1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BH_H #define _LINUX_BH_H #include <linux/preempt.h> #ifdef CONFIG_TRACE_IRQFLAGS extern void __local_bh_disable_ip(unsigned long ip, unsigned int cnt); #else static __always_inline void __local_bh_disable_ip(unsigned long ip, unsigned int cnt) { preempt_count_add(cnt); barrier(); } #endif static inline void local_bh_disable(void) { __local_bh_disable_ip(_THIS_IP_, SOFTIRQ_DISABLE_OFFSET); } extern void _local_bh_enable(void); extern void __local_bh_enable_ip(unsigned long ip, unsigned int cnt); static inline void local_bh_enable_ip(unsigned long ip) { __local_bh_enable_ip(ip, SOFTIRQ_DISABLE_OFFSET); } static inline void local_bh_enable(void) { __local_bh_enable_ip(_THIS_IP_, SOFTIRQ_DISABLE_OFFSET); } #endif /* _LINUX_BH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM pagemap #if !defined(_TRACE_PAGEMAP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PAGEMAP_H #include <linux/tracepoint.h> #include <linux/mm.h> #define PAGEMAP_MAPPED 0x0001u #define PAGEMAP_ANONYMOUS 0x0002u #define PAGEMAP_FILE 0x0004u #define PAGEMAP_SWAPCACHE 0x0008u #define PAGEMAP_SWAPBACKED 0x0010u #define PAGEMAP_MAPPEDDISK 0x0020u #define PAGEMAP_BUFFERS 0x0040u #define trace_pagemap_flags(page) ( \ (PageAnon(page) ? PAGEMAP_ANONYMOUS : PAGEMAP_FILE) | \ (page_mapped(page) ? PAGEMAP_MAPPED : 0) | \ (PageSwapCache(page) ? PAGEMAP_SWAPCACHE : 0) | \ (PageSwapBacked(page) ? PAGEMAP_SWAPBACKED : 0) | \ (PageMappedToDisk(page) ? PAGEMAP_MAPPEDDISK : 0) | \ (page_has_private(page) ? PAGEMAP_BUFFERS : 0) \ ) TRACE_EVENT(mm_lru_insertion, TP_PROTO( struct page *page, int lru ), TP_ARGS(page, lru), TP_STRUCT__entry( __field(struct page *, page ) __field(unsigned long, pfn ) __field(int, lru ) __field(unsigned long, flags ) ), TP_fast_assign( __entry->page = page; __entry->pfn = page_to_pfn(page); __entry->lru = lru; __entry->flags = trace_pagemap_flags(page); ), /* Flag format is based on page-types.c formatting for pagemap */ TP_printk("page=%p pfn=%lu lru=%d flags=%s%s%s%s%s%s", __entry->page, __entry->pfn, __entry->lru, __entry->flags & PAGEMAP_MAPPED ? "M" : " ", __entry->flags & PAGEMAP_ANONYMOUS ? "a" : "f", __entry->flags & PAGEMAP_SWAPCACHE ? "s" : " ", __entry->flags & PAGEMAP_SWAPBACKED ? "b" : " ", __entry->flags & PAGEMAP_MAPPEDDISK ? "d" : " ", __entry->flags & PAGEMAP_BUFFERS ? "B" : " ") ); TRACE_EVENT(mm_lru_activate, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field(struct page *, page ) __field(unsigned long, pfn ) ), TP_fast_assign( __entry->page = page; __entry->pfn = page_to_pfn(page); ), /* Flag format is based on page-types.c formatting for pagemap */ TP_printk("page=%p pfn=%lu", __entry->page, __entry->pfn) ); #endif /* _TRACE_PAGEMAP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 #ifndef _LINUX_HASH_H #define _LINUX_HASH_H /* Fast hashing routine for ints, longs and pointers. (C) 2002 Nadia Yvette Chambers, IBM */ #include <asm/types.h> #include <linux/compiler.h> /* * The "GOLDEN_RATIO_PRIME" is used in ifs/btrfs/brtfs_inode.h and * fs/inode.c. It's not actually prime any more (the previous primes * were actively bad for hashing), but the name remains. */ #if BITS_PER_LONG == 32 #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_32 #define hash_long(val, bits) hash_32(val, bits) #elif BITS_PER_LONG == 64 #define hash_long(val, bits) hash_64(val, bits) #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_64 #else #error Wordsize not 32 or 64 #endif /* * This hash multiplies the input by a large odd number and takes the * high bits. Since multiplication propagates changes to the most * significant end only, it is essential that the high bits of the * product be used for the hash value. * * Chuck Lever verified the effectiveness of this technique: * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf * * Although a random odd number will do, it turns out that the golden * ratio phi = (sqrt(5)-1)/2, or its negative, has particularly nice * properties. (See Knuth vol 3, section 6.4, exercise 9.) * * These are the negative, (1 - phi) = phi**2 = (3 - sqrt(5))/2, * which is very slightly easier to multiply by and makes no * difference to the hash distribution. */ #define GOLDEN_RATIO_32 0x61C88647 #define GOLDEN_RATIO_64 0x61C8864680B583EBull #ifdef CONFIG_HAVE_ARCH_HASH /* This header may use the GOLDEN_RATIO_xx constants */ #include <asm/hash.h> #endif /* * The _generic versions exist only so lib/test_hash.c can compare * the arch-optimized versions with the generic. * * Note that if you change these, any <asm/hash.h> that aren't updated * to match need to have their HAVE_ARCH_* define values updated so the * self-test will not false-positive. */ #ifndef HAVE_ARCH__HASH_32 #define __hash_32 __hash_32_generic #endif static inline u32 __hash_32_generic(u32 val) { return val * GOLDEN_RATIO_32; } #ifndef HAVE_ARCH_HASH_32 #define hash_32 hash_32_generic #endif static inline u32 hash_32_generic(u32 val, unsigned int bits) { /* High bits are more random, so use them. */ return __hash_32(val) >> (32 - bits); } #ifndef HAVE_ARCH_HASH_64 #define hash_64 hash_64_generic #endif static __always_inline u32 hash_64_generic(u64 val, unsigned int bits) { #if BITS_PER_LONG == 64 /* 64x64-bit multiply is efficient on all 64-bit processors */ return val * GOLDEN_RATIO_64 >> (64 - bits); #else /* Hash 64 bits using only 32x32-bit multiply. */ return hash_32((u32)val ^ __hash_32(val >> 32), bits); #endif } static inline u32 hash_ptr(const void *ptr, unsigned int bits) { return hash_long((unsigned long)ptr, bits); } /* This really should be called fold32_ptr; it does no hashing to speak of. */ static inline u32 hash32_ptr(const void *ptr) { unsigned long val = (unsigned long)ptr; #if BITS_PER_LONG == 64 val ^= (val >> 32); #endif return (u32)val; } #endif /* _LINUX_HASH_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_H #define _LINUX_LIST_H #include <linux/types.h> #include <linux/stddef.h> #include <linux/poison.h> #include <linux/const.h> #include <linux/kernel.h> /* * Simple doubly linked list implementation. * * Some of the internal functions ("__xxx") are useful when * manipulating whole lists rather than single entries, as * sometimes we already know the next/prev entries and we can * generate better code by using them directly rather than * using the generic single-entry routines. */ #define LIST_HEAD_INIT(name) { &(name), &(name) } #define LIST_HEAD(name) \ struct list_head name = LIST_HEAD_INIT(name) /** * INIT_LIST_HEAD - Initialize a list_head structure * @list: list_head structure to be initialized. * * Initializes the list_head to point to itself. If it is a list header, * the result is an empty list. */ static inline void INIT_LIST_HEAD(struct list_head *list) { WRITE_ONCE(list->next, list); list->prev = list; } #ifdef CONFIG_DEBUG_LIST extern bool __list_add_valid(struct list_head *new, struct list_head *prev, struct list_head *next); extern bool __list_del_entry_valid(struct list_head *entry); #else static inline bool __list_add_valid(struct list_head *new, struct list_head *prev, struct list_head *next) { return true; } static inline bool __list_del_entry_valid(struct list_head *entry) { return true; } #endif /* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next) { if (!__list_add_valid(new, prev, next)) return; next->prev = new; new->next = next; new->prev = prev; WRITE_ONCE(prev->next, new); } /** * list_add - add a new entry * @new: new entry to be added * @head: list head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ static inline void list_add(struct list_head *new, struct list_head *head) { __list_add(new, head, head->next); } /** * list_add_tail - add a new entry * @new: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. */ static inline void list_add_tail(struct list_head *new, struct list_head *head) { __list_add(new, head->prev, head); } /* * Delete a list entry by making the prev/next entries * point to each other. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_del(struct list_head * prev, struct list_head * next) { next->prev = prev; WRITE_ONCE(prev->next, next); } /* * Delete a list entry and clear the 'prev' pointer. * * This is a special-purpose list clearing method used in the networking code * for lists allocated as per-cpu, where we don't want to incur the extra * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this * needs to check the node 'prev' pointer instead of calling list_empty(). */ static inline void __list_del_clearprev(struct list_head *entry) { __list_del(entry->prev, entry->next); entry->prev = NULL; } static inline void __list_del_entry(struct list_head *entry) { if (!__list_del_entry_valid(entry)) return; __list_del(entry->prev, entry->next); } /** * list_del - deletes entry from list. * @entry: the element to delete from the list. * Note: list_empty() on entry does not return true after this, the entry is * in an undefined state. */ static inline void list_del(struct list_head *entry) { __list_del_entry(entry); entry->next = LIST_POISON1; entry->prev = LIST_POISON2; } /** * list_replace - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * If @old was empty, it will be overwritten. */ static inline void list_replace(struct list_head *old, struct list_head *new) { new->next = old->next; new->next->prev = new; new->prev = old->prev; new->prev->next = new; } /** * list_replace_init - replace old entry by new one and initialize the old one * @old : the element to be replaced * @new : the new element to insert * * If @old was empty, it will be overwritten. */ static inline void list_replace_init(struct list_head *old, struct list_head *new) { list_replace(old, new); INIT_LIST_HEAD(old); } /** * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position * @entry1: the location to place entry2 * @entry2: the location to place entry1 */ static inline void list_swap(struct list_head *entry1, struct list_head *entry2) { struct list_head *pos = entry2->prev; list_del(entry2); list_replace(entry1, entry2); if (pos == entry1) pos = entry2; list_add(entry1, pos); } /** * list_del_init - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. */ static inline void list_del_init(struct list_head *entry) { __list_del_entry(entry); INIT_LIST_HEAD(entry); } /** * list_move - delete from one list and add as another's head * @list: the entry to move * @head: the head that will precede our entry */ static inline void list_move(struct list_head *list, struct list_head *head) { __list_del_entry(list); list_add(list, head); } /** * list_move_tail - delete from one list and add as another's tail * @list: the entry to move * @head: the head that will follow our entry */ static inline void list_move_tail(struct list_head *list, struct list_head *head) { __list_del_entry(list); list_add_tail(list, head); } /** * list_bulk_move_tail - move a subsection of a list to its tail * @head: the head that will follow our entry * @first: first entry to move * @last: last entry to move, can be the same as first * * Move all entries between @first and including @last before @head. * All three entries must belong to the same linked list. */ static inline void list_bulk_move_tail(struct list_head *head, struct list_head *first, struct list_head *last) { first->prev->next = last->next; last->next->prev = first->prev; head->prev->next = first; first->prev = head->prev; last->next = head; head->prev = last; } /** * list_is_first -- tests whether @list is the first entry in list @head * @list: the entry to test * @head: the head of the list */ static inline int list_is_first(const struct list_head *list, const struct list_head *head) { return list->prev == head; } /** * list_is_last - tests whether @list is the last entry in list @head * @list: the entry to test * @head: the head of the list */ static inline int list_is_last(const struct list_head *list, const struct list_head *head) { return list->next == head; } /** * list_empty - tests whether a list is empty * @head: the list to test. */ static inline int list_empty(const struct list_head *head) { return READ_ONCE(head->next) == head; } /** * list_del_init_careful - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. * * This is the same as list_del_init(), except designed to be used * together with list_empty_careful() in a way to guarantee ordering * of other memory operations. * * Any memory operations done before a list_del_init_careful() are * guaranteed to be visible after a list_empty_careful() test. */ static inline void list_del_init_careful(struct list_head *entry) { __list_del_entry(entry); entry->prev = entry; smp_store_release(&entry->next, entry); } /** * list_empty_careful - tests whether a list is empty and not being modified * @head: the list to test * * Description: * tests whether a list is empty _and_ checks that no other CPU might be * in the process of modifying either member (next or prev) * * NOTE: using list_empty_careful() without synchronization * can only be safe if the only activity that can happen * to the list entry is list_del_init(). Eg. it cannot be used * if another CPU could re-list_add() it. */ static inline int list_empty_careful(const struct list_head *head) { struct list_head *next = smp_load_acquire(&head->next); return (next == head) && (next == head->prev); } /** * list_rotate_left - rotate the list to the left * @head: the head of the list */ static inline void list_rotate_left(struct list_head *head) { struct list_head *first; if (!list_empty(head)) { first = head->next; list_move_tail(first, head); } } /** * list_rotate_to_front() - Rotate list to specific item. * @list: The desired new front of the list. * @head: The head of the list. * * Rotates list so that @list becomes the new front of the list. */ static inline void list_rotate_to_front(struct list_head *list, struct list_head *head) { /* * Deletes the list head from the list denoted by @head and * places it as the tail of @list, this effectively rotates the * list so that @list is at the front. */ list_move_tail(head, list); } /** * list_is_singular - tests whether a list has just one entry. * @head: the list to test. */ static inline int list_is_singular(const struct list_head *head) { return !list_empty(head) && (head->next == head->prev); } static inline void __list_cut_position(struct list_head *list, struct list_head *head, struct list_head *entry) { struct list_head *new_first = entry->next; list->next = head->next; list->next->prev = list; list->prev = entry; entry->next = list; head->next = new_first; new_first->prev = head; } /** * list_cut_position - cut a list into two * @list: a new list to add all removed entries * @head: a list with entries * @entry: an entry within head, could be the head itself * and if so we won't cut the list * * This helper moves the initial part of @head, up to and * including @entry, from @head to @list. You should * pass on @entry an element you know is on @head. @list * should be an empty list or a list you do not care about * losing its data. * */ static inline void list_cut_position(struct list_head *list, struct list_head *head, struct list_head *entry) { if (list_empty(head)) return; if (list_is_singular(head) && (head->next != entry && head != entry)) return; if (entry == head) INIT_LIST_HEAD(list); else __list_cut_position(list, head, entry); } /** * list_cut_before - cut a list into two, before given entry * @list: a new list to add all removed entries * @head: a list with entries * @entry: an entry within head, could be the head itself * * This helper moves the initial part of @head, up to but * excluding @entry, from @head to @list. You should pass * in @entry an element you know is on @head. @list should * be an empty list or a list you do not care about losing * its data. * If @entry == @head, all entries on @head are moved to * @list. */ static inline void list_cut_before(struct list_head *list, struct list_head *head, struct list_head *entry) { if (head->next == entry) { INIT_LIST_HEAD(list); return; } list->next = head->next; list->next->prev = list; list->prev = entry->prev; list->prev->next = list; head->next = entry; entry->prev = head; } static inline void __list_splice(const struct list_head *list, struct list_head *prev, struct list_head *next) { struct list_head *first = list->next; struct list_head *last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; } /** * list_splice - join two lists, this is designed for stacks * @list: the new list to add. * @head: the place to add it in the first list. */ static inline void list_splice(const struct list_head *list, struct list_head *head) { if (!list_empty(list)) __list_splice(list, head, head->next); } /** * list_splice_tail - join two lists, each list being a queue * @list: the new list to add. * @head: the place to add it in the first list. */ static inline void list_splice_tail(struct list_head *list, struct list_head *head) { if (!list_empty(list)) __list_splice(list, head->prev, head); } /** * list_splice_init - join two lists and reinitialise the emptied list. * @list: the new list to add. * @head: the place to add it in the first list. * * The list at @list is reinitialised */ static inline void list_splice_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head, head->next); INIT_LIST_HEAD(list); } } /** * list_splice_tail_init - join two lists and reinitialise the emptied list * @list: the new list to add. * @head: the place to add it in the first list. * * Each of the lists is a queue. * The list at @list is reinitialised */ static inline void list_splice_tail_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head->prev, head); INIT_LIST_HEAD(list); } } /** * list_entry - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. */ #define list_entry(ptr, type, member) \ container_of(ptr, type, member) /** * list_first_entry - get the first element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note, that list is expected to be not empty. */ #define list_first_entry(ptr, type, member) \ list_entry((ptr)->next, type, member) /** * list_last_entry - get the last element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note, that list is expected to be not empty. */ #define list_last_entry(ptr, type, member) \ list_entry((ptr)->prev, type, member) /** * list_first_entry_or_null - get the first element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note that if the list is empty, it returns NULL. */ #define list_first_entry_or_null(ptr, type, member) ({ \ struct list_head *head__ = (ptr); \ struct list_head *pos__ = READ_ONCE(head__->next); \ pos__ != head__ ? list_entry(pos__, type, member) : NULL; \ }) /** * list_next_entry - get the next element in list * @pos: the type * to cursor * @member: the name of the list_head within the struct. */ #define list_next_entry(pos, member) \ list_entry((pos)->member.next, typeof(*(pos)), member) /** * list_prev_entry - get the prev element in list * @pos: the type * to cursor * @member: the name of the list_head within the struct. */ #define list_prev_entry(pos, member) \ list_entry((pos)->member.prev, typeof(*(pos)), member) /** * list_for_each - iterate over a list * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. */ #define list_for_each(pos, head) \ for (pos = (head)->next; pos != (head); pos = pos->next) /** * list_for_each_continue - continue iteration over a list * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. * * Continue to iterate over a list, continuing after the current position. */ #define list_for_each_continue(pos, head) \ for (pos = pos->next; pos != (head); pos = pos->next) /** * list_for_each_prev - iterate over a list backwards * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. */ #define list_for_each_prev(pos, head) \ for (pos = (head)->prev; pos != (head); pos = pos->prev) /** * list_for_each_safe - iterate over a list safe against removal of list entry * @pos: the &struct list_head to use as a loop cursor. * @n: another &struct list_head to use as temporary storage * @head: the head for your list. */ #define list_for_each_safe(pos, n, head) \ for (pos = (head)->next, n = pos->next; pos != (head); \ pos = n, n = pos->next) /** * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry * @pos: the &struct list_head to use as a loop cursor. * @n: another &struct list_head to use as temporary storage * @head: the head for your list. */ #define list_for_each_prev_safe(pos, n, head) \ for (pos = (head)->prev, n = pos->prev; \ pos != (head); \ pos = n, n = pos->prev) /** * list_entry_is_head - test if the entry points to the head of the list * @pos: the type * to cursor * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_entry_is_head(pos, head, member) \ (&pos->member == (head)) /** * list_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_for_each_entry(pos, head, member) \ for (pos = list_first_entry(head, typeof(*pos), member); \ !list_entry_is_head(pos, head, member); \ pos = list_next_entry(pos, member)) /** * list_for_each_entry_reverse - iterate backwards over list of given type. * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_for_each_entry_reverse(pos, head, member) \ for (pos = list_last_entry(head, typeof(*pos), member); \ !list_entry_is_head(pos, head, member); \ pos = list_prev_entry(pos, member)) /** * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() * @pos: the type * to use as a start point * @head: the head of the list * @member: the name of the list_head within the struct. * * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). */ #define list_prepare_entry(pos, head, member) \ ((pos) ? : list_entry(head, typeof(*pos), member)) /** * list_for_each_entry_continue - continue iteration over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Continue to iterate over list of given type, continuing after * the current position. */ #define list_for_each_entry_continue(pos, head, member) \ for (pos = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = list_next_entry(pos, member)) /** * list_for_each_entry_continue_reverse - iterate backwards from the given point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Start to iterate over list of given type backwards, continuing after * the current position. */ #define list_for_each_entry_continue_reverse(pos, head, member) \ for (pos = list_prev_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = list_prev_entry(pos, member)) /** * list_for_each_entry_from - iterate over list of given type from the current point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type, continuing from current position. */ #define list_for_each_entry_from(pos, head, member) \ for (; !list_entry_is_head(pos, head, member); \ pos = list_next_entry(pos, member)) /** * list_for_each_entry_from_reverse - iterate backwards over list of given type * from the current point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate backwards over list of given type, continuing from current position. */ #define list_for_each_entry_from_reverse(pos, head, member) \ for (; !list_entry_is_head(pos, head, member); \ pos = list_prev_entry(pos, member)) /** * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_for_each_entry_safe(pos, n, head, member) \ for (pos = list_first_entry(head, typeof(*pos), member), \ n = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_next_entry(n, member)) /** * list_for_each_entry_safe_continue - continue list iteration safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type, continuing after current point, * safe against removal of list entry. */ #define list_for_each_entry_safe_continue(pos, n, head, member) \ for (pos = list_next_entry(pos, member), \ n = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_next_entry(n, member)) /** * list_for_each_entry_safe_from - iterate over list from current point safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type from current point, safe against * removal of list entry. */ #define list_for_each_entry_safe_from(pos, n, head, member) \ for (n = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_next_entry(n, member)) /** * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate backwards over list of given type, safe against removal * of list entry. */ #define list_for_each_entry_safe_reverse(pos, n, head, member) \ for (pos = list_last_entry(head, typeof(*pos), member), \ n = list_prev_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_prev_entry(n, member)) /** * list_safe_reset_next - reset a stale list_for_each_entry_safe loop * @pos: the loop cursor used in the list_for_each_entry_safe loop * @n: temporary storage used in list_for_each_entry_safe * @member: the name of the list_head within the struct. * * list_safe_reset_next is not safe to use in general if the list may be * modified concurrently (eg. the lock is dropped in the loop body). An * exception to this is if the cursor element (pos) is pinned in the list, * and list_safe_reset_next is called after re-taking the lock and before * completing the current iteration of the loop body. */ #define list_safe_reset_next(pos, n, member) \ n = list_next_entry(pos, member) /* * Double linked lists with a single pointer list head. * Mostly useful for hash tables where the two pointer list head is * too wasteful. * You lose the ability to access the tail in O(1). */ #define HLIST_HEAD_INIT { .first = NULL } #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) static inline void INIT_HLIST_NODE(struct hlist_node *h) { h->next = NULL; h->pprev = NULL; } /** * hlist_unhashed - Has node been removed from list and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed * state. For example, hlist_nulls_del_init_rcu() does leave the * node in unhashed state, but hlist_nulls_del() does not. */ static inline int hlist_unhashed(const struct hlist_node *h) { return !h->pprev; } /** * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use * @h: Node to be checked * * This variant of hlist_unhashed() must be used in lockless contexts * to avoid potential load-tearing. The READ_ONCE() is paired with the * various WRITE_ONCE() in hlist helpers that are defined below. */ static inline int hlist_unhashed_lockless(const struct hlist_node *h) { return !READ_ONCE(h->pprev); } /** * hlist_empty - Is the specified hlist_head structure an empty hlist? * @h: Structure to check. */ static inline int hlist_empty(const struct hlist_head *h) { return !READ_ONCE(h->first); } static inline void __hlist_del(struct hlist_node *n) { struct hlist_node *next = n->next; struct hlist_node **pprev = n->pprev; WRITE_ONCE(*pprev, next); if (next) WRITE_ONCE(next->pprev, pprev); } /** * hlist_del - Delete the specified hlist_node from its list * @n: Node to delete. * * Note that this function leaves the node in hashed state. Use * hlist_del_init() or similar instead to unhash @n. */ static inline void hlist_del(struct hlist_node *n) { __hlist_del(n); n->next = LIST_POISON1; n->pprev = LIST_POISON2; } /** * hlist_del_init - Delete the specified hlist_node from its list and initialize * @n: Node to delete. * * Note that this function leaves the node in unhashed state. */ static inline void hlist_del_init(struct hlist_node *n) { if (!hlist_unhashed(n)) { __hlist_del(n); INIT_HLIST_NODE(n); } } /** * hlist_add_head - add a new entry at the beginning of the hlist * @n: new entry to be added * @h: hlist head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) { struct hlist_node *first = h->first; WRITE_ONCE(n->next, first); if (first) WRITE_ONCE(first->pprev, &n->next); WRITE_ONCE(h->first, n); WRITE_ONCE(n->pprev, &h->first); } /** * hlist_add_before - add a new entry before the one specified * @n: new entry to be added * @next: hlist node to add it before, which must be non-NULL */ static inline void hlist_add_before(struct hlist_node *n, struct hlist_node *next) { WRITE_ONCE(n->pprev, next->pprev); WRITE_ONCE(n->next, next); WRITE_ONCE(next->pprev, &n->next); WRITE_ONCE(*(n->pprev), n); } /** * hlist_add_behing - add a new entry after the one specified * @n: new entry to be added * @prev: hlist node to add it after, which must be non-NULL */ static inline void hlist_add_behind(struct hlist_node *n, struct hlist_node *prev) { WRITE_ONCE(n->next, prev->next); WRITE_ONCE(prev->next, n); WRITE_ONCE(n->pprev, &prev->next); if (n->next) WRITE_ONCE(n->next->pprev, &n->next); } /** * hlist_add_fake - create a fake hlist consisting of a single headless node * @n: Node to make a fake list out of * * This makes @n appear to be its own predecessor on a headless hlist. * The point of this is to allow things like hlist_del() to work correctly * in cases where there is no list. */ static inline void hlist_add_fake(struct hlist_node *n) { n->pprev = &n->next; } /** * hlist_fake: Is this node a fake hlist? * @h: Node to check for being a self-referential fake hlist. */ static inline bool hlist_fake(struct hlist_node *h) { return h->pprev == &h->next; } /** * hlist_is_singular_node - is node the only element of the specified hlist? * @n: Node to check for singularity. * @h: Header for potentially singular list. * * Check whether the node is the only node of the head without * accessing head, thus avoiding unnecessary cache misses. */ static inline bool hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h) { return !n->next && n->pprev == &h->first; } /** * hlist_move_list - Move an hlist * @old: hlist_head for old list. * @new: hlist_head for new list. * * Move a list from one list head to another. Fixup the pprev * reference of the first entry if it exists. */ static inline void hlist_move_list(struct hlist_head *old, struct hlist_head *new) { new->first = old->first; if (new->first) new->first->pprev = &new->first; old->first = NULL; } #define hlist_entry(ptr, type, member) container_of(ptr,type,member) #define hlist_for_each(pos, head) \ for (pos = (head)->first; pos ; pos = pos->next) #define hlist_for_each_safe(pos, n, head) \ for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ pos = n) #define hlist_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ ____ptr ? hlist_entry(____ptr, type, member) : NULL; \ }) /** * hlist_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry(pos, head, member) \ for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\ pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /** * hlist_for_each_entry_continue - iterate over a hlist continuing after current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_continue(pos, member) \ for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\ pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /** * hlist_for_each_entry_from - iterate over a hlist continuing from current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_from(pos, member) \ for (; pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /** * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: a &struct hlist_node to use as temporary storage * @head: the head for your list. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_safe(pos, n, head, member) \ for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\ pos && ({ n = pos->member.next; 1; }); \ pos = hlist_entry_safe(n, typeof(*pos), member)) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 /* SPDX-License-Identifier: GPL-2.0 */ /* * Internal header to deal with irq_desc->status which will be renamed * to irq_desc->settings. */ enum { _IRQ_DEFAULT_INIT_FLAGS = IRQ_DEFAULT_INIT_FLAGS, _IRQ_PER_CPU = IRQ_PER_CPU, _IRQ_LEVEL = IRQ_LEVEL, _IRQ_NOPROBE = IRQ_NOPROBE, _IRQ_NOREQUEST = IRQ_NOREQUEST, _IRQ_NOTHREAD = IRQ_NOTHREAD, _IRQ_NOAUTOEN = IRQ_NOAUTOEN, _IRQ_MOVE_PCNTXT = IRQ_MOVE_PCNTXT, _IRQ_NO_BALANCING = IRQ_NO_BALANCING, _IRQ_NESTED_THREAD = IRQ_NESTED_THREAD, _IRQ_PER_CPU_DEVID = IRQ_PER_CPU_DEVID, _IRQ_IS_POLLED = IRQ_IS_POLLED, _IRQ_DISABLE_UNLAZY = IRQ_DISABLE_UNLAZY, _IRQ_HIDDEN = IRQ_HIDDEN, _IRQF_MODIFY_MASK = IRQF_MODIFY_MASK, }; #define IRQ_PER_CPU GOT_YOU_MORON #define IRQ_NO_BALANCING GOT_YOU_MORON #define IRQ_LEVEL GOT_YOU_MORON #define IRQ_NOPROBE GOT_YOU_MORON #define IRQ_NOREQUEST GOT_YOU_MORON #define IRQ_NOTHREAD GOT_YOU_MORON #define IRQ_NOAUTOEN GOT_YOU_MORON #define IRQ_NESTED_THREAD GOT_YOU_MORON #define IRQ_PER_CPU_DEVID GOT_YOU_MORON #define IRQ_IS_POLLED GOT_YOU_MORON #define IRQ_DISABLE_UNLAZY GOT_YOU_MORON #define IRQ_HIDDEN GOT_YOU_MORON #undef IRQF_MODIFY_MASK #define IRQF_MODIFY_MASK GOT_YOU_MORON static inline void irq_settings_clr_and_set(struct irq_desc *desc, u32 clr, u32 set) { desc->status_use_accessors &= ~(clr & _IRQF_MODIFY_MASK); desc->status_use_accessors |= (set & _IRQF_MODIFY_MASK); } static inline bool irq_settings_is_per_cpu(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_PER_CPU; } static inline bool irq_settings_is_per_cpu_devid(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_PER_CPU_DEVID; } static inline void irq_settings_set_per_cpu(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_PER_CPU; } static inline void irq_settings_set_no_balancing(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NO_BALANCING; } static inline bool irq_settings_has_no_balance_set(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_NO_BALANCING; } static inline u32 irq_settings_get_trigger_mask(struct irq_desc *desc) { return desc->status_use_accessors & IRQ_TYPE_SENSE_MASK; } static inline void irq_settings_set_trigger_mask(struct irq_desc *desc, u32 mask) { desc->status_use_accessors &= ~IRQ_TYPE_SENSE_MASK; desc->status_use_accessors |= mask & IRQ_TYPE_SENSE_MASK; } static inline bool irq_settings_is_level(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_LEVEL; } static inline void irq_settings_clr_level(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_LEVEL; } static inline void irq_settings_set_level(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_LEVEL; } static inline bool irq_settings_can_request(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOREQUEST); } static inline void irq_settings_clr_norequest(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_NOREQUEST; } static inline void irq_settings_set_norequest(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NOREQUEST; } static inline bool irq_settings_can_thread(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOTHREAD); } static inline void irq_settings_clr_nothread(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_NOTHREAD; } static inline void irq_settings_set_nothread(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NOTHREAD; } static inline bool irq_settings_can_probe(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOPROBE); } static inline void irq_settings_clr_noprobe(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_NOPROBE; } static inline void irq_settings_set_noprobe(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NOPROBE; } static inline bool irq_settings_can_move_pcntxt(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_MOVE_PCNTXT; } static inline bool irq_settings_can_autoenable(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOAUTOEN); } static inline bool irq_settings_is_nested_thread(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_NESTED_THREAD; } static inline bool irq_settings_is_polled(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_IS_POLLED; } static inline bool irq_settings_disable_unlazy(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_DISABLE_UNLAZY; } static inline void irq_settings_clr_disable_unlazy(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_DISABLE_UNLAZY; } static inline bool irq_settings_is_hidden(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_HIDDEN; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CGROUP_INTERNAL_H #define __CGROUP_INTERNAL_H #include <linux/cgroup.h> #include <linux/kernfs.h> #include <linux/workqueue.h> #include <linux/list.h> #include <linux/refcount.h> #include <linux/fs_parser.h> #define TRACE_CGROUP_PATH_LEN 1024 extern spinlock_t trace_cgroup_path_lock; extern char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; extern bool cgroup_debug; extern void __init enable_debug_cgroup(void); /* * cgroup_path() takes a spin lock. It is good practice not to take * spin locks within trace point handlers, as they are mostly hidden * from normal view. As cgroup_path() can take the kernfs_rename_lock * spin lock, it is best to not call that function from the trace event * handler. * * Note: trace_cgroup_##type##_enabled() is a static branch that will only * be set when the trace event is enabled. */ #define TRACE_CGROUP_PATH(type, cgrp, ...) \ do { \ if (trace_cgroup_##type##_enabled()) { \ unsigned long flags; \ spin_lock_irqsave(&trace_cgroup_path_lock, \ flags); \ cgroup_path(cgrp, trace_cgroup_path, \ TRACE_CGROUP_PATH_LEN); \ trace_cgroup_##type(cgrp, trace_cgroup_path, \ ##__VA_ARGS__); \ spin_unlock_irqrestore(&trace_cgroup_path_lock, \ flags); \ } \ } while (0) /* * The cgroup filesystem superblock creation/mount context. */ struct cgroup_fs_context { struct kernfs_fs_context kfc; struct cgroup_root *root; struct cgroup_namespace *ns; unsigned int flags; /* CGRP_ROOT_* flags */ /* cgroup1 bits */ bool cpuset_clone_children; bool none; /* User explicitly requested empty subsystem */ bool all_ss; /* Seen 'all' option */ u16 subsys_mask; /* Selected subsystems */ char *name; /* Hierarchy name */ char *release_agent; /* Path for release notifications */ }; static inline struct cgroup_fs_context *cgroup_fc2context(struct fs_context *fc) { struct kernfs_fs_context *kfc = fc->fs_private; return container_of(kfc, struct cgroup_fs_context, kfc); } /* * A cgroup can be associated with multiple css_sets as different tasks may * belong to different cgroups on different hierarchies. In the other * direction, a css_set is naturally associated with multiple cgroups. * This M:N relationship is represented by the following link structure * which exists for each association and allows traversing the associations * from both sides. */ struct cgrp_cset_link { /* the cgroup and css_set this link associates */ struct cgroup *cgrp; struct css_set *cset; /* list of cgrp_cset_links anchored at cgrp->cset_links */ struct list_head cset_link; /* list of cgrp_cset_links anchored at css_set->cgrp_links */ struct list_head cgrp_link; }; /* used to track tasks and csets during migration */ struct cgroup_taskset { /* the src and dst cset list running through cset->mg_node */ struct list_head src_csets; struct list_head dst_csets; /* the number of tasks in the set */ int nr_tasks; /* the subsys currently being processed */ int ssid; /* * Fields for cgroup_taskset_*() iteration. * * Before migration is committed, the target migration tasks are on * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of * the csets on ->dst_csets. ->csets point to either ->src_csets * or ->dst_csets depending on whether migration is committed. * * ->cur_csets and ->cur_task point to the current task position * during iteration. */ struct list_head *csets; struct css_set *cur_cset; struct task_struct *cur_task; }; /* migration context also tracks preloading */ struct cgroup_mgctx { /* * Preloaded source and destination csets. Used to guarantee * atomic success or failure on actual migration. */ struct list_head preloaded_src_csets; struct list_head preloaded_dst_csets; /* tasks and csets to migrate */ struct cgroup_taskset tset; /* subsystems affected by migration */ u16 ss_mask; }; #define CGROUP_TASKSET_INIT(tset) \ { \ .src_csets = LIST_HEAD_INIT(tset.src_csets), \ .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \ .csets = &tset.src_csets, \ } #define CGROUP_MGCTX_INIT(name) \ { \ LIST_HEAD_INIT(name.preloaded_src_csets), \ LIST_HEAD_INIT(name.preloaded_dst_csets), \ CGROUP_TASKSET_INIT(name.tset), \ } #define DEFINE_CGROUP_MGCTX(name) \ struct cgroup_mgctx name = CGROUP_MGCTX_INIT(name) extern struct mutex cgroup_mutex; extern spinlock_t css_set_lock; extern struct cgroup_subsys *cgroup_subsys[]; extern struct list_head cgroup_roots; extern struct file_system_type cgroup_fs_type; /* iterate across the hierarchies */ #define for_each_root(root) \ list_for_each_entry((root), &cgroup_roots, root_list) /** * for_each_subsys - iterate all enabled cgroup subsystems * @ss: the iteration cursor * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end */ #define for_each_subsys(ss, ssid) \ for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \ (((ss) = cgroup_subsys[ssid]) || true); (ssid)++) static inline bool cgroup_is_dead(const struct cgroup *cgrp) { return !(cgrp->self.flags & CSS_ONLINE); } static inline bool notify_on_release(const struct cgroup *cgrp) { return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); } void put_css_set_locked(struct css_set *cset); static inline void put_css_set(struct css_set *cset) { unsigned long flags; /* * Ensure that the refcount doesn't hit zero while any readers * can see it. Similar to atomic_dec_and_lock(), but for an * rwlock */ if (refcount_dec_not_one(&cset->refcount)) return; spin_lock_irqsave(&css_set_lock, flags); put_css_set_locked(cset); spin_unlock_irqrestore(&css_set_lock, flags); } /* * refcounted get/put for css_set objects */ static inline void get_css_set(struct css_set *cset) { refcount_inc(&cset->refcount); } bool cgroup_ssid_enabled(int ssid); bool cgroup_on_dfl(const struct cgroup *cgrp); bool cgroup_is_thread_root(struct cgroup *cgrp); bool cgroup_is_threaded(struct cgroup *cgrp); struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root); struct cgroup *task_cgroup_from_root(struct task_struct *task, struct cgroup_root *root); struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline); void cgroup_kn_unlock(struct kernfs_node *kn); int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, struct cgroup_namespace *ns); void cgroup_free_root(struct cgroup_root *root); void init_cgroup_root(struct cgroup_fs_context *ctx); int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask); int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask); int cgroup_do_get_tree(struct fs_context *fc); int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp); void cgroup_migrate_finish(struct cgroup_mgctx *mgctx); void cgroup_migrate_add_src(struct css_set *src_cset, struct cgroup *dst_cgrp, struct cgroup_mgctx *mgctx); int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx); int cgroup_migrate(struct task_struct *leader, bool threadgroup, struct cgroup_mgctx *mgctx); int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, bool threadgroup); struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, bool *locked) __acquires(&cgroup_threadgroup_rwsem); void cgroup_procs_write_finish(struct task_struct *task, bool locked) __releases(&cgroup_threadgroup_rwsem); void cgroup_lock_and_drain_offline(struct cgroup *cgrp); int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode); int cgroup_rmdir(struct kernfs_node *kn); int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, struct kernfs_root *kf_root); int __cgroup_task_count(const struct cgroup *cgrp); int cgroup_task_count(const struct cgroup *cgrp); /* * rstat.c */ int cgroup_rstat_init(struct cgroup *cgrp); void cgroup_rstat_exit(struct cgroup *cgrp); void cgroup_rstat_boot(void); void cgroup_base_stat_cputime_show(struct seq_file *seq); /* * namespace.c */ extern const struct proc_ns_operations cgroupns_operations; /* * cgroup-v1.c */ extern struct cftype cgroup1_base_files[]; extern struct kernfs_syscall_ops cgroup1_kf_syscall_ops; extern const struct fs_parameter_spec cgroup1_fs_parameters[]; int proc_cgroupstats_show(struct seq_file *m, void *v); bool cgroup1_ssid_disabled(int ssid); void cgroup1_pidlist_destroy_all(struct cgroup *cgrp); void cgroup1_release_agent(struct work_struct *work); void cgroup1_check_for_release(struct cgroup *cgrp); int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param); int cgroup1_get_tree(struct fs_context *fc); int cgroup1_reconfigure(struct fs_context *ctx); #endif /* __CGROUP_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* * 25-Jul-1998 Major changes to allow for ip chain table * * 3-Jan-2000 Named tables to allow packet selection for different uses. */ /* * Format of an IP6 firewall descriptor * * src, dst, src_mask, dst_mask are always stored in network byte order. * flags are stored in host byte order (of course). * Port numbers are stored in HOST byte order. */ #ifndef _UAPI_IP6_TABLES_H #define _UAPI_IP6_TABLES_H #include <linux/types.h> #include <linux/compiler.h> #include <linux/if.