1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_PKT_CLS_H #define __NET_PKT_CLS_H #include <linux/pkt_cls.h> #include <linux/workqueue.h> #include <net/sch_generic.h> #include <net/act_api.h> #include <net/net_namespace.h> /* TC action not accessible from user space */ #define TC_ACT_CONSUMED (TC_ACT_VALUE_MAX + 1) /* Basic packet classifier frontend definitions. */ struct tcf_walker { int stop; int skip; int count; bool nonempty; unsigned long cookie; int (*fn)(struct tcf_proto *, void *node, struct tcf_walker *); }; int register_tcf_proto_ops(struct tcf_proto_ops *ops); int unregister_tcf_proto_ops(struct tcf_proto_ops *ops); struct tcf_block_ext_info { enum flow_block_binder_type binder_type; tcf_chain_head_change_t *chain_head_change; void *chain_head_change_priv; u32 block_index; }; struct tcf_qevent { struct tcf_block *block; struct tcf_block_ext_info info; struct tcf_proto __rcu *filter_chain; }; struct tcf_block_cb; bool tcf_queue_work(struct rcu_work *rwork, work_func_t func); #ifdef CONFIG_NET_CLS struct tcf_chain *tcf_chain_get_by_act(struct tcf_block *block, u32 chain_index); void tcf_chain_put_by_act(struct tcf_chain *chain); struct tcf_chain *tcf_get_next_chain(struct tcf_block *block, struct tcf_chain *chain); struct tcf_proto *tcf_get_next_proto(struct tcf_chain *chain, struct tcf_proto *tp, bool rtnl_held); void tcf_block_netif_keep_dst(struct tcf_block *block); int tcf_block_get(struct tcf_block **p_block, struct tcf_proto __rcu **p_filter_chain, struct Qdisc *q, struct netlink_ext_ack *extack); int tcf_block_get_ext(struct tcf_block **p_block, struct Qdisc *q, struct tcf_block_ext_info *ei, struct netlink_ext_ack *extack); void tcf_block_put(struct tcf_block *block); void tcf_block_put_ext(struct tcf_block *block, struct Qdisc *q, struct tcf_block_ext_info *ei); static inline bool tcf_block_shared(struct tcf_block *block) { return block->index; } static inline bool tcf_block_non_null_shared(struct tcf_block *block) { return block && block->index; } static inline struct Qdisc *tcf_block_q(struct tcf_block *block) { WARN_ON(tcf_block_shared(block)); return block->q; } int tcf_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode); int tcf_classify_ingress(struct sk_buff *skb, const struct tcf_block *ingress_block, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode); #else static inline bool tcf_block_shared(struct tcf_block *block) { return false; } static inline bool tcf_block_non_null_shared(struct tcf_block *block) { return false; } static inline int tcf_block_get(struct tcf_block **p_block, struct tcf_proto __rcu **p_filter_chain, struct Qdisc *q, struct netlink_ext_ack *extack) { return 0; } static inline int tcf_block_get_ext(struct tcf_block **p_block, struct Qdisc *q, struct tcf_block_ext_info *ei, struct netlink_ext_ack *extack) { return 0; } static inline void tcf_block_put(struct tcf_block *block) { } static inline void tcf_block_put_ext(struct tcf_block *block, struct Qdisc *q, struct tcf_block_ext_info *ei) { } static inline struct Qdisc *tcf_block_q(struct tcf_block *block) { return NULL; } static inline int tc_setup_cb_block_register(struct tcf_block *block, flow_setup_cb_t *cb, void *cb_priv) { return 0; } static inline void tc_setup_cb_block_unregister(struct tcf_block *block, flow_setup_cb_t *cb, void *cb_priv) { } static inline int tcf_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode) { return TC_ACT_UNSPEC; } static inline int tcf_classify_ingress(struct sk_buff *skb, const struct tcf_block *ingress_block, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode) { return TC_ACT_UNSPEC; } #endif static inline unsigned long __cls_set_class(unsigned long *clp, unsigned long cl) { return xchg(clp, cl); } static inline void __tcf_bind_filter(struct Qdisc *q, struct tcf_result *r, unsigned long base) { unsigned long cl; cl = q->ops->cl_ops->bind_tcf(q, base, r->classid); cl = __cls_set_class(&r->class, cl); if (cl) q->ops->cl_ops->unbind_tcf(q, cl); } static inline void tcf_bind_filter(struct tcf_proto *tp, struct tcf_result *r, unsigned long base) { struct Qdisc *q = tp->chain->block->q; /* Check q as it is not set for shared blocks. In that case, * setting class is not supported. */ if (!q) return; sch_tree_lock(q); __tcf_bind_filter(q, r, base); sch_tree_unlock(q); } static inline void __tcf_unbind_filter(struct Qdisc *q, struct tcf_result *r) { unsigned long cl; if ((cl = __cls_set_class(&r->class, 0)) != 0) q->ops->cl_ops->unbind_tcf(q, cl); } static inline void tcf_unbind_filter(struct tcf_proto *tp, struct tcf_result *r) { struct Qdisc *q = tp->chain->block->q; if (!q) return; __tcf_unbind_filter(q, r); } struct tcf_exts { #ifdef CONFIG_NET_CLS_ACT __u32 type; /* for backward compat(TCA_OLD_COMPAT) */ int nr_actions; struct tc_action **actions; struct net *net; #endif /* Map to export classifier specific extension TLV types to the * generic extensions API. Unsupported extensions must be set to 0. */ int action; int police; }; static inline int tcf_exts_init(struct tcf_exts *exts, struct net *net, int action, int police) { #ifdef CONFIG_NET_CLS_ACT exts->type = 0; exts->nr_actions = 0; exts->net = net; exts->actions = kcalloc(TCA_ACT_MAX_PRIO, sizeof(struct tc_action *), GFP_KERNEL); if (!exts->actions) return -ENOMEM; #endif exts->action = action; exts->police = police; return 0; } /* Return false if the netns is being destroyed in cleanup_net(). Callers * need to do cleanup synchronously in this case, otherwise may race with * tc_action_net_exit(). Return true for other cases. */ static inline bool tcf_exts_get_net(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT exts->net = maybe_get_net(exts->net); return exts->net != NULL; #else return true; #endif } static inline void tcf_exts_put_net(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT if (exts->net) put_net(exts->net); #endif } #ifdef CONFIG_NET_CLS_ACT #define tcf_exts_for_each_action(i, a, exts) \ for (i = 0; i < TCA_ACT_MAX_PRIO && ((a) = (exts)->actions[i]); i++) #else #define tcf_exts_for_each_action(i, a, exts) \ for (; 0; (void)(i), (void)(a), (void)(exts)) #endif static inline void tcf_exts_stats_update(const struct tcf_exts *exts, u64 bytes, u64 packets, u64 drops, u64 lastuse, u8 used_hw_stats, bool used_hw_stats_valid) { #ifdef CONFIG_NET_CLS_ACT int i; preempt_disable(); for (i = 0; i < exts->nr_actions; i++) { struct tc_action *a = exts->actions[i]; tcf_action_stats_update(a, bytes, packets, drops, lastuse, true); a->used_hw_stats = used_hw_stats; a->used_hw_stats_valid = used_hw_stats_valid; } preempt_enable(); #endif } /** * tcf_exts_has_actions - check if at least one action is present * @exts: tc filter extensions handle * * Returns true if at least one action is present. */ static inline bool tcf_exts_has_actions(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT return exts->nr_actions; #else return false; #endif } /** * tcf_exts_exec - execute tc filter extensions * @skb: socket buffer * @exts: tc filter extensions handle * @res: desired result * * Executes all configured extensions. Returns TC_ACT_OK on a normal execution, * a negative number if the filter must be considered unmatched or * a positive action code (TC_ACT_*) which must be returned to the * underlying layer. */ static inline int tcf_exts_exec(struct sk_buff *skb, struct tcf_exts *exts, struct tcf_result *res) { #ifdef CONFIG_NET_CLS_ACT return tcf_action_exec(skb, exts->actions, exts->nr_actions, res); #endif return TC_ACT_OK; } int tcf_exts_validate(struct net *net, struct tcf_proto *tp, struct nlattr **tb, struct nlattr *rate_tlv, struct tcf_exts *exts, bool ovr, bool rtnl_held, struct netlink_ext_ack *extack); void tcf_exts_destroy(struct tcf_exts *exts); void tcf_exts_change(struct tcf_exts *dst, struct tcf_exts *src); int tcf_exts_dump(struct sk_buff *skb, struct tcf_exts *exts); int tcf_exts_terse_dump(struct sk_buff *skb, struct tcf_exts *exts); int tcf_exts_dump_stats(struct sk_buff *skb, struct tcf_exts *exts); /** * struct tcf_pkt_info - packet information */ struct tcf_pkt_info { unsigned char * ptr; int nexthdr; }; #ifdef CONFIG_NET_EMATCH struct tcf_ematch_ops; /** * struct tcf_ematch - extended match (ematch) * * @matchid: identifier to allow userspace to reidentify a match * @flags: flags specifying attributes and the relation to other matches * @ops: the operations lookup table of the corresponding ematch module * @datalen: length of the ematch specific configuration data * @data: ematch specific data */ struct tcf_ematch { struct tcf_ematch_ops * ops; unsigned long data; unsigned int datalen; u16 matchid; u16 flags; struct net *net; }; static inline int tcf_em_is_container(struct tcf_ematch *em) { return !em->ops; } static inline int tcf_em_is_simple(struct tcf_ematch *em) { return em->flags & TCF_EM_SIMPLE; } static inline int tcf_em_is_inverted(struct tcf_ematch *em) { return em->flags & TCF_EM_INVERT; } static inline int tcf_em_last_match(struct tcf_ematch *em) { return (em->flags & TCF_EM_REL_MASK) == TCF_EM_REL_END; } static inline int tcf_em_early_end(struct tcf_ematch *em, int result) { if (tcf_em_last_match(em)) return 1; if (result == 0 && em->flags & TCF_EM_REL_AND) return 1; if (result != 0 && em->flags & TCF_EM_REL_OR) return 1; return 0; } /** * struct tcf_ematch_tree - ematch tree handle * * @hdr: ematch tree header supplied by userspace * @matches: array of ematches */ struct tcf_ematch_tree { struct tcf_ematch_tree_hdr hdr; struct tcf_ematch * matches; }; /** * struct tcf_ematch_ops - ematch module operations * * @kind: identifier (kind) of this ematch module * @datalen: length of expected configuration data (optional) * @change: called during validation (optional) * @match: called during ematch tree evaluation, must return 1/0 * @destroy: called during destroyage (optional) * @dump: called during dumping process (optional) * @owner: owner, must be set to THIS_MODULE * @link: link to previous/next ematch module (internal use) */ struct tcf_ematch_ops { int kind; int datalen; int (*change)(struct net *net, void *, int, struct tcf_ematch *); int (*match)(struct sk_buff *, struct tcf_ematch *, struct tcf_pkt_info *); void (*destroy)(struct tcf_ematch *); int (*dump)(struct sk_buff *, struct tcf_ematch *); struct module *owner; struct list_head link; }; int tcf_em_register(struct tcf_ematch_ops *); void tcf_em_unregister(struct tcf_ematch_ops *); int tcf_em_tree_validate(struct tcf_proto *, struct nlattr *, struct tcf_ematch_tree *); void tcf_em_tree_destroy(struct tcf_ematch_tree *); int tcf_em_tree_dump(struct sk_buff *, struct tcf_ematch_tree *, int); int __tcf_em_tree_match(struct sk_buff *, struct tcf_ematch_tree *, struct tcf_pkt_info *); /** * tcf_em_tree_match - evaulate an ematch tree * * @skb: socket buffer of the packet in question * @tree: ematch tree to be used for evaluation * @info: packet information examined by classifier * * This function matches @skb against the ematch tree in @tree by going * through all ematches respecting their logic relations returning * as soon as the result is obvious. * * Returns 1 if the ematch tree as-one matches, no ematches are configured * or ematch is not enabled in the kernel, otherwise 0 is returned. */ static inline int tcf_em_tree_match(struct sk_buff *skb, struct tcf_ematch_tree *tree, struct tcf_pkt_info *info) { if (tree->hdr.nmatches) return __tcf_em_tree_match(skb, tree, info); else return 1; } #define MODULE_ALIAS_TCF_EMATCH(kind) MODULE_ALIAS("ematch-kind-" __stringify(kind)) #else /* CONFIG_NET_EMATCH */ struct tcf_ematch_tree { }; #define tcf_em_tree_validate(tp, tb, t) ((void)(t), 0) #define tcf_em_tree_destroy(t) do { (void)(t); } while(0) #define tcf_em_tree_dump(skb, t, tlv) (0) #define tcf_em_tree_match(skb, t, info) ((void)(info), 1) #endif /* CONFIG_NET_EMATCH */ static inline unsigned char * tcf_get_base_ptr(struct sk_buff *skb, int layer) { switch (layer) { case TCF_LAYER_LINK: return skb_mac_header(skb); case TCF_LAYER_NETWORK: return skb_network_header(skb); case TCF_LAYER_TRANSPORT: return skb_transport_header(skb); } return NULL; } static inline int tcf_valid_offset(const struct sk_buff *skb, const unsigned char *ptr, const int len) { return likely((ptr + len) <= skb_tail_pointer(skb) && ptr >= skb->head && (ptr <= (ptr + len))); } static inline int tcf_change_indev(struct net *net, struct nlattr *indev_tlv, struct netlink_ext_ack *extack) { char indev[IFNAMSIZ]; struct net_device *dev; if (nla_strlcpy(indev, indev_tlv, IFNAMSIZ) >= IFNAMSIZ) { NL_SET_ERR_MSG_ATTR(extack, indev_tlv, "Interface name too long"); return -EINVAL; } dev = __dev_get_by_name(net, indev); if (!dev) { NL_SET_ERR_MSG_ATTR(extack, indev_tlv, "Network device not found"); return -ENODEV; } return dev->ifindex; } static inline bool tcf_match_indev(struct sk_buff *skb, int ifindex) { if (!ifindex) return true; if (!skb->skb_iif) return false; return ifindex == skb->skb_iif; } int tc_setup_flow_action(struct flow_action *flow_action, const struct tcf_exts *exts); void tc_cleanup_flow_action(struct flow_action *flow_action); int tc_setup_cb_call(struct tcf_block *block, enum tc_setup_type type, void *type_data, bool err_stop, bool rtnl_held); int tc_setup_cb_add(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *flags, unsigned int *in_hw_count, bool rtnl_held); int tc_setup_cb_replace(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *old_flags, unsigned int *old_in_hw_count, u32 *new_flags, unsigned int *new_in_hw_count, bool rtnl_held); int tc_setup_cb_destroy(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *flags, unsigned int *in_hw_count, bool rtnl_held); int tc_setup_cb_reoffload(struct tcf_block *block, struct tcf_proto *tp, bool add, flow_setup_cb_t *cb, enum tc_setup_type type, void *type_data, void *cb_priv, u32 *flags, unsigned int *in_hw_count); unsigned int tcf_exts_num_actions(struct tcf_exts *exts); #ifdef CONFIG_NET_CLS_ACT int tcf_qevent_init(struct tcf_qevent *qe, struct Qdisc *sch, enum flow_block_binder_type binder_type, struct nlattr *block_index_attr, struct netlink_ext_ack *extack); void tcf_qevent_destroy(struct tcf_qevent *qe, struct Qdisc *sch); int tcf_qevent_validate_change(struct tcf_qevent *qe, struct nlattr *block_index_attr, struct netlink_ext_ack *extack); struct sk_buff *tcf_qevent_handle(struct tcf_qevent *qe, struct Qdisc *sch, struct sk_buff *skb, struct sk_buff **to_free, int *ret); int tcf_qevent_dump(struct sk_buff *skb, int attr_name, struct tcf_qevent *qe); #else static inline int tcf_qevent_init(struct tcf_qevent *qe, struct Qdisc *sch, enum flow_block_binder_type binder_type, struct nlattr *block_index_attr, struct netlink_ext_ack *extack) { return 0; } static inline void tcf_qevent_destroy(struct tcf_qevent *qe, struct Qdisc *sch) { } static inline int tcf_qevent_validate_change(struct tcf_qevent *qe, struct nlattr *block_index_attr, struct netlink_ext_ack *extack) { return 0; } static inline struct sk_buff * tcf_qevent_handle(struct tcf_qevent *qe, struct Qdisc *sch, struct sk_buff *skb, struct sk_buff **to_free, int *ret) { return skb; } static inline int tcf_qevent_dump(struct sk_buff *skb, int attr_name, struct tcf_qevent *qe) { return 0; } #endif struct tc_cls_u32_knode { struct tcf_exts *exts; struct tcf_result *res; struct tc_u32_sel *sel; u32 handle; u32 val; u32 mask; u32 link_handle; u8 fshift; }; struct tc_cls_u32_hnode { u32 handle; u32 prio; unsigned int divisor; }; enum tc_clsu32_command { TC_CLSU32_NEW_KNODE, TC_CLSU32_REPLACE_KNODE, TC_CLSU32_DELETE_KNODE, TC_CLSU32_NEW_HNODE, TC_CLSU32_REPLACE_HNODE, TC_CLSU32_DELETE_HNODE, }; struct tc_cls_u32_offload { struct flow_cls_common_offload common; /* knode values */ enum tc_clsu32_command command; union { struct tc_cls_u32_knode knode; struct tc_cls_u32_hnode hnode; }; }; static inline bool tc_can_offload(const struct net_device *dev) { return dev->features & NETIF_F_HW_TC; } static inline bool tc_can_offload_extack(const struct net_device *dev, struct netlink_ext_ack *extack) { bool can = tc_can_offload(dev); if (!can) NL_SET_ERR_MSG(extack, "TC offload is disabled on net device"); return can; } static inline bool tc_cls_can_offload_and_chain0(const struct net_device *dev, struct flow_cls_common_offload *common) { if (!tc_can_offload_extack(dev, common->extack)) return false; if (common->chain_index) { NL_SET_ERR_MSG(common->extack, "Driver supports only offload of chain 0"); return false; } return true; } static inline bool tc_skip_hw(u32 flags) { return (flags & TCA_CLS_FLAGS_SKIP_HW) ? true : false; } static inline bool tc_skip_sw(u32 flags) { return (flags & TCA_CLS_FLAGS_SKIP_SW) ? true : false; } /* SKIP_HW and SKIP_SW are mutually exclusive flags. */ static inline bool tc_flags_valid(u32 flags) { if (flags & ~(TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW | TCA_CLS_FLAGS_VERBOSE)) return false; flags &= TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW; if (!(flags ^ (TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW))) return false; return true; } static inline bool tc_in_hw(u32 flags) { return (flags & TCA_CLS_FLAGS_IN_HW) ? true : false; } static inline void tc_cls_common_offload_init(struct flow_cls_common_offload *cls_common, const struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { cls_common->chain_index = tp->chain->index; cls_common->protocol = tp->protocol; cls_common->prio = tp->prio >> 16; if (tc_skip_sw(flags) || flags & TCA_CLS_FLAGS_VERBOSE) cls_common->extack = extack; } #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) static inline struct tc_skb_ext *tc_skb_ext_alloc(struct sk_buff *skb) { struct tc_skb_ext *tc_skb_ext = skb_ext_add(skb, TC_SKB_EXT); if (tc_skb_ext) memset(tc_skb_ext, 0, sizeof(*tc_skb_ext)); return tc_skb_ext; } #endif enum tc_matchall_command { TC_CLSMATCHALL_REPLACE, TC_CLSMATCHALL_DESTROY, TC_CLSMATCHALL_STATS, }; struct tc_cls_matchall_offload { struct flow_cls_common_offload common; enum tc_matchall_command command; struct flow_rule *rule; struct flow_stats stats; unsigned long cookie; }; enum tc_clsbpf_command { TC_CLSBPF_OFFLOAD, TC_CLSBPF_STATS, }; struct tc_cls_bpf_offload { struct flow_cls_common_offload common; enum tc_clsbpf_command command; struct tcf_exts *exts; struct bpf_prog *prog; struct bpf_prog *oldprog; const char *name; bool exts_integrated; }; struct tc_mqprio_qopt_offload { /* struct tc_mqprio_qopt must always be the first element */ struct tc_mqprio_qopt qopt; u16 mode; u16 shaper; u32 flags; u64 min_rate[TC_QOPT_MAX_QUEUE]; u64 max_rate[TC_QOPT_MAX_QUEUE]; }; /* This structure holds cookie structure that is passed from user * to the kernel for actions and classifiers */ struct tc_cookie { u8 *data; u32 len; struct rcu_head rcu; }; struct tc_qopt_offload_stats { struct gnet_stats_basic_packed *bstats; struct gnet_stats_queue *qstats; }; enum tc_mq_command { TC_MQ_CREATE, TC_MQ_DESTROY, TC_MQ_STATS, TC_MQ_GRAFT, }; struct tc_mq_opt_offload_graft_params { unsigned long queue; u32 child_handle; }; struct tc_mq_qopt_offload { enum tc_mq_command command; u32 handle; union { struct tc_qopt_offload_stats stats; struct tc_mq_opt_offload_graft_params graft_params; }; }; enum tc_red_command { TC_RED_REPLACE, TC_RED_DESTROY, TC_RED_STATS, TC_RED_XSTATS, TC_RED_GRAFT, }; struct tc_red_qopt_offload_params { u32 min; u32 max; u32 probability; u32 limit; bool is_ecn; bool is_harddrop; bool is_nodrop; struct gnet_stats_queue *qstats; }; struct tc_red_qopt_offload { enum tc_red_command command; u32 handle; u32 parent; union { struct tc_red_qopt_offload_params set; struct tc_qopt_offload_stats stats; struct red_stats *xstats; u32 child_handle; }; }; enum tc_gred_command { TC_GRED_REPLACE, TC_GRED_DESTROY, TC_GRED_STATS, }; struct tc_gred_vq_qopt_offload_params { bool present; u32 limit; u32 prio; u32 min; u32 max; bool is_ecn; bool is_harddrop; u32 probability; /* Only need backlog, see struct tc_prio_qopt_offload_params */ u32 *backlog; }; struct tc_gred_qopt_offload_params { bool grio_on; bool wred_on; unsigned int dp_cnt; unsigned int dp_def; struct gnet_stats_queue *qstats; struct tc_gred_vq_qopt_offload_params tab[MAX_DPs]; }; struct tc_gred_qopt_offload_stats { struct gnet_stats_basic_packed bstats[MAX_DPs]; struct gnet_stats_queue qstats[MAX_DPs]; struct red_stats *xstats[MAX_DPs]; }; struct tc_gred_qopt_offload { enum tc_gred_command command; u32 handle; u32 parent; union { struct tc_gred_qopt_offload_params set; struct tc_gred_qopt_offload_stats stats; }; }; enum tc_prio_command { TC_PRIO_REPLACE, TC_PRIO_DESTROY, TC_PRIO_STATS, TC_PRIO_GRAFT, }; struct tc_prio_qopt_offload_params { int bands; u8 priomap[TC_PRIO_MAX + 1]; /* At the point of un-offloading the Qdisc, the reported backlog and * qlen need to be reduced by the portion that is in HW. */ struct gnet_stats_queue *qstats; }; struct tc_prio_qopt_offload_graft_params { u8 band; u32 child_handle; }; struct tc_prio_qopt_offload { enum tc_prio_command command; u32 handle; u32 parent; union { struct tc_prio_qopt_offload_params replace_params; struct tc_qopt_offload_stats stats; struct tc_prio_qopt_offload_graft_params graft_params; }; }; enum tc_root_command { TC_ROOT_GRAFT, }; struct tc_root_qopt_offload { enum tc_root_command command; u32 handle; bool ingress; }; enum tc_ets_command { TC_ETS_REPLACE, TC_ETS_DESTROY, TC_ETS_STATS, TC_ETS_GRAFT, }; struct tc_ets_qopt_offload_replace_params { unsigned int bands; u8 priomap[TC_PRIO_MAX + 1]; unsigned int quanta[TCQ_ETS_MAX_BANDS]; /* 0 for strict bands. */ unsigned int weights[TCQ_ETS_MAX_BANDS]; struct gnet_stats_queue *qstats; }; struct tc_ets_qopt_offload_graft_params { u8 band; u32 child_handle; }; struct tc_ets_qopt_offload { enum tc_ets_command command; u32 handle; u32 parent; union { struct tc_ets_qopt_offload_replace_params replace_params; struct tc_qopt_offload_stats stats; struct tc_ets_qopt_offload_graft_params graft_params; }; }; enum tc_tbf_command { TC_TBF_REPLACE, TC_TBF_DESTROY, TC_TBF_STATS, }; struct tc_tbf_qopt_offload_replace_params { struct psched_ratecfg rate; u32 max_size; struct gnet_stats_queue *qstats; }; struct tc_tbf_qopt_offload { enum tc_tbf_command command; u32 handle; u32 parent; union { struct tc_tbf_qopt_offload_replace_params replace_params; struct tc_qopt_offload_stats stats; }; }; enum tc_fifo_command { TC_FIFO_REPLACE, TC_FIFO_DESTROY, TC_FIFO_STATS, }; struct tc_fifo_qopt_offload { enum tc_fifo_command command; u32 handle; u32 parent; union { struct tc_qopt_offload_stats stats; }; }; #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * SR-IPv6 implementation * * Author: * David Lebrun <david.lebrun@uclouvain.be> */ #ifndef _NET_SEG6_H #define _NET_SEG6_H #include <linux/net.h> #include <linux/ipv6.h> #include <linux/seg6.h> #include <linux/rhashtable-types.h> static inline void update_csum_diff4(struct sk_buff *skb, __be32 from, __be32 to) { __be32 diff[] = { ~from, to }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } static inline void update_csum_diff16(struct sk_buff *skb, __be32 *from, __be32 *to) { __be32 diff[] = { ~from[0], ~from[1], ~from[2], ~from[3], to[0], to[1], to[2], to[3], }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } struct seg6_pernet_data { struct mutex lock; struct in6_addr __rcu *tun_src; #ifdef CONFIG_IPV6_SEG6_HMAC struct rhashtable hmac_infos; #endif }; static inline struct seg6_pernet_data *seg6_pernet(struct net *net) { #if IS_ENABLED(CONFIG_IPV6) return net->ipv6.seg6_data; #else return NULL; #endif } extern int seg6_init(void); extern void seg6_exit(void); extern int seg6_iptunnel_init(void); extern void seg6_iptunnel_exit(void); extern int seg6_local_init(void); extern void seg6_local_exit(void); extern bool seg6_validate_srh(struct ipv6_sr_hdr *srh, int len, bool reduced); extern int seg6_do_srh_encap(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, int proto); extern int seg6_do_srh_inline(struct sk_buff *skb, struct ipv6_sr_hdr *osrh); extern int seg6_lookup_nexthop(struct sk_buff *skb, struct in6_addr *nhaddr, u32 tbl_id); #endif
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MM_H #define _LINUX_MM_H #include <linux/errno.h> #ifdef __KERNEL__ #include <linux/mmdebug.h> #include <linux/gfp.h> #include <linux/bug.h> #include <linux/list.h> #include <linux/mmzone.h> #include <linux/rbtree.h> #include <linux/atomic.h> #include <linux/debug_locks.h> #include <linux/mm_types.h> #include <linux/mmap_lock.h> #include <linux/range.h> #include <linux/pfn.h> #include <linux/percpu-refcount.h> #include <linux/bit_spinlock.h> #include <linux/shrinker.h> #include <linux/resource.h> #include <linux/page_ext.h> #include <linux/err.h> #include <linux/page-flags.h> #include <linux/page_ref.h> #include <linux/memremap.h> #include <linux/overflow.h> #include <linux/sizes.h> #include <linux/sched.h> #include <linux/pgtable.h> struct mempolicy; struct anon_vma; struct anon_vma_chain; struct file_ra_state; struct user_struct; struct writeback_control; struct bdi_writeback; struct pt_regs; extern int sysctl_page_lock_unfairness; void init_mm_internals(void); #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ extern unsigned long max_mapnr; static inline void set_max_mapnr(unsigned long limit) { max_mapnr = limit; } #else static inline void set_max_mapnr(unsigned long limit) { } #endif extern atomic_long_t _totalram_pages; static inline unsigned long totalram_pages(void) { return (unsigned long)atomic_long_read(&_totalram_pages); } static inline void totalram_pages_inc(void) { atomic_long_inc(&_totalram_pages); } static inline void totalram_pages_dec(void) { atomic_long_dec(&_totalram_pages); } static inline void totalram_pages_add(long count) { atomic_long_add(count, &_totalram_pages); } extern void * high_memory; extern int page_cluster; #ifdef CONFIG_SYSCTL extern int sysctl_legacy_va_layout; #else #define sysctl_legacy_va_layout 0 #endif #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS extern const int mmap_rnd_bits_min; extern const int mmap_rnd_bits_max; extern int mmap_rnd_bits __read_mostly; #endif #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS extern const int mmap_rnd_compat_bits_min; extern const int mmap_rnd_compat_bits_max; extern int mmap_rnd_compat_bits __read_mostly; #endif #include <asm/page.h> #include <asm/processor.h> /* * Architectures that support memory tagging (assigning tags to memory regions, * embedding these tags into addresses that point to these memory regions, and * checking that the memory and the pointer tags match on memory accesses) * redefine this macro to strip tags from pointers. * It's defined as noop for arcitectures that don't support memory tagging. */ #ifndef untagged_addr #define untagged_addr(addr) (addr) #endif #ifndef __pa_symbol #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) #endif #ifndef page_to_virt #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) #endif #ifndef lm_alias #define lm_alias(x) __va(__pa_symbol(x)) #endif /* * To prevent common memory management code establishing * a zero page mapping on a read fault. * This macro should be defined within <asm/pgtable.h>. * s390 does this to prevent multiplexing of hardware bits * related to the physical page in case of virtualization. */ #ifndef mm_forbids_zeropage #define mm_forbids_zeropage(X) (0) #endif /* * On some architectures it is expensive to call memset() for small sizes. * If an architecture decides to implement their own version of * mm_zero_struct_page they should wrap the defines below in a #ifndef and * define their own version of this macro in <asm/pgtable.h> */ #if BITS_PER_LONG == 64 /* This function must be updated when the size of struct page grows above 80 * or reduces below 56. The idea that compiler optimizes out switch() * statement, and only leaves move/store instructions. Also the compiler can * combine write statments if they are both assignments and can be reordered, * this can result in several of the writes here being dropped. */ #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) static inline void __mm_zero_struct_page(struct page *page) { unsigned long *_pp = (void *)page; /* Check that struct page is either 56, 64, 72, or 80 bytes */ BUILD_BUG_ON(sizeof(struct page) & 7); BUILD_BUG_ON(sizeof(struct page) < 56); BUILD_BUG_ON(sizeof(struct page) > 80); switch (sizeof(struct page)) { case 80: _pp[9] = 0; fallthrough; case 72: _pp[8] = 0; fallthrough; case 64: _pp[7] = 0; fallthrough; case 56: _pp[6] = 0; _pp[5] = 0; _pp[4] = 0; _pp[3] = 0; _pp[2] = 0; _pp[1] = 0; _pp[0] = 0; } } #else #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) #endif /* * Default maximum number of active map areas, this limits the number of vmas * per mm struct. Users can overwrite this number by sysctl but there is a * problem. * * When a program's coredump is generated as ELF format, a section is created * per a vma. In ELF, the number of sections is represented in unsigned short. * This means the number of sections should be smaller than 65535 at coredump. * Because the kernel adds some informative sections to a image of program at * generating coredump, we need some margin. The number of extra sections is * 1-3 now and depends on arch. We use "5" as safe margin, here. * * ELF extended numbering allows more than 65535 sections, so 16-bit bound is * not a hard limit any more. Although some userspace tools can be surprised by * that. */ #define MAPCOUNT_ELF_CORE_MARGIN (5) #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) extern int sysctl_max_map_count; extern unsigned long sysctl_user_reserve_kbytes; extern unsigned long sysctl_admin_reserve_kbytes; extern int sysctl_overcommit_memory; extern int sysctl_overcommit_ratio; extern unsigned long sysctl_overcommit_kbytes; int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, loff_t *); #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) /* to align the pointer to the (next) page boundary */ #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) /* * Linux kernel virtual memory manager primitives. * The idea being to have a "virtual" mm in the same way * we have a virtual fs - giving a cleaner interface to the * mm details, and allowing different kinds of memory mappings * (from shared memory to executable loading to arbitrary * mmap() functions). */ struct vm_area_struct *vm_area_alloc(struct mm_struct *); struct vm_area_struct *vm_area_dup(struct vm_area_struct *); void vm_area_free(struct vm_area_struct *); #ifndef CONFIG_MMU extern struct rb_root nommu_region_tree; extern struct rw_semaphore nommu_region_sem; extern unsigned int kobjsize(const void *objp); #endif /* * vm_flags in vm_area_struct, see mm_types.h. * When changing, update also include/trace/events/mmflags.h */ #define VM_NONE 0x00000000 #define VM_READ 0x00000001 /* currently active flags */ #define VM_WRITE 0x00000002 #define VM_EXEC 0x00000004 #define VM_SHARED 0x00000008 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ #define VM_MAYWRITE 0x00000020 #define VM_MAYEXEC 0x00000040 #define VM_MAYSHARE 0x00000080 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ #define VM_LOCKED 0x00002000 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ /* Used by sys_madvise() */ #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ #define VM_SYNC 0x00800000 /* Synchronous page faults */ #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ #ifdef CONFIG_MEM_SOFT_DIRTY # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ #else # define VM_SOFTDIRTY 0 #endif #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ #ifdef CONFIG_ARCH_HAS_PKEYS # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 #ifdef CONFIG_PPC # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 #else # define VM_PKEY_BIT4 0 #endif #endif /* CONFIG_ARCH_HAS_PKEYS */ #if defined(CONFIG_X86) # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ #elif defined(CONFIG_PPC) # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ #elif defined(CONFIG_PARISC) # define VM_GROWSUP VM_ARCH_1 #elif defined(CONFIG_IA64) # define VM_GROWSUP VM_ARCH_1 #elif defined(CONFIG_SPARC64) # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ # define VM_ARCH_CLEAR VM_SPARC_ADI #elif defined(CONFIG_ARM64) # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ # define VM_ARCH_CLEAR VM_ARM64_BTI #elif !defined(CONFIG_MMU) # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ #endif #if defined(CONFIG_ARM64_MTE) # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ #else # define VM_MTE VM_NONE # define VM_MTE_ALLOWED VM_NONE #endif #ifndef VM_GROWSUP # define VM_GROWSUP VM_NONE #endif /* Bits set in the VMA until the stack is in its final location */ #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) /* Common data flag combinations */ #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ VM_MAYWRITE | VM_MAYEXEC) #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC #endif #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS #endif #ifdef CONFIG_STACK_GROWSUP #define VM_STACK VM_GROWSUP #else #define VM_STACK VM_GROWSDOWN #endif #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) /* VMA basic access permission flags */ #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) /* * Special vmas that are non-mergable, non-mlock()able. */ #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) /* This mask prevents VMA from being scanned with khugepaged */ #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) /* This mask defines which mm->def_flags a process can inherit its parent */ #define VM_INIT_DEF_MASK VM_NOHUGEPAGE /* This mask is used to clear all the VMA flags used by mlock */ #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) /* Arch-specific flags to clear when updating VM flags on protection change */ #ifndef VM_ARCH_CLEAR # define VM_ARCH_CLEAR VM_NONE #endif #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) /* * mapping from the currently active vm_flags protection bits (the * low four bits) to a page protection mask.. */ extern pgprot_t protection_map[16]; /** * Fault flag definitions. * * @FAULT_FLAG_WRITE: Fault was a write fault. * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. * @FAULT_FLAG_TRIED: The fault has been tried once. * @FAULT_FLAG_USER: The fault originated in userspace. * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. * * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify * whether we would allow page faults to retry by specifying these two * fault flags correctly. Currently there can be three legal combinations: * * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and * this is the first try * * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and * we've already tried at least once * * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry * * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never * be used. Note that page faults can be allowed to retry for multiple times, * in which case we'll have an initial fault with flags (a) then later on * continuous faults with flags (b). We should always try to detect pending * signals before a retry to make sure the continuous page faults can still be * interrupted if necessary. */ #define FAULT_FLAG_WRITE 0x01 #define FAULT_FLAG_MKWRITE 0x02 #define FAULT_FLAG_ALLOW_RETRY 0x04 #define FAULT_FLAG_RETRY_NOWAIT 0x08 #define FAULT_FLAG_KILLABLE 0x10 #define FAULT_FLAG_TRIED 0x20 #define FAULT_FLAG_USER 0x40 #define FAULT_FLAG_REMOTE 0x80 #define FAULT_FLAG_INSTRUCTION 0x100 #define FAULT_FLAG_INTERRUPTIBLE 0x200 /* * The default fault flags that should be used by most of the * arch-specific page fault handlers. */ #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ FAULT_FLAG_KILLABLE | \ FAULT_FLAG_INTERRUPTIBLE) /** * fault_flag_allow_retry_first - check ALLOW_RETRY the first time * * This is mostly used for places where we want to try to avoid taking * the mmap_lock for too long a time when waiting for another condition * to change, in which case we can try to be polite to release the * mmap_lock in the first round to avoid potential starvation of other * processes that would also want the mmap_lock. * * Return: true if the page fault allows retry and this is the first * attempt of the fault handling; false otherwise. */ static inline bool fault_flag_allow_retry_first(unsigned int flags) { return (flags & FAULT_FLAG_ALLOW_RETRY) && (!(flags & FAULT_FLAG_TRIED)); } #define FAULT_FLAG_TRACE \ { FAULT_FLAG_WRITE, "WRITE" }, \ { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ { FAULT_FLAG_TRIED, "TRIED" }, \ { FAULT_FLAG_USER, "USER" }, \ { FAULT_FLAG_REMOTE, "REMOTE" }, \ { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } /* * vm_fault is filled by the pagefault handler and passed to the vma's * ->fault function. The vma's ->fault is responsible for returning a bitmask * of VM_FAULT_xxx flags that give details about how the fault was handled. * * MM layer fills up gfp_mask for page allocations but fault handler might * alter it if its implementation requires a different allocation context. * * pgoff should be used in favour of virtual_address, if possible. */ struct vm_fault { struct vm_area_struct *vma; /* Target VMA */ unsigned int flags; /* FAULT_FLAG_xxx flags */ gfp_t gfp_mask; /* gfp mask to be used for allocations */ pgoff_t pgoff; /* Logical page offset based on vma */ unsigned long address; /* Faulting virtual address */ pmd_t *pmd; /* Pointer to pmd entry matching * the 'address' */ pud_t *pud; /* Pointer to pud entry matching * the 'address' */ pte_t orig_pte; /* Value of PTE at the time of fault */ struct page *cow_page; /* Page handler may use for COW fault */ struct page *page; /* ->fault handlers should return a * page here, unless VM_FAULT_NOPAGE * is set (which is also implied by * VM_FAULT_ERROR). */ /* These three entries are valid only while holding ptl lock */ pte_t *pte; /* Pointer to pte entry matching * the 'address'. NULL if the page * table hasn't been allocated. */ spinlock_t *ptl; /* Page table lock. * Protects pte page table if 'pte' * is not NULL, otherwise pmd. */ pgtable_t prealloc_pte; /* Pre-allocated pte page table. * vm_ops->map_pages() calls * alloc_set_pte() from atomic context. * do_fault_around() pre-allocates * page table to avoid allocation from * atomic context. */ }; /* page entry size for vm->huge_fault() */ enum page_entry_size { PE_SIZE_PTE = 0, PE_SIZE_PMD, PE_SIZE_PUD, }; /* * These are the virtual MM functions - opening of an area, closing and * unmapping it (needed to keep files on disk up-to-date etc), pointer * to the functions called when a no-page or a wp-page exception occurs. */ struct vm_operations_struct { void (*open)(struct vm_area_struct * area); void (*close)(struct vm_area_struct * area); int (*split)(struct vm_area_struct * area, unsigned long addr); int (*mremap)(struct vm_area_struct * area); vm_fault_t (*fault)(struct vm_fault *vmf); vm_fault_t (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); void (*map_pages)(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff); unsigned long (*pagesize)(struct vm_area_struct * area); /* notification that a previously read-only page is about to become * writable, if an error is returned it will cause a SIGBUS */ vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); /* called by access_process_vm when get_user_pages() fails, typically * for use by special VMAs that can switch between memory and hardware */ int (*access)(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write); /* Called by the /proc/PID/maps code to ask the vma whether it * has a special name. Returning non-NULL will also cause this * vma to be dumped unconditionally. */ const char *(*name)(struct vm_area_struct *vma); #ifdef CONFIG_NUMA /* * set_policy() op must add a reference to any non-NULL @new mempolicy * to hold the policy upon return. Caller should pass NULL @new to * remove a policy and fall back to surrounding context--i.e. do not * install a MPOL_DEFAULT policy, nor the task or system default * mempolicy. */ int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); /* * get_policy() op must add reference [mpol_get()] to any policy at * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure * in mm/mempolicy.c will do this automatically. * get_policy() must NOT add a ref if the policy at (vma,addr) is not * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. * If no [shared/vma] mempolicy exists at the addr, get_policy() op * must return NULL--i.e., do not "fallback" to task or system default * policy. */ struct mempolicy *(*get_policy)(struct vm_area_struct *vma, unsigned long addr); #endif /* * Called by vm_normal_page() for special PTEs to find the * page for @addr. This is useful if the default behavior * (using pte_page()) would not find the correct page. */ struct page *(*find_special_page)(struct vm_area_struct *vma, unsigned long addr); }; static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) { static const struct vm_operations_struct dummy_vm_ops = {}; memset(vma, 0, sizeof(*vma)); vma->vm_mm = mm; vma->vm_ops = &dummy_vm_ops; INIT_LIST_HEAD(&vma->anon_vma_chain); } static inline void vma_set_anonymous(struct vm_area_struct *vma) { vma->vm_ops = NULL; } static inline bool vma_is_anonymous(struct vm_area_struct *vma) { return !vma->vm_ops; } static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) { int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); if (!maybe_stack) return false; if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == VM_STACK_INCOMPLETE_SETUP) return true; return false; } static inline bool vma_is_foreign(struct vm_area_struct *vma) { if (!current->mm) return true; if (current->mm != vma->vm_mm) return true; return false; } static inline bool vma_is_accessible(struct vm_area_struct *vma) { return vma->vm_flags & VM_ACCESS_FLAGS; } #ifdef CONFIG_SHMEM /* * The vma_is_shmem is not inline because it is used only by slow * paths in userfault. */ bool vma_is_shmem(struct vm_area_struct *vma); #else static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } #endif int vma_is_stack_for_current(struct vm_area_struct *vma); /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } struct mmu_gather; struct inode; #include <linux/huge_mm.h> /* * Methods to modify the page usage count. * * What counts for a page usage: * - cache mapping (page->mapping) * - private data (page->private) * - page mapped in a task's page tables, each mapping * is counted separately * * Also, many kernel routines increase the page count before a critical * routine so they can be sure the page doesn't go away from under them. */ /* * Drop a ref, return true if the refcount fell to zero (the page has no users) */ static inline int put_page_testzero(struct page *page) { VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); return page_ref_dec_and_test(page); } /* * Try to grab a ref unless the page has a refcount of zero, return false if * that is the case. * This can be called when MMU is off so it must not access * any of the virtual mappings. */ static inline int get_page_unless_zero(struct page *page) { return page_ref_add_unless(page, 1, 0); } extern int page_is_ram(unsigned long pfn); enum { REGION_INTERSECTS, REGION_DISJOINT, REGION_MIXED, }; int region_intersects(resource_size_t offset, size_t size, unsigned long flags, unsigned long desc); /* Support for virtually mapped pages */ struct page *vmalloc_to_page(const void *addr); unsigned long vmalloc_to_pfn(const void *addr); /* * Determine if an address is within the vmalloc range * * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there * is no special casing required. */ #ifndef is_ioremap_addr #define is_ioremap_addr(x) is_vmalloc_addr(x) #endif #ifdef CONFIG_MMU extern bool is_vmalloc_addr(const void *x); extern int is_vmalloc_or_module_addr(const void *x); #else static inline bool is_vmalloc_addr(const void *x) { return false; } static inline int is_vmalloc_or_module_addr(const void *x) { return 0; } #endif extern void *kvmalloc_node(size_t size, gfp_t flags, int node); static inline void *kvmalloc(size_t size, gfp_t flags) { return kvmalloc_node(size, flags, NUMA_NO_NODE); } static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) { return kvmalloc_node(size, flags | __GFP_ZERO, node); } static inline void *kvzalloc(size_t size, gfp_t flags) { return kvmalloc(size, flags | __GFP_ZERO); } static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; return kvmalloc(bytes, flags); } static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) { return kvmalloc_array(n, size, flags | __GFP_ZERO); } extern void kvfree(const void *addr); extern void kvfree_sensitive(const void *addr, size_t len); static inline int head_compound_mapcount(struct page *head) { return atomic_read(compound_mapcount_ptr(head)) + 1; } /* * Mapcount of compound page as a whole, does not include mapped sub-pages. * * Must be called only for compound pages or any their tail sub-pages. */ static inline int compound_mapcount(struct page *page) { VM_BUG_ON_PAGE(!PageCompound(page), page); page = compound_head(page); return head_compound_mapcount(page); } /* * The atomic page->_mapcount, starts from -1: so that transitions * both from it and to it can be tracked, using atomic_inc_and_test * and atomic_add_negative(-1). */ static inline void page_mapcount_reset(struct page *page) { atomic_set(&(page)->_mapcount, -1); } int __page_mapcount(struct page *page); /* * Mapcount of 0-order page; when compound sub-page, includes * compound_mapcount(). * * Result is undefined for pages which cannot be mapped into userspace. * For example SLAB or special types of pages. See function page_has_type(). * They use this place in struct page differently. */ static inline int page_mapcount(struct page *page) { if (unlikely(PageCompound(page))) return __page_mapcount(page); return atomic_read(&page->_mapcount) + 1; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE int total_mapcount(struct page *page); int page_trans_huge_mapcount(struct page *page, int *total_mapcount); #else static inline int total_mapcount(struct page *page) { return page_mapcount(page); } static inline int page_trans_huge_mapcount(struct page *page, int *total_mapcount) { int mapcount = page_mapcount(page); if (total_mapcount) *total_mapcount = mapcount; return mapcount; } #endif static inline struct page *virt_to_head_page(const void *x) { struct page *page = virt_to_page(x); return compound_head(page); } void __put_page(struct page *page); void put_pages_list(struct list_head *pages); void split_page(struct page *page, unsigned int order); /* * Compound pages have a destructor function. Provide a * prototype for that function and accessor functions. * These are _only_ valid on the head of a compound page. */ typedef void compound_page_dtor(struct page *); /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ enum compound_dtor_id { NULL_COMPOUND_DTOR, COMPOUND_PAGE_DTOR, #ifdef CONFIG_HUGETLB_PAGE HUGETLB_PAGE_DTOR, #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE TRANSHUGE_PAGE_DTOR, #endif NR_COMPOUND_DTORS, }; extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; static inline void set_compound_page_dtor(struct page *page, enum compound_dtor_id compound_dtor) { VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); page[1].compound_dtor = compound_dtor; } static inline void destroy_compound_page(struct page *page) { VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); compound_page_dtors[page[1].compound_dtor](page); } static inline unsigned int compound_order(struct page *page) { if (!PageHead(page)) return 0; return page[1].compound_order; } static inline bool hpage_pincount_available(struct page *page) { /* * Can the page->hpage_pinned_refcount field be used? That field is in * the 3rd page of the compound page, so the smallest (2-page) compound * pages cannot support it. */ page = compound_head(page); return PageCompound(page) && compound_order(page) > 1; } static inline int head_compound_pincount(struct page *head) { return atomic_read(compound_pincount_ptr(head)); } static inline int compound_pincount(struct page *page) { VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); page = compound_head(page); return head_compound_pincount(page); } static inline void set_compound_order(struct page *page, unsigned int order) { page[1].compound_order = order; page[1].compound_nr = 1U << order; } /* Returns the number of pages in this potentially compound page. */ static inline unsigned long compound_nr(struct page *page) { if (!PageHead(page)) return 1; return page[1].compound_nr; } /* Returns the number of bytes in this potentially compound page. */ static inline unsigned long page_size(struct page *page) { return PAGE_SIZE << compound_order(page); } /* Returns the number of bits needed for the number of bytes in a page */ static inline unsigned int page_shift(struct page *page) { return PAGE_SHIFT + compound_order(page); } void free_compound_page(struct page *page); #ifdef CONFIG_MMU /* * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when * servicing faults for write access. In the normal case, do always want * pte_mkwrite. But get_user_pages can cause write faults for mappings * that do not have writing enabled, when used by access_process_vm. */ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) { if (likely(vma->vm_flags & VM_WRITE)) pte = pte_mkwrite(pte); return pte; } vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); vm_fault_t finish_fault(struct vm_fault *vmf); vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); #endif /* * Multiple processes may "see" the same page. E.g. for untouched * mappings of /dev/null, all processes see the same page full of * zeroes, and text pages of executables and shared libraries have * only one copy in memory, at most, normally. * * For the non-reserved pages, page_count(page) denotes a reference count. * page_count() == 0 means the page is free. page->lru is then used for * freelist management in the buddy allocator. * page_count() > 0 means the page has been allocated. * * Pages are allocated by the slab allocator in order to provide memory * to kmalloc and kmem_cache_alloc. In this case, the management of the * page, and the fields in 'struct page' are the responsibility of mm/slab.c * unless a particular usage is carefully commented. (the responsibility of * freeing the kmalloc memory is the caller's, of course). * * A page may be used by anyone else who does a __get_free_page(). * In this case, page_count still tracks the references, and should only * be used through the normal accessor functions. The top bits of page->flags * and page->virtual store page management information, but all other fields * are unused and could be used privately, carefully. The management of this * page is the responsibility of the one who allocated it, and those who have * subsequently been given references to it. * * The other pages (we may call them "pagecache pages") are completely * managed by the Linux memory manager: I/O, buffers, swapping etc. * The following discussion applies only to them. * * A pagecache page contains an opaque `private' member, which belongs to the * page's address_space. Usually, this is the address of a circular list of * the page's disk buffers. PG_private must be set to tell the VM to call * into the filesystem to release these pages. * * A page may belong to an inode's memory mapping. In this case, page->mapping * is the pointer to the inode, and page->index is the file offset of the page, * in units of PAGE_SIZE. * * If pagecache pages are not associated with an inode, they are said to be * anonymous pages. These may become associated with the swapcache, and in that * case PG_swapcache is set, and page->private is an offset into the swapcache. * * In either case (swapcache or inode backed), the pagecache itself holds one * reference to the page. Setting PG_private should also increment the * refcount. The each user mapping also has a reference to the page. * * The pagecache pages are stored in a per-mapping radix tree, which is * rooted at mapping->i_pages, and indexed by offset. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space * lists, we instead now tag pages as dirty/writeback in the radix tree. * * All pagecache pages may be subject to I/O: * - inode pages may need to be read from disk, * - inode pages which have been modified and are MAP_SHARED may need * to be written back to the inode on disk, * - anonymous pages (including MAP_PRIVATE file mappings) which have been * modified may need to be swapped out to swap space and (later) to be read * back into memory. */ /* * The zone field is never updated after free_area_init_core() * sets it, so none of the operations on it need to be atomic. */ /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) /* * Define the bit shifts to access each section. For non-existent * sections we define the shift as 0; that plus a 0 mask ensures * the compiler will optimise away reference to them. */ #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ #ifdef NODE_NOT_IN_PAGE_FLAGS #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ SECTIONS_PGOFF : ZONES_PGOFF) #else #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ NODES_PGOFF : ZONES_PGOFF) #endif #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) #define NODES_MASK ((1UL << NODES_WIDTH) - 1) #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) static inline enum zone_type page_zonenum(const struct page *page) { ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; } #ifdef CONFIG_ZONE_DEVICE static inline bool is_zone_device_page(const struct page *page) { return page_zonenum(page) == ZONE_DEVICE; } extern void memmap_init_zone_device(struct zone *, unsigned long, unsigned long, struct dev_pagemap *); #else static inline bool is_zone_device_page(const struct page *page) { return false; } #endif #ifdef CONFIG_DEV_PAGEMAP_OPS void free_devmap_managed_page(struct page *page); DECLARE_STATIC_KEY_FALSE(devmap_managed_key); static inline bool page_is_devmap_managed(struct page *page) { if (!static_branch_unlikely(&devmap_managed_key)) return false; if (!is_zone_device_page(page)) return false; switch (page->pgmap->type) { case MEMORY_DEVICE_PRIVATE: case MEMORY_DEVICE_FS_DAX: return true; default: break; } return false; } void put_devmap_managed_page(struct page *page); #else /* CONFIG_DEV_PAGEMAP_OPS */ static inline bool page_is_devmap_managed(struct page *page) { return false; } static inline void put_devmap_managed_page(struct page *page) { } #endif /* CONFIG_DEV_PAGEMAP_OPS */ static inline bool is_device_private_page(const struct page *page) { return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && IS_ENABLED(CONFIG_DEVICE_PRIVATE) && is_zone_device_page(page) && page->pgmap->type == MEMORY_DEVICE_PRIVATE; } static inline bool is_pci_p2pdma_page(const struct page *page) { return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && IS_ENABLED(CONFIG_PCI_P2PDMA) && is_zone_device_page(page) && page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; } /* 127: arbitrary random number, small enough to assemble well */ #define page_ref_zero_or_close_to_overflow(page) \ ((unsigned int) page_ref_count(page) + 127u <= 127u) static inline void get_page(struct page *page) { page = compound_head(page); /* * Getting a normal page or the head of a compound page * requires to already have an elevated page->_refcount. */ VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); page_ref_inc(page); } bool __must_check try_grab_page(struct page *page, unsigned int flags); static inline __must_check bool try_get_page(struct page *page) { page = compound_head(page); if (WARN_ON_ONCE(page_ref_count(page) <= 0)) return false; page_ref_inc(page); return true; } static inline void put_page(struct page *page) { page = compound_head(page); /* * For devmap managed pages we need to catch refcount transition from * 2 to 1, when refcount reach one it means the page is free and we * need to inform the device driver through callback. See * include/linux/memremap.h and HMM for details. */ if (page_is_devmap_managed(page)) { put_devmap_managed_page(page); return; } if (put_page_testzero(page)) __put_page(page); } /* * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload * the page's refcount so that two separate items are tracked: the original page * reference count, and also a new count of how many pin_user_pages() calls were * made against the page. ("gup-pinned" is another term for the latter). * * With this scheme, pin_user_pages() becomes special: such pages are marked as * distinct from normal pages. As such, the unpin_user_page() call (and its * variants) must be used in order to release gup-pinned pages. * * Choice of value: * * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference * counts with respect to pin_user_pages() and unpin_user_page() becomes * simpler, due to the fact that adding an even power of two to the page * refcount has the effect of using only the upper N bits, for the code that * counts up using the bias value. This means that the lower bits are left for * the exclusive use of the original code that increments and decrements by one * (or at least, by much smaller values than the bias value). * * Of course, once the lower bits overflow into the upper bits (and this is * OK, because subtraction recovers the original values), then visual inspection * no longer suffices to directly view the separate counts. However, for normal * applications that don't have huge page reference counts, this won't be an * issue. * * Locking: the lockless algorithm described in page_cache_get_speculative() * and page_cache_gup_pin_speculative() provides safe operation for * get_user_pages and page_mkclean and other calls that race to set up page * table entries. */ #define GUP_PIN_COUNTING_BIAS (1U << 10) void unpin_user_page(struct page *page); void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, bool make_dirty); void unpin_user_pages(struct page **pages, unsigned long npages); /** * page_maybe_dma_pinned() - report if a page is pinned for DMA. * * This function checks if a page has been pinned via a call to * pin_user_pages*(). * * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, * because it means "definitely not pinned for DMA", but true means "probably * pinned for DMA, but possibly a false positive due to having at least * GUP_PIN_COUNTING_BIAS worth of normal page references". * * False positives are OK, because: a) it's unlikely for a page to get that many * refcounts, and b) all the callers of this routine are expected to be able to * deal gracefully with a false positive. * * For huge pages, the result will be exactly correct. That's because we have * more tracking data available: the 3rd struct page in the compound page is * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS * scheme). * * For more information, please see Documentation/core-api/pin_user_pages.rst. * * @page: pointer to page to be queried. * @Return: True, if it is likely that the page has been "dma-pinned". * False, if the page is definitely not dma-pinned. */ static inline bool page_maybe_dma_pinned(struct page *page) { if (hpage_pincount_available(page)) return compound_pincount(page) > 0; /* * page_ref_count() is signed. If that refcount overflows, then * page_ref_count() returns a negative value, and callers will avoid * further incrementing the refcount. * * Here, for that overflow case, use the signed bit to count a little * bit higher via unsigned math, and thus still get an accurate result. */ return ((unsigned int)page_ref_count(compound_head(page))) >= GUP_PIN_COUNTING_BIAS; } #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) #define SECTION_IN_PAGE_FLAGS #endif /* * The identification function is mainly used by the buddy allocator for * determining if two pages could be buddies. We are not really identifying * the zone since we could be using the section number id if we do not have * node id available in page flags. * We only guarantee that it will return the same value for two combinable * pages in a zone. */ static inline int page_zone_id(struct page *page) { return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; } #ifdef NODE_NOT_IN_PAGE_FLAGS extern int page_to_nid(const struct page *page); #else static inline int page_to_nid(const struct page *page) { struct page *p = (struct page *)page; return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; } #endif #ifdef CONFIG_NUMA_BALANCING static inline int cpu_pid_to_cpupid(int cpu, int pid) { return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); } static inline int cpupid_to_pid(int cpupid) { return cpupid & LAST__PID_MASK; } static inline int cpupid_to_cpu(int cpupid) { return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; } static inline int cpupid_to_nid(int cpupid) { return cpu_to_node(cpupid_to_cpu(cpupid)); } static inline bool cpupid_pid_unset(int cpupid) { return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); } static inline bool cpupid_cpu_unset(int cpupid) { return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); } static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) { return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); } #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS static inline int page_cpupid_xchg_last(struct page *page, int cpupid) { return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); } static inline int page_cpupid_last(struct page *page) { return page->_last_cpupid; } static inline void page_cpupid_reset_last(struct page *page) { page->_last_cpupid = -1 & LAST_CPUPID_MASK; } #else static inline int page_cpupid_last(struct page *page) { return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; } extern int page_cpupid_xchg_last(struct page *page, int cpupid); static inline void page_cpupid_reset_last(struct page *page) { page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; } #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ #else /* !CONFIG_NUMA_BALANCING */ static inline int page_cpupid_xchg_last(struct page *page, int cpupid) { return page_to_nid(page); /* XXX */ } static inline int page_cpupid_last(struct page *page) { return page_to_nid(page); /* XXX */ } static inline int cpupid_to_nid(int cpupid) { return -1; } static inline int cpupid_to_pid(int cpupid) { return -1; } static inline int cpupid_to_cpu(int cpupid) { return -1; } static inline int cpu_pid_to_cpupid(int nid, int pid) { return -1; } static inline bool cpupid_pid_unset(int cpupid) { return true; } static inline void page_cpupid_reset_last(struct page *page) { } static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) { return false; } #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_KASAN_SW_TAGS /* * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid * setting tags for all pages to native kernel tag value 0xff, as the default * value 0x00 maps to 0xff. */ static inline u8 page_kasan_tag(const struct page *page) { u8 tag; tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; tag ^= 0xff; return tag; } static inline void page_kasan_tag_set(struct page *page, u8 tag) { tag ^= 0xff; page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; } static inline void page_kasan_tag_reset(struct page *page) { page_kasan_tag_set(page, 0xff); } #else static inline u8 page_kasan_tag(const struct page *page) { return 0xff; } static inline void page_kasan_tag_set(struct page *page, u8 tag) { } static inline void page_kasan_tag_reset(struct page *page) { } #endif static inline struct zone *page_zone(const struct page *page) { return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; } static inline pg_data_t *page_pgdat(const struct page *page) { return NODE_DATA(page_to_nid(page)); } #ifdef SECTION_IN_PAGE_FLAGS static inline void set_page_section(struct page *page, unsigned long section) { page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; } static inline unsigned long page_to_section(const struct page *page) { return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; } #endif static inline void set_page_zone(struct page *page, enum zone_type zone) { page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; } static inline void set_page_node(struct page *page, unsigned long node) { page->flags &= ~(NODES_MASK << NODES_PGSHIFT); page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; } static inline void set_page_links(struct page *page, enum zone_type zone, unsigned long node, unsigned long pfn) { set_page_zone(page, zone); set_page_node(page, node); #ifdef SECTION_IN_PAGE_FLAGS set_page_section(page, pfn_to_section_nr(pfn)); #endif } #ifdef CONFIG_MEMCG static inline struct mem_cgroup *page_memcg(struct page *page) { return page->mem_cgroup; } static inline struct mem_cgroup *page_memcg_rcu(struct page *page) { WARN_ON_ONCE(!rcu_read_lock_held()); return READ_ONCE(page->mem_cgroup); } #else static inline struct mem_cgroup *page_memcg(struct page *page) { return NULL; } static inline struct mem_cgroup *page_memcg_rcu(struct page *page) { WARN_ON_ONCE(!rcu_read_lock_held()); return NULL; } #endif /* * Some inline functions in vmstat.h depend on page_zone() */ #include <linux/vmstat.h> static __always_inline void *lowmem_page_address(const struct page *page) { return page_to_virt(page); } #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) #define HASHED_PAGE_VIRTUAL #endif #if defined(WANT_PAGE_VIRTUAL) static inline void *page_address(const struct page *page) { return page->virtual; } static inline void set_page_address(struct page *page, void *address) { page->virtual = address; } #define page_address_init() do { } while(0) #endif #if defined(HASHED_PAGE_VIRTUAL) void *page_address(const struct page *page); void set_page_address(struct page *page, void *virtual); void page_address_init(void); #endif #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) #define page_address(page) lowmem_page_address(page) #define set_page_address(page, address) do { } while(0) #define page_address_init() do { } while(0) #endif extern void *page_rmapping(struct page *page); extern struct anon_vma *page_anon_vma(struct page *page); extern struct address_space *page_mapping(struct page *page); extern struct address_space *__page_file_mapping(struct page *); static inline struct address_space *page_file_mapping(struct page *page) { if (unlikely(PageSwapCache(page))) return __page_file_mapping(page); return page->mapping; } extern pgoff_t __page_file_index(struct page *page); /* * Return the pagecache index of the passed page. Regular pagecache pages * use ->index whereas swapcache pages use swp_offset(->private) */ static inline pgoff_t page_index(struct page *page) { if (unlikely(PageSwapCache(page))) return __page_file_index(page); return page->index; } bool page_mapped(struct page *page); struct address_space *page_mapping(struct page *page); struct address_space *page_mapping_file(struct page *page); /* * Return true only if the page has been allocated with * ALLOC_NO_WATERMARKS and the low watermark was not * met implying that the system is under some pressure. */ static inline bool page_is_pfmemalloc(struct page *page) { /* * Page index cannot be this large so this must be * a pfmemalloc page. */ return page->index == -1UL; } /* * Only to be called by the page allocator on a freshly allocated * page. */ static inline void set_page_pfmemalloc(struct page *page) { page->index = -1UL; } static inline void clear_page_pfmemalloc(struct page *page) { page->index = 0; } /* * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. */ extern void pagefault_out_of_memory(void); #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) /* * Flags passed to show_mem() and show_free_areas() to suppress output in * various contexts. */ #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); #ifdef CONFIG_MMU extern bool can_do_mlock(void); #else static inline bool can_do_mlock(void) { return false; } #endif extern int user_shm_lock(size_t, struct user_struct *); extern void user_shm_unlock(size_t, struct user_struct *); /* * Parameter block passed down to zap_pte_range in exceptional cases. */ struct zap_details { struct address_space *check_mapping; /* Check page->mapping if set */ pgoff_t first_index; /* Lowest page->index to unmap */ pgoff_t last_index; /* Highest page->index to unmap */ struct page *single_page; /* Locked page to be unmapped */ }; struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte); struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd); void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size); void zap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size); void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, unsigned long start, unsigned long end); struct mmu_notifier_range; void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling); int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp); int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn); int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys); int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write); extern void truncate_pagecache(struct inode *inode, loff_t new); extern void truncate_setsize(struct inode *inode, loff_t newsize); void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); int truncate_inode_page(struct address_space *mapping, struct page *page); int generic_error_remove_page(struct address_space *mapping, struct page *page); int invalidate_inode_page(struct page *page); #ifdef CONFIG_MMU extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs); extern int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags, bool *unlocked); void unmap_mapping_page(struct page *page); void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows); void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows); #else static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs) { /* should never happen if there's no MMU */ BUG(); return VM_FAULT_SIGBUS; } static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags, bool *unlocked) { /* should never happen if there's no MMU */ BUG(); return -EFAULT; } static inline void unmap_mapping_page(struct page *page) { } static inline void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows) { } static inline void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) { } #endif static inline void unmap_shared_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen) { unmap_mapping_range(mapping, holebegin, holelen, 0); } extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags); extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags); extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags); long get_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas, int *locked); long pin_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas, int *locked); long get_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas); long pin_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas); long get_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, int *locked); long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, int *locked); long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags); long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags); int get_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int pin_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, struct task_struct *task, bool bypass_rlim); /* Container for pinned pfns / pages */ struct frame_vector { unsigned int nr_allocated; /* Number of frames we have space for */ unsigned int nr_frames; /* Number of frames stored in ptrs array */ bool got_ref; /* Did we pin pages by getting page ref? */ bool is_pfns; /* Does array contain pages or pfns? */ void *ptrs[]; /* Array of pinned pfns / pages. Use * pfns_vector_pages() or pfns_vector_pfns() * for access */ }; struct frame_vector *frame_vector_create(unsigned int nr_frames); void frame_vector_destroy(struct frame_vector *vec); int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, unsigned int gup_flags, struct frame_vector *vec); void put_vaddr_frames(struct frame_vector *vec); int frame_vector_to_pages(struct frame_vector *vec); void frame_vector_to_pfns(struct frame_vector *vec); static inline unsigned int frame_vector_count(struct frame_vector *vec) { return vec->nr_frames; } static inline struct page **frame_vector_pages(struct frame_vector *vec) { if (vec->is_pfns) { int err = frame_vector_to_pages(vec); if (err) return ERR_PTR(err); } return (struct page **)(vec->ptrs); } static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) { if (!vec->is_pfns) frame_vector_to_pfns(vec); return (unsigned long *)(vec->ptrs); } struct kvec; int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, struct page **pages); int get_kernel_page(unsigned long start, int write, struct page **pages); struct page *get_dump_page(unsigned long addr); extern int try_to_release_page(struct page * page, gfp_t gfp_mask); extern void do_invalidatepage(struct page *page, unsigned int offset, unsigned int length); void __set_page_dirty(struct page *, struct address_space *, int warn); int __set_page_dirty_nobuffers(struct page *page); int __set_page_dirty_no_writeback(struct page *page); int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page); void account_page_dirtied(struct page *page, struct address_space *mapping); void account_page_cleaned(struct page *page, struct address_space *mapping, struct bdi_writeback *wb); int set_page_dirty(struct page *page); int set_page_dirty_lock(struct page *page); void __cancel_dirty_page(struct page *page); static inline void cancel_dirty_page(struct page *page) { /* Avoid atomic ops, locking, etc. when not actually needed. */ if (PageDirty(page)) __cancel_dirty_page(page); } int clear_page_dirty_for_io(struct page *page); int get_cmdline(struct task_struct *task, char *buffer, int buflen); extern unsigned long move_page_tables(struct vm_area_struct *vma, unsigned long old_addr, struct vm_area_struct *new_vma, unsigned long new_addr, unsigned long len, bool need_rmap_locks); /* * Flags used by change_protection(). For now we make it a bitmap so * that we can pass in multiple flags just like parameters. However * for now all the callers are only use one of the flags at the same * time. */ /* Whether we should allow dirty bit accounting */ #define MM_CP_DIRTY_ACCT (1UL << 0) /* Whether this protection change is for NUMA hints */ #define MM_CP_PROT_NUMA (1UL << 1) /* Whether this change is for write protecting */ #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ MM_CP_UFFD_WP_RESOLVE) extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgprot_t newprot, unsigned long cp_flags); extern int mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, unsigned long start, unsigned long end, unsigned long newflags); /* * doesn't attempt to fault and will return short. */ int get_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int pin_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); static inline bool get_user_page_fast_only(unsigned long addr, unsigned int gup_flags, struct page **pagep) { return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; } /* * per-process(per-mm_struct) statistics. */ static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) { long val = atomic_long_read(&mm->rss_stat.count[member]); #ifdef SPLIT_RSS_COUNTING /* * counter is updated in asynchronous manner and may go to minus. * But it's never be expected number for users. */ if (val < 0) val = 0; #endif return (unsigned long)val; } void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); static inline void add_mm_counter(struct mm_struct *mm, int member, long value) { long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } static inline void inc_mm_counter(struct mm_struct *mm, int member) { long count = atomic_long_inc_return(&mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } static inline void dec_mm_counter(struct mm_struct *mm, int member) { long count = atomic_long_dec_return(&mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } /* Optimized variant when page is already known not to be PageAnon */ static inline int mm_counter_file(struct page *page) { if (PageSwapBacked(page)) return MM_SHMEMPAGES; return MM_FILEPAGES; } static inline int mm_counter(struct page *page) { if (PageAnon(page)) return MM_ANONPAGES; return mm_counter_file(page); } static inline unsigned long get_mm_rss(struct mm_struct *mm) { return get_mm_counter(mm, MM_FILEPAGES) + get_mm_counter(mm, MM_ANONPAGES) + get_mm_counter(mm, MM_SHMEMPAGES); } static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) { return max(mm->hiwater_rss, get_mm_rss(mm)); } static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) { return max(mm->hiwater_vm, mm->total_vm); } static inline void update_hiwater_rss(struct mm_struct *mm) { unsigned long _rss = get_mm_rss(mm); if ((mm)->hiwater_rss < _rss) (mm)->hiwater_rss = _rss; } static inline void update_hiwater_vm(struct mm_struct *mm) { if (mm->hiwater_vm < mm->total_vm) mm->hiwater_vm = mm->total_vm; } static inline void reset_mm_hiwater_rss(struct mm_struct *mm) { mm->hiwater_rss = get_mm_rss(mm); } static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, struct mm_struct *mm) { unsigned long hiwater_rss = get_mm_hiwater_rss(mm); if (*maxrss < hiwater_rss) *maxrss = hiwater_rss; } #if defined(SPLIT_RSS_COUNTING) void sync_mm_rss(struct mm_struct *mm); #else static inline void sync_mm_rss(struct mm_struct *mm) { } #endif #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL static inline int pte_special(pte_t pte) { return 0; } static inline pte_t pte_mkspecial(pte_t pte) { return pte; } #endif #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pte_devmap(pte_t pte) { return 0; } #endif int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pte_t *ptep; __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); return ptep; } #ifdef __PAGETABLE_P4D_FOLDED static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { return 0; } #else int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); #endif #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { return 0; } static inline void mm_inc_nr_puds(struct mm_struct *mm) {} static inline void mm_dec_nr_puds(struct mm_struct *mm) {} #else int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); static inline void mm_inc_nr_puds(struct mm_struct *mm) { if (mm_pud_folded(mm)) return; atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); } static inline void mm_dec_nr_puds(struct mm_struct *mm) { if (mm_pud_folded(mm)) return; atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); } #endif #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { return 0; } static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} #else int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); static inline void mm_inc_nr_pmds(struct mm_struct *mm) { if (mm_pmd_folded(mm)) return; atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); } static inline void mm_dec_nr_pmds(struct mm_struct *mm) { if (mm_pmd_folded(mm)) return; atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); } #endif #ifdef CONFIG_MMU static inline void mm_pgtables_bytes_init(struct mm_struct *mm) { atomic_long_set(&mm->pgtables_bytes, 0); } static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) { return atomic_long_read(&mm->pgtables_bytes); } static inline void mm_inc_nr_ptes(struct mm_struct *mm) { atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); } static inline void mm_dec_nr_ptes(struct mm_struct *mm) { atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); } #else static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) { return 0; } static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} #endif int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); int __pte_alloc_kernel(pmd_t *pmd); #if defined(CONFIG_MMU) static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? NULL : p4d_offset(pgd, address); } static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? NULL : pud_offset(p4d, address); } static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? NULL: pmd_offset(pud, address); } #endif /* CONFIG_MMU */ #if USE_SPLIT_PTE_PTLOCKS #if ALLOC_SPLIT_PTLOCKS void __init ptlock_cache_init(void); extern bool ptlock_alloc(struct page *page); extern void ptlock_free(struct page *page); static inline spinlock_t *ptlock_ptr(struct page *page) { return page->ptl; } #else /* ALLOC_SPLIT_PTLOCKS */ static inline void ptlock_cache_init(void) { } static inline bool ptlock_alloc(struct page *page) { return true; } static inline void ptlock_free(struct page *page) { } static inline spinlock_t *ptlock_ptr(struct page *page) { return &page->ptl; } #endif /* ALLOC_SPLIT_PTLOCKS */ static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) { return ptlock_ptr(pmd_page(*pmd)); } static inline bool ptlock_init(struct page *page) { /* * prep_new_page() initialize page->private (and therefore page->ptl) * with 0. Make sure nobody took it in use in between. * * It can happen if arch try to use slab for page table allocation: * slab code uses page->slab_cache, which share storage with page->ptl. */ VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); if (!ptlock_alloc(page)) return false; spin_lock_init(ptlock_ptr(page)); return true; } #else /* !USE_SPLIT_PTE_PTLOCKS */ /* * We use mm->page_table_lock to guard all pagetable pages of the mm. */ static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) { return &mm->page_table_lock; } static inline void ptlock_cache_init(void) {} static inline bool ptlock_init(struct page *page) { return true; } static inline void ptlock_free(struct page *page) {} #endif /* USE_SPLIT_PTE_PTLOCKS */ static inline void pgtable_init(void) { ptlock_cache_init(); pgtable_cache_init(); } static inline bool pgtable_pte_page_ctor(struct page *page) { if (!ptlock_init(page)) return false; __SetPageTable(page); inc_zone_page_state(page, NR_PAGETABLE); return true; } static inline void pgtable_pte_page_dtor(struct page *page) { ptlock_free(page); __ClearPageTable(page); dec_zone_page_state(page, NR_PAGETABLE); } #define pte_offset_map_lock(mm, pmd, address, ptlp) \ ({ \ spinlock_t *__ptl = pte_lockptr(mm, pmd); \ pte_t *__pte = pte_offset_map(pmd, address); \ *(ptlp) = __ptl; \ spin_lock(__ptl); \ __pte; \ }) #define pte_unmap_unlock(pte, ptl) do { \ spin_unlock(ptl); \ pte_unmap(pte); \ } while (0) #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) #define pte_alloc_map(mm, pmd, address) \ (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ (pte_alloc(mm, pmd) ? \ NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) #define pte_alloc_kernel(pmd, address) \ ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ NULL: pte_offset_kernel(pmd, address)) #if USE_SPLIT_PMD_PTLOCKS static struct page *pmd_to_page(pmd_t *pmd) { unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); return virt_to_page((void *)((unsigned long) pmd & mask)); } static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) { return ptlock_ptr(pmd_to_page(pmd)); } static inline bool pmd_ptlock_init(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE page->pmd_huge_pte = NULL; #endif return ptlock_init(page); } static inline void pmd_ptlock_free(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE VM_BUG_ON_PAGE(page->pmd_huge_pte, page); #endif ptlock_free(page); } #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) #else static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) { return &mm->page_table_lock; } static inline bool pmd_ptlock_init(struct page *page) { return true; } static inline void pmd_ptlock_free(struct page *page) {} #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) #endif static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) { spinlock_t *ptl = pmd_lockptr(mm, pmd); spin_lock(ptl); return ptl; } static inline bool pgtable_pmd_page_ctor(struct page *page) { if (!pmd_ptlock_init(page)) return false; __SetPageTable(page); inc_zone_page_state(page, NR_PAGETABLE); return true; } static inline void pgtable_pmd_page_dtor(struct page *page) { pmd_ptlock_free(page); __ClearPageTable(page); dec_zone_page_state(page, NR_PAGETABLE); } /* * No scalability reason to split PUD locks yet, but follow the same pattern * as the PMD locks to make it easier if we decide to. The VM should not be * considered ready to switch to split PUD locks yet; there may be places * which need to be converted from page_table_lock. */ static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) { return &mm->page_table_lock; } static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) { spinlock_t *ptl = pud_lockptr(mm, pud); spin_lock(ptl); return ptl; } extern void __init pagecache_init(void); extern void __init free_area_init_memoryless_node(int nid); extern void free_initmem(void); /* * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) * into the buddy system. The freed pages will be poisoned with pattern * "poison" if it's within range [0, UCHAR_MAX]. * Return pages freed into the buddy system. */ extern unsigned long free_reserved_area(void *start, void *end, int poison, const char *s); #ifdef CONFIG_HIGHMEM /* * Free a highmem page into the buddy system, adjusting totalhigh_pages * and totalram_pages. */ extern void free_highmem_page(struct page *page); #endif extern void adjust_managed_page_count(struct page *page, long count); extern void mem_init_print_info(const char *str); extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); /* Free the reserved page into the buddy system, so it gets managed. */ static inline void __free_reserved_page(struct page *page) { ClearPageReserved(page); init_page_count(page); __free_page(page); } static inline void free_reserved_page(struct page *page) { __free_reserved_page(page); adjust_managed_page_count(page, 1); } static inline void mark_page_reserved(struct page *page) { SetPageReserved(page); adjust_managed_page_count(page, -1); } /* * Default method to free all the __init memory into the buddy system. * The freed pages will be poisoned with pattern "poison" if it's within * range [0, UCHAR_MAX]. * Return pages freed into the buddy system. */ static inline unsigned long free_initmem_default(int poison) { extern char __init_begin[], __init_end[]; return free_reserved_area(&__init_begin, &__init_end, poison, "unused kernel"); } static inline unsigned long get_num_physpages(void) { int nid; unsigned long phys_pages = 0; for_each_online_node(nid) phys_pages += node_present_pages(nid); return phys_pages; } /* * Using memblock node mappings, an architecture may initialise its * zones, allocate the backing mem_map and account for memory holes in an * architecture independent manner. * * An architecture is expected to register range of page frames backed by * physical memory with memblock_add[_node]() before calling * free_area_init() passing in the PFN each zone ends at. At a basic * usage, an architecture is expected to do something like * * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, * max_highmem_pfn}; * for_each_valid_physical_page_range() * memblock_add_node(base, size, nid) * free_area_init(max_zone_pfns); */ void free_area_init(unsigned long *max_zone_pfn); unsigned long node_map_pfn_alignment(void); unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, unsigned long end_pfn); extern unsigned long absent_pages_in_range(unsigned long start_pfn, unsigned long end_pfn); extern void get_pfn_range_for_nid(unsigned int nid, unsigned long *start_pfn, unsigned long *end_pfn); extern unsigned long find_min_pfn_with_active_regions(void); #ifndef CONFIG_NEED_MULTIPLE_NODES static inline int early_pfn_to_nid(unsigned long pfn) { return 0; } #else /* please see mm/page_alloc.c */ extern int __meminit early_pfn_to_nid(unsigned long pfn); /* there is a per-arch backend function. */ extern int __meminit __early_pfn_to_nid(unsigned long pfn, struct mminit_pfnnid_cache *state); #endif extern void set_dma_reserve(unsigned long new_dma_reserve); extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, unsigned long, enum meminit_context, struct vmem_altmap *, int migratetype); extern void setup_per_zone_wmarks(void); extern int __meminit init_per_zone_wmark_min(void); extern void mem_init(void); extern void __init mmap_init(void); extern void show_mem(unsigned int flags, nodemask_t *nodemask); extern long si_mem_available(void); extern void si_meminfo(struct sysinfo * val); extern void si_meminfo_node(struct sysinfo *val, int nid); #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES extern unsigned long arch_reserved_kernel_pages(void); #endif extern __printf(3, 4) void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); extern void setup_per_cpu_pageset(void); /* page_alloc.c */ extern int min_free_kbytes; extern int watermark_boost_factor; extern int watermark_scale_factor; extern bool arch_has_descending_max_zone_pfns(void); /* nommu.c */ extern atomic_long_t mmap_pages_allocated; extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); /* interval_tree.c */ void vma_interval_tree_insert(struct vm_area_struct *node, struct rb_root_cached *root); void vma_interval_tree_insert_after(struct vm_area_struct *node, struct vm_area_struct *prev, struct rb_root_cached *root); void vma_interval_tree_remove(struct vm_area_struct *node, struct rb_root_cached *root); struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long start, unsigned long last); struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, unsigned long start, unsigned long last); #define vma_interval_tree_foreach(vma, root, start, last) \ for (vma = vma_interval_tree_iter_first(root, start, last); \ vma; vma = vma_interval_tree_iter_next(vma, start, last)) void anon_vma_interval_tree_insert(struct anon_vma_chain *node, struct rb_root_cached *root); void anon_vma_interval_tree_remove(struct anon_vma_chain *node, struct rb_root_cached *root); struct anon_vma_chain * anon_vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long start, unsigned long last); struct anon_vma_chain *anon_vma_interval_tree_iter_next( struct anon_vma_chain *node, unsigned