass = np->tclass, .dontfrag = np->dontfrag, }; } static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np) { struct ipv6_txoptions *opt; rcu_read_lock(); opt = rcu_dereference(np->opt); if (opt) { if (!refcount_inc_not_zero(&opt->refcnt)) opt = NULL; else opt = rcu_pointer_handoff(opt); } rcu_read_unlock(); return opt; } static inline void txopt_put(struct ipv6_txoptions *opt) { if (opt && refcount_dec_and_test(&opt->refcnt)) kfree_rcu(opt, rcu); } struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label); extern struct static_key_false_deferred ipv6_flowlabel_exclusive; static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label) { if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key)) return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT); return NULL; } struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space, struct ip6_flowlabel *fl, struct ipv6_txoptions *fopt); void fl6_free_socklist(struct sock *sk); int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen); int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq, int flags); int ip6_flowlabel_init(void); void ip6_flowlabel_cleanup(void); bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np); static inline void fl6_sock_release(struct ip6_flowlabel *fl) { if (fl) atomic_dec(&fl->users); } void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info); void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6, struct icmp6hdr *thdr, int len); int ip6_ra_control(struct sock *sk, int sel); int ipv6_parse_hopopts(struct sk_buff *skb); struct ipv6_txoptions *ipv6_dup_options(struct sock *sk, struct ipv6_txoptions *opt); struct ipv6_txoptions *ipv6_renew_options(struct sock *sk, struct ipv6_txoptions *opt, int newtype, struct ipv6_opt_hdr *newopt); struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space, struct ipv6_txoptions *opt); bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb, const struct inet6_skb_parm *opt); struct ipv6_txoptions *ipv6_update_options(struct sock *sk, struct ipv6_txoptions *opt); static inline bool ipv6_accept_ra(struct inet6_dev *idev) { /* If forwarding is enabled, RA are not accepted unless the special * hybrid mode (accept_ra=2) is enabled. */ return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 : idev->cnf.accept_ra; } #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */ #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */ #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */ int __ipv6_addr_type(const struct in6_addr *addr); static inline int ipv6_addr_type(const struct in6_addr *addr) { return __ipv6_addr_type(addr) & 0xffff; } static inline int ipv6_addr_scope(const struct in6_addr *addr) { return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK; } static inline int __ipv6_addr_src_scope(int type) { return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16); } static inline int ipv6_addr_src_scope(const struct in6_addr *addr) { return __ipv6_addr_src_scope(__ipv6_addr_type(addr)); } static inline bool __ipv6_addr_needs_scope_id(int type) { return type & IPV6_ADDR_LINKLOCAL || (type & IPV6_ADDR_MULTICAST && (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL))); } static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface) { return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0; } static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2) { return memcmp(a1, a2, sizeof(struct in6_addr)); } static inline bool ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m, const struct in6_addr *a2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const unsigned long *ul1 = (const unsigned long *)a1; const unsigned long *ulm = (const unsigned long *)m; const unsigned long *ul2 = (const unsigned long *)a2; return !!(((ul1[0] ^ ul2[0]) & ulm[0]) | ((ul1[1] ^ ul2[1]) & ulm[1])); #else return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) | ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) | ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) | ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3])); #endif } static inline void ipv6_addr_prefix(struct in6_addr *pfx, const struct in6_addr *addr, int plen) { /* caller must guarantee 0 <= plen <= 128 */ int o = plen >> 3, b = plen & 0x7; memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr)); memcpy(pfx->s6_addr, addr, o); if (b != 0) pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b); } static inline void ipv6_addr_prefix_copy(struct in6_addr *addr, const struct in6_addr *pfx, int plen) { /* caller must guarantee 0 <= plen <= 128 */ int o = plen >> 3, b = plen & 0x7; memcpy(addr->s6_addr, pfx, o); if (b != 0) { addr->s6_addr[o] &= ~(0xff00 >> b); addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b)); } } static inline void __ipv6_addr_set_half(__be32 *addr, __be32 wh, __be32 wl) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 #if defined(__BIG_ENDIAN) if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) { *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl)); return; } #elif defined(__LITTLE_ENDIAN) if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) { *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh)); return; } #endif #endif addr[0] = wh; addr[1] = wl; } static inline void ipv6_addr_set(struct in6_addr *addr, __be32 w1, __be32 w2, __be32 w3, __be32 w4) { __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2); __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4); } static inline bool ipv6_addr_equal(const struct in6_addr *a1, const struct in6_addr *a2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const unsigned long *ul1 = (const unsigned long *)a1; const unsigned long *ul2 = (const unsigned long *)a2; return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL; #else return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) | (a1->s6_addr32[1] ^ a2->s6_addr32[1]) | (a1->s6_addr32[2] ^ a2->s6_addr32[2]) | (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0; #endif } #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1, const __be64 *a2, unsigned int len) { if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len)))) return false; return true; } static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, const struct in6_addr *addr2, unsigned int prefixlen) { const __be64 *a1 = (const __be64 *)addr1; const __be64 *a2 = (const __be64 *)addr2; if (prefixlen >= 64) { if (a1[0] ^ a2[0]) return false; return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64); } return __ipv6_prefix_equal64_half(a1, a2, prefixlen); } #else static inline bool ipv6_prefix_equal(const struct in6_addr *addr1, const struct in6_addr *addr2, unsigned int prefixlen) { const __be32 *a1 = addr1->s6_addr32; const __be32 *a2 = addr2->s6_addr32; unsigned int pdw, pbi; /* check complete u32 in prefix */ pdw = prefixlen >> 5; if (pdw && memcmp(a1, a2, pdw << 2)) return false; /* check incomplete u32 in prefix */ pbi = prefixlen & 0x1f; if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi)))) return false; return true; } #endif static inline bool ipv6_addr_any(const struct in6_addr *a) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const unsigned long *ul = (const unsigned long *)a; return (ul[0] | ul[1]) == 0UL; #else return (a->s6_addr32[0] | a->s6_addr32[1] | a->s6_addr32[2] | a->s6_addr32[3]) == 0; #endif } static inline u32 ipv6_addr_hash(const struct in6_addr *a) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const unsigned long *ul = (const unsigned long *)a; unsigned long x = ul[0] ^ ul[1]; return (u32)(x ^ (x >> 32)); #else return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^ a->s6_addr32[2] ^ a->s6_addr32[3]); #endif } /* more secured version of ipv6_addr_hash() */ static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval) { u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1]; return jhash_3words(v, (__force u32)a->s6_addr32[2], (__force u32)a->s6_addr32[3], initval); } static inline bool ipv6_addr_loopback(const struct in6_addr *a) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const __be64 *be = (const __be64 *)a; return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL; #else return (a->s6_addr32[0] | a->s6_addr32[1] | a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0; #endif } /* * Note that we must __force cast these to unsigned long to make sparse happy, * since all of the endian-annotated types are fixed size regardless of arch. */ static inline bool ipv6_addr_v4mapped(const struct in6_addr *a) { return ( #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 *(unsigned long *)a | #else (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) | #endif (__force unsigned long)(a->s6_addr32[2] ^ cpu_to_be32(0x0000ffff))) == 0UL; } static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a) { return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]); } static inline u32 ipv6_portaddr_hash(const struct net *net, const struct in6_addr *addr6, unsigned int port) { unsigned int hash, mix = net_hash_mix(net); if (ipv6_addr_any(addr6)) hash = jhash_1word(0, mix); else if (ipv6_addr_v4mapped(addr6)) hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix); else hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix); return hash ^ port; } /* * Check for a RFC 4843 ORCHID address * (Overlay Routable Cryptographic Hash Identifiers) */ static inline bool ipv6_addr_orchid(const struct in6_addr *a) { return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010); } static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr) { return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000); } static inline void ipv6_addr_set_v4mapped(const __be32 addr, struct in6_addr *v4mapped) { ipv6_addr_set(v4mapped, 0, 0, htonl(0x0000FFFF), addr); } /* * find the first different bit between two addresses * length of address must be a multiple of 32bits */ static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen) { const __be32 *a1 = token1, *a2 = token2; int i; addrlen >>= 2; for (i = 0; i < addrlen; i++) { __be32 xb = a1[i] ^ a2[i]; if (xb) return i * 32 + 31 - __fls(ntohl(xb)); } /* * we should *never* get to this point since that * would mean the addrs are equal * * However, we do get to it 8) And exacly, when * addresses are equal 8) * * ip route add 1111::/128 via ... * ip route add 1111::/64 via ... * and we are here. * * Ideally, this function should stop comparison * at prefix length. It does not, but it is still OK, * if returned value is greater than prefix length. * --ANK (980803) */ return addrlen << 5; } #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen) { const __be64 *a1 = token1, *a2 = token2; int i; addrlen >>= 3; for (i = 0; i < addrlen; i++) { __be64 xb = a1[i] ^ a2[i]; if (xb) return i * 64 + 63 - __fls(be64_to_cpu(xb)); } return addrlen << 6; } #endif static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 if (__builtin_constant_p(addrlen) && !(addrlen & 7)) return __ipv6_addr_diff64(token1, token2, addrlen); #endif return __ipv6_addr_diff32(token1, token2, addrlen); } static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2) { return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr)); } __be32 ipv6_select_ident(struct net *net, const struct in6_addr *daddr, const struct in6_addr *saddr); __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb); int ip6_dst_hoplimit(struct dst_entry *dst); static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6, struct dst_entry *dst) { int hlimit; if (ipv6_addr_is_multicast(&fl6->daddr)) hlimit = np->mcast_hops; else hlimit = np->hop_limit; if (hlimit < 0) hlimit = ip6_dst_hoplimit(dst); return hlimit; } /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store * Equivalent to : flow->v6addrs.src = iph->saddr; * flow->v6addrs.dst = iph->daddr; */ static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow, const struct ipv6hdr *iph) { BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) != offsetof(typeof(flow->addrs), v6addrs.src) + sizeof(flow->addrs.v6addrs.src)); memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs)); flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; } #if IS_ENABLED(CONFIG_IPV6) static inline bool ipv6_can_nonlocal_bind(struct net *net, struct inet_sock *inet) { return net->ipv6.sysctl.ip_nonlocal_bind || inet->freebind || inet->transparent; } /* Sysctl settings for net ipv6.auto_flowlabels */ #define IP6_AUTO_FLOW_LABEL_OFF 0 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1 #define IP6_AUTO_FLOW_LABEL_OPTIN 2 #define IP6_AUTO_FLOW_LABEL_FORCED 3 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, __be32 flowlabel, bool autolabel, struct flowi6 *fl6) { u32 hash; /* @flowlabel may include more than a flow label, eg, the traffic class. * Here we want only the flow label value. */ flowlabel &= IPV6_FLOWLABEL_MASK; if (flowlabel || net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF || (!autolabel && net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED)) return flowlabel; hash = skb_get_hash_flowi6(skb, fl6); /* Since this is being sent on the wire obfuscate hash a bit * to minimize possbility that any useful information to an * attacker is leaked. Only lower 20 bits are relevant. */ hash = rol32(hash, 16); flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK; if (net->ipv6.sysctl.flowlabel_state_ranges) flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG; return flowlabel; } static inline int ip6_default_np_autolabel(struct net *net) { switch (net->ipv6.sysctl.auto_flowlabels) { case IP6_AUTO_FLOW_LABEL_OFF: case IP6_AUTO_FLOW_LABEL_OPTIN: default: return 0; case IP6_AUTO_FLOW_LABEL_OPTOUT: case IP6_AUTO_FLOW_LABEL_FORCED: return 1; } } #else static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb, __be32 flowlabel, bool autolabel, struct flowi6 *fl6) { return flowlabel; } static inline int ip6_default_np_autolabel(struct net *net) { return 0; } #endif #if IS_ENABLED(CONFIG_IPV6) static inline int ip6_multipath_hash_policy(const struct net *net) { return net->ipv6.sysctl.multipath_hash_policy; } #else static inline int ip6_multipath_hash_policy(const struct net *net) { return 0; } #endif /* * Header manipulation */ static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass, __be32 flowlabel) { *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel; } static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr) { return *(__be32 *)hdr & IPV6_FLOWINFO_MASK; } static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr) { return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK; } static inline u8 ip6_tclass(__be32 flowinfo) { return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT; } static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel) { return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel; } static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6) { return fl6->flowlabel & IPV6_FLOWLABEL_MASK; } /* * Prototypes exported by ipv6 */ /* * rcv function (called from netdevice level) */ int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev); void ipv6_list_rcv(struct list_head *head, struct packet_type *pt, struct net_device *orig_dev); int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb); /* * upper-layer output functions */ int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority); int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr); int ip6_append_data(struct sock *sk, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm6_cookie *ipc6, struct flowi6 *fl6, struct rt6_info *rt, unsigned int flags); int ip6_push_pending_frames(struct sock *sk); void ip6_flush_pending_frames(struct sock *sk); int ip6_send_skb(struct sk_buff *skb); struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue, struct inet_cork_full *cork, struct inet6_cork *v6_cork); struct sk_buff *ip6_make_skb(struct sock *sk, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm6_cookie *ipc6, struct flowi6 *fl6, struct rt6_info *rt, unsigned int flags, struct inet_cork_full *cork); static inline struct sk_buff *ip6_finish_skb(struct sock *sk) { return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork, &inet6_sk(sk)->cork); } int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst, struct flowi6 *fl6); struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst); struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst, bool connected); struct dst_entry *ip6_dst_lookup_tunnel(struct sk_buff *skb, struct net_device *dev, struct net *net, struct socket *sock, struct in6_addr *saddr, const struct ip_tunnel_info *info, u8 protocol, bool use_cache); struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *orig_dst); /* * skb processing functions */ int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb); int ip6_forward(struct sk_buff *skb); int ip6_input(struct sk_buff *skb); int ip6_mc_input(struct sk_buff *skb); void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr, bool have_final); int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); /* * Extension header (options) processing */ void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, u8 *proto, struct in6_addr **daddr_p, struct in6_addr *saddr); void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, u8 *proto); int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp, __be16 *frag_offp); bool ipv6_ext_hdr(u8 nexthdr); enum { IP6_FH_F_FRAG = (1 << 0), IP6_FH_F_AUTH = (1 << 1), IP6_FH_F_SKIP_RH = (1 << 2), }; /* find specified header and get offset to it */ int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target, unsigned short *fragoff, int *fragflg); int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type); struct in6_addr *fl6_update_dst(struct flowi6 *fl6, const struct ipv6_txoptions *opt, struct in6_addr *orig); /* * socket options (ipv6_sockglue.c) */ int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int ipv6_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len); int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len); int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr, int addr_len); int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr); void ip6_datagram_release_cb(struct sock *sk); int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len); int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len, int *addr_len); void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, u32 info, u8 *payload); void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info); void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu); int inet6_release(struct socket *sock); int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len); int inet6_getname(struct socket *sock, struct sockaddr *uaddr, int peer); int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); int inet6_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); int inet6_hash_connect(struct inet_timewait_death_row *death_row, struct sock *sk); int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size); int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags); /* * reassembly.c */ extern const struct proto_ops inet6_stream_ops; extern const struct proto_ops inet6_dgram_ops; extern const struct proto_ops inet6_sockraw_ops; struct group_source_req; struct group_filter; int ip6_mc_source(int add, int omode, struct sock *sk, struct group_source_req *pgsr); int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf, struct sockaddr_storage *list); int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf, struct sockaddr_storage __user *p); #ifdef CONFIG_PROC_FS int ac6_proc_init(struct net *net); void ac6_proc_exit(struct net *net); int raw6_proc_init(void); void raw6_proc_exit(void); int tcp6_proc_init(struct net *net); void tcp6_proc_exit(struct net *net); int udp6_proc_init(struct net *net); void udp6_proc_exit(struct net *net); int udplite6_proc_init(void); void udplite6_proc_exit(void); int ipv6_misc_proc_init(void); void ipv6_misc_proc_exit(void); int snmp6_register_dev(struct inet6_dev *idev); int snmp6_unregister_dev(struct inet6_dev *idev); #else static inline int ac6_proc_init(struct net *net) { return 0; } static inline void ac6_proc_exit(struct net *net) { } static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; } static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; } #endif #ifdef CONFIG_SYSCTL struct ctl_table *ipv6_icmp_sysctl_init(struct net *net); struct ctl_table *ipv6_route_sysctl_init(struct net *net); int ipv6_sysctl_register(void); void ipv6_sysctl_unregister(void); #endif int ipv6_sock_mc_join(struct sock *sk, int ifindex, const struct in6_addr *addr); int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex, const struct in6_addr *addr, unsigned int mode); int ipv6_sock_mc_drop(struct sock *sk, int ifindex, const struct in6_addr *addr); static inline int ip6_sock_set_v6only(struct sock *sk) { if (inet_sk(sk)->inet_num) return -EINVAL; lock_sock(sk); sk->sk_ipv6only = true; release_sock(sk); return 0; } static inline void ip6_sock_set_recverr(struct sock *sk) { lock_sock(sk); inet6_sk(sk)->recverr = true; release_sock(sk); } static inline int __ip6_sock_set_addr_preferences(struct sock *sk, int val) { unsigned int pref = 0; unsigned int prefmask = ~0; /* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */ switch (val & (IPV6_PREFER_SRC_PUBLIC | IPV6_PREFER_SRC_TMP | IPV6_PREFER_SRC_PUBTMP_DEFAULT)) { case IPV6_PREFER_SRC_PUBLIC: pref |= IPV6_PREFER_SRC_PUBLIC; prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | IPV6_PREFER_SRC_TMP); break; case IPV6_PREFER_SRC_TMP: pref |= IPV6_PREFER_SRC_TMP; prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | IPV6_PREFER_SRC_TMP); break; case IPV6_PREFER_SRC_PUBTMP_DEFAULT: prefmask &= ~(IPV6_PREFER_SRC_PUBLIC | IPV6_PREFER_SRC_TMP); break; case 0: break; default: return -EINVAL; } /* check HOME/COA conflicts */ switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) { case IPV6_PREFER_SRC_HOME: prefmask &= ~IPV6_PREFER_SRC_COA; break; case IPV6_PREFER_SRC_COA: pref |= IPV6_PREFER_SRC_COA; break; case 0: break; default: return -EINVAL; } /* check CGA/NONCGA conflicts */ switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) { case IPV6_PREFER_SRC_CGA: case IPV6_PREFER_SRC_NONCGA: case 0: break; default: return -EINVAL; } inet6_sk(sk)->srcprefs = (inet6_sk(sk)->srcprefs & prefmask) | pref; return 0; } static inline int ip6_sock_set_addr_preferences(struct sock *sk, bool val) { int ret; lock_sock(sk); ret = __ip6_sock_set_addr_preferences(sk, val); release_sock(sk); return ret; } static inline void ip6_sock_set_recvpktinfo(struct sock *sk) { lock_sock(sk); inet6_sk(sk)->rxopt.bits.rxinfo = true; release_sock(sk); } #endif /* _NET_IPV6_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_BITMAP_H #define __LINUX_BITMAP_H #ifndef __ASSEMBLY__ #include <linux/types.h> #include <linux/bitops.h> #include <linux/string.h> #include <linux/kernel.h> /* * bitmaps provide bit arrays that consume one or more unsigned * longs. The bitmap interface and available operations are listed * here, in bitmap.h * * Function implementations generic to all architectures are in * lib/bitmap.c. Functions implementations that are architecture * specific are in various include/asm-<arch>/bitops.h headers * and other arch/<arch> specific files. * * See lib/bitmap.c for more details. */ /** * DOC: bitmap overview * * The available bitmap operations and their rough meaning in the * case that the bitmap is a single unsigned long are thus: * * The generated code is more efficient when nbits is known at * compile-time and at most BITS_PER_LONG. * * :: * * bitmap_zero(dst, nbits) *dst = 0UL * bitmap_fill(dst, nbits) *dst = ~0UL * bitmap_copy(dst, src, nbits) *dst = *src * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2 * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2 * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2 * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2) * bitmap_complement(dst, src, nbits) *dst = ~(*src) * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal? * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap? * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2? * bitmap_empty(src, nbits) Are all bits zero in *src? * bitmap_full(src, nbits) Are all bits set in *src? * bitmap_weight(src, nbits) Hamming Weight: number set bits * bitmap_set(dst, pos, nbits) Set specified bit area * bitmap_clear(dst, pos, nbits) Clear specified bit area * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area * bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above * bitmap_next_clear_region(map, &start, &end, nbits) Find next clear region * bitmap_next_set_region(map, &start, &end, nbits) Find next set region * bitmap_for_each_clear_region(map, rs, re, start, end) * Iterate over all clear regions * bitmap_for_each_set_region(map, rs, re, start, end) * Iterate over all set regions * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n * bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest * bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask) * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src) * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit) * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region * bitmap_release_region(bitmap, pos, order) Free specified bit region * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst * bitmap_get_value8(map, start) Get 8bit value from map at start * bitmap_set_value8(map, value, start) Set 8bit value to map at start * * Note, bitmap_zero() and bitmap_fill() operate over the region of * unsigned longs, that is, bits behind bitmap till the unsigned long * boundary will be zeroed or filled as well. Consider to use * bitmap_clear() or bitmap_set() to make explicit zeroing or filling * respectively. */ /** * DOC: bitmap bitops * * Also the following operations in asm/bitops.h apply to bitmaps.:: * * set_bit(bit, addr) *addr |= bit * clear_bit(bit, addr) *addr &= ~bit * change_bit(bit, addr) *addr ^= bit * test_bit(bit, addr) Is bit set in *addr? * test_and_set_bit(bit, addr) Set bit and return old value * test_and_clear_bit(bit, addr) Clear bit and return old value * test_and_change_bit(bit, addr) Change bit and return old value * find_first_zero_bit(addr, nbits) Position first zero bit in *addr * find_first_bit(addr, nbits) Position first set bit in *addr * find_next_zero_bit(addr, nbits, bit) * Position next zero bit in *addr >= bit * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit * find_next_and_bit(addr1, addr2, nbits, bit) * Same as find_next_bit, but in * (*addr1 & *addr2) * */ /** * DOC: declare bitmap * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used * to declare an array named 'name' of just enough unsigned longs to * contain all bit positions from 0 to 'bits' - 1. */ /* * Allocation and deallocation of bitmap. * Provided in lib/bitmap.c to avoid circular dependency. */ extern unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags); extern unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags); extern void bitmap_free(const unsigned long *bitmap); /* * lib/bitmap.c provides these functions: */ extern int __bitmap_empty(const unsigned long *bitmap, unsigned int nbits); extern int __bitmap_full(const unsigned long *bitmap, unsigned int nbits); extern int __bitmap_equal(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern bool __pure __bitmap_or_equal(const unsigned long *src1, const unsigned long *src2, const unsigned long *src3, unsigned int nbits); extern void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits); extern void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits); extern void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits); extern void bitmap_cut(unsigned long *dst, const unsigned long *src, unsigned int first, unsigned int cut, unsigned int nbits); extern int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern void __bitmap_replace(unsigned long *dst, const unsigned long *old, const unsigned long *new, const unsigned long *mask, unsigned int nbits); extern int __bitmap_intersects(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern int __bitmap_subset(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits); extern void __bitmap_set(unsigned long *map, unsigned int start, int len); extern void __bitmap_clear(unsigned long *map, unsigned int start, int len); extern unsigned long bitmap_find_next_zero_area_off(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, unsigned long align_mask, unsigned long align_offset); /** * bitmap_find_next_zero_area - find a contiguous aligned zero area * @map: The address to base the search on * @size: The bitmap size in bits * @start: The bitnumber to start searching at * @nr: The number of zeroed bits we're looking for * @align_mask: Alignment mask for zero area * * The @align_mask should be one less than a power of 2; the effect is that * the bit offset of all zero areas this function finds is multiples of that * power of 2. A @align_mask of 0 means no alignment is required. */ static inline unsigned long bitmap_find_next_zero_area(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, unsigned long align_mask) { return bitmap_find_next_zero_area_off(map, size, start, nr, align_mask, 0); } extern int bitmap_parse(const char *buf, unsigned int buflen, unsigned long *dst, int nbits); extern int bitmap_parse_user(const char __user *ubuf, unsigned int ulen, unsigned long *dst, int nbits); extern int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits); extern int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen, unsigned long *dst, int nbits); extern void bitmap_remap(unsigned long *dst, const unsigned long *src, const unsigned long *old, const unsigned long *new, unsigned int nbits); extern int bitmap_bitremap(int oldbit, const unsigned long *old, const unsigned long *new, int bits); extern void bitmap_onto(unsigned long *dst, const unsigned long *orig, const unsigned long *relmap, unsigned int bits); extern void bitmap_fold(unsigned long *dst, const unsigned long *orig, unsigned int sz, unsigned int nbits); extern int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order); extern void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order); extern int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order); #ifdef __BIG_ENDIAN extern void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits); #else #define bitmap_copy_le bitmap_copy #endif extern unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits); extern int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, int nmaskbits); #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) /* * The static inlines below do not handle constant nbits==0 correctly, * so make such users (should any ever turn up) call the out-of-line * versions. */ #define small_const_nbits(nbits) \ (__builtin_constant_p(nbits) && (nbits) <= BITS_PER_LONG && (nbits) > 0) static inline void bitmap_zero(unsigned long *dst, unsigned int nbits) { unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); memset(dst, 0, len); } static inline void bitmap_fill(unsigned long *dst, unsigned int nbits) { unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); memset(dst, 0xff, len); } static inline void bitmap_copy(unsigned long *dst, const unsigned long *src, unsigned int nbits) { unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); memcpy(dst, src, len); } /* * Copy bitmap and clear tail bits in last word. */ static inline void bitmap_copy_clear_tail(unsigned long *dst, const unsigned long *src, unsigned int nbits) { bitmap_copy(dst, src, nbits); if (nbits % BITS_PER_LONG) dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits); } /* * On 32-bit systems bitmaps are represented as u32 arrays internally, and * therefore conversion is not needed when copying data from/to arrays of u32. */ #if BITS_PER_LONG == 64 extern void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits); extern void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits); #else #define bitmap_from_arr32(bitmap, buf, nbits) \ bitmap_copy_clear_tail((unsigned long *) (bitmap), \ (const unsigned long *) (buf), (nbits)) #define bitmap_to_arr32(buf, bitmap, nbits) \ bitmap_copy_clear_tail((unsigned long *) (buf), \ (const unsigned long *) (bitmap), (nbits)) #endif static inline int bitmap_and(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0; return __bitmap_and(dst, src1, src2, nbits); } static inline void bitmap_or(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = *src1 | *src2; else __bitmap_or(dst, src1, src2, nbits); } static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = *src1 ^ *src2; else __bitmap_xor(dst, src1, src2, nbits); } static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; return __bitmap_andnot(dst, src1, src2, nbits); } static inline void bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = ~(*src); else __bitmap_complement(dst, src, nbits); } #ifdef __LITTLE_ENDIAN #define BITMAP_MEM_ALIGNMENT 8 #else #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long)) #endif #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1) static inline int bitmap_equal(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits)); if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) return !memcmp(src1, src2, nbits / 8); return __bitmap_equal(src1, src2, nbits); } /** * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third * @src1: Pointer to bitmap 1 * @src2: Pointer to bitmap 2 will be or'ed with bitmap 1 * @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2 * @nbits: number of bits in each of these bitmaps * * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise */ static inline bool bitmap_or_equal(const unsigned long *src1, const unsigned long *src2, const unsigned long *src3, unsigned int nbits) { if (!small_const_nbits(nbits)) return __bitmap_or_equal(src1, src2, src3, nbits); return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits)); } static inline int bitmap_intersects(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; else return __bitmap_intersects(src1, src2, nbits); } static inline int bitmap_subset(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits)); else return __bitmap_subset(src1, src2, nbits); } static inline int bitmap_empty(const unsigned long *src, unsigned nbits) { if (small_const_nbits(nbits)) return ! (*src & BITMAP_LAST_WORD_MASK(nbits)); return find_first_bit(src, nbits) == nbits; } static inline int bitmap_full(const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits)); return find_first_zero_bit(src, nbits) == nbits; } static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits)); return __bitmap_weight(src, nbits); } static __always_inline void bitmap_set(unsigned long *map, unsigned int start, unsigned int nbits) { if (__builtin_constant_p(nbits) && nbits == 1) __set_bit(start, map); else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && __builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) memset((char *)map + start / 8, 0xff, nbits / 8); else __bitmap_set(map, start, nbits); } static __always_inline void bitmap_clear(unsigned long *map, unsigned int start, unsigned int nbits) { if (__builtin_constant_p(nbits) && nbits == 1) __clear_bit(start, map); else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && __builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) memset((char *)map + start / 8, 0, nbits / 8); else __bitmap_clear(map, start, nbits); } static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift; else __bitmap_shift_right(dst, src, shift, nbits); } static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits); else __bitmap_shift_left(dst, src, shift, nbits); } static inline void bitmap_replace(unsigned long *dst, const unsigned long *old, const unsigned long *new, const unsigned long *mask, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*old & ~(*mask)) | (*new & *mask); else __bitmap_replace(dst, old, new, mask, nbits); } static inline void bitmap_next_clear_region(unsigned long *bitmap, unsigned int *rs, unsigned int *re, unsigned int end) { *rs = find_next_zero_bit(bitmap, end, *rs); *re = find_next_bit(bitmap, end, *rs + 1); } static inline void bitmap_next_set_region(unsigned long *bitmap, unsigned int *rs, unsigned int *re, unsigned int end) { *rs = find_next_bit(bitmap, end, *rs); *re = find_next_zero_bit(bitmap, end, *rs + 1); } /* * Bitmap region iterators. Iterates over the bitmap between [@start, @end). * @rs and @re should be integer variables and will be set to start and end * index of the current clear or set region. */ #define bitmap_for_each_clear_region(bitmap, rs, re, start, end) \ for ((rs) = (start), \ bitmap_next_clear_region((bitmap), &(rs), &(re), (end)); \ (rs) < (re); \ (rs) = (re) + 1, \ bitmap_next_clear_region((bitmap), &(rs), &(re), (end))) #define bitmap_for_each_set_region(bitmap, rs, re, start, end) \ for ((rs) = (start), \ bitmap_next_set_region((bitmap), &(rs), &(re), (end)); \ (rs) < (re); \ (rs) = (re) + 1, \ bitmap_next_set_region((bitmap), &(rs), &(re), (end))) /** * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap. * @n: u64 value * * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit * integers in 32-bit environment, and 64-bit integers in 64-bit one. * * There are four combinations of endianness and length of the word in linux * ABIs: LE64, BE64, LE32 and BE32. * * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in * bitmaps and therefore don't require any special handling. * * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the * other hand is represented as an array of 32-bit words and the position of * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that * word. For example, bit #42 is located at 10th position of 2nd word. * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit * values in memory as it usually does. But for BE we need to swap hi and lo * words manually. * * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps * hi and lo words, as is expected by bitmap. */ #if __BITS_PER_LONG == 64 #define BITMAP_FROM_U64(n) (n) #else #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \ ((unsigned long) ((u64)(n) >> 32)) #endif /** * bitmap_from_u64 - Check and swap words within u64. * @mask: source bitmap * @dst: destination bitmap * * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]`` * to read u64 mask, we will get the wrong word. * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits, * but we expect the lower 32-bits of u64. */ static inline void bitmap_from_u64(unsigned long *dst, u64 mask) { dst[0] = mask & ULONG_MAX; if (sizeof(mask) > sizeof(unsigned long)) dst[1] = mask >> 32; } /** * bitmap_get_value8 - get an 8-bit value within a memory region * @map: address to the bitmap memory region * @start: bit offset of the 8-bit value; must be a multiple of 8 * * Returns the 8-bit value located at the @start bit offset within the @src * memory region. */ static inline unsigned long bitmap_get_value8(const unsigned long *map, unsigned long start) { const size_t index = BIT_WORD(start); const unsigned long offset = start % BITS_PER_LONG; return (map[index] >> offset) & 0xFF; } /** * bitmap_set_value8 - set an 8-bit value within a memory region * @map: address to the bitmap memory region * @value: the 8-bit value; values wider than 8 bits may clobber bitmap * @start: bit offset of the 8-bit value; must be a multiple of 8 */ static inline void bitmap_set_value8(unsigned long *map, unsigned long value, unsigned long start) { const size_t index = BIT_WORD(start); const unsigned long offset = start % BITS_PER_LONG; map[index] &= ~(0xFFUL << offset); map[index] |= value << offset; } #endif /* __ASSEMBLY__ */ #endif /* __LINUX_BITMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1994 Linus Torvalds * * Pentium III FXSR, SSE support * General FPU state handling cleanups * Gareth Hughes <gareth@valinux.com>, May 2000 */ #include <asm/fpu/internal.h> #include <asm/fpu/regset.h> #include <asm/fpu/signal.h> #include <asm/fpu/types.h> #include <asm/traps.h> #include <asm/irq_regs.h> #include <linux/hardirq.h> #include <linux/pkeys.h> #define CREATE_TRACE_POINTS #include <asm/trace/fpu.h> /* * Represents the initial FPU state. It's mostly (but not completely) zeroes, * depending on the FPU hardware format: */ union fpregs_state init_fpstate __read_mostly; /* * Track whether the kernel is using the FPU state * currently. * * This flag is used: * * - by IRQ context code to potentially use the FPU * if it's unused. * * - to debug kernel_fpu_begin()/end() correctness */ static DEFINE_PER_CPU(bool, in_kernel_fpu); /* * Track which context is using the FPU on the CPU: */ DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); static bool kernel_fpu_disabled(void) { return this_cpu_read(in_kernel_fpu); } static bool interrupted_kernel_fpu_idle(void) { return !kernel_fpu_disabled(); } /* * Were we in user mode (or vm86 mode) when we were * interrupted? * * Doing kernel_fpu_begin/end() is ok if we are running * in an interrupt context from user mode - we'll just * save the FPU state as required. */ static bool interrupted_user_mode(void) { struct pt_regs *regs = get_irq_regs(); return regs && user_mode(regs); } /* * Can we use the FPU in kernel mode with the * whole "kernel_fpu_begin/end()" sequence? * * It's always ok in process context (ie "not interrupt") * but it is sometimes ok even from an irq. */ bool irq_fpu_usable(void) { return !in_interrupt() || interrupted_user_mode() || interrupted_kernel_fpu_idle(); } EXPORT_SYMBOL(irq_fpu_usable); /* * These must be called with preempt disabled. Returns * 'true' if the FPU state is still intact and we can * keep registers active. * * The legacy FNSAVE instruction cleared all FPU state * unconditionally, so registers are essentially destroyed. * Modern FPU state can be kept in registers, if there are * no pending FP exceptions. */ int copy_fpregs_to_fpstate(struct fpu *fpu) { if (likely(use_xsave())) { copy_xregs_to_kernel(&fpu->state.xsave); /* * AVX512 state is tracked here because its use is * known to slow the max clock speed of the core. */ if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512) fpu->avx512_timestamp = jiffies; return 1; } if (likely(use_fxsr())) { copy_fxregs_to_kernel(fpu); return 1; } /* * Legacy FPU register saving, FNSAVE always clears FPU registers, * so we have to mark them inactive: */ asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave)); return 0; } EXPORT_SYMBOL(copy_fpregs_to_fpstate); void kernel_fpu_begin_mask(unsigned int kfpu_mask) { preempt_disable(); WARN_ON_FPU(!irq_fpu_usable()); WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); this_cpu_write(in_kernel_fpu, true); if (!(current->flags & PF_KTHREAD) && !test_thread_flag(TIF_NEED_FPU_LOAD)) { set_thread_flag(TIF_NEED_FPU_LOAD); /* * Ignore return value -- we don't care if reg state * is clobbered. */ copy_fpregs_to_fpstate(&current->thread.fpu); } __cpu_invalidate_fpregs_state(); /* Put sane initial values into the control registers. */ if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM)) ldmxcsr(MXCSR_DEFAULT); if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU)) asm volatile ("fninit"); } EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask); void kernel_fpu_end(void) { WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); this_cpu_write(in_kernel_fpu, false); preempt_enable(); } EXPORT_SYMBOL_GPL(kernel_fpu_end); /* * Save the FPU state (mark it for reload if necessary): * * This only ever gets called for the current task. */ void fpu__save(struct fpu *fpu) { WARN_ON_FPU(fpu != &current->thread.fpu); fpregs_lock(); trace_x86_fpu_before_save(fpu); if (!test_thread_flag(TIF_NEED_FPU_LOAD)) { if (!copy_fpregs_to_fpstate(fpu)) { copy_kernel_to_fpregs(&fpu->state); } } trace_x86_fpu_after_save(fpu); fpregs_unlock(); } /* * Legacy x87 fpstate state init: */ static inline void fpstate_init_fstate(struct fregs_state *fp) { fp->cwd = 0xffff037fu; fp->swd = 0xffff0000u; fp->twd = 0xffffffffu; fp->fos = 0xffff0000u; } void fpstate_init(union fpregs_state *state) { if (!static_cpu_has(X86_FEATURE_FPU)) { fpstate_init_soft(&state->soft); return; } memset(state, 0, fpu_kernel_xstate_size); if (static_cpu_has(X86_FEATURE_XSAVES)) fpstate_init_xstate(&state->xsave); if (static_cpu_has(X86_FEATURE_FXSR)) fpstate_init_fxstate(&state->fxsave); else fpstate_init_fstate(&state->fsave); } EXPORT_SYMBOL_GPL(fpstate_init); int fpu__copy(struct task_struct *dst, struct task_struct *src) { struct fpu *dst_fpu = &dst->thread.fpu; struct fpu *src_fpu = &src->thread.fpu; dst_fpu->last_cpu = -1; if (!static_cpu_has(X86_FEATURE_FPU)) return 0; WARN_ON_FPU(src_fpu != &current->thread.fpu); /* * Don't let 'init optimized' areas of the XSAVE area * leak into the child task: */ memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size); /* * If the FPU registers are not current just memcpy() the state. * Otherwise save current FPU registers directly into the child's FPU * context, without any memory-to-memory copying. * * ( The function 'fails' in the FNSAVE case, which destroys * register contents so we have to load them back. ) */ fpregs_lock(); if (test_thread_flag(TIF_NEED_FPU_LOAD)) memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size); else if (!copy_fpregs_to_fpstate(dst_fpu)) copy_kernel_to_fpregs(&dst_fpu->state); fpregs_unlock(); set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); trace_x86_fpu_copy_src(src_fpu); trace_x86_fpu_copy_dst(dst_fpu); return 0; } /* * Activate the current task's in-memory FPU context, * if it has not been used before: */ static void fpu__initialize(struct fpu *fpu) { WARN_ON_FPU(fpu != &current->thread.fpu); set_thread_flag(TIF_NEED_FPU_LOAD); fpstate_init(&fpu->state); trace_x86_fpu_init_state(fpu); } /* * This function must be called before we read a task's fpstate. * * There's two cases where this gets called: * * - for the current task (when coredumping), in which case we have * to save the latest FPU registers into the fpstate, * * - or it's called for stopped tasks (ptrace), in which case the * registers were already saved by the context-switch code when * the task scheduled out. * * If the task has used the FPU before then save it. */ void fpu__prepare_read(struct fpu *fpu) { if (fpu == &current->thread.fpu) fpu__save(fpu); } /* * This function must be called before we write a task's fpstate. * * Invalidate any cached FPU registers. * * After this function call, after registers in the fpstate are * modified and the child task has woken up, the child task will * restore the modified FPU state from the modified context. If we * didn't clear its cached status here then the cached in-registers * state pending on its former CPU could be restored, corrupting * the modifications. */ void fpu__prepare_write(struct fpu *fpu) { /* * Only stopped child tasks can be used to modify the FPU * state in the fpstate buffer: */ WARN_ON_FPU(fpu == &current->thread.fpu); /* Invalidate any cached state: */ __fpu_invalidate_fpregs_state(fpu); } /* * Drops current FPU state: deactivates the fpregs and * the fpstate. NOTE: it still leaves previous contents * in the fpregs in the eager-FPU case. * * This function can be used in cases where we know that * a state-restore is coming: either an explicit one, * or a reschedule. */ void fpu__drop(struct fpu *fpu) { preempt_disable(); if (fpu == &current->thread.fpu) { /* Ignore delayed exceptions from user space */ asm volatile("1: fwait\n" "2:\n" _ASM_EXTABLE(1b, 2b)); fpregs_deactivate(fpu); } trace_x86_fpu_dropped(fpu); preempt_enable(); } /* * Clear FPU registers by setting them up from the init fpstate. * Caller must do fpregs_[un]lock() around it. */ static inline void copy_init_fpstate_to_fpregs(u64 features_mask) { if (use_xsave()) copy_kernel_to_xregs(&init_fpstate.xsave, features_mask); else if (static_cpu_has(X86_FEATURE_FXSR)) copy_kernel_to_fxregs(&init_fpstate.fxsave); else copy_kernel_to_fregs(&init_fpstate.fsave); if (boot_cpu_has(X86_FEATURE_OSPKE)) copy_init_pkru_to_fpregs(); } /* * Clear the FPU state back to init state. * * Called by sys_execve(), by the signal handler code and by various * error paths. */ static void fpu__clear(struct fpu *fpu, bool user_only) { WARN_ON_FPU(fpu != &current->thread.fpu); if (!static_cpu_has(X86_FEATURE_FPU)) { fpu__drop(fpu); fpu__initialize(fpu); return; } fpregs_lock(); if (user_only) { if (!fpregs_state_valid(fpu, smp_processor_id()) && xfeatures_mask_supervisor()) copy_kernel_to_xregs(&fpu->state.xsave, xfeatures_mask_supervisor()); copy_init_fpstate_to_fpregs(xfeatures_mask_user()); } else { copy_init_fpstate_to_fpregs(xfeatures_mask_all); } fpregs_mark_activate(); fpregs_unlock(); } void fpu__clear_user_states(struct fpu *fpu) { fpu__clear(fpu, true); } void fpu__clear_all(struct fpu *fpu) { fpu__clear(fpu, false); } /* * Load FPU context before returning to userspace. */ void switch_fpu_return(void) { if (!static_cpu_has(X86_FEATURE_FPU)) return; __fpregs_load_activate(); } EXPORT_SYMBOL_GPL(switch_fpu_return); #ifdef CONFIG_X86_DEBUG_FPU /* * If current FPU state according to its tracking (loaded FPU context on this * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is * loaded on return to userland. */ void fpregs_assert_state_consistent(void) { struct fpu *fpu = &current->thread.fpu; if (test_thread_flag(TIF_NEED_FPU_LOAD)) return; WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); } EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent); #endif void fpregs_mark_activate(void) { struct fpu *fpu = &current->thread.fpu; fpregs_activate(fpu); fpu->last_cpu = smp_processor_id(); clear_thread_flag(TIF_NEED_FPU_LOAD); } EXPORT_SYMBOL_GPL(fpregs_mark_activate); /* * x87 math exception handling: */ int fpu__exception_code(struct fpu *fpu, int trap_nr) { int err; if (trap_nr == X86_TRAP_MF) { unsigned short cwd, swd; /* * (~cwd & swd) will mask out exceptions that are not set to unmasked * status. 0x3f is the exception bits in these regs, 0x200 is the * C1 reg you need in case of a stack fault, 0x040 is the stack * fault bit. We should only be taking one exception at a time, * so if this combination doesn't produce any single exception, * then we have a bad program that isn't synchronizing its FPU usage * and it will suffer the consequences since we won't be able to * fully reproduce the context of the exception. */ if (boot_cpu_has(X86_FEATURE_FXSR)) { cwd = fpu->state.fxsave.cwd; swd = fpu->state.fxsave.swd; } else { cwd = (unsigned short)fpu->state.fsave.cwd; swd = (unsigned short)fpu->state.fsave.swd; } err = swd & ~cwd; } else { /* * The SIMD FPU exceptions are handled a little differently, as there * is only a single status/control register. Thus, to determine which * unmasked exception was caught we must mask the exception mask bits * at 0x1f80, and then use these to mask the exception bits at 0x3f. */ unsigned short mxcsr = MXCSR_DEFAULT; if (boot_cpu_has(X86_FEATURE_XMM)) mxcsr = fpu->state.fxsave.mxcsr; err = ~(mxcsr >> 7) & mxcsr; } if (err & 0x001) { /* Invalid op */ /* * swd & 0x240 == 0x040: Stack Underflow * swd & 0x240 == 0x240: Stack Overflow * User must clear the SF bit (0x40) if set */ return FPE_FLTINV; } else if (err & 0x004) { /* Divide by Zero */ return FPE_FLTDIV; } else if (err & 0x008) { /* Overflow */ return FPE_FLTOVF; } else if (err & 0x012) { /* Denormal, Underflow */ return FPE_FLTUND; } else if (err & 0x020) { /* Precision */ return FPE_FLTRES; } /* * If we're using IRQ 13, or supposedly even some trap * X86_TRAP_MF implementations, it's possible * we get a spurious trap, which is not an error. */ return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Red Black Trees (C) 1999 Andrea Arcangeli <andrea@suse.de> (C) 2002 David Woodhouse <dwmw2@infradead.org> (C) 2012 Michel Lespinasse <walken@google.com> linux/include/linux/rbtree_augmented.h */ #ifndef _LINUX_RBTREE_AUGMENTED_H #define _LINUX_RBTREE_AUGMENTED_H #include <linux/compiler.h> #include <linux/rbtree.h> #include <linux/rcupdate.h> /* * Please note - only struct rb_augment_callbacks and the prototypes for * rb_insert_augmented() and rb_erase_augmented() are intended to be public. * The rest are implementation details you are not expected to depend on. * * See Documentation/core-api/rbtree.rst for documentation and samples. */ struct rb_augment_callbacks { void (*propagate)(struct rb_node *node, struct rb_node *stop); void (*copy)(struct rb_node *old, struct rb_node *new); void (*rotate)(struct rb_node *old, struct rb_node *new); }; extern void __rb_insert_augmented(struct rb_node *node, struct rb_root *root, void (*augment_rotate)(struct rb_node *old, struct rb_node *new)); /* * Fixup the rbtree and update the augmented information when rebalancing. * * On insertion, the user must update the augmented information on the path * leading to the inserted node, then call rb_link_node() as usual and * rb_insert_augmented() instead of the usual rb_insert_color() call. * If rb_insert_augmented() rebalances the rbtree, it will callback into * a user provided function to update the augmented information on the * affected subtrees. */ static inline void rb_insert_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { __rb_insert_augmented(node, root, augment->rotate); } static inline void rb_insert_augmented_cached(struct rb_node *node, struct rb_root_cached *root, bool newleft, const struct rb_augment_callbacks *augment) { if (newleft) root->rb_leftmost = node; rb_insert_augmented(node, &root->rb_root, augment); } /* * Template for declaring augmented rbtree callbacks (generic case) * * RBSTATIC: 'static' or empty * RBNAME: name of the rb_augment_callbacks structure * RBSTRUCT: struct type of the tree nodes * RBFIELD: name of struct rb_node field within RBSTRUCT * RBAUGMENTED: name of field within RBSTRUCT holding data for subtree * RBCOMPUTE: name of function that recomputes the RBAUGMENTED data */ #define RB_DECLARE_CALLBACKS(RBSTATIC, RBNAME, \ RBSTRUCT, RBFIELD, RBAUGMENTED, RBCOMPUTE) \ static inline void \ RBNAME ## _propagate(struct rb_node *rb, struct rb_node *stop) \ { \ while (rb != stop) { \ RBSTRUCT *node = rb_entry(rb, RBSTRUCT, RBFIELD); \ if (RBCOMPUTE(node, true)) \ break; \ rb = rb_parent(&node->RBFIELD); \ } \ } \ static inline void \ RBNAME ## _copy(struct rb_node *rb_old, struct rb_node *rb_new) \ { \ RBSTRUCT *old = rb_entry(rb_old, RBSTRUCT, RBFIELD); \ RBSTRUCT *new = rb_entry(rb_new, RBSTRUCT, RBFIELD); \ new->RBAUGMENTED = old->RBAUGMENTED; \ } \ static void \ RBNAME ## _rotate(struct rb_node *rb_old, struct rb_node *rb_new) \ { \ RBSTRUCT *old = rb_entry(rb_old, RBSTRUCT, RBFIELD); \ RBSTRUCT *new = rb_entry(rb_new, RBSTRUCT, RBFIELD); \ new->RBAUGMENTED = old->RBAUGMENTED; \ RBCOMPUTE(old, false); \ } \ RBSTATIC const struct rb_augment_callbacks RBNAME = { \ .propagate = RBNAME ## _propagate, \ .copy = RBNAME ## _copy, \ .rotate = RBNAME ## _rotate \ }; /* * Template for declaring augmented rbtree callbacks, * computing RBAUGMENTED scalar as max(RBCOMPUTE(node)) for all subtree nodes. * * RBSTATIC: 'static' or empty * RBNAME: name of the rb_augment_callbacks structure * RBSTRUCT: struct type of the tree nodes * RBFIELD: name of struct rb_node field within RBSTRUCT * RBTYPE: type of the RBAUGMENTED field * RBAUGMENTED: name of RBTYPE field within RBSTRUCT holding data for subtree * RBCOMPUTE: name of function that returns the per-node RBTYPE scalar */ #define RB_DECLARE_CALLBACKS_MAX(RBSTATIC, RBNAME, RBSTRUCT, RBFIELD, \ RBTYPE, RBAUGMENTED, RBCOMPUTE) \ static inline bool RBNAME ## _compute_max(RBSTRUCT *node, bool exit) \ { \ RBSTRUCT *child; \ RBTYPE max = RBCOMPUTE(node); \ if (node->RBFIELD.rb_left) { \ child = rb_entry(node->RBFIELD.rb_left, RBSTRUCT, RBFIELD); \ if (child->RBAUGMENTED > max) \ max = child->RBAUGMENTED; \ } \ if (node->RBFIELD.rb_right) { \ child = rb_entry(node->RBFIELD.rb_right, RBSTRUCT, RBFIELD); \ if (child->RBAUGMENTED > max) \ max = child->RBAUGMENTED; \ } \ if (exit && node->RBAUGMENTED == max) \ return true; \ node->RBAUGMENTED = max; \ return false; \ } \ RB_DECLARE_CALLBACKS(RBSTATIC, RBNAME, \ RBSTRUCT, RBFIELD, RBAUGMENTED, RBNAME ## _compute_max) #define RB_RED 0 #define RB_BLACK 1 #define __rb_parent(pc) ((struct rb_node *)(pc & ~3)) #define __rb_color(pc) ((pc) & 1) #define __rb_is_black(pc) __rb_color(pc) #define __rb_is_red(pc) (!