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter/x_tables.h> #ifndef __KERNEL__ #define IP6T_FUNCTION_MAXNAMELEN XT_FUNCTION_MAXNAMELEN #define IP6T_TABLE_MAXNAMELEN XT_TABLE_MAXNAMELEN #define ip6t_match xt_match #define ip6t_target xt_target #define ip6t_table xt_table #define ip6t_get_revision xt_get_revision #define ip6t_entry_match xt_entry_match #define ip6t_entry_target xt_entry_target #define ip6t_standard_target xt_standard_target #define ip6t_error_target xt_error_target #define ip6t_counters xt_counters #define IP6T_CONTINUE XT_CONTINUE #define IP6T_RETURN XT_RETURN /* Pre-iptables-1.4.0 */ #include <linux/netfilter/xt_tcpudp.h> #define ip6t_tcp xt_tcp #define ip6t_udp xt_udp #define IP6T_TCP_INV_SRCPT XT_TCP_INV_SRCPT #define IP6T_TCP_INV_DSTPT XT_TCP_INV_DSTPT #define IP6T_TCP_INV_FLAGS XT_TCP_INV_FLAGS #define IP6T_TCP_INV_OPTION XT_TCP_INV_OPTION #define IP6T_TCP_INV_MASK XT_TCP_INV_MASK #define IP6T_UDP_INV_SRCPT XT_UDP_INV_SRCPT #define IP6T_UDP_INV_DSTPT XT_UDP_INV_DSTPT #define IP6T_UDP_INV_MASK XT_UDP_INV_MASK #define ip6t_counters_info xt_counters_info #define IP6T_STANDARD_TARGET XT_STANDARD_TARGET #define IP6T_ERROR_TARGET XT_ERROR_TARGET #define IP6T_MATCH_ITERATE(e, fn, args...) \ XT_MATCH_ITERATE(struct ip6t_entry, e, fn, ## args) #define IP6T_ENTRY_ITERATE(entries, size, fn, args...) \ XT_ENTRY_ITERATE(struct ip6t_entry, entries, size, fn, ## args) #endif /* Yes, Virginia, you have to zero the padding. */ struct ip6t_ip6 { /* Source and destination IP6 addr */ struct in6_addr src, dst; /* Mask for src and dest IP6 addr */ struct in6_addr smsk, dmsk; char iniface[IFNAMSIZ], outiface[IFNAMSIZ]; unsigned char iniface_mask[IFNAMSIZ], outiface_mask[IFNAMSIZ]; /* Upper protocol number * - The allowed value is 0 (any) or protocol number of last parsable * header, which is 50 (ESP), 59 (No Next Header), 135 (MH), or * the non IPv6 extension headers. * - The protocol numbers of IPv6 extension headers except of ESP and * MH do not match any packets. * - You also need to set IP6T_FLAGS_PROTO to "flags" to check protocol. */ __u16 proto; /* TOS to match iff flags & IP6T_F_TOS */ __u8 tos; /* Flags word */ __u8 flags; /* Inverse flags */ __u8 invflags; }; /* Values for "flag" field in struct ip6t_ip6 (general ip6 structure). */ #define IP6T_F_PROTO 0x01 /* Set if rule cares about upper protocols */ #define IP6T_F_TOS 0x02 /* Match the TOS. */ #define IP6T_F_GOTO 0x04 /* Set if jump is a goto */ #define IP6T_F_MASK 0x07 /* All possible flag bits mask. */ /* Values for "inv" field in struct ip6t_ip6. */ #define IP6T_INV_VIA_IN 0x01 /* Invert the sense of IN IFACE. */ #define IP6T_INV_VIA_OUT 0x02 /* Invert the sense of OUT IFACE */ #define IP6T_INV_TOS 0x04 /* Invert the sense of TOS. */ #define IP6T_INV_SRCIP 0x08 /* Invert the sense of SRC IP. */ #define IP6T_INV_DSTIP 0x10 /* Invert the sense of DST OP. */ #define IP6T_INV_FRAG 0x20 /* Invert the sense of FRAG. */ #define IP6T_INV_PROTO XT_INV_PROTO #define IP6T_INV_MASK 0x7F /* All possible flag bits mask. */ /* This structure defines each of the firewall rules. Consists of 3 parts which are 1) general IP header stuff 2) match specific stuff 3) the target to perform if the rule matches */ struct ip6t_entry { struct ip6t_ip6 ipv6; /* Mark with fields that we care about. */ unsigned int nfcache; /* Size of ipt_entry + matches */ __u16 target_offset; /* Size of ipt_entry + matches + target */ __u16 next_offset; /* Back pointer */ unsigned int comefrom; /* Packet and byte counters. */ struct xt_counters counters; /* The matches (if any), then the target. */ unsigned char elems[0]; }; /* Standard entry */ struct ip6t_standard { struct ip6t_entry entry; struct xt_standard_target target; }; struct ip6t_error { struct ip6t_entry entry; struct xt_error_target target; }; #define IP6T_ENTRY_INIT(__size) \ { \ .target_offset = sizeof(struct ip6t_entry), \ .next_offset = (__size), \ } #define IP6T_STANDARD_INIT(__verdict) \ { \ .entry = IP6T_ENTRY_INIT(sizeof(struct ip6t_standard)), \ .target = XT_TARGET_INIT(XT_STANDARD_TARGET, \ sizeof(struct xt_standard_target)), \ .target.verdict = -(__verdict) - 1, \ } #define IP6T_ERROR_INIT \ { \ .entry = IP6T_ENTRY_INIT(sizeof(struct ip6t_error)), \ .target = XT_TARGET_INIT(XT_ERROR_TARGET, \ sizeof(struct xt_error_target)), \ .target.errorname = "ERROR", \ } /* * New IP firewall options for [gs]etsockopt at the RAW IP level. * Unlike BSD Linux inherits IP options so you don't have to use * a raw socket for this. Instead we check rights in the calls. * * ATTENTION: check linux/in6.h before adding new number here. */ #define IP6T_BASE_CTL 64 #define IP6T_SO_SET_REPLACE (IP6T_BASE_CTL) #define IP6T_SO_SET_ADD_COUNTERS (IP6T_BASE_CTL + 1) #define IP6T_SO_SET_MAX IP6T_SO_SET_ADD_COUNTERS #define IP6T_SO_GET_INFO (IP6T_BASE_CTL) #define IP6T_SO_GET_ENTRIES (IP6T_BASE_CTL + 1) #define IP6T_SO_GET_REVISION_MATCH (IP6T_BASE_CTL + 4) #define IP6T_SO_GET_REVISION_TARGET (IP6T_BASE_CTL + 5) #define IP6T_SO_GET_MAX IP6T_SO_GET_REVISION_TARGET /* obtain original address if REDIRECT'd connection */ #define IP6T_SO_ORIGINAL_DST 80 /* ICMP matching stuff */ struct ip6t_icmp { __u8 type; /* type to match */ __u8 code[2]; /* range of code */ __u8 invflags; /* Inverse flags */ }; /* Values for "inv" field for struct ipt_icmp. */ #define IP6T_ICMP_INV 0x01 /* Invert the sense of type/code test */ /* The argument to IP6T_SO_GET_INFO */ struct ip6t_getinfo { /* Which table: caller fills this in. */ char name[XT_TABLE_MAXNAMELEN]; /* Kernel fills these in. */ /* Which hook entry points are valid: bitmask */ unsigned int valid_hooks; /* Hook entry points: one per netfilter hook. */ unsigned int hook_entry[NF_INET_NUMHOOKS]; /* Underflow points. */ unsigned int underflow[NF_INET_NUMHOOKS]; /* Number of entries */ unsigned int num_entries; /* Size of entries. */ unsigned int size; }; /* The argument to IP6T_SO_SET_REPLACE. */ struct ip6t_replace { /* Which table. */ char name[XT_TABLE_MAXNAMELEN]; /* Which hook entry points are valid: bitmask. You can't change this. */ unsigned int valid_hooks; /* Number of entries */ unsigned int num_entries; /* Total size of new entries */ unsigned int size; /* Hook entry points. */ unsigned int hook_entry[NF_INET_NUMHOOKS]; /* Underflow points. */ unsigned int underflow[NF_INET_NUMHOOKS]; /* Information about old entries: */ /* Number of counters (must be equal to current number of entries). */ unsigned int num_counters; /* The old entries' counters. */ struct xt_counters __user *counters; /* The entries (hang off end: not really an array). */ struct ip6t_entry entries[0]; }; /* The argument to IP6T_SO_GET_ENTRIES. */ struct ip6t_get_entries { /* Which table: user fills this in. */ char name[XT_TABLE_MAXNAMELEN]; /* User fills this in: total entry size. */ unsigned int size; /* The entries. */ struct ip6t_entry entrytable[0]; }; /* Helper functions */ static __inline__ struct xt_entry_target * ip6t_get_target(struct ip6t_entry *e) { return (struct xt_entry_target *)((char *)e + e->target_offset); } /* * Main firewall chains definitions and global var's definitions. */ #endif /* _UAPI_IP6_TABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/pm_qos.h> static inline void device_pm_init_common(struct device *dev) { if (!dev->power.early_init) { spin_lock_init(&dev->power.lock); dev->power.qos = NULL; dev->power.early_init = true; } } #ifdef CONFIG_PM static inline void pm_runtime_early_init(struct device *dev) { dev->power.disable_depth = 1; device_pm_init_common(dev); } extern void pm_runtime_init(struct device *dev); extern void pm_runtime_reinit(struct device *dev); extern void pm_runtime_remove(struct device *dev); extern u64 pm_runtime_active_time(struct device *dev); #define WAKE_IRQ_DEDICATED_ALLOCATED BIT(0) #define WAKE_IRQ_DEDICATED_MANAGED BIT(1) #define WAKE_IRQ_DEDICATED_MASK (WAKE_IRQ_DEDICATED_ALLOCATED | \ WAKE_IRQ_DEDICATED_MANAGED) struct wake_irq { struct device *dev; unsigned int status; int irq; const char *name; }; extern void dev_pm_arm_wake_irq(struct wake_irq *wirq); extern void dev_pm_disarm_wake_irq(struct wake_irq *wirq); extern void dev_pm_enable_wake_irq_check(struct device *dev, bool can_change_status); extern void dev_pm_disable_wake_irq_check(struct device *dev); #ifdef CONFIG_PM_SLEEP extern void device_wakeup_attach_irq(struct device *dev, struct wake_irq *wakeirq); extern void device_wakeup_detach_irq(struct device *dev); extern void device_wakeup_arm_wake_irqs(void); extern void device_wakeup_disarm_wake_irqs(void); #else static inline void device_wakeup_attach_irq(struct device *dev, struct wake_irq *wakeirq) {} static inline void device_wakeup_detach_irq(struct device *dev) { } #endif /* CONFIG_PM_SLEEP */ /* * sysfs.c */ extern int dpm_sysfs_add(struct device *dev); extern void dpm_sysfs_remove(struct device *dev); extern void rpm_sysfs_remove(struct device *dev); extern int wakeup_sysfs_add(struct device *dev); extern void wakeup_sysfs_remove(struct device *dev); extern int pm_qos_sysfs_add_resume_latency(struct device *dev); extern void pm_qos_sysfs_remove_resume_latency(struct device *dev); extern int pm_qos_sysfs_add_flags(struct device *dev); extern void pm_qos_sysfs_remove_flags(struct device *dev); extern int pm_qos_sysfs_add_latency_tolerance(struct device *dev); extern void pm_qos_sysfs_remove_latency_tolerance(struct device *dev); extern int dpm_sysfs_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid); #else /* CONFIG_PM */ static inline void pm_runtime_early_init(struct device *dev) { device_pm_init_common(dev); } static inline void pm_runtime_init(struct device *dev) {} static inline void pm_runtime_reinit(struct device *dev) {} static inline void pm_runtime_remove(struct device *dev) {} static inline int dpm_sysfs_add(struct device *dev) { return 0; } static inline void dpm_sysfs_remove(struct device *dev) {} static inline int dpm_sysfs_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) { return 0; } #endif #ifdef CONFIG_PM_SLEEP /* kernel/power/main.c */ extern int pm_async_enabled; /* drivers/base/power/main.c */ extern struct list_head dpm_list; /* The active device list */ static inline struct device *to_device(struct list_head *entry) { return container_of(entry, struct device, power.entry); } extern void device_pm_sleep_init(struct device *dev); extern void device_pm_add(struct device *); extern void device_pm_remove(struct device *); extern void device_pm_move_before(struct device *, struct device *); extern void device_pm_move_after(struct device *, struct device *); extern void device_pm_move_last(struct device *); extern void device_pm_check_callbacks(struct device *dev); static inline bool device_pm_initialized(struct device *dev) { return dev->power.in_dpm_list; } /* drivers/base/power/wakeup_stats.c */ extern int wakeup_source_sysfs_add(struct device *parent, struct wakeup_source *ws); extern void wakeup_source_sysfs_remove(struct wakeup_source *ws); extern int pm_wakeup_source_sysfs_add(struct device *parent); #else /* !CONFIG_PM_SLEEP */ static inline void device_pm_sleep_init(struct device *dev) {} static inline void device_pm_add(struct device *dev) {} static inline void device_pm_remove(struct device *dev) { pm_runtime_remove(dev); } static inline void device_pm_move_before(struct device *deva, struct device *devb) {} static inline void device_pm_move_after(struct device *deva, struct device *devb) {} static inline void device_pm_move_last(struct device *dev) {} static inline void device_pm_check_callbacks(struct device *dev) {} static inline bool device_pm_initialized(struct device *dev) { return device_is_registered(dev); } static inline int pm_wakeup_source_sysfs_add(struct device *parent) { return 0; } #endif /* !CONFIG_PM_SLEEP */ static inline void device_pm_init(struct device *dev) { device_pm_init_common(dev); device_pm_sleep_init(dev); pm_runtime_init(dev); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NF_CONNTRACK_EXTEND_H #define _NF_CONNTRACK_EXTEND_H #include <linux/slab.h> #include <net/netfilter/nf_conntrack.h> enum nf_ct_ext_id { NF_CT_EXT_HELPER, #if IS_ENABLED(CONFIG_NF_NAT) NF_CT_EXT_NAT, #endif NF_CT_EXT_SEQADJ, NF_CT_EXT_ACCT, #ifdef CONFIG_NF_CONNTRACK_EVENTS NF_CT_EXT_ECACHE, #endif #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP NF_CT_EXT_TSTAMP, #endif #ifdef CONFIG_NF_CONNTRACK_TIMEOUT NF_CT_EXT_TIMEOUT, #endif #ifdef CONFIG_NF_CONNTRACK_LABELS NF_CT_EXT_LABELS, #endif #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY) NF_CT_EXT_SYNPROXY, #endif NF_CT_EXT_NUM, }; #define NF_CT_EXT_HELPER_TYPE struct nf_conn_help #define NF_CT_EXT_NAT_TYPE struct nf_conn_nat #define NF_CT_EXT_SEQADJ_TYPE struct nf_conn_seqadj #define NF_CT_EXT_ACCT_TYPE struct nf_conn_acct #define NF_CT_EXT_ECACHE_TYPE struct nf_conntrack_ecache #define NF_CT_EXT_TSTAMP_TYPE struct nf_conn_tstamp #define NF_CT_EXT_TIMEOUT_TYPE struct nf_conn_timeout #define NF_CT_EXT_LABELS_TYPE struct nf_conn_labels #define NF_CT_EXT_SYNPROXY_TYPE struct nf_conn_synproxy /* Extensions: optional stuff which isn't permanently in struct. */ struct nf_ct_ext { u8 offset[NF_CT_EXT_NUM]; u8 len; char data[]; }; static inline bool __nf_ct_ext_exist(const struct nf_ct_ext *ext, u8 id) { return !!ext->offset[id]; } static inline bool nf_ct_ext_exist(const struct nf_conn *ct, u8 id) { return (ct->ext && __nf_ct_ext_exist(ct->ext, id)); } static inline void *__nf_ct_ext_find(const struct nf_conn *ct, u8 id) { if (!nf_ct_ext_exist(ct, id)) return NULL; return (void *)ct->ext + ct->ext->offset[id]; } #define nf_ct_ext_find(ext, id) \ ((id##_TYPE *)__nf_ct_ext_find((ext), (id))) /* Destroy all relationships */ void nf_ct_ext_destroy(struct nf_conn *ct); /* Add this type, returns pointer to data or NULL. */ void *nf_ct_ext_add(struct nf_conn *ct, enum nf_ct_ext_id id, gfp_t gfp); struct nf_ct_ext_type { /* Destroys relationships (can be NULL). */ void (*destroy)(struct nf_conn *ct); enum nf_ct_ext_id id; /* Length and min alignment. */ u8 len; u8 align; }; int nf_ct_extend_register(const struct nf_ct_ext_type *type); void nf_ct_extend_unregister(const struct nf_ct_ext_type *type); #endif /* _NF_CONNTRACK_EXTEND_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 /* SPDX-License-Identifier: GPL-2.0 */ /* * Routines to manage notifier chains for passing status changes to any * interested routines. We need this instead of hard coded call lists so * that modules can poke their nose into the innards. The network devices * needed them so here they are for the rest of you. * * Alan Cox <Alan.Cox@linux.org> */ #ifndef _LINUX_NOTIFIER_H #define _LINUX_NOTIFIER_H #include <linux/errno.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/srcu.h> /* * Notifier chains are of four types: * * Atomic notifier chains: Chain callbacks run in interrupt/atomic * context. Callouts are not allowed to block. * Blocking notifier chains: Chain callbacks run in process context. * Callouts are allowed to block. * Raw notifier chains: There are no restrictions on callbacks, * registration, or unregistration. All locking and protection * must be provided by the caller. * SRCU notifier chains: A variant of blocking notifier chains, with * the same restrictions. * * atomic_notifier_chain_register() may be called from an atomic context, * but blocking_notifier_chain_register() and srcu_notifier_chain_register() * must be called from a process context. Ditto for the corresponding * _unregister() routines. * * atomic_notifier_chain_unregister(), blocking_notifier_chain_unregister(), * and srcu_notifier_chain_unregister() _must not_ be called from within * the call chain. * * SRCU notifier chains are an alternative form of blocking notifier chains. * They use SRCU (Sleepable Read-Copy Update) instead of rw-semaphores for * protection of the chain links. This means there is _very_ low overhead * in srcu_notifier_call_chain(): no cache bounces and no memory barriers. * As compensation, srcu_notifier_chain_unregister() is rather expensive. * SRCU notifier chains should be used when the chain will be called very * often but notifier_blocks will seldom be removed. */ struct notifier_block; typedef int (*notifier_fn_t)(struct notifier_block *nb, unsigned long action, void *data); struct notifier_block { notifier_fn_t notifier_call; struct notifier_block __rcu *next; int priority; }; struct atomic_notifier_head { spinlock_t lock; struct notifier_block __rcu *head; }; struct blocking_notifier_head { struct rw_semaphore rwsem; struct notifier_block __rcu *head; }; struct raw_notifier_head { struct notifier_block __rcu *head; }; struct srcu_notifier_head { struct mutex mutex; struct srcu_struct srcu; struct notifier_block __rcu *head; }; #define ATOMIC_INIT_NOTIFIER_HEAD(name) do { \ spin_lock_init(&(name)->lock); \ (name)->head = NULL; \ } while (0) #define BLOCKING_INIT_NOTIFIER_HEAD(name) do { \ init_rwsem(&(name)->rwsem); \ (name)->head = NULL; \ } while (0) #define RAW_INIT_NOTIFIER_HEAD(name) do { \ (name)->head = NULL; \ } while (0) /* srcu_notifier_heads must be cleaned up dynamically */ extern void srcu_init_notifier_head(struct srcu_notifier_head *nh); #define srcu_cleanup_notifier_head(name) \ cleanup_srcu_struct(&(name)->srcu); #define ATOMIC_NOTIFIER_INIT(name) { \ .lock = __SPIN_LOCK_UNLOCKED(name.lock), \ .head = NULL } #define BLOCKING_NOTIFIER_INIT(name) { \ .rwsem = __RWSEM_INITIALIZER((name).rwsem), \ .head = NULL } #define RAW_NOTIFIER_INIT(name) { \ .head = NULL } #define SRCU_NOTIFIER_INIT(name, pcpu) \ { \ .mutex = __MUTEX_INITIALIZER(name.mutex), \ .head = NULL, \ .srcu = __SRCU_STRUCT_INIT(name.srcu, pcpu), \ } #define ATOMIC_NOTIFIER_HEAD(name) \ struct atomic_notifier_head name = \ ATOMIC_NOTIFIER_INIT(name) #define BLOCKING_NOTIFIER_HEAD(name) \ struct blocking_notifier_head name = \ BLOCKING_NOTIFIER_INIT(name) #define RAW_NOTIFIER_HEAD(name) \ struct raw_notifier_head name = \ RAW_NOTIFIER_INIT(name) #ifdef CONFIG_TREE_SRCU #define _SRCU_NOTIFIER_HEAD(name, mod) \ static DEFINE_PER_CPU(struct srcu_data, name##_head_srcu_data); \ mod struct srcu_notifier_head name = \ SRCU_NOTIFIER_INIT(name, name##_head_srcu_data) #else #define _SRCU_NOTIFIER_HEAD(name, mod) \ mod struct srcu_notifier_head name = \ SRCU_NOTIFIER_INIT(name, name) #endif #define SRCU_NOTIFIER_HEAD(name) \ _SRCU_NOTIFIER_HEAD(name, /* not static */) #define SRCU_NOTIFIER_HEAD_STATIC(name) \ _SRCU_NOTIFIER_HEAD(name, static) #ifdef __KERNEL__ extern int atomic_notifier_chain_register(struct atomic_notifier_head *nh, struct notifier_block *nb); extern int blocking_notifier_chain_register(struct blocking_notifier_head *nh, struct notifier_block *nb); extern int raw_notifier_chain_register(struct raw_notifier_head *nh, struct notifier_block *nb); extern int srcu_notifier_chain_register(struct srcu_notifier_head *nh, struct notifier_block *nb); extern int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh, struct notifier_block *nb); extern int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh, struct notifier_block *nb); extern int raw_notifier_chain_unregister(struct raw_notifier_head *nh, struct notifier_block *nb); extern int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh, struct notifier_block *nb); extern int atomic_notifier_call_chain(struct atomic_notifier_head *nh, unsigned long val, void *v); extern int blocking_notifier_call_chain(struct blocking_notifier_head *nh, unsigned long val, void *v); extern int raw_notifier_call_chain(struct raw_notifier_head *nh, unsigned long val, void *v); extern int srcu_notifier_call_chain(struct srcu_notifier_head *nh, unsigned long val, void *v); extern int atomic_notifier_call_chain_robust(struct atomic_notifier_head *nh, unsigned long val_up, unsigned long val_down, void *v); extern int blocking_notifier_call_chain_robust(struct blocking_notifier_head *nh, unsigned long val_up, unsigned long val_down, void *v); extern int raw_notifier_call_chain_robust(struct raw_notifier_head *nh, unsigned long val_up, unsigned long val_down, void *v); #define NOTIFY_DONE 0x0000 /* Don't care */ #define NOTIFY_OK 0x0001 /* Suits me */ #define NOTIFY_STOP_MASK 0x8000 /* Don't call further */ #define NOTIFY_BAD (NOTIFY_STOP_MASK|0x0002) /* Bad/Veto action */ /* * Clean way to return from the notifier and stop further calls. */ #define NOTIFY_STOP (NOTIFY_OK|NOTIFY_STOP_MASK) /* Encapsulate (negative) errno value (in particular, NOTIFY_BAD <=> EPERM). */ static inline int notifier_from_errno(int err) { if (err) return NOTIFY_STOP_MASK | (NOTIFY_OK - err); return NOTIFY_OK; } /* Restore (negative) errno value from notify return value. */ static inline int notifier_to_errno(int ret) { ret &= ~NOTIFY_STOP_MASK; return ret > NOTIFY_OK ? NOTIFY_OK - ret : 0; } /* * Declared notifiers so far. I can imagine quite a few more chains * over time (eg laptop power reset chains, reboot chain (to clean * device units up), device [un]mount chain, module load/unload chain, * low memory chain, screenblank chain (for plug in modular screenblankers) * VC switch chains (for loadable kernel svgalib VC switch helpers) etc... */ /* CPU notfiers are defined in include/linux/cpu.h. */ /* netdevice notifiers are defined in include/linux/netdevice.h */ /* reboot notifiers are defined in include/linux/reboot.h. */ /* Hibernation and suspend events are defined in include/linux/suspend.h. */ /* Virtual Terminal events are defined in include/linux/vt.h. */ #define NETLINK_URELEASE 0x0001 /* Unicast netlink socket released */ /* Console keyboard events. * Note: KBD_KEYCODE is always sent before KBD_UNBOUND_KEYCODE, KBD_UNICODE and * KBD_KEYSYM. */ #define KBD_KEYCODE 0x0001 /* Keyboard keycode, called before any other */ #define KBD_UNBOUND_KEYCODE 0x0002 /* Keyboard keycode which is not bound to any other */ #define KBD_UNICODE 0x0003 /* Keyboard unicode */ #define KBD_KEYSYM 0x0004 /* Keyboard keysym */ #define KBD_POST_KEYSYM 0x0005 /* Called after keyboard keysym interpretation */ extern struct blocking_notifier_head reboot_notifier_list; #endif /* __KERNEL__ */ #endif /* _LINUX_NOTIFIER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NSPROXY_H #define _LINUX_NSPROXY_H #include <linux/spinlock.h> #include <linux/sched.h> struct mnt_namespace; struct uts_namespace; struct ipc_namespace; struct pid_namespace; struct cgroup_namespace; struct fs_struct; /* * A structure to contain pointers to all per-process * namespaces - fs (mount), uts, network, sysvipc, etc. * * The pid namespace is an exception -- it's accessed using * task_active_pid_ns. The pid namespace here is the * namespace that children will use. * * 'count' is the number of tasks holding a reference. * The count for each namespace, then, will be the number * of nsproxies pointing to it, not the number of tasks. * * The nsproxy is shared by tasks which share all namespaces. * As soon as a single namespace is cloned or unshared, the * nsproxy is copied. */ struct nsproxy { atomic_t count; struct uts_namespace *uts_ns; struct ipc_namespace *ipc_ns; struct mnt_namespace *mnt_ns; struct pid_namespace *pid_ns_for_children; struct net *net_ns; struct time_namespace *time_ns; struct time_namespace *time_ns_for_children; struct cgroup_namespace *cgroup_ns; }; extern struct nsproxy init_nsproxy; /* * A structure to encompass all bits needed to install * a partial or complete new set of namespaces. * * If a new user namespace is requested cred will * point to a modifiable set of credentials. If a pointer * to a modifiable set is needed nsset_cred() must be * used and tested. */ struct nsset { unsigned flags; struct nsproxy *nsproxy; struct fs_struct *fs; const struct cred *cred; }; static inline struct cred *nsset_cred(struct nsset *set) { if (set->flags & CLONE_NEWUSER) return (struct cred *)set->cred; return NULL; } /* * the namespaces access rules are: * * 1. only current task is allowed to change tsk->nsproxy pointer or * any pointer on the nsproxy itself. Current must hold the task_lock * when changing tsk->nsproxy. * * 2. when accessing (i.e. reading) current task's namespaces - no * precautions should be taken - just dereference the pointers * * 3. the access to other task namespaces is performed like this * task_lock(task); * nsproxy = task->nsproxy; * if (nsproxy != NULL) { * / * * * work with the namespaces here * * e.g. get the reference on one of them * * / * } / * * * NULL task->nsproxy means that this task is * * almost dead (zombie) * * / * task_unlock(task); * */ int copy_namespaces(unsigned long flags, struct task_struct *tsk); void exit_task_namespaces(struct task_struct *tsk); void switch_task_namespaces(struct task_struct *tsk, struct nsproxy *new); void free_nsproxy(struct nsproxy *ns); int unshare_nsproxy_namespaces(unsigned long, struct nsproxy **, struct cred *, struct fs_struct *); int __init nsproxy_cache_init(void); static inline void put_nsproxy(struct nsproxy *ns) { if (atomic_dec_and_test(&ns->count)) { free_nsproxy(ns); } } static inline void get_nsproxy(struct nsproxy *ns) { atomic_inc(&ns->count); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/include/linux/relay.h * * Copyright (C) 2002, 2003 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp * Copyright (C) 1999, 2000, 2001, 2002 - Karim Yaghmour (karim@opersys.com) * * CONFIG_RELAY definitions and declarations */ #ifndef _LINUX_RELAY_H #define _LINUX_RELAY_H #include <linux/types.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/wait.h> #include <linux/list.h> #include <linux/irq_work.h> #include <linux/bug.h> #include <linux/fs.h> #include <linux/poll.h> #include <linux/kref.h> #include <linux/percpu.h> /* * Tracks changes to rchan/rchan_buf structs */ #define RELAYFS_CHANNEL_VERSION 7 /* * Per-cpu relay channel buffer */ struct rchan_buf { void *start; /* start of channel buffer */ void *data; /* start of current sub-buffer */ size_t offset; /* current offset into sub-buffer */ size_t subbufs_produced; /* count of sub-buffers produced */ size_t subbufs_consumed; /* count of sub-buffers consumed */ struct rchan *chan; /* associated channel */ wait_queue_head_t read_wait; /* reader wait queue */ struct irq_work wakeup_work; /* reader wakeup */ struct dentry *dentry; /* channel file dentry */ struct kref kref; /* channel buffer refcount */ struct page **page_array; /* array of current buffer pages */ unsigned int page_count; /* number of current buffer pages */ unsigned int finalized; /* buffer has been finalized */ size_t *padding; /* padding counts per sub-buffer */ size_t prev_padding; /* temporary variable */ size_t bytes_consumed; /* bytes consumed in cur read subbuf */ size_t early_bytes; /* bytes consumed before VFS inited */ unsigned int cpu; /* this buf's cpu */ } ____cacheline_aligned; /* * Relay channel data structure */ struct rchan { u32 version; /* the version of this struct */ size_t subbuf_size; /* sub-buffer size */ size_t n_subbufs; /* number of sub-buffers per buffer */ size_t alloc_size; /* total buffer size allocated */ struct rchan_callbacks *cb; /* client callbacks */ struct kref kref; /* channel refcount */ void *private_data; /* for user-defined data */ size_t last_toobig; /* tried to log event > subbuf size */ struct rchan_buf * __percpu *buf; /* per-cpu channel buffers */ int is_global; /* One global buffer ? */ struct list_head list; /* for channel list */ struct dentry *parent; /* parent dentry passed to open */ int has_base_filename; /* has a filename associated? */ char base_filename[NAME_MAX]; /* saved base filename */ }; /* * Relay channel client callbacks */ struct rchan_callbacks { /* * subbuf_start - called on buffer-switch to a new sub-buffer * @buf: the channel buffer containing the new sub-buffer * @subbuf: the start of the new sub-buffer * @prev_subbuf: the start of the previous sub-buffer * @prev_padding: unused space at the end of previous sub-buffer * * The client should return 1 to continue logging, 0 to stop * logging. * * NOTE: subbuf_start will also be invoked when the buffer is * created, so that the first sub-buffer can be initialized * if necessary. In this case, prev_subbuf will be NULL. * * NOTE: the client can reserve bytes at the beginning of the new * sub-buffer by calling subbuf_start_reserve() in this callback. */ int (*subbuf_start) (struct rchan_buf *buf, void *subbuf, void *prev_subbuf, size_t prev_padding); /* * buf_mapped - relay buffer mmap notification * @buf: the channel buffer * @filp: relay file pointer * * Called when a relay file is successfully mmapped */ void (*buf_mapped)(struct rchan_buf *buf, struct file *filp); /* * buf_unmapped - relay buffer unmap notification * @buf: the channel buffer * @filp: relay file pointer * * Called when a relay file is successfully unmapped */ void (*buf_unmapped)(struct rchan_buf *buf, struct file *filp); /* * create_buf_file - create file to represent a relay channel buffer * @filename: the name of the file to create * @parent: the parent of the file to create * @mode: the mode of the file to create * @buf: the channel buffer * @is_global: outparam - set non-zero if the buffer should be global * * Called during relay_open(), once for each per-cpu buffer, * to allow the client to create a file to be used to * represent the corresponding channel buffer. If the file is * created outside of relay, the parent must also exist in * that filesystem. * * The callback should return the dentry of the file created * to represent the relay buffer. * * Setting the is_global outparam to a non-zero value will * cause relay_open() to create a single global buffer rather * than the default set of per-cpu buffers. * * See Documentation/filesystems/relay.rst for more info. */ struct dentry *(*create_buf_file)(const char *filename, struct dentry *parent, umode_t mode, struct rchan_buf *buf, int *is_global); /* * remove_buf_file - remove file representing a relay channel buffer * @dentry: the dentry of the file to remove * * Called during relay_close(), once for each per-cpu buffer, * to allow the client to remove a file used to represent a * channel buffer. * * The callback should return 0 if successful, negative if not. */ int (*remove_buf_file)(struct dentry *dentry); }; /* * CONFIG_RELAY kernel API, kernel/relay.c */ struct rchan *relay_open(const char *base_filename, struct dentry *parent, size_t subbuf_size, size_t n_subbufs, struct rchan_callbacks *cb, void *private_data); extern int relay_late_setup_files(struct rchan *chan, const char *base_filename, struct dentry *parent); extern void relay_close(struct rchan *chan); extern void relay_flush(struct rchan *chan); extern void relay_subbufs_consumed(struct rchan *chan, unsigned int cpu, size_t consumed); extern void relay_reset(struct rchan *chan); extern int relay_buf_full(struct rchan_buf *buf); extern size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length); /** * relay_write - write data into the channel * @chan: relay channel * @data: data to be written * @length: number of bytes to write * * Writes data into the current cpu's channel buffer. * * Protects the buffer by disabling interrupts. Use this * if you might be logging from interrupt context. Try * __relay_write() if you know you won't be logging from * interrupt context. */ static inline void relay_write(struct rchan *chan, const void *data, size_t length) { unsigned long flags; struct rchan_buf *buf; local_irq_save(flags); buf = *this_cpu_ptr(chan->buf); if (unlikely(buf->offset + length > chan->subbuf_size)) length = relay_switch_subbuf(buf, length); memcpy(buf->data + buf->offset, data, length); buf->offset += length; local_irq_restore(flags); } /** * __relay_write - write data into the channel * @chan: relay channel * @data: data to be written * @length: number of bytes to write * * Writes data into the current cpu's channel buffer. * * Protects the buffer by disabling preemption. Use * relay_write() if you might be logging from interrupt * context. */ static inline void __relay_write(struct rchan *chan, const void *data, size_t length) { struct rchan_buf *buf; buf = *get_cpu_ptr(chan->buf); if (unlikely(buf->offset + length > buf->chan->subbuf_size)) length = relay_switch_subbuf(buf, length); memcpy(buf->data + buf->offset, data, length); buf->offset += length; put_cpu_ptr(chan->buf); } /** * relay_reserve - reserve slot in channel buffer * @chan: relay channel * @length: number of bytes to reserve * * Returns pointer to reserved slot, NULL if full. * * Reserves a slot in the current cpu's channel buffer. * Does not protect the buffer at all - caller must provide * appropriate synchronization. */ static inline void *relay_reserve(struct rchan *chan, size_t length) { void *reserved = NULL; struct rchan_buf *buf = *get_cpu_ptr(chan->buf); if (unlikely(buf->offset + length > buf->chan->subbuf_size)) { length = relay_switch_subbuf(buf, length); if (!length) goto end; } reserved = buf->data + buf->offset; buf->offset += length; end: put_cpu_ptr(chan->buf); return reserved; } /** * subbuf_start_reserve - reserve bytes at the start of a sub-buffer * @buf: relay channel buffer * @length: number of bytes to reserve * * Helper function used to reserve bytes at the beginning of * a sub-buffer in the subbuf_start() callback. */ static inline void subbuf_start_reserve(struct rchan_buf *buf, size_t length) { BUG_ON(length >= buf->chan->subbuf_size - 1); buf->offset = length; } /* * exported relay file operations, kernel/relay.c */ extern const struct file_operations relay_file_operations; #ifdef CONFIG_RELAY int relay_prepare_cpu(unsigned int cpu); #else #define relay_prepare_cpu NULL #endif #endif /* _LINUX_RELAY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_DELAY_H #define _LINUX_DELAY_H /* * Copyright (C) 1993 Linus Torvalds * * Delay routines, using a pre-computed "loops_per_jiffy" value. * * Please note that ndelay(), udelay() and mdelay() may return early for * several reasons: * 1. computed loops_per_jiffy too low (due to the time taken to * execute the timer interrupt.) * 2. cache behaviour affecting the time it takes to execute the * loop function. * 3. CPU clock rate changes. * * Please see this thread: * https://lists.openwall.net/linux-kernel/2011/01/09/56 */ #include <linux/kernel.h> extern unsigned long loops_per_jiffy; #include <asm/delay.h> /* * Using udelay() for intervals greater than a few milliseconds can * risk overflow for high loops_per_jiffy (high bogomips) machines. The * mdelay() provides a wrapper to prevent this. For delays greater * than MAX_UDELAY_MS milliseconds, the wrapper is used. Architecture * specific values can be defined in asm-???/delay.h as an override. * The 2nd mdelay() definition ensures GCC will optimize away the * while loop for the common cases where n <= MAX_UDELAY_MS -- Paul G. */ #ifndef MAX_UDELAY_MS #define MAX_UDELAY_MS 5 #endif #ifndef mdelay #define mdelay(n) (\ (__builtin_constant_p(n) && (n)<=MAX_UDELAY_MS) ? udelay((n)*1000) : \ ({unsigned long __ms=(n); while (__ms--) udelay(1000);})) #endif #ifndef ndelay static inline void ndelay(unsigned long x) { udelay(DIV_ROUND_UP(x, 1000)); } #define ndelay(x) ndelay(x) #endif extern unsigned long lpj_fine; void calibrate_delay(void); void __attribute__((weak)) calibration_delay_done(void); void msleep(unsigned int msecs); unsigned long msleep_interruptible(unsigned int msecs); void usleep_range(unsigned long min, unsigned long max); static inline void ssleep(unsigned int seconds) { msleep(seconds * 1000); } /* see Documentation/timers/timers-howto.rst for the thresholds */ static inline void fsleep(unsigned long usecs) { if (usecs <= 10) udelay(usecs); else if (usecs <= 20000) usleep_range(usecs, 2 * usecs); else msleep(DIV_ROUND_UP(usecs, 1000)); } #endif /* defined(_LINUX_DELAY_H) */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 #undef TRACE_SYSTEM #define TRACE_SYSTEM neigh #if !defined(_TRACE_NEIGH_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_NEIGH_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/tracepoint.h> #include <net/neighbour.h> #define neigh_state_str(state) \ __print_symbolic(state, \ { NUD_INCOMPLETE, "incomplete" }, \ { NUD_REACHABLE, "reachable" }, \ { NUD_STALE, "stale" }, \ { NUD_DELAY, "delay" }, \ { NUD_PROBE, "probe" }, \ { NUD_FAILED, "failed" }, \ { NUD_NOARP, "noarp" }, \ { NUD_PERMANENT, "permanent"}) TRACE_EVENT(neigh_create, TP_PROTO(struct neigh_table *tbl, struct net_device *dev, const void *pkey, const struct neighbour *n, bool exempt_from_gc), TP_ARGS(tbl, dev, pkey, n, exempt_from_gc), TP_STRUCT__entry( __field(u32, family) __dynamic_array(char, dev, IFNAMSIZ ) __field(int, entries) __field(u8, created) __field(u8, gc_exempt) __array(u8, primary_key4, 4) __array(u8, primary_key6, 16) ), TP_fast_assign( struct in6_addr *pin6; __be32 *p32; __entry->family = tbl->family; __assign_str(dev, (dev ? dev->name : "NULL")); __entry->entries = atomic_read(&tbl->gc_entries); __entry->created = n != NULL; __entry->gc_exempt = exempt_from_gc; pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (tbl->family == AF_INET) *p32 = *(__be32 *)pkey; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)pkey; } #endif ), TP_printk("family %d dev %s entries %d primary_key4 %pI4 primary_key6 %pI6c created %d gc_exempt %d", __entry->family, __get_str(dev), __entry->entries, __entry->primary_key4, __entry->primary_key6, __entry->created, __entry->gc_exempt) ); TRACE_EVENT(neigh_update, TP_PROTO(struct neighbour *n, const u8 *lladdr, u8 new, u32 flags, u32 nlmsg_pid), TP_ARGS(n, lladdr, new, flags, nlmsg_pid), TP_STRUCT__entry( __field(u32, family) __string(dev, (n->dev ? n->dev->name : "NULL")) __array(u8, lladdr, MAX_ADDR_LEN) __field(u8, lladdr_len) __field(u8, flags) __field(u8, nud_state) __field(u8, type) __field(u8, dead) __field(int, refcnt) __array(__u8, primary_key4, 4) __array(__u8, primary_key6, 16) __field(unsigned long, confirmed) __field(unsigned long, updated) __field(unsigned long, used) __array(u8, new_lladdr, MAX_ADDR_LEN) __field(u8, new_state) __field(u32, update_flags) __field(u32, pid) ), TP_fast_assign( int lladdr_len = (n->dev ? n->dev->addr_len : MAX_ADDR_LEN); struct in6_addr *pin6; __be32 *p32; __entry->family = n->tbl->family; __assign_str(dev, (n->dev ? n->dev->name : "NULL")); __entry->lladdr_len = lladdr_len; memcpy(__entry->lladdr, n->ha, lladdr_len); __entry->flags = n->flags; __entry->nud_state = n->nud_state; __entry->type = n->type; __entry->dead = n->dead; __entry->refcnt = refcount_read(&n->refcnt); pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (n->tbl->family == AF_INET) *p32 = *(__be32 *)n->primary_key; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (n->tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)n->primary_key; } else #endif { ipv6_addr_set_v4mapped(*p32, pin6); } __entry->confirmed = n->confirmed; __entry->updated = n->updated; __entry->used = n->used; if (lladdr) memcpy(__entry->new_lladdr, lladdr, lladdr_len); __entry->new_state = new; __entry->update_flags = flags; __entry->pid = nlmsg_pid; ), TP_printk("family %d dev %s lladdr %s flags %02x nud_state %s type %02x " "dead %d refcnt %d primary_key4 %pI4 primary_key6 %pI6c " "confirmed %lu updated %lu used %lu new_lladdr %s " "new_state %s update_flags %02x pid %d", __entry->family, __get_str(dev), __print_hex_str(__entry->lladdr, __entry->lladdr_len), __entry->flags, neigh_state_str(__entry->nud_state), __entry->type, __entry->dead, __entry->refcnt, __entry->primary_key4, __entry->primary_key6, __entry->confirmed, __entry->updated, __entry->used, __print_hex_str(__entry->new_lladdr, __entry->lladdr_len), neigh_state_str(__entry->new_state), __entry->update_flags, __entry->pid) ); DECLARE_EVENT_CLASS(neigh__update, TP_PROTO(struct neighbour *n, int err), TP_ARGS(n, err), TP_STRUCT__entry( __field(u32, family) __string(dev, (n->dev ? n->dev->name : "NULL")) __array(u8, lladdr, MAX_ADDR_LEN) __field(u8, lladdr_len) __field(u8, flags) __field(u8, nud_state) __field(u8, type) __field(u8, dead) __field(int, refcnt) __array(__u8, primary_key4, 4) __array(__u8, primary_key6, 16) __field(unsigned long, confirmed) __field(unsigned long, updated) __field(unsigned long, used) __field(u32, err) ), TP_fast_assign( int lladdr_len = (n->dev ? n->dev->addr_len : MAX_ADDR_LEN); struct in6_addr *pin6; __be32 *p32; __entry->family = n->tbl->family; __assign_str(dev, (n->dev ? n->dev->name : "NULL")); __entry->lladdr_len = lladdr_len; memcpy(__entry->lladdr, n->ha, lladdr_len); __entry->flags = n->flags; __entry->nud_state = n->nud_state; __entry->type = n->type; __entry->dead = n->dead; __entry->refcnt = refcount_read(&n->refcnt); pin6 = (struct in6_addr *)__entry->primary_key6; p32 = (__be32 *)__entry->primary_key4; if (n->tbl->family == AF_INET) *p32 = *(__be32 *)n->primary_key; else *p32 = 0; #if IS_ENABLED(CONFIG_IPV6) if (n->tbl->family == AF_INET6) { pin6 = (struct in6_addr *)__entry->primary_key6; *pin6 = *(struct in6_addr *)n->primary_key; } else #endif { ipv6_addr_set_v4mapped(*p32, pin6); } __entry->confirmed = n->confirmed; __entry->updated = n->updated; __entry->used = n->used; __entry->err = err; ), TP_printk("family %d dev %s lladdr %s flags %02x nud_state %s type %02x " "dead %d refcnt %d primary_key4 %pI4 primary_key6 %pI6c " "confirmed %lu updated %lu used %lu err %d", __entry->family, __get_str(dev), __print_hex_str(__entry->lladdr, __entry->lladdr_len), __entry->flags, neigh_state_str(__entry->nud_state), __entry->type, __entry->dead, __entry->refcnt, __entry->primary_key4, __entry->primary_key6, __entry->confirmed, __entry->updated, __entry->used, __entry->err) ); DEFINE_EVENT(neigh__update, neigh_update_done, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_timer_handler, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_event_send_done, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_event_send_dead, TP_PROTO(struct neighbour *neigh, int err), TP_ARGS(neigh, err) ); DEFINE_EVENT(neigh__update, neigh_cleanup_and_release, TP_PROTO(struct neighbour *neigh, int rc), TP_ARGS(neigh, rc) ); #endif /* _TRACE_NEIGH_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 #ifdef CONFIG_PREEMPTIRQ_TRACEPOINTS #undef TRACE_SYSTEM #define TRACE_SYSTEM preemptirq #if !defined(_TRACE_PREEMPTIRQ_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PREEMPTIRQ_H #include <linux/ktime.h> #include <linux/tracepoint.h> #include <linux/string.h> #include <asm/sections.h> DECLARE_EVENT_CLASS(preemptirq_template, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip), TP_STRUCT__entry( __field(s32, caller_offs) __field(s32, parent_offs) ), TP_fast_assign( __entry->caller_offs = (s32)(ip - (unsigned long)_stext); __entry->parent_offs = (s32)(parent_ip - (unsigned long)_stext); ), TP_printk("caller=%pS parent=%pS", (void *)((unsigned long)(_stext) + __entry->caller_offs), (void *)((unsigned long)(_stext) + __entry->parent_offs)) ); #ifdef CONFIG_TRACE_IRQFLAGS DEFINE_EVENT(preemptirq_template, irq_disable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); DEFINE_EVENT(preemptirq_template, irq_enable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); #else #define trace_irq_enable(...) #define trace_irq_disable(...) #define trace_irq_enable_rcuidle(...) #define trace_irq_disable_rcuidle(...) #endif #ifdef CONFIG_TRACE_PREEMPT_TOGGLE DEFINE_EVENT(preemptirq_template, preempt_disable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); DEFINE_EVENT(preemptirq_template, preempt_enable, TP_PROTO(unsigned long ip, unsigned long parent_ip), TP_ARGS(ip, parent_ip)); #else #define trace_preempt_enable(...) #define trace_preempt_disable(...) #define trace_preempt_enable_rcuidle(...) #define trace_preempt_disable_rcuidle(...) #endif #endif /* _TRACE_PREEMPTIRQ_H */ #include <trace/define_trace.h> #else /* !CONFIG_PREEMPTIRQ_TRACEPOINTS */ #define trace_irq_enable(...) #define trace_irq_disable(...) #define trace_irq_enable_rcuidle(...) #define trace_irq_disable_rcuidle(...) #define trace_preempt_enable(...) #define trace_preempt_disable(...) #define trace_preempt_enable_rcuidle(...) #define trace_preempt_disable_rcuidle(...) #endif
