1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM block #if !defined(_TRACE_BLOCK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_BLOCK_H #include <linux/blktrace_api.h> #include <linux/blkdev.h> #include <linux/buffer_head.h> #include <linux/tracepoint.h> #define RWBS_LEN 8 DECLARE_EVENT_CLASS(block_buffer, TP_PROTO(struct buffer_head *bh), TP_ARGS(bh), TP_STRUCT__entry ( __field( dev_t, dev ) __field( sector_t, sector ) __field( size_t, size ) ), TP_fast_assign( __entry->dev = bh->b_bdev->bd_dev; __entry->sector = bh->b_blocknr; __entry->size = bh->b_size; ), TP_printk("%d,%d sector=%llu size=%zu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long long)__entry->sector, __entry->size ) ); /** * block_touch_buffer - mark a buffer accessed * @bh: buffer_head being touched * * Called from touch_buffer(). */ DEFINE_EVENT(block_buffer, block_touch_buffer, TP_PROTO(struct buffer_head *bh), TP_ARGS(bh) ); /** * block_dirty_buffer - mark a buffer dirty * @bh: buffer_head being dirtied * * Called from mark_buffer_dirty(). */ DEFINE_EVENT(block_buffer, block_dirty_buffer, TP_PROTO(struct buffer_head *bh), TP_ARGS(bh) ); /** * block_rq_requeue - place block IO request back on a queue * @q: queue holding operation * @rq: block IO operation request * * The block operation request @rq is being placed back into queue * @q. For some reason the request was not completed and needs to be * put back in the queue. */ TRACE_EVENT(block_rq_requeue, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __dynamic_array( char, cmd, 1 ) ), TP_fast_assign( __entry->dev = rq->rq_disk ? disk_devt(rq->rq_disk) : 0; __entry->sector = blk_rq_trace_sector(rq); __entry->nr_sector = blk_rq_trace_nr_sectors(rq); blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, blk_rq_bytes(rq)); __get_str(cmd)[0] = '\0'; ), TP_printk("%d,%d %s (%s) %llu + %u [%d]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, __get_str(cmd), (unsigned long long)__entry->sector, __entry->nr_sector, 0) ); /** * block_rq_complete - block IO operation completed by device driver * @rq: block operations request * @error: status code * @nr_bytes: number of completed bytes * * The block_rq_complete tracepoint event indicates that some portion * of operation request has been completed by the device driver. If * the @rq->bio is %NULL, then there is absolutely no additional work to * do for the request. If @rq->bio is non-NULL then there is * additional work required to complete the request. */ TRACE_EVENT(block_rq_complete, TP_PROTO(struct request *rq, int error, unsigned int nr_bytes), TP_ARGS(rq, error, nr_bytes), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( int, error ) __array( char, rwbs, RWBS_LEN ) __dynamic_array( char, cmd, 1 ) ), TP_fast_assign( __entry->dev = rq->rq_disk ? disk_devt(rq->rq_disk) : 0; __entry->sector = blk_rq_pos(rq); __entry->nr_sector = nr_bytes >> 9; __entry->error = error; blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, nr_bytes); __get_str(cmd)[0] = '\0'; ), TP_printk("%d,%d %s (%s) %llu + %u [%d]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, __get_str(cmd), (unsigned long long)__entry->sector, __entry->nr_sector, __entry->error) ); DECLARE_EVENT_CLASS(block_rq, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( unsigned int, bytes ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) __dynamic_array( char, cmd, 1 ) ), TP_fast_assign( __entry->dev = rq->rq_disk ? disk_devt(rq->rq_disk) : 0; __entry->sector = blk_rq_trace_sector(rq); __entry->nr_sector = blk_rq_trace_nr_sectors(rq); __entry->bytes = blk_rq_bytes(rq); blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, blk_rq_bytes(rq)); __get_str(cmd)[0] = '\0'; memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %u (%s) %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, __entry->bytes, __get_str(cmd), (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_rq_insert - insert block operation request into queue * @q: target queue * @rq: block IO operation request * * Called immediately before block operation request @rq is inserted * into queue @q. The fields in the operation request @rq struct can * be examined to determine which device and sectors the pending * operation would access. */ DEFINE_EVENT(block_rq, block_rq_insert, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq) ); /** * block_rq_issue - issue pending block IO request operation to device driver * @q: queue holding operation * @rq: block IO operation operation request * * Called when block operation request @rq from queue @q is sent to a * device driver for processing. */ DEFINE_EVENT(block_rq, block_rq_issue, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq) ); /** * block_rq_merge - merge request with another one in the elevator * @q: queue holding operation * @rq: block IO operation operation request * * Called when block operation request @rq from queue @q is merged to another * request queued in the elevator. */ DEFINE_EVENT(block_rq, block_rq_merge, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq) ); /** * block_bio_bounce - used bounce buffer when processing block operation * @q: queue holding the block operation * @bio: block operation * * A bounce buffer was used to handle the block operation @bio in @q. * This occurs when hardware limitations prevent a direct transfer of * data between the @bio data memory area and the IO device. Use of a * bounce buffer requires extra copying of data and decreases * performance. */ TRACE_EVENT(block_bio_bounce, TP_PROTO(struct request_queue *q, struct bio *bio), TP_ARGS(q, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_bio_complete - completed all work on the block operation * @q: queue holding the block operation * @bio: block operation completed * * This tracepoint indicates there is no further work to do on this * block IO operation @bio. */ TRACE_EVENT(block_bio_complete, TP_PROTO(struct request_queue *q, struct bio *bio), TP_ARGS(q, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned, nr_sector ) __field( int, error ) __array( char, rwbs, RWBS_LEN) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); __entry->error = blk_status_to_errno(bio->bi_status); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); ), TP_printk("%d,%d %s %llu + %u [%d]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->error) ); DECLARE_EVENT_CLASS(block_bio_merge, TP_PROTO(struct request_queue *q, struct request *rq, struct bio *bio), TP_ARGS(q, rq, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_bio_backmerge - merging block operation to the end of an existing operation * @q: queue holding operation * @rq: request bio is being merged into * @bio: new block operation to merge * * Merging block request @bio to the end of an existing block request * in queue @q. */ DEFINE_EVENT(block_bio_merge, block_bio_backmerge, TP_PROTO(struct request_queue *q, struct request *rq, struct bio *bio), TP_ARGS(q, rq, bio) ); /** * block_bio_frontmerge - merging block operation to the beginning of an existing operation * @q: queue holding operation * @rq: request bio is being merged into * @bio: new block operation to merge * * Merging block IO operation @bio to the beginning of an existing block * operation in queue @q. */ DEFINE_EVENT(block_bio_merge, block_bio_frontmerge, TP_PROTO(struct request_queue *q, struct request *rq, struct bio *bio), TP_ARGS(q, rq, bio) ); /** * block_bio_queue - putting new block IO operation in queue * @q: queue holding operation * @bio: new block operation * * About to place the block IO operation @bio into queue @q. */ TRACE_EVENT(block_bio_queue, TP_PROTO(struct request_queue *q, struct bio *bio), TP_ARGS(q, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); DECLARE_EVENT_CLASS(block_get_rq, TP_PROTO(struct request_queue *q, struct bio *bio, int rw), TP_ARGS(q, bio, rw), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio ? bio_dev(bio) : 0; __entry->sector = bio ? bio->bi_iter.bi_sector : 0; __entry->nr_sector = bio ? bio_sectors(bio) : 0; blk_fill_rwbs(__entry->rwbs, bio ? bio->bi_opf : 0, __entry->nr_sector); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_getrq - get a free request entry in queue for block IO operations * @q: queue for operations * @bio: pending block IO operation (can be %NULL) * @rw: low bit indicates a read (%0) or a write (%1) * * A request struct for queue @q has been allocated to handle the * block IO operation @bio. */ DEFINE_EVENT(block_get_rq, block_getrq, TP_PROTO(struct request_queue *q, struct bio *bio, int rw), TP_ARGS(q, bio, rw) ); /** * block_sleeprq - waiting to get a free request entry in queue for block IO operation * @q: queue for operation * @bio: pending block IO operation (can be %NULL) * @rw: low bit indicates a read (%0) or a write (%1) * * In the case where a request struct cannot be provided for queue @q * the process needs to wait for an request struct to become * available. This tracepoint event is generated each time the * process goes to sleep waiting for request struct become available. */ DEFINE_EVENT(block_get_rq, block_sleeprq, TP_PROTO(struct request_queue *q, struct bio *bio, int rw), TP_ARGS(q, bio, rw) ); /** * block_plug - keep operations requests in request queue * @q: request queue to plug * * Plug the request queue @q. Do not allow block operation requests * to be sent to the device driver. Instead, accumulate requests in * the queue to improve throughput performance of the block device. */ TRACE_EVENT(block_plug, TP_PROTO(struct request_queue *q), TP_ARGS(q), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("[%s]", __entry->comm) ); DECLARE_EVENT_CLASS(block_unplug, TP_PROTO(struct request_queue *q, unsigned int depth, bool explicit), TP_ARGS(q, depth, explicit), TP_STRUCT__entry( __field( int, nr_rq ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->nr_rq = depth; memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("[%s] %d", __entry->comm, __entry->nr_rq) ); /** * block_unplug - release of operations requests in request queue * @q: request queue to unplug * @depth: number of requests just added to the queue * @explicit: whether this was an explicit unplug, or one from schedule() * * Unplug request queue @q because device driver is scheduled to work * on elements in the request queue. */ DEFINE_EVENT(block_unplug, block_unplug, TP_PROTO(struct request_queue *q, unsigned int depth, bool explicit), TP_ARGS(q, depth, explicit) ); /** * block_split - split a single bio struct into two bio structs * @q: queue containing the bio * @bio: block operation being split * @new_sector: The starting sector for the new bio * * The bio request @bio in request queue @q needs to be split into two * bio requests. The newly created @bio request starts at * @new_sector. This split may be required due to hardware limitation * such as operation crossing device boundaries in a RAID system. */ TRACE_EVENT(block_split, TP_PROTO(struct request_queue *q, struct bio *bio, unsigned int new_sector), TP_ARGS(q, bio, new_sector), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( sector_t, new_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->new_sector = new_sector; blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu / %llu [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, (unsigned long long)__entry->new_sector, __entry->comm) ); /** * block_bio_remap - map request for a logical device to the raw device * @q: queue holding the operation * @bio: revised operation * @dev: device for the operation * @from: original sector for the operation * * An operation for a logical device has been mapped to the * raw block device. */ TRACE_EVENT(block_bio_remap, TP_PROTO(struct request_queue *q, struct bio *bio, dev_t dev, sector_t from), TP_ARGS(q, bio, dev, from), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( dev_t, old_dev ) __field( sector_t, old_sector ) __array( char, rwbs, RWBS_LEN) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); __entry->old_dev = dev; __entry->old_sector = from; blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); ), TP_printk("%d,%d %s %llu + %u <- (%d,%d) %llu", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, MAJOR(__entry->old_dev), MINOR(__entry->old_dev), (unsigned long long)__entry->old_sector) ); /** * block_rq_remap - map request for a block operation request * @q: queue holding the operation * @rq: block IO operation request * @dev: device for the operation * @from: original sector for the operation * * The block operation request @rq in @q has been remapped. The block * operation request @rq holds the current information and @from hold * the original sector. */ TRACE_EVENT(block_rq_remap, TP_PROTO(struct request_queue *q, struct request *rq, dev_t dev, sector_t from), TP_ARGS(q, rq, dev, from), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( dev_t, old_dev ) __field( sector_t, old_sector ) __field( unsigned int, nr_bios ) __array( char, rwbs, RWBS_LEN) ), TP_fast_assign( __entry->dev = disk_devt(rq->rq_disk); __entry->sector = blk_rq_pos(rq); __entry->nr_sector = blk_rq_sectors(rq); __entry->old_dev = dev; __entry->old_sector = from; __entry->nr_bios = blk_rq_count_bios(rq); blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, blk_rq_bytes(rq)); ), TP_printk("%d,%d %s %llu + %u <- (%d,%d) %llu %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, MAJOR(__entry->old_dev), MINOR(__entry->old_dev), (unsigned long long)__entry->old_sector, __entry->nr_bios) ); #endif /* _TRACE_BLOCK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2018 Christoph Hellwig. * * DMA operations that map physical memory directly without using an IOMMU. */ #ifndef _KERNEL_DMA_DIRECT_H #define _KERNEL_DMA_DIRECT_H #include <linux/dma-direct.h> int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); bool dma_direct_can_mmap(struct device *dev); int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr); int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs); size_t dma_direct_max_mapping_size(struct device *dev); #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ defined(CONFIG_SWIOTLB) void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir); #else static inline void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { } #endif #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ defined(CONFIG_SWIOTLB) void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs); void dma_direct_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir); #else static inline void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { } static inline void dma_direct_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { } #endif static inline void dma_direct_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { phys_addr_t paddr = dma_to_phys(dev, addr); if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_device(paddr, size, dir); } static inline void dma_direct_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { phys_addr_t paddr = dma_to_phys(dev, addr); if (!dev_is_dma_coherent(dev)) { arch_sync_dma_for_cpu(paddr, size, dir); arch_sync_dma_for_cpu_all(); } if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); if (dir == DMA_FROM_DEVICE) arch_dma_mark_clean(paddr, size); } static inline dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = page_to_phys(page) + offset; dma_addr_t dma_addr = phys_to_dma(dev, phys); if (unlikely(swiotlb_force == SWIOTLB_FORCE)) return swiotlb_map(dev, phys, size, dir, attrs); if (unlikely(!dma_capable(dev, dma_addr, size, true))) { if (swiotlb_force != SWIOTLB_NO_FORCE) return swiotlb_map(dev, phys, size, dir, attrs); dev_WARN_ONCE(dev, 1, "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); return DMA_MAPPING_ERROR; } if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) arch_sync_dma_for_device(phys, size, dir); return dma_addr; } static inline void dma_direct_unmap_page(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = dma_to_phys(dev, addr); if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) dma_direct_sync_single_for_cpu(dev, addr, size, dir); if (unlikely(is_swiotlb_buffer(phys))) swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs); } #endif /* _KERNEL_DMA_DIRECT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 /* SPDX-License-Identifier: GPL-2.0 */ /* * ioport.h Definitions of routines for detecting, reserving and * allocating system resources. * * Authors: Linus Torvalds */ #ifndef _LINUX_IOPORT_H #define _LINUX_IOPORT_H #ifndef __ASSEMBLY__ #include <linux/compiler.h> #include <linux/types.h> #include <linux/bits.h> /* * Resources are tree-like, allowing * nesting etc.. */ struct resource { resource_size_t start; resource_size_t end; const char *name; unsigned long flags; unsigned long desc; struct resource *parent, *sibling, *child; }; /* * IO resources have these defined flags. * * PCI devices expose these flags to userspace in the "resource" sysfs file, * so don't move them. */ #define IORESOURCE_BITS 0x000000ff /* Bus-specific bits */ #define IORESOURCE_TYPE_BITS 0x00001f00 /* Resource type */ #define IORESOURCE_IO 0x00000100 /* PCI/ISA I/O ports */ #define IORESOURCE_MEM 0x00000200 #define IORESOURCE_REG 0x00000300 /* Register offsets */ #define IORESOURCE_IRQ 0x00000400 #define IORESOURCE_DMA 0x00000800 #define IORESOURCE_BUS 0x00001000 #define IORESOURCE_PREFETCH 0x00002000 /* No side effects */ #define IORESOURCE_READONLY 0x00004000 #define IORESOURCE_CACHEABLE 0x00008000 #define IORESOURCE_RANGELENGTH 0x00010000 #define IORESOURCE_SHADOWABLE 0x00020000 #define IORESOURCE_SIZEALIGN 0x00040000 /* size indicates alignment */ #define IORESOURCE_STARTALIGN 0x00080000 /* start field is alignment */ #define IORESOURCE_MEM_64 0x00100000 #define IORESOURCE_WINDOW 0x00200000 /* forwarded by bridge */ #define IORESOURCE_MUXED 0x00400000 /* Resource is software muxed */ #define IORESOURCE_EXT_TYPE_BITS 0x01000000 /* Resource extended types */ #define IORESOURCE_SYSRAM 0x01000000 /* System RAM (modifier) */ /* IORESOURCE_SYSRAM specific bits. */ #define IORESOURCE_SYSRAM_DRIVER_MANAGED 0x02000000 /* Always detected via a driver. */ #define IORESOURCE_SYSRAM_MERGEABLE 0x04000000 /* Resource can be merged. */ #define IORESOURCE_EXCLUSIVE 0x08000000 /* Userland may not map this resource */ #define IORESOURCE_DISABLED 0x10000000 #define IORESOURCE_UNSET 0x20000000 /* No address assigned yet */ #define IORESOURCE_AUTO 0x40000000 #define IORESOURCE_BUSY 0x80000000 /* Driver has marked this resource busy */ /* I/O resource extended types */ #define IORESOURCE_SYSTEM_RAM (IORESOURCE_MEM|IORESOURCE_SYSRAM) /* PnP IRQ specific bits (IORESOURCE_BITS) */ #define IORESOURCE_IRQ_HIGHEDGE (1<<0) #define IORESOURCE_IRQ_LOWEDGE (1<<1) #define IORESOURCE_IRQ_HIGHLEVEL (1<<2) #define IORESOURCE_IRQ_LOWLEVEL (1<<3) #define IORESOURCE_IRQ_SHAREABLE (1<<4) #define IORESOURCE_IRQ_OPTIONAL (1<<5) /* PnP DMA specific bits (IORESOURCE_BITS) */ #define IORESOURCE_DMA_TYPE_MASK (3<<0) #define IORESOURCE_DMA_8BIT (0<<0) #define IORESOURCE_DMA_8AND16BIT (1<<0) #define IORESOURCE_DMA_16BIT (2<<0) #define IORESOURCE_DMA_MASTER (1<<2) #define IORESOURCE_DMA_BYTE (1<<3) #define IORESOURCE_DMA_WORD (1<<4) #define IORESOURCE_DMA_SPEED_MASK (3<<6) #define IORESOURCE_DMA_COMPATIBLE (0<<6) #define IORESOURCE_DMA_TYPEA (1<<6) #define IORESOURCE_DMA_TYPEB (2<<6) #define IORESOURCE_DMA_TYPEF (3<<6) /* PnP memory I/O specific bits (IORESOURCE_BITS) */ #define IORESOURCE_MEM_WRITEABLE (1<<0) /* dup: IORESOURCE_READONLY */ #define IORESOURCE_MEM_CACHEABLE (1<<1) /* dup: IORESOURCE_CACHEABLE */ #define IORESOURCE_MEM_RANGELENGTH (1<<2) /* dup: IORESOURCE_RANGELENGTH */ #define IORESOURCE_MEM_TYPE_MASK (3<<3) #define IORESOURCE_MEM_8BIT (0<<3) #define IORESOURCE_MEM_16BIT (1<<3) #define IORESOURCE_MEM_8AND16BIT (2<<3) #define IORESOURCE_MEM_32BIT (3<<3) #define IORESOURCE_MEM_SHADOWABLE (1<<5) /* dup: IORESOURCE_SHADOWABLE */ #define IORESOURCE_MEM_EXPANSIONROM (1<<6) /* PnP I/O specific bits (IORESOURCE_BITS) */ #define IORESOURCE_IO_16BIT_ADDR (1<<0) #define IORESOURCE_IO_FIXED (1<<1) #define IORESOURCE_IO_SPARSE (1<<2) /* PCI ROM control bits (IORESOURCE_BITS) */ #define IORESOURCE_ROM_ENABLE (1<<0) /* ROM is enabled, same as PCI_ROM_ADDRESS_ENABLE */ #define IORESOURCE_ROM_SHADOW (1<<1) /* Use RAM image, not ROM BAR */ /* PCI control bits. Shares IORESOURCE_BITS with above PCI ROM. */ #define IORESOURCE_PCI_FIXED (1<<4) /* Do not move resource */ #define IORESOURCE_PCI_EA_BEI (1<<5) /* BAR Equivalent Indicator */ /* * I/O Resource Descriptors * * Descriptors are used by walk_iomem_res_desc() and region_intersects() * for searching a specific resource range in the iomem table. Assign * a new descriptor when a resource range supports the search interfaces. * Otherwise, resource.desc must be set to IORES_DESC_NONE (0). */ enum { IORES_DESC_NONE = 0, IORES_DESC_CRASH_KERNEL = 1, IORES_DESC_ACPI_TABLES = 2, IORES_DESC_ACPI_NV_STORAGE = 3, IORES_DESC_PERSISTENT_MEMORY = 4, IORES_DESC_PERSISTENT_MEMORY_LEGACY = 5, IORES_DESC_DEVICE_PRIVATE_MEMORY = 6, IORES_DESC_RESERVED = 7, IORES_DESC_SOFT_RESERVED = 8, }; /* * Flags controlling ioremap() behavior. */ enum { IORES_MAP_SYSTEM_RAM = BIT(0), IORES_MAP_ENCRYPTED = BIT(1), }; /* helpers to define resources */ #define DEFINE_RES_NAMED(_start, _size, _name, _flags) \ { \ .start = (_start), \ .end = (_start) + (_size) - 1, \ .name = (_name), \ .flags = (_flags), \ .desc = IORES_DESC_NONE, \ } #define DEFINE_RES_IO_NAMED(_start, _size, _name) \ DEFINE_RES_NAMED((_start), (_size), (_name), IORESOURCE_IO) #define DEFINE_RES_IO(_start, _size) \ DEFINE_RES_IO_NAMED((_start), (_size), NULL) #define DEFINE_RES_MEM_NAMED(_start, _size, _name) \ DEFINE_RES_NAMED((_start), (_size), (_name), IORESOURCE_MEM) #define DEFINE_RES_MEM(_start, _size) \ DEFINE_RES_MEM_NAMED((_start), (_size), NULL) #define DEFINE_RES_IRQ_NAMED(_irq, _name) \ DEFINE_RES_NAMED((_irq), 1, (_name), IORESOURCE_IRQ) #define DEFINE_RES_IRQ(_irq) \ DEFINE_RES_IRQ_NAMED((_irq), NULL) #define DEFINE_RES_DMA_NAMED(_dma, _name) \ DEFINE_RES_NAMED((_dma), 1, (_name), IORESOURCE_DMA) #define DEFINE_RES_DMA(_dma) \ DEFINE_RES_DMA_NAMED((_dma), NULL) /* PC/ISA/whatever - the normal PC address spaces: IO and memory */ extern struct resource ioport_resource; extern struct resource iomem_resource; extern struct resource *request_resource_conflict(struct resource *root, struct resource *new); extern int request_resource(struct resource *root, struct resource *new); extern int release_resource(struct resource *new); void release_child_resources(struct resource *new); extern void reserve_region_with_split(struct resource *root, resource_size_t start, resource_size_t end, const char *name); extern struct resource *insert_resource_conflict(struct resource *parent, struct resource *new); extern int insert_resource(struct resource *parent, struct resource *new); extern void insert_resource_expand_to_fit(struct resource *root, struct resource *new); extern int remove_resource(struct resource *old); extern void arch_remove_reservations(struct resource *avail); extern int allocate_resource(struct resource *root, struct resource *new, resource_size_t size, resource_size_t min, resource_size_t max, resource_size_t align, resource_size_t (*alignf)(void *, const struct resource *, resource_size_t, resource_size_t), void *alignf_data); struct resource *lookup_resource(struct resource *root, resource_size_t start); int adjust_resource(struct resource *res, resource_size_t start, resource_size_t size); resource_size_t resource_alignment(struct resource *res); static inline resource_size_t resource_size(const struct resource *res) { return res->end - res->start + 1; } static inline unsigned long resource_type(const struct resource *res) { return res->flags & IORESOURCE_TYPE_BITS; } static inline unsigned long resource_ext_type(const struct resource *res) { return res->flags & IORESOURCE_EXT_TYPE_BITS; } /* True iff r1 completely contains r2 */ static inline bool resource_contains(struct resource *r1, struct resource *r2) { if (resource_type(r1) != resource_type(r2)) return false; if (r1->flags & IORESOURCE_UNSET || r2->flags & IORESOURCE_UNSET) return false; return r1->start <= r2->start && r1->end >= r2->end; } /* Convenience shorthand with allocation */ #define request_region(start,n,name) __request_region(&ioport_resource, (start), (n), (name), 0) #define request_muxed_region(start,n,name) __request_region(&ioport_resource, (start), (n), (name), IORESOURCE_MUXED) #define __request_mem_region(start,n,name, excl) __request_region(&iomem_resource, (start), (n), (name), excl) #define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name), 0) #define request_mem_region_exclusive(start,n,name) \ __request_region(&iomem_resource, (start), (n), (name), IORESOURCE_EXCLUSIVE) #define rename_region(region, newname) do { (region)->name = (newname); } while (0) extern struct resource * __request_region(struct resource *, resource_size_t start, resource_size_t n, const char *name, int flags); /* Compatibility cruft */ #define release_region(start,n) __release_region(&ioport_resource, (start), (n)) #define release_mem_region(start,n) __release_region(&iomem_resource, (start), (n)) extern void __release_region(struct resource *, resource_size_t, resource_size_t); #ifdef CONFIG_MEMORY_HOTREMOVE extern void release_mem_region_adjustable(resource_size_t, resource_size_t); #endif #ifdef CONFIG_MEMORY_HOTPLUG extern void merge_system_ram_resource(struct resource *res); #endif /* Wrappers for managed devices */ struct device; extern int devm_request_resource(struct device *dev, struct resource *root, struct resource *new); extern void devm_release_resource(struct device *dev, struct resource *new); #define devm_request_region(dev,start,n,name) \ __devm_request_region(dev, &ioport_resource, (start), (n), (name)) #define devm_request_mem_region(dev,start,n,name) \ __devm_request_region(dev, &iomem_resource, (start), (n), (name)) extern struct resource * __devm_request_region(struct device *dev, struct resource *parent, resource_size_t start, resource_size_t n, const char *name); #define devm_release_region(dev, start, n) \ __devm_release_region(dev, &ioport_resource, (start), (n)) #define devm_release_mem_region(dev, start, n) \ __devm_release_region(dev, &iomem_resource, (start), (n)) extern void __devm_release_region(struct device *dev, struct resource *parent, resource_size_t start, resource_size_t n); extern int iomem_map_sanity_check(resource_size_t addr, unsigned long size); extern bool iomem_is_exclusive(u64 addr); extern int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, void *arg, int (*func)(unsigned long, unsigned long, void *)); extern int walk_mem_res(u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); extern int walk_system_ram_res(u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); extern int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); /* True if any part of r1 overlaps r2 */ static inline bool resource_overlaps(struct resource *r1, struct resource *r2) { return (r1->start <= r2->end && r1->end >= r2->start); } struct resource *devm_request_free_mem_region(struct device *dev, struct resource *base, unsigned long size); struct resource *request_free_mem_region(struct resource *base, unsigned long size, const char *name); #ifdef CONFIG_IO_STRICT_DEVMEM void revoke_devmem(struct resource *res); #else static inline void revoke_devmem(struct resource *res) { }; #endif #endif /* __ASSEMBLY__ */ #endif /* _LINUX_IOPORT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM migrate #if !defined(_TRACE_MIGRATE_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MIGRATE_H #include <linux/tracepoint.h> #define MIGRATE_MODE \ EM( MIGRATE_ASYNC, "MIGRATE_ASYNC") \ EM( MIGRATE_SYNC_LIGHT, "MIGRATE_SYNC_LIGHT") \ EMe(MIGRATE_SYNC, "MIGRATE_SYNC") #define MIGRATE_REASON \ EM( MR_COMPACTION, "compaction") \ EM( MR_MEMORY_FAILURE, "memory_failure") \ EM( MR_MEMORY_HOTPLUG, "memory_hotplug") \ EM( MR_SYSCALL, "syscall_or_cpuset") \ EM( MR_MEMPOLICY_MBIND, "mempolicy_mbind") \ EM( MR_NUMA_MISPLACED, "numa_misplaced") \ EMe(MR_CONTIG_RANGE, "contig_range") /* * First define the enums in the above macros to be exported to userspace * via TRACE_DEFINE_ENUM(). */ #undef EM #undef EMe #define EM(a, b) TRACE_DEFINE_ENUM(a); #define EMe(a, b) TRACE_DEFINE_ENUM(a); MIGRATE_MODE MIGRATE_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a, b) {a, b}, #define EMe(a, b) {a, b} TRACE_EVENT(mm_migrate_pages, TP_PROTO(unsigned long succeeded, unsigned long failed, unsigned long thp_succeeded, unsigned long thp_failed, unsigned long thp_split, enum migrate_mode mode, int reason), TP_ARGS(succeeded, failed, thp_succeeded, thp_failed, thp_split, mode, reason), TP_STRUCT__entry( __field( unsigned long, succeeded) __field( unsigned long, failed) __field( unsigned long, thp_succeeded) __field( unsigned long, thp_failed) __field( unsigned long, thp_split) __field( enum migrate_mode, mode) __field( int, reason) ), TP_fast_assign( __entry->succeeded = succeeded; __entry->failed = failed; __entry->thp_succeeded = thp_succeeded; __entry->thp_failed = thp_failed; __entry->thp_split = thp_split; __entry->mode = mode; __entry->reason = reason; ), TP_printk("nr_succeeded=%lu nr_failed=%lu nr_thp_succeeded=%lu nr_thp_failed=%lu nr_thp_split=%lu mode=%s reason=%s", __entry->succeeded, __entry->failed, __entry->thp_succeeded, __entry->thp_failed, __entry->thp_split, __print_symbolic(__entry->mode, MIGRATE_MODE), __print_symbolic(__entry->reason, MIGRATE_REASON)) ); #endif /* _TRACE_MIGRATE_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. NET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Ethernet handlers. * * Version: @(#)eth.h 1.0.4 05/13/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * * Relocated to include/linux where it belongs by Alan Cox * <gw4pts@gw4pts.ampr.org> */ #ifndef _LINUX_ETHERDEVICE_H #define _LINUX_ETHERDEVICE_H #include <linux/if_ether.h> #include <linux/netdevice.h> #include <linux/random.h> #include <linux/crc32.h> #include <asm/unaligned.h> #include <asm/bitsperlong.h> #ifdef __KERNEL__ struct device; int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr); unsigned char *arch_get_platform_mac_address(void); int nvmem_get_mac_address(struct device *dev, void *addrbuf); u32 eth_get_headlen(const struct net_device *dev, void *data, unsigned int len); __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); extern const struct header_ops eth_header_ops; int eth_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len); int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr); int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); void eth_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char *haddr); __be16 eth_header_parse_protocol(const struct sk_buff *skb); int eth_prepare_mac_addr_change(struct net_device *dev, void *p); void eth_commit_mac_addr_change(struct net_device *dev, void *p); int eth_mac_addr(struct net_device *dev, void *p); int eth_validate_addr(struct net_device *dev); struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs, unsigned int rxqs); #define alloc_etherdev(sizeof_priv) alloc_etherdev_mq(sizeof_priv, 1) #define alloc_etherdev_mq(sizeof_priv, count) alloc_etherdev_mqs(sizeof_priv, count, count) struct net_device *devm_alloc_etherdev_mqs(struct device *dev, int sizeof_priv, unsigned int txqs, unsigned int rxqs); #define devm_alloc_etherdev(dev, sizeof_priv) devm_alloc_etherdev_mqs(dev, sizeof_priv, 1, 1) struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb); int eth_gro_complete(struct sk_buff *skb, int nhoff); /* Reserved Ethernet Addresses per IEEE 802.1Q */ static const u8 eth_reserved_addr_base[ETH_ALEN] __aligned(2) = { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x00 }; #define eth_stp_addr eth_reserved_addr_base /** * is_link_local_ether_addr - Determine if given Ethernet address is link-local * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if address is link local reserved addr (01:80:c2:00:00:0X) per * IEEE 802.1Q 8.6.3 Frame filtering. * * Please note: addr must be aligned to u16. */ static inline bool is_link_local_ether_addr(const u8 *addr) { __be16 *a = (__be16 *)addr; static const __be16 *b = (const __be16 *)eth_reserved_addr_base; static const __be16 m = cpu_to_be16(0xfff0); #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return (((*(const u32 *)addr) ^ (*(const u32 *)b)) | (__force int)((a[2] ^ b[2]) & m)) == 0; #else return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | ((a[2] ^ b[2]) & m)) == 0; #endif } /** * is_zero_ether_addr - Determine if give Ethernet address is all zeros. * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is all zeroes. * * Please note: addr must be aligned to u16. */ static inline bool is_zero_ether_addr(const u8 *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return ((*(const u32 *)addr) | (*(const u16 *)(addr + 4))) == 0; #else return (*(const u16 *)(addr + 0) | *(const u16 *)(addr + 2) | *(const u16 *)(addr + 4)) == 0; #endif } /** * is_multicast_ether_addr - Determine if the Ethernet address is a multicast. * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is a multicast address. * By definition the broadcast address is also a multicast address. */ static inline bool is_multicast_ether_addr(const u8 *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) u32 a = *(const u32 *)addr; #else u16 a = *(const u16 *)addr; #endif #ifdef __BIG_ENDIAN return 0x01 & (a >> ((sizeof(a) * 8) - 8)); #else return 0x01 & a; #endif } static inline bool is_multicast_ether_addr_64bits(const u8 addr[6+2]) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 #ifdef __BIG_ENDIAN return 0x01 & ((*(const u64 *)addr) >> 56); #else return 0x01 & (*(const u64 *)addr); #endif #else return is_multicast_ether_addr(addr); #endif } /** * is_local_ether_addr - Determine if the Ethernet address is locally-assigned one (IEEE 802). * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is a local address. */ static inline bool is_local_ether_addr(const u8 *addr) { return 0x02 & addr[0]; } /** * is_broadcast_ether_addr - Determine if the Ethernet address is broadcast * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is the broadcast address. * * Please note: addr must be aligned to u16. */ static inline bool is_broadcast_ether_addr(const u8 *addr) { return (*(const u16 *)(addr + 0) & *(const u16 *)(addr + 2) & *(const u16 *)(addr + 4)) == 0xffff; } /** * is_unicast_ether_addr - Determine if the Ethernet address is unicast * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is a unicast address. */ static inline bool is_unicast_ether_addr(const u8 *addr) { return !is_multicast_ether_addr(addr); } /** * is_valid_ether_addr - Determine if the given Ethernet address is valid * @addr: Pointer to a six-byte array containing the Ethernet address * * Check that the Ethernet address (MAC) is not 00:00:00:00:00:00, is not * a multicast address, and is not FF:FF:FF:FF:FF:FF. * * Return true if the address is valid. * * Please note: addr must be aligned to u16. */ static inline bool is_valid_ether_addr(const u8 *addr) { /* FF:FF:FF:FF:FF:FF is a multicast address so we don't need to * explicitly check for it here. */ return !is_multicast_ether_addr(addr) && !is_zero_ether_addr(addr); } /** * eth_proto_is_802_3 - Determine if a given Ethertype/length is a protocol * @proto: Ethertype/length value to be tested * * Check that the value from the Ethertype/length field is a valid Ethertype. * * Return true if the valid is an 802.3 supported Ethertype. */ static inline bool eth_proto_is_802_3(__be16 proto) { #ifndef __BIG_ENDIAN /* if CPU is little endian mask off bits representing LSB */ proto &= htons(0xFF00); #endif /* cast both to u16 and compare since LSB can be ignored */ return (__force u16)proto >= (__force u16)htons(ETH_P_802_3_MIN); } /** * eth_random_addr - Generate software assigned random Ethernet address * @addr: Pointer to a six-byte array containing the Ethernet address * * Generate a random Ethernet address (MAC) that is not multicast * and has the local assigned bit set. */ static inline void eth_random_addr(u8 *addr) { get_random_bytes(addr, ETH_ALEN); addr[0] &= 0xfe; /* clear multicast bit */ addr[0] |= 0x02; /* set local assignment bit (IEEE802) */ } #define random_ether_addr(addr) eth_random_addr(addr) /** * eth_broadcast_addr - Assign broadcast address * @addr: Pointer to a six-byte array containing the Ethernet address * * Assign the broadcast address to the given address array. */ static inline void eth_broadcast_addr(u8 *addr) { memset(addr, 0xff, ETH_ALEN); } /** * eth_zero_addr - Assign zero address * @addr: Pointer to a six-byte array containing the Ethernet address * * Assign the zero address to the given address array. */ static inline void eth_zero_addr(u8 *addr) { memset(addr, 0x00, ETH_ALEN); } /** * eth_hw_addr_random - Generate software assigned random Ethernet and * set device flag * @dev: pointer to net_device structure * * Generate a random Ethernet address (MAC) to be used by a net device * and set addr_assign_type so the state can be read by sysfs and be * used by userspace. */ static inline void eth_hw_addr_random(struct net_device *dev) { dev->addr_assign_type = NET_ADDR_RANDOM; eth_random_addr(dev->dev_addr); } /** * eth_hw_addr_crc - Calculate CRC from netdev_hw_addr * @ha: pointer to hardware address * * Calculate CRC from a hardware address as basis for filter hashes. */ static inline u32 eth_hw_addr_crc(struct netdev_hw_addr *ha) { return ether_crc(ETH_ALEN, ha->addr); } /** * ether_addr_copy - Copy an Ethernet address * @dst: Pointer to a six-byte array Ethernet address destination * @src: Pointer to a six-byte array Ethernet address source * * Please note: dst & src must both be aligned to u16. */ static inline void ether_addr_copy(u8 *dst, const u8 *src) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) *(u32 *)dst = *(const u32 *)src; *(u16 *)(dst + 4) = *(const u16 *)(src + 4); #else u16 *a = (u16 *)dst; const u16 *b = (const u16 *)src; a[0] = b[0]; a[1] = b[1]; a[2] = b[2]; #endif } /** * eth_hw_addr_inherit - Copy dev_addr from another net_device * @dst: pointer to net_device to copy dev_addr to * @src: pointer to net_device to copy dev_addr from * * Copy the Ethernet address from one net_device to another along with * the address attributes (addr_assign_type). */ static inline void eth_hw_addr_inherit(struct net_device *dst, struct net_device *src) { dst->addr_assign_type = src->addr_assign_type; ether_addr_copy(dst->dev_addr, src->dev_addr); } /** * ether_addr_equal - Compare two Ethernet addresses * @addr1: Pointer to a six-byte array containing the Ethernet address * @addr2: Pointer other six-byte array containing the Ethernet address * * Compare two Ethernet addresses, returns true if equal * * Please note: addr1 & addr2 must both be aligned to u16. */ static inline bool ether_addr_equal(const u8 *addr1, const u8 *addr2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) u32 fold = ((*(const u32 *)addr1) ^ (*(const u32 *)addr2)) | ((*(const u16 *)(addr1 + 4)) ^ (*(const u16 *)(addr2 + 4))); return fold == 0; #else const u16 *a = (const u16 *)addr1; const u16 *b = (const u16 *)addr2; return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2])) == 0; #endif } /** * ether_addr_equal_64bits - Compare two Ethernet addresses * @addr1: Pointer to an array of 8 bytes * @addr2: Pointer to an other array of 8 bytes * * Compare two Ethernet addresses, returns true if equal, false otherwise. * * The function doesn't need any conditional branches and possibly uses * word memory accesses on CPU allowing cheap unaligned memory reads. * arrays = { byte1, byte2, byte3, byte4, byte5, byte6, pad1, pad2 } * * Please note that alignment of addr1 & addr2 are only guaranteed to be 16 bits. */ static inline bool ether_addr_equal_64bits(const u8 addr1[6+2], const u8 addr2[6+2]) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 u64 fold = (*(const u64 *)addr1) ^ (*(const u64 *)addr2); #ifdef __BIG_ENDIAN return (fold >> 16) == 0; #else return (fold << 16) == 0; #endif #else return ether_addr_equal(addr1, addr2); #endif } /** * ether_addr_equal_unaligned - Compare two not u16 aligned Ethernet addresses * @addr1: Pointer to a six-byte array containing the Ethernet address * @addr2: Pointer other six-byte array containing the Ethernet address * * Compare two Ethernet addresses, returns true if equal * * Please note: Use only when any Ethernet address may not be u16 aligned. */ static inline bool ether_addr_equal_unaligned(const u8 *addr1, const u8 *addr2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return ether_addr_equal(addr1, addr2); #else return memcmp(addr1, addr2, ETH_ALEN) == 0; #endif } /** * ether_addr_equal_masked - Compare two Ethernet addresses with a mask * @addr1: Pointer to a six-byte array containing the 1st Ethernet address * @addr2: Pointer to a six-byte array containing the 2nd Ethernet address * @mask: Pointer to a six-byte array containing the Ethernet address bitmask * * Compare two Ethernet addresses with a mask, returns true if for every bit * set in the bitmask the equivalent bits in the ethernet addresses are equal. * Using a mask with all bits set is a slower ether_addr_equal. */ static inline bool ether_addr_equal_masked(const u8 *addr1, const u8 *addr2, const u8 *mask) { int i; for (i = 0; i < ETH_ALEN; i++) { if ((addr1[i] ^ addr2[i]) & mask[i]) return false; } return true; } /** * ether_addr_to_u64 - Convert an Ethernet address into a u64 value. * @addr: Pointer to a six-byte array containing the Ethernet address * * Return a u64 value of the address */ static inline u64 ether_addr_to_u64(const u8 *addr) { u64 u = 0; int i; for (i = 0; i < ETH_ALEN; i++) u = u << 8 | addr[i]; return u; } /** * u64_to_ether_addr - Convert a u64 to an Ethernet address. * @u: u64 to convert to an Ethernet MAC address * @addr: Pointer to a six-byte array to contain the Ethernet address */ static inline void u64_to_ether_addr(u64 