__rb_color(pc)) #define rb_color(rb) __rb_color((rb)->__rb_parent_color) #define rb_is_red(rb) __rb_is_red((rb)->__rb_parent_color) #define rb_is_black(rb) __rb_is_black((rb)->__rb_parent_color) static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p) { rb->__rb_parent_color = rb_color(rb) | (unsigned long)p; } static inline void rb_set_parent_color(struct rb_node *rb, struct rb_node *p, int color) { rb->__rb_parent_color = (unsigned long)p | color; } static inline void __rb_change_child(struct rb_node *old, struct rb_node *new, struct rb_node *parent, struct rb_root *root) { if (parent) { if (parent->rb_left == old) WRITE_ONCE(parent->rb_left, new); else WRITE_ONCE(parent->rb_right, new); } else WRITE_ONCE(root->rb_node, new); } static inline void __rb_change_child_rcu(struct rb_node *old, struct rb_node *new, struct rb_node *parent, struct rb_root *root) { if (parent) { if (parent->rb_left == old) rcu_assign_pointer(parent->rb_left, new); else rcu_assign_pointer(parent->rb_right, new); } else rcu_assign_pointer(root->rb_node, new); } extern void __rb_erase_color(struct rb_node *parent, struct rb_root *root, void (*augment_rotate)(struct rb_node *old, struct rb_node *new)); static __always_inline struct rb_node * __rb_erase_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { struct rb_node *child = node->rb_right; struct rb_node *tmp = node->rb_left; struct rb_node *parent, *rebalance; unsigned long pc; if (!tmp) { /* * Case 1: node to erase has no more than 1 child (easy!) * * Note that if there is one child it must be red due to 5) * and node must be black due to 4). We adjust colors locally * so as to bypass __rb_erase_color() later on. */ pc = node->__rb_parent_color; parent = __rb_parent(pc); __rb_change_child(node, child, parent, root); if (child) { child->__rb_parent_color = pc; rebalance = NULL; } else rebalance = __rb_is_black(pc) ? parent : NULL; tmp = parent; } else if (!child) { /* Still case 1, but this time the child is node->rb_left */ tmp->__rb_parent_color = pc = node->__rb_parent_color; parent = __rb_parent(pc); __rb_change_child(node, tmp, parent, root); rebalance = NULL; tmp = parent; } else { struct rb_node *successor = child, *child2; tmp = child->rb_left; if (!tmp) { /* * Case 2: node's successor is its right child * * (n) (s) * / \ / \ * (x) (s) -> (x) (c) * \ * (c) */ parent = successor; child2 = successor->rb_right; augment->copy(node, successor); } else { /* * Case 3: node's successor is leftmost under * node's right child subtree * * (n) (s) * / \ / \ * (x) (y) -> (x) (y) * / / * (p) (p) * / / * (s) (c) * \ * (c) */ do { parent = successor; successor = tmp; tmp = tmp->rb_left; } while (tmp); child2 = successor->rb_right; WRITE_ONCE(parent->rb_left, child2); WRITE_ONCE(successor->rb_right, child); rb_set_parent(child, successor); augment->copy(node, successor); augment->propagate(parent, successor); } tmp = node->rb_left; WRITE_ONCE(successor->rb_left, tmp); rb_set_parent(tmp, successor); pc = node->__rb_parent_color; tmp = __rb_parent(pc); __rb_change_child(node, successor, tmp, root); if (child2) { rb_set_parent_color(child2, parent, RB_BLACK); rebalance = NULL; } else { rebalance = rb_is_black(successor) ? parent : NULL; } successor->__rb_parent_color = pc; tmp = successor; } augment->propagate(tmp, NULL); return rebalance; } static __always_inline void rb_erase_augmented(struct rb_node *node, struct rb_root *root, const struct rb_augment_callbacks *augment) { struct rb_node *rebalance = __rb_erase_augmented(node, root, augment); if (rebalance) __rb_erase_color(rebalance, root, augment->rotate); } static __always_inline void rb_erase_augmented_cached(struct rb_node *node, struct rb_root_cached *root, const struct rb_augment_callbacks *augment) { if (root->rb_leftmost == node) root->rb_leftmost = rb_next(node); rb_erase_augmented(node, &root->rb_root, augment); } #endif /* _LINUX_RBTREE_AUGMENTED_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PAGEMAP_H #define _LINUX_PAGEMAP_H /* * Copyright 1995 Linus Torvalds */ #include <linux/mm.h> #include <linux/fs.h> #include <linux/list.h> #include <linux/highmem.h> #include <linux/compiler.h> #include <linux/uaccess.h> #include <linux/gfp.h> #include <linux/bitops.h> #include <linux/hardirq.h> /* for in_interrupt() */ #include <linux/hugetlb_inline.h> struct pagevec; /* * Bits in mapping->flags. */ enum mapping_flags { AS_EIO = 0, /* IO error on async write */ AS_ENOSPC = 1, /* ENOSPC on async write */ AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ AS_EXITING = 4, /* final truncate in progress */ /* writeback related tags are not used */ AS_NO_WRITEBACK_TAGS = 5, AS_THP_SUPPORT = 6, /* THPs supported */ }; /** * mapping_set_error - record a writeback error in the address_space * @mapping: the mapping in which an error should be set * @error: the error to set in the mapping * * When writeback fails in some way, we must record that error so that * userspace can be informed when fsync and the like are called. We endeavor * to report errors on any file that was open at the time of the error. Some * internal callers also need to know when writeback errors have occurred. * * When a writeback error occurs, most filesystems will want to call * mapping_set_error to record the error in the mapping so that it can be * reported when the application calls fsync(2). */ static inline void mapping_set_error(struct address_space *mapping, int error) { if (likely(!error)) return; /* Record in wb_err for checkers using errseq_t based tracking */ __filemap_set_wb_err(mapping, error); /* Record it in superblock */ if (mapping->host) errseq_set(&mapping->host->i_sb->s_wb_err, error); /* Record it in flags for now, for legacy callers */ if (error == -ENOSPC) set_bit(AS_ENOSPC, &mapping->flags); else set_bit(AS_EIO, &mapping->flags); } static inline void mapping_set_unevictable(struct address_space *mapping) { set_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_clear_unevictable(struct address_space *mapping) { clear_bit(AS_UNEVICTABLE, &mapping->flags); } static inline bool mapping_unevictable(struct address_space *mapping) { return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_set_exiting(struct address_space *mapping) { set_bit(AS_EXITING, &mapping->flags); } static inline int mapping_exiting(struct address_space *mapping) { return test_bit(AS_EXITING, &mapping->flags); } static inline void mapping_set_no_writeback_tags(struct address_space *mapping) { set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline int mapping_use_writeback_tags(struct address_space *mapping) { return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline gfp_t mapping_gfp_mask(struct address_space * mapping) { return mapping->gfp_mask; } /* Restricts the given gfp_mask to what the mapping allows. */ static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, gfp_t gfp_mask) { return mapping_gfp_mask(mapping) & gfp_mask; } /* * This is non-atomic. Only to be used before the mapping is activated. * Probably needs a barrier... */ static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) { m->gfp_mask = mask; } static inline bool mapping_thp_support(struct address_space *mapping) { return test_bit(AS_THP_SUPPORT, &mapping->flags); } static inline int filemap_nr_thps(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS return atomic_read(&mapping->nr_thps); #else return 0; #endif } static inline void filemap_nr_thps_inc(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_thp_support(mapping)) atomic_inc(&mapping->nr_thps); #else WARN_ON_ONCE(1); #endif } static inline void filemap_nr_thps_dec(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_thp_support(mapping)) atomic_dec(&mapping->nr_thps); #else WARN_ON_ONCE(1); #endif } void release_pages(struct page **pages, int nr); /* * speculatively take a reference to a page. * If the page is free (_refcount == 0), then _refcount is untouched, and 0 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. * * This function must be called inside the same rcu_read_lock() section as has * been used to lookup the page in the pagecache radix-tree (or page table): * this allows allocators to use a synchronize_rcu() to stabilize _refcount. * * Unless an RCU grace period has passed, the count of all pages coming out * of the allocator must be considered unstable. page_count may return higher * than expected, and put_page must be able to do the right thing when the * page has been finished with, no matter what it is subsequently allocated * for (because put_page is what is used here to drop an invalid speculative * reference). * * This is the interesting part of the lockless pagecache (and lockless * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) * has the following pattern: * 1. find page in radix tree * 2. conditionally increment refcount * 3. check the page is still in pagecache (if no, goto 1) * * Remove-side that cares about stability of _refcount (eg. reclaim) has the * following (with the i_pages lock held): * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) * B. remove page from pagecache * C. free the page * * There are 2 critical interleavings that matter: * - 2 runs before A: in this case, A sees elevated refcount and bails out * - A runs before 2: in this case, 2 sees zero refcount and retries; * subsequently, B will complete and 1 will find no page, causing the * lookup to return NULL. * * It is possible that between 1 and 2, the page is removed then the exact same * page is inserted into the same position in pagecache. That's OK: the * old find_get_page using a lock could equally have run before or after * such a re-insertion, depending on order that locks are granted. * * Lookups racing against pagecache insertion isn't a big problem: either 1 * will find the page or it will not. Likewise, the old find_get_page could run * either before the insertion or afterwards, depending on timing. */ static inline int __page_cache_add_speculative(struct page *page, int count) { #ifdef CONFIG_TINY_RCU # ifdef CONFIG_PREEMPT_COUNT VM_BUG_ON(!in_atomic() && !irqs_disabled()); # endif /* * Preempt must be disabled here - we rely on rcu_read_lock doing * this for us. * * Pagecache won't be truncated from interrupt context, so if we have * found a page in the radix tree here, we have pinned its refcount by * disabling preempt, and hence no need for the "speculative get" that * SMP requires. */ VM_BUG_ON_PAGE(page_count(page) == 0, page); page_ref_add(page, count); #else if (unlikely(!page_ref_add_unless(page, count, 0))) { /* * Either the page has been freed, or will be freed. * In either case, retry here and the caller should * do the right thing (see comments above). */ return 0; } #endif VM_BUG_ON_PAGE(PageTail(page), page); return 1; } static inline int page_cache_get_speculative(struct page *page) { return __page_cache_add_speculative(page, 1); } static inline int page_cache_add_speculative(struct page *page, int count) { return __page_cache_add_speculative(page, count); } /** * attach_page_private - Attach private data to a page. * @page: Page to attach data to. * @data: Data to attach to page. * * Attaching private data to a page increments the page's reference count. * The data must be detached before the page will be freed. */ static inline void attach_page_private(struct page *page, void *data) { get_page(page); set_page_private(page, (unsigned long)data); SetPagePrivate(page); } /** * detach_page_private - Detach private data from a page. * @page: Page to detach data from. * * Removes the data that was previously attached to the page and decrements * the refcount on the page. * * Return: Data that was attached to the page. */ static inline void *detach_page_private(struct page *page) { void *data = (void *)page_private(page); if (!PagePrivate(page)) return NULL; ClearPagePrivate(page); set_page_private(page, 0); put_page(page); return data; } #ifdef CONFIG_NUMA extern struct page *__page_cache_alloc(gfp_t gfp); #else static inline struct page *__page_cache_alloc(gfp_t gfp) { return alloc_pages(gfp, 0); } #endif static inline struct page *page_cache_alloc(struct address_space *x) { return __page_cache_alloc(mapping_gfp_mask(x)); } static inline gfp_t readahead_gfp_mask(struct address_space *x) { return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; } typedef int filler_t(void *, struct page *); pgoff_t page_cache_next_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); pgoff_t page_cache_prev_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); #define FGP_ACCESSED 0x00000001 #define FGP_LOCK 0x00000002 #define FGP_CREAT 0x00000004 #define FGP_WRITE 0x00000008 #define FGP_NOFS 0x00000010 #define FGP_NOWAIT 0x00000020 #define FGP_FOR_MMAP 0x00000040 #define FGP_HEAD 0x00000080 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, int fgp_flags, gfp_t cache_gfp_mask); /** * find_get_page - find and get a page reference * @mapping: the address_space to search * @offset: the page index * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned with an increased refcount. * * Otherwise, %NULL is returned. */ static inline struct page *find_get_page(struct address_space *mapping, pgoff_t offset) { return pagecache_get_page(mapping, offset, 0, 0); } static inline struct page *find_get_page_flags(struct address_space *mapping, pgoff_t offset, int fgp_flags) { return pagecache_get_page(mapping, offset, fgp_flags, 0); } /** * find_lock_page - locate, pin and lock a pagecache page * @mapping: the address_space to search * @index: the page index * * Looks up the page cache entry at @mapping & @index. If there is a * page cache page, it is returned locked and with an increased * refcount. * * Context: May sleep. * Return: A struct page or %NULL if there is no page in the cache for this * index. */ static inline struct page *find_lock_page(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK, 0); } /** * find_lock_head - Locate, pin and lock a pagecache page. * @mapping: The address_space to search. * @index: The page index. * * Looks up the page cache entry at @mapping & @index. If there is a * page cache page, its head page is returned locked and with an increased * refcount. * * Context: May sleep. * Return: A struct page which is !PageTail, or %NULL if there is no page * in the cache for this index. */ static inline struct page *find_lock_head(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0); } /** * find_or_create_page - locate or add a pagecache page * @mapping: the page's address_space * @index: the page's index into the mapping * @gfp_mask: page allocation mode * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned locked and with an increased * refcount. * * If the page is not present, a new page is allocated using @gfp_mask * and added to the page cache and the VM's LRU list. The page is * returned locked and with an increased refcount. * * On memory exhaustion, %NULL is returned. * * find_or_create_page() may sleep, even if @gfp_flags specifies an * atomic allocation! */ static inline struct page *find_or_create_page(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask) { return pagecache_get_page(mapping, index, FGP_LOCK|FGP_ACCESSED|FGP_CREAT, gfp_mask); } /** * grab_cache_page_nowait - returns locked page at given index in given cache * @mapping: target address_space * @index: the page index * * Same as grab_cache_page(), but do not wait if the page is unavailable. * This is intended for speculative data generators, where the data can * be regenerated if the page couldn't be grabbed. This routine should * be safe to call while holding the lock for another page. * * Clear __GFP_FS when allocating the page to avoid recursion into the fs * and deadlock against the caller's locked page. */ static inline struct page *grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, mapping_gfp_mask(mapping)); } /* Does this page contain this index? */ static inline bool thp_contains(struct page *head, pgoff_t index) { /* HugeTLBfs indexes the page cache in units of hpage_size */ if (PageHuge(head)) return head->index == index; return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL)); } /* * Given the page we found in the page cache, return the page corresponding * to this index in the file */ static inline struct page *find_subpage(struct page *head, pgoff_t index) { /* HugeTLBfs wants the head page regardless */ if (PageHuge(head)) return head; return head + (index & (thp_nr_pages(head) - 1)); } unsigned find_get_entries(struct address_space *mapping, pgoff_t start, unsigned int nr_entries, struct page **entries, pgoff_t *indices); unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, pgoff_t end, unsigned int nr_pages, struct page **pages); static inline unsigned find_get_pages(struct address_space *mapping, pgoff_t *start, unsigned int nr_pages, struct page **pages) { return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, pages); } unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, unsigned int nr_pages, struct page **pages); unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag, unsigned int nr_pages, struct page **pages); static inline unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, struct page **pages) { return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, nr_pages, pages); } struct page *grab_cache_page_write_begin(struct address_space *mapping, pgoff_t index, unsigned flags); /* * Returns locked page at given index in given cache, creating it if needed. */ static inline struct page *grab_cache_page(struct address_space *mapping, pgoff_t index) { return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); } extern struct page * read_cache_page(struct address_space *mapping, pgoff_t index, filler_t *filler, void *data); extern struct page * read_cache_page_gfp(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); extern int read_cache_pages(struct address_space *mapping, struct list_head *pages, filler_t *filler, void *data); static inline struct page *read_mapping_page(struct address_space *mapping, pgoff_t index, void *data) { return read_cache_page(mapping, index, NULL, data); } /* * Get index of the page within radix-tree (but not for hugetlb pages). * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) */ static inline pgoff_t page_to_index(struct page *page) { pgoff_t pgoff; if (likely(!PageTransTail(page))) return page->index; /* * We don't initialize ->index for tail pages: calculate based on * head page */ pgoff = compound_head(page)->index; pgoff += page - compound_head(page); return pgoff; } extern pgoff_t hugetlb_basepage_index(struct page *page); /* * Get the offset in PAGE_SIZE (even for hugetlb pages). * (TODO: hugetlb pages should have ->index in PAGE_SIZE) */ static inline pgoff_t page_to_pgoff(struct page *page) { if (unlikely(PageHuge(page))) return hugetlb_basepage_index(page); return page_to_index(page); } /* * Return byte-offset into filesystem object for page. */ static inline loff_t page_offset(struct page *page) { return ((loff_t)page->index) << PAGE_SHIFT; } static inline loff_t page_file_offset(struct page *page) { return ((loff_t)page_index(page)) << PAGE_SHIFT; } extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, unsigned long address); static inline pgoff_t linear_page_index(struct vm_area_struct *vma, unsigned long address) { pgoff_t pgoff; if (unlikely(is_vm_hugetlb_page(vma))) return linear_hugepage_index(vma, address); pgoff = (address - vma->vm_start) >> PAGE_SHIFT; pgoff += vma->vm_pgoff; return pgoff; } struct wait_page_key { struct page *page; int bit_nr; int page_match; }; struct wait_page_queue { struct page *page; int bit_nr; wait_queue_entry_t wait; }; static inline bool wake_page_match(struct wait_page_queue *wait_page, struct wait_page_key *key) { if (wait_page->page != key->page) return false; key->page_match = 1; if (wait_page->bit_nr != key->bit_nr) return false; return true; } extern void __lock_page(struct page *page); extern int __lock_page_killable(struct page *page); extern int __lock_page_async(struct page *page, struct wait_page_queue *wait); extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, unsigned int flags); extern void unlock_page(struct page *page); /* * Return true if the page was successfully locked */ static inline int trylock_page(struct page *page) { page = compound_head(page); return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); } /* * lock_page may only be called if we have the page's inode pinned. */ static inline void lock_page(struct page *page) { might_sleep(); if (!trylock_page(page)) __lock_page(page); } /* * lock_page_killable is like lock_page but can be interrupted by fatal * signals. It returns 0 if it locked the page and -EINTR if it was * killed while waiting. */ static inline int lock_page_killable(struct page *page) { might_sleep(); if (!trylock_page(page)) return __lock_page_killable(page); return 0; } /* * lock_page_async - Lock the page, unless this would block. If the page * is already locked, then queue a callback when the page becomes unlocked. * This callback can then retry the operation. * * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page * was already locked and the callback defined in 'wait' was queued. */ static inline int lock_page_async(struct page *page, struct wait_page_queue *wait) { if (!trylock_page(page)) return __lock_page_async(page, wait); return 0; } /* * lock_page_or_retry - Lock the page, unless this would block and the * caller indicated that it can handle a retry. * * Return value and mmap_lock implications depend on flags; see * __lock_page_or_retry(). */ static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, unsigned int flags) { might_sleep(); return trylock_page(page) || __lock_page_or_retry(page, mm, flags); } /* * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., * and should not be used directly. */ extern void wait_on_page_bit(struct page *page, int bit_nr); extern int wait_on_page_bit_killable(struct page *page, int bit_nr); /* * Wait for a page to be unlocked. * * This must be called with the caller "holding" the page, * ie with increased "page->count" so that the page won't * go away during the wait.. */ static inline void wait_on_page_locked(struct page *page) { if (PageLocked(page)) wait_on_page_bit(compound_head(page), PG_locked); } static inline int wait_on_page_locked_killable(struct page *page) { if (!PageLocked(page)) return 0; return wait_on_page_bit_killable(compound_head(page), PG_locked); } extern void put_and_wait_on_page_locked(struct page *page); void wait_on_page_writeback(struct page *page); extern void end_page_writeback(struct page *page); void wait_for_stable_page(struct page *page); void page_endio(struct page *page, bool is_write, int err); /* * Add an arbitrary waiter to a page's wait queue */ extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); /* * Fault everything in given userspace address range in. */ static inline int fault_in_pages_writeable(char __user *uaddr, int size) { char __user *end = uaddr + size - 1; if (unlikely(size == 0)) return 0; if (unlikely(uaddr > end)) return -EFAULT; /* * Writing zeroes into userspace here is OK, because we know that if * the zero gets there, we'll be overwriting it. */ do { if (unlikely(__put_user(0, uaddr) != 0)) return -EFAULT; uaddr += PAGE_SIZE; } while (uaddr <= end); /* Check whether the range spilled into the next page. */ if (((unsigned long)uaddr & PAGE_MASK) == ((unsigned long)end & PAGE_MASK)) return __put_user(0, end); return 0; } static inline int fault_in_pages_readable(const char __user *uaddr, int size) { volatile char c; const char __user *end = uaddr + size - 1; if (unlikely(size == 0)) return 0; if (unlikely(uaddr > end)) return -EFAULT; do { if (unlikely(__get_user(c, uaddr) != 0)) return -EFAULT; uaddr += PAGE_SIZE; } while (uaddr <= end); /* Check whether the range spilled into the next page. */ if (((unsigned long)uaddr & PAGE_MASK) == ((unsigned long)end & PAGE_MASK)) { return __get_user(c, end); } (void)c; return 0; } int add_to_page_cache_locked(struct page *page, struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); int add_to_page_cache_lru(struct page *page, struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); extern void delete_from_page_cache(struct page *page); extern void __delete_from_page_cache(struct page *page, void *shadow); int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); void delete_from_page_cache_batch(struct address_space *mapping, struct pagevec *pvec); /* * Like add_to_page_cache_locked, but used to add newly allocated pages: * the page is new, so we can just run __SetPageLocked() against it. */ static inline int add_to_page_cache(struct page *page, struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) { int error; __SetPageLocked(page); error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); if (unlikely(error)) __ClearPageLocked(page); return error; } /** * struct readahead_control - Describes a readahead request. * * A readahead request is for consecutive pages. Filesystems which * implement the ->readahead method should call readahead_page() or * readahead_page_batch() in a loop and attempt to start I/O against * each page in the request. * * Most of the fields in this struct are private and should be accessed * by the functions below. * * @file: The file, used primarily by network filesystems for authentication. * May be NULL if invoked internally by the filesystem. * @mapping: Readahead this filesystem object. */ struct readahead_control { struct file *file; struct address_space *mapping; /* private: use the readahead_* accessors instead */ pgoff_t _index; unsigned int _nr_pages; unsigned int _batch_count; }; #define DEFINE_READAHEAD(rac, f, m, i) \ struct readahead_control rac = { \ .file = f, \ .mapping = m, \ ._index = i, \ } #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) void page_cache_ra_unbounded(struct readahead_control *, unsigned long nr_to_read, unsigned long lookahead_count); void page_cache_sync_ra(struct readahead_control *, struct file_ra_state *, unsigned long req_count); void page_cache_async_ra(struct readahead_control *, struct file_ra_state *, struct page *, unsigned long req_count); /** * page_cache_sync_readahead - generic file readahead * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @file: Used by the filesystem for authentication. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_sync_readahead() should be called when a cache miss happened: * it will submit the read. The readahead logic may decide to piggyback more * pages onto the read request if access patterns suggest it will improve * performance. */ static inline void page_cache_sync_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, pgoff_t index, unsigned long req_count) { DEFINE_READAHEAD(ractl, file, mapping, index); page_cache_sync_ra(&ractl, ra, req_count); } /** * page_cache_async_readahead - file readahead for marked pages * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @file: Used by the filesystem for authentication. * @page: The page at @index which triggered the readahead call. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_async_readahead() should be called when a page is used which * is marked as PageReadahead; this is a marker to suggest that the application * has used up enough of the readahead window that we should start pulling in * more pages. */ static inline void page_cache_async_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, struct page *page, pgoff_t index, unsigned long req_count) { DEFINE_READAHEAD(ractl, file, mapping, index); page_cache_async_ra(&ractl, ra, page, req_count); } /** * readahead_page - Get the next page to read. * @rac: The current readahead request. * * Context: The page is locked and has an elevated refcount. The caller * should decreases the refcount once the page has been submitted for I/O * and unlock the page once all I/O to that page has completed. * Return: A pointer to the next page, or %NULL if we are done. */ static inline struct page *readahead_page(struct readahead_control *rac) { struct page *page; BUG_ON(rac->_batch_count > rac->_nr_pages); rac->_nr_pages -= rac->_batch_count; rac->_index += rac->_batch_count; if (!rac->_nr_pages) { rac->_batch_count = 0; return NULL; } page = xa_load(&rac->mapping->i_pages, rac->_index); VM_BUG_ON_PAGE(!PageLocked(page), page); rac->_batch_count = thp_nr_pages(page); return page; } static inline unsigned int __readahead_batch(struct readahead_control *rac, struct page **array, unsigned int array_sz) { unsigned int i = 0; XA_STATE(xas, &rac->mapping->i_pages, 0); struct page *page; BUG_ON(rac->_batch_count > rac->_nr_pages); rac->_nr_pages -= rac->_batch_count; rac->_index += rac->_batch_count; rac->_batch_count = 0; xas_set(&xas, rac->_index); rcu_read_lock(); xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { if (xas_retry(&xas, page)) continue; VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(PageTail(page), page); array[i++] = page; rac->_batch_count += thp_nr_pages(page); /* * The page cache isn't using multi-index entries yet, * so the xas cursor needs to be manually moved to the * next index. This can be removed once the page cache * is converted. */ if (PageHead(page)) xas_set(&xas, rac->_index + rac->_batch_count); if (i == array_sz) break; } rcu_read_unlock(); return i; } /** * readahead_page_batch - Get a batch of pages to read. * @rac: The current readahead request. * @array: An array of pointers to struct page. * * Context: The pages are locked and have an elevated refcount. The caller * should decreases the refcount once the page has been submitted for I/O * and unlock the page once all I/O to that page has completed. * Return: The number of pages placed in the array. 0 indicates the request * is complete. */ #define readahead_page_batch(rac, array) \ __readahead_batch(rac, array, ARRAY_SIZE(array)) /** * readahead_pos - The byte offset into the file of this readahead request. * @rac: The readahead request. */ static inline loff_t readahead_pos(struct readahead_control *rac) { return (loff_t)rac->_index * PAGE_SIZE; } /** * readahead_length - The number of bytes in this readahead request. * @rac: The readahead request. */ static inline loff_t readahead_length(struct readahead_control *rac) { return (loff_t)rac->_nr_pages * PAGE_SIZE; } /** * readahead_index - The index of the first page in this readahead request. * @rac: The readahead request. */ static inline pgoff_t readahead_index(struct readahead_control *rac) { return rac->_index; } /** * readahead_count - The number of pages in this readahead request. * @rac: The readahead request. */ static inline unsigned int readahead_count(struct readahead_control *rac) { return rac->_nr_pages; } static inline unsigned long dir_pages(struct inode *inode) { return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; } /** * page_mkwrite_check_truncate - check if page was truncated * @page: the page to check * @inode: the inode to check the page against * * Returns the number of bytes in the page up to EOF, * or -EFAULT if the page was truncated. */ static inline int page_mkwrite_check_truncate(struct page *page, struct inode *inode) { loff_t size = i_size_read(inode); pgoff_t index = size >> PAGE_SHIFT; int offset = offset_in_page(size); if (page->mapping != inode->i_mapping) return -EFAULT; /* page is wholly inside EOF */ if (page->index < index) return PAGE_SIZE; /* page is wholly past EOF */ if (page->index > index || !offset) return -EFAULT; /* page is partially inside EOF */ return offset; } /** * i_blocks_per_page - How many blocks fit in this page. * @inode: The inode which contains the blocks. * @page: The page (head page if the page is a THP). * * If the block size is larger than the size of this page, return zero. * * Context: The caller should hold a refcount on the page to prevent it * from being split. * Return: The number of filesystem blocks covered by this page. */ static inline unsigned int i_blocks_per_page(struct inode *inode, struct page *page) { return thp_size(page) >> inode->i_blkbits; } #endif /* _LINUX_PAGEMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_CLEANCACHE_H #define _LINUX_CLEANCACHE_H #include <linux/fs.h> #include <linux/exportfs.h> #include <linux/mm.h> #define CLEANCACHE_NO_POOL -1 #define CLEANCACHE_NO_BACKEND -2 #define CLEANCACHE_NO_BACKEND_SHARED -3 #define CLEANCACHE_KEY_MAX 6 /* * cleancache requires every file with a page in cleancache to have a * unique key unless/until the file is removed/truncated. For some * filesystems, the inode number is unique, but for "modern" filesystems * an exportable filehandle is required (see exportfs.h) */ struct cleancache_filekey { union { ino_t ino; __u32 fh[CLEANCACHE_KEY_MAX]; u32 key[CLEANCACHE_KEY_MAX]; } u; }; struct cleancache_ops { int (*init_fs)(size_t); int (*init_shared_fs)(uuid_t *uuid, size_t); int (*get_page)(int, struct cleancache_filekey, pgoff_t, struct page *); void (*put_page)(int, struct cleancache_filekey, pgoff_t, struct page *); void (*invalidate_page)(int, struct cleancache_filekey, pgoff_t); void (*invalidate_inode)(int, struct cleancache_filekey); void (*invalidate_fs)(int); }; extern int cleancache_register_ops(const struct cleancache_ops *ops); extern void __cleancache_init_fs(struct super_block *); extern void __cleancache_init_shared_fs(struct super_block *); extern int __cleancache_get_page(struct page *); extern void __cleancache_put_page(struct page *); extern void __cleancache_invalidate_page(struct address_space *, struct page *); extern void __cleancache_invalidate_inode(struct address_space *); extern void __cleancache_invalidate_fs(struct super_block *); #ifdef CONFIG_CLEANCACHE #define cleancache_enabled (1) static inline bool cleancache_fs_enabled_mapping(struct address_space *mapping) { return mapping->host->i_sb->cleancache_poolid >= 0; } static inline bool cleancache_fs_enabled(struct page *page) { return cleancache_fs_enabled_mapping(page->mapping); } #else #define cleancache_enabled (0) #define cleancache_fs_enabled(_page) (0) #define cleancache_fs_enabled_mapping(_page) (0) #endif /* * The shim layer provided by these inline functions allows the compiler * to reduce all cleancache hooks to nothingness if CONFIG_CLEANCACHE * is disabled, to a single global variable check if CONFIG_CLEANCACHE * is enabled but no cleancache "backend" has dynamically enabled it, * and, for the most frequent cleancache ops, to a single global variable * check plus a superblock element comparison if CONFIG_CLEANCACHE is enabled * and a cleancache backend has dynamically enabled cleancache, but the * filesystem referenced by that cleancache op has not enabled cleancache. * As a result, CONFIG_CLEANCACHE can be enabled by default with essentially * no measurable performance impact. */ static inline void cleancache_init_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_init_fs(sb); } static inline void cleancache_init_shared_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_init_shared_fs(sb); } static inline int cleancache_get_page(struct page *page) { if (cleancache_enabled && cleancache_fs_enabled(page)) return __cleancache_get_page(page); return -1; } static inline void cleancache_put_page(struct page *page) { if (cleancache_enabled && cleancache_fs_enabled(page)) __cleancache_put_page(page); } static inline void cleancache_invalidate_page(struct address_space *mapping, struct page *page) { /* careful... page->mapping is