1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 // SPDX-License-Identifier: GPL-2.0-only /* * This implements the various checks for CONFIG_HARDENED_USERCOPY*, * which are designed to protect kernel memory from needless exposure * and overwrite under many unintended conditions. This code is based * on PAX_USERCOPY, which is: * * Copyright (C) 2001-2016 PaX Team, Bradley Spengler, Open Source * Security Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/mm.h> #include <linux/highmem.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/sched/task.h> #include <linux/sched/task_stack.h> #include <linux/thread_info.h> #include <linux/atomic.h> #include <linux/jump_label.h> #include <asm/sections.h> /* * Checks if a given pointer and length is contained by the current * stack frame (if possible). * * Returns: * NOT_STACK: not at all on the stack * GOOD_FRAME: fully within a valid stack frame * GOOD_STACK: fully on the stack (when can't do frame-checking) * BAD_STACK: error condition (invalid stack position or bad stack frame) */ static noinline int check_stack_object(const void *obj, unsigned long len) { const void * const stack = task_stack_page(current); const void * const stackend = stack + THREAD_SIZE; int ret; /* Object is not on the stack at all. */ if (obj + len <= stack || stackend <= obj) return NOT_STACK; /* * Reject: object partially overlaps the stack (passing the * check above means at least one end is within the stack, * so if this check fails, the other end is outside the stack). */ if (obj < stack || stackend < obj + len) return BAD_STACK; /* Check if object is safely within a valid frame. */ ret = arch_within_stack_frames(stack, stackend, obj, len); if (ret) return ret; return GOOD_STACK; } /* * If these functions are reached, then CONFIG_HARDENED_USERCOPY has found * an unexpected state during a copy_from_user() or copy_to_user() call. * There are several checks being performed on the buffer by the * __check_object_size() function. Normal stack buffer usage should never * trip the checks, and kernel text addressing will always trip the check. * For cache objects, it is checking that only the whitelisted range of * bytes for a given cache is being accessed (via the cache's usersize and * useroffset fields). To adjust a cache whitelist, use the usercopy-aware * kmem_cache_create_usercopy() function to create the cache (and * carefully audit the whitelist range). */ void usercopy_warn(const char *name, const char *detail, bool to_user, unsigned long offset, unsigned long len) { WARN_ONCE(1, "Bad or missing usercopy whitelist? Kernel memory %s attempt detected %s %s%s%s%s (offset %lu, size %lu)!\n", to_user ? "exposure" : "overwrite", to_user ? "from" : "to", name ? : "unknown?!", detail ? " '" : "", detail ? : "", detail ? "'" : "", offset, len); } void __noreturn usercopy_abort(const char *name, const char *detail, bool to_user, unsigned long offset, unsigned long len) { pr_emerg("Kernel memory %s attempt detected %s %s%s%s%s (offset %lu, size %lu)!\n", to_user ? "exposure" : "overwrite", to_user ? "from" : "to", name ? : "unknown?!", detail ? " '" : "", detail ? : "", detail ? "'" : "", offset, len); /* * For greater effect, it would be nice to do do_group_exit(), * but BUG() actually hooks all the lock-breaking and per-arch * Oops code, so that is used here instead. */ BUG(); } /* Returns true if any portion of [ptr,ptr+n) over laps with [low,high). */ static bool overlaps(const unsigned long ptr, unsigned long n, unsigned long low, unsigned long high) { const unsigned long check_low = ptr; unsigned long check_high = check_low + n; /* Does not overlap if entirely above or entirely below. */ if (check_low >= high || check_high <= low) return false; return true; } /* Is this address range in the kernel text area? */ static inline void check_kernel_text_object(const unsigned long ptr, unsigned long n, bool to_user) { unsigned long textlow = (unsigned long)_stext; unsigned long texthigh = (unsigned long)_etext; unsigned long textlow_linear, texthigh_linear; if (overlaps(ptr, n, textlow, texthigh)) usercopy_abort("kernel text", NULL, to_user, ptr - textlow, n); /* * Some architectures have virtual memory mappings with a secondary * mapping of the kernel text, i.e. there is more than one virtual * kernel address that points to the kernel image. It is usually * when there is a separate linear physical memory mapping, in that * __pa() is not just the reverse of __va(). This can be detected * and checked: */ textlow_linear = (unsigned long)lm_alias(textlow); /* No different mapping: we're done. */ if (textlow_linear == textlow) return; /* Check the secondary mapping... */ texthigh_linear = (unsigned long)lm_alias(texthigh); if (overlaps(ptr, n, textlow_linear, texthigh_linear)) usercopy_abort("linear kernel text", NULL, to_user, ptr - textlow_linear, n); } static inline void check_bogus_address(const unsigned long ptr, unsigned long n, bool to_user) { /* Reject if object wraps past end of memory. */ if (ptr + (n - 1) < ptr) usercopy_abort("wrapped address", NULL, to_user, 0, ptr + n); /* Reject if NULL or ZERO-allocation. */ if (ZERO_OR_NULL_PTR(ptr)) usercopy_abort("null address", NULL, to_user, ptr, n); } /* Checks for allocs that are marked in some way as spanning multiple pages. */ static inline void check_page_span(const void *ptr, unsigned long n, struct page *page, bool to_user) { #ifdef CONFIG_HARDENED_USERCOPY_PAGESPAN const void *end = ptr + n - 1; struct page *endpage; bool is_reserved, is_cma; /* * Sometimes the kernel data regions are not marked Reserved (see * check below). And sometimes [_sdata,_edata) does not cover * rodata and/or bss, so check each range explicitly. */ /* Allow reads of kernel rodata region (if not marked as Reserved). */ if (ptr >= (const void *)__start_rodata && end <= (const void *)__end_rodata) { if (!to_user) usercopy_abort("rodata", NULL, to_user, 0, n); return; } /* Allow kernel data region (if not marked as Reserved). */ if (ptr >= (const void *)_sdata && end <= (const void *)_edata) return; /* Allow kernel bss region (if not marked as Reserved). */ if (ptr >= (const void *)__bss_start && end <= (const void *)__bss_stop) return; /* Is the object wholly within one base page? */ if (likely(((unsigned long)ptr & (unsigned long)PAGE_MASK) == ((unsigned long)end & (unsigned long)PAGE_MASK))) return; /* Allow if fully inside the same compound (__GFP_COMP) page. */ endpage = virt_to_head_page(end); if (likely(endpage == page)) return; /* * Reject if range is entirely either Reserved (i.e. special or * device memory), or CMA. Otherwise, reject since the object spans * several independently allocated pages. */ is_reserved = PageReserved(page); is_cma = is_migrate_cma_page(page); if (!is_reserved && !is_cma) usercopy_abort("spans multiple pages", NULL, to_user, 0, n); for (ptr += PAGE_SIZE; ptr <= end; ptr += PAGE_SIZE) { page = virt_to_head_page(ptr); if (is_reserved && !PageReserved(page)) usercopy_abort("spans Reserved and non-Reserved pages", NULL, to_user, 0, n); if (is_cma && !is_migrate_cma_page(page)) usercopy_abort("spans CMA and non-CMA pages", NULL, to_user, 0, n); } #endif } static inline void check_heap_object(const void *ptr, unsigned long n, bool to_user) { struct page *page; if (!virt_addr_valid(ptr)) return; /* * When CONFIG_HIGHMEM=y, kmap_to_page() will give either the * highmem page or fallback to virt_to_page(). The following * is effectively a highmem-aware virt_to_head_page(). */ page = compound_head(kmap_to_page((void *)ptr)); if (PageSlab(page)) { /* Check slab allocator for flags and size. */ __check_heap_object(ptr, n, page, to_user); } else { /* Verify object does not incorrectly span multiple pages. */ check_page_span(ptr, n, page, to_user); } } static DEFINE_STATIC_KEY_FALSE_RO(bypass_usercopy_checks); /* * Validates that the given object is: * - not bogus address * - fully contained by stack (or stack frame, when available) * - fully within SLAB object (or object whitelist area, when available) * - not in kernel text */ void __check_object_size(const void *ptr, unsigned long n, bool to_user) { if (static_branch_unlikely(&bypass_usercopy_checks)) return; /* Skip all tests if size is zero. */ if (!n) return; /* Check for invalid addresses. */ check_bogus_address((const unsigned long)ptr, n, to_user); /* Check for bad stack object. */ switch (check_stack_object(ptr, n)) { case NOT_STACK: /* Object is not touching the current process stack. */ break; case GOOD_FRAME: case GOOD_STACK: /* * Object is either in the correct frame (when it * is possible to check) or just generally on the * process stack (when frame checking not available). */ return; default: usercopy_abort("process stack", NULL, to_user, 0, n); } /* Check for bad heap object. */ check_heap_object(ptr, n, to_user); /* Check for object in kernel to avoid text exposure. */ check_kernel_text_object((const unsigned long)ptr, n, to_user); } EXPORT_SYMBOL(__check_object_size); static bool enable_checks __initdata = true; static int __init parse_hardened_usercopy(char *str) { return strtobool(str, &enable_checks); } __setup("hardened_usercopy=", parse_hardened_usercopy); static int __init set_hardened_usercopy(void) { if (enable_checks == false) static_branch_enable(&bypass_usercopy_checks); return 1; } late_initcall(set_hardened_usercopy);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _ASM_X86_INAT_H #define _ASM_X86_INAT_H /* * x86 instruction attributes * * Written by Masami Hiramatsu <mhiramat@redhat.com> */ #include <asm/inat_types.h> /* * Internal bits. Don't use bitmasks directly, because these bits are * unstable. You should use checking functions. */ #define INAT_OPCODE_TABLE_SIZE 256 #define INAT_GROUP_TABLE_SIZE 8 /* Legacy last prefixes */ #define INAT_PFX_OPNDSZ 1 /* 0x66 */ /* LPFX1 */ #define INAT_PFX_REPE 2 /* 0xF3 */ /* LPFX2 */ #define INAT_PFX_REPNE 3 /* 0xF2 */ /* LPFX3 */ /* Other Legacy prefixes */ #define INAT_PFX_LOCK 4 /* 0xF0 */ #define INAT_PFX_CS 5 /* 0x2E */ #define INAT_PFX_DS 6 /* 0x3E */ #define INAT_PFX_ES 7 /* 0x26 */ #define INAT_PFX_FS 8 /* 0x64 */ #define INAT_PFX_GS 9 /* 0x65 */ #define INAT_PFX_SS 10 /* 0x36 */ #define INAT_PFX_ADDRSZ 11 /* 0x67 */ /* x86-64 REX prefix */ #define INAT_PFX_REX 12 /* 0x4X */ /* AVX VEX prefixes */ #define INAT_PFX_VEX2 13 /* 2-bytes VEX prefix */ #define INAT_PFX_VEX3 14 /* 3-bytes VEX prefix */ #define INAT_PFX_EVEX 15 /* EVEX prefix */ #define INAT_LSTPFX_MAX 3 #define INAT_LGCPFX_MAX 11 /* Immediate size */ #define INAT_IMM_BYTE 1 #define INAT_IMM_WORD 2 #define INAT_IMM_DWORD 3 #define INAT_IMM_QWORD 4 #define INAT_IMM_PTR 5 #define INAT_IMM_VWORD32 6 #define INAT_IMM_VWORD 7 /* Legacy prefix */ #define INAT_PFX_OFFS 0 #define INAT_PFX_BITS 4 #define INAT_PFX_MAX ((1 << INAT_PFX_BITS) - 1) #define INAT_PFX_MASK (INAT_PFX_MAX << INAT_PFX_OFFS) /* Escape opcodes */ #define INAT_ESC_OFFS (INAT_PFX_OFFS + INAT_PFX_BITS) #define INAT_ESC_BITS 2 #define INAT_ESC_MAX ((1 << INAT_ESC_BITS) - 1) #define INAT_ESC_MASK (INAT_ESC_MAX << INAT_ESC_OFFS) /* Group opcodes (1-16) */ #define INAT_GRP_OFFS (INAT_ESC_OFFS + INAT_ESC_BITS) #define INAT_GRP_BITS 5 #define INAT_GRP_MAX ((1 << INAT_GRP_BITS) - 1) #define INAT_GRP_MASK (INAT_GRP_MAX << INAT_GRP_OFFS) /* Immediates */ #define INAT_IMM_OFFS (INAT_GRP_OFFS + INAT_GRP_BITS) #define INAT_IMM_BITS 3 #define INAT_IMM_MASK (((1 << INAT_IMM_BITS) - 1) << INAT_IMM_OFFS) /* Flags */ #define INAT_FLAG_OFFS (INAT_IMM_OFFS + INAT_IMM_BITS) #define INAT_MODRM (1 << (INAT_FLAG_OFFS)) #define INAT_FORCE64 (1 << (INAT_FLAG_OFFS + 1)) #define INAT_SCNDIMM (1 << (INAT_FLAG_OFFS + 2)) #define INAT_MOFFSET (1 << (INAT_FLAG_OFFS + 3)) #define INAT_VARIANT (1 << (INAT_FLAG_OFFS + 4)) #define INAT_VEXOK (1 << (INAT_FLAG_OFFS + 5)) #define INAT_VEXONLY (1 << (INAT_FLAG_OFFS + 6)) #define INAT_EVEXONLY (1 << (INAT_FLAG_OFFS + 7)) /* Attribute making macros for attribute tables */ #define INAT_MAKE_PREFIX(pfx) (pfx << INAT_PFX_OFFS) #define INAT_MAKE_ESCAPE(esc) (esc << INAT_ESC_OFFS) #define INAT_MAKE_GROUP(grp) ((grp << INAT_GRP_OFFS) | INAT_MODRM) #define INAT_MAKE_IMM(imm) (imm << INAT_IMM_OFFS) /* Identifiers for segment registers */ #define INAT_SEG_REG_IGNORE 0 #define INAT_SEG_REG_DEFAULT 1 #define INAT_SEG_REG_CS 2 #define INAT_SEG_REG_SS 3 #define INAT_SEG_REG_DS 4 #define INAT_SEG_REG_ES 5 #define INAT_SEG_REG_FS 6 #define INAT_SEG_REG_GS 7 /* Attribute search APIs */ extern insn_attr_t inat_get_opcode_attribute(insn_byte_t opcode); extern int inat_get_last_prefix_id(insn_byte_t last_pfx); extern insn_attr_t inat_get_escape_attribute(insn_byte_t opcode, int lpfx_id, insn_attr_t esc_attr); extern insn_attr_t inat_get_group_attribute(insn_byte_t modrm, int lpfx_id, insn_attr_t esc_attr); extern insn_attr_t inat_get_avx_attribute(insn_byte_t opcode, insn_byte_t vex_m, insn_byte_t vex_pp); /* Attribute checking functions */ static inline int inat_is_legacy_prefix(insn_attr_t attr) { attr &= INAT_PFX_MASK; return attr && attr <= INAT_LGCPFX_MAX; } static inline int inat_is_address_size_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_ADDRSZ; } static inline int inat_is_operand_size_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_OPNDSZ; } static inline int inat_is_rex_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_REX; } static inline int inat_last_prefix_id(insn_attr_t attr) { if ((attr & INAT_PFX_MASK) > INAT_LSTPFX_MAX) return 0; else return attr & INAT_PFX_MASK; } static inline int inat_is_vex_prefix(insn_attr_t attr) { attr &= INAT_PFX_MASK; return attr == INAT_PFX_VEX2 || attr == INAT_PFX_VEX3 || attr == INAT_PFX_EVEX; } static inline int inat_is_evex_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_EVEX; } static inline int inat_is_vex3_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_VEX3; } static inline int inat_is_escape(insn_attr_t attr) { return attr & INAT_ESC_MASK; } static inline int inat_escape_id(insn_attr_t attr) { return (attr & INAT_ESC_MASK) >> INAT_ESC_OFFS; } static inline int inat_is_group(insn_attr_t attr) { return attr & INAT_GRP_MASK; } static inline int inat_group_id(insn_attr_t attr) { return (attr & INAT_GRP_MASK) >> INAT_GRP_OFFS; } static inline int inat_group_common_attribute(insn_attr_t attr) { return attr & ~INAT_GRP_MASK; } static inline int inat_has_immediate(insn_attr_t attr) { return attr & INAT_IMM_MASK; } static inline int inat_immediate_size(insn_attr_t attr) { return (attr & INAT_IMM_MASK) >> INAT_IMM_OFFS; } static inline int inat_has_modrm(insn_attr_t attr) { return attr & INAT_MODRM; } static inline int inat_is_force64(insn_attr_t attr) { return attr & INAT_FORCE64; } static inline int inat_has_second_immediate(insn_attr_t attr) { return attr & INAT_SCNDIMM; } static inline int inat_has_moffset(insn_attr_t attr) { return attr & INAT_MOFFSET; } static inline int inat_has_variant(insn_attr_t attr) { return attr & INAT_VARIANT; } static inline int inat_accept_vex(insn_attr_t attr) { return attr & INAT_VEXOK; } static inline int inat_must_vex(insn_attr_t attr) { return attr & (INAT_VEXONLY | INAT_EVEXONLY); } static inline int inat_must_evex(insn_attr_t attr) { return attr & INAT_EVEXONLY; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_DST_METADATA_H #define __NET_DST_METADATA_H 1 #include <linux/skbuff.h> #include <net/ip_tunnels.h> #include <net/dst.h> enum metadata_type { METADATA_IP_TUNNEL, METADATA_HW_PORT_MUX, }; struct hw_port_info { struct net_device *lower_dev; u32 port_id; }; struct metadata_dst { struct dst_entry dst; enum metadata_type type; union { struct ip_tunnel_info tun_info; struct hw_port_info port_info; } u; }; static inline struct metadata_dst *skb_metadata_dst(const struct sk_buff *skb) { struct metadata_dst *md_dst = (struct metadata_dst *) skb_dst(skb); if (md_dst && md_dst->dst.flags & DST_METADATA) return md_dst; return NULL; } static inline struct ip_tunnel_info * skb_tunnel_info(const struct sk_buff *skb) { struct metadata_dst *md_dst = skb_metadata_dst(skb); struct dst_entry *dst; if (md_dst && md_dst->type == METADATA_IP_TUNNEL) return &md_dst->u.tun_info; dst = skb_dst(skb); if (dst && dst->lwtstate && (dst->lwtstate->type == LWTUNNEL_ENCAP_IP || dst->lwtstate->type == LWTUNNEL_ENCAP_IP6)) return lwt_tun_info(dst->lwtstate); return NULL; } static inline bool skb_valid_dst(const struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); return dst && !(dst->flags & DST_METADATA); } static inline int skb_metadata_dst_cmp(const struct sk_buff *skb_a, const struct sk_buff *skb_b) { const struct metadata_dst *a, *b; if (!(skb_a->_skb_refdst | skb_b->_skb_refdst)) return 0; a = (const struct metadata_dst *) skb_dst(skb_a); b = (const struct metadata_dst *) skb_dst(skb_b); if (!a != !b || a->type != b->type) return 1; switch (a->type) { case METADATA_HW_PORT_MUX: return memcmp(&a->u.port_info, &b->u.port_info, sizeof(a->u.port_info)); case METADATA_IP_TUNNEL: return memcmp(&a->u.tun_info, &b->u.tun_info, sizeof(a->u.tun_info) + a->u.tun_info.options_len); default: return 1; } } void metadata_dst_free(struct metadata_dst *); struct metadata_dst *metadata_dst_alloc(u8 optslen, enum metadata_type type, gfp_t flags); void metadata_dst_free_percpu(struct metadata_dst __percpu *md_dst); struct metadata_dst __percpu * metadata_dst_alloc_percpu(u8 optslen, enum metadata_type type, gfp_t flags); static inline struct metadata_dst *tun_rx_dst(int md_size) { struct metadata_dst *tun_dst; tun_dst = metadata_dst_alloc(md_size, METADATA_IP_TUNNEL, GFP_ATOMIC); if (!tun_dst) return NULL; tun_dst->u.tun_info.options_len = 0; tun_dst->u.tun_info.mode = 0; return tun_dst; } static inline struct metadata_dst *tun_dst_unclone(struct sk_buff *skb) { struct metadata_dst *md_dst = skb_metadata_dst(skb); int md_size; struct metadata_dst *new_md; if (!md_dst || md_dst->type != METADATA_IP_TUNNEL) return ERR_PTR(-EINVAL); md_size = md_dst->u.tun_info.options_len; new_md = metadata_dst_alloc(md_size, METADATA_IP_TUNNEL, GFP_ATOMIC); if (!new_md) return ERR_PTR(-ENOMEM); memcpy(&new_md->u.tun_info, &md_dst->u.tun_info, sizeof(struct ip_tunnel_info) + md_size); skb_dst_drop(skb); dst_hold(&new_md->dst); skb_dst_set(skb, &new_md->dst); return new_md; } static inline struct ip_tunnel_info *skb_tunnel_info_unclone(struct sk_buff *skb) { struct metadata_dst *dst; dst = tun_dst_unclone(skb); if (IS_ERR(dst)) return NULL; return &dst->u.tun_info; } static inline struct metadata_dst *__ip_tun_set_dst(__be32 saddr, __be32 daddr, __u8 tos, __u8 ttl, __be16 tp_dst, __be16 flags, __be64 tunnel_id, int md_size) { struct metadata_dst *tun_dst; tun_dst = tun_rx_dst(md_size); if (!tun_dst) return NULL; ip_tunnel_key_init(&tun_dst->u.tun_info.key, saddr, daddr, tos, ttl, 0, 0, tp_dst, tunnel_id, flags); return tun_dst; } static inline struct metadata_dst *ip_tun_rx_dst(struct sk_buff *skb, __be16 flags, __be64 tunnel_id, int md_size) { const struct iphdr *iph = ip_hdr(skb); return __ip_tun_set_dst(iph->saddr, iph->daddr, iph->tos, iph->ttl, 0, flags, tunnel_id, md_size); } static inline struct metadata_dst *__ipv6_tun_set_dst(const struct in6_addr *saddr, const struct in6_addr *daddr, __u8 tos, __u8 ttl, __be16 tp_dst, __be32 label, __be16 flags, __be64 tunnel_id, int md_size) { struct metadata_dst *tun_dst; struct ip_tunnel_info *info; tun_dst = tun_rx_dst(md_size); if (!tun_dst) return NULL; info = &tun_dst->u.tun_info; info->mode = IP_TUNNEL_INFO_IPV6; info->key.tun_flags = flags; info->key.tun_id = tunnel_id; info->key.tp_src = 0; info->key.tp_dst = tp_dst; info->key.u.ipv6.src = *saddr; info->key.u.ipv6.dst = *daddr; info->key.tos = tos; info->key.ttl = ttl; info->key.label = label; return tun_dst; } static inline struct metadata_dst *ipv6_tun_rx_dst(struct sk_buff *skb, __be16 flags, __be64 tunnel_id, int md_size) { const struct ipv6hdr *ip6h = ipv6_hdr(skb); return __ipv6_tun_set_dst(&ip6h->saddr, &ip6h->daddr, ipv6_get_dsfield(ip6h), ip6h->hop_limit, 0, ip6_flowlabel(ip6h), flags, tunnel_id, md_size); } #endif /* __NET_DST_METADATA_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux NET3: Internet Group Management Protocol [IGMP] * * Authors: * Alan Cox <alan@lxorguk.ukuu.org.uk> * * Extended to talk the BSD extended IGMP protocol of mrouted 3.6 */ #ifndef _LINUX_IGMP_H #define _LINUX_IGMP_H #include <linux/skbuff.h> #include <linux/timer.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/refcount.h> #include <uapi/linux/igmp.h> static inline struct igmphdr *igmp_hdr(const struct sk_buff *skb) { return (struct igmphdr *)skb_transport_header(skb); } static inline struct igmpv3_report * igmpv3_report_hdr(const struct sk_buff *skb) { return (struct igmpv3_report *)skb_transport_header(skb); } static inline struct igmpv3_query * igmpv3_query_hdr(const struct sk_buff *skb) { return (struct igmpv3_query *)skb_transport_header(skb); } struct ip_sf_socklist { unsigned int sl_max; unsigned int sl_count; struct rcu_head rcu; __be32 sl_addr[]; }; #define IP_SFLSIZE(count) (sizeof(struct ip_sf_socklist) + \ (count) * sizeof(__be32)) #define IP_SFBLOCK 10 /* allocate this many at once */ /* ip_mc_socklist is real list now. Speed is not argument; this list never used in fast path code */ struct ip_mc_socklist { struct ip_mc_socklist __rcu *next_rcu; struct ip_mreqn multi; unsigned int sfmode; /* MCAST_{INCLUDE,EXCLUDE} */ struct ip_sf_socklist __rcu *sflist; struct rcu_head rcu; }; struct ip_sf_list { struct ip_sf_list *sf_next; unsigned long sf_count[2]; /* include/exclude counts */ __be32 sf_inaddr; unsigned char sf_gsresp; /* include in g & s response? */ unsigned char sf_oldin; /* change state */ unsigned char sf_crcount; /* retrans. left to send */ }; struct ip_mc_list { struct in_device *interface; __be32 multiaddr; unsigned int sfmode; struct ip_sf_list *sources; struct ip_sf_list *tomb; unsigned long sfcount[2]; union { struct ip_mc_list *next; struct ip_mc_list __rcu *next_rcu; }; struct ip_mc_list __rcu *next_hash; struct timer_list timer; int users; refcount_t refcnt; spinlock_t lock; char tm_running; char reporter; char unsolicit_count; char loaded; unsigned char gsquery; /* check source marks? */ unsigned char crcount; struct rcu_head rcu; }; /* V3 exponential field decoding */ #define IGMPV3_MASK(value, nb) ((nb)>=32 ? (value) : ((1<<(nb))-1) & (value)) #define IGMPV3_EXP(thresh, nbmant, nbexp, value) \ ((value) < (thresh) ? (value) : \ ((IGMPV3_MASK(value, nbmant) | (1<<(nbmant))) << \ (IGMPV3_MASK((value) >> (nbmant), nbexp) + (nbexp)))) #define IGMPV3_QQIC(value) IGMPV3_EXP(0x80, 4, 3, value) #define IGMPV3_MRC(value) IGMPV3_EXP(0x80, 4, 3, value) static inline int ip_mc_may_pull(struct sk_buff *skb, unsigned int len) { if (skb_transport_offset(skb) + ip_transport_len(skb) < len) return 0; return pskb_may_pull(skb, len); } extern int ip_check_mc_rcu(struct in_device *dev, __be32 mc_addr, __be32 src_addr, u8 proto); extern int igmp_rcv(struct sk_buff *); extern int ip_mc_join_group(struct sock *sk, struct ip_mreqn *imr); extern int ip_mc_join_group_ssm(struct sock *sk, struct ip_mreqn *imr, unsigned int mode); extern int ip_mc_leave_group(struct sock *sk, struct ip_mreqn *imr); extern void ip_mc_drop_socket(struct sock *sk); extern int ip_mc_source(int add, int omode, struct sock *sk, struct ip_mreq_source *mreqs, int ifindex); extern int ip_mc_msfilter(struct sock *sk, struct ip_msfilter *msf,int ifindex); extern int ip_mc_msfget(struct sock *sk, struct ip_msfilter *msf, struct ip_msfilter __user *optval, int __user *optlen); extern int ip_mc_gsfget(struct sock *sk, struct group_filter *gsf, struct sockaddr_storage __user *p); extern int ip_mc_sf_allow(struct sock *sk, __be32 local, __be32 rmt, int dif, int sdif); extern void ip_mc_init_dev(struct in_device *); extern void ip_mc_destroy_dev(struct in_device *); extern void ip_mc_up(struct in_device *); extern void ip_mc_down(struct in_device *); extern void ip_mc_unmap(struct in_device *); extern void ip_mc_remap(struct in_device *); extern void __ip_mc_dec_group(struct in_device *in_dev, __be32 addr, gfp_t gfp); static inline void ip_mc_dec_group(struct in_device *in_dev, __be32 addr) { return __ip_mc_dec_group(in_dev, addr, GFP_KERNEL); } extern void __ip_mc_inc_group(struct in_device *in_dev, __be32 addr, gfp_t gfp); extern void ip_mc_inc_group(struct in_device *in_dev, __be32 addr); int ip_mc_check_igmp(struct sk_buff *skb); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_RT_H #define _LINUX_SCHED_RT_H #include <linux/sched.h> struct task_struct; static inline int rt_prio(int prio) { if (unlikely(prio < MAX_RT_PRIO)) return 1; return 0; } static inline int rt_task(struct task_struct *p) { return rt_prio(p->prio); } static inline bool task_is_realtime(struct task_struct *tsk) { int policy = tsk->policy; if (policy == SCHED_FIFO || policy == SCHED_RR) return true; if (policy == SCHED_DEADLINE) return true; return false; } #ifdef CONFIG_RT_MUTEXES /* * Must hold either p->pi_lock or task_rq(p)->lock. */ static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *p) { return p->pi_top_task; } extern void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task); extern void rt_mutex_adjust_pi(struct task_struct *p); static inline bool tsk_is_pi_blocked(struct task_struct *tsk) { return tsk->pi_blocked_on != NULL; } #else static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *task) { return NULL; } # define rt_mutex_adjust_pi(p) do { } while (0) static inline bool tsk_is_pi_blocked(struct task_struct *tsk) { return false; } #endif extern void normalize_rt_tasks(void); /* * default timeslice is 100 msecs (used only for SCHED_RR tasks). * Timeslices get refilled after they expire. */ #define RR_TIMESLICE (100 * HZ / 1000) #endif /* _LINUX_SCHED_RT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* -*- mode: c; c-basic-offset:8; -*- * vim: noexpandtab sw=8 ts=8 sts=0: * * configfs_internal.h - Internal stuff for configfs * * Based on sysfs: * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel * * configfs Copyright (C) 2005 Oracle. All rights reserved. */ #ifdef pr_fmt #undef pr_fmt #endif #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/slab.h> #include <linux/list.h> #include <linux/spinlock.h> struct configfs_fragment { atomic_t frag_count; struct rw_semaphore frag_sem; bool frag_dead; }; void put_fragment(struct configfs_fragment *); struct configfs_fragment *get_fragment(struct configfs_fragment *); struct configfs_dirent { atomic_t s_count; int s_dependent_count; struct list_head s_sibling; struct list_head s_children; int s_links; void * s_element; int s_type; umode_t s_mode; struct dentry * s_dentry; struct iattr * s_iattr; #ifdef CONFIG_LOCKDEP int s_depth; #endif struct configfs_fragment *s_frag; }; #define CONFIGFS_ROOT 0x0001 #define CONFIGFS_DIR 0x0002 #define CONFIGFS_ITEM_ATTR 0x0004 #define CONFIGFS_ITEM_BIN_ATTR 0x0008 #define CONFIGFS_ITEM_LINK 0x0020 #define CONFIGFS_USET_DIR 0x0040 #define CONFIGFS_USET_DEFAULT 0x0080 #define CONFIGFS_USET_DROPPING 0x0100 #define CONFIGFS_USET_IN_MKDIR 0x0200 #define CONFIGFS_USET_CREATING 0x0400 #define CONFIGFS_NOT_PINNED (CONFIGFS_ITEM_ATTR | CONFIGFS_ITEM_BIN_ATTR) extern struct mutex configfs_symlink_mutex; extern spinlock_t configfs_dirent_lock; extern struct kmem_cache *configfs_dir_cachep; extern int configfs_is_root(struct config_item *item); extern struct inode * configfs_new_inode(umode_t mode, struct configfs_dirent *, struct super_block *); extern struct inode *configfs_create(struct dentry *, umode_t mode); extern int configfs_create_file(struct config_item *, const struct configfs_attribute *); extern int configfs_create_bin_file(struct config_item *, const struct configfs_bin_attribute *); extern int configfs_make_dirent(struct configfs_dirent *, struct dentry *, void *, umode_t, int, struct configfs_fragment *); extern int configfs_dirent_is_ready(struct configfs_dirent *); extern void configfs_hash_and_remove(struct dentry * dir, const char * name); extern const unsigned char * configfs_get_name(struct configfs_dirent *sd); extern void configfs_drop_dentry(struct configfs_dirent *sd, struct dentry *parent); extern int configfs_setattr(struct dentry *dentry, struct iattr *iattr); extern struct dentry *configfs_pin_fs(void); extern void configfs_release_fs(void); extern const struct file_operations configfs_dir_operations; extern const struct file_operations configfs_file_operations; extern const struct file_operations configfs_bin_file_operations; extern const struct inode_operations configfs_dir_inode_operations; extern const struct inode_operations configfs_root_inode_operations; extern const struct inode_operations configfs_symlink_inode_operations; extern const struct dentry_operations configfs_dentry_ops; extern int configfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname); extern int configfs_unlink(struct inode *dir, struct dentry *dentry); int configfs_create_link(struct configfs_dirent *target, struct dentry *parent, struct dentry *dentry, char *body); static inline struct config_item * to_item(struct dentry * dentry) { struct configfs_dirent * sd = dentry->d_fsdata; return ((struct config_item *) sd->s_element); } static inline struct configfs_attribute * to_attr(struct dentry * dentry) { struct configfs_dirent * sd = dentry->d_fsdata; return ((struct configfs_attribute *) sd->s_element); } static inline struct configfs_bin_attribute *to_bin_attr(struct dentry *dentry) { struct configfs_attribute *attr = to_attr(dentry); return container_of(attr, struct configfs_bin_attribute, cb_attr); } static inline struct config_item *configfs_get_config_item(struct dentry *dentry) { struct config_item * item = NULL; spin_lock(&dentry->d_lock); if (!d_unhashed(dentry)) { struct configfs_dirent * sd = dentry->d_fsdata; item = config_item_get(sd->s_element); } spin_unlock(&dentry->d_lock); return item; } static inline void release_configfs_dirent(struct configfs_dirent * sd) { if (!(sd->s_type & CONFIGFS_ROOT)) { kfree(sd->s_iattr); put_fragment(sd->s_frag); kmem_cache_free(configfs_dir_cachep, sd); } } static inline struct configfs_dirent * configfs_get(struct configfs_dirent * sd) { if (sd) { WARN_ON(!atomic_read(&sd->s_count)); atomic_inc(&sd->s_count); } return sd; } static inline void configfs_put(struct configfs_dirent * sd) { WARN_ON(!atomic_read(&sd->s_count)); if (atomic_dec_and_test(&sd->s_count)) release_configfs_dirent(sd); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_UTSNAME_H #define _LINUX_UTSNAME_H #include <linux/sched.h> #include <linux/kref.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/err.h> #include <uapi/linux/utsname.h> enum uts_proc { UTS_PROC_OSTYPE, UTS_PROC_OSRELEASE, UTS_PROC_VERSION, UTS_PROC_HOSTNAME, UTS_PROC_DOMAINNAME, }; struct user_namespace; extern struct user_namespace init_user_ns; struct uts_namespace { struct kref kref; struct new_utsname name; struct user_namespace *user_ns; struct ucounts *ucounts; struct ns_common ns; } __randomize_layout; extern struct uts_namespace init_uts_ns; #ifdef CONFIG_UTS_NS static inline void get_uts_ns(struct uts_namespace *ns) { kref_get(&ns->kref); } extern struct uts_namespace *copy_utsname(unsigned long flags, struct user_namespace *user_ns, struct uts_namespace *old_ns); extern void free_uts_ns(struct kref *kref); static inline void put_uts_ns(struct uts_namespace *ns) { kref_put(&ns->kref, free_uts_ns); } void uts_ns_init(void); #else static inline void get_uts_ns(struct uts_namespace *ns) { } static inline void put_uts_ns(struct uts_namespace *ns) { } static inline struct uts_namespace *copy_utsname(unsigned long flags, struct user_namespace *user_ns, struct uts_namespace *old_ns) { if (flags & CLONE_NEWUTS) return ERR_PTR(-EINVAL); return old_ns; } static inline void uts_ns_init(void) { } #endif #ifdef CONFIG_PROC_SYSCTL extern void uts_proc_notify(enum uts_proc proc); #else static inline void uts_proc_notify(enum uts_proc proc) { } #endif static inline struct new_utsname *utsname(void) { return &current->nsproxy->uts_ns->name; } static inline struct new_utsname *init_utsname(void) { return &init_uts_ns.name; } extern struct rw_semaphore uts_sem; #endif /* _LINUX_UTSNAME_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_RTNETLINK_H #define __LINUX_RTNETLINK_H #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/wait.h> #include <linux/refcount.h> #include <uapi/linux/rtnetlink.h> extern int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, u32 group, int echo); extern int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid); extern void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group, struct nlmsghdr *nlh, gfp_t flags); extern void rtnl_set_sk_err(struct net *net, u32 group, int error); extern int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics); extern int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id, long expires, u32 error); void rtmsg_ifinfo(int type, struct net_device *dev, unsigned change, gfp_t flags); void rtmsg_ifinfo_newnet(int type, struct net_device *dev, unsigned int change, gfp_t flags, int *new_nsid, int new_ifindex); struct sk_buff *rtmsg_ifinfo_build_skb(int type, struct net_device *dev, unsigned change, u32 event, gfp_t flags, int *new_nsid, int new_ifindex); void rtmsg_ifinfo_send(struct sk_buff *skb, struct net_device *dev, gfp_t flags); /* RTNL is used as a global lock for all changes to network configuration */ extern void rtnl_lock(void); extern void rtnl_unlock(void); extern int rtnl_trylock(void); extern int rtnl_is_locked(void); extern int rtnl_lock_killable(void); extern bool refcount_dec_and_rtnl_lock(refcount_t *r); extern wait_queue_head_t netdev_unregistering_wq; extern struct rw_semaphore pernet_ops_rwsem; extern struct rw_semaphore net_rwsem; #ifdef CONFIG_PROVE_LOCKING extern bool lockdep_rtnl_is_held(void); #else static inline bool lockdep_rtnl_is_held(void) { return true; } #endif /* #ifdef CONFIG_PROVE_LOCKING */ /** * rcu_dereference_rtnl - rcu_dereference with debug checking * @p: The pointer to read, prior to dereferencing * * Do an rcu_dereference(p), but check caller either holds rcu_read_lock() * or RTNL. Note : Please prefer rtnl_dereference() or rcu_dereference() */ #define rcu_dereference_rtnl(p) \ rcu_dereference_check(p, lockdep_rtnl_is_held()) /** * rcu_dereference_bh_rtnl - rcu_dereference_bh with debug checking * @p: The pointer to read, prior to dereference * * Do an rcu_dereference_bh(p), but check caller either holds rcu_read_lock_bh() * or RTNL. Note : Please prefer rtnl_dereference() or rcu_dereference_bh() */ #define rcu_dereference_bh_rtnl(p) \ rcu_dereference_bh_check(p, lockdep_rtnl_is_held()) /** * rtnl_dereference - fetch RCU pointer when updates are prevented by RTNL * @p: The pointer to read, prior to dereferencing * * Return the value of the specified RCU-protected pointer, but omit * the READ_ONCE(), because caller holds RTNL. */ #define rtnl_dereference(p) \ rcu_dereference_protected(p, lockdep_rtnl_is_held()) static inline struct netdev_queue *dev_ingress_queue(struct net_device *dev) { return rtnl_dereference(dev->ingress_queue); } static inline struct netdev_queue *dev_ingress_queue_rcu(struct net_device *dev) { return rcu_dereference(dev->ingress_queue); } struct netdev_queue *dev_ingress_queue_create(struct net_device *dev); #ifdef CONFIG_NET_INGRESS void net_inc_ingress_queue(void); void net_dec_ingress_queue(void); #endif #ifdef CONFIG_NET_EGRESS void net_inc_egress_queue(void); void net_dec_egress_queue(void); #endif void rtnetlink_init(void); void __rtnl_unlock(void); void rtnl_kfree_skbs(struct sk_buff *head, struct sk_buff *tail); #define ASSERT_RTNL() \ WARN_ONCE(!rtnl_is_locked(), \ "RTNL: assertion failed at %s (%d)\n", __FILE__, __LINE__) extern int ndo_dflt_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb, struct net_device *dev, struct net_device *filter_dev, int *idx); extern int ndo_dflt_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u16 flags); extern int ndo_dflt_fdb_del(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid); extern int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, struct net_device *dev, u16 mode, u32 flags, u32 mask, int nlflags, u32 filter_mask, int (*vlan_fill)(struct sk_buff *skb, struct net_device *dev, u32 filter_mask)); #endif /* __LINUX_RTNETLINK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 /* SPDX-License-Identifier: GPL-2.0 */ /* * Dynamic queue limits (dql) - Definitions * * Copyright (c) 2011, Tom Herbert <therbert@google.com> * * This header file contains the definitions for dynamic queue limits (dql). * dql would be used in conjunction with a producer/consumer type queue * (possibly a HW queue). Such a queue would have these general properties: * * 1) Objects are queued up to some limit specified as number of objects. * 2) Periodically a completion process executes which retires consumed * objects. * 3) Starvation occurs when limit has been reached, all queued data has * actually been consumed, but completion processing has not yet run * so queuing new data is blocked. * 4) Minimizing the amount of queued data is desirable. * * The goal of dql is to calculate the limit as the minimum number of objects * needed to prevent starvation. * * The primary functions of dql are: * dql_queued - called when objects are enqueued to record number of objects * dql_avail - returns how many objects are available to be queued based * on the object limit and how many objects are already enqueued * dql_completed - called at completion time to indicate how many objects * were retired from the queue * * The dql implementation does not implement any locking for the dql data * structures, the higher layer should provide this. dql_queued should * be serialized to prevent concurrent execution of the function; this * is also true for dql_completed. However, dql_queued and dlq_completed can * be executed concurrently (i.e. they can be protected by different locks). */ #ifndef _LINUX_DQL_H #define _LINUX_DQL_H #ifdef __KERNEL__ #include <asm/bug.h> struct dql { /* Fields accessed in enqueue path (dql_queued) */ unsigned int num_queued; /* Total ever queued */ unsigned int adj_limit; /* limit + num_completed */ unsigned int last_obj_cnt; /* Count at last queuing */ /* Fields accessed only by completion path (dql_completed) */ unsigned int limit ____cacheline_aligned_in_smp; /* Current limit */ unsigned int num_completed; /* Total ever completed */ unsigned int prev_ovlimit; /* Previous over limit */ unsigned int prev_num_queued; /* Previous queue total */ unsigned int prev_last_obj_cnt; /* Previous queuing cnt */ unsigned int lowest_slack; /* Lowest slack found */ unsigned long slack_start_time; /* Time slacks seen */ /* Configuration */ unsigned int max_limit; /* Max limit */ unsigned int min_limit; /* Minimum limit */ unsigned int slack_hold_time; /* Time to measure slack */ }; /* Set some static maximums */ #define DQL_MAX_OBJECT (UINT_MAX / 16) #define DQL_MAX_LIMIT ((UINT_MAX / 2) - DQL_MAX_OBJECT) /* * Record number of objects queued. Assumes that caller has already checked * availability in the queue with dql_avail. */ static inline void dql_queued(struct dql *dql, unsigned int count) { BUG_ON(count > DQL_MAX_OBJECT); dql->last_obj_cnt = count; /* We want to force a write first, so that cpu do not attempt * to get cache line containing last_obj_cnt, num_queued, adj_limit * in Shared state, but directly does a Request For Ownership * It is only a hint, we use barrier() only. */ barrier(); dql->num_queued += count; } /* Returns how many objects can be queued, < 0 indicates over limit. */ static inline int dql_avail(const struct dql *dql) { return READ_ONCE(dql->adj_limit) - READ_ONCE(dql->num_queued); } /* Record number of completed objects and recalculate the limit. */ void dql_completed(struct dql *dql, unsigned int count); /* Reset dql state */ void dql_reset(struct dql *dql); /* Initialize dql state */ void dql_init(struct dql *dql, unsigned int hold_time); #endif /* _KERNEL_ */ #endif /* _LINUX_DQL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 /* SPDX-License-Identifier: GPL-2.0 */ /* Based on net/mac80211/trace.h */ #undef TRACE_SYSTEM #define TRACE_SYSTEM mac802154 #if !defined(__MAC802154_DRIVER_TRACE) || defined(TRACE_HEADER_MULTI_READ) #define __MAC802154_DRIVER_TRACE #include <linux/tracepoint.h> #include <net/mac802154.h> #include "ieee802154_i.h" #define MAXNAME 32 #define LOCAL_ENTRY __array(char, wpan_phy_name, MAXNAME) #define LOCAL_ASSIGN strlcpy(__entry->wpan_phy_name, \ wpan_phy_name(local->hw.phy), MAXNAME) #define LOCAL_PR_FMT "%s" #define LOCAL_PR_ARG __entry->wpan_phy_name #define CCA_ENTRY __field(enum nl802154_cca_modes, cca_mode) \ __field(enum nl802154_cca_opts, cca_opt) #define CCA_ASSIGN \ do { \ (__entry->cca_mode) = cca->mode; \ (__entry->cca_opt) = cca->opt; \ } while (0) #define CCA_PR_FMT "cca_mode: %d, cca_opt: %d" #define CCA_PR_ARG __entry->cca_mode, __entry->cca_opt #define BOOL_TO_STR(bo) (bo) ? "true" : "false" /* Tracing for driver callbacks */ DECLARE_EVENT_CLASS(local_only_evt4, TP_PROTO(struct ieee802154_local *local), TP_ARGS(local), TP_STRUCT__entry( LOCAL_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; ), TP_printk(LOCAL_PR_FMT, LOCAL_PR_ARG) ); DEFINE_EVENT(local_only_evt4, 802154_drv_return_void, TP_PROTO(struct ieee802154_local *local), TP_ARGS(local) ); TRACE_EVENT(802154_drv_return_int, TP_PROTO(struct ieee802154_local *local, int ret), TP_ARGS(local, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(int, ret) ), TP_fast_assign( LOCAL_ASSIGN; __entry->ret = ret; ), TP_printk(LOCAL_PR_FMT ", returned: %d", LOCAL_PR_ARG, __entry->ret) ); DEFINE_EVENT(local_only_evt4, 802154_drv_start, TP_PROTO(struct ieee802154_local *local), TP_ARGS(local) ); DEFINE_EVENT(local_only_evt4, 802154_drv_stop, TP_PROTO(struct ieee802154_local *local), TP_ARGS(local) ); TRACE_EVENT(802154_drv_set_channel, TP_PROTO(struct ieee802154_local *local, u8 page, u8 channel), TP_ARGS(local, page, channel), TP_STRUCT__entry( LOCAL_ENTRY __field(u8, page) __field(u8, channel) ), TP_fast_assign( LOCAL_ASSIGN; __entry->page = page; __entry->channel = channel; ), TP_printk(LOCAL_PR_FMT ", page: %d, channel: %d", LOCAL_PR_ARG, __entry->page, __entry->channel) ); TRACE_EVENT(802154_drv_set_cca_mode, TP_PROTO(struct ieee802154_local *local, const struct wpan_phy_cca *cca), TP_ARGS(local, cca), TP_STRUCT__entry( LOCAL_ENTRY CCA_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; CCA_ASSIGN; ), TP_printk(LOCAL_PR_FMT ", " CCA_PR_FMT, LOCAL_PR_ARG, CCA_PR_ARG) ); TRACE_EVENT(802154_drv_set_cca_ed_level, TP_PROTO(struct ieee802154_local *local, s32 mbm), TP_ARGS(local, mbm), TP_STRUCT__entry( LOCAL_ENTRY __field(s32, mbm) ), TP_fast_assign( LOCAL_ASSIGN; __entry->mbm = mbm; ), TP_printk(LOCAL_PR_FMT ", ed level: %d", LOCAL_PR_ARG, __entry->mbm) ); TRACE_EVENT(802154_drv_set_tx_power, TP_PROTO(struct ieee802154_local *local, s32 power), TP_ARGS(local, power), TP_STRUCT__entry( LOCAL_ENTRY __field(s32, power) ), TP_fast_assign( LOCAL_ASSIGN; __entry->power = power; ), TP_printk(LOCAL_PR_FMT ", mbm: %d", LOCAL_PR_ARG, __entry->power) ); TRACE_EVENT(802154_drv_set_lbt_mode, TP_PROTO(struct ieee802154_local *local, bool mode), TP_ARGS(local, mode), TP_STRUCT__entry( LOCAL_ENTRY __field(bool, mode) ), TP_fast_assign( LOCAL_ASSIGN; __entry->mode = mode; ), TP_printk(LOCAL_PR_FMT ", lbt mode: %s", LOCAL_PR_ARG, BOOL_TO_STR(__entry->mode)) ); TRACE_EVENT(802154_drv_set_short_addr, TP_PROTO(struct ieee802154_local *local, __le16 short_addr), TP_ARGS(local, short_addr), TP_STRUCT__entry( LOCAL_ENTRY __field(__le16, short_addr) ), TP_fast_assign( LOCAL_ASSIGN; __entry->short_addr = short_addr; ), TP_printk(LOCAL_PR_FMT ", short addr: 0x%04x", LOCAL_PR_ARG, le16_to_cpu(__entry->short_addr)) ); TRACE_EVENT(802154_drv_set_pan_id, TP_PROTO(struct ieee802154_local *local, __le16 pan_id), TP_ARGS(local, pan_id), TP_STRUCT__entry( LOCAL_ENTRY __field(__le16, pan_id) ), TP_fast_assign( LOCAL_ASSIGN; __entry->pan_id = pan_id; ), TP_printk(LOCAL_PR_FMT ", pan id: 0x%04x", LOCAL_PR_ARG, le16_to_cpu(__entry->pan_id)) ); TRACE_EVENT(802154_drv_set_extended_addr, TP_PROTO(struct ieee802154_local *local, __le64 extended_addr), TP_ARGS(local, extended_addr), TP_STRUCT__entry( LOCAL_ENTRY __field(__le64, extended_addr) ), TP_fast_assign( LOCAL_ASSIGN; __entry->extended_addr = extended_addr; ), TP_printk(LOCAL_PR_FMT ", extended addr: 0x%llx", LOCAL_PR_ARG, le64_to_cpu(__entry->extended_addr)) ); TRACE_EVENT(802154_drv_set_pan_coord, TP_PROTO(struct ieee802154_local *local, bool is_coord), TP_ARGS(local, is_coord), TP_STRUCT__entry( LOCAL_ENTRY __field(bool, is_coord) ), TP_fast_assign( LOCAL_ASSIGN; __entry->is_coord = is_coord; ), TP_printk(LOCAL_PR_FMT ", is_coord: %s", LOCAL_PR_ARG, BOOL_TO_STR(__entry->is_coord)) ); TRACE_EVENT(802154_drv_set_csma_params, TP_PROTO(struct ieee802154_local *local, u8 min_be, u8 max_be, u8 max_csma_backoffs), TP_ARGS(local, min_be, max_be, max_csma_backoffs), TP_STRUCT__entry( LOCAL_ENTRY __field(u8, min_be) __field(u8, max_be) __field(u8, max_csma_backoffs) ), TP_fast_assign( LOCAL_ASSIGN, __entry->min_be = min_be; __entry->max_be = max_be; __entry->max_csma_backoffs = max_csma_backoffs; ), TP_printk(LOCAL_PR_FMT ", min be: %d, max be: %d, max csma backoffs: %d", LOCAL_PR_ARG, __entry->min_be, __entry->max_be, __entry->max_csma_backoffs) ); TRACE_EVENT(802154_drv_set_max_frame_retries, TP_PROTO(struct ieee802154_local *local, s8 max_frame_retries), TP_ARGS(local, max_frame_retries), TP_STRUCT__entry( LOCAL_ENTRY __field(s8, max_frame_retries) ), TP_fast_assign( LOCAL_ASSIGN; __entry->max_frame_retries = max_frame_retries; ), TP_printk(LOCAL_PR_FMT ", max frame retries: %d", LOCAL_PR_ARG, __entry->max_frame_retries) ); TRACE_EVENT(802154_drv_set_promiscuous_mode, TP_PROTO(struct ieee802154_local *local, bool on), TP_ARGS(local, on), TP_STRUCT__entry( LOCAL_ENTRY __field(bool, on) ), TP_fast_assign( LOCAL_ASSIGN; __entry->on = on; ), TP_printk(LOCAL_PR_FMT ", promiscuous mode: %s", LOCAL_PR_ARG, BOOL_TO_STR(__entry->on)) ); #endif /* !