long start, unsigned long last); #ifdef CONFIG_DEBUG_VM_RB void anon_vma_interval_tree_verify(struct anon_vma_chain *node); #endif #define anon_vma_interval_tree_foreach(avc, root, start, last) \ for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) /* mmap.c */ extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, struct vm_area_struct *expand); static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) { return __vma_adjust(vma, start, end, pgoff, insert, NULL); } extern struct vm_area_struct *vma_merge(struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, unsigned long end, unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx); extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); extern int __split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below); extern int split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below); extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, struct rb_node **, struct rb_node *); extern void unlink_file_vma(struct vm_area_struct *); extern struct vm_area_struct *copy_vma(struct vm_area_struct **, unsigned long addr, unsigned long len, pgoff_t pgoff, bool *need_rmap_locks); extern void exit_mmap(struct mm_struct *); static inline int check_data_rlimit(unsigned long rlim, unsigned long new, unsigned long start, unsigned long end_data, unsigned long start_data) { if (rlim < RLIM_INFINITY) { if (((new - start) + (end_data - start_data)) > rlim) return -ENOSPC; } return 0; } extern int mm_take_all_locks(struct mm_struct *mm); extern void mm_drop_all_locks(struct mm_struct *mm); extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); extern struct file *get_mm_exe_file(struct mm_struct *mm); extern struct file *get_task_exe_file(struct task_struct *task); extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); extern bool vma_is_special_mapping(const struct vm_area_struct *vma, const struct vm_special_mapping *sm); extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long flags, const struct vm_special_mapping *spec); /* This is an obsolete alternative to _install_special_mapping. */ extern int install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long flags, struct page **pages); unsigned long randomize_stack_top(unsigned long stack_top); extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long mmap_region(struct file *file, unsigned long addr, unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, struct list_head *uf); extern unsigned long do_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, unsigned long pgoff, unsigned long *populate, struct list_head *uf); extern int __do_munmap(struct mm_struct *, unsigned long, size_t, struct list_head *uf, bool downgrade); extern int do_munmap(struct mm_struct *, unsigned long, size_t, struct list_head *uf); extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); #ifdef CONFIG_MMU extern int __mm_populate(unsigned long addr, unsigned long len, int ignore_errors); static inline void mm_populate(unsigned long addr, unsigned long len) { /* Ignore errors */ (void) __mm_populate(addr, len, 1); } #else static inline void mm_populate(unsigned long addr, unsigned long len) {} #endif /* These take the mm semaphore themselves */ extern int __must_check vm_brk(unsigned long, unsigned long); extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); extern int vm_munmap(unsigned long, size_t); extern unsigned long __must_check vm_mmap(struct file *, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long); struct vm_unmapped_area_info { #define VM_UNMAPPED_AREA_TOPDOWN 1 unsigned long flags; unsigned long length; unsigned long low_limit; unsigned long high_limit; unsigned long align_mask; unsigned long align_offset; }; extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); /* truncate.c */ extern void truncate_inode_pages(struct address_space *, loff_t); extern void truncate_inode_pages_range(struct address_space *, loff_t lstart, loff_t lend); extern void truncate_inode_pages_final(struct address_space *); /* generic vm_area_ops exported for stackable file systems */ extern vm_fault_t filemap_fault(struct vm_fault *vmf); extern void filemap_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff); extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); /* mm/page-writeback.c */ int __must_check write_one_page(struct page *page); void task_dirty_inc(struct task_struct *tsk); extern unsigned long stack_guard_gap; /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ extern int expand_stack(struct vm_area_struct *vma, unsigned long address); /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ extern int expand_downwards(struct vm_area_struct *vma, unsigned long address); #if VM_GROWSUP extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); #else #define expand_upwards(vma, address) (0) #endif /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, struct vm_area_struct **pprev); /* Look up the first VMA which intersects the interval start_addr..end_addr-1, NULL if none. Assume start_addr < end_addr. */ static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) { struct vm_area_struct * vma = find_vma(mm,start_addr); if (vma && end_addr <= vma->vm_start) vma = NULL; return vma; } static inline unsigned long vm_start_gap(struct vm_area_struct *vma) { unsigned long vm_start = vma->vm_start; if (vma->vm_flags & VM_GROWSDOWN) { vm_start -= stack_guard_gap; if (vm_start > vma->vm_start) vm_start = 0; } return vm_start; } static inline unsigned long vm_end_gap(struct vm_area_struct *vma) { unsigned long vm_end = vma->vm_end; if (vma->vm_flags & VM_GROWSUP) { vm_end += stack_guard_gap; if (vm_end < vma->vm_end) vm_end = -PAGE_SIZE; } return vm_end; } static inline unsigned long vma_pages(struct vm_area_struct *vma) { return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; } /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, unsigned long vm_start, unsigned long vm_end) { struct vm_area_struct *vma = find_vma(mm, vm_start); if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) vma = NULL; return vma; } static inline bool range_in_vma(struct vm_area_struct *vma, unsigned long start, unsigned long end) { return (vma && vma->vm_start <= start && end <= vma->vm_end); } #ifdef CONFIG_MMU pgprot_t vm_get_page_prot(unsigned long vm_flags); void vma_set_page_prot(struct vm_area_struct *vma); #else static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) { return __pgprot(0); } static inline void vma_set_page_prot(struct vm_area_struct *vma) { vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); } #endif #ifdef CONFIG_NUMA_BALANCING unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long start, unsigned long end); #endif struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); int remap_pfn_range(struct vm_area_struct *, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t); int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num); int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num); int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num); vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn); vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot); vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn); vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot); vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn); int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) { int err = vm_insert_page(vma, addr, page); if (err == -ENOMEM) return VM_FAULT_OOM; if (err < 0 && err != -EBUSY) return VM_FAULT_SIGBUS; return VM_FAULT_NOPAGE; } #ifndef io_remap_pfn_range static inline int io_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); } #endif static inline vm_fault_t vmf_error(int err) { if (err == -ENOMEM) return VM_FAULT_OOM; return VM_FAULT_SIGBUS; } struct page *follow_page(struct vm_area_struct *vma, unsigned long address, unsigned int foll_flags); #define FOLL_WRITE 0x01 /* check pte is writable */ #define FOLL_TOUCH 0x02 /* mark page accessed */ #define FOLL_GET 0x04 /* do get_page on page */ #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO * and return without waiting upon it */ #define FOLL_POPULATE 0x40 /* fault in page */ #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ #define FOLL_MLOCK 0x1000 /* lock present pages */ #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ #define FOLL_COW 0x4000 /* internal GUP flag */ #define FOLL_ANON 0x8000 /* don't do file mappings */ #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ /* * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each * other. Here is what they mean, and how to use them: * * FOLL_LONGTERM indicates that the page will be held for an indefinite time * period _often_ under userspace control. This is in contrast to * iov_iter_get_pages(), whose usages are transient. * * FIXME: For pages which are part of a filesystem, mappings are subject to the * lifetime enforced by the filesystem and we need guarantees that longterm * users like RDMA and V4L2 only establish mappings which coordinate usage with * the filesystem. Ideas for this coordination include revoking the longterm * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was * added after the problem with filesystems was found FS DAX VMAs are * specifically failed. Filesystem pages are still subject to bugs and use of * FOLL_LONGTERM should be avoided on those pages. * * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. * Currently only get_user_pages() and get_user_pages_fast() support this flag * and calls to get_user_pages_[un]locked are specifically not allowed. This * is due to an incompatibility with the FS DAX check and * FAULT_FLAG_ALLOW_RETRY. * * In the CMA case: long term pins in a CMA region would unnecessarily fragment * that region. And so, CMA attempts to migrate the page before pinning, when * FOLL_LONGTERM is specified. * * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, * but an additional pin counting system) will be invoked. This is intended for * anything that gets a page reference and then touches page data (for example, * Direct IO). This lets the filesystem know that some non-file-system entity is * potentially changing the pages' data. In contrast to FOLL_GET (whose pages * are released via put_page()), FOLL_PIN pages must be released, ultimately, by * a call to unpin_user_page(). * * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different * and separate refcounting mechanisms, however, and that means that each has * its own acquire and release mechanisms: * * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. * * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. * * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based * calls applied to them, and that's perfectly OK. This is a constraint on the * callers, not on the pages.) * * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never * directly by the caller. That's in order to help avoid mismatches when * releasing pages: get_user_pages*() pages must be released via put_page(), * while pin_user_pages*() pages must be released via unpin_user_page(). * * Please see Documentation/core-api/pin_user_pages.rst for more information. */ static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) { if (vm_fault & VM_FAULT_OOM) return -ENOMEM; if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) return -EFAULT; return 0; } typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn, void *data); extern int apply_to_existing_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn, void *data); #ifdef CONFIG_PAGE_POISONING extern bool page_poisoning_enabled(void); extern void kernel_poison_pages(struct page *page, int numpages, int enable); #else static inline bool page_poisoning_enabled(void) { return false; } static inline void kernel_poison_pages(struct page *page, int numpages, int enable) { } #endif #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON DECLARE_STATIC_KEY_TRUE(init_on_alloc); #else DECLARE_STATIC_KEY_FALSE(init_on_alloc); #endif static inline bool want_init_on_alloc(gfp_t flags) { if (static_branch_unlikely(&init_on_alloc) && !page_poisoning_enabled()) return true; return flags & __GFP_ZERO; } #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON DECLARE_STATIC_KEY_TRUE(init_on_free); #else DECLARE_STATIC_KEY_FALSE(init_on_free); #endif static inline bool want_init_on_free(void) { return static_branch_unlikely(&init_on_free) && !page_poisoning_enabled(); } #ifdef CONFIG_DEBUG_PAGEALLOC extern void init_debug_pagealloc(void); #else static inline void init_debug_pagealloc(void) {} #endif extern bool _debug_pagealloc_enabled_early; DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); static inline bool debug_pagealloc_enabled(void) { return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled_early; } /* * For use in fast paths after init_debug_pagealloc() has run, or when a * false negative result is not harmful when called too early. */ static inline bool debug_pagealloc_enabled_static(void) { if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) return false; return static_branch_unlikely(&_debug_pagealloc_enabled); } #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) extern void __kernel_map_pages(struct page *page, int numpages, int enable); /* * When called in DEBUG_PAGEALLOC context, the call should most likely be * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() */ static inline void kernel_map_pages(struct page *page, int numpages, int enable) { __kernel_map_pages(page, numpages, enable); } #ifdef CONFIG_HIBERNATION extern bool kernel_page_present(struct page *page); #endif /* CONFIG_HIBERNATION */ #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ static inline void kernel_map_pages(struct page *page, int numpages, int enable) {} #ifdef CONFIG_HIBERNATION static inline bool kernel_page_present(struct page *page) { return true; } #endif /* CONFIG_HIBERNATION */ #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ #ifdef __HAVE_ARCH_GATE_AREA extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); extern int in_gate_area_no_mm(unsigned long addr); extern int in_gate_area(struct mm_struct *mm, unsigned long addr); #else static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) { return NULL; } static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) { return 0; } #endif /* __HAVE_ARCH_GATE_AREA */ extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); #ifdef CONFIG_SYSCTL extern int sysctl_drop_caches; int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *); #endif void drop_slab(void); void drop_slab_node(int nid); #ifndef CONFIG_MMU #define randomize_va_space 0 #else extern int randomize_va_space; #endif const char * arch_vma_name(struct vm_area_struct *vma); #ifdef CONFIG_MMU void print_vma_addr(char *prefix, unsigned long rip); #else static inline void print_vma_addr(char *prefix, unsigned long rip) { } #endif void *sparse_buffer_alloc(unsigned long size); struct page * __populate_section_memmap(unsigned long pfn, unsigned long nr_pages, int nid, struct vmem_altmap *altmap); pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, struct vmem_altmap *altmap); void *vmemmap_alloc_block(unsigned long size, int node); struct vmem_altmap; void *vmemmap_alloc_block_buf(unsigned long size, int node, struct vmem_altmap *altmap); void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); int vmemmap_populate_basepages(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap); int vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap); void vmemmap_populate_print_last(void); #ifdef CONFIG_MEMORY_HOTPLUG void vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap); #endif void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, unsigned long nr_pages); enum mf_flags { MF_COUNT_INCREASED = 1 << 0, MF_ACTION_REQUIRED = 1 << 1, MF_MUST_KILL = 1 << 2, MF_SOFT_OFFLINE = 1 << 3, }; extern int memory_failure(unsigned long pfn, int flags); extern void memory_failure_queue(unsigned long pfn, int flags); extern void memory_failure_queue_kick(int cpu); extern int unpoison_memory(unsigned long pfn); extern int sysctl_memory_failure_early_kill; extern int sysctl_memory_failure_recovery; extern void shake_page(struct page *p, int access); extern atomic_long_t num_poisoned_pages __read_mostly; extern int soft_offline_page(unsigned long pfn, int flags); /* * Error handlers for various types of pages. */ enum mf_result { MF_IGNORED, /* Error: cannot be handled */ MF_FAILED, /* Error: handling failed */ MF_DELAYED, /* Will be handled later */ MF_RECOVERED, /* Successfully recovered */ }; enum mf_action_page_type { MF_MSG_KERNEL, MF_MSG_KERNEL_HIGH_ORDER, MF_MSG_SLAB, MF_MSG_DIFFERENT_COMPOUND, MF_MSG_POISONED_HUGE, MF_MSG_HUGE, MF_MSG_FREE_HUGE, MF_MSG_NON_PMD_HUGE, MF_MSG_UNMAP_FAILED, MF_MSG_DIRTY_SWAPCACHE, MF_MSG_CLEAN_SWAPCACHE, MF_MSG_DIRTY_MLOCKED_LRU, MF_MSG_CLEAN_MLOCKED_LRU, MF_MSG_DIRTY_UNEVICTABLE_LRU, MF_MSG_CLEAN_UNEVICTABLE_LRU, MF_MSG_DIRTY_LRU, MF_MSG_CLEAN_LRU, MF_MSG_TRUNCATED_LRU, MF_MSG_BUDDY, MF_MSG_BUDDY_2ND, MF_MSG_DAX, MF_MSG_UNSPLIT_THP, MF_MSG_UNKNOWN, }; #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) extern void clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page); extern void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr_hint, struct vm_area_struct *vma, unsigned int pages_per_huge_page); extern long copy_huge_page_from_user(struct page *dst_page, const void __user *usr_src, unsigned int pages_per_huge_page, bool allow_pagefault); /** * vma_is_special_huge - Are transhuge page-table entries considered special? * @vma: Pointer to the struct vm_area_struct to consider * * Whether transhuge page-table entries are considered "special" following * the definition in vm_normal_page(). * * Return: true if transhuge page-table entries should be considered special, * false otherwise. */ static inline bool vma_is_special_huge(const struct vm_area_struct *vma) { return vma_is_dax(vma) || (vma->vm_file && (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ #ifdef CONFIG_DEBUG_PAGEALLOC extern unsigned int _debug_guardpage_minorder; DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); static inline unsigned int debug_guardpage_minorder(void) { return _debug_guardpage_minorder; } static inline bool debug_guardpage_enabled(void) { return static_branch_unlikely(&_debug_guardpage_enabled); } static inline bool page_is_guard(struct page *page) { if (!debug_guardpage_enabled()) return false; return PageGuard(page); } #else static inline unsigned int debug_guardpage_minorder(void) { return 0; } static inline bool debug_guardpage_enabled(void) { return false; } static inline bool page_is_guard(struct page *page) { return false; } #endif /* CONFIG_DEBUG_PAGEALLOC */ #if MAX_NUMNODES > 1 void __init setup_nr_node_ids(void); #else static inline void setup_nr_node_ids(void) {} #endif extern int memcmp_pages(struct page *page1, struct page *page2); static inline int pages_identical(struct page *page1, struct page *page2) { return !memcmp_pages(page1, page2); } #ifdef CONFIG_MAPPING_DIRTY_HELPERS unsigned long clean_record_shared_mapping_range(struct address_space *mapping, pgoff_t first_index, pgoff_t nr, pgoff_t bitmap_pgoff, unsigned long *bitmap, pgoff_t *start, pgoff_t *end); unsigned long wp_shared_mapping_range(struct address_space *mapping, pgoff_t first_index, pgoff_t nr); #endif extern int sysctl_nr_trim_pages; /** * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it * @seals: the seals to check * @vma: the vma to operate on * * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on * the vma flags. Return 0 if check pass, or <0 for errors. */ static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) { if (seals & F_SEAL_FUTURE_WRITE) { /* * New PROT_WRITE and MAP_SHARED mmaps are not allowed when * "future write" seal active. */ if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) return -EPERM; /* * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as * MAP_SHARED and read-only, take care to not allow mprotect to * revert protections on such mappings. Do this only for shared * mappings. For private mappings, don't need to mask * VM_MAYWRITE as we still want them to be COW-writable. */ if (vma->vm_flags & VM_SHARED) vma->vm_flags &= ~(VM_MAYWRITE); } return 0; } #endif /* __KERNEL__ */ #endif /* _LINUX_MM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TIME64_H #define _LINUX_TIME64_H #include <linux/math64.h> #include <vdso/time64.h> typedef __s64 time64_t; typedef __u64 timeu64_t; #include <uapi/linux/time.h> struct timespec64 { time64_t tv_sec; /* seconds */ long tv_nsec; /* nanoseconds */ }; struct itimerspec64 { struct timespec64 it_interval; struct timespec64 it_value; }; /* Located here for timespec[64]_valid_strict */ #define TIME64_MAX ((s64)~((u64)1 << 63)) #define TIME64_MIN (-TIME64_MAX - 1) #define KTIME_MAX ((s64)~((u64)1 << 63)) #define KTIME_SEC_MAX (KTIME_MAX / NSEC_PER_SEC) /* * Limits for settimeofday(): * * To prevent setting the time close to the wraparound point time setting * is limited so a reasonable uptime can be accomodated. Uptime of 30 years * should be really sufficient, which means the cutoff is 2232. At that * point the cutoff is just a small part of the larger problem. */ #define TIME_UPTIME_SEC_MAX (30LL * 365 * 24 *3600) #define TIME_SETTOD_SEC_MAX (KTIME_SEC_MAX - TIME_UPTIME_SEC_MAX) static inline int timespec64_equal(const struct timespec64 *a, const struct timespec64 *b) { return (a->tv_sec == b->tv_sec) && (a->tv_nsec == b->tv_nsec); } /* * lhs < rhs: return <0 * lhs == rhs: return 0 * lhs > rhs: return >0 */ static inline int timespec64_compare(const struct timespec64 *lhs, const struct timespec64 *rhs) { if (lhs->tv_sec < rhs->tv_sec) return -1; if (lhs->tv_sec > rhs->tv_sec) return 1; return lhs->tv_nsec - rhs->tv_nsec; } extern void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec); static inline struct timespec64 timespec64_add(struct timespec64 lhs, struct timespec64 rhs) { struct timespec64 ts_delta; set_normalized_timespec64(&ts_delta, lhs.tv_sec + rhs.tv_sec, lhs.tv_nsec + rhs.tv_nsec); return ts_delta; } /* * sub = lhs - rhs, in normalized form */ static inline struct timespec64 timespec64_sub(struct timespec64 lhs, struct timespec64 rhs) { struct timespec64 ts_delta; set_normalized_timespec64(&ts_delta, lhs.tv_sec - rhs.tv_sec, lhs.tv_nsec - rhs.tv_nsec); return ts_delta; } /* * Returns true if the timespec64 is norm, false if denorm: */ static inline bool timespec64_valid(const struct timespec64 *ts) { /* Dates before 1970 are bogus */ if (ts->tv_sec < 0) return false; /* Can't have more nanoseconds then a second */ if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) return false; return true; } static inline bool timespec64_valid_strict(const struct timespec64 *ts) { if (!timespec64_valid(ts)) return false; /* Disallow values that could overflow ktime_t */ if ((unsigned long long)ts->tv_sec >= KTIME_SEC_MAX) return false; return true; } static inline bool timespec64_valid_settod(const struct timespec64 *ts) { if (!timespec64_valid(ts)) return false; /* Disallow values which cause overflow issues vs. CLOCK_REALTIME */ if ((unsigned long long)ts->tv_sec >= TIME_SETTOD_SEC_MAX) return false; return true; } /** * timespec64_to_ns - Convert timespec64 to nanoseconds * @ts: pointer to the timespec64 variable to be converted * * Returns the scalar nanosecond representation of the timespec64 * parameter. */ static inline s64 timespec64_to_ns(const struct timespec64 *ts) { /* Prevent multiplication overflow */ if ((unsigned long long)ts->tv_sec >= KTIME_SEC_MAX) return KTIME_MAX; return ((s64) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec; } /** * ns_to_timespec64 - Convert nanoseconds to timespec64 * @nsec: the nanoseconds value to be converted * * Returns the timespec64 representation of the nsec parameter. */ extern struct timespec64 ns_to_timespec64(const s64 nsec); /** * timespec64_add_ns - Adds nanoseconds to a timespec64 * @a: pointer to timespec64 to be incremented * @ns: unsigned nanoseconds value to be added * * This must always be inlined because its used from the x86-64 vdso, * which cannot call other kernel functions. */ static __always_inline void timespec64_add_ns(struct timespec64 *a, u64 ns) { a->tv_sec += __iter_div_u64_rem(a->tv_nsec + ns, NSEC_PER_SEC, &ns); a->tv_nsec = ns; } /* * timespec64_add_safe assumes both values are positive and checks for * overflow. It will return TIME64_MAX in case of overflow. */ extern struct timespec64 timespec64_add_safe(const struct timespec64 lhs, const struct timespec64 rhs); #endif /* _LINUX_TIME64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __VDSO_MATH64_H #define __VDSO_MATH64_H static __always_inline u32 __iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) { u32 ret = 0; while (dividend >= divisor) { /* The following asm() prevents the compiler from optimising this loop into a modulo operation. */ asm("" : "+rm"(dividend)); dividend -= divisor; ret++; } *remainder = dividend; return ret; } #endif /* __VDSO_MATH64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KERNEL_STAT_H #define _LINUX_KERNEL_STAT_H #include <linux/smp.h> #include <linux/threads.h> #include <linux/percpu.h> #include <linux/cpumask.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/vtime.h> #include <asm/irq.h> /* * 'kernel_stat.h' contains the definitions needed for doing * some kernel statistics (CPU usage, context switches ...), * used by rstatd/perfmeter */ enum cpu_usage_stat { CPUTIME_USER, CPUTIME_NICE, CPUTIME_SYSTEM, CPUTIME_SOFTIRQ, CPUTIME_IRQ, CPUTIME_IDLE, CPUTIME_IOWAIT, CPUTIME_STEAL, CPUTIME_GUEST, CPUTIME_GUEST_NICE, NR_STATS, }; struct kernel_cpustat { u64 cpustat[NR_STATS]; }; struct kernel_stat { unsigned long irqs_sum; unsigned int softirqs[NR_SOFTIRQS]; }; DECLARE_PER_CPU(struct kernel_stat, kstat); DECLARE_PER_CPU(struct kernel_cpustat, kernel_cpustat); /* Must have preemption disabled for this to be meaningful. */ #define kstat_this_cpu this_cpu_ptr(&kstat) #define kcpustat_this_cpu this_cpu_ptr(&kernel_cpustat) #define kstat_cpu(cpu) per_cpu(kstat, cpu) #define kcpustat_cpu(cpu) per_cpu(kernel_cpustat, cpu) extern unsigned long long nr_context_switches(void); extern unsigned int kstat_irqs_cpu(unsigned int irq, int cpu); extern void kstat_incr_irq_this_cpu(unsigned int irq); static inline void kstat_incr_softirqs_this_cpu(unsigned int irq) { __this_cpu_inc(kstat.softirqs[irq]); } static inline unsigned int kstat_softirqs_cpu(unsigned int irq, int cpu) { return kstat_cpu(cpu).softirqs[irq]; } /* * Number of interrupts per specific IRQ source, since bootup */ extern unsigned int kstat_irqs(unsigned int irq); extern unsigned int kstat_irqs_usr(unsigned int irq); /* * Number of interrupts per cpu, since bootup */ static inline unsigned int kstat_cpu_irqs_sum(unsigned int cpu) { return kstat_cpu(cpu).irqs_sum; } #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN extern u64 kcpustat_field(struct kernel_cpustat *kcpustat, enum cpu_usage_stat usage, int cpu); extern void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu); #else static inline u64 kcpustat_field(struct kernel_cpustat *kcpustat, enum cpu_usage_stat usage, int cpu) { return kcpustat->cpustat[usage]; } static inline void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu) { *dst = kcpustat_cpu(cpu); } #endif extern void account_user_time(struct task_struct *, u64); extern void account_guest_time(struct task_struct *, u64); extern void account_system_time(struct task_struct *, int, u64); extern void account_system_index_time(struct task_struct *, u64, enum cpu_usage_stat); extern void account_steal_time(u64); extern void account_idle_time(u64); extern u64 get_idle_time(struct kernel_cpustat *kcs, int cpu); #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE static inline void account_process_tick(struct task_struct *tsk, int user) { vtime_flush(tsk); } #else extern void account_process_tick(struct task_struct *, int user); #endif extern void account_idle_ticks(unsigned long ticks); #endif /* _LINUX_KERNEL_STAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* -*- mode: c; c-basic-offset:8; -*- * vim: noexpandtab sw=8 ts=8 sts=0: * * configfs_internal.h - Internal stuff for configfs * * Based on sysfs: * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel * * configfs Copyright (C) 2005 Oracle. All rights reserved. */ #ifdef pr_fmt #undef pr_fmt #endif #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/slab.h> #include <linux/list.h> #include <linux/spinlock.h> struct configfs_fragment { atomic_t frag_count; struct rw_semaphore frag_sem; bool frag_dead; }; void put_fragment(struct configfs_fragment *); struct configfs_fragment *get_fragment(struct configfs_fragment *); struct configfs_dirent { atomic_t s_count; int s_dependent_count; struct list_head s_sibling; struct list_head s_children; int s_links; void * s_element; int s_type; umode_t s_mode; struct dentry * s_dentry; struct iattr * s_iattr; #ifdef CONFIG_LOCKDEP int s_depth; #endif struct configfs_fragment *s_frag; }; #define CONFIGFS_ROOT 0x0001 #define CONFIGFS_DIR 0x0002 #define CONFIGFS_ITEM_ATTR 0x0004 #define CONFIGFS_ITEM_BIN_ATTR 0x0008 #define CONFIGFS_ITEM_LINK 0x0020 #define CONFIGFS_USET_DIR 0x0040 #define CONFIGFS_USET_DEFAULT 0x0080 #define CONFIGFS_USET_DROPPING 0x0100 #define CONFIGFS_USET_IN_MKDIR 0x0200 #define CONFIGFS_USET_CREATING 0x0400 #define CONFIGFS_NOT_PINNED (CONFIGFS_ITEM_ATTR | CONFIGFS_ITEM_BIN_ATTR) extern struct mutex configfs_symlink_mutex; extern spinlock_t configfs_dirent_lock; extern struct kmem_cache *configfs_dir_cachep; extern int configfs_is_root(struct config_item *item); extern struct inode * configfs_new_inode(umode_t mode, struct configfs_dirent *, struct super_block *); extern struct inode *configfs_create(struct dentry *, umode_t mode); extern int configfs_create_file(struct config_item *, const struct configfs_attribute *); extern int configfs_create_bin_file(struct config_item *, const struct configfs_bin_attribute *); extern int configfs_make_dirent(struct configfs_dirent *, struct dentry *, void *, umode_t, int, struct configfs_fragment *); extern int configfs_dirent_is_ready(struct configfs_dirent *); extern void configfs_hash_and_remove(struct dentry * dir, const char * name); extern const unsigned char * configfs_get_name(struct configfs_dirent *sd); extern void configfs_drop_dentry(struct configfs_dirent *sd, struct dentry *parent); extern int configfs_setattr(struct dentry *dentry, struct iattr *iattr); extern struct dentry *configfs_pin_fs(void); extern void configfs_release_fs(void); extern const struct file_operations configfs_dir_operations; extern const struct file_operations configfs_file_operations; extern const struct file_operations configfs_bin_file_operations; extern const struct inode_operations configfs_dir_inode_operations; extern const struct inode_operations configfs_root_inode_operations; extern const struct inode_operations configfs_symlink_inode_operations; extern const struct dentry_operations configfs_dentry_ops; extern int configfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname); extern int configfs_unlink(struct inode *dir, struct dentry *dentry); int configfs_create_link(struct configfs_dirent *target, struct dentry *parent, struct dentry *dentry, char *body); static inline struct config_item * to_item(struct dentry * dentry) { struct configfs_dirent * sd = dentry->d_fsdata; return ((struct config_item *) sd->s_element); } static inline struct configfs_attribute * to_attr(struct dentry * dentry) { struct configfs_dirent * sd = dentry->d_fsdata; return ((struct configfs_attribute *) sd->s_element); } static inline struct configfs_bin_attribute *to_bin_attr(struct dentry *dentry) { struct configfs_attribute *attr = to_attr(dentry); return container_of(attr, struct configfs_bin_attribute, cb_attr); } static inline struct config_item *configfs_get_config_item(struct dentry *dentry) { struct config_item * item = NULL; spin_lock(&dentry->d_lock); if (!d_unhashed(dentry)) { struct configfs_dirent * sd = dentry->d_fsdata; item = config_item_get(sd->s_element); } spin_unlock(&dentry->d_lock); return item; } static inline void release_configfs_dirent(struct configfs_dirent * sd) { if (!(sd->s_type & CONFIGFS_ROOT)) { kfree(sd->s_iattr); put_fragment(sd->s_frag); kmem_cache_free(configfs_dir_cachep, sd); } } static inline struct configfs_dirent * configfs_get(struct configfs_dirent * sd) { if (sd) { WARN_ON(!atomic_read(&sd->s_count)); atomic_inc(&sd->s_count); } return sd; } static inline void configfs_put(struct configfs_dirent * sd) { WARN_ON(!atomic_read(&sd->s_count)); if (atomic_dec_and_test(&sd->s_count)) release_configfs_dirent(sd); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 /* SPDX-License-Identifier: GPL-2.0 */ /* * * Generic internet FLOW. * */ #ifndef _NET_FLOW_H #define _NET_FLOW_H #include <linux/socket.h> #include <linux/in6.h> #include <linux/atomic.h> #include <net/flow_dissector.h> #include <linux/uidgid.h> /* * ifindex generation is per-net namespace, and loopback is * always the 1st device in ns (see net_dev_init), thus any * loopback device should get ifindex 1 */ #define LOOPBACK_IFINDEX 1 struct flowi_tunnel { __be64 tun_id; }; struct flowi_common { int flowic_oif; int flowic_iif; __u32 flowic_mark; __u8 flowic_tos; __u8 flowic_scope; __u8 flowic_proto; __u8 flowic_flags; #define FLOWI_FLAG_ANYSRC 0x01 #define FLOWI_FLAG_KNOWN_NH 0x02 #define FLOWI_FLAG_SKIP_NH_OIF 0x04 __u32 flowic_secid; kuid_t flowic_uid; struct flowi_tunnel flowic_tun_key; __u32 flowic_multipath_hash; }; union flowi_uli { struct { __be16 dport; __be16 sport; } ports; struct { __u8 type; __u8 code; } icmpt; struct { __le16 dport; __le16 sport; } dnports; __be32 spi; __be32 gre_key; struct { __u8 type; } mht; }; struct flowi4 { struct flowi_common __fl_common; #define flowi4_oif __fl_common.flowic_oif #define flowi4_iif __fl_common.flowic_iif #define flowi4_mark __fl_common.flowic_mark #define flowi4_tos __fl_common.flowic_tos #define flowi4_scope __fl_common.flowic_scope #define flowi4_proto __fl_common.flowic_proto #define flowi4_flags __fl_common.flowic_flags #define flowi4_secid __fl_common.flowic_secid #define flowi4_tun_key __fl_common.flowic_tun_key #define flowi4_uid __fl_common.flowic_uid #define flowi4_multipath_hash __fl_common.flowic_multipath_hash /* (saddr,daddr) must be grouped, same order as in IP header */ __be32 saddr; __be32 daddr; union flowi_uli uli; #define fl4_sport uli.ports.sport #define fl4_dport uli.ports.dport #define fl4_icmp_type uli.icmpt.type #define fl4_icmp_code uli.icmpt.code #define fl4_ipsec_spi uli.spi #define fl4_mh_type uli.mht.type #define fl4_gre_key uli.gre_key } __attribute__((__aligned__(BITS_PER_LONG/8))); static inline void flowi4_init_output(struct flowi4 *fl4, int oif, __u32 mark, __u8 tos, __u8 scope, __u8 proto, __u8 flags, __be32 daddr, __be32 saddr, __be16 dport, __be16 sport, kuid_t uid) { fl4->flowi4_oif = oif; fl4->flowi4_iif = LOOPBACK_IFINDEX; fl4->flowi4_mark = mark; fl4->flowi4_tos = tos; fl4->flowi4_scope = scope; fl4->flowi4_proto = proto; fl4->flowi4_flags = flags; fl4->flowi4_secid = 0; fl4->flowi4_tun_key.tun_id = 0; fl4->flowi4_uid = uid; fl4->daddr = daddr; fl4->saddr = saddr; fl4->fl4_dport = dport; fl4->fl4_sport = sport; fl4->flowi4_multipath_hash = 0; } /* Reset some input parameters after previous lookup */ static inline void flowi4_update_output(struct flowi4 *fl4, int oif, __u8 tos, __be32 daddr, __be32 saddr) { fl4->flowi4_oif = oif; fl4->flowi4_tos = tos; fl4->daddr = daddr; fl4->saddr = saddr; } struct flowi6 { struct flowi_common __fl_common; #define flowi6_oif __fl_common.flowic_oif #define flowi6_iif __fl_common.flowic_iif #define flowi6_mark __fl_common.flowic_mark #define flowi6_scope __fl_common.flowic_scope #define flowi6_proto __fl_common.flowic_proto #define flowi6_flags __fl_common.flowic_flags #define flowi6_secid __fl_common.flowic_secid #define flowi6_tun_key __fl_common.flowic_tun_key #define flowi6_uid __fl_common.flowic_uid struct in6_addr daddr; struct in6_addr saddr; /* Note: flowi6_tos is encoded in flowlabel, too. */ __be32 flowlabel; union flowi_uli uli; #define fl6_sport uli.ports.sport #define fl6_dport uli.ports.dport #define fl6_icmp_type uli.icmpt.type #define fl6_icmp_code uli.icmpt.code #define fl6_ipsec_spi uli.spi #define fl6_mh_type uli.mht.type #define fl6_gre_key uli.gre_key __u32 mp_hash; } __attribute__((__aligned__(BITS_PER_LONG/8))); struct flowidn { struct flowi_common __fl_common; #define flowidn_oif __fl_common.flowic_oif #define flowidn_iif __fl_common.flowic_iif #define flowidn_mark __fl_common.flowic_mark #define flowidn_scope __fl_common.flowic_scope #define flowidn_proto __fl_common.flowic_proto #define flowidn_flags __fl_common.flowic_flags __le16 daddr; __le16 saddr; union flowi_uli uli; #define fld_sport uli.ports.sport #define fld_dport uli.ports.dport } __attribute__((__aligned__(BITS_PER_LONG/8))); struct flowi { union { struct flowi_common __fl_common; struct flowi4 ip4; struct flowi6 ip6; struct flowidn dn; } u; #define flowi_oif u.__fl_common.flowic_oif #define flowi_iif u.__fl_common.flowic_iif #define flowi_mark u.__fl_common.flowic_mark #define flowi_tos u.__fl_common.flowic_tos #define flowi_scope u.__fl_common.flowic_scope #define flowi_proto u.__fl_common.flowic_proto #define flowi_flags u.__fl_common.flowic_flags #define flowi_secid u.__fl_common.flowic_secid #define flowi_tun_key u.__fl_common.flowic_tun_key #define flowi_uid u.__fl_common.flowic_uid } __attribute__((__aligned__(BITS_PER_LONG/8))); static inline struct flowi *flowi4_to_flowi(struct flowi4 *fl4) { return container_of(fl4, struct flowi, u.ip4); } static inline struct flowi *flowi6_to_flowi(struct flowi6 *fl6) { return container_of(fl6, struct flowi, u.ip6); } static inline struct flowi *flowidn_to_flowi(struct flowidn *fldn) { return container_of(fldn, struct flowi, u.dn); } __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 #ifndef INTERNAL_IO_WQ_H #define INTERNAL_IO_WQ_H #include <linux/io_uring.h> struct io_wq; enum { IO_WQ_WORK_CANCEL = 1, IO_WQ_WORK_HASHED = 2, IO_WQ_WORK_UNBOUND = 4, IO_WQ_WORK_NO_CANCEL = 8, IO_WQ_WORK_CONCURRENT = 16, IO_WQ_WORK_FILES = 32, IO_WQ_WORK_FS = 64, IO_WQ_WORK_MM = 128, IO_WQ_WORK_CREDS = 256, IO_WQ_WORK_BLKCG = 512, IO_WQ_WORK_FSIZE = 1024, IO_WQ_HASH_SHIFT = 24, /* upper 8 bits are used for hash key */ }; enum io_wq_cancel { IO_WQ_CANCEL_OK, /* cancelled before started */ IO_WQ_CANCEL_RUNNING, /* found, running, and attempted cancelled */ IO_WQ_CANCEL_NOTFOUND, /* work not found */ }; struct io_wq_work_node { struct io_wq_work_node *next; }; struct io_wq_work_list { struct io_wq_work_node *first; struct io_wq_work_node *last; }; static inline void wq_list_add_after(struct io_wq_work_node *node, struct io_wq_work_node *pos, struct io_wq_work_list *list) { struct io_wq_work_node *next = pos->next; pos->next = node; node->next = next; if (!next) list->last = node; } static inline void wq_list_add_tail(struct io_wq_work_node *node, struct io_wq_work_list *list) { if (!list->first) { list->last = node; WRITE_ONCE(list->first, node); } else { list->last->next = node; list->last = node; } node->next = NULL; } static inline void wq_list_cut(struct io_wq_work_list *list, struct io_wq_work_node *last, struct io_wq_work_node *prev) { /* first in the list, if prev==NULL */ if (!prev) WRITE_ONCE(list->first, last->next); else prev->next = last->next; if (last == list->last) list->last = prev; last->next = NULL; } static inline void wq_list_del(struct io_wq_work_list *list, struct io_wq_work_node *node, struct io_wq_work_node *prev) { wq_list_cut(list, node, prev); } #define wq_list_for_each(pos, prv, head) \ for (pos = (head)->first, prv = NULL; pos; prv = pos, pos = (pos)->next) #define wq_list_empty(list) (READ_ONCE((list)->first) == NULL) #define INIT_WQ_LIST(list) do { \ (list)->first = NULL; \ (list)->last = NULL; \ } while (0) struct io_wq_work { struct io_wq_work_node list; struct io_identity *identity; unsigned flags; }; static inline struct io_wq_work *wq_next_work(struct io_wq_work *work) { if (!work->list.next) return NULL; return container_of(work->list.next, struct io_wq_work, list); } typedef void (free_work_fn)(struct io_wq_work *); typedef struct io_wq_work *(io_wq_work_fn)(struct io_wq_work *); struct io_wq_data { struct user_struct *user; io_wq_work_fn *do_work; free_work_fn *free_work; }; struct io_wq *io_wq_create(unsigned bounded, struct io_wq_data *data); bool io_wq_get(struct io_wq *wq, struct io_wq_data *data); void io_wq_destroy(struct io_wq *wq); void io_wq_enqueue(struct io_wq *wq, struct io_wq_work *work); void io_wq_hash_work(struct io_wq_work *work, void *val); static inline bool io_wq_is_hashed(struct io_wq_work *work) { return work->flags & IO_WQ_WORK_HASHED; } void io_wq_cancel_all(struct io_wq *wq); typedef bool (work_cancel_fn)(struct io_wq_work *, void *); enum io_wq_cancel io_wq_cancel_cb(struct io_wq *wq, work_cancel_fn *cancel, void *data, bool cancel_all); struct task_struct *io_wq_get_task(struct io_wq *wq); #if defined(CONFIG_IO_WQ) extern void io_wq_worker_sleeping(struct task_struct *); extern void io_wq_worker_running(struct task_struct *); #else static inline void io_wq_worker_sleeping(struct task_struct *tsk) { } static inline void io_wq_worker_running(struct task_struct *tsk) { } #endif static inline bool io_wq_current_is_worker(void) { return in_task() && (current->flags & PF_IO_WORKER); } #endif