NULL sometimes when this is called */ if (cleancache_enabled && cleancache_fs_enabled_mapping(mapping)) __cleancache_invalidate_page(mapping, page); } static inline void cleancache_invalidate_inode(struct address_space *mapping) { if (cleancache_enabled && cleancache_fs_enabled_mapping(mapping)) __cleancache_invalidate_inode(mapping); } static inline void cleancache_invalidate_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_invalidate_fs(sb); } #endif /* _LINUX_CLEANCACHE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 /* SPDX-License-Identifier: GPL-2.0 */ /* Based on net/mac80211/trace.h */ #undef TRACE_SYSTEM #define TRACE_SYSTEM mac802154 #if !defined(__MAC802154_DRIVER_TRACE) || defined(TRACE_HEADER_MULTI_READ) #define __MAC802154_DRIVER_TRACE #include <linux/tracepoint.h> #include <net/mac802154.h> #include "ieee802154_i.h" #define MAXNAME 32 #define LOCAL_ENTRY __array(char, wpan_phy_name, MAXNAME) #define LOCAL_ASSIGN strlcpy(__entry->wpan_phy_name, \ wpan_phy_name(local->hw.phy), MAXNAME) #define LOCAL_PR_FMT "%s" #define LOCAL_PR_ARG __entry->wpan_phy_name #define CCA_ENTRY __field(enum nl802154_cca_modes, cca_mode) \ __field(enum nl802154_cca_opts, cca_opt) #define CCA_ASSIGN \ do { \ (__entry->cca_mode) = cca->mode; \ (__entry->cca_opt) = cca->opt; \ } while (0) #define CCA_PR_FMT "cca_mode: %d, cca_opt: %d" #define CCA_PR_ARG __entry->cca_mode, __entry->cca_opt #define BOOL_TO_STR(bo) (bo) ? "true" : "false" /* Tracing for driver callbacks */ DECLARE_EVENT_CLASS(local_only_evt4, TP_PROTO(struct ieee802154_local *local), TP_ARGS(local), TP_STRUCT__entry( LOCAL_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; ), TP_printk(LOCAL_PR_FMT, LOCAL_PR_ARG) ); DEFINE_EVENT(local_only_evt4, 802154_drv_return_void, TP_PROTO(struct ieee802154_local *local), TP_ARGS(local) ); TRACE_EVENT(802154_drv_return_int, TP_PROTO(struct ieee802154_local *local, int ret), TP_ARGS(local, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(int, ret) ), TP_fast_assign( LOCAL_ASSIGN; __entry->ret = ret; ), TP_printk(LOCAL_PR_FMT ", returned: %d", LOCAL_PR_ARG, __entry->ret) ); DEFINE_EVENT(local_only_evt4, 802154_drv_start, TP_PROTO(struct ieee802154_local *local), TP_ARGS(local) ); DEFINE_EVENT(local_only_evt4, 802154_drv_stop, TP_PROTO(struct ieee802154_local *local), TP_ARGS(local) ); TRACE_EVENT(802154_drv_set_channel, TP_PROTO(struct ieee802154_local *local, u8 page, u8 channel), TP_ARGS(local, page, channel), TP_STRUCT__entry( LOCAL_ENTRY __field(u8, page) __field(u8, channel) ), TP_fast_assign( LOCAL_ASSIGN; __entry->page = page; __entry->channel = channel; ), TP_printk(LOCAL_PR_FMT ", page: %d, channel: %d", LOCAL_PR_ARG, __entry->page, __entry->channel) ); TRACE_EVENT(802154_drv_set_cca_mode, TP_PROTO(struct ieee802154_local *local, const struct wpan_phy_cca *cca), TP_ARGS(local, cca), TP_STRUCT__entry( LOCAL_ENTRY CCA_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; CCA_ASSIGN; ), TP_printk(LOCAL_PR_FMT ", " CCA_PR_FMT, LOCAL_PR_ARG, CCA_PR_ARG) ); TRACE_EVENT(802154_drv_set_cca_ed_level, TP_PROTO(struct ieee802154_local *local, s32 mbm), TP_ARGS(local, mbm), TP_STRUCT__entry( LOCAL_ENTRY __field(s32, mbm) ), TP_fast_assign( LOCAL_ASSIGN; __entry->mbm = mbm; ), TP_printk(LOCAL_PR_FMT ", ed level: %d", LOCAL_PR_ARG, __entry->mbm) ); TRACE_EVENT(802154_drv_set_tx_power, TP_PROTO(struct ieee802154_local *local, s32 power), TP_ARGS(local, power), TP_STRUCT__entry( LOCAL_ENTRY __field(s32, power) ), TP_fast_assign( LOCAL_ASSIGN; __entry->power = power; ), TP_printk(LOCAL_PR_FMT ", mbm: %d", LOCAL_PR_ARG, __entry->power) ); TRACE_EVENT(802154_drv_set_lbt_mode, TP_PROTO(struct ieee802154_local *local, bool mode), TP_ARGS(local, mode), TP_STRUCT__entry( LOCAL_ENTRY __field(bool, mode) ), TP_fast_assign( LOCAL_ASSIGN; __entry->mode = mode; ), TP_printk(LOCAL_PR_FMT ", lbt mode: %s", LOCAL_PR_ARG, BOOL_TO_STR(__entry->mode)) ); TRACE_EVENT(802154_drv_set_short_addr, TP_PROTO(struct ieee802154_local *local, __le16 short_addr), TP_ARGS(local, short_addr), TP_STRUCT__entry( LOCAL_ENTRY __field(__le16, short_addr) ), TP_fast_assign( LOCAL_ASSIGN; __entry->short_addr = short_addr; ), TP_printk(LOCAL_PR_FMT ", short addr: 0x%04x", LOCAL_PR_ARG, le16_to_cpu(__entry->short_addr)) ); TRACE_EVENT(802154_drv_set_pan_id, TP_PROTO(struct ieee802154_local *local, __le16 pan_id), TP_ARGS(local, pan_id), TP_STRUCT__entry( LOCAL_ENTRY __field(__le16, pan_id) ), TP_fast_assign( LOCAL_ASSIGN; __entry->pan_id = pan_id; ), TP_printk(LOCAL_PR_FMT ", pan id: 0x%04x", LOCAL_PR_ARG, le16_to_cpu(__entry->pan_id)) ); TRACE_EVENT(802154_drv_set_extended_addr, TP_PROTO(struct ieee802154_local *local, __le64 extended_addr), TP_ARGS(local, extended_addr), TP_STRUCT__entry( LOCAL_ENTRY __field(__le64, extended_addr) ), TP_fast_assign( LOCAL_ASSIGN; __entry->extended_addr = extended_addr; ), TP_printk(LOCAL_PR_FMT ", extended addr: 0x%llx", LOCAL_PR_ARG, le64_to_cpu(__entry->extended_addr)) ); TRACE_EVENT(802154_drv_set_pan_coord, TP_PROTO(struct ieee802154_local *local, bool is_coord), TP_ARGS(local, is_coord), TP_STRUCT__entry( LOCAL_ENTRY __field(bool, is_coord) ), TP_fast_assign( LOCAL_ASSIGN; __entry->is_coord = is_coord; ), TP_printk(LOCAL_PR_FMT ", is_coord: %s", LOCAL_PR_ARG, BOOL_TO_STR(__entry->is_coord)) ); TRACE_EVENT(802154_drv_set_csma_params, TP_PROTO(struct ieee802154_local *local, u8 min_be, u8 max_be, u8 max_csma_backoffs), TP_ARGS(local, min_be, max_be, max_csma_backoffs), TP_STRUCT__entry( LOCAL_ENTRY __field(u8, min_be) __field(u8, max_be) __field(u8, max_csma_backoffs) ), TP_fast_assign( LOCAL_ASSIGN, __entry->min_be = min_be; __entry->max_be = max_be; __entry->max_csma_backoffs = max_csma_backoffs; ), TP_printk(LOCAL_PR_FMT ", min be: %d, max be: %d, max csma backoffs: %d", LOCAL_PR_ARG, __entry->min_be, __entry->max_be, __entry->max_csma_backoffs) ); TRACE_EVENT(802154_drv_set_max_frame_retries, TP_PROTO(struct ieee802154_local *local, s8 max_frame_retries), TP_ARGS(local, max_frame_retries), TP_STRUCT__entry( LOCAL_ENTRY __field(s8, max_frame_retries) ), TP_fast_assign( LOCAL_ASSIGN; __entry->max_frame_retries = max_frame_retries; ), TP_printk(LOCAL_PR_FMT ", max frame retries: %d", LOCAL_PR_ARG, __entry->max_frame_retries) ); TRACE_EVENT(802154_drv_set_promiscuous_mode, TP_PROTO(struct ieee802154_local *local, bool on), TP_ARGS(local, on), TP_STRUCT__entry( LOCAL_ENTRY __field(bool, on) ), TP_fast_assign( LOCAL_ASSIGN; __entry->on = on; ), TP_printk(LOCAL_PR_FMT ", promiscuous mode: %s", LOCAL_PR_ARG, BOOL_TO_STR(__entry->on)) ); #endif /* !__MAC802154_DRIVER_TRACE || TRACE_HEADER_MULTI_READ */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE trace #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 /* SPDX-License-Identifier: GPL-2.0 */ /* * Generic nexthop implementation * * Copyright (c) 2017-19 Cumulus Networks * Copyright (c) 2017-19 David Ahern <dsa@cumulusnetworks.com> */ #ifndef __LINUX_NEXTHOP_H #define __LINUX_NEXTHOP_H #include <linux/netdevice.h> #include <linux/notifier.h> #include <linux/route.h> #include <linux/types.h> #include <net/ip_fib.h> #include <net/ip6_fib.h> #include <net/netlink.h> #define NEXTHOP_VALID_USER_FLAGS RTNH_F_ONLINK struct nexthop; struct nh_config { u32 nh_id; u8 nh_family; u8 nh_protocol; u8 nh_blackhole; u8 nh_fdb; u32 nh_flags; int nh_ifindex; struct net_device *dev; union { __be32 ipv4; struct in6_addr ipv6; } gw; struct nlattr *nh_grp; u16 nh_grp_type; struct nlattr *nh_encap; u16 nh_encap_type; u32 nlflags; struct nl_info nlinfo; }; struct nh_info { struct hlist_node dev_hash; /* entry on netns devhash */ struct nexthop *nh_parent; u8 family; bool reject_nh; bool fdb_nh; union { struct fib_nh_common fib_nhc; struct fib_nh fib_nh; struct fib6_nh fib6_nh; }; }; struct nh_grp_entry { struct nexthop *nh; u8 weight; atomic_t upper_bound; struct list_head nh_list; struct nexthop *nh_parent; /* nexthop of group with this entry */ }; struct nh_group { struct nh_group *spare; /* spare group for removals */ u16 num_nh; bool mpath; bool fdb_nh; bool has_v4; struct nh_grp_entry nh_entries[]; }; struct nexthop { struct rb_node rb_node; /* entry on netns rbtree */ struct list_head fi_list; /* v4 entries using nh */ struct list_head f6i_list; /* v6 entries using nh */ struct list_head fdb_list; /* fdb entries using this nh */ struct list_head grp_list; /* nh group entries using this nh */ struct net *net; u32 id; u8 protocol; /* app managing this nh */ u8 nh_flags; bool is_group; refcount_t refcnt; struct rcu_head rcu; union { struct nh_info __rcu *nh_info; struct nh_group __rcu *nh_grp; }; }; enum nexthop_event_type { NEXTHOP_EVENT_DEL }; int register_nexthop_notifier(struct net *net, struct notifier_block *nb); int unregister_nexthop_notifier(struct net *net, struct notifier_block *nb); /* caller is holding rcu or rtnl; no reference taken to nexthop */ struct nexthop *nexthop_find_by_id(struct net *net, u32 id); void nexthop_free_rcu(struct rcu_head *head); static inline bool nexthop_get(struct nexthop *nh) { return refcount_inc_not_zero(&nh->refcnt); } static inline void nexthop_put(struct nexthop *nh) { if (refcount_dec_and_test(&nh->refcnt)) call_rcu(&nh->rcu, nexthop_free_rcu); } static inline bool nexthop_cmp(const struct nexthop *nh1, const struct nexthop *nh2) { return nh1 == nh2; } static inline bool nexthop_is_fdb(const struct nexthop *nh) { if (nh->is_group) { const struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->fdb_nh; } else { const struct nh_info *nhi; nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->fdb_nh; } } static inline bool nexthop_has_v4(const struct nexthop *nh) { if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->has_v4; } return false; } static inline bool nexthop_is_multipath(const struct nexthop *nh) { if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->mpath; } return false; } struct nexthop *nexthop_select_path(struct nexthop *nh, int hash); static inline unsigned int nexthop_num_path(const struct nexthop *nh) { unsigned int rc = 1; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->mpath) rc = nh_grp->num_nh; } return rc; } static inline struct nexthop *nexthop_mpath_select(const struct nh_group *nhg, int nhsel) { /* for_nexthops macros in fib_semantics.c grabs a pointer to * the nexthop before checking nhsel */ if (nhsel >= nhg->num_nh) return NULL; return nhg->nh_entries[nhsel].nh; } static inline int nexthop_mpath_fill_node(struct sk_buff *skb, struct nexthop *nh, u8 rt_family) { struct nh_group *nhg = rtnl_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; struct nh_info *nhi = rcu_dereference_rtnl(nhe->nh_info); struct fib_nh_common *nhc = &nhi->fib_nhc; int weight = nhg->nh_entries[i].weight; if (fib_add_nexthop(skb, nhc, weight, rt_family, 0) < 0) return -EMSGSIZE; } return 0; } /* called with rcu lock */ static inline bool nexthop_is_blackhole(const struct nexthop *nh) { const struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->num_nh > 1) return false; nh = nh_grp->nh_entries[0].nh; } nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->reject_nh; } static inline void nexthop_path_fib_result(struct fib_result *res, int hash) { struct nh_info *nhi; struct nexthop *nh; nh = nexthop_select_path(res->fi->nh, hash); nhi = rcu_dereference(nh->nh_info); res->nhc = &nhi->fib_nhc; } /* called with rcu read lock or rtnl held */ static inline struct fib_nh_common *nexthop_fib_nhc(struct nexthop *nh, int nhsel) { struct nh_info *nhi; BUILD_BUG_ON(offsetof(struct fib_nh, nh_common) != 0); BUILD_BUG_ON(offsetof(struct fib6_nh, nh_common) != 0); if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->mpath) { nh = nexthop_mpath_select(nh_grp, nhsel); if (!nh) return NULL; } } nhi = rcu_dereference_rtnl(nh->nh_info); return &nhi->fib_nhc; } /* called from fib_table_lookup with rcu_lock */ static inline struct fib_nh_common *nexthop_get_nhc_lookup(const struct nexthop *nh, int fib_flags, const struct flowi4 *flp, int *nhsel) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nhg = rcu_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; nhi = rcu_dereference(nhe->nh_info); if (fib_lookup_good_nhc(&nhi->fib_nhc, fib_flags, flp)) { *nhsel = i; return &nhi->fib_nhc; } } } else { nhi = rcu_dereference(nh->nh_info); if (fib_lookup_good_nhc(&nhi->fib_nhc, fib_flags, flp)) { *nhsel = 0; return &nhi->fib_nhc; } } return NULL; } static inline bool nexthop_uses_dev(const struct nexthop *nh, const struct net_device *dev) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nhg = rcu_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; nhi = rcu_dereference(nhe->nh_info); if (nhc_l3mdev_matches_dev(&nhi->fib_nhc, dev)) return true; } } else { nhi = rcu_dereference(nh->nh_info); if (nhc_l3mdev_matches_dev(&nhi->fib_nhc, dev)) return true; } return false; } static inline unsigned int fib_info_num_path(const struct fib_info *fi) { if (unlikely(fi->nh)) return nexthop_num_path(fi->nh); return fi->fib_nhs; } int fib_check_nexthop(struct nexthop *nh, u8 scope, struct netlink_ext_ack *extack); static inline struct fib_nh_common *fib_info_nhc(struct fib_info *fi, int nhsel) { if (unlikely(fi->nh)) return nexthop_fib_nhc(fi->nh, nhsel); return &fi->fib_nh[nhsel].nh_common; } /* only used when fib_nh is built into fib_info */ static inline struct fib_nh *fib_info_nh(struct fib_info *fi, int nhsel) { WARN_ON(fi->nh); return &fi->fib_nh[nhsel]; } /* * IPv6 variants */ int fib6_check_nexthop(struct nexthop *nh, struct fib6_config *cfg, struct netlink_ext_ack *extack); /* Caller should either hold rcu_read_lock(), or RTNL. */ static inline struct fib6_nh *nexthop_fib6_nh(struct nexthop *nh) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); nh = nexthop_mpath_select(nh_grp, 0); if (!nh) return NULL; } nhi = rcu_dereference_rtnl(nh->nh_info); if (nhi->family == AF_INET6) return &nhi->fib6_nh; return NULL; } /* Variant of nexthop_fib6_nh(). * Caller should either hold rcu_read_lock_bh(), or RTNL. */ static inline struct fib6_nh *nexthop_fib6_nh_bh(struct nexthop *nh) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_bh_rtnl(nh->nh_grp); nh = nexthop_mpath_select(nh_grp, 0); if (!nh) return NULL; } nhi = rcu_dereference_bh_rtnl(nh->nh_info); if (nhi->family == AF_INET6) return &nhi->fib6_nh; return NULL; } static inline struct net_device *fib6_info_nh_dev(struct fib6_info *f6i) { struct fib6_nh *fib6_nh; fib6_nh = f6i->nh ? nexthop_fib6_nh(f6i->nh) : f6i->fib6_nh; return fib6_nh->fib_nh_dev; } static inline void nexthop_path_fib6_result(struct fib6_result *res, int hash) { struct nexthop *nh = res->f6i->nh; struct nh_info *nhi; nh = nexthop_select_path(nh, hash); nhi = rcu_dereference_rtnl(nh->nh_info); if (nhi->reject_nh) { res->fib6_type = RTN_BLACKHOLE; res->fib6_flags |= RTF_REJECT; res->nh = nexthop_fib6_nh(nh); } else { res->nh = &nhi->fib6_nh; } } int nexthop_for_each_fib6_nh(struct nexthop *nh, int (*cb)(struct fib6_nh *nh, void *arg), void *arg); static inline int nexthop_get_family(struct nexthop *nh) { struct nh_info *nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->family; } static inline struct fib_nh_common *nexthop_fdb_nhc(struct nexthop *nh) { struct nh_info *nhi = rcu_dereference_rtnl(nh->nh_info); return &nhi->fib_nhc; } static inline struct fib_nh_common *nexthop_path_fdb_result(struct nexthop *nh, int hash) { struct nh_info *nhi; struct nexthop *nhp; nhp = nexthop_select_path(nh, hash); if (unlikely(!nhp)) return NULL; nhi = rcu_dereference(nhp->nh_info); return &nhi->fib_nhc; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NVRAM_H #define _LINUX_NVRAM_H #include <linux/errno.h> #include <uapi/linux/nvram.h> #ifdef CONFIG_PPC #include <asm/machdep.h> #endif /** * struct nvram_ops - NVRAM functionality made available to drivers * @read: validate checksum (if any) then load a range of bytes from NVRAM * @write: store a range of bytes to NVRAM then update checksum (if any) * @read_byte: load a single byte from NVRAM * @write_byte: store a single byte to NVRAM * @get_size: return the fixed number of bytes in the NVRAM * * Architectures which provide an nvram ops struct need not implement all * of these methods. If the NVRAM hardware can be accessed only one byte * at a time then it may be sufficient to provide .read_byte and .write_byte. * If the NVRAM has a checksum (and it is to be checked) the .read and * .write methods can be used to implement that efficiently. * * Portable drivers may use the wrapper functions defined here. * The nvram_read() and nvram_write() functions call the .read and .write * methods when available and fall back on the .read_byte and .write_byte * methods otherwise. */ struct nvram_ops { ssize_t (*get_size)(void); unsigned char (*read_byte)(int); void (*write_byte)(unsigned char, int); ssize_t (*read)(char *, size_t, loff_t *); ssize_t (*write)(char *, size_t, loff_t *); #if defined(CONFIG_X86) || defined(CONFIG_M68K) long (*initialize)(void); long (*set_checksum)(void); #endif }; extern const struct nvram_ops arch_nvram_ops; static inline ssize_t nvram_get_size(void) { #ifdef CONFIG_PPC if (ppc_md.nvram_size) return ppc_md.nvram_size(); #else if (arch_nvram_ops.get_size) return arch_nvram_ops.get_size(); #endif return -ENODEV; } static inline unsigned char nvram_read_byte(int addr) { #ifdef CONFIG_PPC if (ppc_md.nvram_read_val) return ppc_md.nvram_read_val(addr); #else if (arch_nvram_ops.read_byte) return arch_nvram_ops.read_byte(addr); #endif return 0xFF; } static inline void nvram_write_byte(unsigned char val, int addr) { #ifdef CONFIG_PPC if (ppc_md.nvram_write_val) ppc_md.nvram_write_val(addr, val); #else if (arch_nvram_ops.write_byte) arch_nvram_ops.write_byte(val, addr); #endif } static inline ssize_t nvram_read_bytes(char *buf, size_t count, loff_t *ppos) { ssize_t nvram_size = nvram_get_size(); loff_t i; char *p = buf; if (nvram_size < 0) return nvram_size; for (i = *ppos; count > 0 && i < nvram_size; ++i, ++p, --count) *p = nvram_read_byte(i); *ppos = i; return p - buf; } static inline ssize_t nvram_write_bytes(char *buf, size_t count, loff_t *ppos) { ssize_t nvram_size = nvram_get_size(); loff_t i; char *p = buf; if (nvram_size < 0) return nvram_size; for (i = *ppos; count > 0 && i < nvram_size; ++i, ++p, --count) nvram_write_byte(*p, i); *ppos = i; return p - buf; } static inline ssize_t nvram_read(char *buf, size_t count, loff_t *ppos) { #ifdef CONFIG_PPC if (ppc_md.nvram_read) return ppc_md.nvram_read(buf, count, ppos); #else if (arch_nvram_ops.read) return arch_nvram_ops.read(buf, count, ppos); #endif return nvram_read_bytes(buf, count, ppos); } static inline ssize_t nvram_write(char *buf, size_t count, loff_t *ppos) { #ifdef CONFIG_PPC if (ppc_md.nvram_write) return ppc_md.nvram_write(buf, count, ppos); #else if (arch_nvram_ops.write) return arch_nvram_ops.write(buf, count, ppos); #endif return nvram_write_bytes(buf, count, ppos); } #endif /* _LINUX_NVRAM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_GENERIC_PGALLOC_H #define __ASM_GENERIC_PGALLOC_H #ifdef CONFIG_MMU #define GFP_PGTABLE_KERNEL (GFP_KERNEL | __GFP_ZERO) #define GFP_PGTABLE_USER (GFP_PGTABLE_KERNEL | __GFP_ACCOUNT) /** * __pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * This function is intended for architectures that need * anything beyond simple page allocation. * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *__pte_alloc_one_kernel(struct mm_struct *mm) { return (pte_t *)__get_free_page(GFP_PGTABLE_KERNEL); } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE_KERNEL /** * pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm) { return __pte_alloc_one_kernel(mm); } #endif /** * pte_free_kernel - free PTE-level kernel page table page * @mm: the mm_struct of the current context * @pte: pointer to the memory containing the page table */ static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) { free_page((unsigned long)pte); } /** * __pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * @gfp: GFP flags to use for the allocation * * Allocates a page and runs the pgtable_pte_page_ctor(). * * This function is intended for architectures that need * anything beyond simple page allocation or must have custom GFP flags. * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t __pte_alloc_one(struct mm_struct *mm, gfp_t gfp) { struct page *pte; pte = alloc_page(gfp); if (!pte) return NULL; if (!pgtable_pte_page_ctor(pte)) { __free_page(pte); return NULL; } return pte; } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE /** * pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pte_page_ctor(). * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t pte_alloc_one(struct mm_struct *mm) { return __pte_alloc_one(mm, GFP_PGTABLE_USER); } #endif /* * Should really implement gc for free page table pages. This could be * done with a reference count in struct page. */ /** * pte_free - free PTE-level user page table page * @mm: the mm_struct of the current context * @pte_page: the `struct page` representing the page table */ static inline void pte_free(struct mm_struct *mm, struct page *pte_page) { pgtable_pte_page_dtor(pte_page); __free_page(pte_page); } #if CONFIG_PGTABLE_LEVELS > 2 #ifndef __HAVE_ARCH_PMD_ALLOC_ONE /** * pmd_alloc_one - allocate a page for PMD-level page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pmd_page_ctor(). * Allocations use %GFP_PGTABLE_USER in user context and * %GFP_PGTABLE_KERNEL in kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) { struct page *page; gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; page = alloc_pages(gfp, 0); if (!page) return NULL; if (!pgtable_pmd_page_ctor(page)) { __free_pages(page, 0); return NULL; } return (pmd_t *)page_address(page); } #endif #ifndef __HAVE_ARCH_PMD_FREE static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) { BUG_ON((unsigned long)pmd & (PAGE_SIZE-1)); pgtable_pmd_page_dtor(virt_to_page(pmd)); free_page((unsigned long)pmd); } #endif #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 #ifndef __HAVE_ARCH_PUD_ALLOC_ONE /** * pud_alloc_one - allocate a page for PUD-level page table * @mm: the mm_struct of the current context * * Allocates a page using %GFP_PGTABLE_USER for user context and * %GFP_PGTABLE_KERNEL for kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) { gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; return (pud_t *)get_zeroed_page(gfp); } #endif static inline void pud_free(struct mm_struct *mm, pud_t *pud) { BUG_ON((unsigned long)pud & (PAGE_SIZE-1)); free_page((unsigned long)pud); } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ #ifndef __HAVE_ARCH_PGD_FREE static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) { free_page((unsigned long)pgd); } #endif #endif /* CONFIG_MMU */ #endif /* __ASM_GENERIC_PGALLOC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions of the Internet Protocol. * * Version: @(#)in.h 1.0.1 04/21/93 * * Authors: Original taken from the GNU Project <netinet/in.h> file. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _LINUX_IN_H #define _LINUX_IN_H #include <linux/errno.h> #include <uapi/linux/in.h> static inline int proto_ports_offset(int proto) { switch (proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_DCCP: case IPPROTO_ESP: /* SPI */ case IPPROTO_SCTP: case IPPROTO_UDPLITE: return 0; case IPPROTO_AH: /* SPI */ return 4; default: return -EINVAL; } } static inline bool ipv4_is_loopback(__be32 addr) { return (addr & htonl(0xff000000)) == htonl(0x7f000000); } static inline bool ipv4_is_multicast(__be32 addr) { return (addr & htonl(0xf0000000)) == htonl(0xe0000000); } static inline bool ipv4_is_local_multicast(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xe0000000); } static inline bool ipv4_is_lbcast(__be32 addr) { /* limited broadcast */ return addr == htonl(INADDR_BROADCAST); } static inline bool ipv4_is_all_snoopers(__be32 addr) { return addr == htonl(INADDR_ALLSNOOPERS_GROUP); } static inline bool ipv4_is_zeronet(__be32 addr) { return (addr == 0); } /* Special-Use IPv4 Addresses (RFC3330) */ static inline bool ipv4_is_private_10(__be32 addr) { return (addr & htonl(0xff000000)) == htonl(0x0a000000); } static inline bool ipv4_is_private_172(__be32 addr) { return (addr & htonl(0xfff00000)) == htonl(0xac100000); } static inline bool ipv4_is_private_192(__be32 addr) { return (addr & htonl(0xffff0000)) == htonl(0xc0a80000); } static inline bool ipv4_is_linklocal_169(__be32 addr) { return (addr & htonl(0xffff0000)) == htonl(0xa9fe0000); } static inline bool ipv4_is_anycast_6to4(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xc0586300); } static inline bool ipv4_is_test_192(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xc0000200); } static inline bool ipv4_is_test_198(__be32 addr) { return (addr & htonl(0xfffe0000)) == htonl(0xc6120000); } #endif /* _LINUX_IN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __KERNEL_PRINTK__ #define __KERNEL_PRINTK__ #include <stdarg.h> #include <linux/init.h> #include <linux/kern_levels.h> #include <linux/linkage.h> #include <linux/cache.h> #include <linux/ratelimit_types.h> extern const char linux_banner[]; extern const char linux_proc_banner[]; extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ #define PRINTK_MAX_SINGLE_HEADER_LEN 2 static inline int printk_get_level(const char *buffer) { if (buffer[0] == KERN_SOH_ASCII && buffer[1]) { switch (buffer[1]) { case '0' ... '7': case 'c': /* KERN_CONT */ return buffer[1]; } } return 0; } static inline const char *printk_skip_level(const char *buffer) { if (printk_get_level(buffer)) return buffer + 2; return buffer; } static inline const char *printk_skip_headers(const char *buffer) { while (printk_get_level(buffer)) buffer = printk_skip_level(buffer); return buffer; } #define CONSOLE_EXT_LOG_MAX 8192 /* printk's without a loglevel use this.. */ #define MESSAGE_LOGLEVEL_DEFAULT CONFIG_MESSAGE_LOGLEVEL_DEFAULT /* We show everything that is MORE important than this.. */ #define CONSOLE_LOGLEVEL_SILENT 0 /* Mum's the word */ #define CONSOLE_LOGLEVEL_MIN 1 /* Minimum loglevel we let people use */ #define CONSOLE_LOGLEVEL_DEBUG 10 /* issue debug messages */ #define CONSOLE_LOGLEVEL_MOTORMOUTH 15 /* You can't shut this one up */ /* * Default used to be hard-coded at 7, quiet used to be hardcoded at 4, * we're now allowing both to be set from kernel config. */ #define CONSOLE_LOGLEVEL_DEFAULT CONFIG_CONSOLE_LOGLEVEL_DEFAULT #define CONSOLE_LOGLEVEL_QUIET CONFIG_CONSOLE_LOGLEVEL_QUIET extern int console_printk[]; #define console_loglevel (console_printk[0]) #define default_message_loglevel (console_printk[1]) #define minimum_console_loglevel (console_printk[2]) #define default_console_loglevel (console_printk[3]) static inline void console_silent(void) { console_loglevel = CONSOLE_LOGLEVEL_SILENT; } static inline void console_verbose(void) { if (console_loglevel) console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; } /* strlen("ratelimit") + 1 */ #define DEVKMSG_STR_MAX_SIZE 10 extern char devkmsg_log_str[]; struct ctl_table; extern int suppress_printk; struct va_format { const char *fmt; va_list *va; }; /* * FW_BUG * Add this to a message where you are sure the firmware is buggy or behaves * really stupid or out of spec. Be aware that the responsible BIOS developer * should be able to fix this issue or at least get a concrete idea of the * problem by reading your message without the need of looking at the kernel * code. * * Use it for definite and high priority BIOS bugs. * * FW_WARN * Use it for not that clear (e.g. could the kernel messed up things already?) * and medium priority BIOS bugs. * * FW_INFO * Use this one if you want to tell the user or vendor about something * suspicious, but generally harmless related to the firmware. * * Use it for information or very low priority BIOS bugs. */ #define FW_BUG "[Firmware Bug]: " #define FW_WARN "[Firmware Warn]: " #define FW_INFO "[Firmware Info]: " /* * HW_ERR * Add this to a message for hardware errors, so that user can report * it to hardware vendor instead of LKML or software vendor. */ #define HW_ERR "[Hardware Error]: " /* * DEPRECATED * Add this to a message whenever you want to warn user space about the use * of a deprecated aspect of an API so they can stop using it */ #define DEPRECATED "[Deprecated]: " /* * Dummy printk for disabled debugging statements to use whilst maintaining * gcc's format checking. */ #define no_printk(fmt, ...) \ ({ \ if (0) \ printk(fmt, ##__VA_ARGS__); \ 0; \ }) #ifdef CONFIG_EARLY_PRINTK extern asmlinkage __printf(1, 2) void early_printk(const char *fmt, ...); #else static inline __printf(1, 2) __cold void early_printk(const char *s, ...) { } #endif #ifdef CONFIG_PRINTK_NMI extern void printk_nmi_enter(void); extern void printk_nmi_exit(void); extern void printk_nmi_direct_enter(void); extern void printk_nmi_direct_exit(void); #else static inline void printk_nmi_enter(void) { } static inline void printk_nmi_exit(void) { } static inline void printk_nmi_direct_enter(void) { } static inline void printk_nmi_direct_exit(void) { } #endif /* PRINTK_NMI */ struct dev_printk_info; #ifdef CONFIG_PRINTK asmlinkage __printf(4, 0) int vprintk_emit(int facility, int level, const struct dev_printk_info *dev_info, const char *fmt, va_list args); asmlinkage __printf(1, 0) int vprintk(const char *fmt, va_list args); asmlinkage __printf(1, 2) __cold int printk(const char *fmt, ...); /* * Special printk facility for scheduler/timekeeping use only, _DO_NOT_USE_ ! */ __printf(1, 2) __cold int printk_deferred(const char *fmt, ...); /* * Please don't use printk_ratelimit(), because it shares ratelimiting state * with all other unrelated printk_ratelimit() callsites. Instead use * printk_ratelimited() or plain old __ratelimit(). */ extern int __printk_ratelimit(const char *func); #define printk_ratelimit() __printk_ratelimit(__func__) extern bool printk_timed_ratelimit(unsigned long *caller_jiffies, unsigned int interval_msec); extern int printk_delay_msec; extern int dmesg_restrict; extern int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, void *buf, size_t *lenp, loff_t *ppos); extern void wake_up_klogd(void); char *log_buf_addr_get(void); u32 log_buf_len_get(void); void log_buf_vmcoreinfo_setup(void); void __init setup_log_buf(int early); __printf(1, 2) void dump_stack_set_arch_desc(const char *fmt, ...); void dump_stack_print_info(const char *log_lvl); void show_regs_print_info(const char *log_lvl); extern asmlinkage void dump_stack(void) __cold; extern void printk_safe_flush(void); extern void printk_safe_flush_on_panic(void); #else static inline __printf(1, 0) int vprintk(const char *s, va_list args) { return 0; } static inline __printf(1, 2) __cold int printk(const char *s, ...) { return 0; } static inline __printf(1, 2) __cold int printk_deferred(const char *s, ...) { return 0; } static inline int printk_ratelimit(void) { return 0; } static inline bool printk_timed_ratelimit(unsigned long *caller_jiffies, unsigned int interval_msec) { return false; } static inline void wake_up_klogd(void) { } static inline char *log_buf_addr_get(void) { return NULL; } static inline u32 log_buf_len_get(void) { return 0; } static inline void log_buf_vmcoreinfo_setup(void) { } static inline void setup_log_buf(int early) { } static inline __printf(1, 2) void dump_stack_set_arch_desc(const char *fmt, ...) { } static inline void dump_stack_print_info(const char *log_lvl) { } static inline void show_regs_print_info(const char *log_lvl) { } static inline void dump_stack(void) { } static inline void printk_safe_flush(void) { } static inline void printk_safe_flush_on_panic(void) { } #endif extern int kptr_restrict; /** * pr_fmt - used by the pr_*() macros to generate the printk format string * @fmt: format string passed from a pr_*() macro * * This macro can be used to generate a unified format string for pr_*() * macros. A common use is to prefix all pr_*() messages in a file with a common * string. For example, defining this at the top of a source file: * * #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt * * would prefix all pr_info, pr_emerg... messages in the file with the module * name. */ #ifndef pr_fmt #define pr_fmt(fmt) fmt #endif /** * pr_emerg - Print an emergency-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_EMERG loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_emerg(fmt, ...) \ printk(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) /** * pr_alert - Print an alert-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_ALERT loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_alert(fmt, ...) \ printk(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) /** * pr_crit - Print a critical-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_CRIT loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_crit(fmt, ...) \ printk(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) /** * pr_err - Print an error-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_ERR loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_err(fmt, ...) \ printk(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) /** * pr_warn - Print a warning-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_WARNING loglevel. It uses pr_fmt() * to generate the format string. */ #define pr_warn(fmt, ...) \ printk(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) /** * pr_notice - Print a notice-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_NOTICE loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_notice(fmt, ...) \ printk(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) /** * pr_info - Print an info-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_INFO loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_info(fmt, ...) \ printk(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /** * pr_cont - Continues a previous log message in the same line. * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_CONT loglevel. It should only be * used when continuing a log message with no newline ('\n') enclosed. Otherwise * it defaults back to KERN_DEFAULT loglevel. */ #define pr_cont(fmt, ...) \ printk(KERN_CONT fmt, ##__VA_ARGS__) /** * pr_devel - Print a debug-level message conditionally * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_DEBUG loglevel if DEBUG is * defined. Otherwise it does nothing. * * It uses pr_fmt() to generate the format string. */ #ifdef DEBUG #define pr_devel(fmt, ...) \ printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) #include <linux/dynamic_debug.h> /** * pr_debug - Print a debug-level message conditionally * @fmt: format string * @...: arguments for the format string * * This macro expands to dynamic_pr_debug() if CONFIG_DYNAMIC_DEBUG is * set. Otherwise, if DEBUG is defined, it's equivalent to a printk with * KERN_DEBUG loglevel. If DEBUG is not defined it does nothing. * * It uses pr_fmt() to generate the format string (dynamic_pr_debug() uses * pr_fmt() internally). */ #define pr_debug(fmt, ...) \ dynamic_pr_debug(fmt, ##__VA_ARGS__) #elif defined(DEBUG) #define pr_debug(fmt, ...) \ printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* * Print a one-time message (analogous to WARN_ONCE() et al): */ #ifdef CONFIG_PRINTK #define printk_once(fmt, ...) \ ({ \ static bool __section(".data.once") __print_once; \ bool __ret_print_once = !__print_once; \ \ if (!__print_once) { \ __print_once = true; \ printk(fmt, ##__VA_ARGS__); \ } \ unlikely(__ret_print_once); \ }) #define printk_deferred_once(fmt, ...) \ ({ \ static bool __section(".data.once") __print_once; \ bool __ret_print_once = !__print_once; \ \ if (!