u, u8 *addr) { int i; for (i = ETH_ALEN - 1; i >= 0; i--) { addr[i] = u & 0xff; u = u >> 8; } } /** * eth_addr_dec - Decrement the given MAC address * * @addr: Pointer to a six-byte array containing Ethernet address to decrement */ static inline void eth_addr_dec(u8 *addr) { u64 u = ether_addr_to_u64(addr); u--; u64_to_ether_addr(u, addr); } /** * eth_addr_inc() - Increment the given MAC address. * @addr: Pointer to a six-byte array containing Ethernet address to increment. */ static inline void eth_addr_inc(u8 *addr) { u64 u = ether_addr_to_u64(addr); u++; u64_to_ether_addr(u, addr); } /** * is_etherdev_addr - Tell if given Ethernet address belongs to the device. * @dev: Pointer to a device structure * @addr: Pointer to a six-byte array containing the Ethernet address * * Compare passed address with all addresses of the device. Return true if the * address if one of the device addresses. * * Note that this function calls ether_addr_equal_64bits() so take care of * the right padding. */ static inline bool is_etherdev_addr(const struct net_device *dev, const u8 addr[6 + 2]) { struct netdev_hw_addr *ha; bool res = false; rcu_read_lock(); for_each_dev_addr(dev, ha) { res = ether_addr_equal_64bits(addr, ha->addr); if (res) break; } rcu_read_unlock(); return res; } #endif /* __KERNEL__ */ /** * compare_ether_header - Compare two Ethernet headers * @a: Pointer to Ethernet header * @b: Pointer to Ethernet header * * Compare two Ethernet headers, returns 0 if equal. * This assumes that the network header (i.e., IP header) is 4-byte * aligned OR the platform can handle unaligned access. This is the * case for all packets coming into netif_receive_skb or similar * entry points. */ static inline unsigned long compare_ether_header(const void *a, const void *b) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 unsigned long fold; /* * We want to compare 14 bytes: * [a0 ... a13] ^ [b0 ... b13] * Use two long XOR, ORed together, with an overlap of two bytes. * [a0 a1 a2 a3 a4 a5 a6 a7 ] ^ [b0 b1 b2 b3 b4 b5 b6 b7 ] | * [a6 a7 a8 a9 a10 a11 a12 a13] ^ [b6 b7 b8 b9 b10 b11 b12 b13] * This means the [a6 a7] ^ [b6 b7] part is done two times. */ fold = *(unsigned long *)a ^ *(unsigned long *)b; fold |= *(unsigned long *)(a + 6) ^ *(unsigned long *)(b + 6); return fold; #else u32 *a32 = (u32 *)((u8 *)a + 2); u32 *b32 = (u32 *)((u8 *)b + 2); return (*(u16 *)a ^ *(u16 *)b) | (a32[0] ^ b32[0]) | (a32[1] ^ b32[1]) | (a32[2] ^ b32[2]); #endif } /** * eth_skb_pad - Pad buffer to mininum number of octets for Ethernet frame * @skb: Buffer to pad * * An Ethernet frame should have a minimum size of 60 bytes. This function * takes short frames and pads them with zeros up to the 60 byte limit. */ static inline int eth_skb_pad(struct sk_buff *skb) { return skb_put_padto(skb, ETH_ZLEN); } #endif /* _LINUX_ETHERDEVICE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 /* SPDX-License-Identifier: GPL-2.0 */ /* * NUMA memory policies for Linux. * Copyright 2003,2004 Andi Kleen SuSE Labs */ #ifndef _LINUX_MEMPOLICY_H #define _LINUX_MEMPOLICY_H 1 #include <linux/sched.h> #include <linux/mmzone.h> #include <linux/dax.h> #include <linux/slab.h> #include <linux/rbtree.h> #include <linux/spinlock.h> #include <linux/nodemask.h> #include <linux/pagemap.h> #include <uapi/linux/mempolicy.h> struct mm_struct; #ifdef CONFIG_NUMA /* * Describe a memory policy. * * A mempolicy can be either associated with a process or with a VMA. * For VMA related allocations the VMA policy is preferred, otherwise * the process policy is used. Interrupts ignore the memory policy * of the current process. * * Locking policy for interleave: * In process context there is no locking because only the process accesses * its own state. All vma manipulation is somewhat protected by a down_read on * mmap_lock. * * Freeing policy: * Mempolicy objects are reference counted. A mempolicy will be freed when * mpol_put() decrements the reference count to zero. * * Duplicating policy objects: * mpol_dup() allocates a new mempolicy and copies the specified mempolicy * to the new storage. The reference count of the new object is initialized * to 1, representing the caller of mpol_dup(). */ struct mempolicy { atomic_t refcnt; unsigned short mode; /* See MPOL_* above */ unsigned short flags; /* See set_mempolicy() MPOL_F_* above */ union { short preferred_node; /* preferred */ nodemask_t nodes; /* interleave/bind */ /* undefined for default */ } v; union { nodemask_t cpuset_mems_allowed; /* relative to these nodes */ nodemask_t user_nodemask; /* nodemask passed by user */ } w; }; /* * Support for managing mempolicy data objects (clone, copy, destroy) * The default fast path of a NULL MPOL_DEFAULT policy is always inlined. */ extern void __mpol_put(struct mempolicy *pol); static inline void mpol_put(struct mempolicy *pol) { if (pol) __mpol_put(pol); } /* * Does mempolicy pol need explicit unref after use? * Currently only needed for shared policies. */ static inline int mpol_needs_cond_ref(struct mempolicy *pol) { return (pol && (pol->flags & MPOL_F_SHARED)); } static inline void mpol_cond_put(struct mempolicy *pol) { if (mpol_needs_cond_ref(pol)) __mpol_put(pol); } extern struct mempolicy *__mpol_dup(struct mempolicy *pol); static inline struct mempolicy *mpol_dup(struct mempolicy *pol) { if (pol) pol = __mpol_dup(pol); return pol; } #define vma_policy(vma) ((vma)->vm_policy) static inline void mpol_get(struct mempolicy *pol) { if (pol) atomic_inc(&pol->refcnt); } extern bool __mpol_equal(struct mempolicy *a, struct mempolicy *b); static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b) { if (a == b) return true; return __mpol_equal(a, b); } /* * Tree of shared policies for a shared memory region. * Maintain the policies in a pseudo mm that contains vmas. The vmas * carry the policy. As a special twist the pseudo mm is indexed in pages, not * bytes, so that we can work with shared memory segments bigger than * unsigned long. */ struct sp_node { struct rb_node nd; unsigned long start, end; struct mempolicy *policy; }; struct shared_policy { struct rb_root root; rwlock_t lock; }; int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst); void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol); int mpol_set_shared_policy(struct shared_policy *info, struct vm_area_struct *vma, struct mempolicy *new); void mpol_free_shared_policy(struct shared_policy *p); struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx); struct mempolicy *get_task_policy(struct task_struct *p); struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, unsigned long addr); bool vma_policy_mof(struct vm_area_struct *vma); extern void numa_default_policy(void); extern void numa_policy_init(void); extern void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new); extern void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new); extern int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask); extern bool init_nodemask_of_mempolicy(nodemask_t *mask); extern bool mempolicy_nodemask_intersects(struct task_struct *tsk, const nodemask_t *mask); extern nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy); static inline nodemask_t *policy_nodemask_current(gfp_t gfp) { struct mempolicy *mpol = get_task_policy(current); return policy_nodemask(gfp, mpol); } extern unsigned int mempolicy_slab_node(void); extern enum zone_type policy_zone; static inline void check_highest_zone(enum zone_type k) { if (k > policy_zone && k != ZONE_MOVABLE) policy_zone = k; } int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags); #ifdef CONFIG_TMPFS extern int mpol_parse_str(char *str, struct mempolicy **mpol); #endif extern void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol); /* Check if a vma is migratable */ extern bool vma_migratable(struct vm_area_struct *vma); extern int mpol_misplaced(struct page *, struct vm_area_struct *, unsigned long); extern void mpol_put_task_policy(struct task_struct *); #else struct mempolicy {}; static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b) { return true; } static inline void mpol_put(struct mempolicy *p) { } static inline void mpol_cond_put(struct mempolicy *pol) { } static inline void mpol_get(struct mempolicy *pol) { } struct shared_policy {}; static inline void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) { } static inline void mpol_free_shared_policy(struct shared_policy *p) { } static inline struct mempolicy * mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) { return NULL; } #define vma_policy(vma) NULL static inline int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) { return 0; } static inline void numa_policy_init(void) { } static inline void numa_default_policy(void) { } static inline void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) { } static inline void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) { } static inline int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask) { *mpol = NULL; *nodemask = NULL; return 0; } static inline bool init_nodemask_of_mempolicy(nodemask_t *m) { return false; } static inline int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags) { return 0; } static inline void check_highest_zone(int k) { } #ifdef CONFIG_TMPFS static inline int mpol_parse_str(char *str, struct mempolicy **mpol) { return 1; /* error */ } #endif static inline int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long address) { return -1; /* no node preference */ } static inline void mpol_put_task_policy(struct task_struct *task) { } static inline nodemask_t *policy_nodemask_current(gfp_t gfp) { return NULL; } #endif /* CONFIG_NUMA */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_GENERIC_SECTIONS_H_ #define _ASM_GENERIC_SECTIONS_H_ /* References to section boundaries */ #include <linux/compiler.h> #include <linux/types.h> /* * Usage guidelines: * _text, _data: architecture specific, don't use them in arch-independent code * [_stext, _etext]: contains .text.* sections, may also contain .rodata.* * and/or .init.* sections * [_sdata, _edata]: contains .data.* sections, may also contain .rodata.* * and/or .init.* sections. * [__start_rodata, __end_rodata]: contains .rodata.* sections * [__start_ro_after_init, __end_ro_after_init]: * contains .data..ro_after_init section * [__init_begin, __init_end]: contains .init.* sections, but .init.text.* * may be out of this range on some architectures. * [_sinittext, _einittext]: contains .init.text.* sections * [__bss_start, __bss_stop]: contains BSS sections * * Following global variables are optional and may be unavailable on some * architectures and/or kernel configurations. * _text, _data * __kprobes_text_start, __kprobes_text_end * __entry_text_start, __entry_text_end * __ctors_start, __ctors_end * __irqentry_text_start, __irqentry_text_end * __softirqentry_text_start, __softirqentry_text_end * __start_opd, __end_opd */ extern char _text[], _stext[], _etext[]; extern char _data[], _sdata[], _edata[]; extern char __bss_start[], __bss_stop[]; extern char __init_begin[], __init_end[]; extern char _sinittext[], _einittext[]; extern char __start_ro_after_init[], __end_ro_after_init[]; extern char _end[]; extern char __per_cpu_load[], __per_cpu_start[], __per_cpu_end[]; extern char __kprobes_text_start[], __kprobes_text_end[]; extern char __entry_text_start[], __entry_text_end[]; extern char __start_rodata[], __end_rodata[]; extern char __irqentry_text_start[], __irqentry_text_end[]; extern char __softirqentry_text_start[], __softirqentry_text_end[]; extern char __start_once[], __end_once[]; /* Start and end of .ctors section - used for constructor calls. */ extern char __ctors_start[], __ctors_end[]; /* Start and end of .opd section - used for function descriptors. */ extern char __start_opd[], __end_opd[]; /* Start and end of instrumentation protected text section */ extern char __noinstr_text_start[], __noinstr_text_end[]; extern __visible const void __nosave_begin, __nosave_end; /* Function descriptor handling (if any). Override in asm/sections.h */ #ifndef dereference_function_descriptor #define dereference_function_descriptor(p) ((void *)(p)) #define dereference_kernel_function_descriptor(p) ((void *)(p)) #endif /* random extra sections (if any). Override * in asm/sections.h */ #ifndef arch_is_kernel_text static inline int arch_is_kernel_text(unsigned long addr) { return 0; } #endif #ifndef arch_is_kernel_data static inline int arch_is_kernel_data(unsigned long addr) { return 0; } #endif /* * Check if an address is part of freed initmem. This is needed on architectures * with virt == phys kernel mapping, for code that wants to check if an address * is part of a static object within [_stext, _end]. After initmem is freed, * memory can be allocated from it, and such allocations would then have * addresses within the range [_stext, _end]. */ #ifndef arch_is_kernel_initmem_freed static inline int arch_is_kernel_initmem_freed(unsigned long addr) { return 0; } #endif /** * memory_contains - checks if an object is contained within a memory region * @begin: virtual address of the beginning of the memory region * @end: virtual address of the end of the memory region * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if the object specified by @virt and @size is entirely * contained within the memory region defined by @begin and @end, false * otherwise. */ static inline bool memory_contains(void *begin, void *end, void *virt, size_t size) { return virt >= begin && virt + size <= end; } /** * memory_intersects - checks if the region occupied by an object intersects * with another memory region * @begin: virtual address of the beginning of the memory regien * @end: virtual address of the end of the memory region * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if an object's memory region, specified by @virt and @size, * intersects with the region specified by @begin and @end, false otherwise. */ static inline bool memory_intersects(void *begin, void *end, void *virt, size_t size) { void *vend = virt + size; return (virt >= begin && virt < end) || (vend >= begin && vend < end); } /** * init_section_contains - checks if an object is contained within the init * section * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if the object specified by @virt and @size is entirely * contained within the init section, false otherwise. */ static inline bool init_section_contains(void *virt, size_t size) { return memory_contains(__init_begin, __init_end, virt, size); } /** * init_section_intersects - checks if the region occupied by an object * intersects with the init section * @virt: virtual address of the memory object * @size: size of the memory object * * Returns: true if an object's memory region, specified by @virt and @size, * intersects with the init section, false otherwise. */ static inline bool init_section_intersects(void *virt, size_t size) { return memory_intersects(__init_begin, __init_end, virt, size); } /** * is_kernel_rodata - checks if the pointer address is located in the * .rodata section * * @addr: address to check * * Returns: true if the address is located in .rodata, false otherwise. */ static inline bool is_kernel_rodata(unsigned long addr) { return addr >= (unsigned long)__start_rodata && addr < (unsigned long)__end_rodata; } #endif /* _ASM_GENERIC_SECTIONS_H_ */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2006 IBM Corporation * * Author: Serge Hallyn <serue@us.ibm.com> * * Jun 2006 - namespaces support * OpenVZ, SWsoft Inc. * Pavel Emelianov <xemul@openvz.org> */ #include <linux/slab.h> #include <linux/export.h> #include <linux/nsproxy.h> #include <linux/init_task.h> #include <linux/mnt_namespace.h> #include <linux/utsname.h> #include <linux/pid_namespace.h> #include <net/net_namespace.h> #include <linux/ipc_namespace.h> #include <linux/time_namespace.h> #include <linux/fs_struct.h> #include <linux/proc_fs.h> #include <linux/proc_ns.h> #include <linux/file.h> #include <linux/syscalls.h> #include <linux/cgroup.h> #include <linux/perf_event.h> static struct kmem_cache *nsproxy_cachep; struct nsproxy init_nsproxy = { .count = ATOMIC_INIT(1), .uts_ns = &init_uts_ns, #if defined(CONFIG_POSIX_MQUEUE) || defined(CONFIG_SYSVIPC) .ipc_ns = &init_ipc_ns, #endif .mnt_ns = NULL, .pid_ns_for_children = &init_pid_ns, #ifdef CONFIG_NET .net_ns = &init_net, #endif #ifdef CONFIG_CGROUPS .cgroup_ns = &init_cgroup_ns, #endif #ifdef CONFIG_TIME_NS .time_ns = &init_time_ns, .time_ns_for_children = &init_time_ns, #endif }; static inline struct nsproxy *create_nsproxy(void) { struct nsproxy *nsproxy; nsproxy = kmem_cache_alloc(nsproxy_cachep, GFP_KERNEL); if (nsproxy) atomic_set(&nsproxy->count, 1); return nsproxy; } /* * Create new nsproxy and all of its the associated namespaces. * Return the newly created nsproxy. Do not attach this to the task, * leave it to the caller to do proper locking and attach it to task. */ static struct nsproxy *create_new_namespaces(unsigned long flags, struct task_struct *tsk, struct user_namespace *user_ns, struct fs_struct *new_fs) { struct nsproxy *new_nsp; int err; new_nsp = create_nsproxy(); if (!new_nsp) return ERR_PTR(-ENOMEM); new_nsp->mnt_ns = copy_mnt_ns(flags, tsk->nsproxy->mnt_ns, user_ns, new_fs); if (IS_ERR(new_nsp->mnt_ns)) { err = PTR_ERR(new_nsp->mnt_ns); goto out_ns; } new_nsp->uts_ns = copy_utsname(flags, user_ns, tsk->nsproxy->uts_ns); if (IS_ERR(new_nsp->uts_ns)) { err = PTR_ERR(new_nsp->uts_ns); goto out_uts; } new_nsp->ipc_ns = copy_ipcs(flags, user_ns, tsk->nsproxy->ipc_ns); if (IS_ERR(new_nsp->ipc_ns)) { err = PTR_ERR(new_nsp->ipc_ns); goto out_ipc; } new_nsp->pid_ns_for_children = copy_pid_ns(flags, user_ns, tsk->nsproxy->pid_ns_for_children); if (IS_ERR(new_nsp->pid_ns_for_children)) { err = PTR_ERR(new_nsp->pid_ns_for_children); goto out_pid; } new_nsp->cgroup_ns = copy_cgroup_ns(flags, user_ns, tsk->nsproxy->cgroup_ns); if (IS_ERR(new_nsp->cgroup_ns)) { err = PTR_ERR(new_nsp->cgroup_ns); goto out_cgroup; } new_nsp->net_ns = copy_net_ns(flags, user_ns, tsk->nsproxy->net_ns); if (IS_ERR(new_nsp->net_ns)) { err = PTR_ERR(new_nsp->net_ns); goto out_net; } new_nsp->time_ns_for_children = copy_time_ns(flags, user_ns, tsk->nsproxy->time_ns_for_children); if (IS_ERR(new_nsp->time_ns_for_children)) { err = PTR_ERR(new_nsp->time_ns_for_children); goto out_time; } new_nsp->time_ns = get_time_ns(tsk->nsproxy->time_ns); return new_nsp; out_time: put_net(new_nsp->net_ns); out_net: put_cgroup_ns(new_nsp->cgroup_ns); out_cgroup: if (new_nsp->pid_ns_for_children) put_pid_ns(new_nsp->pid_ns_for_children); out_pid: if (new_nsp->ipc_ns) put_ipc_ns(new_nsp->ipc_ns); out_ipc: if (new_nsp->uts_ns) put_uts_ns(new_nsp->uts_ns); out_uts: if (new_nsp->mnt_ns) put_mnt_ns(new_nsp->mnt_ns); out_ns: kmem_cache_free(nsproxy_cachep, new_nsp); return ERR_PTR(err); } /* * called from clone. This now handles copy for nsproxy and all * namespaces therein. */ int copy_namespaces(unsigned long flags, struct task_struct *tsk) { struct nsproxy *old_ns = tsk->nsproxy; struct user_namespace *user_ns = task_cred_xxx(tsk, user_ns); struct nsproxy *new_ns; int ret; if (likely(!(flags & (CLONE_NEWNS | CLONE_NEWUTS | CLONE_NEWIPC | CLONE_NEWPID | CLONE_NEWNET | CLONE_NEWCGROUP | CLONE_NEWTIME)))) { if (likely(old_ns->time_ns_for_children == old_ns->time_ns)) { get_nsproxy(old_ns); return 0; } } else if (!ns_capable(user_ns, CAP_SYS_ADMIN)) return -EPERM; /* * CLONE_NEWIPC must detach from the undolist: after switching * to a new ipc namespace, the semaphore arrays from the old * namespace are unreachable. In clone parlance, CLONE_SYSVSEM * means share undolist with parent, so we must forbid using * it along with CLONE_NEWIPC. */ if ((flags & (CLONE_NEWIPC | CLONE_SYSVSEM)) == (CLONE_NEWIPC | CLONE_SYSVSEM)) return -EINVAL; new_ns = create_new_namespaces(flags, tsk, user_ns, tsk->fs); if (IS_ERR(new_ns)) return PTR_ERR(new_ns); ret = timens_on_fork(new_ns, tsk); if (ret) { free_nsproxy(new_ns); return ret; } tsk->nsproxy = new_ns; return 0; } void free_nsproxy(struct nsproxy *ns) { if (ns->mnt_ns) put_mnt_ns(ns->mnt_ns); if (ns->uts_ns) put_uts_ns(ns->uts_ns); if (ns->ipc_ns) put_ipc_ns(ns->ipc_ns); if (ns->pid_ns_for_children) put_pid_ns(ns->pid_ns_for_children); if (ns->time_ns) put_time_ns(ns->time_ns); if (ns->time_ns_for_children) put_time_ns(ns->time_ns_for_children); put_cgroup_ns(ns->cgroup_ns); put_net(ns->net_ns); kmem_cache_free(nsproxy_cachep, ns); } /* * Called from unshare. Unshare all the namespaces part of nsproxy. * On success, returns the new nsproxy. */ int unshare_nsproxy_namespaces(unsigned long unshare_flags, struct nsproxy **new_nsp, struct cred *new_cred, struct fs_struct *new_fs) { struct user_namespace *user_ns; int err = 0; if (!(unshare_flags & (CLONE_NEWNS | CLONE_NEWUTS | CLONE_NEWIPC | CLONE_NEWNET | CLONE_NEWPID | CLONE_NEWCGROUP | CLONE_NEWTIME))) return 0; user_ns = new_cred ? new_cred->user_ns : current_user_ns(); if (!ns_capable(user_ns, CAP_SYS_ADMIN)) return -EPERM; *new_nsp = create_new_namespaces(unshare_flags, current, user_ns, new_fs ? new_fs : current->fs); if (IS_ERR(*new_nsp)) { err = PTR_ERR(*new_nsp); goto out; } out: return err; } void switch_task_namespaces(struct task_struct *p, struct nsproxy *new) { struct nsproxy *ns; might_sleep(); task_lock(p); ns = p->nsproxy; p->nsproxy = new; task_unlock(p); if (ns && atomic_dec_and_test(&ns->count)) free_nsproxy(ns); } void exit_task_namespaces(struct task_struct *p) { switch_task_namespaces(p, NULL); } static int check_setns_flags(unsigned long flags) { if (!flags || (flags & ~(CLONE_NEWNS | CLONE_NEWUTS | CLONE_NEWIPC | CLONE_NEWNET | CLONE_NEWTIME | CLONE_NEWUSER | CLONE_NEWPID | CLONE_NEWCGROUP))) return -EINVAL; #ifndef CONFIG_USER_NS if (flags & CLONE_NEWUSER) return -EINVAL; #endif #ifndef CONFIG_PID_NS if (flags & CLONE_NEWPID) return -EINVAL; #endif #ifndef CONFIG_UTS_NS if (flags & CLONE_NEWUTS) return -EINVAL; #endif #ifndef CONFIG_IPC_NS if (flags & CLONE_NEWIPC) return -EINVAL; #endif #ifndef CONFIG_CGROUPS if (flags & CLONE_NEWCGROUP) return -EINVAL; #endif #ifndef CONFIG_NET_NS if (flags & CLONE_NEWNET) return -EINVAL; #endif #ifndef CONFIG_TIME_NS if (flags & CLONE_NEWTIME) return -EINVAL; #endif return 0; } static void put_nsset(struct nsset *nsset) { unsigned flags = nsset->flags; if (flags & CLONE_NEWUSER) put_cred(nsset_cred(nsset)); /* * We only created a temporary copy if we attached to more than just * the mount namespace. */ if (nsset->fs && (flags & CLONE_NEWNS) && (flags & ~CLONE_NEWNS)) free_fs_struct(nsset->fs); if (nsset->nsproxy) free_nsproxy(nsset->nsproxy); } static int prepare_nsset(unsigned flags, struct nsset *nsset) { struct task_struct *me = current; nsset->nsproxy = create_new_namespaces(0, me, current_user_ns(), me->fs); if (IS_ERR(nsset->nsproxy)) return PTR_ERR(nsset->nsproxy); if (flags & CLONE_NEWUSER) nsset->cred = prepare_creds(); else nsset->cred = current_cred(); if (!nsset->cred) goto out; /* Only create a temporary copy of fs_struct if we really need to. */ if (flags == CLONE_NEWNS) { nsset->fs = me->fs; } else if (flags & CLONE_NEWNS) { nsset->fs = copy_fs_struct(me->fs); if (!nsset->fs) goto out; } nsset->flags = flags; return 0; out: put_nsset(nsset); return -ENOMEM; } static inline int validate_ns(struct nsset *nsset, struct ns_common *ns) { return ns->ops->install(nsset, ns); } /* * This is the inverse operation to unshare(). * Ordering is equivalent to the standard ordering used everywhere else * during unshare and process creation. The switch to the new set of * namespaces occurs at the point of no return after installation of * all requested namespaces was successful in commit_nsset(). */ static int validate_nsset(struct nsset *nsset, struct pid *pid) { int ret = 0; unsigned flags = nsset->flags; struct user_namespace *user_ns = NULL; struct pid_namespace *pid_ns = NULL; struct nsproxy *nsp; struct task_struct *tsk; /* Take a "snapshot" of the target task's namespaces. */ rcu_read_lock(); tsk = pid_task(pid, PIDTYPE_PID); if (!tsk) { rcu_read_unlock(); return -ESRCH; } if (!ptrace_may_access(tsk, PTRACE_MODE_READ_REALCREDS)) { rcu_read_unlock(); return -EPERM; } task_lock(tsk); nsp = tsk->nsproxy; if (nsp) get_nsproxy(nsp); task_unlock(tsk); if (!nsp) { rcu_read_unlock(); return -ESRCH; } #ifdef CONFIG_PID_NS if (flags & CLONE_NEWPID) { pid_ns = task_active_pid_ns(tsk); if (unlikely(!pid_ns)) { rcu_read_unlock(); ret = -ESRCH; goto out; } get_pid_ns(pid_ns); } #endif #ifdef CONFIG_USER_NS if (flags & CLONE_NEWUSER) user_ns = get_user_ns(__task_cred(tsk)->user_ns); #endif rcu_read_unlock(); /* * Install requested namespaces. The caller will have * verified earlier that the requested namespaces are * supported on this kernel. We don't report errors here * if a namespace is requested that isn't supported. */ #ifdef CONFIG_USER_NS if (flags & CLONE_NEWUSER) { ret = validate_ns(nsset, &user_ns->ns); if (ret) goto out; } #endif if (flags & CLONE_NEWNS) { ret = validate_ns(nsset, from_mnt_ns(nsp->mnt_ns)); if (ret) goto out; } #ifdef CONFIG_UTS_NS if (flags & CLONE_NEWUTS) { ret = validate_ns(nsset, &nsp->uts_ns->ns); if (ret) goto out; } #endif #ifdef CONFIG_IPC_NS if (flags & CLONE_NEWIPC) { ret = validate_ns(nsset, &nsp->ipc_ns->ns); if (ret) goto out; } #endif #ifdef CONFIG_PID_NS if (flags & CLONE_NEWPID) { ret = validate_ns(nsset, &pid_ns->ns); if (ret) goto out; } #endif #ifdef CONFIG_CGROUPS if (flags & CLONE_NEWCGROUP) { ret = validate_ns(nsset, &nsp->cgroup_ns->ns); if (ret) goto out; } #endif #ifdef CONFIG_NET_NS if (flags & CLONE_NEWNET) { ret = validate_ns(nsset, &nsp->net_ns->ns); if (ret) goto out; } #endif #ifdef CONFIG_TIME_NS if (flags & CLONE_NEWTIME) { ret = validate_ns(nsset, &nsp->time_ns->ns); if (ret) goto out; } #endif out: if (pid_ns) put_pid_ns(pid_ns); if (nsp) put_nsproxy(nsp); put_user_ns(user_ns); return ret; } /* * This is the point of no return. There are just a few namespaces * that do some actual work here and it's sufficiently minimal that * a separate ns_common operation seems unnecessary for now. * Unshare is doing the same thing. If we'll end up needing to do * more in a given namespace or a helper here is ultimately not * exported anymore a simple commit handler for each namespace * should be added to ns_common. */ static void commit_nsset(struct nsset *nsset) { unsigned flags = nsset->flags; struct task_struct *me = current; #ifdef CONFIG_USER_NS if (flags & CLONE_NEWUSER) { /* transfer ownership */ commit_creds(nsset_cred(nsset)); nsset->cred = NULL; } #endif /* We only need to commit if we have used a temporary fs_struct. */ if ((flags & CLONE_NEWNS) && (flags & ~CLONE_NEWNS)) { set_fs_root(me->fs, &nsset->fs->root); set_fs_pwd(me->fs, &nsset->fs->pwd); } #ifdef CONFIG_IPC_NS if (flags & CLONE_NEWIPC) exit_sem(me); #endif #ifdef CONFIG_TIME_NS if (flags & CLONE_NEWTIME) timens_commit(me, nsset->nsproxy->time_ns); #endif /* transfer ownership */ switch_task_namespaces(me, nsset->nsproxy); nsset->nsproxy = NULL; } SYSCALL_DEFINE2(setns, int, fd, int, flags) { struct file *file; struct ns_common *ns = NULL; struct nsset nsset = {}; int err = 0; file = fget(fd); if (!file) return -EBADF; if (proc_ns_file(file)) { ns = get_proc_ns(file_inode(file)); if (flags && (ns->ops->type != flags)) err = -EINVAL; flags = ns->ops->type; } else if (!IS_ERR(pidfd_pid(file))) { err = check_setns_flags(flags); } else { err = -EINVAL; } if (err) goto out; err = prepare_nsset(flags, &nsset); if (err) goto out; if (proc_ns_file(file)) err = validate_ns(&nsset, ns); else err = validate_nsset(&nsset, file->private_data); if (!err) { commit_nsset(&nsset); perf_event_namespaces(current); } put_nsset(&nsset); out: fput(file); return err; } int __init nsproxy_cache_init(void) { nsproxy_cachep = KMEM_CACHE(nsproxy, SLAB_PANIC); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SOCK_REUSEPORT_H #define _SOCK_REUSEPORT_H #include <linux/filter.h> #include <linux/skbuff.h> #include <linux/types.h> #include <linux/spinlock.h> #include <net/sock.h> extern spinlock_t reuseport_lock; struct sock_reuseport { struct rcu_head rcu; u16 max_socks; /* length of socks */ u16 num_socks; /* elements in socks */ /* The last synq overflow event timestamp of this * reuse->socks[] group. */ unsigned int synq_overflow_ts; /* ID stays the same even after the size of socks[] grows. */ unsigned int reuseport_id; unsigned int bind_inany:1; unsigned int has_conns:1; struct bpf_prog __rcu *prog; /* optional BPF sock selector */ struct sock *socks[]; /* array of sock pointers */ }; extern int reuseport_alloc(struct sock *sk, bool bind_inany); extern int reuseport_add_sock(struct sock *sk, struct sock *sk2, bool bind_inany); extern void reuseport_detach_sock(struct sock *sk); extern struct sock *reuseport_select_sock(struct sock *sk, u32 hash, struct sk_buff *skb, int hdr_len); extern int reuseport_attach_prog(struct sock *sk, struct bpf_prog *prog); extern int reuseport_detach_prog(struct sock *sk); static inline bool reuseport_has_conns(struct sock *sk, bool set) { struct sock_reuseport *reuse; bool ret = false; rcu_read_lock(); reuse = rcu_dereference(sk->sk_reuseport_cb); if (reuse) { if (set) reuse->has_conns = 1; ret = reuse->has_conns; } rcu_read_unlock(); return ret; } #endif /* _SOCK_REUSEPORT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * SR-IPv6 implementation * * Author: * David Lebrun <david.lebrun@uclouvain.be> */ #ifndef _NET_SEG6_H #define _NET_SEG6_H #include <linux/net.h> #include <linux/ipv6.h> #include <linux/seg6.h> #include <linux/rhashtable-types.h> static inline void update_csum_diff4(struct sk_buff *skb, __be32 from, __be32 to) { __be32 diff[] = { ~from, to }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } static inline void update_csum_diff16(struct sk_buff *skb, __be32 *from, __be32 *to) { __be32 diff[] = { ~from[0], ~from[1], ~from[2], ~from[3], to[0], to[1], to[2], to[3], }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } struct seg6_pernet_data { struct mutex lock; struct in6_addr __rcu *tun_src; #ifdef CONFIG_IPV6_SEG6_HMAC struct rhashtable hmac_infos; #endif }; static inline struct seg6_pernet_data *seg6_pernet(struct net *net) { #if IS_ENABLED(CONFIG_IPV6) return net->ipv6.seg6_data; #else return NULL; #endif } extern int seg6_init(void); extern void seg6_exit(void); extern int seg6_iptunnel_init(void); extern void seg6_iptunnel_exit(void); extern int seg6_local_init(void); extern void seg6_local_exit(void); extern bool seg6_validate_srh(struct ipv6_sr_hdr *srh, int len, bool reduced); extern int seg6_do_srh_encap(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, int proto); extern int seg6_do_srh_inline(struct sk_buff *skb, struct ipv6_sr_hdr *osrh); extern int seg6_lookup_nexthop(struct sk_buff *skb, struct in6_addr *nhaddr, u32 tbl_id); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BSEARCH_H #define _LINUX_BSEARCH_H #include <linux/types.h> static __always_inline void *__inline_bsearch(const void *key, const void *base, size_t num, size_t size, cmp_func_t cmp) { const char *pivot; int result; while (num > 0) { pivot = base + (num >> 1) * size; result = cmp(key, pivot); if (result == 0) return (void *)pivot; if (result > 0) { base = pivot + size; num--; } num >>= 1; } return NULL; } extern void *bsearch(const void *key, const void *base, size_t num, size_t size, cmp_func_t cmp); #endif /* _LINUX_BSEARCH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 /* SPDX-License-Identifier: GPL-2.0 */ /* * fs-verity: read-only file-based authenticity protection * * This header declares the interface between the fs/verity/ support layer and * filesystems that support fs-verity. * * Copyright 2019 Google LLC */ #ifndef _LINUX_FSVERITY_H #define _LINUX_FSVERITY_H #include <linux/fs.h> #include <uapi/linux/fsverity.h> /* Verity operations for filesystems */ struct fsverity_operations { /** * Begin enabling verity on the given file. * * @filp: a readonly file descriptor for the file * * The filesystem must do any needed filesystem-specific preparations * for enabling verity, e.g. evicting inline data. It also must return * -EBUSY if verity is already being enabled on the given file. * * i_rwsem is held for write. * * Return: 0 on success, -errno on failure */ int (*begin_enable_verity)(struct file *filp); /** * End enabling verity on the given file. * * @filp: a readonly file descriptor for the file * @desc: the verity descriptor to write, or NULL on failure * @desc_size: size of verity descriptor, or 0 on failure * @merkle_tree_size: total bytes the Merkle tree took up * * If desc == NULL, then enabling verity failed and the filesystem only * must do any necessary cleanups. Else, it must also store the given * verity descriptor to a fs-specific location associated with the inode * and do any fs-specific actions needed to mark the inode as a verity * inode, e.g. setting a bit in the on-disk inode. The filesystem is * also responsible for setting the S_VERITY flag in the VFS inode. * * i_rwsem is held for write, but it may have been dropped between * ->begin_enable_verity() and ->end_enable_verity(). * * Return: 0 on success, -errno on failure */ int (*end_enable_verity)(struct file *filp, const void *desc, size_t desc_size, u64 merkle_tree_size); /** * Get the verity descriptor of the given inode. * * @inode: an inode with the S_VERITY flag set * @buf: buffer in which to place the verity descriptor * @bufsize: size of @buf, or 0 to retrieve the size only * * If bufsize == 0, then the size of the verity descriptor is returned. * Otherwise the verity descriptor is written to 'buf' and its actual * size is returned; -ERANGE is returned if it's too large. This may be * called by multiple processes concurrently on the same inode. * * Return: the size on success, -errno on failure */ int (*get_verity_descriptor)(struct inode *inode, void *buf, size_t bufsize); /** * Read a Merkle tree page of the given inode. * * @inode: the inode * @index: 0-based index of the page within the Merkle tree * @num_ra_pages: The number of Merkle tree pages that should be * prefetched starting at @index if the page at @index * isn't already cached. Implementations may ignore this * argument; it's only a performance optimization. * * This can be called at any time on an open verity file, as well as * between ->begin_enable_verity() and ->end_enable_verity(). It may be * called by multiple processes concurrently, even with the same page. * * Note that this must retrieve a *page*, not necessarily a *block*. * * Return: the page on success, ERR_PTR() on failure */ struct page *(*read_merkle_tree_page)(struct inode *inode, pgoff_t index, unsigned long num_ra_pages); /** * Write a Merkle tree block to the given inode. * * @inode: the inode for which the Merkle tree is being built * @buf: block to write * @index: 0-based index of the block within the Merkle tree * @log_blocksize: log base 2 of the Merkle tree block size * * This is only called between ->begin_enable_verity() and * ->end_enable_verity(). * * Return: 0 on success, -errno on failure */ int (*write_merkle_tree_block)(struct inode *inode, const void *buf, u64 index, int log_blocksize); }; #ifdef CONFIG_FS_VERITY static inline struct fsverity_info *fsverity_get_info(const struct inode *inode) { /* * Pairs with the cmpxchg_release() in fsverity_set_info(). * I.e., another task may publish ->i_verity_info concurrently, * executing a RELEASE barrier. We need to use smp_load_acquire() here * to safely ACQUIRE the memory the other task published. */ return smp_load_acquire(&inode->i_verity_info); } /* enable.c */ int fsverity_ioctl_enable(struct file *filp, const void __user *arg); /* measure.c */ int fsverity_ioctl_measure(struct file *filp, void __user *arg); /* open.c */ int fsverity_file_open(struct inode *inode, struct file *filp); int fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr); void fsverity_cleanup_inode(struct inode *inode); /* verify.c */ bool fsverity_verify_page(struct page *page); void fsverity_verify_bio(struct bio *bio); void fsverity_enqueue_verify_work(struct work_struct *work); #else /* !CONFIG_FS_VERITY */ static inline struct fsverity_info *fsverity_get_info(const struct inode *inode) { return NULL; } /* enable.c */ static inline int fsverity_ioctl_enable(struct file *filp, const void __user *arg) { return -EOPNOTSUPP; } /* measure.c */ static inline int fsverity_ioctl_measure(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } /* open.c */ static inline int fsverity_file_open(struct inode *inode, struct file *filp) { return IS_VERITY(inode) ? -EOPNOTSUPP : 0; } static inline int fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr) { return IS_VERITY(d_inode(dentry)) ? -EOPNOTSUPP : 0; } static inline void fsverity_cleanup_inode(struct inode *inode) { } /* verify.c */ static inline bool fsverity_verify_page(struct page *page) { WARN_ON(1); return false; } static inline void fsverity_verify_bio(struct bio *bio) { WARN_ON(1); } static inline void fsverity_enqueue_verify_work(struct work_struct *work) { WARN_ON(1); } #endif /* !CONFIG_FS_VERITY */ /** * fsverity_active() - do reads from the inode need to go through fs-verity? * @inode: inode to check * * This checks whether ->i_verity_info has been set. * * Filesystems call this from ->readpages() to check whether the pages need to * be verified or not. Don't use IS_VERITY() for this purpose; it's subject to * a race condition where the file is being read concurrently with * FS_IOC_ENABLE_VERITY completing. (S_VERITY is set before ->i_verity_info.) * * Return: true if reads need to go through fs-verity, otherwise false */ static inline bool fsverity_active(const struct inode *inode) { return fsverity_get_info(inode) != NULL; } #endif /* _LINUX_FSVERITY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LOCAL_LOCK_H # error "Do not include directly, include linux/local_lock.h" #endif #include <linux/percpu-defs.h> #include <linux/lockdep.h> typedef struct { #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; struct task_struct *owner; #endif } local_lock_t; #ifdef CONFIG_DEBUG_LOCK_ALLOC # define LOCAL_LOCK_DEBUG_INIT(lockname) \ .dep_map = { \ .name = #lockname, \ .wait_type_inner = LD_WAIT_CONFIG, \ .lock_type = LD_LOCK_PERCPU, \ }, \ .owner = NULL, static inline void local_lock_acquire(local_lock_t *l) { lock_map_acquire(&l->dep_map); DEBUG_LOCKS_WARN_ON(l->owner); l->owner = current; } static inline void local_lock_release(local_lock_t *l) { DEBUG_LOCKS_WARN_ON(l->owner != current); l->owner = NULL; lock_map_release(&l->dep_map); } static inline void local_lock_debug_init(local_lock_t *l) { l->owner = NULL; } #else /* CONFIG_DEBUG_LOCK_ALLOC */ # define LOCAL_LOCK_DEBUG_INIT(lockname) static inline void local_lock_acquire(local_lock_t *l) { } static inline void local_lock_release(local_lock_t *l) { } static inline void local_lock_debug_init(local_lock_t *l) { } #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ #define INIT_LOCAL_LOCK(lockname) { LOCAL_LOCK_DEBUG_INIT(lockname) } #define __local_lock_init(lock) \ do { \ static struct lock_class_key __key; \ \ debug_check_no_locks_freed((void *)lock, sizeof(*lock));\ lockdep_init_map_type(&(lock)->dep_map, #lock, &__key, \ 0, LD_WAIT_CONFIG, LD_WAIT_INV, \ LD_LOCK_PERCPU); \ local_lock_debug_init(lock); \ } while (0) #define __local_lock(lock) \ do { \ preempt_disable(); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_lock_irq(lock) \ do { \ local_irq_disable(); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_lock_irqsave(lock, flags) \ do { \ local_irq_save(flags); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_unlock(lock) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ preempt_enable(); \ } while (0) #define __local_unlock_irq(lock) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ local_irq_enable(); \ } while (0) #define __local_unlock_irqrestore(lock, flags) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ local_irq_restore(flags); \ } while (0)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __SOCK_DIAG_H__ #define __SOCK_DIAG_H__ #include <linux/netlink.h> #include <linux/user_namespace.h> #include <net/net_namespace.h> #include <net/sock.h> #include <uapi/linux/sock_diag.h> struct sk_buff; struct nlmsghdr; struct sock; struct sock_diag_handler { __u8 family; int (*dump)(struct sk_buff *skb, struct nlmsghdr *nlh); int (*get_info)(struct sk_buff *skb, struct sock *sk); int (*destroy)(struct sk_buff *skb, struct nlmsghdr *nlh); }; int sock_diag_register(const struct sock_diag_handler *h); void sock_diag_unregister(const struct sock_diag_handler *h); void sock_diag_register_inet_compat(int (*fn)(struct sk_buff *skb, struct nlmsghdr *nlh)); void sock_diag_unregister_inet_compat(int (*fn)(struct sk_buff *skb, struct nlmsghdr *nlh)); u64 __sock_gen_cookie(struct sock *sk); static inline u64 sock_gen_cookie(struct sock *sk) { u64 cookie; preempt_disable(); cookie = __sock_gen_cookie(sk); preempt_enable(); return cookie; } int sock_diag_check_cookie(struct sock *sk, const __u32 *cookie); void sock_diag_save_cookie(struct sock *sk, __u32 *cookie); int sock_diag_put_meminfo(struct sock *sk, struct sk_buff *skb, int attr); int sock_diag_put_filterinfo(bool may_report_filterinfo, struct sock *sk, struct sk_buff *skb, int attrtype); static inline enum sknetlink_groups sock_diag_destroy_group(const struct sock *sk) { switch (sk->sk_family) { case AF_INET: if (sk->sk_type == SOCK_RAW) return SKNLGRP_NONE; switch (sk->sk_protocol) { case IPPROTO_TCP: return SKNLGRP_INET_TCP_DESTROY; case IPPROTO_UDP: return SKNLGRP_INET_UDP_DESTROY; default: return SKNLGRP_NONE; } case AF_INET6: if (sk->sk_type == SOCK_RAW) return SKNLGRP_NONE; switch (sk->sk_protocol) { case IPPROTO_TCP: return SKNLGRP_INET6_TCP_DESTROY; case IPPROTO_UDP: return SKNLGRP_INET6_UDP_DESTROY; default: return SKNLGRP_NONE; } default: return SKNLGRP_NONE; } } static inline bool sock_diag_has_destroy_listeners(const struct sock *sk) { const struct net *n = sock_net(sk); const enum sknetlink_groups