__MAC802154_DRIVER_TRACE || TRACE_HEADER_MULTI_READ */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE trace #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_CPUMASK_H #define __LINUX_CPUMASK_H /* * Cpumasks provide a bitmap suitable for representing the * set of CPU's in a system, one bit position per CPU number. In general, * only nr_cpu_ids (<= NR_CPUS) bits are valid. */ #include <linux/kernel.h> #include <linux/threads.h> #include <linux/bitmap.h> #include <linux/atomic.h> #include <linux/bug.h> /* Don't assign or return these: may not be this big! */ typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t; /** * cpumask_bits - get the bits in a cpumask * @maskp: the struct cpumask * * * You should only assume nr_cpu_ids bits of this mask are valid. This is * a macro so it's const-correct. */ #define cpumask_bits(maskp) ((maskp)->bits) /** * cpumask_pr_args - printf args to output a cpumask * @maskp: cpumask to be printed * * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. */ #define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) #if NR_CPUS == 1 #define nr_cpu_ids 1U #else extern unsigned int nr_cpu_ids; #endif #ifdef CONFIG_CPUMASK_OFFSTACK /* Assuming NR_CPUS is huge, a runtime limit is more efficient. Also, * not all bits may be allocated. */ #define nr_cpumask_bits nr_cpu_ids #else #define nr_cpumask_bits ((unsigned int)NR_CPUS) #endif /* * The following particular system cpumasks and operations manage * possible, present, active and online cpus. * * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable * cpu_present_mask - has bit 'cpu' set iff cpu is populated * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler * cpu_active_mask - has bit 'cpu' set iff cpu available to migration * * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. * * The cpu_possible_mask is fixed at boot time, as the set of CPU id's * that it is possible might ever be plugged in at anytime during the * life of that system boot. The cpu_present_mask is dynamic(*), * representing which CPUs are currently plugged in. And * cpu_online_mask is the dynamic subset of cpu_present_mask, * indicating those CPUs available for scheduling. * * If HOTPLUG is enabled, then cpu_possible_mask is forced to have * all NR_CPUS bits set, otherwise it is just the set of CPUs that * ACPI reports present at boot. * * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, * depending on what ACPI reports as currently plugged in, otherwise * cpu_present_mask is just a copy of cpu_possible_mask. * * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. * * Subtleties: * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode * assumption that their single CPU is online. The UP * cpu_{online,possible,present}_masks are placebos. Changing them * will have no useful affect on the following num_*_cpus() * and cpu_*() macros in the UP case. This ugliness is a UP * optimization - don't waste any instructions or memory references * asking if you're online or how many CPUs there are if there is * only one CPU. */ extern struct cpumask __cpu_possible_mask; extern struct cpumask __cpu_online_mask; extern struct cpumask __cpu_present_mask; extern struct cpumask __cpu_active_mask; #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) #define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) #define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) #define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) extern atomic_t __num_online_cpus; #if NR_CPUS > 1 /** * num_online_cpus() - Read the number of online CPUs * * Despite the fact that __num_online_cpus is of type atomic_t, this * interface gives only a momentary snapshot and is not protected against * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held * region. */ static inline unsigned int num_online_cpus(void) { return atomic_read(&__num_online_cpus); } #define num_possible_cpus() cpumask_weight(cpu_possible_mask) #define num_present_cpus() cpumask_weight(cpu_present_mask) #define num_active_cpus() cpumask_weight(cpu_active_mask) #define cpu_online(cpu) cpumask_test_cpu((cpu), cpu_online_mask) #define cpu_possible(cpu) cpumask_test_cpu((cpu), cpu_possible_mask) #define cpu_present(cpu) cpumask_test_cpu((cpu), cpu_present_mask) #define cpu_active(cpu) cpumask_test_cpu((cpu), cpu_active_mask) #else #define num_online_cpus() 1U #define num_possible_cpus() 1U #define num_present_cpus() 1U #define num_active_cpus() 1U #define cpu_online(cpu) ((cpu) == 0) #define cpu_possible(cpu) ((cpu) == 0) #define cpu_present(cpu) ((cpu) == 0) #define cpu_active(cpu) ((cpu) == 0) #endif extern cpumask_t cpus_booted_once_mask; static inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) { #ifdef CONFIG_DEBUG_PER_CPU_MAPS WARN_ON_ONCE(cpu >= bits); #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ } /* verify cpu argument to cpumask_* operators */ static inline unsigned int cpumask_check(unsigned int cpu) { cpu_max_bits_warn(cpu, nr_cpumask_bits); return cpu; } #if NR_CPUS == 1 /* Uniprocessor. Assume all masks are "1". */ static inline unsigned int cpumask_first(const struct cpumask *srcp) { return 0; } static inline unsigned int cpumask_last(const struct cpumask *srcp) { return 0; } /* Valid inputs for n are -1 and 0. */ static inline unsigned int cpumask_next(int n, const struct cpumask *srcp) { return n+1; } static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) { return n+1; } static inline unsigned int cpumask_next_and(int n, const struct cpumask *srcp, const struct cpumask *andp) { return n+1; } static inline unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap) { /* cpu0 unless stop condition, wrap and at cpu0, then nr_cpumask_bits */ return (wrap && n == 0); } /* cpu must be a valid cpu, ie 0, so there's no other choice. */ static inline unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu) { return 1; } static inline unsigned int cpumask_local_spread(unsigned int i, int node) { return 0; } static inline int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p) { return cpumask_next_and(-1, src1p, src2p); } #define for_each_cpu(cpu, mask) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) #define for_each_cpu_not(cpu, mask) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) #define for_each_cpu_wrap(cpu, mask, start) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask, (void)(start)) #define for_each_cpu_and(cpu, mask1, mask2) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask1, (void)mask2) #else /** * cpumask_first - get the first cpu in a cpumask * @srcp: the cpumask pointer * * Returns >= nr_cpu_ids if no cpus set. */ static inline unsigned int cpumask_first(const struct cpumask *srcp) { return find_first_bit(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_last - get the last CPU in a cpumask * @srcp: - the cpumask pointer * * Returns >= nr_cpumask_bits if no CPUs set. */ static inline unsigned int cpumask_last(const struct cpumask *srcp) { return find_last_bit(cpumask_bits(srcp), nr_cpumask_bits); } unsigned int cpumask_next(int n, const struct cpumask *srcp); /** * cpumask_next_zero - get the next unset cpu in a cpumask * @n: the cpu prior to the place to search (ie. return will be > @n) * @srcp: the cpumask pointer * * Returns >= nr_cpu_ids if no further cpus unset. */ static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) { /* -1 is a legal arg here. */ if (n != -1) cpumask_check(n); return find_next_zero_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1); } int cpumask_next_and(int n, const struct cpumask *, const struct cpumask *); int cpumask_any_but(const struct cpumask *mask, unsigned int cpu); unsigned int cpumask_local_spread(unsigned int i, int node); int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p); /** * for_each_cpu - iterate over every cpu in a mask * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu(cpu, mask) \ for ((cpu) = -1; \ (cpu) = cpumask_next((cpu), (mask)), \ (cpu) < nr_cpu_ids;) /** * for_each_cpu_not - iterate over every cpu in a complemented mask * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_not(cpu, mask) \ for ((cpu) = -1; \ (cpu) = cpumask_next_zero((cpu), (mask)), \ (cpu) < nr_cpu_ids;) extern int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap); /** * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask poiter * @start: the start location * * The implementation does not assume any bit in @mask is set (including @start). * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_wrap(cpu, mask, start) \ for ((cpu) = cpumask_next_wrap((start)-1, (mask), (start), false); \ (cpu) < nr_cpumask_bits; \ (cpu) = cpumask_next_wrap((cpu), (mask), (start), true)) /** * for_each_cpu_and - iterate over every cpu in both masks * @cpu: the (optionally unsigned) integer iterator * @mask1: the first cpumask pointer * @mask2: the second cpumask pointer * * This saves a temporary CPU mask in many places. It is equivalent to: * struct cpumask tmp; * cpumask_and(&tmp, &mask1, &mask2); * for_each_cpu(cpu, &tmp) * ... * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_and(cpu, mask1, mask2) \ for ((cpu) = -1; \ (cpu) = cpumask_next_and((cpu), (mask1), (mask2)), \ (cpu) < nr_cpu_ids;) #endif /* SMP */ #define CPU_BITS_NONE \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } #define CPU_BITS_CPU0 \ { \ [0] = 1UL \ } /** * cpumask_set_cpu - set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_clear_cpu - clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) { clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) { __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_test_cpu - test for a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in @cpumask, else returns 0 */ static inline int cpumask_test_cpu(int cpu, const struct cpumask *cpumask) { return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); } /** * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0 * * test_and_set_bit wrapper for cpumasks. */ static inline int cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) { return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0 * * test_and_clear_bit wrapper for cpumasks. */ static inline int cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) { return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static inline void cpumask_setall(struct cpumask *dstp) { bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static inline void cpumask_clear(struct cpumask *dstp) { bitmap_zero(cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_and - *dstp = *src1p & *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * If *@dstp is empty, returns 0, else returns 1 */ static inline int cpumask_and(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_or - *dstp = *src1p | *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_xor - *dstp = *src1p ^ *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static inline void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_andnot - *dstp = *src1p & ~*src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * If *@dstp is empty, returns 0, else returns 1 */ static inline int cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_complement - *dstp = ~*srcp * @dstp: the cpumask result * @srcp: the input to invert */ static inline void cpumask_complement(struct cpumask *dstp, const struct cpumask *srcp) { bitmap_complement(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_equal - *src1p == *src2p * @src1p: the first input * @src2p: the second input */ static inline bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_or_equal - *src1p | *src2p == *src3p * @src1p: the first input * @src2p: the second input * @src3p: the third input */ static inline bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p, const struct cpumask *src3p) { return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), cpumask_bits(src3p), nr_cpumask_bits); } /** * cpumask_intersects - (*src1p & *src2p) != 0 * @src1p: the first input * @src2p: the second input */ static inline bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_subset - (*src1p & ~*src2p) == 0 * @src1p: the first input * @src2p: the second input * * Returns 1 if *@src1p is a subset of *@src2p, else returns 0 */ static inline int cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_empty - *srcp == 0 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. */ static inline bool cpumask_empty(const struct cpumask *srcp) { return bitmap_empty(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_full - *srcp == 0xFFFFFFFF... * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. */ static inline bool cpumask_full(const struct cpumask *srcp) { return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_weight - Count of bits in *srcp * @srcp: the cpumask to count bits (< nr_cpu_ids) in. */ static inline unsigned int cpumask_weight(const struct cpumask *srcp) { return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_shift_right - *dstp = *srcp >> n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static inline void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, nr_cpumask_bits); } /** * cpumask_shift_left - *dstp = *srcp << n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static inline void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, nr_cpumask_bits); } /** * cpumask_copy - *dstp = *srcp * @dstp: the result * @srcp: the input cpumask */ static inline void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp) { bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_any - pick a "random" cpu from *srcp * @srcp: the input cpumask * * Returns >= nr_cpu_ids if no cpus set. */ #define cpumask_any(srcp) cpumask_first(srcp) /** * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 * @src1p: the first input * @src2p: the second input * * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). */ #define cpumask_first_and(src1p, src2p) cpumask_next_and(-1, (src1p), (src2p)) /** * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 * @mask1: the first input cpumask * @mask2: the second input cpumask * * Returns >= nr_cpu_ids if no cpus set. */ #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) /** * cpumask_of - the cpumask containing just a given cpu * @cpu: the cpu (<= nr_cpu_ids) */ #define cpumask_of(cpu) (get_cpu_mask(cpu)) /** * cpumask_parse_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parselist_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parselist_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parse - extract a cpumask from a string * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parse(const char *buf, struct cpumask *dstp) { return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpulist_parse - extract a cpumask from a user string of ranges * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpulist_parse(const char *buf, struct cpumask *dstp) { return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_size - size to allocate for a 'struct cpumask' in bytes */ static inline unsigned int cpumask_size(void) { return BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long); } /* * cpumask_var_t: struct cpumask for stack usage. * * Oh, the wicked games we play! In order to make kernel coding a * little more difficult, we typedef cpumask_var_t to an array or a * pointer: doing &mask on an array is a noop, so it still works. * * ie. * cpumask_var_t tmpmask; * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) * return -ENOMEM; * * ... use 'tmpmask' like a normal struct cpumask * ... * * free_cpumask_var(tmpmask); * * * However, one notable exception is there. alloc_cpumask_var() allocates * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t. * * cpumask_var_t tmpmask; * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) * return -ENOMEM; * * var = *tmpmask; * * This code makes NR_CPUS length memcopy and brings to a memory corruption. * cpumask_copy() provide safe copy functionality. * * Note that there is another evil here: If you define a cpumask_var_t * as a percpu variable then the way to obtain the address of the cpumask * structure differently influences what this_cpu_* operation needs to be * used. Please use this_cpu_cpumask_var_t in those cases. The direct use * of this_cpu_ptr() or this_cpu_read() will lead to failures when the * other type of cpumask_var_t implementation is configured. * * Please also note that __cpumask_var_read_mostly can be used to declare * a cpumask_var_t variable itself (not its content) as read mostly. */ #ifdef CONFIG_CPUMASK_OFFSTACK typedef struct cpumask *cpumask_var_t; #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) #define __cpumask_var_read_mostly __read_mostly bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); void alloc_bootmem_cpumask_var(cpumask_var_t *mask); void free_cpumask_var(cpumask_var_t mask); void free_bootmem_cpumask_var(cpumask_var_t mask); static inline bool cpumask_available(cpumask_var_t mask) { return mask != NULL; } #else typedef struct cpumask cpumask_var_t[1]; #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) #define __cpumask_var_read_mostly static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { return true; } static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { return true; } static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { cpumask_clear(*mask); return true; } static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { cpumask_clear(*mask); return true; } static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) { } static inline void free_cpumask_var(cpumask_var_t mask) { } static inline void free_bootmem_cpumask_var(cpumask_var_t mask) { } static inline bool cpumask_available(cpumask_var_t mask) { return true; } #endif /* CONFIG_CPUMASK_OFFSTACK */ /* It's common to want to use cpu_all_mask in struct member initializers, * so it has to refer to an address rather than a pointer. */ extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); #define cpu_all_mask to_cpumask(cpu_all_bits) /* First bits of cpu_bit_bitmap are in fact unset. */ #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) /* Wrappers for arch boot code to manipulate normally-constant masks */ void init_cpu_present(const struct cpumask *src); void init_cpu_possible(const struct cpumask *src); void init_cpu_online(const struct cpumask *src); static inline void reset_cpu_possible_mask(void) { bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS); } static inline void set_cpu_possible(unsigned int cpu, bool possible) { if (possible) cpumask_set_cpu(cpu, &__cpu_possible_mask); else cpumask_clear_cpu(cpu, &__cpu_possible_mask); } static inline void set_cpu_present(unsigned int cpu, bool present) { if (present) cpumask_set_cpu(cpu, &__cpu_present_mask); else cpumask_clear_cpu(cpu, &__cpu_present_mask); } void set_cpu_online(unsigned int cpu, bool online); static inline void set_cpu_active(unsigned int cpu, bool active) { if (active) cpumask_set_cpu(cpu, &__cpu_active_mask); else cpumask_clear_cpu(cpu, &__cpu_active_mask); } /** * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask * * @bitmap: the bitmap * * There are a few places where cpumask_var_t isn't appropriate and * static cpumasks must be used (eg. very early boot), yet we don't * expose the definition of 'struct cpumask'. * * This does the conversion, and can be used as a constant initializer. */ #define to_cpumask(bitmap) \ ((struct cpumask *)(1 ? (bitmap) \ : (void *)sizeof(__check_is_bitmap(bitmap)))) static inline int __check_is_bitmap(const unsigned long *bitmap) { return 1; } /* * Special-case data structure for "single bit set only" constant CPU masks. * * We pre-generate all the 64 (or 32) possible bit positions, with enough * padding to the left and the right, and return the constant pointer * appropriately offset. */ extern const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; static inline const struct cpumask *get_cpu_mask(unsigned int cpu) { const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; p -= cpu / BITS_PER_LONG; return to_cpumask(p); } #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) #if NR_CPUS <= BITS_PER_LONG #define CPU_BITS_ALL \ { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #else /* NR_CPUS > BITS_PER_LONG */ #define CPU_BITS_ALL \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #endif /* NR_CPUS > BITS_PER_LONG */ /** * cpumap_print_to_pagebuf - copies the cpumask into the buffer either * as comma-separated list of cpus or hex values of cpumask * @list: indicates whether the cpumap must be list * @mask: the cpumask to copy * @buf: the buffer to copy into * * Returns the length of the (null-terminated) @buf string, zero if * nothing is copied. */ static inline ssize_t cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) { return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), nr_cpu_ids); } #if NR_CPUS <= BITS_PER_LONG #define CPU_MASK_ALL \ (cpumask_t) { { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #else #define CPU_MASK_ALL \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #endif /* NR_CPUS > BITS_PER_LONG */ #define CPU_MASK_NONE \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } } #define CPU_MASK_CPU0 \ (cpumask_t) { { \ [0] = 1UL \ } } #endif /* __LINUX_CPUMASK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 /* SPDX-License-Identifier: GPL-2.0 */ /* * * Generic internet FLOW. * */ #ifndef _NET_FLOW_H #define _NET_FLOW_H #include <linux/socket.h> #include <linux/in6.h> #include <linux/atomic.h> #include <net/flow_dissector.h> #include <linux/uidgid.h> /* * ifindex generation is per-net namespace, and loopback is * always the 1st device in ns (see net_dev_init), thus any * loopback device should get ifindex 1 */ #define LOOPBACK_IFINDEX 1 struct flowi_tunnel { __be64 tun_id; }; struct flowi_common { int flowic_oif; int flowic_iif; __u32 flowic_mark; __u8 flowic_tos; __u8 flowic_scope; __u8 flowic_proto; __u8 flowic_flags; #define FLOWI_FLAG_ANYSRC 0x01 #define FLOWI_FLAG_KNOWN_NH 0x02 #define FLOWI_FLAG_SKIP_NH_OIF 0x04 __u32 flowic_secid; kuid_t flowic_uid; struct flowi_tunnel flowic_tun_key; __u32 flowic_multipath_hash; }; union flowi_uli { struct { __be16 dport; __be16 sport; } ports; struct { __u8 type; __u8 code; } icmpt; struct { __le16 dport; __le16 sport; } dnports; __be32 spi; __be32 gre_key; struct { __u8 type; } mht; }; struct flowi4 { struct flowi_common __fl_common; #define flowi4_oif __fl_common.flowic_oif #define flowi4_iif __fl_common.flowic_iif #define flowi4_mark __fl_common.flowic_mark #define flowi4_tos __fl_common.flowic_tos #define flowi4_scope __fl_common.flowic_scope #define flowi4_proto __fl_common.flowic_proto #define flowi4_flags __fl_common.flowic_flags #define flowi4_secid __fl_common.flowic_secid #define flowi4_tun_key __fl_common.flowic_tun_key #define flowi4_uid __fl_common.flowic_uid #define flowi4_multipath_hash __fl_common.flowic_multipath_hash /* (saddr,daddr) must be grouped, same order as in IP header */ __be32 saddr; __be32 daddr; union flowi_uli uli; #define fl4_sport uli.ports.sport #define fl4_dport uli.ports.dport #define fl4_icmp_type uli.icmpt.type #define fl4_icmp_code uli.icmpt.code #define fl4_ipsec_spi uli.spi #define fl4_mh_type uli.mht.type #define fl4_gre_key uli.gre_key } __attribute__((__aligned__(BITS_PER_LONG/8))); static inline void flowi4_init_output(struct flowi4 *fl4, int oif, __u32 mark, __u8 tos, __u8 scope, __u8 proto, __u8 flags, __be32 daddr, __be32 saddr, __be16 dport, __be16 sport, kuid_t uid) { fl4->flowi4_oif = oif; fl4->flowi4_iif = LOOPBACK_IFINDEX; fl4->flowi4_mark = mark; fl4->flowi4_tos = tos; fl4->flowi4_scope = scope; fl4->flowi4_proto = proto; fl4->flowi4_flags = flags; fl4->flowi4_secid = 0; fl4->flowi4_tun_key.tun_id = 0; fl4->flowi4_uid = uid; fl4->daddr = daddr; fl4->saddr = saddr; fl4->fl4_dport = dport; fl4->fl4_sport = sport; fl4->flowi4_multipath_hash = 0; } /* Reset some input parameters after previous lookup */ static inline void flowi4_update_output(struct flowi4 *fl4, int oif, __u8 tos, __be32 daddr, __be32 saddr) { fl4->flowi4_oif = oif; fl4->flowi4_tos = tos; fl4->daddr = daddr; fl4->saddr = saddr; } struct flowi6 { struct flowi_common __fl_common; #define flowi6_oif __fl_common.flowic_oif #define flowi6_iif __fl_common.flowic_iif #define flowi6_mark __fl_common.flowic_mark #define flowi6_scope __fl_common.flowic_scope #define flowi6_proto __fl_common.flowic_proto #define flowi6_flags __fl_common.flowic_flags #define flowi6_secid __fl_common.flowic_secid #define flowi6_tun_key __fl_common.flowic_tun_key #define flowi6_uid __fl_common.flowic_uid struct in6_addr daddr; struct in6_addr saddr; /* Note: flowi6_tos is encoded in flowlabel, too. */ __be32 flowlabel; union flowi_uli uli; #define fl6_sport uli.ports.sport #define fl6_dport uli.ports.dport #define fl6_icmp_type uli.icmpt.type #define fl6_icmp_code uli.icmpt.code #define fl6_ipsec_spi uli.spi #define fl6_mh_type uli.mht.type #define fl6_gre_key uli.gre_key __u32 mp_hash; } __attribute__((__aligned__(BITS_PER_LONG/8))); struct flowidn { struct flowi_common __fl_common; #define flowidn_oif __fl_common.flowic_oif #define flowidn_iif __fl_common.flowic_iif #define flowidn_mark __fl_common.flowic_mark #define flowidn_scope __fl_common.flowic_scope #define flowidn_proto __fl_common.flowic_proto #define flowidn_flags __fl_common.flowic_flags __le16 daddr; __le16 saddr; union flowi_uli uli; #define fld_sport uli.ports.sport #define fld_dport uli.ports.dport } __attribute__((__aligned__(BITS_PER_LONG/8))); struct flowi { union { struct flowi_common __fl_common; struct flowi4 ip4; struct flowi6 ip6; struct flowidn dn; } u; #define flowi_oif u.__fl_common.flowic_oif #define flowi_iif u.__fl_common.flowic_iif #define flowi_mark u.__fl_common.flowic_mark #define flowi_tos u.__fl_common.flowic_tos #define flowi_scope u.__fl_common.flowic_scope #define flowi_proto u.__fl_common.flowic_proto #define flowi_flags u.__fl_common.flowic_flags #define flowi_secid u.__fl_common.flowic_secid #define flowi_tun_key u.__fl_common.flowic_tun_key #define flowi_uid u.__fl_common.flowic_uid } __attribute__((__aligned__(BITS_PER_LONG/8))); static inline struct flowi *flowi4_to_flowi(struct flowi4 *fl4) { return container_of(fl4, struct flowi, u.ip4); } static inline struct flowi *flowi6_to_flowi(struct flowi6 *fl6) { return container_of(fl6, struct flowi, u.ip6); } static inline struct flowi *flowidn_to_flowi(struct flowidn *fldn) { return container_of(fldn, struct flowi, u.dn); } __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/prandom.h * * Include file for the fast pseudo-random 32-bit * generation. */ #ifndef _LINUX_PRANDOM_H #define _LINUX_PRANDOM_H #include <linux/types.h> #include <linux/percpu.h> u32 prandom_u32(void); void prandom_bytes(void *buf, size_t nbytes); void prandom_seed(u32 seed); void prandom_reseed_late(void); DECLARE_PER_CPU(unsigned long, net_rand_noise); #define PRANDOM_ADD_NOISE(a, b, c, d) \ prandom_u32_add_noise((unsigned long)(a), (unsigned long)(b), \ (unsigned long)(c), (unsigned long)(d)) #if BITS_PER_LONG == 64 /* * The core SipHash round function. Each line can be executed in * parallel given enough CPU resources. */ #define PRND_SIPROUND(v0, v1, v2, v3) ( \ v0 += v1, v1 = rol64(v1, 13), v2 += v3, v3 = rol64(v3, 16), \ v1 ^= v0, v0 = rol64(v0, 32), v3 ^= v2, \ v0 += v3, v3 = rol64(v3, 21), v2 += v1, v1 = rol64(v1, 17), \ v3 ^= v0, v1 ^= v2, v2 = rol64(v2, 32) \ ) #define PRND_K0 (0x736f6d6570736575 ^ 0x6c7967656e657261) #define PRND_K1 (0x646f72616e646f6d ^ 0x7465646279746573) #elif BITS_PER_LONG == 32 /* * On 32-bit machines, we use HSipHash, a reduced-width version of SipHash. * This is weaker, but 32-bit machines are not used for high-traffic * applications, so there is less output for an attacker to analyze. */ #define PRND_SIPROUND(v0, v1, v2, v3) ( \ v0 += v1, v1 = rol32(v1, 5), v2 += v3, v3 = rol32(v3, 8), \ v1 ^= v0, v0 = rol32(v0, 16), v3 ^= v2, \ v0 += v3, v3 = rol32(v3, 7), v2 += v1, v1 = rol32(v1, 13), \ v3 ^= v0, v1 ^= v2, v2 = rol32(v2, 16) \ ) #define PRND_K0 0x6c796765 #define PRND_K1 0x74656462 #else #error Unsupported BITS_PER_LONG #endif static inline void prandom_u32_add_noise(unsigned long a, unsigned long b, unsigned long c, unsigned long d) { /* * This is not used cryptographically; it's just * a convenient 4-word hash function. (3 xor, 2 add, 2 rol) */ a ^= raw_cpu_read(net_rand_noise); PRND_SIPROUND(a, b, c, d); raw_cpu_write(net_rand_noise, d); } struct rnd_state { __u32 s1, s2, s3, s4; }; u32 prandom_u32_state(struct rnd_state *state); void prandom_bytes_state(struct rnd_state *state, void *buf, size_t nbytes); void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state); #define prandom_init_once(pcpu_state) \ DO_ONCE(prandom_seed_full_state, (pcpu_state)) /** * prandom_u32_max - returns a pseudo-random number in interval [0, ep_ro) * @ep_ro: right open interval endpoint * * Returns a pseudo-random number that is in interval [0, ep_ro). Note * that the result depends on PRNG being well distributed in [0, ~0U] * u32 space. Here we use maximally equidistributed combined Tausworthe * generator, that is, prandom_u32(). This is useful when requesting a * random index of an array containing ep_ro elements, for example. * * Returns: pseudo-random number in interval [0, ep_ro) */ static inline u32 prandom_u32_max(u32 ep_ro) { return (u32)(((u64) prandom_u32() * ep_ro) >> 32); } /* * Handle minimum values for seeds */ static inline u32 __seed(u32 x, u32 m) { return (x < m) ? x + m : x; } /** * prandom_seed_state - set seed for prandom_u32_state(). * @state: pointer to state structure to receive the seed. * @seed: arbitrary 64-bit value to use as a seed. */ static inline void prandom_seed_state(struct rnd_state *state, u64 seed) { u32 i = ((seed >> 32) ^ (seed << 10) ^ seed) & 0xffffffffUL; state->s1 = __seed(i, 2U); state->s2 = __seed(i, 8U); state->s3 = __seed(i, 16U); state->s4 = __seed(i, 128U); PRANDOM_ADD_NOISE(state, i, 0, 0); } /* Pseudo random number generator from numerical recipes. */ static inline u32 next_pseudo_random32(u32 seed) { return seed * 1664525 + 1013904223; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __VDSO_MATH64_H #define __VDSO_MATH64_H static __always_inline u32 __iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) { u32 ret = 0; while (dividend >= divisor) { /* The following asm() prevents the compiler from optimising this loop into a modulo operation. */ asm("" : "+rm"(dividend)); dividend -= divisor; ret++; } *remainder = dividend; return ret; } #endif /* __VDSO_MATH64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _DELAYED_CALL_H #define _DELAYED_CALL_H /* * Poor man's closures; I wish we could've done them sanely polymorphic, * but... */ struct delayed_call { void (*fn)(void *); void *arg; }; #define DEFINE_DELAYED_CALL(name) struct delayed_call name = {NULL, NULL} /* I really wish we had closures with sane typechecking... */ static inline void set_delayed_call(struct delayed_call *call, void (*fn)(void *), void *arg) { call->fn = fn; call->arg = arg; } static inline void do_delayed_call(struct delayed_call *call) { if (call->fn) call->fn(call->arg); } static inline void clear_delayed_call(struct delayed_call *call) { call->fn = NULL; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Authors: Lotsa people, from code originally in tcp */ #ifndef _INET_HASHTABLES_H #define _INET_HASHTABLES_H #include <linux/interrupt.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/socket.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/wait.h> #include <net/inet_connection_sock.h> #include <net/inet_sock.h> #include <net/sock.h> #include <net/route.h> #include <net/tcp_states.h> #include <net/netns/hash.h> #include <linux/refcount.h> #include <asm/byteorder.h> /* This is for all connections with a full identity, no wildcards. * The 'e' prefix stands for Establish, but we really put all sockets * but LISTEN ones. */ struct inet_ehash_bucket { struct hlist_nulls_head chain; }; /* There are a few simple rules, which allow for local port reuse by * an application. In essence: * * 1) Sockets bound to different interfaces may share a local port. * Failing that, goto test 2. * 2) If all sockets have sk->sk_reuse set, and none of them are in * TCP_LISTEN state, the port may be shared. * Failing that, goto test 3. * 3) If all sockets are bound to a specific inet_sk(sk)->rcv_saddr local * address, and none of them are the same, the port may be * shared. * Failing this, the port cannot be shared. * * The interesting point, is test #2. This is what an FTP server does * all day. To optimize this case we use a specific flag bit defined * below. As we add sockets to a bind bucket list, we perform a * check of: (newsk->sk_reuse && (newsk->sk_state != TCP_LISTEN)) * As long as all sockets added to a bind bucket pass this test, * the flag bit will be set. * The resulting situation is that tcp_v[46]_verify_bind() can just check * for this flag bit, if it is set and the socket trying to bind has * sk->sk_reuse set, we don't even have to walk the owners list at all, * we return that it is ok to bind this socket to the requested local port. * * Sounds like a lot of work, but it is worth it. In a more naive * implementation (ie. current FreeBSD etc.) the entire list of ports * must be walked for each data port opened by an ftp server. Needless * to say, this does not scale at all. With a couple thousand FTP * users logged onto your box, isn't it nice to know that new data * ports are created in O(1) time? I thought so. ;-) -DaveM */ #define FASTREUSEPORT_ANY 1 #define FASTREUSEPORT_STRICT 2 struct inet_bind_bucket { possible_net_t ib_net; int l3mdev; unsigned short port; signed char fastreuse; signed char fastreuseport; kuid_t fastuid; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr fast_v6_rcv_saddr; #endif __be32 fast_rcv_saddr; unsigned short fast_sk_family; bool fast_ipv6_only; struct hlist_node node; struct hlist_head owners; }; static inline struct net *ib_net(struct inet_bind_bucket *ib) { return read_pnet(&ib->ib_net); } #define inet_bind_bucket_for_each(tb, head) \ hlist_for_each_entry(tb, head, node) struct inet_bind_hashbucket { spinlock_t lock; struct hlist_head chain; }; /* Sockets can be hashed in established or listening table. * We must use different 'nulls' end-of-chain value for all hash buckets : * A socket might transition from ESTABLISH to LISTEN state without * RCU grace period. A lookup in ehash table needs to handle this case. */ #define LISTENING_NULLS_BASE (1U << 29) struct inet_listen_hashbucket { spinlock_t lock; unsigned int count; union { struct hlist_head head; struct hlist_nulls_head nulls_head; }; }; /* This is for listening sockets, thus all sockets which possess wildcards. */ #define INET_LHTABLE_SIZE 32 /* Yes, really, this is all you need. */ struct inet_hashinfo { /* This is for sockets with full identity only. Sockets here will * always be without wildcards and will have the following invariant: * * TCP_ESTABLISHED <= sk->sk_state < TCP_CLOSE * */ struct inet_ehash_bucket *ehash; spinlock_t *ehash_locks; unsigned int ehash_mask; unsigned int ehash_locks_mask; /* Ok, let's try this, I give up, we do need a local binding * TCP hash as well as the others for fast bind/connect. */ struct kmem_cache *bind_bucket_cachep; struct inet_bind_hashbucket *bhash; unsigned int bhash_size; /* The 2nd listener table hashed by local port and address */ unsigned int lhash2_mask; struct inet_listen_hashbucket *lhash2; /* All the above members are written once at bootup and * never written again _or_ are predominantly read-access. * * Now align to a new cache line as all the following members * might be often dirty. */ /* All sockets in TCP_LISTEN state will be in listening_hash. * This is the only table where wildcard'd TCP sockets can * exist. listening_hash is only hashed by local port number. * If lhash2 is initialized, the same socket will also be hashed * to lhash2 by port and address. */ struct inet_listen_hashbucket listening_hash[INET_LHTABLE_SIZE] ____cacheline_aligned_in_smp; }; #define inet_lhash2_for_each_icsk_rcu(__icsk, list) \ hlist_for_each_entry_rcu(__icsk, list, icsk_listen_portaddr_node) static inline struct inet_listen_hashbucket * inet_lhash2_bucket(struct inet_hashinfo *h, u32 hash) { return &h->lhash2[hash & h->lhash2_mask]; } static inline struct inet_ehash_bucket *inet_ehash_bucket( struct inet_hashinfo *hashinfo, unsigned int hash) { return &hashinfo->ehash[hash & hashinfo->ehash_mask]; } static inline spinlock_t *inet_ehash_lockp( struct inet_hashinfo *hashinfo, unsigned int hash) { return &hashinfo->ehash_locks[hash & hashinfo->ehash_locks_mask]; } int inet_ehash_locks_alloc(struct inet_hashinfo *hashinfo); static inline void inet_hashinfo2_free_mod(struct inet_hashinfo *h) { kfree(h->lhash2); h->lhash2 = NULL; } static inline void inet_ehash_locks_free(struct inet_hashinfo *hashinfo) { kvfree(hashinfo->ehash_locks); hashinfo->ehash_locks = NULL; } static inline bool inet_sk_bound_dev_eq(struct net *net, int bound_dev_if, int dif, int sdif) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) return inet_bound_dev_eq(!!net->ipv4.sysctl_tcp_l3mdev_accept, bound_dev_if, dif, sdif); #else return inet_bound_dev_eq(true, bound_dev_if, dif, sdif); #endif } struct inet_bind_bucket * inet_bind_bucket_create(struct kmem_cache *cachep, struct net *net, struct inet_bind_hashbucket *head, const unsigned short snum, int l3mdev); void inet_bind_bucket_destroy(struct kmem_cache *cachep, struct inet_bind_bucket *tb); static inline u32 inet_bhashfn(const struct net *net, const __u16 lport, const u32 bhash_size) { return (lport + net_hash_mix(net)) & (bhash_size - 1); } void inet_bind_hash(struct sock *sk, struct inet_bind_bucket *tb, const unsigned short snum); /* These can have wildcards, don't try too hard. */ static inline u32 inet_lhashfn(const struct net *net, const unsigned short num) { return (num + net_hash_mix(net)) & (INET_LHTABLE_SIZE - 1); } static inline int inet_sk_listen_hashfn(const struct sock *sk) { return inet_lhashfn(sock_net(sk), inet_sk(sk)->inet_num); } /* Caller must disable local BH processing. */ int __inet_inherit_port(const struct sock *sk, struct sock *child); void inet_put_port(struct sock *sk); void inet_hashinfo_init(struct inet_hashinfo *h); void inet_hashinfo2_init(struct inet_hashinfo *h, const char *name, unsigned long numentries, int scale, unsigned long low_limit, unsigned long high_limit); int inet_hashinfo2_init_mod(struct inet_hashinfo *h); bool inet_ehash_insert(struct sock *sk, struct sock *osk, bool *found_dup_sk); bool inet_ehash_nolisten(struct sock *sk, struct sock *osk, bool *found_dup_sk); int __inet_hash(struct sock *sk, struct sock *osk); int inet_hash(struct sock *sk); void inet_unhash(struct sock *sk); struct sock *__inet_lookup_listener(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be32 saddr, const __be16 sport, const __be32 daddr, const unsigned short hnum, const int dif, const int sdif); static inline struct sock *inet_lookup_listener(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, __be32 saddr, __be16 sport, __be32 daddr, __be16 dport, int dif, int sdif) { return __inet_lookup_listener(net, hashinfo, skb, doff, saddr, sport, daddr, ntohs(dport), dif, sdif); } /* Socket demux engine toys. */ /* What happens here is ugly; there's a pair of adjacent fields in struct inet_sock; __be16 dport followed by __u16 num. We want to search by pair, so we combine the keys into a single 32bit value and compare with 32bit value read from &...->dport. Let's at least make sure that it's not mixed with anything else... On 64bit targets we combine comparisons with pair of adjacent __be32 fields in the same way. */ #ifdef __BIG_ENDIAN #define INET_COMBINED_PORTS(__sport, __dport) \ ((__force __portpair)(((__force __u32)(__be16)(__sport) << 16) | (__u32)(__dport))) #else /* __LITTLE_ENDIAN */ #define INET_COMBINED_PORTS(__sport, __dport) \ ((__force __portpair)(((__u32)(__dport) << 16) | (__force __u32)(__be16)(__sport))) #endif #if (BITS_PER_LONG == 64) #ifdef __BIG_ENDIAN #define INET_ADDR_COOKIE(__name, __saddr, __daddr) \ const __addrpair __name = (__force __addrpair) ( \ (((__force __u64)(__be32)(__saddr)) << 32) | \ ((__force __u64)(__be32)(__daddr))) #else /* __LITTLE_ENDIAN */ #define INET_ADDR_COOKIE(__name, __saddr, __daddr) \ const __addrpair __name = (__force __addrpair) ( \ (((__force __u64)(__be32)(__daddr)) << 32) | \ ((__force __u64)(__be32)(__saddr))) #endif /* __BIG_ENDIAN */ #define INET_MATCH(__sk, __net, __cookie, __saddr, __daddr, __ports, __dif, __sdif) \ (((__sk)->sk_portpair == (__ports)) && \ ((__sk)->sk_addrpair == (__cookie)) && \ (((__sk)->sk_bound_dev_if == (__dif)) || \ ((__sk)->sk_bound_dev_if == (__sdif))) && \ net_eq(sock_net(__sk), (__net))) #else /* 32-bit arch */ #define INET_ADDR_COOKIE(__name, __saddr, __daddr) \ const int __name __deprecated __attribute__((unused)) #define INET_MATCH(__sk, __net, __cookie, __saddr, __daddr, __ports, __dif, __sdif) \ (((__sk)->sk_portpair == (__ports)) && \ ((__sk)->sk_daddr == (__saddr)) && \ ((__sk)->sk_rcv_saddr == (__daddr)) && \ (((__sk)->sk_bound_dev_if == (__dif)) || \ ((__sk)->sk_bound_dev_if == (__sdif))) && \ net_eq(sock_net(__sk), (__net))) #endif /* 64-bit arch */ /* Sockets in TCP_CLOSE state are _always_ taken out of the hash, so we need * not check it for lookups anymore, thanks Alexey. -DaveM */ struct sock *__inet_lookup_established(struct net *net, struct inet_hashinfo *hashinfo, const __be32 saddr, const __be16 sport, const __be32 daddr, const u16 hnum, const int dif, const int sdif); static inline struct sock * inet_lookup_established(struct net *net, struct inet_hashinfo *hashinfo, const __be32 saddr, const __be16 sport, const __be32 daddr, const __be16 dport, const int dif) { return __inet_lookup_established(net, hashinfo, saddr, sport, daddr, ntohs(dport), dif, 0); } static inline struct sock *__inet_lookup(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be32 saddr, const __be16 sport, const __be32 daddr, const __be16 dport, const int dif, const int sdif, bool *refcounted) { u16 hnum = ntohs(dport); struct sock *sk; sk = __inet_lookup_established(net, hashinfo, saddr, sport, daddr, hnum, dif, sdif); *refcounted = true; if (sk) return sk; *refcounted = false; return __inet_lookup_listener(net, hashinfo, skb, doff, saddr, sport, daddr, hnum, dif, sdif); } static inline struct sock *inet_lookup(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be32 saddr, const __be16 sport, const __be32 daddr, const __be16 dport, const int dif) { struct sock *sk; bool refcounted; sk = __inet_lookup(net, hashinfo, skb, doff, saddr, sport, daddr, dport, dif, 0, &refcounted); if (sk && !refcounted && !refcount_inc_not_zero(&sk->sk_refcnt)) sk = NULL; return sk; } static inline struct sock *__inet_lookup_skb(struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be16 sport, const __be16 dport, const int sdif, bool *refcounted) { struct sock *sk = skb_steal_sock(skb, refcounted); const struct iphdr *iph = ip_hdr(skb); if (sk) return sk; return __inet_lookup(dev_net(skb_dst(skb)->dev), hashinfo, skb, doff, iph->saddr, sport, iph->daddr, dport, inet_iif(skb), sdif, refcounted); } u32 inet6_ehashfn(const struct net *net, const struct in6_addr *laddr, const u16 lport, const struct in6_addr *faddr, const __be16 fport); static inline void sk_daddr_set(struct sock *sk, __be32 addr) { sk->sk_daddr = addr; /* alias of inet_daddr */ #if IS_ENABLED(CONFIG_IPV6) ipv6_addr_set_v4mapped(addr, &sk->sk_v6_daddr); #endif } static inline void sk_rcv_saddr_set(struct sock *sk, __be32 addr) { sk->sk_rcv_saddr = addr; /* alias of inet_rcv_saddr */ #if IS_ENABLED(CONFIG_IPV6) ipv6_addr_set_v4mapped(addr, &sk->sk_v6_rcv_saddr); #endif } int __inet_hash_connect(struct inet_timewait_death_row *death_row, struct sock *sk, u32 port_offset, int (*check_established)(struct inet_timewait_death_row *, struct sock *, __u16, struct inet_timewait_sock **)); int inet_hash_connect(struct inet_timewait_death_row *death_row, struct sock *sk); #endif /* _INET_HASHTABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 /* SPDX-License-Identifier: GPL-2.0 */ /* * Internals of the DMA direct mapping implementation. Only for use by the * DMA mapping code and IOMMU drivers. */ #ifndef _LINUX_DMA_DIRECT_H #define _LINUX_DMA_DIRECT_H 1 #include <linux/dma-mapping.h> #include <linux/dma-map-ops.h> #include <linux/memblock.h> /* for min_low_pfn */ #include <linux/mem_encrypt.h> #include <linux/swiotlb.h> extern unsigned int zone_dma_bits; /* * Record the mapping of CPU physical to DMA addresses for a given region. */ struct bus_dma_region { phys_addr_t cpu_start; dma_addr_t dma_start; u64 size; u64 offset; }; static inline dma_addr_t translate_phys_to_dma(struct device *dev, phys_addr_t paddr) { const struct bus_dma_region *m; for (m = dev->dma_range_map; m->size; m++) if (paddr >= m->cpu_start && paddr - m->cpu_start < m->size) return (dma_addr_t)paddr - m->offset; /* make sure dma_capable fails when no translation is available */ return DMA_MAPPING_ERROR; } static inline phys_addr_t translate_dma_to_phys(struct device *dev, dma_addr_t dma_addr) { const struct bus_dma_region *m; for (m = dev->dma_range_map; m->size; m++) if (dma_addr >= m->dma_start && dma_addr - m->dma_start < m->size) return (phys_addr_t)dma_addr + m->offset; return (phys_addr_t)-1; } #ifdef CONFIG_ARCH_HAS_PHYS_TO_DMA #include <asm/dma-direct.h> #ifndef phys_to_dma_unencrypted #define phys_to_dma_unencrypted phys_to_dma #endif #else static inline dma_addr_t phys_to_dma_unencrypted(struct device *dev, phys_addr_t paddr) { if (dev->dma_range_map) return translate_phys_to_dma(dev, paddr); return paddr; } /* * If memory encryption is supported, phys_to_dma will set the memory encryption * bit in the DMA address, and dma_to_phys will clear it. * phys_to_dma_unencrypted is for use on special unencrypted memory like swiotlb * buffers. */ static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr) { return __sme_set(phys_to_dma_unencrypted(dev, paddr)); } static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t dma_addr) { phys_addr_t paddr; if (dev->dma_range_map) paddr = translate_dma_to_phys(dev, dma_addr); else paddr = dma_addr; return __sme_clr(paddr); } #endif /* !CONFIG_ARCH_HAS_PHYS_TO_DMA */ #ifdef CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED bool force_dma_unencrypted(struct device *dev); #else static inline bool force_dma_unencrypted(struct device *dev) { return false; } #endif /* CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED */ static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size, bool is_ram) { dma_addr_t end = addr + size - 1; if (addr == DMA_MAPPING_ERROR) return false; if (is_ram && !IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) && min(addr, end) < phys_to_dma(dev, PFN_PHYS(min_low_pfn))) return false; return end <= min_not_zero(*dev->dma_mask, dev->bus_dma_limit); } u64 dma_direct_get_required_mask(struct device *dev); void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs); void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs); struct page *dma_direct_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); void dma_direct_free_pages(struct device *dev, size_t size, struct page *page, dma_addr_t dma_addr, enum dma_data_direction dir); int dma_direct_supported(struct device *dev, u64 mask); dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir, unsigned long attrs); #endif /* _LINUX_DMA_DIRECT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM skb #if !defined(_TRACE_SKB_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SKB_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/tracepoint.h> /* * Tracepoint for free an sk_buff: */ TRACE_EVENT(kfree_skb, TP_PROTO(struct sk_buff *skb, void *location), TP_ARGS(skb, location), TP_STRUCT__entry( __field( void *, skbaddr ) __field( void *, location ) __field( unsigned short, protocol ) ), TP_fast_assign( __entry->skbaddr = skb; __entry->location = location; __entry->protocol = ntohs(skb->protocol); ), TP_printk("skbaddr=%p protocol=%u location=%p", __entry->skbaddr, __entry->protocol, __entry->location) ); TRACE_EVENT(consume_skb, TP_PROTO(struct sk_buff *skb), TP_ARGS(skb), TP_STRUCT__entry( __field( void *, skbaddr ) ), TP_fast_assign( __entry->skbaddr = skb; ), TP_printk("skbaddr=%p", __entry->skbaddr) ); TRACE_EVENT(skb_copy_datagram_iovec, TP_PROTO(const struct sk_buff *skb, int len), TP_ARGS(skb, len), TP_STRUCT__entry( __field( const void *, skbaddr ) __field( int, len ) ), TP_fast_assign( __entry->skbaddr = skb; __entry->len = len; ), TP_printk("skbaddr=%p len=%d", __entry->skbaddr, __entry->len) ); #endif /* _TRACE_SKB_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _MM_PERCPU_INTERNAL_H #define _MM_PERCPU_INTERNAL_H #include <linux/types.h> #include <linux/percpu.h> /* * There are two chunk types: root and memcg-aware. * Chunks of each type have separate slots list. * * Memcg-aware chunks have an attached vector of obj_cgroup pointers, which is * used to store memcg membership data of a percpu object. Obj_cgroups are * ref-counted pointers to a memory cgroup with an ability to switch dynamically * to the parent memory cgroup. This allows to reclaim a deleted memory cgroup * without reclaiming of all outstanding objects, which hold a reference at it. */ enum pcpu_chunk_type { PCPU_CHUNK_ROOT, #ifdef CONFIG_MEMCG_KMEM PCPU_CHUNK_MEMCG, #endif PCPU_NR_CHUNK_TYPES, PCPU_FAIL_ALLOC = PCPU_NR_CHUNK_TYPES }; /* * pcpu_block_md is the metadata block struct. * Each chunk's bitmap is split into a number of full blocks. * All units are in terms of bits. * * The scan hint is the largest known contiguous area before the contig hint. * It is not necessarily the actual largest contig hint though. There is an * invariant that the scan_hint_start > contig_hint_start iff * scan_hint == contig_hint. This is necessary because when scanning forward, * we don't know if a new contig hint would be better than the current one. */ struct pcpu_block_md { int scan_hint; /* scan hint for block */ int scan_hint_start; /* block relative starting position of the scan hint */ int contig_hint; /* contig hint for block */ int contig_hint_start; /* block relative starting position of the contig hint */ int left_free; /* size of free space along the left side of the block */ int right_free; /* size of free space along the right side of the block */ int first_free; /* block position of first free */ int nr_bits; /* total bits responsible for */ }; struct pcpu_chunk { #ifdef CONFIG_PERCPU_STATS int nr_alloc; /* # of allocations */ size_t max_alloc_size; /* largest allocation size */ #endif struct list_head list; /* linked to pcpu_slot lists */ int free_bytes; /* free bytes in the chunk */ struct pcpu_block_md chunk_md; void *base_addr; /* base address of this chunk */ unsigned long *alloc_map; /* allocation map */ unsigned long *bound_map; /* boundary map */ struct pcpu_block_md *md_blocks; /* metadata blocks */ void *data; /* chunk data */ bool immutable; /* no [de]population allowed */ int start_offset; /* the overlap with the previous region to have a page aligned base_addr */ int end_offset; /* additional area required to have the region end page aligned */ #ifdef CONFIG_MEMCG_KMEM struct obj_cgroup **obj_cgroups; /* vector of object cgroups */ #endif int nr_pages; /* # of pages served by this chunk */ int nr_populated; /* # of populated pages */ int nr_empty_pop_pages; /* # of empty populated pages */ unsigned long populated[]; /* populated bitmap */ }; extern spinlock_t pcpu_lock; extern struct list_head *pcpu_chunk_lists; extern int pcpu_nr_slots; extern int pcpu_nr_empty_pop_pages[]; extern struct pcpu_chunk *pcpu_first_chunk; extern struct pcpu_chunk *pcpu_reserved_chunk; /** * pcpu_chunk_nr_blocks - converts nr_pages to # of md_blocks * @chunk: chunk of interest * * This conversion is from the number of physical pages that the chunk * serves to the number of bitmap blocks used. */ static inline int pcpu_chunk_nr_blocks(struct pcpu_chunk *chunk) { return chunk->nr_pages * PAGE_SIZE / PCPU_BITMAP_BLOCK_SIZE; } /** * pcpu_nr_pages_to_map_bits - converts the pages to size of bitmap * @pages: number of physical pages * * This conversion is from physical pages to the number of bits * required in the bitmap. */ static inline int pcpu_nr_pages_to_map_bits(int pages) { return pages * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; } /** * pcpu_chunk_map_bits - helper to convert nr_pages to size of bitmap * @chunk: chunk of interest * * This conversion is from the number of physical pages that the chunk * serves to the number of bits in the bitmap. */ static inline int pcpu_chunk_map_bits(struct pcpu_chunk *chunk) { return pcpu_nr_pages_to_map_bits(chunk->nr_pages); } #ifdef CONFIG_MEMCG_KMEM static inline enum pcpu_chunk_type pcpu_chunk_type(struct pcpu_chunk *chunk) { if (chunk->obj_cgroups) return PCPU_CHUNK_MEMCG; return PCPU_CHUNK_ROOT; } static inline bool pcpu_is_memcg_chunk(enum pcpu_chunk_type chunk_type) { return chunk_type == PCPU_CHUNK_MEMCG; } #else static inline enum pcpu_chunk_type pcpu_chunk_type(struct pcpu_chunk *chunk) { return PCPU_CHUNK_ROOT; } static inline bool pcpu_is_memcg_chunk(enum pcpu_chunk_type chunk_type) { return false; } #endif static inline struct list_head *pcpu_chunk_list(enum pcpu_chunk_type chunk_type) { return &pcpu_chunk_lists[pcpu_nr_slots * pcpu_is_memcg_chunk(chunk_type)]; } #ifdef CONFIG_PERCPU_STATS #include <linux/spinlock.h> struct percpu_stats { u64 nr_alloc; /* lifetime # of allocations */ u64 nr_dealloc; /* lifetime # of deallocations */ u64 nr_cur_alloc; /* current # of allocations */ u64 nr_max_alloc; /* max # of live allocations */ u32 nr_chunks; /* current # of live chunks */ u32 nr_max_chunks; /* max # of live chunks */ size_t min_alloc_size; /* min allocaiton size */ size_t max_alloc_size; /* max allocation size */ }; extern struct percpu_stats pcpu_stats; extern struct pcpu_alloc_info pcpu_stats_ai; /* * For debug purposes. We don't care about the flexible array. */ static inline void pcpu_stats_save_ai(const struct pcpu_alloc_info *ai) { memcpy(&pcpu_stats_ai, ai, sizeof(struct pcpu_alloc_info)); /* initialize min_alloc_size to unit_size */ pcpu_stats.min_alloc_size = pcpu_stats_ai.unit_size; } /* * pcpu_stats_area_alloc - increment area allocation stats * @chunk: the location of the area being allocated * @size: size of area to allocate in bytes * * CONTEXT: * pcpu_lock. */ static inline void pcpu_stats_area_alloc(struct pcpu_chunk *chunk, size_t size) { lockdep_assert_held(&pcpu_lock); pcpu_stats.nr_alloc++; pcpu_stats.nr_cur_alloc++; pcpu_stats.nr_max_alloc = max(pcpu_stats.nr_max_alloc, pcpu_stats.nr_cur_alloc); pcpu_stats.min_alloc_size = min(pcpu_stats.min_alloc_size, size); pcpu_stats.max_alloc_size = max(pcpu_stats.max_alloc_size, size); chunk->nr_alloc++; chunk->max_alloc_size = max(chunk->max_alloc_size, size); } /* * pcpu_stats_area_dealloc - decrement allocation stats * @chunk: the location of the area being deallocated * * CONTEXT: * pcpu_lock. */ static inline void pcpu_stats_area_dealloc(struct pcpu_chunk *chunk) { lockdep_assert_held(&pcpu_lock); pcpu_stats.nr_dealloc++; pcpu_stats.nr_cur_alloc--; chunk->nr_alloc--; } /* * pcpu_stats_chunk_alloc - increment chunk stats */ static inline void pcpu_stats_chunk_alloc(void) { unsigned long flags; spin_lock_irqsave(&pcpu_lock, flags); pcpu_stats.nr_chunks++; pcpu_stats.nr_max_chunks = max(pcpu_stats.nr_max_chunks, pcpu_stats.nr_chunks); spin_unlock_irqrestore(&pcpu_lock, flags); } /* * pcpu_stats_chunk_dealloc - decrement chunk stats */ static inline void pcpu_stats_chunk_dealloc(void) { unsigned long flags; spin_lock_irqsave(&pcpu_lock, flags); pcpu_stats.nr_chunks--; spin_unlock_irqrestore(&pcpu_lock, flags); } #else static inline void pcpu_stats_save_ai(const struct pcpu_alloc_info *ai) { } static inline void pcpu_stats_area_alloc(struct pcpu_chunk *chunk, size_t size) { } static inline void pcpu_stats_area_dealloc(struct pcpu_chunk *chunk) { } static inline void pcpu_stats_chunk_alloc(void) { } static inline void pcpu_stats_chunk_dealloc(void) { } #endif /* !CONFIG_PERCPU_STATS */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 /* SPDX-License-Identifier: GPL-2.0 */ /* * fscrypt.h: declarations for per-file encryption * * Filesystems that implement per-file encryption must include this header * file. * * Copyright (C) 2015, Google, Inc. * * Written by Michael Halcrow, 2015. * Modified by Jaegeuk Kim, 2015. */ #ifndef _LINUX_FSCRYPT_H #define _LINUX_FSCRYPT_H #include <linux/fs.h> #include <linux/mm.h> #include <linux/slab.h> #include <uapi/linux/fscrypt.h> #define FS_CRYPTO_BLOCK_SIZE 16 union fscrypt_policy; struct fscrypt_info; struct seq_file; struct fscrypt_str { unsigned char *name; u32 len; }; struct fscrypt_name { const struct qstr *usr_fname; struct fscrypt_str disk_name; u32 hash; u32 minor_hash; struct fscrypt_str crypto_buf; bool is_nokey_name; }; #define FSTR_INIT(n, l) { .name = n, .len = l } #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) #define fname_name(p) ((p)->disk_name.name) #define fname_len(p) ((p)->disk_name.len) /* Maximum value for the third parameter of fscrypt_operations.set_context(). */ #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 #ifdef CONFIG_FS_ENCRYPTION /* * fscrypt superblock flags */ #define FS_CFLG_OWN_PAGES (1U << 1) /* * crypto operations for filesystems */ struct fscrypt_operations { unsigned int flags; const char *key_prefix; int (*get_context)(struct inode *inode, void *ctx, size_t len); int (*set_context)(struct inode *inode, const void *ctx, size_t len, void *fs_data); const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb); bool (*empty_dir)(struct inode *inode); unsigned int max_namelen; bool (*has_stable_inodes)(struct super_block *sb); void (*get_ino_and_lblk_bits)(struct super_block *sb, int *ino_bits_ret, int *lblk_bits_ret); int (*get_num_devices)(struct super_block *sb); void (*get_devices)(struct super_block *sb, struct request_queue **devs); }; static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) { /* * Pairs with the cmpxchg_release() in fscrypt_get_encryption_info(). * I.e., another task may publish ->i_crypt_info concurrently, executing * a RELEASE barrier. We need to use smp_load_acquire() here to safely * ACQUIRE the memory the other task published. */ return smp_load_acquire(&inode->i_crypt_info); } /** * fscrypt_needs_contents_encryption() - check whether an inode needs * contents encryption * @inode: the inode to check * * Return: %true iff the inode is an encrypted regular file and the kernel was * built with fscrypt support. * * If you need to know whether the encrypt bit is set even when the kernel was * built without fscrypt support, you must use IS_ENCRYPTED() directly instead. */ static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) { return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); } /* * When d_splice_alias() moves a directory's no-key alias to its plaintext alias * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be * cleared. Note that we don't have to support arbitrary moves of this flag * because fscrypt doesn't allow no-key names to be the source or target of a * rename(). */ static inline void fscrypt_handle_d_move(struct dentry *dentry) { dentry->d_flags &= ~DCACHE_NOKEY_NAME; } /** * fscrypt_is_nokey_name() - test whether a dentry is a no-key name * @dentry: the dentry to check * * This returns true if the dentry is a no-key dentry. A no-key dentry is a * dentry that was created in an encrypted directory that hasn't had its * encryption key added yet. Such dentries may be either positive or negative. * * When a filesystem is asked to create a new filename in an encrypted directory * and the new filename's dentry is a no-key dentry, it must fail the operation * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(), * ->rename(), and ->link(). (However, ->rename() and ->link() are already * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().) * * This is necessary because creating a filename requires the directory's * encryption key, but just checking for the key on the directory inode during * the final filesystem operation doesn't guarantee that the key was available * during the preceding dentry lookup. And the key must have already been * available during the dentry lookup in order for it to have been checked * whether the filename already exists in the directory and for the new file's * dentry not to be invalidated due to it incorrectly having the no-key flag. * * Return: %true if the dentry is a no-key name */ static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) { return dentry->d_flags & DCACHE_NOKEY_NAME; } /* crypto.c */ void fscrypt_enqueue_decrypt_work(struct work_struct *); struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, unsigned int len, unsigned int offs, gfp_t gfp_flags); int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num, gfp_t gfp_flags); int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len, unsigned int offs); int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num); static inline bool fscrypt_is_bounce_page(struct page *page) { return page->mapping == NULL; } static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) { return (struct page *)page_private(bounce_page); } void fscrypt_free_bounce_page(struct page *bounce_page); /* policy.c */ int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg); int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg); int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg); int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg); int fscrypt_has_permitted_context(struct inode *parent, struct inode *child); int fscrypt_set_context(struct inode *inode, void *fs_data); struct fscrypt_dummy_policy { const union fscrypt_policy *policy; }; int fscrypt_set_test_dummy_encryption(struct super_block *sb, const char *arg, struct fscrypt_dummy_policy *dummy_policy); void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, struct super_block *sb); static inline void fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) { kfree(dummy_policy->policy); dummy_policy->policy = NULL; } /* keyring.c */ void fscrypt_sb_free(struct super_block *sb); int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg); int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); /* keysetup.c */ int fscrypt_get_encryption_info(struct inode *inode); int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, bool *encrypt_ret); void fscrypt_put_encryption_info(struct inode *inode); void fscrypt_free_inode(struct inode *inode); int fscrypt_drop_inode(struct inode *inode); /* fname.c */ int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname, int lookup, struct fscrypt_name *fname); static inline void fscrypt_free_filename(struct fscrypt_name *fname) { kfree(fname->crypto_buf.name); } int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, struct fscrypt_str *crypto_str); void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str); int fscrypt_fname_disk_to_usr(const struct inode *inode, u32 hash, u32 minor_hash, const struct fscrypt_str *iname, struct fscrypt_str *oname); bool fscrypt_match_name(const struct fscrypt_name *fname, const u8 *de_name, u32 de_name_len); u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name); int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags); /* bio.c */ void fscrypt_decrypt_bio(struct bio *bio); int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, sector_t pblk, unsigned int len); /* hooks.c */ int fscrypt_file_open(struct inode *inode, struct file *filp); int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, struct dentry *dentry); int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags); int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, struct fscrypt_name *fname); int fscrypt_prepare_setflags(struct inode *inode, unsigned int oldflags, unsigned int flags); int fscrypt_prepare_symlink(struct inode *dir, const char *target, unsigned int len, unsigned int max_len, struct fscrypt_str *disk_link); int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, unsigned int len, struct fscrypt_str *disk_link); const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, unsigned int max_size, struct delayed_call *done); int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat); static inline void fscrypt_set_ops(struct super_block *sb, const struct fscrypt_operations *s_cop) { sb->s_cop = s_cop; } #else /* !CONFIG_FS_ENCRYPTION */ static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) { return NULL; } static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) { return false; } static inline void fscrypt_handle_d_move(struct dentry *dentry) { } static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) { return false; } /* crypto.c */ static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) { } static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, unsigned int len, unsigned int offs, gfp_t gfp_flags) { return ERR_PTR(-EOPNOTSUPP); } static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num, gfp_t gfp_flags) { return -EOPNOTSUPP; } static inline int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len, unsigned int offs) { return -EOPNOTSUPP; } static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num) { return -EOPNOTSUPP; } static inline bool fscrypt_is_bounce_page(struct page *page) { return false; } static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) { WARN_ON_ONCE(1); return ERR_PTR(-EINVAL); } static inline void fscrypt_free_bounce_page(struct page *bounce_page) { } /* policy.c */ static inline int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_has_permitted_context(struct inode *parent, struct inode *child) { return 0; } static inline int fscrypt_set_context(struct inode *inode, void *fs_data) { return -EOPNOTSUPP; } struct fscrypt_dummy_policy { }; static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, struct super_block *sb) { } static inline void fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) { } /* keyring.c */ static inline void fscrypt_sb_free(struct super_block *sb) { } static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } /* keysetup.c */ static inline int fscrypt_get_encryption_info(struct inode *inode) { return -EOPNOTSUPP; } static inline int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, bool *encrypt_ret) { if (IS_ENCRYPTED(dir)) return -EOPNOTSUPP; return 0; } static inline void fscrypt_put_encryption_info(struct inode *inode) { return; } static inline void fscrypt_free_inode(struct inode *inode) { } static inline int fscrypt_drop_inode(struct inode *inode) { return 0; } /* fname.c */ static inline int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname, int lookup, struct fscrypt_name *fname) { if (IS_ENCRYPTED(dir)) return -EOPNOTSUPP; memset(fname, 0, sizeof(*fname)); fname->usr_fname = iname; fname->disk_name.name = (unsigned char *)iname->name; fname->disk_name.len = iname->len; return 0; } static inline void fscrypt_free_filename(struct fscrypt_name *fname) { return; } static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, struct fscrypt_str *crypto_str) { return -EOPNOTSUPP; } static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) { return; } static inline int fscrypt_fname_disk_to_usr(const struct inode *inode, u32 hash, u32 minor_hash, const struct fscrypt_str *iname, struct fscrypt_str *oname) { return -EOPNOTSUPP; } static inline bool fscrypt_match_name(const struct fscrypt_name *fname, const u8 *de_name, u32 de_name_len) { /* Encryption support disabled; use standard comparison */ if (de_name_len != fname->disk_name.len) return false; return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); } static inline u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name) { WARN_ON_ONCE(1); return 0; } static inline int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) { return 1; } /* bio.c */ static inline void fscrypt_decrypt_bio(struct bio *bio) { } static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, sector_t pblk, unsigned int len) { return -EOPNOTSUPP; } /* hooks.c */ static inline int fscrypt_file_open(struct inode *inode, struct file *filp) { if (IS_ENCRYPTED(inode)) return -EOPNOTSUPP; return 0; } static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, struct dentry *dentry) { return -EOPNOTSUPP; } static inline int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { return -EOPNOTSUPP; } static inline int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, struct fscrypt_name *fname) { return -EOPNOTSUPP; } static inline int fscrypt_prepare_setflags(struct inode *inode, unsigned int oldflags, unsigned int flags) { return 0; } static inline int fscrypt_prepare_symlink(struct inode *dir, const char *target, unsigned int len, unsigned int max_len, struct fscrypt_str *disk_link) { if (IS_ENCRYPTED(dir)) return -EOPNOTSUPP; disk_link->name = (unsigned char *)target; disk_link->len = len + 1; if (disk_link->len > max_len) return -ENAMETOOLONG; return 0; } static inline int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, unsigned int len, struct fscrypt_str *disk_link) { return -EOPNOTSUPP; } static inline const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, unsigned int max_size, struct delayed_call *done) { return ERR_PTR(-EOPNOTSUPP); } static inline int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat) { return -EOPNOTSUPP; } static inline void fscrypt_set_ops(struct super_block *sb, const struct fscrypt_operations *s_cop) { } #endif /* !CONFIG_FS_ENCRYPTION */ /* inline_crypt.c */ #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode); void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, u64 first_lblk, gfp_t gfp_mask); void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, const struct buffer_head *first_bh, gfp_t gfp_mask); bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, u64 next_lblk); bool fscrypt_mergeable_bio_bh(struct bio *bio, const struct buffer_head *next_bh); #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) { return false; } static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, u64 first_lblk, gfp_t gfp_mask) { } static inline void fscrypt_set_bio_crypt_ctx_bh( struct bio *bio, const struct buffer_head *first_bh, gfp_t gfp_mask) { } static inline bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, u64 next_lblk) { return true; } static inline bool fscrypt_mergeable_bio_bh(struct bio *bio, const struct buffer_head *next_bh) { return true; } #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ /** * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline * encryption * @inode: an inode. If encrypted, its key must be set up. * * Return: true if the inode requires file contents encryption and if the * encryption should be done in the block layer via blk-crypto rather * than in the filesystem layer. */ static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode) { return fscrypt_needs_contents_encryption(inode) && __fscrypt_inode_uses_inline_crypto(inode); } /** * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer * encryption * @inode: an inode. If encrypted, its key must be set up. * * Return: true if the inode requires file contents encryption and if the * encryption should be done in the filesystem layer rather than in the * block layer via blk-crypto. */ static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode) { return fscrypt_needs_contents_encryption(inode) && !__fscrypt_inode_uses_inline_crypto(inode); } /** * fscrypt_has_encryption_key() - check whether an inode has had its key set up * @inode: the inode to check * * Return: %true if the inode has had its encryption key set up, else %false. * * Usually this should be preceded by fscrypt_get_encryption_info() to try to * set up the key first. */ static inline bool fscrypt_has_encryption_key(const struct inode *inode) { return fscrypt_get_info(inode) != NULL; } /** * fscrypt_require_key() - require an inode's encryption key * @inode: the inode we need the key for * * If the inode is encrypted, set up its encryption key if not already done. * Then require that the key be present and return -ENOKEY otherwise. * * No locks are needed, and the key will live as long as the struct inode --- so * it won't go away from under you. * * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code * if a problem occurred while setting up the encryption key. */ static inline int fscrypt_require_key(struct inode *inode) { if (IS_ENCRYPTED(inode)) { int err = fscrypt_get_encryption_info(inode); if (err) return err; if (!fscrypt_has_encryption_key(inode)) return -ENOKEY; } return 0; } /** * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted * directory * @old_dentry: an existing dentry for the inode being linked * @dir: the target directory * @dentry: negative dentry for the target filename * * A new link can only be added to an encrypted directory if the directory's * encryption key is available --- since otherwise we'd have no way to encrypt * the filename. Therefore, we first set up the directory's encryption key (if * not already done) and return an error if it's unavailable. * * We also verify that the link will not violate the constraint that all files * in an encrypted directory tree use the same encryption policy. * * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, * -EXDEV if the link would result in an inconsistent encryption policy, or * another -errno code. */ static inline int fscrypt_prepare_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { if (IS_ENCRYPTED(dir)) return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); return 0; } /** * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted * directories * @old_dir: source directory * @old_dentry: dentry for source file * @new_dir: target directory * @new_dentry: dentry for target location (may be negative unless exchanging) * @flags: rename flags (we care at least about %RENAME_EXCHANGE) * * Prepare for ->rename() where the source and/or target directories may be * encrypted. A new link can only be added to an encrypted directory if the * directory's encryption key is available --- since otherwise we'd have no way * to encrypt the filename. A rename to an existing name, on the other hand, * *is* cryptographically possible without the key. However, we take the more * conservative approach and just forbid all no-key renames. * * We also verify that the rename will not violate the constraint that all files * in an encrypted directory tree use the same encryption policy. * * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the * rename would cause inconsistent encryption policies, or another -errno code. */ static inline int fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) return __fscrypt_prepare_rename(old_dir, old_dentry, new_dir, new_dentry, flags); return 0; } /** * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted * directory * @dir: directory being searched * @dentry: filename being looked up * @fname: (output) the name to use to search the on-disk directory * * Prepare for ->lookup() in a directory which may be encrypted by determining * the name that will actually be used to search the directory on-disk. If the * directory's encryption key is available, then the lookup is assumed to be by * plaintext name; otherwise, it is assumed to be by no-key name. * * This also installs a custom ->d_revalidate() method which will invalidate the * dentry if it was created without the key and the key is later added. * * Return: 0 on success; -ENOENT if the directory's key is unavailable but the * filename isn't a valid no-key name, so a negative dentry should be created; * or another -errno code. */ static inline int fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, struct fscrypt_name *fname) { if (IS_ENCRYPTED(dir)) return __fscrypt_prepare_lookup(dir, dentry, fname); memset(fname, 0, sizeof(*fname)); fname->usr_fname = &dentry->d_name; fname->disk_name.name = (unsigned char *)dentry->d_name.name; fname->disk_name.len = dentry->d_name.len; return 0; } /** * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's * attributes * @dentry: dentry through which the inode is being changed * @attr: attributes to change * * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, * most attribute changes are allowed even without the encryption key. However, * without the encryption key we do have to forbid truncates. This is needed * because the size being truncated to may not be a multiple of the filesystem * block size, and in that case we'd have to decrypt the final block, zero the * portion past i_size, and re-encrypt it. (We *could* allow truncating to a * filesystem block boundary, but it's simpler to just forbid all truncates --- * and we already forbid all other contents modifications without the key.) * * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code * if a problem occurred while setting up the encryption key. */ static inline int fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr) { if (attr->ia_valid & ATTR_SIZE) return fscrypt_require_key(d_inode(dentry)); return 0; } /** * fscrypt_encrypt_symlink() - encrypt the symlink target if needed * @inode: symlink inode * @target: plaintext symlink target * @len: length of @target excluding null terminator * @disk_link: (in/out) the on-disk symlink target being prepared * * If the symlink target needs to be encrypted, then this function encrypts it * into @disk_link->name. fscrypt_prepare_symlink() must have been called * previously to compute @disk_link->len. If the filesystem did not allocate a * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one * will be kmalloc()'ed and the filesystem will be responsible for freeing it. * * Return: 0 on success, -errno on failure */ static inline int fscrypt_encrypt_symlink(struct inode *inode, const char *target, unsigned int len, struct fscrypt_str *disk_link) { if (IS_ENCRYPTED(inode)) return __fscrypt_encrypt_symlink(inode, target, len, disk_link); return 0; } /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ static inline void fscrypt_finalize_bounce_page(struct page **pagep) { struct page *page = *pagep; if (fscrypt_is_bounce_page(page)) { *pagep = fscrypt_pagecache_page(page); fscrypt_free_bounce_page(page); } } #endif /* _LINUX_FSCRYPT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 /* SPDX-License-Identifier: GPL-2.0 */ /* * Generic RTC interface. * This version contains the part of the user interface to the Real Time Clock * service. It is used with both the legacy mc146818 and also EFI * Struct rtc_time and first 12 ioctl by Paul Gortmaker, 1996 - separated out * from <linux/mc146818rtc.h> to this file for 2.4 kernels. * * Copyright (C) 1999 Hewlett-Packard Co. * Copyright (C) 1999 Stephane Eranian <eranian@hpl.hp.com> */ #ifndef _LINUX_RTC_H_ #define _LINUX_RTC_H_ #include <linux/types.h> #include <linux/interrupt.h> #include <linux/nvmem-provider.h> #include <uapi/linux/rtc.h> extern int rtc_month_days(unsigned int month, unsigned int year); extern int rtc_year_days(unsigned int day, unsigned int month, unsigned int year); extern int rtc_valid_tm(struct rtc_time *tm); extern time64_t rtc_tm_to_time64(struct rtc_time *tm); extern void rtc_time64_to_tm(time64_t time, struct rtc_time *tm); ktime_t rtc_tm_to_ktime(struct rtc_time tm); struct rtc_time rtc_ktime_to_tm(ktime_t kt); /* * rtc_tm_sub - Return the difference in seconds. */ static inline time64_t rtc_tm_sub(struct rtc_time *lhs, struct rtc_time *rhs) { return rtc_tm_to_time64(lhs) - rtc_tm_to_time64(rhs); } #include <linux/device.h> #include <linux/seq_file.h> #include <linux/cdev.h> #include <linux/poll.h> #include <linux/mutex.h> #include <linux/timerqueue.h> #include <linux/workqueue.h> extern struct class *rtc_class; /* * For these RTC methods the device parameter is the physical device * on whatever bus holds the hardware (I2C, Platform, SPI, etc), which * was passed to rtc_device_register(). Its driver_data normally holds * device state, including the rtc_device pointer for the RTC. * * Most of these methods are called with rtc_device.ops_lock held, * through the rtc_*(struct rtc_device *, ...) calls. * * The (current) exceptions are mostly filesystem hooks: * - the proc() hook for procfs */ struct rtc_class_ops { int (*ioctl)(struct device *, unsigned int, unsigned long); int (*read_time)(struct device *, struct rtc_time *); int (*set_time)(struct device *, struct rtc_time *); int (*read_alarm)(struct device *, struct rtc_wkalrm *); int (*set_alarm)(struct device *, struct rtc_wkalrm *); int (*proc)(struct device *, struct seq_file *); int (*alarm_irq_enable)(struct device *, unsigned int enabled); int (*read_offset)(struct device *, long *offset); int (*set_offset)(struct device *, long offset); }; struct rtc_device; struct rtc_timer { struct timerqueue_node node; ktime_t period; void (*func)(struct rtc_device *rtc); struct rtc_device *rtc; int enabled; }; /* flags */ #define RTC_DEV_BUSY 0 struct rtc_device { struct device dev; struct module *owner; int id; const struct rtc_class_ops *ops; struct mutex ops_lock; struct cdev char_dev; unsigned long flags; unsigned long irq_data; spinlock_t irq_lock; wait_queue_head_t irq_queue; struct fasync_struct *async_queue; int irq_freq; int max_user_freq; struct timerqueue_head timerqueue; struct rtc_timer aie_timer; struct rtc_timer uie_rtctimer; struct hrtimer pie_timer; /* sub second exp, so needs hrtimer */ int pie_enabled; struct work_struct irqwork; /* Some hardware can't support UIE mode */ int uie_unsupported; /* Number of nsec it takes to set the RTC clock. This influences when * the set ops are called. An offset: * - of 0.5 s will call RTC set for wall clock time 10.0 s at 9.5 s * - of 1.5 s will call RTC set for wall clock time 10.0 s at 8.5 s * - of -0.5 s will call RTC set for wall clock time 10.0 s at 10.5 s */ long set_offset_nsec; bool registered; /* Old ABI support */ bool nvram_old_abi; struct bin_attribute *nvram; time64_t range_min; timeu64_t range_max; time64_t start_secs; time64_t offset_secs; bool set_start_time; #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL struct work_struct uie_task; struct timer_list uie_timer; /* Those fields are protected by rtc->irq_lock */ unsigned int oldsecs; unsigned int uie_irq_active:1; unsigned int stop_uie_polling:1; unsigned int uie_task_active:1; unsigned int uie_timer_active:1; #endif }; #define to_rtc_device(d) container_of(d, struct rtc_device, dev) #define rtc_lock(d) mutex_lock(&d->ops_lock) #define rtc_unlock(d) mutex_unlock(&d->ops_lock) /* useful timestamps */ #define RTC_TIMESTAMP_BEGIN_0000 -62167219200ULL /* 0000-01-01 00:00:00 */ #define RTC_TIMESTAMP_BEGIN_1900 -2208988800LL /* 1900-01-01 00:00:00 */ #define RTC_TIMESTAMP_BEGIN_2000 946684800LL /* 2000-01-01 00:00:00 */ #define RTC_TIMESTAMP_END_2063 2966371199LL /* 2063-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_2079 3471292799LL /* 2079-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_2099 4102444799LL /* 2099-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_2199 7258118399LL /* 2199-12-31 23:59:59 */ #define RTC_TIMESTAMP_END_9999 253402300799LL /* 9999-12-31 23:59:59 */ extern struct rtc_device *devm_rtc_device_register(struct device *dev, const char *name, const struct rtc_class_ops *ops, struct module *owner); struct rtc_device *devm_rtc_allocate_device(struct device *dev); int __rtc_register_device(struct module *owner, struct rtc_device *rtc); extern int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm); extern int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm); extern int rtc_set_ntp_time(struct timespec64 now, unsigned long *target_nsec); int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm); extern int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alrm); extern int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alrm); extern int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alrm); extern void rtc_update_irq(struct rtc_device *rtc, unsigned long num, unsigned long events); extern struct rtc_device *rtc_class_open(const char *name); extern void rtc_class_close(struct rtc_device *rtc); extern int rtc_irq_set_state(struct rtc_device *rtc, int enabled); extern int rtc_irq_set_freq(struct rtc_device *rtc, int freq); extern int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled); extern int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled); extern int rtc_dev_update_irq_enable_emul(struct rtc_device *rtc, unsigned int enabled); void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode); void rtc_aie_update_irq(struct rtc_device *rtc); void rtc_uie_update_irq(struct rtc_device *rtc); enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer); void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r), struct rtc_device *rtc); int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, ktime_t expires, ktime_t period); void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer); int rtc_read_offset(struct rtc_device *rtc, long *offset); int rtc_set_offset(struct rtc_device *rtc, long offset); void rtc_timer_do_work(struct work_struct *work); static inline bool is_leap_year(unsigned int year) { return (!(year % 4) && (year % 100)) || !(year % 400); } /* Determine if we can call to driver to set the time. Drivers can only be * called to set a second aligned time value, and the field set_offset_nsec * specifies how far away from the second aligned time to call the driver. * * This also computes 'to_set' which is the time we are trying to set, and has * a zero in tv_nsecs, such that: * to_set - set_delay_nsec == now +/- FUZZ * */ static inline bool rtc_tv_nsec_ok(s64 set_offset_nsec, struct timespec64 *to_set, const struct timespec64 *now) { /* Allowed error in tv_nsec, arbitarily set to 5 jiffies in ns. */ const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5; struct timespec64 delay = {.tv_sec = 0, .tv_nsec = set_offset_nsec}; *to_set = timespec64_add(*now, delay); if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) { to_set->tv_nsec = 0; return true; } if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) { to_set->tv_sec++; to_set->tv_nsec = 0; return true; } return false; } #define rtc_register_device(device) \ __rtc_register_device(THIS_MODULE, device) #ifdef CONFIG_RTC_HCTOSYS_DEVICE extern int rtc_hctosys_ret; #else #define rtc_hctosys_ret -ENODEV #endif #ifdef CONFIG_RTC_NVMEM int rtc_nvmem_register(struct rtc_device *rtc, struct nvmem_config *nvmem_config); void rtc_nvmem_unregister(struct rtc_device *rtc); #else static inline int rtc_nvmem_register(struct rtc_device *rtc, struct nvmem_config *nvmem_config) { return 0; } static inline void rtc_nvmem_unregister(struct rtc_device *rtc) {} #endif #ifdef CONFIG_RTC_INTF_SYSFS int rtc_add_group(struct rtc_device *rtc, const struct attribute_group *grp); int rtc_add_groups(struct rtc_device *rtc, const struct attribute_group **grps); #else static inline int rtc_add_group(struct rtc_device *rtc, const struct attribute_group *grp) { return 0; } static inline int rtc_add_groups(struct rtc_device *rtc, const struct attribute_group **grps) { return 0; } #endif #endif /* _LINUX_RTC_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM sock #if !defined(_TRACE_SOCK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SOCK_H #include <net/sock.h> #include <net/ipv6.h> #include <linux/tracepoint.h> #include <linux/ipv6.h> #include <linux/tcp.h> #define family_names \ EM(AF_INET) \ EMe(AF_INET6) /* The protocol traced by inet_sock_set_state */ #define inet_protocol_names \ EM(IPPROTO_TCP) \ EM(IPPROTO_DCCP) \ EM(IPPROTO_SCTP) \ EMe(IPPROTO_MPTCP) #define tcp_state_names \ EM(TCP_ESTABLISHED) \ EM(TCP_SYN_SENT) \ EM(TCP_SYN_RECV) \ EM(TCP_FIN_WAIT1) \ EM(TCP_FIN_WAIT2) \ EM(TCP_TIME_WAIT) \ EM(TCP_CLOSE) \ EM(TCP_CLOSE_WAIT) \ EM(TCP_LAST_ACK) \ EM(TCP_LISTEN) \ EM(TCP_CLOSING) \ EMe(TCP_NEW_SYN_RECV) #define skmem_kind_names \ EM(SK_MEM_SEND) \ EMe(SK_MEM_RECV) /* enums need to be exported to user space */ #undef EM #undef EMe #define EM(a) TRACE_DEFINE_ENUM(a); #define EMe(a) TRACE_DEFINE_ENUM(a); family_names inet_protocol_names tcp_state_names skmem_kind_names #undef EM #undef EMe #define EM(a) { a, #a }, #define EMe(a) { a, #a } #define show_family_name(val) \ __print_symbolic(val, family_names) #define show_inet_protocol_name(val) \ __print_symbolic(val, inet_protocol_names) #define show_tcp_state_name(val) \ __print_symbolic(val, tcp_state_names) #define show_skmem_kind_names(val) \ __print_symbolic(val, skmem_kind_names) TRACE_EVENT(sock_rcvqueue_full, TP_PROTO(struct sock *sk, struct sk_buff *skb), TP_ARGS(sk, skb), TP_STRUCT__entry( __field(int, rmem_alloc) __field(unsigned int, truesize) __field(int, sk_rcvbuf) ), TP_fast_assign( __entry->rmem_alloc = atomic_read(&sk->sk_rmem_alloc); __entry->truesize = skb->truesize; __entry->sk_rcvbuf = READ_ONCE(sk->sk_rcvbuf); ), TP_printk("rmem_alloc=%d truesize=%u sk_rcvbuf=%d", __entry->rmem_alloc, __entry->truesize, __entry->sk_rcvbuf) ); TRACE_EVENT(sock_exceed_buf_limit, TP_PROTO(struct sock *sk, struct proto *prot, long allocated, int kind), TP_ARGS(sk, prot, allocated, kind), TP_STRUCT__entry( __array(char, name, 32) __field(long *, sysctl_mem) __field(long, allocated) __field(int, sysctl_rmem) __field(int, rmem_alloc) __field(int, sysctl_wmem) __field(int, wmem_alloc) __field(int, wmem_queued) __field(int, kind) ), TP_fast_assign( strncpy(__entry->name, prot->name, 32); __entry->sysctl_mem = prot->sysctl_mem; __entry->allocated = allocated; __entry->sysctl_rmem = sk_get_rmem0(sk, prot); __entry->rmem_alloc = atomic_read(&sk->sk_rmem_alloc); __entry->sysctl_wmem = sk_get_wmem0(sk, prot); __entry->wmem_alloc = refcount_read(&sk->sk_wmem_alloc); __entry->wmem_queued = READ_ONCE(sk->sk_wmem_queued); __entry->kind = kind; ), TP_printk("proto:%s sysctl_mem=%ld,%ld,%ld allocated=%ld sysctl_rmem=%d rmem_alloc=%d sysctl_wmem=%d wmem_alloc=%d wmem_queued=%d kind=%s", __entry->name, __entry->sysctl_mem[0], __entry->sysctl_mem[1], __entry->sysctl_mem[2], __entry->allocated, __entry->sysctl_rmem, __entry->rmem_alloc, __entry->sysctl_wmem, __entry->wmem_alloc, __entry->wmem_queued, show_skmem_kind_names(__entry->kind) ) ); TRACE_EVENT(inet_sock_set_state, TP_PROTO(const struct sock *sk, const int oldstate, const int newstate), TP_ARGS(sk, oldstate, newstate), TP_STRUCT__entry( __field(const void *, skaddr) __field(int, oldstate) __field(int, newstate) __field(__u16, sport) __field(__u16, dport) __field(__u16, family) __field(__u16, protocol) __array(__u8, saddr, 4) __array(__u8, daddr, 4) __array(__u8, saddr_v6, 16) __array(__u8, daddr_v6, 16) ), TP_fast_assign( struct inet_sock *inet = inet_sk(sk); struct in6_addr *pin6; __be32 *p32; __entry->skaddr = sk; __entry->oldstate = oldstate; __entry->newstate = newstate; __entry->family = sk->sk_family; __entry->protocol = sk->sk_protocol; __entry->sport = ntohs(inet->inet_sport); __entry->dport = ntohs(inet->inet_dport); p32 = (__be32 *) __entry->saddr; *p32 = inet->inet_saddr; p32 = (__be32 *) __entry->daddr; *p32 = inet->inet_daddr; #if IS_ENABLED(CONFIG_IPV6) if (sk->sk_family == AF_INET6) { pin6 = (struct in6_addr *)__entry->saddr_v6; *pin6 = sk->sk_v6_rcv_saddr; pin6 = (struct in6_addr *)__entry->daddr_v6; *pin6 = sk->sk_v6_daddr; } else #endif { pin6 = (struct in6_addr *)__entry->saddr_v6; ipv6_addr_set_v4mapped(inet->inet_saddr, pin6); pin6 = (struct in6_addr *)__entry->daddr_v6; ipv6_addr_set_v4mapped(inet->inet_daddr, pin6); } ), TP_printk("family=%s protocol=%s sport=%hu dport=%hu saddr=%pI4 daddr=%pI4 saddrv6=%pI6c daddrv6=%pI6c oldstate=%s newstate=%s", show_family_name(__entry->family), show_inet_protocol_name(__entry->protocol), __entry->sport, __entry->dport, __entry->saddr, __entry->daddr, __entry->saddr_v6, __entry->daddr_v6, show_tcp_state_name(__entry->oldstate), show_tcp_state_name(__entry->newstate)) ); #endif /* _TRACE_SOCK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/include/linux/sunrpc/addr.h * * Various routines for copying and comparing sockaddrs and for * converting them to and from presentation format. */ #ifndef _LINUX_SUNRPC_ADDR_H #define _LINUX_SUNRPC_ADDR_H #include <linux/socket.h> #include <linux/in.h> #include <linux/in6.h> #include <net/ipv6.h> size_t rpc_ntop(const struct sockaddr *, char *, const size_t); size_t rpc_pton(struct net *, const char *, const size_t, struct sockaddr *, const size_t); char * rpc_sockaddr2uaddr(const struct sockaddr *, gfp_t); size_t rpc_uaddr2sockaddr(struct net *, const char *, const size_t, struct sockaddr *, const size_t); static inline unsigned short rpc_get_port(const struct sockaddr *sap) { switch (sap->sa_family) { case AF_INET: return ntohs(((struct sockaddr_in *)sap)->sin_port); case AF_INET6: return ntohs(((struct sockaddr_in6 *)sap)->sin6_port); } return 0; } static inline void rpc_set_port(struct sockaddr *sap, const unsigned short port) { switch (sap->sa_family) { case AF_INET: ((struct sockaddr_in *)sap)->sin_port = htons(port); break; case AF_INET6: ((struct sockaddr_in6 *)sap)->sin6_port = htons(port); break; } } #define IPV6_SCOPE_DELIMITER '%' #define IPV6_SCOPE_ID_LEN sizeof("%nnnnnnnnnn") static inline bool rpc_cmp_addr4(const struct sockaddr *sap1, const struct sockaddr *sap2) { const struct sockaddr_in *sin1 = (const struct sockaddr_in *)sap1; const struct sockaddr_in *sin2 = (const struct sockaddr_in *)sap2; return sin1->sin_addr.s_addr == sin2->sin_addr.s_addr; } static inline bool __rpc_copy_addr4(struct sockaddr *dst, const struct sockaddr *src) { const struct sockaddr_in *ssin = (struct sockaddr_in *) src; struct sockaddr_in *dsin = (struct sockaddr_in *) dst; dsin->sin_family = ssin->sin_family; dsin->sin_addr.s_addr = ssin->sin_addr.s_addr; return true; } #if IS_ENABLED(CONFIG_IPV6) static inline bool rpc_cmp_addr6(const struct sockaddr *sap1, const struct sockaddr *sap2) { const struct sockaddr_in6 *sin1 = (const struct sockaddr_in6 *)sap1; const struct sockaddr_in6 *sin2 = (const struct sockaddr_in6 *)sap2; if (!ipv6_addr_equal(&sin1->sin6_addr, &sin2->sin6_addr)) return false; else if (ipv6_addr_type(&sin1->sin6_addr) & IPV6_ADDR_LINKLOCAL) return sin1->sin6_scope_id == sin2->sin6_scope_id; return true; } static inline bool __rpc_copy_addr6(struct sockaddr *dst, const struct sockaddr *src) { const struct sockaddr_in6 *ssin6 = (const struct sockaddr_in6 *) src; struct sockaddr_in6 *dsin6 = (struct sockaddr_in6 *) dst; dsin6->sin6_family = ssin6->sin6_family; dsin6->sin6_addr = ssin6->sin6_addr; dsin6->sin6_scope_id = ssin6->sin6_scope_id; return true; } #else /* !