__print_once) { \ __print_once = true; \ printk_deferred(fmt, ##__VA_ARGS__); \ } \ unlikely(__ret_print_once); \ }) #else #define printk_once(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #define printk_deferred_once(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #endif #define pr_emerg_once(fmt, ...) \ printk_once(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) #define pr_alert_once(fmt, ...) \ printk_once(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) #define pr_crit_once(fmt, ...) \ printk_once(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) #define pr_err_once(fmt, ...) \ printk_once(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) #define pr_warn_once(fmt, ...) \ printk_once(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) #define pr_notice_once(fmt, ...) \ printk_once(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) #define pr_info_once(fmt, ...) \ printk_once(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /* no pr_cont_once, don't do that... */ #if defined(DEBUG) #define pr_devel_once(fmt, ...) \ printk_once(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel_once(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(DEBUG) #define pr_debug_once(fmt, ...) \ printk_once(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug_once(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* * ratelimited messages with local ratelimit_state, * no local ratelimit_state used in the !PRINTK case */ #ifdef CONFIG_PRINTK #define printk_ratelimited(fmt, ...) \ ({ \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ \ if (__ratelimit(&_rs)) \ printk(fmt, ##__VA_ARGS__); \ }) #else #define printk_ratelimited(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #endif #define pr_emerg_ratelimited(fmt, ...) \ printk_ratelimited(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) #define pr_alert_ratelimited(fmt, ...) \ printk_ratelimited(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) #define pr_crit_ratelimited(fmt, ...) \ printk_ratelimited(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) #define pr_err_ratelimited(fmt, ...) \ printk_ratelimited(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) #define pr_warn_ratelimited(fmt, ...) \ printk_ratelimited(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) #define pr_notice_ratelimited(fmt, ...) \ printk_ratelimited(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) #define pr_info_ratelimited(fmt, ...) \ printk_ratelimited(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /* no pr_cont_ratelimited, don't do that... */ #if defined(DEBUG) #define pr_devel_ratelimited(fmt, ...) \ printk_ratelimited(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel_ratelimited(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) /* descriptor check is first to prevent flooding with "callbacks suppressed" */ #define pr_debug_ratelimited(fmt, ...) \ do { \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, pr_fmt(fmt)); \ if (DYNAMIC_DEBUG_BRANCH(descriptor) && \ __ratelimit(&_rs)) \ __dynamic_pr_debug(&descriptor, pr_fmt(fmt), ##__VA_ARGS__); \ } while (0) #elif defined(DEBUG) #define pr_debug_ratelimited(fmt, ...) \ printk_ratelimited(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug_ratelimited(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif extern const struct file_operations kmsg_fops; enum { DUMP_PREFIX_NONE, DUMP_PREFIX_ADDRESS, DUMP_PREFIX_OFFSET }; extern int hex_dump_to_buffer(const void *buf, size_t len, int rowsize, int groupsize, char *linebuf, size_t linebuflen, bool ascii); #ifdef CONFIG_PRINTK extern void print_hex_dump(const char *level, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii); #else static inline void print_hex_dump(const char *level, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii) { } static inline void print_hex_dump_bytes(const char *prefix_str, int prefix_type, const void *buf, size_t len) { } #endif #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) #define print_hex_dump_debug(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) \ dynamic_hex_dump(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) #elif defined(DEBUG) #define print_hex_dump_debug(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) \ print_hex_dump(KERN_DEBUG, prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) #else static inline void print_hex_dump_debug(const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii) { } #endif /** * print_hex_dump_bytes - shorthand form of print_hex_dump() with default params * @prefix_str: string to prefix each line with; * caller supplies trailing spaces for alignment if desired * @prefix_type: controls whether prefix of an offset, address, or none * is printed (%DUMP_PREFIX_OFFSET, %DUMP_PREFIX_ADDRESS, %DUMP_PREFIX_NONE) * @buf: data blob to dump * @len: number of bytes in the @buf * * Calls print_hex_dump(), with log level of KERN_DEBUG, * rowsize of 16, groupsize of 1, and ASCII output included. */ #define print_hex_dump_bytes(prefix_str, prefix_type, buf, len) \ print_hex_dump_debug(prefix_str, prefix_type, 16, 1, buf, len, true) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HIGHMEM_H #define _LINUX_HIGHMEM_H #include <linux/fs.h> #include <linux/kernel.h> #include <linux/bug.h> #include <linux/mm.h> #include <linux/uaccess.h> #include <linux/hardirq.h> #include <asm/cacheflush.h> #ifndef ARCH_HAS_FLUSH_ANON_PAGE static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) { } #endif #ifndef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE static inline void flush_kernel_dcache_page(struct page *page) { } static inline void flush_kernel_vmap_range(void *vaddr, int size) { } static inline void invalidate_kernel_vmap_range(void *vaddr, int size) { } #endif #include <asm/kmap_types.h> #ifdef CONFIG_HIGHMEM extern void *kmap_atomic_high_prot(struct page *page, pgprot_t prot); extern void kunmap_atomic_high(void *kvaddr); #include <asm/highmem.h> #ifndef ARCH_HAS_KMAP_FLUSH_TLB static inline void kmap_flush_tlb(unsigned long addr) { } #endif #ifndef kmap_prot #define kmap_prot PAGE_KERNEL #endif void *kmap_high(struct page *page); static inline void *kmap(struct page *page) { void *addr; might_sleep(); if (!PageHighMem(page)) addr = page_address(page); else addr = kmap_high(page); kmap_flush_tlb((unsigned long)addr); return addr; } void kunmap_high(struct page *page); static inline void kunmap(struct page *page) { might_sleep(); if (!PageHighMem(page)) return; kunmap_high(page); } /* * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap because * no global lock is needed and because the kmap code must perform a global TLB * invalidation when the kmap pool wraps. * * However when holding an atomic kmap it is not legal to sleep, so atomic * kmaps are appropriate for short, tight code paths only. * * The use of kmap_atomic/kunmap_atomic is discouraged - kmap/kunmap * gives a more generic (and caching) interface. But kmap_atomic can * be used in IRQ contexts, so in some (very limited) cases we need * it. */ static inline void *kmap_atomic_prot(struct page *page, pgprot_t prot) { preempt_disable(); pagefault_disable(); if (!PageHighMem(page)) return page_address(page); return kmap_atomic_high_prot(page, prot); } #define kmap_atomic(page) kmap_atomic_prot(page, kmap_prot) /* declarations for linux/mm/highmem.c */ unsigned int nr_free_highpages(void); extern atomic_long_t _totalhigh_pages; static inline unsigned long totalhigh_pages(void) { return (unsigned long)atomic_long_read(&_totalhigh_pages); } static inline void totalhigh_pages_inc(void) { atomic_long_inc(&_totalhigh_pages); } static inline void totalhigh_pages_dec(void) { atomic_long_dec(&_totalhigh_pages); } static inline void totalhigh_pages_add(long count) { atomic_long_add(count, &_totalhigh_pages); } static inline void totalhigh_pages_set(long val) { atomic_long_set(&_totalhigh_pages, val); } void kmap_flush_unused(void); struct page *kmap_to_page(void *addr); #else /* CONFIG_HIGHMEM */ static inline unsigned int nr_free_highpages(void) { return 0; } static inline struct page *kmap_to_page(void *addr) { return virt_to_page(addr); } static inline unsigned long totalhigh_pages(void) { return 0UL; } static inline void *kmap(struct page *page) { might_sleep(); return page_address(page); } static inline void kunmap_high(struct page *page) { } static inline void kunmap(struct page *page) { #ifdef ARCH_HAS_FLUSH_ON_KUNMAP kunmap_flush_on_unmap(page_address(page)); #endif } static inline void *kmap_atomic(struct page *page) { preempt_disable(); pagefault_disable(); return page_address(page); } #define kmap_atomic_prot(page, prot) kmap_atomic(page) static inline void kunmap_atomic_high(void *addr) { /* * Mostly nothing to do in the CONFIG_HIGHMEM=n case as kunmap_atomic() * handles re-enabling faults + preemption */ #ifdef ARCH_HAS_FLUSH_ON_KUNMAP kunmap_flush_on_unmap(addr); #endif } #define kmap_atomic_pfn(pfn) kmap_atomic(pfn_to_page(pfn)) #define kmap_flush_unused() do {} while(0) #endif /* CONFIG_HIGHMEM */ #if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32) DECLARE_PER_CPU(int, __kmap_atomic_idx); static inline int kmap_atomic_idx_push(void) { int idx = __this_cpu_inc_return(__kmap_atomic_idx) - 1; #ifdef CONFIG_DEBUG_HIGHMEM WARN_ON_ONCE(in_irq() && !irqs_disabled()); BUG_ON(idx >= KM_TYPE_NR); #endif return idx; } static inline int kmap_atomic_idx(void) { return __this_cpu_read(__kmap_atomic_idx) - 1; } static inline void kmap_atomic_idx_pop(void) { #ifdef CONFIG_DEBUG_HIGHMEM int idx = __this_cpu_dec_return(__kmap_atomic_idx); BUG_ON(idx < 0); #else __this_cpu_dec(__kmap_atomic_idx); #endif } #endif /* * Prevent people trying to call kunmap_atomic() as if it were kunmap() * kunmap_atomic() should get the return value of kmap_atomic, not the page. */ #define kunmap_atomic(addr) \ do { \ BUILD_BUG_ON(__same_type((addr), struct page *)); \ kunmap_atomic_high(addr); \ pagefault_enable(); \ preempt_enable(); \ } while (0) /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */ #ifndef clear_user_highpage static inline void clear_user_highpage(struct page *page, unsigned long vaddr) { void *addr = kmap_atomic(page); clear_user_page(addr, vaddr, page); kunmap_atomic(addr); } #endif #ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE /** * __alloc_zeroed_user_highpage - Allocate a zeroed HIGHMEM page for a VMA with caller-specified movable GFP flags * @movableflags: The GFP flags related to the pages future ability to move like __GFP_MOVABLE * @vma: The VMA the page is to be allocated for * @vaddr: The virtual address the page will be inserted into * * This function will allocate a page for a VMA but the caller is expected * to specify via movableflags whether the page will be movable in the * future or not * * An architecture may override this function by defining * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE and providing their own * implementation. */ static inline struct page * __alloc_zeroed_user_highpage(gfp_t movableflags, struct vm_area_struct *vma, unsigned long vaddr) { struct page *page = alloc_page_vma(GFP_HIGHUSER | movableflags, vma, vaddr); if (page) clear_user_highpage(page, vaddr); return page; } #endif /** * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move * @vma: The VMA the page is to be allocated for * @vaddr: The virtual address the page will be inserted into * * This function will allocate a page for a VMA that the caller knows will * be able to migrate in the future using move_pages() or reclaimed */ static inline struct page * alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma, unsigned long vaddr) { return __alloc_zeroed_user_highpage(__GFP_MOVABLE, vma, vaddr); } static inline void clear_highpage(struct page *page) { void *kaddr = kmap_atomic(page); clear_page(kaddr); kunmap_atomic(kaddr); } static inline void zero_user_segments(struct page *page, unsigned start1, unsigned end1, unsigned start2, unsigned end2) { void *kaddr = kmap_atomic(page); BUG_ON(end1 > PAGE_SIZE || end2 > PAGE_SIZE); if (end1 > start1) memset(kaddr + start1, 0, end1 - start1); if (end2 > start2) memset(kaddr + start2, 0, end2 - start2); kunmap_atomic(kaddr); flush_dcache_page(page); } static inline void zero_user_segment(struct page *page, unsigned start, unsigned end) { zero_user_segments(page, start, end, 0, 0); } static inline void zero_user(struct page *page, unsigned start, unsigned size) { zero_user_segments(page, start, start + size, 0, 0); } #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE static inline void copy_user_highpage(struct page *to, struct page *from, unsigned long vaddr, struct vm_area_struct *vma) { char *vfrom, *vto; vfrom = kmap_atomic(from); vto = kmap_atomic(to); copy_user_page(vto, vfrom, vaddr, to); kunmap_atomic(vto); kunmap_atomic(vfrom); } #endif #ifndef __HAVE_ARCH_COPY_HIGHPAGE static inline void copy_highpage(struct page *to, struct page *from) { char *vfrom, *vto; vfrom = kmap_atomic(from); vto = kmap_atomic(to); copy_page(vto, vfrom); kunmap_atomic(vto); kunmap_atomic(vfrom); } #endif #endif /* _LINUX_HIGHMEM_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 #ifdef CONFIG_PREEMPTIRQ_TRACEPOINTS #undef TRACE_SYSTEM #define TRACE_SYSTEM preemptirq #if !defined(_TRACE_PREEMPTIRQ_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PREEMPTIRQ_H #include <linux/ktime.h> #include <linux/tracepoint.h> #include <linux/string.h> #include <asm/sections.h> DECLARE_EVENT_CLASS(preemptirq_template, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip), TP_STRUCT__entry( __field(s32, caller_offs) __field(s32, parent_offs) ), TP_fast_assign( __entry->caller_offs = (s32)(ip - (unsigned long)_stext); __entry->parent_offs = (s32)(parent_ip - (unsigned long)_stext); ), TP_printk("caller=%pS parent=%pS", (void *)((unsigned long)(_stext) + __entry->caller_offs), (void *)((unsigned long)(_stext) + __entry->parent_offs)) ); #ifdef CONFIG_TRACE_IRQFLAGS DEFINE_EVENT(preemptirq_template, irq_disable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); DEFINE_EVENT(preemptirq_template, irq_enable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); #else #define trace_irq_enable(...) #define trace_irq_disable(...) #define trace_irq_enable_rcuidle(...) #define trace_irq_disable_rcuidle(...) #endif #ifdef CONFIG_TRACE_PREEMPT_TOGGLE DEFINE_EVENT(preemptirq_template, preempt_disable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); DEFINE_EVENT(preemptirq_template, preempt_enable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); #else #define trace_preempt_enable(...) #define trace_preempt_disable(...) #define trace_preempt_enable_rcuidle(...) #define trace_preempt_disable_rcuidle(...) #endif #endif /* _TRACE_PREEMPTIRQ_H */ #include <trace/define_trace.h> #else /* !CONFIG_PREEMPTIRQ_TRACEPOINTS */ #define trace_irq_enable(...) #define trace_irq_disable(...) #define trace_irq_enable_rcuidle(...) #define trace_irq_disable_rcuidle(...) #define trace_preempt_enable(...) #define trace_preempt_disable(...) #define trace_preempt_enable_rcuidle(...) #define trace_preempt_disable_rcuidle(...) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/ipc/util.h * Copyright (C) 1999 Christoph Rohland * * ipc helper functions (c) 1999 Manfred Spraul <manfred@colorfullife.com> * namespaces support. 2006 OpenVZ, SWsoft Inc. * Pavel Emelianov <xemul@openvz.org> */ #ifndef _IPC_UTIL_H #define _IPC_UTIL_H #include <linux/unistd.h> #include <linux/err.h> #include <linux/ipc_namespace.h> /* * The IPC ID contains 2 separate numbers - index and sequence number. * By default, * bits 0-14: index (32k, 15 bits) * bits 15-30: sequence number (64k, 16 bits) * * When IPCMNI extension mode is turned on, the composition changes: * bits 0-23: index (16M, 24 bits) * bits 24-30: sequence number (128, 7 bits) */ #define IPCMNI_SHIFT 15 #define IPCMNI_EXTEND_SHIFT 24 #define IPCMNI_EXTEND_MIN_CYCLE (RADIX_TREE_MAP_SIZE * RADIX_TREE_MAP_SIZE) #define IPCMNI (1 << IPCMNI_SHIFT) #define IPCMNI_EXTEND (1 << IPCMNI_EXTEND_SHIFT) #ifdef CONFIG_SYSVIPC_SYSCTL extern int ipc_mni; extern int ipc_mni_shift; extern int ipc_min_cycle; #define ipcmni_seq_shift() ipc_mni_shift #define IPCMNI_IDX_MASK ((1 << ipc_mni_shift) - 1) #else /* CONFIG_SYSVIPC_SYSCTL */ #define ipc_mni IPCMNI #define ipc_min_cycle ((int)RADIX_TREE_MAP_SIZE) #define ipcmni_seq_shift() IPCMNI_SHIFT #define IPCMNI_IDX_MASK ((1 << IPCMNI_SHIFT) - 1) #endif /* CONFIG_SYSVIPC_SYSCTL */ void sem_init(void); void msg_init(void); void shm_init(void); struct ipc_namespace; struct pid_namespace; #ifdef CONFIG_POSIX_MQUEUE extern void mq_clear_sbinfo(struct ipc_namespace *ns); extern void mq_put_mnt(struct ipc_namespace *ns); #else static inline void mq_clear_sbinfo(struct ipc_namespace *ns) { } static inline void mq_put_mnt(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_SYSVIPC void sem_init_ns(struct ipc_namespace *ns); void msg_init_ns(struct ipc_namespace *ns); void shm_init_ns(struct ipc_namespace *ns); void sem_exit_ns(struct ipc_namespace *ns); void msg_exit_ns(struct ipc_namespace *ns); void shm_exit_ns(struct ipc_namespace *ns); #else static inline void sem_init_ns(struct ipc_namespace *ns) { } static inline void msg_init_ns(struct ipc_namespace *ns) { } static inline void shm_init_ns(struct ipc_namespace *ns) { } static inline void sem_exit_ns(struct ipc_namespace *ns) { } static inline void msg_exit_ns(struct ipc_namespace *ns) { } static inline void shm_exit_ns(struct ipc_namespace *ns) { } #endif /* * Structure that holds the parameters needed by the ipc operations * (see after) */ struct ipc_params { key_t key; int flg; union { size_t size; /* for shared memories */ int nsems; /* for semaphores */ } u; /* holds the getnew() specific param */ }; /* * Structure that holds some ipc operations. This structure is used to unify * the calls to sys_msgget(), sys_semget(), sys_shmget() * . routine to call to create a new ipc object. Can be one of newque, * newary, newseg * . routine to call to check permissions for a new ipc object. * Can be one of security_msg_associate, security_sem_associate, * security_shm_associate * . routine to call for an extra check if needed */ struct ipc_ops { int (*getnew)(struct ipc_namespace *, struct ipc_params *); int (*associate)(struct kern_ipc_perm *, int); int (*more_checks)(struct kern_ipc_perm *, struct ipc_params *); }; struct seq_file; struct ipc_ids; void ipc_init_ids(struct ipc_ids *ids); #ifdef CONFIG_PROC_FS void __init ipc_init_proc_interface(const char *path, const char *header, int ids, int (*show)(struct seq_file *, void *)); struct pid_namespace *ipc_seq_pid_ns(struct seq_file *); #else #define ipc_init_proc_interface(path, header, ids, show) do {} while (0) #endif #define IPC_SEM_IDS 0 #define IPC_MSG_IDS 1 #define IPC_SHM_IDS 2 #define ipcid_to_idx(id) ((id) & IPCMNI_IDX_MASK) #define ipcid_to_seqx(id) ((id) >> ipcmni_seq_shift()) #define ipcid_seq_max() (INT_MAX >> ipcmni_seq_shift()) /* must be called with ids->rwsem acquired for writing */ int ipc_addid(struct ipc_ids *, struct kern_ipc_perm *, int); /* must be called with both locks acquired. */ void ipc_rmid(struct ipc_ids *, struct kern_ipc_perm *); /* must be called with both locks acquired. */ void ipc_set_key_private(struct ipc_ids *, struct kern_ipc_perm *); /* must be called with ipcp locked */ int ipcperms(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp, short flg); /** * ipc_get_maxidx - get the highest assigned index * @ids: ipc identifier set * * Called with ipc_ids.rwsem held for reading. */ static inlin