group = sock_diag_destroy_group(sk); return group != SKNLGRP_NONE && n->diag_nlsk && netlink_has_listeners(n->diag_nlsk, group); } void sock_diag_broadcast_destroy(struct sock *sk); int sock_diag_destroy(struct sock *sk, int err); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM vmscan #if !defined(_TRACE_VMSCAN_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_VMSCAN_H #include <linux/types.h> #include <linux/tracepoint.h> #include <linux/mm.h> #include <linux/memcontrol.h> #include <trace/events/mmflags.h> #define RECLAIM_WB_ANON 0x0001u #define RECLAIM_WB_FILE 0x0002u #define RECLAIM_WB_MIXED 0x0010u #define RECLAIM_WB_SYNC 0x0004u /* Unused, all reclaim async */ #define RECLAIM_WB_ASYNC 0x0008u #define RECLAIM_WB_LRU (RECLAIM_WB_ANON|RECLAIM_WB_FILE) #define show_reclaim_flags(flags) \ (flags) ? __print_flags(flags, "|", \ {RECLAIM_WB_ANON, "RECLAIM_WB_ANON"}, \ {RECLAIM_WB_FILE, "RECLAIM_WB_FILE"}, \ {RECLAIM_WB_MIXED, "RECLAIM_WB_MIXED"}, \ {RECLAIM_WB_SYNC, "RECLAIM_WB_SYNC"}, \ {RECLAIM_WB_ASYNC, "RECLAIM_WB_ASYNC"} \ ) : "RECLAIM_WB_NONE" #define trace_reclaim_flags(file) ( \ (file ? RECLAIM_WB_FILE : RECLAIM_WB_ANON) | \ (RECLAIM_WB_ASYNC) \ ) TRACE_EVENT(mm_vmscan_kswapd_sleep, TP_PROTO(int nid), TP_ARGS(nid), TP_STRUCT__entry( __field( int, nid ) ), TP_fast_assign( __entry->nid = nid; ), TP_printk("nid=%d", __entry->nid) ); TRACE_EVENT(mm_vmscan_kswapd_wake, TP_PROTO(int nid, int zid, int order), TP_ARGS(nid, zid, order), TP_STRUCT__entry( __field( int, nid ) __field( int, zid ) __field( int, order ) ), TP_fast_assign( __entry->nid = nid; __entry->zid = zid; __entry->order = order; ), TP_printk("nid=%d order=%d", __entry->nid, __entry->order) ); TRACE_EVENT(mm_vmscan_wakeup_kswapd, TP_PROTO(int nid, int zid, int order, gfp_t gfp_flags), TP_ARGS(nid, zid, order, gfp_flags), TP_STRUCT__entry( __field( int, nid ) __field( int, zid ) __field( int, order ) __field( gfp_t, gfp_flags ) ), TP_fast_assign( __entry->nid = nid; __entry->zid = zid; __entry->order = order; __entry->gfp_flags = gfp_flags; ), TP_printk("nid=%d order=%d gfp_flags=%s", __entry->nid, __entry->order, show_gfp_flags(__entry->gfp_flags)) ); DECLARE_EVENT_CLASS(mm_vmscan_direct_reclaim_begin_template, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags), TP_STRUCT__entry( __field( int, order ) __field( gfp_t, gfp_flags ) ), TP_fast_assign( __entry->order = order; __entry->gfp_flags = gfp_flags; ), TP_printk("order=%d gfp_flags=%s", __entry->order, show_gfp_flags(__entry->gfp_flags)) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_direct_reclaim_begin, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags) ); #ifdef CONFIG_MEMCG DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_memcg_reclaim_begin, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_memcg_softlimit_reclaim_begin, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags) ); #endif /* CONFIG_MEMCG */ DECLARE_EVENT_CLASS(mm_vmscan_direct_reclaim_end_template, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed), TP_STRUCT__entry( __field( unsigned long, nr_reclaimed ) ), TP_fast_assign( __entry->nr_reclaimed = nr_reclaimed; ), TP_printk("nr_reclaimed=%lu", __entry->nr_reclaimed) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_direct_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); #ifdef CONFIG_MEMCG DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_memcg_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_memcg_softlimit_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); #endif /* CONFIG_MEMCG */ TRACE_EVENT(mm_shrink_slab_start, TP_PROTO(struct shrinker *shr, struct shrink_control *sc, long nr_objects_to_shrink, unsigned long cache_items, unsigned long long delta, unsigned long total_scan, int priority), TP_ARGS(shr, sc, nr_objects_to_shrink, cache_items, delta, total_scan, priority), TP_STRUCT__entry( __field(struct shrinker *, shr) __field(void *, shrink) __field(int, nid) __field(long, nr_objects_to_shrink) __field(gfp_t, gfp_flags) __field(unsigned long, cache_items) __field(unsigned long long, delta) __field(unsigned long, total_scan) __field(int, priority) ), TP_fast_assign( __entry->shr = shr; __entry->shrink = shr->scan_objects; __entry->nid = sc->nid; __entry->nr_objects_to_shrink = nr_objects_to_shrink; __entry->gfp_flags = sc->gfp_mask; __entry->cache_items = cache_items; __entry->delta = delta; __entry->total_scan = total_scan; __entry->priority = priority; ), TP_printk("%pS %p: nid: %d objects to shrink %ld gfp_flags %s cache items %ld delta %lld total_scan %ld priority %d", __entry->shrink, __entry->shr, __entry->nid, __entry->nr_objects_to_shrink, show_gfp_flags(__entry->gfp_flags), __entry->cache_items, __entry->delta, __entry->total_scan, __entry->priority) ); TRACE_EVENT(mm_shrink_slab_end, TP_PROTO(struct shrinker *shr, int nid, int shrinker_retval, long unused_scan_cnt, long new_scan_cnt, long total_scan), TP_ARGS(shr, nid, shrinker_retval, unused_scan_cnt, new_scan_cnt, total_scan), TP_STRUCT__entry( __field(struct shrinker *, shr) __field(int, nid) __field(void *, shrink) __field(long, unused_scan) __field(long, new_scan) __field(int, retval) __field(long, total_scan) ), TP_fast_assign( __entry->shr = shr; __entry->nid = nid; __entry->shrink = shr->scan_objects; __entry->unused_scan = unused_scan_cnt; __entry->new_scan = new_scan_cnt; __entry->retval = shrinker_retval; __entry->total_scan = total_scan; ), TP_printk("%pS %p: nid: %d unused scan count %ld new scan count %ld total_scan %ld last shrinker return val %d", __entry->shrink, __entry->shr, __entry->nid, __entry->unused_scan, __entry->new_scan, __entry->total_scan, __entry->retval) ); TRACE_EVENT(mm_vmscan_lru_isolate, TP_PROTO(int highest_zoneidx, int order, unsigned long nr_requested, unsigned long nr_scanned, unsigned long nr_skipped, unsigned long nr_taken, isolate_mode_t isolate_mode, int lru), TP_ARGS(highest_zoneidx, order, nr_requested, nr_scanned, nr_skipped, nr_taken, isolate_mode, lru), TP_STRUCT__entry( __field(int, highest_zoneidx) __field(int, order) __field(unsigned long, nr_requested) __field(unsigned long, nr_scanned) __field(unsigned long, nr_skipped) __field(unsigned long, nr_taken) __field(isolate_mode_t, isolate_mode) __field(int, lru) ), TP_fast_assign( __entry->highest_zoneidx = highest_zoneidx; __entry->order = order; __entry->nr_requested = nr_requested; __entry->nr_scanned = nr_scanned; __entry->nr_skipped = nr_skipped; __entry->nr_taken = nr_taken; __entry->isolate_mode = isolate_mode; __entry->lru = lru; ), /* * classzone is previous name of the highest_zoneidx. * Reason not to change it is the ABI requirement of the tracepoint. */ TP_printk("isolate_mode=%d classzone=%d order=%d nr_requested=%lu nr_scanned=%lu nr_skipped=%lu nr_taken=%lu lru=%s", __entry->isolate_mode, __entry->highest_zoneidx, __entry->order, __entry->nr_requested, __entry->nr_scanned, __entry->nr_skipped, __entry->nr_taken, __print_symbolic(__entry->lru, LRU_NAMES)) ); TRACE_EVENT(mm_vmscan_writepage, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field(unsigned long, pfn) __field(int, reclaim_flags) ), TP_fast_assign( __entry->pfn = page_to_pfn(page); __entry->reclaim_flags = trace_reclaim_flags( page_is_file_lru(page)); ), TP_printk("page=%p pfn=%lu flags=%s", pfn_to_page(__entry->pfn), __entry->pfn, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_lru_shrink_inactive, TP_PROTO(int nid, unsigned long nr_scanned, unsigned long nr_reclaimed, struct reclaim_stat *stat, int priority, int file), TP_ARGS(nid, nr_scanned, nr_reclaimed, stat, priority, file), TP_STRUCT__entry( __field(int, nid) __field(unsigned long, nr_scanned) __field(unsigned long, nr_reclaimed) __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, nr_congested) __field(unsigned long, nr_immediate) __field(unsigned int, nr_activate0) __field(unsigned int, nr_activate1) __field(unsigned long, nr_ref_keep) __field(unsigned long, nr_unmap_fail) __field(int, priority) __field(int, reclaim_flags) ), TP_fast_assign( __entry->nid = nid; __entry->nr_scanned = nr_scanned; __entry->nr_reclaimed = nr_reclaimed; __entry->nr_dirty = stat->nr_dirty; __entry->nr_writeback = stat->nr_writeback; __entry->nr_congested = stat->nr_congested; __entry->nr_immediate = stat->nr_immediate; __entry->nr_activate0 = stat->nr_activate[0]; __entry->nr_activate1 = stat->nr_activate[1]; __entry->nr_ref_keep = stat->nr_ref_keep; __entry->nr_unmap_fail = stat->nr_unmap_fail; __entry->priority = priority; __entry->reclaim_flags = trace_reclaim_flags(file); ), TP_printk("nid=%d nr_scanned=%ld nr_reclaimed=%ld nr_dirty=%ld nr_writeback=%ld nr_congested=%ld nr_immediate=%ld nr_activate_anon=%d nr_activate_file=%d nr_ref_keep=%ld nr_unmap_fail=%ld priority=%d flags=%s", __entry->nid, __entry->nr_scanned, __entry->nr_reclaimed, __entry->nr_dirty, __entry->nr_writeback, __entry->nr_congested, __entry->nr_immediate, __entry->nr_activate0, __entry->nr_activate1, __entry->nr_ref_keep, __entry->nr_unmap_fail, __entry->priority, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_lru_shrink_active, TP_PROTO(int nid, unsigned long nr_taken, unsigned long nr_active, unsigned long nr_deactivated, unsigned long nr_referenced, int priority, int file), TP_ARGS(nid, nr_taken, nr_active, nr_deactivated, nr_referenced, priority, file), TP_STRUCT__entry( __field(int, nid) __field(unsigned long, nr_taken) __field(unsigned long, nr_active) __field(unsigned long, nr_deactivated) __field(unsigned long, nr_referenced) __field(int, priority) __field(int, reclaim_flags) ), TP_fast_assign( __entry->nid = nid; __entry->nr_taken = nr_taken; __entry->nr_active = nr_active; __entry->nr_deactivated = nr_deactivated; __entry->nr_referenced = nr_referenced; __entry->priority = priority; __entry->reclaim_flags = trace_reclaim_flags(file); ), TP_printk("nid=%d nr_taken=%ld nr_active=%ld nr_deactivated=%ld nr_referenced=%ld priority=%d flags=%s", __entry->nid, __entry->nr_taken, __entry->nr_active, __entry->nr_deactivated, __entry->nr_referenced, __entry->priority, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_inactive_list_is_low, TP_PROTO(int nid, int reclaim_idx, unsigned long total_inactive, unsigned long inactive, unsigned long total_active, unsigned long active, unsigned long ratio, int file), TP_ARGS(nid, reclaim_idx, total_inactive, inactive, total_active, active, ratio, file), TP_STRUCT__entry( __field(int, nid) __field(int, reclaim_idx) __field(unsigned long, total_inactive) __field(unsigned long, inactive) __field(unsigned long, total_active) __field(unsigned long, active) __field(unsigned long, ratio) __field(int, reclaim_flags) ), TP_fast_assign( __entry->nid = nid; __entry->reclaim_idx = reclaim_idx; __entry->total_inactive = total_inactive; __entry->inactive = inactive; __entry->total_active = total_active; __entry->active = active; __entry->ratio = ratio; __entry->reclaim_flags = trace_reclaim_flags(file) & RECLAIM_WB_LRU; ), TP_printk("nid=%d reclaim_idx=%d total_inactive=%ld inactive=%ld total_active=%ld active=%ld ratio=%ld flags=%s", __entry->nid, __entry->reclaim_idx, __entry->total_inactive, __entry->inactive, __entry->total_active, __entry->active, __entry->ratio, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_node_reclaim_begin, TP_PROTO(int nid, int order, gfp_t gfp_flags), TP_ARGS(nid, order, gfp_flags), TP_STRUCT__entry( __field(int, nid) __field(int, order) __field(gfp_t, gfp_flags) ), TP_fast_assign( __entry->nid = nid; __entry->order = order; __entry->gfp_flags = gfp_flags; ), TP_printk("nid=%d order=%d gfp_flags=%s", __entry->nid, __entry->order, show_gfp_flags(__entry->gfp_flags)) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_node_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); #endif /* _TRACE_VMSCAN_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 /* SPDX-License-Identifier: GPL-2.0 */ /* * Type definitions for the multi-level security (MLS) policy. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ /* * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> * * Support for enhanced MLS infrastructure. * * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. */ #ifndef _SS_MLS_TYPES_H_ #define _SS_MLS_TYPES_H_ #include "security.h" #include "ebitmap.h" struct mls_level { u32 sens; /* sensitivity */ struct ebitmap cat; /* category set */ }; struct mls_range { struct mls_level level[2]; /* low == level[0], high == level[1] */ }; static inline int mls_level_eq(struct mls_level *l1, struct mls_level *l2) { return ((l1->sens == l2->sens) && ebitmap_cmp(&l1->cat, &l2->cat)); } static inline int mls_level_dom(struct mls_level *l1, struct mls_level *l2) { return ((l1->sens >= l2->sens) && ebitmap_contains(&l1->cat, &l2->cat, 0)); } #define mls_level_incomp(l1, l2) \ (!mls_level_dom((l1), (l2)) && !mls_level_dom((l2), (l1))) #define mls_level_between(l1, l2, l3) \ (mls_level_dom((l1), (l2)) && mls_level_dom((l3), (l1))) #define mls_range_contains(r1, r2) \ (mls_level_dom(&(r2).level[0], &(r1).level[0]) && \ mls_level_dom(&(r1).level[1], &(r2).level[1])) #endif /* _SS_MLS_TYPES_H_ */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * include/linux/eventpoll.h ( Efficient event polling implementation ) * Copyright (C) 2001,...,2006 Davide Libenzi * * Davide Libenzi <davidel@xmailserver.org> */ #ifndef _LINUX_EVENTPOLL_H #define _LINUX_EVENTPOLL_H #include <uapi/linux/eventpoll.h> #include <uapi/linux/kcmp.h> /* Forward declarations to avoid compiler errors */ struct file; #ifdef CONFIG_EPOLL #ifdef CONFIG_KCMP struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, unsigned long toff); #endif /* Used to initialize the epoll bits inside the "struct file" */ static inline void eventpoll_init_file(struct file *file) { INIT_LIST_HEAD(&file->f_ep_links); INIT_LIST_HEAD(&file->f_tfile_llink); } /* Used to release the epoll bits inside the "struct file" */ void eventpoll_release_file(struct file *file); /* * This is called from inside fs/file_table.c:__fput() to unlink files * from the eventpoll interface. We need to have this facility to cleanup * correctly files that are closed without being removed from the eventpoll * interface. */ static inline void eventpoll_release(struct file *file) { /* * Fast check to avoid the get/release of the semaphore. Since * we're doing this outside the semaphore lock, it might return * false negatives, but we don't care. It'll help in 99.99% of cases * to avoid the semaphore lock. False positives simply cannot happen * because the file in on the way to be removed and nobody ( but * eventpoll ) has still a reference to this file. */ if (likely(list_empty(&file->f_ep_links))) return; /* * The file is being closed while it is still linked to an epoll * descriptor. We need to handle this by correctly unlinking it * from its containers. */ eventpoll_release_file(file); } int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, bool nonblock); /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ static inline int ep_op_has_event(int op) { return op != EPOLL_CTL_DEL; } #else static inline void eventpoll_init_file(struct file *file) {} static inline void eventpoll_release(struct file *file) {} #endif #endif /* #ifndef _LINUX_EVENTPOLL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM oom #if !defined(_TRACE_OOM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_OOM_H #include <linux/tracepoint.h> #include <trace/events/mmflags.h> TRACE_EVENT(oom_score_adj_update, TP_PROTO(struct task_struct *task), TP_ARGS(task), TP_STRUCT__entry( __field( pid_t, pid) __array( char, comm, TASK_COMM_LEN ) __field( short, oom_score_adj) ), TP_fast_assign( __entry->pid = task->pid; memcpy(__entry->comm, task->comm, TASK_COMM_LEN); __entry->oom_score_adj = task->signal->oom_score_adj; ), TP_printk("pid=%d comm=%s oom_score_adj=%hd", __entry->pid, __entry->comm, __entry->oom_score_adj) ); TRACE_EVENT(reclaim_retry_zone, TP_PROTO(struct zoneref *zoneref, int order, unsigned long reclaimable, unsigned long available, unsigned long min_wmark, int no_progress_loops, bool wmark_check), TP_ARGS(zoneref, order, reclaimable, available, min_wmark, no_progress_loops, wmark_check), TP_STRUCT__entry( __field( int, node) __field( int, zone_idx) __field( int, order) __field( unsigned long, reclaimable) __field( unsigned long, available) __field( unsigned long, min_wmark) __field( int, no_progress_loops) __field( bool, wmark_check) ), TP_fast_assign( __entry->node = zone_to_nid(zoneref->zone); __entry->zone_idx = zoneref->zone_idx; __entry->order = order; __entry->reclaimable = reclaimable; __entry->available = available; __entry->min_wmark = min_wmark; __entry->no_progress_loops = no_progress_loops; __entry->wmark_check = wmark_check; ), TP_printk("node=%d zone=%-8s order=%d reclaimable=%lu available=%lu min_wmark=%lu no_progress_loops=%d wmark_check=%d", __entry->node, __print_symbolic(__entry->zone_idx, ZONE_TYPE), __entry->order, __entry->reclaimable, __entry->available, __entry->min_wmark, __entry->no_progress_loops, __entry->wmark_check) ); TRACE_EVENT(mark_victim, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(wake_reaper, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(start_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(finish_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); TRACE_EVENT(skip_task_reaping, TP_PROTO(int pid), TP_ARGS(pid), TP_STRUCT__entry( __field(int, pid) ), TP_fast_assign( __entry->pid = pid; ), TP_printk("pid=%d", __entry->pid) ); #ifdef CONFIG_COMPACTION TRACE_EVENT(compact_retry, TP_PROTO(int order, enum compact_priority priority, enum compact_result result, int retries, int max_retries, bool ret), TP_ARGS(order, priority, result, retries, max_retries, ret), TP_STRUCT__entry( __field( int, order) __field( int, priority) __field( int, result) __field( int, retries) __field( int, max_retries) __field( bool, ret) ), TP_fast_assign( __entry->order = order; __entry->priority = priority; __entry->result = compact_result_to_feedback(result); __entry->retries = retries; __entry->max_retries = max_retries; __entry->ret = ret; ), TP_printk("order=%d priority=%s compaction_result=%s retries=%d max_retries=%d should_retry=%d", __entry->order, __print_symbolic(__entry->priority, COMPACTION_PRIORITY), __print_symbolic(__entry->result, COMPACTION_FEEDBACK), __entry->retries, __entry->max_retries, __entry->ret) ); #endif /* CONFIG_COMPACTION */ #endif /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 // SPDX-License-Identifier: GPL-2.0 /* * The class-specific portions of the driver model * * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org> * Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de> * Copyright (c) 2008-2009 Novell Inc. * Copyright (c) 2012-2019 Greg Kroah-Hartman <gregkh@linuxfoundation.org> * Copyright (c) 2012-2019 Linux Foundation * * See Documentation/driver-api/driver-model/ for more information. */ #ifndef _DEVICE_CLASS_H_ #define _DEVICE_CLASS_H_ #include <linux/kobject.h> #include <linux/klist.h> #include <linux/pm.h> #include <linux/device/bus.h> struct device; struct fwnode_handle; /** * struct class - device classes * @name: Name of the class. * @owner: The module owner. * @class_groups: Default attributes of this class. * @dev_groups: Default attributes of the devices that belong to the class. * @dev_kobj: The kobject that represents this class and links it into the hierarchy. * @dev_uevent: Called when a device is added, removed from this class, or a * few other things that generate uevents to add the environment * variables. * @devnode: Callback to provide the devtmpfs. * @class_release: Called to release this class. * @dev_release: Called to release the device. * @shutdown_pre: Called at shut-down time before driver shutdown. * @ns_type: Callbacks so sysfs can detemine namespaces. * @namespace: Namespace of the device belongs to this class. * @get_ownership: Allows class to specify uid/gid of the sysfs directories * for the devices belonging to the class. Usually tied to * device's namespace. * @pm: The default device power management operations of this class. * @p: The private data of the driver core, no one other than the * driver core can touch this. * * A class is a higher-level view of a device that abstracts out low-level * implementation details. Drivers may see a SCSI disk or an ATA disk, but, * at the class level, they are all simply disks. Classes allow user space * to work with devices based on what they do, rather than how they are * connected or how they work. */ struct class { const char *name; struct module *owner; const struct attribute_group **class_groups; const struct attribute_group **dev_groups; struct kobject *dev_kobj; int (*dev_uevent)(struct device *dev, struct kobj_uevent_env *env); char *(*devnode)(struct device *dev, umode_t *mode); void (*class_release)(struct class *class); void (*dev_release)(struct device *dev); int (*shutdown_pre)(struct device *dev); const struct kobj_ns_type_operations *ns_type; const void *(*namespace)(struct device *dev); void (*get_ownership)(struct device *dev, kuid_t *uid, kgid_t *gid); const struct dev_pm_ops *pm; struct subsys_private *p; }; struct class_dev_iter { struct klist_iter ki; const struct device_type *type; }; extern struct kobject *sysfs_dev_block_kobj; extern struct kobject *sysfs_dev_char_kobj; extern int __must_check __class_register(struct class *class, struct lock_class_key *key); extern void class_unregister(struct class *class); /* This is a #define to keep the compiler from merging different * instances of the __key variable */ #define class_register(class) \ ({ \ static struct lock_class_key __key; \ __class_register(class, &__key); \ }) struct class_compat; struct class_compat *class_compat_register(const char *name); void class_compat_unregister(struct class_compat *cls); int class_compat_create_link(struct class_compat *cls, struct device *dev, struct device *device_link); void class_compat_remove_link(struct class_compat *cls, struct device *dev, struct device *device_link); extern void class_dev_iter_init(struct class_dev_iter *iter, struct class *class, struct device *start, const struct device_type *type); extern struct device *class_dev_iter_next(struct class_dev_iter *iter); extern void class_dev_iter_exit(struct class_dev_iter *iter); extern int class_for_each_device(struct class *class, struct device *start, void *data, int (*fn)(struct device *dev, void *data)); extern struct device *class_find_device(struct class *class, struct device *start, const void *data, int (*match)(struct device *, const void *)); /** * class_find_device_by_name - device iterator for locating a particular device * of a specific name. * @class: class type * @name: name of the device to match */ static inline struct device *class_find_device_by_name(struct class *class, const char *name) { return class_find_device(class, NULL, name, device_match_name); } /** * class_find_device_by_of_node : device iterator for locating a particular device * matching the of_node. * @class: class type * @np: of_node of the device to match. */ static inline struct device * class_find_device_by_of_node(struct class *class, const struct device_node *np) { return class_find_device(class, NULL, np, device_match_of_node); } /** * class_find_device_by_fwnode : device iterator for locating a particular device * matching the fwnode. * @class: class type * @fwnode: fwnode of the device to match. */ static inline struct device * class_find_device_by_fwnode(struct class *class, const struct fwnode_handle *fwnode) { return class_find_device(class, NULL, fwnode, device_match_fwnode); } /** * class_find_device_by_devt : device iterator for locating a particular device * matching the device type. * @class: class type * @devt: device type of the device to match. */ static inline struct device *class_find_device_by_devt(struct class *class, dev_t devt) { return class_find_device(class, NULL, &devt, device_match_devt); } #ifdef CONFIG_ACPI struct acpi_device; /** * class_find_device_by_acpi_dev : device iterator for locating a particular * device matching the ACPI_COMPANION device. * @class: class type * @adev: ACPI_COMPANION device to match. */ static inline struct device * class_find_device_by_acpi_dev(struct class *class, const struct acpi_device *adev) { return class_find_device(class, NULL, adev, device_match_acpi_dev); } #else static inline struct device * class_find_device_by_acpi_dev(struct class *class, const void *adev) { return NULL; } #endif struct class_attribute { struct attribute attr; ssize_t (*show)(struct class *class, struct class_attribute *attr, char *buf); ssize_t (*store)(struct class *class, struct class_attribute *attr, const char *buf, size_t count); }; #define CLASS_ATTR_RW(_name) \ struct class_attribute class_attr_##_name = __ATTR_RW(_name) #define CLASS_ATTR_RO(_name) \ struct class_attribute class_attr_##_name = __ATTR_RO(_name) #define CLASS_ATTR_WO(_name) \ struct class_attribute class_attr_##_name = __ATTR_WO(_name) extern int __must_check class_create_file_ns(struct class *class, const struct class_attribute *attr, const void *ns); extern void class_remove_file_ns(struct class *class, const struct class_attribute *attr, const void *ns); static inline int __must_check class_create_file(struct class *class, const struct class_attribute *attr) { return class_create_file_ns(class, attr, NULL); } static inline void class_remove_file(struct class *class, const struct class_attribute *attr) { return class_remove_file_ns(class, attr, NULL); } /* Simple class attribute that is just a static string */ struct class_attribute_string { struct class_attribute attr; char *str; }; /* Currently read-only only */ #define _CLASS_ATTR_STRING(_name, _mode, _str) \ { __ATTR(_name, _mode, show_class_attr_string, NULL), _str } #define CLASS_ATTR_STRING(_name, _mode, _str) \ struct class_attribute_string class_attr_##_name = \ _CLASS_ATTR_STRING(_name, _mode, _str) extern ssize_t show_class_attr_string(struct class *class, struct class_attribute *attr, char *buf); struct class_interface { struct list_head node; struct class *class; int (*add_dev) (struct device *, struct class_interface *); void (*remove_dev) (struct device *, struct class_interface *); }; extern int __must_check class_interface_register(struct class_interface *); extern void class_interface_unregister(struct class_interface *); extern struct class * __must_check __class_create(struct module *owner, const char *name, struct lock_class_key *key); extern void class_destroy(struct class *cls); /* This is a #define to keep the compiler from merging different * instances of the __key variable */ #define class_create(owner, name) \ ({ \ static struct lock_class_key __key; \ __class_create(owner, name, &__key); \ }) #endif /* _DEVICE_CLASS_H_ */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BH_H #define _LINUX_BH_H #include <linux/preempt.h> #ifdef CONFIG_TRACE_IRQFLAGS extern void __local_bh_disable_ip(unsigned long ip, unsigned int cnt); #else static __always_inline void __local_bh_disable_ip(unsigned long ip, unsigned int cnt) { preempt_count_add(cnt); barrier(); } #endif static inline void local_bh_disable(void) { __local_bh_disable_ip(_THIS_IP_, SOFTIRQ_DISABLE_OFFSET); } extern void _local_bh_enable(void); extern void __local_bh_enable_ip(unsigned long ip, unsigned int cnt); static inline void local_bh_enable_ip(unsigned long ip) { __local_bh_enable_ip(ip, SOFTIRQ_DISABLE_OFFSET); } static inline void local_bh_enable(void) { __local_bh_enable_ip(_THIS_IP_, SOFTIRQ_DISABLE_OFFSET); } #endif /* _LINUX_BH_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_BIT_SPINLOCK_H #define __LINUX_BIT_SPINLOCK_H #include <linux/kernel.h> #include <linux/preempt.h> #include <linux/atomic.h> #include <linux/bug.h> /* * bit-based spin_lock() * * Don't use this unless you really need to: spin_lock() and spin_unlock() * are significantly faster. */ static inline void bit_spin_lock(int bitnum, unsigned long *addr) { /* * Assuming the lock is uncontended, this never enters * the body of the outer loop. If it is contended, then * within the inner loop a non-atomic test is used to * busywait with less bus contention for a good time to * attempt to acquire the lock bit. */ preempt_disable(); #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) while (unlikely(test_and_set_bit_lock(bitnum, addr))) { preempt_enable(); do { cpu_relax(); } while (test_bit(bitnum, addr)); preempt_disable(); } #endif __acquire(bitlock); } /* * Return true if it was acquired */ static inline int bit_spin_trylock(int bitnum, unsigned long *addr) { preempt_disable(); #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) if (unlikely(test_and_set_bit_lock(bitnum, addr))) { preempt_enable(); return 0; } #endif __acquire(bitlock); return 1; } /* * bit-based spin_unlock() */ static inline void bit_spin_unlock(int bitnum, unsigned long *addr) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(!test_bit(bitnum, addr)); #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) clear_bit_unlock(bitnum, addr); #endif preempt_enable(); __release(bitlock); } /* * bit-based spin_unlock() * non-atomic version, which can be used eg. if the bit lock itself is * protecting the rest of the flags in the word. */ static inline void __bit_spin_unlock(int bitnum, unsigned long *addr) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(!test_bit(bitnum, addr)); #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) __clear_bit_unlock(bitnum, addr); #endif preempt_enable(); __release(bitlock); } /* * Return true if the lock is held. */ static inline int bit_spin_is_locked(int bitnum, unsigned long *addr) { #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) return test_bit(bitnum, addr); #elif defined CONFIG_PREEMPT_COUNT return preempt_count(); #else return 1; #endif } #endif /* __LINUX_BIT_SPINLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 /* SPDX-License-Identifier: GPL-2.0-only */ /* * async.h: Asynchronous function calls for boot performance * * (C) Copyright 2009 Intel Corporation * Author: Arjan van de Ven <arjan@linux.intel.com> */ #ifndef __ASYNC_H__ #define __ASYNC_H__ #include <linux/types.h> #include <linux/list.h> #include <linux/numa.h> #include <linux/device.h> typedef u64 async_cookie_t; typedef void (*async_func_t) (void *data, async_cookie_t cookie); struct async_domain { struct list_head pending; unsigned registered:1; }; /* * domain participates in global async_synchronize_full */ #define ASYNC_DOMAIN(_name) \ struct async_domain _name = { .pending = LIST_HEAD_INIT(_name.pending), \ .registered = 1 } /* * domain is free to go out of scope as soon as all pending work is * complete, this domain does not participate in async_synchronize_full */ #define ASYNC_DOMAIN_EXCLUSIVE(_name) \ struct async_domain _name = { .pending = LIST_HEAD_INIT(_name.pending), \ .registered = 0 } async_cookie_t async_schedule_node(async_func_t func, void *data, int node); async_cookie_t async_schedule_node_domain(async_func_t func, void *data, int node, struct async_domain *domain); /** * async_schedule - schedule a function for asynchronous execution * @func: function to execute asynchronously * @data: data pointer to pass to the function * * Returns an async_cookie_t that may be used for checkpointing later. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule(async_func_t func, void *data) { return async_schedule_node(func, data, NUMA_NO_NODE); } /** * async_schedule_domain - schedule a function for asynchronous execution within a certain domain * @func: function to execute asynchronously * @data: data pointer to pass to the function * @domain: the domain * * Returns an async_cookie_t that may be used for checkpointing later. * @domain may be used in the async_synchronize_*_domain() functions to * wait within a certain synchronization domain rather than globally. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_domain(async_func_t func, void *data, struct async_domain *domain) { return async_schedule_node_domain(func, data, NUMA_NO_NODE, domain); } /** * async_schedule_dev - A device specific version of async_schedule * @func: function to execute asynchronously * @dev: device argument to be passed to function * * Returns an async_cookie_t that may be used for checkpointing later. * @dev is used as both the argument for the function and to provide NUMA * context for where to run the function. By doing this we can try to * provide for the best possible outcome by operating on the device on the * CPUs closest to the device. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_dev(async_func_t func, struct device *dev) { return async_schedule_node(func, dev, dev_to_node(dev)); } /** * async_schedule_dev_domain - A device specific version of async_schedule_domain * @func: function to execute asynchronously * @dev: device argument to be passed to function * @domain: the domain * * Returns an async_cookie_t that may be used for checkpointing later. * @dev is used as both the argument for the function and to provide NUMA * context for where to run the function. By doing this we can try to * provide for the best possible outcome by operating on the device on the * CPUs closest to the device. * @domain may be used in the async_synchronize_*_domain() functions to * wait within a certain synchronization domain rather than globally. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_dev_domain(async_func_t func, struct device *dev, struct async_domain *domain) { return async_schedule_node_domain(func, dev, dev_to_node(dev), domain); } void async_unregister_domain(struct async_domain *domain); extern void async_synchronize_full(void); extern void async_synchronize_full_domain(struct async_domain *domain); extern void async_synchronize_cookie(async_cookie_t cookie); extern void async_synchronize_cookie_domain(async_cookie_t cookie, struct async_domain *domain); extern bool current_is_async(void); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ #ifndef _UAPI_LINUX_SWAB_H #define _UAPI_LINUX_SWAB_H #include <linux/types.h> #include <linux/compiler.h> #include <asm/bitsperlong.h> #include <asm/swab.h> /* * casts are necessary for constants, because we never know how for sure * how U/UL/ULL map to __u16, __u32, __u64. At least not in a portable way. */ #define ___constant_swab16(x) ((__u16)( \ (((__u16)(x) & (__u16)0x00ffU) << 8) | \ (((__u16)(x) & (__u16)0xff00U) >> 8))) #define ___constant_swab32(x) ((__u32)( \ (((__u32)(x) & (__u32)0x000000ffUL) << 24) | \ (((__u32)(x) & (__u32)0x0000ff00UL) << 8) | \ (((__u32)(x) & (__u32)0x00ff0000UL) >> 8) | \ (((__u32)(x) & (__u32)0xff000000UL) >> 24))) #define ___constant_swab64(x) ((__u64)( \ (((__u64)(x) & (__u64)0x00000000000000ffULL) << 56) | \ (((__u64)(x) & (__u64)0x000000000000ff00ULL) << 40) | \ (((__u64)(x) & (__u64)0x0000000000ff0000ULL) << 24) | \ (((__u64)(x) & (__u64)0x00000000ff000000ULL) << 8) | \ (((__u64)(x) & (__u64)0x000000ff00000000ULL) >> 8) | \ (((__u64)(x) & (__u64)0x0000ff0000000000ULL) >> 24) | \ (((__u64)(x) & (__u64)0x00ff000000000000ULL) >> 40) | \ (((__u64)(x) & (__u64)0xff00000000000000ULL) >> 56))) #define ___constant_swahw32(x) ((__u32)( \ (((__u32)(x) & (__u32)0x0000ffffUL) << 16) | \ (((__u32)(x) & (__u32)0xffff0000UL) >> 16))) #define ___constant_swahb32(x) ((__u32)( \ (((__u32)(x) & (__u32)0x00ff00ffUL) << 8) | \ (((__u32)(x) & (__u32)0xff00ff00UL) >> 8))) /* * Implement the following as inlines, but define the interface using * macros to allow constant folding when possible: * ___swab16, ___swab32, ___swab64, ___swahw32, ___swahb32 */ static inline __attribute_const__ __u16 __fswab16(__u16 val) { #if defined (__arch_swab16) return __arch_swab16(val); #else return ___constant_swab16(val); #endif } static inline __attribute_const__ __u32 __fswab32(__u32 val) { #if defined(__arch_swab32) return __arch_swab32(val); #else return ___constant_swab32(val); #endif } static inline __attribute_const__ __u64 __fswab64(__u64 val) { #if defined (__arch_swab64) return __arch_swab64(val); #elif defined(__SWAB_64_THRU_32__) __u32 h = val >> 32; __u32 l = val & ((1ULL << 32) - 1); return (((__u64)__fswab32(l)) << 32) | ((__u64)(__fswab32(h))); #else return ___constant_swab64(val); #endif } static inline __attribute_const__ __u32 __fswahw32(__u32 val) { #ifdef __arch_swahw32 return __arch_swahw32(val); #else return ___constant_swahw32(val); #endif } static inline __attribute_const__ __u32 __fswahb32(__u32 val) { #ifdef __arch_swahb32 return __arch_swahb32(val); #else return ___constant_swahb32(val); #endif } /** * __swab16 - return a byteswapped 16-bit value * @x: value to byteswap */ #ifdef __HAVE_BUILTIN_BSWAP16__ #define __swab16(x) (__u16)__builtin_bswap16((__u16)(x)) #else #define __swab16(x) \ (__builtin_constant_p((__u16)(x)) ? \ ___constant_swab16(x) : \ __fswab16(x)) #endif /** * __swab32 - return a byteswapped 32-bit value * @x: value to byteswap */ #ifdef __HAVE_BUILTIN_BSWAP32__ #define __swab32(x) (__u32)__builtin_bswap32((__u32)(x)) #else #define __swab32(x) \ (__builtin_constant_p((__u32)(x)) ? \ ___constant_swab32(x) : \ __fswab32(x)) #endif /** * __swab64 - return a byteswapped 64-bit value * @x: value to byteswap */ #ifdef __HAVE_BUILTIN_BSWAP64__ #define __swab64(x) (__u64)__builtin_bswap64((__u64)(x)) #else #define __swab64(x) \ (__builtin_constant_p((__u64)(x)) ? \ ___constant_swab64(x) : \ __fswab64(x)) #endif static __always_inline unsigned long __swab(const unsigned long y) { #if __BITS_PER_LONG == 64 return __swab64(y); #else /* __BITS_PER_LONG == 32 */ return __swab32(y); #endif } /** * __swahw32 - return a word-swapped 32-bit value * @x: value to wordswap * * __swahw32(0x12340000) is 0x00001234 */ #define __swahw32(x) \ (__builtin_constant_p((__u32)(x)) ? \ ___constant_swahw32(x) : \ __fswahw32(x)) /** * __swahb32 - return a high and low byte-swapped 32-bit value * @x: value to byteswap * * __swahb32(0x12345678) is 0x34127856 */ #define __swahb32(x) \ (__builtin_constant_p((__u32)(x)) ? \ ___constant_swahb32(x) : \ __fswahb32(x)) /** * __swab16p - return a byteswapped 16-bit value from a pointer * @p: pointer to a naturally-aligned 16-bit value */ static __always_inline __u16 __swab16p(const __u16 *p) { #ifdef __arch_swab16p return __arch_swab16p(p); #else return __swab16(*p); #endif } /** * __swab32p - return a byteswapped 32-bit value from a pointer * @p: pointer to a naturally-aligned 32-bit value */ static __always_inline __u32 __swab32p(const __u32 *p) { #ifdef __arch_swab32p return __arch_swab32p(p); #else return __swab32(*p); #endif } /** * __swab64p - return a byteswapped 64-bit value from a pointer * @p: pointer to a naturally-aligned 64-bit value */ static __always_inline __u64 __swab64p(const __u64 *p) { #ifdef __arch_swab64p return __arch_swab64p(p); #else return __swab64(*p); #endif } /** * __swahw32p - return a wordswapped 32-bit value from a pointer * @p: pointer to a naturally-aligned 32-bit value * * See __swahw32() for details of wordswapping. */ static inline __u32 __swahw32p(const __u32 *p) { #ifdef __arch_swahw32p return __arch_swahw32p(p); #else return __swahw32(*p); #endif } /** * __swahb32p - return a high and low byteswapped 32-bit value from a pointer * @p: pointer to a naturally-aligned 32-bit value * * See __swahb32() for details of high/low byteswapping. */ static inline __u32 __swahb32p(const __u32 *p) { #ifdef __arch_swahb32p return __arch_swahb32p(p); #else return __swahb32(*p); #endif } /** * __swab16s - byteswap a 16-bit value in-place * @p: pointer to a naturally-aligned 16-bit value */ static inline void __swab16s(__u16 *p) { #ifdef __arch_swab16s __arch_swab16s(p); #else *p = __swab16p(p); #endif } /** * __swab32s - byteswap a 32-bit value in-place * @p: pointer to a naturally-aligned 32-bit value */ static __always_inline void __swab32s(__u32 *p) { #ifdef __arch_swab32s __arch_swab32s(p); #else *p = __swab32p(p); #endif } /** * __swab64s - byteswap a 64-bit value in-place * @p: pointer to a naturally-aligned 64-bit value */ static __always_inline void __swab64s(__u64 *p) { #ifdef __arch_swab64s __arch_swab64s(p); #else *p = __swab64p(p); #endif } /** * __swahw32s - wordswap a 32-bit value in-place * @p: pointer to a naturally-aligned 32-bit value * * See __swahw32() for details of wordswapping */ static inline void __swahw32s(__u32 *p) { #ifdef __arch_swahw32s __arch_swahw32s(p); #else *p = __swahw32p(p); #endif } /** * __swahb32s - high and low byteswap a 32-bit value in-place * @p: pointer to a naturally-aligned 32-bit value * * See __swahb32() for details of high and low byte swapping */ static inline void __swahb32s(__u32 *p) { #ifdef __arch_swahb32s __arch_swahb32s(p); #else *p = __swahb32p(p); #endif } #endif /* _UAPI_LINUX_SWAB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NVRAM_H #define _LINUX_NVRAM_H #include <linux/errno.h> #include <uapi/linux/nvram.h> #ifdef CONFIG_PPC #include <asm/machdep.h> #endif /** * struct nvram_ops - NVRAM functionality made available to drivers * @read: validate checksum (if any) then load a range of bytes from NVRAM * @write: store a range of bytes to NVRAM then update checksum (if any) * @read_byte: load a single byte from NVRAM * @write_byte: store a single byte to NVRAM * @get_size: return the fixed number of bytes in the NVRAM * * Architectures which provide an nvram ops struct need not implement all * of these methods. If the NVRAM hardware can be accessed only one byte * at a time then it may be sufficient to provide .read_byte and .write_byte. * If the NVRAM has a checksum (and it is to be checked) the .read and * .write methods can be used to implement that efficiently. * * Portable drivers may use the wrapper functions defined here. * The nvram_read() and nvram_write() functions call the .read and .write * methods when available and fall back on the .read_byte and .write_byte * methods otherwise. */ struct nvram_ops { ssize_t (*get_size)(void); unsigned char (*read_byte)(int); void (*write_byte)(unsigned char, int); ssize_t (*read)(char *, size_t, loff_t *); ssize_t (*write)(char *, size_t, loff_t *); #if defined(CONFIG_X86) || defined(CONFIG_M68K) long (*initialize)(void); long (*set_checksum)(void); #endif }; extern const struct nvram_ops arch_nvram_ops; static inline ssize_t nvram_get_size(void) { #ifdef CONFIG_PPC if (ppc_md.nvram_size) return ppc_md.nvram_size(); #else if (arch_nvram_ops.get_size) return arch_nvram_ops.get_size(); #endif return -ENODEV; } static inline unsigned char nvram_read_byte(int addr) { #ifdef CONFIG_PPC if (ppc_md.nvram_read_val) return ppc_md.nvram_read_val(addr); #else if (arch_nvram_ops.read_byte) return arch_nvram_ops.read_byte(addr); #endif return 0xFF; } static inline void nvram_write_byte(unsigned char val, int addr) { #ifdef CONFIG_PPC if (ppc_md.nvram_write_val) ppc_md.nvram_write_val(addr, val); #else if (arch_nvram_ops.write_byte) arch_nvram_ops.write_byte(val, addr); #endif } static inline ssize_t nvram_read_bytes(char *buf, size_t count, loff_t *ppos) { ssize_t nvram_size = nvram_get_size(); loff_t i; char *p = buf; if (nvram_size < 0) return nvram_size; for (i = *ppos; count > 0 && i < nvram_size; ++i, ++p, --count) *p = nvram_read_byte(i); *ppos = i; return p - buf; } static inline ssize_t nvram_write_bytes(char *buf, size_t count, loff_t *ppos) { ssize_t nvram_size = nvram_get_size(); loff_t i; char *p = buf; if (nvram_size < 0) return nvram_size; for (i = *ppos; count > 0 && i < nvram_size; ++i, ++p, --count) nvram_write_byte(*p, i); *ppos = i; return p - buf; } static inline ssize_t nvram_read(char *buf, size_t count, loff_t *ppos) { #ifdef CONFIG_PPC if (ppc_md.nvram_read) return ppc_md.nvram_read(buf, count, ppos); #else if (arch_nvram_ops.read) return arch_nvram_ops.read(buf, count, ppos); #endif return nvram_read_bytes(buf, count, ppos); } static inline ssize_t nvram_write(char *buf, size_t count, loff_t *ppos) { #ifdef CONFIG_PPC if (ppc_md.nvram_write) return ppc_md.nvram_write(buf, count, ppos); #else if (arch_nvram_ops.write) return arch_nvram_ops.write(buf, count, ppos); #endif return nvram_write_bytes(buf, count, ppos); } #endif /* _LINUX_NVRAM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 /* * Written by: Matthew Dobson, IBM Corporation * * Copyright (C) 2002, IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to <colpatch@us.ibm.com> */ #ifndef _ASM_X86_TOPOLOGY_H #define _ASM_X86_TOPOLOGY_H /* * to preserve the visibility of NUMA_NO_NODE definition, * moved to there from here. May be used independent of * CONFIG_NUMA. */ #include <linux/numa.h> #ifdef CONFIG_NUMA #include <linux/cpumask.h> #include <asm/mpspec.h> #include <asm/percpu.h> /* Mappings between logical cpu number and node number */ DECLARE_EARLY_PER_CPU(int, x86_cpu_to_node_map); #ifdef CONFIG_DEBUG_PER_CPU_MAPS /* * override generic percpu implementation of cpu_to_node */ extern int __cpu_to_node(int cpu); #define cpu_to_node __cpu_to_node extern int early_cpu_to_node(int cpu); #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ /* Same function but used if called before per_cpu areas are setup */ static inline int early_cpu_to_node(int cpu) { return early_per_cpu(x86_cpu_to_node_map, cpu); } #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ /* Mappings between node number and cpus on that node. */ extern cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; #ifdef CONFIG_DEBUG_PER_CPU_MAPS extern const struct cpumask *cpumask_of_node(int node); #else /* Returns a pointer to the cpumask of CPUs on Node 'node'. */ static inline const struct cpumask *cpumask_of_node(int node) { return node_to_cpumask_map[node]; } #endif extern void setup_node_to_cpumask_map(void); #define pcibus_to_node(bus) __pcibus_to_node(bus) extern int __node_distance(int, int); #define node_distance(a, b) __node_distance(a, b) #else /* !CONFIG_NUMA */ static inline int numa_node_id(void) { return 0; } /* * indicate override: */ #define numa_node_id numa_node_id static inline int early_cpu_to_node(int cpu) { return 0; } static inline void setup_node_to_cpumask_map(void) { } #endif #include <asm-generic/topology.h> extern const struct cpumask *cpu_coregroup_mask(int cpu); #define topology_logical_package_id(cpu) (cpu_data(cpu).logical_proc_id) #define topology_physical_package_id(cpu) (cpu_data(cpu).phys_proc_id) #define topology_logical_die_id(cpu) (cpu_data(cpu).logical_die_id) #define topology_die_id(cpu) (cpu_data(cpu).cpu_die_id) #define topology_core_id(cpu) (cpu_data(cpu).cpu_core_id) extern unsigned int __max_die_per_package; #ifdef CONFIG_SMP #define topology_die_cpumask(cpu) (per_cpu(cpu_die_map, cpu)) #define topology_core_cpumask(cpu) (per_cpu(cpu_core_map, cpu)) #define topology_sibling_cpumask(cpu) (per_cpu(cpu_sibling_map, cpu)) extern unsigned int __max_logical_packages; #define topology_max_packages() (__max_logical_packages) static inline int topology_max_die_per_package(void) { return __max_die_per_package; } extern int __max_smt_threads; static inline int topology_max_smt_threads(void) { return __max_smt_threads; } int topology_update_package_map(unsigned int apicid, unsigned int cpu); int topology_update_die_map(unsigned int dieid, unsigned int cpu); int topology_phys_to_logical_pkg(unsigned int pkg); int topology_phys_to_logical_die(unsigned int die, unsigned int cpu); bool topology_is_primary_thread(unsigned int cpu); bool topology_smt_supported(void); #else #define topology_max_packages() (1) static inline int topology_update_package_map(unsigned int apicid, unsigned int cpu) { return 0; } static inline int topology_update_die_map(unsigned int dieid, unsigned int cpu) { return 0; } static inline int topology_phys_to_logical_pkg(unsigned int pkg) { return 0; } static inline int topology_phys_to_logical_die(unsigned int die, unsigned int cpu) { return 0; } static inline int topology_max_die_per_package(void) { return 1; } static inline int topology_max_smt_threads(void) { return 1; } static inline bool topology_is_primary_thread(unsigned int cpu) { return true; } static inline bool topology_smt_supported(void) { return false; } #endif static inline void arch_fix_phys_package_id(int num, u32 slot) { } struct pci_bus; int x86_pci_root_bus_node(int bus); void x86_pci_root_bus_resources(int bus, struct list_head *resources); extern bool x86_topology_update; #ifdef CONFIG_SCHED_MC_PRIO #include <asm/percpu.h> DECLARE_PER_CPU_READ_MOSTLY(int, sched_core_priority); extern unsigned int __read_mostly sysctl_sched_itmt_enabled; /* Interface to set priority of a cpu */ void sched_set_itmt_core_prio(int prio, int core_cpu); /* Interface to notify scheduler that system supports ITMT */ int sched_set_itmt_support(void); /* Interface to notify scheduler that system revokes ITMT support */ void sched_clear_itmt_support(void); #else /* CONFIG_SCHED_MC_PRIO */ #define sysctl_sched_itmt_enabled 0 static inline void sched_set_itmt_core_prio(int prio, int core_cpu) { } static inline int sched_set_itmt_support(void) { return 0; } static inline void sched_clear_itmt_support(void) { } #endif /* CONFIG_SCHED_MC_PRIO */ #if defined(CONFIG_SMP) && defined(CONFIG_X86_64) #include <asm/cpufeature.h> DECLARE_STATIC_KEY_FALSE(arch_scale_freq_key); #define arch_scale_freq_invariant() static_branch_likely(&arch_scale_freq_key) DECLARE_PER_CPU(unsigned long, arch_freq_scale); static inline long arch_scale_freq_capacity(int cpu) { return per_cpu(arch_freq_scale, cpu); } #define arch_scale_freq_capacity arch_scale_freq_capacity extern void arch_scale_freq_tick(void); #define arch_scale_freq_tick arch_scale_freq_tick extern void arch_set_max_freq_ratio(bool turbo_disabled); #else static inline void arch_set_max_freq_ratio(bool turbo_disabled) { } #endif #endif /* _ASM_X86_TOPOLOGY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NETFILTER_H #define __LINUX_NETFILTER_H #include <linux/init.h> #include <linux/skbuff.h> #include <linux/net.h> #include <linux/if.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/wait.h> #include <linux/list.h> #include <linux/static_key.h> #include <linux/netfilter_defs.h> #include <linux/netdevice.h> #include <linux/sockptr.h> #include <net/net_namespace.h> static inline int NF_DROP_GETERR(int verdict) { return -(verdict >> NF_VERDICT_QBITS); } static inline int nf_inet_addr_cmp(const union nf_inet_addr *a1, const union nf_inet_addr *a2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const unsigned long *ul1 = (const unsigned long *)a1; const unsigned long *ul2 = (const unsigned long *)a2; return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL; #else return a1->all[0] == a2->all[0] && a1->all[1] == a2->all[1] && a1->all[2] == a2->all[2] && a1->all[3] == a2->all[3]; #endif } static inline void nf_inet_addr_mask(const union nf_inet_addr *a1, union nf_inet_addr *result, const union nf_inet_addr *mask) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 const unsigned long *ua = (const unsigned long *)a1; unsigned long *ur = (unsigned long *)result; const unsigned long *um = (const unsigned long *)mask; ur[0] = ua[0] & um[0]; ur[1] = ua[1] & um[1]; #else result->all[0] = a1->all[0] & mask->all[0]; result->all[1] = a1->all[1] & mask->all[1]; result->all[2] = a1->all[2] & mask->all[2]; result->all[3] = a1->all[3] & mask->all[3]; #endif } int netfilter_init(void); struct sk_buff; struct nf_hook_ops; struct sock; struct nf_hook_state { unsigned int hook; u_int8_t pf; struct net_device *in; struct net_device *out; struct sock *sk; struct net *net; int (*okfn)(struct net *, struct sock *, struct sk_buff *); }; typedef unsigned int nf_hookfn(void *priv, struct sk_buff *skb, const struct nf_hook_state *state); struct nf_hook_ops { /* User fills in from here down. */ nf_hookfn *hook; struct net_device *dev; void *priv; u_int8_t pf; unsigned int hooknum; /* Hooks are ordered in ascending priority. */ int priority; }; struct nf_hook_entry { nf_hookfn *hook; void *priv; }; struct nf_hook_entries_rcu_head { struct rcu_head head; void *allocation; }; struct nf_hook_entries { u16 num_hook_entries; /* padding */ struct nf_hook_entry hooks[]; /* trailer: pointers to original orig_ops of each hook, * followed by rcu_head and scratch space used for freeing * the structure via call_rcu. * * This is not part of struct nf_hook_entry since its only * needed in slow path (hook register/unregister): * const struct nf_hook_ops *orig_ops[] * * For the same reason, we store this at end -- its * only needed when a hook is deleted, not during * packet path processing: * struct nf_hook_entries_rcu_head head */ }; #ifdef CONFIG_NETFILTER static inline struct nf_hook_ops **nf_hook_entries_get_hook_ops(const struct nf_hook_entries *e) { unsigned int n = e->num_hook_entries; const void *hook_end; hook_end = &e->hooks[n]; /* this is *past* ->hooks[]! */ return (struct nf_hook_ops **)hook_end; } static inline int nf_hook_entry_hookfn(const struct nf_hook_entry *entry, struct sk_buff *skb, struct nf_hook_state *state) { return entry->hook(entry->priv, skb, state); } static inline void nf_hook_state_init(struct nf_hook_state *p, unsigned int hook, u_int8_t pf, struct net_device *indev, struct net_device *outdev, struct sock *sk, struct net *net, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { p->hook = hook; p->pf = pf; p->in = indev; p->out = outdev; p->sk = sk; p->net = net; p->okfn = okfn; } struct nf_sockopt_ops { struct list_head list; u_int8_t pf; /* Non-inclusive ranges: use 0/0/NULL to never get called. */ int set_optmin; int set_optmax; int (*set)(struct sock *sk, int optval, sockptr_t arg, unsigned int len); int get_optmin; int get_optmax; int (*get)(struct sock *sk, int optval, void __user *user, int *len); /* Use the module struct to lock set/get code in place */ struct module *owner; }; /* Function to register/unregister hook points. */ int nf_register_net_hook(struct net *net, const struct nf_hook_ops *ops); void nf_unregister_net_hook(struct net *net, const struct nf_hook_ops *ops); int nf_register_net_hooks(struct net *net, const struct nf_hook_ops *reg, unsigned int n); void nf_unregister_net_hooks(struct net *net, const struct nf_hook_ops *reg, unsigned int n); /* Functions to register get/setsockopt ranges (non-inclusive). You need to check permissions yourself! */ int nf_register_sockopt(struct nf_sockopt_ops *reg); void nf_unregister_sockopt(struct nf_sockopt_ops *reg); #ifdef CONFIG_JUMP_LABEL extern struct static_key nf_hooks_needed[NFPROTO_NUMPROTO][NF_MAX_HOOKS]; #endif int nf_hook_slow(struct sk_buff *skb, struct nf_hook_state *state, const struct nf_hook_entries *e, unsigned int i); void nf_hook_slow_list(struct list_head *head, struct nf_hook_state *state, const struct nf_hook_entries *e); /** * nf_hook - call a netfilter hook * * Returns 1 if the hook has allowed the packet to pass. The function * okfn must be invoked by the caller in this case. Any other return * value indicates the packet has been consumed by the hook. */ static inline int nf_hook(u_int8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *indev, struct net_device *outdev, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { struct nf_hook_entries *hook_head = NULL; int ret = 1; #ifdef CONFIG_JUMP_LABEL if (__builtin_constant_p(pf) && __builtin_constant_p(hook) && !static_key_false(&nf_hooks_needed[pf][hook])) return 1; #endif rcu_read_lock(); switch (pf) { case NFPROTO_IPV4: hook_head = rcu_dereference(net->nf.hooks_ipv4[hook]); break; case NFPROTO_IPV6: hook_head = rcu_dereference(net->nf.hooks_ipv6[hook]); break; case NFPROTO_ARP: #ifdef CONFIG_NETFILTER_FAMILY_ARP if (WARN_ON_ONCE(hook >= ARRAY_SIZE(net->nf.hooks_arp))) break; hook_head = rcu_dereference(net->nf.hooks_arp[hook]); #endif break; case NFPROTO_BRIDGE: #ifdef CONFIG_NETFILTER_FAMILY_BRIDGE hook_head = rcu_dereference(net->nf.hooks_bridge[hook]); #endif break; #if IS_ENABLED(CONFIG_DECNET) case NFPROTO_DECNET: hook_head = rcu_dereference(net->nf.hooks_decnet[hook]); break; #endif default: WARN_ON_ONCE(1); break; } if (hook_head) { struct nf_hook_state state; nf_hook_state_init(&state, hook, pf, indev, outdev, sk, net, okfn); ret = nf_hook_slow(skb, &state, hook_head, 0); } rcu_read_unlock(); return ret; } /* Activate hook; either okfn or kfree_skb called, unless a hook returns NF_STOLEN (in which case, it's up to the hook to deal with the consequences). Returns -ERRNO if packet dropped. Zero means queued, stolen or accepted. */ /* RR: > I don't want nf_hook to return anything because people might forget > about async and trust the return value to mean "packet was ok". AK: Just document it clearly, then you can expect some sense from kernel coders :) */ static inline int NF_HOOK_COND(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *), bool cond) { int ret; if (!cond || ((ret = nf_hook(pf, hook, net, sk, skb, in, out, okfn)) == 1)) ret = okfn(net, sk, skb); return ret; } static inline int NF_HOOK(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { int ret = nf_hook(pf, hook, net, sk, skb, in, out, okfn); if (ret == 1) ret = okfn(net, sk, skb); return ret; } static inline void NF_HOOK_LIST(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct list_head *head, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { struct nf_hook_entries *hook_head = NULL; #ifdef CONFIG_JUMP_LABEL if (__builtin_constant_p(pf) && __builtin_constant_p(hook) && !static_key_false(&nf_hooks_needed[pf][hook])) return; #endif rcu_read_lock(); switch (pf) { case NFPROTO_IPV4: hook_head = rcu_dereference(net->nf.hooks_ipv4[hook]); break; case NFPROTO_IPV6: hook_head = rcu_dereference(net->nf.hooks_ipv6[hook]); break; default: WARN_ON_ONCE(1); break; } if (hook_head) { struct nf_hook_state state; nf_hook_state_init(&state, hook, pf, in, out, sk, net, okfn); nf_hook_slow_list(head, &state, hook_head); } rcu_read_unlock(); } /* Call setsockopt() */ int nf_setsockopt(struct sock *sk, u_int8_t pf, int optval, sockptr_t opt, unsigned int len); int nf_getsockopt(struct sock *sk, u_int8_t pf, int optval, char __user *opt, int *len); struct flowi; struct nf_queue_entry; __sum16 nf_checksum(struct sk_buff *skb, unsigned int hook, unsigned int dataoff, u_int8_t protocol, unsigned short family); __sum16 nf_checksum_partial(struct sk_buff *skb, unsigned int hook, unsigned int dataoff, unsigned int len, u_int8_t protocol, unsigned short family); int nf_route(struct net *net, struct dst_entry **dst, struct flowi *fl, bool strict, unsigned short family); int nf_reroute(struct sk_buff *skb, struct nf_queue_entry *entry); #include <net/flow.h> struct nf_conn; enum nf_nat_manip_type; struct nlattr; enum ip_conntrack_dir; struct nf_nat_hook { int (*parse_nat_setup)(struct nf_conn *ct, enum nf_nat_manip_type manip, const struct nlattr *attr); void (*decode_session)(struct sk_buff *skb, struct flowi *fl); unsigned int (*manip_pkt)(struct sk_buff *skb, struct nf_conn *ct, enum nf_nat_manip_type mtype, enum ip_conntrack_dir dir); }; extern struct nf_nat_hook __rcu *nf_nat_hook; static inline void nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl, u_int8_t family) { #if IS_ENABLED(CONFIG_NF_NAT) struct nf_nat_hook *nat_hook; rcu_read_lock(); nat_hook = rcu_dereference(nf_nat_hook); if (nat_hook && nat_hook->decode_session) nat_hook->decode_session(skb, fl); rcu_read_unlock(); #endif } #else /* !CONFIG_NETFILTER */ static inline int NF_HOOK_COND(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *), bool cond) { return okfn(net, sk, skb); } static inline int NF_HOOK(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { return okfn(net, sk, skb); } static inline void NF_HOOK_LIST(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct list_head *head, struct net_device *in, struct net_device *out, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { /* nothing to do */ } static inline int nf_hook(u_int8_t pf, unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *indev, struct net_device *outdev, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { return 1; } struct flowi; static inline void nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl, u_int8_t family) { } #endif /*CONFIG_NETFILTER*/ #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <linux/netfilter/nf_conntrack_zones_common.h> extern void (*ip_ct_attach)(struct sk_buff *, const struct sk_buff *) __rcu; void nf_ct_attach(struct sk_buff *, const struct sk_buff *); struct nf_conntrack_tuple; bool nf_ct_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple, const struct sk_buff *skb); #else static inline void nf_ct_attach(struct sk_buff *new, struct sk_buff *skb) {} struct nf_conntrack_tuple; static inline bool nf_ct_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple, const struct sk_buff *skb) { return false; } #endif struct nf_conn; enum ip_conntrack_info; struct nf_ct_hook { int (*update)(struct net *net, struct sk_buff *skb); void (*destroy)(struct nf_conntrack *); bool (*get_tuple_skb)(struct nf_conntrack_tuple *, const struct sk_buff *); }; extern struct nf_ct_hook __rcu *nf_ct_hook; struct nlattr; struct nfnl_ct_hook { struct nf_conn *(*get_ct)(const struct sk_buff *skb, enum ip_conntrack_info *ctinfo); size_t (*build_size)(const struct nf_conn *ct); int (*build)(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo, u_int16_t ct_attr, u_int16_t ct_info_attr); int (*parse)(const struct nlattr *attr, struct nf_conn *ct); int (*attach_expect)(const struct nlattr *attr, struct nf_conn *ct, u32 portid, u32 report); void (*seq_adjust)(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo, s32 off); }; extern struct nfnl_ct_hook __rcu *nfnl_ct_hook; /** * nf_skb_duplicated - TEE target has sent a packet * * When a xtables target sends a packet, the OUTPUT and POSTROUTING * hooks are traversed again, i.e. nft and xtables are invoked recursively. * * This is used by xtables TEE target to prevent the duplicated skb from * being duplicated again. */ DECLARE_PER_CPU(bool, nf_skb_duplicated); #endif /*__LINUX_NETFILTER_H*/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RCULIST_NULLS_H #define _LINUX_RCULIST_NULLS_H #ifdef __KERNEL__ /* * RCU-protected list version */ #include <linux/list_nulls.h> #include <linux/rcupdate.h> /** * hlist_nulls_del_init_rcu - deletes entry from hash list with re-initialization * @n: the element to delete from the hash list. * * Note: hlist_nulls_unhashed() on the node return true after this. It is * useful for RCU based read lockfree traversal if the writer side * must know if the list entry is still hashed or already unhashed. * * In particular, it means that we can not poison the forward pointers * that may still be used for walking the hash list and we can only * zero the pprev pointer so list_unhashed() will return true after * this. * * The caller must take whatever precautions are necessary (such as * holding appropriate locks) to avoid racing with another * list-mutation primitive, such as hlist_nulls_add_head_rcu() or * hlist_nulls_del_rcu(), running on this same list. However, it is * perfectly legal to run concurrently with the _rcu list-traversal * primitives, such as hlist_nulls_for_each_entry_rcu(). */ static inline void hlist_nulls_del_init_rcu(struct hlist_nulls_node *n) { if (!hlist_nulls_unhashed(n)) { __hlist_nulls_del(n); WRITE_ONCE(n->pprev, NULL); } } /** * hlist_nulls_first_rcu - returns the first element of the hash list. * @head: the head of the list. */ #define hlist_nulls_first_rcu(head) \ (*((struct hlist_nulls_node __rcu __force **)&(head)->first)) /** * hlist_nulls_next_rcu - returns the element of the list after @node. * @node: element of the list. */ #define hlist_nulls_next_rcu(node) \ (*((struct hlist_nulls_node __rcu __force **)&(node)->next)) /** * hlist_nulls_del_rcu - deletes entry from hash list without re-initialization * @n: the element to delete from the hash list. * * Note: hlist_nulls_unhashed() on entry does not return true after this, * the entry is in an undefined state. It is useful for RCU based * lockfree traversal. * * In particular, it means that we can not poison the forward * pointers that may still be used for walking the hash list. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_nulls_add_head_rcu() * or hlist_nulls_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_nulls_for_each_entry(). */ static inline void hlist_nulls_del_rcu(struct hlist_nulls_node *n) { __hlist_nulls_del(n); WRITE_ONCE(n->pprev, LIST_POISON2); } /** * hlist_nulls_add_head_rcu * @n: the element to add to the hash list. * @h: the list to add to. * * Description: * Adds the specified element to the specified hlist_nulls, * while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_nulls_add_head_rcu() * or hlist_nulls_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_nulls_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. Regardless of the type of CPU, the * list-traversal primitive must be guarded by rcu_read_lock(). */ static inline void hlist_nulls_add_head_rcu(struct hlist_nulls_node *n, struct hlist_nulls_head *h) { struct hlist_nulls_node *first = h->first; n->next = first; WRITE_ONCE(n->pprev, &h->first); rcu_assign_pointer(hlist_nulls_first_rcu(h), n); if (!is_a_nulls(first)) WRITE_ONCE(first->pprev, &n->next); } /** * hlist_nulls_add_tail_rcu * @n: the element to add to the hash list. * @h: the list to add to. * * Description: * Adds the specified element to the specified hlist_nulls, * while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_nulls_add_head_rcu() * or hlist_nulls_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_nulls_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. Regardless of the type of CPU, the * list-traversal primitive must be guarded by rcu_read_lock(). */ static inline void hlist_nulls_add_tail_rcu(struct hlist_nulls_node *n, struct hlist_nulls_head *h) { struct hlist_nulls_node *i, *last = NULL; /* Note: write side code, so rcu accessors are not needed. */ for (i = h->first; !is_a_nulls(i); i = i->next) last = i; if (last) { n->next = last->next; n->pprev = &last->next; rcu_assign_pointer(hlist_next_rcu(last), n); } else { hlist_nulls_add_head_rcu(n, h); } } /* after that hlist_nulls_del will work */ static inline void hlist_nulls_add_fake(struct hlist_nulls_node *n) { n->pprev = &n->next; n->next = (struct hlist_nulls_node *)NULLS_MARKER(NULL); } /** * hlist_nulls_for_each_entry_rcu - iterate over rcu list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_nulls_node to use as a loop cursor. * @head: the head of the list. * @member: the name of the hlist_nulls_node within the struct. * * The barrier() is needed to make sure compiler doesn't cache first element [1], * as this loop can be restarted [2] * [1] Documentation/core-api/atomic_ops.rst around line 114 * [2] Documentation/RCU/rculist_nulls.rst around line 146 */ #define hlist_nulls_for_each_entry_rcu(tpos, pos, head, member) \ for (({barrier();}), \ pos = rcu_dereference_raw(hlist_nulls_first_rcu(head)); \ (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1; }); \ pos = rcu_dereference_raw(hlist_nulls_next_rcu(pos))) /** * hlist_nulls_for_each_entry_safe - * iterate over list of given type safe against removal of list entry * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_nulls_node to use as a loop cursor. * @head: the head of the list. * @member: the name of the hlist_nulls_node within the struct. */ #define hlist_nulls_for_each_entry_safe(tpos, pos, head, member) \ for (({barrier();}), \ pos = rcu_dereference_raw(hlist_nulls_first_rcu(head)); \ (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); \ pos = rcu_dereference_raw(hlist_nulls_next_rcu(pos)); 1; });) #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM kmem #if !defined(_TRACE_KMEM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_KMEM_H #include <linux/types.h> #include <linux/tracepoint.h> #include <trace/events/mmflags.h> DECLARE_EVENT_CLASS(kmem_alloc, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags), TP_STRUCT__entry( __field( unsigned long, call_site ) __field( const void *, ptr ) __field( size_t, bytes_req ) __field( size_t, bytes_alloc ) __field( gfp_t, gfp_flags ) ), TP_fast_assign( __entry->call_site = call_site; __entry->ptr = ptr; __entry->bytes_req = bytes_req; __entry->bytes_alloc = bytes_alloc; __entry->gfp_flags = gfp_flags; ), TP_printk("call_site=%pS ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s", (void *)__entry->call_site, __entry->ptr, __entry->bytes_req, __entry->bytes_alloc, show_gfp_flags(__entry->gfp_flags)) ); DEFINE_EVENT(kmem_alloc, kmalloc, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags) ); DEFINE_EVENT(kmem_alloc, kmem_cache_alloc, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags) ); DECLARE_EVENT_CLASS(kmem_alloc_node, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags, int node), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags, node), TP_STRUCT__entry( __field( unsigned long, call_site ) __field( const void *, ptr ) __field( size_t, bytes_req ) __field( size_t, bytes_alloc ) __field( gfp_t, gfp_flags ) __field( int, node ) ), TP_fast_assign( __entry->call_site = call_site; __entry->ptr = ptr; __entry->bytes_req = bytes_req; __entry->bytes_alloc = bytes_alloc; __entry->gfp_flags = gfp_flags; __entry->node = node; ), TP_printk("call_site=%pS ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s node=%d", (void *)__entry->call_site, __entry->ptr, __entry->bytes_req, __entry->bytes_alloc, show_gfp_flags(__entry->gfp_flags), __entry->node) ); DEFINE_EVENT(kmem_alloc_node, kmalloc_node, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags, int node), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags, node) ); DEFINE_EVENT(kmem_alloc_node, kmem_cache_alloc_node, TP_PROTO(unsigned long call_site, const void *ptr, size_t bytes_req, size_t bytes_alloc, gfp_t gfp_flags, int node), TP_ARGS(call_site, ptr, bytes_req, bytes_alloc, gfp_flags, node) ); DECLARE_EVENT_CLASS(kmem_free, TP_PROTO(unsigned long call_site, const void *ptr), TP_ARGS(call_site, ptr), TP_STRUCT__entry( __field( unsigned long, call_site ) __field( const void *, ptr ) ), TP_fast_assign( __entry->call_site = call_site; __entry->ptr = ptr; ), TP_printk("call_site=%pS ptr=%p", (void *)__entry->call_site, __entry->ptr) ); DEFINE_EVENT(kmem_free, kfree, TP_PROTO(unsigned long call_site, const void *ptr), TP_ARGS(call_site, ptr) ); DEFINE_EVENT(kmem_free, kmem_cache_free, TP_PROTO(unsigned long call_site, const void *ptr), TP_ARGS(call_site, ptr) ); TRACE_EVENT(mm_page_free, TP_PROTO(struct page *page, unsigned int order), TP_ARGS(page, order), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( unsigned int, order ) ), TP_fast_assign( __entry->pfn = page_to_pfn(page); __entry->order = order; ), TP_printk("page=%p pfn=%lu order=%d", pfn_to_page(__entry->pfn), __entry->pfn, __entry->order) ); TRACE_EVENT(mm_page_free_batched, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field( unsigned long, pfn ) ), TP_fast_assign( __entry->pfn = page_to_pfn(page); ), TP_printk("page=%p pfn=%lu order=0", pfn_to_page(__entry->pfn), __entry->pfn) ); TRACE_EVENT(mm_page_alloc, TP_PROTO(struct page *page, unsigned int order, gfp_t gfp_flags, int migratetype), TP_ARGS(page, order, gfp_flags, migratetype), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( unsigned int, order ) __field( gfp_t, gfp_flags ) __field( int, migratetype ) ), TP_fast_assign( __entry->pfn = page ? page_to_pfn(page) : -1UL; __entry->order = order; __entry->gfp_flags = gfp_flags; __entry->migratetype = migratetype; ), TP_printk("page=%p pfn=%lu order=%d migratetype=%d gfp_flags=%s", __entry->pfn != -1UL ? pfn_to_page(__entry->pfn) : NULL, __entry->pfn != -1UL ? __entry->pfn : 0, __entry->order, __entry->migratetype, show_gfp_flags(__entry->gfp_flags)) ); DECLARE_EVENT_CLASS(mm_page, TP_PROTO(struct page *page, unsigned int order, int migratetype), TP_ARGS(page, order, migratetype), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( unsigned int, order ) __field( int, migratetype ) ), TP_fast_assign( __entry->pfn = page ? page_to_pfn(page) : -1UL; __entry->order = order; __entry->migratetype = migratetype; ), TP_printk("page=%p pfn=%lu order=%u migratetype=%d percpu_refill=%d", __entry->pfn != -1UL ? pfn_to_page(__entry->pfn) : NULL, __entry->pfn != -1UL ? __entry->pfn : 0, __entry->order, __entry->migratetype, __entry->order == 0) ); DEFINE_EVENT(mm_page, mm_page_alloc_zone_locked, TP_PROTO(struct page *page, unsigned int order, int migratetype), TP_ARGS(page, order, migratetype) ); TRACE_EVENT(mm_page_pcpu_drain, TP_PROTO(struct page *page, unsigned int order, int migratetype), TP_ARGS(page, order, migratetype), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( unsigned int, order ) __field( int, migratetype ) ), TP_fast_assign( __entry->pfn = page ? page_to_pfn(page) : -1UL; __entry->order = order; __entry->migratetype = migratetype; ), TP_printk("page=%p pfn=%lu order=%d migratetype=%d", pfn_to_page(__entry->pfn), __entry->pfn, __entry->order, __entry->migratetype) ); TRACE_EVENT(mm_page_alloc_extfrag, TP_PROTO(struct page *page, int alloc_order, int fallback_order, int alloc_migratetype, int fallback_migratetype), TP_ARGS(page, alloc_order, fallback_order, alloc_migratetype, fallback_migratetype), TP_STRUCT__entry( __field( unsigned long, pfn ) __field( int, alloc_order ) __field( int, fallback_order ) __field( int, alloc_migratetype ) __field( int, fallback_migratetype ) __field( int, change_ownership ) ), TP_fast_assign( __entry->pfn = page_to_pfn(page); __entry->alloc_order = alloc_order; __entry->fallback_order = fallback_order; __entry->alloc_migratetype = alloc_migratetype; __entry->fallback_migratetype = fallback_migratetype; __entry->change_ownership = (alloc_migratetype == get_pageblock_migratetype(page)); ), TP_printk("page=%p pfn=%lu alloc_order=%d fallback_order=%d pageblock_order=%d alloc_migratetype=%d fallback_migratetype=%d fragmenting=%d change_ownership=%d", pfn_to_page(__entry->pfn), __entry->pfn, __entry->alloc_order, __entry->fallback_order, pageblock_order, __entry->alloc_migratetype, __entry->fallback_migratetype, __entry->fallback_order < pageblock_order, __entry->change_ownership) ); /* * Required for uniquely and securely identifying mm in rss_stat tracepoint. */ #ifndef __PTR_TO_HASHVAL static unsigned int __maybe_unused mm_ptr_to_hash(const void *ptr) { int ret; unsigned long hashval; ret = ptr_to_hashval(ptr, &hashval); if (ret) return 0; /* The hashed value is only 32-bit */ return (unsigned int)hashval; } #define __PTR_TO_HASHVAL #endif TRACE_EVENT(rss_stat, TP_PROTO(struct mm_struct *mm, int member, long count), TP_ARGS(mm, member, count), TP_STRUCT__entry( __field(unsigned int, mm_id) __field(unsigned int, curr) __field(int, member) __field(long, size) ), TP_fast_assign( __entry->mm_id = mm_ptr_to_hash(mm); __entry->curr = !!(current->mm == mm); __entry->member = member; __entry->size = (count << PAGE_SHIFT); ), TP_printk("mm_id=%u curr=%d member=%d size=%ldB", __entry->mm_id, __entry->curr, __entry->member, __entry->size) ); #endif /* _TRACE_KMEM_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 #undef TRACE_SYSTEM #define TRACE_SYSTEM qdisc #if !defined(_TRACE_QDISC_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_QDISC_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/tracepoint.h> #include <linux/ftrace.h> #include <linux/pkt_sched.h> #include <net/sch_generic.h> TRACE_EVENT(qdisc_dequeue, TP_PROTO(struct Qdisc *qdisc, const struct netdev_queue *txq, int packets, struct sk_buff *skb), TP_ARGS(qdisc, txq, packets, skb), TP_STRUCT__entry( __field( struct Qdisc *, qdisc ) __field(const struct netdev_queue *, txq ) __field( int, packets ) __field( void *, skbaddr ) __field( int, ifindex ) __field( u32, handle ) __field( u32, parent ) __field( unsigned long, txq_state) ), /* skb==NULL indicate packets dequeued was 0, even when packets==1 */ TP_fast_assign( __entry->qdisc = qdisc; __entry->txq = txq; __entry->packets = skb ? packets : 0; __entry->skbaddr = skb; __entry->ifindex = txq->dev ? txq->dev->ifindex : 0; __entry->handle = qdisc->handle; __entry->parent = qdisc->parent; __entry->txq_state = txq->state; ), TP_printk("dequeue ifindex=%d qdisc handle=0x%X parent=0x%X txq_state=0x%lX packets=%d skbaddr=%p", __entry->ifindex, __entry->handle, __entry->parent, __entry->txq_state, __entry->packets, __entry->skbaddr ) ); TRACE_EVENT(qdisc_reset, TP_PROTO(struct Qdisc *q), TP_ARGS(q), TP_STRUCT__entry( __string( dev, qdisc_dev(q) ) __string( kind, q->ops->id ) __field( u32, parent ) __field( u32, handle ) ), TP_fast_assign( __assign_str(dev, qdisc_dev(q)); __assign_str(kind, q->ops->id); __entry->parent = q->parent; __entry->handle = q->handle; ), TP_printk("dev=%s kind=%s parent=%x:%x handle=%x:%x", __get_str(dev), __get_str(kind), TC_H_MAJ(__entry->parent) >> 16, TC_H_MIN(__entry->parent), TC_H_MAJ(__entry->handle) >> 16, TC_H_MIN(__entry->handle)) ); TRACE_EVENT(qdisc_destroy, TP_PROTO(struct Qdisc *q), TP_ARGS(q), TP_STRUCT__entry( __string( dev, qdisc_dev(q) ) __string( kind, q->ops->id ) __field( u32, parent ) __field( u32, handle ) ), TP_fast_assign( __assign_str(dev, qdisc_dev(q)); __assign_str(kind, q->ops->id); __entry->parent = q->parent; __entry->handle = q->handle; ), TP_printk("dev=%s kind=%s parent=%x:%x handle=%x:%x", __get_str(dev), __get_str(kind), TC_H_MAJ(__entry->parent) >> 16, TC_H_MIN(__entry->parent), TC_H_MAJ(__entry->handle) >> 16, TC_H_MIN(__entry->handle)) ); TRACE_EVENT(qdisc_create, TP_PROTO(const struct Qdisc_ops *ops, struct net_device *dev, u32 parent), TP_ARGS(ops, dev, parent), TP_STRUCT__entry( __string( dev, dev->name ) __string( kind, ops->id ) __field( u32, parent ) ), TP_fast_assign( __assign_str(dev, dev->name); __assign_str(kind, ops->id); __entry->parent = parent; ), TP_printk("dev=%s kind=%s parent=%x:%x", __get_str(dev), __get_str(kind), TC_H_MAJ(__entry->parent) >> 16, TC_H_MIN(__entry->parent)) ); #endif /* _TRACE_QDISC_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 // SPDX-License-Identifier: GPL-2.0 /* * Kernel timekeeping code and accessor functions. Based on code from * timer.c, moved in commit 8524070b7982. */ #include <linux/timekeeper_internal.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/percpu.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/nmi.h> #include <linux/sched.h> #include <linux/sched/loadavg.h> #include <linux/sched/clock.h> #include <linux/syscore_ops.h> #include <linux/clocksource.h> #include <linux/jiffies.h> #include <linux/time.h> #include <linux/tick.h> #include <linux/stop_machine.h> #include <linux/pvclock_gtod.h> #include <linux/compiler.h> #include <linux/audit.h> #include "tick-internal.h" #include "ntp_internal.h" #include "timekeeping_internal.h" #define TK_CLEAR_NTP (1 << 0) #define TK_MIRROR (1 << 1) #define TK_CLOCK_WAS_SET (1 << 2) enum timekeeping_adv_mode { /* Update timekeeper when a tick has passed */ TK_ADV_TICK, /* Update timekeeper on a direct frequency change */ TK_ADV_FREQ }; DEFINE_RAW_SPINLOCK(timekeeper_lock); /* * The most important data for readout fits into a single 64 byte * cache line. */ static struct { seqcount_raw_spinlock_t seq; struct timekeeper timekeeper; } tk_core ____cacheline_aligned = { .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), }; static struct timekeeper shadow_timekeeper; /* flag for if timekeeping is suspended */ int __read_mostly timekeeping_suspended; /** * struct tk_fast - NMI safe timekeeper * @seq: Sequence counter for protecting updates. The lowest bit * is the index for the tk_read_base array * @base: tk_read_base array. Access is indexed by the lowest bit of * @seq. * * See @update_fast_timekeeper() below. */ struct tk_fast { seqcount_latch_t seq; struct tk_read_base base[2]; }; /* Suspend-time cycles value for halted fast timekeeper. */ static u64 cycles_at_suspend; static u64 dummy_clock_read(struct clocksource *cs) { if (timekeeping_suspended) return cycles_at_suspend; return local_clock(); } static struct clocksource dummy_clock = { .read = dummy_clock_read, }; /* * Boot time initialization which allows local_clock() to be utilized * during early boot when clocksources are not available. local_clock() * returns nanoseconds already so no conversion is required, hence mult=1 * and shift=0. When the first proper clocksource is installed then * the fast time keepers are updated with the correct values. */ #define FAST_TK_INIT \ { \ .clock = &dummy_clock, \ .mask = CLOCKSOURCE_MASK(64), \ .mult = 1, \ .shift = 0, \ } static struct tk_fast tk_fast_mono ____cacheline_aligned = { .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), .base[0] = FAST_TK_INIT, .base[1] = FAST_TK_INIT, }; static struct tk_fast tk_fast_raw ____cacheline_aligned = { .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), .base[0] = FAST_TK_INIT, .base[1] = FAST_TK_INIT, }; static inline void tk_normalize_xtime(struct timekeeper *tk) { while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; tk->xtime_sec++; } while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; tk->raw_sec++; } } static inline struct timespec64 tk_xtime(const struct timekeeper *tk) { struct timespec64 ts; ts.tv_sec = tk->xtime_sec; ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); return ts; } static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) { tk->xtime_sec = ts->tv_sec; tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; } static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) { tk->xtime_sec += ts->tv_sec; tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; tk_normalize_xtime(tk); } static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) { struct timespec64 tmp; /* * Verify consistency of: offset_real = -wall_to_monotonic * before modifying anything */ set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, -tk->wall_to_monotonic.tv_nsec); WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); tk->wall_to_monotonic = wtm; set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); tk->offs_real = timespec64_to_ktime(tmp); tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); } static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) { tk->offs_boot = ktime_add(tk->offs_boot, delta); /* * Timespec representation for VDSO update to avoid 64bit division * on every update. */ tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); } /* * tk_clock_read - atomic clocksource read() helper * * This helper is necessary to use in the read paths because, while the * seqcount ensures we don't return a bad value while structures are updated, * it doesn't protect from potential crashes. There is the possibility that * the tkr's clocksource may change between the read reference, and the * clock reference passed to the read function. This can cause crashes if * the wrong clocksource is passed to the wrong read function. * This isn't necessary to use when holding the timekeeper_lock or doing * a read of the fast-timekeeper tkrs (which is protected by its own locking * and update logic). */ static inline u64 tk_clock_read(const struct tk_read_base *tkr) { struct clocksource *clock = READ_ONCE(tkr->clock); return clock->read(clock); } #ifdef CONFIG_DEBUG_TIMEKEEPING #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ static void timekeeping_check_update(struct timekeeper *tk, u64 offset) { u64 max_cycles = tk->tkr_mono.clock->max_cycles; const char *name = tk->tkr_mono.clock->name; if (offset > max_cycles) { printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", offset, name, max_cycles); printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); } else { if (offset > (max_cycles >> 1)) { printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", offset, name, max_cycles >> 1); printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); } } if (tk->underflow_seen) { if (jiffies - tk->last_warning > WARNING_FREQ) { printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); printk_deferred(" Your kernel is probably still fine.\n"); tk->last_warning = jiffies; } tk->underflow_seen = 0; } if (tk->overflow_seen) { if (jiffies - tk->last_warning > WARNING_FREQ) { printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); printk_deferred(" Your kernel is probably still fine.