(IS_ENABLED(CONFIG_IPV6) */ static inline bool rpc_cmp_addr6(const struct sockaddr *sap1, const struct sockaddr *sap2) { return false; } static inline bool __rpc_copy_addr6(struct sockaddr *dst, const struct sockaddr *src) { return false; } #endif /* !(IS_ENABLED(CONFIG_IPV6) */ /** * rpc_cmp_addr - compare the address portion of two sockaddrs. * @sap1: first sockaddr * @sap2: second sockaddr * * Just compares the family and address portion. Ignores port, but * compares the scope if it's a link-local address. * * Returns true if the addrs are equal, false if they aren't. */ static inline bool rpc_cmp_addr(const struct sockaddr *sap1, const struct sockaddr *sap2) { if (sap1->sa_family == sap2->sa_family) { switch (sap1->sa_family) { case AF_INET: return rpc_cmp_addr4(sap1, sap2); case AF_INET6: return rpc_cmp_addr6(sap1, sap2); } } return false; } /** * rpc_cmp_addr_port - compare the address and port number of two sockaddrs. * @sap1: first sockaddr * @sap2: second sockaddr */ static inline bool rpc_cmp_addr_port(const struct sockaddr *sap1, const struct sockaddr *sap2) { if (!rpc_cmp_addr(sap1, sap2)) return false; return rpc_get_port(sap1) == rpc_get_port(sap2); } /** * rpc_copy_addr - copy the address portion of one sockaddr to another * @dst: destination sockaddr * @src: source sockaddr * * Just copies the address portion and family. Ignores port, scope, etc. * Caller is responsible for making certain that dst is large enough to hold * the address in src. Returns true if address family is supported. Returns * false otherwise. */ static inline bool rpc_copy_addr(struct sockaddr *dst, const struct sockaddr *src) { switch (src->sa_family) { case AF_INET: return __rpc_copy_addr4(dst, src); case AF_INET6: return __rpc_copy_addr6(dst, src); } return false; } /** * rpc_get_scope_id - return scopeid for a given sockaddr * @sa: sockaddr to get scopeid from * * Returns the value of the sin6_scope_id for AF_INET6 addrs, or 0 if * not an AF_INET6 address. */ static inline u32 rpc_get_scope_id(const struct sockaddr *sa) { if (sa->sa_family != AF_INET6) return 0; return ((struct sockaddr_in6 *) sa)->sin6_scope_id; } #endif /* _LINUX_SUNRPC_ADDR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/fsnotify_backend.h> #include <linux/inotify.h> #include <linux/slab.h> /* struct kmem_cache */ struct inotify_event_info { struct fsnotify_event fse; u32 mask; int wd; u32 sync_cookie; int name_len; char name[]; }; struct inotify_inode_mark { struct fsnotify_mark fsn_mark; int wd; }; static inline struct inotify_event_info *INOTIFY_E(struct fsnotify_event *fse) { return container_of(fse, struct inotify_event_info, fse); } extern void inotify_ignored_and_remove_idr(struct fsnotify_mark *fsn_mark, struct fsnotify_group *group); extern int inotify_handle_inode_event(struct fsnotify_mark *inode_mark, u32 mask, struct inode *inode, struct inode *dir, const struct qstr *name, u32 cookie); extern const struct fsnotify_ops inotify_fsnotify_ops; extern struct kmem_cache *inotify_inode_mark_cachep; #ifdef CONFIG_INOTIFY_USER static inline void dec_inotify_instances(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_INOTIFY_INSTANCES); } static inline struct ucounts *inc_inotify_watches(struct ucounts *ucounts) { return inc_ucount(ucounts->ns, ucounts->uid, UCOUNT_INOTIFY_WATCHES); } static inline void dec_inotify_watches(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_INOTIFY_WATCHES); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 // SPDX-License-Identifier: GPL-2.0 /* * hrtimers - High-resolution kernel timers * * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar * * data type definitions, declarations, prototypes * * Started by: Thomas Gleixner and Ingo Molnar */ #ifndef _LINUX_HRTIMER_H #define _LINUX_HRTIMER_H #include <linux/hrtimer_defs.h> #include <linux/rbtree.h> #include <linux/init.h> #include <linux/list.h> #include <linux/percpu.h> #include <linux/seqlock.h> #include <linux/timer.h> #include <linux/timerqueue.h> struct hrtimer_clock_base; struct hrtimer_cpu_base; /* * Mode arguments of xxx_hrtimer functions: * * HRTIMER_MODE_ABS - Time value is absolute * HRTIMER_MODE_REL - Time value is relative to now * HRTIMER_MODE_PINNED - Timer is bound to CPU (is only considered * when starting the timer) * HRTIMER_MODE_SOFT - Timer callback function will be executed in * soft irq context * HRTIMER_MODE_HARD - Timer callback function will be executed in * hard irq context even on PREEMPT_RT. */ enum hrtimer_mode { HRTIMER_MODE_ABS = 0x00, HRTIMER_MODE_REL = 0x01, HRTIMER_MODE_PINNED = 0x02, HRTIMER_MODE_SOFT = 0x04, HRTIMER_MODE_HARD = 0x08, HRTIMER_MODE_ABS_PINNED = HRTIMER_MODE_ABS | HRTIMER_MODE_PINNED, HRTIMER_MODE_REL_PINNED = HRTIMER_MODE_REL | HRTIMER_MODE_PINNED, HRTIMER_MODE_ABS_SOFT = HRTIMER_MODE_ABS | HRTIMER_MODE_SOFT, HRTIMER_MODE_REL_SOFT = HRTIMER_MODE_REL | HRTIMER_MODE_SOFT, HRTIMER_MODE_ABS_PINNED_SOFT = HRTIMER_MODE_ABS_PINNED | HRTIMER_MODE_SOFT, HRTIMER_MODE_REL_PINNED_SOFT = HRTIMER_MODE_REL_PINNED | HRTIMER_MODE_SOFT, HRTIMER_MODE_ABS_HARD = HRTIMER_MODE_ABS | HRTIMER_MODE_HARD, HRTIMER_MODE_REL_HARD = HRTIMER_MODE_REL | HRTIMER_MODE_HARD, HRTIMER_MODE_ABS_PINNED_HARD = HRTIMER_MODE_ABS_PINNED | HRTIMER_MODE_HARD, HRTIMER_MODE_REL_PINNED_HARD = HRTIMER_MODE_REL_PINNED | HRTIMER_MODE_HARD, }; /* * Return values for the callback function */ enum hrtimer_restart { HRTIMER_NORESTART, /* Timer is not restarted */ HRTIMER_RESTART, /* Timer must be restarted */ }; /* * Values to track state of the timer * * Possible states: * * 0x00 inactive * 0x01 enqueued into rbtree * * The callback state is not part of the timer->state because clearing it would * mean touching the timer after the callback, this makes it impossible to free * the timer from the callback function. * * Therefore we track the callback state in: * * timer->base->cpu_base->running == timer * * On SMP it is possible to have a "callback function running and enqueued" * status. It happens for example when a posix timer expired and the callback * queued a signal. Between dropping the lock which protects the posix timer * and reacquiring the base lock of the hrtimer, another CPU can deliver the * signal and rearm the timer. * * All state transitions are protected by cpu_base->lock. */ #define HRTIMER_STATE_INACTIVE 0x00 #define HRTIMER_STATE_ENQUEUED 0x01 /** * struct hrtimer - the basic hrtimer structure * @node: timerqueue node, which also manages node.expires, * the absolute expiry time in the hrtimers internal * representation. The time is related to the clock on * which the timer is based. Is setup by adding * slack to the _softexpires value. For non range timers * identical to _softexpires. * @_softexpires: the absolute earliest expiry time of the hrtimer. * The time which was given as expiry time when the timer * was armed. * @function: timer expiry callback function * @base: pointer to the timer base (per cpu and per clock) * @state: state information (See bit values above) * @is_rel: Set if the timer was armed relative * @is_soft: Set if hrtimer will be expired in soft interrupt context. * @is_hard: Set if hrtimer will be expired in hard interrupt context * even on RT. * * The hrtimer structure must be initialized by hrtimer_init() */ struct hrtimer { struct timerqueue_node node; ktime_t _softexpires; enum hrtimer_restart (*function)(struct hrtimer *); struct hrtimer_clock_base *base; u8 state; u8 is_rel; u8 is_soft; u8 is_hard; }; /** * struct hrtimer_sleeper - simple sleeper structure * @timer: embedded timer structure * @task: task to wake up * * task is set to NULL, when the timer expires. */ struct hrtimer_sleeper { struct hrtimer timer; struct task_struct *task; }; #ifdef CONFIG_64BIT # define __hrtimer_clock_base_align ____cacheline_aligned #else # define __hrtimer_clock_base_align #endif /** * struct hrtimer_clock_base - the timer base for a specific clock * @cpu_base: per cpu clock base * @index: clock type index for per_cpu support when moving a * timer to a base on another cpu. * @clockid: clock id for per_cpu support * @seq: seqcount around __run_hrtimer * @running: pointer to the currently running hrtimer * @active: red black tree root node for the active timers * @get_time: function to retrieve the current time of the clock * @offset: offset of this clock to the monotonic base */ struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base; unsigned int index; clockid_t clockid; seqcount_raw_spinlock_t seq; struct hrtimer *running; struct timerqueue_head active; ktime_t (*get_time)(void); ktime_t offset; } __hrtimer_clock_base_align; enum hrtimer_base_type { HRTIMER_BASE_MONOTONIC, HRTIMER_BASE_REALTIME, HRTIMER_BASE_BOOTTIME, HRTIMER_BASE_TAI, HRTIMER_BASE_MONOTONIC_SOFT, HRTIMER_BASE_REALTIME_SOFT, HRTIMER_BASE_BOOTTIME_SOFT, HRTIMER_BASE_TAI_SOFT, HRTIMER_MAX_CLOCK_BASES, }; /** * struct hrtimer_cpu_base - the per cpu clock bases * @lock: lock protecting the base and associated clock bases * and timers * @cpu: cpu number * @active_bases: Bitfield to mark bases with active timers * @clock_was_set_seq: Sequence counter of clock was set events * @hres_active: State of high resolution mode * @in_hrtirq: hrtimer_interrupt() is currently executing * @hang_detected: The last hrtimer interrupt detected a hang * @softirq_activated: displays, if the softirq is raised - update of softirq * related settings is not required then. * @nr_events: Total number of hrtimer interrupt events * @nr_retries: Total number of hrtimer interrupt retries * @nr_hangs: Total number of hrtimer interrupt hangs * @max_hang_time: Maximum time spent in hrtimer_interrupt * @softirq_expiry_lock: Lock which is taken while softirq based hrtimer are * expired * @timer_waiters: A hrtimer_cancel() invocation waits for the timer * callback to finish. * @expires_next: absolute time of the next event, is required for remote * hrtimer enqueue; it is the total first expiry time (hard * and soft hrtimer are taken into account) * @next_timer: Pointer to the first expiring timer * @softirq_expires_next: Time to check, if soft queues needs also to be expired * @softirq_next_timer: Pointer to the first expiring softirq based timer * @clock_base: array of clock bases for this cpu * * Note: next_timer is just an optimization for __remove_hrtimer(). * Do not dereference the pointer because it is not reliable on * cross cpu removals. */ struct hrtimer_cpu_base { raw_spinlock_t lock; unsigned int cpu; unsigned int active_bases; unsigned int clock_was_set_seq; unsigned int hres_active : 1, in_hrtirq : 1, hang_detected : 1, softirq_activated : 1; #ifdef CONFIG_HIGH_RES_TIMERS unsigned int nr_events; unsigned short nr_retries; unsigned short nr_hangs; unsigned int max_hang_time; #endif #ifdef CONFIG_PREEMPT_RT spinlock_t softirq_expiry_lock; atomic_t timer_waiters; #endif ktime_t expires_next; struct hrtimer *next_timer; ktime_t softirq_expires_next; struct hrtimer *softirq_next_timer; struct hrtimer_clock_base clock_base[HRTIMER_MAX_CLOCK_BASES]; } ____cacheline_aligned; static inline void hrtimer_set_expires(struct hrtimer *timer, ktime_t time) { timer->node.expires = time; timer->_softexpires = time; } static inline void hrtimer_set_expires_range(struct hrtimer *timer, ktime_t time, ktime_t delta) { timer->_softexpires = time; timer->node.expires = ktime_add_safe(time, delta); } static inline void hrtimer_set_expires_range_ns(struct hrtimer *timer, ktime_t time, u64 delta) { timer->_softexpires = time; timer->node.expires = ktime_add_safe(time, ns_to_ktime(delta)); } static inline void hrtimer_set_expires_tv64(struct hrtimer *timer, s64 tv64) { timer->node.expires = tv64; timer->_softexpires = tv64; } static inline void hrtimer_add_expires(struct hrtimer *timer, ktime_t time) { timer->node.expires = ktime_add_safe(timer->node.expires, time); timer->_softexpires = ktime_add_safe(timer->_softexpires, time); } static inline void hrtimer_add_expires_ns(struct hrtimer *timer, u64 ns) { timer->node.expires = ktime_add_ns(timer->node.expires, ns); timer->_softexpires = ktime_add_ns(timer->_softexpires, ns); } static inline ktime_t hrtimer_get_expires(const struct hrtimer *timer) { return timer->node.expires; } static inline ktime_t hrtimer_get_softexpires(const struct hrtimer *timer) { return timer->_softexpires; } static inline s64 hrtimer_get_expires_tv64(const struct hrtimer *timer) { return timer->node.expires; } static inline s64 hrtimer_get_softexpires_tv64(const struct hrtimer *timer) { return timer->_softexpires; } static inline s64 hrtimer_get_expires_ns(const struct hrtimer *timer) { return ktime_to_ns(timer->node.expires); } static inline ktime_t hrtimer_expires_remaining(const struct hrtimer *timer) { return ktime_sub(timer->node.expires, timer->base->get_time()); } static inline ktime_t hrtimer_cb_get_time(struct hrtimer *timer) { return timer->base->get_time(); } static inline int hrtimer_is_hres_active(struct hrtimer *timer) { return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? timer->base->cpu_base->hres_active : 0; } #ifdef CONFIG_HIGH_RES_TIMERS struct clock_event_device; extern void hrtimer_interrupt(struct clock_event_device *dev); extern unsigned int hrtimer_resolution; #else #define hrtimer_resolution (unsigned int)LOW_RES_NSEC #endif static inline ktime_t __hrtimer_expires_remaining_adjusted(const struct hrtimer *timer, ktime_t now) { ktime_t rem = ktime_sub(timer->node.expires, now); /* * Adjust relative timers for the extra we added in * hrtimer_start_range_ns() to prevent short timeouts. */ if (IS_ENABLED(CONFIG_TIME_LOW_RES) && timer->is_rel) rem -= hrtimer_resolution; return rem; } static inline ktime_t hrtimer_expires_remaining_adjusted(const struct hrtimer *timer) { return __hrtimer_expires_remaining_adjusted(timer, timer->base->get_time()); } #ifdef CONFIG_TIMERFD extern void timerfd_clock_was_set(void); #else static inline void timerfd_clock_was_set(void) { } #endif extern void hrtimers_resume(void); DECLARE_PER_CPU(struct tick_device, tick_cpu_device); #ifdef CONFIG_PREEMPT_RT void hrtimer_cancel_wait_running(const struct hrtimer *timer); #else static inline void hrtimer_cancel_wait_running(struct hrtimer *timer) { cpu_relax(); } #endif /* Exported timer functions: */ /* Initialize timers: */ extern void hrtimer_init(struct hrtimer *timer, clockid_t which_clock, enum hrtimer_mode mode); extern void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, enum hrtimer_mode mode); #ifdef CONFIG_DEBUG_OBJECTS_TIMERS extern void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t which_clock, enum hrtimer_mode mode); extern void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, clockid_t clock_id, enum hrtimer_mode mode); extern void destroy_hrtimer_on_stack(struct hrtimer *timer); #else static inline void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t which_clock, enum hrtimer_mode mode) { hrtimer_init(timer, which_clock, mode); } static inline void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, clockid_t clock_id, enum hrtimer_mode mode) { hrtimer_init_sleeper(sl, clock_id, mode); } static inline void destroy_hrtimer_on_stack(struct hrtimer *timer) { } #endif /* Basic timer operations: */ extern void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, u64 range_ns, const enum hrtimer_mode mode); /** * hrtimer_start - (re)start an hrtimer * @timer: the timer to be added * @tim: expiry time * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); * softirq based mode is considered for debug purpose only! */ static inline void hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) { hrtimer_start_range_ns(timer, tim, 0, mode); } extern int hrtimer_cancel(struct hrtimer *timer); extern int hrtimer_try_to_cancel(struct hrtimer *timer); static inline void hrtimer_start_expires(struct hrtimer *timer, enum hrtimer_mode mode) { u64 delta; ktime_t soft, hard; soft = hrtimer_get_softexpires(timer); hard = hrtimer_get_expires(timer); delta = ktime_to_ns(ktime_sub(hard, soft)); hrtimer_start_range_ns(timer, soft, delta, mode); } void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, enum hrtimer_mode mode); static inline void hrtimer_restart(struct hrtimer *timer) { hrtimer_start_expires(timer, HRTIMER_MODE_ABS); } /* Query timers: */ extern ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust); static inline ktime_t hrtimer_get_remaining(const struct hrtimer *timer) { return __hrtimer_get_remaining(timer, false); } extern u64 hrtimer_get_next_event(void); extern u64 hrtimer_next_event_without(const struct hrtimer *exclude); extern bool hrtimer_active(const struct hrtimer *timer); /** * hrtimer_is_queued = check, whether the timer is on one of the queues * @timer: Timer to check * * Returns: True if the timer is queued, false otherwise * * The function can be used lockless, but it gives only a current snapshot. */ static inline bool hrtimer_is_queued(struct hrtimer *timer) { /* The READ_ONCE pairs with the update functions of timer->state */ return !!(READ_ONCE(timer->state) & HRTIMER_STATE_ENQUEUED); } /* * Helper function to check, whether the timer is running the callback * function */ static inline int hrtimer_callback_running(struct hrtimer *timer) { return timer->base->running == timer; } /* Forward a hrtimer so it expires after now: */ extern u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval); /** * hrtimer_forward_now - forward the timer expiry so it expires after now * @timer: hrtimer to forward * @interval: the interval to forward * * Forward the timer expiry so it will expire after the current time * of the hrtimer clock base. Returns the number of overruns. * * Can be safely called from the callback function of @timer. If * called from other contexts @timer must neither be enqueued nor * running the callback and the caller needs to take care of * serialization. * * Note: This only updates the timer expiry value and does not requeue * the timer. */ static inline u64 hrtimer_forward_now(struct hrtimer *timer, ktime_t interval) { return hrtimer_forward(timer, timer->base->get_time(), interval); } /* Precise sleep: */ extern int nanosleep_copyout(struct restart_block *, struct timespec64 *); extern long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, const clockid_t clockid); extern int schedule_hrtimeout_range(ktime_t *expires, u64 delta, const enum hrtimer_mode mode); extern int schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, const enum hrtimer_mode mode, clockid_t clock_id); extern int schedule_hrtimeout(ktime_t *expires, const enum hrtimer_mode mode); /* Soft interrupt function to run the hrtimer queues: */ extern void hrtimer_run_queues(void); /* Bootup initialization: */ extern void __init hrtimers_init(void); /* Show pending timers: */ extern void sysrq_timer_list_show(void); int hrtimers_prepare_cpu(unsigned int cpu); #ifdef CONFIG_HOTPLUG_CPU int hrtimers_dead_cpu(unsigned int cpu); #else #define hrtimers_dead_cpu NULL #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_HWEIGHT_H #define _ASM_X86_HWEIGHT_H #include <asm/cpufeatures.h> #ifdef CONFIG_64BIT #define REG_IN "D" #define REG_OUT "a" #else #define REG_IN "a" #define REG_OUT "a" #endif static __always_inline unsigned int __arch_hweight32(unsigned int w) { unsigned int res; asm (ALTERNATIVE("call __sw_hweight32", "popcntl %1, %0", X86_FEATURE_POPCNT) : "="REG_OUT (res) : REG_IN (w)); return res; } static inline unsigned int __arch_hweight16(unsigned int w) { return __arch_hweight32(w & 0xffff); } static inline unsigned int __arch_hweight8(unsigned int w) { return __arch_hweight32(w & 0xff); } #ifdef CONFIG_X86_32 static inline unsigned long __arch_hweight64(__u64 w) { return __arch_hweight32((u32)w) + __arch_hweight32((u32)(w >> 32)); } #else static __always_inline unsigned long __arch_hweight64(__u64 w) { unsigned long res; asm (ALTERNATIVE("call __sw_hweight64", "popcntq %1, %0", X86_FEATURE_POPCNT) : "="REG_OUT (res) : REG_IN (w)); return res; } #endif /* CONFIG_X86_32 */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NLS_H #define _LINUX_NLS_H #include <linux/init.h> /* Unicode has changed over the years. Unicode code points no longer * fit into 16 bits; as of Unicode 5 valid code points range from 0 * to 0x10ffff (17 planes, where each plane holds 65536 code points). * * The original decision to represent Unicode characters as 16-bit * wchar_t values is now outdated. But plane 0 still includes the * most commonly used characters, so we will retain it. The newer * 32-bit unicode_t type can be used when it is necessary to * represent the full Unicode character set. */ /* Plane-0 Unicode character */ typedef u16 wchar_t; #define MAX_WCHAR_T 0xffff /* Arbitrary Unicode character */ typedef u32 unicode_t; struct nls_table { const char *charset; const char *alias; int (*uni2char) (wchar_t uni, unsigned char *out, int boundlen); int (*char2uni) (const unsigned char *rawstring, int boundlen, wchar_t *uni); const unsigned char *charset2lower; const unsigned char *charset2upper; struct module *owner; struct nls_table *next; }; /* this value hold the maximum octet of charset */ #define NLS_MAX_CHARSET_SIZE 6 /* for UTF-8 */ /* Byte order for UTF-16 strings */ enum utf16_endian { UTF16_HOST_ENDIAN, UTF16_LITTLE_ENDIAN, UTF16_BIG_ENDIAN }; /* nls_base.c */ extern int __register_nls(struct nls_table *, struct module *); extern int unregister_nls(struct nls_table *); extern struct nls_table *load_nls(char *); extern void unload_nls(struct nls_table *); extern struct nls_table *load_nls_default(void); #define register_nls(nls) __register_nls((nls), THIS_MODULE) extern int utf8_to_utf32(const u8 *s, int len, unicode_t *pu); extern int utf32_to_utf8(unicode_t u, u8 *s, int maxlen); extern int utf8s_to_utf16s(const u8 *s, int len, enum utf16_endian endian, wchar_t *pwcs, int maxlen); extern int utf16s_to_utf8s(const wchar_t *pwcs, int len, enum utf16_endian endian, u8 *s, int maxlen); static inline unsigned char nls_tolower(struct nls_table *t, unsigned char c) { unsigned char nc = t->charset2lower[c]; return nc ? nc : c; } static inline unsigned char nls_toupper(struct nls_table *t, unsigned char c) { unsigned char nc = t->charset2upper[c]; return nc ? nc : c; } static inline int nls_strnicmp(struct nls_table *t, const unsigned char *s1, const unsigned char *s2, int len) { while (len--) { if (nls_tolower(t, *s1++) != nls_tolower(t, *s2++)) return 1; } return 0; } /* * nls_nullsize - return length of null character for codepage * @codepage - codepage for which to return length of NULL terminator * * Since we can't guarantee that the null terminator will be a particular * length, we have to check against the codepage. If there's a problem * determining it, assume a single-byte NULL terminator. */ static inline int nls_nullsize(const struct nls_table *codepage) { int charlen; char tmp[NLS_MAX_CHARSET_SIZE]; charlen = codepage->uni2char(0, tmp, NLS_MAX_CHARSET_SIZE); return charlen > 0 ? charlen : 1; } #define MODULE_ALIAS_NLS(name) MODULE_ALIAS("nls_" __stringify(name)) #endif /* _LINUX_NLS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 #ifndef INTERNAL_IO_WQ_H #define INTERNAL_IO_WQ_H #include <linux/io_uring.h> struct io_wq; enum { IO_WQ_WORK_CANCEL = 1, IO_WQ_WORK_HASHED = 2, IO_WQ_WORK_UNBOUND = 4, IO_WQ_WORK_NO_CANCEL = 8, IO_WQ_WORK_CONCURRENT = 16, IO_WQ_WORK_FILES = 32, IO_WQ_WORK_FS = 64, IO_WQ_WORK_MM = 128, IO_WQ_WORK_CREDS = 256, IO_WQ_WORK_BLKCG = 512, IO_WQ_WORK_FSIZE = 1024, IO_WQ_HASH_SHIFT = 24, /* upper 8 bits are used for hash key */ }; enum io_wq_cancel { IO_WQ_CANCEL_OK, /* cancelled before started */ IO_WQ_CANCEL_RUNNING, /* found, running, and attempted cancelled */ IO_WQ_CANCEL_NOTFOUND, /* work not found */ }; struct io_wq_work_node { struct io_wq_work_node *next; }; struct io_wq_work_list { struct io_wq_work_node *first; struct io_wq_work_node *last; }; static inline void wq_list_add_after(struct io_wq_work_node *node, struct io_wq_work_node *pos, struct io_wq_work_list *list) { struct io_wq_work_node *next = pos->next; pos->next = node; node->next = next; if (!next) list->last = node; } static inline void wq_list_add_tail(struct io_wq_work_node *node, struct io_wq_work_list *list) { if (!list->first) { list->last = node; WRITE_ONCE(list->first, node); } else { list->last->next = node; list->last = node; } node->next = NULL; } static inline void wq_list_cut(struct io_wq_work_list *list, struct io_wq_work_node *last, struct io_wq_work_node *prev) { /* first in the list, if prev==NULL */ if (!prev) WRITE_ONCE(list->first, last->next); else prev->next = last->next; if (last == list->last) list->last = prev; last->next = NULL; } static inline void wq_list_del(struct io_wq_work_list *list, struct io_wq_work_node *node, struct io_wq_work_node *prev) { wq_list_cut(list, node, prev); } #define wq_list_for_each(pos, prv, head) \ for (pos = (head)->first, prv = NULL; pos; prv = pos, pos = (pos)->next) #define wq_list_empty(list) (READ_ONCE((list)->first) == NULL) #define INIT_WQ_LIST(list) do { \ (list)->first = NULL; \ (list)->last = NULL; \ } while (0) struct io_wq_work { struct io_wq_work_node list; struct io_identity *identity; unsigned flags; }; static inline struct io_wq_work *wq_next_work(struct io_wq_work *work) { if (!work->list.next) return NULL; return container_of(work->list.next, struct io_wq_work, list); } typedef void (free_work_fn)(struct io_wq_work *); typedef struct io_wq_work *(io_wq_work_fn)(struct io_wq_work *); struct io_wq_data { struct user_struct *user; io_wq_work_fn *do_work; free_work_fn *free_work; }; struct io_wq *io_wq_create(unsigned bounded, struct io_wq_data *data); bool io_wq_get(struct io_wq *wq, struct io_wq_data *data); void io_wq_destroy(struct io_wq *wq); void io_wq_enqueue(struct io_wq *wq, struct io_wq_work *work); void io_wq_hash_work(struct io_wq_work *work, void *val); static inline bool io_wq_is_hashed(struct io_wq_work *work) { return work->flags & IO_WQ_WORK_HASHED; } void io_wq_cancel_all(struct io_wq *wq); typedef bool (work_cancel_fn)(struct io_wq_work *, void *); enum io_wq_cancel io_wq_cancel_cb(struct io_wq *wq, work_cancel_fn *cancel, void *data, bool cancel_all); struct task_struct *io_wq_get_task(struct io_wq *wq); #if defined(CONFIG_IO_WQ) extern void io_wq_worker_sleeping(struct task_struct *); extern void io_wq_worker_running(struct task_struct *); #else static inline void io_wq_worker_sleeping(struct task_struct *tsk) { } static inline void io_wq_worker_running(struct task_struct *tsk) { } #endif static inline bool io_wq_current_is_worker(void) { return in_task() && (current->flags & PF_IO_WORKER); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _INET_ECN_H_ #define _INET_ECN_H_ #include <linux/ip.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #include <net/inet_sock.h> #include <net/dsfield.h> enum { INET_ECN_NOT_ECT = 0, INET_ECN_ECT_1 = 1, INET_ECN_ECT_0 = 2, INET_ECN_CE = 3, INET_ECN_MASK = 3, }; extern int sysctl_tunnel_ecn_log; static inline int INET_ECN_is_ce(__u8 dsfield) { return (dsfield & INET_ECN_MASK) == INET_ECN_CE; } static inline int INET_ECN_is_not_ect(__u8 dsfield) { return (dsfield & INET_ECN_MASK) == INET_ECN_NOT_ECT; } static inline int INET_ECN_is_capable(__u8 dsfield) { return dsfield & INET_ECN_ECT_0; } /* * RFC 3168 9.1.1 * The full-functionality option for ECN encapsulation is to copy the * ECN codepoint of the inside header to the outside header on * encapsulation if the inside header is not-ECT or ECT, and to set the * ECN codepoint of the outside header to ECT(0) if the ECN codepoint of * the inside header is CE. */ static inline __u8 INET_ECN_encapsulate(__u8 outer, __u8 inner) { outer &= ~INET_ECN_MASK; outer |= !INET_ECN_is_ce(inner) ? (inner & INET_ECN_MASK) : INET_ECN_ECT_0; return outer; } static inline void INET_ECN_xmit(struct sock *sk) { inet_sk(sk)->tos |= INET_ECN_ECT_0; if (inet6_sk(sk) != NULL) inet6_sk(sk)->tclass |= INET_ECN_ECT_0; } static inline void INET_ECN_dontxmit(struct sock *sk) { inet_sk(sk)->tos &= ~INET_ECN_MASK; if (inet6_sk(sk) != NULL) inet6_sk(sk)->tclass &= ~INET_ECN_MASK; } #define IP6_ECN_flow_init(label) do { \ (label) &= ~htonl(INET_ECN_MASK << 20); \ } while (0) #define IP6_ECN_flow_xmit(sk, label) do { \ if (INET_ECN_is_capable(inet6_sk(sk)->tclass)) \ (label) |= htonl(INET_ECN_ECT_0 << 20); \ } while (0) static inline int IP_ECN_set_ce(struct iphdr *iph) { u32 check = (__force u32)iph->check; u32 ecn = (iph->tos + 1) & INET_ECN_MASK; /* * After the last operation we have (in binary): * INET_ECN_NOT_ECT => 01 * INET_ECN_ECT_1 => 10 * INET_ECN_ECT_0 => 11 * INET_ECN_CE => 00 */ if (!(ecn & 2)) return !ecn; /* * The following gives us: * INET_ECN_ECT_1 => check += htons(0xFFFD) * INET_ECN_ECT_0 => check += htons(0xFFFE) */ check += (__force u16)htons(0xFFFB) + (__force u16)htons(ecn); iph->check = (__force __sum16)(check + (check>=0xFFFF)); iph->tos |= INET_ECN_CE; return 1; } static inline int IP_ECN_set_ect1(struct iphdr *iph) { u32 check = (__force u32)iph->check; if ((iph->tos & INET_ECN_MASK) != INET_ECN_ECT_0) return 0; check += (__force u16)htons(0x1); iph->check = (__force __sum16)(check + (check>=0xFFFF)); iph->tos ^= INET_ECN_MASK; return 1; } static inline void IP_ECN_clear(struct iphdr *iph) { iph->tos &= ~INET_ECN_MASK; } static inline void ipv4_copy_dscp(unsigned int dscp, struct iphdr *inner) { dscp &= ~INET_ECN_MASK; ipv4_change_dsfield(inner, INET_ECN_MASK, dscp); } struct ipv6hdr; /* Note: * IP_ECN_set_ce() has to tweak IPV4 checksum when setting CE, * meaning both changes have no effect on skb->csum if/when CHECKSUM_COMPLETE * In IPv6 case, no checksum compensates the change in IPv6 header, * so we have to update skb->csum. */ static inline int IP6_ECN_set_ce(struct sk_buff *skb, struct ipv6hdr *iph) { __be32 from, to; if (INET_ECN_is_not_ect(ipv6_get_dsfield(iph))) return 0; from = *(__be32 *)iph; to = from | htonl(INET_ECN_CE << 20); *(__be32 *)iph = to; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(csum_sub(skb->csum, (__force __wsum)from), (__force __wsum)to); return 1; } static inline int IP6_ECN_set_ect1(struct sk_buff *skb, struct ipv6hdr *iph) { __be32 from, to; if ((ipv6_get_dsfield(iph) & INET_ECN_MASK) != INET_ECN_ECT_0) return 0; from = *(__be32 *)iph; to = from ^ htonl(INET_ECN_MASK << 20); *(__be32 *)iph = to; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(csum_sub(skb->csum, (__force __wsum)from), (__force __wsum)to); return 1; } static inline void ipv6_copy_dscp(unsigned int dscp, struct ipv6hdr *inner) { dscp &= ~INET_ECN_MASK; ipv6_change_dsfield(inner, INET_ECN_MASK, dscp); } static inline int INET_ECN_set_ce(struct sk_buff *skb) { switch (skb_protocol(skb, true)) { case cpu_to_be16(ETH_P_IP): if (skb_network_header(skb) + sizeof(struct iphdr) <= skb_tail_pointer(skb)) return IP_ECN_set_ce(ip_hdr(skb)); break; case cpu_to_be16(ETH_P_IPV6): if (skb_network_header(skb) + sizeof(struct ipv6hdr) <= skb_tail_pointer(skb)) return IP6_ECN_set_ce(skb, ipv6_hdr(skb)); break; } return 0; } static inline int INET_ECN_set_ect1(struct sk_buff *skb) { switch (skb_protocol(skb, true)) { case cpu_to_be16(ETH_P_IP): if (skb_network_header(skb) + sizeof(struct iphdr) <= skb_tail_pointer(skb)) return IP_ECN_set_ect1(ip_hdr(skb)); break; case cpu_to_be16(ETH_P_IPV6): if (skb_network_header(skb) + sizeof(struct ipv6hdr) <= skb_tail_pointer(skb)) return IP6_ECN_set_ect1(skb, ipv6_hdr(skb)); break; } return 0; } /* * RFC 6040 4.2 * To decapsulate the inner header at the tunnel egress, a compliant * tunnel egress MUST set the outgoing ECN field to the codepoint at the * intersection of the appropriate arriving inner header (row) and outer * header (column) in Figure 4 * * +---------+------------------------------------------------+ * |Arriving | Arriving Outer Header | * | Inner +---------+------------+------------+------------+ * | Header | Not-ECT | ECT(0) | ECT(1) | CE | * +---------+---------+------------+------------+------------+ * | Not-ECT | Not-ECT |Not-ECT(!!!)|Not-ECT(!!!)| <drop>(!!!)| * | ECT(0) | ECT(0) | ECT(0) | ECT(1) | CE | * | ECT(1) | ECT(1) | ECT(1) (!) | ECT(1) | CE | * | CE | CE | CE | CE(!!!)| CE | * +---------+---------+------------+------------+------------+ * * Figure 4: New IP in IP Decapsulation Behaviour * * returns 0 on success * 1 if something is broken and should be logged (!!! above) * 2 if packet should be dropped */ static inline int __INET_ECN_decapsulate(__u8 outer, __u8 inner, bool *set_ce) { if (INET_ECN_is_not_ect(inner)) { switch (outer & INET_ECN_MASK) { case INET_ECN_NOT_ECT: return 0; case INET_ECN_ECT_0: case INET_ECN_ECT_1: return 1; case INET_ECN_CE: return 2; } } *set_ce = INET_ECN_is_ce(outer); return 0; } static inline int INET_ECN_decapsulate(struct sk_buff *skb, __u8 outer, __u8 inner) { bool set_ce = false; int rc; rc = __INET_ECN_decapsulate(outer, inner, &set_ce); if (!rc) { if (set_ce) INET_ECN_set_ce(skb); else if ((outer & INET_ECN_MASK) == INET_ECN_ECT_1) INET_ECN_set_ect1(skb); } return rc; } static inline int IP_ECN_decapsulate(const struct iphdr *oiph, struct sk_buff *skb) { __u8 inner; switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): inner = ip_hdr(skb)->tos; break; case htons(ETH_P_IPV6): inner = ipv6_get_dsfield(ipv6_hdr(skb)); break; default: return 0; } return INET_ECN_decapsulate(skb, oiph->tos, inner); } static inline int IP6_ECN_decapsulate(const struct ipv6hdr *oipv6h, struct sk_buff *skb) { __u8 inner; switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): inner = ip_hdr(skb)->tos; break; case htons(ETH_P_IPV6): inner = ipv6_get_dsfield(ipv6_hdr(skb)); break; default: return 0; } return INET_ECN_decapsulate(skb, ipv6_get_dsfield(oipv6h), inner); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __SHMEM_FS_H #define __SHMEM_FS_H #include <linux/file.h> #include <linux/swap.h> #include <linux/mempolicy.h> #include <linux/pagemap.h> #include <linux/percpu_counter.h> #include <linux/xattr.h> #include <linux/fs_parser.h> /* inode in-kernel data */ struct shmem_inode_info { spinlock_t lock; unsigned int seals; /* shmem seals */ unsigned long flags; unsigned long alloced; /* data pages alloced to file */ unsigned long swapped; /* subtotal assigned to swap */ struct list_head shrinklist; /* shrinkable hpage inodes */ struct list_head swaplist; /* chain of maybes on swap */ struct shared_policy policy; /* NUMA memory alloc policy */ struct simple_xattrs xattrs; /* list of xattrs */ atomic_t stop_eviction; /* hold when working on inode */ struct inode vfs_inode; }; struct shmem_sb_info { unsigned long max_blocks; /* How many blocks are allowed */ struct percpu_counter used_blocks; /* How many are allocated */ unsigned long max_inodes; /* How many inodes are allowed */ unsigned long free_inodes; /* How many are left for allocation */ spinlock_t stat_lock; /* Serialize shmem_sb_info changes */ umode_t mode; /* Mount mode for root directory */ unsigned char huge; /* Whether to try for hugepages */ kuid_t uid; /* Mount uid for root directory */ kgid_t gid; /* Mount gid for root directory */ bool full_inums; /* If i_ino should be uint or ino_t */ ino_t next_ino; /* The next per-sb inode number to use */ ino_t __percpu *ino_batch; /* The next per-cpu inode number to use */ struct mempolicy *mpol; /* default memory policy for mappings */ spinlock_t shrinklist_lock; /* Protects shrinklist */ struct list_head shrinklist; /* List of shinkable inodes */ unsigned long shrinklist_len; /* Length of shrinklist */ }; static inline struct shmem_inode_info *SHMEM_I(struct inode *inode) { return container_of(inode, struct shmem_inode_info, vfs_inode); } /* * Functions in mm/shmem.c called directly from elsewhere: */ extern const struct fs_parameter_spec shmem_fs_parameters[]; extern int shmem_init(void); extern int shmem_init_fs_context(struct fs_context *fc); extern struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); extern struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags); extern struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, loff_t size, unsigned long flags); extern int shmem_zero_setup(struct vm_area_struct *); extern unsigned long shmem_get_unmapped_area(struct file *, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); extern int shmem_lock(struct file *file, int lock, struct user_struct *user); #ifdef CONFIG_SHMEM extern bool shmem_mapping(struct address_space *mapping); #else static inline bool shmem_mapping(struct address_space *mapping) { return false; } #endif /* CONFIG_SHMEM */ extern void shmem_unlock_mapping(struct address_space *mapping); extern struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); extern void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end); extern int shmem_unuse(unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse); extern bool shmem_huge_enabled(struct vm_area_struct *vma); extern unsigned long shmem_swap_usage(struct vm_area_struct *vma); extern unsigned long shmem_partial_swap_usage(struct address_space *mapping, pgoff_t start, pgoff_t end); /* Flag allocation requirements to shmem_getpage */ enum sgp_type { SGP_READ, /* don't exceed i_size, don't allocate page */ SGP_CACHE, /* don't exceed i_size, may allocate page */ SGP_NOHUGE, /* like SGP_CACHE, but no huge pages */ SGP_HUGE, /* like SGP_CACHE, huge pages preferred */ SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ }; extern int shmem_getpage(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp); static inline struct page *shmem_read_mapping_page( struct address_space *mapping, pgoff_t index) { return shmem_read_mapping_page_gfp(mapping, index, mapping_gfp_mask(mapping)); } static inline bool shmem_file(struct file *file) { if (!IS_ENABLED(CONFIG_SHMEM)) return false; if (!file || !file->f_mapping) return false; return shmem_mapping(file->f_mapping); } extern bool shmem_charge(struct inode *inode, long pages); extern void shmem_uncharge(struct inode *inode, long pages); #ifdef CONFIG_SHMEM extern int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, pmd_t *dst_pmd, struct vm_area_struct *dst_vma, unsigned long dst_addr, unsigned long src_addr, struct page **pagep); extern int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, pmd_t *dst_pmd, struct vm_area_struct *dst_vma, unsigned long dst_addr); #else #define shmem_mcopy_atomic_pte(dst_mm, dst_pte, dst_vma, dst_addr, \ src_addr, pagep) ({ BUG(); 0; }) #define shmem_mfill_zeropage_pte(dst_mm, dst_pmd, dst_vma, \ dst_addr) ({ BUG(); 0; }) #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the TCP module. * * Version: @(#)tcp.h 1.0.5 05/23/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _TCP_H #define _TCP_H #define FASTRETRANS_DEBUG 1 #include <linux/list.h> #include <linux/tcp.h> #include <linux/bug.h> #include <linux/slab.h> #include <linux/cache.h> #include <linux/percpu.h> #include <linux/skbuff.h> #include <linux/kref.h> #include <linux/ktime.h> #include <linux/indirect_call_wrapper.h> #include <net/inet_connection_sock.h> #include <net/inet_timewait_sock.h> #include <net/inet_hashtables.h> #include <net/checksum.h> #include <net/request_sock.h> #include <net/sock_reuseport.