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 /* SPDX-License-Identifier: GPL-2.0 */ /* * This header provides generic wrappers for memory access instrumentation that * the compiler cannot emit for: KASAN, KCSAN. */ #ifndef _LINUX_INSTRUMENTED_H #define _LINUX_INSTRUMENTED_H #include <linux/compiler.h> #include <linux/kasan-checks.h> #include <linux/kcsan-checks.h> #include <linux/types.h> /** * instrument_read - instrument regular read access * * Instrument a regular read access. The instrumentation should be inserted * before the actual read happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_read(const volatile void *v, size_t size) { kasan_check_read(v, size); kcsan_check_read(v, size); } /** * instrument_write - instrument regular write access * * Instrument a regular write access. The instrumentation should be inserted * before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_write(v, size); } /** * instrument_read_write - instrument regular read-write access * * Instrument a regular write access. The instrumentation should be inserted * before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_read_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_read_write(v, size); } /** * instrument_atomic_read - instrument atomic read access * * Instrument an atomic read access. The instrumentation should be inserted * before the actual read happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_atomic_read(const volatile void *v, size_t size) { kasan_check_read(v, size); kcsan_check_atomic_read(v, size); } /** * instrument_atomic_write - instrument atomic write access * * Instrument an atomic write access. The instrumentation should be inserted * before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_atomic_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_atomic_write(v, size); } /** * instrument_atomic_read_write - instrument atomic read-write access * * Instrument an atomic read-write access. The instrumentation should be * inserted before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_atomic_read_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_atomic_read_write(v, size); } /** * instrument_copy_to_user - instrument reads of copy_to_user * * Instrument reads from kernel memory, that are due to copy_to_user (and * variants). The instrumentation must be inserted before the accesses. * * @to destination address * @from source address * @n number of bytes to copy */ static __always_inline void instrument_copy_to_user(void __user *to, const void *from, unsigned long n) { kasan_check_read(from, n); kcsan_check_read(from, n); } /** * instrument_copy_from_user - instrument writes of copy_from_user * * Instrument writes to kernel memory, that are due to copy_from_user (and * variants). The instrumentation should be inserted before the accesses. * * @to destination address * @from source address * @n number of bytes to copy */ static __always_inline void instrument_copy_from_user(const void *to, const void __user *from, unsigned long n) { kasan_check_write(to, n); kcsan_check_write(to, n); } #endif /* _LINUX_INSTRUMENTED_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 /* SPDX-License-Identifier: GPL-2.0+ */ /* * Driver for 8250/16550-type serial ports * * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. * * Copyright (C) 2001 Russell King. */ #include <linux/serial_8250.h> #include <linux/serial_reg.h> #include <linux/dmaengine.h> #include "../serial_mctrl_gpio.h" struct uart_8250_dma { int (*tx_dma)(struct uart_8250_port *p); int (*rx_dma)(struct uart_8250_port *p); /* Filter function */ dma_filter_fn fn; /* Parameter to the filter function */ void *rx_param; void *tx_param; struct dma_slave_config rxconf; struct dma_slave_config txconf; struct dma_chan *rxchan; struct dma_chan *txchan; /* Device address base for DMA operations */ phys_addr_t rx_dma_addr; phys_addr_t tx_dma_addr; /* DMA address of the buffer in memory */ dma_addr_t rx_addr; dma_addr_t tx_addr; dma_cookie_t rx_cookie; dma_cookie_t tx_cookie; void *rx_buf; size_t rx_size; size_t tx_size; unsigned char tx_running; unsigned char tx_err; unsigned char rx_running; }; struct old_serial_port { unsigned int uart; unsigned int baud_base; unsigned int port; unsigned int irq; upf_t flags; unsigned char io_type; unsigned char __iomem *iomem_base; unsigned short iomem_reg_shift; }; struct serial8250_config { const char *name; unsigned short fifo_size; unsigned short tx_loadsz; unsigned char fcr; unsigned char rxtrig_bytes[UART_FCR_R_TRIG_MAX_STATE]; unsigned int flags; }; #define UART_CAP_FIFO (1 << 8) /* UART has FIFO */ #define UART_CAP_EFR (1 << 9) /* UART has EFR */ #define UART_CAP_SLEEP (1 << 10) /* UART has IER sleep */ #define UART_CAP_AFE (1 << 11) /* MCR-based hw flow control */ #define UART_CAP_UUE (1 << 12) /* UART needs IER bit 6 set (Xscale) */ #define UART_CAP_RTOIE (1 << 13) /* UART needs IER bit 4 set (Xscale, Tegra) */ #define UART_CAP_HFIFO (1 << 14) /* UART has a "hidden" FIFO */ #define UART_CAP_RPM (1 << 15) /* Runtime PM is active while idle */ #define UART_CAP_IRDA (1 << 16) /* UART supports IrDA line discipline */ #define UART_CAP_MINI (1 << 17) /* Mini UART on BCM283X family lacks: * STOP PARITY EPAR SPAR WLEN5 WLEN6 */ #define UART_BUG_QUOT (1 << 0) /* UART has buggy quot LSB */ #define UART_BUG_TXEN (1 << 1) /* UART has buggy TX IIR status */ #define UART_BUG_NOMSR (1 << 2) /* UART has buggy MSR status bits (Au1x00) */ #define UART_BUG_THRE (1 << 3) /* UART has buggy THRE reassertion */ #define UART_BUG_PARITY (1 << 4) /* UART mishandles parity if FIFO enabled */ #define UART_BUG_TXRACE (1 << 5) /* UART Tx fails to set remote DR */ #ifdef CONFIG_SERIAL_8250_SHARE_IRQ #define SERIAL8250_SHARE_IRQS 1 #else #define SERIAL8250_SHARE_IRQS 0 #endif #define SERIAL8250_PORT_FLAGS(_base, _irq, _flags) \ { \ .iobase = _base, \ .irq = _irq, \ .uartclk = 1843200, \ .iotype = UPIO_PORT, \ .flags = UPF_BOOT_AUTOCONF | (_flags), \ } #define SERIAL8250_PORT(_base, _irq) SERIAL8250_PORT_FLAGS(_base, _irq, 0) static inline int serial_in(struct uart_8250_port *up, int offset) { return up->port.serial_in(&up->port, offset); } static inline void serial_out(struct uart_8250_port *up, int offset, int value) { up->port.serial_out(&up->port, offset, value); } void serial8250_clear_and_reinit_fifos(struct uart_8250_port *p); static inline int serial_dl_read(struct uart_8250_port *up) { return up->dl_read(up); } static inline void serial_dl_write(struct uart_8250_port *up, int value) { up->dl_write(up, value); } static inline bool serial8250_set_THRI(struct uart_8250_port *up) { if (up->ier & UART_IER_THRI) return false; up->ier |= UART_IER_THRI; serial_out(up, UART_IER, up->ier); return true; } static inline bool serial8250_clear_THRI(struct uart_8250_port *up) { if (!(up->ier & UART_IER_THRI)) return false; up->ier &= ~UART_IER_THRI; serial_out(up, UART_IER, up->ier); return true; } struct uart_8250_port *serial8250_get_port(int line); void serial8250_rpm_get(struct uart_8250_port *p); void serial8250_rpm_put(struct uart_8250_port *p); void serial8250_rpm_get_tx(struct uart_8250_port *p); void serial8250_rpm_put_tx(struct uart_8250_port *p); int serial8250_em485_config(struct uart_port *port, struct serial_rs485 *rs485); void serial8250_em485_start_tx(struct uart_8250_port *p); void serial8250_em485_stop_tx(struct uart_8250_port *p); void serial8250_em485_destroy(struct uart_8250_port *p); /* MCR <-> TIOCM conversion */ static inline int serial8250_TIOCM_to_MCR(int tiocm) { int mcr = 0; if (tiocm & TIOCM_RTS) mcr |= UART_MCR_RTS; if (tiocm & TIOCM_DTR) mcr |= UART_MCR_DTR; if (tiocm & TIOCM_OUT1) mcr |= UART_MCR_OUT1; if (tiocm & TIOCM_OUT2) mcr |= UART_MCR_OUT2; if (tiocm & TIOCM_LOOP) mcr |= UART_MCR_LOOP; return mcr; } static inline int serial8250_MCR_to_TIOCM(int mcr) { int tiocm = 0; if (mcr & UART_MCR_RTS) tiocm |= TIOCM_RTS; if (mcr & UART_MCR_DTR) tiocm |= TIOCM_DTR; if (mcr & UART_MCR_OUT1) tiocm |= TIOCM_OUT1; if (mcr & UART_MCR_OUT2) tiocm |= TIOCM_OUT2; if (mcr & UART_MCR_LOOP) tiocm |= TIOCM_LOOP; return tiocm; } /* MSR <-> TIOCM conversion */ static inline int serial8250_MSR_to_TIOCM(int msr) { int tiocm = 0; if (msr & UART_MSR_DCD) tiocm |= TIOCM_CAR; if (msr & UART_MSR_RI) tiocm |= TIOCM_RNG; if (msr & UART_MSR_DSR) tiocm |= TIOCM_DSR; if (msr & UART_MSR_CTS) tiocm |= TIOCM_CTS; return tiocm; } static inline void serial8250_out_MCR(struct uart_8250_port *up, int value) { serial_out(up, UART_MCR, value); if (up->gpios) mctrl_gpio_set(up->gpios, serial8250_MCR_to_TIOCM(value)); } static inline int serial8250_in_MCR(struct uart_8250_port *up) { int mctrl; mctrl = serial_in(up, UART_MCR); if (up->gpios) { unsigned int mctrl_gpio = 0; mctrl_gpio = mctrl_gpio_get_outputs(up->gpios, &mctrl_gpio); mctrl |= serial8250_TIOCM_to_MCR(mctrl_gpio); } return mctrl; } #if defined(__alpha__) && !defined(CONFIG_PCI) /* * Digital did something really horribly wrong with the OUT1 and OUT2 * lines on at least some ALPHA's. The failure mode is that if either * is cleared, the machine locks up with endless interrupts. */ #define ALPHA_KLUDGE_MCR (UART_MCR_OUT2 | UART_MCR_OUT1) #else #define ALPHA_KLUDGE_MCR 0 #endif #ifdef CONFIG_SERIAL_8250_PNP int serial8250_pnp_init(void); void serial8250_pnp_exit(void); #else static inline int serial8250_pnp_init(void) { return 0; } static inline void serial8250_pnp_exit(void) { } #endif #ifdef CONFIG_SERIAL_8250_FINTEK int fintek_8250_probe(struct uart_8250_port *uart); #else static inline int fintek_8250_probe(struct uart_8250_port *uart) { return 0; } #endif #ifdef CONFIG_ARCH_OMAP1 static inline int is_omap1_8250(struct uart_8250_port *pt) { int res; switch (pt->port.mapbase) { case OMAP1_UART1_BASE: case OMAP1_UART2_BASE: case OMAP1_UART3_BASE: res = 1; break; default: res = 0; break; } return res; } static inline int is_omap1510_8250(struct uart_8250_port *pt) { if (!cpu_is_omap1510()) return 0; return is_omap1_8250(pt); } #else static inline int is_omap1_8250(struct uart_8250_port *pt) { return 0; } static inline int is_omap1510_8250(struct uart_8250_port *pt) { return 0; } #endif #ifdef CONFIG_SERIAL_8250_DMA extern int serial8250_tx_dma(struct uart_8250_port *); extern int serial8250_rx_dma(struct uart_8250_port *); extern void serial8250_rx_dma_flush(struct uart_8250_port *); extern int serial8250_request_dma(struct uart_8250_port *); extern void serial8250_release_dma(struct uart_8250_port *); #else static inline int serial8250_tx_dma(struct uart_8250_port *p) { return -1; } static inline int serial8250_rx_dma(struct uart_8250_port *p) { return -1; } static inline void serial8250_rx_dma_flush(struct uart_8250_port *p) { } static inline int serial8250_request_dma(struct uart_8250_port *p) { return -1; } static inline void serial8250_release_dma(struct uart_8250_port *p) { } #endif static inline int ns16550a_goto_highspeed(struct uart_8250_port *up) { unsigned char status; status = serial_in(up, 0x04); /* EXCR2 */ #define PRESL(x) ((x) & 0x30) if (PRESL(status) == 0x10) { /* already in high speed mode */ return 0; } else { status &= ~0xB0; /* Disable LOCK, mask out PRESL[01] */ status |= 0x10; /* 1.625 divisor for baud_base --> 921600 */ serial_out(up, 0x04, status); } return 1; } static inline int serial_index(struct uart_port *port) { return port->minor - 64; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 /* SPDX-License-Identifier: GPL-2.0 */ /* * Functions used by both the SCSI initiator code and the SCSI target code. */ #ifndef _SCSI_COMMON_H_ #define _SCSI_COMMON_H_ #include <linux/types.h> #include <scsi/scsi_proto.h> static inline unsigned scsi_varlen_cdb_length(const void *hdr) { return ((struct scsi_varlen_cdb_hdr *)hdr)->additional_cdb_length + 8; } extern const unsigned char scsi_command_size_tbl[8]; #define COMMAND_SIZE(opcode) scsi_command_size_tbl[((opcode) >> 5) & 7] static inline unsigned scsi_command_size(const unsigned char *cmnd) { return (cmnd[0] == VARIABLE_LENGTH_CMD) ? scsi_varlen_cdb_length(cmnd) : COMMAND_SIZE(cmnd[0]); } static inline unsigned char scsi_command_control(const unsigned char *cmnd) { return (cmnd[0] == VARIABLE_LENGTH_CMD) ? cmnd[1] : cmnd[COMMAND_SIZE(cmnd[0]) - 1]; } /* Returns a human-readable name for the device */ extern const char *scsi_device_type(unsigned type); extern void int_to_scsilun(u64, struct scsi_lun *); extern u64 scsilun_to_int(struct scsi_lun *); /* * This is a slightly modified SCSI sense "descriptor" format header. * The addition is to allow the 0x70 and 0x71 response codes. The idea * is to place the salient data from either "fixed" or "descriptor" sense * format into one structure to ease application processing. * * The original sense buffer should be kept around for those cases * in which more information is required (e.g. the LBA of a MEDIUM ERROR). */ struct scsi_sense_hdr { /* See SPC-3 section 4.5 */ u8 response_code; /* permit: 0x0, 0x70, 0x71, 0x72, 0x73 */ u8 sense_key; u8 asc; u8 ascq; u8 byte4; u8 byte5; u8 byte6; u8 additional_length; /* always 0 for fixed sense format */ }; static inline bool scsi_sense_valid(const struct scsi_sense_hdr *sshdr) { if (!sshdr) return false; return (sshdr->response_code & 0x70) == 0x70; } extern bool scsi_normalize_sense(const u8 *sense_buffer, int sb_len, struct scsi_sense_hdr *sshdr); extern void scsi_build_sense_buffer(int desc, u8 *buf, u8 key, u8 asc, u8 ascq); int scsi_set_sense_information(u8 *buf, int buf_len, u64 info); int scsi_set_sense_field_pointer(u8 *buf, int buf_len, u16 fp, u8 bp, bool cd); extern const u8 * scsi_sense_desc_find(const u8 * sense_buffer, int sb_len, int desc_type); #endif /* _SCSI_COMMON_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 /* * include/linux/ktime.h * * ktime_t - nanosecond-resolution time format. * * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar * * data type definitions, declarations, prototypes and macros. * * Started by: Thomas Gleixner and Ingo Molnar * * Credits: * * Roman Zippel provided the ideas and primary code snippets of * the ktime_t union and further simplifications of the original * code. * * For licencing details see kernel-base/COPYING */ #ifndef _LINUX_KTIME_H #define _LINUX_KTIME_H #include <linux/time.h> #include <linux/jiffies.h> #include <asm/bug.h> /* Nanosecond scalar representation for kernel time values */ typedef s64 ktime_t; /** * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value * @secs: seconds to set * @nsecs: nanoseconds to set * * Return: The ktime_t representation of the value. */ static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs) { if (unlikely(secs >= KTIME_SEC_MAX)) return KTIME_MAX; return secs * NSEC_PER_SEC + (s64)nsecs; } /* Subtract two ktime_t variables. rem = lhs -rhs: */ #define ktime_sub(lhs, rhs) ((lhs) - (rhs)) /* Add two ktime_t variables. res = lhs + rhs: */ #define ktime_add(lhs, rhs) ((lhs) + (rhs)) /* * Same as ktime_add(), but avoids undefined behaviour on overflow; however, * this means that you must check the result for overflow yourself. */ #define ktime_add_unsafe(lhs, rhs) ((u64) (lhs) + (rhs)) /* * Add a ktime_t variable and a scalar nanosecond value. * res = kt + nsval: */ #define ktime_add_ns(kt, nsval) ((kt) + (nsval)) /* * Subtract a scalar nanosecod from a ktime_t variable * res = kt - nsval: */ #define ktime_sub_ns(kt, nsval) ((kt) - (nsval)) /* convert a timespec64 to ktime_t format: */ static inline ktime_t timespec64_to_ktime(struct timespec64 ts) { return ktime_set(ts.tv_sec, ts.tv_nsec); } /* Map the ktime_t to timespec conversion to ns_to_timespec function */ #define ktime_to_timespec64(kt) ns_to_timespec64((kt)) /* Convert ktime_t to nanoseconds */ static inline s64 ktime_to_ns(const ktime_t kt) { return kt; } /** * ktime_compare - Compares two ktime_t variables for less, greater or equal * @cmp1: comparable1 * @cmp2: comparable2 * * Return: ... * cmp1 < cmp2: return <0 * cmp1 == cmp2: return 0 * cmp1 > cmp2: return >0 */ static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2) { if (cmp1 < cmp2) return -1; if (cmp1 > cmp2) return 1; return 0; } /** * ktime_after - Compare if a ktime_t value is bigger than another one. * @cmp1: comparable1 * @cmp2: comparable2 * * Return: true if cmp1 happened after cmp2. */ static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2) { return ktime_compare(cmp1, cmp2) > 0; } /** * ktime_before - Compare if a ktime_t value is smaller than another one. * @cmp1: comparable1 * @cmp2: comparable2 * * Return: true if cmp1 happened before cmp2. */ static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2) { return ktime_compare(cmp1, cmp2) < 0; } #if BITS_PER_LONG < 64 extern s64 __ktime_divns(const ktime_t kt, s64 div); static inline s64 ktime_divns(const ktime_t kt, s64 div) { /* * Negative divisors could cause an inf loop, * so bug out here. */ BUG_ON(div < 0); if (__builtin_constant_p(div) && !(div >> 32)) { s64 ns = kt; u64 tmp = ns < 0 ? -ns : ns; do_div(tmp, div); return ns < 0 ? -tmp : tmp; } else { return __ktime_divns(kt, div); } } #else /* BITS_PER_LONG < 64 */ static inline s64 ktime_divns(const ktime_t kt, s64 div) { /* * 32-bit implementation cannot handle negative divisors, * so catch them on 64bit as well. */ WARN_ON(div < 0); return kt / div; } #endif static inline s64 ktime_to_us(const ktime_t kt) { return ktime_divns(kt, NSEC_PER_USEC); } static inline s64 ktime_to_ms(const ktime_t kt) { return ktime_divns(kt, NSEC_PER_MSEC); } static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier) { return ktime_to_us(ktime_sub(later, earlier)); } static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier) { return ktime_to_ms(ktime_sub(later, earlier)); } static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec) { return ktime_add_ns(kt, usec * NSEC_PER_USEC); } static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec) { return ktime_add_ns(kt, msec * NSEC_PER_MSEC); } static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec) { return ktime_sub_ns(kt, usec * NSEC_PER_USEC); } static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec) { return ktime_sub_ns(kt, msec * NSEC_PER_MSEC); } extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs); /** * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64 * format only if the variable contains data * @kt: the ktime_t variable to convert * @ts: the timespec variable to store the result in * * Return: %true if there was a successful conversion, %false if kt was 0. */ static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt, struct timespec64 *ts) { if (kt) { *ts = ktime_to_timespec64(kt); return true; } else { return false; } } #include <vdso/ktime.h> static inline ktime_t ns_to_ktime(u64 ns) { return ns; } static inline ktime_t ms_to_ktime(u64 ms) { return ms * NSEC_PER_MSEC; } # include <linux/timekeeping.h> # include <linux/timekeeping32.h> #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 /* SPDX-License-Identifier: GPL-2.0 */ /* * INETPEER - A storage for permanent information about peers * * Authors: Andrey V. Savochkin <saw@msu.ru> */ #ifndef _NET_INETPEER_H #define _NET_INETPEER_H #include <linux/types.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/spinlock.h> #include <linux/rtnetlink.h> #include <net/ipv6.h> #include <linux/atomic.h> /* IPv4 address key for cache lookups */ struct ipv4_addr_key { __be32 addr; int vif; }; #define INETPEER_MAXKEYSZ (sizeof(struct in6_addr) / sizeof(u32)) struct inetpeer_addr { union { struct ipv4_addr_key a4; struct in6_addr a6; u32 key[INETPEER_MAXKEYSZ]; }; __u16 family; }; struct inet_peer { struct rb_node rb_node; struct inetpeer_addr daddr; u32 metrics[RTAX_MAX]; u32 rate_tokens; /* rate limiting for ICMP */ u32 n_redirects; unsigned long rate_last; /* * Once inet_peer is queued for deletion (refcnt == 0), following field * is not available: rid * We can share memory with rcu_head to help keep inet_peer small. */ union { struct { atomic_t rid; /* Frag reception counter */ }; struct rcu_head rcu; }; /* following fields might be frequently dirtied */ __u32 dtime; /* the time of last use of not referenced entries */ refcount_t refcnt; }; struct inet_peer_base { struct rb_root rb_root; seqlock_t lock; int total; }; void inet_peer_base_init(struct inet_peer_base *); void inet_initpeers(void) __init; #define INETPEER_METRICS_NEW (~(u32) 0) static inline void inetpeer_set_addr_v4(struct inetpeer_addr *iaddr, __be32 ip) { iaddr->a4.addr = ip; iaddr->a4.vif = 0; iaddr->family = AF_INET; } static inline __be32 inetpeer_get_addr_v4(struct inetpeer_addr *iaddr) { return iaddr->a4.addr; } static inline void inetpeer_set_addr_v6(struct inetpeer_addr *iaddr, struct in6_addr *in6) { iaddr->a6 = *in6; iaddr->family = AF_INET6; } static inline struct in6_addr *inetpeer_get_addr_v6(struct inetpeer_addr *iaddr) { return &iaddr->a6; } /* can be called with or without local BH being disabled */ struct inet_peer *inet_getpeer(struct inet_peer_base *base, const struct inetpeer_addr *daddr, int create); static inline struct inet_peer *inet_getpeer_v4(struct inet_peer_base *base, __be32 v4daddr, int vif, int create) { struct inetpeer_addr daddr; daddr.a4.addr = v4daddr; daddr.a4.vif = vif; daddr.family = AF_INET; return inet_getpeer(base, &daddr, create); } static inline struct inet_peer *inet_getpeer_v6(struct inet_peer_base *base, const struct in6_addr *v6daddr, int create) { struct inetpeer_addr daddr; daddr.a6 = *v6daddr; daddr.family = AF_INET6; return inet_getpeer(base, &daddr, create); } static inline int inetpeer_addr_cmp(const struct inetpeer_addr *a, const struct inetpeer_addr *b) { int i, n; if (a->family == AF_INET) n = sizeof(a->a4) / sizeof(u32); else n = sizeof(a->a6) / sizeof(u32); for (i = 0; i < n; i++) { if (a->key[i] == b->key[i]) continue; if (a->key[i] < b->key[i]) return -1; return 1; } return 0; } /* can be called from BH context or outside */ void inet_putpeer(struct inet_peer *p); bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout); void inetpeer_invalidate_tree(struct inet_peer_base *); #endif /* _NET_INETPEER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KERNEL_EVENTS_INTERNAL_H #define _KERNEL_EVENTS_INTERNAL_H #include <linux/hardirq.h> #include <linux/uaccess.h> #include <linux/refcount.h> /* Buffer handling */ #define RING_BUFFER_WRITABLE 0x01 struct perf_buffer { refcount_t refcount; struct rcu_head rcu_head; #ifdef CONFIG_PERF_USE_VMALLOC struct work_struct work; int page_order; /* allocation order */ #endif int nr_pages; /* nr of data pages */ int overwrite; /* can overwrite itself */ int paused; /* can write into ring buffer */ atomic_t poll; /* POLL_ for wakeups */ local_t head; /* write position */ unsigned int nest; /* nested writers */ local_t events; /* event limit */ local_t wakeup; /* wakeup stamp */ local_t lost; /* nr records lost */ long watermark; /* wakeup watermark */ long aux_watermark; /* poll crap */ spinlock_t event_lock; struct list_head event_list; atomic_t mmap_count; unsigned long mmap_locked; struct user_struct *mmap_user; /* AUX area */ long aux_head; unsigned int aux_nest; long aux_wakeup; /* last aux_watermark boundary crossed by aux_head */ unsigned long aux_pgoff; int aux_nr_pages; int aux_overwrite; atomic_t aux_mmap_count; unsigned long aux_mmap_locked; void (*free_aux)(void *); refcount_t aux_refcount; int aux_in_sampling; void **aux_pages; void *aux_priv; struct perf_event_mmap_page *user_page; void *data_pages[]; }; extern void rb_free(struct perf_buffer *rb); static inline void rb_free_rcu(struct rcu_head *rcu_head) { struct perf_buffer *rb; rb = container_of(rcu_head, struct perf_buffer, rcu_head); rb_free(rb); } static inline void rb_toggle_paused(struct perf_buffer *rb, bool pause) { if (!pause && rb->nr_pages) rb->paused = 0; else rb->paused = 1; } extern struct perf_buffer * rb_alloc(int nr_pages, long watermark, int cpu, int flags); extern void perf_event_wakeup(struct perf_event *event); extern int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event, pgoff_t pgoff, int nr_pages, long watermark, int flags); extern void rb_free_aux(struct perf_buffer *rb); extern struct perf_buffer *ring_buffer_get(struct perf_event *event); extern void ring_buffer_put(struct perf_buffer *rb); static inline bool rb_has_aux(struct perf_buffer *rb) { return !!rb->aux_nr_pages; } void perf_event_aux_event(struct perf_event *event, unsigned long head, unsigned long size, u64 flags); extern struct page * perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff); #ifdef CONFIG_PERF_USE_VMALLOC /* * Back perf_mmap() with vmalloc memory. * * Required for architectures that have d-cache aliasing issues. */ static inline int page_order(struct perf_buffer *rb) { return rb->page_order; } #else static inline int page_order(struct perf_buffer *rb) { return 0; } #endif static inline unsigned long perf_data_size(struct perf_buffer *rb) { return rb->nr_pages << (PAGE_SHIFT + page_order(rb)); } static inline unsigned long perf_aux_size(struct perf_buffer *rb) { return rb->aux_nr_pages << PAGE_SHIFT; } #define __DEFINE_OUTPUT_COPY_BODY(advance_buf, memcpy_func, ...) \ { \ unsigned long size, written; \ \ do { \ size = min(handle->size, len); \ written = memcpy_func(__VA_ARGS__); \ written = size - written; \ \ len -= written; \ handle->addr += written; \ if (advance_buf) \ buf += written; \ handle->size -= written; \ if (!handle->size) { \ struct perf_buffer *rb = handle->rb; \ \ handle->page++; \ handle->page &= rb->nr_pages - 1; \ handle->addr = rb->data_pages[handle->page]; \ handle->size = PAGE_SIZE << page_order(rb); \ } \ } while (len && written == size); \ \ return len; \ } #define DEFINE_OUTPUT_COPY(func_name, memcpy_func) \ static inline unsigned long \ func_name(struct perf_output_handle *handle, \ const void *buf, unsigned long len) \ __DEFINE_OUTPUT_COPY_BODY(true, memcpy_func, handle->addr, buf, size) static inline unsigned long __output_custom(struct perf_output_handle *handle, perf_copy_f copy_func, const void *buf, unsigned long len) { unsigned long orig_len = len; __DEFINE_OUTPUT_COPY_BODY(false, copy_func, handle->addr, buf, orig_len - len, size) } static inline unsigned long memcpy_common(void *dst, const void *src, unsigned long n) { memcpy(dst, src, n); return 0; } DEFINE_OUTPUT_COPY(__output_copy, memcpy_common) static inline unsigned long memcpy_skip(void *dst, const void *src, unsigned long n) { return 0; } DEFINE_OUTPUT_COPY(__output_skip, memcpy_skip) #ifndef arch_perf_out_copy_user #define arch_perf_out_copy_user arch_perf_out_copy_user static inline unsigned long arch_perf_out_copy_user(void *dst, const void *src, unsigned long n) { unsigned long ret; pagefault_disable(); ret = __copy_from_user_inatomic(dst, src, n); pagefault_enable(); return ret; } #endif DEFINE_OUTPUT_COPY(__output_copy_user, arch_perf_out_copy_user) static inline int get_recursion_context(int *recursion) { unsigned int pc = preempt_count(); unsigned char rctx = 0; rctx += !!(pc & (NMI_MASK)); rctx += !!(pc & (NMI_MASK | HARDIRQ_MASK)); rctx += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)); if (recursion[rctx]) return -1; recursion[rctx]++; barrier(); return rctx; } static inline void put_recursion_context(int *recursion, int rctx) { barrier(); recursion[rctx]--; } #ifdef CONFIG_HAVE_PERF_USER_STACK_DUMP static inline bool arch_perf_have_user_stack_dump(void) { return true; } #define perf_user_stack_pointer(regs) user_stack_pointer(regs) #else static inline bool arch_perf_have_user_stack_dump(void) { return false; } #define perf_user_stack_pointer(regs) 0 #endif /* CONFIG_HAVE_PERF_USER_STACK_DUMP */ #endif /* _KERNEL_EVENTS_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef IOPRIO_H #define IOPRIO_H #include <linux/sched.h> #include <linux/sched/rt.h> #include <linux/iocontext.h> /* * Gives us 8 prio classes with 13-bits of data for each class */ #define IOPRIO_CLASS_SHIFT (13) #define IOPRIO_PRIO_MASK ((1UL << IOPRIO_CLASS_SHIFT) - 1) #define IOPRIO_PRIO_CLASS(mask) ((mask) >> IOPRIO_CLASS_SHIFT) #define IOPRIO_PRIO_DATA(mask) ((mask) & IOPRIO_PRIO_MASK) #define IOPRIO_PRIO_VALUE(class, data) (((class) << IOPRIO_CLASS_SHIFT) | data) #define ioprio_valid(mask) (IOPRIO_PRIO_CLASS((mask)) != IOPRIO_CLASS_NONE) /* * These are the io priority groups as implemented by CFQ. RT is the realtime * class, it always gets premium service. BE is the best-effort scheduling * class, the default for any process. IDLE is the idle scheduling class, it * is only served when no one else is using the disk. */ enum { IOPRIO_CLASS_NONE, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE, }; /* * 8 best effort priority levels are supported */ #define IOPRIO_BE_NR (8) enum { IOPRIO_WHO_PROCESS = 1, IOPRIO_WHO_PGRP, IOPRIO_WHO_USER, }; /* * Fallback BE priority */ #define IOPRIO_NORM (4) /* * if process has set io priority explicitly, use that. if not, convert * the cpu scheduler nice value to an io priority */ static inline int task_nice_ioprio(struct task_struct *task) { return (task_nice(task) + 20) / 5; } /* * This is for the case where the task hasn't asked for a specific IO class. * Check for idle and rt task process, and return appropriate IO class. */ static inline int task_nice_ioclass(struct task_struct *task) { if (task->policy == SCHED_IDLE) return IOPRIO_CLASS_IDLE; else if (task_is_realtime(task)) return IOPRIO_CLASS_RT; else return IOPRIO_CLASS_BE; } /* * If the calling process has set an I/O priority, use that. Otherwise, return * the default I/O priority. */ static inline int get_current_ioprio(void) { struct io_context *ioc = current->io_context; if (ioc) return ioc->ioprio; return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); } /* * For inheritance, return the highest of the two given priorities */ extern int ioprio_best(unsigned short aprio, unsigned short bprio); extern int set_task_ioprio(struct task_struct *task, int ioprio); #ifdef CONFIG_BLOCK extern int ioprio_check_cap(int ioprio); #else static inline int ioprio_check_cap(int ioprio) { return -ENOTBLK; } #endif /* CONFIG_BLOCK */ #endif
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_PREEMPT_H #define __ASM_PREEMPT_H #include <asm/rmwcc.h> #include <asm/percpu.h> #include <linux/thread_info.h> DECLARE_PER_CPU(int, __preempt_count); /* We use the MSB mostly because its available */ #define PREEMPT_NEED_RESCHED 0x80000000 /* * We use the PREEMPT_NEED_RESCHED bit as an inverted NEED_RESCHED such * that a decrement hitting 0 means we can and should reschedule. */ #define PREEMPT_ENABLED (0 + PREEMPT_NEED_RESCHED) /* * We mask the PREEMPT_NEED_RESCHED bit so as not to confuse all current users * that think a non-zero value indicates we cannot preempt. */ static __always_inline int preempt_count(void) { return raw_cpu_read_4(__preempt_count) & ~PREEMPT_NEED_RESCHED; } static __always_inline void preempt_count_set(int pc) { int old, new; do { old = raw_cpu_read_4(__preempt_count); new = (old & PREEMPT_NEED_RESCHED) | (pc & ~PREEMPT_NEED_RESCHED); } while (raw_cpu_cmpxchg_4(__preempt_count, old, new) != old); } /* * must be macros to avoid header recursion hell */ #define init_task_preempt_count(p) do { } while (0) #define init_idle_preempt_count(p, cpu) do { \ per_cpu(__preempt_count, (cpu)) = PREEMPT_DISABLED; \ } while (0) /* * We fold the NEED_RESCHED bit into the preempt count such that * preempt_enable() can decrement and test for needing to reschedule with a * single instruction. * * We invert the actual bit, so that when the decrement hits 0 we know we both * need to resched (the bit is cleared) and can resched (no preempt count). */ static __always_inline void set_preempt_need_resched(void) { raw_cpu_and_4(__preempt_count, ~PREEMPT_NEED_RESCHED); } static __always_inline void clear_preempt_need_resched(void) { raw_cpu_or_4(__preempt_count, PREEMPT_NEED_RESCHED); } static __always_inline bool test_preempt_need_resched(void) { return !(raw_cpu_read_4(__preempt_count) & PREEMPT_NEED_RESCHED); } /* * The various preempt_count add/sub methods */ static __always_inline void __preempt_count_add(int val) { raw_cpu_add_4(__preempt_count, val); } static __always_inline void __preempt_count_sub(int val) { raw_cpu_add_4(__preempt_count, -val); } /* * Because we keep PREEMPT_NEED_RESCHED set when we do _not_ need to reschedule * a decrement which hits zero means we have no preempt_count and should * reschedule. */ static __always_inline bool __preempt_count_dec_and_test(void) { return GEN_UNARY_RMWcc("decl", __preempt_count, e, __percpu_arg([var])); } /* * Returns true when we need to resched and can (barring IRQ state). */ static __always_inline bool should_resched(int preempt_offset) { return unlikely(raw_cpu_read_4(__preempt_count) == preempt_offset); } #ifdef CONFIG_PREEMPTION extern asmlinkage void preempt_schedule_thunk(void); # define __preempt_schedule() \ asm volatile ("call preempt_schedule_thunk" : ASM_CALL_CONSTRAINT) extern asmlinkage void preempt_schedule(void); extern asmlinkage void preempt_schedule_notrace_thunk(void); # define __preempt_schedule_notrace() \ asm volatile ("call preempt_schedule_notrace_thunk" : ASM_CALL_CONSTRAINT) extern asmlinkage void preempt_schedule_notrace(void); #endif #endif /* __ASM_PREEMPT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2001 Jens Axboe <axboe@suse.de> */ #ifndef __LINUX_BIO_H #define __LINUX_BIO_H #include <linux/highmem.h> #include <linux/mempool.h> #include <linux/ioprio.h> /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ #include <linux/blk_types.h> #define BIO_DEBUG #ifdef BIO_DEBUG #define BIO_BUG_ON BUG_ON #else #define BIO_BUG_ON #endif #define BIO_MAX_PAGES 256 #define bio_prio(bio) (bio)->bi_ioprio #define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio) #define bio_iter_iovec(bio, iter) \ bvec_iter_bvec((bio)->bi_io_vec, (iter)) #define bio_iter_page(bio, iter) \ bvec_iter_page((bio)->bi_io_vec, (iter)) #define bio_iter_len(bio, iter) \ bvec_iter_len((bio)->bi_io_vec, (iter)) #define bio_iter_offset(bio, iter) \ bvec_iter_offset((bio)->bi_io_vec, (iter)) #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) #define bvec_iter_sectors(iter) ((iter).bi_size >> 9) #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) /* * Return the data direction, READ or WRITE. */ #define bio_data_dir(bio) \ (op_is_write(bio_op(bio)) ? WRITE : READ) /* * Check whether this bio carries any data or not. A NULL bio is allowed. */ static inline bool bio_has_data(struct bio *bio) { if (bio && bio->bi_iter.bi_size && bio_op(bio) != REQ_OP_DISCARD && bio_op(bio) != REQ_OP_SECURE_ERASE && bio_op(bio) != REQ_OP_WRITE_ZEROES) return true; return false; } static inline bool bio_no_advance_iter(const struct bio *bio) { return bio_op(bio) == REQ_OP_DISCARD || bio_op(bio) == REQ_OP_SECURE_ERASE || bio_op(bio) == REQ_OP_WRITE_SAME || bio_op(bio) == REQ_OP_WRITE_ZEROES; } static inline bool bio_mergeable(struct bio *bio) { if (bio->bi_opf & REQ_NOMERGE_FLAGS) return false; return true; } static inline unsigned int bio_cur_bytes(struct bio *bio) { if (bio_has_data(bio)) return bio_iovec(bio).bv_len; else /* dataless requests such as discard */ return bio->bi_iter.bi_size; } static inline void *bio_data(struct bio *bio) { if (bio_has_data(bio)) return page_address(bio_page(bio)) + bio_offset(bio); return NULL; } /** * bio_full - check if the bio is full * @bio: bio to check * @len: length of one segment to be added * * Return true if @bio is full and one segment with @len bytes can't be * added to the bio, otherwise return false */ static inline bool bio_full(struct bio *bio, unsigned len) { if (bio->bi_vcnt >= bio->bi_max_vecs) return true; if (bio->bi_iter.bi_size > UINT_MAX - len) return true; return false; } static inline bool bio_next_segment(const struct bio *bio, struct bvec_iter_all *iter) { if (iter->idx >= bio->bi_vcnt) return false; bvec_advance(&bio->bi_io_vec[iter->idx], iter); return true; } /* * drivers should _never_ use the all version - the bio may have been split * before it got to the driver and the driver won't own all of it */ #define bio_for_each_segment_all(bvl, bio, iter) \ for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) static inline void bio_advance_iter(const struct bio *bio, struct bvec_iter *iter, unsigned int bytes) { iter->bi_sector += bytes >> 9; if (bio_no_advance_iter(bio)) iter->bi_size -= bytes; else bvec_iter_advance(bio->bi_io_vec, iter, bytes); /* TODO: It is reasonable to complete bio with error here. */ } #define __bio_for_each_segment(bvl, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = bio_iter_iovec((bio), (iter))), 1); \ bio_advance_iter((bio), &(iter), (bvl).bv_len)) #define bio_for_each_segment(bvl, bio, iter) \ __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) #define __bio_for_each_bvec(bvl, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ bio_advance_iter((bio), &(iter), (bvl).bv_len)) /* iterate over multi-page bvec */ #define bio_for_each_bvec(bvl, bio, iter) \ __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) /* * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the * same reasons as bio_for_each_segment_all(). */ #define bio_for_each_bvec_all(bvl, bio, i) \ for (i = 0, bvl = bio_first_bvec_all(bio); \ i < (bio)->bi_vcnt; i++, bvl++) \ #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) static inline unsigned bio_segments(struct bio *bio) { unsigned segs = 0; struct bio_vec bv; struct bvec_iter iter; /* * We special case discard/write same/write zeroes, because they * interpret bi_size differently: */ switch (bio_op(bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: case REQ_OP_WRITE_ZEROES: return 0; case REQ_OP_WRITE_SAME: return 1; default: break; } bio_for_each_segment(bv, bio, iter) segs++; return segs; } /* * get a reference to a bio, so it won't disappear. the intended use is * something like: * * bio_get(bio); * submit_bio(rw, bio); * if (bio->bi_flags ...) * do_something * bio_put(bio); * * without the bio_get(), it could potentially complete I/O before submit_bio * returns. and then bio would be freed memory when if (bio->bi_flags ...) * runs */ static inline void bio_get(struct bio *bio) { bio->bi_flags |= (1 << BIO_REFFED); smp_mb__before_atomic(); atomic_inc(&bio->__bi_cnt); } static inline void bio_cnt_set(struct bio *bio, unsigned int count) { if (count != 1) { bio->bi_flags |= (1 << BIO_REFFED); smp_mb(); } atomic_set(&bio->__bi_cnt, count); } static inline bool bio_flagged(struct bio *bio, unsigned int bit) { return (bio->bi_flags & (1U << bit)) != 0; } static inline void bio_set_flag(struct bio *bio, unsigned int bit) { bio->bi_flags |= (1U << bit); } static inline void bio_clear_flag(struct bio *bio, unsigned int bit) { bio->bi_flags &= ~(1U << bit); } static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) { *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); } static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) { struct bvec_iter iter = bio->bi_iter; int idx; bio_get_first_bvec(bio, bv); if (bv->bv_len == bio->bi_iter.bi_size) return; /* this bio only has a single bvec */ bio_advance_iter(bio, &iter, iter.bi_size); if (!iter.bi_bvec_done) idx = iter.bi_idx - 1; else /* in the middle of bvec */ idx = iter.bi_idx; *bv = bio->bi_io_vec[idx]; /* * iter.bi_bvec_done records actual length of the last bvec * if this bio ends in the middle of one io vector */ if (iter.bi_bvec_done) bv->bv_len = iter.bi_bvec_done; } static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) { WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); return bio->bi_io_vec; } static inline struct page *bio_first_page_all(struct bio *bio) { return bio_first_bvec_all(bio)->bv_page; } static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) { WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); return &bio->bi_io_vec[bio->bi_vcnt - 1]; } enum bip_flags { BIP_BLOCK_INTEGRITY = 1 << 0, /* block layer owns integrity data */ BIP_MAPPED_INTEGRITY = 1 << 1, /* ref tag has been remapped */ BIP_CTRL_NOCHECK = 1 << 2, /* disable HBA integrity checking */ BIP_DISK_NOCHECK = 1 << 3, /* disable disk integrity checking */ BIP_IP_CHECKSUM = 1 << 4, /* IP checksum */ }; /* * bio integrity payload */ struct bio_integrity_payload { struct bio *bip_bio; /* parent bio */ struct bvec_iter bip_iter; unsigned short bip_slab; /* slab the bip came from */ unsigned short bip_vcnt; /* # of integrity bio_vecs */ unsigned short bip_max_vcnt; /* integrity bio_vec slots */ unsigned short bip_flags; /* control flags */ struct bvec_iter bio_iter; /* for rewinding parent bio */ struct work_struct bip_work; /* I/O completion */ struct bio_vec *bip_vec; struct bio_vec bip_inline_vecs[];/* embedded bvec array */ }; #if defined(CONFIG_BLK_DEV_INTEGRITY) static inline struct bio_integrity_payload *bio_integrity(struct bio *bio) { if (bio->bi_opf & REQ_INTEGRITY) return bio->bi_integrity; return NULL; } static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) { struct bio_integrity_payload *bip = bio_integrity(bio); if (bip) return bip->bip_flags & flag; return false; } static inline sector_t bip_get_seed(struct bio_integrity_payload *bip) { return bip->bip_iter.bi_sector; } static inline void bip_set_seed(struct bio_integrity_payload *bip, sector_t seed) { bip->bip_iter.bi_sector = seed; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ extern void bio_trim(struct bio *bio, int offset, int size); extern struct bio *bio_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs); /** * bio_next_split - get next @sectors from a bio, splitting if necessary * @bio: bio to split * @sectors: number of sectors to split from the front of @bio * @gfp: gfp mask * @bs: bio set to allocate from * * Returns a bio representing the next @sectors of @bio - if the bio is smaller * than @sectors, returns the original bio unchanged. */ static inline struct bio *bio_next_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs) { if (sectors >= bio_sectors(bio)) return bio; return bio_split(bio, sectors, gfp, bs); } enum { BIOSET_NEED_BVECS = BIT(0), BIOSET_NEED_RESCUER = BIT(1), }; extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); extern void bioset_exit(struct bio_set *); extern int biovec_init_pool(mempool_t *pool, int pool_entries); extern int bioset_init_from_src(struct bio_set *bs, struct bio_set *src); extern struct bio *bio_alloc_bioset(gfp_t, unsigned int, struct bio_set *); extern void bio_put(struct bio *); extern void __bio_clone_fast(struct bio *, struct bio *); extern struct bio *bio_clone_fast(struct bio *, gfp_t, struct bio_set *); extern struct bio_set fs_bio_set; static inline struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) { return bio_alloc_bioset(gfp_mask, nr_iovecs, &fs_bio_set); } static inline struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs) { return bio_alloc_bioset(gfp_mask, nr_iovecs, NULL); } extern blk_qc_t submit_bio(struct bio *); extern void bio_endio(struct bio *); static inline void bio_io_error(struct bio *bio) { bio->bi_status = BLK_STS_IOERR; bio_endio(bio); } static inline void bio_wouldblock_error(struct bio *bio) { bio_set_flag(bio, BIO_QUIET); bio->bi_status = BLK_STS_AGAIN; bio_endio(bio); } struct request_queue; extern int submit_bio_wait(struct bio *bio); extern void bio_advance(struct bio *, unsigned); extern void bio_init(struct bio *bio, struct bio_vec *table, unsigned short max_vecs); extern void bio_uninit(struct bio *); extern void bio_reset(struct bio *); void bio_chain(struct bio *, struct bio *); extern int bio_add_page(struct bio *, struct page *, unsigned int,unsigned int); extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, unsigned int, unsigned int); bool __bio_try_merge_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off, bool *same_page); void __bio_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off); int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter); void bio_release_pages(struct bio *bio, bool mark_dirty); extern void bio_set_pages_dirty(struct bio *bio); extern void bio_check_pages_dirty(struct bio *bio); extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, struct bio *src, struct bvec_iter *src_iter); extern void bio_copy_data(struct bio *dst, struct bio *src); extern void bio_list_copy_data(struct bio *dst, struct bio *src); extern void bio_free_pages(struct bio *bio); void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter); void bio_truncate(struct bio *bio, unsigned new_size); void guard_bio_eod(struct bio *bio); static inline void zero_fill_bio(struct bio *bio) { zero_fill_bio_iter(bio, bio->bi_iter); } extern struct bio_vec *bvec_alloc(gfp_t, int, unsigned long *, mempool_t *); extern void bvec_free(mempool_t *, struct bio_vec *, unsigned int); extern unsigned int bvec_nr_vecs(unsigned short idx); extern const char *bio_devname(struct bio *bio, char *buffer); #define bio_set_dev(bio, bdev) \ do { \ if ((bio)->bi_disk != (bdev)->bd_disk) \ bio_clear_flag(bio, BIO_THROTTLED);\ (bio)->bi_disk = (bdev)->bd_disk; \ (bio)->bi_partno = (bdev)->bd_partno; \ bio_associate_blkg(bio); \ } while (0) #define bio_copy_dev(dst, src) \ do { \ (dst)->bi_disk = (src)->bi_disk; \ (dst)->bi_partno = (src)->bi_partno; \ bio_clone_blkg_association(dst, src); \ } while (0) #define bio_dev(bio) \ disk_devt((bio)->bi_disk) #ifdef CONFIG_BLK_CGROUP void bio_associate_blkg(struct bio *bio); void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css); void bio_clone_blkg_association(struct bio *dst, struct bio *src); #else /* CONFIG_BLK_CGROUP */ static inline void bio_associate_blkg(struct bio *bio) { } static inline void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css) { } static inline void bio_clone_blkg_association(struct bio *dst, struct bio *src) { } #endif /* CONFIG_BLK_CGROUP */ #ifdef CONFIG_HIGHMEM /* * remember never ever reenable interrupts between a bvec_kmap_irq and * bvec_kunmap_irq! */ static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) { unsigned long addr; /* * might not be a highmem page, but the preempt/irq count * balancing is a lot nicer this way */ local_irq_save(*flags); addr = (unsigned long) kmap_atomic(bvec->bv_page); BUG_ON(addr & ~PAGE_MASK); return (char *) addr + bvec->bv_offset; } static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) { unsigned long ptr = (unsigned long) buffer & PAGE_MASK; kunmap_atomic((void *) ptr); local_irq_restore(*flags); } #else static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) { return page_address(bvec->bv_page) + bvec->bv_offset; } static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) { *flags = 0; } #endif /* * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. * * A bio_list anchors a singly-linked list of bios chained through the bi_next * member of the bio. The bio_list also caches the last list member to allow * fast access to the tail. */ struct bio_list { struct bio *head; struct bio *tail; }; static inline int bio_list_empty(const struct bio_list *bl) { return bl->head == NULL; } static inline void bio_list_init(struct bio_list *bl) { bl->head = bl->tail = NULL; } #define BIO_EMPTY_LIST { NULL, NULL } #define bio_list_for_each(bio, bl) \ for (bio = (bl)->head; bio; bio = bio->bi_next) static inline unsigned bio_list_size(const struct bio_list *bl) { unsigned sz = 0; struct bio *bio; bio_list_for_each(bio, bl) sz++; return sz; } static inline void bio_list_add(struct bio_list *bl, struct bio *bio) { bio->bi_next = NULL; if (bl->tail) bl->tail->bi_next = bio; else bl->head = bio; bl->tail = bio; } static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) { bio->bi_next = bl->head; bl->head = bio; if (!bl->tail) bl->tail = bio; } static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) { if (!bl2->head) return; if (bl->tail) bl->tail->bi_next = bl2->head; else bl->head = bl2->head; bl->tail = bl2->tail; } static inline void bio_list_merge_head(struct bio_list *bl, struct bio_list *bl2) { if (!bl2->head) return; if (bl->head) bl2->tail->bi_next = bl->head; else bl->tail = bl2->tail; bl->head = bl2->head; } static inline struct bio *bio_list_peek(struct bio_list *bl) { return bl->head; } static inline struct bio *bio_list_pop(struct bio_list *bl) { struct bio *bio = bl->head; if (bio) { bl->head = bl->head->bi_next; if (!bl->head) bl->tail = NULL; bio->bi_next = NULL; } return bio; } static inline struct bio *bio_list_get(struct bio_list *bl) { struct bio *bio = bl->head; bl->head = bl->tail = NULL; return bio; } /* * Increment chain count for the bio. Make sure the CHAIN flag update * is visible before the raised count. */ static inline void bio_inc_remaining(struct bio *bio) { bio_set_flag(bio, BIO_CHAIN); smp_mb__before_atomic(); atomic_inc(&bio->__bi_remaining); } /* * bio_set is used to allow other portions of the IO system to * allocate their own private memory pools for bio and iovec structures. * These memory pools in turn all allocate from the bio_slab * and the bvec_slabs[]. */ #define BIO_POOL_SIZE 2 struct bio_set { struct kmem_cache *bio_slab; unsigned int front_pad; mempool_t bio_pool; mempool_t bvec_pool; #if defined(CONFIG_BLK_DEV_INTEGRITY) mempool_t bio_integrity_pool; mempool_t bvec_integrity_pool; #endif /* * Deadlock avoidance for stacking block drivers: see comments in * bio_alloc_bioset() for details */ spinlock_t rescue_lock; struct bio_list rescue_list; struct work_struct rescue_work; struct workqueue_struct *rescue_workqueue; }; struct biovec_slab { int nr_vecs; char *name; struct kmem_cache *slab; }; static inline bool bioset_initialized(struct bio_set *bs) { return bs->bio_slab != NULL; } /* * a small number of entries is fine, not going to be performance critical. * basically we just need to survive */ #define BIO_SPLIT_ENTRIES 2 #if defined(CONFIG_BLK_DEV_INTEGRITY) #define bip_for_each_vec(bvl, bip, iter) \ for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter) #define bio_for_each_integrity_vec(_bvl, _bio, _iter) \ for_each_bio(_bio) \ bip_for_each_vec(_bvl, _bio->bi_integrity, _iter) extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int); extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int); extern bool bio_integrity_prep(struct bio *); extern void bio_integrity_advance(struct bio *, unsigned int); extern void bio_integrity_trim(struct bio *); extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t); extern int bioset_integrity_create(struct bio_set *, int); extern void bioset_integrity_free(struct bio_set *); extern void bio_integrity_init(void); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline void *bio_integrity(struct bio *bio) { return NULL; } static inline int bioset_integrity_create(struct bio_set *bs, int pool_size) { return 0; } static inline void bioset_integrity_free (struct bio_set *bs) { return; } static inline bool bio_integrity_prep(struct bio *bio) { return true; } static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp_mask) { return 0; } static inline void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) { return; } static inline void bio_integrity_trim(struct bio *bio) { return; } static inline void bio_integrity_init(void) { return; } static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) { return false; } static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp, unsigned int nr) { return ERR_PTR(-EINVAL); } static inline int bio_integrity_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int offset) { return 0; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ /* * Mark a bio as polled. Note that for async polled IO, the caller must * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). * We cannot block waiting for requests on polled IO, as those completions * must be found by the caller. This is different than IRQ driven IO, where * it's safe to wait for IO to complete. */ static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) { bio->bi_opf |= REQ_HIPRI; if (!is_sync_kiocb(kiocb)) bio->bi_opf |= REQ_NOWAIT; } #endif /* __LINUX_BIO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_RT_H #define _LINUX_SCHED_RT_H #include <linux/sched.h> struct task_struct; static inline int rt_prio(int prio) { if (unlikely(prio < MAX_RT_PRIO)) return 1; return 0; } static inline int rt_task(struct task_struct *p) { return rt_prio(p->prio); } static inline bool task_is_realtime(struct task_struct *tsk) { int policy = tsk->policy; if (policy == SCHED_FIFO || policy == SCHED_RR) return true; if (policy == SCHED_DEADLINE) return true; return false; } #ifdef CONFIG_RT_MUTEXES /* * Must hold either p->pi_lock or task_rq(p)->lock. */ static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *p) { return p->pi_top_task; } extern void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task); extern void rt_mutex_adjust_pi(struct task_struct *p); static inline bool tsk_is_pi_blocked(struct task_struct *tsk) { return tsk->pi_blocked_on != NULL; } #else static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *task) { return NULL; } # define rt_mutex_adjust_pi(p) do { } while (0) static inline bool tsk_is_pi_blocked(struct task_struct *tsk) { return false; } #endif extern void normalize_rt_tasks(void); /* * default timeslice is 100 msecs (used only for SCHED_RR tasks). * Timeslices get refilled after they expire. */ #define RR_TIMESLICE (100 * HZ / 1000) #endif /* _LINUX_SCHED_RT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef __SOUND_CORE_H #define __SOUND_CORE_H /* * Main header file for the ALSA driver * Copyright (c) 1994-2001 by Jaroslav Kysela <perex@perex.cz> */ #include <linux/device.h> #include <linux/sched.h> /* wake_up() */ #include <linux/mutex.h> /* struct mutex */ #include <linux/rwsem.h> /* struct rw_semaphore */ #include <linux/pm.h> /* pm_message_t */ #include <linux/stringify.h> #include <linux/printk.h> /* number of supported soundcards */ #ifdef CONFIG_SND_DYNAMIC_MINORS #define SNDRV_CARDS CONFIG_SND_MAX_CARDS #else #define SNDRV_CARDS 8 /* don't change - minor numbers */ #endif #define CONFIG_SND_MAJOR 116 /* standard configuration */ /* forward declarations */ struct pci_dev; struct module; struct completion; /* device allocation stuff */ /* type of the object used in snd_device_*() * this also defines the calling order */ enum snd_device_type { SNDRV_DEV_LOWLEVEL, SNDRV_DEV_INFO, SNDRV_DEV_BUS, SNDRV_DEV_CODEC, SNDRV_DEV_PCM, SNDRV_DEV_COMPRESS, SNDRV_DEV_RAWMIDI, SNDRV_DEV_TIMER, SNDRV_DEV_SEQUENCER, SNDRV_DEV_HWDEP, SNDRV_DEV_JACK, SNDRV_DEV_CONTROL, /* NOTE: this must be the last one */ }; enum snd_device_state { SNDRV_DEV_BUILD, SNDRV_DEV_REGISTERED, SNDRV_DEV_DISCONNECTED, }; struct snd_device; struct snd_device_ops { int (*dev_free)(struct snd_device *dev); int (*dev_register)(struct snd_device *dev); int (*dev_disconnect)(struct snd_device *dev); }; struct snd_device { struct list_head list; /* list of registered devices */ struct snd_card *card; /* card which holds this device */ enum snd_device_state state; /* state of the device */ enum snd_device_type type; /* device type */ void *device_data; /* device structure */ const struct snd_device_ops *ops; /* operations */ }; #define snd_device(n) list_entry(n, struct snd_device, list) /* main structure for soundcard */ struct snd_card { int number; /* number of soundcard (index to snd_cards) */ char id[16]; /* id string of this card */ char driver[16]; /* driver name */ char shortname[32]; /* short name of this soundcard */ char longname[80]; /* name of this soundcard */ char irq_descr[32]; /* Interrupt description */ char mixername[80]; /* mixer name */ char components[128]; /* card components delimited with space */ struct module *module; /* top-level module */ void *private_data; /* private data for soundcard */ void (*private_free) (struct snd_card *card); /* callback for freeing of private data */ struct list_head devices; /* devices */ struct device ctl_dev; /* control device */ unsigned int last_numid; /* last used numeric ID */ struct rw_semaphore controls_rwsem; /* controls list lock */ rwlock_t ctl_files_rwlock; /* ctl_files list lock */ int controls_count; /* count of all controls */ int user_ctl_count; /* count of all user controls */ struct list_head controls; /* all controls for this card */ struct list_head ctl_files; /* active control files */ struct snd_info_entry *proc_root; /* root for soundcard specific files */ struct proc_dir_entry *proc_root_link; /* number link to real id */ struct list_head files_list; /* all files associated to this card */ struct snd_shutdown_f_ops *s_f_ops; /* file operations in the shutdown state */ spinlock_t files_lock; /* lock the files for this card */ int shutdown; /* this card is going down */ struct completion *release_completion; struct device *dev; /* device assigned to this card */ struct device card_dev; /* cardX object for sysfs */ const struct attribute_group *dev_groups[4]; /* assigned sysfs attr */ bool registered; /* card_dev is registered? */ int sync_irq; /* assigned irq, used for PCM sync */ wait_queue_head_t remove_sleep; size_t total_pcm_alloc_bytes; /* total amount of allocated buffers */ struct mutex memory_mutex; /* protection for the above */ #ifdef CONFIG_PM unsigned int power_state; /* power state */ wait_queue_head_t power_sleep; #endif #if IS_ENABLED(CONFIG_SND_MIXER_OSS) struct snd_mixer_oss *mixer_oss; int mixer_oss_change_count; #endif }; #define dev_to_snd_card(p) container_of(p, struct snd_card, card_dev) #ifdef CONFIG_PM static inline unsigned int snd_power_get_state(struct snd_card *card) { return card->power_state; } static inline void snd_power_change_state(struct snd_card *card, unsigned int state) { card->power_state = state; wake_up(&card->power_sleep); } /* init.c */ int snd_power_wait(struct snd_card *card, unsigned int power_state); #else /* ! CONFIG_PM */ static inline int snd_power_wait(struct snd_card *card, unsigned int state) { return 0; } #define snd_power_get_state(card) ({ (void)(card); SNDRV_CTL_POWER_D0; }) #define snd_power_change_state(card, state) do { (void)(card); } while (0) #endif /* CONFIG_PM */ struct snd_minor { int type; /* SNDRV_DEVICE_TYPE_XXX */ int card; /* card number */ int device; /* device number */ const struct file_operations *f_ops; /* file operations */ void *private_data; /* private data for f_ops->open */ struct device *dev; /* device for sysfs */ struct snd_card *card_ptr; /* assigned card instance */ }; /* return a device pointer linked to each sound device as a parent */ static inline struct device *snd_card_get_device_link(struct snd_card *card) { return card ? &card->card_dev : NULL; } /* sound.c */ extern int snd_major; extern int snd_ecards_limit; extern struct class *sound_class; void snd_request_card(int card); void snd_device_initialize(struct device *dev, struct snd_card *card); int snd_register_device(int type, struct snd_card *card, int dev, const struct file_operations *f_ops, void *private_data, struct device *device); int snd_unregister_device(struct device *dev); void *snd_lookup_minor_data(unsigned int minor, int type); #ifdef CONFIG_SND_OSSEMUL int snd_register_oss_device(int type, struct snd_card *card, int dev, const struct file_operations *f_ops, void *private_data); int snd_unregister_oss_device(int type, struct snd_card *card, int dev); void *snd_lookup_oss_minor_data(unsigned int minor, int type); #endif int snd_minor_info_init(void); /* sound_oss.c */ #ifdef CONFIG_SND_OSSEMUL int snd_minor_info_oss_init(void); #else static inline int snd_minor_info_oss_init(void) { return 0; } #endif /* memory.c */ int copy_to_user_fromio(void __user *dst, const volatile void __iomem *src, size_t count); int copy_from_user_toio(volatile void __iomem *dst, const void __user *src, size_t count); /* init.c */ int snd_card_locked(int card); #if IS_ENABLED(CONFIG_SND_MIXER_OSS) #define SND_MIXER_OSS_NOTIFY_REGISTER 0 #define SND_MIXER_OSS_NOTIFY_DISCONNECT 1 #define SND_MIXER_OSS_NOTIFY_FREE 2 extern int (*snd_mixer_oss_notify_callback)(struct snd_card *card, int cmd); #endif int snd_card_new(struct device *parent, int idx, const char *xid, struct module *module, int extra_size, struct snd_card **card_ret); int snd_card_disconnect(struct snd_card *card); void snd_card_disconnect_sync(struct snd_card *card); int snd_card_free(struct snd_card *card); int snd_card_free_when_closed(struct snd_card *card); void snd_card_set_id(struct snd_card *card, const char *id); int snd_card_register(struct snd_card *card); int snd_card_info_init(void); int snd_card_add_dev_attr(struct snd_card *card, const struct attribute_group *group); int snd_component_add(struct snd_card *card, const char *component); int snd_card_file_add(struct snd_card *card, struct file *file); int snd_card_file_remove(struct snd_card *card, struct file *file); struct snd_card *snd_card_ref(int card); /** * snd_card_unref - Unreference the card object * @card: the card object to unreference * * Call this function for the card object that was obtained via snd_card_ref() * or snd_lookup_minor_data(). */ static inline void snd_card_unref(struct snd_card *card) { put_device(&card->card_dev); } #define snd_card_set_dev(card, devptr) ((card)->dev = (devptr)) /* device.c */ int snd_device_new(struct snd_card *card, enum snd_device_type type, void *device_data, const struct snd_device_ops *ops); int snd_device_register(struct snd_card *card, void *device_data); int snd_device_register_all(struct snd_card *card); void snd_device_disconnect(struct snd_card *card, void *device_data); void snd_device_disconnect_all(struct snd_card *card); void snd_device_free(struct snd_card *card, void *device_data); void snd_device_free_all(struct snd_card *card); int snd_device_get_state(struct snd_card *card, void *device_data); /* isadma.c */ #ifdef CONFIG_ISA_DMA_API #define DMA_MODE_NO_ENABLE 0x0100 void snd_dma_program(unsigned long dma, unsigned long addr, unsigned int size, unsigned short mode); void snd_dma_disable(unsigned long dma); unsigned int snd_dma_pointer(unsigned long dma, unsigned int size); #endif /* misc.c */ struct resource; void release_and_free_resource(struct resource *res); /* --- */ /* sound printk debug levels */ enum { SND_PR_ALWAYS, SND_PR_DEBUG, SND_PR_VERBOSE, }; #if defined(CONFIG_SND_DEBUG) || defined(CONFIG_SND_VERBOSE_PRINTK) __printf(4, 5) void __snd_printk(unsigned int level, const char *file, int line, const char *format, ...); #else #define __snd_printk(level, file, line, format, ...) \ printk(format, ##__VA_ARGS__) #endif /** * snd_printk - printk wrapper * @fmt: format string * * Works like printk() but prints the file and the line of the caller * when configured with CONFIG_SND_VERBOSE_PRINTK. */ #define snd_printk(fmt, ...) \ __snd_printk(0, __FILE__, __LINE__, fmt, ##__VA_ARGS__) #ifdef CONFIG_SND_DEBUG /** * snd_printd - debug printk * @fmt: format string * * Works like snd_printk() for debugging purposes. * Ignored when CONFIG_SND_DEBUG is not set. */ #define snd_printd(fmt, ...) \ __snd_printk(1, __FILE__, __LINE__, fmt, ##__VA_ARGS__) #define _snd_printd(level, fmt, ...) \ __snd_printk(level, __FILE__, __LINE__, fmt, ##__VA_ARGS__) /** * snd_BUG - give a BUG warning message and stack trace * * Calls WARN() if CONFIG_SND_DEBUG is set. * Ignored when CONFIG_SND_DEBUG is not set. */ #define snd_BUG() WARN(1, "BUG?\n") /** * snd_printd_ratelimit - Suppress high rates of output when * CONFIG_SND_DEBUG is enabled. */ #define snd_printd_ratelimit() printk_ratelimit() /** * snd_BUG_ON - debugging check macro * @cond: condition to evaluate * * Has the same behavior as WARN_ON when CONFIG_SND_DEBUG is set, * otherwise just evaluates the conditional and returns the value. */ #define snd_BUG_ON(cond) WARN_ON((cond)) #else /* !CONFIG_SND_DEBUG */ __printf(1, 2) static inline void snd_printd(const char *format, ...) {} __printf(2, 3) static inline void _snd_printd(int level, const char *format, ...) {} #define snd_BUG() do { } while (0) #define snd_BUG_ON(condition) ({ \ int __ret_warn_on = !!(condition); \ unlikely(__ret_warn_on); \ }) static inline bool snd_printd_ratelimit(void) { return false; } #endif /* CONFIG_SND_DEBUG */ #ifdef CONFIG_SND_DEBUG_VERBOSE /** * snd_printdd - debug printk * @format: format string * * Works like snd_printk() for debugging purposes. * Ignored when CONFIG_SND_DEBUG_VERBOSE is not set. */ #define snd_printdd(format, ...) \ __snd_printk(2, __FILE__, __LINE__, format, ##__VA_ARGS__) #else __printf(1, 2) static inline void snd_printdd(const char *format, ...) {} #endif #define SNDRV_OSS_VERSION ((3<<16)|(8<<8)|(1<<4)|(0)) /* 3.8.1a */ /* for easier backward-porting */ #if IS_ENABLED(CONFIG_GAMEPORT) #define gameport_set_dev_parent(gp,xdev) ((gp)->dev.parent = (xdev)) #define gameport_set_port_data(gp,r) ((gp)->port_data = (r)) #define gameport_get_port_data(gp) (gp)->port_data #endif /* PCI quirk list helper */ struct snd_pci_quirk { unsigned short subvendor; /* PCI subvendor ID */ unsigned short subdevice; /* PCI subdevice ID */ unsigned short subdevice_mask; /* bitmask to match */ int value; /* value */ #ifdef CONFIG_SND_DEBUG_VERBOSE const char *name; /* name of the device (optional) */ #endif }; #define _SND_PCI_QUIRK_ID_MASK(vend, mask, dev) \ .subvendor = (vend), .subdevice = (dev), .subdevice_mask = (mask) #define _SND_PCI_QUIRK_ID(vend, dev) \ _SND_PCI_QUIRK_ID_MASK(vend, 0xffff, dev) #define SND_PCI_QUIRK_ID(vend,dev) {_SND_PCI_QUIRK_ID(vend, dev)} #ifdef CONFIG_SND_DEBUG_VERBOSE #define SND_PCI_QUIRK(vend,dev,xname,val) \ {_SND_PCI_QUIRK_ID(vend, dev), .value = (val), .name = (xname)} #define SND_PCI_QUIRK_VENDOR(vend, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, 0, 0), .value = (val), .name = (xname)} #define SND_PCI_QUIRK_MASK(vend, mask, dev, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, mask, dev), \ .value = (val), .name = (xname)} #define snd_pci_quirk_name(q) ((q)->name) #else #define SND_PCI_QUIRK(vend,dev,xname,val) \ {_SND_PCI_QUIRK_ID(vend, dev), .value = (val)} #define SND_PCI_QUIRK_MASK(vend, mask, dev, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, mask, dev), .value = (val)} #define SND_PCI_QUIRK_VENDOR(vend, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, 0, 0), .value = (val)} #define snd_pci_quirk_name(q) "" #endif #ifdef CONFIG_PCI const struct snd_pci_quirk * snd_pci_quirk_lookup(struct pci_dev *pci, const struct snd_pci_quirk *list); const struct snd_pci_quirk * snd_pci_quirk_lookup_id(u16 vendor, u16 device, const struct snd_pci_quirk *list); #else static inline const struct snd_pci_quirk * snd_pci_quirk_lookup(struct pci_dev *pci, const struct snd_pci_quirk *list) { return NULL; } static inline const struct snd_pci_quirk * snd_pci_quirk_lookup_id(u16 vendor, u16 device, const struct snd_pci_quirk *list) { return NULL; } #endif #endif /* __SOUND_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Red Black Trees (C) 1999 Andrea Arcangeli <andrea@suse.de> linux/include/linux/rbtree.h To use rbtrees you'll have to implement your own insert and search cores. This will avoid us to use callbacks and to drop drammatically performances. I know it's not the cleaner way, but in C (not in C++) to get performances and genericity... See Documentation/core-api/rbtree.rst for documentation and samples. */ #ifndef _LINUX_RBTREE_H #define _LINUX_RBTREE_H #include <linux/kernel.h> #include <linux/stddef.h> #include <linux/rcupdate.h> struct rb_node { unsigned long __rb_parent_color; struct rb_node *rb_right; struct rb_node *rb_left; } __attribute__((aligned(sizeof(long)))); /* The alignment might seem pointless, but allegedly CRIS needs it */ struct rb_root { struct rb_node *rb_node; }; #define rb_parent(r) ((struct rb_node *)((r)->__rb_parent_color & ~3)) #define RB_ROOT (struct rb_root) { NULL, } #define rb_entry(ptr, type, member) container_of(ptr, type, member) #define RB_EMPTY_ROOT(root) (READ_ONCE((root)->rb_node) == NULL) /* 'empty' nodes are nodes that are known not to be inserted in an rbtree */ #define RB_EMPTY_NODE(node) \ ((node)->__rb_parent_color == (unsigned long)(node)) #define RB_CLEAR_NODE(node) \ ((node)->__rb_parent_color = (unsigned long)(node)) extern void rb_insert_color(struct rb_node *, struct rb_root *); extern void rb_erase(struct rb_node *, struct rb_root *); /* Find logical next and previous nodes in a tree */ extern struct rb_node *rb_next(const struct rb_node *); extern struct rb_node *rb_prev(const struct rb_node *); extern struct rb_node *rb_first(const struct rb_root *); extern struct rb_node *rb_last(const struct rb_root *); /* Postorder iteration - always visit the parent after its children */ extern struct rb_node *rb_first_postorder(const struct rb_root *); extern struct rb_node *rb_next_postorder(const struct rb_node *); /* Fast replacement of a single node without remove/rebalance/add/rebalance */ extern void rb_replace_node(struct rb_node *victim, struct rb_node *new, struct rb_root *root); extern void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new, struct rb_root *root); static inline void rb_link_node(struct rb_node *node, struct rb_node *parent, struct rb_node **rb_link) { node->__rb_parent_color = (unsigned long)parent; node->rb_left = node->rb_right = NULL; *rb_link = node; } static inline void rb_link_node_rcu(struct rb_node *node, struct rb_node *parent, struct rb_node **rb_link) { node->__rb_parent_color = (unsigned long)parent; node->rb_left = node->rb_right = NULL; rcu_assign_pointer(*rb_link, node); } #define rb_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ ____ptr ? rb_entry(____ptr, type, member) : NULL; \ }) /** * rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of * given type allowing the backing memory of @pos to be invalidated * * @pos: the 'type *' to use as a loop cursor. * @n: another 'type *' to use as temporary storage * @root: 'rb_root *' of the rbtree. * @field: the name of the rb_node field within 'type'. * * rbtree_postorder_for_each_entry_safe() provides a similar guarantee as * list_for_each_entry_safe() and allows the iteration to continue independent * of changes to @pos by the body of the loop. * * Note, however, that it cannot handle other modifications that re-order the * rbtree it is iterating over. This includes calling rb_erase() on @pos, as * rb_erase() may rebalance the tree, causing us to miss some nodes. */ #define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \ for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \ pos && ({ n = rb_entry_safe(rb_next_postorder(&pos->field), \ typeof(*pos), field); 1; }); \ pos = n) /* * Leftmost-cached rbtrees. * * We do not cache the rightmost node based on footprint * size vs number of potential users that could benefit * from O(1) rb_last(). Just not worth it, users that want * this feature can always implement the logic explicitly. * Furthermore, users that want to cache both pointers may * find it a bit asymmetric, but that's ok. */ struct rb_root_cached { struct rb_root rb_root; struct rb_node *rb_leftmost; }; #define RB_ROOT_CACHED (struct rb_root_cached) { {NULL, }, NULL } /* Same as rb_first(), but O(1) */ #define rb_first_cached(root) (root)->rb_leftmost static inline void rb_insert_color_cached(struct rb_node *node, struct rb_root_cached *root, bool leftmost) { if (leftmost) root->rb_leftmost = node; rb_insert_color(node, &root->rb_root); } static inline void rb_erase_cached(struct rb_node *node, struct rb_root_cached *root) { if (root->rb_leftmost == node) root->rb_leftmost = rb_next(node); rb_erase(node, &root->rb_root); } static inline void rb_replace_node_cached(struct rb_node *victim, struct rb_node *new, struct rb_root_cached *root) { if (root->rb_leftmost == victim) root->rb_leftmost = new; rb_replace_node(victim, new, &root->rb_root); } #endif /* _LINUX_RBTREE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/pm_qos.h> static inline void device_pm_init_common(struct device *dev) { if (!dev->power.early_init) { spin_lock_init(&dev->power.lock); dev->power.qos = NULL; dev->power.early_init = true; } } #ifdef CONFIG_PM static inline void pm_runtime_early_init(struct device *dev) { dev->power.disable_depth = 1; device_pm_init_common(dev); } extern void pm_runtime_init(struct device *dev); extern void pm_runtime_reinit(struct device *dev); extern void pm_runtime_remove(struct device *dev); extern u64 pm_runtime_active_time(struct device *dev); #define WAKE_IRQ_DEDICATED_ALLOCATED BIT(0) #define WAKE_IRQ_DEDICATED_MANAGED BIT(1) #define WAKE_IRQ_DEDICATED_MASK (WAKE_IRQ_DEDICATED_ALLOCATED | \ WAKE_IRQ_DEDICATED_MANAGED) struct wake_irq { struct device *dev; unsigned int status; int irq; const char *name; }; extern void dev_pm_arm_wake_irq(struct wake_irq *wirq); extern void dev_pm_disarm_wake_irq(struct wake_irq *wirq); extern void dev_pm_enable_wake_irq_check(struct device *dev, bool can_change_status); extern void dev_pm_disable_wake_irq_check(struct device *dev); #ifdef CONFIG_PM_SLEEP extern void device_wakeup_attach_irq(struct device *dev, struct wake_irq *wakeirq); extern void device_wakeup_detach_irq(struct device *dev); extern void device_wakeup_arm_wake_irqs(void); extern void device_wakeup_disarm_wake_irqs(void); #else static inline void device_wakeup_attach_irq(struct device *dev, struct wake_irq *wakeirq) {} static inline void device_wakeup_detach_irq(struct device *dev) { } #endif /* CONFIG_PM_SLEEP */ /* * sysfs.c */ extern int dpm_sysfs_add(struct device *dev); extern void dpm_sysfs_remove(struct device *dev); extern void rpm_sysfs_remove(struct device *dev); extern int wakeup_sysfs_add(struct device *dev); extern void wakeup_sysfs_remove(struct device *dev); extern int pm_qos_sysfs_add_resume_latency(struct device *dev); extern void pm_qos_sysfs_remove_resume_latency(struct device *dev); extern int pm_qos_sysfs_add_flags(struct device *dev); extern void pm_qos_sysfs_remove_flags(struct device *dev); extern int pm_qos_sysfs_add_latency_tolerance(struct device *dev); extern void pm_qos_sysfs_remove_latency_tolerance(struct device *dev); extern int dpm_sysfs_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid); #else /* CONFIG_PM */ static inline void pm_runtime_early_init(struct device *dev) { device_pm_init_common(dev); } static inline void pm_runtime_init(struct device *dev) {} static inline void pm_runtime_reinit(struct device *dev) {} static inline void pm_runtime_remove(struct device *dev) {} static inline int dpm_sysfs_add(struct device *dev) { return 0; } static inline void dpm_sysfs_remove(struct device *dev) {} static inline int dpm_sysfs_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) { return 0; } #endif #ifdef CONFIG_PM_SLEEP /* kernel/power/main.c */ extern int pm_async_enabled; /* drivers/base/power/main.c */ extern struct list_head dpm_list; /* The active device list */ static inline struct device *to_device(struct list_head *entry) { return container_of(entry, struct device, power.entry); } extern void device_pm_sleep_init(struct device *dev); extern void device_pm_add(struct device *); extern void device_pm_remove(struct device *); extern void device_pm_move_before(struct device *, struct device *); extern void device_pm_move_after(struct device *, struct device *); extern void device_pm_move_last(struct device *); extern void device_pm_check_callbacks(struct device *dev); static inline bool device_pm_initialized(struct device *dev) { return dev->power.in_dpm_list; } /* drivers/base/power/wakeup_stats.c */ extern int wakeup_source_sysfs_add(struct device *parent, struct wakeup_source *ws); extern void wakeup_source_sysfs_remove(struct wakeup_source *ws); extern int pm_wakeup_source_sysfs_add(struct device *parent); #else /* !CONFIG_PM_SLEEP */ static inline void device_pm_sleep_init(struct device *dev) {} static inline void device_pm_add(struct device *dev) {} static inline void device_pm_remove(struct device *dev) { pm_runtime_remove(dev); } static inline void device_pm_move_before(struct device *deva, struct device *devb) {} static inline void device_pm_move_after(struct device *deva, struct device *devb) {} static inline void device_pm_move_last(struct device *dev) {} static inline void device_pm_check_callbacks(struct device *dev) {} static inline bool device_pm_initialized(struct device *dev) { return device_is_registered(dev); } static inline int pm_wakeup_source_sysfs_add(struct device *parent) { return 0; } #endif /* !CONFIG_PM_SLEEP */ static inline void device_pm_init(struct device *dev) { device_pm_init_common(dev); device_pm_sleep_init(dev); pm_runtime_init(dev); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef INT_BLK_MQ_TAG_H #define INT_BLK_MQ_TAG_H /* * Tag address space map. */ struct blk_mq_tags { unsigned int nr_tags; unsigned int nr_reserved_tags; atomic_t active_queues; struct sbitmap_queue *bitmap_tags; struct sbitmap_queue *breserved_tags; struct sbitmap_queue __bitmap_tags; struct sbitmap_queue __breserved_tags; struct request **rqs; struct request **static_rqs; struct list_head page_list; /* * used to clear request reference in rqs[] before freeing one * request pool */ spinlock_t lock; }; extern struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags, unsigned int reserved_tags, int node, unsigned int flags); extern void blk_mq_free_tags(struct blk_mq_tags *tags, unsigned int flags); extern int blk_mq_init_shared_sbitmap(struct blk_mq_tag_set *set, unsigned int flags); extern void blk_mq_exit_shared_sbitmap(struct blk_mq_tag_set *set); extern unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data); extern void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx, unsigned int tag); extern int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags **tags, unsigned int depth, bool can_grow); extern void blk_mq_tag_resize_shared_sbitmap(struct blk_mq_tag_set *set, unsigned int size); extern void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool); void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn, void *priv); void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn, void *priv); static inline struct sbq_wait_state *bt_wait_ptr(struct sbitmap_queue *bt, struct blk_mq_hw_ctx *hctx) { if (!hctx) return &bt->ws[0]; return sbq_wait_ptr(bt, &hctx->wait_index); } enum { BLK_MQ_NO_TAG = -1U, BLK_MQ_TAG_MIN = 1, BLK_MQ_TAG_MAX = BLK_MQ_NO_TAG - 1, }; extern bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *); extern void __blk_mq_tag_idle(struct blk_mq_hw_ctx *); static inline bool blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) { if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) return false; return __blk_mq_tag_busy(hctx); } static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) { if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) return; __blk_mq_tag_idle(hctx); } static inline bool blk_mq_tag_is_reserved(struct blk_mq_tags *tags, unsigned int tag) { return tag < tags->nr_reserved_tags; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_GENERIC_PGALLOC_H #define __ASM_GENERIC_PGALLOC_H #ifdef CONFIG_MMU #define GFP_PGTABLE_KERNEL (GFP_KERNEL | __GFP_ZERO) #define GFP_PGTABLE_USER (GFP_PGTABLE_KERNEL | __GFP_ACCOUNT) /** * __pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * This function is intended for architectures that need * anything beyond simple page allocation. * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *__pte_alloc_one_kernel(struct mm_struct *mm) { return (pte_t *)__get_free_page(GFP_PGTABLE_KERNEL); } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE_KERNEL /** * pte_alloc_one_kernel - allocate a page for PTE-level kernel page table * @mm: the mm_struct of the current context * * Return: pointer to the allocated memory or %NULL on error */ static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm) { return __pte_alloc_one_kernel(mm); } #endif /** * pte_free_kernel - free PTE-level kernel page table page * @mm: the mm_struct of the current context * @pte: pointer to the memory containing the page table */ static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) { free_page((unsigned long)pte); } /** * __pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * @gfp: GFP flags to use for the allocation * * Allocates a page and runs the pgtable_pte_page_ctor(). * * This function is intended for architectures that need * anything beyond simple page allocation or must have custom GFP flags. * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t __pte_alloc_one(struct mm_struct *mm, gfp_t gfp) { struct page *pte; pte = alloc_page(gfp); if (!pte) return NULL; if (!pgtable_pte_page_ctor(pte)) { __free_page(pte); return NULL; } return pte; } #ifndef __HAVE_ARCH_PTE_ALLOC_ONE /** * pte_alloc_one - allocate a page for PTE-level user page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pte_page_ctor(). * * Return: `struct page` initialized as page table or %NULL on error */ static inline pgtable_t pte_alloc_one(struct mm_struct *mm) { return __pte_alloc_one(mm, GFP_PGTABLE_USER); } #endif /* * Should really implement gc for free page table pages. This could be * done with a reference count in struct page. */ /** * pte_free - free PTE-level user page table page * @mm: the mm_struct of the current context * @pte_page: the `struct page` representing the page table */ static inline void pte_free(struct mm_struct *mm, struct page *pte_page) { pgtable_pte_page_dtor(pte_page); __free_page(pte_page); } #if CONFIG_PGTABLE_LEVELS > 2 #ifndef __HAVE_ARCH_PMD_ALLOC_ONE /** * pmd_alloc_one - allocate a page for PMD-level page table * @mm: the mm_struct of the current context * * Allocates a page and runs the pgtable_pmd_page_ctor(). * Allocations use %GFP_PGTABLE_USER in user context and * %GFP_PGTABLE_KERNEL in kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) { struct page *page; gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; page = alloc_pages(gfp, 0); if (!page) return NULL; if (!pgtable_pmd_page_ctor(page)) { __free_pages(page, 0); return NULL; } return (pmd_t *)page_address(page); } #endif #ifndef __HAVE_ARCH_PMD_FREE static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) { BUG_ON((unsigned long)pmd & (PAGE_SIZE-1)); pgtable_pmd_page_dtor(virt_to_page(pmd)); free_page((unsigned long)pmd); } #endif #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 #ifndef __HAVE_ARCH_PUD_ALLOC_ONE /** * pud_alloc_one - allocate a page for PUD-level page table * @mm: the mm_struct of the current context * * Allocates a page using %GFP_PGTABLE_USER for user context and * %GFP_PGTABLE_KERNEL for kernel context. * * Return: pointer to the allocated memory or %NULL on error */ static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) { gfp_t gfp = GFP_PGTABLE_USER; if (mm == &init_mm) gfp = GFP_PGTABLE_KERNEL; return (pud_t *)get_zeroed_page(gfp); } #endif static inline void pud_free(struct mm_struct *mm, pud_t *pud) { BUG_ON((unsigned long)pud & (PAGE_SIZE-1)); free_page((unsigned long)pud); } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ #ifndef __HAVE_ARCH_PGD_FREE static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd) { free_page((unsigned long)pgd); } #endif #endif /* CONFIG_MMU */ #endif /* __ASM_GENERIC_PGALLOC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NSPROXY_H #define _LINUX_NSPROXY_H #include <linux/spinlock.h> #include <linux/sched.h> struct mnt_namespace; struct uts_namespace; struct ipc_namespace; struct pid_namespace; struct cgroup_namespace; struct fs_struct; /* * A structure to contain pointers to all per-process * namespaces - fs (mount), uts, network, sysvipc, etc. * * The pid namespace is an exception -- it's accessed using * task_active_pid_ns. The pid namespace here is the * namespace that children will use. * * 'count' is the number of tasks holding a reference. * The count for each namespace, then, will be the number * of nsproxies pointing to it, not the number of tasks. * * The nsproxy is shared by tasks which share all namespaces. * As soon as a single namespace is cloned or unshared, the * nsproxy is copied. */ struct nsproxy { atomic_t count; struct uts_namespace *uts_ns; struct ipc_namespace *ipc_ns; struct mnt_namespace *mnt_ns; struct pid_namespace *pid_ns_for_children; struct net *net_ns; struct time_namespace *time_ns; struct time_namespace *time_ns_for_children; struct cgroup_namespace *cgroup_ns; }; extern struct nsproxy init_nsproxy; /* * A structure to encompass all bits needed to install * a partial or complete new set of namespaces. * * If a new user namespace is requested cred will * point to a modifiable set of credentials. If a pointer * to a modifiable set is needed nsset_cred() must be * used and tested. */ struct nsset { unsigned flags; struct nsproxy *nsproxy; struct fs_struct *fs; const struct cred *cred; }; static inline struct cred *nsset_cred(struct nsset *set) { if (set->flags & CLONE_NEWUSER) return (struct cred *)set->cred; return NULL; } /* * the namespaces access rules are: * * 1. only current task is allowed to change tsk->nsproxy pointer or * any pointer on the nsproxy itself. Current must hold the task_lock * when changing tsk->nsproxy. * * 2. when accessing (i.e. reading) current task's namespaces - no * precautions should be taken - just dereference the pointers * * 3. the access to other task namespaces is performed like this * task_lock(task); * nsproxy = task->nsproxy; * if (nsproxy != NULL) { * / * * * work with the namespaces here * * e.g. get the reference on one of them * * / * } / * * * NULL task->nsproxy means that this task is * * almost dead (zombie) * * / * task_unlock(task); * */ int copy_namespaces(unsigned long flags, struct task_struct *tsk); void exit_task_namespaces(struct task_struct *tsk); void switch_task_namespaces(struct task_struct *tsk, struct nsproxy *new); void free_nsproxy(struct nsproxy *ns); int unshare_nsproxy_namespaces(unsigned long, struct nsproxy **, struct cred *, struct fs_struct *); int __init nsproxy_cache_init(void); static inline void put_nsproxy(struct nsproxy *ns) { if (atomic_dec_and_test(&ns->count)) { free_nsproxy(ns); } } static inline void get_nsproxy(struct nsproxy *ns) { atomic_inc(&ns->count); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 /* SPDX-License-Identifier: GPL-2.0 */ /* * NFS internal definitions */ #include "nfs4_fs.h" #include <linux/fs_context.h> #include <linux/security.h> #include <linux/crc32.h> #include <linux/sunrpc/addr.h> #include <linux/nfs_page.h> #include <linux/wait_bit.h> #define NFS_SB_MASK (SB_RDONLY|SB_NOSUID|SB_NODEV|SB_NOEXEC|SB_SYNCHRONOUS) extern const struct export_operations nfs_export_ops; struct nfs_string; struct nfs_pageio_descriptor; static inline void nfs_attr_check_mountpoint(struct super_block *parent, struct nfs_fattr *fattr) { if (!nfs_fsid_equal(&NFS_SB(parent)->fsid, &fattr->fsid)) fattr->valid |= NFS_ATTR_FATTR_MOUNTPOINT; } static inline int nfs_attr_use_mounted_on_fileid(struct nfs_fattr *fattr) { if (((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) == 0) || (((fattr->valid & NFS_ATTR_FATTR_MOUNTPOINT) == 0) && ((fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) == 0))) return 0; return 1; } static inline bool nfs_lookup_is_soft_revalidate(const struct dentry *dentry) { if (!