\n"); tk->last_warning = jiffies; } tk->overflow_seen = 0; } } static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) { struct timekeeper *tk = &tk_core.timekeeper; u64 now, last, mask, max, delta; unsigned int seq; /* * Since we're called holding a seqcount, the data may shift * under us while we're doing the calculation. This can cause * false positives, since we'd note a problem but throw the * results away. So nest another seqcount here to atomically * grab the points we are checking with. */ do { seq = read_seqcount_begin(&tk_core.seq); now = tk_clock_read(tkr); last = tkr->cycle_last; mask = tkr->mask; max = tkr->clock->max_cycles; } while (read_seqcount_retry(&tk_core.seq, seq)); delta = clocksource_delta(now, last, mask); /* * Try to catch underflows by checking if we are seeing small * mask-relative negative values. */ if (unlikely((~delta & mask) < (mask >> 3))) { tk->underflow_seen = 1; delta = 0; } /* Cap delta value to the max_cycles values to avoid mult overflows */ if (unlikely(delta > max)) { tk->overflow_seen = 1; delta = tkr->clock->max_cycles; } return delta; } #else static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) { } static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) { u64 cycle_now, delta; /* read clocksource */ cycle_now = tk_clock_read(tkr); /* calculate the delta since the last update_wall_time */ delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); return delta; } #endif /** * tk_setup_internals - Set up internals to use clocksource clock. * * @tk: The target timekeeper to setup. * @clock: Pointer to clocksource. * * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment * pair and interval request. * * Unless you're the timekeeping code, you should not be using this! */ static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) { u64 interval; u64 tmp, ntpinterval; struct clocksource *old_clock; ++tk->cs_was_changed_seq; old_clock = tk->tkr_mono.clock; tk->tkr_mono.clock = clock; tk->tkr_mono.mask = clock->mask; tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); tk->tkr_raw.clock = clock; tk->tkr_raw.mask = clock->mask; tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; /* Do the ns -> cycle conversion first, using original mult */ tmp = NTP_INTERVAL_LENGTH; tmp <<= clock->shift; ntpinterval = tmp; tmp += clock->mult/2; do_div(tmp, clock->mult); if (tmp == 0) tmp = 1; interval = (u64) tmp; tk->cycle_interval = interval; /* Go back from cycles -> shifted ns */ tk->xtime_interval = interval * clock->mult; tk->xtime_remainder = ntpinterval - tk->xtime_interval; tk->raw_interval = interval * clock->mult; /* if changing clocks, convert xtime_nsec shift units */ if (old_clock) { int shift_change = clock->shift - old_clock->shift; if (shift_change < 0) { tk->tkr_mono.xtime_nsec >>= -shift_change; tk->tkr_raw.xtime_nsec >>= -shift_change; } else { tk->tkr_mono.xtime_nsec <<= shift_change; tk->tkr_raw.xtime_nsec <<= shift_change; } } tk->tkr_mono.shift = clock->shift; tk->tkr_raw.shift = clock->shift; tk->ntp_error = 0; tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; tk->ntp_tick = ntpinterval << tk->ntp_error_shift; /* * The timekeeper keeps its own mult values for the currently * active clocksource. These value will be adjusted via NTP * to counteract clock drifting. */ tk->tkr_mono.mult = clock->mult; tk->tkr_raw.mult = clock->mult; tk->ntp_err_mult = 0; tk->skip_second_overflow = 0; } /* Timekeeper helper functions. */ #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET static u32 default_arch_gettimeoffset(void) { return 0; } u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset; #else static inline u32 arch_gettimeoffset(void) { return 0; } #endif static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) { u64 nsec; nsec = delta * tkr->mult + tkr->xtime_nsec; nsec >>= tkr->shift; /* If arch requires, add in get_arch_timeoffset() */ return nsec + arch_gettimeoffset(); } static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) { u64 delta; delta = timekeeping_get_delta(tkr); return timekeeping_delta_to_ns(tkr, delta); } static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) { u64 delta; /* calculate the delta since the last update_wall_time */ delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); return timekeeping_delta_to_ns(tkr, delta); } /** * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. * @tkr: Timekeeping readout base from which we take the update * * We want to use this from any context including NMI and tracing / * instrumenting the timekeeping code itself. * * Employ the latch technique; see @raw_write_seqcount_latch. * * So if a NMI hits the update of base[0] then it will use base[1] * which is still consistent. In the worst case this can result is a * slightly wrong timestamp (a few nanoseconds). See * @ktime_get_mono_fast_ns. */ static void update_fast_timekeeper(const struct tk_read_base *tkr, struct tk_fast *tkf) { struct tk_read_base *base = tkf->base; /* Force readers off to base[1] */ raw_write_seqcount_latch(&tkf->seq); /* Update base[0] */ memcpy(base, tkr, sizeof(*base)); /* Force readers back to base[0] */ raw_write_seqcount_latch(&tkf->seq); /* Update base[1] */ memcpy(base + 1, base, sizeof(*base)); } /** * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic * * This timestamp is not guaranteed to be monotonic across an update. * The timestamp is calculated by: * * now = base_mono + clock_delta * slope * * So if the update lowers the slope, readers who are forced to the * not yet updated second array are still using the old steeper slope. * * tmono * ^ * | o n * | o n * | u * | o * |o * |12345678---> reader order * * o = old slope * u = update * n = new slope * * So reader 6 will observe time going backwards versus reader 5. * * While other CPUs are likely to be able observe that, the only way * for a CPU local observation is when an NMI hits in the middle of * the update. Timestamps taken from that NMI context might be ahead * of the following timestamps. Callers need to be aware of that and * deal with it. */ static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) { struct tk_read_base *tkr; unsigned int seq; u64 now; do { seq = raw_read_seqcount_latch(&tkf->seq); tkr = tkf->base + (seq & 0x01); now = ktime_to_ns(tkr->base); now += timekeeping_delta_to_ns(tkr, clocksource_delta( tk_clock_read(tkr), tkr->cycle_last, tkr->mask)); } while (read_seqcount_latch_retry(&tkf->seq, seq)); return now; } u64 ktime_get_mono_fast_ns(void) { return __ktime_get_fast_ns(&tk_fast_mono); } EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); u64 ktime_get_raw_fast_ns(void) { return __ktime_get_fast_ns(&tk_fast_raw); } EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); /** * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. * * To keep it NMI safe since we're accessing from tracing, we're not using a * separate timekeeper with updates to monotonic clock and boot offset * protected with seqcounts. This has the following minor side effects: * * (1) Its possible that a timestamp be taken after the boot offset is updated * but before the timekeeper is updated. If this happens, the new boot offset * is added to the old timekeeping making the clock appear to update slightly * earlier: * CPU 0 CPU 1 * timekeeping_inject_sleeptime64() * __timekeeping_inject_sleeptime(tk, delta); * timestamp(); * timekeeping_update(tk, TK_CLEAR_NTP...); * * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be * partially updated. Since the tk->offs_boot update is a rare event, this * should be a rare occurrence which postprocessing should be able to handle. */ u64 notrace ktime_get_boot_fast_ns(void) { struct timekeeper *tk = &tk_core.timekeeper; return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot)); } EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); /* * See comment for __ktime_get_fast_ns() vs. timestamp ordering */ static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) { struct tk_read_base *tkr; u64 basem, baser, delta; unsigned int seq; do { seq = raw_read_seqcount_latch(&tkf->seq); tkr = tkf->base + (seq & 0x01); basem = ktime_to_ns(tkr->base); baser = ktime_to_ns(tkr->base_real); delta = timekeeping_delta_to_ns(tkr, clocksource_delta(tk_clock_read(tkr), tkr->cycle_last, tkr->mask)); } while (read_seqcount_latch_retry(&tkf->seq, seq)); if (mono) *mono = basem + delta; return baser + delta; } /** * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. */ u64 ktime_get_real_fast_ns(void) { return __ktime_get_real_fast(&tk_fast_mono, NULL); } EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); /** * ktime_get_fast_timestamps: - NMI safe timestamps * @snapshot: Pointer to timestamp storage * * Stores clock monotonic, boottime and realtime timestamps. * * Boot time is a racy access on 32bit systems if the sleep time injection * happens late during resume and not in timekeeping_resume(). That could * be avoided by expanding struct tk_read_base with boot offset for 32bit * and adding more overhead to the update. As this is a hard to observe * once per resume event which can be filtered with reasonable effort using * the accurate mono/real timestamps, it's probably not worth the trouble. * * Aside of that it might be possible on 32 and 64 bit to observe the * following when the sleep time injection happens late: * * CPU 0 CPU 1 * timekeeping_resume() * ktime_get_fast_timestamps() * mono, real = __ktime_get_real_fast() * inject_sleep_time() * update boot offset * boot = mono + bootoffset; * * That means that boot time already has the sleep time adjustment, but * real time does not. On the next readout both are in sync again. * * Preventing this for 64bit is not really feasible without destroying the * careful cache layout of the timekeeper because the sequence count and * struct tk_read_base would then need two cache lines instead of one. * * Access to the time keeper clock source is disabled accross the innermost * steps of suspend/resume. The accessors still work, but the timestamps * are frozen until time keeping is resumed which happens very early. * * For regular suspend/resume there is no observable difference vs. sched * clock, but it might affect some of the nasty low level debug printks. * * OTOH, access to sched clock is not guaranteed accross suspend/resume on * all systems either so it depends on the hardware in use. * * If that turns out to be a real problem then this could be mitigated by * using sched clock in a similar way as during early boot. But it's not as * trivial as on early boot because it needs some careful protection * against the clock monotonic timestamp jumping backwards on resume. */ void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) { struct timekeeper *tk = &tk_core.timekeeper; snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); } /** * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. * @tk: Timekeeper to snapshot. * * It generally is unsafe to access the clocksource after timekeeping has been * suspended, so take a snapshot of the readout base of @tk and use it as the * fast timekeeper's readout base while suspended. It will return the same * number of cycles every time until timekeeping is resumed at which time the * proper readout base for the fast timekeeper will be restored automatically. */ static void halt_fast_timekeeper(const struct timekeeper *tk) { static struct tk_read_base tkr_dummy; const struct tk_read_base *tkr = &tk->tkr_mono; memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); cycles_at_suspend = tk_clock_read(tkr); tkr_dummy.clock = &dummy_clock; tkr_dummy.base_real = tkr->base + tk->offs_real; update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); tkr = &tk->tkr_raw; memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); tkr_dummy.clock = &dummy_clock; update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); } static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) { raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); } /** * pvclock_gtod_register_notifier - register a pvclock timedata update listener */ int pvclock_gtod_register_notifier(struct notifier_block *nb) { struct timekeeper *tk = &tk_core.timekeeper; unsigned long flags; int ret; raw_spin_lock_irqsave(&timekeeper_lock, flags); ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); update_pvclock_gtod(tk, true); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); return ret; } EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); /** * pvclock_gtod_unregister_notifier - unregister a pvclock * timedata update listener */ int pvclock_gtod_unregister_notifier(struct notifier_block *nb) { unsigned long flags; int ret; raw_spin_lock_irqsave(&timekeeper_lock, flags); ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); return ret; } EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); /* * tk_update_leap_state - helper to update the next_leap_ktime */ static inline void tk_update_leap_state(struct timekeeper *tk) { tk->next_leap_ktime = ntp_get_next_leap(); if (tk->next_leap_ktime != KTIME_MAX) /* Convert to monotonic time */ tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); } /* * Update the ktime_t based scalar nsec members of the timekeeper */ static inline void tk_update_ktime_data(struct timekeeper *tk) { u64 seconds; u32 nsec; /* * The xtime based monotonic readout is: * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); * The ktime based monotonic readout is: * nsec = base_mono + now(); * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec */ seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); nsec = (u32) tk->wall_to_monotonic.tv_nsec; tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); /* * The sum of the nanoseconds portions of xtime and * wall_to_monotonic can be greater/equal one second. Take * this into account before updating tk->ktime_sec. */ nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); if (nsec >= NSEC_PER_SEC) seconds++; tk->ktime_sec = seconds; /* Update the monotonic raw base */ tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); } /* must hold timekeeper_lock */ static void timekeeping_update(struct timekeeper *tk, unsigned int action) { if (action & TK_CLEAR_NTP) { tk->ntp_error = 0; ntp_clear(); } tk_update_leap_state(tk); tk_update_ktime_data(tk); update_vsyscall(tk); update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); if (action & TK_CLOCK_WAS_SET) tk->clock_was_set_seq++; /* * The mirroring of the data to the shadow-timekeeper needs * to happen last here to ensure we don't over-write the * timekeeper structure on the next update with stale data */ if (action & TK_MIRROR) memcpy(&shadow_timekeeper, &tk_core.timekeeper, sizeof(tk_core.timekeeper)); } /** * timekeeping_forward_now - update clock to the current time * * Forward the current clock to update its state since the last call to * update_wall_time(). This is useful before significant clock changes, * as it avoids having to deal with this time offset explicitly. */ static void timekeeping_forward_now(struct timekeeper *tk) { u64 cycle_now, delta; cycle_now = tk_clock_read(&tk->tkr_mono); delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); tk->tkr_mono.cycle_last = cycle_now; tk->tkr_raw.cycle_last = cycle_now; tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; /* If arch requires, add in get_arch_timeoffset() */ tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift; tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; /* If arch requires, add in get_arch_timeoffset() */ tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift; tk_normalize_xtime(tk); } /** * ktime_get_real_ts64 - Returns the time of day in a timespec64. * @ts: pointer to the timespec to be set * * Returns the time of day in a timespec64 (WARN if suspended). */ void ktime_get_real_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; u64 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); ts->tv_sec = tk->xtime_sec; nsecs = timekeeping_get_ns(&tk->tkr_mono); } while (read_seqcount_retry(&tk_core.seq, seq)); ts->tv_nsec = 0; timespec64_add_ns(ts, nsecs); } EXPORT_SYMBOL(ktime_get_real_ts64); ktime_t ktime_get(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base; u64 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); base = tk->tkr_mono.base; nsecs = timekeeping_get_ns(&tk->tkr_mono); } while (read_seqcount_retry(&tk_core.seq, seq)); return ktime_add_ns(base, nsecs); } EXPORT_SYMBOL_GPL(ktime_get); u32 ktime_get_resolution_ns(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; u32 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; } while (read_seqcount_retry(&tk_core.seq, seq)); return nsecs; } EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); static ktime_t *offsets[TK_OFFS_MAX] = { [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, }; ktime_t ktime_get_with_offset(enum tk_offsets offs) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base, *offset = offsets[offs]; u64 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); base = ktime_add(tk->tkr_mono.base, *offset); nsecs = timekeeping_get_ns(&tk->tkr_mono); } while (read_seqcount_retry(&tk_core.seq, seq)); return ktime_add_ns(base, nsecs); } EXPORT_SYMBOL_GPL(ktime_get_with_offset); ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base, *offset = offsets[offs]; u64 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); base = ktime_add(tk->tkr_mono.base, *offset); nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; } while (read_seqcount_retry(&tk_core.seq, seq)); return ktime_add_ns(base, nsecs); } EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); /** * ktime_mono_to_any() - convert mononotic time to any other time * @tmono: time to convert. * @offs: which offset to use */ ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) { ktime_t *offset = offsets[offs]; unsigned int seq; ktime_t tconv; do { seq = read_seqcount_begin(&tk_core.seq); tconv = ktime_add(tmono, *offset); } while (read_seqcount_retry(&tk_core.seq, seq)); return tconv; } EXPORT_SYMBOL_GPL(ktime_mono_to_any); /** * ktime_get_raw - Returns the raw monotonic time in ktime_t format */ ktime_t ktime_get_raw(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base; u64 nsecs; do { seq = read_seqcount_begin(&tk_core.seq); base = tk->tkr_raw.base; nsecs = timekeeping_get_ns(&tk->tkr_raw); } while (read_seqcount_retry(&tk_core.seq, seq)); return ktime_add_ns(base, nsecs); } EXPORT_SYMBOL_GPL(ktime_get_raw); /** * ktime_get_ts64 - get the monotonic clock in timespec64 format * @ts: pointer to timespec variable * * The function calculates the monotonic clock from the realtime * clock and the wall_to_monotonic offset and stores the result * in normalized timespec64 format in the variable pointed to by @ts. */ void ktime_get_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; struct timespec64 tomono; unsigned int seq; u64 nsec; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); ts->tv_sec = tk->xtime_sec; nsec = timekeeping_get_ns(&tk->tkr_mono); tomono = tk->wall_to_monotonic; } while (read_seqcount_retry(&tk_core.seq, seq)); ts->tv_sec += tomono.tv_sec; ts->tv_nsec = 0; timespec64_add_ns(ts, nsec + tomono.tv_nsec); } EXPORT_SYMBOL_GPL(ktime_get_ts64); /** * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC * * Returns the seconds portion of CLOCK_MONOTONIC with a single non * serialized read. tk->ktime_sec is of type 'unsigned long' so this * works on both 32 and 64 bit systems. On 32 bit systems the readout * covers ~136 years of uptime which should be enough to prevent * premature wrap arounds. */ time64_t ktime_get_seconds(void) { struct timekeeper *tk = &tk_core.timekeeper; WARN_ON(timekeeping_suspended); return tk->ktime_sec; } EXPORT_SYMBOL_GPL(ktime_get_seconds); /** * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME * * Returns the wall clock seconds since 1970. This replaces the * get_seconds() interface which is not y2038 safe on 32bit systems. * * For 64bit systems the fast access to tk->xtime_sec is preserved. On * 32bit systems the access must be protected with the sequence * counter to provide "atomic" access to the 64bit tk->xtime_sec * value. */ time64_t ktime_get_real_seconds(void) { struct timekeeper *tk = &tk_core.timekeeper; time64_t seconds; unsigned int seq; if (IS_ENABLED(CONFIG_64BIT)) return tk->xtime_sec; do { seq = read_seqcount_begin(&tk_core.seq); seconds = tk->xtime_sec; } while (read_seqcount_retry(&tk_core.seq, seq)); return seconds; } EXPORT_SYMBOL_GPL(ktime_get_real_seconds); /** * __ktime_get_real_seconds - The same as ktime_get_real_seconds * but without the sequence counter protect. This internal function * is called just when timekeeping lock is already held. */ noinstr time64_t __ktime_get_real_seconds(void) { struct timekeeper *tk = &tk_core.timekeeper; return tk->xtime_sec; } /** * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter * @systime_snapshot: pointer to struct receiving the system time snapshot */ void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base_raw; ktime_t base_real; u64 nsec_raw; u64 nsec_real; u64 now; WARN_ON_ONCE(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); now = tk_clock_read(&tk->tkr_mono); systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; base_real = ktime_add(tk->tkr_mono.base, tk_core.timekeeper.offs_real); base_raw = tk->tkr_raw.base; nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); } while (read_seqcount_retry(&tk_core.seq, seq)); systime_snapshot->cycles = now; systime_snapshot->real = ktime_add_ns(base_real, nsec_real); systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); } EXPORT_SYMBOL_GPL(ktime_get_snapshot); /* Scale base by mult/div checking for overflow */ static int scale64_check_overflow(u64 mult, u64 div, u64 *base) { u64 tmp, rem; tmp = div64_u64_rem(*base, div, &rem); if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) return -EOVERFLOW; tmp *= mult; rem = div64_u64(rem * mult, div); *base = tmp + rem; return 0; } /** * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval * @history: Snapshot representing start of history * @partial_history_cycles: Cycle offset into history (fractional part) * @total_history_cycles: Total history length in cycles * @discontinuity: True indicates clock was set on history period * @ts: Cross timestamp that should be adjusted using * partial/total ratio * * Helper function used by get_device_system_crosststamp() to correct the * crosstimestamp corresponding to the start of the current interval to the * system counter value (timestamp point) provided by the driver. The * total_history_* quantities are the total history starting at the provided * reference point and ending at the start of the current interval. The cycle * count between the driver timestamp point and the start of the current * interval is partial_history_cycles. */ static int adjust_historical_crosststamp(struct system_time_snapshot *history, u64 partial_history_cycles, u64 total_history_cycles, bool discontinuity, struct system_device_crosststamp *ts) { struct timekeeper *tk = &tk_core.timekeeper; u64 corr_raw, corr_real; bool interp_forward; int ret; if (total_history_cycles == 0 || partial_history_cycles == 0) return 0; /* Interpolate shortest distance from beginning or end of history */ interp_forward = partial_history_cycles > total_history_cycles / 2; partial_history_cycles = interp_forward ? total_history_cycles - partial_history_cycles : partial_history_cycles; /* * Scale the monotonic raw time delta by: * partial_history_cycles / total_history_cycles */ corr_raw = (u64)ktime_to_ns( ktime_sub(ts->sys_monoraw, history->raw)); ret = scale64_check_overflow(partial_history_cycles, total_history_cycles, &corr_raw); if (ret) return ret; /* * If there is a discontinuity in the history, scale monotonic raw * correction by: * mult(real)/mult(raw) yielding the realtime correction * Otherwise, calculate the realtime correction similar to monotonic * raw calculation */ if (discontinuity) { corr_real = mul_u64_u32_div (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); } else { corr_real = (u64)ktime_to_ns( ktime_sub(ts->sys_realtime, history->real)); ret = scale64_check_overflow(partial_history_cycles, total_history_cycles, &corr_real); if (ret) return ret; } /* Fixup monotonic raw and real time time values */ if (interp_forward) { ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); ts->sys_realtime = ktime_add_ns(history->real, corr_real); } else { ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); } return 0; } /* * cycle_between - true if test occurs chronologically between before and after */ static bool cycle_between(u64 before, u64 test, u64 after) { if (test > before && test < after) return true; if (test < before && before > after) return true; return false; } /** * get_device_system_crosststamp - Synchronously capture system/device timestamp * @get_time_fn: Callback to get simultaneous device time and * system counter from the device driver * @ctx: Context passed to get_time_fn() * @history_begin: Historical reference point used to interpolate system * time when counter provided by the driver is before the current interval * @xtstamp: Receives simultaneously captured system and device time * * Reads a timestamp from a device and correlates it to system time */ int get_device_system_crosststamp(int (*get_time_fn) (ktime_t *device_time, struct system_counterval_t *sys_counterval, void *ctx), void *ctx, struct system_time_snapshot *history_begin, struct system_device_crosststamp *xtstamp) { struct system_counterval_t system_counterval; struct timekeeper *tk = &tk_core.timekeeper; u64 cycles, now, interval_start; unsigned int clock_was_set_seq = 0; ktime_t base_real, base_raw; u64 nsec_real, nsec_raw; u8 cs_was_changed_seq; unsigned int seq; bool do_interp; int ret; do { seq = read_seqcount_begin(&tk_core.seq); /* * Try to synchronously capture device time and a system * counter value calling back into the device driver */ ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); if (ret) return ret; /* * Verify that the clocksource associated with the captured * system counter value is the same as the currently installed * timekeeper clocksource */ if (tk->tkr_mono.clock != system_counterval.cs) return -ENODEV; cycles = system_counterval.cycles; /* * Check whether the system counter value provided by the * device driver is on the current timekeeping interval. */ now = tk_clock_read(&tk->tkr_mono); interval_start = tk->tkr_mono.cycle_last; if (!cycle_between(interval_start, cycles, now)) { clock_was_set_seq = tk->clock_was_set_seq; cs_was_changed_seq = tk->cs_was_changed_seq; cycles = interval_start; do_interp = true; } else { do_interp = false; } base_real = ktime_add(tk->tkr_mono.base, tk_core.timekeeper.offs_real); base_raw = tk->tkr_raw.base; nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, system_counterval.cycles); nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, system_counterval.cycles); } while (read_seqcount_retry(&tk_core.seq, seq)); xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); /* * Interpolate if necessary, adjusting back from the start of the * current interval */ if (do_interp) { u64 partial_history_cycles, total_history_cycles; bool discontinuity; /* * Check that the counter value occurs after the provided * history reference and that the history doesn't cross a * clocksource change */ if (!history_begin || !cycle_between(history_begin->cycles, system_counterval.cycles, cycles) || history_begin->cs_was_changed_seq != cs_was_changed_seq) return -EINVAL; partial_history_cycles = cycles - system_counterval.cycles; total_history_cycles = cycles - history_begin->cycles; discontinuity = history_begin->clock_was_set_seq != clock_was_set_seq; ret = adjust_historical_crosststamp(history_begin, partial_history_cycles, total_history_cycles, discontinuity, xtstamp); if (ret) return ret; } return 0; } EXPORT_SYMBOL_GPL(get_device_system_crosststamp); /** * do_settimeofday64 - Sets the time of day. * @ts: pointer to the timespec64 variable containing the new time * * Sets the time of day to the new time and update NTP and notify hrtimers */ int do_settimeofday64(const struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; struct timespec64 ts_delta, xt; unsigned long flags; int ret = 0; if (!timespec64_valid_settod(ts)) return -EINVAL; raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); timekeeping_forward_now(tk); xt = tk_xtime(tk); ts_delta = timespec64_sub(*ts, xt); if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { ret = -EINVAL; goto out; } tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); tk_set_xtime(tk, ts); out: timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); /* signal hrtimers about time change */ clock_was_set(); if (!ret) audit_tk_injoffset(ts_delta); return ret; } EXPORT_SYMBOL(do_settimeofday64); /** * timekeeping_inject_offset - Adds or subtracts from the current time. * @tv: pointer to the timespec variable containing the offset * * Adds or subtracts an offset value from the current time. */ static int timekeeping_inject_offset(const struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; unsigned long flags; struct timespec64 tmp; int ret = 0; if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) return -EINVAL; raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); timekeeping_forward_now(tk); /* Make sure the proposed value is valid */ tmp = timespec64_add(tk_xtime(tk), *ts); if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || !timespec64_valid_settod(&tmp)) { ret = -EINVAL; goto error; } tk_xtime_add(tk, ts); tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); error: /* even if we error out, we forwarded the time, so call update */ timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); /* signal hrtimers about time change */ clock_was_set(); return ret; } /* * Indicates if there is an offset between the system clock and the hardware * clock/persistent clock/rtc. */ int persistent_clock_is_local; /* * Adjust the time obtained from the CMOS to be UTC time instead of * local time. * * This is ugly, but preferable to the alternatives. Otherwise we * would either need to write a program to do it in /etc/rc (and risk * confusion if the program gets run more than once; it would also be * hard to make the program warp the clock precisely n hours) or * compile in the timezone information into the kernel. Bad, bad.... * * - TYT, 1992-01-01 * * The best thing to do is to keep the CMOS clock in universal time (UTC) * as real UNIX machines always do it. This avoids all headaches about * daylight saving times and warping kernel clocks. */ void timekeeping_warp_clock(void) { if (sys_tz.tz_minuteswest != 0) { struct timespec64 adjust; persistent_clock_is_local = 1; adjust.tv_sec = sys_tz.tz_minuteswest * 60; adjust.tv_nsec = 0; timekeeping_inject_offset(&adjust); } } /** * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic * */ static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) { tk->tai_offset = tai_offset; tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); } /** * change_clocksource - Swaps clocksources if a new one is available * * Accumulates current time interval and initializes new clocksource */ static int change_clocksource(void *data) { struct timekeeper *tk = &tk_core.timekeeper; struct clocksource *new, *old; unsigned long flags; new = (struct clocksource *) data; raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); timekeeping_forward_now(tk); /* * If the cs is in module, get a module reference. Succeeds * for built-in code (owner == NULL) as well. */ if (try_module_get(new->owner)) { if (!new->enable || new->enable(new) == 0) { old = tk->tkr_mono.clock; tk_setup_internals(tk, new); if (old->disable) old->disable(old); module_put(old->owner); } else { module_put(new->owner); } } timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); return 0; } /** * timekeeping_notify - Install a new clock source * @clock: pointer to the clock source * * This function is called from clocksource.c after a new, better clock * source has been registered. The caller holds the clocksource_mutex. */ int timekeeping_notify(struct clocksource *clock) { struct timekeeper *tk = &tk_core.timekeeper; if (tk->tkr_mono.clock == clock) return 0; stop_machine(change_clocksource, clock, NULL); tick_clock_notify(); return tk->tkr_mono.clock == clock ? 0 : -1; } /** * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec * @ts: pointer to the timespec64 to be set * * Returns the raw monotonic time (completely un-modified by ntp) */ void ktime_get_raw_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; u64 nsecs; do { seq = read_seqcount_begin(&tk_core.seq); ts->tv_sec = tk->raw_sec; nsecs = timekeeping_get_ns(&tk->tkr_raw); } while (read_seqcount_retry(&tk_core.seq, seq)); ts->tv_nsec = 0; timespec64_add_ns(ts, nsecs); } EXPORT_SYMBOL(ktime_get_raw_ts64); /** * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres */ int timekeeping_valid_for_hres(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; int ret; do { seq = read_seqcount_begin(&tk_core.seq); ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; } while (read_seqcount_retry(&tk_core.seq, seq)); return ret; } /** * timekeeping_max_deferment - Returns max time the clocksource can be deferred */ u64 timekeeping_max_deferment(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; u64 ret; do { seq = read_seqcount_begin(&tk_core.seq); ret = tk->tkr_mono.clock->max_idle_ns; } while (read_seqcount_retry(&tk_core.seq, seq)); return ret; } /** * read_persistent_clock64 - Return time from the persistent clock. * * Weak dummy function for arches that do not yet support it. * Reads the time from the battery backed persistent clock. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. * * XXX - Do be sure to remove it once all arches implement it. */ void __weak read_persistent_clock64(struct timespec64 *ts) { ts->tv_sec = 0; ts->tv_nsec = 0; } /** * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset * from the boot. * * Weak dummy function for arches that do not yet support it. * wall_time - current time as returned by persistent clock * boot_offset - offset that is defined as wall_time - boot_time * The default function calculates offset based on the current value of * local_clock(). This way architectures that support sched_clock() but don't * support dedicated boot time clock will provide the best estimate of the * boot time. */ void __weak __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, struct timespec64 *boot_offset) { read_persistent_clock64(wall_time); *boot_offset = ns_to_timespec64(local_clock()); } /* * Flag reflecting whether timekeeping_resume() has injected sleeptime. * * The flag starts of false and is only set when a suspend reaches * timekeeping_suspend(), timekeeping_resume() sets it to false when the * timekeeper clocksource is not stopping across suspend and has been * used to update sleep time. If the timekeeper clocksource has stopped * then the flag stays true and is used by the RTC resume code to decide * whether sleeptime must be injected and if so the flag gets false then. * * If a suspend fails before reaching timekeeping_resume() then the flag * stays false and prevents erroneous sleeptime injection. */ static bool suspend_timing_needed; /* Flag for if there is a persistent clock on this platform */ static bool persistent_clock_exists; /* * timekeeping_init - Initializes the clocksource and common timekeeping values */ void __init timekeeping_init(void) { struct timespec64 wall_time, boot_offset, wall_to_mono; struct timekeeper *tk = &tk_core.timekeeper; struct clocksource *clock; unsigned long flags; read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); if (timespec64_valid_settod(&wall_time) && timespec64_to_ns(&wall_time) > 0) { persistent_clock_exists = true; } else if (timespec64_to_ns(&wall_time) != 0) { pr_warn("Persistent clock returned invalid value"); wall_time = (struct timespec64){0}; } if (timespec64_compare(&wall_time, &boot_offset) < 0) boot_offset = (struct timespec64){0}; /* * We want set wall_to_mono, so the following is true: * wall time + wall_to_mono = boot time */ wall_to_mono = timespec64_sub(boot_offset, wall_time); raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); ntp_init(); clock = clocksource_default_clock(); if (clock->enable) clock->enable(clock); tk_setup_internals(tk, clock); tk_set_xtime(tk, &wall_time); tk->raw_sec = 0; tk_set_wall_to_mono(tk, wall_to_mono); timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); } /* time in seconds when suspend began for persistent clock */ static struct timespec64 timekeeping_suspend_time; /** * __timekeeping_inject_sleeptime - Internal function to add sleep interval * @delta: pointer to a timespec delta value * * Takes a timespec offset measuring a suspend interval and properly * adds the sleep offset to the timekeeping variables. */ static void __timekeeping_inject_sleeptime(struct timekeeper *tk, const struct timespec64 *delta) { if (!timespec64_valid_strict(delta)) { printk_deferred(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " "sleep delta value!