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ip.h> #include <net/tcp_states.h> #include <net/inet_ecn.h> #include <net/dst.h> #include <net/mptcp.h> #include <linux/seq_file.h> #include <linux/memcontrol.h> #include <linux/bpf-cgroup.h> #include <linux/siphash.h> extern struct inet_hashinfo tcp_hashinfo; DECLARE_PER_CPU(unsigned int, tcp_orphan_count); int tcp_orphan_count_sum(void); void tcp_time_wait(struct sock *sk, int state, int timeo); #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) #define MAX_TCP_OPTION_SPACE 40 #define TCP_MIN_SND_MSS 48 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) /* * Never offer a window over 32767 without using window scaling. Some * poor stacks do signed 16bit maths! */ #define MAX_TCP_WINDOW 32767U /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ #define TCP_MIN_MSS 88U /* The initial MTU to use for probing */ #define TCP_BASE_MSS 1024 /* probing interval, default to 10 minutes as per RFC4821 */ #define TCP_PROBE_INTERVAL 600 /* Specify interval when tcp mtu probing will stop */ #define TCP_PROBE_THRESHOLD 8 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ #define TCP_FASTRETRANS_THRESH 3 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ #define TCP_MAX_QUICKACKS 16U /* Maximal number of window scale according to RFC1323 */ #define TCP_MAX_WSCALE 14U /* urg_data states */ #define TCP_URG_VALID 0x0100 #define TCP_URG_NOTYET 0x0200 #define TCP_URG_READ 0x0400 #define TCP_RETR1 3 /* * This is how many retries it does before it * tries to figure out if the gateway is * down. Minimal RFC value is 3; it corresponds * to ~3sec-8min depending on RTO. */ #define TCP_RETR2 15 /* * This should take at least * 90 minutes to time out. * RFC1122 says that the limit is 100 sec. * 15 is ~13-30min depending on RTO. */ #define TCP_SYN_RETRIES 6 /* This is how many retries are done * when active opening a connection. * RFC1122 says the minimum retry MUST * be at least 180secs. Nevertheless * this value is corresponding to * 63secs of retransmission with the * current initial RTO. */ #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done * when passive opening a connection. * This is corresponding to 31secs of * retransmission with the current * initial RTO. */ #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT * state, about 60 seconds */ #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN /* BSD style FIN_WAIT2 deadlock breaker. * It used to be 3min, new value is 60sec, * to combine FIN-WAIT-2 timeout with * TIME-WAIT timer. */ #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ #if HZ >= 100 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ #define TCP_ATO_MIN ((unsigned)(HZ/25)) #else #define TCP_DELACK_MIN 4U #define TCP_ATO_MIN 4U #endif #define TCP_RTO_MAX ((unsigned)(120*HZ)) #define TCP_RTO_MIN ((unsigned)(HZ/5)) #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now * used as a fallback RTO for the * initial data transmission if no * valid RTT sample has been acquired, * most likely due to retrans in 3WHS. */ #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes * for local resources. */ #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ #define TCP_KEEPALIVE_INTVL (75*HZ) #define MAX_TCP_KEEPIDLE 32767 #define MAX_TCP_KEEPINTVL 32767 #define MAX_TCP_KEEPCNT 127 #define MAX_TCP_SYNCNT 127 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */ #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24) #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated * after this time. It should be equal * (or greater than) TCP_TIMEWAIT_LEN * to provide reliability equal to one * provided by timewait state. */ #define TCP_PAWS_WINDOW 1 /* Replay window for per-host * timestamps. It must be less than * minimal timewait lifetime. */ /* * TCP option */ #define TCPOPT_NOP 1 /* Padding */ #define TCPOPT_EOL 0 /* End of options */ #define TCPOPT_MSS 2 /* Segment size negotiating */ #define TCPOPT_WINDOW 3 /* Window scaling */ #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ #define TCPOPT_SACK 5 /* SACK Block */ #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ #define TCPOPT_EXP 254 /* Experimental */ /* Magic number to be after the option value for sharing TCP * experimental options. See draft-ietf-tcpm-experimental-options-00.txt */ #define TCPOPT_FASTOPEN_MAGIC 0xF989 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 /* * TCP option lengths */ #define TCPOLEN_MSS 4 #define TCPOLEN_WINDOW 3 #define TCPOLEN_SACK_PERM 2 #define TCPOLEN_TIMESTAMP 10 #define TCPOLEN_MD5SIG 18 #define TCPOLEN_FASTOPEN_BASE 2 #define TCPOLEN_EXP_FASTOPEN_BASE 4 #define TCPOLEN_EXP_SMC_BASE 6 /* But this is what stacks really send out. */ #define TCPOLEN_TSTAMP_ALIGNED 12 #define TCPOLEN_WSCALE_ALIGNED 4 #define TCPOLEN_SACKPERM_ALIGNED 4 #define TCPOLEN_SACK_BASE 2 #define TCPOLEN_SACK_BASE_ALIGNED 4 #define TCPOLEN_SACK_PERBLOCK 8 #define TCPOLEN_MD5SIG_ALIGNED 20 #define TCPOLEN_MSS_ALIGNED 4 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 /* Flags in tp->nonagle */ #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ #define TCP_NAGLE_CORK 2 /* Socket is corked */ #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ /* TCP thin-stream limits */ #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ /* TCP initial congestion window as per rfc6928 */ #define TCP_INIT_CWND 10 /* Bit Flags for sysctl_tcp_fastopen */ #define TFO_CLIENT_ENABLE 1 #define TFO_SERVER_ENABLE 2 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ /* Accept SYN data w/o any cookie option */ #define TFO_SERVER_COOKIE_NOT_REQD 0x200 /* Force enable TFO on all listeners, i.e., not requiring the * TCP_FASTOPEN socket option. */ #define TFO_SERVER_WO_SOCKOPT1 0x400 /* sysctl variables for tcp */ extern int sysctl_tcp_max_orphans; extern long sysctl_tcp_mem[3]; #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ extern atomic_long_t tcp_memory_allocated; extern struct percpu_counter tcp_sockets_allocated; extern unsigned long tcp_memory_pressure; /* optimized version of sk_under_memory_pressure() for TCP sockets */ static inline bool tcp_under_memory_pressure(const struct sock *sk) { if (mem_cgroup_sockets_enabled && sk->sk_memcg && mem_cgroup_under_socket_pressure(sk->sk_memcg)) return true; return READ_ONCE(tcp_memory_pressure); } /* * The next routines deal with comparing 32 bit unsigned ints * and worry about wraparound (automatic with unsigned arithmetic). */ static inline bool before(__u32 seq1, __u32 seq2) { return (__s32)(seq1-seq2) < 0; } #define after(seq2, seq1) before(seq1, seq2) /* is s2<=s1<=s3 ? */ static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) { return seq3 - seq2 >= seq1 - seq2; } static inline bool tcp_out_of_memory(struct sock *sk) { if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) return true; return false; } void sk_forced_mem_schedule(struct sock *sk, int size); bool tcp_check_oom(struct sock *sk, int shift); extern struct proto tcp_prot; #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) void tcp_tasklet_init(void); int tcp_v4_err(struct sk_buff *skb, u32); void tcp_shutdown(struct sock *sk, int how); int tcp_v4_early_demux(struct sk_buff *skb); int tcp_v4_rcv(struct sk_buff *skb); int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw); int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags); int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags); ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, size_t size, int flags); int tcp_send_mss(struct sock *sk, int *size_goal, int flags); void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, int size_goal); void tcp_release_cb(struct sock *sk); void tcp_wfree(struct sk_buff *skb); void tcp_write_timer_handler(struct sock *sk); void tcp_delack_timer_handler(struct sock *sk); int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg); int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); void tcp_rcv_space_adjust(struct sock *sk); int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); void tcp_twsk_destructor(struct sock *sk); ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks); static inline void tcp_dec_quickack_mode(struct sock *sk, const unsigned int pkts) { struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ack.quick) { if (pkts >= icsk->icsk_ack.quick) { icsk->icsk_ack.quick = 0; /* Leaving quickack mode we deflate ATO. */ icsk->icsk_ack.ato = TCP_ATO_MIN; } else icsk->icsk_ack.quick -= pkts; } } #define TCP_ECN_OK 1 #define TCP_ECN_QUEUE_CWR 2 #define TCP_ECN_DEMAND_CWR 4 #define TCP_ECN_SEEN 8 enum tcp_tw_status { TCP_TW_SUCCESS = 0, TCP_TW_RST = 1, TCP_TW_ACK = 2, TCP_TW_SYN = 3 }; enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb, const struct tcphdr *th); struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, struct request_sock *req, bool fastopen, bool *lost_race); int tcp_child_process(struct sock *parent, struct sock *child, struct sk_buff *skb); void tcp_enter_loss(struct sock *sk); void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag); void tcp_clear_retrans(struct tcp_sock *tp); void tcp_update_metrics(struct sock *sk); void tcp_init_metrics(struct sock *sk); void tcp_metrics_init(void); bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); void tcp_close(struct sock *sk, long timeout); void tcp_init_sock(struct sock *sk); void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); __poll_t tcp_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait); int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); void tcp_set_keepalive(struct sock *sk, int val); void tcp_syn_ack_timeout(const struct request_sock *req); int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len); int tcp_set_rcvlowat(struct sock *sk, int val); void tcp_data_ready(struct sock *sk); #ifdef CONFIG_MMU int tcp_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma); #endif void tcp_parse_options(const struct net *net, const struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab, struct tcp_fastopen_cookie *foc); const u8 *tcp_parse_md5sig_option(const struct tcphdr *th); /* * BPF SKB-less helpers */ u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, struct tcphdr *th, u32 *cookie); u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, struct tcphdr *th, u32 *cookie); u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, const struct tcp_request_sock_ops *af_ops, struct sock *sk, struct tcphdr *th); /* * TCP v4 functions exported for the inet6 API */ void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); void tcp_v4_mtu_reduced(struct sock *sk); void tcp_req_err(struct sock *sk, u32 seq, bool abort); void tcp_ld_RTO_revert(struct sock *sk, u32 seq); int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); struct sock *tcp_create_openreq_child(const struct sock *sk, struct request_sock *req, struct sk_buff *skb); void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req); int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); int tcp_connect(struct sock *sk); enum tcp_synack_type { TCP_SYNACK_NORMAL, TCP_SYNACK_FASTOPEN, TCP_SYNACK_COOKIE, }; struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, struct request_sock *req, struct tcp_fastopen_cookie *foc, enum tcp_synack_type synack_type, struct sk_buff *syn_skb); int tcp_disconnect(struct sock *sk, int flags); void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); /* From syncookies.c */ struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, u32 tsoff); int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, u32 cookie); struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, struct sock *sk, struct sk_buff *skb); #ifdef CONFIG_SYN_COOKIES /* Syncookies use a monotonic timer which increments every 60 seconds. * This counter is used both as a hash input and partially encoded into * the cookie value. A cookie is only validated further if the delta * between the current counter value and the encoded one is less than this, * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if * the counter advances immediately after a cookie is generated). */ #define MAX_SYNCOOKIE_AGE 2 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) /* syncookies: remember time of last synqueue overflow * But do not dirty this field too often (once per second is enough) * It is racy as we do not hold a lock, but race is very minor. */ static inline void tcp_synq_overflow(const struct sock *sk) { unsigned int last_overflow; unsigned int now = jiffies; if (sk->sk_reuseport) { struct sock_reuseport *reuse; reuse = rcu_dereference(sk->sk_reuseport_cb); if (likely(reuse)) { last_overflow = READ_ONCE(reuse->synq_overflow_ts); if (!time_between32(now, last_overflow, last_overflow + HZ)) WRITE_ONCE(reuse->synq_overflow_ts, now); return; } } last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); if (!time_between32(now, last_overflow, last_overflow + HZ)) WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now); } /* syncookies: no recent synqueue overflow on this listening socket? */ static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) { unsigned int last_overflow; unsigned int now = jiffies; if (sk->sk_reuseport) { struct sock_reuseport *reuse; reuse = rcu_dereference(sk->sk_reuseport_cb); if (likely(reuse)) { last_overflow = READ_ONCE(reuse->synq_overflow_ts); return !time_between32(now, last_overflow - HZ, last_overflow + TCP_SYNCOOKIE_VALID); } } last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, * then we're under synflood. However, we have to use * 'last_overflow - HZ' as lower bound. That's because a concurrent * tcp_synq_overflow() could update .ts_recent_stamp after we read * jiffies but before we store .ts_recent_stamp into last_overflow, * which could lead to rejecting a valid syncookie. */ return !time_between32(now, last_overflow - HZ, last_overflow + TCP_SYNCOOKIE_VALID); } static inline u32 tcp_cookie_time(void) { u64 val = get_jiffies_64(); do_div(val, TCP_SYNCOOKIE_PERIOD); return val; } u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, u16 *mssp); __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); u64 cookie_init_timestamp(struct request_sock *req, u64 now); bool cookie_timestamp_decode(const struct net *net, struct tcp_options_received *opt); bool cookie_ecn_ok(const struct tcp_options_received *opt, const struct net *net, const struct dst_entry *dst); /* From net/ipv6/syncookies.c */ int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th, u32 cookie); struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, const struct tcphdr *th, u16 *mssp); __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); #endif /* tcp_output.c */ void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, int nonagle); int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); void tcp_retransmit_timer(struct sock *sk); void tcp_xmit_retransmit_queue(struct sock *); void tcp_simple_retransmit(struct sock *); void tcp_enter_recovery(struct sock *sk, bool ece_ack); int tcp_trim_head(struct sock *, struct sk_buff *, u32); enum tcp_queue { TCP_FRAG_IN_WRITE_QUEUE, TCP_FRAG_IN_RTX_QUEUE, }; int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, struct sk_buff *skb, u32 len, unsigned int mss_now, gfp_t gfp); void tcp_send_probe0(struct sock *); void tcp_send_partial(struct sock *); int tcp_write_wakeup(struct sock *, int mib); void tcp_send_fin(struct sock *sk); void tcp_send_active_reset(struct sock *sk, gfp_t priority); int tcp_send_synack(struct sock *); void tcp_push_one(struct sock *, unsigned int mss_now); void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); void tcp_send_ack(struct sock *sk); void tcp_send_delayed_ack(struct sock *sk); void tcp_send_loss_probe(struct sock *sk); bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); void tcp_skb_collapse_tstamp(struct sk_buff *skb, const struct sk_buff *next_skb); /* tcp_input.c */ void tcp_rearm_rto(struct sock *sk); void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); void tcp_reset(struct sock *sk); void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb); void tcp_fin(struct sock *sk); /* tcp_timer.c */ void tcp_init_xmit_timers(struct sock *); static inline void tcp_clear_xmit_timers(struct sock *sk) { if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) __sock_put(sk); if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) __sock_put(sk); inet_csk_clear_xmit_timers(sk); } unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); unsigned int tcp_current_mss(struct sock *sk); u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); /* Bound MSS / TSO packet size with the half of the window */ static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) { int cutoff; /* When peer uses tiny windows, there is no use in packetizing * to sub-MSS pieces for the sake of SWS or making sure there * are enough packets in the pipe for fast recovery. * * On the other hand, for extremely large MSS devices, handling * smaller than MSS windows in this way does make sense. */ if (tp->max_window > TCP_MSS_DEFAULT) cutoff = (tp->max_window >> 1); else cutoff = tp->max_window; if (cutoff && pktsize > cutoff) return max_t(int, cutoff, 68U - tp->tcp_header_len); else return pktsize; } /* tcp.c */ void tcp_get_info(struct sock *, struct tcp_info *); /* Read 'sendfile()'-style from a TCP socket */ int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t recv_actor); void tcp_initialize_rcv_mss(struct sock *sk); int tcp_mtu_to_mss(struct sock *sk, int pmtu); int tcp_mss_to_mtu(struct sock *sk, int mss); void tcp_mtup_init(struct sock *sk); static inline void tcp_bound_rto(const struct sock *sk) { if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) inet_csk(sk)->icsk_rto = TCP_RTO_MAX; } static inline u32 __tcp_set_rto(const struct tcp_sock *tp) { return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); } static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) { /* mptcp hooks are only on the slow path */ if (sk_is_mptcp((struct sock *)tp)) return; tp->pred_flags = htonl((tp->tcp_header_len << 26) | ntohl(TCP_FLAG_ACK) | snd_wnd); } static inline void tcp_fast_path_on(struct tcp_sock *tp) { __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); } static inline void tcp_fast_path_check(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && tp->rcv_wnd && atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && !tp->urg_data) tcp_fast_path_on(tp); } /* Compute the actual rto_min value */ static inline u32 tcp_rto_min(struct sock *sk) { const struct dst_entry *dst = __sk_dst_get(sk); u32 rto_min = inet_csk(sk)->icsk_rto_min; if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); return rto_min; } static inline u32 tcp_rto_min_us(struct sock *sk) { return jiffies_to_usecs(tcp_rto_min(sk)); } static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) { return dst_metric_locked(dst, RTAX_CC_ALGO); } /* Minimum RTT in usec. ~0 means not available. */ static inline u32 tcp_min_rtt(const struct tcp_sock *tp) { return minmax_get(&tp->rtt_min); } /* Compute the actual receive window we are currently advertising. * Rcv_nxt can be after the window if our peer push more data * than the offered window. */ static inline u32 tcp_receive_window(const struct tcp_sock *tp) { s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; if (win < 0) win = 0; return (u32) win; } /* Choose a new window, without checks for shrinking, and without * scaling applied to the result. The caller does these things * if necessary. This is a "raw" window selection. */ u32 __tcp_select_window(struct sock *sk); void tcp_send_window_probe(struct sock *sk); /* TCP uses 32bit jiffies to save some space. * Note that this is different from tcp_time_stamp, which * historically has been the same until linux-4.13. */ #define tcp_jiffies32 ((u32)jiffies) /* * Deliver a 32bit value for TCP timestamp option (RFC 7323) * It is no longer tied to jiffies, but to 1 ms clock. * Note: double check if you want to use tcp_jiffies32 instead of this. */ #define TCP_TS_HZ 1000 static inline u64 tcp_clock_ns(void) { return ktime_get_ns(); } static inline u64 tcp_clock_us(void) { return div_u64(tcp_clock_ns(), NSEC_PER_USEC); } /* This should only be used in contexts where tp->tcp_mstamp is up to date */ static inline u32 tcp_time_stamp(const struct tcp_sock *tp) { return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ); } /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */ static inline u32 tcp_ns_to_ts(u64 ns) { return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ); } /* Could use tcp_clock_us() / 1000, but this version uses a single divide */ static inline u32 tcp_time_stamp_raw(void) { return tcp_ns_to_ts(tcp_clock_ns()); } void tcp_mstamp_refresh(struct tcp_sock *tp); static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) { return max_t(s64, t1 - t0, 0); } static inline u32 tcp_skb_timestamp(const struct sk_buff *skb) { return tcp_ns_to_ts(skb->skb_mstamp_ns); } /* provide the departure time in us unit */ static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) { return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); } #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) #define TCPHDR_FIN 0x01 #define TCPHDR_SYN 0x02 #define TCPHDR_RST 0x04 #define TCPHDR_PSH 0x08 #define TCPHDR_ACK 0x10 #define TCPHDR_URG 0x20 #define TCPHDR_ECE 0x40 #define TCPHDR_CWR 0x80 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) /* This is what the send packet queuing engine uses to pass * TCP per-packet control information to the transmission code. * We also store the host-order sequence numbers in here too. * This is 44 bytes if IPV6 is enabled. * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. */ struct tcp_skb_cb { __u32 seq; /* Starting sequence number */ __u32 end_seq; /* SEQ + FIN + SYN + datalen */ union { /* Note : tcp_tw_isn is used in input path only * (isn chosen by tcp_timewait_state_process()) * * tcp_gso_segs/size are used in write queue only, * cf tcp_skb_pcount()/tcp_skb_mss() */ __u32 tcp_tw_isn; struct { u16 tcp_gso_segs; u16 tcp_gso_size; }; }; __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ __u8 sacked; /* State flags for SACK. */ #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */ #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */ #define TCPCB_LOST 0x04 /* SKB is lost */ #define TCPCB_TAGBITS 0x07 /* All tag bits */ #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */ #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */ #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \ TCPCB_REPAIRED) __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ eor:1, /* Is skb MSG_EOR marked? */ has_rxtstamp:1, /* SKB has a RX timestamp */ unused:5; __u32 ack_seq; /* Sequence number ACK'd */ union { struct { /* There is space for up to 24 bytes */ __u32 in_flight:30,/* Bytes in flight at transmit */ is_app_limited:1, /* cwnd not fully used? */ unused:1; /* pkts S/ACKed so far upon tx of skb, incl retrans: */ __u32 delivered; /* start of send pipeline phase */ u64 first_tx_mstamp; /* when we reached the "delivered" count */ u64 delivered_mstamp; } tx; /* only used for outgoing skbs */ union { struct inet_skb_parm h4; #if IS_ENABLED(CONFIG_IPV6) struct inet6_skb_parm h6; #endif } header; /* For incoming skbs */ struct { __u32 flags; struct sock *sk_redir; void *data_end; } bpf; }; }; #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb) { TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb); } static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb) { return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS; } static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb) { return TCP_SKB_CB(skb)->bpf.sk_redir; } static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb) { TCP_SKB_CB(skb)->bpf.sk_redir = NULL; } extern const struct inet_connection_sock_af_ops ipv4_specific; #if IS_ENABLED(CONFIG_IPV6) /* This is the variant of inet6_iif() that must be used by TCP, * as TCP moves IP6CB into a different location in skb->cb[] */ static inline int tcp_v6_iif(const struct sk_buff *skb) { return TCP_SKB_CB(skb)->header.h6.iif; } static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) { bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; } /* TCP_SKB_CB reference means this can not be used from early demux */ static inline int tcp_v6_sdif(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) return TCP_SKB_CB(skb)->header.h6.iif; #endif return 0; } extern const struct inet_connection_sock_af_ops ipv6_specific; INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb)); #endif /* TCP_SKB_CB reference means this can not be used from early demux */ static inline int tcp_v4_sdif(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) return TCP_SKB_CB(skb)->header.h4.iif; #endif return 0; } /* Due to TSO, an SKB can be composed of multiple actual * packets. To keep these tracked properly, we use this. */ static inline int tcp_skb_pcount(const struct sk_buff *skb) { return TCP_SKB_CB(skb)->tcp_gso_segs; } static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) { TCP_SKB_CB(skb)->tcp_gso_segs = segs; } static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) { TCP_SKB_CB(skb)->tcp_gso_segs += segs; } /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ static inline int tcp_skb_mss(const struct sk_buff *skb) { return TCP_SKB_CB(skb)->tcp_gso_size; } static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) { return likely(!TCP_SKB_CB(skb)->eor); } static inline bool tcp_skb_can_collapse(const struct sk_buff *to, const struct sk_buff *from) { return likely(tcp_skb_can_collapse_to(to) && mptcp_skb_can_collapse(to, from)); } /* Events passed to congestion control interface */ enum tcp_ca_event { CA_EVENT_TX_START, /* first transmit when no packets in flight */ CA_EVENT_CWND_RESTART, /* congestion window restart */ CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ CA_EVENT_LOSS, /* loss timeout */ CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ }; /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ enum tcp_ca_ack_event_flags { CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ }; /* * Interface for adding new TCP congestion control handlers */ #define TCP_CA_NAME_MAX 16 #define TCP_CA_MAX 128 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) #define TCP_CA_UNSPEC 0 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ #define TCP_CONG_NON_RESTRICTED 0x1 /* Requires ECN/ECT set on all packets */ #define TCP_CONG_NEEDS_ECN 0x2 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) union tcp_cc_info; struct ack_sample { u32 pkts_acked; s32 rtt_us; u32 in_flight; }; /* A rate sample measures the number of (original/retransmitted) data * packets delivered "delivered" over an interval of time "interval_us". * The tcp_rate.c code fills in the rate sample, and congestion * control modules that define a cong_control function to run at the end * of ACK processing can optionally chose to consult this sample when * setting cwnd and pacing rate. * A sample is invalid if "delivered" or "interval_us" is negative. */ struct rate_sample { u64 prior_mstamp; /* starting timestamp for interval */ u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ s32 delivered; /* number of packets delivered over interval */ long interval_us; /* time for tp->delivered to incr "delivered" */ u32 snd_interval_us; /* snd interval for delivered packets */ u32 rcv_interval_us; /* rcv interval for delivered packets */ long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ int losses; /* number of packets marked lost upon ACK */ u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ u32 prior_in_flight; /* in flight before this ACK */ bool is_app_limited; /* is sample from packet with bubble in pipe? */ bool is_retrans; /* is sample from retransmission? */ bool is_ack_delayed; /* is this (likely) a delayed ACK? */ }; struct tcp_congestion_ops { struct list_head list; u32 key; u32 flags; /* initialize private data (optional) */ void (*init)(struct sock *sk); /* cleanup private data (optional) */ void (*release)(struct sock *sk); /* return slow start threshold (required) */ u32 (*ssthresh)(struct sock *sk); /* do new cwnd calculation (required) */ void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); /* call before changing ca_state (optional) */ void (*set_state)(struct sock *sk, u8 new_state); /* call when cwnd event occurs (optional) */ void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); /* call when ack arrives (optional) */ void (*in_ack_event)(struct sock *sk, u32 flags); /* new value of cwnd after loss (required) */ u32 (*undo_cwnd)(struct sock *sk); /* hook for packet ack accounting (optional) */ void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); /* override sysctl_tcp_min_tso_segs */ u32 (*min_tso_segs)(struct sock *sk); /* returns the multiplier used in tcp_sndbuf_expand (optional) */ u32 (*sndbuf_expand)(struct sock *sk); /* call when packets are delivered to update cwnd and pacing rate, * after all the ca_state processing. (optional) */ void (*cong_control)(struct sock *sk, const struct rate_sample *rs); /* get info for inet_diag (optional) */ size_t (*get_info)(struct sock *sk, u32 ext, int *attr, union tcp_cc_info *info); char name[TCP_CA_NAME_MAX]; struct module *owner; }; int tcp_register_congestion_control(struct tcp_congestion_ops *type); void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); void tcp_assign_congestion_control(struct sock *sk); void tcp_init_congestion_control(struct sock *sk); void tcp_cleanup_congestion_control(struct sock *sk); int tcp_set_default_congestion_control(struct net *net, const char *name); void tcp_get_default_congestion_control(struct net *net, char *name); void tcp_get_available_congestion_control(char *buf, size_t len); void tcp_get_allowed_congestion_control(char *buf, size_t len); int tcp_set_allowed_congestion_control(char *allowed); int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool cap_net_admin); u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); u32 tcp_reno_ssthresh(struct sock *sk); u32 tcp_reno_undo_cwnd(struct sock *sk); void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); extern struct tcp_congestion_ops tcp_reno; struct tcp_congestion_ops *tcp_ca_find(const char *name); struct tcp_congestion_ops *tcp_ca_find_key(u32 key); u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); #ifdef CONFIG_INET char *tcp_ca_get_name_by_key(u32 key, char *buffer); #else static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) { return NULL; } #endif static inline bool tcp_ca_needs_ecn(const struct sock *sk) { const struct inet_connection_sock *icsk = inet_csk(sk); return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; } static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state) { struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ca_ops->set_state) icsk->icsk_ca_ops->set_state(sk, ca_state); icsk->icsk_ca_state = ca_state; } static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) { const struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ca_ops->cwnd_event) icsk->icsk_ca_ops->cwnd_event(sk, event); } /* From tcp_rate.c */ void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, struct rate_sample *rs); void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, bool is_sack_reneg, struct rate_sample *rs); void tcp_rate_check_app_limited(struct sock *sk); /* These functions determine how the current flow behaves in respect of SACK * handling. SACK is negotiated with the peer, and therefore it can vary * between different flows. * * tcp_is_sack - SACK enabled * tcp_is_reno - No SACK */ static inline int tcp_is_sack(const struct tcp_sock *tp) { return likely(tp->rx_opt.sack_ok); } static inline bool tcp_is_reno(const struct tcp_sock *tp) { return !tcp_is_sack(tp); } static inline unsigned int tcp_left_out(const struct tcp_sock *tp) { return tp->sacked_out + tp->lost_out; } /* This determines how many packets are "in the network" to the best * of our knowledge. In many cases it is conservative, but where * detailed information is available from the receiver (via SACK * blocks etc.) we can make more aggressive calculations. * * Use this for decisions involving congestion control, use just * tp->packets_out to determine if the send queue is empty or not. * * Read this equation as: * * "Packets sent once on transmission queue" MINUS * "Packets left network, but not honestly ACKed yet" PLUS * "Packets fast retransmitted" */ static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) { return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; } #define TCP_INFINITE_SSTHRESH 0x7fffffff static inline bool tcp_in_slow_start(const struct tcp_sock *tp) { return tp->snd_cwnd < tp->snd_ssthresh; } static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) { return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; } static inline bool tcp_in_cwnd_reduction(const struct sock *sk) { return (TCPF_CA_CWR | TCPF_CA_Recovery) & (1 << inet_csk(sk)->icsk_ca_state); } /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. * The exception is cwnd reduction phase, when cwnd is decreasing towards * ssthresh. */ static inline __u32 tcp_current_ssthresh(const struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); if (tcp_in_cwnd_reduction(sk)) return tp->snd_ssthresh; else return max(tp->snd_ssthresh, ((tp->snd_cwnd >> 1) + (tp->snd_cwnd >> 2))); } /* Use define here intentionally to get WARN_ON location shown at the caller */ #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) void tcp_enter_cwr(struct sock *sk); __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); /* The maximum number of MSS of available cwnd for which TSO defers * sending if not using sysctl_tcp_tso_win_divisor. */ static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) { return 3; } /* Returns end sequence number of the receiver's advertised window */ static inline u32 tcp_wnd_end(const struct tcp_sock *tp) { return tp->snd_una + tp->snd_wnd; } /* We follow the spirit of RFC2861 to validate cwnd but implement a more * flexible approach. The RFC suggests cwnd should not be raised unless * it was fully used previously. And that's exactly what we do in * congestion avoidance mode. But in slow start we allow cwnd to grow * as long as the application has used half the cwnd. * Example : * cwnd is 10 (IW10), but application sends 9 frames. * We allow cwnd to reach 18 when all frames are ACKed. * This check is safe because it's as aggressive as slow start which already * risks 100% overshoot. The advantage is that we discourage application to * either send more filler packets or data to artificially blow up the cwnd * usage, and allow application-limited process to probe bw more aggressively. */ static inline bool tcp_is_cwnd_limited(const struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); /* If in slow start, ensure cwnd grows to twice what was ACKed. */ if (tcp_in_slow_start(tp)) return tp->snd_cwnd < 2 * tp->max_packets_out; return tp->is_cwnd_limited; } /* BBR congestion control needs pacing. * Same remark for SO_MAX_PACING_RATE. * sch_fq packet scheduler is efficiently handling pacing, * but is not always installed/used. * Return true if TCP stack should pace packets itself. */ static inline bool tcp_needs_internal_pacing(const struct sock *sk) { return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; } /* Estimates in how many jiffies next packet for this flow can be sent. * Scheduling a retransmit timer too early would be silly. */ static inline unsigned long tcp_pacing_delay(const struct sock *sk) { s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; return delay > 0 ? nsecs_to_jiffies(delay) : 0; } static inline void tcp_reset_xmit_timer(struct sock *sk, const int what, unsigned long when, const unsigned long max_when) { inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), max_when); } /* Something is really bad, we could not queue an additional packet, * because qdisc is full or receiver sent a 0 window, or we are paced. * We do not want to add fuel to the fire, or abort too early, * so make sure the timer we arm now is at least 200ms in the future, * regardless of current icsk_rto value (as it could be ~2ms) */ static inline unsigned long tcp_probe0_base(const struct sock *sk) { return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); } /* Variant of inet_csk_rto_backoff() used for zero window probes */ static inline unsigned long tcp_probe0_when(const struct sock *sk, unsigned long max_when) { u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff; return (unsigned long)min_t(u64, when, max_when); } static inline void tcp_check_probe_timer(struct sock *sk) { if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, tcp_probe0_base(sk), TCP_RTO_MAX); } static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) { tp->snd_wl1 = seq; } static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) { tp->snd_wl1 = seq; } /* * Calculate(/check) TCP checksum */ static inline __sum16 tcp_v4_check(int len, __be32 saddr, __be32 daddr, __wsum base) { return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); } static inline bool tcp_checksum_complete(struct sk_buff *skb) { return !skb_csum_unnecessary(skb) && __skb_checksum_complete(skb); } bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb); int tcp_filter(struct sock *sk, struct sk_buff *skb); void tcp_set_state(struct sock *sk, int state); void tcp_done(struct sock *sk); int tcp_abort(struct sock *sk, int err); static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) { rx_opt->dsack = 0; rx_opt->num_sacks = 0; } void tcp_cwnd_restart(struct sock *sk, s32 delta); static inline void tcp_slow_start_after_idle_check(struct sock *sk) { const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; struct tcp_sock *tp = tcp_sk(sk); s32 delta; if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out || ca_ops->cong_control) return; delta = tcp_jiffies32 - tp->lsndtime; if (delta > inet_csk(sk)->icsk_rto) tcp_cwnd_restart(sk, delta); } /* Determine a window scaling and initial window to offer. */ void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, __u32 *rcv_wnd, __u32 *window_clamp, int wscale_ok, __u8 *rcv_wscale, __u32 init_rcv_wnd); static inline int tcp_win_from_space(const struct sock *sk, int space) { int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale; return tcp_adv_win_scale <= 0 ? (space>>(-tcp_adv_win_scale)) : space - (space>>tcp_adv_win_scale); } /* Note: caller must be prepared to deal with negative returns */ static inline int tcp_space(const struct sock *sk) { return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - READ_ONCE(sk->sk_backlog.len) - atomic_read(&sk->sk_rmem_alloc)); } static inline int tcp_full_space(const struct sock *sk) { return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); } void tcp_cleanup_rbuf(struct sock *sk, int copied); /* We provision sk_rcvbuf around 200% of sk_rcvlowat. * If 87.5 % (7/8) of the space has been consumed, we want to override * SO_RCVLOWAT constraint, since we are receiving skbs with too small * len/truesize ratio. */ static inline bool tcp_rmem_pressure(const struct sock *sk) { int rcvbuf, threshold; if (tcp_under_memory_pressure(sk)) return true; rcvbuf = READ_ONCE(sk->sk_rcvbuf); threshold = rcvbuf - (rcvbuf >> 3); return atomic_read(&sk->sk_rmem_alloc) > threshold; } extern void tcp_openreq_init_rwin(struct request_sock *req, const struct sock *sk_listener, const struct dst_entry *dst); void tcp_enter_memory_pressure(struct sock *sk); void tcp_leave_memory_pressure(struct sock *sk); static inline int keepalive_intvl_when(const struct tcp_sock *tp) { struct net *net = sock_net((struct sock *)tp); return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl; } static inline int keepalive_time_when(const struct tcp_sock *tp) { struct net *net = sock_net((struct sock *)tp); return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time; } static inline int keepalive_probes(const struct tcp_sock *tp) { struct net *net = sock_net((struct sock *)tp); return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes; } static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) { const struct inet_connection_sock *icsk = &tp->inet_conn; return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, tcp_jiffies32 - tp->rcv_tstamp); } static inline int tcp_fin_time(const struct sock *sk) { int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout; const int rto = inet_csk(sk)->icsk_rto; if (fin_timeout < (rto << 2) - (rto >> 1)) fin_timeout = (rto << 2) - (rto >> 1); return fin_timeout; } static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, int paws_win) { if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) return true; if (unlikely(!time_before32(ktime_get_seconds(), rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))) return true; /* * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, * then following tcp messages have valid values. Ignore 0 value, * or else 'negative' tsval might forbid us to accept their packets. */ if (!rx_opt->ts_recent) return true; return false; } static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, int rst) { if (tcp_paws_check(rx_opt, 0)) return false; /* RST segments are not recommended to carry timestamp, and, if they do, it is recommended to ignore PAWS because "their cleanup function should take precedence over timestamps." Certainly, it is mistake. It is necessary to understand the reasons of this constraint to relax it: if peer reboots, clock may go out-of-sync and half-open connections will not be reset. Actually, the problem would be not existing if all the implementations followed draft about maintaining clock via reboots. Linux-2.2 DOES NOT! However, we can relax time bounds for RST segments to MSL. */ if (rst && !time_before32(ktime_get_seconds(), rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) return false; return true; } bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, int mib_idx, u32 *last_oow_ack_time); static inline void tcp_mib_init(struct net *net) { /* See RFC 2012 */ TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); } /* from STCP */ static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) { tp->lost_skb_hint = NULL; } static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) { tcp_clear_retrans_hints_partial(tp); tp->retransmit_skb_hint = NULL; } union tcp_md5_addr { struct in_addr a4; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr a6; #endif }; /* - key database */ struct tcp_md5sig_key { struct hlist_node node; u8 keylen; u8 family; /* AF_INET or AF_INET6 */ u8 prefixlen; union tcp_md5_addr addr; int l3index; /* set if key added with L3 scope */ u8 key[TCP_MD5SIG_MAXKEYLEN]; struct rcu_head rcu; }; /* - sock block */ struct tcp_md5sig_info { struct hlist_head head; struct rcu_head rcu; }; /* - pseudo header */ struct tcp4_pseudohdr { __be32 saddr; __be32 daddr; __u8 pad; __u8 protocol; __be16 len; }; struct tcp6_pseudohdr { struct in6_addr saddr; struct in6_addr daddr; __be32 len; __be32 protocol; /* including padding */ }; union tcp_md5sum_block { struct tcp4_pseudohdr ip4; #if IS_ENABLED(CONFIG_IPV6) struct tcp6_pseudohdr ip6; #endif }; /* - pool: digest algorithm, hash description and scratch buffer */ struct tcp_md5sig_pool { struct ahash_request *md5_req; void *scratch; }; /* - functions */ int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, const struct sock *sk, const struct sk_buff *skb); int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, int family, u8 prefixlen, int l3index, const u8 *newkey, u8 newkeylen, gfp_t gfp); int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, u8 prefixlen, int l3index); struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, const struct sock *addr_sk); #ifdef CONFIG_TCP_MD5SIG #include <linux/jump_label.h> extern struct static_key_false tcp_md5_needed; struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, const union tcp_md5_addr *addr, int family); static inline struct tcp_md5sig_key * tcp_md5_do_lookup(const struct sock *sk, int l3index, const union tcp_md5_addr *addr, int family) { if (!static_branch_unlikely(&tcp_md5_needed)) return NULL; return __tcp_md5_do_lookup(sk, l3index, addr, family); } #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) #else static inline struct tcp_md5sig_key * tcp_md5_do_lookup(const struct sock *sk, int l3index, const union tcp_md5_addr *addr, int family) { return NULL; } #define tcp_twsk_md5_key(twsk) NULL #endif bool tcp_alloc_md5sig_pool(void); struct tcp_md5sig_pool *tcp_get_md5sig_pool(void); static inline void tcp_put_md5sig_pool(void) { local_bh_enable(); } int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *, unsigned int header_len); int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key); /* From tcp_fastopen.c */ void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, struct tcp_fastopen_cookie *cookie); void tcp_fastopen_cache_set(struct sock *sk, u16 mss, struct tcp_fastopen_cookie *cookie, bool syn_lost, u16 try_exp); struct tcp_fastopen_request { /* Fast Open cookie. Size 0 means a cookie request */ struct tcp_fastopen_cookie cookie; struct msghdr *data; /* data in MSG_FASTOPEN */ size_t size; int copied; /* queued in tcp_connect() */ struct ubuf_info *uarg; }; void tcp_free_fastopen_req(struct tcp_sock *tp); void tcp_fastopen_destroy_cipher(struct sock *sk); void tcp_fastopen_ctx_destroy(struct net *net); int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, void *primary_key, void *backup_key); int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, u64 *key); void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct tcp_fastopen_cookie *foc, const struct dst_entry *dst); void tcp_fastopen_init_key_once(struct net *net); bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, struct tcp_fastopen_cookie *cookie); bool tcp_fastopen_defer_connect(struct sock *sk, int *err); #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) #define TCP_FASTOPEN_KEY_MAX 2 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) /* Fastopen key context */ struct tcp_fastopen_context { siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; int num; struct rcu_head rcu; }; extern unsigned int sysctl_tcp_fastopen_blackhole_timeout; void tcp_fastopen_active_disable(struct sock *sk); bool tcp_fastopen_active_should_disable(struct sock *sk); void tcp_fastopen_active_disable_ofo_check(struct sock *sk); void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); /* Caller needs to wrap with rcu_read_(un)lock() */ static inline struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) { struct tcp_fastopen_context *ctx; ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); if (!ctx) ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); return ctx; } static inline bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, const struct tcp_fastopen_cookie *orig) { if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && orig->len == foc->len && !memcmp(orig->val, foc->val, foc->len)) return true; return false; } static inline int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) { return ctx->num; } /* Latencies incurred by various limits for a sender. They are * chronograph-like stats that are mutually exclusive. */ enum tcp_chrono { TCP_CHRONO_UNSPEC, TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ __TCP_CHRONO_MAX, }; void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); /* This helper is needed, because skb->tcp_tsorted_anchor uses * the same memory storage than skb->destructor/_skb_refdst */ static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) { skb->destructor = NULL; skb->_skb_refdst = 0UL; } #define tcp_skb_tsorted_save(skb) { \ unsigned long _save = skb->_skb_refdst; \ skb->_skb_refdst = 0UL; #define tcp_skb_tsorted_restore(skb) \ skb->_skb_refdst = _save; \ } void tcp_write_queue_purge(struct sock *sk); static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) { return skb_rb_first(&sk->tcp_rtx_queue); } static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) { return skb_rb_last(&sk->tcp_rtx_queue); } static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk) { return skb_peek(&sk->sk_write_queue); } static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) { return skb_peek_tail(&sk->sk_write_queue); } #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) static inline struct sk_buff *tcp_send_head(const struct sock *sk) { return skb_peek(&sk->sk_write_queue); } static inline bool tcp_skb_is_last(const struct sock *sk, const struct sk_buff *skb) { return skb_queue_is_last(&sk->sk_write_queue, skb); } /** * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue * @sk: socket * * Since the write queue can have a temporary empty skb in it, * we must not use "return skb_queue_empty(&sk->sk_write_queue)" */ static inline bool tcp_write_queue_empty(const struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); return tp->write_seq == tp->snd_nxt; } static inline bool tcp_rtx_queue_empty(const struct sock *sk) { return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); } static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) { return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); } static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) { __skb_queue_tail(&sk->sk_write_queue, skb); /* Queue it, remembering where we must start sending. */ if (sk->sk_write_queue.next == skb) tcp_chrono_start(sk, TCP_CHRONO_BUSY); } /* Insert new before skb on the write queue of sk. */ static inline void tcp_insert_write_queue_before(struct sk_buff *new, struct sk_buff *skb, struct sock *sk) { __skb_queue_before(&sk->sk_write_queue, skb, new); } static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) { tcp_skb_tsorted_anchor_cleanup(skb); __skb_unlink(skb, &sk->sk_write_queue); } void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) { tcp_skb_tsorted_anchor_cleanup(skb); rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); } static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) { list_del(&skb->tcp_tsorted_anchor); tcp_rtx_queue_unlink(skb, sk); sk_wmem_free_skb(sk, skb); } static inline void tcp_push_pending_frames(struct sock *sk) { if (tcp_send_head(sk)) { struct tcp_sock *tp = tcp_sk(sk); __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); } } /* Start sequence of the skb just after the highest skb with SACKed * bit, valid only if sacked_out > 0 or when the caller has ensured * validity by itself. */ static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) { if (!tp->sacked_out) return tp->snd_una; if (tp->highest_sack == NULL) return tp->snd_nxt; return TCP_SKB_CB(tp->highest_sack)->seq; } static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) { tcp_sk(sk)->highest_sack = skb_rb_next(skb); } static inline struct sk_buff *tcp_highest_sack(struct sock *sk) { return tcp_sk(sk)->highest_sack; } static inline void tcp_highest_sack_reset(struct sock *sk) { tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); } /* Called when old skb is about to be deleted and replaced by new skb */ static inline void tcp_highest_sack_replace(struct sock *sk, struct sk_buff *old, struct sk_buff *new) { if (old == tcp_highest_sack(sk)) tcp_sk(sk)->highest_sack = new; } /* This helper checks if socket has IP_TRANSPARENT set */ static inline bool inet_sk_transparent(const struct sock *sk) { switch (sk->sk_state) { case TCP_TIME_WAIT: return inet_twsk(sk)->tw_transparent; case TCP_NEW_SYN_RECV: return inet_rsk(inet_reqsk(sk))->no_srccheck; } return inet_sk(sk)->transparent; } /* Determines whether this is a thin stream (which may suffer from * increased latency). Used to trigger latency-reducing mechanisms. */ static inline bool tcp_stream_is_thin(struct tcp_sock *tp) { return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); } /* /proc */ enum tcp_seq_states { TCP_SEQ_STATE_LISTENING, TCP_SEQ_STATE_ESTABLISHED, }; void *tcp_seq_start(struct seq_file *seq, loff_t *pos); void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); void tcp_seq_stop(struct seq_file *seq, void *v); struct tcp_seq_afinfo { sa_family_t family; }; struct tcp_iter_state { struct seq_net_private p; enum tcp_seq_states state; struct sock *syn_wait_sk; struct tcp_seq_afinfo *bpf_seq_afinfo; int bucket, offset, sbucket, num; loff_t last_pos; }; extern struct request_sock_ops tcp_request_sock_ops; extern struct request_sock_ops tcp6_request_sock_ops; void