(NFS_SB(dentry->d_sb)->flags & NFS_MOUNT_SOFTREVAL)) return false; if (!d_is_positive(dentry) || !NFS_FH(d_inode(dentry))->size) return false; return true; } /* * Note: RFC 1813 doesn't limit the number of auth flavors that * a server can return, so make something up. */ #define NFS_MAX_SECFLAVORS (12) /* * Value used if the user did not specify a port value. */ #define NFS_UNSPEC_PORT (-1) #define NFS_UNSPEC_RETRANS (UINT_MAX) #define NFS_UNSPEC_TIMEO (UINT_MAX) /* * Maximum number of pages that readdir can use for creating * a vmapped array of pages. */ #define NFS_MAX_READDIR_PAGES 8 struct nfs_client_initdata { unsigned long init_flags; const char *hostname; /* Hostname of the server */ const struct sockaddr *addr; /* Address of the server */ const char *nodename; /* Hostname of the client */ const char *ip_addr; /* IP address of the client */ size_t addrlen; struct nfs_subversion *nfs_mod; int proto; u32 minorversion; unsigned int nconnect; struct net *net; const struct rpc_timeout *timeparms; const struct cred *cred; }; /* * In-kernel mount arguments */ struct nfs_fs_context { bool internal; bool skip_reconfig_option_check; bool need_mount; bool sloppy; unsigned int flags; /* NFS{,4}_MOUNT_* flags */ unsigned int rsize, wsize; unsigned int timeo, retrans; unsigned int acregmin, acregmax; unsigned int acdirmin, acdirmax; unsigned int namlen; unsigned int options; unsigned int bsize; struct nfs_auth_info auth_info; rpc_authflavor_t selected_flavor; char *client_address; unsigned int version; unsigned int minorversion; char *fscache_uniq; unsigned short protofamily; unsigned short mountfamily; struct { union { struct sockaddr address; struct sockaddr_storage _address; }; size_t addrlen; char *hostname; u32 version; int port; unsigned short protocol; } mount_server; struct { union { struct sockaddr address; struct sockaddr_storage _address; }; size_t addrlen; char *hostname; char *export_path; int port; unsigned short protocol; unsigned short nconnect; unsigned short export_path_len; } nfs_server; struct nfs_fh *mntfh; struct nfs_server *server; struct nfs_subversion *nfs_mod; /* Information for a cloned mount. */ struct nfs_clone_mount { struct super_block *sb; struct dentry *dentry; struct nfs_fattr *fattr; unsigned int inherited_bsize; } clone_data; }; #define nfs_errorf(fc, fmt, ...) ((fc)->log.log ? \ errorf(fc, fmt, ## __VA_ARGS__) : \ ({ dprintk(fmt "\n", ## __VA_ARGS__); })) #define nfs_ferrorf(fc, fac, fmt, ...) ((fc)->log.log ? \ errorf(fc, fmt, ## __VA_ARGS__) : \ ({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); })) #define nfs_invalf(fc, fmt, ...) ((fc)->log.log ? \ invalf(fc, fmt, ## __VA_ARGS__) : \ ({ dprintk(fmt "\n", ## __VA_ARGS__); -EINVAL; })) #define nfs_finvalf(fc, fac, fmt, ...) ((fc)->log.log ? \ invalf(fc, fmt, ## __VA_ARGS__) : \ ({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); -EINVAL; })) #define nfs_warnf(fc, fmt, ...) ((fc)->log.log ? \ warnf(fc, fmt, ## __VA_ARGS__) : \ ({ dprintk(fmt "\n", ## __VA_ARGS__); })) #define nfs_fwarnf(fc, fac, fmt, ...) ((fc)->log.log ? \ warnf(fc, fmt, ## __VA_ARGS__) : \ ({ dfprintk(fac, fmt "\n", ## __VA_ARGS__); })) static inline struct nfs_fs_context *nfs_fc2context(const struct fs_context *fc) { return fc->fs_private; } /* mount_clnt.c */ struct nfs_mount_request { struct sockaddr *sap; size_t salen; char *hostname; char *dirpath; u32 version; unsigned short protocol; struct nfs_fh *fh; int noresvport; unsigned int *auth_flav_len; rpc_authflavor_t *auth_flavs; struct net *net; }; extern int nfs_mount(struct nfs_mount_request *info); extern void nfs_umount(const struct nfs_mount_request *info); /* client.c */ extern const struct rpc_program nfs_program; extern void nfs_clients_init(struct net *net); extern void nfs_clients_exit(struct net *net); extern struct nfs_client *nfs_alloc_client(const struct nfs_client_initdata *); int nfs_create_rpc_client(struct nfs_client *, const struct nfs_client_initdata *, rpc_authflavor_t); struct nfs_client *nfs_get_client(const struct nfs_client_initdata *); int nfs_probe_fsinfo(struct nfs_server *server, struct nfs_fh *, struct nfs_fattr *); void nfs_server_insert_lists(struct nfs_server *); void nfs_server_remove_lists(struct nfs_server *); void nfs_init_timeout_values(struct rpc_timeout *to, int proto, int timeo, int retrans); int nfs_init_server_rpcclient(struct nfs_server *, const struct rpc_timeout *t, rpc_authflavor_t); struct nfs_server *nfs_alloc_server(void); void nfs_server_copy_userdata(struct nfs_server *, struct nfs_server *); extern void nfs_put_client(struct nfs_client *); extern void nfs_free_client(struct nfs_client *); extern struct nfs_client *nfs4_find_client_ident(struct net *, int); extern struct nfs_client * nfs4_find_client_sessionid(struct net *, const struct sockaddr *, struct nfs4_sessionid *, u32); extern struct nfs_server *nfs_create_server(struct fs_context *); extern struct nfs_server *nfs4_create_server(struct fs_context *); extern struct nfs_server *nfs4_create_referral_server(struct fs_context *); extern int nfs4_update_server(struct nfs_server *server, const char *hostname, struct sockaddr *sap, size_t salen, struct net *net); extern void nfs_free_server(struct nfs_server *server); extern struct nfs_server *nfs_clone_server(struct nfs_server *, struct nfs_fh *, struct nfs_fattr *, rpc_authflavor_t); extern bool nfs_client_init_is_complete(const struct nfs_client *clp); extern int nfs_client_init_status(const struct nfs_client *clp); extern int nfs_wait_client_init_complete(const struct nfs_client *clp); extern void nfs_mark_client_ready(struct nfs_client *clp, int state); extern struct nfs_client *nfs4_set_ds_client(struct nfs_server *mds_srv, const struct sockaddr *ds_addr, int ds_addrlen, int ds_proto, unsigned int ds_timeo, unsigned int ds_retrans, u32 minor_version); extern struct rpc_clnt *nfs4_find_or_create_ds_client(struct nfs_client *, struct inode *); extern struct nfs_client *nfs3_set_ds_client(struct nfs_server *mds_srv, const struct sockaddr *ds_addr, int ds_addrlen, int ds_proto, unsigned int ds_timeo, unsigned int ds_retrans); #ifdef CONFIG_PROC_FS extern int __init nfs_fs_proc_init(void); extern void nfs_fs_proc_exit(void); extern int nfs_fs_proc_net_init(struct net *net); extern void nfs_fs_proc_net_exit(struct net *net); #else static inline int nfs_fs_proc_net_init(struct net *net) { return 0; } static inline void nfs_fs_proc_net_exit(struct net *net) { } static inline int nfs_fs_proc_init(void) { return 0; } static inline void nfs_fs_proc_exit(void) { } #endif /* callback_xdr.c */ extern const struct svc_version nfs4_callback_version1; extern const struct svc_version nfs4_callback_version4; /* fs_context.c */ extern struct file_system_type nfs_fs_type; /* pagelist.c */ extern int __init nfs_init_nfspagecache(void); extern void nfs_destroy_nfspagecache(void); extern int __init nfs_init_readpagecache(void); extern void nfs_destroy_readpagecache(void); extern int __init nfs_init_writepagecache(void); extern void nfs_destroy_writepagecache(void); extern int __init nfs_init_directcache(void); extern void nfs_destroy_directcache(void); extern void nfs_pgheader_init(struct nfs_pageio_descriptor *desc, struct nfs_pgio_header *hdr, void (*release)(struct nfs_pgio_header *hdr)); void nfs_set_pgio_error(struct nfs_pgio_header *hdr, int error, loff_t pos); int nfs_iocounter_wait(struct nfs_lock_context *l_ctx); extern const struct nfs_pageio_ops nfs_pgio_rw_ops; struct nfs_pgio_header *nfs_pgio_header_alloc(const struct nfs_rw_ops *); void nfs_pgio_header_free(struct nfs_pgio_header *); int nfs_generic_pgio(struct nfs_pageio_descriptor *, struct nfs_pgio_header *); int nfs_initiate_pgio(struct rpc_clnt *clnt, struct nfs_pgio_header *hdr, const struct cred *cred, const struct nfs_rpc_ops *rpc_ops, const struct rpc_call_ops *call_ops, int how, int flags); void nfs_free_request(struct nfs_page *req); struct nfs_pgio_mirror * nfs_pgio_current_mirror(struct nfs_pageio_descriptor *desc); static inline bool nfs_match_open_context(const struct nfs_open_context *ctx1, const struct nfs_open_context *ctx2) { return cred_fscmp(ctx1->cred, ctx2->cred) == 0 && ctx1->state == ctx2->state; } /* nfs2xdr.c */ extern const struct rpc_procinfo nfs_procedures[]; extern int nfs2_decode_dirent(struct xdr_stream *, struct nfs_entry *, bool); /* nfs3xdr.c */ extern const struct rpc_procinfo nfs3_procedures[]; extern int nfs3_decode_dirent(struct xdr_stream *, struct nfs_entry *, bool); /* nfs4xdr.c */ #if IS_ENABLED(CONFIG_NFS_V4) extern int nfs4_decode_dirent(struct xdr_stream *, struct nfs_entry *, bool); #endif #ifdef CONFIG_NFS_V4_1 extern const u32 nfs41_maxread_overhead; extern const u32 nfs41_maxwrite_overhead; extern const u32 nfs41_maxgetdevinfo_overhead; #endif /* nfs4proc.c */ #if IS_ENABLED(CONFIG_NFS_V4) extern const struct rpc_procinfo nfs4_procedures[]; #endif #ifdef CONFIG_NFS_V4_SECURITY_LABEL extern struct nfs4_label *nfs4_label_alloc(struct nfs_server *server, gfp_t flags); static inline struct nfs4_label * nfs4_label_copy(struct nfs4_label *dst, struct nfs4_label *src) { if (!dst || !src) return NULL; if (src->len > NFS4_MAXLABELLEN) return NULL; dst->lfs = src->lfs; dst->pi = src->pi; dst->len = src->len; memcpy(dst->label, src->label, src->len); return dst; } static inline void nfs4_label_free(struct nfs4_label *label) { if (label) { kfree(label->label); kfree(label); } return; } static inline void nfs_zap_label_cache_locked(struct nfs_inode *nfsi) { if (nfs_server_capable(&nfsi->vfs_inode, NFS_CAP_SECURITY_LABEL)) nfsi->cache_validity |= NFS_INO_INVALID_LABEL; } #else static inline struct nfs4_label *nfs4_label_alloc(struct nfs_server *server, gfp_t flags) { return NULL; } static inline void nfs4_label_free(void *label) {} static inline void nfs_zap_label_cache_locked(struct nfs_inode *nfsi) { } static inline struct nfs4_label * nfs4_label_copy(struct nfs4_label *dst, struct nfs4_label *src) { return NULL; } #endif /* CONFIG_NFS_V4_SECURITY_LABEL */ /* proc.c */ void nfs_close_context(struct nfs_open_context *ctx, int is_sync); extern struct nfs_client *nfs_init_client(struct nfs_client *clp, const struct nfs_client_initdata *); /* dir.c */ extern void nfs_advise_use_readdirplus(struct inode *dir); extern void nfs_force_use_readdirplus(struct inode *dir); extern unsigned long nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc); extern unsigned long nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc); struct dentry *nfs_lookup(struct inode *, struct dentry *, unsigned int); int nfs_create(struct inode *, struct dentry *, umode_t, bool); int nfs_mkdir(struct inode *, struct dentry *, umode_t); int nfs_rmdir(struct inode *, struct dentry *); int nfs_unlink(struct inode *, struct dentry *); int nfs_symlink(struct inode *, struct dentry *, const char *); int nfs_link(struct dentry *, struct inode *, struct dentry *); int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t); int nfs_rename(struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); /* file.c */ int nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync); loff_t nfs_file_llseek(struct file *, loff_t, int); ssize_t nfs_file_read(struct kiocb *, struct iov_iter *); int nfs_file_mmap(struct file *, struct vm_area_struct *); ssize_t nfs_file_write(struct kiocb *, struct iov_iter *); int nfs_file_release(struct inode *, struct file *); int nfs_lock(struct file *, int, struct file_lock *); int nfs_flock(struct file *, int, struct file_lock *); int nfs_check_flags(int); /* inode.c */ extern struct workqueue_struct *nfsiod_workqueue; extern struct inode *nfs_alloc_inode(struct super_block *sb); extern void nfs_free_inode(struct inode *); extern int nfs_write_inode(struct inode *, struct writeback_control *); extern int nfs_drop_inode(struct inode *); extern void nfs_clear_inode(struct inode *); extern void nfs_evict_inode(struct inode *); void nfs_zap_acl_cache(struct inode *inode); extern bool nfs_check_cache_invalid(struct inode *, unsigned long); extern int nfs_wait_bit_killable(struct wait_bit_key *key, int mode); extern int nfs_wait_atomic_killable(atomic_t *p, unsigned int mode); /* super.c */ extern const struct super_operations nfs_sops; bool nfs_auth_info_match(const struct nfs_auth_info *, rpc_authflavor_t); int nfs_try_get_tree(struct fs_context *); int nfs_get_tree_common(struct fs_context *); void nfs_kill_super(struct super_block *); extern struct rpc_stat nfs_rpcstat; extern int __init register_nfs_fs(void); extern void __exit unregister_nfs_fs(void); extern bool nfs_sb_active(struct super_block *sb); extern void nfs_sb_deactive(struct super_block *sb); extern int nfs_client_for_each_server(struct nfs_client *clp, int (*fn)(struct nfs_server *, void *), void *data); /* io.c */ extern void nfs_start_io_read(struct inode *inode); extern void nfs_end_io_read(struct inode *inode); extern void nfs_start_io_write(struct inode *inode); extern void nfs_end_io_write(struct inode *inode); extern void nfs_start_io_direct(struct inode *inode); extern void nfs_end_io_direct(struct inode *inode); static inline bool nfs_file_io_is_buffered(struct nfs_inode *nfsi) { return test_bit(NFS_INO_ODIRECT, &nfsi->flags) == 0; } /* namespace.c */ #define NFS_PATH_CANONICAL 1 extern char *nfs_path(char **p, struct dentry *dentry, char *buffer, ssize_t buflen, unsigned flags); extern struct vfsmount *nfs_d_automount(struct path *path); int nfs_submount(struct fs_context *, struct nfs_server *); int nfs_do_submount(struct fs_context *); /* getroot.c */ extern int nfs_get_root(struct super_block *s, struct fs_context *fc); #if IS_ENABLED(CONFIG_NFS_V4) extern int nfs4_get_rootfh(struct nfs_server *server, struct nfs_fh *mntfh, bool); #endif struct nfs_pgio_completion_ops; /* read.c */ extern void nfs_pageio_init_read(struct nfs_pageio_descriptor *pgio, struct inode *inode, bool force_mds, const struct nfs_pgio_completion_ops *compl_ops); extern void nfs_read_prepare(struct rpc_task *task, void *calldata); extern void nfs_pageio_reset_read_mds(struct nfs_pageio_descriptor *pgio); /* super.c */ void nfs_umount_begin(struct super_block *); int nfs_statfs(struct dentry *, struct kstatfs *); int nfs_show_options(struct seq_file *, struct dentry *); int nfs_show_devname(struct seq_file *, struct dentry *); int nfs_show_path(struct seq_file *, struct dentry *); int nfs_show_stats(struct seq_file *, struct dentry *); int nfs_reconfigure(struct fs_context *); /* write.c */ extern void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, struct inode *inode, int ioflags, bool force_mds, const struct nfs_pgio_completion_ops *compl_ops); extern void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio); extern void nfs_commit_free(struct nfs_commit_data *p); extern void nfs_write_prepare(struct rpc_task *task, void *calldata); extern void nfs_commit_prepare(struct rpc_task *task, void *calldata); extern int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data, const struct nfs_rpc_ops *nfs_ops, const struct rpc_call_ops *call_ops, int how, int flags); extern void nfs_init_commit(struct nfs_commit_data *data, struct list_head *head, struct pnfs_layout_segment *lseg, struct nfs_commit_info *cinfo); int nfs_scan_commit_list(struct list_head *src, struct list_head *dst, struct nfs_commit_info *cinfo, int max); unsigned long nfs_reqs_to_commit(struct nfs_commit_info *); int nfs_scan_commit(struct inode *inode, struct list_head *dst, struct nfs_commit_info *cinfo); void nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, struct nfs_commit_info *cinfo, u32 ds_commit_idx); int nfs_write_need_commit(struct nfs_pgio_header *); void nfs_writeback_update_inode(struct nfs_pgio_header *hdr); int nfs_generic_commit_list(struct inode *inode, struct list_head *head, int how, struct nfs_commit_info *cinfo); void nfs_retry_commit(struct list_head *page_list, struct pnfs_layout_segment *lseg, struct nfs_commit_info *cinfo, u32 ds_commit_idx); void nfs_commitdata_release(struct nfs_commit_data *data); void nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo); void nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst, struct nfs_commit_info *cinfo); void nfs_request_remove_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo); void nfs_init_cinfo(struct nfs_commit_info *cinfo, struct inode *inode, struct nfs_direct_req *dreq); int nfs_key_timeout_notify(struct file *filp, struct inode *inode); bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode); void nfs_pageio_stop_mirroring(struct nfs_pageio_descriptor *pgio); int nfs_filemap_write_and_wait_range(struct address_space *mapping, loff_t lstart, loff_t lend); #ifdef CONFIG_NFS_V4_1 static inline void pnfs_bucket_clear_pnfs_ds_commit_verifiers(struct pnfs_commit_bucket *buckets, unsigned int nbuckets) { unsigned int i; for (i = 0; i < nbuckets; i++) buckets[i].direct_verf.committed = NFS_INVALID_STABLE_HOW; } static inline void nfs_clear_pnfs_ds_commit_verifiers(struct pnfs_ds_commit_info *cinfo) { struct pnfs_commit_array *array; rcu_read_lock(); list_for_each_entry_rcu(array, &cinfo->commits, cinfo_list) pnfs_bucket_clear_pnfs_ds_commit_verifiers(array->buckets, array->nbuckets); rcu_read_unlock(); } #else static inline void nfs_clear_pnfs_ds_commit_verifiers(struct pnfs_ds_commit_info *cinfo) { } #endif #ifdef CONFIG_MIGRATION extern int nfs_migrate_page(struct address_space *, struct page *, struct page *, enum migrate_mode); #endif static inline int nfs_write_verifier_cmp(const struct nfs_write_verifier *v1, const struct nfs_write_verifier *v2) { return memcmp(v1->data, v2->data, sizeof(v1->data)); } static inline bool nfs_write_match_verf(const struct nfs_writeverf *verf, struct nfs_page *req) { return verf->committed > NFS_UNSTABLE && !nfs_write_verifier_cmp(&req->wb_verf, &verf->verifier); } /* unlink.c */ extern struct rpc_task * nfs_async_rename(struct inode *old_dir, struct inode *new_dir, struct dentry *old_dentry, struct dentry *new_dentry, void (*complete)(struct rpc_task *, struct nfs_renamedata *)); extern int nfs_sillyrename(struct inode *dir, struct dentry *dentry); /* direct.c */ void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, struct nfs_direct_req *dreq); extern ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq); /* nfs4proc.c */ extern struct nfs_client *nfs4_init_client(struct nfs_client *clp, const struct nfs_client_initdata *); extern int nfs40_walk_client_list(struct nfs_client *clp, struct nfs_client **result, const struct cred *cred); extern int nfs41_walk_client_list(struct nfs_client *clp, struct nfs_client **result, const struct cred *cred); extern void nfs4_test_session_trunk(struct rpc_clnt *clnt, struct rpc_xprt *xprt, void *data); static inline struct inode *nfs_igrab_and_active(struct inode *inode) { struct super_block *sb = inode->i_sb; if (sb && nfs_sb_active(sb)) { if (igrab(inode)) return inode; nfs_sb_deactive(sb); } return NULL; } static inline void nfs_iput_and_deactive(struct inode *inode) { if (inode != NULL) { struct super_block *sb = inode->i_sb; iput(inode); nfs_sb_deactive(sb); } } /* * Determine the device name as a string */ static inline char *nfs_devname(struct dentry *dentry, char *buffer, ssize_t buflen) { char *dummy; return nfs_path(&dummy, dentry, buffer, buflen, NFS_PATH_CANONICAL); } /* * Determine the actual block size (and log2 thereof) */ static inline unsigned long nfs_block_bits(unsigned long bsize, unsigned char *nrbitsp) { /* make sure blocksize is a power of two */ if ((bsize & (bsize - 1)) || nrbitsp) { unsigned char nrbits; for (nrbits = 31; nrbits && !(bsize & (1 << nrbits)); nrbits--) ; bsize = 1 << nrbits; if (nrbitsp) *nrbitsp = nrbits; } return bsize; } /* * Calculate the number of 512byte blocks used. */ static inline blkcnt_t nfs_calc_block_size(u64 tsize) { blkcnt_t used = (tsize + 511) >> 9; return (used > ULONG_MAX) ? ULONG_MAX : used; } /* * Compute and set NFS server blocksize */ static inline unsigned long nfs_block_size(unsigned long bsize, unsigned char *nrbitsp) { if (bsize < NFS_MIN_FILE_IO_SIZE) bsize = NFS_DEF_FILE_IO_SIZE; else if (bsize >= NFS_MAX_FILE_IO_SIZE) bsize = NFS_MAX_FILE_IO_SIZE; return nfs_block_bits(bsize, nrbitsp); } /* * Determine the maximum file size for a superblock */ static inline void nfs_super_set_maxbytes(struct super_block *sb, __u64 maxfilesize) { sb->s_maxbytes = (loff_t)maxfilesize; if (sb->s_maxbytes > MAX_LFS_FILESIZE || sb->s_maxbytes <= 0) sb->s_maxbytes = MAX_LFS_FILESIZE; } /* * Record the page as unstable (an extra writeback period) and mark its * inode as dirty. */ static inline void nfs_mark_page_unstable(struct page *page, struct nfs_commit_info *cinfo) { if (!cinfo->dreq) { struct inode *inode = page_file_mapping(page)->host; /* This page is really still in write-back - just that the * writeback is happening on the server now. */ inc_node_page_state(page, NR_WRITEBACK); inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); __mark_inode_dirty(inode, I_DIRTY_DATASYNC); } } /* * Determine the number of bytes of data the page contains */ static inline unsigned int nfs_page_length(struct page *page) { loff_t i_size = i_size_read(page_file_mapping(page)->host); if (i_size > 0) { pgoff_t index = page_index(page); pgoff_t end_index = (i_size - 1) >> PAGE_SHIFT; if (index < end_index) return PAGE_SIZE; if (index == end_index) return ((i_size - 1) & ~PAGE_MASK) + 1; } return 0; } /* * Convert a umode to a dirent->d_type */ static inline unsigned char nfs_umode_to_dtype(umode_t mode) { return (mode >> 12) & 15; } /* * Determine the number of pages in an array of length 'len' and * with a base offset of 'base' */ static inline unsigned int nfs_page_array_len(unsigned int base, size_t len) { return ((unsigned long)len + (unsigned long)base + PAGE_SIZE - 1) >> PAGE_SHIFT; } /* * Convert a struct timespec64 into a 64-bit change attribute * * This does approximately the same thing as timespec64_to_ns(), * but for calculation efficiency, we multiply the seconds by * 1024*1024*1024. */ static inline u64 nfs_timespec_to_change_attr(const struct timespec64 *ts) { return ((u64)ts->tv_sec << 30) + ts->tv_nsec; } #ifdef CONFIG_CRC32 /** * nfs_fhandle_hash - calculate the crc32 hash for the filehandle * @fh - pointer to filehandle * * returns a crc32 hash for the filehandle that is compatible with * the one displayed by "wireshark". */ static inline u32 nfs_fhandle_hash(const struct nfs_fh *fh) { return ~crc32_le(0xFFFFFFFF, &fh->data[0], fh->size); } static inline u32 nfs_stateid_hash(const nfs4_stateid *stateid) { return ~crc32_le(0xFFFFFFFF, &stateid->other[0], NFS4_STATEID_OTHER_SIZE); } #else static inline u32 nfs_fhandle_hash(const struct nfs_fh *fh) { return 0; } static inline u32 nfs_stateid_hash(nfs4_stateid *stateid) { return 0; } #endif static inline bool nfs_error_is_fatal(int err) { switch (err) { case -ERESTARTSYS: case -EINTR: case -EACCES: case -EDQUOT: case -EFBIG: case -EIO: case -ENOSPC: case -EROFS: case -ESTALE: case -E2BIG: case -ENOMEM: case -ETIMEDOUT: return true; default: return false; } } static inline bool nfs_error_is_fatal_on_server(int err) { switch (err) { case 0: case -ERESTARTSYS: case -EINTR: return false; } return nfs_error_is_fatal(err); } /* * Select between a default port value and a user-specified port value. * If a zero value is set, then autobind will be used. */ static inline void nfs_set_port(struct sockaddr *sap, int *port, const unsigned short default_port) { if (*port == NFS_UNSPEC_PORT) *port = default_port; rpc_set_port(sap, *port); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright 2019 Google LLC */ #ifndef __LINUX_BLK_CRYPTO_H #define __LINUX_BLK_CRYPTO_H #include <linux/types.h> enum blk_crypto_mode_num { BLK_ENCRYPTION_MODE_INVALID, BLK_ENCRYPTION_MODE_AES_256_XTS, BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, BLK_ENCRYPTION_MODE_ADIANTUM, BLK_ENCRYPTION_MODE_MAX, }; #define BLK_CRYPTO_MAX_KEY_SIZE 64 /** * struct blk_crypto_config - an inline encryption key's crypto configuration * @crypto_mode: encryption algorithm this key is for * @data_unit_size: the data unit size for all encryption/decryptions with this * key. This is the size in bytes of each individual plaintext and * ciphertext. This is always a power of 2. It might be e.g. the * filesystem block size or the disk sector size. * @dun_bytes: the maximum number of bytes of DUN used when using this key */ struct blk_crypto_config { enum blk_crypto_mode_num crypto_mode; unsigned int data_unit_size; unsigned int dun_bytes; }; /** * struct blk_crypto_key - an inline encryption key * @crypto_cfg: the crypto configuration (like crypto_mode, key size) for this * key * @data_unit_size_bits: log2 of data_unit_size * @size: size of this key in bytes (determined by @crypto_cfg.crypto_mode) * @raw: the raw bytes of this key. Only the first @size bytes are used. * * A blk_crypto_key is immutable once created, and many bios can reference it at * the same time. It must not be freed until all bios using it have completed * and it has been evicted from all devices on which it may have been used. */ struct blk_crypto_key { struct blk_crypto_config crypto_cfg; unsigned int data_unit_size_bits; unsigned int size; u8 raw[BLK_CRYPTO_MAX_KEY_SIZE]; }; #define BLK_CRYPTO_MAX_IV_SIZE 32 #define BLK_CRYPTO_DUN_ARRAY_SIZE (BLK_CRYPTO_MAX_IV_SIZE / sizeof(u64)) /** * struct bio_crypt_ctx - an inline encryption context * @bc_key: the key, algorithm, and data unit size to use * @bc_dun: the data unit number (starting IV) to use * * A bio_crypt_ctx specifies that the contents of the bio will be encrypted (for * write requests) or decrypted (for read requests) inline by the storage device * or controller, or by the crypto API fallback. */ struct bio_crypt_ctx { const struct blk_crypto_key *bc_key; u64 bc_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; }; #include <linux/blk_types.h> #include <linux/blkdev.h> struct request; struct request_queue; #ifdef CONFIG_BLK_INLINE_ENCRYPTION static inline bool bio_has_crypt_ctx(struct bio *bio) { return bio->bi_crypt_context; } void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key, const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask); bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc, unsigned int bytes, const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]); int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key, enum blk_crypto_mode_num crypto_mode, unsigned int dun_bytes, unsigned int data_unit_size); int blk_crypto_start_using_key(const struct blk_crypto_key *key, struct request_queue *q); int blk_crypto_evict_key(struct request_queue *q, const struct blk_crypto_key *key); bool blk_crypto_config_supported(struct request_queue *q, const struct blk_crypto_config *cfg); #else /* CONFIG_BLK_INLINE_ENCRYPTION */ static inline bool bio_has_crypt_ctx(struct bio *bio) { return false; } #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask); /** * bio_crypt_clone - clone bio encryption context * @dst: destination bio * @src: source bio * @gfp_mask: memory allocation flags * * If @src has an encryption context, clone it to @dst. * * Return: 0 on success, -ENOMEM if out of memory. -ENOMEM is only possible if * @gfp_mask doesn't include %__GFP_DIRECT_RECLAIM. */ static inline int bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask) { if (bio_has_crypt_ctx(src)) return __bio_crypt_clone(dst, src, gfp_mask); return 0; } #endif /* __LINUX_BLK_CRYPTO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NLS_H #define _LINUX_NLS_H #include <linux/init.h> /* Unicode has changed over the years. Unicode code points no longer * fit into 16 bits; as of Unicode 5 valid code points range from 0 * to 0x10ffff (17 planes, where each plane holds 65536 code points). * * The original decision to represent Unicode characters as 16-bit * wchar_t values is now outdated. But plane 0 still includes the * most commonly used characters, so we will retain it. The newer * 32-bit unicode_t type can be used when it is necessary to * represent the full Unicode character set. */ /* Plane-0 Unicode character */ typedef u16 wchar_t; #define MAX_WCHAR_T 0xffff /* Arbitrary Unicode character */ typedef u32 unicode_t; struct nls_table { const char *charset; const char *alias; int (*uni2char) (wchar_t uni, unsigned char *out, int boundlen); int (*char2uni) (const unsigned char *rawstring, int boundlen, wchar_t *uni); const unsigned char *charset2lower; const unsigned char *charset2upper; struct module *owner; struct nls_table *next; }; /* this value hold the maximum octet of charset */ #define NLS_MAX_CHARSET_SIZE 6 /* for UTF-8 */ /* Byte order for UTF-16 strings */ enum utf16_endian { UTF16_HOST_ENDIAN, UTF16_LITTLE_ENDIAN, UTF16_BIG_ENDIAN }; /* nls_base.c */ extern int __register_nls(struct nls_table *, struct module *); extern int unregister_nls(struct nls_table *); extern struct nls_table *load_nls(char *); extern void unload_nls(struct nls_table *); extern struct nls_table *load_nls_default(void); #define register_nls(nls) __register_nls((nls), THIS_MODULE) extern int utf8_to_utf32(const u8 *s, int len, unicode_t *pu); extern int utf32_to_utf8(unicode_t u, u8 *s, int maxlen); extern int utf8s_to_utf16s(const u8 *s, int len, enum utf16_endian endian, wchar_t *pwcs, int maxlen); extern int utf16s_to_utf8s(const wchar_t *pwcs, int len, enum utf16_endian endian, u8 *s, int maxlen); static inline unsigned char nls_tolower(struct nls_table *t, unsigned char c) { unsigned char nc = t->charset2lower[c]; return nc ? nc : c; } static inline unsigned char nls_toupper(struct nls_table *t, unsigned char c) { unsigned char nc = t->charset2upper[c]; return nc ? nc : c; } static inline int nls_strnicmp(struct nls_table *t, const unsigned char *s1, const unsigned char *s2, int len) { while (len--) { if (nls_tolower(t, *s1++) != nls_tolower(t, *s2++)) return 1; } return 0; } /* * nls_nullsize - return length of null character for codepage * @codepage - codepage for which to return length of NULL terminator * * Since we can't guarantee that the null terminator will be a particular * length, we have to check against the codepage. If there's a problem * determining it, assume a single-byte NULL terminator. */ static inline int nls_nullsize(const struct nls_table *codepage) { int charlen; char tmp[NLS_MAX_CHARSET_SIZE]; charlen = codepage->uni2char(0, tmp, NLS_MAX_CHARSET_SIZE); return charlen > 0 ? charlen : 1; } #define MODULE_ALIAS_NLS(name) MODULE_ALIAS("nls_" __stringify(name)) #endif /* _LINUX_NLS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_DEVICE_H #define _SCSI_SCSI_DEVICE_H #include <linux/list.h> #include <linux/spinlock.h> #include <linux/workqueue.h> #include <linux/blkdev.h> #include <scsi/scsi.h> #include <linux/atomic.h> struct device; struct request_queue; struct scsi_cmnd; struct scsi_lun; struct scsi_sense_hdr; typedef __u64 __bitwise blist_flags_t; #define SCSI_SENSE_BUFFERSIZE 96 struct scsi_mode_data { __u32 length; __u16 block_descriptor_length; __u8 medium_type; __u8 device_specific; __u8 header_length; __u8 longlba:1; }; /* * sdev state: If you alter this, you also need to alter scsi_sysfs.c * (for the ascii descriptions) and the state model enforcer: * scsi_lib:scsi_device_set_state(). */ enum scsi_device_state { SDEV_CREATED = 1, /* device created but not added to sysfs * Only internal commands allowed (for inq) */ SDEV_RUNNING, /* device properly configured * All commands allowed */ SDEV_CANCEL, /* beginning to delete device * Only error handler commands allowed */ SDEV_DEL, /* device deleted * no commands allowed */ SDEV_QUIESCE, /* Device quiescent. No block commands * will be accepted, only specials (which * originate in the mid-layer) */ SDEV_OFFLINE, /* Device offlined (by error handling or * user request */ SDEV_TRANSPORT_OFFLINE, /* Offlined by transport class error handler */ SDEV_BLOCK, /* Device blocked by scsi lld. No * scsi commands from user or midlayer * should be issued to the scsi * lld. */ SDEV_CREATED_BLOCK, /* same as above but for created devices */ }; enum scsi_scan_mode { SCSI_SCAN_INITIAL = 0, SCSI_SCAN_RESCAN, SCSI_SCAN_MANUAL, }; enum scsi_device_event { SDEV_EVT_MEDIA_CHANGE = 1, /* media has changed */ SDEV_EVT_INQUIRY_CHANGE_REPORTED, /* 3F 03 UA reported */ SDEV_EVT_CAPACITY_CHANGE_REPORTED, /* 2A 09 UA reported */ SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED, /* 38 07 UA reported */ SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED, /* 2A 01 UA reported */ SDEV_EVT_LUN_CHANGE_REPORTED, /* 3F 0E UA reported */ SDEV_EVT_ALUA_STATE_CHANGE_REPORTED, /* 2A 06 UA reported */ SDEV_EVT_POWER_ON_RESET_OCCURRED, /* 29 00 UA reported */ SDEV_EVT_FIRST = SDEV_EVT_MEDIA_CHANGE, SDEV_EVT_LAST = SDEV_EVT_POWER_ON_RESET_OCCURRED, SDEV_EVT_MAXBITS = SDEV_EVT_LAST + 1 }; struct scsi_event { enum scsi_device_event evt_type; struct list_head node; /* put union of data structures, for non-simple event types, * here */ }; /** * struct scsi_vpd - SCSI Vital Product Data * @rcu: For kfree_rcu(). * @len: Length in bytes of @data. * @data: VPD data as defined in various T10 SCSI standard documents. */ struct scsi_vpd { struct rcu_head rcu; int len; unsigned char data[]; }; struct scsi_device { struct Scsi_Host *host; struct request_queue *request_queue; /* the next two are protected by the host->host_lock */ struct list_head siblings; /* list of all devices on this host */ struct list_head same_target_siblings; /* just the devices sharing same target id */ atomic_t device_busy; /* commands actually active on LLDD */ atomic_t device_blocked; /* Device returned QUEUE_FULL. */ atomic_t restarts; spinlock_t list_lock; struct list_head starved_entry; unsigned short queue_depth; /* How deep of a queue we want */ unsigned short max_queue_depth; /* max queue depth */ unsigned short last_queue_full_depth; /* These two are used by */ unsigned short last_queue_full_count; /* scsi_track_queue_full() */ unsigned long last_queue_full_time; /* last queue full time */ unsigned long queue_ramp_up_period; /* ramp up period in jiffies */ #define SCSI_DEFAULT_RAMP_UP_PERIOD (120 * HZ) unsigned long last_queue_ramp_up; /* last queue ramp up time */ unsigned int id, channel; u64 lun; unsigned int manufacturer; /* Manufacturer of device, for using * vendor-specific cmd's */ unsigned sector_size; /* size in bytes */ void *hostdata; /* available to low-level driver */ unsigned char type; char scsi_level; char inq_periph_qual; /* PQ from INQUIRY data */ struct mutex inquiry_mutex; unsigned char inquiry_len; /* valid bytes in 'inquiry' */ unsigned char * inquiry; /* INQUIRY response data */ const char * vendor; /* [back_compat] point into 'inquiry' ... */ const char * model; /* ... after scan; point to static string */ const char * rev; /* ... "nullnullnullnull" before scan */ #define SCSI_VPD_PG_LEN 255 struct scsi_vpd __rcu *vpd_pg0; struct scsi_vpd __rcu *vpd_pg83; struct scsi_vpd __rcu *vpd_pg80; struct scsi_vpd __rcu *vpd_pg89; unsigned char current_tag; /* current tag */ struct scsi_target *sdev_target; /* used only for single_lun */ blist_flags_t sdev_bflags; /* black/white flags as also found in * scsi_devinfo.[hc]. For now used only to * pass settings from slave_alloc to scsi * core. */ unsigned int eh_timeout; /* Error handling timeout */ unsigned removable:1; unsigned changed:1; /* Data invalid due to media change */ unsigned busy:1; /* Used to prevent races */ unsigned lockable:1; /* Able to prevent media removal */ unsigned locked:1; /* Media removal disabled */ unsigned borken:1; /* Tell the Seagate driver to be * painfully slow on this device */ unsigned disconnect:1; /* can disconnect */ unsigned soft_reset:1; /* Uses soft reset option */ unsigned sdtr:1; /* Device supports SDTR messages */ unsigned wdtr:1; /* Device supports WDTR messages */ unsigned ppr:1; /* Device supports PPR messages */ unsigned tagged_supported:1; /* Supports SCSI-II tagged queuing */ unsigned simple_tags:1; /* simple queue tag messages are enabled */ unsigned was_reset:1; /* There was a bus reset on the bus for * this device */ unsigned expecting_cc_ua:1; /* Expecting a CHECK_CONDITION/UNIT_ATTN * because we did a bus reset. */ unsigned use_10_for_rw:1; /* first try 10-byte read / write */ unsigned use_10_for_ms:1; /* first try 10-byte mode sense/select */ unsigned set_dbd_for_ms:1; /* Set "DBD" field in mode sense */ unsigned no_report_opcodes:1; /* no REPORT SUPPORTED OPERATION CODES */ unsigned no_write_same:1; /* no WRITE SAME command */ unsigned use_16_for_rw:1; /* Use read/write(16) over read/write(10) */ unsigned skip_ms_page_8:1; /* do not use MODE SENSE page 0x08 */ unsigned skip_ms_page_3f:1; /* do not use MODE SENSE page 0x3f */ unsigned skip_vpd_pages:1; /* do not read VPD pages */ unsigned try_vpd_pages:1; /* attempt to read VPD pages */ unsigned use_192_bytes_for_3f:1; /* ask for 192 bytes from page 0x3f */ unsigned no_start_on_add:1; /* do not issue start on add */ unsigned allow_restart:1; /* issue START_UNIT in error handler */ unsigned manage_start_stop:1; /* Let HLD (sd) manage start/stop */ unsigned start_stop_pwr_cond:1; /* Set power cond. in START_STOP_UNIT */ unsigned no_uld_attach:1; /* disable connecting to upper level drivers */ unsigned select_no_atn:1; unsigned fix_capacity:1; /* READ_CAPACITY is too high by 1 */ unsigned guess_capacity:1; /* READ_CAPACITY might be too high by 1 */ unsigned retry_hwerror:1; /* Retry HARDWARE_ERROR */ unsigned last_sector_bug:1; /* do not use multisector accesses on SD_LAST_BUGGY_SECTORS */ unsigned no_read_disc_info:1; /* Avoid READ_DISC_INFO cmds */ unsigned no_read_capacity_16:1; /* Avoid READ_CAPACITY_16 cmds */ unsigned try_rc_10_first:1; /* Try READ_CAPACACITY_10 first */ unsigned security_supported:1; /* Supports Security Protocols */ unsigned is_visible:1; /* is the device visible in sysfs */ unsigned wce_default_on:1; /* Cache is ON by default */ unsigned no_dif:1; /* T10 PI (DIF) should be disabled */ unsigned broken_fua:1; /* Don't set FUA bit */ unsigned lun_in_cdb:1; /* Store LUN bits in CDB[1] */ unsigned unmap_limit_for_ws:1; /* Use the UNMAP limit for WRITE SAME */ unsigned rpm_autosuspend:1; /* Enable runtime autosuspend at device * creation time */ bool offline_already; /* Device offline message logged */ atomic_t disk_events_disable_depth; /* disable depth for disk events */ DECLARE_BITMAP(supported_events, SDEV_EVT_MAXBITS); /* supported events */ DECLARE_BITMAP(pending_events, SDEV_EVT_MAXBITS); /* pending events */ struct list_head event_list; /* asserted events */ struct work_struct event_work; unsigned int max_device_blocked; /* what device_blocked counts down from */ #define SCSI_DEFAULT_DEVICE_BLOCKED 3 atomic_t iorequest_cnt; atomic_t iodone_cnt; atomic_t ioerr_cnt; struct device sdev_gendev, sdev_dev; struct execute_work ew; /* used to get process context on put */ struct work_struct requeue_work; struct scsi_device_handler *handler; void *handler_data; size_t dma_drain_len; void *dma_drain_buf; unsigned char access_state; struct mutex state_mutex; enum scsi_device_state sdev_state; struct task_struct *quiesced_by; unsigned long sdev_data[]; } __attribute__((aligned(sizeof(unsigned long)))); #define to_scsi_device(d) \ container_of(d, struct scsi_device, sdev_gendev) #define class_to_sdev(d) \ container_of(d, struct scsi_device, sdev_dev) #define transport_class_to_sdev(class_dev) \ to_scsi_device(class_dev->parent) #define sdev_dbg(sdev, fmt, a...) \ dev_dbg(&(sdev)->sdev_gendev, fmt, ##a) /* * like scmd_printk, but the device name is passed in * as a string pointer */ __printf(4, 5) void sdev_prefix_printk(const char *, const struct scsi_device *, const char *, const char *, ...); #define sdev_printk(l, sdev, fmt, a...) \ sdev_prefix_printk(l, sdev, NULL, fmt, ##a) __printf(3, 4) void scmd_printk(const char *, const struct scsi_cmnd *, const char *, ...); #define scmd_dbg(scmd, fmt, a...) \ do { \ if ((scmd)->request->rq_disk) \ sdev_dbg((scmd)->device, "[%s] " fmt, \ (scmd)->request->rq_disk->disk_name, ##a);\ else \ sdev_dbg((scmd)->device, fmt, ##a); \ } while (0) enum scsi_target_state { STARGET_CREATED = 1, STARGET_RUNNING, STARGET_REMOVE, STARGET_CREATED_REMOVE, STARGET_DEL, }; /* * scsi_target: representation of a scsi target, for now, this is only * used for single_lun devices. If no one has active IO to the target, * starget_sdev_user is NULL, else it points to the active sdev. */ struct scsi_target { struct scsi_device *starget_sdev_user; struct list_head siblings; struct list_head devices; struct device dev; struct kref reap_ref; /* last put renders target invisible */ unsigned int channel; unsigned int id; /* target id ... replace * scsi_device.id eventually */ unsigned int create:1; /* signal that it needs to be added */ unsigned int single_lun:1; /* Indicates we should only * allow I/O to one of the luns * for the device at a time. */ unsigned int pdt_1f_for_no_lun:1; /* PDT = 0x1f * means no lun present. */ unsigned int no_report_luns:1; /* Don't use * REPORT LUNS for scanning. */ unsigned int expecting_lun_change:1; /* A device has reported * a 3F/0E UA, other devices on * the same target will also. */ /* commands actually active on LLD. */ atomic_t target_busy; atomic_t target_blocked; /* * LLDs should set this in the slave_alloc host template callout. * If set to zero then there is not limit. */ unsigned int can_queue; unsigned int max_target_blocked; #define SCSI_DEFAULT_TARGET_BLOCKED 3 char scsi_level; enum scsi_target_state state; void *hostdata; /* available to low-level driver */ unsigned long starget_data[]; /* for the transport */ /* starget_data must be the last element!!!! */ } __attribute__((aligned(sizeof(unsigned long)))); #define to_scsi_target(d) container_of(d, struct scsi_target, dev) static inline struct scsi_target *scsi_target(struct scsi_device *sdev) { return to_scsi_target(sdev->sdev_gendev.parent); } #define transport_class_to_starget(class_dev) \ to_scsi_target(class_dev->parent) #define starget_printk(prefix, starget, fmt, a...) \ dev_printk(prefix, &(starget)->dev, fmt, ##a) extern struct scsi_device *__scsi_add_device(struct Scsi_Host *, uint, uint, u64, void *hostdata); extern int scsi_add_device(struct Scsi_Host *host, uint channel, uint target, u64 lun); extern int scsi_register_device_handler(struct scsi_device_handler *scsi_dh); extern void scsi_remove_device(struct scsi_device *); extern int scsi_unregister_device_handler(struct scsi_device_handler *scsi_dh); void scsi_attach_vpd(struct scsi_device *sdev); extern struct scsi_device *scsi_device_from_queue(struct request_queue *q); extern int __must_check scsi_device_get(struct scsi_device *); extern void scsi_device_put(struct scsi_device *); extern struct scsi_device *scsi_device_lookup(struct Scsi_Host *, uint, uint, u64); extern struct scsi_device *__scsi_device_lookup(struct Scsi_Host *, uint, uint, u64); extern struct scsi_device *scsi_device_lookup_by_target(struct scsi_target *, u64); extern struct scsi_device *__scsi_device_lookup_by_target(struct scsi_target *, u64); extern void starget_for_each_device(struct scsi_target *, void *, void (*fn)(struct scsi_device *, void *)); extern void __starget_for_each_device(struct scsi_target *, void *, void (*fn)(struct scsi_device *, void *)); /* only exposed to implement shost_for_each_device */ extern struct scsi_device *__scsi_iterate_devices(struct Scsi_Host *, struct scsi_device *); /** * shost_for_each_device - iterate over all devices of a host * @sdev: the &struct scsi_device to use as a cursor * @shost: the &struct scsi_host to iterate over * * Iterator that returns each device attached to @shost. This loop * takes a reference on each device and releases it at the end. If * you break out of the loop, you must call scsi_device_put(sdev). */ #define shost_for_each_device(sdev, shost) \ for ((sdev) = __scsi_iterate_devices((shost), NULL); \ (sdev); \ (sdev) = __scsi_iterate_devices((shost), (sdev))) /** * __shost_for_each_device - iterate over all devices of a host (UNLOCKED) * @sdev: the &struct scsi_device to use as a cursor * @shost: the &struct scsi_host to iterate over * * Iterator that returns each device attached to @shost. It does _not_ * take a reference on the scsi_device, so the whole loop must be * protected by shost->host_lock. * * Note: The only reason to use this is because you need to access the * device list in interrupt context. Otherwise you really want to use * shost_for_each_device instead. */ #define __shost_for_each_device(sdev, shost) \ list_for_each_entry((sdev), &((shost)->__devices), siblings) extern int scsi_change_queue_depth(struct scsi_device *, int); extern int scsi_track_queue_full(struct scsi_device *, int); extern int scsi_set_medium_removal(struct scsi_device *, char); extern int scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, unsigned char *buffer, int len, int timeout, int retries, struct scsi_mode_data *data, struct scsi_sense_hdr *); extern int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, unsigned char *buffer, int len, int timeout, int retries, struct scsi_mode_data *data, struct scsi_sense_hdr *); extern int scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, struct scsi_sense_hdr *sshdr); extern int scsi_get_vpd_page(struct scsi_device *, u8 page, unsigned char *buf, int buf_len); extern int scsi_report_opcode(struct scsi_device *sdev, unsigned char *buffer, unsigned int len, unsigned char opcode); extern int scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state); extern struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, gfp_t gfpflags); extern void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt); extern void sdev_evt_send_simple(struct scsi_device *sdev, enum scsi_device_event evt_type, gfp_t gfpflags); extern int scsi_device_quiesce(struct scsi_device *sdev); extern void scsi_device_resume(struct scsi_device *sdev); extern void scsi_target_quiesce(struct scsi_target *); extern void scsi_target_resume(struct scsi_target *); extern void scsi_scan_target(struct device *parent, unsigned int channel, unsigned int id, u64 lun, enum scsi_scan_mode rescan); extern void scsi_target_reap(struct scsi_target *); extern void scsi_target_block(struct device *); extern void scsi_target_unblock(struct device *, enum scsi_device_state); extern void scsi_remove_target(struct device *); extern const char *scsi_device_state_name(enum scsi_device_state); extern int scsi_is_sdev_device(const struct device *); extern int scsi_is_target_device(const struct device *); extern void scsi_sanitize_inquiry_string(unsigned char *s, int len); extern int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, int data_direction, void *buffer, unsigned bufflen, unsigned char *sense, struct scsi_sense_hdr *sshdr, int timeout, int retries, u64 flags, req_flags_t rq_flags, int *resid); /* Make sure any sense buffer is the correct size. */ #define scsi_execute(sdev, cmd, data_direction, buffer, bufflen, sense, \ sshdr, timeout, retries, flags, rq_flags, resid) \ ({ \ BUILD_BUG_ON((sense) != NULL && \ sizeof(sense) != SCSI_SENSE_BUFFERSIZE); \ __scsi_execute(sdev, cmd, data_direction, buffer, bufflen, \ sense, sshdr, timeout, retries, flags, rq_flags, \ resid); \ }) static inline int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, int data_direction, void *buffer, unsigned bufflen, struct scsi_sense_hdr *sshdr, int timeout, int retries, int *resid) { return scsi_execute(sdev, cmd, data_direction, buffer, bufflen, NULL, sshdr, timeout, retries, 0, 0, resid); } extern void sdev_disable_disk_events(struct scsi_device *sdev); extern void sdev_enable_disk_events(struct scsi_device *sdev); extern int scsi_vpd_lun_id(struct scsi_device *, char *, size_t); extern int scsi_vpd_tpg_id(struct scsi_device *, int *); #ifdef CONFIG_PM extern int scsi_autopm_get_device(struct scsi_device *); extern void scsi_autopm_put_device(struct scsi_device *); #else static inline int scsi_autopm_get_device(struct scsi_device *d) { return 0; } static inline void scsi_autopm_put_device(struct scsi_device *d) {} #endif /* CONFIG_PM */ static inline int __must_check scsi_device_reprobe(struct scsi_device *sdev) { return device_reprobe(&sdev->sdev_gendev); } static inline unsigned int sdev_channel(struct scsi_device *sdev) { return sdev->channel; } static inline unsigned int sdev_id(struct scsi_device *sdev) { return sdev->id; } #define scmd_id(scmd) sdev_id((scmd)->device) #define scmd_channel(scmd) sdev_channel((scmd)->device) /* * checks for positions of the SCSI state machine */ static inline int scsi_device_online(struct scsi_device *sdev) { return (sdev->sdev_state != SDEV_OFFLINE && sdev->sdev_state != SDEV_TRANSPORT_OFFLINE && sdev->sdev_state != SDEV_DEL); } static inline int scsi_device_blocked(struct scsi_device *sdev) { return sdev->sdev_state == SDEV_BLOCK || sdev->sdev_state == SDEV_CREATED_BLOCK; } static inline int scsi_device_created(struct scsi_device *sdev) { return sdev->sdev_state == SDEV_CREATED || sdev->sdev_state == SDEV_CREATED_BLOCK; } int scsi_internal_device_block_nowait(struct scsi_device *sdev); int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, enum scsi_device_state new_state); /* accessor functions for the SCSI parameters */ static inline int scsi_device_sync(struct scsi_device *sdev) { return sdev->sdtr; } static inline int scsi_device_wide(struct scsi_device *sdev) { return sdev->wdtr; } static inline int scsi_device_dt(struct scsi_device *sdev) { return sdev->ppr; } static inline int scsi_device_dt_only(struct scsi_device *sdev) { if (sdev->inquiry_len < 57) return 0; return (sdev->inquiry[56] & 0x0c) == 0x04; } static inline int scsi_device_ius(struct scsi_device *sdev) { if (sdev->inquiry_len < 57) return 0; return sdev->inquiry[56] & 0x01; } static inline int scsi_device_qas(struct scsi_device *sdev) { if (sdev->inquiry_len < 57) return 0; return sdev->inquiry[56] & 0x02; } static inline int scsi_device_enclosure(struct scsi_device *sdev) { return sdev->inquiry ? (sdev->inquiry[6] & (1<<6)) : 1; } static inline int scsi_device_protection(struct scsi_device *sdev) { if (sdev->no_dif) return 0; return sdev->scsi_level > SCSI_2 && sdev->inquiry[5] & (1<<0); } static inline int scsi_device_tpgs(struct scsi_device *sdev) { return sdev->inquiry ? (sdev->inquiry[5] >> 4) & 0x3 : 0; } /** * scsi_device_supports_vpd - test if a device supports VPD pages * @sdev: the &struct scsi_device to test * * If the 'try_vpd_pages' flag is set it takes precedence. * Otherwise we will assume VPD pages are supported if the * SCSI level is at least SPC-3 and 'skip_vpd_pages' is not set. */ static inline int scsi_device_supports_vpd(struct scsi_device *sdev) { /* Attempt VPD inquiry if the device blacklist explicitly calls * for it. */ if (sdev->try_vpd_pages) return 1; /* * Although VPD inquiries can go to SCSI-2 type devices, * some USB ones crash on receiving them, and the pages * we currently ask for are mandatory for SPC-2 and beyond */ if (sdev->scsi_level >= SCSI_SPC_2 && !sdev->skip_vpd_pages) return 1; return 0; } #define MODULE_ALIAS_SCSI_DEVICE(type) \ MODULE_ALIAS("scsi:t-" __stringify(type) "*") #define SCSI_DEVICE_MODALIAS_FMT "scsi:t-0x%02x" #endif /* _SCSI_SCSI_DEVICE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_HOST_H #define _SCSI_SCSI_HOST_H #include <linux/device.h> #include <linux/list.h> #include <linux/types.h> #include <linux/workqueue.h> #include <linux/mutex.h> #include <linux/seq_file.h> #include <linux/blk-mq.h> #include <scsi/scsi.h> struct block_device; struct completion; struct module; struct scsi_cmnd; struct scsi_device; struct scsi_host_cmd_pool; struct scsi_target; struct Scsi_Host; struct scsi_host_cmd_pool; struct