\n"); return; } tk_xtime_add(tk, delta); tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); tk_debug_account_sleep_time(delta); } #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) /** * We have three kinds of time sources to use for sleep time * injection, the preference order is: * 1) non-stop clocksource * 2) persistent clock (ie: RTC accessible when irqs are off) * 3) RTC * * 1) and 2) are used by timekeeping, 3) by RTC subsystem. * If system has neither 1) nor 2), 3) will be used finally. * * * If timekeeping has injected sleeptime via either 1) or 2), * 3) becomes needless, so in this case we don't need to call * rtc_resume(), and this is what timekeeping_rtc_skipresume() * means. */ bool timekeeping_rtc_skipresume(void) { return !suspend_timing_needed; } /** * 1) can be determined whether to use or not only when doing * timekeeping_resume() which is invoked after rtc_suspend(), * so we can't skip rtc_suspend() surely if system has 1). * * But if system has 2), 2) will definitely be used, so in this * case we don't need to call rtc_suspend(), and this is what * timekeeping_rtc_skipsuspend() means. */ bool timekeeping_rtc_skipsuspend(void) { return persistent_clock_exists; } /** * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values * @delta: pointer to a timespec64 delta value * * This hook is for architectures that cannot support read_persistent_clock64 * because their RTC/persistent clock is only accessible when irqs are enabled. * and also don't have an effective nonstop clocksource. * * This function should only be called by rtc_resume(), and allows * a suspend offset to be injected into the timekeeping values. */ void timekeeping_inject_sleeptime64(const struct timespec64 *delta) { struct timekeeper *tk = &tk_core.timekeeper; unsigned long flags; raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); suspend_timing_needed = false; timekeeping_forward_now(tk); __timekeeping_inject_sleeptime(tk, delta); timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); /* signal hrtimers about time change */ clock_was_set(); } #endif /** * timekeeping_resume - Resumes the generic timekeeping subsystem. */ void timekeeping_resume(void) { struct timekeeper *tk = &tk_core.timekeeper; struct clocksource *clock = tk->tkr_mono.clock; unsigned long flags; struct timespec64 ts_new, ts_delta; u64 cycle_now, nsec; bool inject_sleeptime = false; read_persistent_clock64(&ts_new); clockevents_resume(); clocksource_resume(); raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); /* * After system resumes, we need to calculate the suspended time and * compensate it for the OS time. There are 3 sources that could be * used: Nonstop clocksource during suspend, persistent clock and rtc * device. * * One specific platform may have 1 or 2 or all of them, and the * preference will be: * suspend-nonstop clocksource -> persistent clock -> rtc * The less preferred source will only be tried if there is no better * usable source. The rtc part is handled separately in rtc core code. */ cycle_now = tk_clock_read(&tk->tkr_mono); nsec = clocksource_stop_suspend_timing(clock, cycle_now); if (nsec > 0) { ts_delta = ns_to_timespec64(nsec); inject_sleeptime = true; } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); inject_sleeptime = true; } if (inject_sleeptime) { suspend_timing_needed = false; __timekeeping_inject_sleeptime(tk, &ts_delta); } /* Re-base the last cycle value */ tk->tkr_mono.cycle_last = cycle_now; tk->tkr_raw.cycle_last = cycle_now; tk->ntp_error = 0; timekeeping_suspended = 0; timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); touch_softlockup_watchdog(); tick_resume(); hrtimers_resume(); } int timekeeping_suspend(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned long flags; struct timespec64 delta, delta_delta; static struct timespec64 old_delta; struct clocksource *curr_clock; u64 cycle_now; read_persistent_clock64(&timekeeping_suspend_time); /* * On some systems the persistent_clock can not be detected at * timekeeping_init by its return value, so if we see a valid * value returned, update the persistent_clock_exists flag. */ if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) persistent_clock_exists = true; suspend_timing_needed = true; raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); timekeeping_forward_now(tk); timekeeping_suspended = 1; /* * Since we've called forward_now, cycle_last stores the value * just read from the current clocksource. Save this to potentially * use in suspend timing. */ curr_clock = tk->tkr_mono.clock; cycle_now = tk->tkr_mono.cycle_last; clocksource_start_suspend_timing(curr_clock, cycle_now); if (persistent_clock_exists) { /* * To avoid drift caused by repeated suspend/resumes, * which each can add ~1 second drift error, * try to compensate so the difference in system time * and persistent_clock time stays close to constant. */ delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); delta_delta = timespec64_sub(delta, old_delta); if (abs(delta_delta.tv_sec) >= 2) { /* * if delta_delta is too large, assume time correction * has occurred and set old_delta to the current delta. */ old_delta = delta; } else { /* Otherwise try to adjust old_system to compensate */ timekeeping_suspend_time = timespec64_add(timekeeping_suspend_time, delta_delta); } } timekeeping_update(tk, TK_MIRROR); halt_fast_timekeeper(tk); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); tick_suspend(); clocksource_suspend(); clockevents_suspend(); return 0; } /* sysfs resume/suspend bits for timekeeping */ static struct syscore_ops timekeeping_syscore_ops = { .resume = timekeeping_resume, .suspend = timekeeping_suspend, }; static int __init timekeeping_init_ops(void) { register_syscore_ops(&timekeeping_syscore_ops); return 0; } device_initcall(timekeeping_init_ops); /* * Apply a multiplier adjustment to the timekeeper */ static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, s64 offset, s32 mult_adj) { s64 interval = tk->cycle_interval; if (mult_adj == 0) { return; } else if (mult_adj == -1) { interval = -interval; offset = -offset; } else if (mult_adj != 1) { interval *= mult_adj; offset *= mult_adj; } /* * So the following can be confusing. * * To keep things simple, lets assume mult_adj == 1 for now. * * When mult_adj != 1, remember that the interval and offset values * have been appropriately scaled so the math is the same. * * The basic idea here is that we're increasing the multiplier * by one, this causes the xtime_interval to be incremented by * one cycle_interval. This is because: * xtime_interval = cycle_interval * mult * So if mult is being incremented by one: * xtime_interval = cycle_interval * (mult + 1) * Its the same as: * xtime_interval = (cycle_interval * mult) + cycle_interval * Which can be shortened to: * xtime_interval += cycle_interval * * So offset stores the non-accumulated cycles. Thus the current * time (in shifted nanoseconds) is: * now = (offset * adj) + xtime_nsec * Now, even though we're adjusting the clock frequency, we have * to keep time consistent. In other words, we can't jump back * in time, and we also want to avoid jumping forward in time. * * So given the same offset value, we need the time to be the same * both before and after the freq adjustment. * now = (offset * adj_1) + xtime_nsec_1 * now = (offset * adj_2) + xtime_nsec_2 * So: * (offset * adj_1) + xtime_nsec_1 = * (offset * adj_2) + xtime_nsec_2 * And we know: * adj_2 = adj_1 + 1 * So: * (offset * adj_1) + xtime_nsec_1 = * (offset * (adj_1+1)) + xtime_nsec_2 * (offset * adj_1) + xtime_nsec_1 = * (offset * adj_1) + offset + xtime_nsec_2 * Canceling the sides: * xtime_nsec_1 = offset + xtime_nsec_2 * Which gives us: * xtime_nsec_2 = xtime_nsec_1 - offset * Which simplfies to: * xtime_nsec -= offset */ if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { /* NTP adjustment caused clocksource mult overflow */ WARN_ON_ONCE(1); return; } tk->tkr_mono.mult += mult_adj; tk->xtime_interval += interval; tk->tkr_mono.xtime_nsec -= offset; } /* * Adjust the timekeeper's multiplier to the correct frequency * and also to reduce the accumulated error value. */ static void timekeeping_adjust(struct timekeeper *tk, s64 offset) { u32 mult; /* * Determine the multiplier from the current NTP tick length. * Avoid expensive division when the tick length doesn't change. */ if (likely(tk->ntp_tick == ntp_tick_length())) { mult = tk->tkr_mono.mult - tk->ntp_err_mult; } else { tk->ntp_tick = ntp_tick_length(); mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - tk->xtime_remainder, tk->cycle_interval); } /* * If the clock is behind the NTP time, increase the multiplier by 1 * to catch up with it. If it's ahead and there was a remainder in the * tick division, the clock will slow down. Otherwise it will stay * ahead until the tick length changes to a non-divisible value. */ tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; mult += tk->ntp_err_mult; timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); if (unlikely(tk->tkr_mono.clock->maxadj && (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) > tk->tkr_mono.clock->maxadj))) { printk_once(KERN_WARNING "Adjusting %s more than 11%% (%ld vs %ld)\n", tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); } /* * It may be possible that when we entered this function, xtime_nsec * was very small. Further, if we're slightly speeding the clocksource * in the code above, its possible the required corrective factor to * xtime_nsec could cause it to underflow. * * Now, since we have already accumulated the second and the NTP * subsystem has been notified via second_overflow(), we need to skip * the next update. */ if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << tk->tkr_mono.shift; tk->xtime_sec--; tk->skip_second_overflow = 1; } } /** * accumulate_nsecs_to_secs - Accumulates nsecs into secs * * Helper function that accumulates the nsecs greater than a second * from the xtime_nsec field to the xtime_secs field. * It also calls into the NTP code to handle leapsecond processing. * */ static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) { u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; unsigned int clock_set = 0; while (tk->tkr_mono.xtime_nsec >= nsecps) { int leap; tk->tkr_mono.xtime_nsec -= nsecps; tk->xtime_sec++; /* * Skip NTP update if this second was accumulated before, * i.e. xtime_nsec underflowed in timekeeping_adjust() */ if (unlikely(tk->skip_second_overflow)) { tk->skip_second_overflow = 0; continue; } /* Figure out if its a leap sec and apply if needed */ leap = second_overflow(tk->xtime_sec); if (unlikely(leap)) { struct timespec64 ts; tk->xtime_sec += leap; ts.tv_sec = leap; ts.tv_nsec = 0; tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts)); __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); clock_set = TK_CLOCK_WAS_SET; } } return clock_set; } /** * logarithmic_accumulation - shifted accumulation of cycles * * This functions accumulates a shifted interval of cycles into * a shifted interval nanoseconds. Allows for O(log) accumulation * loop. * * Returns the unconsumed cycles. */ static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, u32 shift, unsigned int *clock_set) { u64 interval = tk->cycle_interval << shift; u64 snsec_per_sec; /* If the offset is smaller than a shifted interval, do nothing */ if (offset < interval) return offset; /* Accumulate one shifted interval */ offset -= interval; tk->tkr_mono.cycle_last += interval; tk->tkr_raw.cycle_last += interval; tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; *clock_set |= accumulate_nsecs_to_secs(tk); /* Accumulate raw time */ tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { tk->tkr_raw.xtime_nsec -= snsec_per_sec; tk->raw_sec++; } /* Accumulate error between NTP and clock interval */ tk->ntp_error += tk->ntp_tick << shift; tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << (tk->ntp_error_shift + shift); return offset; } /* * timekeeping_advance - Updates the timekeeper to the current time and * current NTP tick length */ static void timekeeping_advance(enum timekeeping_adv_mode mode) { struct timekeeper *real_tk = &tk_core.timekeeper; struct timekeeper *tk = &shadow_timekeeper; u64 offset; int shift = 0, maxshift; unsigned int clock_set = 0; unsigned long flags; raw_spin_lock_irqsave(&timekeeper_lock, flags); /* Make sure we're fully resumed: */ if (unlikely(timekeeping_suspended)) goto out; #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET offset = real_tk->cycle_interval; if (mode != TK_ADV_TICK) goto out; #else offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), tk->tkr_mono.cycle_last, tk->tkr_mono.mask); /* Check if there's really nothing to do */ if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) goto out; #endif /* Do some additional sanity checking */ timekeeping_check_update(tk, offset); /* * With NO_HZ we may have to accumulate many cycle_intervals * (think "ticks") worth of time at once. To do this efficiently, * we calculate the largest doubling multiple of cycle_intervals * that is smaller than the offset. We then accumulate that * chunk in one go, and then try to consume the next smaller * doubled multiple. */ shift = ilog2(offset) - ilog2(tk->cycle_interval); shift = max(0, shift); /* Bound shift to one less than what overflows tick_length */ maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; shift = min(shift, maxshift); while (offset >= tk->cycle_interval) { offset = logarithmic_accumulation(tk, offset, shift, &clock_set); if (offset < tk->cycle_interval<<shift) shift--; } /* Adjust the multiplier to correct NTP error */ timekeeping_adjust(tk, offset); /* * Finally, make sure that after the rounding * xtime_nsec isn't larger than NSEC_PER_SEC */ clock_set |= accumulate_nsecs_to_secs(tk); write_seqcount_begin(&tk_core.seq); /* * Update the real timekeeper. * * We could avoid this memcpy by switching pointers, but that * requires changes to all other timekeeper usage sites as * well, i.e. move the timekeeper pointer getter into the * spinlocked/seqcount protected sections. And we trade this * memcpy under the tk_core.seq against one before we start * updating. */ timekeeping_update(tk, clock_set); memcpy(real_tk, tk, sizeof(*tk)); /* The memcpy must come last. Do not put anything here! */ write_seqcount_end(&tk_core.seq); out: raw_spin_unlock_irqrestore(&timekeeper_lock, flags); if (clock_set) /* Have to call _delayed version, since in irq context*/ clock_was_set_delayed(); } /** * update_wall_time - Uses the current clocksource to increment the wall time * */ void update_wall_time(void) { timekeeping_advance(TK_ADV_TICK); } /** * getboottime64 - Return the real time of system boot. * @ts: pointer to the timespec64 to be set * * Returns the wall-time of boot in a timespec64. * * This is based on the wall_to_monotonic offset and the total suspend * time. Calls to settimeofday will affect the value returned (which * basically means that however wrong your real time clock is at boot time, * you get the right time here). */ void getboottime64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); *ts = ktime_to_timespec64(t); } EXPORT_SYMBOL_GPL(getboottime64); void ktime_get_coarse_real_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; do { seq = read_seqcount_begin(&tk_core.seq); *ts = tk_xtime(tk); } while (read_seqcount_retry(&tk_core.seq, seq)); } EXPORT_SYMBOL(ktime_get_coarse_real_ts64); void ktime_get_coarse_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; struct timespec64 now, mono; unsigned int seq; do { seq = read_seqcount_begin(&tk_core.seq); now = tk_xtime(tk); mono = tk->wall_to_monotonic; } while (read_seqcount_retry(&tk_core.seq, seq)); set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, now.tv_nsec + mono.tv_nsec); } EXPORT_SYMBOL(ktime_get_coarse_ts64); /* * Must hold jiffies_lock */ void do_timer(unsigned long ticks) { jiffies_64 += ticks; calc_global_load(); } /** * ktime_get_update_offsets_now - hrtimer helper * @cwsseq: pointer to check and store the clock was set sequence number * @offs_real: pointer to storage for monotonic -> realtime offset * @offs_boot: pointer to storage for monotonic -> boottime offset * @offs_tai: pointer to storage for monotonic -> clock tai offset * * Returns current monotonic time and updates the offsets if the * sequence number in @cwsseq and timekeeper.clock_was_set_seq are * different. * * Called from hrtimer_interrupt() or retrigger_next_event() */ ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, ktime_t *offs_boot, ktime_t *offs_tai) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base; u64 nsecs; do { seq = read_seqcount_begin(&tk_core.seq); base = tk->tkr_mono.base; nsecs = timekeeping_get_ns(&tk->tkr_mono); base = ktime_add_ns(base, nsecs); if (*cwsseq != tk->clock_was_set_seq) { *cwsseq = tk->clock_was_set_seq; *offs_real = tk->offs_real; *offs_boot = tk->offs_boot; *offs_tai = tk->offs_tai; } /* Handle leapsecond insertion adjustments */ if (unlikely(base >= tk->next_leap_ktime)) *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); } while (read_seqcount_retry(&tk_core.seq, seq)); return base; } /** * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex */ static int timekeeping_validate_timex(const struct __kernel_timex *txc) { if (txc->modes & ADJ_ADJTIME) { /* singleshot must not be used with any other mode bits */ if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) return -EINVAL; if (!(txc->modes & ADJ_OFFSET_READONLY) && !capable(CAP_SYS_TIME)) return -EPERM; } else { /* In order to modify anything, you gotta be super-user! */ if (txc->modes && !capable(CAP_SYS_TIME)) return -EPERM; /* * if the quartz is off by more than 10% then * something is VERY wrong! */ if (txc->modes & ADJ_TICK && (txc->tick < 900000/USER_HZ || txc->tick > 1100000/USER_HZ)) return -EINVAL; } if (txc->modes & ADJ_SETOFFSET) { /* In order to inject time, you gotta be super-user! */ if (!capable(CAP_SYS_TIME)) return -EPERM; /* * Validate if a timespec/timeval used to inject a time * offset is valid. Offsets can be postive or negative, so * we don't check tv_sec. The value of the timeval/timespec * is the sum of its fields,but *NOTE*: * The field tv_usec/tv_nsec must always be non-negative and * we can't have more nanoseconds/microseconds than a second. */ if (txc->time.tv_usec < 0) return -EINVAL; if (txc->modes & ADJ_NANO) { if (txc->time.tv_usec >= NSEC_PER_SEC) return -EINVAL; } else { if (txc->time.tv_usec >= USEC_PER_SEC) return -EINVAL; } } /* * Check for potential multiplication overflows that can * only happen on 64-bit systems: */ if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { if (LLONG_MIN / PPM_SCALE > txc->freq) return -EINVAL; if (LLONG_MAX / PPM_SCALE < txc->freq) return -EINVAL; } return 0; } /** * do_adjtimex() - Accessor function to NTP __do_adjtimex function */ int do_adjtimex(struct __kernel_timex *txc) { struct timekeeper *tk = &tk_core.timekeeper; struct audit_ntp_data ad; unsigned long flags; struct timespec64 ts; s32 orig_tai, tai; int ret; /* Validate the data before disabling interrupts */ ret = timekeeping_validate_timex(txc); if (ret) return ret; if (txc->modes & ADJ_SETOFFSET) { struct timespec64 delta; delta.tv_sec = txc->time.tv_sec; delta.tv_nsec = txc->time.tv_usec; if (!(txc->modes & ADJ_NANO)) delta.tv_nsec *= 1000; ret = timekeeping_inject_offset(&delta); if (ret) return ret; audit_tk_injoffset(delta); } audit_ntp_init(&ad); ktime_get_real_ts64(&ts); raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); orig_tai = tai = tk->tai_offset; ret = __do_adjtimex(txc, &ts, &tai, &ad); if (tai != orig_tai) { __timekeeping_set_tai_offset(tk, tai); timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); } tk_update_leap_state(tk); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); audit_ntp_log(&ad); /* Update the multiplier immediately if frequency was set directly */ if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) timekeeping_advance(TK_ADV_FREQ); if (tai != orig_tai) clock_was_set(); ntp_notify_cmos_timer(); return ret; } #ifdef CONFIG_NTP_PPS /** * hardpps() - Accessor function to NTP __hardpps function */ void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) { unsigned long flags; raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); __hardpps(phase_ts, raw_ts); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); } EXPORT_SYMBOL(hardpps); #endif /* CONFIG_NTP_PPS */ /** * xtime_update() - advances the timekeeping infrastructure * @ticks: number of ticks, that have elapsed since the last call. * * Must be called with interrupts disabled. */ void xtime_update(unsigned long ticks) { raw_spin_lock(&jiffies_lock); write_seqcount_begin(&jiffies_seq); do_timer(ticks); write_seqcount_end(&jiffies_seq); raw_spin_unlock(&jiffies_lock); update_wall_time(); }
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* audit.h -- Auditing support * * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. * All Rights Reserved. * * Written by Rickard E. (Rik) Faith <faith@redhat.com> */ #ifndef _LINUX_AUDIT_H_ #define _LINUX_AUDIT_H_ #include <linux/sched.h> #include <linux/ptrace.h> #include <uapi/linux/audit.h> #include <uapi/linux/netfilter/nf_tables.h> #define AUDIT_INO_UNSET ((unsigned long)-1) #define AUDIT_DEV_UNSET ((dev_t)-1) struct audit_sig_info { uid_t uid; pid_t pid; char ctx[]; }; struct audit_buffer; struct audit_context; struct inode; struct netlink_skb_parms; struct path; struct linux_binprm; struct mq_attr; struct mqstat; struct audit_watch; struct audit_tree; struct sk_buff; struct audit_krule { u32 pflags; u32 flags; u32 listnr; u32 action; u32 mask[AUDIT_BITMASK_SIZE]; u32 buflen; /* for data alloc on list rules */ u32 field_count; char *filterkey; /* ties events to rules */ struct audit_field *fields; struct audit_field *arch_f; /* quick access to arch field */ struct audit_field *inode_f; /* quick access to an inode field */ struct audit_watch *watch; /* associated watch */ struct audit_tree *tree; /* associated watched tree */ struct audit_fsnotify_mark *exe; struct list_head rlist; /* entry in audit_{watch,tree}.rules list */ struct list_head list; /* for AUDIT_LIST* purposes only */ u64 prio; }; /* Flag to indicate legacy AUDIT_LOGINUID unset usage */ #define AUDIT_LOGINUID_LEGACY 0x1 struct audit_field { u32 type; union { u32 val; kuid_t uid; kgid_t gid; struct { char *lsm_str; void *lsm_rule; }; }; u32 op; }; enum audit_ntp_type { AUDIT_NTP_OFFSET, AUDIT_NTP_FREQ, AUDIT_NTP_STATUS, AUDIT_NTP_TAI, AUDIT_NTP_TICK, AUDIT_NTP_ADJUST, AUDIT_NTP_NVALS /* count */ }; #ifdef CONFIG_AUDITSYSCALL struct audit_ntp_val { long long oldval, newval; }; struct audit_ntp_data { struct audit_ntp_val vals[AUDIT_NTP_NVALS]; }; #else struct audit_ntp_data {}; #endif enum audit_nfcfgop { AUDIT_XT_OP_REGISTER, AUDIT_XT_OP_REPLACE, AUDIT_XT_OP_UNREGISTER, AUDIT_NFT_OP_TABLE_REGISTER, AUDIT_NFT_OP_TABLE_UNREGISTER, AUDIT_NFT_OP_CHAIN_REGISTER, AUDIT_NFT_OP_CHAIN_UNREGISTER, AUDIT_NFT_OP_RULE_REGISTER, AUDIT_NFT_OP_RULE_UNREGISTER, AUDIT_NFT_OP_SET_REGISTER, AUDIT_NFT_OP_SET_UNREGISTER, AUDIT_NFT_OP_SETELEM_REGISTER, AUDIT_NFT_OP_SETELEM_UNREGISTER, AUDIT_NFT_OP_GEN_REGISTER, AUDIT_NFT_OP_OBJ_REGISTER, AUDIT_NFT_OP_OBJ_UNREGISTER, AUDIT_NFT_OP_OBJ_RESET, AUDIT_NFT_OP_FLOWTABLE_REGISTER, AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, AUDIT_NFT_OP_INVALID, }; extern int is_audit_feature_set(int which); extern int __init audit_register_class(int class, unsigned *list); extern int audit_classify_syscall(int abi, unsigned syscall); extern int audit_classify_arch(int arch); /* only for compat system calls */ extern unsigned compat_write_class[]; extern unsigned compat_read_class[]; extern unsigned compat_dir_class[]; extern unsigned compat_chattr_class[]; extern unsigned compat_signal_class[]; extern int audit_classify_compat_syscall(int abi, unsigned syscall); /* audit_names->type values */ #define AUDIT_TYPE_UNKNOWN 0 /* we don't know yet */ #define AUDIT_TYPE_NORMAL 1 /* a "normal" audit record */ #define AUDIT_TYPE_PARENT 2 /* a parent audit record */ #define AUDIT_TYPE_CHILD_DELETE 3 /* a child being deleted */ #define AUDIT_TYPE_CHILD_CREATE 4 /* a child being created */ /* maximized args number that audit_socketcall can process */ #define AUDITSC_ARGS 6 /* bit values for ->signal->audit_tty */ #define AUDIT_TTY_ENABLE BIT(0) #define AUDIT_TTY_LOG_PASSWD BIT(1) struct filename; #define AUDIT_OFF 0 #define AUDIT_ON 1 #define AUDIT_LOCKED 2 #ifdef CONFIG_AUDIT /* These are defined in audit.c */ /* Public API */ extern __printf(4, 5) void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...); extern struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type); extern __printf(2, 3) void audit_log_format(struct audit_buffer *ab, const char *fmt, ...); extern void audit_log_end(struct audit_buffer *ab); extern bool audit_string_contains_control(const char *string, size_t len); extern void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len); extern void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n); extern void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n); extern void audit_log_untrustedstring(struct audit_buffer *ab, const char *string); extern void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path); extern void audit_log_key(struct audit_buffer *ab, char *key); extern void audit_log_path_denied(int type, const char *operation); extern void audit_log_lost(const char *message); extern int audit_log_task_context(struct audit_buffer *ab); extern void audit_log_task_info(struct audit_buffer *ab); extern int audit_update_lsm_rules(void); /* Private API (for audit.c only) */ extern int audit_rule_change(int type, int seq, void *data, size_t datasz); extern int audit_list_rules_send(struct sk_buff *request_skb, int seq); extern int audit_set_loginuid(kuid_t loginuid); static inline kuid_t audit_get_loginuid(struct task_struct *tsk) { return tsk->loginuid; } static inline unsigned int audit_get_sessionid(struct task_struct *tsk) { return tsk->sessionid; } extern u32 audit_enabled; extern int audit_signal_info(int sig, struct task_struct *t); #else /* CONFIG_AUDIT */ static inline __printf(4, 5) void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...) { } static inline struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type) { return NULL; } static inline __printf(2, 3) void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) { } static inline void audit_log_end(struct audit_buffer *ab) { } static inline void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len) { } static inline void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n) { } static inline void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n) { } static inline void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) { } static inline void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path) { } static inline void audit_log_key(struct audit_buffer *ab, char *key) { } static inline void audit_log_path_denied(int type, const char *operation) { } static inline int audit_log_task_context(struct audit_buffer *ab) { return 0; } static inline void audit_log_task_info(struct audit_buffer *ab) { } static inline kuid_t audit_get_loginuid(struct task_struct *tsk) { return INVALID_UID; } static inline unsigned int audit_get_sessionid(struct task_struct *tsk) { return AUDIT_SID_UNSET; } #define audit_enabled AUDIT_OFF static inline int audit_signal_info(int sig, struct task_struct *t) { return 0; } #endif /* CONFIG_AUDIT */ #ifdef CONFIG_AUDIT_COMPAT_GENERIC #define audit_is_compat(arch) (!((arch) & __AUDIT_ARCH_64BIT)) #else #define audit_is_compat(arch) false #endif #define AUDIT_INODE_PARENT 1 /* dentry represents the parent */ #define AUDIT_INODE_HIDDEN 2 /* audit record should be hidden */ #define AUDIT_INODE_NOEVAL 4 /* audit record incomplete */ #ifdef CONFIG_AUDITSYSCALL #include <asm/syscall.h> /* for syscall_get_arch() */ /* These are defined in auditsc.c */ /* Public API */ extern int audit_alloc(struct task_struct *task); extern void __audit_free(struct task_struct *task); extern void __audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3); extern void __audit_syscall_exit(int ret_success, long ret_value); extern struct filename *__audit_reusename(const __user char *uptr); extern void __audit_getname(struct filename *name); extern void __audit_getcwd(void); extern void __audit_inode(struct filename *name, const struct dentry *dentry, unsigned int flags); extern void __audit_file(const struct file *); extern void __audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type); extern void audit_seccomp(unsigned long syscall, long signr, int code); extern void audit_seccomp_actions_logged(const char *names, const char *old_names, int res); extern void __audit_ptrace(struct task_struct *t); static inline void audit_set_context(struct task_struct *task, struct audit_context *ctx) { task->audit_context = ctx; } static inline struct audit_context *audit_context(void) { return current->audit_context; } static inline bool audit_dummy_context(void) { void *p = audit_context(); return !p || *(int *)p; } static inline void audit_free(struct task_struct *task) { if (unlikely(task->audit_context)) __audit_free(task); } static inline void audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3) { if (unlikely(audit_context())) __audit_syscall_entry(major, a0, a1, a2, a3); } static inline void audit_syscall_exit(void *pt_regs) { if (unlikely(audit_context())) { int success = is_syscall_success(pt_regs); long return_code = regs_return_value(pt_regs); __audit_syscall_exit(success, return_code); } } static inline struct filename *audit_reusename(const __user char *name) { if (unlikely(!audit_dummy_context())) return __audit_reusename(name); return NULL; } static inline void audit_getname(struct filename *name) { if (unlikely(!audit_dummy_context())) __audit_getname(name); } static inline void audit_getcwd(void) { if (unlikely(audit_context())) __audit_getcwd(); } static inline void audit_inode(struct filename *name, const struct dentry *dentry, unsigned int aflags) { if (unlikely(!audit_dummy_context())) __audit_inode(name, dentry, aflags); } static inline void audit_file(struct file *file) { if (unlikely(!audit_dummy_context())) __audit_file(file); } static inline void audit_inode_parent_hidden(struct filename *name, const struct dentry *dentry) { if (unlikely(!audit_dummy_context())) __audit_inode(name, dentry, AUDIT_INODE_PARENT | AUDIT_INODE_HIDDEN); } static inline void audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { if (unlikely(!audit_dummy_context())) __audit_inode_child(parent, dentry, type); } void audit_core_dumps(long signr); static inline void audit_ptrace(struct task_struct *t) { if (unlikely(!audit_dummy_context())) __audit_ptrace(t); } /* Private API (for audit.c only) */ extern void __audit_ipc_obj(struct kern_ipc_perm *ipcp); extern void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode); extern void __audit_bprm(struct linux_binprm *bprm); extern int __audit_socketcall(int nargs, unsigned long *args); extern int __audit_sockaddr(int len, void *addr); extern void __audit_fd_pair(int fd1, int fd2); extern void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr); extern void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout); extern void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification); extern void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat); extern int __audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old); extern void __audit_log_capset(const struct cred *new, const struct cred *old); extern void __audit_mmap_fd(int fd, int flags); extern void __audit_log_kern_module(char *name); extern void __audit_fanotify(unsigned int response); extern void __audit_tk_injoffset(struct timespec64 offset); extern void __audit_ntp_log(const struct audit_ntp_data *ad); extern void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp); static inline void audit_ipc_obj(struct kern_ipc_perm *ipcp) { if (unlikely(!audit_dummy_context())) __audit_ipc_obj(ipcp); } static inline void audit_fd_pair(int fd1, int fd2) { if (unlikely(!audit_dummy_context())) __audit_fd_pair(fd1, fd2); } static inline void audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { if (unlikely(!audit_dummy_context())) __audit_ipc_set_perm(qbytes, uid, gid, mode); } static inline void audit_bprm(struct linux_binprm *bprm) { if (unlikely(!audit_dummy_context())) __audit_bprm(bprm); } static inline int audit_socketcall(int nargs, unsigned long *args) { if (unlikely(!audit_dummy_context())) return __audit_socketcall(nargs, args); return 0; } static inline int audit_socketcall_compat(int nargs, u32 *args) { unsigned long a[AUDITSC_ARGS]; int i; if (audit_dummy_context()) return 0; for (i = 0; i < nargs; i++) a[i] = (unsigned long)args[i]; return __audit_socketcall(nargs, a); } static inline int audit_sockaddr(int len, void *addr) { if (unlikely(!audit_dummy_context())) return __audit_sockaddr(len, addr); return 0; } static inline void audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { if (unlikely(!audit_dummy_context())) __audit_mq_open(oflag, mode, attr); } static inline void audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { if (unlikely(!audit_dummy_context())) __audit_mq_sendrecv(mqdes, msg_len, msg_prio, abs_timeout); } static inline void audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { if (unlikely(!audit_dummy_context())) __audit_mq_notify(mqdes, notification); } static inline void audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { if (unlikely(!audit_dummy_context())) __audit_mq_getsetattr(mqdes, mqstat); } static inline int audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { if (unlikely(!audit_dummy_context())) return __audit_log_bprm_fcaps(bprm, new, old); return 0; } static inline void audit_log_capset(const struct cred *new, const struct cred *old) { if (unlikely(!audit_dummy_context())) __audit_log_capset(new, old); } static inline void audit_mmap_fd(int fd, int flags) { if (unlikely(!audit_dummy_context())) __audit_mmap_fd(fd, flags); } static inline void audit_log_kern_module(char *name) { if (!audit_dummy_context()) __audit_log_kern_module(name); } static inline void audit_fanotify(unsigned int response) { if (!audit_dummy_context()) __audit_fanotify(response); } static inline void audit_tk_injoffset(struct timespec64 offset) { /* ignore no-op events */ if (offset.tv_sec == 0 && offset.tv_nsec == 0) return; if (!audit_dummy_context()) __audit_tk_injoffset(offset); } static inline void audit_ntp_init(struct audit_ntp_data *ad) { memset(ad, 0, sizeof(*ad)); } static inline void audit_ntp_set_old(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { ad->vals[type].oldval = val; } static inline void audit_ntp_set_new(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { ad->vals[type].newval = val; } static inline void audit_ntp_log(const struct audit_ntp_data *ad) { if (!audit_dummy_context()) __audit_ntp_log(ad); } static inline void audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { if (audit_enabled) __audit_log_nfcfg(name, af, nentries, op, gfp); } extern int audit_n_rules; extern int audit_signals; #else /* CONFIG_AUDITSYSCALL */ static inline int audit_alloc(struct task_struct *task) { return 0; } static inline void audit_free(struct task_struct *task) { } static inline void audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3) { } static inline void audit_syscall_exit(void *pt_regs) { } static inline bool audit_dummy_context(void) { return true; } static inline void audit_set_context(struct task_struct *task, struct audit_context *ctx) { } static inline struct audit_context *audit_context(void) { return NULL; } static inline struct filename *audit_reusename(const __user char *name) { return NULL; } static inline void audit_getname(struct filename *name) { } static inline void audit_getcwd(void) { } static inline void audit_inode(struct filename *name, const struct dentry *dentry, unsigned int aflags) { } static inline void audit_file(struct file *file) { } static inline void audit_inode_parent_hidden(struct filename *name, const struct dentry *dentry) { } static inline void audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { } static inline void audit_core_dumps(long signr) { } static inline void audit_seccomp(unsigned long syscall, long signr, int code) { } static inline void audit_seccomp_actions_logged(const char *names, const char *old_names, int res) { } static inline void audit_ipc_obj(struct kern_ipc_perm *ipcp) { } static inline void audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { } static inline void audit_bprm(struct linux_binprm *bprm) { } static inline int audit_socketcall(int nargs, unsigned long *args) { return 0; } static inline int audit_socketcall_compat(int nargs, u32 *args) { return 0; } static inline void audit_fd_pair(int fd1, int fd2) { } static inline int audit_sockaddr(int len, void *addr) { return 0; } static inline void audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { } static inline void audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { } static inline void audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { } static inline void audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { } static inline int audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { return 0; } static inline void audit_log_capset(const struct cred *new, const struct cred *old) { } static inline void audit_mmap_fd(int fd, int flags) { } static inline void audit_log_kern_module(char *name) { } static inline void audit_fanotify(unsigned int response) { } static inline void audit_tk_injoffset(struct timespec64 offset) { } static inline void audit_ntp_init(struct audit_ntp_data *ad) { } static inline void audit_ntp_set_old(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { } static inline void audit_ntp_set_new(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { } static inline void audit_ntp_log(const struct audit_ntp_data *ad) { } static inline void audit_ptrace(struct task_struct *t) { } static inline void audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { } #define audit_n_rules 0 #define audit_signals 0 #endif /* CONFIG_AUDITSYSCALL */ static inline bool audit_loginuid_set(struct task_struct *tsk) { return uid_valid(audit_get_loginuid(tsk)); } #endif
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 // SPDX-License-Identifier: GPL-2.0 /* * Implementations of the security context functions. * * Author: Ondrej Mosnacek <omosnacek@gmail.com> * Copyright (C) 2020 Red Hat, Inc. */ #include <linux/jhash.h> #include "context.h" #include "mls.h" u32 context_compute_hash(const struct context *c) { u32 hash = 0; /* * If a context is invalid, it will always be represented by a * context struct with only the len & str set (and vice versa) * under a given policy. Since context structs from different * policies should never meet, it is safe to hash valid and * invalid contexts differently. The context_cmp() function * already operates under the same assumption. */ if (c->len) return full_name_hash(NULL, c->str, c->len); hash = jhash_3words(c->user, c->role, c->type, hash); hash = mls_range_hash(&c->range, hash); return hash; }
1 1 2 3 4 5 6 7 8 9 10 11 /* SPDX-License-Identifier: GPL-2.0 */ #include <asm/processor.h> static inline int phys_addr_valid(resource_size_t addr) { #ifdef CONFIG_PHYS_ADDR_T_64BIT return !(addr >> boot_cpu_data.x86_phys_bits); #else return 1; #endif }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 /* SPDX-License-Identifier: GPL-2.0-only */ /* * mac80211 <-> driver interface * * Copyright 2002-2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2015 - 2017 Intel Deutschland GmbH * Copyright (C) 2018 - 2020 Intel Corporation */ #ifndef MAC80211_H #define MAC80211_H #include <linux/bug.h> #include <linux/kernel.h> #include <linux/if_ether.h> #include <linux/skbuff.h> #include <linux/ieee80211.h> #include <net/cfg80211.h> #include <net/codel.h> #include <net/ieee80211_radiotap.h> #include <asm/unaligned.h> /** * DOC: Introduction * * mac80211 is the Linux stack for 802.11 hardware that implements * only partial functionality in hard- or firmware. This document * defines the interface between mac80211 and low-level hardware * drivers. */ /** * DOC: Calling mac80211 from interrupts * * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be * called in hardware interrupt context. The low-level driver must not call any * other functions in hardware interrupt context. If there is a need for such * call, the low-level driver should first ACK the interrupt and perform the * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even * tasklet function. * * NOTE: If the driver opts to use the _irqsafe() functions, it may not also * use the non-IRQ-safe functions! */ /** * DOC: Warning * * If you're reading this document and not the header file itself, it will * be incomplete because not all documentation has been converted yet. */ /** * DOC: Frame format * * As a general rule, when frames are passed between mac80211 and the driver, * they start with the IEEE 802.11 header and include the same octets that are * sent over the air except for the FCS which should be calculated by the * hardware. * * There are, however, various exceptions to this rule for advanced features: * * The first exception is for hardware encryption and decryption offload * where the IV/ICV may or may not be generated in hardware. * * Secondly, when the hardware handles fragmentation, the frame handed to * the driver from mac80211 is the MSDU, not the MPDU. */ /** * DOC: mac80211 workqueue * * mac80211 provides its own workqueue for drivers and internal mac80211 use. * The workqueue is a single threaded workqueue and can only be accessed by * helpers for sanity checking. Drivers must ensure all work added onto the * mac80211 workqueue should be cancelled on the driver stop() callback. * * mac80211 will flushed the workqueue upon interface removal and during * suspend. * * All work performed on the mac80211 workqueue must not acquire the RTNL lock. * */ /** * DOC: mac80211 software tx queueing * * mac80211 provides an optional intermediate queueing implementation designed * to allow the driver to keep hardware queues short and provide some fairness * between different stations/interfaces. * In this model, the driver pulls data frames from the mac80211 queue instead * of letting mac80211 push them via drv_tx(). * Other frames (e.g. control or management) are still pushed using drv_tx(). * * Drivers indicate that they use this model by implementing the .wake_tx_queue * driver operation. * * Intermediate queues (struct ieee80211_txq) are kept per-sta per-tid, with * another per-sta for non-data/non-mgmt and bufferable management frames, and * a single per-vif queue for multicast data frames. * * The driver is expected to initialize its private per-queue data for stations * and interfaces in the .add_interface and .sta_add ops. * * The driver can't access the queue directly. To dequeue a frame from a * txq, it calls ieee80211_tx_dequeue(). Whenever mac80211 adds a new frame to a * queue, it calls the .wake_tx_queue driver op. * * Drivers can optionally delegate responsibility for scheduling queues to * mac80211, to take advantage of airtime fairness accounting. In this case, to * obtain the next queue to pull frames from, the driver calls * ieee80211_next_txq(). The driver is then expected to return the txq using * ieee80211_return_txq(). * * For AP powersave TIM handling, the driver only needs to indicate if it has * buffered packets in the driver specific data structures by calling * ieee80211_sta_set_buffered(). For frames buffered in the ieee80211_txq * struct, mac80211 sets the appropriate TIM PVB bits and calls * .release_buffered_frames(). * In that callback the driver is therefore expected to release its own * buffered frames and afterwards also frames from the ieee80211_txq (obtained * via the usual ieee80211_tx_dequeue). */ struct device; /** * enum ieee80211_max_queues - maximum number of queues * * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues. * @IEEE80211_MAX_QUEUE_MAP: bitmap with maximum queues set */ enum ieee80211_max_queues { IEEE80211_MAX_QUEUES = 16, IEEE80211_MAX_QUEUE_MAP = BIT(IEEE80211_MAX_QUEUES) - 1, }; #define IEEE80211_INVAL_HW_QUEUE 0xff /** * enum ieee80211_ac_numbers - AC numbers as used in mac80211 * @IEEE80211_AC_VO: voice * @IEEE80211_AC_VI: video * @IEEE80211_AC_BE: best effort * @IEEE80211_AC_BK: background */ enum ieee80211_ac_numbers { IEEE80211_AC_VO = 0, IEEE80211_AC_VI = 1, IEEE80211_AC_BE = 2, IEEE80211_AC_BK = 3, }; /** * struct ieee80211_tx_queue_params - transmit queue configuration * * The information provided in this structure is required for QoS * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29. * * @aifs: arbitration interframe space [0..255] * @cw_min: minimum contention window [a value of the form * 2^n-1 in the range 1..32767] * @cw_max: maximum contention window [like @cw_min] * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled * @acm: is mandatory admission control required for the access category * @uapsd: is U-APSD mode enabled for the queue * @mu_edca: is the MU EDCA configured * @mu_edca_param_rec: MU EDCA Parameter Record for HE */ struct ieee80211_tx_queue_params { u16 txop; u16 cw_min; u16 cw_max; u8 aifs; bool acm; bool uapsd; bool mu_edca; struct ieee80211_he_mu_edca_param_ac_rec mu_edca_param_rec; }; struct ieee80211_low_level_stats { unsigned int dot11ACKFailureCount; unsigned int dot11RTSFailureCount; unsigned int dot11FCSErrorCount; unsigned int dot11RTSSuccessCount; }; /** * enum ieee80211_chanctx_change - change flag for channel context * @IEEE80211_CHANCTX_CHANGE_WIDTH: The channel width changed * @IEEE80211_CHANCTX_CHANGE_RX_CHAINS: The number of RX chains changed * @IEEE80211_CHANCTX_CHANGE_RADAR: radar detection flag changed * @IEEE80211_CHANCTX_CHANGE_CHANNEL: switched to another operating channel, * this is used only with channel switching with CSA * @IEEE80211_CHANCTX_CHANGE_MIN_WIDTH: The min required channel width changed */ enum ieee80211_chanctx_change { IEEE80211_CHANCTX_CHANGE_WIDTH = BIT(0), IEEE80211_CHANCTX_CHANGE_RX_CHAINS = BIT(1), IEEE80211_CHANCTX_CHANGE_RADAR = BIT(2), IEEE80211_CHANCTX_CHANGE_CHANNEL = BIT(3), IEEE80211_CHANCTX_CHANGE_MIN_WIDTH = BIT(4), }; /** * struct ieee80211_chanctx_conf - channel context that vifs may be tuned to * * This is the driver-visible part. The ieee80211_chanctx * that contains it is visible in mac80211 only. * * @def: the channel definition * @min_def: the minimum channel definition currently required. * @rx_chains_static: The number of RX chains that must always be * active on the channel to receive MIMO transmissions * @rx_chains_dynamic: The number of RX chains that must be enabled * after RTS/CTS handshake to receive SMPS MIMO transmissions; * this will always be >= @rx_chains_static. * @radar_enabled: whether radar detection is enabled on this channel. * @drv_priv: data area for driver use, will always be aligned to * sizeof(void *), size is determined in hw information. */ struct ieee80211_chanctx_conf { struct cfg80211_chan_def def; struct cfg80211_chan_def min_def; u8 rx_chains_static, rx_chains_dynamic; bool radar_enabled; u8 drv_priv[] __aligned(sizeof(void *)); }; /** * enum ieee80211_chanctx_switch_mode - channel context switch mode * @CHANCTX_SWMODE_REASSIGN_VIF: Both old and new contexts already * exist (and will continue to exist), but the virtual interface * needs to be switched from one to the other. * @CHANCTX_SWMODE_SWAP_CONTEXTS: The old context exists but will stop * to exist with this call, the new context doesn't exist but * will be active after this call, the virtual interface switches * from the old to the new (note that the driver may of course * implement this as an on-the-fly chandef switch of the existing * hardware context, but the mac80211 pointer for the old context * will cease to exist and only the new one will later be used * for changes/removal.) */ enum ieee80211_chanctx_switch_mode { CHANCTX_SWMODE_REASSIGN_VIF, CHANCTX_SWMODE_SWAP_CONTEXTS, }; /** * struct ieee80211_vif_chanctx_switch - vif chanctx switch information * * This is structure is used to pass information about a vif that * needs to switch from one chanctx to another. The * &ieee80211_chanctx_switch_mode defines how the switch should be * done. * * @vif: the vif that should be switched from old_ctx to new_ctx * @old_ctx: the old context to which the vif was assigned * @new_ctx: the new context to which the vif must be assigned */ struct ieee80211_vif_chanctx_switch { struct ieee80211_vif *vif; struct ieee80211_chanctx_conf *old_ctx; struct ieee80211_chanctx_conf *new_ctx; }; /** * enum ieee80211_bss_change - BSS change notification flags * * These flags are used with the bss_info_changed() callback * to indicate which BSS parameter changed. * * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated), * also implies a change in the AID. * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed * @BSS_CHANGED_ERP_PREAMBLE: preamble changed * @BSS_CHANGED_ERP_SLOT: slot timing changed * @BSS_CHANGED_HT: 802.11n parameters changed * @BSS_CHANGED_BASIC_RATES: Basic rateset changed * @BSS_CHANGED_BEACON_INT: Beacon interval changed * @BSS_CHANGED_BSSID: BSSID changed, for whatever * reason (IBSS and managed mode) * @BSS_CHANGED_BEACON: Beacon data changed, retrieve * new beacon (beaconing modes) * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be * enabled/disabled (beaconing modes) * @BSS_CHANGED_CQM: Connection quality monitor config changed * @BSS_CHANGED_IBSS: IBSS join status changed * @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed. * @BSS_CHANGED_QOS: QoS for this association was enabled/disabled. Note * that it is only ever disabled for station mode. * @BSS_CHANGED_IDLE: Idle changed for this BSS/interface. * @BSS_CHANGED_SSID: SSID changed for this BSS (AP and IBSS mode) * @BSS_CHANGED_AP_PROBE_RESP: Probe Response changed for this BSS (AP mode) * @BSS_CHANGED_PS: PS changed for this BSS (STA mode) * @BSS_CHANGED_TXPOWER: TX power setting changed for this interface * @BSS_CHANGED_P2P_PS: P2P powersave settings (CTWindow, opportunistic PS) * changed * @BSS_CHANGED_BEACON_INFO: Data from the AP's beacon became available: * currently dtim_period only is under consideration. * @BSS_CHANGED_BANDWIDTH: The bandwidth used by this interface changed, * note that this is only called when it changes after the channel * context had been assigned. * @BSS_CHANGED_OCB: OCB join status changed * @BSS_CHANGED_MU_GROUPS: VHT MU-MIMO group id or user position changed * @BSS_CHANGED_KEEP_ALIVE: keep alive options (idle period or protected * keep alive) changed. * @BSS_CHANGED_MCAST_RATE: Multicast Rate setting changed for this interface * @BSS_CHANGED_FTM_RESPONDER: fine timing measurement request responder * functionality changed for this BSS (AP mode). * @BSS_CHANGED_TWT: TWT status changed * @BSS_CHANGED_HE_OBSS_PD: OBSS Packet Detection status changed. * @BSS_CHANGED_HE_BSS_COLOR: BSS Color has changed * @BSS_CHANGED_FILS_DISCOVERY: FILS discovery status changed. * @BSS_CHANGED_UNSOL_BCAST_PROBE_RESP: Unsolicited broadcast probe response * status changed. * */ enum ieee80211_bss_change { BSS_CHANGED_ASSOC = 1<<0, BSS_CHANGED_ERP_CTS_PROT = 1<<1, BSS_CHANGED_ERP_PREAMBLE = 1<<2, BSS_CHANGED_ERP_SLOT = 1<<3, BSS_CHANGED_HT = 1<<4, BSS_CHANGED_BASIC_RATES = 1<<5, BSS_CHANGED_BEACON_INT = 1<<6, BSS_CHANGED_BSSID = 1<<7, BSS_CHANGED_BEACON = 1<<8, BSS_CHANGED_BEACON_ENABLED = 1<<9, BSS_CHANGED_CQM = 1<<10, BSS_CHANGED_IBSS = 1<<11, BSS_CHANGED_ARP_FILTER = 1<<12, BSS_CHANGED_QOS = 1<<13, BSS_CHANGED_IDLE = 1<<14, BSS_CHANGED_SSID = 1<<15, BSS_CHANGED_AP_PROBE_RESP = 1<<16, BSS_CHANGED_PS = 1<<17, BSS_CHANGED_TXPOWER = 1<<18, BSS_CHANGED_P2P_PS = 1<<19, BSS_CHANGED_BEACON_INFO = 1<<20, BSS_CHANGED_BANDWIDTH = 1<<21, BSS_CHANGED_OCB = 1<<22, BSS_CHANGED_MU_GROUPS = 1<<23, BSS_CHANGED_KEEP_ALIVE = 1<<24, BSS_CHANGED_MCAST_RATE = 1<<25, BSS_CHANGED_FTM_RESPONDER = 1<<26, BSS_CHANGED_TWT = 1<<27, BSS_CHANGED_HE_OBSS_PD = 1<<28, BSS_CHANGED_HE_BSS_COLOR = 1<<29, BSS_CHANGED_FILS_DISCOVERY = 1<<30, BSS_CHANGED_UNSOL_BCAST_PROBE_RESP = 1<<31, /* when adding here, make sure to change ieee80211_reconfig */ }; /* * The maximum number of IPv4 addresses listed for ARP filtering. If the number * of addresses for an interface increase beyond this value, hardware ARP * filtering will be disabled. */ #define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4 /** * enum ieee80211_event_type - event to be notified to the low level driver * @RSSI_EVENT: AP's rssi crossed the a threshold set by the driver. * @MLME_EVENT: event related to MLME * @BAR_RX_EVENT: a BAR was received * @BA_FRAME_TIMEOUT: Frames were released from the reordering buffer because * they timed out. This won't be called for each frame released, but only * once each time the timeout triggers. */ enum ieee80211_event_type { RSSI_EVENT, MLME_EVENT, BAR_RX_EVENT, BA_FRAME_TIMEOUT, }; /** * enum ieee80211_rssi_event_data - relevant when event type is %RSSI_EVENT * @RSSI_EVENT_HIGH: AP's rssi went below the threshold set by the driver. * @RSSI_EVENT_LOW: AP's rssi went above the threshold set by the driver. */ enum ieee80211_rssi_event_data { RSSI_EVENT_HIGH, RSSI_EVENT_LOW, }; /** * struct ieee80211_rssi_event - data attached to an %RSSI_EVENT * @data: See &enum ieee80211_rssi_event_data */ struct ieee80211_rssi_event { enum ieee80211_rssi_event_data data; }; /** * enum ieee80211_mlme_event_data - relevant when event type is %MLME_EVENT * @AUTH_EVENT: the MLME operation is authentication * @ASSOC_EVENT: the MLME operation is association * @DEAUTH_RX_EVENT: deauth received.. * @DEAUTH_TX_EVENT: deauth sent. */ enum ieee80211_mlme_event_data { AUTH_EVENT, ASSOC_EVENT, DEAUTH_RX_EVENT, DEAUTH_TX_EVENT, }; /** * enum ieee80211_mlme_event_status - relevant when event type is %MLME_EVENT * @MLME_SUCCESS: the MLME operation completed successfully. * @MLME_DENIED: the MLME operation was denied by the peer. * @MLME_TIMEOUT: the MLME operation timed out. */ enum ieee80211_mlme_event_status { MLME_SUCCESS, MLME_DENIED, MLME_TIMEOUT, }; /** * struct ieee80211_mlme_event - data attached to an %MLME_EVENT * @data: See &enum ieee80211_mlme_event_data * @status: See &enum ieee80211_mlme_event_status * @reason: the reason code if applicable */ struct ieee80211_mlme_event { enum ieee80211_mlme_event_data data; enum ieee80211_mlme_event_status status; u16 reason; }; /** * struct ieee80211_ba_event - data attached for BlockAck related events * @sta: pointer to the &ieee80211_sta to which this event relates * @tid: the tid * @ssn: the starting sequence number (for %BAR_RX_EVENT) */ struct ieee80211_ba_event { struct ieee80211_sta *sta; u16 tid; u16 ssn; }; /** * struct ieee80211_event - event to be sent to the driver * @type: The event itself. See &enum ieee80211_event_type. * @rssi: relevant if &type is %RSSI_EVENT * @mlme: relevant if &type is %AUTH_EVENT * @ba: relevant if &type is %BAR_RX_EVENT or %BA_FRAME_TIMEOUT * @u:union holding the fields above */ struct ieee80211_event { enum ieee80211_event_type type; union { struct ieee80211_rssi_event rssi; struct ieee80211_mlme_event mlme; struct ieee80211_ba_event ba; } u; }; /** * struct ieee80211_mu_group_data - STA's VHT MU-MIMO group data * * This structure describes the group id data of VHT MU-MIMO * * @membership: 64 bits array - a bit is set if station is member of the group * @position: 2 bits per group id indicating the position in the group */ struct ieee80211_mu_group_data { u8 membership[WLAN_MEMBERSHIP_LEN]; u8 position[WLAN_USER_POSITION_LEN]; }; /** * struct ieee80211_ftm_responder_params - FTM responder parameters * * @lci: LCI subelement content * @civicloc: CIVIC location subelement content * @lci_len: LCI data length * @civicloc_len: Civic data length */ struct ieee80211_ftm_responder_params { const u8 *lci; const u8 *civicloc; size_t lci_len; size_t civicloc_len; }; /** * struct ieee80211_fils_discovery - FILS discovery parameters from * IEEE Std 802.11ai-2016, Annex C.3 MIB detail. * * @min_interval: Minimum packet interval in TUs (0 - 10000) * @max_interval: Maximum packet interval in TUs (0 - 10000) */ struct ieee80211_fils_discovery { u32 min_interval; u32 max_interval; }; /** * struct ieee80211_bss_conf - holds the BSS's changing parameters * * This structure keeps information about a BSS (and an association * to that BSS) that can change during the lifetime of the BSS. * * @htc_trig_based_pkt_ext: default PE in 4us units, if BSS supports HE * @multi_sta_back_32bit: supports BA bitmap of 32-bits in Multi-STA BACK * @uora_exists: is the UORA element advertised by AP * @ack_enabled: indicates support to receive a multi-TID that solicits either * ACK, BACK or both * @uora_ocw_range: UORA element's OCW Range field * @frame_time_rts_th: HE duration RTS threshold, in units of 32us * @he_support: does this BSS support HE * @twt_requester: does this BSS support TWT requester (relevant for managed * mode only, set if the AP advertises TWT responder role) * @twt_responder: does this BSS support TWT requester (relevant for managed * mode only, set if the AP advertises TWT responder role) * @twt_protected: does this BSS support protected TWT frames * @assoc: association status * @ibss_joined: indicates whether this station is part of an IBSS * or not * @ibss_creator: indicates if a new IBSS network is being created * @aid: association ID number, valid only when @assoc is true * @use_cts_prot: use CTS protection * @use_short_preamble: use 802.11b short preamble * @use_short_slot: use short slot time (only relevant for ERP) * @dtim_period: num of beacons before the next DTIM, for beaconing, * valid in station mode only if after the driver was notified * with the %BSS_CHANGED_BEACON_INFO flag, will be non-zero then. * @sync_tsf: last beacon's/probe response's TSF timestamp (could be old * as it may have been received during scanning long ago). If the * HW flag %IEEE80211_HW_TIMING_BEACON_ONLY is set, then this can * only come from a beacon, but might not become valid until after * association when a beacon is received (which is notified with the * %BSS_CHANGED_DTIM flag.). See also sync_dtim_count important notice. * @sync_device_ts: the device timestamp corresponding to the sync_tsf, * the driver/device can use this to calculate synchronisation * (see @sync_tsf). See also sync_dtim_count important notice. * @sync_dtim_count: Only valid when %IEEE80211_HW_TIMING_BEACON_ONLY * is requested, see @sync_tsf/@sync_device_ts. * IMPORTANT: These three sync_* parameters would possibly be out of sync * by the time the driver will use them. The synchronized view is currently * guaranteed only in certain callbacks. * @beacon_int: beacon interval * @assoc_capability: capabilities taken from assoc resp * @basic_rates: bitmap of basic rates, each bit stands for an * index into the rate table configured by the driver in * the current band. * @beacon_rate: associated AP's beacon TX rate * @mcast_rate: per-band multicast rate index + 1 (0: disabled) * @bssid: The BSSID for this BSS * @enable_beacon: whether beaconing should be enabled or not * @chandef: Channel definition for this BSS -- the hardware might be * configured a higher bandwidth than this BSS uses, for example. * @mu_group: VHT MU-MIMO group membership data * @ht_operation_mode: HT operation mode like in &struct ieee80211_ht_operation. * This field is only valid when the channel is a wide HT/VHT channel. * Note that with TDLS this can be the case (channel is HT, protection must * be used from this field) even when the BSS association isn't using HT. * @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value * implies disabled. As with the cfg80211 callback, a change here should * cause an event to be sent indicating where the current value is in * relation to the newly configured threshold. * @cqm_rssi_low: Connection quality monitor RSSI lower threshold, a zero value * implies disabled. This is an alternative mechanism to the single * threshold event and can't be enabled simultaneously with it. * @cqm_rssi_high: Connection quality monitor RSSI upper threshold. * @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis * @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The * may filter ARP queries targeted for other addresses than listed here. * The driver must allow ARP queries targeted for all address listed here * to pass through. An empty list implies no ARP queries need to pass. * @arp_addr_cnt: Number of addresses currently on the list. Note that this * may be larger than %IEEE80211_BSS_ARP_ADDR_LIST_LEN (the arp_addr_list * array size), it's up to the driver what to do in that case. * @qos: This is a QoS-enabled BSS. * @idle: This interface is idle. There's also a global idle flag in the * hardware config which may be more appropriate depending on what * your driver/device needs to do. * @ps: power-save mode (STA only). This flag is NOT affected by * offchannel/dynamic_ps operations. * @ssid: The SSID of the current vif. Valid in AP and IBSS mode. * @ssid_len: Length of SSID given in @ssid. * @hidden_ssid: The SSID of the current vif is hidden. Only valid in AP-mode. * @txpower: TX power in dBm. INT_MIN means not configured. * @txpower_type: TX power adjustment used to control per packet Transmit * Power Control (TPC) in lower driver for the current vif. In particular * TPC is enabled if value passed in %txpower_type is * NL80211_TX_POWER_LIMITED (allow using less than specified from * userspace), whereas TPC is disabled if %txpower_type is set to * NL80211_TX_POWER_FIXED (use value configured from userspace) * @p2p_noa_attr: P2P NoA attribute for P2P powersave * @allow_p2p_go_ps: indication for AP or P2P GO interface, whether it's allowed * to use P2P PS mechanism or not. AP/P2P GO is not allowed to use P2P PS * if it has associated clients without P2P PS support. * @max_idle_period: the time period during which the station can refrain from * transmitting frames to its associated AP without being disassociated. * In units of 1000 TUs. Zero value indicates that the AP did not include * a (valid) BSS Max Idle Period Element. * @protected_keep_alive: if set, indicates that the station should send an RSN * protected frame to the AP to reset the idle timer at the AP for the * station. * @ftm_responder: whether to enable or disable fine timing measurement FTM * responder functionality. * @ftmr_params: configurable lci/civic parameter when enabling FTM responder. * @nontransmitted: this BSS is a nontransmitted BSS profile * @transmitter_bssid: the address of transmitter AP * @bssid_index: index inside the multiple BSSID set * @bssid_indicator: 2^bssid_indicator is the maximum number of APs in set * @ema_ap: AP supports enhancements of discovery and advertisement of * nontransmitted BSSIDs * @profile_periodicity: the least number of beacon frames need to be received * in order to discover all the nontransmitted BSSIDs in the set. * @he_oper: HE operation information of the AP we are connected to * @he_obss_pd: OBSS Packet Detection parameters. * @he_bss_color: BSS coloring settings, if BSS supports HE * @fils_discovery: FILS discovery configuration * @unsol_bcast_probe_resp_interval: Unsolicited broadcast probe response * interval. * @s1g: BSS is S1G BSS (affects Association Request format). * @beacon_tx_rate: The configured beacon transmit rate that needs to be passed * to driver when rate control is offloaded to firmware. */ struct ieee80211_bss_conf { const u8 *bssid; u8 htc_trig_based_pkt_ext; bool multi_sta_back_32bit; bool uora_exists; bool ack_enabled; u8 uora_ocw_range; u16 frame_time_rts_th; bool he_support; bool twt_requester; bool twt_responder; bool twt_protected; /* association related data */ bool assoc, ibss_joined; bool ibss_creator; u16 aid; /* erp related data */ bool use_cts_prot; bool use_short_preamble; bool use_short_slot; bool enable_beacon; u8 dtim_period; u16 beacon_int; u16 assoc_capability; u64 sync_tsf; u32 sync_device_ts; u8 sync_dtim_count; u32 basic_rates; struct ieee80211_rate *beacon_rate; int mcast_rate[NUM_NL80211_BANDS]; u16 ht_operation_mode; s32 cqm_rssi_thold; u32 cqm_rssi_hyst; s32 cqm_rssi_low; s32 cqm_rssi_high; struct cfg80211_chan_def chandef; struct ieee80211_mu_group_data mu_group; __be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN]; int arp_addr_cnt; bool qos; bool idle; bool ps; u8 ssid[IEEE80211_MAX_SSID_LEN]; size_t ssid_len; bool hidden_ssid; int txpower; enum nl80211_tx_power_setting txpower_type; struct ieee80211_p2p_noa_attr p2p_noa_attr; bool allow_p2p_go_ps; u16 max_idle_period; bool protected_keep_alive; bool ftm_responder; struct ieee80211_ftm_responder_params *ftmr_params; /* Multiple BSSID data */ bool nontransmitted; u8 transmitter_bssid[ETH_ALEN]; u8 bssid_index; u8 bssid_indicator; bool ema_ap; u8 profile_periodicity; struct { u32 params; u16 nss_set; } he_oper; struct ieee80211_he_obss_pd he_obss_pd; struct cfg80211_he_bss_color he_bss_color; struct ieee80211_fils_discovery fils_discovery; u32 unsol_bcast_probe_resp_interval; bool s1g; struct cfg80211_bitrate_mask beacon_tx_rate; }; /** * enum mac80211_tx_info_flags - flags to describe transmission information/status * * These flags are used with the @flags member of &ieee80211_tx_info. * * @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame. * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence * number to this frame, taking care of not overwriting the fragment * number and increasing the sequence number only when the * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly * assign sequence numbers to QoS-data frames but cannot do so correctly * for non-QoS-data and management frames because beacons need them from * that counter as well and mac80211 cannot guarantee proper sequencing. * If this flag is set, the driver should instruct the hardware to * assign a sequence number to the frame or assign one itself. Cf. IEEE * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for * beacons and always be clear for frames without a sequence number field. * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination * station * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211. * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted * because the destination STA was in powersave mode. Note that to * avoid race conditions, the filter must be set by the hardware or * firmware upon receiving a frame that indicates that the station * went to sleep (must be done on device to filter frames already on * the queue) and may only be unset after mac80211 gives the OK for * that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above), * since only then is it guaranteed that no more frames are in the * hardware queue. * @IEEE80211_TX_STAT_ACK: Frame was acknowledged * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status * is for the whole aggregation. * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned, * so consider using block ack request (BAR). * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be * set by rate control algorithms to indicate probe rate, will * be cleared for fragmented frames (except on the last fragment) * @IEEE80211_TX_INTFL_OFFCHAN_TX_OK: Internal to mac80211. Used to indicate * that a frame can be transmitted while the queues are stopped for * off-channel operation. * @IEEE80211_TX_CTL_HW_80211_ENCAP: This frame uses hardware encapsulation * (header conversion) * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211, * used to indicate that a frame was already retried due to PS * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211, * used to indicate frame should not be encrypted * @IEEE80211_TX_CTL_NO_PS_BUFFER: This frame is a response to a poll * frame (PS-Poll or uAPSD) or a non-bufferable MMPDU and must * be sent although the station is in powersave mode. * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the * transmit function after the current frame, this can be used * by drivers to kick the DMA queue only if unset or when the * queue gets full. * @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted * after TX status because the destination was asleep, it must not * be modified again (no seqno assignment, crypto, etc.) * @IEEE80211_TX_INTFL_MLME_CONN_TX: This frame was transmitted by the MLME * code for connection establishment, this indicates that its status * should kick the MLME state machine. * @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211 * MLME command (internal to mac80211 to figure out whether to send TX * status to user space) * @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame * @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this * frame and selects the maximum number of streams that it can use. * @IEEE80211_TX_CTL_TX_OFFCHAN: Marks this packet to be transmitted on * the off-channel channel when a remain-on-channel offload is done * in hardware -- normal packets still flow and are expected to be * handled properly by the device. * @IEEE80211_TX_INTFL_TKIP_MIC_FAILURE: Marks this packet to be used for TKIP * testing. It will be sent out with incorrect Michael MIC key to allow * TKIP countermeasures to be tested. * @IEEE80211_TX_CTL_NO_CCK_RATE: This frame will be sent at non CCK rate. * This flag is actually used for management frame especially for P2P * frames not being sent at CCK rate in 2GHz band. * @IEEE80211_TX_STATUS_EOSP: This packet marks the end of service period, * when its status is reported the service period ends. For frames in * an SP that mac80211 transmits, it is already set; for driver frames * the driver may set this flag. It is also used to do the same for * PS-Poll responses. * @IEEE80211_TX_CTL_USE_MINRATE: This frame will be sent at lowest rate. * This flag is used to send nullfunc frame at minimum rate when * the nullfunc is used for connection monitoring purpose. * @IEEE80211_TX_CTL_DONTFRAG: Don't fragment this packet even if it * would be fragmented by size (this is optional, only used for * monitor injection). * @IEEE80211_TX_STAT_NOACK_TRANSMITTED: A frame that was marked with * IEEE80211_TX_CTL_NO_ACK has been successfully transmitted without * any errors (like issues specific to the driver/HW). * This flag must not be set for frames that don't request no-ack * behaviour with IEEE80211_TX_CTL_NO_ACK. * * Note: If you have to add new flags to the enumeration, then don't * forget to update %IEEE80211_TX_TEMPORARY_FLAGS when necessary. */ enum mac80211_tx_info_flags { IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0), IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1), IEEE80211_TX_CTL_NO_ACK = BIT(2), IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3), IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4), IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5), IEEE80211_TX_CTL_AMPDU = BIT(6), IEEE80211_TX_CTL_INJECTED = BIT(7), IEEE80211_TX_STAT_TX_FILTERED = BIT(8), IEEE80211_TX_STAT_ACK = BIT(9), IEEE80211_TX_STAT_AMPDU = BIT(10), IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11), IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12), IEEE80211_TX_INTFL_OFFCHAN_TX_OK = BIT(13), IEEE80211_TX_CTL_HW_80211_ENCAP = BIT(14), IEEE80211_TX_INTFL_RETRIED = BIT(15), IEEE80211_TX_INTFL_DONT_ENCRYPT = BIT(16), IEEE80211_TX_CTL_NO_PS_BUFFER = BIT(17), IEEE80211_TX_CTL_MORE_FRAMES = BIT(18), IEEE80211_TX_INTFL_RETRANSMISSION = BIT(19), IEEE80211_TX_INTFL_MLME_CONN_TX = BIT(20), IEEE80211_TX_INTFL_NL80211_FRAME_TX = BIT(21), IEEE80211_TX_CTL_LDPC = BIT(22), IEEE80211_TX_CTL_STBC = BIT(23) | BIT(24), IEEE80211_TX_CTL_TX_OFFCHAN = BIT(25), IEEE80211_TX_INTFL_TKIP_MIC_FAILURE = BIT(26), IEEE80211_TX_CTL_NO_CCK_RATE = BIT(27), IEEE80211_TX_STATUS_EOSP = BIT(28), IEEE80211_TX_CTL_USE_MINRATE = BIT(29), IEEE80211_TX_CTL_DONTFRAG = BIT(30), IEEE80211_TX_STAT_NOACK_TRANSMITTED = BIT(31), }; #define IEEE80211_TX_CTL_STBC_SHIFT 23 #define IEEE80211_TX_RC_S1G_MCS IEEE80211_TX_RC_VHT_MCS /** * enum mac80211_tx_control_flags - flags to describe transmit control * * @IEEE80211_TX_CTRL_PORT_CTRL_PROTO: this frame is a port control * protocol frame (e.g. EAP) * @IEEE80211_TX_CTRL_PS_RESPONSE: This frame is a response to a poll * frame (PS-Poll or uAPSD). * @IEEE80211_TX_CTRL_RATE_INJECT: This frame is injected with rate information * @IEEE80211_TX_CTRL_AMSDU: This frame is an A-MSDU frame * @IEEE80211_TX_CTRL_FAST_XMIT: This frame is going through the fast_xmit path * @IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP: This frame skips mesh path lookup * @IEEE80211_TX_INTCFL_NEED_TXPROCESSING: completely internal to mac80211, * used to indicate that a pending frame requires TX processing before * it can be sent out. * @IEEE80211_TX_CTRL_NO_SEQNO: Do not overwrite the sequence number that * has already been assigned to this frame. * * These flags are used in tx_info->control.flags. */ enum mac80211_tx_control_flags { IEEE80211_TX_CTRL_PORT_CTRL_PROTO = BIT(0), IEEE80211_TX_CTRL_PS_RESPONSE = BIT(1), IEEE80211_TX_CTRL_RATE_INJECT = BIT(2), IEEE80211_TX_CTRL_AMSDU = BIT(3), IEEE80211_TX_CTRL_FAST_XMIT = BIT(4), IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP = BIT(5), IEEE80211_TX_INTCFL_NEED_TXPROCESSING = BIT(6), IEEE80211_TX_CTRL_NO_SEQNO = BIT(7), }; /* * This definition is used as a mask to clear all temporary flags, which are * set by the tx handlers for each transmission attempt by the mac80211 stack. */ #define IEEE80211_TX_TEMPORARY_FLAGS (IEEE80211_TX_CTL_NO_ACK | \ IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT | \ IEEE80211_TX_CTL_SEND_AFTER_DTIM | IEEE80211_TX_CTL_AMPDU | \ IEEE80211_TX_STAT_TX_FILTERED | IEEE80211_TX_STAT_ACK | \ IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_STAT_AMPDU_NO_BACK | \ IEEE80211_TX_CTL_RATE_CTRL_PROBE | IEEE80211_TX_CTL_NO_PS_BUFFER | \ IEEE80211_TX_CTL_MORE_FRAMES | IEEE80211_TX_CTL_LDPC | \ IEEE80211_TX_CTL_STBC | IEEE80211_TX_STATUS_EOSP) /** * enum mac80211_rate_control_flags - per-rate flags set by the * Rate Control algorithm. * * These flags are set by the Rate control algorithm for each rate during tx, * in the @flags member of struct ieee80211_tx_rate. * * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate. * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required. * This is set if the current BSS requires ERP protection. * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble. * @IEEE80211_TX_RC_MCS: HT rate. * @IEEE80211_TX_RC_VHT_MCS: VHT MCS rate, in this case the idx field is split * into a higher 4 bits (Nss) and lower 4 bits (MCS number) * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in * Greenfield mode. * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz. * @IEEE80211_TX_RC_80_MHZ_WIDTH: Indicates 80 MHz transmission * @IEEE80211_TX_RC_160_MHZ_WIDTH: Indicates 160 MHz transmission * (80+80 isn't supported yet) * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the * adjacent 20 MHz channels, if the current channel type is * NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS. * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate. */ enum mac80211_rate_control_flags { IEEE80211_TX_RC_USE_RTS_CTS = BIT(0), IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1), IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2), /* rate index is an HT/VHT MCS instead of an index */ IEEE80211_TX_RC_MCS = BIT(3), IEEE80211_TX_RC_GREEN_FIELD = BIT(4), IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5), IEEE80211_TX_RC_DUP_DATA = BIT(6), IEEE80211_TX_RC_SHORT_GI = BIT(7), IEEE80211_TX_RC_VHT_MCS = BIT(8), IEEE80211_TX_RC_80_MHZ_WIDTH = BIT(9), IEEE80211_TX_RC_160_MHZ_WIDTH = BIT(10), }; /* there are 40 bytes if you don't need the rateset to be kept */ #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40 /* if you do need the rateset, then you have less space */ #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24 /* maximum number of rate stages */ #define IEEE80211_TX_MAX_RATES 4 /* maximum number of rate table entries */ #define IEEE80211_TX_RATE_TABLE_SIZE 4 /** * struct ieee80211_tx_rate - rate selection/status * * @idx: rate index to attempt to send with * @flags: rate control flags (&enum mac80211_rate_control_flags) * @count: number of tries in this rate before going to the next rate * * A value of -1 for @idx indicates an invalid rate and, if used * in an array of retry rates, that no more rates should be tried. * * When used for transmit status reporting, the driver should * always report the rate along with the flags it used. * * &struct ieee80211_tx_info contains an array of these structs * in the control information, and it will be filled by the rate * control algorithm according to what should be sent. For example, * if this array contains, in the format { <idx>, <count> } the * information:: * * { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 } * * then this means that the frame should be transmitted * up to twice at rate 3, up to twice at rate 2, and up to four * times at rate 1 if it doesn't get acknowledged. Say it gets * acknowledged by the peer after the fifth attempt, the status * information should then contain:: * * { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ... * * since it was transmitted twice at rate 3, twice at rate 2 * and once at rate 1 after which we received an acknowledgement. */ struct ieee80211_tx_rate { s8 idx; u16 count:5, flags:11; } __packed; #define IEEE80211_MAX_TX_RETRY 31 static inline void ieee80211_rate_set_vht(struct ieee80211_tx_rate *rate, u8 mcs, u8 nss) { WARN_ON(mcs & ~0xF); WARN_ON((nss - 1) & ~0x7); rate->idx = ((nss - 1) << 4) | mcs; } static inline u8 ieee80211_rate_get_vht_mcs(const struct ieee80211_tx_rate *rate) { return rate->idx & 0xF; } static inline u8 ieee80211_rate_get_vht_nss(const struct ieee80211_tx_rate *rate) { return (rate->idx >> 4) + 1; } /** * struct ieee80211_tx_info - skb transmit information * * This structure is placed in skb->cb for three uses: * (1) mac80211 TX control - mac80211 tells the driver what to do * (2) driver internal use (if applicable) * (3) TX status information - driver tells mac80211 what happened * * @flags: transmit info flags, defined above * @band: the band to transmit on (use for checking for races) * @hw_queue: HW queue to put the frame on, skb_get_queue_mapping() gives the AC * @ack_frame_id: internal frame ID for TX status, used internally * @tx_time_est: TX time estimate in units of 4us, used internally * @control: union part for control data * @control.rates: TX rates array to try * @control.rts_cts_rate_idx: rate for RTS or CTS * @control.use_rts: use RTS * @control.use_cts_prot: use RTS/CTS * @control.short_preamble: use short preamble (CCK only) * @control.skip_table: skip externally configured rate table * @control.jiffies: timestamp for expiry on powersave clients * @control.vif: virtual interface (may be NULL) * @control.hw_key: key to encrypt with (may be NULL) * @control.flags: control flags, see &enum mac80211_tx_control_flags * @control.enqueue_time: enqueue time (for iTXQs) * @driver_rates: alias to @control.rates to reserve space * @pad: padding * @rate_driver_data: driver use area if driver needs @control.rates * @status: union part for status data * @status.rates: attempted rates * @status.ack_signal: ACK signal * @status.ampdu_ack_len: AMPDU ack length * @status.ampdu_len: AMPDU length * @status.antenna: (legacy, kept only for iwlegacy) * @status.tx_time: airtime consumed for transmission; note this is only * used for WMM AC, not for airtime fairness * @status.is_valid_ack_signal: ACK signal is valid * @status.status_driver_data: driver use area * @ack: union part for pure ACK data * @ack.cookie: cookie for the ACK * @driver_data: array of driver_data pointers * @ampdu_ack_len: number of acked aggregated frames. * relevant only if IEEE80211_TX_STAT_AMPDU was set. * @ampdu_len: number of aggregated frames. * relevant only if IEEE80211_TX_STAT_AMPDU was set. * @ack_signal: signal strength of the ACK frame */ struct ieee80211_tx_info { /* common information */ u32 flags; u32 band:3, ack_frame_id:13, hw_queue:4, tx_time_est:10; /* 2 free bits */ union { struct { union { /* rate control */ struct { struct ieee80211_tx_rate rates[ IEEE80211_TX_MAX_RATES]; s8 rts_cts_rate_idx; u8 use_rts:1; u8 use_cts_prot:1; u8 short_preamble:1; u8 skip_table:1; /* 2 bytes free */ }; /* only needed before rate control */ unsigned long jiffies; }; /* NB: vif can be NULL for injected frames */ struct ieee80211_vif *vif; struct ieee80211_key_conf *hw_key; u32 flags; codel_time_t enqueue_time; } control; struct { u64 cookie; } ack; struct { struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES]; s32 ack_signal; u8 ampdu_ack_len; u8 ampdu_len; u8 antenna; u16 tx_time; bool is_valid_ack_signal; void *status_driver_data[19 / sizeof(void *)]; } status; struct { struct ieee80211_tx_rate driver_rates[ IEEE80211_TX_MAX_RATES]; u8 pad[4]; void *rate_driver_data[ IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)]; }; void *driver_data[ IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)]; }; }; static inline u16 ieee80211_info_set_tx_time_est(struct ieee80211_tx_info *info, u16 tx_time_est) { /* We only have 10 bits in tx_time_est, so store airtime * in increments of 4us and clamp the maximum to 2**12-1 */ info->tx_time_est = min_t(u16, tx_time_est, 4095) >> 2; return info->tx_time_est << 2; } static inline u16 ieee80211_info_get_tx_time_est(struct ieee80211_tx_info *info) { return info->tx_time_est << 2; } /** * struct ieee80211_tx_status - extended tx status info for rate control * * @sta: Station that the packet was transmitted for * @info: Basic tx status information * @skb: Packet skb (can be NULL if not provided by the driver) * @rate: The TX rate that was used when sending the packet * @free_list: list where processed skbs are stored to be free'd by the driver */ struct ieee80211_tx_status { struct ieee80211_sta *sta; struct ieee80211_tx_info *info; struct sk_buff *skb; struct rate_info *rate; struct list_head *free_list; }; /** * struct ieee80211_scan_ies - descriptors for different blocks of IEs * * This structure is used to point to different blocks of IEs in HW scan * and scheduled scan. These blocks contain the IEs passed by userspace * and the ones generated by mac80211. * * @ies: pointers to band specific IEs. * @len: lengths of band_specific IEs. * @common_ies: IEs for all bands (especially vendor specific ones) * @common_ie_len: length of the common_ies */ struct ieee80211_scan_ies { const u8 *ies[NUM_NL80211_BANDS]; size_t len[NUM_NL80211_BANDS]; const u8 *common_ies; size_t common_ie_len; }; static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb) { return (struct ieee80211_tx_info *)skb->cb; } static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb) { return (struct ieee80211_rx_status *)skb->cb; } /** * ieee80211_tx_info_clear_status - clear TX status * * @info: The &struct ieee80211_tx_info to be cleared. * * When the driver passes an skb back to mac80211, it must report * a number of things in TX status. This function clears everything * in the TX status but the rate control information (it does clear * the count since you need to fill that in anyway). * * NOTE: You can only use this function if you do NOT use * info->driver_data! Use info->rate_driver_data * instead if you need only the less space that allows. */ static inline void ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info) { int i; BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != offsetof(struct ieee80211_tx_info, control.rates)); BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != offsetof(struct ieee80211_tx_info, driver_rates)); BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8); /* clear the rate counts */ for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) info->status.rates[i].count = 0; BUILD_BUG_ON( offsetof(struct ieee80211_tx_info, status.ack_signal) != 20); memset(&info->status.ampdu_ack_len, 0, sizeof(struct ieee80211_tx_info) - offsetof(struct ieee80211_tx_info, status.ampdu_ack_len)); } /** * enum mac80211_rx_flags - receive flags * * These flags are used with the @flag member of &struct ieee80211_rx_status. * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. * Use together with %RX_FLAG_MMIC_STRIPPED. * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, * verification has been done by the hardware. * @RX_FLAG_IV_STRIPPED: The IV and ICV are stripped from this frame. * If this flag is set, the stack cannot do any replay detection * hence the driver or hardware will have to do that. * @RX_FLAG_PN_VALIDATED: Currently only valid for CCMP/GCMP frames, this * flag indicates that the PN was verified for replay protection. * Note that this flag is also currently only supported when a frame * is also decrypted (ie. @RX_FLAG_DECRYPTED must be set) * @RX_FLAG_DUP_VALIDATED: The driver should set this flag if it did * de-duplication by itself. * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on * the frame. * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on * the frame. * @RX_FLAG_MACTIME_START: The timestamp passed in the RX status (@mactime * field) is valid and contains the time the first symbol of the MPDU * was received. This is useful in monitor mode and for proper IBSS * merging. * @RX_FLAG_MACTIME_END: The timestamp passed in the RX status (@mactime * field) is valid and contains the time the last symbol of the MPDU * (including FCS) was received. * @RX_FLAG_MACTIME_PLCP_START: The timestamp passed in the RX status (@mactime * field) is valid and contains the time the SYNC preamble was received. * @RX_FLAG_NO_SIGNAL_VAL: The signal strength value is not present. * Valid only for data frames (mainly A-MPDU) * @RX_FLAG_AMPDU_DETAILS: A-MPDU details are known, in particular the reference * number (@ampdu_reference) must be populated and be a distinct number for * each A-MPDU * @RX_FLAG_AMPDU_LAST_KNOWN: last subframe is known, should be set on all * subframes of a single A-MPDU * @RX_FLAG_AMPDU_IS_LAST: this subframe is the last subframe of the A-MPDU * @RX_FLAG_AMPDU_DELIM_CRC_ERROR: A delimiter CRC error has been detected * on this subframe * @RX_FLAG_AMPDU_DELIM_CRC_KNOWN: The delimiter CRC field is known (the CRC * is stored in the @ampdu_delimiter_crc field) * @RX_FLAG_MIC_STRIPPED: The mic was stripped of this packet. Decryption was * done by the hardware * @RX_FLAG_ONLY_MONITOR: Report frame only to monitor interfaces without * processing it in any regular way. * This is useful if drivers offload some frames but still want to report * them for sniffing purposes. * @RX_FLAG_SKIP_MONITOR: Process and report frame to all interfaces except * monitor interfaces. * This is useful if drivers offload some frames but still want to report * them for sniffing purposes. * @RX_FLAG_AMSDU_MORE: Some drivers may prefer to report separate A-MSDU * subframes instead of a one huge frame for performance reasons. * All, but the last MSDU from an A-MSDU should have this flag set. E.g. * if an A-MSDU has 3 frames, the first 2 must have the flag set, while * the 3rd (last) one must not have this flag set. The flag is used to * deal with retransmission/duplication recovery properly since A-MSDU * subframes share the same sequence number. Reported subframes can be * either regular MSDU or singly A-MSDUs. Subframes must not be * interleaved with other frames. * @RX_FLAG_RADIOTAP_VENDOR_DATA: This frame contains vendor-specific * radiotap data in the skb->data (before the frame) as described by * the &struct ieee80211_vendor_radiotap. * @RX_FLAG_ALLOW_SAME_PN: Allow the same PN as same packet before. * This is used for AMSDU subframes which can have the same PN as * the first subframe. * @RX_FLAG_ICV_STRIPPED: The ICV is stripped from this frame. CRC checking must * be done in the hardware. * @RX_FLAG_AMPDU_EOF_BIT: Value of the EOF bit in the A-MPDU delimiter for this * frame * @RX_FLAG_AMPDU_EOF_BIT_KNOWN: The EOF value is known * @RX_FLAG_RADIOTAP_HE: HE radiotap data is present * (&struct ieee80211_radiotap_he, mac80211 will fill in * * - DATA3_DATA_MCS * - DATA3_DATA_DCM * - DATA3_CODING * - DATA5_GI * - DATA5_DATA_BW_RU_ALLOC * - DATA6_NSTS * - DATA3_STBC * * from the RX info data, so leave those zeroed when building this data) * @RX_FLAG_RADIOTAP_HE_MU: HE MU radiotap data is present * (&struct ieee80211_radiotap_he_mu) * @RX_FLAG_RADIOTAP_LSIG: L-SIG radiotap data is present * @RX_FLAG_NO_PSDU: use the frame only for radiotap reporting, with * the "0-length PSDU" field included there. The value for it is * in &struct ieee80211_rx_status. Note that if this value isn't * known the frame shouldn't be reported. */ enum mac80211_rx_flags { RX_FLAG_MMIC_ERROR = BIT(0), RX_FLAG_DECRYPTED = BIT(1), RX_FLAG_MACTIME_PLCP_START = BIT(2), RX_FLAG_MMIC_STRIPPED = BIT(3), RX_FLAG_IV_STRIPPED = BIT(4), RX_FLAG_FAILED_FCS_CRC = BIT(5), RX_FLAG_FAILED_PLCP_CRC = BIT(6), RX_FLAG_MACTIME_START = BIT(7), RX_FLAG_NO_SIGNAL_VAL = BIT(8), RX_FLAG_AMPDU_DETAILS = BIT(9), RX_FLAG_PN_VALIDATED = BIT(10), RX_FLAG_DUP_VALIDATED = BIT(11), RX_FLAG_AMPDU_LAST_KNOWN = BIT(12), RX_FLAG_AMPDU_IS_LAST = BIT(13), RX_FLAG_AMPDU_DELIM_CRC_ERROR = BIT(14), RX_FLAG_AMPDU_DELIM_CRC_KNOWN = BIT(15), RX_FLAG_MACTIME_END = BIT(16), RX_FLAG_ONLY_MONITOR = BIT(17), RX_FLAG_SKIP_MONITOR = BIT(18), RX_FLAG_AMSDU_MORE = BIT(19), RX_FLAG_RADIOTAP_VENDOR_DATA = BIT(20), RX_FLAG_MIC_STRIPPED = BIT(21), RX_FLAG_ALLOW_SAME_PN = BIT(22), RX_FLAG_ICV_STRIPPED = BIT(23), RX_FLAG_AMPDU_EOF_BIT = BIT(24), RX_FLAG_AMPDU_EOF_BIT_KNOWN = BIT(25), RX_FLAG_RADIOTAP_HE = BIT(26), RX_FLAG_RADIOTAP_HE_MU = BIT(27), RX_FLAG_RADIOTAP_LSIG = BIT(28), RX_FLAG_NO_PSDU = BIT(29), }; /** * enum mac80211_rx_encoding_flags - MCS & bandwidth flags * * @RX_ENC_FLAG_SHORTPRE: Short preamble was used for this frame * @RX_ENC_FLAG_SHORT_GI: Short guard interval was used * @RX_ENC_FLAG_HT_GF: This frame was received in a HT-greenfield transmission, * if the driver fills this value it should add * %IEEE80211_RADIOTAP_MCS_HAVE_FMT * to @hw.radiotap_mcs_details to advertise that fact. * @RX_ENC_FLAG_LDPC: LDPC was used * @RX_ENC_FLAG_STBC_MASK: STBC 2 bit bitmask. 