tcp_v4_destroy_sock(struct sock *sk); struct sk_buff *tcp_gso_segment(struct sk_buff *skb, netdev_features_t features); struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); int tcp_gro_complete(struct sk_buff *skb); void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) { struct net *net = sock_net((struct sock *)tp); return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat; } /* @wake is one when sk_stream_write_space() calls us. * This sends EPOLLOUT only if notsent_bytes is half the limit. * This mimics the strategy used in sock_def_write_space(). */ static inline bool tcp_stream_memory_free(const struct sock *sk, int wake) { const struct tcp_sock *tp = tcp_sk(sk); u32 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt); return (notsent_bytes << wake) < tcp_notsent_lowat(tp); } #ifdef CONFIG_PROC_FS int tcp4_proc_init(void); void tcp4_proc_exit(void); #endif int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); int tcp_conn_request(struct request_sock_ops *rsk_ops, const struct tcp_request_sock_ops *af_ops, struct sock *sk, struct sk_buff *skb); /* TCP af-specific functions */ struct tcp_sock_af_ops { #ifdef CONFIG_TCP_MD5SIG struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, const struct sock *addr_sk); int (*calc_md5_hash)(char *location, const struct tcp_md5sig_key *md5, const struct sock *sk, const struct sk_buff *skb); int (*md5_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); #endif }; struct tcp_request_sock_ops { u16 mss_clamp; #ifdef CONFIG_TCP_MD5SIG struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, const struct sock *addr_sk); int (*calc_md5_hash) (char *location, const struct tcp_md5sig_key *md5, const struct sock *sk, const struct sk_buff *skb); #endif void (*init_req)(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb); #ifdef CONFIG_SYN_COOKIES __u32 (*cookie_init_seq)(const struct sk_buff *skb, __u16 *mss); #endif struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl, const struct request_sock *req); u32 (*init_seq)(const struct sk_buff *skb); u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); int (*send_synack)(const struct sock *sk, struct dst_entry *dst, struct flowi *fl, struct request_sock *req, struct tcp_fastopen_cookie *foc, enum tcp_synack_type synack_type, struct sk_buff *syn_skb); }; extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; #if IS_ENABLED(CONFIG_IPV6) extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; #endif #ifdef CONFIG_SYN_COOKIES static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, const struct sock *sk, struct sk_buff *skb, __u16 *mss) { tcp_synq_overflow(sk); __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); return ops->cookie_init_seq(skb, mss); } #else static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, const struct sock *sk, struct sk_buff *skb, __u16 *mss) { return 0; } #endif int tcpv4_offload_init(void); void tcp_v4_init(void); void tcp_init(void); /* tcp_recovery.c */ void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, u32 reo_wnd); extern bool tcp_rack_mark_lost(struct sock *sk); extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, u64 xmit_time); extern void tcp_rack_reo_timeout(struct sock *sk); extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); /* At how many usecs into the future should the RTO fire? */ static inline s64 tcp_rto_delta_us(const struct sock *sk) { const struct sk_buff *skb = tcp_rtx_queue_head(sk); u32 rto = inet_csk(sk)->icsk_rto; u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; } /* * Save and compile IPv4 options, return a pointer to it */ static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, struct sk_buff *skb) { const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; struct ip_options_rcu *dopt = NULL; if (opt->optlen) { int opt_size = sizeof(*dopt) + opt->optlen; dopt = kmalloc(opt_size, GFP_ATOMIC); if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { kfree(dopt); dopt = NULL; } } return dopt; } /* locally generated TCP pure ACKs have skb->truesize == 2 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) * This is much faster than dissecting the packet to find out. * (Think of GRE encapsulations, IPv4, IPv6, ...) */ static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) { return skb->truesize == 2; } static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) { skb->truesize = 2; } static inline int tcp_inq(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); int answ; if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { answ = 0; } else if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || before(tp->urg_seq, tp->copied_seq) || !before(tp->urg_seq, tp->rcv_nxt)) { answ = tp->rcv_nxt - tp->copied_seq; /* Subtract 1, if FIN was received */ if (answ && sock_flag(sk, SOCK_DONE)) answ--; } else { answ = tp->urg_seq - tp->copied_seq; } return answ; } int tcp_peek_len(struct socket *sock); static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) { u16 segs_in; segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); tp->segs_in += segs_in; if (skb->len > tcp_hdrlen(skb)) tp->data_segs_in += segs_in; } /* * TCP listen path runs lockless. * We forced "struct sock" to be const qualified to make sure * we don't modify one of its field by mistake. * Here, we increment sk_drops which is an atomic_t, so we can safely * make sock writable again. */ static inline void tcp_listendrop(const struct sock *sk) { atomic_inc(&((struct sock *)sk)->sk_drops); __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); } enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); /* * Interface for adding Upper Level Protocols over TCP */ #define TCP_ULP_NAME_MAX 16 #define TCP_ULP_MAX 128 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) struct tcp_ulp_ops { struct list_head list; /* initialize ulp */ int (*init)(struct sock *sk); /* update ulp */ void (*update)(struct sock *sk, struct proto *p, void (*write_space)(struct sock *sk)); /* cleanup ulp */ void (*release)(struct sock *sk); /* diagnostic */ int (*get_info)(const struct sock *sk, struct sk_buff *skb); size_t (*get_info_size)(const struct sock *sk); /* clone ulp */ void (*clone)(const struct request_sock *req, struct sock *newsk, const gfp_t priority); char name[TCP_ULP_NAME_MAX]; struct module *owner; }; int tcp_register_ulp(struct tcp_ulp_ops *type); void tcp_unregister_ulp(struct tcp_ulp_ops *type); int tcp_set_ulp(struct sock *sk, const char *name); void tcp_get_available_ulp(char *buf, size_t len); void tcp_cleanup_ulp(struct sock *sk); void tcp_update_ulp(struct sock *sk, struct proto *p, void (*write_space)(struct sock *sk)); #define MODULE_ALIAS_TCP_ULP(name) \ __MODULE_INFO(alias, alias_userspace, name); \ __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) struct sk_msg; struct sk_psock; #ifdef CONFIG_BPF_STREAM_PARSER struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); #else static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) { } #endif /* CONFIG_BPF_STREAM_PARSER */ #ifdef CONFIG_NET_SOCK_MSG int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes, int flags); int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg, int len, int flags); #endif /* CONFIG_NET_SOCK_MSG */ #ifdef CONFIG_CGROUP_BPF static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, struct sk_buff *skb, unsigned int end_offset) { skops->skb = skb; skops->skb_data_end = skb->data + end_offset; } #else static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, struct sk_buff *skb, unsigned int end_offset) { } #endif /* Call BPF_SOCK_OPS program that returns an int. If the return value * is < 0, then the BPF op failed (for example if the loaded BPF * program does not support the chosen operation or there is no BPF * program loaded). */ #ifdef CONFIG_BPF static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) { struct bpf_sock_ops_kern sock_ops; int ret; memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); if (sk_fullsock(sk)) { sock_ops.is_fullsock = 1; sock_owned_by_me(sk); } sock_ops.sk = sk; sock_ops.op = op; if (nargs > 0) memcpy(sock_ops.args, args, nargs * sizeof(*args)); ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); if (ret == 0) ret = sock_ops.reply; else ret = -1; return ret; } static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) { u32 args[2] = {arg1, arg2}; return tcp_call_bpf(sk, op, 2, args); } static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, u32 arg3) { u32 args[3] = {arg1, arg2, arg3}; return tcp_call_bpf(sk, op, 3, args); } #else static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) { return -EPERM; } static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) { return -EPERM; } static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, u32 arg3) { return -EPERM; } #endif static inline u32 tcp_timeout_init(struct sock *sk) { int timeout; timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); if (timeout <= 0) timeout = TCP_TIMEOUT_INIT; return timeout; } static inline u32 tcp_rwnd_init_bpf(struct sock *sk) { int rwnd; rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); if (rwnd < 0) rwnd = 0; return rwnd; } static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) { return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); } static inline void tcp_bpf_rtt(struct sock *sk) { if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); } #if IS_ENABLED(CONFIG_SMC) extern struct static_key_false tcp_have_smc; #endif #if IS_ENABLED(CONFIG_TLS_DEVICE) void clean_acked_data_enable(struct inet_connection_sock *icsk, void (*cad)(struct sock *sk, u32 ack_seq)); void clean_acked_data_disable(struct inet_connection_sock *icsk); void clean_acked_data_flush(void); #endif DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); static inline void tcp_add_tx_delay(struct sk_buff *skb, const struct tcp_sock *tp) { if (static_branch_unlikely(&tcp_tx_delay_enabled)) skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; } /* Compute Earliest Departure Time for some control packets * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. */ static inline u64 tcp_transmit_time(const struct sock *sk) { if (static_branch_unlikely(&tcp_tx_delay_enabled)) { u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; } return 0; } #endif /* _TCP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Forwarding Information Base. * * Authors: A.N.Kuznetsov, <kuznet@ms2.inr.ac.ru> */ #ifndef _NET_IP_FIB_H #define _NET_IP_FIB_H #include <net/flow.h> #include <linux/seq_file.h> #include <linux/rcupdate.h> #include <net/fib_notifier.h> #include <net/fib_rules.h> #include <net/inetpeer.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/refcount.h> struct fib_config { u8 fc_dst_len; u8 fc_tos; u8 fc_protocol; u8 fc_scope; u8 fc_type; u8 fc_gw_family; /* 2 bytes unused */ u32 fc_table; __be32 fc_dst; union { __be32 fc_gw4; struct in6_addr fc_gw6; }; int fc_oif; u32 fc_flags; u32 fc_priority; __be32 fc_prefsrc; u32 fc_nh_id; struct nlattr *fc_mx; struct rtnexthop *fc_mp; int fc_mx_len; int fc_mp_len; u32 fc_flow; u32 fc_nlflags; struct nl_info fc_nlinfo; struct nlattr *fc_encap; u16 fc_encap_type; }; struct fib_info; struct rtable; struct fib_nh_exception { struct fib_nh_exception __rcu *fnhe_next; int fnhe_genid; __be32 fnhe_daddr; u32 fnhe_pmtu; bool fnhe_mtu_locked; __be32 fnhe_gw; unsigned long fnhe_expires; struct rtable __rcu *fnhe_rth_input; struct rtable __rcu *fnhe_rth_output; unsigned long fnhe_stamp; struct rcu_head rcu; }; struct fnhe_hash_bucket { struct fib_nh_exception __rcu *chain; }; #define FNHE_HASH_SHIFT 11 #define FNHE_HASH_SIZE (1 << FNHE_HASH_SHIFT) #define FNHE_RECLAIM_DEPTH 5 struct fib_nh_common { struct net_device *nhc_dev; int nhc_oif; unsigned char nhc_scope; u8 nhc_family; u8 nhc_gw_family; unsigned char nhc_flags; struct lwtunnel_state *nhc_lwtstate; union { __be32 ipv4; struct in6_addr ipv6; } nhc_gw; int nhc_weight; atomic_t nhc_upper_bound; /* v4 specific, but allows fib6_nh with v4 routes */ struct rtable __rcu * __percpu *nhc_pcpu_rth_output; struct rtable __rcu *nhc_rth_input; struct fnhe_hash_bucket __rcu *nhc_exceptions; }; struct fib_nh { struct fib_nh_common nh_common; struct hlist_node nh_hash; struct fib_info *nh_parent; #ifdef CONFIG_IP_ROUTE_CLASSID __u32 nh_tclassid; #endif __be32 nh_saddr; int nh_saddr_genid; #define fib_nh_family nh_common.nhc_family #define fib_nh_dev nh_common.nhc_dev #define fib_nh_oif nh_common.nhc_oif #define fib_nh_flags nh_common.nhc_flags #define fib_nh_lws nh_common.nhc_lwtstate #define fib_nh_scope nh_common.nhc_scope #define fib_nh_gw_family nh_common.nhc_gw_family #define fib_nh_gw4 nh_common.nhc_gw.ipv4 #define fib_nh_gw6 nh_common.nhc_gw.ipv6 #define fib_nh_weight nh_common.nhc_weight #define fib_nh_upper_bound nh_common.nhc_upper_bound }; /* * This structure contains data shared by many of routes. */ struct nexthop; struct fib_info { struct hlist_node fib_hash; struct hlist_node fib_lhash; struct list_head nh_list; struct net *fib_net; int fib_treeref; refcount_t fib_clntref; unsigned int fib_flags; unsigned char fib_dead; unsigned char fib_protocol; unsigned char fib_scope; unsigned char fib_type; __be32 fib_prefsrc; u32 fib_tb_id; u32 fib_priority; struct dst_metrics *fib_metrics; #define fib_mtu fib_metrics->metrics[RTAX_MTU-1] #define fib_window fib_metrics->metrics[RTAX_WINDOW-1] #define fib_rtt fib_metrics->metrics[RTAX_RTT-1] #define fib_advmss fib_metrics->metrics[RTAX_ADVMSS-1] int fib_nhs; bool fib_nh_is_v6; bool nh_updated; struct nexthop *nh; struct rcu_head rcu; struct fib_nh fib_nh[]; }; #ifdef CONFIG_IP_MULTIPLE_TABLES struct fib_rule; #endif struct fib_table; struct fib_result { __be32 prefix; unsigned char prefixlen; unsigned char nh_sel; unsigned char type; unsigned char scope; u32 tclassid; struct fib_nh_common *nhc; struct fib_info *fi; struct fib_table *table; struct hlist_head *fa_head; }; struct fib_result_nl { __be32 fl_addr; /* To be looked up*/ u32 fl_mark; unsigned char fl_tos; unsigned char fl_scope; unsigned char tb_id_in; unsigned char tb_id; /* Results */ unsigned char prefixlen; unsigned char nh_sel; unsigned char type; unsigned char scope; int err; }; #ifdef CONFIG_IP_MULTIPLE_TABLES #define FIB_TABLE_HASHSZ 256 #else #define FIB_TABLE_HASHSZ 2 #endif __be32 fib_info_update_nhc_saddr(struct net *net, struct fib_nh_common *nhc, unsigned char scope); __be32 fib_result_prefsrc(struct net *net, struct fib_result *res); #define FIB_RES_NHC(res) ((res).nhc) #define FIB_RES_DEV(res) (FIB_RES_NHC(res)->nhc_dev) #define FIB_RES_OIF(res) (FIB_RES_NHC(res)->nhc_oif) struct fib_rt_info { struct fib_info *fi; u32 tb_id; __be32 dst; int dst_len; u8 tos; u8 type; u8 offload:1, trap:1, unused:6; }; struct fib_entry_notifier_info { struct fib_notifier_info info; /* must be first */ u32 dst; int dst_len; struct fib_info *fi; u8 tos; u8 type; u32 tb_id; }; struct fib_nh_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib_nh *fib_nh; }; int call_fib4_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info); int call_fib4_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info); int __net_init fib4_notifier_init(struct net *net); void __net_exit fib4_notifier_exit(struct net *net); void fib_info_notify_update(struct net *net, struct nl_info *info); int fib_notify(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); struct fib_table { struct hlist_node tb_hlist; u32 tb_id; int tb_num_default; struct rcu_head rcu; unsigned long *tb_data; unsigned long __data[]; }; struct fib_dump_filter { u32 table_id; /* filter_set is an optimization that an entry is set */ bool filter_set; bool dump_routes; bool dump_exceptions; unsigned char protocol; unsigned char rt_type; unsigned int flags; struct net_device *dev; }; int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, struct fib_result *res, int fib_flags); int fib_table_insert(struct net *, struct fib_table *, struct fib_config *, struct netlink_ext_ack *extack); int fib_table_delete(struct net *, struct fib_table *, struct fib_config *, struct netlink_ext_ack *extack); int fib_table_dump(struct fib_table *table, struct sk_buff *skb, struct netlink_callback *cb, struct fib_dump_filter *filter); int fib_table_flush(struct net *net, struct fib_table *table, bool flush_all); struct fib_table *fib_trie_unmerge(struct fib_table *main_tb); void fib_table_flush_external(struct fib_table *table); void fib_free_table(struct fib_table *tb); #ifndef CONFIG_IP_MULTIPLE_TABLES #define TABLE_LOCAL_INDEX (RT_TABLE_LOCAL & (FIB_TABLE_HASHSZ - 1)) #define TABLE_MAIN_INDEX (RT_TABLE_MAIN & (FIB_TABLE_HASHSZ - 1)) static inline struct fib_table *fib_get_table(struct net *net, u32 id) { struct hlist_node *tb_hlist; struct hlist_head *ptr; ptr = id == RT_TABLE_LOCAL ? &net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX] : &net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]; tb_hlist = rcu_dereference_rtnl(hlist_first_rcu(ptr)); return hlist_entry(tb_hlist, struct fib_table, tb_hlist); } static inline struct fib_table *fib_new_table(struct net *net, u32 id) { return fib_get_table(net, id); } static inline int fib_lookup(struct net *net, const struct flowi4 *flp, struct fib_result *res, unsigned int flags) { struct fib_table *tb; int err = -ENETUNREACH; rcu_read_lock(); tb = fib_get_table(net, RT_TABLE_MAIN); if (tb) err = fib_table_lookup(tb, flp, res, flags | FIB_LOOKUP_NOREF); if (err == -EAGAIN) err = -ENETUNREACH; rcu_read_unlock(); return err; } static inline bool fib4_has_custom_rules(const struct net *net) { return false; } static inline bool fib4_rule_default(const struct fib_rule *rule) { return true; } static inline int fib4_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static inline unsigned int fib4_rules_seq_read(struct net *net) { return 0; } static inline bool fib4_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi4 *fl4, struct flow_keys *flkeys) { return false; } #else /* CONFIG_IP_MULTIPLE_TABLES */ int __net_init fib4_rules_init(struct net *net); void __net_exit fib4_rules_exit(struct net *net); struct fib_table *fib_new_table(struct net *net, u32 id); struct fib_table *fib_get_table(struct net *net, u32 id); int __fib_lookup(struct net *net, struct flowi4 *flp, struct fib_result *res, unsigned int flags); static inline int fib_lookup(struct net *net, struct flowi4 *flp, struct fib_result *res, unsigned int flags) { struct fib_table *tb; int err = -ENETUNREACH; flags |= FIB_LOOKUP_NOREF; if (net->ipv4.fib_has_custom_rules) return __fib_lookup(net, flp, res, flags); rcu_read_lock(); res->tclassid = 0; tb = rcu_dereference_rtnl(net->ipv4.fib_main); if (tb) err = fib_table_lookup(tb, flp, res, flags); if (!err) goto out; tb = rcu_dereference_rtnl(net->ipv4.fib_default); if (tb) err = fib_table_lookup(tb, flp, res, flags); out: if (err == -EAGAIN) err = -ENETUNREACH; rcu_read_unlock(); return err; } static inline bool fib4_has_custom_rules(const struct net *net) { return net->ipv4.fib_has_custom_rules; } bool fib4_rule_default(const struct fib_rule *rule); int fib4_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); unsigned int fib4_rules_seq_read(struct net *net); static inline bool fib4_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi4 *fl4, struct flow_keys *flkeys) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; if (!net->ipv4.fib_rules_require_fldissect) return false; skb_flow_dissect_flow_keys(skb, flkeys, flag); fl4->fl4_sport = flkeys->ports.src; fl4->fl4_dport = flkeys->ports.dst; fl4->flowi4_proto = flkeys->basic.ip_proto; return true; } #endif /* CONFIG_IP_MULTIPLE_TABLES */ /* Exported by fib_frontend.c */ extern const struct nla_policy rtm_ipv4_policy[]; void ip_fib_init(void); int fib_gw_from_via(struct fib_config *cfg, struct nlattr *nla, struct netlink_ext_ack *extack); __be32 fib_compute_spec_dst(struct sk_buff *skb); bool fib_info_nh_uses_dev(struct fib_info *fi, const struct net_device *dev); int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst, u8 tos, int oif, struct net_device *dev, struct in_device *idev, u32 *itag); #ifdef CONFIG_IP_ROUTE_CLASSID static inline int fib_num_tclassid_users(struct net *net) { return atomic_read(&net->ipv4.fib_num_tclassid_users); } #else static inline int fib_num_tclassid_users(struct net *net) { return 0; } #endif int fib_unmerge(struct net *net); static inline bool nhc_l3mdev_matches_dev(const struct fib_nh_common *nhc, const struct net_device *dev) { if (nhc->nhc_dev == dev || l3mdev_master_ifindex_rcu(nhc->nhc_dev) == dev->ifindex) return true; return false; } /* Exported by fib_semantics.c */ int ip_fib_check_default(__be32 gw, struct net_device *dev); int fib_sync_down_dev(struct net_device *dev, unsigned long event, bool force); int fib_sync_down_addr(struct net_device *dev, __be32 local); int fib_sync_up(struct net_device *dev, unsigned char nh_flags); void fib_sync_mtu(struct net_device *dev, u32 orig_mtu); void fib_nhc_update_mtu(struct fib_nh_common *nhc, u32 new, u32 orig); #ifdef CONFIG_IP_ROUTE_MULTIPATH int fib_multipath_hash(const struct net *net, const struct flowi4 *fl4, const struct sk_buff *skb, struct flow_keys *flkeys); #endif int fib_check_nh(struct net *net, struct fib_nh *nh, u32 table, u8 scope, struct netlink_ext_ack *extack); void fib_select_multipath(struct fib_result *res, int hash); void fib_select_path(struct net *net, struct fib_result *res, struct flowi4 *fl4, const struct sk_buff *skb); int fib_nh_init(struct net *net, struct fib_nh *fib_nh, struct fib_config *cfg, int nh_weight, struct netlink_ext_ack *extack); void fib_nh_release(struct net *net, struct fib_nh *fib_nh); int fib_nh_common_init(struct net *net, struct fib_nh_common *nhc, struct nlattr *fc_encap, u16 fc_encap_type, void *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); void fib_nh_common_release(struct fib_nh_common *nhc); /* Exported by fib_trie.c */ void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri); void fib_trie_init(void); struct fib_table *fib_trie_table(u32 id, struct fib_table *alias); bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, const struct flowi4 *flp); static inline void fib_combine_itag(u32 *itag, const struct fib_result *res) { #ifdef CONFIG_IP_ROUTE_CLASSID struct fib_nh_common *nhc = res->nhc; #ifdef CONFIG_IP_MULTIPLE_TABLES u32 rtag; #endif if (nhc->nhc_family == AF_INET) { struct fib_nh *nh; nh = container_of(nhc, struct fib_nh, nh_common); *itag = nh->nh_tclassid << 16; } else { *itag = 0; } #ifdef CONFIG_IP_MULTIPLE_TABLES rtag = res->tclassid; if (*itag == 0) *itag = (rtag<<16); *itag |= (rtag>>16); #endif #endif } void fib_flush(struct net *net); void free_fib_info(struct fib_info *fi); static inline void fib_info_hold(struct fib_info *fi) { refcount_inc(&fi->fib_clntref); } static inline void fib_info_put(struct fib_info *fi) { if (refcount_dec_and_test(&fi->fib_clntref)) free_fib_info(fi); } #ifdef CONFIG_PROC_FS int __net_init fib_proc_init(struct net *net); void __net_exit fib_proc_exit(struct net *net); #else static inline int fib_proc_init(struct net *net) { return 0; } static inline void fib_proc_exit(struct net *net) { } #endif u32 ip_mtu_from_fib_result(struct fib_result *res, __be32 daddr); int ip_valid_fib_dump_req(struct net *net, const struct nlmsghdr *nlh, struct fib_dump_filter *filter, struct netlink_callback *cb); int fib_nexthop_info(struct sk_buff *skb, const struct fib_nh_common *nh, u8 rt_family, unsigned char *flags, bool skip_oif); int fib_add_nexthop(struct sk_buff *skb, const struct fib_nh_common *nh, int nh_weight, u8 rt_family, u32 nh_tclassid); #endif /* _NET_FIB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_TASK_H #define _LINUX_SCHED_TASK_H /* * Interface between the scheduler and various task lifetime (fork()/exit()) * functionality: */ #include <linux/sched.h> #include <linux/uaccess.h> struct task_struct; struct rusage; union thread_union; struct css_set; /* All the bits taken by the old clone syscall. */ #define CLONE_LEGACY_FLAGS 0xffffffffULL struct kernel_clone_args { u64 flags; int __user *pidfd; int __user *child_tid; int __user *parent_tid; int exit_signal; unsigned long stack; unsigned long stack_size; unsigned long tls; pid_t *set_tid; /* Number of elements in *set_tid */ size_t set_tid_size; int cgroup; struct cgroup *cgrp; struct css_set *cset; }; /* * This serializes "schedule()" and also protects * the run-queue from deletions/modifications (but * _adding_ to the beginning of the run-queue has * a separate lock). */ extern rwlock_t tasklist_lock; extern spinlock_t mmlist_lock; extern union thread_union init_thread_union; extern struct task_struct init_task; #ifdef CONFIG_PROVE_RCU extern int lockdep_tasklist_lock_is_held(void); #endif /* #ifdef CONFIG_PROVE_RCU */ extern asmlinkage void schedule_tail(struct task_struct *prev); extern void init_idle(struct task_struct *idle, int cpu); extern int sched_fork(unsigned long clone_flags, struct task_struct *p); extern void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs); extern void sched_dead(struct task_struct *p); void __noreturn do_task_dead(void); extern void proc_caches_init(void); extern void fork_init(void); extern void release_task(struct task_struct * p); extern int copy_thread(unsigned long, unsigned long, unsigned long, struct task_struct *, unsigned long); extern void flush_thread(void); #ifdef CONFIG_HAVE_EXIT_THREAD extern void exit_thread(struct task_struct *tsk); #else static inline void exit_thread(struct task_struct *tsk) { } #endif extern void do_group_exit(int); extern void exit_files(struct task_struct *); extern void exit_itimers(struct signal_struct *); extern pid_t kernel_clone(struct kernel_clone_args *kargs); struct task_struct *fork_idle(int); struct mm_struct *copy_init_mm(void); extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); extern long kernel_wait4(pid_t, int __user *, int, struct rusage *); int kernel_wait(pid_t pid, int *stat); extern void free_task(struct task_struct *tsk); /* sched_exec is called by processes performing an exec */ #ifdef CONFIG_SMP extern void sched_exec(void); #else #define sched_exec() {} #endif static inline struct task_struct *get_task_struct(struct task_struct *t) { refcount_inc(&t->usage); return t; } extern void __put_task_struct(struct task_struct *t); static inline void put_task_struct(struct task_struct *t) { if (refcount_dec_and_test(&t->usage)) __put_task_struct(t); } static inline void put_task_struct_many(struct task_struct *t, int nr) { if (refcount_sub_and_test(nr, &t->usage)) __put_task_struct(t); } void put_task_struct_rcu_user(struct task_struct *task); #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT extern int arch_task_struct_size __read_mostly; #else # define arch_task_struct_size (sizeof(struct task_struct)) #endif #ifndef CONFIG_HAVE_ARCH_THREAD_STRUCT_WHITELIST /* * If an architecture has not declared a thread_struct whitelist we * must assume something there may need to be copied to userspace. */ static inline void arch_thread_struct_whitelist(unsigned long *offset, unsigned long *size) { *offset = 0; /* Handle dynamically sized thread_struct. */ *size = arch_task_struct_size - offsetof(struct task_struct, thread); } #endif #ifdef CONFIG_VMAP_STACK static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return t->stack_vm_area; } #else static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return NULL; } #endif /* * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring * subscriptions and synchronises with wait4(). Also used in procfs. Also * pins the final release of task.io_context. Also protects ->cpuset and * ->cgroup.subsys[]. And ->vfork_done. And ->sysvshm.shm_clist. * * Nests both inside and outside of read_lock(&tasklist_lock). * It must not be nested with write_lock_irq(&tasklist_lock), * neither inside nor outside. */ static inline void task_lock(struct task_struct *p) { spin_lock(&p->alloc_lock); } static inline void task_unlock(struct task_struct *p) { spin_unlock(&p->alloc_lock); } #endif /* _LINUX_SCHED_TASK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PARAVIRT_H #define _ASM_X86_PARAVIRT_H /* Various instructions on x86 need to be replaced for * para-virtualization: those hooks are defined here. */ #ifdef CONFIG_PARAVIRT #include <asm/pgtable_types.h> #include <asm/asm.h> #include <asm/nospec-branch.h> #include <asm/paravirt_types.h> #ifndef __ASSEMBLY__ #include <linux/bug.h> #include <linux/types.h> #include <linux/cpumask.h> #include <asm/frame.h> static inline unsigned long long paravirt_sched_clock(void) { return PVOP_CALL0(unsigned long long, time.sched_clock); } struct static_key; extern struct static_key paravirt_steal_enabled; extern struct static_key paravirt_steal_rq_enabled; __visible void __native_queued_spin_unlock(struct qspinlock *lock); bool pv_is_native_spin_unlock(void); __visible bool __native_vcpu_is_preempted(long cpu); bool pv_is_native_vcpu_is_preempted(void); static inline u64 paravirt_steal_clock(int cpu) { return PVOP_CALL1(u64, time.steal_clock, cpu); } /* The paravirtualized I/O functions */ static inline void slow_down_io(void) { pv_ops.cpu.io_delay(); #ifdef REALLY_SLOW_IO pv_ops.cpu.io_delay(); pv_ops.cpu.io_delay(); pv_ops.cpu.io_delay(); #endif } void native_flush_tlb_local(void); void native_flush_tlb_global(void); void native_flush_tlb_one_user(unsigned long addr); void native_flush_tlb_others(const struct cpumask *cpumask, const struct flush_tlb_info *info); static inline void __flush_tlb_local(void) { PVOP_VCALL0(mmu.flush_tlb_user); } static inline void __flush_tlb_global(void) { PVOP_VCALL0(mmu.flush_tlb_kernel); } static inline void __flush_tlb_one_user(unsigned long addr) { PVOP_VCALL1(mmu.flush_tlb_one_user, addr); } static inline void __flush_tlb_others(const struct cpumask *cpumask, const struct flush_tlb_info *info) { PVOP_VCALL2(mmu.flush_tlb_others, cpumask, info); } static inline void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table) { PVOP_VCALL2(mmu.tlb_remove_table, tlb, table); } static inline void paravirt_arch_exit_mmap(struct mm_struct *mm) { PVOP_VCALL1(mmu.exit_mmap, mm); } #ifdef CONFIG_PARAVIRT_XXL static inline void load_sp0(unsigned long sp0) { PVOP_VCALL1(cpu.load_sp0, sp0); } /* The paravirtualized CPUID instruction. */ static inline void __cpuid(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { PVOP_VCALL4(cpu.cpuid, eax, ebx, ecx, edx); } /* * These special macros can be used to get or set a debugging register */ static inline unsigned long paravirt_get_debugreg(int reg) { return PVOP_CALL1(unsigned long, cpu.get_debugreg, reg); } #define get_debugreg(var, reg) var = paravirt_get_debugreg(reg) static inline void set_debugreg(unsigned long val, int reg) { PVOP_VCALL2(cpu.set_debugreg, reg, val); } static inline unsigned long read_cr0(void) { return PVOP_CALL0(unsigned long, cpu.read_cr0); } static inline void write_cr0(unsigned long x) { PVOP_VCALL1(cpu.write_cr0, x); } static inline unsigned long read_cr2(void) { return PVOP_CALLEE0(unsigned long, mmu.read_cr2); } static inline void write_cr2(unsigned long x) { PVOP_VCALL1(mmu.write_cr2, x); } static inline unsigned long __read_cr3(void) { return PVOP_CALL0(unsigned long, mmu.read_cr3); } static inline void write_cr3(unsigned long x) { PVOP_VCALL1(mmu.write_cr3, x); } static inline void __write_cr4(unsigned long x) { PVOP_VCALL1(cpu.write_cr4, x); } static inline void arch_safe_halt(void) { PVOP_VCALL0(irq.safe_halt); } static inline void halt(void) { PVOP_VCALL0(irq.halt); } static inline void wbinvd(void) { PVOP_VCALL0(cpu.wbinvd); } static inline u64 paravirt_read_msr(unsigned msr) { return PVOP_CALL1(u64, cpu.read_msr, msr); } static inline void paravirt_write_msr(unsigned msr, unsigned low, unsigned high) { PVOP_VCALL3(cpu.write_msr, msr, low, high); } static inline u64 paravirt_read_msr_safe(unsigned msr, int *err) { return PVOP_CALL2(u64, cpu.read_msr_safe, msr, err); } static inline int paravirt_write_msr_safe(unsigned msr, unsigned low, unsigned high) { return PVOP_CALL3(int, cpu.write_msr_safe, msr, low, high); } #define rdmsr(msr, val1, val2) \ do { \ u64 _l = paravirt_read_msr(msr); \ val1 = (u32)_l; \ val2 = _l >> 32; \ } while (0) #define wrmsr(msr, val1, val2) \ do { \ paravirt_write_msr(msr, val1, val2); \ } while (0) #define rdmsrl(msr, val) \ do { \ val = paravirt_read_msr(msr); \ } while (0) static inline void wrmsrl(unsigned msr, u64 val) { wrmsr(msr, (u32)val, (u32)(val>>32)); } #define wrmsr_safe(msr, a, b) paravirt_write_msr_safe(msr, a, b) /* rdmsr with exception handling */ #define rdmsr_safe(msr, a, b) \ ({ \ int _err; \ u64 _l = paravirt_read_msr_safe(msr, &_err); \ (*a) = (u32)_l; \ (*b) = _l >> 32; \ _err; \ }) static inline int rdmsrl_safe(unsigned msr, unsigned long long *p) { int err; *p = paravirt_read_msr_safe(msr, &err); return err; } static inline unsigned long long paravirt_read_pmc(int counter) { return PVOP_CALL1(u64, cpu.read_pmc, counter); } #define rdpmc(counter, low, high) \ do { \ u64 _l = paravirt_read_pmc(counter); \ low = (u32)_l; \ high = _l >> 32; \ } while (0) #define rdpmcl(counter, val) ((val) = paravirt_read_pmc(counter)) static inline void paravirt_alloc_ldt(struct desc_struct *ldt, unsigned entries) { PVOP_VCALL2(cpu.alloc_ldt, ldt, entries); } static inline void paravirt_free_ldt(struct desc_struct *ldt, unsigned entries) { PVOP_VCALL2(cpu.free_ldt, ldt, entries); } static inline void load_TR_desc(void) { PVOP_VCALL0(cpu.load_tr_desc); } static inline void load_gdt(const struct desc_ptr *dtr) { PVOP_VCALL1(cpu.load_gdt, dtr); } static inline void load_idt(const struct desc_ptr *dtr) { PVOP_VCALL1(cpu.load_idt, dtr); } static inline void set_ldt(const void *addr, unsigned entries) { PVOP_VCALL2(cpu.set_ldt, addr, entries); } static inline unsigned long paravirt_store_tr(void) { return PVOP_CALL0(unsigned long, cpu.store_tr); } #define store_tr(tr) ((tr) = paravirt_store_tr()) static inline void load_TLS(struct thread_struct *t, unsigned cpu) { PVOP_VCALL2(cpu.load_tls, t, cpu); } static inline void load_gs_index(unsigned int gs) { PVOP_VCALL1(cpu.load_gs_index, gs); } static inline void write_ldt_entry(struct desc_struct *dt, int entry, const void *desc) { PVOP_VCALL3(cpu.write_ldt_entry, dt, entry, desc); } static inline void write_gdt_entry(struct desc_struct *dt, int entry, void *desc, int type) { PVOP_VCALL4(cpu.write_gdt_entry, dt, entry, desc, type); } static inline void write_idt_entry(gate_desc *dt, int entry, const gate_desc *g) { PVOP_VCALL3(cpu.write_idt_entry, dt, entry, g); } #ifdef CONFIG_X86_IOPL_IOPERM static inline void tss_invalidate_io_bitmap(void) { PVOP_VCALL0(cpu.invalidate_io_bitmap); } static inline void tss_update_io_bitmap(void) { PVOP_VCALL0(cpu.update_io_bitmap); } #endif static inline void paravirt_activate_mm(struct mm_struct *prev, struct mm_struct *next) { PVOP_VCALL2(mmu.activate_mm, prev, next); } static inline void paravirt_arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) { PVOP_VCALL2(mmu.dup_mmap, oldmm, mm); } static inline int paravirt_pgd_alloc(struct mm_struct *mm) { return PVOP_CALL1(int, mmu.pgd_alloc, mm); } static inline void paravirt_pgd_free(struct mm_struct *mm, pgd_t *pgd) { PVOP_VCALL2(mmu.pgd_free, mm, pgd); } static inline void paravirt_alloc_pte(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_pte, mm, pfn); } static inline void paravirt_release_pte(unsigned long pfn) { PVOP_VCALL1(mmu.release_pte, pfn); } static inline void paravirt_alloc_pmd(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_pmd, mm, pfn); } static inline void paravirt_release_pmd(unsigned long pfn) { PVOP_VCALL1(mmu.release_pmd, pfn); } static inline void paravirt_alloc_pud(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_pud, mm, pfn); } static inline void paravirt_release_pud(unsigned long pfn) { PVOP_VCALL1(mmu.release_pud, pfn); } static inline void paravirt_alloc_p4d(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_p4d, mm, pfn); } static inline void paravirt_release_p4d(unsigned long pfn) { PVOP_VCALL1(mmu.release_p4d, pfn); } static inline pte_t __pte(pteval_t val) { return (pte_t) { PVOP_CALLEE1(pteval_t, mmu.make_pte, val) }; } static inline pteval_t pte_val(pte_t pte) { return PVOP_CALLEE1(pteval_t, mmu.pte_val, pte.pte); } static inline pgd_t __pgd(pgdval_t val) { return (pgd_t) { PVOP_CALLEE1(pgdval_t, mmu.make_pgd, val) }; } static inline pgdval_t pgd_val(pgd_t pgd) { return PVOP_CALLEE1(pgdval_t, mmu.pgd_val, pgd.pgd); } #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { pteval_t ret; ret = PVOP_CALL3(pteval_t, mmu.ptep_modify_prot_start, vma, addr, ptep); return (pte_t) { .pte = ret }; } static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t old_pte, pte_t pte) { PVOP_VCALL4(mmu.ptep_modify_prot_commit, vma, addr, ptep, pte.pte); } static inline void set_pte(pte_t *ptep, pte_t pte) { PVOP_VCALL2(mmu.set_pte, ptep, pte.pte); } static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) { PVOP_VCALL2(mmu.set_pmd, pmdp, native_pmd_val(pmd)); } static inline pmd_t __pmd(pmdval_t val) { return (pmd_t) { PVOP_CALLEE1(pmdval_t, mmu.make_pmd, val) }; } static inline pmdval_t pmd_val(pmd_t pmd) { return PVOP_CALLEE1(pmdval_t, mmu.pmd_val, pmd.pmd); } static inline void set_pud(pud_t *pudp, pud_t pud) { PVOP_VCALL2(mmu.set_pud, pudp, native_pud_val(pud)); } static inline pud_t __pud(pudval_t val) { pudval_t ret; ret = PVOP_CALLEE1(pudval_t, mmu.make_pud, val); return (pud_t) { ret }; } static inline pudval_t pud_val(pud_t pud) { return PVOP_CALLEE1(pudval_t, mmu.pud_val, pud.pud); } static inline void pud_clear(pud_t *pudp) { set_pud(pudp, native_make_pud(0)); } static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) { p4dval_t val = native_p4d_val(p4d); PVOP_VCALL2(mmu.set_p4d, p4dp, val); } #if CONFIG_PGTABLE_LEVELS >= 5 static inline p4d_t __p4d(p4dval_t val) { p4dval_t ret = PVOP_CALLEE1(p4dval_t, mmu.make_p4d, val); return (p4d_t) { ret }; } static inline p4dval_t p4d_val(p4d_t p4d) { return PVOP_CALLEE1(p4dval_t, mmu.p4d_val, p4d.p4d); } static inline void __set_pgd(pgd_t *pgdp, pgd_t pgd) { PVOP_VCALL2(mmu.set_pgd, pgdp, native_pgd_val(pgd)); } #define set_pgd(pgdp, pgdval) do { \ if (pgtable_l5_enabled()) \ __set_pgd(pgdp, pgdval); \ else \ set_p4d((p4d_t *)(pgdp), (p4d_t) { (pgdval).pgd }); \ } while (0) #define pgd_clear(pgdp) do { \ if (pgtable_l5_enabled()) \ set_pgd(pgdp, native_make_pgd(0)); \ } while (0) #endif /* CONFIG_PGTABLE_LEVELS == 5 */ static inline void p4d_clear(p4d_t *p4dp) { set_p4d(p4dp, native_make_p4d(0)); } static inline void set_pte_atomic(pte_t *ptep, pte_t pte) { set_pte(ptep, pte); } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { set_pte(ptep, native_make_pte(0)); } static inline void pmd_clear(pmd_t *pmdp) { set_pmd(pmdp, native_make_pmd(0)); } #define __HAVE_ARCH_START_CONTEXT_SWITCH static inline void arch_start_context_switch(struct task_struct *prev) { PVOP_VCALL1(cpu.start_context_switch, prev); } static inline void arch_end_context_switch(struct task_struct *next) { PVOP_VCALL1(cpu.end_context_switch, next); } #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE static inline void arch_enter_lazy_mmu_mode(void) { PVOP_VCALL0(mmu.lazy_mode.enter); } static inline void arch_leave_lazy_mmu_mode(void) { PVOP_VCALL0(mmu.lazy_mode.leave); } static inline void arch_flush_lazy_mmu_mode(void) { PVOP_VCALL0(mmu.lazy_mode.flush); } static inline void __set_fixmap(unsigned /* enum fixed_addresses */ idx, phys_addr_t phys, pgprot_t flags) { pv_ops.mmu.set_fixmap(idx, phys, flags); } #endif #if defined(CONFIG_SMP) && defined(CONFIG_PARAVIRT_SPINLOCKS) static __always_inline void pv_queued_spin_lock_slowpath(struct qspinlock *lock, u32 val) { PVOP_VCALL2(lock.queued_spin_lock_slowpath, lock, val); } static __always_inline void pv_queued_spin_unlock(struct qspinlock *lock) { PVOP_VCALLEE1(lock.queued_spin_unlock, lock); } static __always_inline void pv_wait(u8 *ptr, u8 val) { PVOP_VCALL2(lock.wait, ptr, val); } static __always_inline void pv_kick(int cpu) { PVOP_VCALL1(lock.kick, cpu); } static __always_inline bool pv_vcpu_is_preempted(long cpu) { return PVOP_CALLEE1(bool, lock.vcpu_is_preempted, cpu); } void __raw_callee_save___native_queued_spin_unlock(struct qspinlock *lock); bool __raw_callee_save___native_vcpu_is_preempted(long cpu); #endif /* SMP && PARAVIRT_SPINLOCKS */ #ifdef CONFIG_X86_32 /* save and restore all caller-save registers, except return value */ #define PV_SAVE_ALL_CALLER_REGS "pushl %ecx;" #define PV_RESTORE_ALL_CALLER_REGS "popl %ecx;" #else /* save and restore all caller-save registers, except return value */ #define PV_SAVE_ALL_CALLER_REGS \ "push %rcx;" \ "push %rdx;" \ "push %rsi;" \ "push %rdi;" \ "push %r8;" \ "push %r9;" \ "push %r10;" \ "push %r11;" #define PV_RESTORE_ALL_CALLER_REGS \ "pop %r11;" \ "pop %r10;" \ "pop %r9;" \ "pop %r8;" \ "pop %rdi;" \ "pop %rsi;" \ "pop %rdx;" \ "pop %rcx;" #endif /* * Generate a thunk around a function which saves all caller-save * registers except for the return value. This allows C functions to * be called from assembler code where fewer than normal registers are * available. It may also help code generation around calls from C * code if the common case doesn't use many registers. * * When a callee is wrapped in a thunk, the caller can assume that all * arg regs and all scratch registers are preserved across the * call. The return value in rax/eax will not be saved, even for void * functions. */ #define PV_THUNK_NAME(func) "__raw_callee_save_" #func #define PV_CALLEE_SAVE_REGS_THUNK(func) \ extern typeof(func) __raw_callee_save_##func; \ \ asm(".pushsection .text;" \ ".globl " PV_THUNK_NAME(func) ";" \ ".type " PV_THUNK_NAME(func) ", @function;" \ PV_THUNK_NAME(func) ":" \ FRAME_BEGIN \ PV_SAVE_ALL_CALLER_REGS \ "call " #func ";" \ PV_RESTORE_ALL_CALLER_REGS \ FRAME_END \ "ret;" \ ".size " PV_THUNK_NAME(func) ", .-" PV_THUNK_NAME(func) ";" \ ".popsection") /* Get a reference to a callee-save function */ #define PV_CALLEE_SAVE(func) \ ((struct paravirt_callee_save) { __raw_callee_save_##func }) /* Promise that "func" already uses the right calling convention */ #define __PV_IS_CALLEE_SAVE(func) \ ((struct paravirt_callee_save) { func }) #ifdef CONFIG_PARAVIRT_XXL static inline notrace unsigned long arch_local_save_flags(void) { return PVOP_CALLEE0(unsigned long, irq.save_fl); } static inline notrace void arch_local_irq_restore(unsigned long f) { PVOP_VCALLEE1(irq.restore_fl, f); } static inline notrace void arch_local_irq_disable(void) { PVOP_VCALLEE0(irq.irq_disable); } static inline notrace void arch_local_irq_enable(void) { PVOP_VCALLEE0(irq.irq_enable); } static inline notrace unsigned long arch_local_irq_save(void) { unsigned long f; f = arch_local_save_flags(); arch_local_irq_disable(); return f; } #endif /* Make sure as little as possible of this mess escapes. */ #undef PARAVIRT_CALL #undef __PVOP_CALL #undef __PVOP_VCALL #undef PVOP_VCALL0 #undef PVOP_CALL0 #undef PVOP_VCALL1 #undef PVOP_CALL1 #undef PVOP_VCALL2 #undef PVOP_CALL2 #undef PVOP_VCALL3 #undef PVOP_CALL3 #undef PVOP_VCALL4 #undef PVOP_CALL4 extern void default_banner(void); #else /* __ASSEMBLY__ */ #define _PVSITE(ptype, ops, word, algn) \ 771:; \ ops; \ 772:; \ .pushsection .parainstructions,"a"; \ .align algn; \ word 771b; \ .byte ptype; \ .byte 772b-771b; \ .popsection #define COND_PUSH(set, mask, reg) \ .if ((~(set)) & mask); push %reg; .endif #define COND_POP(set, mask, reg) \ .if ((~(set)) & mask); pop %reg; .endif #ifdef CONFIG_X86_64 #define PV_SAVE_REGS(set) \ COND_PUSH(set, CLBR_RAX, rax); \ COND_PUSH(set, CLBR_RCX, rcx); \ COND_PUSH(set, CLBR_RDX, rdx); \ COND_PUSH(set, CLBR_RSI, rsi); \ COND_PUSH(set, CLBR_RDI, rdi); \ COND_PUSH(set, CLBR_R8, r8); \ COND_PUSH(set, CLBR_R9, r9); \ COND_PUSH(set, CLBR_R10, r10); \ COND_PUSH(set, CLBR_R11, r11) #define PV_RESTORE_REGS(set) \ COND_POP(set, CLBR_R11, r11); \ COND_POP(set, CLBR_R10, r10); \ COND_POP(set, CLBR_R9, r9); \ COND_POP(set, CLBR_R8, r8); \ COND_POP(set, CLBR_RDI, rdi); \ COND_POP(set, CLBR_RSI, rsi); \ COND_POP(set, CLBR_RDX, rdx); \ COND_POP(set, CLBR_RCX, rcx); \ COND_POP(set, CLBR_RAX, rax) #define PARA_PATCH(off) ((off) / 8) #define PARA_SITE(ptype, ops) _PVSITE(ptype, ops, .quad, 8) #define PARA_INDIRECT(addr) *addr(%rip) #else #define PV_SAVE_REGS(set) \ COND_PUSH(set, CLBR_EAX, eax); \ COND_PUSH(set, CLBR_EDI, edi); \ COND_PUSH(set, CLBR_ECX, ecx); \ COND_PUSH(set, CLBR_EDX, edx) #define PV_RESTORE_REGS(set) \ COND_POP(set, CLBR_EDX, edx); \ COND_POP(set, CLBR_ECX, ecx); \ COND_POP(set, CLBR_EDI, edi); \ COND_POP(set, CLBR_EAX, eax) #define PARA_PATCH(off) ((off) / 4) #define PARA_SITE(ptype, ops) _PVSITE(ptype, ops, .long, 4) #define PARA_INDIRECT(addr) *%cs:addr #endif #ifdef CONFIG_PARAVIRT_XXL #define INTERRUPT_RETURN \ PARA_SITE(PARA_PATCH(PV_CPU_iret), \ ANNOTATE_RETPOLINE_SAFE; \ jmp PARA_INDIRECT(pv_ops+PV_CPU_iret);) #define DISABLE_INTERRUPTS(clobbers) \ PARA_SITE(PARA_PATCH(PV_IRQ_irq_disable), \ PV_SAVE_REGS(clobbers | CLBR_CALLEE_SAVE); \ ANNOTATE_RETPOLINE_SAFE; \ call PARA_INDIRECT(pv_ops+PV_IRQ_irq_disable); \ PV_RESTORE_REGS(clobbers | CLBR_CALLEE_SAVE);) #define ENABLE_INTERRUPTS(clobbers) \ PARA_SITE(PARA_PATCH(PV_IRQ_irq_enable), \ PV_SAVE_REGS(clobbers | CLBR_CALLEE_SAVE); \ ANNOTATE_RETPOLINE_SAFE; \ call PARA_INDIRECT(pv_ops+PV_IRQ_irq_enable); \ PV_RESTORE_REGS(clobbers | CLBR_CALLEE_SAVE);) #endif #ifdef CONFIG_X86_64 #ifdef CONFIG_PARAVIRT_XXL #define USERGS_SYSRET64 \ PARA_SITE(PARA_PATCH(PV_CPU_usergs_sysret64), \ ANNOTATE_RETPOLINE_SAFE; \ jmp PARA_INDIRECT(pv_ops+PV_CPU_usergs_sysret64);) #ifdef CONFIG_DEBUG_ENTRY #define SAVE_FLAGS(clobbers) \ PARA_SITE(PARA_PATCH(PV_IRQ_save_fl), \ PV_SAVE_REGS(clobbers | CLBR_CALLEE_SAVE); \ ANNOTATE_RETPOLINE_SAFE; \ call PARA_INDIRECT(pv_ops+PV_IRQ_save_fl); \ PV_RESTORE_REGS(clobbers | CLBR_CALLEE_SAVE);) #endif #endif /* CONF