scsi_transport_template; #define SG_ALL SG_CHUNK_SIZE #define MODE_UNKNOWN 0x00 #define MODE_INITIATOR 0x01 #define MODE_TARGET 0x02 struct scsi_host_template { struct module *module; const char *name; /* * The info function will return whatever useful information the * developer sees fit. If not provided, then the name field will * be used instead. * * Status: OPTIONAL */ const char *(* info)(struct Scsi_Host *); /* * Ioctl interface * * Status: OPTIONAL */ int (*ioctl)(struct scsi_device *dev, unsigned int cmd, void __user *arg); #ifdef CONFIG_COMPAT /* * Compat handler. Handle 32bit ABI. * When unknown ioctl is passed return -ENOIOCTLCMD. * * Status: OPTIONAL */ int (*compat_ioctl)(struct scsi_device *dev, unsigned int cmd, void __user *arg); #endif int (*init_cmd_priv)(struct Scsi_Host *shost, struct scsi_cmnd *cmd); int (*exit_cmd_priv)(struct Scsi_Host *shost, struct scsi_cmnd *cmd); /* * The queuecommand function is used to queue up a scsi * command block to the LLDD. When the driver finished * processing the command the done callback is invoked. * * If queuecommand returns 0, then the driver has accepted the * command. It must also push it to the HBA if the scsi_cmnd * flag SCMD_LAST is set, or if the driver does not implement * commit_rqs. The done() function must be called on the command * when the driver has finished with it. (you may call done on the * command before queuecommand returns, but in this case you * *must* return 0 from queuecommand). * * Queuecommand may also reject the command, in which case it may * not touch the command and must not call done() for it. * * There are two possible rejection returns: * * SCSI_MLQUEUE_DEVICE_BUSY: Block this device temporarily, but * allow commands to other devices serviced by this host. * * SCSI_MLQUEUE_HOST_BUSY: Block all devices served by this * host temporarily. * * For compatibility, any other non-zero return is treated the * same as SCSI_MLQUEUE_HOST_BUSY. * * NOTE: "temporarily" means either until the next command for# * this device/host completes, or a period of time determined by * I/O pressure in the system if there are no other outstanding * commands. * * STATUS: REQUIRED */ int (* queuecommand)(struct Scsi_Host *, struct scsi_cmnd *); /* * The commit_rqs function is used to trigger a hardware * doorbell after some requests have been queued with * queuecommand, when an error is encountered before sending * the request with SCMD_LAST set. * * STATUS: OPTIONAL */ void (*commit_rqs)(struct Scsi_Host *, u16); /* * This is an error handling strategy routine. You don't need to * define one of these if you don't want to - there is a default * routine that is present that should work in most cases. For those * driver authors that have the inclination and ability to write their * own strategy routine, this is where it is specified. Note - the * strategy routine is *ALWAYS* run in the context of the kernel eh * thread. Thus you are guaranteed to *NOT* be in an interrupt * handler when you execute this, and you are also guaranteed to * *NOT* have any other commands being queued while you are in the * strategy routine. When you return from this function, operations * return to normal. * * See scsi_error.c scsi_unjam_host for additional comments about * what this function should and should not be attempting to do. * * Status: REQUIRED (at least one of them) */ int (* eh_abort_handler)(struct scsi_cmnd *); int (* eh_device_reset_handler)(struct scsi_cmnd *); int (* eh_target_reset_handler)(struct scsi_cmnd *); int (* eh_bus_reset_handler)(struct scsi_cmnd *); int (* eh_host_reset_handler)(struct scsi_cmnd *); /* * Before the mid layer attempts to scan for a new device where none * currently exists, it will call this entry in your driver. Should * your driver need to allocate any structs or perform any other init * items in order to send commands to a currently unused target/lun * combo, then this is where you can perform those allocations. This * is specifically so that drivers won't have to perform any kind of * "is this a new device" checks in their queuecommand routine, * thereby making the hot path a bit quicker. * * Return values: 0 on success, non-0 on failure * * Deallocation: If we didn't find any devices at this ID, you will * get an immediate call to slave_destroy(). If we find something * here then you will get a call to slave_configure(), then the * device will be used for however long it is kept around, then when * the device is removed from the system (or * possibly at reboot * time), you will then get a call to slave_destroy(). This is * assuming you implement slave_configure and slave_destroy. * However, if you allocate memory and hang it off the device struct, * then you must implement the slave_destroy() routine at a minimum * in order to avoid leaking memory * each time a device is tore down. * * Status: OPTIONAL */ int (* slave_alloc)(struct scsi_device *); /* * Once the device has responded to an INQUIRY and we know the * device is online, we call into the low level driver with the * struct scsi_device *. If the low level device driver implements * this function, it *must* perform the task of setting the queue * depth on the device. All other tasks are optional and depend * on what the driver supports and various implementation details. * * Things currently recommended to be handled at this time include: * * 1. Setting the device queue depth. Proper setting of this is * described in the comments for scsi_change_queue_depth. * 2. Determining if the device supports the various synchronous * negotiation protocols. The device struct will already have * responded to INQUIRY and the results of the standard items * will have been shoved into the various device flag bits, eg. * device->sdtr will be true if the device supports SDTR messages. * 3. Allocating command structs that the device will need. * 4. Setting the default timeout on this device (if needed). * 5. Anything else the low level driver might want to do on a device * specific setup basis... * 6. Return 0 on success, non-0 on error. The device will be marked * as offline on error so that no access will occur. If you return * non-0, your slave_destroy routine will never get called for this * device, so don't leave any loose memory hanging around, clean * up after yourself before returning non-0 * * Status: OPTIONAL */ int (* slave_configure)(struct scsi_device *); /* * Immediately prior to deallocating the device and after all activity * has ceased the mid layer calls this point so that the low level * driver may completely detach itself from the scsi device and vice * versa. The low level driver is responsible for freeing any memory * it allocated in the slave_alloc or slave_configure calls. * * Status: OPTIONAL */ void (* slave_destroy)(struct scsi_device *); /* * Before the mid layer attempts to scan for a new device attached * to a target where no target currently exists, it will call this * entry in your driver. Should your driver need to allocate any * structs or perform any other init items in order to send commands * to a currently unused target, then this is where you can perform * those allocations. * * Return values: 0 on success, non-0 on failure * * Status: OPTIONAL */ int (* target_alloc)(struct scsi_target *); /* * Immediately prior to deallocating the target structure, and * after all activity to attached scsi devices has ceased, the * midlayer calls this point so that the driver may deallocate * and terminate any references to the target. * * Status: OPTIONAL */ void (* target_destroy)(struct scsi_target *); /* * If a host has the ability to discover targets on its own instead * of scanning the entire bus, it can fill in this function and * call scsi_scan_host(). This function will be called periodically * until it returns 1 with the scsi_host and the elapsed time of * the scan in jiffies. * * Status: OPTIONAL */ int (* scan_finished)(struct Scsi_Host *, unsigned long); /* * If the host wants to be called before the scan starts, but * after the midlayer has set up ready for the scan, it can fill * in this function. * * Status: OPTIONAL */ void (* scan_start)(struct Scsi_Host *); /* * Fill in this function to allow the queue depth of this host * to be changeable (on a per device basis). Returns either * the current queue depth setting (may be different from what * was passed in) or an error. An error should only be * returned if the requested depth is legal but the driver was * unable to set it. If the requested depth is illegal, the * driver should set and return the closest legal queue depth. * * Status: OPTIONAL */ int (* change_queue_depth)(struct scsi_device *, int); /* * This functions lets the driver expose the queue mapping * to the block layer. * * Status: OPTIONAL */ int (* map_queues)(struct Scsi_Host *shost); /* * Check if scatterlists need to be padded for DMA draining. * * Status: OPTIONAL */ bool (* dma_need_drain)(struct request *rq); /* * This function determines the BIOS parameters for a given * harddisk. These tend to be numbers that are made up by * the host adapter. Parameters: * size, device, list (heads, sectors, cylinders) * * Status: OPTIONAL */ int (* bios_param)(struct scsi_device *, struct block_device *, sector_t, int []); /* * This function is called when one or more partitions on the * device reach beyond the end of the device. * * Status: OPTIONAL */ void (*unlock_native_capacity)(struct scsi_device *); /* * Can be used to export driver statistics and other infos to the * world outside the kernel ie. userspace and it also provides an * interface to feed the driver with information. * * Status: OBSOLETE */ int (*show_info)(struct seq_file *, struct Scsi_Host *); int (*write_info)(struct Scsi_Host *, char *, int); /* * This is an optional routine that allows the transport to become * involved when a scsi io timer fires. The return value tells the * timer routine how to finish the io timeout handling. * * Status: OPTIONAL */ enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd *); /* This is an optional routine that allows transport to initiate * LLD adapter or firmware reset using sysfs attribute. * * Return values: 0 on success, -ve value on failure. * * Status: OPTIONAL */ int (*host_reset)(struct Scsi_Host *shost, int reset_type); #define SCSI_ADAPTER_RESET 1 #define SCSI_FIRMWARE_RESET 2 /* * Name of proc directory */ const char *proc_name; /* * Used to store the procfs directory if a driver implements the * show_info method. */ struct proc_dir_entry *proc_dir; /* * This determines if we will use a non-interrupt driven * or an interrupt driven scheme. It is set to the maximum number * of simultaneous commands a single hw queue in HBA will accept. */ int can_queue; /* * In many instances, especially where disconnect / reconnect are * supported, our host also has an ID on the SCSI bus. If this is * the case, then it must be reserved. Please set this_id to -1 if * your setup is in single initiator mode, and the host lacks an * ID. */ int this_id; /* * This determines the degree to which the host adapter is capable * of scatter-gather. */ unsigned short sg_tablesize; unsigned short sg_prot_tablesize; /* * Set this if the host adapter has limitations beside segment count. */ unsigned int max_sectors; /* * Maximum size in bytes of a single segment. */ unsigned int max_segment_size; /* * DMA scatter gather segment boundary limit. A segment crossing this * boundary will be split in two. */ unsigned long dma_boundary; unsigned long virt_boundary_mask; /* * This specifies "machine infinity" for host templates which don't * limit the transfer size. Note this limit represents an absolute * maximum, and may be over the transfer limits allowed for * individual devices (e.g. 256 for SCSI-1). */ #define SCSI_DEFAULT_MAX_SECTORS 1024 /* * True if this host adapter can make good use of linked commands. * This will allow more than one command to be queued to a given * unit on a given host. Set this to the maximum number of command * blocks to be provided for each device. Set this to 1 for one * command block per lun, 2 for two, etc. Do not set this to 0. * You should make sure that the host adapter will do the right thing * before you try setting this above 1. */ short cmd_per_lun; /* * present contains counter indicating how many boards of this * type were found when we did the scan. */ unsigned char present; /* If use block layer to manage tags, this is tag allocation policy */ int tag_alloc_policy; /* * Track QUEUE_FULL events and reduce queue depth on demand. */ unsigned track_queue_depth:1; /* * This specifies the mode that a LLD supports. */ unsigned supported_mode:2; /* * True if this host adapter uses unchecked DMA onto an ISA bus. */ unsigned unchecked_isa_dma:1; /* * True for emulated SCSI host adapters (e.g. ATAPI). */ unsigned emulated:1; /* * True if the low-level driver performs its own reset-settle delays. */ unsigned skip_settle_delay:1; /* True if the controller does not support WRITE SAME */ unsigned no_write_same:1; /* True if the host uses host-wide tagspace */ unsigned host_tagset:1; /* * Countdown for host blocking with no commands outstanding. */ unsigned int max_host_blocked; /* * Default value for the blocking. If the queue is empty, * host_blocked counts down in the request_fn until it restarts * host operations as zero is reached. * * FIXME: This should probably be a value in the template */ #define SCSI_DEFAULT_HOST_BLOCKED 7 /* * Pointer to the sysfs class properties for this host, NULL terminated. */ struct device_attribute **shost_attrs; /* * Pointer to the SCSI device properties for this host, NULL terminated. */ struct device_attribute **sdev_attrs; /* * Pointer to the SCSI device attribute groups for this host, * NULL terminated. */ const struct attribute_group **sdev_groups; /* * Vendor Identifier associated with the host * * Note: When specifying vendor_id, be sure to read the * Vendor Type and ID formatting requirements specified in * scsi_netlink.h */ u64 vendor_id; /* * Additional per-command data allocated for the driver. */ unsigned int cmd_size; struct scsi_host_cmd_pool *cmd_pool; /* Delay for runtime autosuspend */ int rpm_autosuspend_delay; }; /* * Temporary #define for host lock push down. Can be removed when all * drivers have been updated to take advantage of unlocked * queuecommand. * */ #define DEF_SCSI_QCMD(func_name) \ int func_name(struct Scsi_Host *shost, struct scsi_cmnd *cmd) \ { \ unsigned long irq_flags; \ int rc; \ spin_lock_irqsave(shost->host_lock, irq_flags); \ rc = func_name##_lck (cmd, cmd->scsi_done); \ spin_unlock_irqrestore(shost->host_lock, irq_flags); \ return rc; \ } /* * shost state: If you alter this, you also need to alter scsi_sysfs.c * (for the ascii descriptions) and the state model enforcer: * scsi_host_set_state() */ enum scsi_host_state { SHOST_CREATED = 1, SHOST_RUNNING, SHOST_CANCEL, SHOST_DEL, SHOST_RECOVERY, SHOST_CANCEL_RECOVERY, SHOST_DEL_RECOVERY, }; struct Scsi_Host { /* * __devices is protected by the host_lock, but you should * usually use scsi_device_lookup / shost_for_each_device * to access it and don't care about locking yourself. * In the rare case of being in irq context you can use * their __ prefixed variants with the lock held. NEVER * access this list directly from a driver. */ struct list_head __devices; struct list_head __targets; struct list_head starved_list; spinlock_t default_lock; spinlock_t *host_lock; struct mutex scan_mutex;/* serialize scanning activity */ struct list_head eh_cmd_q; struct task_struct * ehandler; /* Error recovery thread. */ struct completion * eh_action; /* Wait for specific actions on the host. */ wait_queue_head_t host_wait; struct scsi_host_template *hostt; struct scsi_transport_template *transportt; /* Area to keep a shared tag map */ struct blk_mq_tag_set tag_set; atomic_t host_blocked; unsigned int host_failed; /* commands that failed. protected by host_lock */ unsigned int host_eh_scheduled; /* EH scheduled without command */ unsigned int host_no; /* Used for IOCTL_GET_IDLUN, /proc/scsi et al. */ /* next two fields are used to bound the time spent in error handling */ int eh_deadline; unsigned long last_reset; /* * These three parameters can be used to allow for wide scsi, * and for host adapters that support multiple busses * The last two should be set to 1 more than the actual max id * or lun (e.g. 8 for SCSI parallel systems). */ unsigned int max_channel; unsigned int max_id; u64 max_lun; /* * This is a unique identifier that must be assigned so that we * have some way of identifying each detected host adapter properly * and uniquely. For hosts that do not support more than one card * in the system at one time, this does not need to be set. It is * initialized to 0 in scsi_register. */ unsigned int unique_id; /* * The maximum length of SCSI commands that this host can accept. * Probably 12 for most host adapters, but could be 16 for others. * or 260 if the driver supports variable length cdbs. * For drivers that don't set this field, a value of 12 is * assumed. */ unsigned short max_cmd_len; int this_id; int can_queue; short cmd_per_lun; short unsigned int sg_tablesize; short unsigned int sg_prot_tablesize; unsigned int max_sectors; unsigned int max_segment_size; unsigned long dma_boundary; unsigned long virt_boundary_mask; /* * In scsi-mq mode, the number of hardware queues supported by the LLD. * * Note: it is assumed that each hardware queue has a queue depth of * can_queue. In other words, the total queue depth per host * is nr_hw_queues * can_queue. However, for when host_tagset is set, * the total queue depth is can_queue. */ unsigned nr_hw_queues; unsigned active_mode:2; unsigned unchecked_isa_dma:1; /* * Host has requested that no further requests come through for the * time being. */ unsigned host_self_blocked:1; /* * Host uses correct SCSI ordering not PC ordering. The bit is * set for the minority of drivers whose authors actually read * the spec ;). */ unsigned reverse_ordering:1; /* Task mgmt function in progress */ unsigned tmf_in_progress:1; /* Asynchronous scan in progress */ unsigned async_scan:1; /* Don't resume host in EH */ unsigned eh_noresume:1; /* The controller does not support WRITE SAME */ unsigned no_write_same:1; /* True if the host uses host-wide tagspace */ unsigned host_tagset:1; /* Host responded with short (<36 bytes) INQUIRY result */ unsigned short_inquiry:1; /* The transport requires the LUN bits NOT to be stored in CDB[1] */ unsigned no_scsi2_lun_in_cdb:1; /* * Optional work queue to be utilized by the transport */ char work_q_name[20]; struct workqueue_struct *work_q; /* * Task management function work queue */ struct workqueue_struct *tmf_work_q; /* * Value host_blocked counts down from */ unsigned int max_host_blocked; /* Protection Information */ unsigned int prot_capabilities; unsigned char prot_guard_type; /* legacy crap */ unsigned long base; unsigned long io_port; unsigned char n_io_port; unsigned char dma_channel; unsigned int irq; enum scsi_host_state shost_state; /* ldm bits */ struct device shost_gendev, shost_dev; /* * Points to the transport data (if any) which is allocated * separately */ void *shost_data; /* * Points to the physical bus device we'd use to do DMA * Needed just in case we have virtual hosts. */ struct device *dma_dev; /* * We should ensure that this is aligned, both for better performance * and also because some compilers (m68k) don't automatically force * alignment to a long boundary. */ unsigned long hostdata[] /* Used for storage of host specific stuff */ __attribute__ ((aligned (sizeof(unsigned long)))); }; #define class_to_shost(d) \ container_of(d, struct Scsi_Host, shost_dev) #define shost_printk(prefix, shost, fmt, a...) \ dev_printk(prefix, &(shost)->shost_gendev, fmt, ##a) static inline void *shost_priv(struct Scsi_Host *shost) { return (void *)shost->hostdata; } int scsi_is_host_device(const struct device *); static inline struct Scsi_Host *dev_to_shost(struct device *dev) { while (!scsi_is_host_device(dev)) { if (!dev->parent) return NULL; dev = dev->parent; } return container_of(dev, struct Scsi_Host, shost_gendev); } static inline int scsi_host_in_recovery(struct Scsi_Host *shost) { return shost->shost_state == SHOST_RECOVERY || shost->shost_state == SHOST_CANCEL_RECOVERY || shost->shost_state == SHOST_DEL_RECOVERY || shost->tmf_in_progress; } extern int scsi_queue_work(struct Scsi_Host *, struct work_struct *); extern void scsi_flush_work(struct Scsi_Host *); extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template *, int); extern int __must_check scsi_add_host_with_dma(struct Scsi_Host *, struct device *, struct device *); extern void scsi_scan_host(struct Scsi_Host *); extern void scsi_rescan_device(struct device *); extern void scsi_remove_host(struct Scsi_Host *); extern struct Scsi_Host *scsi_host_get(struct Scsi_Host *); extern int scsi_host_busy(struct Scsi_Host *shost); extern void scsi_host_put(struct Scsi_Host *t); extern struct Scsi_Host *scsi_host_lookup(unsigned short); extern const char *scsi_host_state_name(enum scsi_host_state); extern void scsi_host_complete_all_commands(struct Scsi_Host *shost, int status); static inline int __must_check scsi_add_host(struct Scsi_Host *host, struct device *dev) { return scsi_add_host_with_dma(host, dev, dev); } static inline struct device *scsi_get_device(struct Scsi_Host *shost) { return shost->shost_gendev.parent; } /** * scsi_host_scan_allowed - Is scanning of this host allowed * @shost: Pointer to Scsi_Host. **/ static inline int scsi_host_scan_allowed(struct Scsi_Host *shost) { return shost->shost_state == SHOST_RUNNING || shost->shost_state == SHOST_RECOVERY; } extern void scsi_unblock_requests(struct Scsi_Host *); extern void scsi_block_requests(struct Scsi_Host *); extern int scsi_host_block(struct Scsi_Host *shost); extern int scsi_host_unblock(struct Scsi_Host *shost, int new_state); void scsi_host_busy_iter(struct Scsi_Host *, bool (*fn)(struct scsi_cmnd *, void *, bool), void *priv); struct class_container; /* * These two functions are used to allocate and free a pseudo device * which will connect to the host adapter itself rather than any * physical device. You must deallocate when you are done with the * thing. This physical pseudo-device isn't real and won't be available * from any high-level drivers. */ extern void scsi_free_host_dev(struct scsi_device *); extern struct scsi_device *scsi_get_host_dev(struct Scsi_Host *); /* * DIF defines the exchange of protection information between * initiator and SBC block device. * * DIX defines the exchange of protection information between OS and * initiator. */ enum scsi_host_prot_capabilities { SHOST_DIF_TYPE1_PROTECTION = 1 << 0, /* T10 DIF Type 1 */ SHOST_DIF_TYPE2_PROTECTION = 1 << 1, /* T10 DIF Type 2 */ SHOST_DIF_TYPE3_PROTECTION = 1 << 2, /* T10 DIF Type 3 */ SHOST_DIX_TYPE0_PROTECTION = 1 << 3, /* DIX between OS and HBA only */ SHOST_DIX_TYPE1_PROTECTION = 1 << 4, /* DIX with DIF Type 1 */ SHOST_DIX_TYPE2_PROTECTION = 1 << 5, /* DIX with DIF Type 2 */ SHOST_DIX_TYPE3_PROTECTION = 1 << 6, /* DIX with DIF Type 3 */ }; /* * SCSI hosts which support the Data Integrity Extensions must * indicate their capabilities by setting the prot_capabilities using * this call. */ static inline void scsi_host_set_prot(struct Scsi_Host *shost, unsigned int mask) { shost->prot_capabilities = mask; } static inline unsigned int scsi_host_get_prot(struct Scsi_Host *shost) { return shost->prot_capabilities; } static inline int scsi_host_prot_dma(struct Scsi_Host *shost) { return shost->prot_capabilities >= SHOST_DIX_TYPE0_PROTECTION; } static inline unsigned int scsi_host_dif_capable(struct Scsi_Host *shost, unsigned int target_type) { static unsigned char cap[] = { 0, SHOST_DIF_TYPE1_PROTECTION, SHOST_DIF_TYPE2_PROTECTION, SHOST_DIF_TYPE3_PROTECTION }; if (target_type >= ARRAY_SIZE(cap)) return 0; return shost->prot_capabilities & cap[target_type] ? target_type : 0; } static inline unsigned int scsi_host_dix_capable(struct Scsi_Host *shost, unsigned int target_type) { #if defined(CONFIG_BLK_DEV_INTEGRITY) static unsigned char cap[] = { SHOST_DIX_TYPE0_PROTECTION, SHOST_DIX_TYPE1_PROTECTION, SHOST_DIX_TYPE2_PROTECTION, SHOST_DIX_TYPE3_PROTECTION }; if (target_type >= ARRAY_SIZE(cap)) return 0; return shost->prot_capabilities & cap[target_type]; #endif return 0; } /* * All DIX-capable initiators must support the T10-mandated CRC * checksum. Controllers can optionally implement the IP checksum * scheme which has much lower impact on system performance. Note * that the main rationale for the checksum is to match integrity * metadata with data. Detecting bit errors are a job for ECC memory * and buses. */ enum scsi_host_guard_type { SHOST_DIX_GUARD_CRC = 1 << 0, SHOST_DIX_GUARD_IP = 1 << 1, }; static inline void scsi_host_set_guard(struct Scsi_Host *shost, unsigned char type) { shost->prot_guard_type = type; } static inline unsigned char scsi_host_get_guard(struct Scsi_Host *shost) { return shost->prot_guard_type; } extern int scsi_host_set_state(struct Scsi_Host *, enum scsi_host_state); #endif /* _SCSI_SCSI_HOST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_IVERSION_H #define _LINUX_IVERSION_H #include <linux/fs.h> /* * The inode->i_version field: * --------------------------- * The change attribute (i_version) is mandated by NFSv4 and is mostly for * knfsd, but is also used for other purposes (e.g. IMA). The i_version must * appear different to observers if there was a change to the inode's data or * metadata since it was last queried. * * Observers see the i_version as a 64-bit number that never decreases. If it * remains the same since it was last checked, then nothing has changed in the * inode. If it's different then something has changed. Observers cannot infer * anything about the nature or magnitude of the changes from the value, only * that the inode has changed in some fashion. * * Not all filesystems properly implement the i_version counter. Subsystems that * want to use i_version field on an inode should first check whether the * filesystem sets the SB_I_VERSION flag (usually via the IS_I_VERSION macro). * * Those that set SB_I_VERSION will automatically have their i_version counter * incremented on writes to normal files. If the SB_I_VERSION is not set, then * the VFS will not touch it on writes, and the filesystem can use it how it * wishes. Note that the filesystem is always responsible for updating the * i_version on namespace changes in directories (mkdir, rmdir, unlink, etc.). * We consider these sorts of filesystems to have a kernel-managed i_version. * * It may be impractical for filesystems to keep i_version updates atomic with * respect to the changes that cause them. They should, however, guarantee * that i_version updates are never visible before the changes that caused * them. Also, i_version updates should never be delayed longer than it takes * the original change to reach disk. * * This implementation uses the low bit in the i_version field as a flag to * track when the value has been queried. If it has not been queried since it * was last incremented, we can skip the increment in most cases. * * In the event that we're updating the ctime, we will usually go ahead and * bump the i_version anyway. Since that has to go to stable storage in some * fashion, we might as well increment it as well. * * With this implementation, the value should always appear to observers to * increase over time if the file has changed. It's recommended to use * inode_eq_iversion() helper to compare values. * * Note that some filesystems (e.g. NFS and AFS) just use the field to store * a server-provided value (for the most part). For that reason, those * filesystems do not set SB_I_VERSION. These filesystems are considered to * have a self-managed i_version. * * Persistently storing the i_version * ---------------------------------- * Queries of the i_version field are not gated on them hitting the backing * store. It's always possible that the host could crash after allowing * a query of the value but before it has made it to disk. * * To mitigate this problem, filesystems should always use * inode_set_iversion_queried when loading an existing inode from disk. This * ensures that the next attempted inode increment will result in the value * changing. * * Storing the value to disk therefore does not count as a query, so those * filesystems should use inode_peek_iversion to grab the value to be stored. * There is no need to flag the value as having been queried in that case. */ /* * We borrow the lowest bit in the i_version to use as a flag to tell whether * it has been queried since we last incremented it. If it has, then we must * increment it on the next change. After that, we can clear the flag and * avoid incrementing it again until it has again been queried. */ #define I_VERSION_QUERIED_SHIFT (1) #define I_VERSION_QUERIED (1ULL << (I_VERSION_QUERIED_SHIFT - 1)) #define I_VERSION_INCREMENT (1ULL << I_VERSION_QUERIED_SHIFT) /** * inode_set_iversion_raw - set i_version to the specified raw value * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val. This function is for use by * filesystems that self-manage the i_version. * * For example, the NFS client stores its NFSv4 change attribute in this way, * and the AFS client stores the data_version from the server here. */ static inline void inode_set_iversion_raw(struct inode *inode, u64 val) { atomic64_set(&inode->i_version, val); } /** * inode_peek_iversion_raw - grab a "raw" iversion value * @inode: inode from which i_version should be read * * Grab a "raw" inode->i_version value and return it. The i_version is not * flagged or converted in any way. This is mostly used to access a self-managed * i_version. * * With those filesystems, we want to treat the i_version as an entirely * opaque value. */ static inline u64 inode_peek_iversion_raw(const struct inode *inode) { return atomic64_read(&inode->i_version); } /** * inode_set_max_iversion_raw - update i_version new value is larger * @inode: inode to set * @val: new i_version to set * * Some self-managed filesystems (e.g Ceph) will only update the i_version * value if the new value is larger than the one we already have. */ static inline void inode_set_max_iversion_raw(struct inode *inode, u64 val) { u64 cur, old; cur = inode_peek_iversion_raw(inode); for (;;) { if (cur > val) break; old = atomic64_cmpxchg(&inode->i_version, cur, val); if (likely(old == cur)) break; cur = old; } } /** * inode_set_iversion - set i_version to a particular value * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val. This function is for filesystems with * a kernel-managed i_version, for initializing a newly-created inode from * scratch. * * In this case, we do not set the QUERIED flag since we know that this value * has never been queried. */ static inline void inode_set_iversion(struct inode *inode, u64 val) { inode_set_iversion_raw(inode, val << I_VERSION_QUERIED_SHIFT); } /** * inode_set_iversion_queried - set i_version to a particular value as quereied * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val, and flag it for increment on the next * change. * * Filesystems that persistently store the i_version on disk should use this * when loading an existing inode from disk. * * When loading in an i_version value from a backing store, we can't be certain * that it wasn't previously viewed before being stored. Thus, we must assume * that it was, to ensure that we don't end up handing out the same value for * different versions of the same inode. */ static inline void inode_set_iversion_queried(struct inode *inode, u64 val) { inode_set_iversion_raw(inode, (val << I_VERSION_QUERIED_SHIFT) | I_VERSION_QUERIED); } /** * inode_maybe_inc_iversion - increments i_version * @inode: inode with the i_version that should be updated * @force: increment the counter even if it's not necessary? * * Every time the inode is modified, the i_version field must be seen to have * changed by any observer. * * If "force" is set or the QUERIED flag is set, then ensure that we increment * the value, and clear the queried flag. * * In the common case where neither is set, then we can return "false" without * updating i_version. * * If this function returns false, and no other metadata has changed, then we * can avoid logging the metadata. */ static inline bool inode_maybe_inc_iversion(struct inode *inode, bool force) { u64 cur, old, new; /* * The i_version field is not strictly ordered with any other inode * information, but the legacy inode_inc_iversion code used a spinlock * to serialize increments. * * Here, we add full memory barriers to ensure that any de-facto * ordering with other info is preserved. * * This barrier pairs with the barrier in inode_query_iversion() */ smp_mb(); cur = inode_peek_iversion_raw(inode); for (;;) { /* If flag is clear then we needn't do anything */ if (!force && !(cur & I_VERSION_QUERIED)) return false; /* Since lowest bit is flag, add 2 to avoid it */ new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; old = atomic64_cmpxchg(&inode->i_version, cur, new); if (likely(old == cur)) break; cur = old; } return true; } /** * inode_inc_iversion - forcibly increment i_version * @inode: inode that needs to be updated * * Forcbily increment the i_version field. This always results in a change to * the observable value. */ static inline void inode_inc_iversion(struct inode *inode) { inode_maybe_inc_iversion(inode, true); } /** * inode_iversion_need_inc - is the i_version in need of being incremented? * @inode: inode to check * * Returns whether the inode->i_version counter needs incrementing on the next * change. Just fetch the value and check the QUERIED flag. */ static inline bool inode_iversion_need_inc(struct inode *inode) { return inode_peek_iversion_raw(inode) & I_VERSION_QUERIED; } /** * inode_inc_iversion_raw - forcibly increment raw i_version * @inode: inode that needs to be updated * * Forcbily increment the raw i_version field. This always results in a change * to the raw value. * * NFS will use the i_version field to store the value from the server. It * mostly treats it as opaque, but in the case where it holds a write * delegation, it must increment the value itself. This function does that. */ static inline void inode_inc_iversion_raw(struct inode *inode) { atomic64_inc(&inode->i_version); } /** * inode_peek_iversion - read i_version without flagging it to be incremented * @inode: inode from which i_version should be read * * Read the inode i_version counter for an inode without registering it as a * query. * * This is typically used by local filesystems that need to store an i_version * on disk. In that situation, it's not necessary to flag it as having been * viewed, as the result won't be used to gauge changes from that point. */ static inline u64 inode_peek_iversion(const struct inode *inode) { return inode_peek_iversion_raw(inode) >> I_VERSION_QUERIED_SHIFT; } /** * inode_query_iversion - read i_version for later use * @inode: inode from which i_version should be read * * Read the inode i_version counter. This should be used by callers that wish * to store the returned i_version for later comparison. This will guarantee * that a later query of the i_version will result in a different value if * anything has changed. * * In this implementation, we fetch the current value, set the QUERIED flag and * then try to swap it into place with a cmpxchg, if it wasn't already set. If * that fails, we try again with the newly fetched value from the cmpxchg. */ static inline u64 inode_query_iversion(struct inode *inode) { u64 cur, old, new; cur = inode_peek_iversion_raw(inode); for (;;) { /* If flag is already set, then no need to swap */ if (cur & I_VERSION_QUERIED) { /* * This barrier (and the implicit barrier in the * cmpxchg below) pairs with the barrier in * inode_maybe_inc_iversion(). */ smp_mb(); break; } new = cur | I_VERSION_QUERIED; old = atomic64_cmpxchg(&inode->i_version, cur, new); if (likely(old == cur)) break; cur = old; } return cur >> I_VERSION_QUERIED_SHIFT; } /** * inode_eq_iversion_raw - check whether the raw i_version counter has changed * @inode: inode to check * @old: old value to check against its i_version * * Compare the current raw i_version counter with a previous one. Returns true * if they are the same or false if they are different. */ static inline bool inode_eq_iversion_raw(const struct inode *inode, u64 old) { return inode_peek_iversion_raw(inode) == old; } /** * inode_eq_iversion - check whether the i_version counter has changed * @inode: inode to check * @old: old value to check against its i_version * * Compare an i_version counter with a previous one. Returns true if they are * the same, and false if they are different. * * Note that we don't need to set the QUERIED flag in this case, as the value * in the inode is not being recorded for later use. */ static inline bool inode_eq_iversion(const struct inode *inode, u64 old) { return inode_peek_iversion(inode) == old; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 #ifndef __LINUX_MROUTE_BASE_H #define __LINUX_MROUTE_BASE_H #include <linux/netdevice.h> #include <linux/rhashtable-types.h> #include <linux/spinlock.h> #include <net/net_namespace.h> #include <net/sock.h> #include <net/fib_notifier.h> #include <net/ip_fib.h> /** * struct vif_device - interface representor for multicast routing * @dev: network device being used * @bytes_in: statistic; bytes ingressing * @bytes_out: statistic; bytes egresing * @pkt_in: statistic; packets ingressing * @pkt_out: statistic; packets egressing * @rate_limit: Traffic shaping (NI) * @threshold: TTL threshold * @flags: Control flags * @link: Physical interface index * @dev_parent_id: device parent id * @local: Local address * @remote: Remote address for tunnels */ struct vif_device { struct net_device *dev; unsigned long bytes_in, bytes_out; unsigned long pkt_in, pkt_out; unsigned long rate_limit; unsigned char threshold; unsigned short flags; int link; /* Currently only used by ipmr */ struct netdev_phys_item_id dev_parent_id; __be32 local, remote; }; struct vif_entry_notifier_info { struct fib_notifier_info info; struct net_device *dev; unsigned short vif_index; unsigned short vif_flags; u32 tb_id; }; static inline int mr_call_vif_notifier(struct notifier_block *nb, unsigned short family, enum fib_event_type event_type, struct vif_device *vif, unsigned short vif_index, u32 tb_id, struct netlink_ext_ack *extack) { struct vif_entry_notifier_info info = { .info = { .family = family, .extack = extack, }, .dev = vif->dev, .vif_index = vif_index, .vif_flags = vif->flags, .tb_id = tb_id, }; return call_fib_notifier(nb, event_type, &info.info); } static inline int mr_call_vif_notifiers(struct net *net, unsigned short family, enum fib_event_type event_type, struct vif_device *vif, unsigned short vif_index, u32 tb_id, unsigned int *ipmr_seq) { struct vif_entry_notifier_info info = { .info = { .family = family, }, .dev = vif->dev, .vif_index = vif_index, .vif_flags = vif->flags, .tb_id = tb_id, }; ASSERT_RTNL(); (*ipmr_seq)++; return call_fib_notifiers(net, event_type, &info.info); } #ifndef MAXVIFS /* This one is nasty; value is defined in uapi using different symbols for * mroute and morute6 but both map into same 32. */ #define MAXVIFS 32 #endif #define VIF_EXISTS(_mrt, _idx) (!!