1 - Nss=1, 2 - Nss=2, 3 - Nss=3 * @RX_ENC_FLAG_BF: packet was beamformed */ enum mac80211_rx_encoding_flags { RX_ENC_FLAG_SHORTPRE = BIT(0), RX_ENC_FLAG_SHORT_GI = BIT(2), RX_ENC_FLAG_HT_GF = BIT(3), RX_ENC_FLAG_STBC_MASK = BIT(4) | BIT(5), RX_ENC_FLAG_LDPC = BIT(6), RX_ENC_FLAG_BF = BIT(7), }; #define RX_ENC_FLAG_STBC_SHIFT 4 enum mac80211_rx_encoding { RX_ENC_LEGACY = 0, RX_ENC_HT, RX_ENC_VHT, RX_ENC_HE, }; /** * struct ieee80211_rx_status - receive status * * The low-level driver should provide this information (the subset * supported by hardware) to the 802.11 code with each received * frame, in the skb's control buffer (cb). * * @mactime: value in microseconds of the 64-bit Time Synchronization Function * (TSF) timer when the first data symbol (MPDU) arrived at the hardware. * @boottime_ns: CLOCK_BOOTTIME timestamp the frame was received at, this is * needed only for beacons and probe responses that update the scan cache. * @device_timestamp: arbitrary timestamp for the device, mac80211 doesn't use * it but can store it and pass it back to the driver for synchronisation * @band: the active band when this frame was received * @freq: frequency the radio was tuned to when receiving this frame, in MHz * This field must be set for management frames, but isn't strictly needed * for data (other) frames - for those it only affects radiotap reporting. * @freq_offset: @freq has a positive offset of 500Khz. * @signal: signal strength when receiving this frame, either in dBm, in dB or * unspecified depending on the hardware capabilities flags * @IEEE80211_HW_SIGNAL_* * @chains: bitmask of receive chains for which separate signal strength * values were filled. * @chain_signal: per-chain signal strength, in dBm (unlike @signal, doesn't * support dB or unspecified units) * @antenna: antenna used * @rate_idx: index of data rate into band's supported rates or MCS index if * HT or VHT is used (%RX_FLAG_HT/%RX_FLAG_VHT) * @nss: number of streams (VHT and HE only) * @flag: %RX_FLAG_\* * @encoding: &enum mac80211_rx_encoding * @bw: &enum rate_info_bw * @enc_flags: uses bits from &enum mac80211_rx_encoding_flags * @he_ru: HE RU, from &enum nl80211_he_ru_alloc * @he_gi: HE GI, from &enum nl80211_he_gi * @he_dcm: HE DCM value * @rx_flags: internal RX flags for mac80211 * @ampdu_reference: A-MPDU reference number, must be a different value for * each A-MPDU but the same for each subframe within one A-MPDU * @ampdu_delimiter_crc: A-MPDU delimiter CRC * @zero_length_psdu_type: radiotap type of the 0-length PSDU */ struct ieee80211_rx_status { u64 mactime; u64 boottime_ns; u32 device_timestamp; u32 ampdu_reference; u32 flag; u16 freq: 13, freq_offset: 1; u8 enc_flags; u8 encoding:2, bw:3, he_ru:3; u8 he_gi:2, he_dcm:1; u8 rate_idx; u8 nss; u8 rx_flags; u8 band; u8 antenna; s8 signal; u8 chains; s8 chain_signal[IEEE80211_MAX_CHAINS]; u8 ampdu_delimiter_crc; u8 zero_length_psdu_type; }; static inline u32 ieee80211_rx_status_to_khz(struct ieee80211_rx_status *rx_status) { return MHZ_TO_KHZ(rx_status->freq) + (rx_status->freq_offset ? 500 : 0); } /** * struct ieee80211_vendor_radiotap - vendor radiotap data information * @present: presence bitmap for this vendor namespace * (this could be extended in the future if any vendor needs more * bits, the radiotap spec does allow for that) * @align: radiotap vendor namespace alignment. This defines the needed * alignment for the @data field below, not for the vendor namespace * description itself (which has a fixed 2-byte alignment) * Must be a power of two, and be set to at least 1! * @oui: radiotap vendor namespace OUI * @subns: radiotap vendor sub namespace * @len: radiotap vendor sub namespace skip length, if alignment is done * then that's added to this, i.e. this is only the length of the * @data field. * @pad: number of bytes of padding after the @data, this exists so that * the skb data alignment can be preserved even if the data has odd * length * @data: the actual vendor namespace data * * This struct, including the vendor data, goes into the skb->data before * the 802.11 header. It's split up in mac80211 using the align/oui/subns * data. */ struct ieee80211_vendor_radiotap { u32 present; u8 align; u8 oui[3]; u8 subns; u8 pad; u16 len; u8 data[]; } __packed; /** * enum ieee80211_conf_flags - configuration flags * * Flags to define PHY configuration options * * @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this * to determine for example whether to calculate timestamps for packets * or not, do not use instead of filter flags! * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only). * This is the power save mode defined by IEEE 802.11-2007 section 11.2, * meaning that the hardware still wakes up for beacons, is able to * transmit frames and receive the possible acknowledgment frames. * Not to be confused with hardware specific wakeup/sleep states, * driver is responsible for that. See the section "Powersave support" * for more. * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set * the driver should be prepared to handle configuration requests but * may turn the device off as much as possible. Typically, this flag will * be set when an interface is set UP but not associated or scanning, but * it can also be unset in that case when monitor interfaces are active. * @IEEE80211_CONF_OFFCHANNEL: The device is currently not on its main * operating channel. */ enum ieee80211_conf_flags { IEEE80211_CONF_MONITOR = (1<<0), IEEE80211_CONF_PS = (1<<1), IEEE80211_CONF_IDLE = (1<<2), IEEE80211_CONF_OFFCHANNEL = (1<<3), }; /** * enum ieee80211_conf_changed - denotes which configuration changed * * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed * @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed * @IEEE80211_CONF_CHANGE_POWER: the TX power changed * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed * @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed * Note that this is only valid if channel contexts are not used, * otherwise each channel context has the number of chains listed. */ enum ieee80211_conf_changed { IEEE80211_CONF_CHANGE_SMPS = BIT(1), IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2), IEEE80211_CONF_CHANGE_MONITOR = BIT(3), IEEE80211_CONF_CHANGE_PS = BIT(4), IEEE80211_CONF_CHANGE_POWER = BIT(5), IEEE80211_CONF_CHANGE_CHANNEL = BIT(6), IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(7), IEEE80211_CONF_CHANGE_IDLE = BIT(8), }; /** * enum ieee80211_smps_mode - spatial multiplexing power save mode * * @IEEE80211_SMPS_AUTOMATIC: automatic * @IEEE80211_SMPS_OFF: off * @IEEE80211_SMPS_STATIC: static * @IEEE80211_SMPS_DYNAMIC: dynamic * @IEEE80211_SMPS_NUM_MODES: internal, don't use */ enum ieee80211_smps_mode { IEEE80211_SMPS_AUTOMATIC, IEEE80211_SMPS_OFF, IEEE80211_SMPS_STATIC, IEEE80211_SMPS_DYNAMIC, /* keep last */ IEEE80211_SMPS_NUM_MODES, }; /** * struct ieee80211_conf - configuration of the device * * This struct indicates how the driver shall configure the hardware. * * @flags: configuration flags defined above * * @listen_interval: listen interval in units of beacon interval * @ps_dtim_period: The DTIM period of the AP we're connected to, for use * in power saving. Power saving will not be enabled until a beacon * has been received and the DTIM period is known. * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the * powersave documentation below. This variable is valid only when * the CONF_PS flag is set. * * @power_level: requested transmit power (in dBm), backward compatibility * value only that is set to the minimum of all interfaces * * @chandef: the channel definition to tune to * @radar_enabled: whether radar detection is enabled * * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11, * but actually means the number of transmissions not the number of retries * @short_frame_max_tx_count: Maximum number of transmissions for a "short" * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the * number of transmissions not the number of retries * * @smps_mode: spatial multiplexing powersave mode; note that * %IEEE80211_SMPS_STATIC is used when the device is not * configured for an HT channel. * Note that this is only valid if channel contexts are not used, * otherwise each channel context has the number of chains listed. */ struct ieee80211_conf { u32 flags; int power_level, dynamic_ps_timeout; u16 listen_interval; u8 ps_dtim_period; u8 long_frame_max_tx_count, short_frame_max_tx_count; struct cfg80211_chan_def chandef; bool radar_enabled; enum ieee80211_smps_mode smps_mode; }; /** * struct ieee80211_channel_switch - holds the channel switch data * * The information provided in this structure is required for channel switch * operation. * * @timestamp: value in microseconds of the 64-bit Time Synchronization * Function (TSF) timer when the frame containing the channel switch * announcement was received. This is simply the rx.mactime parameter * the driver passed into mac80211. * @device_timestamp: arbitrary timestamp for the device, this is the * rx.device_timestamp parameter the driver passed to mac80211. * @block_tx: Indicates whether transmission must be blocked before the * scheduled channel switch, as indicated by the AP. * @chandef: the new channel to switch to * @count: the number of TBTT's until the channel switch event * @delay: maximum delay between the time the AP transmitted the last beacon in * current channel and the expected time of the first beacon in the new * channel, expressed in TU. */ struct ieee80211_channel_switch { u64 timestamp; u32 device_timestamp; bool block_tx; struct cfg80211_chan_def chandef; u8 count; u32 delay; }; /** * enum ieee80211_vif_flags - virtual interface flags * * @IEEE80211_VIF_BEACON_FILTER: the device performs beacon filtering * on this virtual interface to avoid unnecessary CPU wakeups * @IEEE80211_VIF_SUPPORTS_CQM_RSSI: the device can do connection quality * monitoring on this virtual interface -- i.e. it can monitor * connection quality related parameters, such as the RSSI level and * provide notifications if configured trigger levels are reached. * @IEEE80211_VIF_SUPPORTS_UAPSD: The device can do U-APSD for this * interface. This flag should be set during interface addition, * but may be set/cleared as late as authentication to an AP. It is * only valid for managed/station mode interfaces. * @IEEE80211_VIF_GET_NOA_UPDATE: request to handle NOA attributes * and send P2P_PS notification to the driver if NOA changed, even * this is not pure P2P vif. */ enum ieee80211_vif_flags { IEEE80211_VIF_BEACON_FILTER = BIT(0), IEEE80211_VIF_SUPPORTS_CQM_RSSI = BIT(1), IEEE80211_VIF_SUPPORTS_UAPSD = BIT(2), IEEE80211_VIF_GET_NOA_UPDATE = BIT(3), }; /** * enum ieee80211_offload_flags - virtual interface offload flags * * @IEEE80211_OFFLOAD_ENCAP_ENABLED: tx encapsulation offload is enabled * The driver supports sending frames passed as 802.3 frames by mac80211. * It must also support sending 802.11 packets for the same interface. * @IEEE80211_OFFLOAD_ENCAP_4ADDR: support 4-address mode encapsulation offload */ enum ieee80211_offload_flags { IEEE80211_OFFLOAD_ENCAP_ENABLED = BIT(0), IEEE80211_OFFLOAD_ENCAP_4ADDR = BIT(1), }; /** * struct ieee80211_vif - per-interface data * * Data in this structure is continually present for driver * use during the life of a virtual interface. * * @type: type of this virtual interface * @bss_conf: BSS configuration for this interface, either our own * or the BSS we're associated to * @addr: address of this interface * @p2p: indicates whether this AP or STA interface is a p2p * interface, i.e. a GO or p2p-sta respectively * @csa_active: marks whether a channel switch is going on. Internally it is * write-protected by sdata_lock and local->mtx so holding either is fine * for read access. * @mu_mimo_owner: indicates interface owns MU-MIMO capability * @driver_flags: flags/capabilities the driver has for this interface, * these need to be set (or cleared) when the interface is added * or, if supported by the driver, the interface type is changed * at runtime, mac80211 will never touch this field * @offloaad_flags: hardware offload capabilities/flags for this interface. * These are initialized by mac80211 before calling .add_interface, * .change_interface or .update_vif_offload and updated by the driver * within these ops, based on supported features or runtime change * restrictions. * @hw_queue: hardware queue for each AC * @cab_queue: content-after-beacon (DTIM beacon really) queue, AP mode only * @chanctx_conf: The channel context this interface is assigned to, or %NULL * when it is not assigned. This pointer is RCU-protected due to the TX * path needing to access it; even though the netdev carrier will always * be off when it is %NULL there can still be races and packets could be * processed after it switches back to %NULL. * @debugfs_dir: debugfs dentry, can be used by drivers to create own per * interface debug files. Note that it will be NULL for the virtual * monitor interface (if that is requested.) * @probe_req_reg: probe requests should be reported to mac80211 for this * interface. * @rx_mcast_action_reg: multicast Action frames should be reported to mac80211 * for this interface. * @drv_priv: data area for driver use, will always be aligned to * sizeof(void \*). * @txq: the multicast data TX queue (if driver uses the TXQ abstraction) * @txqs_stopped: per AC flag to indicate that intermediate TXQs are stopped, * protected by fq->lock. * @offload_flags: 802.3 -> 802.11 enapsulation offload flags, see * &enum ieee80211_offload_flags. */ struct ieee80211_vif { enum nl80211_iftype type; struct ieee80211_bss_conf bss_conf; u8 addr[ETH_ALEN] __aligned(2); bool p2p; bool csa_active; bool mu_mimo_owner; u8 cab_queue; u8 hw_queue[IEEE80211_NUM_ACS]; struct ieee80211_txq *txq; struct ieee80211_chanctx_conf __rcu *chanctx_conf; u32 driver_flags; u32 offload_flags; #ifdef CONFIG_MAC80211_DEBUGFS struct dentry *debugfs_dir; #endif bool probe_req_reg; bool rx_mcast_action_reg; bool txqs_stopped[IEEE80211_NUM_ACS]; /* must be last */ u8 drv_priv[] __aligned(sizeof(void *)); }; static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif) { #ifdef CONFIG_MAC80211_MESH return vif->type == NL80211_IFTYPE_MESH_POINT; #endif return false; } /** * wdev_to_ieee80211_vif - return a vif struct from a wdev * @wdev: the wdev to get the vif for * * This can be used by mac80211 drivers with direct cfg80211 APIs * (like the vendor commands) that get a wdev. * * Note that this function may return %NULL if the given wdev isn't * associated with a vif that the driver knows about (e.g. monitor * or AP_VLAN interfaces.) */ struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev); /** * ieee80211_vif_to_wdev - return a wdev struct from a vif * @vif: the vif to get the wdev for * * This can be used by mac80211 drivers with direct cfg80211 APIs * (like the vendor commands) that needs to get the wdev for a vif. * * Note that this function may return %NULL if the given wdev isn't * associated with a vif that the driver knows about (e.g. monitor * or AP_VLAN interfaces.) */ struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif); /** * enum ieee80211_key_flags - key flags * * These flags are used for communication about keys between the driver * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. * * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the * driver to indicate that it requires IV generation for this * particular key. Setting this flag does not necessarily mean that SKBs * will have sufficient tailroom for ICV or MIC. * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by * the driver for a TKIP key if it requires Michael MIC * generation in software. * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates * that the key is pairwise rather then a shared key. * @IEEE80211_KEY_FLAG_SW_MGMT_TX: This flag should be set by the driver for a * CCMP/GCMP key if it requires CCMP/GCMP encryption of management frames * (MFP) to be done in software. * @IEEE80211_KEY_FLAG_PUT_IV_SPACE: This flag should be set by the driver * if space should be prepared for the IV, but the IV * itself should not be generated. Do not set together with * @IEEE80211_KEY_FLAG_GENERATE_IV on the same key. Setting this flag does * not necessarily mean that SKBs will have sufficient tailroom for ICV or * MIC. * @IEEE80211_KEY_FLAG_RX_MGMT: This key will be used to decrypt received * management frames. The flag can help drivers that have a hardware * crypto implementation that doesn't deal with management frames * properly by allowing them to not upload the keys to hardware and * fall back to software crypto. Note that this flag deals only with * RX, if your crypto engine can't deal with TX you can also set the * %IEEE80211_KEY_FLAG_SW_MGMT_TX flag to encrypt such frames in SW. * @IEEE80211_KEY_FLAG_GENERATE_IV_MGMT: This flag should be set by the * driver for a CCMP/GCMP key to indicate that is requires IV generation * only for management frames (MFP). * @IEEE80211_KEY_FLAG_RESERVE_TAILROOM: This flag should be set by the * driver for a key to indicate that sufficient tailroom must always * be reserved for ICV or MIC, even when HW encryption is enabled. * @IEEE80211_KEY_FLAG_PUT_MIC_SPACE: This flag should be set by the driver for * a TKIP key if it only requires MIC space. Do not set together with * @IEEE80211_KEY_FLAG_GENERATE_MMIC on the same key. * @IEEE80211_KEY_FLAG_NO_AUTO_TX: Key needs explicit Tx activation. * @IEEE80211_KEY_FLAG_GENERATE_MMIE: This flag should be set by the driver * for a AES_CMAC key to indicate that it requires sequence number * generation only */ enum ieee80211_key_flags { IEEE80211_KEY_FLAG_GENERATE_IV_MGMT = BIT(0), IEEE80211_KEY_FLAG_GENERATE_IV = BIT(1), IEEE80211_KEY_FLAG_GENERATE_MMIC = BIT(2), IEEE80211_KEY_FLAG_PAIRWISE = BIT(3), IEEE80211_KEY_FLAG_SW_MGMT_TX = BIT(4), IEEE80211_KEY_FLAG_PUT_IV_SPACE = BIT(5), IEEE80211_KEY_FLAG_RX_MGMT = BIT(6), IEEE80211_KEY_FLAG_RESERVE_TAILROOM = BIT(7), IEEE80211_KEY_FLAG_PUT_MIC_SPACE = BIT(8), IEEE80211_KEY_FLAG_NO_AUTO_TX = BIT(9), IEEE80211_KEY_FLAG_GENERATE_MMIE = BIT(10), }; /** * struct ieee80211_key_conf - key information * * This key information is given by mac80211 to the driver by * the set_key() callback in &struct ieee80211_ops. * * @hw_key_idx: To be set by the driver, this is the key index the driver * wants to be given when a frame is transmitted and needs to be * encrypted in hardware. * @cipher: The key's cipher suite selector. * @tx_pn: PN used for TX keys, may be used by the driver as well if it * needs to do software PN assignment by itself (e.g. due to TSO) * @flags: key flags, see &enum ieee80211_key_flags. * @keyidx: the key index (0-3) * @keylen: key material length * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte) * data block: * - Temporal Encryption Key (128 bits) * - Temporal Authenticator Tx MIC Key (64 bits) * - Temporal Authenticator Rx MIC Key (64 bits) * @icv_len: The ICV length for this key type * @iv_len: The IV length for this key type */ struct ieee80211_key_conf { atomic64_t tx_pn; u32 cipher; u8 icv_len; u8 iv_len; u8 hw_key_idx; s8 keyidx; u16 flags; u8 keylen; u8 key[]; }; #define IEEE80211_MAX_PN_LEN 16 #define TKIP_PN_TO_IV16(pn) ((u16)(pn & 0xffff)) #define TKIP_PN_TO_IV32(pn) ((u32)((pn >> 16) & 0xffffffff)) /** * struct ieee80211_key_seq - key sequence counter * * @tkip: TKIP data, containing IV32 and IV16 in host byte order * @ccmp: PN data, most significant byte first (big endian, * reverse order than in packet) * @aes_cmac: PN data, most significant byte first (big endian, * reverse order than in packet) * @aes_gmac: PN data, most significant byte first (big endian, * reverse order than in packet) * @gcmp: PN data, most significant byte first (big endian, * reverse order than in packet) * @hw: data for HW-only (e.g. cipher scheme) keys */ struct ieee80211_key_seq { union { struct { u32 iv32; u16 iv16; } tkip; struct { u8 pn[6]; } ccmp; struct { u8 pn[6]; } aes_cmac; struct { u8 pn[6]; } aes_gmac; struct { u8 pn[6]; } gcmp; struct { u8 seq[IEEE80211_MAX_PN_LEN]; u8 seq_len; } hw; }; }; /** * struct ieee80211_cipher_scheme - cipher scheme * * This structure contains a cipher scheme information defining * the secure packet crypto handling. * * @cipher: a cipher suite selector * @iftype: a cipher iftype bit mask indicating an allowed cipher usage * @hdr_len: a length of a security header used the cipher * @pn_len: a length of a packet number in the security header * @pn_off: an offset of pn from the beginning of the security header * @key_idx_off: an offset of key index byte in the security header * @key_idx_mask: a bit mask of key_idx bits * @key_idx_shift: a bit shift needed to get key_idx * key_idx value calculation: * (sec_header_base[key_idx_off] & key_idx_mask) >> key_idx_shift * @mic_len: a mic length in bytes */ struct ieee80211_cipher_scheme { u32 cipher; u16 iftype; u8 hdr_len; u8 pn_len; u8 pn_off; u8 key_idx_off; u8 key_idx_mask; u8 key_idx_shift; u8 mic_len; }; /** * enum set_key_cmd - key command * * Used with the set_key() callback in &struct ieee80211_ops, this * indicates whether a key is being removed or added. * * @SET_KEY: a key is set * @DISABLE_KEY: a key must be disabled */ enum set_key_cmd { SET_KEY, DISABLE_KEY, }; /** * enum ieee80211_sta_state - station state * * @IEEE80211_STA_NOTEXIST: station doesn't exist at all, * this is a special state for add/remove transitions * @IEEE80211_STA_NONE: station exists without special state * @IEEE80211_STA_AUTH: station is authenticated * @IEEE80211_STA_ASSOC: station is associated * @IEEE80211_STA_AUTHORIZED: station is authorized (802.1X) */ enum ieee80211_sta_state { /* NOTE: These need to be ordered correctly! */ IEEE80211_STA_NOTEXIST, IEEE80211_STA_NONE, IEEE80211_STA_AUTH, IEEE80211_STA_ASSOC, IEEE80211_STA_AUTHORIZED, }; /** * enum ieee80211_sta_rx_bandwidth - station RX bandwidth * @IEEE80211_STA_RX_BW_20: station can only receive 20 MHz * @IEEE80211_STA_RX_BW_40: station can receive up to 40 MHz * @IEEE80211_STA_RX_BW_80: station can receive up to 80 MHz * @IEEE80211_STA_RX_BW_160: station can receive up to 160 MHz * (including 80+80 MHz) * * Implementation note: 20 must be zero to be initialized * correctly, the values must be sorted. */ enum ieee80211_sta_rx_bandwidth { IEEE80211_STA_RX_BW_20 = 0, IEEE80211_STA_RX_BW_40, IEEE80211_STA_RX_BW_80, IEEE80211_STA_RX_BW_160, }; /** * struct ieee80211_sta_rates - station rate selection table * * @rcu_head: RCU head used for freeing the table on update * @rate: transmit rates/flags to be used by default. * Overriding entries per-packet is possible by using cb tx control. */ struct ieee80211_sta_rates { struct rcu_head rcu_head; struct { s8 idx; u8 count; u8 count_cts; u8 count_rts; u16 flags; } rate[IEEE80211_TX_RATE_TABLE_SIZE]; }; /** * struct ieee80211_sta_txpwr - station txpower configuration * * Used to configure txpower for station. * * @power: indicates the tx power, in dBm, to be used when sending data frames * to the STA. * @type: In particular if TPC %type is NL80211_TX_POWER_LIMITED then tx power * will be less than or equal to specified from userspace, whereas if TPC * %type is NL80211_TX_POWER_AUTOMATIC then it indicates default tx power. * NL80211_TX_POWER_FIXED is not a valid configuration option for * per peer TPC. */ struct ieee80211_sta_txpwr { s16 power; enum nl80211_tx_power_setting type; }; /** * struct ieee80211_sta - station table entry * * A station table entry represents a station we are possibly * communicating with. Since stations are RCU-managed in * mac80211, any ieee80211_sta pointer you get access to must * either be protected by rcu_read_lock() explicitly or implicitly, * or you must take good care to not use such a pointer after a * call to your sta_remove callback that removed it. * * @addr: MAC address * @aid: AID we assigned to the station if we're an AP * @supp_rates: Bitmap of supported rates (per band) * @ht_cap: HT capabilities of this STA; restricted to our own capabilities * @vht_cap: VHT capabilities of this STA; restricted to our own capabilities * @he_cap: HE capabilities of this STA * @he_6ghz_capa: on 6 GHz, holds the HE 6 GHz band capabilities * @max_rx_aggregation_subframes: maximal amount of frames in a single AMPDU * that this station is allowed to transmit to us. * Can be modified by driver. * @wme: indicates whether the STA supports QoS/WME (if local devices does, * otherwise always false) * @drv_priv: data area for driver use, will always be aligned to * sizeof(void \*), size is determined in hw information. * @uapsd_queues: bitmap of queues configured for uapsd. Only valid * if wme is supported. The bits order is like in * IEEE80211_WMM_IE_STA_QOSINFO_AC_*. * @max_sp: max Service Period. Only valid if wme is supported. * @bandwidth: current bandwidth the station can receive with * @rx_nss: in HT/VHT, the maximum number of spatial streams the * station can receive at the moment, changed by operating mode * notifications and capabilities. The value is only valid after * the station moves to associated state. * @smps_mode: current SMPS mode (off, static or dynamic) * @rates: rate control selection table * @tdls: indicates whether the STA is a TDLS peer * @tdls_initiator: indicates the STA is an initiator of the TDLS link. Only * valid if the STA is a TDLS peer in the first place. * @mfp: indicates whether the STA uses management frame protection or not. * @max_amsdu_subframes: indicates the maximal number of MSDUs in a single * A-MSDU. Taken from the Extended Capabilities element. 0 means * unlimited. * @support_p2p_ps: indicates whether the STA supports P2P PS mechanism or not. * @max_rc_amsdu_len: Maximum A-MSDU size in bytes recommended by rate control. * @max_tid_amsdu_len: Maximum A-MSDU size in bytes for this TID * @txpwr: the station tx power configuration * @txq: per-TID data TX queues (if driver uses the TXQ abstraction); note that * the last entry (%IEEE80211_NUM_TIDS) is used for non-data frames */ struct ieee80211_sta { u32 supp_rates[NUM_NL80211_BANDS]; u8 addr[ETH_ALEN]; u16 aid; struct ieee80211_sta_ht_cap ht_cap; struct ieee80211_sta_vht_cap vht_cap; struct ieee80211_sta_he_cap he_cap; struct ieee80211_he_6ghz_capa he_6ghz_capa; u16 max_rx_aggregation_subframes; bool wme; u8 uapsd_queues; u8 max_sp; u8 rx_nss; enum ieee80211_sta_rx_bandwidth bandwidth; enum ieee80211_smps_mode smps_mode; struct ieee80211_sta_rates __rcu *rates; bool tdls; bool tdls_initiator; bool mfp; u8 max_amsdu_subframes; /** * @max_amsdu_len: * indicates the maximal length of an A-MSDU in bytes. * This field is always valid for packets with a VHT preamble. * For packets with a HT preamble, additional limits apply: * * * If the skb is transmitted as part of a BA agreement, the * A-MSDU maximal size is min(max_amsdu_len, 4065) bytes. * * If the skb is not part of a BA agreement, the A-MSDU maximal * size is min(max_amsdu_len, 7935) bytes. * * Both additional HT limits must be enforced by the low level * driver. This is defined by the spec (IEEE 802.11-2012 section * 8.3.2.2 NOTE 2). */ u16 max_amsdu_len; bool support_p2p_ps; u16 max_rc_amsdu_len; u16 max_tid_amsdu_len[IEEE80211_NUM_TIDS]; struct ieee80211_sta_txpwr txpwr; struct ieee80211_txq *txq[IEEE80211_NUM_TIDS + 1]; /* must be last */ u8 drv_priv[] __aligned(sizeof(void *)); }; /** * enum sta_notify_cmd - sta notify command * * Used with the sta_notify() callback in &struct ieee80211_ops, this * indicates if an associated station made a power state transition. * * @STA_NOTIFY_SLEEP: a station is now sleeping * @STA_NOTIFY_AWAKE: a sleeping station woke up */ enum sta_notify_cmd { STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE, }; /** * struct ieee80211_tx_control - TX control data * * @sta: station table entry, this sta pointer may be NULL and * it is not allowed to copy the pointer, due to RCU. */ struct ieee80211_tx_control { struct ieee80211_sta *sta; }; /** * struct ieee80211_txq - Software intermediate tx queue * * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @sta: station table entry, %NULL for per-vif queue * @tid: the TID for this queue (unused for per-vif queue), * %IEEE80211_NUM_TIDS for non-data (if enabled) * @ac: the AC for this queue * @drv_priv: driver private area, sized by hw->txq_data_size * * The driver can obtain packets from this queue by calling * ieee80211_tx_dequeue(). */ struct ieee80211_txq { struct ieee80211_vif *vif; struct ieee80211_sta *sta; u8 tid; u8 ac; /* must be last */ u8 drv_priv[] __aligned(sizeof(void *)); }; /** * enum ieee80211_hw_flags - hardware flags * * These flags are used to indicate hardware capabilities to * the stack. Generally, flags here should have their meaning * done in a way that the simplest hardware doesn't need setting * any particular flags. There are some exceptions to this rule, * however, so you are advised to review these flags carefully. * * @IEEE80211_HW_HAS_RATE_CONTROL: * The hardware or firmware includes rate control, and cannot be * controlled by the stack. As such, no rate control algorithm * should be instantiated, and the TX rate reported to userspace * will be taken from the TX status instead of the rate control * algorithm. * Note that this requires that the driver implement a number of * callbacks so it has the correct information, it needs to have * the @set_rts_threshold callback and must look at the BSS config * @use_cts_prot for G/N protection, @use_short_slot for slot * timing in 2.4 GHz and @use_short_preamble for preambles for * CCK frames. * * @IEEE80211_HW_RX_INCLUDES_FCS: * Indicates that received frames passed to the stack include * the FCS at the end. * * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: * Some wireless LAN chipsets buffer broadcast/multicast frames * for power saving stations in the hardware/firmware and others * rely on the host system for such buffering. This option is used * to configure the IEEE 802.11 upper layer to buffer broadcast and * multicast frames when there are power saving stations so that * the driver can fetch them with ieee80211_get_buffered_bc(). * * @IEEE80211_HW_SIGNAL_UNSPEC: * Hardware can provide signal values but we don't know its units. We * expect values between 0 and @max_signal. * If possible please provide dB or dBm instead. * * @IEEE80211_HW_SIGNAL_DBM: * Hardware gives signal values in dBm, decibel difference from * one milliwatt. This is the preferred method since it is standardized * between different devices. @max_signal does not need to be set. * * @IEEE80211_HW_SPECTRUM_MGMT: * Hardware supports spectrum management defined in 802.11h * Measurement, Channel Switch, Quieting, TPC * * @IEEE80211_HW_AMPDU_AGGREGATION: * Hardware supports 11n A-MPDU aggregation. * * @IEEE80211_HW_SUPPORTS_PS: * Hardware has power save support (i.e. can go to sleep). * * @IEEE80211_HW_PS_NULLFUNC_STACK: * Hardware requires nullfunc frame handling in stack, implies * stack support for dynamic PS. * * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS: * Hardware has support for dynamic PS. * * @IEEE80211_HW_MFP_CAPABLE: * Hardware supports management frame protection (MFP, IEEE 802.11w). * * @IEEE80211_HW_REPORTS_TX_ACK_STATUS: * Hardware can provide ack status reports of Tx frames to * the stack. * * @IEEE80211_HW_CONNECTION_MONITOR: * The hardware performs its own connection monitoring, including * periodic keep-alives to the AP and probing the AP on beacon loss. * * @IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC: * This device needs to get data from beacon before association (i.e. * dtim_period). * * @IEEE80211_HW_SUPPORTS_PER_STA_GTK: The device's crypto engine supports * per-station GTKs as used by IBSS RSN or during fast transition. If * the device doesn't support per-station GTKs, but can be asked not * to decrypt group addressed frames, then IBSS RSN support is still * possible but software crypto will be used. Advertise the wiphy flag * only in that case. * * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device * autonomously manages the PS status of connected stations. When * this flag is set mac80211 will not trigger PS mode for connected * stations based on the PM bit of incoming frames. * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure * the PS mode of connected stations. * * @IEEE80211_HW_TX_AMPDU_SETUP_IN_HW: The device handles TX A-MPDU session * setup strictly in HW. mac80211 should not attempt to do this in * software. * * @IEEE80211_HW_WANT_MONITOR_VIF: The driver would like to be informed of * a virtual monitor interface when monitor interfaces are the only * active interfaces. * * @IEEE80211_HW_NO_AUTO_VIF: The driver would like for no wlanX to * be created. It is expected user-space will create vifs as * desired (and thus have them named as desired). * * @IEEE80211_HW_SW_CRYPTO_CONTROL: The driver wants to control which of the * crypto algorithms can be done in software - so don't automatically * try to fall back to it if hardware crypto fails, but do so only if * the driver returns 1. This also forces the driver to advertise its * supported cipher suites. * * @IEEE80211_HW_SUPPORT_FAST_XMIT: The driver/hardware supports fast-xmit, * this currently requires only the ability to calculate the duration * for frames. * * @IEEE80211_HW_QUEUE_CONTROL: The driver wants to control per-interface * queue mapping in order to use different queues (not just one per AC) * for different virtual interfaces. See the doc section on HW queue * control for more details. * * @IEEE80211_HW_SUPPORTS_RC_TABLE: The driver supports using a rate * selection table provided by the rate control algorithm. * * @IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF: Use the P2P Device address for any * P2P Interface. This will be honoured even if more than one interface * is supported. * * @IEEE80211_HW_TIMING_BEACON_ONLY: Use sync timing from beacon frames * only, to allow getting TBTT of a DTIM beacon. * * @IEEE80211_HW_SUPPORTS_HT_CCK_RATES: Hardware supports mixing HT/CCK rates * and can cope with CCK rates in an aggregation session (e.g. by not * using aggregation for such frames.) * * @IEEE80211_HW_CHANCTX_STA_CSA: Support 802.11h based channel-switch (CSA) * for a single active channel while using channel contexts. When support * is not enabled the default action is to disconnect when getting the * CSA frame. * * @IEEE80211_HW_SUPPORTS_CLONED_SKBS: The driver will never modify the payload * or tailroom of TX skbs without copying them first. * * @IEEE80211_HW_SINGLE_SCAN_ON_ALL_BANDS: The HW supports scanning on all bands * in one command, mac80211 doesn't have to run separate scans per band. * * @IEEE80211_HW_TDLS_WIDER_BW: The device/driver supports wider bandwidth * than then BSS bandwidth for a TDLS link on the base channel. * * @IEEE80211_HW_SUPPORTS_AMSDU_IN_AMPDU: The driver supports receiving A-MSDUs * within A-MPDU. * * @IEEE80211_HW_BEACON_TX_STATUS: The device/driver provides TX status * for sent beacons. * * @IEEE80211_HW_NEEDS_UNIQUE_STA_ADDR: Hardware (or driver) requires that each * station has a unique address, i.e. each station entry can be identified * by just its MAC address; this prevents, for example, the same station * from connecting to two virtual AP interfaces at the same time. * * @IEEE80211_HW_SUPPORTS_REORDERING_BUFFER: Hardware (or driver) manages the * reordering buffer internally, guaranteeing mac80211 receives frames in * order and does not need to manage its own reorder buffer or BA session * timeout. * * @IEEE80211_HW_USES_RSS: The device uses RSS and thus requires parallel RX, * which implies using per-CPU station statistics. * * @IEEE80211_HW_TX_AMSDU: Hardware (or driver) supports software aggregated * A-MSDU frames. Requires software tx queueing and fast-xmit support. * When not using minstrel/minstrel_ht rate control, the driver must * limit the maximum A-MSDU size based on the current tx rate by setting * max_rc_amsdu_len in struct ieee80211_sta. * * @IEEE80211_HW_TX_FRAG_LIST: Hardware (or driver) supports sending frag_list * skbs, needed for zero-copy software A-MSDU. * * @IEEE80211_HW_REPORTS_LOW_ACK: The driver (or firmware) reports low ack event * by ieee80211_report_low_ack() based on its own algorithm. For such * drivers, mac80211 packet loss mechanism will not be triggered and driver * is completely depending on firmware event for station kickout. * * @IEEE80211_HW_SUPPORTS_TX_FRAG: Hardware does fragmentation by itself. * The stack will not do fragmentation. * The callback for @set_frag_threshold should be set as well. * * @IEEE80211_HW_SUPPORTS_TDLS_BUFFER_STA: Hardware supports buffer STA on * TDLS links. * * @IEEE80211_HW_DEAUTH_NEED_MGD_TX_PREP: The driver requires the * mgd_prepare_tx() callback to be called before transmission of a * deauthentication frame in case the association was completed but no * beacon was heard. This is required in multi-channel scenarios, where the * virtual interface might not be given air time for the transmission of * the frame, as it is not synced with the AP/P2P GO yet, and thus the * deauthentication frame might not be transmitted. * * @IEEE80211_HW_DOESNT_SUPPORT_QOS_NDP: The driver (or firmware) doesn't * support QoS NDP for AP probing - that's most likely a driver bug. * * @IEEE80211_HW_BUFF_MMPDU_TXQ: use the TXQ for bufferable MMPDUs, this of * course requires the driver to use TXQs to start with. * * @IEEE80211_HW_SUPPORTS_VHT_EXT_NSS_BW: (Hardware) rate control supports VHT * extended NSS BW (dot11VHTExtendedNSSBWCapable). This flag will be set if * the selected rate control algorithm sets %RATE_CTRL_CAPA_VHT_EXT_NSS_BW * but if the rate control is built-in then it must be set by the driver. * See also the documentation for that flag. * * @IEEE80211_HW_STA_MMPDU_TXQ: use the extra non-TID per-station TXQ for all * MMPDUs on station interfaces. This of course requires the driver to use * TXQs to start with. * * @IEEE80211_HW_TX_STATUS_NO_AMPDU_LEN: Driver does not report accurate A-MPDU * length in tx status information * * @IEEE80211_HW_SUPPORTS_MULTI_BSSID: Hardware supports multi BSSID * * @IEEE80211_HW_SUPPORTS_ONLY_HE_MULTI_BSSID: Hardware supports multi BSSID * only for HE APs. Applies if @IEEE80211_HW_SUPPORTS_MULTI_BSSID is set. * * @IEEE80211_HW_AMPDU_KEYBORDER_SUPPORT: The card and driver is only * aggregating MPDUs with the same keyid, allowing mac80211 to keep Tx * A-MPDU sessions active while rekeying with Extended Key ID. * * @IEEE80211_HW_SUPPORTS_TX_ENCAP_OFFLOAD: Hardware supports tx encapsulation * offload * * @NUM_IEEE80211_HW_FLAGS: number of hardware flags, used for sizing arrays */ enum ieee80211_hw_flags { IEEE80211_HW_HAS_RATE_CONTROL, IEEE80211_HW_RX_INCLUDES_FCS, IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING, IEEE80211_HW_SIGNAL_UNSPEC, IEEE80211_HW_SIGNAL_DBM, IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC, IEEE80211_HW_SPECTRUM_MGMT, IEEE80211_HW_AMPDU_AGGREGATION, IEEE80211_HW_SUPPORTS_PS, IEEE80211_HW_PS_NULLFUNC_STACK, IEEE80211_HW_SUPPORTS_DYNAMIC_PS, IEEE80211_HW_MFP_CAPABLE, IEEE80211_HW_WANT_MONITOR_VIF, IEEE80211_HW_NO_AUTO_VIF, IEEE80211_HW_SW_CRYPTO_CONTROL, IEEE80211_HW_SUPPORT_FAST_XMIT, IEEE80211_HW_REPORTS_TX_ACK_STATUS, IEEE80211_HW_CONNECTION_MONITOR, IEEE80211_HW_QUEUE_CONTROL, IEEE80211_HW_SUPPORTS_PER_STA_GTK, IEEE80211_HW_AP_LINK_PS, IEEE80211_HW_TX_AMPDU_SETUP_IN_HW, IEEE80211_HW_SUPPORTS_RC_TABLE, IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF, IEEE80211_HW_TIMING_BEACON_ONLY, IEEE80211_HW_SUPPORTS_HT_CCK_RATES, IEEE80211_HW_CHANCTX_STA_CSA, IEEE80211_HW_SUPPORTS_CLONED_SKBS, IEEE80211_HW_SINGLE_SCAN_ON_ALL_BANDS, IEEE80211_HW_TDLS_WIDER_BW, IEEE80211_HW_SUPPORTS_AMSDU_IN_AMPDU, IEEE80211_HW_BEACON_TX_STATUS, IEEE80211_HW_NEEDS_UNIQUE_STA_ADDR, IEEE80211_HW_SUPPORTS_REORDERING_BUFFER, IEEE80211_HW_USES_RSS, IEEE80211_HW_TX_AMSDU, IEEE80211_HW_TX_FRAG_LIST, IEEE80211_HW_REPORTS_LOW_ACK, IEEE80211_HW_SUPPORTS_TX_FRAG, IEEE80211_HW_SUPPORTS_TDLS_BUFFER_STA, IEEE80211_HW_DEAUTH_NEED_MGD_TX_PREP, IEEE80211_HW_DOESNT_SUPPORT_QOS_NDP, IEEE80211_HW_BUFF_MMPDU_TXQ, IEEE80211_HW_SUPPORTS_VHT_EXT_NSS_BW, IEEE80211_HW_STA_MMPDU_TXQ, IEEE80211_HW_TX_STATUS_NO_AMPDU_LEN, IEEE80211_HW_SUPPORTS_MULTI_BSSID, IE