((_mrt)->vif_table[_idx].dev)) /* mfc_flags: * MFC_STATIC - the entry was added statically (not by a routing daemon) * MFC_OFFLOAD - the entry was offloaded to the hardware */ enum { MFC_STATIC = BIT(0), MFC_OFFLOAD = BIT(1), }; /** * struct mr_mfc - common multicast routing entries * @mnode: rhashtable list * @mfc_parent: source interface (iif) * @mfc_flags: entry flags * @expires: unresolved entry expire time * @unresolved: unresolved cached skbs * @last_assert: time of last assert * @minvif: minimum VIF id * @maxvif: maximum VIF id * @bytes: bytes that have passed for this entry * @pkt: packets that have passed for this entry * @wrong_if: number of wrong source interface hits * @lastuse: time of last use of the group (traffic or update) * @ttls: OIF TTL threshold array * @refcount: reference count for this entry * @list: global entry list * @rcu: used for entry destruction * @free: Operation used for freeing an entry under RCU */ struct mr_mfc { struct rhlist_head mnode; unsigned short mfc_parent; int mfc_flags; union { struct { unsigned long expires; struct sk_buff_head unresolved; } unres; struct { unsigned long last_assert; int minvif; int maxvif; unsigned long bytes; unsigned long pkt; unsigned long wrong_if; unsigned long lastuse; unsigned char ttls[MAXVIFS]; refcount_t refcount; } res; } mfc_un; struct list_head list; struct rcu_head rcu; void (*free)(struct rcu_head *head); }; static inline void mr_cache_put(struct mr_mfc *c) { if (refcount_dec_and_test(&c->mfc_un.res.refcount)) call_rcu(&c->rcu, c->free); } static inline void mr_cache_hold(struct mr_mfc *c) { refcount_inc(&c->mfc_un.res.refcount); } struct mfc_entry_notifier_info { struct fib_notifier_info info; struct mr_mfc *mfc; u32 tb_id; }; static inline int mr_call_mfc_notifier(struct notifier_block *nb, unsigned short family, enum fib_event_type event_type, struct mr_mfc *mfc, u32 tb_id, struct netlink_ext_ack *extack) { struct mfc_entry_notifier_info info = { .info = { .family = family, .extack = extack, }, .mfc = mfc, .tb_id = tb_id }; return call_fib_notifier(nb, event_type, &info.info); } static inline int mr_call_mfc_notifiers(struct net *net, unsigned short family, enum fib_event_type event_type, struct mr_mfc *mfc, u32 tb_id, unsigned int *ipmr_seq) { struct mfc_entry_notifier_info info = { .info = { .family = family, }, .mfc = mfc, .tb_id = tb_id }; ASSERT_RTNL(); (*ipmr_seq)++; return call_fib_notifiers(net, event_type, &info.info); } struct mr_table; /** * struct mr_table_ops - callbacks and info for protocol-specific ops * @rht_params: parameters for accessing the MFC hash * @cmparg_any: a hash key to be used for matching on (*,*) routes */ struct mr_table_ops { const struct rhashtable_params *rht_params; void *cmparg_any; }; /** * struct mr_table - a multicast routing table * @list: entry within a list of multicast routing tables * @net: net where this table belongs * @ops: protocol specific operations * @id: identifier of the table * @mroute_sk: socket associated with the table * @ipmr_expire_timer: timer for handling unresolved routes * @mfc_unres_queue: list of unresolved MFC entries * @vif_table: array containing all possible vifs * @mfc_hash: Hash table of all resolved routes for easy lookup * @mfc_cache_list: list of resovled routes for possible traversal * @maxvif: Identifier of highest value vif currently in use * @cache_resolve_queue_len: current size of unresolved queue * @mroute_do_assert: Whether to inform userspace on wrong ingress * @mroute_do_pim: Whether to receive IGMP PIMv1 * @mroute_reg_vif_num: PIM-device vif index */ struct mr_table { struct list_head list; possible_net_t net; struct mr_table_ops ops; u32 id; struct sock __rcu *mroute_sk; struct timer_list ipmr_expire_timer; struct list_head mfc_unres_queue; struct vif_device vif_table[MAXVIFS]; struct rhltable mfc_hash; struct list_head mfc_cache_list; int maxvif; atomic_t cache_resolve_queue_len; bool mroute_do_assert; bool mroute_do_pim; bool mroute_do_wrvifwhole; int mroute_reg_vif_num; }; #ifdef CONFIG_IP_MROUTE_COMMON void vif_device_init(struct vif_device *v, struct net_device *dev, unsigned long rate_limit, unsigned char threshold, unsigned short flags, unsigned short get_iflink_mask); struct mr_table * mr_table_alloc(struct net *net, u32 id, struct mr_table_ops *ops, void (*expire_func)(struct timer_list *t), void (*table_set)(struct mr_table *mrt, struct net *net)); /* These actually return 'struct mr_mfc *', but to avoid need for explicit * castings they simply return void. */ void *mr_mfc_find_parent(struct mr_table *mrt, void *hasharg, int parent); void *mr_mfc_find_any_parent(struct mr_table *mrt, int vifi); void *mr_mfc_find_any(struct mr_table *mrt, int vifi, void *hasharg); int mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, struct mr_mfc *c, struct rtmsg *rtm); int mr_table_dump(struct mr_table *mrt, struct sk_buff *skb, struct netlink_callback *cb, int (*fill)(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mr_mfc *c, int cmd, int flags), spinlock_t *lock, struct fib_dump_filter *filter); int mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb, struct mr_table *(*iter)(struct net *net, struct mr_table *mrt), int (*fill)(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mr_mfc *c, int cmd, int flags), spinlock_t *lock, struct fib_dump_filter *filter); int mr_dump(struct net *net, struct notifier_block *nb, unsigned short family, int (*rules_dump)(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack), struct mr_table *(*mr_iter)(struct net *net, struct mr_table *mrt), rwlock_t *mrt_lock, struct netlink_ext_ack *extack); #else static inline void vif_device_init(struct vif_device *v, struct net_device *dev, unsigned long rate_limit, unsigned char threshold, unsigned short flags, unsigned short get_iflink_mask) { } static inline void *mr_mfc_find_parent(struct mr_table *mrt, void *hasharg, int parent) { return NULL; } static inline void *mr_mfc_find_any_parent(struct mr_table *mrt, int vifi) { return NULL; } static inline struct mr_mfc *mr_mfc_find_any(struct mr_table *mrt, int vifi, void *hasharg) { return NULL; } static inline int mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, struct mr_mfc *c, struct rtmsg *rtm) { return -EINVAL; } static inline int mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb, struct mr_table *(*iter)(struct net *net, struct mr_table *mrt), int (*fill)(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mr_mfc *c, int cmd, int flags), spinlock_t *lock, struct fib_dump_filter *filter) { return -EINVAL; } static inline int mr_dump(struct net *net, struct notifier_block *nb, unsigned short family, int (*rules_dump)(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack), struct mr_table *(*mr_iter)(struct net *net, struct mr_table *mrt), rwlock_t *mrt_lock, struct netlink_ext_ack *extack) { return -EINVAL; } #endif static inline void *mr_mfc_find(struct mr_table *mrt, void *hasharg) { return mr_mfc_find_parent(mrt, hasharg, -1); } #ifdef CONFIG_PROC_FS struct mr_vif_iter { struct seq_net_private p; struct mr_table *mrt; int ct; }; struct mr_mfc_iter { struct seq_net_private p; struct mr_table *mrt; struct list_head *cache; /* Lock protecting the mr_table's unresolved queue */ spinlock_t *lock; }; #ifdef CONFIG_IP_MROUTE_COMMON void *mr_vif_seq_idx(struct net *net, struct mr_vif_iter *iter, loff_t pos); void *mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos); static inline void *mr_vif_seq_start(struct seq_file *seq, loff_t *pos) { return *pos ? mr_vif_seq_idx(seq_file_net(seq), seq->private, *pos - 1) : SEQ_START_TOKEN; } /* These actually return 'struct mr_mfc *', but to avoid need for explicit * castings they simply return void. */ void *mr_mfc_seq_idx(struct net *net, struct mr_mfc_iter *it, loff_t pos); void *mr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos); static inline void *mr_mfc_seq_start(struct seq_file *seq, loff_t *pos, struct mr_table *mrt, spinlock_t *lock) { struct mr_mfc_iter *it = seq->private; it->mrt = mrt; it->cache = NULL; it->lock = lock; return *pos ? mr_mfc_seq_idx(seq_file_net(seq), seq->private, *pos - 1) : SEQ_START_TOKEN; } static inline void mr_mfc_seq_stop(struct seq_file *seq, void *v) { struct mr_mfc_iter *it = seq->private; struct mr_table *mrt = it->mrt; if (it->cache == &mrt->mfc_unres_queue) spin_unlock_bh(it->lock); else if (it->cache == &mrt->mfc_cache_list) rcu_read_unlock(); } #else static inline void *mr_vif_seq_idx(struct net *net, struct mr_vif_iter *iter, loff_t pos) { return NULL; } static inline void *mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) { return NULL; } static inline void *mr_vif_seq_start(struct seq_file *seq, loff_t *pos) { return NULL; } static inline void *mr_mfc_seq_idx(struct net *net, struct mr_mfc_iter *it, loff_t pos) { return NULL; } static inline void *mr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) { return NULL; } static inline void *mr_mfc_seq_start(struct seq_file *seq, loff_t *pos, struct mr_table *mrt, spinlock_t *lock) { return NULL; } static inline void mr_mfc_seq_stop(struct seq_file *seq, void *v) { } #endif #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 /* SPDX-License-Identifier: GPL-2.0 */ /* * fscrypt.h: declarations for per-file encryption * * Filesystems that implement per-file encryption must include this header * file. * * Copyright (C) 2015, Google, Inc. * * Written by Michael Halcrow, 2015. * Modified by Jaegeuk Kim, 2015. */ #ifndef _LINUX_FSCRYPT_H #define _LINUX_FSCRYPT_H #include <linux/fs.h> #include <linux/mm.h> #include <linux/slab.h> #include <uapi/linux/fscrypt.h> #define FS_CRYPTO_BLOCK_SIZE 16 union fscrypt_policy; struct fscrypt_info; struct seq_file; struct fscrypt_str { unsigned char *name; u32 len; }; struct fscrypt_name { const struct qstr *usr_fname; struct fscrypt_str disk_name; u32 hash; u32 minor_hash; struct fscrypt_str crypto_buf; bool is_nokey_name; }; #define FSTR_INIT(n, l) { .name = n, .len = l } #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) #define fname_name(p) ((p)->disk_name.name) #define fname_len(p) ((p)->disk_name.len) /* Maximum value for the third parameter of fscrypt_operations.set_context(). */ #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 #ifdef CONFIG_FS_ENCRYPTION /* * fscrypt superblock flags */ #define FS_CFLG_OWN_PAGES (1U << 1) /* * crypto operations for filesystems */ struct fscrypt_operations { unsigned int flags; const char *key_prefix; int (*get_context)(struct inode *inode, void *ctx, size_t len); int (*set_context)(struct inode *inode, const void *ctx, size_t len, void *fs_data); const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb); bool (*empty_dir)(struct inode *inode); unsigned int max_namelen; bool (*has_stable_inodes)(struct super_block *sb); void (*get_ino_and_lblk_bits)(struct super_block *sb, int *ino_bits_ret, int *lblk_bits_ret); int (*get_num_devices)(struct super_block *sb); void (*get_devices)(struct super_block *sb, struct request_queue **devs); }; static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) { /* * Pairs with the cmpxchg_release() in fscrypt_get_encryption_info(). * I.e., another task may publish ->i_crypt_info concurrently, executing * a RELEASE barrier. We need to use smp_load_acquire() here to safely * ACQUIRE the memory the other task published. */ return smp_load_acquire(&inode->i_crypt_info); } /** * fscrypt_needs_contents_encryption() - check whether an inode needs * contents encryption * @inode: the inode to check * * Return: %true iff the inode is an encrypted regular file and the kernel was * built with fscrypt support. * * If you need to know whether the encrypt bit is set even when the kernel was * built without fscrypt support, you must use IS_ENCRYPTED() directly instead. */ static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) { return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); } /* * When d_splice_alias() moves a directory's no-key alias to its plaintext alias * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be * cleared. Note that we don't have to support arbitrary moves of this flag * because fscrypt doesn't allow no-key names to be the source or target of a * rename(). */ static inline void fscrypt_handle_d_move(struct dentry *dentry) { dentry->d_flags &= ~DCACHE_NOKEY_NAME; } /** * fscrypt_is_nokey_name() - test whether a dentry is a no-key name * @dentry: the dentry to check * * This returns true if the dentry is a no-key dentry. A no-key dentry is a * dentry that was created in an encrypted directory that hasn't had its * encryption key added yet. Such dentries may be either positive or negative. * * When a filesystem is asked to create a new filename in an encrypted directory * and the new filename's dentry is a no-key dentry, it must fail the operation * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(), * ->rename(), and ->link(). (However, ->rename() and ->link() are already * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().) * * This is necessary because creating a filename requires the directory's * encryption key, but just checking for the key on the directory inode during * the final filesystem operation doesn't guarantee that the key was available * during the preceding dentry lookup. And the key must have already been * available during the dentry lookup in order for it to have been checked * whether the filename already exists in the directory and for the new file's * dentry not to be invalidated due to it incorrectly having the no-key flag. * * Return: %true if the dentry is a no-key name */ static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) { return dentry->d_flags & DCACHE_NOKEY_NAME; } /* crypto.c */ void fscrypt_enqueue_decrypt_work(struct work_struct *); struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, unsigned int len, unsigned int offs, gfp_t gfp_flags); int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num, gfp_t gfp_flags); int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len, unsigned int offs); int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num); static inline bool fscrypt_is_bounce_page(struct page *page) { return page->mapping == NULL; } static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) { return (struct page *)page_private(bounce_page); } void fscrypt_free_bounce_page(struct page *bounce_page); /* policy.c */ int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg); int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg); int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg); int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg); int fscrypt_has_permitted_context(struct inode *parent, struct inode *child); int fscrypt_set_context(struct inode *inode, void *fs_data); struct fscrypt_dummy_policy { const union fscrypt_policy *policy; }; int fscrypt_set_test_dummy_encryption(struct super_block *sb, const char *arg, struct fscrypt_dummy_policy *dummy_policy); void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, struct super_block *sb); static inline void fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) { kfree(dummy_policy->policy); dummy_policy->policy = NULL; } /* keyring.c */ void fscrypt_sb_free(struct super_block *sb); int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg); int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); /* keysetup.c */ int fscrypt_get_encryption_info(struct inode *inode); int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, bool *encrypt_ret); void fscrypt_put_encryption_info(struct inode *inode); void fscrypt_free_inode(struct inode *inode); int fscrypt_drop_inode(struct inode *inode); /* fname.c */ int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname, int lookup, struct fscrypt_name *fname); static inline void fscrypt_free_filename(struct fscrypt_name *fname) { kfree(fname->crypto_buf.name); } int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, struct fscrypt_str *crypto_str); void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str); int fscrypt_fname_disk_to_usr(const struct inode *inode, u32 hash, u32 minor_hash, const struct fscrypt_str *iname, struct fscrypt_str *oname); bool fscrypt_match_name(const struct fscrypt_name *fname, const u8 *de_name, u32 de_name_len); u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name); int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags); /* bio.c */ void fscrypt_decrypt_bio(struct bio *bio); int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, sector_t pblk, unsigned int len); /* hooks.c */ int fscrypt_file_open(struct inode *inode, struct file *filp); int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, struct dentry *dentry); int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags); int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, struct fscrypt_name *fname); int fscrypt_prepare_setflags(struct inode *inode, unsigned int oldflags, unsigned int flags); int fscrypt_prepare_symlink(struct inode *dir, const char *target, unsigned int len, unsigned int max_len, struct fscrypt_str *disk_link); int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, unsigned int len, struct fscrypt_str *disk_link); const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, unsigned int max_size, struct delayed_call *done); int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat); static inline void fscrypt_set_ops(struct super_block *sb, const struct fscrypt_operations *s_cop) { sb->s_cop = s_cop; } #else /* !CONFIG_FS_ENCRYPTION */ static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode) { return NULL; } static inline bool fscrypt_needs_contents_encryption(const struct inode *inode) { return false; } static inline void fscrypt_handle_d_move(struct dentry *dentry) { } static inline bool fscrypt_is_nokey_name(const struct dentry *dentry) { return false; } /* crypto.c */ static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) { } static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, unsigned int len, unsigned int offs, gfp_t gfp_flags) { return ERR_PTR(-EOPNOTSUPP); } static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num, gfp_t gfp_flags) { return -EOPNOTSUPP; } static inline int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len, unsigned int offs) { return -EOPNOTSUPP; } static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, unsigned int len, unsigned int offs, u64 lblk_num) { return -EOPNOTSUPP; } static inline bool fscrypt_is_bounce_page(struct page *page) { return false; } static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) { WARN_ON_ONCE(1); return ERR_PTR(-EINVAL); } static inline void fscrypt_free_bounce_page(struct page *bounce_page) { } /* policy.c */ static inline int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_has_permitted_context(struct inode *parent, struct inode *child) { return 0; } static inline int fscrypt_set_context(struct inode *inode, void *fs_data) { return -EOPNOTSUPP; } struct fscrypt_dummy_policy { }; static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep, struct super_block *sb) { } static inline void fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy) { } /* keyring.c */ static inline void fscrypt_sb_free(struct super_block *sb) { } static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } static inline int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } /* keysetup.c */ static inline int fscrypt_get_encryption_info(struct inode *inode) { return -EOPNOTSUPP; } static inline int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, bool *encrypt_ret) { if (IS_ENCRYPTED(dir)) return -EOPNOTSUPP; return 0; } static inline void fscrypt_put_encryption_info(struct inode *inode) { return; } static inline void fscrypt_free_inode(struct inode *inode) { } static inline int fscrypt_drop_inode(struct inode *inode) { return 0; } /* fname.c */ static inline int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname, int lookup, struct fscrypt_name *fname) { if (IS_ENCRYPTED(dir)) return -EOPNOTSUPP; memset(fname, 0, sizeof(*fname)); fname->usr_fname = iname; fname->disk_name.name = (unsigned char *)iname->name; fname->disk_name.len = iname->len; return 0; } static inline void fscrypt_free_filename(struct fscrypt_name *fname) { return; } static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, struct fscrypt_str *crypto_str) { return -EOPNOTSUPP; } static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) { return; } static inline int fscrypt_fname_disk_to_usr(const struct inode *inode, u32 hash, u32 minor_hash, const struct fscrypt_str *iname, struct fscrypt_str *oname) { return -EOPNOTSUPP; } static inline bool fscrypt_match_name(const struct fscrypt_name *fname, const u8 *de_name, u32 de_name_len) { /* Encryption support disabled; use standard comparison */ if (de_name_len != fname->disk_name.len) return false; return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); } static inline u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name) { WARN_ON_ONCE(1); return 0; } static inline int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) { return 1; } /* bio.c */ static inline void fscrypt_decrypt_bio(struct bio *bio) { } static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, sector_t pblk, unsigned int len) { return -EOPNOTSUPP; } /* hooks.c */ static inline int fscrypt_file_open(struct inode *inode, struct file *filp) { if (IS_ENCRYPTED(inode)) return -EOPNOTSUPP; return 0; } static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, struct dentry *dentry) { return -EOPNOTSUPP; } static inline int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { return -EOPNOTSUPP; } static inline int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, struct fscrypt_name *fname) { return -EOPNOTSUPP; } static inline int fscrypt_prepare_setflags(struct inode *inode, unsigned int oldflags, unsigned int flags) { return 0; } static inline int fscrypt_prepare_symlink(struct inode *dir, const char *target, unsigned int len, unsigned int max_len, struct fscrypt_str *disk_link) { if (IS_ENCRYPTED(dir)) return -EOPNOTSUPP; disk_link->name = (unsigned char *)target; disk_link->len = len + 1; if (disk_link->len > max_len) return -ENAMETOOLONG; return 0; } static inline int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, unsigned int len, struct fscrypt_str *disk_link) { return -EOPNOTSUPP; } static inline const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, unsigned int max_size, struct delayed_call *done) { return ERR_PTR(-EOPNOTSUPP); } static inline int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat) { return -EOPNOTSUPP; } static inline void fscrypt_set_ops(struct super_block *sb, const struct fscrypt_operations *s_cop) { } #endif /* !CONFIG_FS_ENCRYPTION */ /* inline_crypt.c */ #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode); void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, u64 first_lblk, gfp_t gfp_mask); void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio, const struct buffer_head *first_bh, gfp_t gfp_mask); bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, u64 next_lblk); bool fscrypt_mergeable_bio_bh(struct bio *bio, const struct buffer_head *next_bh); #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode) { return false; } static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, u64 first_lblk, gfp_t gfp_mask) { } static inline void fscrypt_set_bio_crypt_ctx_bh( struct bio *bio, const struct buffer_head *first_bh, gfp_t gfp_mask) { } static inline bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode, u64 next_lblk) { return true; } static inline bool fscrypt_mergeable_bio_bh(struct bio *bio, const struct buffer_head *next_bh) { return true; } #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ /** * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline * encryption * @inode: an inode. If encrypted, its key must be set up. * * Return: true if the inode requires file contents encryption and if the * encryption should be done in the block layer via blk-crypto rather * than in the filesystem layer. */ static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode) { return fscrypt_needs_contents_encryption(inode) && __fscrypt_inode_uses_inline_crypto(inode); } /** * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer * encryption * @inode: an inode. If encrypted, its key must be set up. * * Return: true if the inode requires file contents encryption and if the * encryption should be done in the filesystem layer rather than in the * block layer via blk-crypto. */ static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode) { return fscrypt_needs_contents_encryption(inode) && !__fscrypt_inode_uses_inline_crypto(inode); } /** * fscrypt_has_encryption_key() - check whether an inode has had its key set up * @inode: the inode to check * * Return: %true if the inode has had its encryption key set up, else %false. * * Usually this should be preceded by fscrypt_get_encryption_info() to try to * set up the key first. */ static inline bool fscrypt_has_encryption_key(const struct inode *inode) { return fscrypt_get_info(inode) != NULL; } /** * fscrypt_require_key() - require an inode's encryption key * @inode: the inode we need the key for * * If the inode is encrypted, set up its encryption key if not already done. * Then require that the key be present and return -ENOKEY otherwise. * * No locks are needed, and the key will live as long as the struct inode --- so * it won't go away from under you. * * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code * if a problem occurred while setting up the encryption key. */ static inline int fscrypt_require_key(struct inode *inode) { if (IS_ENCRYPTED(inode)) { int err = fscrypt_get_encryption_info(inode); if (err) return err; if (!fscrypt_has_encryption_key(inode)) return -ENOKEY; } return 0; } /** * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted * directory * @old_dentry: an existing dentry for the inode being linked * @dir: the target directory * @dentry: negative dentry for the target filename * * A new link can only be added to an encrypted directory if the directory's * encryption key is available --- since otherwise we'd have no way to encrypt * the filename. Therefore, we first set up the directory's encryption key (if * not already done) and return an error if it's unavailable. * * We also verify that the link will not violate the constraint that all files * in an encrypted directory tree use the same encryption policy. * * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, * -EXDEV if the link would result in an inconsistent encryption policy, or * another -errno code. */ static inline int fscrypt_prepare_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { if (IS_ENCRYPTED(dir)) return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); return 0; } /** * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted * directories * @old_dir: source directory * @old_dentry: dentry for source file * @new_dir: target directory * @new_dentry: dentry for target location (may be negative unless exchanging) * @flags: rename flags (we care at least about %RENAME_EXCHANGE) * * Prepare for ->rename() where the source and/or target directories may be * encrypted. A new link can only be added to an encrypted directory if the * directory's encryption key is available --- since otherwise we'd have no way * to encrypt the filename. A rename to an existing name, on the other hand, * *is* cryptographically possible without the key. However, we take the more * conservative approach and just forbid all no-key renames. * * We also verify that the rename will not violate the constraint that all files * in an encrypted directory tree use the same encryption policy. * * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the * rename would cause inconsistent encryption policies, or another -errno code. */ static inline int fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) return __fscrypt_prepare_rename(old_dir, old_dentry, new_dir, new_dentry, flags); return 0; } /** * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted * directory * @dir: directory being searched * @dentry: filename being looked up * @fname: (output) the name to use to search the on-disk directory * * Prepare for ->lookup() in a directory which may be encrypted by determining * the name that will actually be used to search the directory on-disk. If the * directory's encryption key is available, then the lookup is assumed to be by * plaintext name; otherwise, it is assumed to be by no-key name. * * This also installs a custom ->d_revalidate() method which will invalidate the * dentry if it was created without the key and the key is later added. * * Return: 0 on success; -ENOENT if the directory's key is unavailable but the * filename isn't a valid no-key name, so a negative dentry should be created; * or another -errno code. */ static inline int fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, struct fscrypt_name *fname) { if (IS_ENCRYPTED(dir)) return __fscrypt_prepare_lookup(dir, dentry, fname); memset(fname, 0, sizeof(*fname)); fname->usr_fname = &dentry->d_name; fname->disk_name.name = (unsigned char *)dentry->d_name.name; fname->disk_name.len = dentry->d_name.len; return 0; } /** * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's * attributes * @dentry: dentry through which the inode is being changed * @attr: attributes to change * * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, * most attribute changes are allowed even without the encryption key. However, * without the encryption key we do have to forbid truncates. This is needed * because the size being truncated to may not be a multiple of the filesystem * block size, and in that case we'd have to decrypt the final block, zero the * portion past i_size, and re-encrypt it. (We *could* allow truncating to a * filesystem block boundary, but it's simpler to just forbid all truncates --- * and we already forbid all other contents modifications without the key.) * * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code * if a problem occurred while setting up the encryption key. */ static inline int fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr) { if (attr->ia_valid & ATTR_SIZE) return fscrypt_require_key(d_inode(dentry)); return 0; } /** * fscrypt_encrypt_symlink() - encrypt the symlink target if needed * @inode: symlink inode * @target: plaintext symlink target * @len: length of @target excluding null terminator * @disk_link: (in/out) the on-disk symlink target being prepared * * If the symlink target needs to be encrypted, then this function encrypts it * into @disk_link->name. fscrypt_prepare_symlink() must have been called * previously to compute @disk_link->len. If the filesystem did not allocate a * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one * will be kmalloc()'ed and the filesystem will be responsible for freeing it. * * Return: 0 on success, -errno on failure */ static inline int fscrypt_encrypt_symlink(struct inode *inode, const char *target, unsigned int len, struct fscrypt_str *disk_link) { if (IS_ENCRYPTED(inode)) return __fscrypt_encrypt_symlink(inode, target, len, disk_link); return 0; } /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ static inline void fscrypt_finalize_bounce_page(struct page **pagep) { struct page *page = *pagep; if (fscrypt_is_bounce_page(page)) { *pagep = fscrypt_pagecache_page(page); fscrypt_free_bounce_page(page); } } #endif /* _LINUX_FSCRYPT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2007, 2008, 2009 Siemens AG * * Written by: * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> */ #ifndef __NET_CFG802154_H #define __NET_CFG802154_H #include <linux/ieee802154.h> #include <linux/netdevice.h> #include <linux/mutex.h> #include <linux/bug.h> #include <net/nl802154.h> struct wpan_phy; struct wpan_phy_cca; #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL struct ieee802154_llsec_device_key; struct ieee802154_llsec_seclevel; struct ieee802154_llsec_params; struct ieee802154_llsec_device; struct ieee802154_llsec_table; struct ieee802154_llsec_key_id; struct ieee802154_llsec_key; #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ struct cfg802154_ops { struct net_device * (*add_virtual_intf_deprecated)(struct wpan_phy *wpan_phy, const char *name, unsigned char name_assign_type, int type); void (*del_virtual_intf_deprecated)(struct wpan_phy *wpan_phy, struct net_device *dev); int (*suspend)(struct wpan_phy *wpan_phy); int (*resume)(struct wpan_phy *wpan_phy); int (*add_virtual_intf)(struct wpan_phy *wpan_phy, const char *name, unsigned char name_assign_type, enum nl802154_iftype type, __le64 extended_addr); int (*del_virtual_intf)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev); int (*set_channel)(struct wpan_phy *wpan_phy, u8 page, u8 channel); int (*set_cca_mode)(struct wpan_phy *wpan_phy, const struct wpan_phy_cca *cca); int (*set_cca_ed_level)(struct wpan_phy *wpan_phy, s32 ed_level); int (*set_tx_power)(struct wpan_phy *wpan_phy, s32 power); int (*set_pan_id)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le16 pan_id); int (*set_short_addr)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le16 short_addr); int (*set_backoff_exponent)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, u8 min_be, u8 max_be); int (*set_max_csma_backoffs)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, u8 max_csma_backoffs); int (*set_max_frame_retries)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, s8 max_frame_retries); int (*set_lbt_mode)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, bool mode); int (*set_ackreq_default)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, bool ackreq); #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL void (*get_llsec_table)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, struct ieee802154_llsec_table **table); void (*lock_llsec_table)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev); void (*unlock_llsec_table)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev); /* TODO remove locking/get table callbacks, this is part of the * nl802154 interface and should be accessible from ieee802154 layer. */ int (*get_llsec_params)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, struct ieee802154_llsec_params *params); int (*set_llsec_params)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_params *params, int changed); int (*add_llsec_key)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id, const struct ieee802154_llsec_key *key); int (*del_llsec_key)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_key_id *id); int (*add_seclevel)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl); int (*del_seclevel)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_seclevel *sl); int (*add_device)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, const struct ieee802154_llsec_device *dev); int (*del_device)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le64 extended_addr); int (*add_devkey)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *key); int (*del_devkey)(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *key); #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ }; static inline bool wpan_phy_supported_bool(bool b, enum nl802154_supported_bool_states st) { switch (st) { case NL802154_SUPPORTED_BOOL_TRUE: return b; case NL802154_SUPPORTED_BOOL_FALSE: return !b; case NL802154_SUPPORTED_BOOL_BOTH: return true; default: WARN_ON(1); } return false; } struct wpan_phy_supported { u32 channels[IEEE802154_MAX_PAGE + 1], cca_modes, cca_opts, iftypes; enum nl802154_supported_bool_states lbt; u8 min_minbe, max_minbe, min_maxbe, max_maxbe, min_csma_backoffs, max_csma_backoffs; s8 min_frame_retries, max_frame_retries; size_t tx_powers_size, cca_ed_levels_size; const s32 *tx_powers, *cca_ed_levels; }; struct wpan_phy_cca { enum nl802154_cca_modes mode; enum nl802154_cca_opts opt; }; static inline bool wpan_phy_cca_cmp(const struct wpan_phy_cca *a, const struct wpan_phy_cca *b) { if (a->mode != b->mode) return false; if (a->mode == NL802154_CCA_ENERGY_CARRIER) return a->opt == b->opt; return true; } /** * @WPAN_PHY_FLAG_TRANSMIT_POWER: Indicates that transceiver will support * transmit power setting. * @WPAN_PHY_FLAG_CCA_ED_LEVEL: Indicates that transceiver will support cca ed * level setting. * @WPAN_PHY_FLAG_CCA_MODE: Indicates that transceiver will support cca mode * setting. */ enum wpan_phy_flags { WPAN_PHY_FLAG_TXPOWER = BIT(1), WPAN_PHY_FLAG_CCA_ED_LEVEL = BIT(2), WPAN_PHY_FLAG_CCA_MODE = BIT(3), }; struct wpan_phy { /* If multiple wpan_phys are registered and you're handed e.g. * a regular netdev with assigned ieee802154_ptr, you won't * know whether it points to a wpan_phy your driver has registered * or not. Assign this to something global to your driver to * help determine whether you own this wpan_phy or not. */ const void *privid; u32 flags; /* * This is a PIB according to 802.15.4-2011. * We do not provide timing-related variables, as they * aren't used outside of driver */ u8 current_channel; u8 current_page; struct wpan_phy_supported supported; /* current transmit_power in mBm */ s32 transmit_power; struct wpan_phy_cca cca; __le64 perm_extended_addr; /* current cca ed threshold in mBm */ s32 cca_ed_level; /* PHY depended MAC PIB values */ /* 802.15.4 acronym: Tdsym in usec */ u8 symbol_duration; /* lifs and sifs periods timing */ u16 lifs_period; u16 sifs_period; struct device dev; /* the network namespace this phy lives in currently */ possible_net_t _net; char priv[] __aligned(NETDEV_ALIGN); }; static inline struct net *wpan_phy_net(struct wpan_phy *wpan_phy) { return read_pnet(&wpan_phy->_net); } static inline void wpan_phy_net_set(struct wpan_phy *wpan_phy, struct net *net) { write_pnet(&wpan_phy->_net, net); } struct ieee802154_addr { u8 mode; __le16 pan_id; union { __le16 short_addr; __le64 extended_addr; }; }; struct ieee802154_llsec_key_id { u8 mode; u8 id; union { struct ieee802154_addr device_addr; __le32 short_source; __le64 extended_source; }; }; #define IEEE802154_LLSEC_KEY_SIZE 16 struct ieee802154_llsec_key { u8 frame_types; u32 cmd_frame_ids; /* TODO replace with NL802154_KEY_SIZE */ u8 key[IEEE802154_LLSEC_KEY_SIZE]; }; struct ieee802154_llsec_key_entry { struct list_head list; struct ieee802154_llsec_key_id id; struct ieee802154_llsec_key *key; }; struct ieee802154_llsec_params { bool enabled; __be32 frame_counter; u8 out_level; struct ieee802154_llsec_key_id out_key; __le64 default_key_source; __le16 pan_id; __le64 hwaddr; __le64 coord_hwaddr; __le16 coord_shortaddr; }; struct ieee802154_llsec_table { struct list_head keys; struct list_head devices; struct list_head security_levels; }; struct ieee802154_llsec_seclevel { struct list_head list; u8 frame_type; u8 cmd_frame_id; bool device_override; u32 sec_levels; }; struct ieee802154_llsec_device { struct list_head list; __le16 pan_id; __le16 short_addr; __le64 hwaddr; u32 frame_counter; bool seclevel_exempt; u8 key_mode; struct list_head keys; }; struct ieee802154_llsec_device_key { struct list_head list; struct ieee802154_llsec_key_id key_id; u32 frame_counter; }; struct wpan_dev_header_ops { /* TODO create callback currently assumes ieee802154_mac_cb inside * skb->cb. This should be changed to give these information as * parameter. */ int (*create)(struct sk_buff *skb, struct net_device *dev, const struct ieee802154_addr *daddr, const struct ieee802154_addr *saddr, unsigned int len); }; struct wpan_dev { struct wpan_phy *wpan_phy; int iftype; /* the remainder of this struct should be private to cfg802154 */ struct list_head list; struct net_device *netdev; const struct wpan_dev_header_ops *header_ops; /* lowpan interface, set when the wpan_dev belongs to one lowpan_dev */ struct net_device *lowpan_dev; u32 identifier; /* MAC PIB */ __le16 pan_id; __le16 short_addr; __le64 extended_addr; /* MAC BSN field */ atomic_t bsn; /* MAC DSN field */ atomic_t dsn; u8 min_be; u8 max_be; u8 csma_retries; s8 frame_retries; bool lbt; bool promiscuous_mode; /* fallback for acknowledgment bit setting */ bool ackreq; }; #define to_phy(_dev) container_of(_dev, struct wpan_phy, dev) static inline int wpan_dev_hard_header(struct sk_buff *skb, struct net_device *dev, const struct ieee802154_addr *daddr, const struct ieee802154_addr *saddr, unsigned int len) { struct wpan_dev *wpan_dev = dev->ieee802154_ptr; return wpan_dev->header_ops->create(skb, dev, daddr, saddr, len); } struct wpan_phy * wpan_phy_new(const struct cfg802154_ops *ops, size_t priv_size); static inline void wpan_phy_set_dev(struct wpan_phy *phy, struct device *dev) { phy->dev.parent = dev; } int wpan_phy_register(struct wpan_phy *phy); void wpan_phy_unregister(struct wpan_phy *phy); void wpan_phy_free(struct wpan_phy *phy); /* Same semantics as for class_for_each_device */ int wpan_phy_for_each(int (*fn)(struct wpan_phy *phy, void *data), void *data); static inline void *wpan_phy_priv(struct wpan_phy *phy) { BUG_ON(!phy); return &phy->priv; } struct wpan_phy *wpan_phy_find(const char *str); static inline void wpan_phy_put(struct wpan_phy *phy) { put_device(&phy->dev); } static inline const char *wpan_phy_name(struct wpan_phy *phy) { return dev_name(&phy->dev); } #endif /* __NET_CFG802154_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_IO_H #define _ASM_X86_IO_H /* * This file contains the definitions for the x86 IO instructions * inb/inw/inl/outb/outw/outl and the "string versions" of the same * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing" * versions of the single-IO instructions (inb_p/inw_p/..). * * This file is not meant to be obfuscating: it's just complicated * to (a) handle it all in a way that makes gcc able to optimize it * as well as possible and (b) trying to avoid writing the same thing * over and over again with slight variations and possibly making a * mistake somewhere. */ /* * Thanks to James van Artsdalen for a better timing-fix than * the two short jumps: using outb's to a nonexistent port seems * to guarantee better timings even on fast machines. * * On the other hand, I'd like to be sure of a non-existent port: * I feel a bit unsafe about using 0x80 (should be safe, though) * * Linus */ /* * Bit simplified and optimized by Jan Hubicka * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999. * * isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added, * isa_read[wl] and isa_write[wl] fixed * - Arnaldo Carvalho de Melo <acme@conectiva.com.br> */ #define ARCH_HAS_IOREMAP_WC #define ARCH_HAS_IOREMAP_WT #include <linux/string.h> #include <linux/compiler.h> #include <asm/page.h> #include <asm/early_ioremap.h> #include <asm/pgtable_types.h> #define build_mmio_read(name, size, type, reg, barrier) \ static inline type name(const volatile void __iomem *addr) \ { type ret; asm volatile("mov" size " %1,%0":reg (ret) \ :"m" (*(volatile type __force *)addr) barrier); return ret; } #define build_mmio_write(name, size, type, reg, barrier) \ static inline void name(type val, volatile void __iomem *addr) \ { asm volatile("mov" size " %0,%1": :reg (val), \ "m" (*(volatile type __force *)addr) barrier); } build_mmio_read(readb, "b", unsigned char, "=q", :"memory") build_mmio_read(readw, "w", unsigned short, "=r", :"memory") build_mmio_read(readl, "l", unsigned int, "=r", :"memory") build_mmio_read(__readb, "b", unsigned char, "=q", ) build_mmio_read(__readw, "w", unsigned short, "=r", ) build_mmio_read(__readl, "l", unsigned int, "=r", ) build_mmio_write(writeb, "b", unsigned char, "q", :"memory") build_mmio_write(writew, "w", unsigned short, "r", :"memory") build_mmio_write(writel, "l", unsigned int, "r", :"memory") build_mmio_write(__writeb, "b", unsigned char, "q", ) build_mmio_write(__writew, "w", unsigned short, "r", ) build_mmio_write(__writel, "l", unsigned int, "r", ) #define readb readb #define readw readw #define readl readl #define readb_relaxed(a) __readb(a) #define readw_relaxed(a) __readw(a) #define readl_relaxed(a) __readl(a) #define __raw_readb __readb #define __raw_readw __readw #define __raw_readl __readl #define writeb writeb #define writew writew #define writel writel #define writeb_relaxed(v, a) __writeb(v, a) #define writew_relaxed(v, a) __writew(v, a) #define writel_relaxed(v, a) __writel(v, a) #define __raw_writeb __writeb #define __raw_writew __writew #define __raw_writel __writel #ifdef CONFIG_X86_64 build_mmio_read(readq, "q", u64, "=r", :"memory") build_mmio_read(__readq, "q", u64, "=r", ) build_mmio_write(writeq, "q", u64, "r", :"memory") build_mmio_write(__writeq, "q", u64, "r", ) #define readq_relaxed(a) __readq(a) #define writeq_relaxed(v, a) __writeq(v, a) #define __raw_readq __readq #define __raw_writeq __writeq /* Let people know that we have them */ #define readq readq #define writeq writeq #endif #define ARCH_HAS_VALID_PHYS_ADDR_RANGE extern int valid_phys_addr_range(phys_addr_t addr, size_t size); extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); /** * virt_to_phys - map virtual addresses to physical * @address: address to remap * * The returned physical address is the physical (CPU) mapping for * the memory address given. It is only valid to use this function on * addresses directly mapped or allocated via kmalloc. * * This function does not give bus mappings for DMA transfers. In * almost all conceivable cases a device driver should not be using * this function */ static inline phys_addr_t virt_to_phys(volatile void *address) { return __pa(address); } #define virt_to_phys virt_to_phys /** * phys_to_virt - map physical address to virtual * @address: address to remap * * The returned virtual address is a current CPU mapping for * the memory address given. It is only valid to use this function on * addresses that have a kernel mapping * * This function does not handle bus mappings for DMA transfers. In * almost all conceivable cases a device driver should not be using * this function */ static inline void *phys_to_virt(phys_addr_t address) { return __va(address); } #define phys_to_virt phys_to_virt /* * Change "struct page" to physical address. */ #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) /* * ISA I/O bus memory addresses are 1:1 with the physical address. * However, we truncate the address to unsigned int to avoid undesirable * promitions in legacy drivers. */ static inline unsigned int isa_virt_to_bus(volatile void *address) { return (unsigned int)virt_to_phys(address); } #define isa_bus_to_virt phys_to_virt /* * However PCI ones are not necessarily 1:1 and therefore these interfaces * are forbidden in portable PCI drivers. * * Allow them on x86 for legacy drivers, though. */ #define virt_to_bus virt_to_phys #define bus_to_virt phys_to_virt /* * The default ioremap() behavior is non-cached; if you need something * else, you probably want one of the following. */ extern void __iomem *ioremap_uc(resource_size_t offset, unsigned long size); #define ioremap_uc ioremap_uc extern void __iomem *ioremap_cache(resource_size_t offset, unsigned long size); #define ioremap_cache ioremap_cache extern void __iomem *ioremap_prot(resource_size_t offset, unsigned long size, unsigned long prot_val); #define ioremap_prot ioremap_prot extern void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size); #define ioremap_encrypted ioremap_encrypted /** * ioremap - map bus memory into CPU space * @offset: bus address of the memory * @size: size of the resource to map * * ioremap performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. * * If the area you are trying to map is a PCI BAR you should have a * look at pci_iomap(). */ void __iomem *ioremap(resource_size_t offset, unsigned long size); #define ioremap ioremap extern void iounmap(volatile void __iomem *addr); #define iounmap iounmap extern void set_iounmap_nonlazy(void); #ifdef __KERNEL__ void memcpy_fromio(void *, const volatile void __iomem *, size_t); void memcpy_toio(volatile void __iomem *, const void *, size_t); void memset_io(volatile void __iomem *, int, size_t); #define memcpy_fromio memcpy_fromio #define memcpy_toio memcpy_toio #define memset_io memset_io #include <asm-generic/iomap.h> /* * ISA space is 'always mapped' on a typical x86 system, no need to * explicitly ioremap() it. The fact that the ISA IO space is mapped * to PAGE_OFFSET is pure coincidence - it does not mean ISA values * are physical addresses. The following constant pointer can be * used as the IO-area pointer (it can be iounmapped as well, so the * analogy with PCI is quite large): */ #define __ISA_IO_base ((char __iomem *)(PAGE_OFFSET)) #endif /* __KERNEL__ */ extern void native_io_delay(void); extern int io_delay_type; extern void io_delay_init(void); #if defined(CONFIG_PARAVIRT) #include <asm/paravirt.h> #else static inline void slow_down_io(void) { native_io_delay(); #ifdef REALLY_SLOW_IO native_io_delay(); native_io_delay(); native_io_delay(); #endif } #endif #ifdef CONFIG_AMD_MEM_ENCRYPT #include <linux/jump_label.h> extern struct static_key_false sev_enable_key; static inline bool sev_key_active(void) { return static_branch_unlikely(&sev_enable_key); } #else /* !CONFIG_AMD_MEM_ENCRYPT */ static inline bool sev_key_active(void) { return false; } #endif /* CONFIG_AMD_MEM_ENCRYPT */ #define BUILDIO(bwl, bw, type) \ static inline void out##bwl(unsigned type value, int port) \ { \ asm volatile("out" #bwl " %" #bw "0, %w1" \ : : "a"(value), "Nd"(port)); \ } \ \ static inline unsigned type in##bwl(int port) \ { \ unsigned type value; \ asm volatile("in" #bwl " %w1, %" #bw "0" \ : "=a"(value) : "Nd"(port)); \ return value; \ } \ \ static inline void out##bwl##_p(unsigned type value, int port) \ { \ out##bwl(value, port); \ slow_down_io(); \ } \ \ static inline unsigned type in##bwl##_p(int port) \ { \ unsigned type value = in##bwl(port); \ slow_down_io(); \ return value; \ } \ \ static inline void outs##bwl(int port, const void *addr, unsigned long count) \ { \ if (sev_key_active()) { \ unsigned type *value = (unsigned type *)addr; \ while (count) { \ out##bwl(*value, port); \ value++; \ count--; \ } \ } else { \ asm volatile("rep; outs" #bwl \ : "+S"(addr), "+c"(count) \ : "d"(port) : "memory"); \ } \ } \ \ static inline void ins##bwl(int port, void *addr, unsigned long count) \ { \ if (sev_key_active()) { \ unsigned type *value = (unsigned type *)addr; \ while (count) { \ *value = in##bwl(port); \ value++; \ count--; \ } \ } else { \ asm volatile("rep; ins" #bwl \ : "+D"(addr), "+c"(count) \ : "d"(port) : "memory"); \ } \ } BUILDIO(b, b, char) BUILDIO(w, w, short) BUILDIO(l, , int) #define inb inb #define inw inw #define inl inl #define inb_p inb_p #define inw_p inw